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Abstract

Accurate thermochemical mechanisms that can predict the formation of nitrogen
oxides (NO,) are important design tools for low-emissions engines. The lack of accu-
rate direct measurements of reaction rates, and the associated measurement scatter,
have resulted in recommended rate parameters for individual chemical reactions that
have large uncertainty intervals. In an effort to quantify the impact of these parametric
uncertainties on emissions predictions, forward uncertainty propagation is performed
with five spectral methods. Sparse grids are identified as the optimal technique to
rapidly construct accurate surrogate models. Subsequent polynomial expansions with
sparse grids, performed in one-dimensional atmospheric laminar flames for only the
30 uncertain reactions that greatly affect NO formation, produce uncertainty intervals
two orders of magnitude larger than nominal predictions. Primary uncertainty sources
were identified with reaction pathway analyses to evaluate the contribution of indi-
vidual formation routes and the uncertainties in prompt NO were found to propagate
mostly from the CH chemistry. These results highlight the necessity of a comprehen-
sive approach, using experimental measurements with uncertainty quantification and
inference techniques, to reduce uncertainty and develop predictive NO, models.
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Nomenclature

1 Integration operator

K Number of terms in the expansion

MC Monte Carlo

P, Orthogonal polynomial basis of order i

PCE Polynomial chaos expansion

PDF Probability density function

Q Quadrature operator

R Response, quantity of interest

RPA Reaction pathway analysis

Su Reference flame speed

T Temperature

X; Mole fraction of species 1

f Reaction rate uncertainty factor

[4] Concentration of species i

k Specific reaction rate constant

l Level of accuracy of the quadrature rule

n Number of variables in the expansion

P Order of the polynomial expansion

w” Weight of the quadrature point r

x and x; Variable studied in the spectral expansion; vector and scalar elements

« Coefficients of the polynomial expansion

Ay Nested quadrature operator at level ¢

L 15" moment, average

Pz Joint probability density function

o 24 moment, standard deviation

T Residence time

10) Equivalence ratio

Y One-dimensional polynomial basis

v Multivariate polynomial combinations
Subscripts

low Lower uncertainty limit

high Upper uncertainty limit
Superscripts

(1) One-dimensional operator

(2) Two-dimensional operator

(n) N-dimensional operator

Node of the quadrature rule

<
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1 Introduction

Chemical kinetic models are known to exhibit large variability in the predictions of nitrogen
oxides (NO and NO,, or NO,) (Watson et al., 2016). The lack of reliable predictive models
means that, in the gas turbine industry, NO, emissions are estimated using empirical corre-
lations developed through expensive test campaigns. Moving towards low-NO, technology,
detailed and accurate understanding of the chemistry is necessary to reduce risks, costs, and
development time of new designs that can satisfy increasingly stringent regulations (Lieuwen
et al., 2013).

NO, submodels generally include the four production routes identified for gaseous hydro-
carbon combustion: prompt (Fenimore), thermal (Zel”dovich), NoO, and NNH (Miller and
Bowman, 1989; Glarborg et al., 2018). These models have enabled the development of low-
emissions combustors by identifying configurations where emissions could be minimized. For
instance, reductions of thermal NO, in high-temperature, post-flame, zones were achieved
in steam-diluted mixtures and lean conditions (Goke et al., 2014; Rokke et al., 2003; Correa,
1993). Yet, the lack of fundamental knowledge on formation pathways, and different choices
of optimization targets, led to the development of a wide variety of tailored thermochemical
mechanisms that contain unique sets of reactions, species, and kinetic rates (Schofield, 2012).
This inherent uncertainty limits the value of such mechanisms as predictive tools for design.

Uncertainty analysis is now recognized as a necessary element in any combustion mod-
elling effort to quantify the impact of model uncertainty (Wang and Sheen, 2015; Prager
et al., 2013). Expensive sampling methods, using response surfaces, were historically used
to quantify the impact of uncertain kinetic rate parameters on model predictions (Frenklach
et al., 1992; Zsély et al., 2008). The introduction of non-intrusive spectral methods, stem-
ming from the work of Wiener (1938), offered an economic strategy to generate accurate
response surfaces that could capture non-linear interactions (Reagan et al., 2005). Forward
propagation of parametric uncertainties has been used to provide prediction intervals on
laminar flame speeds and ignition delay times, before inference was used to constrain the pa-
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rameter space with experimental measurements (Sheen and Wang, 2011; Prager et al., 2013).
Mechanism optimizations were also performed under uncertainty with large datasets using
PrIMe to constrain a model for syngas combustion (Slavinskaya et al., 2017). Few studies,
however, have been performed to quantify the effect of parametric uncertainties on NO,
emissions (Tomlin, 2006; Zsély et al., 2008). Employing a stochastic approach, Zsély et al.
(2008) quantified the uncertainty inherent to NO production in perfectly stirred reactors,
and showed that prediction uncertainties are driven by kinetic rather than thermodynamic
parameters. Similar results were found with a linear analysis in exhaust-gas-recirculated
opposed-flow flames (Lipardi et al., 2017).

This work first investigates various non-intrusive spectral uncertainty quantification tech-
niques to identify an optimal approach to characterize uncertainties in emissions predictions
caused by uncertain kinetic parameters. Total-order expansions, tensor-product expansions,
and sparse grids are used to propagate the parametric uncertainties, of the nine most un-
certain reactions having the largest impact on CH formation identified by Versailles et al.
(2017°), through the combustion model to provide probability intervals on CH concentra-
tion. Subsequently, /5 sparse grids are used to quantify global uncertainties in total [NO]
predictions, and evaluate the contributions of the four production routes for lean to rich
methane-air flames. Two different NO, submodels are used to investigate primary sources
of uncertainty. The results of this analysis will inform further experiments, as well as model

revisions and optimizations.

2 Methodology

The introduction of non-intrusive spectral methods has provided an economic alternative
to the sampling techniques historically used to develop response surfaces (Frenklach et al.,
1992). The algebraic description of complex phenomena enables quick evaluation of the entire
parameter space to quantify uncertainties and to optimize reaction rates against experimental
data. However, any inaccuracies in the response surfaces will necessarily lead to modelling
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errors. The framework shown in Fig. 1 is used to construct surrogate models for uncertainty
quantification. The approach combines direct combustion simulations using Cantera 2.3
(Goodwin et al., 2016) with the uncertainty toolbox from Dakota 6.6 (Adams et al., 2015).

The following four main steps are performed:

1. The reactions that greatly affect the quantity of interest and are uncertain are first
identified to focus the analysis. Physically realistic uncertainty limits are obtained from
the literature to bound the uncertain parameter space. A spectral method is selected,
along with the desired polynomial order for the surrogate model, and the location of

the collocation points are obtained in the normalized uncertain space.

2. Direct simulations are performed at collocation points representing unique combina-
tions of reaction-rate parameters. The process is repeated with new combinations
until the required number of samples is reached. Species concentrations and pathway

contributions are extracted from complete solutions to develop the surrogate model.

3. Coefficients of the polynomial expansion are evaluated and the response surface is

assembled using the prescribed polynomial bases and polynomial order defined initially.

4. The surrogate model is randomly and heavily sampled over the entire uncertain space
to obtain probability distributions, or “error bars”, on predictions. These probabil-
ity distributions represent the effect of the inherent uncertainty of the reaction-rate

parameters, selected initially, on the combustion chemistry model studied.

2.1 Identification of reactions and uncertainty limits

In order to reduce the dimensions of the problem, and the required number of simulations, the
surrogate model development is limited to reactions that have a large impact on predictions
within parametric uncertainty limits. The limited set of reactions can be used to quantify the

impact of major uncertainty sources (Zador et al., 2005; Davis et al., 2017). In the current
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| 1. Problem definition
|

Identification of uncertain reactions | | Definition of UQ technique

2. Data generation

| Sampling of uncertain variables |<—

|

| Direct flame simulation with Cantera |

Number of evaluation depends

No, extraction of quantities of interest

'

NO pathways contribution with

| Species concentrations | Reaction Pathway Analysis (RPA)
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l 3. Surface response generation

| PCE coefficients evaluation |

| Surrogate model (surface response) and statistics |

4. Uncertainty quantification

| Random sampling of the surrogate model

A
|

| Uncertainty distribution |

Figure 1: Uncertainty quantification framework using direct flame simulations for surrogate

model construction.

work, only kinetic rates are considered in the uncertainty analysis. The uncertainties are
provided on the nominal specific reaction rate constant as a multiplier, which is consistent
with the format used in the literature (Baulch et al., 1992; Baulch, 2005; T'sang and Hampson,
1986).

Logarithmic sensitivities, or normalized sensitivities (Turdnyi and Tomlin, 2016), are first
obtained for a range of equivalence ratios from lean to rich conditions to describe a relative
change in concentration with respect to a relative change in reaction rate. The sensitivi-
ties are then multiplied by the corresponding uncertainty factors, f, to obtain uncertainty-
weighted sensitivity indices, as shown in Appendix A. Reactions presenting the highest in-
dices are selected to perform the uncertainty analysis.

Probable and physically realistic uncertainty intervals, found in the literature (Baulch

et al., 1992; Baulch, 2005; Tsang and Hampson, 1986), bound the kinetic parameter space.
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The reaction rate uncertainty is typically provided in terms of Alog,, k; for the i*" reaction.

Alternatively, uncertainty factors f; = 1021°810% can be obtained to multiply nominal specific

reaction rates. It is expected that the use of more recent preferred uncertainty limits, or

results from inference processes, would further affect the predicted interval, but this work

does not aim to provide a review of the most recent measurements. Nominal reaction rates

in a given mechanism, k;, are obtained from optimization studies using a specific sets of

experimental targets, and generally differ from the preferred rates found in the literature.

To ensure that the rates are varying within the recommended uncertainty interval, relative

errors should be expressed for the lower and upper uncertainty limits separately, as follows:

k’L — k’t/fl k’L — _ 1 (1)
ki low kz fi,low
Aki| ki fi— ki
- = i — 1 2
ki high kz f,hgh ( )

The resulting asymmetric bands, shown in Fig. 2, retain the unique mechanism structure

and cover the entire recommended uncertainty space.

= — = —
(] — N w

log;(k) (cm?, mol, s)

©

Nominal rate

Preferred rate
Uncertainty limits

08 1 12 14 16 18 2
1000/T (K1)

Figure 2: Specific reaction rate constant k for the reaction H+ OH +M = H,O + M for

M = Nj. Legend: ----Baulch (2005) with preferred uncertainty limits ---, —SD with corre-

sponding common uncertainty limits ---.
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2.2 Uncertainty quantification techniques

Uncertainties in combustion systems were traditionally quantified by stochastic methods
(Tomlin, 2006; Zsély et al., 2008), and have recently been studied with spectral methods, or
polynomial chaos expansions (PCE) (Sheen and Wang, 2011; Wang and Sheen, 2015). The
introduction of such methods by Wiener (1938) provided an economic alternative to con-
struct surrogate models that can be used in sensitivity analyses, model optimization, and
uncertainty quantification. However, the number of collocation points grows exponentially
with the dimensions of the problem. The curse of dimensionality implies that an accurate
description of high-dimensional problems can become computationally expensive. The cur-
rent work first examines various techniques for optimal methods requiring the least number
of evaluations for accurate and robust quantification of uncertainties in predictions of pol-
lutant species. A Monte Carlo (MC) simulation first provides the reference distributions for
the quantities of interest. The traditional 15- and 2"d-order polynomial expansions are then
compared to the distributions, followed by the tensor-product and sparse-grid formulations.

No significant statistics can be derived, due to scarce experimental measurements, for
the prior distribution of the kinetic rates within their uncertainty bands, so uniform distri-
butions are assumed to avoid bias. Additional measurements would be required to identify
prior probability distributions. Consequently, Legendre polynomials are used with normal-
ized limits, between [—1, 1] (Askey and Wilson, 1985). The choice of uniform distributions is
expected to not significantly affect the predicted uncertainty, compared to normal distribu-
tions. The sum of N uniformly-distributed variables approaches a normal distribution under
the Central Limit Theorem, and the number of variables studied in the current work should
be large enough. This demonstration has been performed in ethylene-air mixtures, where
the two resulting distributions show similar widths (Sheen and Wang, 2011).

MC and advanced sampling techniques, such as Latin hypercube sampling (LHS) shown
in Fig. 3a, provide an intuitive way to assess numerical uncertainties. With enough randomly

selected samples, the solution should approach the true distribution based on the law of large
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Figure 3: Collocation points examples to evaluate the coefficients of a spectral expansion
for two variables z; and z5: a) Monte Carlo with (LHS), b) Tensor-product, and c) sparse
grid points with a nested Gauss-Patterson quadrature rule where the accuracy per-dimension

basis is maintained. ¢, and 3 sparse grid points are identified by o and e, respectively.

numbers. Stochastic methods typically require minimal changes to existing tools. They have
the advantage of being independent of the dimension of the problem, since the entire space
is sampled simultaneously. However, they exhibit slow convergence, even with advanced
sampling techniques, which corresponds to high computational costs. More importantly,
they do not provide the relationship between the input and output parameters, such that
only moments of the statistical distributions (mean, standard deviation, etc.) are obtained.

Spectral methods have been shown to reduce the sample size while retaining the rela-
tionship between input and output parameters. The techniques studied in this work are
summarized here and greater details can be found in Xiu (2010) and Smith (2013). Similar
to Fourier series, polynomial chaos expansions (PCE) suggest that any response R can be

expressed by an infinite polynomial expansion:

R(x) = Ry + Z o, Pr(zn, ) + Z Z ak17k2p2($kl’xk2)
ki1=1 k1=1ko=1

+ Z Z Z ak17k27k3p3(xk1axk27 xk3> + ..., (3)

k1=1ko=1 k3=1
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where x is a vector containing the inputs, or parameters, z, oy, are real coefficients of the
expansion for the polynomials Pj(xy,, ..., zy,) of order j. The expansion can be written in

the compact form:

R(x) =) ali(x)=) H Ui (i) , (4)

for a series of k terms describing the relationship between the n variables studied and the
response R. There is a one-to-one correspondence between the coefficients a; and the poly-
nomials Pj(xy,, ..., 7x,;) and ¥;. The multivariate polynomials W(x) can also be expressed
using the one-dimensional polynomial bases @Z)tf for the i*" variable, where the multi-index
tk describes the polynomial order of the &' term for the variable 7. In practise, the series
is truncated to a specified polynomial order p, approximating a multivariate phenomenon
with:

R(x) ~ Y o W(x), (5)

where the expansion is limited to K +1 terms, which depends on the spectral technique used.
With prescribed prior distributions, the polynomial bases ¢; and, therefore, Uy are known.
Polynomial coefficients can then be evaluated using regression, or spectral projection against

each orthogonal polynomial basis function:

ap = <<\IZ,‘I‘;€Z> = <\I}%> /FR(X)\I/k<X>,Ox(X)dX (6)

over the multi-dimensional uncertain domain I', where complete solutions from direct simu-
lations are used to extract R, and py is the joint probability density function evaluated using
the prior uniform distributions.

Traditionally, MC integration has been used in total-order expansions to evaluate the
integral. The total-order expansion bounds the maximum order of the response surface with

the prescribed polynomial order p, and the total number of terms K required in Eq. 5 is:

g = el (7)

n!p!
10
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Alternatively, structured grids (Fig.3b and c), using deterministic quadrature methods,
can be used to evaluate the integral in Eq. 6. The one-dimensional quadrature operator

approximates the integral with:

m

10 = | fedxx Y e =QWf, (8)

r=1

where f(x) = R(x)Wr(x)px(x) to simplify notation, and the m nodes, ", and m weights,
w", are known for specific quadrature rules. The one-dimensional operator is generalized to

n-dimensions, or variables, by:

Q" f(x) = (Qé? ®..® Qé?) f(x)

my, mye,,
= ZZf(xfixﬁn)(wfll ®...®wf:), (9)
Jji1=1 Jn=1

along the ¢"-level of integration to yield the tensor-product rule used in tensor-product
expansions to evaluate the integral of Eq. 6. It is possible to formulate a nested rule that
facilitates quadrature refinement by reusing points from the previous level, /—1, with the one-

dimensional quadrature operator A,(Zl) expressing the difference between two nested levels:

AD f(x) = (Qé” - Qé”l) /) (10)

as

Q)= Y (Aé?@@.-.mé?) F(x). (1)

max ¢/ </
where ¢/ = (¢y,...,£,) is a multi-index containing the levels of accuracy ¢; for the corre-
sponding variable i. In tensor-product expansions, contrary to total-order expansions, the
polynomial order bound is applied on a per-dimension basis, creating a response surface

with a total polynomial order p X n, assuming isotropic grids. The resulting combinations

11


https://doi.org/10.1080/00102202.2019.1604515
http://creativecommons.org/licenses/by-nc/4.0/

This is an Accepted Manuscript of the following article, accepted for publication in Combustion, Science and Technology.e Durocher, A., Versailles, P., Bourque, G. and
Bergthorson, J. M. (2020), Impact of kinetic uncertainties on accurate prediction of NO concentrations in premixed alkane-air flames, Combustion Science and Technology 192(6),

959-985. doi: 10.1080/00102202.2019.1604515 e It is deposited under the terms of the CC BY-NC, which permits non-commercial re-use, distribution, and reproduction in any

medium, provided the original work is properly cited.

of one-dimensional polynomial bases grow exponentially with the number of variables:

K =T+, (12)

=1

where the n and p; represent the number of uncertain variables studied and the polynomial
order of the i variable, respectively. Assuming isotropy in the polynomial orders, p; takes
the prescribed value p for all variables. Tensor-product expansions are, therefore, generally
limited to small and medium-sized problems.

Sparse grids were proposed by Smolyak (1963) for use in high-dimensional problems
to provide similar accuracy as full tensor-product expansions, while requiring significantly
fewer quadrature points. By removing multivariate high-order terms, only a subset of the
full tensor-product expansion is retained. Figure 3c illustrates the sparsity of the approach
in two dimensions by comparison to the full tensor-product expansion presented in Fig. 3b.

The quadrature rule used for sparse grids at the ¢! level is defined by

D= Y (Ao .wal) e, (13)
0| <+n—2

where || is the summation of the level per dimension. The sparse grid formulation only
differs from the full tensor-product quadrature rule in Eq. 11 by the definition of the summa-
tion limit, removing high-order multivariate polynomials from the expansion. The resolution
on a per-dimension basis is conserved, and lower-order cross-correlation effects between pa-
rameters are still captured. The nested nature of the formulation can be observed in Fig. 3c
for /5 and /3 sparse grids where the additional level of refinement adds point to the previ-
ous formulation. Additionally, both tensor-product formulations and sparse grids support
anisotropic development to favour high-order polynomials only for sensitive parameters, as
performed in sparse pseudo-spectral methods by Winokur et al. (2016). No unique formula
defines the number of points required to determine the response surface, as it is dependent
on the quadrature formulation used and the polynomial orders per variables.

12
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3 Spectral method comparison

An extensive series of [NOJ, [CH], temperature, and velocity measurements in atmospheric-
pressure stagnation flames, for lean to rich C;-C,4 alkane and alcohol fuels has recently been
published (Watson et al., 2016, 2017; Versailles et al., 2016). A comparison of predictions
from a selection of mechanisms to the quantitative absolute measurements obtained with
Laser-Induced Fluorescence (LIF) showed significant discrepancy between various models
and experiments. Versailles et al. (2017°) subsequently reconciled predictions with CH-
LIF measurements through the optimization of only nine reactions shown in Tab. 1. These
reactions were identified by the uncertainty-weighted sensitivity analysis performed for C;-Cs
alkane-air mixtures with equivalence ratios ranging from 0.7 to 1.3. Only the uncertainties in
these nine chemical kinetic rates are propagated through atmospheric-pressure stagnation-
flame simulations using the base chemistry from the San Diego (SD) mechanism (University
of California at San Diego, 2005). The impacts on peak methylidyne concentrations, [CH]peak,
NO, concentrations 10 ms downstream the flame front, and reference flame speed, S, are
first quantified to assess the accuracy of five different spectral methods.

CH and velocity profiles obtained through stochastic sampling of the uncertain kinetic

Table 1: Uncertainty limits, 1/f; 10w and f; nigh-

Reactions 1/ fi1ow i high

CH+ 0O, = HCO+O0 0.4747 2.456
CH;+OH = CH+Hy0 0.2409 2.168
CH;,+H = CH+ H, 0.7579 127.6

H+ CH3(+M) = CHy(+M) 0.2577 3.246
CH; +OH = CH;+ H,0 0.3653 2.324

CH+H,O = CH,O+H 3.823 -107%2 5.295
CHy,+0, = CO+OH+H
= C(COy+ Hy
CH,CO+0O = CH;+ COy 5.808 -10™*  1.502

0.8482 8.482
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Figure 4: CH and velocity profiles for realizations of the kinetic parameter uncertainty space
in atmospheric-pressure stagnation flames. A significant profile variability is observed as the

reactivity changes, which affects both the flame speed and its position in a stagnation flow.

parameter space are shown in Fig. 4 for stagnation flames of lean methane-air and rich
propane-air mixtures. A significant variability is observed in profiles since the reaction rates
differ from one evaluation to the other, which affect the reactivity of the flame and its
position in a stagnation flow. [CH]peax is identified as the maximum CH concentration along
its profile from a single simulation. Similarly, the reference flame speed, S,, is obtained
from each simulation at the local minimum after the inlet nozzle before the flow accelerates
through the flame.

Reference uncertainty distributions are extracted from Monte Carlo simulations with
4,000 samples to assess the accuracy of various spectral methods. The surrogate models de-
veloped with various spectral methods are combinations of univariate Legendre polynomials
based on the uniform prior distributions (Askey and Wilson, 1985). They are then sampled
100,000 times to quantify uncertainties in predictions. Total-order expansions are performed
with (1) 1%%-order expansions and (2) 2"d-order expansions using the minimum number of
collocation points K from Eq. 7, and (3) 2"d-order expansions with 4K points. Expansions
with quadrature methods are completed with (4) 2"%-order tensor-product expansions and
(5) level 2, ¢y, sparse grids using a nested Gauss-Patterson formulation. The response sur-
faces developed with sparse grids yield polynomials reaching a 5*-order approximation per

dimension and exhibit pairwise variable interactions up to fourth-order polynomials.
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The surrogate models for the CH radical are developed for the logarithm of concentra-
tion, but the figures presented in the current work are in absolute concentration values.
This approach provides better characterisation of the response surfaces at concentration
close to zero, and prevents extrapolation errors to non-physical, negative, values by allowing
strictly positive concentration predictions. The uncertainty analysis is therefore performed

for log; ([CH]peax) and the results are transformed back to present ppm values.

3.1 Method Accuracy

The first two moments of the distributions: the mean, p, and the standard deviation, o, are
shown in Tab. 2 for the five techniques. A selection of lean to rich mixtures of varying fuel
compositions are selected to demonstrate the accuracy of the approaches. A lean methane-
air mixture, ¢ = 0.9, a stoichiometric ethane-air mixture, and a rich propane-air mixture,
¢ = 1.5, are selected to assess the accuracy of the [CH|peax, [NO,], and S, expansions,
respectively. Each method is shown to produce reasonable statistical estimates of the first
moment, even the simplest 15%-order approximation with only nine collocation points. Larger
discrepancies are observed in the second moments, but every method is still capturing the
same order of magnitude in the standard deviation. For CH concentrations, all the methods
demonstrate similar accuracy on the first two moments.

The reference MC distributions for the same operating conditions, shown as histograms in
Fig. 5, are subsequently used to assess the capability of the five spectral methods to accurately
capture complex distribution shapes. To facilitate comparison, the PCE solutions are shown
by solid lines and should envelop the reference MC distributions. First, as suspected by the
statistical moments, the five techniques investigated accurately capture [CH]peax in Fig. 5a.
The most probable concentration and the rapidly increasing probability distribution near
zero are both well captured by every approach. Using logarithm values result in accurate
quantification as the radical concentrations change rapidly over multiple orders of magnitude.

This indicates that low-order methods could be used with confidence to construct surrogate
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models, to perform optimization and inference processes of radical species, when the target
is transformed to logarithmic space.

The other two targets investigated here, however, do require higher-order methods to
accurately quantify uncertainties in predictions. Total-order expansion techniques with 15-
and 2"-order polynomials do not capture the sharp distribution peaks in [NO,| and S,.
Significantly wider distributions are also observed, with the tails extending to lower concen-
tration values, caused by approximation errors in the surrogate model near the edges of the
parameter space. The addition of randomly placed collocation points in the 2"-order total-
order expansion, from K to 4K points, is shown to reduce this error by allowing a better
mapping of the uncertainty space as more points are used to perform the spectral projection,
or regression, to evaluate the coefficients of the expansion. The increased number of points
does not change the polynomial order of the surrogate model, which cannot capture the
complexities of the multi-dimensional non-linear problem. Consequently, wide distribution
tails are still observed, but the increased number of points allows a better mapping of the
uncertain space and reduces the extrapolation error when the regression is performed to
construct response surfaces.

Quadrature techniques answer the shortcomings of total-order expansions by accurately

Table 2: Average and standard deviation comparison of uncertainty quantification techniques
in [CH]peax for a methane-air mixture, ¢ = 0.9, [NO,| for a stoichiometric ethane-air mixture,

and S, for a rich propane-air mixture, ¢ = 1.5.

Method (Points) [CHpear (ppm) [NO,] (ppm) Sy (m/s)

L o 1 o i o
Monte Carlo (4,000) 1.563 1494 4324 1049 0.1733 0.02088
1**-order total-order (9) 1.539  1.144 4422 11.54 0.1746 0.01996

284 order total-order (45) 1.568  2.000 43.55 11.67 0.1740 0.02661
284 order total-order (180) 1.543 1438 43.72 11.06 0.1472 0.02397
2nd_order tensor-product (6,561) 1.548  1.394  43.70 10.62 0.1740 0.02073
{5 sparse grid (161) 1.539  1.382 43.81 10.71 0.1751 0.02130
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Figure 5: Spectral method comparison to Monte Carlo simulations. ==: Monte Carlo distri-
bution (4,000 samples). Total-order expansion, —: 15%-order (9 points), —: 2°d-order (45
points), 2nd_order (180 points). Quadrature techniques, —: 2"%-order tensor-product

(6,561 points), —: ¢5 nested sparse grid using Gauss-Patterson rule (161 points).

2"d_order tensor-product expansion pro-

capturing the distribution widths and shapes. The
vides high-order multivariate polynomials that capture variable interactions, but represent a
significant computational cost with 6,561 quadrature points required to build the surrogate
model. It demonstrates the limitations of full tensor-product expansion for medium-sized
problems and its prohibitive computational cost in large multivariate phenomena. Sparse
grids, however, do capture the shapes with similar accuracy, yet they require only 161 quadra-
ture points. The high-order approximation per dimension, provided by the ¢ formulation,

are sufficient to construct an accurate surrogate model at low costs. Finally, comparing

2°dorder total-order expansion, with 181

the sparse grid approach, with 161 points, to the
points, the former exhibits a greater accuracy for a similar computational cost.

As a result, sparse grids are considered the optimal approach to accurately quantify un-
certainties in emissions predictions and other targets resulting from complex multi-physics
combustion phenomena. For fast-radical species, such as CH, however, low-order methods
are found to be sufficient to accurately capture the uncertainty distributions when the sur-
rogate model is constructed using the logarithm of concentrations. For rapid assessment of

means and standard deviations, on a day-to-day basis, 1%%-order total-order expansions are

recommended with every combustion modelling attempt to, at least, provide uncertainty

17


https://doi.org/10.1080/00102202.2019.1604515
http://creativecommons.org/licenses/by-nc/4.0/

This is an Accepted Manuscript of the following article, accepted for publication in Combustion, Science and Technology.e Durocher, A., Versailles, P., Bourque, G. and
Bergthorson, J. M. (2020), Impact of kinetic uncertainties on accurate prediction of NO concentrations in premixed alkane-air flames, Combustion Science and Technology 192(6),

959-985. doi: 10.1080/00102202.2019.1604515 e It is deposited under the terms of the CC BY-NC, which permits non-commercial re-use, distribution, and reproduction in any

medium, provided the original work is properly cited.

estimates along with nominal predictions.

3.2 Numerical uncertainties on CH predictions

Figure 6 quantify prediction uncertainties in [CH]peax for C;-Cs alkane-air mixtures in lean
to rich conditions against the reference MC distributions. The /¢y sparse grid methodol-
ogy is selected based on the previous analysis as the current work focuses on quantifying
uncertainties in emissions predictions, as well as in CH. Nominal solutions obtained with
the commonly used, GRI-Mech 3.0 (GRI) (Smith et al., 1999) and the SD mechanism, are
also provided. Additionally, experimental CH-LIF measurements obtained by Versailles et al.
(2016) are added to provide a comparison of predictions against state-of-the-art non-intrusive
laser measurement techniques. The first three rows present vertical slices of the equivalence
ratio sweep shown in the bottom row, where the shading corresponds to the probability
distributions, with darker region coinciding with more probable predictions.

The propagation of parametric uncertainties, from only nine reactions in the CH path-
ways, yields predictions of [CH]peax that reach up to ~400%, at the upper 20 uncertainty
limit compared to the nominal predictions. Current CH-LIF experimental measurements
exhibit uncertainties of approximately +20-40% for the same operating conditions, shown
as red bands in the first three rows, and error bars in the last row, of Fig. 6. The difference
in scales between experimental uncertainties and the propagated parametric uncertainties
highlights the necessity of a comprehensive approach, using experimental measurements with
inference techniques, to reconcile numerical predictions with measurements.

Nominal predictions of the SD and GRI mechanisms present significant variability but,
given the large width of the distributions, both can be said to agree within their parametric
uncertainties, both with one another and with experimental measurements. The nominal SD
solution is found to be closer to the most probable interval and it also better captures the
experimental measurements in Fig. 6. Validation is required to extend these conclusions to

other conditions, but it is expected that predictions from these mechanisms will agree within
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their uncertainty limits. The current high parametric uncertainty prevents any predictive

modelling attempt of CH concentrations with any confidence.

4 Uncertainties in nitrogen chemistry

In hydrocarbon combustion, four NO formation routes are typically found in any modelling
attempt: thermal (Zel”dovich), prompt (Fenimore), NoO, and NNH. Although nitrogen
chemistry generally includes a large number of reactions, a limited number control the rate
of formation of a given pathway. The thermal NO pathway, active at high temperature, is

described by three elementary reactions,

Ny + O = NO + N, (R1)
N+ OH = NO + H, and (R2)
N+ O3 = NO + O. (R3)

The prompt route, active in the flame front, is initiated by the reaction of the CH radical

with molecular nitrogen.

CH + N, = NCON + H. (R4)

Through several intermediate steps, NCN is oxidized to form NO. The spin-conserved R4
(Moskaleva and Lin, 2000) can be found in recent implementations, while old mechanisms

commonly use the spin-forbidden initiation reaction:

CH + N, = HCN + N (R5)

Also primarily active within the flame, where high concentrations of H and O radicals

20


https://doi.org/10.1080/00102202.2019.1604515
http://creativecommons.org/licenses/by-nc/4.0/

This is an Accepted Manuscript of the following article, accepted for publication in Combustion, Science and Technology.e Durocher, A., Versailles, P., Bourque, G. and
Bergthorson, J. M. (2020), Impact of kinetic uncertainties on accurate prediction of NO concentrations in premixed alkane-air flames, Combustion Science and Technology 192(6),

959-985. doi: 10.1080/00102202.2019.1604515 e It is deposited under the terms of the CC BY-NC, which permits non-commercial re-use, distribution, and reproduction in any

medium, provided the original work is properly cited.

are found, the NNH route proceeds through the following main reactions:

Ny + H(+M) = NNH(+M), (R6)

NNH + O = NO + NH. (R7)

Finally, the N,O route’s essential reactions proceed to NO after the initial termolecular

oxidation of molecular nitrogen:

Ny + O(+M) = N,O(+M) (R8)
N,O + 0O = NO + NO (R9)
N,O +H = NO + NH (R10)

The N5O route is typically favoured in lean conditions, and at high pressures, as shown
by recent supra atmospheric NO-LIF measurements (Versailles et al., 2018). In that study,
decreasing total NO concentrations with pressure were observed in stagnation flames up to 8
atmospheres, with models predicting an increasing contribution of the NoO pathway at high
pressures.

Understanding the interaction between species and reactions in modern thermochemical
mechanisms proves to be challenging as more species and reactions are introduced. Reac-
tion Pathway Analysis (RPA) helps to understand this complexity by providing a visual
representation of the chemical pathways. It connects a network of nodes corresponding to
species, using arrows that correspond to reactions. A simplified nitrogen chemistry can
be visualized in Fig.7 where the branching occurs at the initiation reactions R1, R4, R6,
and RS, corresponding to the thermal, prompt, NNH, and N,O routes, respectively. The
method used in this work was improved by Versailles et al. (2016; 2017%) from Grcar et al.
(2006). A conserved scalar, here the flux of atomic nitrogen (N), is tracked as reactants

are being consumed to products. The rate of transfer from species s; to sq, R(N, sy, s9) is
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spatially-integrated with:

o
R(N, s1,892) = / an(N, s1,89) - qu(x) - mridu, (14)
Ty l

where the number of N atoms, n;, is transferred through reaction [ from species s; to so,
q(x) is the rate of progress of reaction [, = is the spatial domain, and r is the radius of the
cylindrical control volume. The control volume is adjusted with the radius over the domain
with inlet and outlet boundaries, z; and ¢, to yield a known inlet flux of 1 kmole/s of atomic
nitrogen. Therefore, R(N, s, s9) provide fractions of the flux of nitrogen atoms entering the
control volume being consumed by each NO-production route. It is then possible to track the
consumption of Ny through the various pathways, using the initiation reactions, and identify
their relative contribution to emissions, as shown in Fig. 7 for the thermal, NoO, NNH, and
prompt pathways which contribute to 26%, 34%, 15%, and 25%, respectively. Contrary
to methods where routes are turned on and off (Guo et al., 2005), which can potentially
introduce structural errors to the model and inaccuracy in the assessment of the four routes,
the present approach conserves all the species and reactions in the analysis, and requires

only a single direct simulation.

4.1 Comparison to Stagnation Flame Experiments

Two NO, sub-mechanisms are attached to the base chemistry of the 2016 San Diego mech-
anism to quantify uncertainties in NO predictions in one-dimensional flame simulations.
First, the latest San Diego nitrogen chemistry, 2004-v2, is chosen to assess the accuracy and
precision of the complete optimized mechanism. Second, the recent NOMecha 2.0 (Lam-
oureux et al., 2016), which includes the spin-conserved prompt initiation reaction, has been
selected to quantify the contribution of individual formation pathways to total emissions and
uncertainties. A selection of 30 reactions are identified in Appendix A with the NOMecha

2.0 chemistry using uncertainty-weighted logarithmic sensitivity analyses for lean to rich
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Figure 7: Simplified nitrogen RPA in lean condition. Colours indicate the NO formation
routes identified by the branching at the initiation reactions of —thermal, —N,O, —NNH,

and —prompt routes.

methane-air flames. A common set of 29 reactions from the San Diego mechanism is ob-
tained, where the H + NCN = HCN + N reaction is inexistent in San Diego chemistry, since
the prompt reaction initiates directly to HCN through the spin-forbidden reaction. The
prompt initiation reactions are included in both mechanism, with their respective uncer-
tainty limits, as part of the common set, even though they follow different reactions. The
uncertainty on the spin-forbidden prompt-initiation reaction is considered to capture the
contribution of the initiation reaction in both evaluations and allow for comparison between
the two models. It can be assimilated to a structural uncertainty in the NO chemistry,
present at the time of the mechanism development, that has now been rejected. The impor-
tance of the uncertain reactions involved in the CH pathway to NO formation through the
prompt route is confirmed by the fact that 8 of the 9 reactions from the previous [CH]peax
analysis are also part of the current set of 30 uncertain and important reactions.

The analysis is performed with ¢y sparse grids, requiring 1,921 quadrature points to

develop the 30-variable surrogate model. All solutions are shown in a temporal reference
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frame, with the origin (7 = 0 s) defined at the [CH]peax location. This transformation is
essential to systematically compare profiles since the flame position, in the stagnation flow,
varies with each realization, as shown previously in Fig. 4.

Probability distributions of NO profiles obtained with the two thermochemical models
(Fig. 8) are first compared to experimental NO-LIF measurements in atmospheric, jet-wall
stagnation flames (Watson et al., 2016, 2017). Following the methodology of Watson and
co-workers, the reported LIF intensities are transformed into mole fractions using LIFSim
(Bessler et al., 2003) and the latest high-temperature mechanism assembled by the National
University of Ireland, Galway (NUIG), with the base chemistry from Aramco 2.0 (Zhou
et al., 2016) and the nitrogen chemistry discussed by Zhang et al. (2017).

As expected from the selected reactions, the uncertainty in predictions increases with
the number of uncertain reactions, reaching uncertainty intervals spanning up to 500-600%,
consistent with the previous definition of the upper 2¢ limits over the nominal predictions.
Compared to experimental NO-LIF uncertainty of £20%, the difference in uncertainty mag-
nitudes further highlights the need for a comprehensive approach to constrain uncertainty
in kinetic model parameters via targeted experiments along with optimization and inference
techniques. The addition of more accurate recent rate measurements to the existing litera-
ture should also decrease prediction uncertainties as the smaller prior uncertainties in kinetic
parameters would result in thinner propagated distributions. With current mechanisms, how-
ever, it is reasonable to say that prediction intervals cover 10-50 ppm to 0-300 ppm for lean
to rich conditions, respectively.

Propagation through the NOMecha 2.0 model shows slightly narrower +2¢ bands. The
two different mechanism structures still exhibit similar +£1¢ intervals, suggesting that con-
clusions regarding the uncertainty of a given model are generalizable, up to a certain ex-
tent, to other models containing the same set of constituent reactions. Both evaluations
show good agreement of the nominal mechanisms with experimental measurements, and the

most-probable interval generally captures well the experimental profiles.
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Figure 8: NO profiles for methane-air atmospheric stagnation flames. A : experimental data
for lean, stoichiometric, and rich conditions (Watson et al., 2017). The 68% (1o) interval is
given by the area bounded by ---, and the 95% (20) by -----. The shading is proportional to
the probability of finding that realization of [NO] from the uncertain parameter space. The
nominal response of the mechanisms are given by - --. Note the large variation in the y-axis

scales.

Under rich conditions, approximately 10% of the parameter combinations do not converge
in both mechanisms within the parametric-uncertainty limits. Attempts at restarting from
the nearest previous solutions systematically resulted in flame extinction, indicating regions
of the uncertain parameter space where no solutions were obtained. This suggests that the
current parametric uncertainty limits are not consistent with nature, when comparing with
the stable laminar flames obtained experimentally. With prior uncertainty limits updated

with more precise measurements of reaction rates and constrained with multiple experimental
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targets such as ignition delay time and flame speed, it is expected that fewer or no infeasible
parameter combination will remain, and the predicted uncertainty interval of the quantity
of interest will decrease. With the current prior distributions, the remaining cases produce
a probability distribution with a sharp low concentrations peak and a wide tail extending
into the hundreds of ppm. The highly skewed distribution shape follows the ones obtained
in Section 3, where only a subset of reactions that were both CH-sensitive and uncertain
were included. Since the prompt pathway dominates in rich flames, the CH uncertainty is
propagated through the prompt-initiation reaction to yield wider distributions than those
observed in lean or stoichiometric flames, where other routes dominate the total NO pro-
duction. This particular distribution shape suggests that, in order to improve predictions of
prompt NO, the uncertainty of reactions involved in CH production and consumption must

first be reduced.

4.2 NO Pathway Analysis

In the subsequent analysis, the kinetic structure of NO, submodels without hydrodynamic
stretch effects is studied in adiabatic freely-propagating methane-air flames. Concentrations
are extracted 10 ms downstream of the flame to obtain residence times comparable to con-
ventional combustion devices for power generation. The investigation is performed with the
NOMecha 2.0 nitrogen chemistry only, using the same 30 most NO-sensitive reactions.
Uncertainties in total [NOJ for flames with ¢ = [0.7 — 1.3] are shown in Fig. 9a. To
illustrate the contribution of the four NO pathways to total predictions, vertical slices are
taken at ¢ = [0.7,1.0, 1.3] (Figs. 9b-d), where the envelope of the stacked distributions match
the shaded region in Fig. 9a. Using a reaction pathway analysis for each of the collocation
points, surrogate models identifying relative individual contributions are constructed using
the ¢y sparse grid and are then sampled in Figs. 9b-d. The probability density functions
have been normalized to unity to facilitate the comparison between the distribution shapes

at different equivalence ratios.
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Figure 9: a) Uncertainty evolution of [NO] 10 ms downstream of the flame front for methane-
air, freely-propagating flames at atmospheric pressure. Same legend as Fig. 8. b-d) Dis-
tributions of the contribution of the four pathways to [NOJ] uncertainty in mixtures of
¢ =1[0.7,1.0,1.3]. The dark blue to dark red colouring denotes the four pathways: prompt,

NNH, N5O, and thermal contributing to the uncertainty.

Various distribution shapes are obtained in Fig. 9b-d for operating conditions that trigger
different dominant pathways. At lean conditions, where all pathways contribute to total
emissions, predictions distributions are found to be almost symmetrical and only slightly
skewed. With every pathway active, they all contribute to uncertainty through their reaction
subsets and no strong relationship is identified between the uncertain kinetic rates and the
predicted [NOJ.

As the equivalence ratio increases, thermal NO formation becomes the dominant path-
way as the high flame temperatures largely favour thermal NO production. The distribution
shape in Fig. 9c is then considered to be arising mainly from the propagated kinetic un-
certainties in the thermal pathway. With R1 being the limiting reaction in thermal NO
production, the uncertainty distribution obtained is a direct expression of the effect of vary-

ing the kinetic rate of the initiation reaction within its uncertainty limits. After the most
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probable [NOJ observed at ~140 ppm, a slow, almost linear, decrease in probability is ob-
served on the high side. For the current analysis, the uncertainty limits of R1 were increased
from the Baulch (2005) preferred limits to match findings from Watson et al. (2016) and
Abian et al. (2015). Both studies recommended a specific reaction rate constant below the
preferred limit to reconcile model predictions with measurements in stagnation flames and
flow reactors, respectively.

At rich conditions (Fig. 9d), the prompt route dominates the production of NO and can
be considered the main contributor to uncertainties. The distribution shape resembles the
one obtained for CH concentrations (Fig. 6), exhibiting a more pronounced peak once the
uncertainty from additional reactions in the nitrogen chemistry is included. Again, a sharp
probability distribution is obtained near 0 ppm, while an exponential decay in probability
is observed at high concentration values. The ~600% uncertainty limits obtained with the
30 reactions considered corresponds to a 50% increase in predictions uncertainty limits by
augmenting by a factor of 3 the number of reactions from the previous 9 CH-sensitive and
uncertain reaction. With 8 reactions of the 30 found in the [CH] uncertainty analysis,
this result implies that accurate prompt-NO modelling requires an accurate and precise

description of CH formation.

5 Conclusion

It is known that thermochemical mechanisms are inherently uncertain, and that emissions
predictions performed with any of them must currently be validated with experimental mea-
surements or engine testing. The current paper investigates different spectral methods to
develop economic and accurate surrogate models to quantify the effect of parametric uncer-
tainties on NO, emissions predictions.

Using only nine CH-sensitive and uncertain reactions, five polynomial expansions are
compared against stochastic flame simulations to verify their capability to capture sharp,
complex, probability distributions. In the fast, methylidyne (CH), radical species, perform-
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ing the analysis in the logarithmic space resulted in accurate predictions for every spectral
method, suggesting that low-order approaches are sufficient to perform uncertainty quan-
tification and optimization. For [NO,| and reference flame speed, every method equally
captured the average of the distributions; however, low-order total-order expansions exhibit
significant differences in probability distribution shapes, even with an increased number of
collocation points. Generally, these approaches overpredict distribution tails.

Sparse grids, using subsets of full tensor-product expansions, are identified as the optimal
method to develop accurate surrogate models at low computational costs to quantify uncer-
tainties in emissions due to the local high-order polynomials used in the expansion. They
are recommended for future uncertainty quantification and model optimization efforts. For
rapid estimation on a daily basis, however, first-order total-order expansion should definitely
be used to, at least, provide uncertainty bands along with nominal model predictions.

The propagation of kinetic uncertainties, for nine CH-sensitive and uncertain reactions
in the San Diego base chemistry mechanism, resulted in predictions varying up to +400%
of nominal values. With a common set of 30 NO-sensitive and uncertain reactions, and
using two different nitrogen chemistry models, NOMecha 2.0 and San Diego 2004-v2, [NO]
prediction intervals increase up to +600%. In comparison, the experimental uncertainties of
+20-40% highlight the need for a comprehensive approach, using measurements with infer-
ence techniques, to reduce prediction intervals and develop predictive models. The similar
intervals obtained with structurally different nitrogen chemistries suggest that estimates of
the model uncertainty band are, to a certain extent, generalizable to other mechanisms.

Reaction pathway analyses, performed in this uncertain framework, provide probable
contribution intervals for the four NO formation routes. At stoichiometric conditions, the
thermal route is dominant and the initiation reaction is found to be responsible for the
asymmetrical NO concentration distribution shape, hinting towards lower kinetic rate values
to reconcile predictions with measurements. In rich conditions, the prompt route dominates

total emissions and exhibits similar distribution shapes as in [CH|peax, confirming that an
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Current model uncertainties demonstrate the need for a comprehensive approach, using

inference techniques, to develop future predictive models. Inherent parametric uncertainties
must be acknowledged and constrained before reliable sub-10 ppm predictions can be made

accurate description of CH formation is crucial to capture prompt-NO formation.

with any confidence to design the next generation of low-NO, engines.
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Appendix A: Uncertainty-weighted NO-sensitivity analysis

The identification of the 30 important reactions is first performed with the NOMecha 2.0
nitrogen chemistry (Lamoureux et al., 2016) attached to the base chemistry of the 2016
San Diego mechanism (University of California at San Diego, 2016). The sensitivity of the
[NOJ] to the reaction rates is obtained in atmospheric-pressure freely propagating flames
5ms downstream of the flame for lean, ¢ = 0.7, stoichiometric, ¢ = 1.0, and rich, ¢ =
1.3, methane-air flames to identify reactions that contribute to emissions predictions in a
variety of conditions. Uncertainty factors extracted from the literature (Baulch, 2005; Baulch
et al., 1992; Tsang and Hampson, 1986) are then applied to the logarithmic sensitivity to
identify reactions that greatly affect NO formation. Additionally, the uncertainty factor of
the thermal initiation reaction R1 is consistent with that used by Watson et al. (2016), where
the lower limit was reduced to reconcile model predictions with experimental measurements.

The results of the uncertainty-weighted NO-sensitivity analysis are shown in Fig. 10,
where absolute logarithmic sensitivities are shown on the left, and absolute logarithmic
sensitivities multiplied by the uncertainty factor are shown on the right. Reactions are
ordered by sensitivity to highlight the contribution to uncertainty from reactions that are
less sensitive, but more uncertain, to the analysis. For the current work, 30 reactions, shown
in bold in Fig. 10, present a contribution to the uncertain sensitivity above 0.1 and are
identified as the set of important reactions to NO formation used to quantify the impact of
kinetic uncertainties in [NOJ.

Table A1 lists the nominal reactions identified for the NOMecha 2.0 mechanism, where
the reaction rate parameters A, n, and E, have units of (cm, mole, s), (-), and (cal, mole) ,
respectively. As presented in the current work, asymmetric uncertainty limits are defined to
retain the optimized mechanism structure while satisfying the preferred uncertainty limits.

Similarly, the procedure is performed for the 2004 San Diego nitrogen chemistry. Results
of the uncertainty-weighted NO-sensitivity analysis are shown in Fig. 11, following the same
labelling. In this case, 31 reactions are identified above the threshold, defined previously,
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to be considered as important in the current analysis. To systematically compare predicted
uncertainties between models, however, a common set of reactions is derived from the more
recent NOMecha 2.0 chemistry to study the contribution of the four formation pathways
to total emissions. Among the 30 reactions identified, 23 are found in the base chemistry,
which is shared by both assembled mechanisms; 6 show unique rate parameters found in
their respective nitrogen chemistry; and 1 is non-existent in the San Diego chemistry since
this model initiates the prompt-NO route directly to HCN.

The 6 different reactions, found in the San Diego nitrogen chemistry, are shown in Tab. A2
with their respective rate parameters and uncertainty factors. The remaining reactions used

in the uncertainty analysis are common to both mechanisms and can be found in Tab. A1l.
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multiplied by the uncertainty factor f. Bold reactions are used in the uncertainty analysis.
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Same legend as Fig. 10.
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Table Al: Nominal Reaction Rate Parameters and Uncertainty Bounds for NOMecha 2.0,

1/ fitow and f; nign for the 30 most NO-sensitive Reactions.

Reactions A n L, 1/ fitow  fi nigh
[cm, mol, s] [cal, mol]
1 CH+N; = H+ NCN 1.95E12 0.000 16,915 0.0298  1.406
2 N;+O=N+NO 1.00E14 0.000 75,490 0.5000 2.164
3 CH+H,0O=CH,O+H 4.15E15  -0.750 0 0.0110  1.067
4 H+CHy; = CH+ H, 1.93E13 0.000 ~1787.76 0.5883 32.399
5 CH;+0O=CH,O+H 8.43E13 0.000 0 0.7944  1.259
6 NyO(+M) = Ny + O(+M) koo 1.30E12 0.000 62,570.0 0.3070  1.559
ko 4.00E14 0.000 56,600.0
7 NH+NO=H+N,0 1.75E14 -0.351 —244 0.4475 1.354
8 H-+NCN = HCN+N 3.84E14 0.000 7956 0.6426 1.283 ¢
9 H+0,=0+O0H 3.52E16  —0.700 17,069.79 0.6814  1.496
10 H+OH+M =H,O+M 4.00E22 —2.000 0 0.1749  1.749
11 H+ Oy(+M) = HOy(+M) ks | 4.65B12  0.440 0.0 05113  2.118
ko 5.75E19 -1.400 0.0
Troe | A= 0.5, T3 = 1E-30, T} = 1E30
12 OH + CH; = CH + H,0 9.63E06 2.000 2999.52 0.0410 1.944 ®
13 CH+ 0Oy = HCO+ 0O 8.40E10 0.760 —478.01 0.4197  5.157
14 H4+ N,O = N, + OH 3.30E10 0.000 4729 0.4565  3.462
15 O+ CHy; = CO+H+OH 5.58E12 0.000 1491.4 1.0000 13.814 ¢
16 CHj;+ OH = H,0O + CH; 2.36E17 -1.225 1811 0.2995  1.340
17 Hy+ O =H+ OH 5.06E04 2.670 6290.63 0.3486  1.825
18 CHs+ H(+M) = CHy(+M) ks 9.965E15  —0.630 382.89 0.5244 6.173
ko 1.938E33  —4.760 2440.01
Troe | A = 0.783, Ty = 74.0, T, = 2941, T = 6964
19 N,O+ 0O =2NO 9.20E13 0.000 27679 0.5314 1.812
20 OH+ CH, = CH,O+H 2.50E13 0.000 0 0.2410 2.167 °
21 CH;+CH, = C,H; +H 4.22E13 0.000 0 0.4052  7.238
22 H,0+ O = 20H 7.00E05 2.330 14,548.28 0.1715 2.466 °
23 CHz;+H = H, + CH, 1.80E14 0.000 15,105.16 0.5012  1.995
24 0;+CH) = CO+H+OH 3.13E13 0.000 0 0.3185  3.143
25 0Oy + CHy = CO, + Hy 2.23E12 0.000 1491.4 0.2535  6.536
26 CH+ COy = CO + HCO 4.80E01 3.220 3226.58 0.6928  4.440
27 HCO + Oy = CO + HO, 7.58E12 0.000 409.89 0.2763  2.744
28 CHjz + Oy = CH,0 + OH 3.30E11 0.000 8941.2 0.0305 7.048
29 CyHy; +OH = CH,CO+H 1.90E07 1.700 999.04 0.0193 2.607
30 CHjz;+ HO; = CH30 + OH 5.00E12 0.000 0 0.3613  36.13

Nominal uncertainty factors f; are obtained from Baulch (2005) except:

@ Faflheber et al. (2014)

b Tsang and Hampson (1986)

¢ Baulch et al. (1992)
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Table A2: Additional reaction rate parameters and uncertainty bounds,

for the San Diego nitrogen chemistry.

1/ fitow and f; nign

Reactions A n E, 1/ fitow  fi high
[cm, mol, s [cal, mol]
1 CH+Ny;=HCN+N 4.40E12 0.000 21,988.53 | 0.1657 4.111
Ny + 0O =N+ NO 1.47TE13 0.300 75,286.81 | 0.3387 1.377
6 NyO(+M) = Ny + O(+M) ks 8.00E11 0.000  62,619.5 1.000  5.129
ko 2.00E14 0.000  56,644.36
7 NH-+NO=H+NyO 3.20E14 —0.450 0.0 0.5481 1.687
14 H+ N,O = Ny, +OH 2.23E14 0.000  16,754.3 | 0.3723 3.715
19 N,O+ 0O = 2NO 2.90E13 0.000 23,159.66 | 0.3245 1.684 ¢
Nominal uncertainty factors f; are obtained from Baulch (2005) except:
@ Tsang and Hampson (1986)
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