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To Gilles.1

1My grandfather Gilles Roy was a car mechanic for all his working years. As the older sibling, he had
to start working at his father’s garage when his brother went off to engineering school. The abrupt end
to Gilles’ agronomy studies displeased him—lead soldering cracked radiators in a thick blue haze was not
exactly what he aspired to—but he had no choice, such was the custom at the time. Two generations later,
as an older sibling myself, I am pursuing doctoral studies and hoping to advance the state-of-the-art in
automotive engineering. I believe this contrast is due in no small part to the technological progress our
society benefited from since then. May this story be a testimony to the importance of research work, and
hopefully, give a glimpse of motivation to my fellow graduate students. May this also be a reminder of the
chance bestowed on us.
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Abstract

Machine learning algorithms can enhance the control of uncertain dynamical systems by

learning dynamical models and tuning controller parameters. However, electric and au-

tonomous vehicles present important challenges. First, the need to operate a physical system

in order to collect data and iterate the control parameters leads to efficiency requirements

for the learning algorithm. Also, vehicles must be kept safe at all time during operation,

which requires to maintain criteria of robust stability and state constraint satisfaction dur-

ing learning. This thesis presents learning methods that address these challenges. First, it

is shown that with a proper choice of algorithm, a gearshift controller can be tuned from

reinforcement learning with very few gearshift trials. The method could accelerate the de-

velopment process for new multi-speed transmissions for electric drivetrains. Also, the thesis

presents a new method to synthesize a linear controller from a learned model of arbitrary

type, while preserving robust stability guarantees. The method is demonstrated by syn-

thesizing a controller for autonomous vehicular maneuvers. Finally, the thesis presents the

safe uncertainty learning principle. This principle introduces necessary conditions such that,

while the dynamics of an uncertain system are being learned, state constraints are always

enforced despite the modeling uncertainty. This research suggests that machine learning

control can be employed to accelerate the development process of new electric drivetrains,

and to enhance vehicular control while preserving safety guarantees.
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Sommaire

Les algorithmes d’apprentissage automatique peuvent améliorer le contrôle de systèmes dy-

namiques incertains en apprenant des modèles dynamiques et en ajustant des paramètres

de contrôle. Cependant, les véhicules électriques et autonomes présentent des défis impor-

tants. Tout d’abord, le besoin d’opérer un système physique afin de collecter des données

et itérer les paramètres engendre un requis d’efficacité pour l’algorithme d’apprentissage.

De plus, les véhicules doivent demeurer en sécurité tout au long de l’opération, ce qui re-

quiert de maintenir des critères de stabilité robuste et de satisfaction de contraintes d’état

pendant l’apprentissage. Cette thèse présente des méthodes d’apprentissage qui répondent

à ces défis. En premier lieu, il est montré qu’avec un choix approprié d’algorithme, un

contrôleur de changement de vitesse peut être ajusté avec l’apprentissage par renforcement,

et ce, en nécessitant seulement quelques essais de changement de vitesse. Cette méthode

peut accélérer le développement de nouvelles transmissions multi-vitesses pour véhicules

électriques. Aussi, cette thèse présente une nouvelle méthode pour synthétiser un contrôleur

linéaire à partir d’un modèle appris de la dynamique d’un système, tout en préservant des

garanties de stabilité robuste. Cette méthode est démontrée en synthétisant un contrôleur

pour des manoeuvres de véhicules autonomes. Finalement, la thèse présente le principe

d’apprentissage sécuritaire de l’incertitude. Ce principe introduit des conditions nécessaires

tel que, pendant que la dynamique d’un système incertain est apprise, les contraintes d’état

sont respectées malgré l’incertitude du modèle. Cette recherche suggère que le contrôle par

apprentissage automatique peut être utilisé afin d’accélérer le développement de véhicules

électriques, ainsi que d’améliorer le contrôle de véhicule autonomes tout en préservant des

garanties de sécurité.
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Introduction

The transition towards electric transportation is slowly gaining momentum in Canada. Ta-

ble 1 shows the proportion of new motor vehicle registrations that are battery electric in

the light vehicle category—i.e., passenger cars, pickup trucks, vans, and multi-purpose vehi-

cles [1]. The promise of electric vehicles is to reduce greenhouse gas emissions and alleviate

climate change. This is important given that in Canada, the transportation sector is respon-

sible for 25% of all greenhouse gas emissions, which amounts to 186Mt of CO2 equivalent [2].

Of these emissions, passenger transportation by cars and light trucks is responsible for 99Mt,

and freight transportation by heavy trucks, 65Mt. As a technology, the electric drivetrain is

still relatively new. The development of more efficient drivetrains could help accelerate the

adoption of electric vehicles. Particularly important to heavy duty trucks are multi-speed

transmissions. Part of developing a new transmission involves choosing its architecture,

which influences whether the vehicle will be capable of uninterrupted gearshifts. It also in-

volves synthesizing a gearshift controller.

In parallel, several companies are developing autonomous vehicles [3]. Some automak-

ers already offer advanced driver assistance, and are gradually expanding the capabilities of

these systems. Other companies aim directly at fully automated driving. Regardless of the

approach, the promise of autonomous driving is to reduce the number of road collisions. In

Canada, vehicle collisions cause 1800 fatalities every year [4]. Driver distraction is a con-

tributing factor in 22% of these collisions, speed, 23%, and driving under the influence, 15%.

Despite the challenges of developing autonomous vehicles [5], the potential for safety they

represent is very appealing [6]. In addition to perceiving the environment and planning their

trajectory, autonomous vehicles must accurately control their dynamics.

Table 1: Portion of battery electric vehicles in Canadian new-vehicle registrations.

Year 2017 2018 2019 2020 2021

Proportion [%] 0.4 1.1 1.8 2.5 3.3

1
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Meanwhile, machine learning is becoming a popular tool in several scientific and engi-

neering fields such as materials science [7], computer vision [8], machine fault detection [9],

and process control [10]. The Appendix A presents a brief introduction to machine learning

for the interested reader. In the field of control engineering, machine learning can be used

to obtain better performing controllers. In effect, most controller synthesis methods rely on

a model of the system dynamics, which inevitably differs from the actual system dynamics.

If this modeling error is too large, the closed-loop system may become unsafe. While ro-

bust control [11] offers a principled way to account for modeling uncertainty and maintain

robust stability, a large uncertainty necessitates a sacrifice in performance [12]. Thus, using

machine learning to learn the actual system dynamics and reduce the modeling error is a

promising approach. This approach can be seen as an extension of system identification [13],

with the main distinction being that the models used in machine learning control can be

more sophisticated—e.g., neural networks [14] and Gaussian processes [15]. Moreover, re-

inforcement learning can provide an alternative to traditional controller synthesis methods.

With reinforcement learning, the controller parameters are learned iteratively as the system

is being used and data gets collected. In this context, machine learning control can also be

seen as a generalization of adaptive control [16].

Despite the potential benefits, the use of machine learning control in the context of

electric and autonomous vehicles also raises concerns. First, learning for control has to

accelerate the development of new vehicles. In other words, it should be faster to obtain

controllers with learning than without it. High profile accomplishments [17] already showed

that deep reinforcement learning can achieve impressive results when provided with enough

data, computational power, and training time. For the control of physical systems however,

the data collection is rate-limited by the need for physical experiments. Also, a method

that is very computationally expensive may be deemed impractical. Therefore, the machine

learning control of physical systems has an additional efficiency requirement.

Second, the control of physical systems typically requires safety guarantees, both in terms

of robust stability and state constraint satisfaction. However, most theoretical guarantees

that originate from control theory are incompatible with the type of learned models that

are typical of modern machine learning. Therefore, the machine learning control of physical

systems also requires the adaptation of safety guarantees from control theory.

This thesis investigates the following two research questions.

1. Can machine learning control accelerate the development of electric drivetrains?

2. Can machine learning control preserve safety guarantees for vehicular control?
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Thesis structure

Part I relates to the first research question. It concerns the use of learning for control to

accelerate the development of a multi-speed transmission for an electric vehicle. Chapter 1

reviews transmission architectures and introduces corresponding dynamical models. It also

presents a new transmission design. Chapter 2 describes the fundamental limitations to

uninterrupted gearshifts. In effect, not all transmission architectures are capable of such

gearshifts, and motor saturation can be a significant source of limitation. This is important

to consider during the design process of a new drivetrain, but also during the learning of a

gearshift controller. Chapter 3 presents a method to learn a gearshift controller from expe-

rience, i.e., by performing gearshift trials on a test bench. The experimental setup consists

of a transmission prototype based on the new design introduced in Chapter 1. The learning

method focuses on reducing the number of gearshift trials required to tune the controller,

thereby addressing the efficiency concerns associated with machine learning control.

Part II relates to the second research question. It concerns methods to preserve safety

guarantees when learning to control vehicular maneuvers. Chapter 4 reviews the typical func-

tional architecture of an autonomous vehicle. It also introduces models for the longitudinal

and lateral vehicle dynamics. Chapter 5 presents a new method to learn a linear controller

from experience. The method is compatible with any learned dynamical model, and it pre-

serves robust stability guarantees. It is used to synthesize a controller for a lane change with

concurrent vehicle acceleration. Chapter 6 proposes the safe uncertainty-learning principle.

This principle suggests requirements for learning a safety condition to keep a dynamical sys-

tem within state constraints. The principle is supported by examples of both longitudinal

and lateral control. Together Chapters 5 and 6 address the concerns of maintaining safety

guarantees for robust stability and state constraint satisfaction when learning vehicular con-

trol.

Claims of originality

The theorems for the fundamental limitations to uninterrupted gearshifts of Chapter 2 are

an original contribution; they are published in [18]. It is the first time that the gearshift

limitations resulting from electric motor saturation are explicitly defined.

Another contribution is demonstrating the efficacy of a model-based reinforcement learn-

ing algorithm to tune a gearshift controller from a physical prototype, as presented in Chap-
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ter 3. The method was published in [19]. It is the first time that a learning algorithm is used

to tune both the feedforward and feedback components of a gearshift controller. The algo-

rithm itself is not entirely new—it is adapted from the pilco algorithm [20]. Nonetheless,

our adaptation of the algorithm provides additional flexibility due to the use of automatic

gradients. Also, the analytical gradients of Appendix C are new results, and can be used to

verify the proper implementation of the automatic gradients.

The learning-based method to synthesize a robust linear controller presented in Chapter 5

is a contribution. It is the first time that a learning algorithm can tune a linear controller

from any type of learned model while preserving robust stability. For this contribution, a

manuscript was accepted for publication [21].

The safe uncertainty-learning principle of Chapter 6 is also a contribution. The principle

suggests conditions such that an uncertain dynamical system is kept within state constraints

during learning. It is the first time that such conditions are explicitly stated. The principle

is introduced in a manuscript accepted for publication [22].

Finally, the transmission design of Chapter 1 could be considered an original contribution,

as it is the object of a patent application [23]. The clever arrangement of the braking and

locking mechanisms makes it possible to obtain three gear ratios with only two modulated

braking elements, thereby saving cost on the assembly. Moreover, the use of locking elements

in parallel to the braking elements allows to deactivate the braking elements when not shifting

in order to save energy. This combination of features was never found in the literature.

However, this thesis makes no attempt at justifying the superiority of this design over others,

hence the reserved claim for this contribution.

Contributions of authors

The four papers [18, 19, 21, 22] supporting this thesis have Mr. Beaudoin as a first author

and Prof. Boulet as the second (and last) author. For all the work presented in this thesis,

Mr. Beaudoin can be credited for the research planning and execution, while Prof. Boulet

provided guidance and suggestions for improving the research work.
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Notation

The notation devised for this thesis aims to harmonize the conventions of different research

fields, namely mechanics, control theory, probability theory, and machine learning. While the

variables may change meaning between chapters, the notation remains consistent throughout.

In general, scalar variables are italicized lower-case letters (af), vectors are bold lower-case

letters (x), and matrices are italicized upper-case letters (Ad). There exist a few exceptions,

however. Notably, F□, T□, and I□ typically refer to the scalar magnitude of a force, a torque,

and a mass moment of inertia, respectively; see Figure 1.2 for instance. Note that I without

a subscript is always the identity matrix. For the free-body diagrams of Figure 4.3, upper-

case letters are used to contrast the inertial frame of reference from the non-inertial one.

In Chapters 3 and 5, Jπ and J are scalar-valued cost functions, following the traditions of

optimization and machine learning.

The notations [x]i and [A]ij are used to denote the i and (i, j) entries of a vector x and

a matrix A. The notation x[i] is used to denote a vector x with a particular index i. This

can be used in the context of an indexed dataset D = {x[1], ...,x[N ]}, or to represent state

vectors x[t] in discrete time. Higher-order tensors are denoted as Aijk, where i, j, and k are

the tensor dimensions. The Einstein summation convention is used for tensor manipulations.

For instance, a simple matrix multiplication would be denoted Cik = AijBjk. It is always

assumed that the indices in the resulting tensor are arranged in alphabetical order. For

instance, the product AikBjl would yield a fourth order tensor Cijkl.

In Chapter 3, state vectors x[t] are sometimes stochastic variables. Assuming p(x[t])

follows a Gaussian distribution, µx
[t] represents the mean of the probability distribution, and

Σx
[t], its covariance matrix. In other words, x[t] ∼ N (µx

[t],Σ
x
[t]).

In Chapter 5, y(s) refers to a signal in the frequency domain. This signal may be

multi-dimensional despite the use of a non-bold letter. Similarly, G(s) represent a linear

time-invariant system, not a matrix. Note that using a partition within square brackets

confers a particular meaning. Take for example

M =

[︄
M1 M2

M3 M4

]︄
, and G(s) =

⎡⎣ A B

C D

⎤⎦ .
In the first case, M is a matrix composed of smaller matrices M1 to M4 with matching

dimensions. In the second case, the expression is a shorthand for the state-space realization

C(sI + A)−1B +D of the system G(s).

The rest of the notation should be clear from context.
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Chapter 1

Multi-speed transmissions

This chapter reviews common electric powertrain architectures, justifies the use of a multi-

speed transmissions, presents dynamical models for common transmission types, and presents

a new transmission design.

Contents
1.1 Review of powertrain architectures . . . . . . . . . . . . . . . . . 7

1.2 Justification for multi-speed transmissions . . . . . . . . . . . . 9

1.3 Vehicle and driveline models . . . . . . . . . . . . . . . . . . . . . 10

1.4 Transmission models . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Parallel shaft architecture with two frictional clutches . . . . . . . 13

1.4.2 Parallel shaft architecture with a one-way clutch . . . . . . . . . . 13

1.4.3 Planetary gearset architectures . . . . . . . . . . . . . . . . . . . . 14

1.5 New multi-speed transmission design . . . . . . . . . . . . . . . 16

1.1 Review of powertrain architectures

The literature abounds with electric powertrain concepts, each aimed at different client

needs [24–26]. Typical design specifications for electric powertrains include energy efficiency,

drivability, and cost. The efficiency is important as it directly influences the driving range.

Drivability is a subjective measure of the vehicle’s response to driver inputs, and is typically

evaluated for specific maneuvers. For a tip-in maneuver—i.e., when a driver suddenly re-

quests a vehicle acceleration—oscillations in the acceleration is generally unappreciated [27].

For gearshifts, it is important to minimize torque interruptions and vehicle jerk [28].

7
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Perhaps the simplest architecture is using a single motor and a fixed reduction ratio be-

tween the motor and the wheels. This concept has an excellent drivability, but it introduces

significant drawbacks on the vehicle design: to meet vehicular performance specifications,

the motor is often oversized, and the resulting powertrain only seldom operates in its optimal

efficiency region. This becomes especially problematic for heavier vehicles, as will be shown

in Section 1.2.

A natural evolution of the single-motor fixed-ratio concept is the introduction of a multi-

speed transmission. A simple concept is the manual transmission [29, 30]. It consists of

mounting gears on bearings, and selectively locking different gears to their transmission

shafts to achieve different transmission ratios. Because electric motors do not need to idle,

it is possible to use a manual transmission without a clutch between the motor and the

transmission. To shift gears, the motor torque is first reduced to zero, then the first gear

is disengaged, the motor speed is synchronized with the second gear, the second gear is

engaged, and finally the motor driving torque is reapplied. Synchronizers may also help

with the shaft synchronization and gear engagement [31–34]. If properly performed, such a

gearshift can have a low jerk level, but a torque gap is inevitable, as the shifting elements

have to be engaged and disengaged when no torque is passed through them. To reduce this

torque gap, we can introduce a torque gap filler in the transmission architecture [35, 36].

This is typically a clutch placed between the motor and the transmission output shaft; it is

used only during gearshifts.

Alternatives to manual transmissions used in electric vehicles are dual-clutch transmis-

sions [37–39] and automatic transmissions [40–43]. Conceptually, they are almost equivalent.

Both consist of offering clutching and braking devices that can be modulated such that the

transmission’s torque can be continuously transferred between different transmission paths.

The distinction resides in that dual-clutch transmissions typically use a parallel shaft archi-

tecture and only require two clutches, while automatic transmissions typically use a planetary

gearset architecture and require more clutching and braking devices if more than two gear ra-

tios are to be offered. In both parallel shaft and planetary architectures, it can be interesting

to replace a friction clutch by a one-way clutch [37, 41, 44]. A one-way clutch that transfers

the transmission torque in a given ratio will automatically disengage when a friction clutch of

a higher gear ratio is engaged. This automatic disengagement may also simplify the gearshift

control algorithm, as one fewer clutch needs to be controlled. This concept also allows to

continuously transfer the torque between the two transmission paths, but with the added

benefits that a one-way clutch is cheaper and more compact than a friction clutch or a brake.
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Instead of using a multi-speed transmission, one could circumvent the drawbacks of a

single-motor fixed-ratio powertrain by using a plurality of motors. The different motors can

be mounted on different axles, where the driving torque is shared through the road. Each

motor can either power a single wheel [45] or a front or rear axle [46]. Alternatively, the differ-

ent motors can also be mounted on the same axle [47]. These architectures allow the driving

torque to be continuously transferred from one motor to another, thus providing excellent

drivability. This is also true for multi-motor architectures with multi-speed transmissions.

For instance, a planetary gearset architecture can be configured to receive inputs from two

motors [48–51]. These transmission architectures are conceptually indistinguishable from

power-split transmissions used in hybrid electric vehicles [52]. Alternatively, a parallel shaft

architecture can be configured to receive inputs from two motors [53–55]. Such a powertrain

is capable of perfectly smooth gearshifts: if the driving torque is taken exclusively from one

of the two motors, the other motor transmits no torque, which allows for an easy gear change

on some transmission shafts. However, a torque gap may still exist, as the torque on one

motor has to be reduced to zero and the other motor may not be able to fully compensate

this torque decrease.

Finally, electric powertrains can also include mechanical continuously-variable transmis-

sions [56]. These powertrains provide excellent drivability, as the transmission ratio can be

smoothly varied. However, friction losses may lower the powertrain energy efficiency, which

is undesirable due to the high cost of energy storage in battery electric vehicles [57,58].

1.2 Justification for multi-speed transmissions

For certain vehicles, a multi-speed transmission may offer the best tradeoff between the con-

flicting requirements of efficiency, drivability, and cost. The performance benefits of having

more than one gear ratio can only be determined with a vehicle-level analysis. The promise

is to compensate for the additional cost, volume, and complexity of the transmission by al-

lowing the use of a smaller motor, and operating the motor on a higher efficiency region for

a larger fraction of the time, which can reduce the battery size, and thereby save on overall

vehicle cost [59]. When compared to a fixed ratio drivetrain, a multi-speed transmission can

lower the energy consumption on standard drive cycles by over 20%.

The potential benefits of having multiple gear ratios can be seen through an example

motor selection process. The vehicle hypothesized is a commercial vehicle with a gross ve-



CHAPTER 1. MULTI-SPEED TRANSMISSIONS 10

Table 1.1: Design specifications considered in the motor selection.

Design specification v [km/h] α [%] Duration

1: extreme grade 20 20 < 1min
2: highway, cruise speed 110 0 Continuous
3: highway, high grade 90 5 < 1min

hicle mass of 8500 kg. It would be classified as an N2 commercial vehicle in Europe, and

a Class 5 medium-duty truck in North America. The gross vehicle mass of 8500 kg is used

for the motor selection process. The analysis also considers a frontal area of 6m/s2 and

a drag coefficient of 0.7. The three design specifications of Table 1.1 define the vehicle

performance requirements. The first specification consists of an extreme grade—it sets the

maximal torque requirement. This is a short duration event, so the powertrain is allowed to

operate above its continuous capacity limit. The second specification consists of the vehicle

cruising on the highway, which sets both a wheel speed requirement and a continuous power

requirement. The third specification happens when the vehicle climbs a steep but reasonable

grade on the highway, which sets the maximal power requirement.

As shown in Figure 1.1a, if the vehicle is equipped with a single-speed transmission,

the vehicle requirements can be met with a 200 kW motor with 700Nm peak torque and

8000 rpm maximum speed, using a fixed total reduction ratio of 7.5. With a two-speed

transmission with ratios of 12 and 6, the peak torque requirement can be lowered to 450Nm,

while keeping the same power and speed limit requirements. In practice, this would allow

vehicle designers to reduce the motor’s active length [60], thereby reducing the motor peak

torque capacity while maintaining the same motor power capacity. The resulting system

capacity is displayed in Figure 1.1b. The vehicle now has a 36% volumetrically smaller

motor and a larger high-efficiency operating region.

1.3 Vehicle and driveline models

This section introduces the vehicle and driveline models used in Chapters 2 and 3; they are

shown on Figure 1.2. It is assumed that the vehicle longitudinal speed v follows the driving

wheel speed θ̇v according to v = θ̇vrw, where rw is the wheel radius. In other words, there is

no longitudinal slip at the wheel. This allows to project the vehicle mass and the vehicular

forces on the wheel coordinate. The vehicle mass m becomes an equivalent rotational inertia

Iv = mr2w. In this model, three vehicular forces are considered: the aerodynamic drag Fa,
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(a) Single speed transmission, ratio of 7.5. Motor
requirements: 200 kW power, 700Nm peak torque,
and 8000 rpm maximum speed.

(b) Two-speed transmission, ratios of 12 and 6.
Motor requirements: 200 kW power, 450Nm peak
torque, and 8000 rpm maximum speed.

Figure 1.1: Vehicle capacity for (a) a single-speed transmission and (b) a two-speed
transmission.

the tire rolling resistance Ft, and gravity Fg.

Fv = Fa + Fr + Fg, (1.1)

Fa =
1
2
ρv2afcd, (1.2)

Ft = mgct cos(α), (1.3)

Fg = mg sin(α), (1.4)

These three forces become an equivalent torque Tv applied to the vehicle wheel

Tv = rw(
1
2
ρv2afcd +mgct cos(α) +mg sin(α)), (1.5)

where ρ is the air density, af is the vehicle frontal area, cd is the aerodynamic drag coefficient,

ct is the tire rolling resistance coefficient, g is gravity, and α is the road slope.

The driveline model is shown on Figure 1.2b. It contains three rotating bodies: the

electric motor Im, the transmission output shaft Iout, and the equivalent vehicle inertia Iv.

The three equations of motion are

Imθ̈m = −cmθ̇m + Tm − Tin, (1.6)

Ioutθ̈out = −coθ̇out + Tout − k(θout − θv)− d(θ̇out − θ̇v), (1.7)

Ivθ̈v = −Tv + k(θout − θv) + d(θ̇out − θ̇v), (1.8)
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(a) Vehicle model.

Transmission

(b) Driveline model.

Figure 1.2: Vehicle and driveline models.

(a) Two-speed transmission with parallel shaft
architecture. Short name: dual-clutch transmis-
sion.

(b) Two-speed transmission with a planetary
gearset architecture. Short name: dual-brake
transmission [40].

Figure 1.3: Two popular transmission architectures.

where cm is the coefficient of viscous damping on the motor, and co is the coefficient of

viscous damping on the transmission output. The coefficients k and d represent lumped

driveline stiffness and damping, respectively. They cover phenomena such as driveshaft and

tire flexibility and damping. The resistive torque Tv can be obtained from the vehicle model.

1.4 Transmission models

This section introduces dynamical models for three popular transmission architectures. In

Chapter 2, the transmission models will be combined with the general driveline model of

Equations (1.6)–(1.8). The resulting complete driveline models are then used to analyze

gearshift trajectories.
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1.4.1 Parallel shaft architecture with two frictional clutches

The first transmission architecture to be modeled is illustrated in Figure 1.3a. The equations

of motion for this system are

Imθ̈m = −cmθ̇m + Tm − T1 − T2, (1.9)

Ioutθ̈out = −coθ̇out − To + i1T1 + i2T2, (1.10)

where T1 and T2 are the clutch torques. For this first model, both clutches are assumed to be

frictional clutches. The torque output of a friction clutch depends on its state—i.e., sticking

or slipping. The Coulomb friction model is assumed for simplicity. The clutch torques can

be expressed as

T1 =

⎧⎨⎩Tm − T2 − Imθ̈m − cmθ̇m θ̇m = i1θ̇out

Fn1µdranp sign(θ̇m − i1θ̇out) θ̇m ̸= i1θ̇out
, (1.11)

T2 =

⎧⎨⎩Tm − T1 − Imθ̈m − cmθ̇m θ̇m = i2θ̇out

Fn2µdranp sign(θ̇m − i2θ̇out) θ̇m ̸= i2θ̇out
, (1.12)

where Fn is the linear force at the clutch plates, µd is the clutch’s dynamic friction coeffi-

cient, ra is the mean friction radius, and np is the number of friction surfaces. The clutch

starts to slip when the reaction torque at the interface reaches the clutch torque capacity

Tcap = Fnµsranp, where µs is the static friction coefficient.

1.4.2 Parallel shaft architecture with a one-way clutch

In this second transmission model, the first-gear clutch in Figure 1.3a is a one-way clutch.

The equations of motion (1.9) and (1.10) remain the same. But this time, T1 is a reaction

torque in one direction, and is null in the other direction:

T1 =

⎧⎨⎩Tm − T2 − Imθ̈m − cmθ̇m θ̇m = i1θ̇out

0 θ̇m < i1θ̇out
. (1.13)

The one-way clutch also introduces the kinematic constraint

θ̇m ≤ i1θ̇out. (1.14)
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Figure 1.4: General representation of a double planetary gearset. Possible connec-
tions are shown between the ring of the first set and the elements of the second set.

1.4.3 Planetary gearset architectures

A single planetary stage can be seen as a combination of three bodies: a ring gear with

inertia Ir, a planet carrier (Ic), and a sun gear (Is). The equations of motion for each of

these bodies are

Irθ̈r = Tr − rrF, (1.15)

Icθ̈c = Tc + rrF + rsF, (1.16)

Isθ̈s = Ts − rsF, (1.17)

where T□ is the torque applied on either the ring (r), carrier (c), or sun (s), rr is the radius

of the ring gear, rs is the radius of the sun gear, and F is the tooth force in the gearset.

There is also a kinematic constraint associated with these equations:

rsθ̇s + rrθ̇r = (rs + rr)θ̇c. (1.18)

Equations (1.15)–(1.18) are commonly used the the analysis of automatic transmissions,

see [61] for instance. It is worth noting that these equations imply to approximate as null

the rotational inertia of the planet gears—see Appendix B for more details. Meanwhile, the

mass of the planet gears can still be considered in the equations by projecting it into the

rotational inertia for the planet carrier Ic.

It is common to combine stages of planetary gearsets in series, such as in Figure 1.4. In

this case, one set of the equations (1.15) to (1.18) needs to be added to the system model

for every additional planetary stage. By connecting and grounding elements, kinematic

constraints are added to the system model, and the number of degrees of freedom in the

system is reduced. These connections must be done carefully, as the system can become

over-constrained or under-constrained. An example design is presented in Section 1.5.

The transmission of Figure 1.3b is an example of a double planetary gearset [40]. The
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rest of this section shows how to obtain a system model for it. The inertias Im and Ic1 are

lumped into a single mass; the same is done for Iout and Ic2. The equations of motion are

Irθ̈r = T1 − rr1F1 − rr2F2, (1.19)

Imθ̈m = −cmθ̇m + Tm + rr1F1 + rs1F1, (1.20)

Ioutθ̈out = −coθ̇out − i−1
f To + rr2F2 + rs2F2, (1.21)

Isθ̈s = T2 − rs1F1 − rs2F2. (1.22)

The two kinematic constraints are

rs1θ̇s + rr1θ̇r = (rs1 + rr1)θ̇m, (1.23)

rs2θ̇s + rr2θ̇r = (rs2 + rr2)θ̇out. (1.24)

The kinematic constraints can be used to reduce the four equations of motion into a set

of only two equations. In order to solve this algebraic problem, researchers have assumed

that elements other than the input and output shafts have a negligible inertia [61]. This

greatly simplifies the reduction process. For the system of Figure 1.3b, it would mean that

Ir = 0 and Is = 0. For convenience, the parameters β1 = rr1/rs1 and β2 = rr2/rs2 are

introduced. The result of this reduction is a set of equations that is identical in form to that

of a parallel shaft architecture. This can be observed by comparing Equations (1.25) and

(1.26) to Equations (1.9) and (1.10).

Imθ̈m = −cmθ̇m + Tm +
1 + β1
β1 − β2

T1 −
β2(1 + β1)

β1 − β2
T2, (1.25)

Ioutθ̈out = −coθ̇out − i−1
f To +

1 + β2
β2 − β1

T1 −
β1(1 + β2)

β2 − β1
T2. (1.26)

If it is not assumed that Ir = Is = 0, the reduction process results in a different set of

equations; they are more coupled this time.

Imθ̈m = c1(−cmθ̇m + Tm) + c2(−coθ̇out − i−1
f To) + c3T1 + c4T2, (1.27)

Ioutθ̈out = c5(−cmθ̇m + Tm) + c6(−coθ̇out − i−1
f To) + c7T1 + c8T2. (1.28)

The constant coefficients c1 to c8 are not detailed further in this thesis. They are fairly

involved algebraic expressions that only pertain to the specific architecture of Figure 1.3b.

More important is the observation that the motor acceleration is now coupled with the

transmission output.
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(a) Gear 1. (b) Gear 2. (c) Gear 3.

Figure 1.5: The three configurations of the new multi-speed transmission design.

1.5 New multi-speed transmission design

This section presents a new design for a three-speed planetary transmission. The design was

manufactured and used as a transmission test bench for the experiments of Chapter 3. The

transmission comprises three planetary gearsets. By varying the internal connections and

the grounding connections on the different bodies, three speed ratios can be achieved. The

three configurations are illustrated on Figure 1.5.

In industry, new transmission designs must be optimized with respect to several design

criteria. Typically, engineers randomly generate numerous candidate designs and automate

the filtering and selection process through design optimization—a process called transmis-

sion synthesis [62–64]. In this work, we simply used trial and error to iterate through a few

candidates, and selected the final design with simple criteria such as ease of manufacturing

and the resulting transmission ratios. The ratios can be computed by solving a linear system

of equations, which needs to be repeated for each of the three configurations of Figure 1.5.

The process is now shown for the Gear 1 configuration of Figure 1.5a.

Three kinematic relations are required, one for each planetary gearset,

rsiθ̇si + rriθ̇ri = (rsi + rri)θ̇ci, i = {1, 2, 3}. (1.29)

Because R1 is grounded, θ̇r1 = 0. Moreover, C1 and C2 are connected, R2 and R3 are

connected, and S1, S2 and S3 are connected, so θ̇c1 = θ̇c2, θ̇r1 = θ̇r3, and θ̇s1 = θ̇s2 = θ̇s3.

Assuming θ̇c3 = 1, a linear system of equations can be formed and the transmission ratio

can be computed by solving for θ̇c1. Table 1.2 lists the chosen radius for the components,

and the resulting transmission ratios.

When a candidate design yields no solution to the system of equations, this means that

the transmission is either over-constrained with too many connections, or under-constrained



CHAPTER 1. MULTI-SPEED TRANSMISSIONS 17

Table 1.2: Gear radius and transmission ratios for the new transmission design.

Sun gears Ring gears Ratios

rs1 28mm rr1 100mm i1 2.59
rs2 50mm rr2 100mm i2 1.52
rs3 28mm rr3 100mm i3 1.00

with not enough connections.

It is also possible to compute the steady-state reaction torques on the braking and lock-

ing elements, as well as the gear meshing forces. This is achieved by setting the bodies’

acceleration to zero in Equations (1.15) to (1.17) which yields

0 = Tri − rriFi, (1.30)

0 = Tci + rriFi + rsiFi, (1.31)

0 = Tsi − rsiFi. (1.32)

Because there are three planetary gearsets, three sets of these three equations are required,

where i = {1, 2, 3}. The connections between the elements generate additional equations.

For instance, C1 is connected to C2, and the motor provides torque to C1, so Tc1 = Tm−Tc2.
Just as with the speed ratios, the resulting system can be solved by assuming Tout = 1 for

instance. The torque ratio between the input and the output of the transmission should be

the inverse of the speed ratio, which is a good verification.

The next step in the design process is to verify that the three configurations of Fig-

ure 1.5 can be switched between one another, in other words, that gearshifts can take place.

This requires placing braking and locking elements on the various bodies—see Figure 1.6.

This design comprises two braking elements that can be modulated to provide uninterrupted

gearshifts. The design also comprises three locking elements, which allows to deactivate the

braking elements after gearshifts, thereby saving energy by eliminating the need to provide

constant pressure on the brake friction plates. Interestingly, this design only requires two

braking elements for three gear ratios—this is part of the motivations for the patent appli-

cation associated with this design. Table 1.3 shows how the locking and braking elements

can be activated to yield the three gear ratios. Switching between configurations 1c and

2a results in a clutch-to-clutch gearshift between gear ratios 1 and 2. Switching between

configurations 2c and 3a results in a clutch-to-clutch gearshift between ratios 2 and 3.

The next chapters investigates the conditions under which clutch-to-clutch gearshifts can
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Figure 1.6: The component arrangement in the new transmission design.

Table 1.3: The configurations of the transmission and their component activation.

Gear Config. B1 B2 L1 L2 L3

1
1a x x
1b x x x
1c x x

2

2a x x
2b x x x
2c x x
2d x x

3
3a x x
3b x x x
3c x x

result in an uninterrupted torque at the transmission output, and when motor saturation

makes this fundamentally impossible.



Chapter 2

Uninterrupted gearshifts

This chapter concerns the fundamental limitations to uninterrupted gearshifts. First, com-

mon shifting processes are illustrated through example gearshift trajectories. Then, the

limitations are explicitly defined by introducing three new theorems.
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2.1 Limits to uninterrupted gearshifts . . . . . . . . . . . . . . . . . 19

2.2 Example gearshift trajectories . . . . . . . . . . . . . . . . . . . . 22

2.3 Theorems for fundamental limitations . . . . . . . . . . . . . . . 27

2.3.1 Theorems for a dual-clutch architecture . . . . . . . . . . . . . . . 27

2.3.2 Adaptations for planetary gearset architectures . . . . . . . . . . . 33

2.3.3 Other vehicle models and kinematic conditions . . . . . . . . . . . 35

2.1 Limits to uninterrupted gearshifts

Uninterrupted gearshifts provide superior drivability to electric vehicles, but not all multi-

speed transmissions are capable of it. For that, it must be possible to continuously transfer

the motor torque from one transmission path to another during gearshifts. Transmission

architectures with this capability were reviewed in Chapter 1, namely dual-clutch trans-

missions and transmissions based on planetary gearsets. But in the presence of motor and

clutch saturation, even such architectures can fail to provide an uninterrupted gearshift.

This chapter explores the fundamental limitations on gearshift performance that originate

from actuator saturation.

19
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These fundamental limitations should be considered early in an electric vehicle design

process, such as when selecting the transmission type during the conceptual design phase.

Design methodologies typically attribute a high importance to the conceptual design phase,

as its outcome has a large influence on the rest of the design project, and ultimately, the

product quality [65–67]. This chapter aims to provide automotive engineers with clear expec-

tations on the potential gearshift performance of various transmission architectures before

they delve into resource-intensive detailed modeling.

Moreover, the limitations should be considered when designing—or learning—a gearshift

controller. In effect, the theorems describe the system trajectories that allow for an uninter-

rupted gearshift.

The existence of fundamental limitations to uninterrupted gearshifts that originate from

motor saturation was hinted in [37], but they were never formulated explicitly. Some studies

on gearshift jerk reduction are framed around gearshift trajectory optimization [68,69]. Typ-

ically, researchers model a driveline, formulate a cost function that balances vehicle jerk and

clutch energy dissipation, then solve a trajectory optimization problem. The main caveat

with this approach is that often the optimization problem is non-convex, so a global opti-

mum is not guaranteed. Moreover, it is hard to apply the results to other vehicles or to

small alterations of the transmission design. Other studies address the design of an optimal

gearshift controller [70–73]. But similarly, this approach does not allow to generalize, as it

is not known whether the torque gap during gearshift is a result of an imperfect controller,

or an unavoidable fundamental limitation. Instead, this chapter aims to provide explicit

definitions of these limitations in the form of theorems.

The work in this chapter is done under the assumption of a perfect state feedback, a

perfect control of actuator forces, and a perfect model of the system dynamics. Formally,

this translates into Assumption 1. In practice, this assumption would never hold; other

system limitations inevitably lead to torque interruptions. Nevertheless, Assumption 1 is

appropriate for this chapter given that the theorems are only intended to predict when

actuator saturation is an inevitable contributor to torque interruptions.

Assumption 1. Only the following two system limitations can lead to unavoidable torque

interruption during gearshift:

1. a limit on the motor torque, which can be characterized both in terms of maximal

torque Tmax, or maximal power pmax;

2. a limit on the torque application rate of a friction clutch, Ṫ .
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Furthermore, uninterrupted gearshifts need to be properly defined. In this work, a

gearshift is considered uninterrupted when the vehicle acceleration ar remains constant for

the duration of the gearshift. This is also the definition of a no-jerk gearshift, therefore

in this chapter, these two concepts are treated as equivalent and the terms are used inter-

changeably. The definition for an uninterrupted gearshift can be specified using the driveline

model of Chapter 1. A constant acceleration implies that θ̈v = ar/rw. And by extension,

θ̇v = (art+ vi)/rw, where vi is the initial vehicle speed at the beginning of the gearshift

(t = 0). Since the gearshifts are short in duration—approximately 0.5 s—it can be assumed

that the vehicular forces Tv are constant. Given the driveline model in Equations (1.6)–(1.8),

the constraints introduced on θ̈v, θ̇v, and Tv also restrict θ̇out and θ̈out. These variables can

be solved for explicitly. First, the vehicular forces and acceleration are grouped into a single

constant output torque To = Ivθ̈v + Tv. Substituting To in Equation (1.8) yields

To = k(θout − θv) + d(θ̇out − θ̇v). (2.1)

Taking the time derivative of Equation (2.1) gives

0 = k(θ̇out − θ̇v) + d(θ̈out − θ̈v). (2.2)

Substituting θ̈v and θ̇v with their no-jerk constraints in Equation (2.2), a linear differential

is obtained, where

θ̈out(t) +
k

d
θ̇out(t) =

k

drw
(art+ vi) +

ar
rw
. (2.3)

Assuming the initial condition θ̇out(0) = vi/rw, the differential equation can be solved, and

the trajectory for the output shaft is obtained as

θ̇out(t) =
art+ vi
rw

. (2.4)

The prescribed trajectories on θ̇v, θ̇out, and To can be used to formally define an no-jerk

gearshift.

Definition 1. A no-jerk gearshift is obtained if, for the duration of the gearshift,

θ̇out = θ̇v = (art+ vi)/rw, (2.5)

To = Ivar/rw + Tv. (2.6)



CHAPTER 2. UNINTERRUPTED GEARSHIFTS 22

Table 2.1: Example-vehicle parameters.

Param. Value Param. Value Param. Value

m 6500 kg Iout 0.05 kgm2 i2 6
rw 0.3m cm 0.02Nms/rad Ir 0.03 kgm2

af 6m2 co 0.04Nms/rad Is 0.03 kgm2

cd 0.7 k 10 kNm/rad β1 2
ct 0.007 d 75Nms/rad β2 4
Im 0.3 kgm2 i1 12 if 7.2

Table 2.2: Gearshift scenarios.

Scenario Direction Motor quadrant Region vi [km/h] ar [m/s2] DTD

1 Upshift Driving Power-limited 65 1.0 80%
2 Downshift Driving Torque-limited 18 1.0 80%
3 Downshift Braking Torque-limited 45 −1.5 -

2.2 Example gearshift trajectories

This section presents five example gearshift trajectories where the no-jerk conditions of Def-

inition 1 are met. The examples illustrate the implications of the no-jerk condition on the

input torques—the motor torque, and the clutch torques. The vehicle parameters are listed

in Table 2.1. The three gearshift scenarios of interest are that of Table 2.2. Scenario 1 is an

upshift during vehicle acceleration, where the driver torque demand (DTD) at the beginning

of the shift is 80% of the available torque. This gearshift takes places in the power-limited

region of the motor map. Scenario 2 is a downshift when the vehicle is accelerating, also

with a DTD of 80%. The downshift takes place in the torque-limited region of the motor

map. This gearshift is motivated by the desire to have a greater wheel torque after the

downshift. Scenario 3 is a downshift when the motor is used for regenerative braking in the

torque-limited region.

The example trajectories are computed using the transmission models of Section 1.4:

Equations (1.9)–(1.10) for a dual-clutch transmission, Equations (1.25)–(1.26) for a dual-

brake transmission with neglected gear inertias, and Equations (1.27)–(1.28) for a dual-brake

transmission with the gear inertias considered. First, To is computed from (2.6) and (1.5)

given the acceleration ar and initial velocity vi of the scenario. Similarly, θ̇out(t) and θ̈out(t)

can be computed from (2.4). A trajectory is chosen for θ̇m(t). And finally, the input torques

can be computed from the transmission model.

Figure 2.1 shows an upshift during vehicle acceleration (Scenario 1) with a dual-clutch

transmission where the first clutch is a one-way clutch. The gearshift starts at 0.05 s and
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Figure 2.1: Example trajectory for the gearshift scenario 1 with a dual-clutch
transmission, where the first clutch is a one-way clutch.

ends at 0.50 s. It begins with a torque phase—where the transmission torque is transferred

from Clutch 1 to Clutch 2—followed by an inertia phase, where the motor is synchronized

with the Gear 2 speed. During the torque phase, T2 is gradually increased from zero to the

torque required at Gear 2 following an arbitrary trajectory. This has the effect of gradually

reducing the reaction torque on the one-way clutch, T1, all the way down to zero at the end

of the torque phase. In order to maintain a constant output torque To, the motor torque Tm

has to increase according the to transmission model. Interestingly, because the first clutch

is a one-way clutch, the torque transfer phase just described is the only possible trajectory.

But since the motor power exceeds its 200 kW limit in the example of Figure 2.1, the ex-

ample trajectory is in fact infeasible. In reality, the vehicle would inevitably experience a

torque gap. This is the first fundamental limitation examined in this chapter—Theorem 1

in Section 2.3 formalizes it. The rest of the gearshift consists of the inertia phase, which

is not as prone to motor saturation as the torque phase. T1 and T2 are kept constant, and

the motor is synchronized with the second-gear speed following an arbitrary trajectory. It is

possible to reduce the variation in motor power during the inertia phase by simply making

it longer.

Figure 2.2 also shows an upshift during vehicle acceleration with a dual-clutch trans-

mission, but Clutch 1 is a friction clutch this time. This introduces two new possibilities:

the motor speed can be increased above the Gear 1 speed, and T1 can be modulated when

the clutch is slipping. By taking advantage of these possibilities, a new trajectory can be
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Figure 2.2: Example trajectory for the gearshift scenario 1 with a dual-clutch
transmission, where the first clutch is a friction clutch.

crafted to obtain a no-jerk gearshift. Prior to transferring the clutch torques, the motor

speed is increased above Gear 1 speed. Then the torque transfer begins, which has the effect

of decreasing the motor speed. It is important that the torque transfer completes before the

motor crosses Gear 1 speed, as this would result in a sign reversal on T1. In effect, when

a friction clutch slips, the clutch torque opposes the clutch slipping velocity as per Equa-

tion (1.11). With a torque reversal on T1, T2 would have to instantaneously compensate in

order to maintain the constant To condition. This would violate any constraint on the clutch

torque application rate. Therefore, this trajectory also contains a fundamental limitation,

which is formulated in Theorem 2.

Figure 2.3 shows a downshift during motor acceleration (Scenario 2) with a dual-clutch

transmission. This trajectory can be obtained whether Clutch 1 is a one-way clutch or a

friction clutch. This time the inertia phase precedes the torque phase. In the inertia phase,

the motor speed is increased using maximal motor power. When the motor reaches Gear

1 speed, the torque transfer begins. The fundamental limitation for this scenario concerns

the capacity to synchronize the motor speed within acceptable time, while maintaining the

output torque To constant. This limitation is formalized in Theorem 3.

Figure 2.4 shows a downshift during vehicle deceleration (Scenario 3) with a dual-clutch

transmission. The motor operates in regenerative braking mode. Because To < 0, the clutch

torques T1 and T2 must be negative. And since T1 < 0, this trajectory is only possible
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Figure 2.3: Example trajectory for the gearshift scenario 2 with a dual-clutch
transmission. This trajectory is valid for both one-way clutch and dual-friction-
clutch architectures.

Figure 2.4: Example trajectory for the gearshift scenario 3 with a dual-clutch
transmission. This trajectory is only possible if Clutch 1 is of friction type.
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Figure 2.5: Example trajectories for the gearshift scenario 1 with a dual-brake
transmission, namely that of Figure 1.3b. The dotted lines represent the situation
where the trajectory is computed with Equations (1.25)–(1.26), thereby assuming
Ir = Is = 0. The solid lines represent the situation where the inertias of Ir and Is
are considered, and the trajectory is computed with Equations (1.27)–(1.28).

if Clutch 1 is a friction clutch—by design, a one-way clutch can only carry torque in one

direction. Often, transmissions with a one-way clutch are also equipped with a locking

mechanism in parallel to the one-way clutch [37]. This allows for regenerative braking when

the transmission operates in first gear. However, the locking mechanism typically cannot

be engaged when there is a significant speed difference between the mating elements, and

it cannot be modulated. Therefore, it is impossible for a dual-clutch transmission with a

one-way clutch to provide uninterrupted shifting in regenerative braking mode. Figure 2.4

shows that for a dual friction clutch architecture, such a gearshift can be initiated even when

the motor is essentially on the saturation limit. For transmissions with two friction clutches,

the system limitations included in Assumption 1 will not result in unavoidable gearshift jerk.

Figure 2.5 shows a gearshift of Scenario 1, but with the dual-brake transmission of Fig-

ure 1.3b this time. The gearshift strategy is the same as in Figure 2.2, i.e., increasing the

motor speed above the Gear 1 speed just before the torque transfer. The trajectory in dotted

lines are obtained by computing the trajectory with Equations (1.25)–(1.26), which implies

assuming Ir = Is = 0. The trajectories in solid lines are obtained considering Ir = Is = Im/10

and using Equations (1.27)–(1.28). Introducing a small inertia on Ir and Is has a strong influ-

ence on the resulting trajectory. First, Tm becomes coupled with T1—when the motor torque
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Table 2.3: Summary of fundamental limitations to uninterrupted gearshifts for the
dual-clutch transmission.

Scenario One-way clutch Dual-friction clutch

1: Upshift, driving motor Limited by Theorem 1 Limited by Theorem 2
2: Downshift, driving motor Limited by Theorem 3 Limited by Theorem 3
3: Downshift, braking motor Impossible Not limited

is increased in the first phase of the gearshift, T1 must be decreased in order to maintain the

same output torque To. This means Tm cannot increase arbitrarily quickly due to the clutch

torque application rate limitation. Also, the additional inertia increases the time required to

attain a given motor speed during the first phase. Finally, Clutch 2 takes a larger portion of

the load during the inertia phase, and the motor takes a smaller portion of the load. From a

design perspective, this means that the maximal torque requirement on Clutch 2 is higher,

which has to be accounted for in the sizing of this component. In summary, even small gear

inertias can have a significant influence on the gearshift trajectory of a transmission with a

planetary gearset. Engineers should take precaution before neglecting them in the equations

of motion for their systems.

2.3 Theorems for fundamental limitations

This section introduces three theorems that define the fundamental limitations to no-jerk

gearshift for a dual-clutch transmission. Table 2.3 summarizes which theorem pertains to

which combination of gearshift scenario and Clutch 1 type. Theorems for Scenario 3 are not

provided as the conclusions follow naturally from Figure 2.4 and the associated discussion

in Section 2.2. Then in Section 2.3.2, the theorems are adapted for transmissions based on

planetary gearsets.

2.3.1 Theorems for a dual-clutch architecture

Theorem 1 presents a necessary and sufficient condition for a no-jerk upshift in the power-

limited region of the motor map when Clutch 1 is a one-way clutch. Together Equation (2.7)

and the assumptions that θ̇out(t) = (art+ vi)/rw and θ̈out(t) = ar/rw can be used to predict

whether a specific driving condition allows for a no-jerk gearshift. Interestingly, it does not

require to simulate the complete gearshift.

Theorem 1. For a dual-clutch architecture where the first-gear clutch is a one-way clutch,

and when the motor operates in a power-limited region, a no-jerk upshift of Scenario 1 can
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be obtained if and only if pm(ttr) ≤ pmax, where pm(ttr) is the required motor power at the

end of the torque transfer phase, and pmax is the motor power limit; pm(ttr) is evaluated as

pm(ttr) = i1θ̇out(ttr)
(︂(︁
i1Im + i−1

2 Iout
)︁
θ̈out(ttr) +

(︁
i1cm + i−1

2 co
)︁
θ̇out(ttr) + i−1

2 To

)︂
. (2.7)

Proof. (Necessity): The gearshift begins with a torque transfer phase that spans from t = 0

to t = ttr, which is defined as follows: the clutch torques are smoothly varied from T1(0) ̸= 0

and T2(0) = 0 to T1(ttr) = 0 and T2(ttr) ̸= 0, while θ̇m = i1θ̇out and θ̈m = i1θ̈out for all t ∈
[0, ttr], and To, θ̇out, and θ̈out follow the conditions for a no-jerk gearshift as per Definition 1.

The condition θ̇m = i1θ̇out is necessary because the first-gear clutch is a one-way clutch:

Equation (1.13) indicates that T1 ̸= 0 → θ̇m = i1θ̇out, so this imposes θ̇m = i1θ̇out at least

until T1 = 0. The condition θ̈m = i1θ̈out is necessary for a no-jerk gearshift: Equation (1.13)

indicates that if the clutch opens before T1 = 0, which means that θ̈m < i1θ̈out, then the

clutch torque immediately drops to 0, and Equation (1.10) indicates that for To, θ̇out, and

θ̈out to follow the conditions for a no-jerk gearshift, T2 would have to immediately jump to

a higher value, which violates any limit on clutch torque application rate. Moreover, the

one-way clutch imposes the kinematic constraint that θ̇m ≤ i1θ̇out, so it is impossible that

θ̈m > i1θ̈out. Therefore, the torque transfer phase as defined above is necessary for a no-jerk

gearshift, as any deviation from it either implies a vehicle jerk, or is physically impossible.

The required motor power at the end of the torque phase can then be computed. Sub-

stituting T1(ttr) = 0 in Equation (1.10) yields

T2(ttr) = i−1
2

(︂
Ioutθ̈out(ttr) + coθ̇out(ttr) + To

)︂
, (2.8)

which can be substituted in Equation (1.9) to get the motor torque at ttr:

Tm(ttr) = Imθ̈m(ttr) + cmθ̇m(ttr) + i−1
2

(︂
Ioutθ̈out(ttr) + coθ̇out(ttr) + To

)︂
. (2.9)

The motor power at ttr is computed using pm(ttr) = θ̇m(ttr)Tm(ttr), Equation (2.9), and the

conditions that θ̇m(ttr) = i1θ̇out(ttr) and θ̈m(ttr) = i1θ̈out(ttr); Equation (2.7) is obtained.

Naturally, this requires that the motor be capable of producing pm(ttr), therefore a no-jerk

gearshift implies that pm(ttr) ≤ pmax.

(Sufficiency): Assumption 1 indicates that if a no-jerk gearshift cannot be obtained, it is

because either the motor saturates, or the clutch saturates. Further assuming that ttr is large

enough such that the clutch does not saturate, if a no-jerk gearshift cannot be obtained, it is

because the motor saturates. By showing that pm(ttr) is the maximal required motor power

during the gearshift, it can be shown that if the motor saturates, then pm(ttr) > pmax. To
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do this, Equations (1.9) and (1.10) are rearranged to eliminate T2 and isolate Tm, and the

motor power is obtained as follows

pm = θ̇m

(︄
Imθ̈m + cmθ̇m + T1

(︃
1− i1

i2

)︃
+ i−1

2

(︂
Ioutθ̈out + coθ̇out + To

)︂)︄
. (2.10)

Assuming that the motor begins to synchronize with Gear 2 speed exactly at ttr, the maximal

θ̇m(t) is at t = ttr. Furthermore, every term on the right-hand side of Equation (2.10) is

maximized at ttr. In particular, since i1 > i2, T1(ttr) = 0 maximizes pm, as T1 ≥ 0. Therefore,

if a no-jerk gearshift cannot be obtained, then pm(ttr) > pmax.

Theorem 2 presents a necessary and sufficient condition for a no-jerk upshift in the power-

limited region of the motor map when Clutch 1 is a friction clutch. The gearshift strategy

is outlined in Figure 2.6. Several instances of this strategy are simulated and the result is

shown in Figure 2.7. In practice, Theorem 2 can be used to predict whether a specific driving

condition allows for a no-jerk gearshift. Because Equation (2.14) renders the transmission

model nonlinear, there may not be a convenient closed-form solution to find a sufficient ∆m

for a no-jerk gearshift. Perhaps the best way to do so is to simulate the first phase of the

gearshift up to a given ∆m, and then validate if this ∆m is sufficient to allow a complete

torque transfer before ∆s = 0. If the given ∆m is not sufficient, then the process can be

repeated for a higher ∆m, until no higher ∆m can be reached, at which point it is concluded

that a no-jerk trajectory is infeasible.

Theorem 2. Consider a dual-clutch architecture with two friction clutches as shown in

Figure 1.3a. Referring to Figure 2.6, suppose that at t = 0 the motor speed is synchronized

with Gear 1 speed. Let ttr > 0 be the set torque transfer duration and t1, the time at which

the torque transfer is initiated. The gearshift is intended to complete at t2. When the motor

operates in a power-limited region, a no-jerk upshift of Scenario 1 can be obtained if and

only if

∃ ∆m := θ̇m(t1)− i1θ̇out(t1) ≥ 0, (2.11)

such that ∆s := θ̇m(t1 + ttr)− i1θ̇out(t1 + ttr) ≥ 0, (2.12)

θ̇m(t1) ≤ θ̇max, (2.13)

where Tm(t) = pmax/θ̇m(t), 0 ≤ t ≤ t1 + ttr, (2.14)

T1(t) = 0, t1 + ttr ≤ t ≤ t2, (2.15)

T2(t) = 0, 0 ≤ t ≤ t1. (2.16)
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Proof. (Necessity): The gearshift begins with a speed phase (0 ≤ t ≤ t1), where the motor

speed is increased above i1θ̇out, with T2 = 0 and Tm = pmax/θ̇m. Then the gearshift continues

with a torque transfer phase (t1 ≤ t ≤ t1+ ttr), where the clutch torques are smoothly varied

from T1(t1) ̸= 0 and T2(t1) = 0 to T1(t1 + ttr) = 0 and T2(t1 + ttr) ̸= 0, while Tm = pmax/θ̇m.

Finally, the gearshift ends with an inertia phase (t1 + ttr ≤ t ≤ t2), where the motor speed

is brought down to i2θ̇out, while T1 = 0. During all three phases, the conditions for a no-jerk

gearshift in Definition 1 can be maintained by modulating T1 and T2 as per Equation (1.10).

Motor saturation can be avoided as the motor torque is set to Tm = pmax/θ̇m for the first two

phases, and the motor synchronization of the inertia phase requires that Tm < pmax/θ̇m. The

torque application rate on both clutches can be maintained within limits during the speed

phase, as T2 = 0 and the variations on To, θ̇out, and θ̈out are small enough such that dT1/dt is

within limits. The same argument can be made for the inertia phase, with T1 = 0 this time.

During the torque transfer phase, appropriate clutch torque profiles must be chosen such

that limits on Ṫ are respected. Moreover, a torque reversal on Clutch 1 must be avoided.

In effect, the clutch torque T1 is necessarily positive when the motor is driving the

vehicle through the first gear and Clutch 1 sticks. When Clutch 1 slips, the direction of

T1 is dependent on the slip direction, as described in Equation (1.11). If θ̇m < i1θ̇out, then

the torque T1 suddenly reverses direction and becomes negative. In order to maintain the

conditions for a no-jerk gearshift, Equation (1.10) indicates that the torque reversal on T1

must be instantaneously compensated by an increase in T2, which necessarily violates any

application rate limitation. Consequently, it must be that θ̇m ≥ i1θ̇out as long as T1 ̸= 0.

Once the torque transfer phase begins, θ̈m(t) < θ̈m(t1), given that i1 > i2, which can be seen

from Equations (1.9) and (1.10). Therefore, the torque transfer needs to start at a sufficiently

high ∆m such that ∆s ≥ 0. Moreover, ∆m must correspond to a motor speed that is within

the motor’s limit θ̇max. However, nothing guarantees the system can reach such a ∆m. If it

fails to reach a satisfactory ∆m, then one of the conditions for a no-jerk gearshift will not

be satisfied due to system limitations—there will be vehicle jerk. This proves the necessity

part by contraposition.

(Sufficiency): By construction, the actuation strategy described in Equations (2.14)–

(2.16) is sufficient for a no-jerk gearshift given that Assumption 1 holds.

This actuation strategy is not unique, but any deviation would only make it harder to

achieve a sufficiently high ∆m. Consequently, if a no-jerk gearshift can be obtained using

such a deviation from Equations (2.14) to (2.16), it can also be obtained using the actuation

strategy described in these equations. Therefore, if a no-jerk gearshift cannot be obtained,

there is no ∆m such that ∆s ≥ 0 when the Equations (2.14)–(2.16) hold.
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Figure 2.6: Strategy for a power-on upshift with a dual-friction clutch transmis-
sion. First the motor speed is increased to an increment ∆m above Gear 1 speed.
Once ∆m is reached, the torque transfer begins, which takes a set time ttr. At the
end of the torque transfer, the motor will have decelerated to a different speed whose
increment over Gear 1 speed is defined as ∆s. In order to avoid torque reversal at
Clutch 1, which would imply an unavoidable jerk, it must be that ∆s ≥ 0.

(a) Even when using the maximum available motor
power, not all ∆m can be reached.

(b) The ∆s after the torque transfer is a function of
the starting ∆m and the transfer time ttr.

Figure 2.7: Example limitations for a power-on upshift with the example vehicle
and a dual-friction-clutch transmission, for a gearshift initiated at vi = 65 km/h and
ar = 1.0m/s2.

Comparing Theorems 1 and 2 highlights that transmissions with a one-way clutch are

more prone to motor saturation. In effect, the constraint on the maximal motor power im-

posed in Theorem 1 does not exits in Theorem 2, and as a result, transmissions with two

friction clutches have a wider set of possible no-jerk gearshift trajectories. For example, both

gearshift trajectories of Figure 2.1 (one-way clutch) and Figure 2.2 (two friction clutches)

are initiated under the same driving scenario, namely an upshift at 80% DTD in the motor’s

power-limited region. The trajectory of Figure 2.1 results in motor saturation and Theo-

rem 1 would indicate that it is inevitable, meanwhile the trajectory of Figure 2.2 completes

without motor saturation and a no-jerk gearshift is obtained.

Theorem 3 presents a necessary and sufficient condition for a no-jerk downshift in the

torque limited region of the motor map. Several instances of this gearshift scenario were
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simulated with a different initial vehicle acceleration ar. The time ts required for the motor

to synchronize with Gear 1 speed is shown on Figure 2.8. When ar is too high, either ts is

impractically long, or the motor never synchronizes with Gear 1 speed.

Theorem 3. Consider a dual-clutch transmission where the motor operates in a torque-

limited region. Assuming a constant T2 during the inertia phase, a no-jerk power-on down-

shift can be obtained if and only if

∃ ts > 0 s.t. 0 = −i1
vi + arts
rw

+ exp

(︃
−cm
Im
ts

)︃
i2
vi
rw

+
Tmax − T2

cm

[︄
1− exp

(︃
−cm
Im
ts

)︃]︄
. (2.17)

Proof. (Necessity): The gearshift begins with an inertia phase (0 ≤ t ≤ ts), where θ̇m

is accelerated from Gear 2 speed to Gear 1 speed, while Tm = Tmax and T1 = 0. The

gearshift ends with a torque phase (ts ≤ t ≤ ts + ttr), where the transmission torque is

transferred from Clutch 2 to Clutch 1. During both phases, the conditions for a no-jerk

gearshift in Definition 1 can be maintained by modulating T2 (and T1 when applicable)

as per Equation (1.10). Motor saturation can be avoided by restricting the motor power

to Tm ≤ Tmax. Clutch saturation can be avoided by using an appropriate torque transfer

trajectory during the torque phase. However, it is not guaranteed that the motor will

eventually synchronize with Gear 1 speed when these conditions are maintained. If the

synchronization time ts exists, it can be computed from the system model. Substituting

Tm = Tmax and T1 = 0 in Equation (1.9), the motor acceleration is

θ̈m = I−1
m

(︂
−cmθ̇m + Tmax − T2

)︂
. (2.18)

Assuming that T2 is constant during the inertia phase, Equation (2.18) becomes a linear

ordinary differential equation. It can be solved to obtain the evolution of θ̇m(t) from the

initial condition θ̇m(0) = i2θ̇out(0). The result is

θ̇m(t) = exp

(︃
−cm
Im
t

)︃
i2θ̇out(0) +

Tmax − T2
cm

[︄
1− exp

(︃
−cm
Im
t

)︃]︄
. (2.19)

When the motor synchronizes with Gear 1 speed, θ̇m = i1θ̇out. Substituting this relation

into Equation (2.19), and using the fact that θ̇out(t) = (vi + art)/rw, Equation (2.17) is

obtained. For the motor to synchronize with Gear 1 speed, Equation (2.17) must have a

solution, otherwise a no-jerk gearshift cannot be obtained. This proves the necessity part by
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Figure 2.8: Example limitations for a power-on downshift with the example vehicle,
when the gearshift is initiated at vi = 18 km/h, and ar is varied. When the desired
vehicle acceleration ar is increased, the time ts required for the inertia phase to
complete also increases.

contraposition.

(Sufficiency): By construction, the actuation strategy described in the first paragraph of

this proof is sufficient for a no-jerk gearshift, given that Assumption 1 holds.

This actuation strategy is not unique. It could be that Tm < Tmax, but it would only

make it harder to synchronize the motor with Gear 1 speed. This can be seen from Equa-

tion (2.18). If Clutch 1 is a one-way clutch, then T1 = 0 until the motor synchronizes, as per

Equation (1.13). If Clutch 1 is a friction clutch, then it is possible to activate T1 before ts.

But Equation (1.11) indicates that T1 would be negative, so Equation (1.10) dictates that T2

increases by |T1|(i1/i2) to respect the no-jerk conditions, and since i1 > i2, θ̈m would again

be smaller than if T1 = 0. Therefore, if a no-jerk gearshift can be completed with a different

actuation strategy than the one presented in the necessity part of the proof, it can also be

completed with this strategy. As a result, the existence of a solution to Equation (2.17) is a

sufficient condition for the possibility of a no-jerk gearshift.

2.3.2 Adaptations for planetary gearset architectures

In this section, Theorems 1–3 are adapted for planetary gearset architectures described by

the general Equations (1.27)–(1.28).
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Theorem 1 adaptation

With the new transmission model, the motor power at the end of the torque transfer phase—

originally described by Equation (2.7)—now becomes

pm(ttr) = i1θ̇out(ttr)

(︄
cmi1θ̇out(ttr) +

(︃
c1 −

c4c5
c8

)︃−1[︃(︃
i1Im −

c4
c8
Iout

)︃
θ̈out(ttr)

+

(︃
c2 −

c4c6
c8

)︃(︁
coθ̇out(ttr) + i−1

f To
)︁]︃)︄

. (2.20)

The proof for the necessity condition remains valid, as it it based on the limitations im-

posed by the one-way clutch, and these limitations still apply. The proof for the sufficiency

condition requires to demonstrate that pm(ttr) is the maximal motor power required during

the gearshift, which now ultimately depends on the coefficients c1 to c8, as can be seen by

adapting Equation (2.10) into a new expression for the motor power:

pm = θ̇m

(︄
cmθ̇m +

(︃
c1 −

c4c5
c8

)︃−1[︃
Imθ̈m −

c4
c8
Ioutθ̈out

+

(︃
c2 −

c4c6
c8

)︃(︁
coθ̇out + i−1

f To
)︁
−
(︃
c3 −

c4c7
c8

)︃
T1

]︃)︄
. (2.21)

In particular, for T1 = 0 to maximize pm, it must be that −(c3−c4c7/c8)(c1−c4c5/c8)−1 < 0.

For the architecture in Figure 1.3b, this expression reduces to −(β1 + 1)/β1, so that indeed

T1 = 0 maximizes pm since −(β1 + 1)/β1 < 0. Assuming that the other variables—i.e., θ̇m,

θ̈m, θ̇out, θ̈out, and To—remain approximately constant during the torque phase, pm(ttr) is

the maximal motor power required during the gearshift for the case of the architecture in

Figure 1.3b.

Theorem 2 adaptation

The existence of a sufficient ∆m such that ∆s ≥ 0 remains a necessary and sufficient condition

for a no-jerk gearshift. The only difference is that Tm cannot jump to pmax/θ̇m at t = 0, as

prescribed in Equation (2.14). In effect, Tm now appears in the second equation of motion—

Equation (1.28). The effect of an increase in Tm on T1 can be seen in Figure 2.5. To maintain

To, θ̇m, and θ̈m such that the no-jerk conditions in Definition 1 are met, a sudden increase in

Tm implies a sudden increase in T1. This would violate any torque application rate limitation.

Therefore, Theorem 2 remains valid, but Tm must be increased such that Ṫ is within limits.
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Theorem 3 adaptation

The proof for Theorem 3 remains valid, but the necessary and sufficient condition described

by Equation (2.17) must be adapted to the new transmission model. First, θ̇m can be

computed for the inertia phase by imposing T1 = 0 in Equations (1.27) and (1.28).

θ̈m = I−1
m

(︂
−γcmθ̇m + γTm − τ

)︂
, (2.22)

γ =

(︃
c1 −

c4c5
c8

)︃
, (2.23)

τ =

(︃
c2 −

c4c6
c8

)︃(︂
coθ̇out + i−1

f To

)︂
+
c4
c8
Ioutθ̈out. (2.24)

Following the argument in Section 2.3.2, Tm cannot jump to Tmax at t = 0, as this would imply

a jump in T2, which would violate any rate limitation. Therefore, Tm should be gradually

increased from Tm(0) to Tmax at the beginning of the gearshift. For this proof adaptation

however, this effect is neglected as the ramp up is assumed very fast, and Tm ≈ Tmax. Further,

it is assumed that θ̇out(t) = θ̇out(0) and To(t) = To(0) for the duration of the inertia phase,

which was also assumed in Theorem 3 by imposing T2 constant for the duration of the inertia

phase. Equation (2.22) is now a linear ordinary differential equation of the same form than

that of Theorem 3. It can also be solved imposing θ̇m(0) = i2θ̇out(0). The adapted condition

for the possibility of a no-jerk gearshift is

∃ ts > 0 s.t. 0 = −i1
vi + arts
rw

+ exp

(︃
−γcm
Im

ts

)︃
i2
vi
rw

+
γTmax − τ

γcm

[︄
1− exp

(︃
−γcm
Im

ts

)︃]︄
. (2.25)

2.3.3 Other vehicle models and kinematic conditions

The theorems presented in this article are based on the general driveline model described in

Section 1.3, which does not include tire slip and other nonlinear behaviors likely to occur on

real-world vehicles. The theorems could be adapted to other vehicle models. This implies

solving for the transmission output torque To(t) and velocity θ̇out(t) using the new equations

for the vehicle model and the no-vehicle-jerk constraint. Effectively, this would result in

different conditions for a no-jerk gearshift than that of Definition 1. The theorems could be

adapted according to the new definition, perhaps with additional mathematical complexity

as more terms may become time-dependent.

Similarly, the theorems could be adapted to another kinematic conditions than the one
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imposed in this chapter, i.e.,
...
θv = 0. This also requires solving for new conditions on To(t)

and θ̇out(t), and adapting the theorems accordingly. The same remark holds: this may

increase the mathematical complexity as more terms may become time-dependent.



Chapter 3

Learning gearshift controllers

This chapter presents a model-based reinforcement learning approach to tune a gearshift

controller from gearshift trials. First the problem is introduced, and the experimental setup

and corresponding system models are presented. The gearshift controller design is then

outlined, followed by the learning algorithm, where pilco is introduced along with Gaussian

process regression. The chapter closes with the experimental results.
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3.1 Motivations for gearshift controller learning

To perform smooth and consistent gearshifts, a multi-speed transmission requires a well-

designed and well-calibrated gearshift controller whose development can be a challenge. For

that, engineers first synthesize a controller: they define its mathematical structure and

37
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parametrization. Then, they find controller parameters that maximize a chosen perfor-

mance objective. An initial set of parameters can be obtained from a principled method

that rely on an approximate model of the transmission and vehicle dynamics. However,

the final set of controller parameters is usually calibrated from gearshift trials on a phys-

ical transmission test bench. At this point, engineers rely solely on statistics to infer the

best combination of parameters from the recorded gearshift trials, typically using design

of experiments (DOE) [74]. This method can be time and resource consuming, sometimes

requiring thousands of gearshift trials [75–77]. This is because despite modern advances [78],

DOE-like methods treat the mapping from the controller parameters to the gearshift perfor-

mance indicator as a black box. This leaves no choice but to generate a lot of data points

by performing multiple gearshift trials with varied parameters, do statistical inference on

the collected data set, and try to optimize the parameters with this information. This leads

to wonder whether modern approaches in reinforcement learning can be used to assist in

the development of gearshift controllers by better leveraging the data generated during the

gearshift trials. In particular, it should be possible to better exploit prior knowledge of the

approximate system dynamics.

To be interesting in practice, a learning approach to gearshift controller calibration should

drastically reduce the number of gearshift trials required. Moreover, the method should yield

controllers that perform well under varying operating conditions—not just the specific con-

ditions under which the training data was obtained. Because the number of gearshift trials

would be reduced, engineers should be able to synthesize and iterate through a wide range of

controller types with varying parametrization. This brings about the last requirement: the

learning method should be easily amendable to various controller designs. This is impor-

tant for the development of multi-speed transmissions for electric vehicles, as this emerging

technology may not have converged to well established gearshift control strategies. This

chapter presents a gearshift controller tuning method based on reinforcement learning. The

method is argued to be interesting in practice for automotive engineers on the basis of the

considerations introduced above.

3.1.1 Review of controller designs

In terms of feedback controller type and principled design method, several approaches are

reported in the literature. In [70], researchers first linearized the system along the reference

gearshift trajectory, then formulated an optimal control problem and used dynamic program-

ming to solve it. The controller is a feedforward plus linear feedback controller. Researchers
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in [40] first obtained an open-loop optimal controller using the Pontryagin’s minimum prin-

ciple, and closed the feedback loop with the design of a backstepping controller. Article [79]

presents a backstepping controller that integrates lookup tables for the strongly nonlinear

elements of the powertrain model, such as the torque converter. In [80], the same powertrain

nonlinearities are considered for the design of a feedforward controller this time, which is

used in combination with a linear feedback controller. In [37], the motor torque is controlled

with a proportional-integral-derivative (PID) feedback controller during the inertia phase.

The PID gains were tuned by shaping the closed-loop transfer function between the motor

torque and the motor speed. In [81], researchers designed a robust feedforward-feedback con-

troller for the inertia phase using µ-synthesis. The solution has guaranteed robust stability

and robust performance given the parametric uncertainty included in the model. Similarly,

researchers in [82] reported a complete gearshift solution which includes a multi-variable

feedback controller designed with the robust H∞ method. Finally, model predictive control

was also used for clutch-to-clutch gearshift control [83].

In this research, we used a linear feedback controller and tuned its initial parameters

with the linear quadratic regulator (LQR) method based on a nominal model of the linear

system dynamics. This yields a feedback controller structure with an interesting number

of parameters to tune—the eight entries of the Kc matrix, see Section 3.3. The feedback

controller is also complemented with a feedforward signal, which adds four more parameters

to be learned.

3.1.2 Review of controller parameter learning

None of the methods reviewed in Section 3.1.1 learns the feedback controller from iterated

trials with a transmission test bench. The closest to it would be the work reported in [75],

where researchers use iterative learning control (ILC) to tune the parametrization of a feed-

forward signal for the closure of Clutch 2. The experimental results show that very few

trials are required to learn appropriate parameters. However, ILC directly iterates on con-

trol signals [84], therefore this method is ill-suited for tuning the feedback portion of gearshift

controllers.

The principled control design methods introduced in Section 3.1.1 all rely on a system

model to compute the controller parameters. It is customary to use system identification

methods to obtain, calibrate, or validate system models [13]. With an identified model,

one can hope to get a superior controller since the design method now relies on a model
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that better represents the true system dynamics. However, this research aims to go beyond

this approach and proposes using reinforcement learning to concurrently and iteratively gain

knowledge about the system dynamics and tune the control parameters.

As discussed in Appendix A, model-free approaches to reinforcement learning tend to

require many more interactions with the environment [85]. Thus, we chose a model-based

approach for this work. More specifically, we chose pilco [20, 86], which uses Gaussian

processes (GP) [15,87] to efficiently learn the system dynamics. To name a few, this method

was used to efficiently tune linear controllers [88] and multivariate PID controllers [89] for

robotic arm applications. In pilco, the control policy is iterated with analytic gradients

obtained from simulated policy rollouts using the learned model. However in this work, we

make use of the automatic gradient functionalities of TensorFlow [90] for additional speed

and flexibility in the implementation of the method. The primary criticism of pilco is that

the method scales poorly for problems of higher dimensions [91], which should not be an

issue in this work.

For higher dimensional problems, an alternative would be guided policy search [92]. In

this method, control policies are randomly searched in a model-free fashion, but the search

is guided by optimal control solutions obtained with differential dynamic programming [93],

using a nominal model of the system dynamics. This method is interesting for avoiding local

minima in complex high-dimensional control problems. But because our control problem is

quite small, this method is likely to be less efficient than pilco and provide little added

benefit.

Another alternative would be Coarse-ID control [94]. This method starts with the identifi-

cation of a linear system dynamics with least squares estimation. Then a bootstrap technique

it proposed to bound the error between the real dynamics and the identified model. Finally,

a controller is synthesized by solving a robust optimization problem. Researchers introduced

a method for LQR controller synthesis, but the work could be extended to other controller

types, and perhaps feedforward signals as well. Coarse-ID is very close to the traditional

system identification plus principled controller synthesis method discussed at the beginning

of this section, with the only difference being that machine learning is used twice: once for

the system identification, and again for the uncertainty estimation. We subscribe to the idea

that researchers should strive to reduce the gap between reinforcement learning and control

theory [95]. This study is an attempt to do so.
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Figure 3.1: Reduced-scale electric vehicle transmission prototype.

3.2 Experimental setup

The experimental setup consists of a multi-speed transmission prototype—it implements the

transmission design of Section 1.5. The test bench is shown on Figure 3.1. A section view of

the planetary gearset is shown on Figure 3.2. The input motor simply represents the electric

motor in an electrical drivetrain. Both clutches are friction-plate electromagnetic brakes:

a spring keeps the plates apart, until the electromagnet is activated, which magnetizes the

floating plate and brings the braking surface into contact. A section view of a clutch is shown

on Figure 3.3. The load motor on Figure 3.1 inputs a torque that corresponds to a simulated

driveline torque. This resistive torque is determined by a driveline model that is simulated

in real-time. The driveline model is shown on Figure 3.6 and further discussed in Section 3.3.

A schematic representation of the control loop is shown on Figure 3.4. The real-time

controller is implemented on a CompactRIO. It includes the gearshift controller whose pa-

rameters are to be tuned with the proposed learning method. The gearshift controller outputs

three torque commands: the motor torque, and the two clutch torques. The motor torque

command is sent directly to a motor drive. The motor drives manage the closed-loop control

of the actual motor torques based on current feedback.

The clutch drives are simple H-bridge drivers however, and take as an input a pulse-width

modulated (PWM) signal. In this setup, we implemented a closed-loop control of the actual
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Figure 3.2: Section view of the planetary gearset.
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Figure 3.3: Section view of the clutch assembly.
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Figure 3.4: Experimental setup.

clutch torque output. Torque sensors are installed between the fixed part of the brakes and

the ground plate, as shown on Figure 3.3. The clutch controller modulates the PWM signals

to track the desired torque values given by the gearshift controller. Typically, automotive

transmissions do not include such torque sensors, so this kind of tracking is impossible in

practice. However, automotive clutches are also typically better suited for the task at hand,

and engineers spend significant efforts to characterize them. Given that the research objec-

tive is to learn a gearshift controller from reinforcement learning, the closed-loop control of

the friction clutches was deemed acceptable. The clutch controller is a simple proportional

integral controller tuned heuristically until an acceptable tracking is obtained.

Figure 3.5 shows both the commanded torque and the measured torque for the motor

and Clutch 2, for an example gearshift. Unsurprisingly, the motor torque is well tracked

by the motor drive. Figure 3.1 shows that there is also a torque sensor between the input

motor and the planetary gearset, which was used for the torque measurement of Figure 3.5a

and for debugging purposes. However, this torque signal is not used in the control loop of

Figure 3.4. From Figure 3.5, the clutch torque can also be considered sufficiently tracked.

The signals are acquired at 1000Hz. A fourth-order Butterworth filter with a cutoff fre-

quency of 450Hz was implemented for anti-aliasing purposes. The gearshift controller runs

at 200Hz, which is sufficient to cover the dynamics of the problem. An increase in the con-
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(a) Motor torque. (b) Clutch 2 torque.

Figure 3.5: Comparison of the command signals and the measured torques.

SimulatedPhysical

Figure 3.6: Driveline and vehicle model. The components on the left—the motor,
planetary gearset, and clutches—are the physical components of Figure 3.1. The
vehicle model on the right is simulated in real-time and used to generate the torque
command on the load motor.

troller frequency results in an increase in the number of time steps that must be simulated

during controller learning. Here 200Hz was deemed an appropriate balance.

3.3 Gearshift controller design

The system model used for the controller design is shown on Figure 3.6. The system is in

part physically realized with the input motor, the clutches, and the planetary gearset, and

in part simulated in real-time with a simple driveline model. In the displayed configuration,

the planetary gearset is composed of the five rotating bodies labeled on Figure 3.6: S, C1,

C3, R1, R2. Choosing the motor speed θ̇m, the output shaft speed θ̇out and the vehicle speed
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θ̇v as the general coordinates, the equations of motion are

θ̈m = c1Tm + c2
(︁
k(θout − θv) + d(θ̇out − θ̇v)

)︁
+ c3T1 + c4T2, (3.1)

θ̈out = c5Tm + c6
(︁
k(θout − θv) + d(θ̇out − θ̇v)

)︁
+ c7T1 + c8T2, (3.2)

θ̈v = I−1
v

(︁
k(θout − θv) + d(θ̇out − θ̇v)

)︁
− I−1

v Tv, (3.3)

where c1 to c8 are constants that regroup parameters such as the inertias of the rotating

elements and the number of teeth on the meshing ones. Following the driveline model of

Chapter 1, Iv represents the equivalent vehicle inertia, k is the equivalent driveline stiffness

and d, its damping. By choosing the set of states x = [θ̇m, θ̇out, θ̇v, (θout − θv)]⊤ and control

inputs u = [Tm, T1, T2]
⊤ for the system, a linear state-space representation of its dynamics

can be obtained, where

ẋ = Ax+Bu+ t0, (3.4)

A =

⎡⎢⎢⎢⎢⎣
0 c2d −c2d c2k

0 c6d −c6d c6k

0 I−1
v d −I−1

v d I−1
v k

0 1 −1 0

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
c1 c3 c4

c5 c7 c8

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ , (3.5)

t0 = [0, 0,−I−1
v Tv, 0]

⊤. (3.6)

Since they are simulated, the parameters Iv, k, and d must be defined. First, Iv is set

such that, in first gear, the equivalent inertia of the motor and transmission projected at the

vehicle level is 10% that of Iv. This is a realistic ratio for a real-world vehicle [37, 96, 97].

Then, k and d are set such that, in first gear again, the natural frequency of the driveline is

5Hz, and its damping ratio is 0.15, which are also typical values of driveline dynamics.

Following the clutch-to-clutch gearshift strategies discussed in Chapter 2, a prescribed

gearshift trajectory x̄ and a nominal torque command ū can be computed using Equa-

tions (3.4)–(3.6). The rest of this paragraph outlines the procedure, and the results are

shown on Figure 3.7. The controller’s objective is to track the prescribed state trajectory x̄.

In this work, the main gearshift performance indicator is maintaining a constant vehicle speed

θ̇v. The gearshift begins under the following conditions: θ̇m = 20 rad/s and Tv = 3.5Nm. For

this study, Tv is kept constant throughout the gearshift, which is a common assumption in

gearshift control research [40,82]. The motor speed θ̇m is kept 1 rad/s above Gear 1 synchro-

nization speed during the torque phase, and is then smoothly brought down to Gear 2 speed

during the inertia phase. A constant output shaft speed θ̇out that matches θ̇v is prescribed,
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(a) Prescribed trajectory x̄ (b) Nominal torque command ū

Figure 3.7: The gearshift begins with a torque phase [0 s, 0.5 s], where θ̇m is kept
above the Gear 1 synchronization speed and T1 is gradually reduced to zero. It
ends with an inertia phase [0.5 s, 1 s], where θ̇m is brought down to the Gear 2
synchronization speed.

as well as a constant driveshaft elongation (θout − θv) = Tv/k. With x̄ defined, the next

step is to compute ū. First, an idealized nominal torque command ū0 = [Tm,0, T1,0, T2,0]
⊤ is

computed by solving the system of Equations (3.4)–(3.6). The system trajectory x̄ is used

to define the state variables. Then, an arbitrary trajectory is imposed for T1,0: it starts at

the Clutch 1 torque required at the beginning of the gearshift, and ends at zero at the end

of the torque phase. The rest of ū, i.e., Tm,0 and T2,0, can be computed by solving for the

remaining terms in Equations (3.4)–(3.6). Finally, the actual ū is defined as follows:

Tm = Tm,0 + a1θ̇m/θ̇out + a2, (3.7)

T1 = a3T1,0, (3.8)

T2 = a4T2,0, (3.9)

where {a1, . . . , a4} are parameters for the feedforward signal ū of the gearshift controller.

These parameters help to account for missing terms in Equations (3.4)–(3.6) such as friction

in the planetary gearset, as well as other discrepancies between the nominal model and the

real system dynamics. These are the four parameters that the learning algorithm will vary

in order to tune ū. An initial value for these parameters is defined heuristically from simple

measurements done on the test bench, such as estimating friction from constant-speed runs.

The complete controller has the form

u = ū+Kc(x̄− x), (3.10)
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Figure 3.8: Gearshift controller setup. The control signal u = ū +Kc(x̄ − x) is
the sum of feedforward (ū) and state-feedback components.

where u is the control signal, ū is the (feedforward) nominal control signal, and Kc(x̄ − x)

is the feedback term. The control loop is pictured on Figure 3.8. The linear controller Kc is

obtained by solving an LQR problem where the second column of B is removed. In effect,

only Tm and T2 are feedback controlled. Even when removing the second column of B, the

system is still controllable. The resulting controller is a 2× 4 matrix, which adds eight more

controller parameters to tune during training. The next section presents the algorithm used

to tune the 12 controller parameters ψ from gearshift trials.

3.4 Proposed learning method

The learning algorithm used in this work is an altered version of pilco. The method is

schematically represented in Figure 3.9, and outlined in Algorithm 1. The learning problem

is formulated in discrete time; the states and control actions are still continuous. The system

model used for the simulated policy rollouts is

x[t] = Adx[t−1] +Bdu[t−1] + f(x[t−1],u[t−1]) + t0, (3.11)

u[t−1] = π(x[t−1],ψ) = ū[t−1] +Kc(x̄[t−1] − x[t−1]), (3.12)

where Ad, Bd, and t0 are obtained by discretizing the system in Equations (3.4)–(3.6). The

dynamics of Equation (3.11) is composed of a known nominal model (Adx[t−1]+Bdu[t−1]+t0)

and an unknown function f(x[t−1],u[t−1]). This unknown dynamics f(x,u) is to be learned

from gearshift trials on the test bench, which is addressed in Section 3.4.1. The control

policy π(x,ψ) is deterministic, and ψ regroups the 12 policy parameters. The tuning of

these parameters is the subject of Section 3.4.3.
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Figure 3.9: The model-based reinforcement learning method used to tune the
parameters ψ of the control policy π.

Algorithm 1: pilco for gearshift controllers

Result: Learned policy π(x,ψ).
1 Initialize ψ: initialize Kc from LQR with a nominal model, initialize ū heuristically.
2 while π not learned do
3 Rollout the policy π on the test bench and collect a dataset D.
4 Learn the unknown system dynamics f(x,u) with Gaussian processes.
5 while π not optimized do
6 Simulate a policy rollout: compute the state probability distribution

p(x[t])∀t ∈ {0, . . . , T}, the cost function Jπ(ψ), and the gradients dJπ(ψ)
dψ

.

7 Iterate the policy parameters ψ using the gradients dJπ(ψ)
dψ

.
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3.4.1 Gaussian process regression

The unknown dynamics f(x,u) is learned using Gaussian processes. GPs approximate func-

tions with a scalar output, so D functions fd(x,u) need to be learned, i.e., one for every state

we wish to predict. The structure of the unknown function is f(x,u) = [f1(x,u), . . . , fD(x,u)]
⊤.

For each dimension d, n training targets and feature vectors are obtained with

yd [i] = xd [i] − [Adx[i−1] +Bdu[i−1] + t0]d, (3.13)

z[i] = [x⊤
[i−1],u

⊤
[i−1]]

⊤. (3.14)

Each dimension d has its own target vector yd composed of the yd [i] elements computed

above. All dimensions share the same set of corresponding feature vectors regrouped in

Z = [z[1], . . . , z[n]]. Effectively, the GP learns the difference between the nominal model and

the real (measured) system dynamics. GPs are stochastic processes characterized by a mean

m(z) and a kernel function k(z, z′). Here, we choose the mean function m(z) := 0, and the

square exponential kernel function

k(z, z′) := σ2
f exp(−1

2
(z− z′)⊤Λ−1(z− z′)), (3.15)

where σ2
f is the signal variance and Λ = diag([l21, . . . , l

2
D+F ]) is a diagonal matrix composed

of the characteristics length-scales. These are the hyper-parameters of the Gaussian process,

and each dimension d has its own set of hyper-parameters. The last hyper-parameter in this

problem is the noise variance σ2
ϵ , which will appear in Equations (3.16) and (3.17).

In this work, the system dynamics are modeled with a linear nominal model and a

Gaussian process with a zero mean function m(z) = 0. This is equivalent to modeling the

dynamics with no nominal model and a Gaussian process with a linear mean function. In

the original implementation of pilco [20], no nominal model is used and the mean function

is also zero. This means that the entirety of the system dynamics has to be learned from

data. Unsurprisingly, researchers in [98] showed that using a linear model as a mean function

accelerates the learning process, which motivates the use of the linear nominal model in our

case.

For a deterministic test point z∗, the output of fd(z) will be normally distributed with
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mean and variance

µd(z∗) = Kz∗z(Kzz + σ2
ϵ I)

−1yd, (3.16)

Σd(z∗) = k(z∗, z∗)−Kz∗z(Kzz + σ2
ϵ I)

−1K⊤
z∗z, (3.17)

where Kzz =

⎡⎢⎢⎣
k(z[1], z[1]) · · · k(z[1], z[n])

...
. . .

...

k(z[n], z[1]) · · · k(z[n], z[n])

⎤⎥⎥⎦ , (3.18)

Kz∗z =
[︂
k(z∗, z[1]) · · · k(z∗, z[n])

]︂
. (3.19)

The accuracy of the prediction fd(z∗) depends on having appropriate GP hyper-parameters.

It is possible to tune the set of hyper-parameters θd by maximizing the logarithm of the

marginal likelihood of the observed data points yd, such as suggested in [15], with

log p(yd|Z,θd) = −
1

2
y⊤
dK

−1yd −
1

2
log |K| − n

2
log 2π, (3.20)

where K = Kzz + σ2
ϵ I. The likelihood is maximized with a gradient-based optimization

algorithm using

∂

∂θd [j]
log p(yd|Z,θd) =

1

2
tr

(︃(︁
αα⊤ −K−1

)︁ ∂K

∂θd [j]

)︃
, (3.21)

α = K−1yd. (3.22)

3.4.2 Simulated policy rollouts and uncertainty propagation

Algorithm 1 requires to simulate a rollout from an initial state x0, under a given con-

trol policy π, from time t = 0 to t = T . This means computing the state distributions

{p(x[0]), . . . , p(x[T ])}. Computing p(x[t]) by performing the integration

p(x[t]) =

∫︂∫︂
p(x[t]|x[t−1],u[t−1])p(u[t−1]|x[t−1])p(x[t−1]) dx[t−1] du[t−1] (3.23)

is generally intractable. In particular, p(x[t]|x[t−1],u[t−1]) is quite challenging. Recall that

the results of Equations (3.16) and (3.17) were for a deterministic test input z∗. When x[t−1]

and u[t−1] are non-deterministic, the output of a Gaussian process is in general not Gaussian,

even if x[t−1] and u[t−1] are themselves normally distributed. In the original pilco implemen-

tation, they approximate the output distribution as Gaussian, and they obtain the mean and

variance of the distribution using exact moment matching [20]. In this work, we take a some-
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what simpler approach: we also approximate the output as a Gaussian distribution, but we

get the mean and variance using an approximate solution. Assuming z∗ ∼ N (µz∗ ,Σz∗), and

using a first order Taylor expansion around µz∗—see [99]—the mean and variance become

µd(z∗) = µd(µ
z∗), (3.24)

Σd(z∗) = Σd(µ
z∗) +

∂µd(z∗)

∂z∗

⃓⃓⃓⃓
⃓
z∗=µz∗

Σz∗
∂µd(z∗)

∂z∗

⃓⃓⃓⃓
⃓
⊤

z∗=µz∗

. (3.25)

This approach is also chosen by researchers in [100], where GPs are used in the context of

model predictive control. This requires to introduce the derivative of the mean of the GP

prediction with respect to a deterministic test point z∗

∂µd(z∗)

∂z∗
= −(Kz∗z ⊙ y⊤

d (Kzz + σ2
ϵ I)

−1)Z̃⊤
∗ Λ

−1, (3.26)

where Z̃∗ = [z∗ − z[1], . . . , z∗ − z[n]], and ⊙ represents an element-wise product.

Assuming that x[t−1] ∼ N (µx
[t−1],Σ

x
[t−1]), the mean and variance of the control signals are

µu
[t−1] = ū[t−1] +Kc(x̄[t−1] − µx

[t−1]), (3.27)

Σu
[t−1] = KcΣ

x
[t−1]K

⊤
c . (3.28)

Then p(z[t−1]) can be expressed as

z[t−1] ∼ N

⎛⎜⎝
⎡⎣ µx

[t−1]

ū[t−1] +Kc(x̄[t−1] − µx
[t−1])

⎤⎦ ,
⎡⎣ Σx

[t−1] Σx
[t−1]K

⊤
c

KcΣ
x
[t−1] KcΣ

x
[t−1]K

⊤
c

⎤⎦
⎞⎟⎠ . (3.29)

For convenience, Equations (3.11) and (3.12) are regrouped into

x[t] = (Ad −BdKc)x[t−1] + f(x[t−1],u[t−1]) +Bd(ū[t−1] +Kcx̄[t−1]) + t0, (3.30)

from which an expression for p(x[t]) can be obtained as

µx
[t] = (Ad −BdKc)µ

x
[t−1] + µf(µ

z
[t−1]) +Bd(ū[t−1] +Kcx̄[t−1]) + t0, (3.31)

Σx
[t] = (Ad −BdKc)Σ

x
[t−1](Ad −BdKc)

⊤ + Σf(z[t−1]), (3.32)
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where

µf(µ
z
[t−1]) = [µ1(µ

z
[t−1]), . . . , µD(µ

z
[t−1])]

⊤, (3.33)

Σf(z[t−1]) = diag([Σ1(z[t−1]), . . . ,ΣD(z[t−1])]). (3.34)

3.4.3 Cost function and its gradients

As is customary in reinforcement learning, the goal of Algorithm 1 is to minimize the expected

long-term cost of following a policy π over a finite horizon of T time steps

Jπ(ψ) =
T∑︂
t=0

Ex[t]
[c(x[t])]. (3.35)

Following pilco’s original paper, the cost function used in this study is the saturating

immediate cost

c(x[t]) = 1− exp
(︁
− 1

2
(x[t] − x̄[t])

⊤L−1(x[t] − x̄[t])
)︁
, (3.36)

where L−1 is a diagonal matrix whose elements dictate the width of the cost function for

each of the state dimensions. For x[t] ∼ N (µx
[t],Σ

x
[t]), the expectation of this cost function is

Ex[t]
[c(x[t])] = 1− |I + Σx

[t]L
−1|−1/2 exp

(︁
− 1

2
(µx

[t] − x̄[t])
⊤S̃(µx

[t] − x̄[t])
)︁
, (3.37)

S̃ = L−1(I + Σx
[t]L

−1)−1, (3.38)

where | · | denotes the determinant of a matrix. The cost can be minimized by following the

gradients given by

dJπ(ψ)

dψ
=

T∑︂
t=0

d

dψ
Ex[t]

[c(x[t])]. (3.39)

The two most viable options for computing these gradients are analytical differentiation and

automatic differentiation. The original implementation of pilco computes the gradients

analytically, which consists of expanding Equation (3.39) with the chain rule until it becomes

an analytical expression that can be computed directly. The first expansion is

d

dψ
Ex[t]

[c(x[t])] =

(︄
∂

∂µx
[t]

Ex[t]
[c(x[t])]

)︄
dµx

[t]

dψ
+

(︄
∂

∂Σx
[t]

Ex[t]
[c(x[t])]

)︄
dΣx

[t]

dψ
, (3.40)
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where the derivatives of the mean and variance of the state distribution with respect to the

controller parameters can be further expanded as

dµx
[t]

dψ
=

∂µx
[t]

∂µx
[t−1]

dµx
[t−1]

dψ
+

∂µx
[t]

∂Σx
[t−1]

dΣx
[t−1]

dψ
+
∂µx

[t]

∂ψ
, (3.41)

dΣx
[t]

dψ
=

∂Σx
[t]

∂µx
[t−1]

dµx
[t−1]

dψ
+

∂Σx
[t]

∂Σx
[t−1]

dΣx
[t−1]

dψ
+
∂Σx

[t]

∂ψ
. (3.42)

The derivatives
dµx

[t−1]

dψ
and

dΣx
[t−1]

dψ
are given from the previous time step, while the rest of

the gradients have to be further expanded. This approach quickly becomes cumbersome,

and more importantly, several steps would need to be redone if the parametrization of the

controller changed.

For that reason, we implemented automatic differentiation [101]. This method uses the

fact that all computations are ultimately compositions of elementary operations with known

derivatives. Automatic differentiation consists of augmenting the computation of the ele-

mentary operations leading to a result—here, the cost function—with the computation of

the derivative of these operations. Then the stored derivatives can be combined with the

chain rule to yield the derivative of the result with respect any chosen constituent of the

computation. Several frameworks exists for implementing automatic differentiation; here we

chose TensorFlow. In TensorFlow, computational graphs are used to perform the forward

computations and the automatic differentiation efficiently.

In this study, we still worked out the analytical solution for the derivative of the cost

function with respect to the matrix Kc. The results are presented in Appendix C. The

analytical solution were used to verify our implementation of automatic differentiation, as

programming mistakes are easy to make and hard to detect otherwise. The results of Ap-

pendix C can be reused by the interested researchers to verify their own implementation

of pilco with automatic gradients. Alternatively, numerical gradients can also be used for

gradient validation. However, numerical gradients are never exact, and it can be hard to

decipher whether the discrepancies are caused by numerical imprecision or programming

errors.

3.5 Experimental results

Measurements of θ̇m and θ̇v during a gearshift with the initialized (untrained) controller is

shown on Figure 3.10. The rest of the result section focuses on the improvement of the



CHAPTER 3. LEARNING GEARSHIFT CONTROLLERS 54

(a) Measured motor speed θ̇m. (b) Measured vehicle speed θ̇v.

Figure 3.10: Experimental results for the untrained control policy.

tracking performance for θ̇v with the proposed learning method. For the model-based learn-

ing method to be effective, the learned model must accurately represent the actual system

dynamics. This was verified every time a new model iteration was obtained.

Figure 3.11 shows the evolution of the trajectories of θ̇v through the iterations of the

bigger loop in Figure 3.9 and Algorithm 1. Every trace is a measurement of θ̇v on the

test bench where the gearshift is performed with a newly optimized policy π∗. Table 3.1

shows the reduction of various norms of the tracking error signal e(t) for θ̇v. The results

show that very few gearshift trial—in this case, only about four—are required to tune the

12 parameters of the gearshift controller. The computation of each iterated policy π∗ only

takes about 100 s on a laptop computer. Of course, the various measures of error reduction

presented in Table 3.1 heavily depend on the quality of the initialized controller. After all,

pilco was shown to be capable of learning controllers starting from randomly initialized

parameters. In the context of a gearshift controller development process however, it may be

counterproductive to randomly initialize the controllers given that several principled design

methods exist in the literature, and engineers typically have good approximate models for

the driveline dynamics. Therefore, it is interesting to see that the method still improves

the performance of a reasonably initialized gearshift controller, and does so using only a few

gearshift trials.

Moreover, Figure 3.12 shows the repeatability of the results. Figure 3.12a shows 10

gearshift trials with the initialized policy (in purple), and 10 gearshift trials with the learned

policy (in blue). This indicates that the improvement reported in Figure 3.11 and Table 3.1

are not due to mere variations in the measurements. Figures 3.12b and 3.12c show that the

learned parameters also improve the gearshift quality for conditions that were never used

during training. Figure 3.12b shows a gearshift with a shortened duration, i.e., 0.6 s instead
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Figure 3.11: Evolution of vehicle speed θ̇v trajectories through the iterations.

Table 3.1: Reduction in the tracking error of θ̇v through the iterations.

iter. nb. (i) ∥e∥∞ |e(1)| ∥e∥2
0 0.91 0.66 18.5
1 0.62 0.22 12.4
2 0.41 0.41 5.4
3 0.50 0.10 10.0
4 0.42 0.13 7.3

reduction 54 % 80 % 61 %

of the original 1.0 s. Figure 3.12c shows a 1-s gearshift initiated at reduced motor speed and

reduced vehicle load. This suggests that the automatic tuning of gearshift controller param-

eters using the proposed method does not require trying a myriad of operating conditions,

which greatly accelerates the tuning process.

Figure 3.13 shows how the learning process affects the torque commands. The two

gearshift trials displayed—the initial policy and the trained policy—correspond to the tri-

als with i = 0 and i = 4 in Figure 3.11, respectively. Figure 3.13a shows that with the

initial policy, the nominal motor torque (ū, thick purple line) is likely set too high, as the

total controller output (u, thin purple line) is almost always lower than the nominal torque.

The learning process reduces the nominal torque, which makes the controller’s output more

centered around the nominal value. This suggests that the learning method appropriately

corrects feedforward parameters. Figure 3.13b shows that the feedback gains for the com-

mand of T2 are greatly increased. The initial policy barely deviates from the nominal torque

command, and the trained policy does so significantly. Note that the torque command is sat-

urated at zero, since it is impossible to command a negative torque on a friction clutch. This

large increase in the feedback gains, combined with the fact that it improves the trajectory

tracking—see Figure 3.11 and Table 3.1—suggests that the feedback did not have enough
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(a) (b) (c)

Figure 3.12: Comparison of repeated gearshifts between the initial (purple) and
trained (blue) policies (a) under the same operating conditions and gearshift tra-
jectory used during the learning process, (b) under the same operating conditions,
but with a shorter gearshift duration, and (c) at reduced motor speed and vehicle
torque.

(a) Motor torque (b) Clutch 2 torque

Figure 3.13: Comparison of the control signals for the initial policy (purple) and
the trained policy (blue). The thick lines represent the feedforward component of
the control signals (ū), and the thin lines represent the total controller output (u),
as in Equation (3.10) and Figure 3.8.

authority in the initial policy, which the learning process corrects. It also belies unknown

dynamics in the physical transmission, and motivates the learning approach.

Finally, Figure 3.11 and Table 3.1 show that the policy seems to converge to a local

minimum. In practice, engineers could restart the learning process with different initial

values for the controller parameters, which would help determine whether the local minimum

is also a global one given the current controller parametrization. Moreover, engineers could

vary the parametrization of the controller, and determine whether it is possible to further

improve the gearshift performance. After all, the chosen feedback controller and the arbitrary

parametrization of the feedforward signal in this study may not be the best that one can
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devise. This highlights the importance of a flexible approach that can learn quickly. The

method proposed in this work is made more flexible by the use of automatic gradients. Since

the method can learn from few gearshift trials, several parametrizations can be tried. This

is a key advantage of the proposed method over traditional ones, which are mainly suitable

for fine-tuning a given parametrization.
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vehicles
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Chapter 4

Autonomous vehicles

This chapter reviews the functional architecture of autonomous vehicles. It also presents the

vehicle models to be used in the example problems of Chapters 5 and 6.
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4.3 Safe control of vehicle dynamics with learning . . . . . . . . . . 65

4.1 Functional architecture of autonomous vehicles

Modern vehicles have varying degrees of autonomy, ranging from simple driver assistance

features—e.g., lane centering or adaptive cruise control—to more sophisticated autonomous

capabilities, such as navigating completely autonomously in an urban environment as a

driverless taxi [102]. Several system architectures were proposed to structure the problem of

autonomous driving [103–105]. Typically, the architectures are structured around the thee

main functions presented in Figure 4.1: perception, planning, and control.

The perception problem consists of transforming sensorial inputs into useful information

for the motion planner and the controller. Depending on the autonomous features, these

inputs may come from one or several of the following sensor types: GPS receivers, cameras,

radars, lidars, sonars, inertial measurement units, and other sensors typical of vehicle chassis,

59
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Figure 4.1: Functional architecture of autonomous vehicles.

such as wheel speed sensors, steering angle sensors, and other motor and drivetrain sensors.

Part of the perception task is vehicle state estimation, commonly done through sensor fusion

and the use of a Kalman filter [106]. More specific to the autonomous driving problem is the

rest of the perception task: localizing the vehicle on a road map, creating or adapting a map

of road surroundings [107], detecting and identifying objects such as road signs, pedestrians,

and other vehicles [108], along with predicting their future trajectory, and finally, identifying

the drivable areas and lane divisions [109].

The planning task is structured hierarchically [110, 111]. The mission planner is re-

sponsible for navigating the road network toward the intended destination. The behavioral

planner [112] is responsible for selecting the short term maneuver to be executed, such as

stopping for a red light, or changing lane. The planning task finished with computing a

smooth and safe dynamical trajectory for the vehicle to follow [113,114], which is then sent

to the vehicle controller. Both the behavioral and trajectory planning can be updated in

real-time to adapt to the motion of other vehicles [115].

The controller is the lowest level task in the autonomous driving problem. It is the con-

troller that sends signals to the various vehicle actuators: mostly the motor(s), brakes, and

actuated steering wheel, but also potentially other actuators such as transmission actuators

or active suspension components. To simplify the control task, it seems common to treat

the longitudinal and lateral control problems separately—see [105] for instance—although

this is not necessary. Control methods typically rely on a model of the vehicle dynamics,

which is the subject of the next section. Section 4.3 reviews popular control approaches for

autonomous vehicles.
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(a) Vehicle dynamics. (b) Drag reduction.

Figure 4.2: Longitudinal vehicle dynamics.

4.2 Vehicle models

This section presents dynamical models for three vehicular control tasks: pure longitudinal

control, combined longitudinal and lateral control, and pure lateral control.

4.2.1 Pure longitudinal vehicle dynamics

The free-body diagram for the longitudinal control problem is shown on Figure 4.2a. The

vehicular forces considered in Fv are the aerodynamic drag Fa, the tire rolling resistance Fr,

and the effect of gravity due to a road slope Fg.

Fv = Fa + Fr + Fg, (1.1)

Fa =
1
2
ρv2afcd(d), (4.1)

Ft = mgct cos(α), (1.3)

Fg = mg sin(α), (1.4)

This is mostly the same model as in Section 1.3, with the exception that Fa depends on the

distance d between the vehicles [116]—see Figure 4.2b. The drag coefficient cd is modeled

with

cd(d) = cd0

(︃
1− c1

c2 + d

)︃
, (4.2)

where cd0 is the value for d → ∞. The road slope is assumed small enough so that the

small angle approximation holds, where cos(α) = 1 and sin(α) = α in Equations (1.3) and

(1.4). The force Ft represents the tractive or braking force on the vehicle. It is therefore an

input to this model. The magnitude of Ft is assumed to be low enough so that the effect

of longitudinal tire slip can be neglected. Similarly, the effect of driveline and suspension
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dynamics are neglected as well. The model for the longitudinal dynamics is

v̇ = − 1
2m
ρv2afcd(d)− gct − gα+ Ft. (4.3)

4.2.2 Combined longitudinal and lateral vehicle dynamics

The free-body diagram for the combined longitudinal and lateral control problem is shown

on Figure 4.3a. The equations of motion for this system are

ẍ = 1
m

(︁
Frx + Ffx cos(ϕ)− Ffy sin(ϕ)− Fv

)︁
+ ẏψ̇, (4.4)

ÿ = 1
m

(︁
Ffx sin(ϕ) + Fry + Ffy cos(ϕ)

)︁
− ẋψ̇, (4.5)

ψ̈ = 1
Iz

(︁
Ffxlf sin(ϕ)− Frylr + Ffylf cos(ϕ)

)︁
. (4.6)

The steering dynamics are modeled with a first-order linear dynamical system [117], where

ϕ̇ = λs(ϕr − ϕ). (4.7)

The kinematic relations between the inertial frame of reference (X, Y )—the road—and the

non-inertial frame (x, y)—the vehicle—are described by

Ẋ = ẋ cos(ψ)− ẏ sin(ψ), (4.8)

Ẏ = ẋ sin(ψ)− ẏ cos(ψ). (4.9)

The states of interest for this problem are x = [ẋ, ẏ, ψ̇, ψ, Y, ϕ]⊤, and the control inputs

are u = [Frx, Ffx, ϕr]
⊤. The vehicular forces can be expanded until they are expressed solely

in terms of the state variables. In this problem, Fv only considers aerodynamic drag, thus

Fv =
1
2
ρẋ2afcd. (4.10)

Several tire models exist to describe the lateral forces Ffy and Fry. These models typically

rely on a notion of tire slip angles, illustrated on Figure 4.3a and described with

αf = ϕ− arctan

(︃
ψ̇lf + ẏ

ẋ

)︃
, (4.11)

αr = arctan

(︃
ψ̇lr − ẏ
ẋ

)︃
. (4.12)

A popular choice of tire model is the Pacejka model [118]. However, this model is highly
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(a) Combined longitudinal and lateral dynamics. (b) Pure lateral dynamics.

Figure 4.3: Free-body diagrams of bicycle models.

nonlinear and sometimes unnecessarily cumbersome. For small slip angles, a commonly used

model is the linear tire model [119], where

Ffy = cfαf , (4.13)

Fry = crαr. (4.14)

In this work, the small slip angle approximation is assumed to hold because the vehicle

maneuvers are gentle. In effect, this study focuses on lane-change maneuvers, not racing-

style cornering or emergency collision avoidance. Consequently, the slip angle definition can

also be simplified, where

αf = ϕ− ψ̇lf + ẏ

ẋ
, (4.15)

αr =
ψ̇lr − ẏ
ẋ

. (4.16)

Moreover, assuming that the vehicle ψ and steering ϕ angles remain small, the equations of
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motion can be further simplified. With the tire model, the equations of motion become

ẍ = 1
m

(︃
Frx + Ffx − cf

(︃
ϕ2 − ϕ(ψ̇lf + ẏ)

ẋ

)︃
− 1

2
ρẋ2afcd

)︃
+ ẏψ̇, (4.17)

ÿ = 1
m

(︃
Ffxϕ+ cr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
− ẋψ̇, (4.18)

ψ̈ = 1
Iz

(︃
Ffxlfϕ− crlr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf lf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
, (4.19)

The equation for the steering dynamics (4.7) remains the same. The equation for Ẏ becomes

Ẏ = ẋψ − ẏ. (4.20)

Together Equations (4.7), (4.17)–(4.20) describe the dynamics of the system ẋ = f(x,u).

The dynamics can be linearized to conform to ẋ = Ax + Bu by taking the Jacobian of

f(x,u) with respect to the states x and inputs u. The partial derivatives are presented in

Appendix D. A nominal linear model is chosen by evaluating the partial derivatives at a

nominal point x0 = [ẋ0, 0, 0, 0, 0, 0]
⊤, u0 = [0, 0, 0]⊤, where most of the partial derivatives

vanish.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρẋ0afcd
m

0 0 0 0 0

0 −(cf+cr)
mẋ0

−cf lf+crlr
mẋ0

− ẋ0 0 0 cf
m

0 −cf lf+crlr
Iz ẋ0

−(cf l
2
f +crl2r )

Iz ẋ0
0 0 cf lf

Iz

0 0 1 0 0 0

0 1 0 ẋ0 0 0

0 0 0 0 0 −λs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m

1
m

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 λs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.21)

Chapter 5 considers two types of modeling uncertainty for this control problem: the un-

certainty related to vehicle parameters—e.g., cf and cr—and the uncertainty related to the

linearization around a given set of states. To obtain an envelope of possible system dynamics,

the partial derivatives can be evaluated for different states and different parameter values,

thereby obtaining different A and B matrices for the system equation.

4.2.3 Pure lateral vehicle dynamics

For the purely lateral control problem, the free-body diagram is reduced to 4.3b. The vehicle

speed is assumed constant, i.e. ẋ = v, and the longitudinal dynamics are neglected. In other

words, the vehicle is assumed to be closed-loop controlled such that the longitudinal speed
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remains v, and the problem only concerns the lateral control. The states of interest for this

problem are x = [ẏ, ψ̇, ψ, Y, ϕ]⊤, and the only control input is u = [ϕr]. The effect of the

front tractive force on the lateral dynamics is also neglected. Consequently, the equations of

motion (4.18)–(4.19) and the kinematic relation (4.20) become linear.

ÿ = cr

(︃
ψ̇lr − ẏ
mv

)︃
+ cf

(︃
ϕ− ψ̇lf + ẏ

mv

)︃
− vψ̇, (4.22)

ψ̈ = −crlr
(︃
ψ̇lr − ẏ
Izv

)︃
+ cf lf

(︃
ϕ− ψ̇lf + ẏ

Izv

)︃
, (4.23)

Ẏ = vψ − ẏ. (4.24)

The same steering model (4.7) is used for this problem. The dynamics can easily be expressed

in the form ẋ = Ax+Bu, where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(cf+cr)
mv

−cf lf+crlr
mv

− v 0 0 cf
m

−cf lf+crlr
Izv

−(cf l
2
f +crl2r )

Izv
0 0 cf lf

Iz

0 1 0 0 0

1 0 v 0 0

0 0 0 0 −λs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

λs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.25)

4.3 Safe control of vehicle dynamics with learning

In the functional architecture of Figure 4.1, the objective of the control task is to generate

actuator commands so that the vehicle follows the trajectory given by the motion planner.

For a vehicle to remain safe, the controller has to both stabilize the closed-loop dynamics

and keep the vehicle within state constraints. Example constraints for ground vehicles are

lane keeping and maintaining a safe distance with other vehicles. Both the stability and the

constraint satisfaction problems can be rendered more difficult by the presence of unknown

adversarial disturbances or uncertainty in the vehicle dynamics. This motivates the use

of learning for control. Machine learning is ubiquitous for the perception task and is also

commonly used for the planning task, but it is not as prevalent in vehicular control [120,121].

Numerous control methods were used in the context of autonomous vehicles [122]. These

include model predictive control [123], linear control [124], classical control [125], and Lyapunov-

based control [126]. Vehicular control generally benefits from the addition of a feedforward

component [127]. Approaches such as tube-MPC [128] explicitly consider modeling uncer-

tainty. While some recent studies [100] make use of machine learning to counter modeling

uncertainty, this remains a challenge. This is the object of Chapters 5 and 6.



Chapter 5

Learning-based synthesis of robust

controllers

This chapter presents a new approach to obtain a robustly stable linear controller from a

learned dynamical model of arbitrary type. It begins with a review of robust stability and

learning methods. Then the new method is presented, first by introducing the robust control

framework it is based on, followed by the learning algorithm. The method is demonstrated

with a vehicle control problem: a lane-change maneuver with vehicle acceleration.
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5.1 Review of learned robustly stable controllers

Machine learning can be used to improve the performance of controllers for dynamical sys-

tems. Typically the performance increase is enabled by a reduction in the modeling un-

certainty. In effect, the fundamental tradeoff [12] between robustness and performance in

control reveals how modeling uncertainty can oftentimes be the limiting factor in system

performance. However, it can be hard to maintain theoretical guarantees of robust stability

when incorporating learning components in control methods.

For complex problems such as robotic hand manipulation [129], domain randomiza-

tion [130, 131] seems to provide an interesting level of robustness. The idea is to randomly

alter the physics of the simulated environment used by the learning algorithm, which better

prepares the controller to be deployed in the real world. This method was even proposed

for the end-to-end learning of control policies for autonomous driving [132]—i.e., learning a

direct mapping from camera pixels to control signals. But it remains that whenever possible,

it is preferable to maintain theoretical guarantees of robust stability, and domain random-

ization does not.

Recently, several lines of research presented successful approaches to such guarantees.

One approach [133] consists of using Lyapunov theory to characterize the system’s region of

attraction (ROA), and tune a neural network (NN) controller with gradient descent while

considering the constraints imposed by the ROA. Gaussian processes (GP) are used to learn

the system dynamics. The size of the ROA and the controller performance both gradually

increase as a result of controller tuning and data collection. In another approach [134], a

quadratic programming controller is used to adjust a nominal controller’s output to enforce a

Lyapunov-based stability constraint. Given that the safety of this approach is contingent on

having an accurate model of the system dynamics, a NN is trained from collected data and

used to improve the model’s accuracy. In [135], researchers also devised an outer-loop con-

troller to adjust the output of a nominal controller, but they update in real-time the model

uncertainty estimates using the variance of a GP regression in order to better adjust the

controller’s aggressiveness with respect to the local system configuration. Researchers in [94]

use machine learning to estimate a linear system model along with error bounds, from which

they can obtain a robust linear controller. The method can also be used to identify systems

having linear dynamics with respect to nonlinear features of states and inputs [136]. It can

also be used to design robust linear controllers for systems with complex high-dimensional

sensorial inputs like camera-based autonomous vehicles [137], thereby making progress to-
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ward formal guarantees even for the most complex problems.

This chapter introduces a control learning method that is appropriate for linear time-

invariant (LTI) controllers, which typically have the state-space representation

ẋc = AKxc +BKe, (5.1)

u = CKxc +DKe, (5.2)

where e is the error signal fed to the controller, xc are the controller states, and u are the

controller output signals. A time-proven method to synthesize such a controller is H∞ loop

shaping within a robust control framework [11], see [138, 139] for instance. To do so, one

assumes a nominal linear system model along with uncertainty bounds, defines performance

criteria in terms of filters on the input and output signals, and solves a norm minimization

problem. However, H∞ loop shaping can be difficult to implement in practice. Notably,

the method is restricted to linear system models, so it can be hard to optimize closed-loop

performance when the system is best described with a nonlinear model. As a result, the

method is ill-suited for taking advantage of system identification through modern machine

learning techniques, as the learned models are often nonlinear. Finally, it can be hard to

translate the desire to track specific temporal reference trajectories into design filters. Thus,

the objective in this research is to develop a LTI controller synthesis method that can take

advantage of nonlinear learned models while ensuring robust closed-loop stability through a

robust control framework.

Such a method does not exists in the literature. The approaches in [134, 135] consist of

adjusting a base controller output according to a safety criterion computed in real-time, but

do not tune the base controller parameters. Moreover, the approach of [133] suffers from

the curse of dimensionality, which makes it ill-suited for multi-input multi-output systems

with several states—a typical application for LTI controllers. The approach of [94] could be

used to synthesize such controllers, but it assumes a linear system model, which defeats the

objective of this work. Researchers in [140] use a robust control framework to ensure robust

stability. By learning a probabilistic dynamical model with GPs, they reduce the model-

ing uncertainty by translating the GP posterior variance into the robust control framework,

and ultimately increase the closed-loop performance. However, this approach is still a norm

minimization problem with design filters. Another approach [141, 142] is to attach a NN to

a LTI controller. In this chapter however, the objective is to tune a LTI controller without

requiring a NN.
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The proposed learning method is outlined in Algorithm 2. It requires to define a nomi-

nal linear system model G(s) and uncertainty bounds. Robust stability criteria are derived

from a robust control framework and the uncertain system model. An initial controller Ki is

obtained from H∞ loop shaping. Then, the controller is tuned with gradients obtained from

simulated rollouts using any nominal model fn(x,u), thereby obtaining a tuned controller

Kt. The dynamics fn(x,u) can be the same as G(s), but can also be any more accurate

nonlinear model. During the training, the robust stability criteria are enforced through the

gradients. Finally, the tuned controller Kt can be adjusted to the actual system dynamics,

thereby obtaining the final adjusted controller Ka. This is done by implementing Kt on

the actual system, collecting data, learning a system model fl(x,u), and then retraining the

controller from the same gradient descent method. The same robust stability criteria are

enforced during this second controller tuning.

Similar to the method in Chapter 3, the control parameter tuning in Algorithm 2 is based

on simulated policy rollouts. This choice was motivated by the results obtained when learning

the gearshift controller, as well as the previously discussed merits of the pilco algorithm—

Section 3.1.2. However, pilco does not explicitly enforce robust stability though constraints

in the optimization problem. Instead, it propagates state uncertainty during rollouts, which

is used to penalize controller behaviors leading to regions of the state space with high uncer-

tainty. Because of the robust stability criteria, Algorithm 2 can rely on deterministic policy

rollouts, which is interesting given that uncertainty propagation is not a trivial problem.

The proposed method synthesizes a controller that is already robustly stabilizing when

first implemented on the actual system. This is not the case for some of the methods reviewed

above, such as [134]. Moreover, the controller remains stable even in the event of a sudden

change in system dynamics, assuming the change remains within the chosen uncertainty

bounds. By design, the learning methods reviewed above all rely on the assumption that

the system dynamics are fixed. This allows to learn the uncertainty bounds from data, and

increase the closed-loop performance. But it leaves no formal guarantee for the system safety

when a sudden change in dynamics occur, which could be a concern for certain applications.

On the contrary, if for a given application it is judged that the fixed uncertainty bounds are

too conservative, our methods still makes it possible to learn the bounds such as in [140],

and retrain the controller.
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(a) Robust control framework. (b) Closed-loop system for policy rollouts.

Figure 5.1: Systems used in this work: a) is used to derive the criteria for robust
stability, and b) is used to tune the controller performance.

5.2 Robust control framework

A typical robust control problem is formulated based on system models such as that of

Figure 5.1a. The goal is to find a stabilizing controller K(s) that maximizes the perfor-

mance of the system, which means minimizing ∥Tz2w2(s)∥∞. Design filters are used to

weight the penalty on the various signals of z2 over frequency ranges of interest. In Fig-

ure 5.1a, Wu(s) penalizes the control signal and We(s), the error signal. Because the ac-

tual system dynamics are not perfectly known, they are assumed to be within a set of

perturbed plants G. Thus, nominal stability is not sufficient; K(s) must stabilize the sys-

tem for all possible plants in G. In Figure 5.1a, additive uncertainty is used to describe

G := {G(s) + Wa(s)∆(s)}, where ∆(s) ∈ RH∞ with ∥∆(s)∥∞ < 1, G(s) is the nominal

plant dynamics, and Wa(s) is a design filter bounding the uncertainty. Also commonly

used are output multiplicative uncertainty, where G := {(I +Wm(s)∆(s))G(s)}, and input

multiplicative uncertainty, where G := {G(s)(I +Wi(s)∆(s))}. From the small-gain theo-

rem [11, 143], if ∆(s) ∈ RH∞ and Tz1w1(s) ∈ RH∞, the system of Figure 5.1a is robustly

stabilizing if and only if ∥∆(jω)Tz1w1(jω)∥ < 1 ∀ω. And because ∥∆(s)∥∞ < 1 by design,

robust stability is guaranteed if K(s) stabilizes G(s) and makes ∥Tz1w1(s)∥∞ ≤ 1.

5.3 Controller learning method

This section explains Algorithm 2. It requires to define a nominal system model G(s) along

with uncertainty bounds such that all possible system dynamics are contained in a set G.
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Using the robust control framework of Section 5.2, the set G is used to obtain the robust

stability criteria. The method also requires to define a (possibly nonlinear) system model

ẋ = f(x,u), (5.3)

y = g(x), (5.4)

to be used during the simulated policy rollouts under the closed-loop configuration of Fig-

ure 5.1b. The simulations consist of tracking Nt trajectories in rollouts of T time steps.

The while loops starting at lines 6 and 14 tune the controllers by solving the constrained

optimization problem

argmin
ϕ

cp(ϕ) = argmin
ϕ

Nt∑︂
nt=1

T∑︂
t=0

c(y[t]), (5.5)

s.t. K(s) stabilizes G(s), (5.6)

∥Tz1w1(s)∥∞ ≤ 1, (5.7)

where ϕ contains the control parameters to be tuned, namely the entries of the matrices AK,

BK, CK, and DK. The two constraints of Equations (5.6) and (5.7) are turned into penalties

with easily computable gradients. As such, a more general cost function is

J(ϕ) = cp(ϕ) + ξscs(ϕ) + ξrcr(ϕ), (5.8)

where cp is the performance cost, cs is the nominal stability penalty, and cr is the robust

stability penalty. The controller parameters ϕ are iterated through either a simple stochastic

gradient descent scheme—where ϕ[i+1] ← ϕ[i]+α∇ϕJ(ϕ) and α is the learning rate—or any

other suitable optimization algorithm. Constants ξs, ξr ∈ R+ are used to weight the penalties

and help the gradient descent method. The following sections demonstrate how to obtain

the gradients of the performance cost and penalties.
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Algorithm 2: Learning-based synthesis of robustly stabilizing controllers

Result: Learned controller parameters ϕ = {AK, BK, CK, DK}.
1 Define nominal linear system dynamics G(s).
2 Define set of all possible system dynamics G, bounding the uncertainty on G(s).
3 Define weighting functions We(s) and Wu(s); obtain Ki(s) from H∞ loop shaping.
4 Define nominal (possibly nonlinear) system dynamics fn(x,u).
5 Initialize Kt(s) = Ki(s).
6 while Kt(s) not tuned do
7 Simulate a policy rollout with Kt(s) on fn(x,u) as per Figure 5.1b.
8 Compute the total gradients ∇ϕJ(ϕ) = ∇ϕcp(ϕ) + ξs∇ϕcs(ϕ) + ξr∇ϕcr(ϕ).
9 Iterate the parameters ϕ with ∇ϕJ(ϕ).

10 Initialize Ka(s) = Kt(s).
11 while Ka(s) not learned do
12 Implement Ka(s) on actual system, collect dataset D.
13 Learn a model fl(x,u) for the system dynamics from D.
14 while Ka(s) not tuned do
15 Simulate a policy rollout with Ka(s) on fl(x,u) as per Figure 5.1b.
16 Compute the total gradients ∇ϕJ(ϕ) = ∇ϕcp(ϕ) + ξs∇ϕcs(ϕ) + ξr∇ϕcr(ϕ).
17 Iterate the parameters ϕ with ∇ϕJ(ϕ).

5.3.1 Performance gradients

In discrete time, the system of Figure 5.1b transitions with

y[t] = g(x[t]), (5.9)

x[t] = x[t−1] + Tsf(x[t−1],u[t−1]), (5.10)

u[t−1] = CKxc[t−1] +DK(yd[t−1] − y[t−1]) + ū[t−1], (5.11)

xc[t−1] = (I + TsAK)xc[t−2] + TsBK(yd[t−2] − y[t−2]), (5.12)

where Ts is the sampling period, ū is a nominal (feedforward) control command, and yd is

the desired output trajectory. The performance gradients are obtained by first applying the

chain rule

dcp(ϕ)

dϕ
=

Nt∑︂
nt=1

T∑︂
t=0

dc(y[t])

dϕ
(5.13)

dc(y[t])

dϕ
=

dc(y[t])

dy[t]

dy[t]

dϕ
(5.14)
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The first term on the right-hand side of Equation (5.14) depends on the chosen cost function,

the other term can be further expanded as

dy[t]

dϕ
=

dg(x[t])

dx[t]

dx[t]

dϕ
(5.15)

dx[t]

dϕ
=

dx[t−1]

dϕ
+ Ts

d

dϕ
f(x[t−1],u[t−1]) (5.16)

d

dϕ
f(x[t−1],u[t−1]) =

∂f

∂x[t−1]

dx[t−1]

dϕ
+

∂f

∂u[t−1]

du[t−1]

dϕ
(5.17)

du[t−1]

dϕ
= CK

dxc[t−1]

dϕ
+ (I)ij(xc[t−1])k

dCK

dϕ

−DK

dy[t−1]

dϕ
+ (I)ij(yd[t−1] − y[t−1])k

dDK

dϕ
(5.18)

dxc[t−1]

dϕ
= (I + TsAK)

dxc[t−2]

dϕ
+ Ts(I)ij(xc[t−2])k

dAK

dϕ

− TsBK

dy[t−2]

dϕ
+ Ts(I)ij(yd[t−2] − y[t−2])k

dBK

dϕ
(5.19)

where
dx[t−1]

dϕ
and

dxc[t−2]

dϕ
are obtained from the previous time steps.

5.3.2 Nominal stability gradients

In the configuration of Figure 3.8, K(s) stabilizes G(s) if and only if the following system is

stable[︄
y(s)

u(s)

]︄
=

[︄
G(s)K(s)

(︁
I +G(s)K(s)

)︁−1
G(s)

(︁
I +K(s)G(s)

)︁−1

K(s)
(︁
I +G(s)K(s)

)︁−1
K(s)G(s)

(︁
I +K(s)G(s)

)︁−1

]︄[︄
yd(s)

di(s)

]︄
. (5.20)

For transfer functions with the state-space realizations

G(s) =

⎡⎣ AG BG

CG 0

⎤⎦ , and K(s) =

⎡⎣ AK BK

CK DK

⎤⎦ (5.21)
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it suffices to verify that the eigenvalues λ of the four matrices

M1 =

⎡⎢⎢⎣AG BGCK BGDKCG

0 AK −BKCG

0 BGCK AG −BGDKCG

⎤⎥⎥⎦ , (5.22)

M2 =

[︄
AG −BGDKCG −BGCK

BKCG AK

]︄
, (5.23)

M3 =

[︄
AK −BKCG

BGCK AG −BGDKCG

]︄
, (5.24)

M4 =

⎡⎢⎢⎣AK BKCG 0

0 AG −BGDKCG −BGCK

0 BKCG AK

⎤⎥⎥⎦ , (5.25)

are all in the open left-half plane. In effect, these are the A matrices of the state-space

realizations of the transfer functions in Equation (5.20). In the learning algorithm, a penalty

is applied whenever the system is unstable. The cost function for the nominal stability is

therefore defined as

cs(ϕ) =
4∑︂

i=1

max
{︂
0,max

j

{︁
ℜ
(︁
λj(Mi)

)︁}︁}︂
. (5.26)

The gradient of cs is easily obtainable with automatic differentiation [101]. In this work, we

used TensorFlow [90].

5.3.3 Robust stability gradients

A state-space representation for Tz1w1(s) is obtained with the linear fractional transforma-

tion Tz1w1(s) = FL[Pred(s), K(s)], where Pred(s) represents [z1, e]
⊤ = Pred(s)[w1, u]

⊤, and is

partitioned as follows

Pred(s) =

⎡⎢⎢⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤⎥⎥⎦ . (5.27)

Then,

Tz1w1(s) =

⎡⎣ Ā B̄

C̄ D̄

⎤⎦ =

⎡⎢⎢⎣ A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

⎤⎥⎥⎦ , (5.28)
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and the complex transfer matrices for the various frequencies ω can be obtained with

Tz1w1(jω) = C̄(jωI − Ā)−1B̄ + D̄. (5.29)

The robust stability criterion is ∥Tz1w1(s)∥∞ < 1. This can be verified by computing the

maximum singular value σ̄ of the complex transfer matrices Tz1w1(jω) on a sufficiently dense

frequency grid. Thus, cr(ϕ) becomes

cr(ϕ) = max
{︂
1, sup

ω
σ̄
(︁
Tz1w1(jω)

)︁}︂
, (5.30)

where σ̄(M) =
[︁
λ̄(M∗M)

]︁ 1
2 , (5.31)

and λ̄ is the largest eigenvalue, which is positive real. Here again, the gradients are obtained

through automatic differentiation.

5.4 Example problem

The method in Algorithm 2 is applied to the problem of simultaneous lane change and

vehicle acceleration. The vehicle model used is that of Section 4.2.2, also pictured on Fig-

ure 4.3a. Full state feedback is assumed, so y = x. The states are x = [ẋ, ẏ, ψ̇, ψ, Y, ϕ]⊤

and controls are u = [Frx, Ffx, ϕr]
⊤. The full system dynamics ẋ = f(x,u) are described by

Equations (4.7), (4.17)–(4.20) reproduced below.

ẍ = 1
m

(︃
Frx + Ffx − cf

(︃
ϕ2 − ϕ(ψ̇lf + ẏ)

ẋ

)︃
− 1

2
ρẋ2afcd

)︃
+ ẏψ̇, (4.17)

ÿ = 1
m

(︃
Ffxϕ+ cr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
− ẋψ̇, (4.18)

ψ̈ = 1
Iz

(︃
Ffxlfϕ− crlr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf lf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
, (4.19)

Ẏ = ẋψ − ẏ, (4.20)

ϕ̇ = λs(ϕr − ϕ). (4.7)

5.4.1 Uncertainty cover

The system model is linearized to obtain the nominal model G(s) following the method dis-

cussed in Section 4.2.3: taking the Jacobian of f(x,u) with respect to both states and input

vectors, and evaluating the expression for nominal states x0 = [ẋ0, 0, 0, 0, 0, 0]
⊤ and inputs
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Table 5.1: Vehicle parameters.

Parameter Unit Nominal Uncertainty

m kg 2000 ±200
Iz kgm2 3200 ±200
cf kN/rad 50 ±10
cr kN/rad 50 ±10
lf m 1.1 –
lr m 1.7 –
cd – 0.24 –
af m2 2.4 –
ρ kg/m3 1.225 –
λs s−1 8 ±2
ẋ m/s 25 +5
ẏ m/s 0 ±1.5
ψ̇ rad/s 0 ±0.15
ψ rad 0 ±0.15
δ rad 0 ±0.06
Ffx kN 0 -0.1/+2

u0 = [0, 0, 0]⊤. This yields the AG and BG matrices of G(s). Assuming full state feedback,

CG = I.

Input multiplicative uncertainty is used to cover the set of all possible system dynamics,

where G :=
{︁
G(s)

(︁
I +W1(s)∆(s)W2(s)

)︁}︁
and ∥∆(s)∥∞ < 1. The filters W1(s) and W2(s)

must be designed such that G covers f(x,u). This can be achieved by first sampling multiple

possible system linearizations of f(x,u). For that, the partial derivatives of Appendix D—

which form the Jacobian of the system—are evaluated at different points within the assumed

range for the parameters and states presented in Table 5.1. Then, the matlab command

ucover can be used to obtain W1(s) and W2(s) such that all the sampled systems are

covered. However, given that G(s) has 6 outputs, it is extremely difficult to cover the

system without introducing too much conservatism, even when the covers are fitted with

optimization techniques as is the case with the ucover command. Therefore, only the ẏ, ψ̇,

and ψ outputs are covered with the proposed method—a different C matrix is introduced

in the sampled systems. The W1(s) and W2(s) filters obtained with this method can still be

applied to the complete system. The resulting full-system uncertainty cover can be seen on

Figure 5.2.

The filters are able to cover almost all the uncertain dynamics, except the input–output

relation from ϕr to ẋ. This is deemed acceptable given the structure of the controller pre-

sented in Section 5.4.3. In effect, the longitudinal control is decoupled from the lateral

control, and it mostly consists of a feedforward component. The feedback gains on the
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Table 5.2: Scenario description.

Scenarios
Parameter 1 2 3 4

ẋf [m/s] 30.0 26.5 28.0 30.0
tf1 [s] 3.0 3.5 3.5 5.0

amax [m/s2] 2.0 0.5 1.0 1.8
Yf [m] 3.7 3.7 3.2 3.8
tf2 [s] 4.0 4.5 4.5 4.5

longitudinal control are small, thus the risk of instability resulting from the incomplete un-

certainty cover is negligible. The risk of instability in the lateral dynamics is considered

more important.

5.4.2 Trajectory and nominal command

The trajectories xd consist of concurrent lane change and vehicle acceleration. Only the

states ẋ and Y are prescribed and the rest of the entries in xd are zeros. Four scenarios

are used in this work; they are parameterized with the values presented in Table 5.2. The

vehicle is accelerated from ẋ0 = 25m/s and reaches ẋf at time tf1. The acceleration begins at

0m/s2, then is gradually increased up to a constant value amax, which is held for a moment

until it is brought back to 0m/s2 at time tf1. The lateral position begins at Y0 = 0m and

ends at Yf at time tf2. The trajectory of Y follows a 3-4-5 polynomial where the first and

second derivatives are null at both ends of the trajectory.

The nominal command ū is computed in two independent steps. First, the front and rear

tractive forces are computed from the reference velocity profile in xd, where

F (t) = mẍ(t) + 1
2
ρẋ(t)2afcd, (5.32)

Ffx(t) =
1
3
F (t), (5.33)

Frx(t) =
2
3
F (t). (5.34)

Then, the steering input is computed considering only the lateral dynamics of Section 4.2.3

using the model of Equation (4.25). This forms the reduced system with matrices AR and

BR. The nominal steering input is then computed with

ϕr(t) = B⊤
Re

A⊤
R(tf2−t)W−1

c (tf2)[0, 0, 0, Yf , 0]
⊤, (5.35)

where Wc(t) is the controllability Gramian.
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Figure 5.2: Uncertainty Cover.
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5.4.3 Controller structure and initialization

The feedback controller is structured to decouple the control of the longitudinal and lateral

dynamics. The front Ffx and rear Frx tractive forces are used only for the feedback control

of the vehicle velocity ẋ, while the steering input ϕr is used only for controlling the lateral

dynamics. As will become apparent in the result section, a simple integrator is sufficient

for the vehicle speed control. Moreover, the tracking error is so negligible that no further

controller tuning is required for this integrator.

The control of the lateral dynamics is more difficult, however. An initial controller

is obtained with H∞ loop shaping. For that, a nominal linear model G(s) is built from

the same AR and BR matrices introduced in the previous section. Then, a controller that

stabilizes G(s) and minimizes the tracking error is obtained using the matlab command

hinfsyn. This H∞ controller is assembled with the simple integrator obtained previously

to form the complete initial feedback controller Ki, which has 24 internal states, and has

DK = 0. Together the AK, BK, and CK matrices of Ki contain 792 entries.

5.4.4 Controller training

Training with nominal model

The controller Kt is tuned with simulated rollouts, see line 6 in Algorithm 2. The system

model fn(x,u) is that of Equations (4.7), (4.17)–(4.20) with the nominal parameters shown

in Table 5.1. The simulations have a time step of Ts = 0.02 s. The cost function used is

c(x[t]) = (x[t] − xd[t])
⊤Q(x[t] − xd[t]), (5.36)

where Q is a diagonal matrix weighting the relative importance of the state errors.

Only the first three scenarios of Table 5.2 are used during training. Scenario 4 is reserved

for testing that the controller also does well on a scenario never seen during training.

Training with learned model

The controller Ka is also tuned from simulated policy rollouts, but with a learned model of

the system dynamics this time, see line 14 in Algorithm 2. In this example problem, the

actual (unknown) system has an altered tire stiffness coefficient of cf = cr = 40 kN/rad. We
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chose to learn the dynamics using a model that has the form

fl = fn + [g1(z), g2(z), g3(z), 0, 0, 0]
⊤ (5.37)

where gd(z) are functions that represent the unknown dynamics and z = [αf , αr]
⊤ is the

feature vector used in the prediction models. To learn fl, first a lane change is simulated for

Scenario 1 with Kt (line 12 in Algorithm 2), and a dataset D = {x[i],u[i]} composed of np+1

data points is collected. Then Gaussian processes are used to learn the difference between

the nominal system dynamics fn and the actual dynamics. The targets to be learned are

issued from the prediction error

ep[i] = x[i+1] − fn(x[i],u[i]). (5.38)

More specifically, each of the three dimensions to be learned has its own target vector td ∈
Rnp , which are composed of the d-th component of the error vectors, such that

td =
[︁
[ep[1]]d, . . . , [ep[np]

]d
]︁⊤
. (5.39)

All three dimensions share the same set of feature vectors {z[i]}. The Gaussian processes used

in this work has a zero mean function m(z) := 0 and a square exponential kernel function

k(z, z′), just as in Section 3.4.1. The predictive functions gd(z) are simply the mean of the

Gaussian processes evaluated at the test inputs z∗

gd(z∗) = µd(z∗) = Kz∗z(Kzz + σ2
ϵ I)

−1td, (5.40)

where Kzz = [k(z[i], z[j])]ij, and Kz∗z = [k(z∗, z[i])]i, also following Section 3.4.1. Here again,

the hyper-parameters θ are tuned by maximizing the logarithm of the marginal likelihood

of the observed data points in D.

5.5 Results and discussion

Figure 5.3 shows that the tracking error is negligible for the vehicle speed ẋ, but not for the

lateral position Y . Therefore, the result section only discusses the tracking of the lateral

position. For every stimulation result shown in this section, the tire slip angle was verified

to confirm that the linear tire model remains appropriate.

Figure 5.3b shows that the controller tuned from simulated policy rollouts (Kt) improves
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(a) Vehicle speed, Scenario 1. (b) Lateral position, Scenario 1.

Figure 5.3: Simulated policy rollouts on the nominal model (cf = cr = 50 kN/rad).
The tuned controller Kt improves the lateral position tracking compared to initial
controller Ki.

(a) Lateral position error, Scenario 1. (b) Lateral position error, Scenario 4.

Figure 5.4: Simulated policy rollouts on the nominal model (cf = cr = 50 kN/rad).
The tuned controller Kt improves the tracking performance for both a scenario used
during training (Scenario 1) and a scenario not used during training (Scenario 4).

the tracking performance when compared to the initial controller (Ki) obtained from H∞

loop-shaping. Figure 5.4a shows the tracking error eY on the lateral position for this run,

and Table 5.3 presents the L2-norm of this error signal. The tuning method also reduces the

tracking error for a lane-change scenario that was not used during training. In effect, both

Figure 5.4b and Table 5.3 show that Kt does better than Ki for Scenario 4. This suggests

that the tuning method does not overfit on the training scenarios, and can generalize to oth-

ers. Finally, the proposed method keeps the tuned controller Kt robustly stabilizing, which

can be seen in Figure 5.5.

The tuning of Kt requires 4000 training epochs. The first 2000 epochs are done using

simulated rollouts with a duration of 8 s (simulated time), and the last 2000 epochs, with

40-s rollouts. The longer rollouts are used to ensure that the low-frequency dynamics are

also considered during the controller tuning. The total training time for the first 2000 epochs

is 1083 s, and for the last 2000 epochs, 5245 s. Figure 5.6 shows the evolution of the perfor-

mance cost cp in (a), the maximum real part of all eigenvalues in the matrices M1 to M4
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Table 5.3: L2-norm of the tracking error on Y (eY ) for the 0–8 s time span.

Scenarios
Nominal model 1 2 3 4

Ki 3.85 2.22 2.92 3.39
Kt 1.78 1.53 1.33 1.80

Actual dynamics

Kt 3.84 3.85 3.11 3.87
Ka 2.21 2.55 1.90 2.27

Figure 5.5: The maximum singular value σ̄
(︁
Tz1w1(jω)

)︁
for Ki, Kt, and Ka.

in (b), and the maximum singular value of Tz1w1 in (c). This indicates that the penalties

ξscs and ξrcr were sufficient to enforce both the nominal and robust stability constraints.

Figure 5.6 shows the training behavior when the weights are ξs = 10,000 and ξr = 1000. For

smaller values of ξs and ξr however, the penalties were not strong enough to enforce the sta-

bility constraints. The gradient descent algorithm used during training is Adam [144], which

helps stabilize the gradients compared to a simple stochastic gradient descent algorithm.

Figure 5.7 and Table 5.3 show that the tracking error of Kt increases for policy rollouts

on the actual dynamics, i.e., when cf = cr = 40 kN/rad. However, the controller remains

stable, as the actual dynamics are still within the assumed uncertainty bounds. This allows

(a) Performance cost cp. (b) Nominal stability criteria. (c) Robust stability criteria.

Figure 5.6: Evolution of the performance cost, nominal stability criterion, and
robust stability criterion during the first 2000 training epochs for Kt.
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(a) Lateral position, Scenario 1. (b) Lateral position, Scenario 4.

Figure 5.7: Simulated policy rollouts on the actual system dynamics (cf = cr =
40 kN/rad). The controller Ka has a better tracking performance than Kt. This is
because Ka was tuned on a learned model fl while Kt was only tuned on a nominal
model fn.

to bring back the performance to a similar level by re-tuning the controller with a learned

model. As a result, the adjusted controller Ka reduces the tracking error, even for the unseen

Scenario 4. Training with the learned model is longer, but still reasonable. The same 2000

epochs of 8-s rollouts takes 2071 s of training time, which is approximately twice the time

that was required for the nominal model.

5.5.1 Augmented cost

It is possible to augment the total cost J(ϕ) of Equation (5.8) with ct(ϕ) = ∥Tz2w2(s)∥∞
to help shape the closed-loop behavior with frequency-based specifications. The gradients

∇ϕct(ϕ) can be computed with the method of Section 5.3.3—which was used to obtain

∇ϕcr(ϕ)—but with Tz2w2(jω) instead of Tz1w1(jω). This additional cost ct could be used

in problems where scenario-based tuning alone is inadequate. One such example could

be a controller that must account for a large frequency range. In effect, if Ts is small

enough to allow the simulation of high-frequency dynamics, it also means that the policy

rollouts must have a long time span to also include the effects of low-frequency dynamics.

Therefore, the cost ct could be used to penalize the low-frequency errors, while the scenario-

based performance cost cp tunes the high-frequency behavior. In the lane-change problem

however, this was found unnecessary. As previously discussed, it was sufficient to simulate 40-

s rollouts. As a final remark, the nominal model G(s) is not learned in the proposed method,

so the additional cost ct could be less beneficial if the actual system deviates significantly

from G(s).



Chapter 6

Structured learning for state

constraints

This chapter presents the safe uncertainty-learning principle, which can be used to struc-

ture the learning component of a safety controller. After the principle is motivated and

introduced, a learning method based on control barrier functions is presented. Then, two

vehicular control examples are demonstrated and the principle is discussed.
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6.1 Review of safety guarantees for state constraints

For a large class of dynamical systems—e.g., autonomous vehicles and unmanned aerial

vehicles—the notion of safety implies keeping the system within state constraints. The

general approach is to use a model of the system dynamics, and derive a condition on the

control signals that guarantees system safety. Three such methods are: model predictive

control (MPC) [145], control barrier function (CBF) [146], and Hamilton-Jacobi reachability

analysis (HJR) [147].

In MPC, the control signal is optimized at every time step by predicting the future sys-

tem states for a finite time-horizon. This optimization can account for state constraints,

and therefore keep the system safe [123,148,149]. A CBF is a Lyapunov-like scalar function

whose output depends on whether the system states are within a given set, and how far

they are from the set boundary. A CBF and its time derivatives can be used to obtain

a condition on the control signals for the system to remain within the given set, thereby

enforcing forward invariance on that set. If the chosen set is within state constraints, then

the CBF can be used to keep the system safe [150, 151]. In HJR, a target set is defined as

the set of states that violate the constraints, and a backward reachable (BR) set is defined

as the set of states that could lead the system to the target set despite the system’s best

possible actions. The BR set, the optimal action, and a value function can all be com-

puted by solving the Hamilton-Jacobi partial differential equation for this system, typically

through dynamic programming. The system can be kept safe by applying the optimal ac-

tion whenever the system comes close to the BR set [152, 153]. These methods can also be

combined: for instance, the value function obtained though HJR can be used as a CBF [154].

For systems with uncertain dynamics, all three methods outlined above can be adapted

to consider bounded system uncertainty [155–157]. Generally, this is nontrivial and often

leads to a higher computational burden for the controller. This is because the controller

must now predict the system evolution considering the set of possible system dynamics.

Also, this can lead to overly conservative controllers if the uncertainty description is itself

too conservative. For instance, this can arise if the method is formulated for a rather general

uncertainty description, and the actual system uncertainty is in fact more restricted—more

structured. Naturally, this motivates using machine learning to adapt the system model

from data collected during the system’s operation. An approach is where instead of using

uncertainty bounds, a nominal model is learned from data, which reduces the risk associated

with a discrepancy between the system model and the actual dynamics [158]. Another

approach is where uncertain system dynamics are considered, and the uncertainty bounds
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are learned from data, thereby increasing the performance of the system by obtaining tighter

uncertainty bounds [100,159–162].

6.2 Safe uncertainty-learning principle

However, the use of machine learning to derive the safety condition also introduces certain

risks. These risks are not sufficiently discussed in the literature, or at least, not explicitly

enough. In this chapter, the following principle is introduced.

Safe uncertainty-learning principle (1). Take an uncertain dynamical system with

safety defined by state constraints, which must be respected at all time during operation.

Suppose machine learning is used to obtain a condition on the control signal that will guaran-

tee the system’s safety. For the learning-based control method to preserve safety guarantees:

1. A robust safety condition is necessary, where uncertainty bounds are considered.

2. The uncertainty bounds must be initialized conservatively.

3. The uncertainty bounds should only be tightened if it can be assumed that the collected

data sufficiently captures the future behavior of the system. Particularly challenging

adversarial events are a sudden change in the system dynamics or a rare disturbance.

If expected, these events must be distinctly accounted for, since it could be impossible

to model them from previously collected data.

The argument is based on contraposition: through two example problems, it is shown

that when one of these conditions is not respected, the safety guarantee is lost. The examples

are 1) the lateral control of an autonomous vehicle through a lane-change maneuver, and 2)

the longitudinal control of an autonomous vehicle in a two-vehicle platoon, also commonly

called adaptive cruise control. Both these problems were investigated several times in the

literature, including with some of the approaches presented above [146, 148, 163]. In this

work, the example problems are solved using robust exponential control barrier functions for

the safety condition, and maximum likelihood estimation for the uncertainty learning.

6.3 Learned safety condition

This section presents the approach to derive the learned safety condition for the example

problems of Sections 6.4 and 6.5. It begins with the introduction of CBFs and exponential-

CBFs. Then uncertainty is considered and robust exponential-CBFs are introduced. The

definitions and theorems are largely adapted from [151, 160]. Finally, maximum likelihood

estimation is briefly discussed.



CHAPTER 6. STRUCTURED LEARNING FOR STATE CONSTRAINTS 87

6.3.1 Robust safety condition from a control barrier function

Control barrier function

Take a system with states x ∈ Rn, controls u ∈ Rm, and dynamics

ẋ = f(x) + g(x)u. (6.1)

If the dynamics are locally Lipschitz, then given an initial condition x0, there exists a maxi-

mum time interval I(x0) = [t0, T ) such that x(t) is a unique solution on I(x0). Let a closed

convex set S ⊂ Rn defined as the 0-superlevel set of a continuously differentiable function

h : Rn → R where

S := {x ∈ Rn|h(x) ≥ 0}, (6.2)

∂S := {x ∈ Rn|h(x) = 0}, (6.3)

int(S) := {x ∈ Rn|h(x) > 0}. (6.4)

Definition 2. The set S is forward invariant if for every x0 ∈ S, x(t) ∈ S ∀t ∈ I(x0).

Definition 3. A continuous function α : R → R is an extended class K∞ function if it is

strictly increasing, α(0) = 0, and is defined on the entire real line.

Definition 4. Let S be a 0-superlevel set for a continuously differentiable function h : Rn →
R, then h is a control barrier function if there exists an extended class K∞ function α such

that for all x ∈ S
sup
u∈U

ḣ(x,u) ≥ −α(h(x)). (6.5)

Theorem 4. Let S be a 0-superlevel set for a continuously differentiable function h : Rn →
R, if h is a control barrier function for (6.1) on S, then any Lipschitz continuous controller

satisfying (6.5) renders the set S forward invariant [151].

As a result of Theorem 4, if the set S is defined as the safe set, then any controller that

meets Condition (6.5) keeps the system safe.

Exponential control barrier function

For systems where ḣ(x) does not depend on u, Definition 4 cannot be used to find a control

input u that keeps the system safe. It is possible, however, to use higher derivatives of

h(x). For a system where the rth time derivative of h(x) depends on u, but not any of the
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lower derivatives, a new system with states η(x) := [h(x), ḣ(x), ḧ(x), . . . , h(r−1)(x)]⊤, input

µ = h(r)(x,u), and output h(x) can be formed. The dynamics of this system are

η̇(x) = Fη(x) +Gµ, (6.6)

h(x) = Cη(x), (6.7)

with

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C =

[︂
1 0 · · · 0

]︂
. (6.8)

If the input µ = −Kαη(x) is chosen, then h(x(t)) = Ce(F−GKα)tη(x0). By the comparison

lemma, if µ ≥ −Kαη(x), then h(x(t)) ≥ Ce(F−GKα)tη(x0).

Assumption 2. Kα is chosen such that the poles pi, i ∈ {1, . . . , r} of (F − GKα) are real

and negative.

Assumption 3. Define a family of recursive functions νi : Rn → R, i ∈ {0, . . . , r}, and
corresponding superlevel sets Si as

νi(x) = ν̇i−1(x)− piνi−1(x), (6.9)

Si = {x ∈ Rn | νi(x) ≥ 0}, (6.10)

and define ν0(x) := h(x). Then, Kα is chosen such that νi(x0) ≥ 0, i ∈ {1, . . . , r}.

Definition 5. Let S be a 0-superlevel set for a r-times continuously differentiable function

h : Rn → R, then h is an exponential control barrier function if there exists a row vector

Kα ∈ Rr constrained by Assumptions 2 and 3, such that for all x ∈ S

sup
u∈U

h(r)(x,u) ≥ −Kαη(x). (6.11)

Robust exponential control barrier function

For systems where the dynamics are uncertain, Definition 5 is inappropriate to find a control

input u that keeps the system safe. Take an uncertain system model where the dynamics
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depend explicitly on an unknown parameter vector δ, with each parameter bounded in

magnitude such that δ ∈ D, where

ẋ = f(x, δ) + g(x, δ)u. (6.12)

Now, the control barrier function h(x, δ) and its derivatives depend on the unknown param-

eters δ. This requires to adapt Assumption 3 and Definition 5.

Assumption 4. Define a family of recursive functions νi : Rn → R, i ∈ {0, . . . , r}, and
corresponding superlevel sets Si as

νi(x, δ) = ν̇i−1(x, δ)− piνi−1(x, δ), (6.13)

Si = {x ∈ Rn | νi(x, δ) ≥ 0}, (6.14)

and define ν0(x, δ) := h(x, δ). Then,Kα is chosen such that νi(x0, δ) ≥ 0, i ∈ {1, . . . , r}, ∀δ ∈
D.

Definition 6. Let S be a 0-superlevel set for a r-times continuously differentiable function

h : Rn → R, then h is a robust exponential control barrier function if there exists a row

vector Kα ∈ Rr constrained by Assumptions 2 and 4 such that for all x ∈ S and for all

δ ∈ D
sup
u∈U

h(r)(x,u, δ) ≥ −Kαη(x, δ). (6.15)

6.3.2 Robustly safe controller

The robustly safe controller used in this work consists of correcting a nominal kn(x) con-

troller’s output whenever Condition (6.15) is not respected. This can be expressed as the

following optimization problem.

u =argmin
u∈U

1
2
∥u− kn(x)∥22, (6.16)

s.t. h(r)(x,u, δ) ≥ −Kαη(x, δ), ∀δ ∈ D. (6.17)

This optimization problem is in general nontrivial. It may be possible to further structure

the problem depending on the system equations, the uncertainty description, and the chosen

control barrier function.
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6.3.3 Learning parametric uncertainty

When the controller is initialized, conservative bounds D are estimated for the parameters δ.

As the controller is deployed and data is collected, it may be possible to update the bounds

for δ. In this work, the following structure is assumed

ẋ = f(x,θ) + g(x,θ)u, (6.18)

y = l(x,θ), (6.19)

z[n] = y[n] +Gw[n], (6.20)

w[n] ∼ N
(︁
0,Σw

)︁
, (6.21)

where θ are uncertain model parameters, which include the parameters δ of interest, y are

the system output, z[n] are the n-indexed measurements contaminated by Gaussian noise

w[n]. The noise is assumed to be zero-mean and to have a known and diagonal covariance

matrix Σw. To obtain the best estimate for the parameters θ, the likelihood of the observed

data p(z|θ) is maximized. For that, p(z|θ) is assumed Gaussian. Maximizing p(z|θ) is then
equivalent to maximizing

J(θ) =
1

2

N∑︂
n=1

(z[n] − y[n])
⊤Σ−1

w (z[n] − y[n]), (6.22)

where N is the number of data points collected. In this work, J(θ) is maximized through

gradient ascent. Finally, the following covariance matrix is used to estimate the uncertainty

bounds around the parameters

P =

⎧⎨⎩
N∑︂

n=1

[︄
dy[n]

dθ

]︄⊤
Σ−1

w

[︄
dy[n]

dθ

]︄⎫⎬⎭
−1

. (6.23)

This method is commonly used in practice to identify system parameters, such as for flight

dynamics [164]. A notable caveat, however, is that the recorded data is not guaranteed to

provide enough information to identify the parameters with enough accuracy to be useful

for the given application. This is mitigated by the fact that we also estimate uncertainty

bounds around the parameters, and can therefore decide not to update the parameters when

the identification is not precise enough, i.e., when the variance of the parameter estimation

in P is too high.
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6.4 Example 1: vehicle lateral control

The first example problem is to control a lane-change maneuver performed by an autonomous

vehicle. The goal is to bring the vehicle form the middle of a lane where the lateral position

is defined as Y = 0m, to the middle of a neighboring lane where Y = 3.7m. However,

the vehicle must not exceed Ymax = 3.85m in order to avoid a potential collision with other

vehicles. In this problem, the vehicle speed is assumed to remain constant throughout the

maneuver and the dynamics of Section 4.2.3 are used.

6.4.1 System model and safety condition

The vehicle is modeled with a bicycle model as shown on Figure 4.3a. The states of the

system are x = [ẏ, ψ̇, ψ, Y, ϕ]⊤, and the control is u = [ϕr]. The dynamics are as per

Equation (4.25) reproduced below.

ẋ = Ax+Bu. (6.24)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(cf+cr)
mv

−cf lf+crlr
mv

− v 0 0 cf
m

−cf lf+crlr
Izv

−(cf l
2
f +crl2r )

Izv
0 0 cf lf

Iz

0 1 0 0 0

1 0 v 0 0

0 0 0 0 −λs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

λs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.25)

The actual vehicle parameters are unknown to the controller. The parametric uncertainty

shown in Table 6.1 is used to bound the system behavior. The vehicle is assumed to be a

medium-duty truck; its mass m may vary significantly depending on the payload it carries.

The vehicle’s moment of inertia Iz is assumed to vary proportionally to the mass of the

vehicle, as well as an unknown parameter δIz that accounts for an unknown mass distribution.

The wheelbase of the vehicle is known to be l = 4.5m. The distance of the front axle to the

center of mass is unknown, but assumed to vary around 55% of the wheelbase. The front and

rear tire cornering stiffness—cf and cr, respectively—are assumed to be proportional to the

weight on the given axle, as well as a parameter cα. This cα parameter is dependent on the tire

construction and its loading condition [165, 166], thus is parameterized as well. Finally, the

decay constant λs in the steering mechanism is also unknown. This parametrization allows

to express the A and B matrices of Equation (4.25) explicitly in terms of the uncertain

parameters. Below are the non-zero matrix components, where aij represents [A]ij. As a
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Table 6.1: Uncertainty parametrization for Example 1.

Parametrization Unit Param. Nom. Range

m mnδm kg mn 6500 -
Iz dnmδIz kgm2 dn 4.8 -
lf anlδ1 m l 4.5 -
lr l − lf m an 0.55 -
cα cnδ2 rad−1 cn 8 -
cf cαmglr/l N/rad λn 8 -
cr cαmglf/l N/rad δm 1 ±0.3
λs λnδ3 s−1 δIz 1 ±0.3

δ1 1 ±0.4
δ2 1 ±0.4
δ3 1 ±0.4

result of the parametrization, δm does not appear in these terms.

a11 = −cnδ2g/v, (6.25)

a12 = −v, (6.26)

a15 = cnδ2g(1− anδ1), (6.27)

a21 = 0, (6.28)

a22 = −cnδ2gl(1− anδ1)anδ1/(dnδIzv), (6.29)

a25 = cnδ2g(1− anδ1)anδ1/(dnδIz), (6.30)

a55 = −λnδ3, (6.31)

b51 = λnδ3. (6.32)

The safety condition is turned into an exponential control barrier function h(x) with the

following derivatives

h(x) = Ymax − Y, (6.33)

ḣ(x) = −ẏ − vψ, (6.34)

ḧ(x) = −a11ẏ − a15ϕ, (6.35)
...
h(x,u) = −a211ẏ + a11vψ̇ − a15(a11 + a55)ϕ− a15b51ϕr. (6.36)

A system with states η(x) = [h(x), ḣ(x), ḧ(x)]⊤, input µ =
...
h(x,u), and dynamics that

follow Equations (6.6)–(6.8) is composed. A controller Kα = [k1, k2, k3] is devised with pole
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placement. As a result of Definition 6, the safety of the system is ensured with the following

condition

ϕr ≤ min
δ∈D

s(x, δ), (6.37)

s(x, δ) :=
1

a15b51

(︂
k1Ymax −

(︁
k2 + a11k3 + a211

)︁
ẏ + a11v0ψ̇ − k2v0ψ

− k1Y − a15(k3 + a11 + a55)ϕ
)︂
, (6.38)

δ = [δ1, δ2, δ3]
⊤. (6.39)

This safety condition is formulated as a direct limitation on the controller’s output signal

ϕr. Therefore, a safe controller must ensure that Condition (6.37) is respected at every time

step. This optimization problem is not trivial, as the parameters in δ appear multiple times

in s(x, δ). In this work, it was found sufficient to discretize the search space D and evaluate

s(x, δ) at every point of the resulting 3D grid. With 10 points per axis, this requires 1000

function evaluations every time step, which is easily manageable in real-time.

The base controller is a linear state-feedback controller.

kn(x) = K(xr − x), (6.40)

where xr is the desired reference state, namely xr = [0, 0, 0, 3.7, 0]⊤. In this work, K is

obtained by solving a LQR problem. Finally, ϕr is saturated at 0.08 rad to counter the large

input resulting when the desired state is suddenly switched to 3.7m at t = 0 s.

In order to reduce the uncertainty bounds around the components of δ, parameter iden-

tification is performed according to the method presented in Section 6.3.3, where

y[n] = ẋ[n](x,u,θ), (6.41)

z[n] = y[n] +w[n], (6.42)

Σw = 0.12I5, (6.43)

θ = [δIz , δ1, δ2, δ3]
⊤. (6.44)

Because the measurements are obtained from a simulated environment, random noise is

injected in the measurements as per Equations (6.42) and (6.43) to have a more realistic

identification problem.
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6.4.2 Results and discussion

Figure 6.1 shows the lateral position of the vehicle for various simulated runs. In Figure 6.1a

the actual system parameters are at nominal value, and in Figures 6.1b and 6.1c, the sys-

tems have the actual parameters of Vehicles #1 and #2 respectively, which are listed in

Table 6.2. In all three plots, the blue lines originate from a safety controller that does not

account for uncertainty bounds around the system parameters; it is an exponential control

barrier function (ecbf) as presented in Section 6.3.1. This is sufficient to keep the nominal

vehicle safe, but not Vehicle #1. When considering uncertainty bounds around the system

parameters and using the robust-ecbf (recbf) presented in Section 6.3.1, all three systems

remain safe. Figure 6.2a shows the effect of the recbf on the control action during the

simulation with the nominal vehicle model. The black line represents the controller signal

ϕr, and the red line, the maximal value that ϕr could take and still respect Condition (6.37).

When the two lines coincide, it means that the recbf limits the control action; otherwise,

only the nominal controller kn(x) is in effect. Figures 6.2b–6.2d show the values of δ ∈ D
that minimize s(x, δ). Most of the time, these values are located at the boundary of D,
which supports the assumption that the rather crude optimization method chosen for this

problem is adequate.

Figures 6.1a and 6.1c show that for some systems, the robust formulation of the safety

controller may hinder the system performance by delaying the completion of the lane change.

This motivates learning the actual system parameters, and hopefully estimating smaller un-

certainty bounds. The system parameters are estimated for the Vehicles #1 and #2 by

collecting data issued from the recbf runs and then applying the learning method. The

estimations are shown in Table 6.2. The results for the learned-recbf (lrecbf) are shown

in green in Figure 6.1b and 6.1c. The new parameter bounds for δ1, δ2, and δ3 are updated

as µ± 3σ, where µ is the estimated mean and σ, the estimated standard deviation.

Figure 6.3 highlights the risk associated with sudden changes in system dynamics. The

figure shows a simulation when the actual system behaves as Vehicle #1, but the recbf uses

parameter estimates from data collected with Vehicle #2. In practice, this could happen

if the controller learns the vehicle parameters, then the vehicle is unloaded at a stop and

driven to another location, and the controller does not reset the parameter estimates. In

effect, given that the vehicle must perform a lane change to gather the data required to

estimate the parameters, and that this lane change must always be performed safely, the

only solution would be to reset the uncertainty bounds to the initial conservative values

every time the vehicle stops.
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(a) Nominal model. (b) Vehicle #1. (c) Vehicle #2.

Figure 6.1: Simulation results for the lane-change maneuvers of Example 1.

(a) (b) (c) (d)

Figure 6.2: Details of the recbf simulation for the nominal vehicle model in
Figure 6.1a.

Table 6.2: Parameter estimation for Example 1.

Vehicle #1 Vehicle #2
Param. Actual µ σ Actual µ σ

δm 0.80 - - 1.20 - -
δIz 1.15 1.202 0.037 1.05 1.048 0.022
δ1 0.70 0.706 0.009 1.35 1.357 0.005
δ2 0.60 0.595 0.003 1.35 1.351 0.006
δ3 1.35 1.386 0.073 1.35 1.354 0.062

Figure 6.3: Lane-change maneuver with Vehicle #1 using parameters identified
from data obtained with Vehicle #2.
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Figure 6.4: Problem setup for Example 2.

6.5 Example 2: vehicle longitudinal control

The second example problem is controlling the trailing vehicle in a two-vehicle platoon,

as pictured in Figure 6.4. It is assumed that there is no communication between the two

vehicles, and that the leading vehicle operates independently of the trailing vehicle. The

trailing vehicle can measure its own speed v2, the distance d between the two vehicles, and

the road grade α. Recall from Section 4.2.1 that the aerodynamic drag on the trailing vehicle

reduces when d reduces. Therefore, the control objective is to minimize the distance between

the two vehicles, without ever risking a collision.

6.5.1 System model and safety condition

The states are x = [v1, v2, d]
⊤, the only control action u = [u] is either a tractive force or

a braking force on the second vehicle, and the disturbances are v = [a1, α]
⊤. Following the

model of Equation (4.3), the dynamics for the actual system are⎡⎢⎢⎣v̇1v̇2
ḋ

⎤⎥⎥⎦ =

⎡⎢⎢⎣ 0

− 1
2m
ρv22afcd(d)− gct
v1 − v2

⎤⎥⎥⎦+

⎡⎢⎢⎣ 0
1
m

0

⎤⎥⎥⎦u+
⎡⎢⎢⎣1 0

0 −g
0 0

⎤⎥⎥⎦
[︄
a1

α

]︄
, (6.45)

where

cd(d) = cd0

(︃
1− c1

c2 + d

)︃
. (4.2)

In this model, a1 represents the acceleration of the leading vehicle. Full state measurement

is assumed for this problem. The actual vehicle parameters are not exactly known, but

they are assumed to be centered around nominal values as shown in Table 6.3. The actual

vehicle exhibits a behavior where cd(d) decreases when d decreases, as per Equation (4.2) and

Figure 4.2b, with the c1 and c2 parameters of Table 6.3. However, for the system model used

in the computation of the nominal and safety controllers, this effect is neglected. Instead, it

is assumed that

cd = cd0. (6.46)
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Table 6.3: Uncertain parameters for Example 2.

Parameter Nominal Actual Range Unit

m 6500 5000 [4500, 8500] kg
afcd0 4.9 4.2 [3.4, 5.6] m2

c1 - 10 - m
c2 - 32 - m
ct 0.006 0.007 [0.005, 0.007] -

Disturbance Nominal Actual Range Unit

a1 0 - [-9, 2] m/s2

α 0 - [-0.06, 0.06] rad

This assumption is compensated by considering a larger uncertainty on the afcd0 parameter

of Table 6.3. Finally, the tractive force is also bound by a maximal power of pmax = 250 kW.

The safety condition is based in part on the notion of a safe distance dmin. This distance

represents the initial distance d such that, if both vehicles come to a full stop with their

respective maximum deceleration rate, the final distance d is zero. This distance dmin is a

function of the vehicle speeds, as well as the maximum deceleration rate for the first a1,e(α)

and second a2,e(m,α) vehicles. It is assumed that the leading vehicle is capable of exploiting

a static friction coefficient of µs = 0.9. Moreover, an additional 0.17m/s2 of deceleration due

to aerodynamic drag is considered for this vehicle. It is assumed that the trailing vehicle is

only capable of exploiting a friction coefficient of µs = 0.7, and that it is also constrained

by a maximum braking force Fb,max. This force is computed assuming that at maximum

payload, the vehicle has a maximum deceleration rate of only 4m/s2, which is just enough

to comply with the Federal Motor Vehicle Safety Standards [167]. Aerodynamic drag is

neglected for the trailing vehicle, which is a conservative assumption. Figure 6.5 shows how

both the trailing vehicle mass m and the road slope α influence dmin.

dmin(v1, v2,m, α) =
−v22

2a2,e(m,α)
+

v21
2a1,e(α)

, (6.47)

a1,e(α) = −gα− 9, (6.48)

a2,e(m,α) = −gα−min{Fb,maxm
−1, 0.7g}. (6.49)

Safety is enforced through two control barrier functions, h1(x) and h2(x). The first

ensures that the trailing vehicle stays behind dmin, and the second enforces a maximum
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(a) (b)

Figure 6.5: Safe distance dmin as a function of vehicle mass, road grade, and vehicle
speed.

speed vmax = 32m/s.

h1(x) = d− dmin, (6.50)

h2(x) = vmax − v2, (6.51)

For h1(x), a system η(x) = [h1(x), ḣ1(x)]
⊤ is defined. Then a controller Kα = [k1, k2] is

obtained from pole placement. This results in the following condition on the control action

u ≤ min
δ∈D

s1(x, δ), (6.52)

s1(x, δ) := m
(︁
k1(d− dmin) + k2(v1 − v2) + 1

2m
ρv22afcd0 + g(ct + α) + a1

)︁
, (6.53)

δ = [m, afcd0, ct, a1, α]. (6.54)

For h2(x), an extended class K∞ function is defined as −k3h2(x) where k3 > 0. Using the

condition that ḣ2(x,u) ≥ −k3h2(x), ∀δ ∈ D, a second condition is obtained for the control

action

u ≤ min
δ∈D

s2(x, δ), (6.55)

s2(x, δ) := m
(︁
k3(vmax − v2) + 1

2m
ρv22afcd0 + g(ct + α)

)︁
, (6.56)

δ = [m, afcd0, ct, α]. (6.57)

For both Conditions (6.52) and (6.55), the minimization problem is much simpler than for

Example 1; it can be solved exactly.
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The base controller kn(x) is a combination of feedforward and feedback signals, where

kn(x) = uff + ufb(x), (6.58)

uff = −1
2
ρv2nomafcd0, (6.59)

ufb(x) = kp(d− dmin). (6.60)

The speed vnom = 30m/s is an approximate nominal speed for this problem. kp is a simple

proportional gain.

As with the previous example, online parameter identification is performed according to

the method presented in Section 6.3.3, where

y[n] = − 1
2m
ρ(v2[n])

2afcd − gct + 1
m
u[n], (6.61)

z[n] = v̇2[n] + gα[n] + w[n], (6.62)

w[n] ∼ N (0, 0.052), (6.63)

θ = [m, afcd, ct]
⊤. (6.64)

Again, noise is injected into the measurements to obtain a more realistic system identification

problem.

6.5.2 Results and discussion

For this problem, the road profile is taken from a portion of the Fleet DNA Long-Haul Rep-

resentative drive cycle from the National Renewable Energy Laboratory [168]. This defines

the road slope to be used during simulation; it has a minimum grade of -6%. Then, the

v1(t) speed profile is obtained from simulating a vehicle where a PID controller attempts to

track a v1 = 30m/s velocity. Finally, the simulation for the trailing vehicle—the problem of

interest—can begin.

For this problem, only the robust formulation of the control barrier functions h1(x) and

h2(x) are implemented. The simulation begins with v2 = 29.5m/s and d = 100m. As per

Table 5.1, the initial range for the mass parameter is 4500–8500 kg. This results in a con-

servative behavior, where dmin ≈ 80m for the first section of the simulation, see Figure 6.6.

Using 25 s of recorded data, the vehicle parameters are estimated online; the results are

shown in Table 6.4. The resulting variance on the afcd and ct parameters are too high to ex-

tract useful information. This is caused by the noise level being too high for the parameters
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Figure 6.6: Simulation results for Example 2.

Table 6.4: Parameter estimation for Example 2.

Estimation
Parameter Actual µ σ Unit

m 5000 5026 57 kg
afcd ≈ 3.83 3.92 0.95 m2

ct 0.007 0.006 0.011 -

to be identified properly. However, the mass m can be updated to µ± 3σ, which effectively

reduces the range of the parameter. In the simulation, this uncertainty bound is updated at

time t = 100 s, which results in a large increase in system performance.

In the simulation, the range for the two disturbances a1 and α are not updated. Like-

wise, the functions a1,e(α) and a2,e(m,α) required to compute dmin are not updated either.

Figure 6.7 shows a histogram of the recorded a1 for the whole duration of the simulation; it

also shows a normal distribution fitted on the data. Given that the dmin and h1(x) safety

conditions are defined based on an extreme event—an emergency braking scenario—and that

the recorded data does not include such a scenario, it would be impossible to safely update

the range of a1 from online learning. Similarly, updating the functions a1,e(α) and a2,e(m,α)

would require the two vehicles to perform one or several brake tests. Finally, the range for
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Figure 6.7: Histogram of the a1 disturbance during the simulation of Figure 6.6.

the road slope α is not updated either. This is because even if the vehicle can record the

previous values of α, this gives very little information with regard to the future values. In

this problem, it is insufficient to react to the current and previous levels of the disturbances

a1 and α, as a sudden increase in disturbance could cause a sudden increase in dmin, for which

the system would be unable to react to, thereby causing the system to suddenly leave the safe

set. For the road slope α, one could think of a map-based solution where, given its current

position on a predefined trajectory, the system could predict the expected disturbance range

for the next 30 s or so, which leaves enough time to react to.

6.6 Discussion

The first point in Principle 1 is supported by the results of Example 1. The CBF based on

the nominal model is insufficient to keep Vehicle #1 within state constraints. The results

in [158] suggest that a CBF based on a learned nominal model could keep a uncertain system

safe, as long as the learned model closely matches the actual system behavior. While this

may be the case for some scenarios, this method yields no formal guarantees. In practice,

CBFs include a certain amount of conservatism, which depends on the chosen α function.

In effect, this function influences the rate at which the system is allowed to evolve toward

the set boundary. Therefore, a more conservative CBF may compensate for modeling error.

Moreover, as exemplified by Figure 6.1c, not all model perturbation results in an unsafe

situation. Nevertheless, it remains that a nominal model cannot provide safety guarantees,

even if it is learned from data.

The second point in Principle 1 is trivially supported by the first point: if a safety

condition based on a nominal model can lead the system outside state constraints, then too

small an uncertainty bound can certainly do so.

But perhaps a more interesting discussion concerns learned safety conditions based on
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non-parametric models. Such models are interesting because the shape of the uncertainty

need not be specified in advance, which can lead to a less conservative uncertainty description.

Researchers in [169] use data to construct a point-wise uncertainty set that bounds the

dynamics, which they use in a robust-CBF setting. Several studies use a Gaussian process

(GP) [15, 87] as a non-parametric model to both learn (or correct) a nominal model of

the dynamics as well as bound its uncertainty [100, 161, 170–172]. In effect, GP models

provide a probability distribution as state prediction. This distribution can be used to

bound the uncertainty on the dynamics [173]. Despite being a non-parametric model, the

distribution obtained from a GP is still dependent on its hyper-parameters, namely the

type of kernel function and its chosen parameters. Thus, such hyper-parameters are often

optimized through maximum likelihood estimation, see [100, 161], much like the parameter

estimation presented in this chapter.

Safety conditions based on non-parametric models require special care when first initial-

ized, given that no data is yet collected, thus no safety condition can be computed. One

approach is to initially use a nominal model, but restrict the initial safe set to a smaller

subset than the entire state constraints [161,172]. In [161] for instance, the initial safe set is

computed though HJR with assumed conservative bounds on the disturbance. As data gets

collected, it is then possible to use the robust safety condition and to iteratively increase the

size of the safe set. Therefore, approaches based on non-parametric models can still meet the

condition of Point 2 in Principle 1, but additional assumptions are required for the method’s

initialization.

The third point in Principle 1 is supported by both Examples 1 and 2. In Example 1, the

system could become unsafe if the actual dynamics suddenly shift outside the set covered by

the estimated uncertainty. In Example 2, the system could become unsafe due to an adver-

sarial disturbance not covered by the estimated uncertainty. These are particularly difficult

situations to account for, and they share the same root cause: the data previously collected

does not sufficiently describe the future behavior of the system. In Sections 6.4 and 6.5,

example solutions were proposed for this type of problem. For uncertainty sources that are

assumed to remain mostly constant for periods of time, but that are still expected to vary—

e.g., the dynamics in Example 1—the controller should predict when a significant change

may occur, and reset the corresponding uncertainty bounds to more conservative values.

For uncertainty sources that represent rare and extreme events—e.g., the a1 disturbance

in Example 2—the controller should never attempt to learn the corresponding uncertainty

parameters.

The change prediction and adaptation mechanism proposed for Example 1 is simple: the
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controller resets the uncertainty bounds every time the vehicle stops. Moreover, the controller

does not need to continually update the uncertainty parameters as the dynamics are assumed

to remain constant when the vehicle operates. For some systems, however, the dynamics

could evolve continually, or the sudden change in dynamics could be impossible to predict in

advance. These scenarios require a more sophisticated adaptation law if machine learning is

to be used to define the safety condition. In [161], researchers propose to constantly evaluate

the validity of the learned uncertainty bounds. When the learned model is deemed invalid,

a pre-computed safety action is applied, the uncertainty bounds are reevaluated, and finally

the updated safe controller comes back online and resumes normal operation. In [160], the

controller constantly identifies the dynamics with set membership identification, and updates

the uncertainty parameters accordingly. However, using one of these adaptive methods to

guarantee safety in the face of a possibly changing dynamics still requires to make additional

assumptions, notably on the magnitude and the rate of these possible changes. Certainly

not every scenario is recoverable.



Conclusion

This research concerns the control of uncertain dynamical systems using machine learning.

It concentrates on the control of electric and autonomous vehicles. The research questions

motivating the thesis are

1. Can machine learning control accelerate the development of electric drivetrains?

2. Can machine learning control preserve safety guarantees for vehicular control?

This conclusion summarizes the results and contributions presented in the thesis, suggests

answers to the research questions, and suggests future work based on the remaining ambi-

guity.

Results and contributions

In Chapter 1, a novel transmission design is presented. The transmission offers three gear

ratios and a possibility of uninterrupted gearshifts, while containing only two friction brakes.

The use of locking mechanisms also allows to deactivate the braking elements between the

gearshifts and save energy. A reduced-scale prototype of this transmission was designed and

built. The prototype was used as an experimental test bench for the research of Chapter 3.

Chapter 2 provides theorems for the fundamental limitations to uninterrupted gearshifts

that are associated with motor saturation. These theorems can be used during the concep-

tual design phase of a new electric drivetrain, which can help engineers to choose between

transmission architectures. The theorems also help guiding the development of gearshift

controllers by restricting the gearshift trajectories. This is especially useful for guiding a

learning algorithm, as the algorithm does not spend time exploring known bad trajectories.

Chapter 3 presents a method to learn a gearshift controller from gearshift trials on a

transmission test bench. The typical approach in industry uses a statistical method called

design of experiments, which requires thousands of gearshift trials. The proposed learning

algorithm converged to a tuned controller in about four trials. The method was able to

104
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improve gearshift performance by tuning the parameters of both a feedback controller and

feedforward signals. The method is implemented using automatic gradients, which means

that it can easily be adapted to different controllers. In an engineering context, this can fos-

ter the exploration of many more controller types and parametrization, thereby accelerating

the development of a multi-speed transmission for an electric vehicle.

Chapter 4 presents models for the longitudinal and lateral dynamics of road vehicles,

along with simplifying assumptions that make the models better suited for controller design.

These models are used in the example problems of Chapters 5 and 6.

Chapter 5 presents a new algorithm to tune a linear controller from a learned model of

arbitrary type, while preserving guarantees of robust stability. This is especially interesting

given that modern machine learning typically employs nonlinear models; this allows to fully

harness the predictive capabilities of machine learning. The proposed approach was used to

tune a controller for autonomous vehicle maneuvers, namely a lane change with concurrent

vehicle acceleration. The approach improved the trajectory tracking performance compared

to H∞ loop shaping. The controller also remained stable when the vehicle dynamics was

altered, thereby demonstrating the robustness of the approach.

Chapter 6 introduces the safe uncertainty-learning principle. This principle allows to

quickly evaluate whether a learning algorithm preserves safety guarantees of state constraint

satisfaction. To emphasize the importance of the principle, two vehicular control examples

were presented, where a robust control barrier function was used to maintain the uncertain

dynamical systems within state constraints. It was shown that when the proposed principle

is not respected, the safety guarantees are lost.

Research findings

Learning for control can indeed accelerate the development of electric drivetrains. In this

work, this was directly demonstrated by learning a gearshift controller, but it should also

hold true for other drivetrain-related control tasks such as anti-jerk controllers [174–176]. For

such applications, it is recommended to use efficient models to learn the uncertain system

dynamics. In effect, the need to perform physical measurements limits the data collection

rate. In this work, Gaussian processes were shown to be good candidates. Also, if reinforce-

ment learning is to be used, it is recommended to choose a model-based approach. This

allows to reduce the number of interactions with the physical world because the controller
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is iterated in a simulated environment. The model-based reinforcement learning approach

used in this work was able to learn a gearshift controller with very little information.

Depending on the application, it may not be productive to randomly initialize controller

parameters. In this work, the gearshift controller was initialized such that the first gearshift

trial actually completed. This way, the first instance of data collection was relevant. This

would likely not have been the case for a randomly initialized controller. In effect, the non-

linearities present in multi-speed transmissions restrict the set of dynamical trajectories the

system should follow. It is important to properly define the set of interesting trajectories so

that the learning algorithm does not spend time exploring bad ones. Sometimes, this can be

achieved by formulating theorems such as those of Chapter 2.

It can also be faster to learn the difference between a nominal model and the real system

dynamics, instead of learning the entire system dynamics. For the control of engineered

system, there should always be a nominal model. In this work, Gaussian processes were

shown to be a good model type to do so. Because they are a non-parametric model, they do

not require the assumption of a specific form of uncertainty, which is convenient to capture

the unknown discrepancy between a nominal model and the actual system dynamics.

The use of automatic differentiation is also recommended. It allows to quickly iterate on

the formulation of the control law. However, automatic gradients can be cumbersome to pro-

gram, and great care should be taken to ensure the validity of the code. It is recommended to

also derive some gradients analytically and compare the results with the automatic method.

It is possible to preserve safety guarantees while learning to control uncertain dynamics.

To maintain robust stability, it was shown sufficient to combine a robust control framework

with a gradient-based optimization method, as presented in Chapter 5. To generalize on the

proposed method, the idea is to utilize known theorems of control engineering—in our case,

the small-gain theorem—and to adapt learning methods around them. Given the richness of

the control literature, this may be easier than developing new theorems for existing learning

algorithms.

To maintain guarantees of state constraint satisfaction, several methods can be used:

Hamilton-Jacobi reachability analysis, model predictive control, and control barrier func-

tions. When a learning component is incorporated into these methods in an attempt to

reduce modeling uncertainty and improve performance, the safe uncertainty-learning prin-
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ciple of Chapter 6 suggests how to safely vary the uncertainty bounds. It is important to

ensure the validity of the uncertainty bounds.

Both the considerations of Chapters 5 and 6 should be applied to vehicular control. In

effect, the dynamics of vehicles may be uncertain at times, or may be expected to vary.

Thus, machine learning can be employed to reduce this uncertainty, but not at the expense

of safety guarantees.

Future work

It would be interesting to apply the learning method of Chapter 3 to a full-scale transmis-

sion prototype with actual transmission actuators. A more complete vehicle model could be

simulated as well, one with a nonlinear tire model for instance. Perhaps, additional consid-

erations could be learned from this experiment, further refining the method.

The third point in the safe uncertainty-learning principle stipulates that when tightening

uncertainty bounds, challenging adversarial events should be distinctly accounted for. The

examples of Chapter 6 suggest two ways to do so. When the event is a sudden change in dy-

namics that can be predicted in advance, the controller should reset the uncertainty bounds

prior to the change in dynamics. When the event is based on rare and extreme disturbances,

the controller should never try to model the disturbances based on collected data. When the

dynamics are slowly varying however, it should be possible to vary the uncertainty bounds

accordingly and preserve safety guarantees, but there is yet no method to judge when this

approach is acceptable and when it is not. This should be the object of further studies.

Finally, it would be interesting to investigate the safe uncertainty-learning principle in

the context of vehicle trajectory planning. A notoriously difficult problem in this area is

to model the statistical distribution of human agent trajectories [177]. Perhaps the need

to abruptly adjust the desired vehicle trajectory due to an erratic driver behavior could

be treated as a vehicular control problem, and be translated into in additional uncertainty

bounds in the system dynamics.



Appendix A

Introduction to machine learning

The output of a machine learning algorithm is a function f(x) that was learned from

data [178]. The three main categories of learning algorithms are: supervised learning, unsu-

pervised learning, and reinforcement learning.

In supervised learning, the algorithm is given a dataset D composed of outputs y[i] and

corresponding inputs x[i]. The algorithm learns a function f that approximate y = f(x)

as closely as possible. The goal of machine learning is to generalize f(x), which means

f(x) would return an appropriate output y when given an unseen input x—an input not

contained in D. Thus, the algorithm must avoid overfitting to the data points in D. A

common approach to verify whether the algorithm overfitted f(x) is to separate D into a

training set and a test set. The function f(x) is learned from the data in the training set, and

it is validated with the data in the test set. If f(x) accurately predicts the outputs y of the

test set, then it is not overfitted. This goal of approximating a model that generalizes well

is what sets machine learning apart from statistics. In statistics, the objective is to describe

a population from sampled data. In machine learning, the predicted outputs y = f(x)

constitute the information of interest, whereas in statistics, it is the properties of the function

f(x) that are of interest.

Supervised learning problems are categorized with respect to the type of output they

approximate. If the output y is a continuous variable, the learning problem is a regression

problem. If y is instead a discrete variable—representing distinct categories for instance—

then the learning problem is a classification problem.

It is commonplace to distinguish between parametric and non-parametric models. Learn-

ing a parametric model consists of tuning its various parameters. A neural network [14] is

an example of a parametric model: the parameters are the weights connecting the nodes.

As the name suggests, a non-parametric model does not contain model parameters. Gaus-
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sian processes [15] are a good example. Every time an output y is to be estimated from

a test input x∗, the input x∗ has to be compared to all the other inputs x contained in

D. Therefore, non-parametric models do not need to be “trained” like parametric models

do. Both parametric and non-parametric models contain hyper-parameters, however. These

are parameters that are not learned during the training process (if applicable), but that

still influence the prediction y. Examples of hyper-parameters for neural networks are the

number of nodes in the hidden layers, and the choice of activation function. Examples of

hyper-parameters for Gaussian processes are the choice of kernel function and its param-

eters. For Gaussian processes, the hyper-parameters are typically tuned to maximize the

likelihood of the observed data—essentially a form of parameter tuning—thereby blurring

the line between parametric and non-parametric approaches.

In unsupervised learning, the algorithm is not given target outputs y; it is only given a

set of inputs x. The goal of unsupervised learning can be to find patterns in the dataset,

or to reduce the dimensionality of the input space by finding a useful projection onto a

lower-dimensional space. Unsupervised learning is not used in this thesis.

Reinforcement learning algorithms use a particular problem setup. They assume that

an agent interacts with an environment. The agent makes observations of the environment,

from which it must takes appropriate actions. The agent is also fed a reward signal as an

indicator of its performance. The goal of reinforcement learning is to learn a function that

maps observations to actions, with the objective of maximizing a cumulative reward [179].

Reinforcement learning and control engineering are very similar. In both fields, the

goal is to obtain an agent (a controller) that behaves optimally in a given environment

by maximizing a reward (minimizing a cost function). Notably, central to both optimal

control and reinforcement learning are Bellman’s Principle of Optimality [180] and dynamic

programming. Perhaps the most important distinction is that in reinforcement learning, the

dynamics of the environment are unknown [95].

Methods in reinforcement learning are typically classified in two categories: model-based

and model-free approaches. In the former, the agent progressively builds an internal model

of the environment (learning), then uses this model to design a control policy (planning). In

the latter, the agent directly learns a control policy from interacting with the environment.

Model-free approaches tend to require many more interactions with the environment [85].

The field of artificial intelligence concerns the design of rational agents that behaves op-

timally in unknown environments [181]. Again, this is very similar to reinforcement learning
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and control theory. Artificial intelligence is more general, however. For instance, not every

intelligent algorithm involves learning. Also, artificial intelligence can handle a more diverse

set of problems than control theory. In effect, control theory is typically applied to dy-

namical systems expressed with differential equations, whereas artificial intelligence can be

applied to other kinds of mathematical models. It is not wrong, but not particularly useful

to see machine learning and control theory as a subset of artificial intelligence. For example,

plenty of learning problems—especially supervised—do not benefit from this notion of an

autonomous agent. Also, control theory is typically taught without the framework of artifi-

cial intelligence. However, the overlaps between the different fields are notable, and should

be exploited. In fact, this is one of the objectives in this thesis.



Appendix B

Equations of motion for a planetary

gearset

This appendix shows how to obtain the dynamical model for a planetary gearset that was

used in this thesis, namely the three equations of motion (1.15)–(1.17), and the kinematic

constraint (1.18). The process begins with a complete system model that considers the four

components of a planetary gearset: the ring gear, the planet carrier, the planet gears, and the

sun gear. This model is obtained from the free-body diagrams of Figure B.1. Then, approx-

imations are made in order to avoid having to consider the motion of the planet gears. This

simplification is convenient for transmission design and gearshift analysis, since the planet

gears never have external torques directly applied to them—it is the planet carrier that does.

For simplicity, this process is done only considering one planet gear. Also, in Figure B.1,

the normal component of the meshing forces are omitted from the free-body diagram, as

they are irrelevant to this analysis.

B.1 Complete system model

For the gearset to mesh and assemble properly, the radius of the various components must

match. This results in two geometric constraints

rr = rp + rc, (B.1)

rc = rs + rp. (B.2)

In addition, there exist three kinematic constraints. First, the gear mesh does not allow

for slippage at the contact point between meshing gears. There are two contact points to

111



APPENDIX B. EQUATIONS OF MOTION FOR A PLANETARY GEARSET 112

planet ring

carrier sun

Figure B.1: Free-body diagrams for the four elements of a planetary gearset.

consider: the contact between the planet gear and the ring gear, and the contact between

the planet gear and the sun gear. Also, the center of the planet gear is fixed with respect to

the carrier body. The resulting three constraints are

rrθ̇r = rcθ̇c + rpθ̇p, (B.3)

rsθ̇s = rcθ̇c − rpθ̇p, (B.4)

ẋp = rcθ̇c. (B.5)

From the free-body diagrams of Figure B.1, five equations of motion can be obtained.

They are

Irθ̈r = Tr + rrFr, (B.6)

Icθ̈c = Tc − rcFp, (B.7)

Isθ̈s = Ts + rsFs, (B.8)

mpẍp = Fp − Fr − Fs, (B.9)

Ipθ̈p = −rpFr + rpFs. (B.10)

The Equations (B.1)–(B.10) are sufficient to describe the complete motion of the plane-

tary gearset. In the next section, these 10 equations are reduced to a more practical set of

four equations.
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B.2 Reduced system model

To begin, the Equations (B.1) to (B.4) are reduced to obtain the kinematic constraint (1.18)

by eliminating rp, rc, and θ̇p. This is a trivial process of variable elimination. For instance,

Equations (B.1) and (B.2) can be combined to obtain and expression for rc, where

rc =
rr + rs

2
. (B.11)

Also, rpθ̇p can be eliminated by combining Equations (B.3) and (B.4), which gives

rrθ̇r + rsθ̇s = 2rcθ̇c. (B.12)

Combining (B.11) with (B.12) yields the kinematic constraint (1.18).

rrθ̇r + rsθ̇s = (rr + rs)θ̇c. (1.18)

Note that no approximation was required to obtain this equation.

Next, Equations (B.6)–(B.10) are reduced to obtain the final equations of motion (1.15)–

(1.17), and eliminate the need for ẍp and θ̈p. The first step is to isolate Fp in Equation (B.9),

and substitute the expression in Equation (B.7) to obtain

Icθ̈c = Tc − rc(mpẍp + Fr + Fs). (B.13)

Taking the time derivative of Equation (B.5), one gets ẍp = rcθ̈c, which can be substituted

into Equation (B.13) to obtain

(Ic + r2cmp)θ̈c = Tc − rc(Fr + Fs). (B.14)

By introducing the equivalent inertia Ic,eq = Ic + r2cmp, Equation (B.14) can be further

simplified into

Ic,eqθ̈c = Tc − rc(Fr + Fs). (B.15)

The Equations (B.7) and (B.9) were effectively reduced into (B.15), and the need for ẍp was

eliminated. Again, no approximation was required thus far.

The last step is to eliminate θ̈p from the equations of motion. This can be done by

approximating Ip = 0. Doing so, Equation (B.10) reduces to Fr = Fs. A new variable F
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can be introduced to designate both Fr and Fs, as they are now approximated as equal.

Using Equations (B.6), (B.15), (B.8), the expression for rc in Equation (B.11), as well as the

approximation that F = Fr = Fs, the final set of equations of motion is obtained, where

Irθ̈r = Tr + rrF,

Ic,eqθ̈c = Tc − rrF − rsF,

Isθ̈s = Ts + rsF.

(1.15)

(1.16)

(1.17)



Appendix C

Analytical gradients for controller

learning

This appendix provides analytical expressions for the computation of

dJπ(ψ)

dψ
=

T∑︂
t=0

d

dψ
Ex[t]

[c(x[t])], (3.39)

where ψ is simply Kc. This work uses the numerator layout when displaying the Jacobian of

a function. While a few of the results in this appendix can be found in the literature [182],

most are new results that pertain to our specific implementation of pilco.

C.1 Gradients for the kernel function

The square exponential kernel can be differentiated as follows:

∂k(z∗, z[1])

∂z∗
= −(z∗ − z[1])

⊤Λ−1k(z∗, z[1]), (C.1)

∂2k(z∗, z[1])

∂z2∗
= −Λ−1(I − (z∗ − z[1])(z∗ − z[1])

⊤Λ−1)k(z∗, z[1]). (C.2)

This allows to obtain derivatives of the mean and variance functions with respect to a

deterministic test point z∗.

∂µd(z∗)

∂z∗
= −(Kz∗z ⊙ y⊤

d (Kzz + σ2
ϵ I)

−1)Z̃⊤
∗ Λ

−1, (3.26)

∂Σd(z∗)

∂z∗
= 2(Kz∗z ⊙Kz∗z(Kzz + σ2

ϵ I)
−1)Z̃⊤

∗ Λ
−1, (C.3)
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where Z̃∗ = [z∗ − z[1], . . . , z∗ − z[n]], and ⊙ represents an element-wise product. The second

derivative of the mean function can also be obtained. The index notation is used since a

third order tensor needs to be introduced.

∂2µd(z∗)

∂z2∗
= (Ẑ∗)ijk(K

⊤
z∗z ⊙ (Kzz + σ2

ϵ I)
−1yd)k, (C.4)

where (Ẑ∗)ijk = −Λ−1(I − (z∗ − zk)(z∗ − zk)
⊤Λ−1). (C.5)

C.2 Gradients for the state distribution

The equations for the state transition are reproduced below:

µx
[t] = (Ad −BdKc)µ

x
[t−1] + µf(µ

z
[t−1]) +Bd(ū[t−1] +Kcx̄[t−1]) + t0, (3.31)

Σx
[t] = (Ad −BdKc)Σ

x
[t−1](Ad −BdKc)

⊤ + Σf(z[t−1]), (3.32)

where x ∈ RD and u ∈ RF .

The first gradient for the state distribution of Equations (3.41)–(3.42) is

∂µx
[t]

∂µx
[t−1]

= Ad −BdKc +
∂µf(µ

z
[t−1])

∂µz
[t−1]

∂µz
[t−1]

∂µx
[t−1]

, (C.6)

where

∂µf(µ
z
[t−1])

∂µz
[t−1]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂µ1(µ
z
[t−1])

∂µz
[t−1]
...

∂µD(µ
z
[t−1])

∂µz
[t−1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (C.7)

∂µz
[t−1]

∂µx
[t−1]

=

[︄
ID×D

−Kc

]︄
. (C.8)

The next term in Equation (3.41) is trivial:

∂µx
[t]

∂Σx
[t−1]

= 0. (C.9)
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Next, there is

∂µx
[t]

∂ψ
= (Bd)ij(x̄[t−1] − µx

[t−1])
⊤
k +

∂µf(µ
z
[t−1])

∂µz
[t−1]

∂µz
[t−1]

∂ψ
, (C.10)

∂µz
[t−1]

∂ψ
=

⎡⎣ 0D×D×F

(IF×F )ij(x̄[t−1] − µx
[t−1])

⊤
k

⎤⎦ . (C.11)

Next, there is

∂Σx
[t]

∂µx
[t−1]

=
∂Σf(z[t−1])

∂µx
[t−1]

, (C.12)

(︄
∂Σf(z[t−1])

∂µx
[t−1]

)︄
iij

=

(︄
∂Σi(z[t−1])

∂µx
[t−1]

)︄
1j1

, (C.13)

∂Σd(z[t−1])

∂µx
[t−1]

=
∂

∂µz
[t−1]

(︄
Σd(µ

z
[t−1]) +

(︃
∂µd(µ

z
[t−1])

∂µz
[t−1]

Σz
[t−1]

∂µd(µ
z
[t−1])

∂µz
[t−1]

⊤

⏞ ⏟⏟ ⏞
□

)︃)︄
∂µz

[t−1]

∂µx
[t−1]

,

(C.14)

∂(□)

∂µz
[t−1]

= 2
∂µd(µ

z
[t−1])

∂µz
[t−1]

Σz
[t−1]

∂2µd(µ
z
[t−1])

∂µz
[t−1]

2 . (C.15)



APPENDIX C. ANALYTICAL GRADIENTS FOR CONTROLLER LEARNING 118

Next, there is(︄
∂Σx

[t]

∂Σx
[t−1]

)︄
ijkl

= (Ad −BdKc)ik(Ad −BdKc)jl +
∂Σf(z[t−1])

∂Σx
[t−1]

, (C.16)(︄
∂Σf(z[t−1])

∂Σx
[t−1]

)︄
iijk

=

(︄
∂Σi(z[t−1])

∂Σx
[t−1]

)︄
1jk1

, (C.17)

∂Σd(z[t−1])

∂Σx
[t−1]

=
∂(□)

∂Σz
[t−1]

∂Σz
[t−1]

∂Σx
[t−1]

, (C.18)

∂(□)

∂Σz
[t−1]

=

(︄
∂µd(µ

z
[t−1])

∂µz
[t−1]

)︄⊤(︄
∂µd(µ

z
[t−1])

∂µz
[t−1]

)︄
, (C.19)

∂Σz
[t−1]

∂Σx
[t−1]

=

[︄
(ID×D)ik(ID×D)jl (ID×D)ik(Kc)jl

(Kc)ik(ID×D)jl (Kc)ik(Kc)jl

]︄
. (C.20)

Finally, there is

∂Σx
[t]

∂ψ
=

∂

∂ψ

(︂
(Ad −BdKc)Σ

x
[t−1](Ad −BdKc)

⊤⏞ ⏟⏟ ⏞
♢

)︂
+
∂Σf(z[t−1])

∂ψ
, (C.21)

∂(♢)
∂ψ

= −
(︂(︁

(ID×D)ik(Σ
x
[t−1])lj

)︁
imkl

(︁
Ad −BdKc

)︁
jm

+
(︁
(Ad −BdKc)Σ

x
[t−1]

)︁
im

(︁
(ID×D)jk(ID×D)il

)︁
mjkl

)︂
ijkl

(︂
(Bd)ik(ID×D)jl

)︂
kl
,

(C.22)

∂Σd(z[t−1])

∂ψ
=
∂Σd(µ

z
[t−1])

∂ψ
+
∂(□)

∂ψ
, (C.23)

∂Σd(µ
z
[t−1])

∂ψ
=
∂Σd(µ

z
[t−1])

∂µz
[t−1]

∂µz
[t−1]

∂ψ
, (C.24)

∂(□)

∂ψ
=

∂(□)

∂µz
[t−1]

∂µz
[t−1]

∂ψ
+

∂(□)

∂Σz
[t−1]

∂Σz
[t−1]

∂ψ
, (C.25)

∂Σz
[t−1]

∂ψ
=

⎡⎣ 0D×D×F×D (IF×F )jk(Σ
x
[t−1])il

(IF×F )ik(Σ
x
[t−1])lj △

⎤⎦ , (C.26)

△ =
(︁
(IF×F )ik(Σ

x
[t−1])lj

)︁
imkl

(︁
Kc

)︁
jm

+
(︁
KcΣ

x
[t−1]

)︁
im

(︁
(IF×F )jk(ID×D)il

)︁
mjkl

.

(C.27)
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C.3 Gradients for the cost function

The derivatives of the expected cost with respect to the state distribution are

∂Ex[t]
[c(x[t])]

∂µx
[t]

=
(︁
1− Ex[t]

[c(x[t])]
)︁
(µx

[t] − x̄[t])
⊤S̃, (C.28)

∂Ex[t]
[c(x[t])]

∂Σx
[t]

= 1
2

(︁
1− Ex[t]

[c(x[t])]
)︁(︂
S̃ −

(︁
(µx

[t] − x̄[t])(µ
x
[t] − x̄[t])

⊤)︁
kl

(︁
S̃ikS̃jl

)︁
lkij

)︂
. (C.29)



Appendix D

Partial derivatives for the lateral

dynamics

This appendix lists the non-zero partial derivative for the nonlinear equations of the lateral

dynamics, namely

ẍ = 1
m

(︃
Frx + Ffx − cf

(︃
ϕ2 − ϕ(ψ̇lf + ẏ)

ẋ

)︃
− 1

2
ρẋ2afcd

)︃
+ ẏψ̇, (4.17)

ÿ = 1
m

(︃
Ffxϕ+ cr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
− ẋψ̇, (4.18)

ψ̈ = 1
Iz

(︃
Ffxlfϕ− crlr

(︃
ψ̇lr − ẏ
ẋ

)︃
+ cf lf

(︃
ϕ− ψ̇lf + ẏ

ẋ

)︃)︃
, (4.19)

Ẏ = ẋψ − ẏ. (4.20)

The partial derivatives for ẍ are

∂ẍ

∂ẋ
= −cfϕ(ψ̇lf + ẏ)

mẋ2
− ρẋafcd

m
, (D.1)

∂ẍ

∂ẏ
=
cfϕ

mẋ
+ ψ̇, (D.2)

∂ẍ

∂ψ̇
=
cf lfϕ

mẋ
+ ẏ, (D.3)

∂ẍ

∂ϕ
= −2cfϕ

m
+
cf(ψ̇lf + ẏ)

mẋ
, (D.4)

∂ẍ

∂Frx

=
∂ẍ

∂Ffx

=
1

m
. (D.5)
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For ÿ,

∂ÿ

∂ẋ
=

(cr + cf)ẏ + (−crlr + cf lf)ψ̇

mẋ2
− ψ̇, (D.6)

∂ÿ

∂ẏ
= −(cr + cf)

mẋ
, (D.7)

∂ÿ

∂ψ̇
=
crlf − cf lf
mẋ

− ẋ, (D.8)

∂ÿ

∂ϕ
=
Ffx + cf
m

, (D.9)

∂ÿ

∂Ffx

=
ϕ

m
. (D.10)

For ψ̈,

∂ψ̈

∂ẋ
=

(−crlr + cf lf)ẏ + (crl
2
r + cf l

2
f )ψ̇

Izẋ2
, (D.11)

∂ψ̈

∂ẏ
=

(crlr − cf lf)
Izẋ

, (D.12)

∂ψ̈

∂ẏ
= −(crl

2
r + cf l

2
f )

Izẋ
, (D.13)

∂ψ̈

∂ϕ
=
Ffxlf + cf lf

Izẋ
, (D.14)

∂ψ̈

∂Ffx

=
lfϕ

Iz
. (D.15)

And finally, for Ẏ ,

∂Ẏ

∂ẋ
= ψ, (D.16)

∂Ẏ

∂ẏ
= 1, (D.17)

∂Ẏ

∂ψ̇
= ẋ. (D.18)
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