
Generic Navigation of Concerns and

Perspectives in TouchCORE

Ian Gauthier

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

February 15, 2021

A thesis presented for the degree of Master of Engineering

©2021 Ian Gauthier

i

Abstract

The practice of Model Driven Engineering (MDE) recommends the creation of several

different models which describe different aspects of a product in order to create a holistic

view of the proposed system. In order for a tool to properly facilitate the development of

software models, it must allow a user to properly navigate between these different models

and their elements. Due to the ever growing number of possible languages in which a

system aspect may be expressed with a model, an approach to navigation which is

language independent can provide many benefits to a user such as a more declarative way

of specifying navigation for new languages instead of hard-coding navigation for each new

language.

In this thesis, we outline our implementation of a generic navigation system within the

software modeling tool TouchCORE. We utilize the concept of a Perspective which is used

to combine several languages and map elements from different models which represent the

same concept to each other. Based on a proposed navigation metamodel, we introduce

a system within TouchCORE for defining the pertinent concepts of a given language and

Abstract ii

pertinent navigation mappings within a language or between languages within a Perspective.

We then implement a navigation bar used to display these important elements to the user

when creating or editing a model. This navigation bar also provides the user with a series

of navigable links to other models or concepts within a Perspective. Finally, we introduce a

test suite used to validate the quality of our implementation.

iii

Abrégé

La pratique de l’ingénierie dirigée par modèles (IDM) recommande la création de plusieurs

modèles différents qui décrivent les particularités d’un produit afin de créer une vue globale

du système proposé. Pour qu’un outil facilite effectivement le développement des modèles

logiciels, il doit permettre à l’utilisateur de naviguer facilement à travers des différents

modèles et leurs éléments associés. En raison du nombre croissant de langues possibles

dans lesquelles un aspect du système peut être exprimé en utilisant un modèle, une

approche qui favorise une navigation plus indépendante de ces langues peut offrir de

nombreux avantages à l’utilisateur, notamment sa manière de spécifier la navigation d’une

forme plus facilement interprétable dans de nouvelles langues au lieu de coder en dur la

navigation pour chaque nouvelle langue.

Dans cette thèse, nous décrivons notre mise en œuvre d’un système de navigation

générique au sein de du logiciel de modélisation TouchCORE. Nous utilisons le concept de

’Perspective’ qui permet de combiner plusieurs langues et de cartographier les éléments de

différents modèles qui représentent les mêmes concepts. Sur la base du métamodèle de

Abrégé iv

navigation proposé, nous introduisons un système dans TouchCORE qui permettra de

définir les concepts pertinents d’une langue donnée et des cartographies de navigation

appropriés dans une langue ou entre les langues dans une Perspective. Nous mettons

ensuite en place une barre de navigation utilisée pour afficher ces éléments importants à

l’utilisateur lors de la création ou de la modification d’un modèle. Cette barre de

navigation fournit également à l’utilisateur une série de liens navigables vers d’autres

modèles ou concepts au sein d’une Perspective. Enfin, nous introduisons une suite de tests

utilisés pour valider la qualité de notre implémentation.

v

Acknowledgements

I would like to express my gratitude to my supervisor Gunter Mussbacher for taking me on in

his lab and for his constant help and guidance throughout the process of crafting and writing

this thesis. Without his help I would not have been able to complete this work on time. In

the same vein I would like to thank Jörg Kienzle for effectively taking me on as a student as

well over the past year. Finally, I would like to thank all the members of the TouchCORE

team, particularly Hyacinth Ali with whom I worked closely during the course of creating

this thesis, for always being available to help when I had questions with the coding work of

this thesis.

I would like to thank my parents for their love and their kindness - I have never needed

to worry about having your support and for that I am endlessly grateful. Finally I would like

to thank the many friends who have encouraged and checked in on me over this past weird

year - particularly my roommates who have kept me sane and in good spirits throughout. I

appreciate you all beyond words.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Background 6

2.1 Domain Specific Modeling Languages . 6

2.2 Perspectives . 7

2.3 TouchCORE . 13

2.4 Aspects and RAM . 16

2.5 Summary . 17

3 An Overview of the Aims of a Generic Navigation System 19

3.1 Intra-Model Navigation . 20

3.1.1 Requirements . 26

Contents vii

3.2 Inter-Model Navigation . 27

3.2.1 Single Language Multi-View Navigation 31

3.2.2 Requirements . 32

3.3 Software Product Line Navigation . 33

3.3.1 Feature Models . 34

3.3.2 Impact Model . 37

3.3.3 Conflict Resolution of Features . 38

3.3.4 Requirements . 40

3.4 Navigation of Model Reuse . 41

3.4.1 Requirements . 44

3.5 Summary . 45

4 Implementation 46

4.1 Navigation Metamodel . 46

4.1.1 Navigation Metamodel Evolution . 46

4.1.2 Navigation Metamodel Implementation 49

4.2 Implementation Details . 54

4.2.1 Definition of Navigation Concepts in TouchCORE 55

4.2.2 Run-Time Generic Navigation . 57

4.2.3 Architecture Overview . 59

4.2.4 Navigation Algorithm Description . 62

Contents viii

4.3 Summary . 63

5 Testing 64

5.1 Test Suite . 65

5.2 Summary . 70

6 Related Work 71

6.1 Survey of Navigation Systems . 73

6.1.1 StarUML . 73

6.1.2 MagicDraw . 74

6.1.3 Visual Paradigm . 75

6.1.4 Sparx Enterprise Architect . 76

6.1.5 Overview . 77

6.2 Summary . 78

7 Conclusion 80

7.1 Overview and Contributions . 80

7.2 Future Work . 82

7.2.1 Filtering . 82

7.2.2 Graphical User Interface for Defining Navigation Mappings 82

7.2.3 Automatic Testing of Navigation System 83

ix

Bibliography 84

A List of Tests 88

B Navigation System Pseudo-Code 104

x

List of Figures

2.1 A generic description of the architecture of Perspectives along with related

Languages and Models associated with the Perspectives. Initially created by

Ali et. al. [1]. 11

2.2 An example of a simple feature model and goal model created in TouchCORE. 15

3.1 A Class Diagram showing some of the concepts that would be used to model

an airline booking system. 21

3.2 Two views of the navigation bar for the Class Diagram in Figure 3.1. 22

3.3 The Class Diagram shown in Figure 3.1 after the WorkPosition class has been

selected within the navigation bar. 23

3.4 Two views of the navigation bar for the Class Diagram in Figure 3.1 with the

Inter-Language mappings included. 29

3.5 Two views of the navigation bar for the Feature Model shown in Figure 2.2. . 35

xi

3.6 The navigation bar showing all three sections for the realization model Fixed

Wheel. 37

3.7 The navigation bar showing all three sections for the realization model Wheels.

The realization model is associated with two features which are shown in the

conflict resolution section of the navigation bar. 39

3.8 An example of the navigation bar functionality in the case of reuse. 43

3.9 An example of the navigation bar functionality in the case of double reuse.

One can click on one of the previous models from within the reuse section. . 44

4.1 The original description of the navigation metamodel as outlined by Ali et

al. [2]. 47

4.2 The metamodel for the navigation system within TouchCORE. 50

4.3 An architecture diagram displaying the main components of the navigation

system. The numbered circles represent the initiation of algorithms found

within the pseudo-code specified in Appendix B. 60

xii

List of Tables

5.1 An overview of each of the requirements defined within Chapter 3 along with

which tests were used to ensure their completion. 67

6.1 An overview of the survey of navigation tools in related software modeling

products. 77

A.1 A list of the tests performed to validate the implementation of the navigation

system. 88

xiii

List of Acronyms

CORE Concern-Oriented Reuse.

CRUD Create, Read, Update, Delete.

DSML Domain Specific Modeling Language.

EMF Eclipse Modeling Framework.

GUI Graphical User Interface.

HCI Human-Computer Interaction.

RAM Reusable Aspect Model.

SPL Software Product Line.

UML Unified Modeling Language.

1

Chapter 1

Introduction

The practice of Model Driven Engineering (MDE) [3] recommends the use of several different

models which can be used in tandem to describe the overall construction of a given software

system. When programming within this methodology, models representing different facets

of the system often overlap resulting in elements being present in multiple different models

of the same system. These different models often draw from multiple modeling languages

and/or contain several different views within the same model in order to achieve the goal of

completely describing the system.

When describing a system with multiple models, it is important for a user to be able

to easily move between different models (which are often related) and different parts of

an individual model in order to easily view the current description of the system - and

understand it more fully - and to update the contents of the models as needed. Several

1. Introduction 2

popular UML tools utilize navigation systems for this purpose, such as StarUML [4] and

MagicDraw [5] which both contain tools to allow users to move between models of different

languages in a streamlined way. In addition, due in part to the increased acceptance of

Domain Specific Modeling Languages (DSML) [6], it is not sufficient for the navigation of

models to be limited to a small set of predefined languages. Rather, it is necessary for the

navigation to be amenable to a wide range of different languages and be easily extended to

support new languages as they inevitably are introduced.

1.1 Motivation

In the context of this thesis, we consider the navigation system of TouchCORE [7] - a

software modeling tool currently home to an expanding variety of languages. TouchCORE

is a modeling tool built to facilitate both the description and use of different modeling

languages [8] [1] as well as the reuse of software concepts [9] through the use of Software

Product Lines (SPL) [10].

TouchCORE has grown to include the definition of Perspectives [8] [1] - a concept

implemented to allow users to seamlessly describe a software system using several different

languages while ensuring consistency between concepts which span multiple models.

Perspectives have greatly increased the available combinations of different models within

TouchCORE and create the possibility of many more being added in the near future. The

current navigation system is hardcoded into the system for each language that is currently

1. Introduction 3

present. As a result, when a new language is added to the system, members of the

TouchCORE team must specifically implement the intended functionality of the navigation

system largely from scratch and integrate it into the existing tool. This process requires a

considerable amount of work from the developer any time they want to add a new language

to TouchCORE.

As such, TouchCORE now requires a generic approach to navigation which can be easily

expanded as new languages and combinations are introduced to the system. In addition,

each of these models and Perspectives interacts with the Software Product Line models that

represent the basis of TouchCORE. As navigation represents an important component of

successful development, a tool that can perform these functions is of great importance to

TouchCORE as its capabilities expand.

1.2 Contributions

In this thesis, we outline the functionality and implementation details of a newly integrated

generic navigation system within TouchCORE. Specifically, we focus on the incorporation

of a navigation tool within the context of the Perspective system which is currently being

introduced into TouchCORE. The specific contributions to the navigation system are as

follows:

• A generic system for navigation within an individual model which allows users to easily

1. Introduction 4

determine what concepts exist within a given model, highlight specific elements and

which updates dynamically to respond to changes within the model.

• A generic system to facilitate navigation between different models within a Perspective

and between elements located in different models which are mapped together through

the Perspective system.

• Navigation within multi-view models both between views and within a single view of

the model.

• Support for Software Product Line models - specifically Feature Models [11] and Goal

Models [12] which are the basis for the concern - the basic building block of development

within TouchCORE.

• Support for navigation of reused models and concerns.

• A system for defining the specifics of navigation for modeling languages which are newly

implemented into the TouchCORE tool and for navigating newly defined Perspectives.

Along with the description of these contributions, we outline the testing used to verify that

each of the aforementioned systems are able to conform to the needs of TouchCORE users.

1.3 Thesis Outline

We now outline the thesis:

1. Introduction 5

• Chapter 2 - Background: In this chapter we introduce the concepts required to

understand the contributions outlined in the rest of the thesis. We specifically

introduce the concepts of Domain Specific Modeling Languages, Perspectives, the

TouchCORE tool, Aspects, and RAM models.

• Chapter 3 - Overview of Generic Navigation: In this chapter, we outline the specifics

of our intended navigation tool and justify the need for the features included in the

system.

• Chapter 4 - Implementation: In this chapter, we first outline the metamodel of the

navigation system as well as describe its evolution through development. Later, we

outline the specifics of the implementation of the navigation system.

• Chapter 5 - Testing: This chapter centers around the tests run to validate the

navigation system and outlines our testing methodology.

• Chapter 6 - Related Work: In this chapter, we perform a survey of existing software

modeling tools and compare their navigation systems with the one outlined in this

thesis.

• Chapter 7 - Conclusion: In this chapter we summarize our contributions and discuss

opportunities for future work.

6

Chapter 2

Background

In this chapter, we define the concepts necessary for understanding the context in which this

thesis is written. This includes the definition of several terms relevant to the development

of the TouchCORE tool and models which can be described within the tool.

2.1 Domain Specific Modeling Languages

When trying to create a software based product within a given field, one large area of

difficulty can be the disconnect from experts in the field who possess knowledge of the

specifics of how the system should function and programmers who are implementing the

product and whose knowledge is based largely in the programming languages which will be

used to encode it. In order to create a successful product in a specific domain, it is necessary

to remedy this disconnect so that the required functions of the system can be specified by the

2. Background 7

domain experts and then encoded by the programmers in a way that conforms to the needs

of users. However, attempting to fix this problem verbally or without the aid of the correct

systems can require considerable time and resources - leading to the need for a technological

solution to this problem.

The solution to this gap can be provided by a Domain Specific Modeling Language

(DSML) [6]. These are modeling languages which include domain specific concepts -

allowing for the structure of the system to be outlined graphically by the domain experts

without requiring an understanding of traditional programming languages which have a

comparatively lower level of abstraction. These languages can also be created with the

ability to generate code which represent the high level definition of the system which is as

yet to be fully implemented. This allows for the domain experts to use a DSML to clearly

define the outline of the system without the need for specific programming knowledge

before handing off the project to developers who can build upon the structure to complete

the implementation of the product.

2.2 Perspectives

In many cases, it is not sufficient to use a single modeling language to describe the entirety

of a system. As such, models from multiple different languages are often used to describe a

system - with each having the goal of outlining a different facet of the overall construction

- as well as prescribe the actions available within the system. Due to the fact that these

2. Background 8

individual models are used to outline the same product, it is likely that they will overlap

each other. As such, it is important that the implementations of the various models are kept

consistent to ensure that the final set of models results in a coherent whole. Users tasked

with the goal of ensuring this consistency are likely to find difficulty if not provided help in

doing so.

While there are several proposed solutions to this problem, the one that is largely

considered in this thesis is the use of Perspectives [8] [1] to ensure consistency between

interconnected models. A Perspective is a grouping of different modeling languages - or a

single modeling language being used in multiple different roles - which, taken together, are

able to represent the whole of a system better than a single language is able to. In

addition, Perspectives are constructed to aid users in ensuring that when modeling a

system the set of models remains consistent throughout by either preventing the creation of

inconsistencies or by highlighting and removing inconsistencies after they have been

introduced.

While Perspectives can be created for a single modeling language in a specific role, this

thesis largely focuses on how they are used to model multiple different languages or a single

language which is used in different roles. A role, in this context, is used to describe the

specific function that a given language is performing. For example, in certain situations,

the Class Diagram language may be used to perform the role of a Domain Model while

in others it can be utilized as a Design Model. Due to the similarities between these two

2. Background 9

types of models, the Class Diagram language can perform the function of both with only

slight changes in functionality (e.g., operations are allowed only in Design Models but not

in a Domain Model). As such, the Design Model and Domain Model are referred to as two

different roles of the Class Diagram language. In a Perspective, both of these roles may be

present and, in these cases, are handled as independent languages. Each of the languages

which are used in a Perspective is assumed to have no prior connections or constraints with

the other languages in the Perspective and is defined by the specific language actions which

are available to a modeler.

Language actions allow for the creation and editing of models within a language and,

in general, allow a user to add or remove elements from the model, change the qualities

of an element or connect elements within the model. An example of a language action

could be creating a class within a Class Diagram or removing an actor from a Use Case

Diagram. Language actions are at a higher level of abstraction than CRUD (Create, Read,

Update, Delete) operations and one language action may consist of many CRUD operations.

While the languages themselves - and by extension their language actions - are independent

before being added to a Perspective, the corresponding Perspective actions may either be

independent of other languages or interconnected, causing a change in another model when

they are performed to foster consistency between models. A Perspective action which only

affects the current model is referred to as a re-expose action because it reuses a language

action as is. A Perspective action which changes a language action to affect other models

2. Background 10

within the Perspective is called a redefine action. As the former acts in a similar manner to

how they would act outside of a Perspective, we do not go into more detail on them here.

To illustrate the benefits of using a Perspective to define interconnected models, we turn

to an example based on a Perspective created from two languages - the Class Diagram and

Sequence Diagram languages. Many actions taken within each of the individual models,

such as the creation of a class within the Class Diagram, do not require any changes within

the other models within the system - as such these are re-expose actions and function as

they would outside of the Perspective. However, in certain cases, changes in one model

must propagate to other models. Sequence Diagrams are used, in this context, to define

the behaviour of a single operation within the Class Diagram. As such, if the name of the

operation were to change within the Class Diagram, the name of the Sequence Diagram

must also change to remain consistent with the operation and vice versa. Thus, a redefine

action is created to ensure that whenever the operation name or Sequence Diagram name is

updated by the user, the other is updated accordingly. As such, through explicit definition

of the actions within a Perspective, a user can be more confident that the models they create

will remain consistent as they edit them.

Within a Perspective, Language Element Mappings are used to explicitly define how

elements from the metamodels of different modeling languages are interconnected. However,

these connections are not directly visualized when a user is modeling a system within a given

Perspective. This may lead to difficulty for modelers when trying to understand how the

2. Background 11

elements of a given model are interconnected with elements of another model at run-time.

Much of the work in this thesis is based upon ensuring that users are quickly able to see

how changes made to a specific model affect others within the system and allowing users to

quickly move between models within a Perspective.

Figure 2.1: A generic description of the architecture of Perspectives along with related
Languages and Models associated with the Perspectives. Initially created by Ali et. al. [1].

Figure 2.1 describes a generic version of the three levels pertinent to the creation of

Perspectives. The Language level holds three languages (L) which have been implemented

by language designers. Each of these languages contains a metamodel (MM) describing the

2. Background 12

language concepts as well as a set of language actions (LA). The Perspective level details a set

of two Perspectives which draw on one or more of the languages and reuse their metamodel(s).

The Perspectives also draw on the Language actions of their relevant language(s) in order

to create a set of Perspective actions (PA) either by re-exposing or redefining them. P1

represents a single language Perspective and, as such, each of the Perspective actions simply

re-exposes one of the language actions from L1. P2 represents a multi-language Perspective

and thus draws on both L1 and L2 to create a set of Perspective actions through re-exposing

and redefining. P2 also contains a list of Language Element Mappings to define how elements

from L1 and L2 are interconnected. Within the Model level are a set of models created from

one of the defined Perspectives. M1 represents a model which has been created from the

single language Perspective P1 and thus does not need to maintain any consistency with

other models. M2 and M3 are a pair of interconnected models which are defined based on

P2. They each have a set of elements which draw on one of the metamodels present within

P2 - and by extension drawn from L1 and L2. In addition, they utilize the mappings defined

in P2 to ensure consistency of interconnected model elements.

To exemplify the purpose of each of the three levels in Figure 2.1, we turn back to the

case of the inter-related Class Diagram and Sequence Diagrams. In this case, the Language

level would house information related to the Class Diagram (L1) and Sequence Diagram

(L2) languages including their respective metamodels (MM1, MM2) and their lists of

language actions (LA1, LA2). Within the Perspective layer, a multi-language Perspective

2. Background 13

(P2) would be used to define the relationship between the two languages. The Perspective

would contain both of the metamodels (MM1, MM2) as well as the set of Perspective

actions (PA) such as those outlined above. Finally, when initializing models, instances of

both Class Diagram (M2) and Sequence Diagram (M3) will be created within the Model

layer along with mappings between pertinent elements - such as between operation names

within a Class Diagram and Sequence Diagram names - which will ensure that these model

instances remain consistent to the mapping rules set within the Perspective layer.

2.3 TouchCORE

Software reuse is the process creating a new piece of software by building on previous work

rather than starting work from square one [13]. Concern-Oriented Reuse is a framework

that has been developed to facilitate this method of development [9]. The framework is

based around the concept of a Concern which is a specified unit of reuse which allows for the

development of new products. We now speak briefly on the structure of a Concern as the

main developmental work of this project has been done in TouchCORE [7], which is a product

that is built to facilitate Concern-Oriented Reuse and whose main unit of development is

the Concern. However, we do not delve into specific detail regarding the methodology of

Concern-Oriented Reuse as it is not the focus of this thesis.

A Concern can be thought of as an instance of a Software Product Line (SPL) [10]

which is a grouping of software systems which share a common set of features and which are

2. Background 14

implemented from a common set of artifacts. A set of programs within SPL development is

referred to as a family of systems and when a new system is developed within the family,

the common properties of the family are explored first before delving into the specifics of the

new system. Within a family, a feature represents a piece of functionality which may or may

not be present in a specific product. Within Software Product Line development, features

are often grouped into a feature model [11] in order to specify the structure of the SPL and

determine the relationships between different features.

A common form of feature model is that of a feature diagram - an example of which

can be seen below for the simple situation of modeling a bicycle in Figure 2.2a. A feature

diagram models the various features of a system in a tree structure with certain features

acting as the parents of other features. Features may be mandatory or optional based on

the status of their parent feature and also can require that other features be present or

exclude other features within the diagram. Within a Concern, the feature diagram acts as

the launching point for further development and, as such, is the first model shown when

opening the Concern.

The second type of model found within a Concern is the goal model [14]. Goal models

are often used early on in the development of a product to facilitate the definition of the

requirements of a system [15]. They allow users to analyze high level objectives of a system

and see how different approaches affect the completion of said objectives. Within a Concern,

the standard method of displaying goal models is through the use of an impact model - an

2. Background 15

(a) A simple feature model modeling a bicycle. (b) A simple goal model made in TouchCORE

Figure 2.2: An example of a simple feature model and goal model created in TouchCORE.

example of which can be found in Figure 2.2b. A goal is displayed along with features or other

goals which may contribute to the completion of the main goal of the model. The features

impart contributions on the goal to visualize whether they have a positive or negative impact

on the main objective of the model. Higher positive numbers represent features which have

a larger positive impact on the goal and negative values point to features having a negative

impact on the goal. The features found within the impact model(s) are a subset of the

features defined within the feature diagram of the Concern.

In addition to these two types of models, Concerns are also populated with a set of

realization models which may come from a variety of languages. These realization models are

related to individual features found within the feature model and are tasked with describing

a specific implementation of those features. Together with the feature and impact models,

the realization models round out the definition of a Concern.

As mentioned briefly above, TouchCORE (CORE here standing for Concern-Oriented

2. Background 16

Reuse) is a tool built in order to aid in Concern-oriented development [9]. Within

TouchCORE, the Concern is treated as the basic building block upon which to define a

software system. When developing within the tool, a user is initially shown the Concern for

their chosen product with other languages functioning as realization models of individual

features defined within the feature model for the Concern. The development and testing

work for this thesis has been performed within the TouchCORE tool as has the

implementation of Perspectives as defined in 2.2. Thus, from this point on, all development

can be assumed to be performed within TouchCORE unless otherwise noted.

2.4 Aspects and RAM

TouchCORE has been built as an improvement on the aspect-oriented modeling software

TouchRAM [16]. As such, much of the functionality of TouchRAM is still pertinent to the

development of this thesis - specifically the RAM (Reusable Aspect Model) [17] language

which is used as an important test case for the navigation system in Section 3.2.1. As such,

we briefly outline the structure of an Aspect Model now.

Aspects in TouchRAM - and therefore TouchCORE - are a multi-view model which is

used to model several facets of a system within a single modeling language. Often, as noted

in Section 2.2, a system description requires modeling in multiple different ways. Whereas

in a Perspective this is done through connecting disparate languages - or the same language

used in different contexts - a multi-view model collects several different representations of the

2. Background 17

system into a single modeling language with several interconnected views. We now overview

the specific case of a RAM aspect and its multiple different views.

The first view seen when opening an Aspect is the Structural View which functions as a

UML [18] Class Diagram. Classes are used to describe the overall structure of the system and

can include operations, attributes and a class hierarchy in much the same way as a normal

Class Diagram. Each Aspect contains a single structural view. In addition, each class within

the structural view has a State View associated with it. Much like how the Structural View

is a Class Diagram representing the system, the State View is represented by a UML state

diagram which defines the protocol of the class. Finally, the Aspect contains several Message

Views which are associated with operations within the Structural View. Message Views are

represented by UML Sequence Diagrams and describe the operation and how it functions

when executed. As is clear, each of the different views within an Aspect are interrelated -

with the whole of the model describing more of the system than would be possible with any

one model.

2.5 Summary

In this chapter, we introduce several concepts which are necessary for the understanding of

the contributions of this thesis. Specifically, we outline the use of Domain Specific Modeling

Languages, the concept of a Perspective, the TouchCORE tool, and the use of Aspects

and RAM models. In the next chapter, we outline the intended functionality of a generic

2. Background 18

navigation system within TouchCORE.

19

Chapter 3

An Overview of the Aims of a Generic

Navigation System

Within a modeling tool such as TouchCORE, it is necessary to be able to navigate between

models and their elements to allow users to easily view different facets of their work. To

this end, a system needs to be implemented to provide users with this functionality in a

streamlined way. Due to the increased breadth of available modeling languages, we aim

for this functionality to not only be available to users under a predefined set of languages.

Rather, we seek to create a system which is able to handle any language which a user defines

within the tool. In addition, we intend for our system to be able to navigate between different

modeling languages which are defined within a Perspective (see Section 2.2). In this chapter,

we outline the specifics of our goals for the system as well as motivate the specific needs that

3. An Overview of the Aims of a Generic Navigation System 20

shaped them.

3.1 Intra-Model Navigation

The most basic form of navigation that should be available is movement between concepts

found within the same model. When modeling a large system with many parts, it can become

difficult for a user to keep track of the position of all facets of a system at once. As such,

streamlined navigation between these concepts is necessary to provide a comfortable user

experience. Inherently, this type of navigation consists of only concepts of the same language

(henceforth referred to as Intra-Language navigation).

Figure 3.1(a) shows a fairly straightforward Class Diagram that a user might create to

model the concepts of an airline booking system. Even within a simple system such as this,

which does not contain the full functionality which would be required for a comprehensive

modeling of an airline booking system, the amount of elements present quickly balloons to

a number which may be difficult for a user to keep track of. As such, a navigation system

is tasked with accounting for all of the elements which are present within the model as well

as presenting them to the user in a way that allows the modeller to quickly discern this

information.

To solve this issue, we propose the use of a navigation bar which can contain a list of

the elements present in the given model. An example of the proposed functionality is shown

in Figure 3.2a which lists all of the pertinent model elements from the corresponding Class

3. An Overview of the Aims of a Generic Navigation System 21

Figure 3.1: A Class Diagram showing some of the concepts that would be used to model
an airline booking system.

Diagram. In this implementation, all of the classes from within the system are shown in

alphabetical order so that a modeller may easily find any concept from within the system or

discern that the element is not present.

The goal of a navigation system being utilized within a single model is to allow users to

orient themselves within the model. To streamline this process, when a user clicks on one

of the elements that belongs to the current model in the navigation bar, it should highlight

the element in the model in order to clearly define where it is located. This functionality

3. An Overview of the Aims of a Generic Navigation System 22

(a) The navigation bar with only the
base information shown.

(b) The navigation bar with the class
hierarchy shown for one class.

Figure 3.2: Two views of the navigation bar for the Class Diagram in Figure 3.1.

can be seen in Figure 3.3 which displays the same Class Diagram found in Figure 3.1 after

the WorkPosition class has been selected within the navigation bar.

In addition to displaying some of the model elements within a system in a concise manner,

it is also important to present a visualization of how the different parts of the model are

interlinked. For instance, in a Class Diagram, it may be useful for a user to be able to

view the hierarchy of a given class so that they may be able to understand which classes

extend other classes in the model. As such, the navigation system should also be able to

recognize links between given model elements. To display this clearly, the navigation bar

should display the super-classes for a given class underneath the listing of a given class. This

3. An Overview of the Aims of a Generic Navigation System 23

Figure 3.3: The Class Diagram shown in Figure 3.1 after the WorkPosition class has been
selected within the navigation bar.

type of connection between different model elements within a single model is referred to as

an Intra-Model (and thereby Intra-Language) mapping. Mappings of this kind provide the

basis of generic navigation within a single model.

When viewing Intra-Model mappings such as this, a user should be able to toggle the

mapping on and off depending on whether the information provided by the mapping is

pertinent at a given moment. This is achieved by presenting the user with a drop down

menu for elements which have mappings associated with them. In the case that a user

3. An Overview of the Aims of a Generic Navigation System 24

wishes to view the links related to a specific element, they may open the menu to view other

elements which are mapped to it. As an example, in the Class Diagram, if a user wishes

to view the class hierarchy of the Pilot class, they may toggle open the drop down menu

to the left of Pilot in the navigation bar. This opens up the drop down menu as shown in

Figure 3.2b to reveal the hierarchy information. When they finish viewing this part of the

system, the modeller can simply close the drop down menu so that the screen is no longer

cluttered with information on the Pilot class.

Not all of the information present within a model is valuable for navigation. For instance,

in the case of the Class Diagram, it may not be very common for a modeler to navigate

between different parts of the model based on a specific attribute of a class. In addition,

given that navigation based on attributes is rare, including them within the navigation bar

may represent a hindrance to the user as they may make it difficult for the user to find the

parts of the model which are of interest. In cases such as this, it is important that only parts

of the model which are useful for navigation be included within the navigation bar. However,

it would not be useful to a modeler to have to make these decisions during every instance

in which they wanted to create a new model. Thus, the concepts which are to be shown in

the navigation bar should be defined at the system level and be automatically generated for

each new model.

To facilitate this automatic generation, we turn back to the concept of an Intra-Language

mapping. In order to ensure that only pertinent concepts are shown, only model elements

3. An Overview of the Aims of a Generic Navigation System 25

which are part of an Intra-Language mapping are included within the navigation bar. When

the user generates a given model, the mappings between concepts within the model should

also be generated and define which parts of the model are valuable for navigation and which

of them should not be included. In Section 4.2.1 we outline the method by which language

designers can define the Intra-Language mappings for an individual language and thereby

what types of elements are included in the navigation bar for an instance of that language.

Thus far, we have only outlined the way that the navigation bar should function for a

static model where all of the elements have already been defined. However, this does not

accurately represent the way in which a user is likely to use a product such as

TouchCORE. Indeed, when attempting to model a system, users are likely to wish to add

or remove elements and connections found within their models dynamically. When making

these changes, they are likely to still wish to see the state of the system within the

navigation bar and move around the model to view the pertinent portions. As such, the

navigation bar should be able to respond to changes in the model as they occur and allow a

modeler to immediately see how changes made to the model affect its overall structure.

When a user adds an element to the model, the system should automatically check

whether that element should be included in the navigation bar - based on the specifications

outlined above. In the case that the new element is of a type that should be seen within

the navigation bar, it should be added to the correct section of the bar. In addition, any

connections that it has should also be displayed within the section. In the inverse case, when

3. An Overview of the Aims of a Generic Navigation System 26

an element is removed from the model, it should also be removed from the navigation bar.

When this process occurs, all of that element’s connections to other model elements should

also be removed at the same time. This ensures that a user does not try to navigate to a

part of the model that no longer exists. Finally, if a user changes the name of the element,

that change should be propagated to all instances found within the navigation bar. This

functionality should ensure that the navigation bar accurately reflects the current state of

the model at all times.

3.1.1 Requirements

We now formally list the requirements for Intra-Model navigation within TouchCORE:

3.1.1: The navigation system shall be able to outline what concepts exist

within a given model while also being concise enough to not overwhelm the

user with information.

3.1.2: The navigation system shall make clear how elements of a model are

related to each other within the structure of the navigation bar section for

that model.

3.1.3: The navigation system shall automatically update the navigation bar

section of a model to reflect changes made to the model such as adding

elements, deleting elements, or changing their contents.

3. An Overview of the Aims of a Generic Navigation System 27

3.1.4: The navigation system shall allow the user to locate a model element

within the current model.

3.1.5: The navigation system shall automatically generate navigation bar

sections to reflect mappings defined by language designers.

3.2 Inter-Model Navigation

As describing a software system often necessitates the creation of several interlinked models,

navigation within a modeling software cannot be confined to only movement when navigating

within a single model. Ideally, a modeler is able to navigate between the different models

describing a system with the same fluidity that is afforded to them within a single model. To

facilitate this, we must extend the functionality described in Section 3.1 beyond the confines

of a single model. In addition, given that different models describing the same system often

represent disparate modeling languages, we must also account for navigation between models

of different languages. Navigation of this kind is referred to as Inter-Language navigation.

Within TouchCORE, navigation between languages is generally performed using the

functionality of a Perspective. A Perspective, as described in Section 2.2, is an interlinking

of several different languages (or instances of the same language being used in different

roles) where language concepts are mapped to each other to facilitate the creation of

multiple connected models. An example of this would be an extension to the Class

3. An Overview of the Aims of a Generic Navigation System 28

Diagram shown in Figure 3.1 where a user may wish to describe a Use Case Model for the

airline booking system alongside the Class Diagram definition above to gain a more holistic

understanding of the system. As these two models are inherently connected, a user is likely

to want the option to quickly navigate between the two models. As such, the navigation

bar should support this type of navigation so that the user can, with a single click, switch

to another model describing the system.

Figure 3.4a shows the proposed setup of the navigation bar in the case of interlinked

models from within the same perspective. These types of links are referred to as Inter-Model

mappings and, in the case that the two models are of different modeling languages, are more

specifically referred to as Inter-Language mappings. In a similar manner to the classes shown

in Figure 3.1, a drop down menu is available showing each of the other models which should

be navigable from the current model. The name of the drop down menu should be based on

the role of the model within the given perspective. Once that drop down menu is opened,

clicking on the model within the navigation bar should navigate to the view of that model

(multi-view models are outlined briefly in Section 2.4) so that it is now the model currently

on screen.

In addition to navigation directly between models as described above, modelers may

wish to navigate between related concepts in different models. For instance, in the case of

the connected Class Diagram and Use Case Diagram, the actors described in the Use Case

Diagram view of the system may be related to the classes defined within the Class Diagram.

3. An Overview of the Aims of a Generic Navigation System 29

(a) The navigation bar with the Inter-
Language mappings to other models
shown. The Domain Model is mapped
to a Use Case Model and a Design
Model.

(b) The navigation bar with Inter-
Language mappings between elements
shown. The class Passenger is mapped
to the Actor Passenger in the Use Case
Diagram.

Figure 3.4: Two views of the navigation bar for the Class Diagram in Figure 3.1 with the
Inter-Language mappings included.

As such, a user may be looking at a specific class and wish to see how the actor related to that

class is positioned within its respective diagram. To allow for the user to understand these

connections more easily, the navigation bar should list the links between model elements of

the current model and their related model elements in connected models in the same way

that it lists the links between the models themselves. Therefore, in addition to showing the

Intra-Language mappings of a given class, the drop down menu for that class should list the

Inter-Language mappings associated with the given class. These Inter-Language mappings

3. An Overview of the Aims of a Generic Navigation System 30

should be classified alongside their Intra-Language counterparts as the user is likely not to

see a meaningful difference between navigation between elements within the current model

and navigation to an element in another model. An example of this functionality for the

Class Diagram found in Figure 3.1 can be seen in Figure 3.4b.

When a user selects one of the model elements in an Inter-Language mapping defined

within the navigation bar, the system should again perform a view switch to the model

containing the selected model element. It should also, similar to the functionality for selecting

an element within the same scene, highlight the specific model element within the newly

displayed model - allowing the user to see where in the model it is located.

In either instance of navigating an Inter-Language mapping, the navigation bar should

update to reflect the new model that is currently being displayed. A new section should be

added to the navigation bar which describes all of the pertinent concepts within the model

as outlined in Section 3.1 as well as all of the Inter-Language mappings as described above.

However, given that modelers may make frequent switches between the models describing a

single system, simply adding a section to the navigation bar when this switch occurs may

result in a bloated navigation bar which no longer provides use to the user. As such, when

navigating an Inter-Language mapping, the navigation bar element for the original view

should be removed from the bar.

3. An Overview of the Aims of a Generic Navigation System 31

3.2.1 Single Language Multi-View Navigation

Thus far, our outline of navigation has been limited to either navigation within a specific

model or navigation between models of different languages. However, this does not

encapsulate the full range of possible models within TouchCORE. Specifically, this

dichotomy leaves out the possibility of a model which contains multiple different

interlinked representations.

An example of this situation can be found within the RAM language outlined in

Section 2.4. In this language, several types of representations of the same system are

collected into a single language. This idea is similar to the interrelated models which were

used to describe Inter-Language mappings in Section 3.2. However, in this case, the

different views of the RAM model are part of the same representation and thus are more

closely related than the previous case. For instance, each message view (Sequence Model)

describes the functioning of a single operation found within the structural view (design

model). Due to this close relationship, navigation between these different representations

should be handled in an alternative manner to the standard Inter-Model navigation

outlined above.

First, navigation of this type is categorized as Intra-Language (rather than

Inter-Language) navigation. This is a distinction whose importance will become clearer in

Section 4.1.2. Furthermore, when navigating these connections, the information about the

source representation - that is, the view from where the navigation action begins - may

3. An Overview of the Aims of a Generic Navigation System 32

continue to be pertinent after moving to the new representation. For instance, when a user

navigates from a structural diagram to the message view which describes a given operation,

it is likely beneficial to allow the navigation information for the former model to remain in

place in the navigation bar. As such, the element for the message view should be appended

to the navigation bar after the element for the structural diagram - without removing any

elements from the bar. Conversely, in the case that a user wishes to navigate from one

sequence model to another, it is likely not be beneficial to the user to continue to see the

navigation information of the previous view. As such, in a similar manner to navigation of

Inter-Language mappings, the navigation bar element of the first message view should be

removed prior to appending the element for the new message view to the end of the

navigation bar.

3.2.2 Requirements

We now formally list the requirements for Inter-Model navigation within TouchCORE:

3.2.1: The navigation system shall show the user how the current model

is inter-linked with other models by including related models and model

elements in the navigation bar section of a given model.

3.2.2: The navigation system shall allow the user to navigate between

models based on the links between models and the links between model

elements.

3. An Overview of the Aims of a Generic Navigation System 33

3.2.3: The navigation system shall update the navigation bar automatically

to reflect user navigation between models.

3.2.4: The navigation system shall update the navigation bar automatically

to reflect changes in the links between models and model elements.

3.2.5: In multi-view models, the navigation system shall show the user how

different views of a given model are related to each other.

3.2.6: The navigation system shall allow a user to navigate between the

different views of a model.

3.3 Software Product Line Navigation

As mentioned in Section 2.3, in addition to the description of a variety of modeling languages,

TouchCORE also provides functionality for describing Software Product Lines (SPL) within

the tool. As such, in order to ensure that all models described within TouchCORE are able

to be navigated effectively, the navigation bar must include functionality for these types of

models as well. However, as models in this category represent a different set of functionality

from a general model, the navigation bar must also handle them differently. Software product

line models form the basis of any modeling in TouchCORE and, as a result, the navigation

bar’s functionality is not variable for these models as it was in the previous two sections.

Instead, the role of the navigation bar is static and treated as a special type of navigation

3. An Overview of the Aims of a Generic Navigation System 34

within TouchCORE. In this section, we describe the differences pertinent to navigation as

well as the aims of the navigation bar for these types of models.

3.3.1 Feature Models

Describing software product lines consists of two types of models, the feature model and

the impact model. We begin by outlining the goals of navigation of feature models. Each

feature model is populated with a set of features which are connected in a tree structure.

An example of this functionality can be seen in Figure 3.5a which shows the navigation

bar for the Feature Model seen in Chapter 2. These individual features can themselves be

realized by one or many models within the Concern that the feature model is describing.

Features may also require other features - meaning that if one feature is selected, the other

must be as well - or exclude other features - the opposite, two features cannot be selected at

the same time. Thus, navigation within the feature model only requires navigation between

individual features. Similar to the outlined functionality for Intra-Model navigation seen in

Section 3.1, each of the individual features is listed within the navigation bar. In addition,

any instances of exclusion or inclusion between features are listed in a similar manner to

that of class hierarchy found within that same section. Thus, within a feature model, the

functionality is generally outlined as navigation of an automatically defined language within

TouchCORE.

Outside of the elements found within the diagram, the navigation bar for a feature model

3. An Overview of the Aims of a Generic Navigation System 35

(a) The navigation bar for the
feature model.

(b) The navigation bar for the
feature model with mappings to
other features and to Artifacts.
The excludes represents a mapping
within the model and the Artifact
represents a realizing model.

Figure 3.5: Two views of the navigation bar for the Feature Model shown in Figure 2.2.

also includes elements of other models which should be navigable from the feature model.

The clearest instance of this would be for navigation to the impact model of the Concern

from its feature model. Within the feature model, each of the elements which are present

within the impact model for the Concern are listed within their own drop down list in the

navigation bar. This list includes all of the impact nodes as well as all of the features which

are present within the impact model. If a user clicks on one of the impact nodes, the system

should navigate to the view for which that node is the root.

3. An Overview of the Aims of a Generic Navigation System 36

Elements within the feature model can also be realized by one or many models found

within the Concern. As a result, it is necessary for a user to easily be able to navigate into

models which perform these realizations. In order to provide this functionality, each of the

models which realizes a specific feature is listed within a drop down menu for that feature.

Clicking on the name of one of the models navigates the user to that model in a similar

manner to how navigation to the impact model was described. This functionality is shown

for the Feature Model from Chapter 2 in Figure 3.5b.

While navigation away from a feature model to another model has many of the same

characteristics as navigation of Inter-Language mappings outlined above, this type of

navigation does not take exactly the same form. When navigating Inter-Language

mappings, the intention is to replace the current model onscreen with a new model that

represents the same part of the system in a different way. However, when navigating from

the feature model - which is the launching point for a Concern - the navigation should

simulate moving into one part of the Concern - whether that be the goal model of the

Concern or a model realizing a specific feature. To represent this visually, rather than

replacing the section of the navigation bar of the previous model with a new section

describing the new onscreen model, a section should be added to the navigation bar

alongside the section for the feature model. In the case of navigating into a realization

model for a specific feature, the bar should also add a section reminding the user which

feature the model is realizing. The purpose for this functionality will be further outlined in

3. An Overview of the Aims of a Generic Navigation System 37

Section 3.3.3. An example of this can be seen in Figure 3.6 where the Concern section is

seen on the far left and the feature section is seen in the middle. The final section

represents the realization model for the feature Fixed Wheel.

Figure 3.6: The navigation bar showing all three sections for the realization model Fixed
Wheel.

3.3.2 Impact Model

The second model inherent to Software Product Lines in TouchCORE is the impact model.

In TouchCORE, each Concern contains a single impact model just as it contains a single

feature model. However, unlike a feature model, a single impact model may contain several

layouts representing different ways of visualizing the goals of a system. Each goal has a

layout in which it is the root goal and this view can contain other goals which interact

with the root goal as well as features - derived from the feature model - which can interact

with goals within the layout. In order to represent this unusual model, a specific version of

navigation needs to be implemented. First, all of the impact nodes within the impact model

should be listed within the navigation bar section for this model. This includes nodes which

are not present in the layout that is currently on screen, but which are present within the

overall model. In addition, all feature nodes which are present in one of the layouts should

3. An Overview of the Aims of a Generic Navigation System 38

also be shown alongside the impact nodes. Together, the impact nodes and all of the features

shown within the impact model make up the set of impact elements and are shown within

the navigation bar for each layout on screen.

When attempting to navigate within an impact model, there are two situations which

may arise. First, the user may wish to see another layout within the model - one for which

a different goal than the current root goal is treated as the root for the layout. As such,

when a user clicks on a specific goal within the navigation bar, the system should change the

onscreen model and show the one for which the selected impact node is the root. Though

this changes what is available within the current view, it does not change the components

of the navigation bar as they are consistent for all layouts of the impact model. The other

type of action a user may wish to conduct is to highlight a feature which is present within

the impact model. When a user selects a feature from the navigation bar, that feature is

highlighted if it is present within the current layout. If it is not present, nothing occurs

as a feature may be included in several layouts so attempting to navigate to it would be

unrealistic.

3.3.3 Conflict Resolution of Features

As noted in Section 3.3.1, the feature model represents the base model used to realize a

Concern within TouchCORE. As such, navigation into other models within the Concern is

facilitated by the individual features in the feature model. Models represent specific features

3. An Overview of the Aims of a Generic Navigation System 39

and thus, when they are displayed, the navigation bar should include information relating to

the feature they realize. In the case where the model represents only a single feature within

the feature model, this new section is simple - it shows the feature which is being represented

without providing any additional options for navigation related to the feature. An example

of how this should be realized within the navigation bar can be found in Figure 3.6.

Figure 3.7: The navigation bar showing all three sections for the realization model Wheels.
The realization model is associated with two features which are shown in the conflict
resolution section of the navigation bar.

However, in certain cases within TouchCORE, a single model may be used to represent

multiple features within the same Concern. This is referred to as a conflict resolution model

- a term meaning that the model is only relevant if all of the related features are selected

and, in that case, overrides any other models related to those features. In the case of a

conflict resolution model, the section added to the navigation bar representing the feature is

more verbose in its functionality. In this situation, once a user has navigated to the model

in question, they may wish to see the other features which that model realizes. To fulfill

this need, the new section should contain a drop down menu similar to other sections within

the navigation bar. In it is a list of all of the other features which are being realized by

3. An Overview of the Aims of a Generic Navigation System 40

the current model. This can be seen in Figure 3.7 where the Wheels realization model is

associated with both Gears and Wheels and thus a conflict resolution section is created.

Clicking on one of the features within this list changes the visualization on screen to show

the realization of the model from the point of view of the feature which was clicked on.

3.3.4 Requirements

We now formally list the requirements for Software Product Line navigation within

TouchCORE:

3.3.1: The navigation system shall generate navigation bar sections for

software product line models in the same way that it generates them for

models of other languages.

3.3.2: The navigation system shall display realization models that exist

within a concern as well as how they are related to the features within the

concern’s feature model.

3.3.3: The navigation system shall outline the relationship between features

and goals found within a concern.

3.3.4: The navigation system shall allow the user to navigate between the

feature and goal model of a concern.

3. An Overview of the Aims of a Generic Navigation System 41

3.3.5: The navigation system shall allow the user to navigate to the

realization models of a given concern.

3.3.6: When navigating to a realization model, the navigation system shall

show the feature to which that model is related.

3.3.7: The navigation system shall facilitate context switches between

different views of a realization model based on different features which are

related to the model.

3.4 Navigation of Model Reuse

As noted in Section 2.3, TouchCORE is built to facilitate the reuse of models as well as

Software Product Lines. For this reason, a fully functioning navigation system for

TouchCORE needs to allow users to easily move between models and model reuses. This

navigation of reuse can occur in one of two ways - both of which we will outline in the

following section.

The first type of reuse is characterized by navigation between models within the same

Concern. Often, models used to realize different features within the same Concern contain

similar attributes which can be reused to facilitate more efficient description of models. This

type of reuse is referred to as a model extension and functions very similarly to Inter-Model

navigation as described above. When the current model has a model extension available, it

3. An Overview of the Aims of a Generic Navigation System 42

should be shown within the navigation bar of the current model as a subsection specifically

for model extensions. When clicked, the navigation system should display the model being

extended and the navigation bar should update to show the contents of the new model

onscreen as well as the feature from which it is derived (in the case of a conflict resolution,

as mentioned in Section 3.3.3, the feature from which it was originally derived should be

shown).

The second form of reuse which is pertinent to navigation within TouchCORE is defined

by the reusing of models which are not found within the same Concern - which are known

as artifact reuses. Within an artifact reuse, a specific model from another Concern is used

to help define a new model within the current Concern. As such, navigation needs to be

defined slightly differently than any Inter-Model navigation seen so far. Much like model

extensions, when a model has a defined artifact reuse, it is shown within its own submenu

within the navigation bar section for the current model. However, when that model is clicked

and the system navigates to that reused model, the navigation bar should be completely

refreshed to show the navigation bar for that new model. The Concern, feature, and model

sections within the navigation bar should be populated with new information pertaining to

the reused model’s information. In addition, an icon - an upper-case ’R’ - should be added to

the navigation bar to remind the user that they are currently working within a reused model

and to remind them to be careful of the changes they make and how they might affect the

reusing model(s). An example of this navigation bar setup can be seen in Figure 3.8. When

3. An Overview of the Aims of a Generic Navigation System 43

a user returns to the reused model, the navigation bar should replace the original sections

and the reuse icon should be removed - leaving the bar in the same state as it was before

the reuse was navigated.

Figure 3.8: An example of the navigation bar functionality in the case of reuse.

When working within reuse situations, there may be a hierarchy of reuses similar to

a class type hierarchy in java which needs to be navigated accordingly. In addition, the

two types of reuses mentioned above may both be used within the same reuse hierarchy -

a artifact reuse may in turn be the source of a model extension or vice versa. In order to

clearly describe how these situations can be navigated, a new type of section should be added

to the navigation bar. To fulfill this need, a drop down menu similar to the ones found for

other sections of the navigation bar is added below the reuse icon described above. This

drop down menu is populated with a last-in-first-out list of all of the reuses which have been

navigated to get to the current reuse model. An example of this can be seen in Figure 3.9

where TestDoubleReuse is shown to be reusing Fixed Wheel which is in turn reusing the

current model. These previous models can be returned to by clicking on their name within

the section. When a user returns to a previous model, the system should remove models

from the reuse section accordingly and this system should generalize to any number of links

within the reuse hierarchy.

3. An Overview of the Aims of a Generic Navigation System 44

Figure 3.9: An example of the navigation bar functionality in the case of double reuse.
One can click on one of the previous models from within the reuse section.

3.4.1 Requirements

We now formally list the requirements for software reuse navigation within TouchCORE:

3.4.1: The navigation system shall outline any instances of model extension

or model reuse associated with a model in that model’s navigation bar

section.

3.4.2: The navigation system shall update to automatically reflect any newly

associated instances of extension or reuse.

3.4.3: The navigation system shall allow the user to navigate into an

instance of extension or reuse.

3.4.4: The navigation system shall allow the user to return to a model from

an extension model or a reused model.

3. An Overview of the Aims of a Generic Navigation System 45

3.5 Summary

In this chapter, we outline the intended functionality of a generic navigation system. We

introduce the idea of several types of navigation, namely: Intra-Model navigation, Inter-

Model and Inter-Language navigation, Software Product Line navigation, and the navigation

of reuse relationships. In addition, we outlined a set of formal requirements for each type

of navigation. In the following chapter, we outline the implementation details of the generic

system in TouchCORE which is used to implement these navigation concepts.

46

Chapter 4

Implementation

Having outlined the functionality intended for the generic navigation bar in the previous

chapter, we now turn to the implementation details of the navigation system within

TouchCORE. In this chapter, we outline the metamodel of the navigation system as well as

the path it took from its original description before delving into the specifics of how each of

the aforementioned requirements is satisfied by the system.

4.1 Navigation Metamodel

4.1.1 Navigation Metamodel Evolution

In this section, we introduce the original outline of the navigation metamodel created by Ali

et al. [2]. This metamodel, along with the preliminary implementation details outlined by Ali

4. Implementation 47

et al. provide the foundation from which our implementation has grown. We also overview

the changes made to that original conception of the metamodel in order to successfully

create a navigation system in TouchCORE which conformed to the specifications outlined

in Chapter 3. The details of the purpose of each of the metamodel elements is saved for

Section 4.1.2.

Figure 4.1: The original description of the navigation metamodel as outlined by Ali et
al. [2].

Figure 4.1 shows the original conception of the metamodel. As with the later

implementation of the metamodel, the original metamodel was described within the

context of the Eclipse Modeling Framework (EMF) and in accordance with that

framework, is expressed within the metamodeling language ECore. Therefore, each of the

concepts shown within the model can be assumed to conform to ECore conventions - such

as each of the classes shown being instances of EClass etc.

4. Implementation 48

In the following section, we will outline the final version of the metamodel - which can

be seen in Figure 4.2 - in detail. Prior to this, we outline the changes made to reach this

final state both in order to describe our design decisions and to demonstrate the scope of

the evolution.

Some of the structure of the metamodel has remained through the editing process.

First, the Perspective is still the central component and is still composed of a set of

mappings - though the name has been changed to NavigationMapping in order to more

clearly differentiate between language mappings. The navigation mappings continue to be

split into two groups - Inter-Language and Intra-Language Mappings - with the

IntraLanguageMapping end points remaining consistent between the two metamodels.

Finally, several of the attributes present within the original metamodel - such as name,

closure and reuse within IntraLanguageMapping - persist into the final version.

However, beyond some of the central classes mentioned above, much has changed within

the metamodel to more accurately describe the functionality of the navigation bar within

TouchCORE. First, Inter-Language mappings are now associated with

CORELanguageElementMapping - a concept originally defined within the TouchCORE

perspective metamodel - in order to more closely tie their functionality to the description

of the Perspective itself. In addition, the class InterLanguageMappingEnd has been

included to replace the functionality of the from and to EClass’s within

InterLanguageMapping. This new EClass connects to the MappingEnd which was

4. Implementation 49

again initially defined within the Perspective metamodel within TouchCORE. Overall,

these first two changes have the affect of directly tying the definition of Inter-Language

mappings to the defined language mappings within a Perspective.

Furthermore, Intra-Language mappings now also have several more attributes which are

available to allow a language designer to exert more control over the functionality of the

navigation bar for their given language or perspective. Finally, the Filter system which

was outlined in the initial metamodel has been removed as we decided that other features

were more important to the functionality of the navigation system. This system includes the

Filter class and ComparisonOperator enumeration along with the associations made between

Filter and several other classes. The Filter system is categorized as possible future work.

4.1.2 Navigation Metamodel Implementation

Having described the evolution of the navigation metamodel in the previous section, we now

outline, in detail, the final implementation of the metamodel. We describe the function of

each of the EClasses and their associations as well as the relationship between the navigation

metamodel and the Perspective metamodel within TouchCORE. As noted above, this final

implementation has also been defined in ECore and, as such, all conventions noted above

still apply. The final implementation of the navigation metamodel can be seen in Figure 4.2.

The central component of the navigation system is the Perspective - represented in the

metamodel by the COREPerspective EClass. As can be seen within the metamodel,

4. Implementation 50

Figure 4.2: The metamodel for the navigation system within TouchCORE.

COREPerspective contains several attributes and associations which are held over from

its inclusion in the Perspective portion of the overall TouchCORE metamodel. Consequently,

these can be disregarded in this context.

Composing the Perspective is the set of navigation mappings which detail the navigable

links for that Perspective. These Navigation Mappings are split into two categories - Intra-

Language mappings and Inter-Language mappings - mirroring the two different types of

navigation which were outlined in Chapter 3. Each of these can be toggled on or off with

4. Implementation 51

the active attribute within NavigationMapping. When active is false, the mapping does

not appear within the navigation bar but does not require the user to completely remove it

from the system to achieve this functionality.

Intra-Language mappings model links between elements within the same language. More

specifically, they are used in cases in which the navigation is carried out through associations

found within the metamodel for the language of the given model. The from EClass functions

as the origin of a mapping and each of the EReferences within hops are used to traverse

through the metamodel to the destination of the navigation - the EClass which is reached

by traversing the final EReference within hops. The hops are, naturally, chained together so

that the destination of one hop is treated as the origin of the next.

The IntraLanguageMapping EClass also includes several attributes that allow

language designers more control when defining the mappings for a given language. First,

the name attribute can be used to define how the mapping is categorized within the

navigation bar. The closure boolean is used in the case that there is more than one level

of mapping that needs to be traversed. For instance, when navigating the class hierarchy

within a class diagram, there may be several levels of ancestors for a given class. If the

closure field is set to true, the system traverses the whole class hierarchy and shows all of

the super-classes from all levels of the inheritance structure as destinations for the

mapping. If the closure field is false, the destination of the mapping is the direct parent of

the origin class. The reuse field is used in order to alert the system that the mapping

4. Implementation 52

relates to an instance of reuse and thus a context switch must occur when that mapping is

traversed. The increaseDepth field is used in the case of a multi-view language to signal

that traversing that mapping should add a new section onto the end of the navigation bar

for the new view without removing the current section from the bar. Finally, the

changeModel attribute is also used in the case of multi-view languages to alert the

navigation bar to stop displaying navigation mappings after the current one as they are

related to other views within the model.

CORELanguageElementMapping is an EClass which is present within the

TouchCORE Perspective metamodel to describe Perspective mappings between elements of

different languages. Due to the nature of Inter-Language navigation defined in Section 3.2,

we have chosen to derive Inter-Language mappings from the already defined Perspective

mappings in order to ensure consistency and ease of definition for language designers. As

such, a one-to-one association is included in the navigation metamodel between

InterLanguageMapping and CORELanguageElementMapping to facilitate this

connection. In addition, at run-time, when the system is creating instances within the

navigation bar, the identifier attribute is used to facilitate the conversion from

connections between EClasses to connections between EObjects. This will be explored in

more depth in Section 4.2.2

Inter-Language mappings, in contrast to their Intra-Language counterparts, are used

in instances where traversal does not occur by moving through the metamodel of a given

4. Implementation 53

language. Instead, the source and destination of an Inter-Language mapping are derived

from different metamodels or from the same metamodel being used in different roles within

a Perspective. In addition, unlike in the case of Intra-Language mappings where traversal

was unidirectional - that is, the source and destination of the mapping could not be inverted -

Inter-Language mappings can be bidirectional. These two changes require a different method

for defining the ends of a Inter-Language mapping.

This task is now completed using the InterLanguageMappingEnd EClass which is

associated with InterLanguageMapping. Due to the fact that Inter-Language mappings

may have more than two ends - that is, there may be one source which is connected to several

destinations - the multiplicity of this association is zero-to-many. Each of the Inter-Language

mapping ends is connected to a single MappingEnd which is another EClass previously

defined within the Perspective metamodel. Each MappingEnd contains an association

to a LanguageElement which serves to define the component found at one end of the

mapping. These language elements are used to determine whether elements found within

the Perspective should be included within a given mapping. It also contains the roleName

field which defines the role that the language - and by extension the component at one end

of the mapping - is performing in that context. The final attribute found within this class,

cardinality is not pertinent in this context.

The InterLanguageMappingEnd also includes several other attributes which are used

to describe individual mappings in more detail. First, the name attribute is derived from

4. Implementation 54

the roleName and languageElement within the associated MappingEnd and is used to

determine the name of the mapping when shown within the navigation bar. The origin and

destination attributes are both concerned with the bidirectionally of a specific mapping.

In some cases, language engineers may wish for a specific mapping to function only as the

source or destination of a mapping. If the destination field is set to false for one end of

a mapping, that end is not treated as the destination for that mapping. Likewise, if the

source field is set to false, that mapping end is not treated as the origin of a connection

within the navigation bar. This allows the language engineer to define what elements should

be navigable in what direction.

4.2 Implementation Details

Having outlined the metamodel which is used as the basis for the navigation system within

TouchCORE, we now turn to the implementation details of the system. Much of the

implementation is focused on meeting the specifications outlined in Chapter 3 and is thus

not again described in detail. Instead, we outline how users may interact with the

aforementioned metamodel to obtain this functionality.1

1The full source code for TouchCORE and, by extension, the generic navigation bar can be found at:
https://bitbucket.org/mcgillram/workspace/projects/TC.

4. Implementation 55

4.2.1 Definition of Navigation Concepts in TouchCORE

In Section 3.1, we introduced the need for a system to specify which elements within a

language are displayed within the navigation bar and thus navigable from and to when

viewing a model. To facilitate this function, we turn to the metamodels of individual

languages defined within TouchCORE and look to associate them with concepts found

within the metamodel for the navigation system. The specification begins with the

metaclass for an individual model for that language - with one or multiple navigation

mappings being specified using the model metaclass as an origin. From this point, the

definition of mappings forms a tree structure, with the destination of an individual

navigation mapping forming the possible origin of other mappings. An example of this

functionality can be found within the Class Diagram language. The initial modeling

concept is the metaclass for the Class Diagram itself which is linked via an Intra-Language

mapping to the metaclass for Class within that language. The Class metaclass may, in

turn, function as the origin of several other mappings - possibly to the metaclass for

Operation or to itself to facilitate the navigation definition of a class hierarchy.

This tree structure can be implemented for Inter-Language mappings as well. For

instance, the Class Diagram metaclass may be treated as the origin for an Inter-Language

mapping whose destination is the metaclass for a Use Case Diagram within the Use Case

language or a similar mapping can be made from an individual Class to the Actor

metaclass within a Use Case Diagram. However, there are a few differences between the

4. Implementation 56

functionality of Intra and Inter-Language mappings. First, as noted in Section 4.1.2,

Inter-Language mappings are defined in relation to Language mappings within a

Perspective and, as such, are not defined directly as navigation mappings but are derived

by the TouchCORE system from those Language mappings.

The second key difference arises from the tree structure of navigation mappings. As noted

above, metaclasses for a given language are arranged in a tree structure starting with the

metaclass for the model itself. Due to this, any metaclass which a language designer wishes

to include within the navigation system needs to be added to the tree via navigation mapping

with a path back to the root metaclass. However, whereas Intra-Language mappings can be

used to specify any edge within this tree, Inter-Language mappings are used only to define

edges ending in leaf nodes. This is due to the fact that Inter-Language mappings necessarily

have their origin and destination be found within different models. As such, any mapping

beginning from a metaclass on the destination end of an Inter-Language mapping is a part

of the navigation tree for that model and thus should not appear within the current tree.

The definition of the navigation mappings is currently performed via a manual encoding

process by a language designer. The language engineer has full control over the navigation

and specifies the Intra-Language mappings for each language found within a Perspective as

well as the Inter-Language mappings connecting them in cases in which the Perspective

contains multiple languages. These are then automatically encoded into the CORE

description of the given language(s) and Perspective. When a model of this language is

4. Implementation 57

encountered within TouchCORE, the navigation mappings, along with the metamodel for

each language, are used to populate the navigation bar - a process which we outline later in

this section. In the future, we wish to implement this system with a graphical user

interface in order to allow for easier definitions of mappings but as yet encoding cannot be

done in this manner.

As noted in Section 3.3, in order for navigation in TouchCORE to be fully specified,

navigation for concerns needs to be available regardless of the specific languages used in a

given instance. As such, rather than allowing for user definition of navigation mappings for

feature and goal models, we hard-code these navigation mappings into TouchCORE so there

is no variation between how they appear in the navigation bar between different concerns.

While the specifics used for specifying feature and goal models are not outlined here as we

believe it would not provide any greater understanding of the use of TouchCORE, we state

that the hard-coded mappings are sufficient to conform to the specifications in Section 3.3

and we test them accordingly as stated in Chapter 5.

4.2.2 Run-Time Generic Navigation

Once a language engineer has defined the pertinent navigation concepts for a given

language or Perspective, the final question regarding how generic navigation in

TouchCORE is completed centers on how these concepts translate into actionable concepts

in the navigation bar. In this section, we detail how this step of the process is performed.

4. Implementation 58

When a new model is navigated to on-screen - whether through the navigation bar or by

other means - the system calls the navigation system with the specific model to be displayed.

The system then checks the language of the model as well as the current Perspective (if

applicable) and obtains the related navigation mappings which were previously defined by a

language engineer. In a similar fashion to the EMF standards used in defining the metamodel

for TouchCORE and for the individual languages within TouchCORE, each of the models

shown, along with their model elements, is defined with EMF specifications. Model elements

are defined by EObjects which function as instances of the individual EClasses defining the

metamodels. Therefore, when a new model is called for, the system queries the EObjects

that make up the model and compares their EClasses to those found within the navigation

mappings. In the cases that connections between EObjects correspond to connections found

within navigation mappings, the destination of that connection is added to the navigation

bar. In this way, the tree structure created for an individual model mimics the tree structure

created for the navigation mappings.

The tree created for a model is then populated to the navigation bar to conform to the

specifications outlined in Chapter 3. Each node translates to a single navigation element

within the navigation bar and mappings result in submenus which can be opened and closed

depending on the user’s needs. Each different navigation mapping has its own submenu below

a pertinent node when there is at least one instance of that mapping present beginning with

the EObject related to that node. The tree is expanded or contracted to reflect changes made

4. Implementation 59

in the model - nodes are added to the tree when pertinent elements are added to the model

and vice versa - so that the navigation bar continues to reflect the important concepts of the

current on-screen model.

When a user navigates away from a model, the sections present within the navigation

bar are updated accordingly - they are removed if no longer applicable or allowed to remain

when they still hold bearing on the current model. An example of when the previous section

would not be removed is the case of moving from a feature model to a realization model.

However, in cases where more than one navigation bar section is present, only one can be

displayed at a time so as not to clutter the screen and provide for streamlined use. Clicking

on the name of another model - or of an element from another model - within the navigation

bar automatically changes the model shown and updates the navigation system accordingly.

Finally, a fully functioning back button is provided so that users can return easily to models

previously shown.

4.2.3 Architecture Overview

Having introduced the run-time functionality of the new navigation in TouchCORE, we turn

to an overview of the architecture of the navigation system. An architectural diagram of the

system showing its important parts can be seen in Figure 4.3. Within the diagram, we do not

focus on any TouchCORE concepts that exist outside of the navigation system though there

is naturally interaction between concepts found within the diagram and those not. A more

4. Implementation 60

detailed pseudo-code description of several of the main algorithms related to the navigation

bar can be found in Appendix B.

Figure 4.3: An architecture diagram displaying the main components of the navigation
system. The numbered circles represent the initiation of algorithms found within the pseudo-
code specified in Appendix B.

When a modeler wishes to use TouchCORE, they interact with the current model in its

4. Implementation 61

Model Scene which is a class made to display a model of that type in TouchCORE. If they

call for a scene to be changed, the Scene Creation Factory creates a new scene (if one has

not yet been created for that model) or calls for an existing scene to be displayed. These

two classes make up the display layer of the navigation system as they directly relate to the

model concepts which are shown to the modeler. They derive their information from the

Model Layer which contains the current model which is open as well as its model elements.

The Navigation Bar Layer lists the information of the current model as well as its

mappings to other models as outlined in Chapter 3. This layer contains the Navigation Bar

component which houses the main navigation bar functionality as well as the back button

system. The navigation bar is composed of Navigation Bar Sections which represent the

individual components for a model, feature, or concern. These are added and removed

when the on screen model is changed by the modeler. The individual sections are made up

of Navigation Bar Menu Elements which house the individual lists of elements displayed

for the component related to the section. For instance, for a given Class Diagram, the

Menu Element would house the information on classes, operations, and any Inter-Language

links to other models. A modeler may also interact with the navigation bar layer by

opening the navigation bar section, selecting one of the elements in one of the lists, or

clicking on the back button. If one of these inputs causes the scene to be changed (such as

selecting an Inter-Language link), the Navigation Layer calls the display layer to perform

these changes in the same way as if it were from a user input directly in the scene.

4. Implementation 62

The Navigation Layer derives the information on the contents of the sections and menu

elements from the Navigation Mapping Layer. When a new model is shown on screen, the

Navigation Bar calls the Navigation Mapping Helper to create a new IntraLanguage

Mapping Tree which uses the methodology outlined in Section 4.2.2 to create a Navigation

Mapping tree. This tree will then be returned to the Navigation Bar Layer and added to

the pertinent menu element. The Navigation Mapping Layer derives the information used

to create the tree from the Metamodel Layer which houses the information on both the

Navigation Mappings defined for the current language or Perspective as well as the

CORELanguage Element Mappings which are used to facilitate the addition of

Inter-Language Mappings to the tree. When a language designer defines a new language or

Perspective for use within the navigation bar, they are interacting with the Metamodel

Layer by creating new Navigation Mappings and CORELanguage Element Mappings which

can then be used as part of the navigation system.

4.2.4 Navigation Algorithm Description

We now describe one of the described pseudo-code algorithms - found in Appendix B - in

greater detail to give a clearer outline of the functioning of the system. Algorithm 1 outlines

the system’s reaction to a user selecting a new model to be shown on the screen. First, the

modeler calls for the new scene through one of the available buttons which is reacted to by

the listener associated with that button (line 1). From this point the Scene Creation Factory

4. Implementation 63

within the Display layer is called upon to either create a new Model Scene or obtain one

which has already been created for the specified model (line 2). The factory then displays

this scene which will contain various model elements related to the associated model (line

3).

From this point, the NavigationBar itself is called and a new Navigation Bar Section is

added to the list of sections housed there (line 4). Next, the section is added to the screen

and initialized with a Navigation Bar Menu which will be used to house the actual model

information for that section (line 5). This information will be associated with a Navigation

Bar Namer which will be called in the case that a user interacts with one of the elements

within the section (line 6). Finally, a listener is created for the section to alert the system

of any actions made on the navigation bar section (line 7).

4.3 Summary

In this chapter, we outline both the evolution of the navigation metamodel as well as its

current implementation within TouchCORE. Later, we describe the method of defining the

navigation concepts for a new language or Perspective as well as the run-time details of the

navigation bar within TouchCORE. Finally, we introduce the architecture of the navigation

system as well as the details of one of the algorithms used to implement the functionality of

the navigation system. In the next chapter, we describe the testing system used to validate

the navigation system in TouchCORE.

64

Chapter 5

Testing

With our implementation of a generic navigation system fully outlined, we now turn to the

problem of testing the tool in order to ensure it conforms correctly to the needs of users

within TouchCORE. Due to the fact that the navigation system of a modeling tool such

as TouchCORE relies largely on user interaction with a UI, a conventionally defined testing

methodology based around test code such as JUnit1 does not provide the necessary confidence

that we have reached a proper implementation. Instead, we turn to a set of human tests

which are executed within the TouchCORE client.
1https://junit.org/junit5/

5. Testing 65

5.1 Test Suite

We aim to create a suite of tests able to assess the quality of all of the features and situations

found in Chapter 3 as well as validating many of the edge cases which may arise from

situations outside the clear bounds defined in that chapter. However, we naturally are not

able to include all possible situations that may arise within TouchCORE as the set of all

modeling tasks would be infinite in size. Instead, we list all of the tests performed to test

validity in Appendix A to provide readers with a full knowledge of the situations tested and

not tested.

Each of the tests performed is listed in the same format. An initial situation is provided

which describes the system in its initial state prior to the change we wish to test. Then, we

introduce a specified change to the system. Both of these are described in only the pertinent

details to allow a user to introduce some randomness into the testing phase and possibly

catch unanticipated errors. The final column for each test represents the expected change

to the system as a result of the user input. This output is found true or false depending on

whether the situation presented in the first two columns leads to the expected situation in

the final column.

To clarify the process of testing the tool, we look to an example test and go step-by-

step from justifying the test to the expected output. Test 33 is attempting to assess the

ability of the navigation system to handle the creation of new realization models (artifacts)

which conform to a multi-language Perspective. This represents a core functionality within

5. Testing 66

TouchCORE and is used to partially confirm the success of the tool at meeting several of

the requirements outlined within Chapter 3 - specifically requirements 3.1.1, 3.1.5, 3.2.1,

3.3.5, and 3.3.6. When executing the test, we must begin by viewing the Feature Model

of a given concern as that will be the location from which new realization models can be

created. We then create a new artifact of a Perspective with multiple languages through

any means provided within TouchCORE as the response should be consistent no matter

how the test is initiated. We then check the output to see if the following reactions have

occurred: the onscreen model changes to one of the newly created models, a feature section

has been added to the navbar for the associated feature, a section within the navigation

bar has been created for the new realization model, and when the model section is opened

there should be Inter-Language mappings automatically shown which connect to each of the

other Perspective models which were created. If each of these reactions has occurred, we

consider the test successfully completed. We follow a similar path for all other tests listed

in Appendix A.

Table 5.1 shows each of the requirements as they were formulated in Chapter 3 along with

each of the tests which we used to ensure the final product conformed to each of the goals

of the system. As can be seen in the table, each of the formulated requirements was tested

by at least two of the tests listed in Appendix A. In addition, several of the requirements

- such as 3.1.3 and 3.3.6 - were assessed by a large number of tests due to the fact that

many actions available within TouchCORE impact the completion of those requirements. In

5. Testing 67

Table 5.1: An overview of each of the requirements defined within Chapter 3 along with
which tests were used to ensure their completion.

Number Related Topic Requirement Tests
Related

3.1.1 Intra-Model The navigation system shall be able to outline what concepts
exist within a given model while also being concise enough
to not overwhelm the user with information.

1, 7, 8, 33

3.1.2 Intra-Model The navigation system shall make clear how elements of a
model are related to each other within the structure of the
navigation bar section for that model.

3, 14, 15, 16

3.1.3 Intra-Model The navigation system shall automatically update the
navigation bar section of a model to reflect changes made
to the model such as adding elements, deleting elements, or
changing their contents.

2, 3, 4, 5, 6,
13, 14, 15,
16, 19, 20,
21, 41, 50

3.1.4 Intra-Model The navigation system shall allow the user to locate a model
element within the current model.

17, 18

3.1.5 Intra-Model The navigation system shall automatically generate
navigation bar sections to reflect mappings defined by
language designers.

1, 7, 8, 33

3.2.1 Inter-Model The navigation system shall show the user how the current
model is inter-linked with other models by including related
models and model elements in the navigation bar section of
a given model.

33, 38

3.2.2 Inter-Model The navigation system shall allow the user to navigate
between models based on the links between models and the
links between model elements.

34, 36, 37

3.2.3 Inter-Model The navigation system shall update the navigation bar
automatically to reflect user navigation between models.

34, 36, 37

3.2.4 Inter-Model The navigation system shall update the navigation bar
automatically to reflect changes in the links between models
and model elements.

35, 38

3.2.5 Multi-View
Models

In multi-view models, the navigation system shall show the
user how different views of a given model are related to each
other.

50, 51, 52,
53

3.2.6 Multi-View
Models

The navigation system shall allow a user to navigate between
the different views of a model.

51, 52, 53

5. Testing 68

Table 5.1

3.3.1 Software
Product Lines

The navigation system shall generate navigation bar sections
for software product line models in the same way that it
generates them for models of other languages.

1, 40

3.3.2 Software
Product Lines

The navigation system shall display realization models that
exist within a concern as well as how they are related to the
features within the concern’s feature model.

7, 8

3.3.3 Software
Product Lines

The navigation system shall outline the relationship between
features and goals found within a concern.

9, 10, 40, 41

3.3.4 Software
Product Lines

The navigation system shall allow the user to navigate
between the feature and goal model of a concern.

39, 43, 44

3.3.5 Software
Product Lines

The navigation system shall allow the user to navigate to the
realization models of a given concern.

7, 8, 11, 12,
17, 33

3.3.6 Conflict
Resolution

When navigating to a realization model, the navigation
system shall show the feature to which that model is related.

7, 8, 11, 12,
33, 46, 47,
48, 49

3.3.7 Conflict
Resolution

The navigation system shall facilitate context switches
between different views of a realization model based on
different features which are related to the model.

46, 47, 48,
49

3.4.1 Model Reuse The navigation system shall outline any instances of model
extension or model reuse associated with a model in that
model’s navigation bar section.

24, 26, 29

3.4.2 Model Reuse The navigation system shall update to automatically reflect
any newly associated instances of extension or reuse.

22, 23, 28

3.4.3 Model Reuse The navigation system shall allow the user to navigate into
an instance of extension or reuse.

24, 26, 29

3.4.4 Model Reuse The navigation system shall allow the user to return to a
model from an extension model or a reused model.

25, 27, 30,
31, 32

5. Testing 69

addition, most of the test are listed under more than one requirement from Chapter 3. This

is due to the fact that actions in TouchCORE often impact several of the goals at once.

We believe that - given the success of all of the tests within the suite - we can be confident

that the system is able to conform to all of the requirements which we have outlined. Thus,

given that success, our testing expectations have been met. There are likely bugs that remain

in the system; however, we feel that, given that these tests cover a vast majority of use cases,

the bugs that remain are within the bounds of acceptable completion.

All testing was performed on the final version of the product to ensure that no changes

made to the navigation system would result in earlier situations no longer working correctly.

Tests were performed by the author of the thesis - and therefore the tool - and were all found

to be successful. Therefore, we find that all of the requirements outlined in Chapter 3 are

fulfilled within the current version of the navigation system.

In the future, we intend for a more automated version of the testing system to be

implemented within TouchCORE so that any changes can be immediately checked to see if

they cause any of the situations outlined to no longer perform correctly. Several

frameworks exist to facilitate GUI testing within Java such as Rapise2 and Abbott3 which

may help implement automatic testing for the navigation system. However, we believe that

this is currently outside the scope of this thesis and thus leave it as future work.
2http://www.inflectra.com/Rapise/
3http://abbot.sourceforge.net/doc/download.shtml

5. Testing 70

5.2 Summary

In this chapter, we outline the testing methodology used to validate the newly implemented

TouchCORE generic navigation bar. In addition, we outline how each of the tests performed

within the testing suite were used to verify each of the requirements listed within Chapter 3.

In the next chapter, we outline a survey of similar modeling tools to compare our navigation

bar to other systems performing similar functions.

71

Chapter 6

Related Work

In this chapter, we outline work related to our topic of generic navigation of software models.

As this thesis is largely based upon the implementation of a system within TouchCORE, we

feel that a traditional review of the literature would not provide a sufficient understanding

on the current state of the art on this topic. Instead, we opt for a survey of several other

modeling tools and the ways in which they perform navigation within and between different

models.

We searched online for several tools which were built to provide full support for modeling

UML diagrams. UML [18] is a widely used standard for modeling software languages and

provides definition for 14 different common software models. While UML does not extend

to the possibilities of DSMLs as is the intention for the TouchCORE tool, it does provide

standardization for many of the languages currently available in TouchCORE - including

6. Related Work 72

many of the languages used to test the system in Chapter 5. As such, we believe that

comparing our tool to popular UML modeling software products would provide a good

allegory to TouchCORE.

In order to find suitable tools we searched Google for popular modeling tools and chose

suitable examples using the following criteria.

• The tool must provide support for most if not all of the models defined by UML. Tools

with very limited modeling capacity - such as those which are tailored only to a single

model - would not be applicable as we are interested in navigation between models.

• The tool must be available for free or provide a demo version for testing.

• The tool must be able to be installed on modern operating systems and must be

somewhat supported at the time of writing this thesis.

• The tool must provide for the creation of multiple models at once - preferably in

different languages.

We were able to find several tools that met the description and chose four to use for

our survey as they were referenced often when performing our search. Namely, the four

tools are: StarUML [4], MagicDraw [5], Visual Paradigm [19], and Sparx Enterprise

Architect [20]. In addition to these, the most mentioned tool we saw online was ArgoUML.

However, when attempting to use the tool we found that many of the reputable download

links were no longer supported or were broken. In addition, the tool has not been formally

6. Related Work 73

supported since 2015. As such, it did not meet the criteria for our survery. However, due to

its prevalence in online literature, we felt we should mention the tool rather than omitting

it completely.

6.1 Survey of Navigation Systems

We now outline the results of our survey of navigation systems in software modeling tools.

6.1.1 StarUML

StarUML [4] is an open source tool which provides functionality for modeling UML diagrams,

with support available for all 14 UML diagrams. The tool is compatable with UML 2.x.

Navigation in StarUML takes place through the model explorer shown on the right of the

screen. Double clicking on any of the models within StarUML opens that model within the

tool. There is a hierarchy within the explorer - models are shown to contain model elements

which in turn may contain other elements and this is shown through drop down menus in

the explorer. However, all elements are shown in this way and cannot be filtered out as is

the case for attributes in Class Diagrams within the TouchCORE tool.

Navigation between models is supported. A user may select a different model to be

shown on screen in the explorer and it is then displayed. However, this is the only way of

navigating to another model. Clicking on one of the elements does not allow for navigation

to that model. One must click ’select in diagram’ to perform this action. In addition, the

6. Related Work 74

only instance of inter-related models seems to be between operations in a Class Diagram and

related sequence diagrams which is shown within the navigation tool. Other links between

models, such as was included within Perspectives in TouchCORE, are not available within

the navigation system. In addition, there is no back button available for moving quickly to

previous models.

6.1.2 MagicDraw

MagicDraw [5] is a commercial tool which can be used to model diagrams within UML 2.x.

Support is again available for all UML diagrams.

Navigation in StarUML takes place through the model explorer in the top left of the screen

and clicking any model in the explorer opens that model. There is support for intra-model

navigation through drop down menus in the explorer, with concepts such as attributes and

operations shown underneath their classes in a class diagram. However, the actual elements

such as classes, actors and use cases are all shown on the same level as the diagrams they

are in and it does not show containment within the model. There does not seem to be any

system to filter out unwanted element types such as attributes within a given diagram.

When navigating between models, one can easily change to another model within a project

through the explorer. However, clicking on an element belonging to a specific model within

the explorer creates a pop-up with its description and qualities rather than navigating to

that model or highlighting the element. Models within the tool are also not explicitly linked

6. Related Work 75

in any way and so models and elements cannot be navigated based on inter-related concepts

and are only shown in the explorer within their own model description. One exception to

this is sequence diagrams, which can be navigated to through from their associated operation

within a class diagram. In addition, there is no back button support to return to a previously

shown model quickly.

6.1.3 Visual Paradigm

Visual Paradigm [19] is a commercial tool which can be used to model diagrams within UML

2.x. Support is again available for all UML diagrams.

Navigation within a Visual Paradigm project is available in several parts of the UI with

the most verbose being through the model structure tab. This causes an overlay on the screen

displaying all of the models within a project as well as all of the elements present in those

models. The elements shown within the overlay do not have an explicitly defined structure

such as showing class hierarchy within a Class Diagram. There is no way of dictating what

types of elements should be listed within the model structure tab.

Navigation between models can be performed by clicking on one of the elements within

the model structure overlay. However, clicking on one of the elements of the models brings

up its properties but does not bring up the model itself. There seems to be no inter-linking

between models in Visual Paradigm and thus models cannot be navigation based on their

inter-relations as they can be in TouchCORE. As with the first two systems, there is no

6. Related Work 76

explicit back button.

6.1.4 Sparx Enterprise Architect

Much like the previous two tools, Sparx Enterprise Architect [20] is a commercial tool which

provides support for all diagrams specified in UML 2.x.

Navigation in Sparx Enterprise Architect takes place through the navigation bar on

the right of the screen. Navigation is handled differently depending on the language. For

instance, class diagrams have all of the classes listed with individual drop down menus for

the attributes and operation. However, in the case of a Use Case Diagram, drop down menus

are based on the different types of elements present such as Actors and Use Cases.

Navigating between models can be performed by clicking on a model within the explorer.

In addition, in much the same way as in TouchCORE, clicking on an element results in that

element being highlighted and, in the case that the element resides in a different model,

changes the on-screen model to display the model which contains the given element. As

with the Visual Paradigm, there does not seem to be support for inter-connections between

models and thus navigation cannot be performed via this type of relation. Finally, as with

all of the previous tools, there seems to be no back button functionality.

6. Related Work 77

Table 6.1: An overview of the survey of navigation tools in related software modeling
products.

System Navigation Tool Intra-
Language
System

Navigation
available via
models

Navigation
available via
model elements

Navigation
available between
inter-related
models

Filtering
of element
types

Back
Button

StarUML Model explorer on
right of screen

Yes Yes No Yes – in specific
cases

No No

MagicDraw Model explorer in
the top left of the
screen

Yes Yes No Yes – in specific
cases

No No

Visual
Paradigm

Model structure
tab

Yes Yes No No No No

Sparx
Enterprise
Architect

Navigation bar on
the right of the
screen

Yes Yes Yes No No No

TouchCORE Navigation bar at
top of screen

Yes Yes Yes Yes Yes Yes

6.1.5 Overview

We display an overview of the results of our survey in Table 6.1. Within the four tools

surveyed, we find many commonalities regarding the navigation system provided to users.

Much like the TouchCORE navigation system, all of the tools have some type of hierarchical

structure to display the elements of a given model within a navigation explorer. However,

unlike in TouchCORE, none of the tools provide a method for defining which types of model

elements are pertinent for display. In all cases, clicking on the name of a model within the

explorer causes that model to be displayed on-screen. However, only in the case of Sparx

does this type of navigation extend to model elements as it does in TouchCORE. In two

of the tools, StarUML and MagicDraw, there are some explicit links within the navigation

system between inter-related models (such as between operations and their related Sequence

Diagrams). However, in no case does this generalize in the way it does for Perspectives

in TouchCORE. Finally, in none of the tools is a back button provided to return to prior

6. Related Work 78

models.

Based on this survey, the TouchCORE navigation system compares well to navigation

systems within these four popular software modeling tools, both open source and commercial.

TouchCORE is able to show a hierarchical structure for elements in a given model and easily

navigate between models by clicking on their name within the navigation bar in a similar

way to the tools surveyed.

In addition, we believe TouchCORE provides valuable functionality beyond the tools

surveyed in allowing for easy navigation between models which are related to each other

via a Perspective. In addition, TouchCORE allows a language designer to define which

types of elements are valuable to display in the navigation bar, thus reducing clutter for the

user. Finally, the back button provided in TouchCORE allows the user to quickly return to

previous models they have been working on.

6.2 Summary

In this chapter, we outlined a survey we performed of popular modeling tools to compare

the newly implemented TouchCORE navigation system to similar systems. We find that

many of the features in TouchCORE bear similarities to those created in other systems. In

addition, we find that our implementation is able to provide added functionality for users,

largely through its relation to the Perspective system in TouchCORE. In the next chapter,

we summarize our work and introduce some opportunities for future improvements to the

6. Related Work 79

navigation system.

80

Chapter 7

Conclusion

7.1 Overview and Contributions

In this thesis, we set out to implement a system to allow users to generically navigate

through models in the growing number of languages available within TouchCORE. We also

expand this system to be able to handle multiple models which are interlinked through the

concept of a Perspective which defines connections between different languages to aid users

in maintaining consistency between models which are describing the same system.

To facilitate this improvement of the navigation system, we update the TouchCORE

metamodel to navigation concepts. Specifically, we introduce the concept of a navigation

mapping which allows language designers to define which types of elements are important

within a given language and therefore should be displayed within a navigation bar. These

7. Conclusion 81

navigation mappings are then automatically displayed within the navigation bar to illuminate

to the user the pertinent elements that exist within the current model environment.

We define two different types of navigation mapping - Intra-Language and

Inter-Language. Intra-Language mappings display the elements which exist within the

current model and allow the user to highlight where they are located and see how they are

interconnected. Inter-Language mappings show the user how elements derived from

different models are related and allow a user to navigate between models to see other

models which are modeling the same system and elements which are modeling the same

concept in different models.

We also integrate these navigation concepts into several of the modeling concepts which

make up the backbone of TouchCORE. We extend the navigation functionality to Feature

and Impact models in order to streamline navigation within a Concern and make it clearer

for the user. In addition, we define a specific feature of the navigation tool for instances of

model reuse within TouchCORE. Navigation for Feature and goal models is built to utilize

the same concepts as general languages but are coded to be available no matter the language

or Perspective with which a user is currently modeling.

Finally, we present a set of tests which were used to validate the quality of the navigation

tool. These tests were performed manually by the user to ensure that all of the features are

able to work in tandem.

7. Conclusion 82

7.2 Future Work

We now overview some potential opportunities for work building on the implementation

detailed in this thesis.

7.2.1 Filtering

As noted in Section 4.1.1, we have removed the proposed filtering feature from the current

iteration of the navigation system. However, we believe this functionality would be beneficial

for future iterations of the tool. The filtering system would be used in cases where a large

number of elements are present in a given model and a user may wish to not see all of the

elements of a given type within the navigation bar. For instance, in the case that a class

diagram contains a large number of classes and operations, a user may only want to see the

operations of a given class if they are public. The filtering system would allow that user to

filter out all private and protected operations, making it easier to see only those which are

pertinent to them at the time. This would require updates to the metamodel to include the

filtering metaclasses which were removed during the evolution of the metamodel.

7.2.2 Graphical User Interface for Defining Navigation Mappings

As noted in Chapter 4, we intend to update the method by which a user defines the mappings

for a new language or Perspective. The current system relies on a user encoding their

choices for mappings within code using the metamodel for the navigation system. However,

7. Conclusion 83

this requires a somewhat considerable level of understanding of how the navigation system

works. We wish to implement a graphical user interface (GUI) to allow a user to input

the intended mappings for the navigation of a new language or Perspective without any

knowledge of the implementation details of the navigation system. We intend to perform

a study utilizing the methodology of Human-Computer Interaction (HCI) to find a system

which provides a streamlined method of definition for existing TouchCORE users as well as

those with no knowledge of the system details. This GUI may also be extended to include

the definition of Perspective mappings as outlined in Section 2.2.

7.2.3 Automatic Testing of Navigation System

When testing the current version of the navigation bar, one must personally complete all of

the testing situations outlined in Appendix A to ensure that any updates made to the system

do not result in a failure of an already completed situation. This is, naturally, a very arduous

process as the number of test cases is high due to large number of different situations and

edge cases. An automated testing system for the navigation bar would remove a significant

amount of stress on the developer by allowing them to be confident in any changes made not

affecting the previous system. As this system is highly dependent on user inputs, a testing

system would need to quantify the changes that a user could make to a given model and

how the user interface should respond to those changes.

84

Bibliography

[1] H. Ali, G. Mussbacher, and J. Kienzle, “Action-driven consistency for modular multi-

language systems with perspectives,” in Proceedings of the 12th System Analysis and

Modelling Conference, SAM ’20, (New York, NY, USA), p. 95–104, Association for

Computing Machinery, 2020.

[2] H. Ali, G. Mussbacher, and J. Kienzle, “Generic graphical navigation for modelling

tools,” in System Analysis and Modeling. Languages, Methods, and Tools for Industry

4.0 (P. Fonseca i Casas, M.-R. Sancho, and E. Sherratt, eds.), (Cham), pp. 44–60,

Springer International Publishing, 2019.

[3] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in

Practice, vol. 1. Synthesis Lectures on Software Engineering, 09 2012.

[4] “Staruml.” https://staruml.io/.

[5] “Magicdraw.” https://www.nomagic.com/products/magicdraw.

https://staruml.io/
https://www.nomagic.com/products/magicdraw

Bibliography 85

[6] B. Combemale, J. Deantoni, B. Baudry, R. France, J.-M. Jézéquel, and J. Gray,

“Globalizing modeling languages,” Computer, vol. 47, pp. 68–71, 06 2014.

[7] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Mussbacher, “Feature

modelling and traceability for concern-driven software development with touchcore,”

in Companion Proceedings of the 14th International Conference on Modularity,

MODULARITY Companion 2015, (New York, NY, USA), p. 11–14, Association for

Computing Machinery, 2015.

[8] H. Ali, G. Mussbacher, and J. Kienzle, “Towards modular combination and reuse

of languages with perspectives,” in 22nd International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C), pp. 387–394, 2019

ACM/IEEE, 09 2019.

[9] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software design,” in 16th

International Conference, MODELS 2013, (Miami, FL, USA), 2013 ACM/IEEE, 10

2013.

[10] K. Pohl, G. Böckle, and F. Linden, Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer-Verlag Berlin Heidelberg, 01 2005.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented

domain analysis (foda) feasibility study,” Tech. Rep. CMU/SEI-90-TR-021, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

Bibliography 86

[12] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley Publishing, 1st ed., 2009.

[13] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, p. 131–183, June 1992.

[14] M. B. Duran and G. Mussbacher, “Top-down evaluation of reusable goal models,” in

New Opportunities for Software Reuse (R. Capilla, B. Gallina, and C. Cetina, eds.),

(Cham), pp. 76–92, Springer International Publishing, 2018.

[15] S. Aljahdali, J. Bano, and N. Hundewale, “Goal oriented requirements engineering

- a review,” Proceedings of the ISCA 24th International Conference on Computer

Applications in Industry and Engineering, CAINE 2011, 01 2011.

[16] W. Al Abed, V. Bonnet, M. Schöttle, E. Yildirim, O. Alam, and J. Kienzle, “Touchram:

A multitouch-enabled tool for aspect-oriented software design,” in Software Language

Engineering (K. Czarnecki and G. Hedin, eds.), (Berlin, Heidelberg), pp. 275–285,

Springer Berlin Heidelberg, 2013.

[17] J. Kienzle, W. Abed, F. Fleurey, J.-M. Jézéquel, and J. Klein, “Aspect-oriented design

with reusable aspect models,” T. Aspect-Oriented Software Development, vol. 7, pp. 272–

320, 01 2010.

[18] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Manual,

The (2nd Edition). Pearson Higher Education, 2004.

Bibliography 87

[19] “Visual paradigm.” https://www.visual-paradigm.com/.

[20] “Sparx enterprise architect.” https://sparxsystems.com/.

https://www.visual-paradigm.com/
https://sparxsystems.com/

88

Appendix A

List of Tests

Table A.1: A list of the tests performed to validate the implementation of the navigation
system.

Previous Situation Change Made Expected Outcome

1 Home Screen Create new Concern Change to Concern Edit Scene.

Navbar should have single Feature

2 Feature Model with at

least one Feature

Create new Feature Navbar should automatically add

new feature under list of features

A. List of Tests 89

Table A.1

3 Feature Model with at

least two features

Add a

requires/excludes

between features

Navbar should keep same number

of features but the one for which

the requirement/exclusion is related

should have a new submenu showing

the requirement or exclusion

4 Feature Model with at

least one feature

Delete a Feature Feature should be removed from the

navigation bar submenu

5 Feature Model with at

least one feature

Rename a Feature

in model

Name of feature should change to

reflect the editing of the feature

within the model

6 Feature Model with at

least one feature

Rename a Feature

in navbar

Name of the feature in the model to

reflect the change within the navbar

7 Feature Model with at

least one feature. Feature

should have no Artifacts.

Create a new

Artifact

Should navigate to the new artifact.

Upon return to Feature Model, the

feature for which the realization

model was created should have a new

submenu listing the new artifact

A. List of Tests 90

Table A.1

8 Feature Model with at

least one feature. Feature

should have at least one

other Artifact

Create a new

Artifact

Should navigate to the new artifact

Upon return to Feature Model, the

feature for which the realization

model was created should have a new

artifact in the artifacts submenu

9 Feature Model with no

goals

Create a new Goal New submenu should be added to the

nav bar for impact nodes

10 Feature Model with at

least one Goal

Add a new Goal A new Goal should be added to

the list under the already created

submenu

11 Feature Model with at

least one artifact.

Navigate into

Artifact

New artifact section should be added

to the navbar and there should be

nothing inside the section when it is

opened

12 In an Artifact model. Click the back

button.

Should return to the feature model

and remove the model and feature

sections from the navbar.

A. List of Tests 91

Table A.1

13 Artifact with one view

in perspective with one

language. No elements

Add a new element Navbar should add a new submenu

to the section and the element should

be included there.

14 Artifact with one view

in perspective with one

language. At least one

element.

Add a new element

of the same type as

is currently onscreen

Navbar should add the element to

the already created submenu where

the other element(s) of the same type

are shown.

15 Artifact with one view

in perspective with one

language. At least one

element.

Add a new element

of a type that is

currently not on

screen

Navbar should add a new drop

down submenu with the new element

inside.

16 Artifact with one view

in perspective with one

language. At least one

element.

Add a new element

related to one

of the previous

elements which also

is connected to

an intra-language

mapping

Navbar should add a new submenu

for the existing element showing

the new type of connection to that

element.

A. List of Tests 92

Table A.1

17 In an Artifact Scene Click on a feature

within the concern

navbar section

Return to the concern scene and light

up that feature

18 In an Artifact Scene with

at least one element

Click on the element

in the navbar

Should light up the element within

the model to show where it exists

19 In an Artifact model

with at least one element.

Only one of that type of

element.

Delete that element

from the navigation

bar.

Should delete the submenu

containing that element.

20 In an Artifact model

with at least one element.

More than one of that

type of element.

Delete that element

from the navigation

bar.

Should delete that element from

its submenu but submenu should

remain.

21 In an Artifact model

with at least one element.

That element should

have Intra-Languages

associated with it.

Delete that element

from the navigation

bar.

Should delete the element as

mentioned in previous two tests and

should delete the submenus for the

element itself.

A. List of Tests 93

Table A.1

22 In an Artifact Scene Create a concern

reuse

Should automatically populate

the navbar with a new submenu

containing that reuse. In addition, a

new reuse should be created in the

concern’s navbar section as well.

23 In an Artifact Scene Create a model

extension

Should automatically populate

the navbar with a new submenu

containing that extension

24 In an Artifact Scene with

at least one extension

Click on extension

in nav bar

Should navigate to the extended

artifact and should show clearly that

we are now in a reuse context

25 In an extended Artifact

Scene

Click on back

button

Should return to the original scene

and should no longer show that reuse

is occurring

A. List of Tests 94

Table A.1

26 In an Artifact Scene with

at least one model reuse

Click on reuse in nav

bar

Should navigate to the reused model

and populate the navbar with a

section related to the concern for

the reused model as well as one

of the reused model. Finally, icon

should clearly indicate that we are

now in a reuse context. Under the

icon should be a menu showing the

previous model which is reusing this

one.

27 In a reused Artifact Scene Click on back

button

Should return to the original Artifact

Scene and repopulate the navbar

with the exact same as before the

navigation into the reuse occured.

No icon should remain regarding

reuse.

A. List of Tests 95

Table A.1

28 In a reused Artifact Scene Create a second

level reuse

Should automatically populate

the navbar with a new submenu

containing that reuse. In addition,

a new reuse should be created in

the concern’s navbar section as well.

Function should be the same as if in

a normal artifact.

29 In a reused Artifact Scene

with at least one model

reuse

Navigate to second

level of reuse

Should navigate to the reused model

and populate the navbar with a

section related to the concern for

the reused model as well as one of

the reused model. Should remove

everything for the fornally reused

model. Should add a second model

to return to in the menu under the

reuse icon

A. List of Tests 96

Table A.1

30 In a double reuse model. Click the back

button.

Should navigate back to previous

model and repopulate the navigation

bar with its concern and model

sections. In addition, should remove

a model from the reuse section so

there is only one remaining.

31 In a double reuse model. Click on the first

reuse model within

the reuse section.

Should navigate back to the first

reuse model and repopulate the

navigation bar with its concern

and model sections. In addition,

should remove a model from the

reuse section so there is only one

remaining.

32 In a double reuse model. Click the original

model within the

reuse section

Should navigate back to the original

model and repopulate its concern,

feature and model sections. Should

remove the reuse section from the

navigation bar.

A. List of Tests 97

Table A.1

33 In a Feature Model Create a new

Artifact in a

Perspective with at

least two languages

w/ perspective

mappings between

them.

Should navigate to one of the

new Artifact models and should

automatically create a feature and

model section within the navbar. In

the model section, there should be

Inter-Language mappings connecting

the models

34 In an Artifact model

within a Perspective

which has at least two

languages

Click on the Inter-

Language mapping

for one of the other

models.

Should navigate to the model and

should repopulate the navbar with a

new model section, removing the one

for the old model. Feature section

should be unchanged.

35 In an Artifact model

within a Perspective

which has at least two

languages and at least

one element in each of

the models.

Create a new

Perspective

mapping between

the two elements

in the two different

models.

Should add a new submenu below the

name of the element in the current

model which should show the name

of the mapping. Should open to

reveal the name of the other element.

A. List of Tests 98

Table A.1

36 In an Artifact model with

at least one Perspective

mapping between model

elements in the current

model and another model.

Click on the Inter-

Language mapping

for one of the

elements in one of

the other model(s).

Should navigate to the other model

and highlight the model element in

that model. The navbar section for

the original model should be replaced

with one for the new model.

37 In an Artifact model

which has been navigated

to via Inter-Language

mapping.

Click on the back

button.

Should return to the original model

and should replace the model section

in the navigation bar with the

original model’s.

38 In an Artifact model with

at least one Perspective

mapping between model

elements in the current

model and another model.

Delete the element

which is used in one

of the Perspective

mappings.

Should delete both the element and

thereby the Inter-Lanugage mapping

from the navigation bar.

39 In a Feature Model with

at least one goal

Click on the goal in

the navigation bar

Should navigate to the goal model

with that goal as a root. Should

add a goal model section onto the

navigation bar.

A. List of Tests 99

Table A.1

40 In a goal model. Open the navbar

section for the goal

model

Should show the goals for the system

as well as the features added to goal

model.

41 In a goal model. Add a new feature

to the goal model.

Should add the feature to the

elements menu in the navbar section

for the goal model.

42 In a goal model. Click on one of the

other goals within

the goal model

section.

Should navigate to the goal model for

which that other goal is the root.

43 In a goal model. Has been

navigated to directly from

the Feature Model.

Click on the back

button.

Should navigate back to the Feature

Model and remove the goal model

section from the navbar.

44 In a goal model. Has been

navigated to from another

part of the goal model

where a different goal is

the root

Click on the back

button.

Should navigate to the previous part

of the goal model and should not

remove the goal model section.

A. List of Tests 100

Table A.1

45 In a Feature Model with

at least 2 features. At

least one of which has an

Artifact associated with it

Associate a conflict

resolution model

with a feature.

Should add the Artifact to the

submenu for that feature in the

navigation bar.

46 In a Feature Model with

a conflict resolution

associated (two features

associated with the same

Artifact).

Open the conflict

resolution model

with the original

feature.

Should navigate to the Artifact

model and add a Feature and model

section to the navbar. Model

section should be as normal but the

feature section should have a drop

down menu showing all of the other

features that use this model to realize

them.

A. List of Tests 101

Table A.1

47 In a Feature Model with

a conflict resolution

associated (two features

associated with the same

Artifact).

Open the conflict

resolution model

with the second

feature associated

with the model.

Should navigate to the Artifact

model and add a Feature and model

section to the navbar. Model

section should be as normal but

the feature section should have a

drop down menu showing all of the

other features that use this model to

realize them. In addition, the feature

section should be named after the

feature that opened the model.

48 In a conflict resolution

model.

Click on another

feature that uses

the model within

the feature section.

Should change the model to be

viewed as if it were inside the other

feature. Feature section name should

be changed to the name of the new

feature and the section should now

show the old feature in the drop down

menu.

A. List of Tests 102

Table A.1

49 In a conflict resolution

model having already

switched features.

Click the back

button.

Should inverse the changing of the

feature. Feature section should be as

it was originally.

50 In an Artifact for a

language which can have

multiple views.

Create another view

within the model.

Should be shown within the

navigation bar. However, there

should be no submenu for that

element even if there could be

intra-language mappings associated

with it.

51 In an Artifact for a

language which can have

multiple views. The

navigation mappings of

the views do not have the

increase depth set to true.

Click on another

view in the

navigation bar.

Should navigate to the new view.

Should replace the current view’s

section with the new section.

A. List of Tests 103

Table A.1

52 In an Artifact for a

language which can have

multiple views. The

navigation mappings of

the views have the field

increase depth set to true.

Click on another

view in the

navigation bar.

Should navigate to the new view.

Should add another section to

the navbar with the new view’s

information,

53 In an Artifact for a

language which can have

multiple views having

already navigated from a

previous view.

Click the back

button.

Should return to the previous view

and not the previous model.

104

Appendix B

Navigation System Pseudo-Code

In this Appendix, we present the pseudo-code for the navigation system. Specifically, we

outline the algorithms performed when a new model is called to be shown, a navigation bar

section is opened, a user selects an element within the navigation bar, an element is changed

within the current model, or the back button is selected.

B. Navigation System Pseudo-Code 105

Data: A model within TouchCORE selected by a modeler.
Result: The selected model is shown on screen along with relevant navigation bar

sections.
1 Modeler calls for a new scene to be open;
2 The SceneCreationAndChangeFactory creates the scene if not previously open and

calls for it to be displayed or displays the existing scene;
3 The scene is shown with all of the model elements relevant to it;
4 The NavigationBar is called to add a section pertaining to the scene;
5 The NavigationBarSection is pushed to the section stack and initialized with a

NavigationBarMenu;
6 A NavigationBarNamer, characterised by the EObject of the model, is associated

with the NavigationBarMenu;
7 A listener is created for the new navbar section;

Algorithm 1: Algorithm detailing navigation to a model.

B. Navigation System Pseudo-Code 106

Data: Modeler input selecting a section of the navigation bar be opened.
Result: The list of elements for a given model is shown within the navigation bar.

1 The namer is called to initialize the menu for the on screen model;
2 The namer calls the NavigationMappingHelper with the on screen model object to

populate the navigation bar;
3 The NavigationMenuHelper creates a new IntraLanguageMappingTree which is used

to facilitate the creation of a list of elements;
4 The NavigationMenuHelper retrieves the Navigation Mappings from the current

Perspective or from the hard-coded information in the case of built in models
(Feature Models and Goal Models);

5 The NavigationMappingHelper adds the model object to a list of possible source
objects;

6 while there are possible source objects in the list do
7 The NavigationMappingHelper checks to see if any of the Navigation Mappings

are relevant to the current object and if so adds them to the tree;
8 The destination of any Intra-Language Mapping which is added to the tree is

added to a list of objects which can act as the source for mappings later in the
tree;

9 A listener is made for the object to check if any information relevant to the
navigation system is added, removed, or changed for this object;

10 end
11 The completed tree is returned to the NavigationBarNamer;
12 The namer calls for the creation of a new NavigationBarMenuElement for the tree;
13 for each child of the root node in the tree do
14 if the node has no children then
15 it is added to the list underneath its parent node within a drop down menu

categorized by the type of mapping between itself and the parent;
16 end
17 else
18 it is added to the list in the same way but it also recurses back and begins

the process as if it were the root of the tree;
19 end
20 the list is then sorted by name and each drop down menu is added in the same

way
21 end

Algorithm 2: Algorithm detailing opening of navigation bar section.

B. Navigation System Pseudo-Code 107

Data: Modeler selected element within the navigation bar.
Result: The system responds by changing the on screen model or highlighting the

relevant model element.
1 The system checks to see the element is related to an Intra or Inter-Language

Mapping;
2 if it is an Intra-Language Mapping and not multi view then
3 the model element is highlighted;
4 end
5 else if it is an Intra-Language Mapping and multi view then
6 if the element is in the current view then
7 it is highlighted;
8 end
9 else

10 the view is changed by calling changeView in
SceneCreationAndChangeFactory and a similar process to Algorithm 1
occurs;

11 end
12 end
13 else if it is an Inter-Language Mapping then
14 if the element is a model then
15 the scene is changed as in Algorithm 1;
16 end
17 else if the element is a model element then
18 the scene is changed as in Algorithm 1 and the element is highlighted in the

new scene;
19 end
20 end
21 else if it is a reuse then
22 the scene is changed in Algorithm 1 but a new Navigation Bar Section is added

for the reuses and an element is pushed to the reuse stack;
23 end
24 else if it is a conflict resolution context switch then
25 the scene is refreshed with a new navbar section for the new feature;
26 end
Algorithm 3: Algorithm detailing response to modeler selecting an element in
navigation bar.

B. Navigation System Pseudo-Code 108

Data: Change made to the on screen model.
Result: The navigation bar section for the model is updated to reflect the change.

1 if a new element was added to the model then
2 if the element is connected to other elements in the navigation bar by a

navigation mapping then
3 The element is added to the IntraLanguageMappingTree to reflect each

navigation mapping it is a part of;
4 The new element is added to the navigation bar in a similar way to the

method shown in Algorithm 2;
5 The list of elements is sorted to ensure ordering remains consistent;
6 end
7 end
8 else if a element is deleted from the model then
9 Each of the instances of the element is removed from the

IntraLanguageMappingTree;
10 The NavigationBarNamer for the current model is called and the element is

removed from the list;
11 end
12 else if the name of an element is changed then
13 The change of name is reflected automatically by the text listeners within

NavigationBarNamer;
14 end
Algorithm 4: Algorithm detailing response to modeler changing an element within
the current model.

B. Navigation System Pseudo-Code 109

Data: A modeler selects the back button
Result: The previous model is re-opened and the navigation bar is updated to

reflect that model.
1 if the previous model is the feature model for a concern then
2 The model scene is changed as in Algorithm 1;
3 The navigation bar sections for the feature and realization model are removed;
4 end
5 else if the current scene is a reuse scene then
6 The model scene is changed as in Algorithm 1;
7 if the previous scene is a reuse scene then
8 The previous scene’s model is removed from the reuse section;
9 end

10 else
11 The reuse section is removed from the model;
12 end
13 The concern, feature and realization model sections for the current model are

removed;
14 The previous scene’s concern, feature and realization model sections are added

to the model as in Algorithm 1;
15 end
16 else if returning from a conflixt resolution context switch then
17 The feature section is updated to reflect the new feature;
18 end
19 else
20 The model scene is changed as in Algorithm 1;
21 The realization model section in the navigation bar is updated to reflect the new

model scene;
22 end
Algorithm 5: Algorithm detailing response to modeler clicking on the back button.

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Domain Specific Modeling Languages
	Perspectives
	TouchCORE
	Aspects and RAM
	Summary

	An Overview of the Aims of a Generic Navigation System
	Intra-Model Navigation
	Requirements

	Inter-Model Navigation
	Single Language Multi-View Navigation
	Requirements

	Software Product Line Navigation
	Feature Models
	Impact Model
	Conflict Resolution of Features
	Requirements

	Navigation of Model Reuse
	Requirements

	Summary

	Implementation
	Navigation Metamodel
	Navigation Metamodel Evolution
	Navigation Metamodel Implementation

	Implementation Details
	Definition of Navigation Concepts in TouchCORE
	Run-Time Generic Navigation
	Architecture Overview
	Navigation Algorithm Description

	Summary

	Testing
	Test Suite
	Summary

	Related Work
	Survey of Navigation Systems
	StarUML
	MagicDraw
	Visual Paradigm
	Sparx Enterprise Architect
	Overview

	Summary

	Conclusion
	Overview and Contributions
	Future Work
	Filtering
	Graphical User Interface for Defining Navigation Mappings
	Automatic Testing of Navigation System

	Bibliography
	List of Tests
	Navigation System Pseudo-Code

