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ABSTRACT 

The widespread use of ordinary differential equation (ODE) models has long been under­

represented in the statisticalliterature. The most common methods for estimating parameters 

from ODE models are nonlinear least squares and an MeMe based method. Both of these meth­

ods depend on a likelihood involving the numerical solution to the ODE. The challenge faced by 

these methods is parameter spaces that are difficult to navigate, exacerbated by the wide variety 

of behaviours that a single ODE model can pro duce with respect to small changes in parameter 

values. 

In this work, two competing methods, generalized profile estimation and Bayesian collo­

cation tempering are described. Both of these methods use a basis expansion to approximate 

the ODE solution in the likelihood, where the shape of the basis expansion, or data smooth, is 

guided by the ODE model. This approximation to the ODE, smooths out the likelihood surface, 

reducing restrictions on parameter movement. 

Generalized Profile Estimation maximizes the profile likelihood for the ODE parameters 

while profiling out the basis coefficients of the data smooth. The smoothing parameter deter­

mines the balance between fitting the data and the ODE model, and consequently is used to 

build a parameter cascade, reducing the dimension of the estimation problem. Generalized pro­

file estimation is described with under a constraint to ensure the smooth follows known behaviour 

such as monotonicity or non-negativity. 

Bayesian collocation tempering, uses a sequence posterior densities with smooth approxi­

mations to the ODE solution. The level of the approximation is determined by the value of the 

smoothing parameter, which also determines the level of smoothness in the likelihood surface. 

In an algorithm similar to parallel tempering, parallel MeMe chains are run to sample from the 

sequence of posterior densities, while allowing ODE parameters to swap between chains. This 

method is introduced and tested against a variety of alternative Bayesian models, in terms of 

posterior variance and rate of convergence. 
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The performance of generalized profile estimation and Bayesian collocation tempering are 

tested and compared using simulated data sets from the FitzHugh-Nagumo ODE system and 

real data from nylon production dynamics. 
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ABRÉGÉ 

L'utilisation répandue des modèles d'équations différentielles ordinaires (EDO) a depuis 

longtemps été sous-représentée dans la littérature statistique. Les méthodes les plus communes 

pour estimer les paramètres des modèles d'EDO sont les moindres carrés non-linéaires et une 

méthode basée sur les MCMC. Ces méthodes dépendent d'une vraisemblance basée sur la solu­

tion numérique de l'EDO. Le défi relevé par ces méthodes est que les espaces de paramètres sont 

difficiles à naviguer, aggravé par la grande variété de formes fonctionnelles qu'un modèle d'EDO 

peut produire avec des petits changements de valeurs des paramètres. 

Ce travail décrit deux méthodes alternatives, l'estimation généralisée de profil (EGP) et la 

méthode de lissage bayésienne tempérée (LBT). Ces deux méthodes emploient une expansion de 

bases pour approximer la solution d'EDO dans la vraisemblance, où la forme de l'expansion est 

guidée par le modèle d'EDO. Cette approximation de l'EDO lisse la surface de vraisemblance, 

réduisant ainsi les restrictions de mouvement des paramètres. 

L'EGP, maximise le profil de vraisemblance des paramètres d'EDO, tout en profilant les coef­

ficients de l'expansion de bases. Le paramètre de lissage détermine l'équilibre entre l'interpolation 

des données et l'ajustement au modèle d'EDO. Celui-ci est donc utilisé afin de construire une cas­

cade de paramètres, réduisant ainsi la dimensionnalité du problème d'estimation. L'estimation 

généralisée de profil est décrite sous des contraintes de lissage connues telles la monotonicité et 

la non-negativité. 

La méthode de LBT utilise une suite de densités postérieures basée sur des approximations 

lisses à la solution d'EDO. Le niveau de l'approximation est déterminé par la valeur du paramètre 

de lissage qui contrôle le niveau de rugosité dans la surface de vraisemblance. Dans un algorithme 

semblable au tempérant parallèle, des chanes MCMC parallèles sont utilisées pour échantillonner 

de la suite de densités postérieures, tout en permettant aux paramètres d'EDO de permuter entre 

les chanes. Cette méthode est présentée et examinée contre une variété de modèles bayésiens 

alternatifs, en terme de variance postérieure et taux de convergence. 
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La performance de ces méthodes sont examinée et comparée en utilisant des données simulées 

d'un système d'ODE de FitzHugh-Nagumo et des données réelles de la dynamique en production 

de nylon. 
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CHAPTER 1 
Introduction to DifferentiaI Equation Systems 

Ordinary DifferentiaI Equation (ODE) models describe rates of change of system components 

or outputs Dx(t) = dx(t)jdt as a function ofthe observed component behaviour x(t), giving ODE 

models of the form Dx(t) = f{x(t)}. For example, consider a population of rabbits producing 

on average (3 offspring per rabbit per unit of time after accounting for gender. The rabbit 

population beginning at level Xo rabbits increases to x(t = 1) = xo(1 + (3) in a single time unit. 

With abundant resources and ignoring the occasional predator or other cause for mortality for 

the moment, gives the rabbit population at any time t, 

x(t) = xo(1 + (3t (1.1 ) 

Reparametrization by a = log(1 + (3) shows explicitly the unbounded exponential growth of the 

rabbit population 

Xt = Xo exp(at). (1.2) 

The analytical derivative or instantaneous rate of change in population is 

dx(t) -:ft = axo exp(at) = ax(t), (1.3) 

giving a differential equation model for the rate of change in population as a function of the 

current population size. 

Parameter a is often unknown and of interest. The first order linear differential equation 

model (1.3) has the analytic solution (1.2), and consequently parameter estimation could be 

performed with log-linear regression modellog(xt) = log(xo) + at. Alternatively, if observations 

are obtained at evenly spaced time intervals, the model could be re-written as x(t) = eŒx(t -

1). With this recursion, a could be obtained from an auto-regressive model using time-series 

(Brockwell and Davis 1991) or state space (West and Harrison 1997) methods. 
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Another ODE model arising from physical principles is based on Newton's revelation: Force = 

M ass x Acceleration. For example, a parachutist experiences the force of gravit y by accelerating 

at constant rate a towards the Earth. The rate of change of the parachutists position is their 

velocity and the rate of change in velocity is their acceleration. Consequently, the force of gravit y 

acts on the second derivative of position: D2X(t) = a. This acceleration is eventually balanced 

by the force of wind resistance, which is itself a function of relative opposing wind speed, and 

consequently the parachutists velo city. Also ai ding in a safe landing, the wind resistance acting 

on the parachutist changes drastically once the parachute opens. Labelling constant parameters 

describing wind resistance (), and non-constant parameters which change with the status of the 

parachute </J(t), pro duces the model: 

D2x(t) = a - fwind (Dx(t), (), </J(t)) . (1.4) 

Model (1.4) may not have an analytic solution and consequently there may no longer be 

simple options for estimating parameters. Furthermore, we may only be able to measure position 

x(t), but be interested in estimating parameters () and </J(t) which act on its second derivative. 

To simplify somewhat, this second order model with non-constant coefficients can be re-written 

as a set of linked first order constant coefficients by including a functional input describing the 

parachute status u(t), 

Dx(t) 

D2x(t) = Dv(t) 

v(t) 

a - fwind (v(t), u(t), (), </J) 
(1.5) 

In most cases, higher order ODE models can be re-expressed as a system of first order ODEs 

and often non-constant coefficients can be made constant by the inclusion of sorne addition al 

information about the system inputs. In this particular case, the model simplification has the 

added advantage that the induced variable v is interpreted as velo city. 

Differentiai equation models arise naturally from principles of conservation of mass, energy, 

charge or momentum. These systems model the transfer of a conserved currency from one 

form, or system component, into another. Conservation constraints pro duce nonlinearities in the 
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model describing the nature of the interaction between system components. For example, in the 

Canadian north, the Lynx is a predator of the Hare (a close relative of the rab bit ) and their 

relationship can be described by 

DHare 

DLynx 

,8lHare - ,82HareLynx 

- ,83 Lynx + ,84HareLynx. 
(1.6) 

The beauty of the ODE formulation of (1.6) is in the interpretability of the parameters. 

The net reproduction rate of Hares is ,81, Hare mortality rate per Lynx is ,82. The Lynx's net 

death rate is ,83, and the Lynx population increase per Hare eaten is ,84. The interaction term 

HareLynx reflects the need for these two species to connect, in order to influence each others rate 

of population change. This model suggests a constant amount of energy in the ecological system, 

and the Lynx and Hare exchange this energy through the process of hunting. Essentially, the 

Hare's energy is transferred to the Lynx during the hunt, but as the Hare population dwindles, 

the Lynx will no longer find adequate food and will starve. As the Lynx population in turn 

crashes, the Hares are able to reproduce under reduced threat of predation, in a sense rec1aiming 

sorne of the systems energy from the dying Lynx. As the Hare population recovers, they become 

easier prey which in turn rebuilds the Lynx population. These population cycles are common in 

ecology and for example are seen in early Canadian Hare and Lynx fur trapper records kept by 

the Hudson's Bay company (Elton and Nocholson 1914). 

While equations (1.6) have no analytic solution, if the system state is known exactly at sorne 

point in time, for example if the initial system states Hare(t = 0) and Lynx(t = 0) are known 

exactly, then a numerical approximation to the solution may be produced using Runge-Kutta or 

other numerical sol vers. 

Model building from scientific principles are further described in detail in the next two 

sections, as an introduction to the two multi-component nonlinear ODE systems that will be 

used throughout the remainder of this work. The first is based on the conservation of mass 

producing equations governing the reaction dynamics of nylon production driven at the level of 

the derivative by external inputs over multiple experimental runs. The second example describes 
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linked feedback loops inducing another form of nonlinearity into an ODE model through an 

example from neuro-physiology. 

1.1 ODE model for Nylon Production Dynamics 

In a heated chemical reactor containing amine (A) and carboxyl (C) chemical groups, A and 

C react to producing the polymer nylon (L) and water (W) (Zheng, McAuley, Marchildon, and 

Zhen Yao 2005). At the same time W reacts with L, decomposing it into its constituents A and 

C. These competing reactions, symbolically summarized by A + C ~ L + W, imply that the 

chemicals change form, but the conservation of mass implies that the total mass in the reactor 

remains constant. Knowing that the pair (A, C) must react in or der to be expended suggests 

a negative feedback loop reducing the concentrations of A and C at a rate proportional to the 

interaction of their concentrations. By symmetry of the problem, the self-annihilation of (A, C) 

will produce the new pair (L, W) giving reaction rates which differ only in sign. Using reaction 

rate parameters kp > 0 and Ka > 0, the dynamics, 

DA=DC 

and DL=DW 

-kp(CA - LW/Ka) 

kp(CA - LW/Ka), 
(1. 7) 

are somewhat reminiscent of the form of the predator prey equations in (1.6). The positive 

constraint on kp and Ka imposes the conservation of mass principle used in the formulation of 

the ODE model. 

The time derivative for A is ofthe form: DA = -k1A+k2 . As a simplification to explore the 

meaning behind the equation, con si der k1 and k2 to be constant. This system has the solution: 

(1.8) 

which decays exponentially towards the asymptote k2/ k1 . Therefore, this system describes a 

tendency towards equilibrium concentrations of the chemicals1 
. Removing the simplification 

1 By symmetry of the system of equations, any component of C, W or L can be put into the 
form of (1.8). 
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and returning to the formulation of (1.7) allows the final equilibrium asymptote to be a function 

of all outputs. Due to the interaction of all the chemical components, numerical methods are 

required to map out the trajectories of the components. The equilibrium concentrations are 

attained when the competing reactions balance, i.e. CA = LW/Ka' The rate of the exponential 

decay is controlled by kp' Accurate estimates of the reaction rate and asymptote parameters 

enable chemical engineers to design more efficient nylon production reactors. 

Due to the heat of the chemical reactor, when A and C react to produce Land W, Wescapes 

as steam and its concentration therefore dwindles as the reaction proceeds. In an experiment to 

measure these reaction dynamics (Zheng et al. 2005), input steam was bubbled through molten 

nylon to maintain an approximately constant concentration of W in the system. The constant 

W forces A, C and L to move towards equilibrium concentrations coinciding with this input level 

of W. Within each of the i = 1, ... ,6 experimental runs, the pressure of input steam was held 

at a high level until time Til, then reduced until time Ti2, when the input pressure returned to its 

originallevel for the remainder of the experiment. A high pressure of steam entering the system 

implies a high concentration of W within the molten mixture, as the entering steam quickly 

equilibrates with the exiting steam. 

The full set of experimental conditions are given in table 1-1. Each experiment was per­

formed at a constant temperature T; E {536, 544, 554, 557}. Using known constants Pc and Tc, 

the critical temperature and pressure of water, along with the input water pressure Pw , the 

equilibrium concentration of water in the molten nylon mixture, Weq , is determined through the 

equations from (Schaffer, McAuley, Cunningham, and Marchildon 2003), 

W eq = 5.55 X 104 ;:t exp ( -9.624 + 3613/T), 
w 

(1.9) 

and 

( sat/ ) T [ (T T 1.5 T 3 T 6] ln Pw Pc = T -7.77244 1- T ) + 1.45684(1- -) - 2.71492(1- -) -1.41336(1- -) . 
c c Tc Tc Tc 

(1.10) 
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Table 1-1: Nylon Experimental conditions. Temperature T is given in degrees Kelvin. Pw and 
W eq are given at time zero (equal to the value after time T2) and after the first step change at 
time Tl hours. The number of observations are given for A and C. The final column of the 
table shows the concentration difference between A and C averaged over times when both are 
observed. 

536 760 64.3 4.1 181 15.3 8.0 22 22 61.0 
544 760 51.3 3.9 58 3.9 7.6 22 22 68.6 
554 760 39.0 3.1 205 10.5 6.3 23 23 75.3 
557 760 36.0 0.6 152 7.21 3.8 15 12 110.1 
557 760 36.0 1.0 152 7.21 5.0 15 13 198.8 
557 760 36.0 2.1 152 7.21 5.3 23 12 6.08 

Since the input steam forces W towards its equilibrium concentration W eq , the input W eq is 

including as a forcing function on the right hand side of DW in (1.7) producing the dynamics 

for this experiment; 

-kp(CA - LW/Ka) 
(1.11) 

-DL=DA=DC 

and DW kp(CA - LW/Ka) - 24.3(W - W eq ). 

Using the reference temperature To = 549.15, chosen in the middle of the experimentally 

manipulated temperatures, the reaction rates kp and Ka are also allowed to change with T and 

W eq through the relationships with unknown parameters () = [kpo", Kao, ~H], 

and 

kpo 
kp = 1000' 

Ka = {1 + Weq1~0} KTKaoR (8~~4) , 

R( m) = exp ( -m10
3 

{ ~ - ;o} ) , 

( 
3613) KT = 20.97 exp -9.624 + T . 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

These equations include scaling factors making all initial parameter estimates used in Zheng 

et al. (2005) in the range [17.7, 78.1] in absolute value, to ease optimization. Equations (1.12) 
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Figure 1-1: A numeric solution to the nylon equations, using values of T = 554 and Weq E 

{64.28, 15.31} from one of the experiments. The numerical solution is based on the parameters 
[kp , Î' Kao, ~H] = [20.59,26.86,50.22, -36.46] and the initial system states [A(t = 0), C(t = 

0), W(t = 0)] = [22.40,83.70, 64.28].Vertical axes are in concentration units and horizontal axes 
are in hours. 

and (1.13) are a simplification of the original 6 parameter model used in Zheng et al. (2005). A 

discussion of the model reduction pro cess is left for chapter 3. 

Figure 1-1 shows the numerical solution to the nylon ODE equations (1.11), following the 

conditions of one of the experimental mns. Temperature was held constant at T = 554 and 

Weq E {64.28, 15.31} was initially held high until Tl = 4.12 then reduced to the lower level and 

finally returning to its original high level after T2 = 8.03. The numerical solution is based on the 

parameters [kp , Î, Kao, ~H] = [20.59,26.86,50.22, -36.46] and the initial system states [A(t = 

0), C(t = 0), W(t = 0)] = [22.40,83.70,64.28]. Between times of step changes in input, chemical 

reactants A, C and W exponentially decay towards an equilibrium level. These equilibrium levels 

undergo step changes following the step jumps in input Weq . 
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Figure 1-2: An up close view of the hour of experimental time surrounding the step function 
change in Weq from 64.28 to 15.31. The step change causes a small bump in A and C induced 
by the dependency in Kao on W eq from the numeric solution in figure 1-1. Vertical axes are in 
concentration units and horizontal axes are in hours. 

Figure 1-2 zooms in on the hour of experimental time surrounding the Tl, the step function 

drop in Weq . The dependence of Ka on Weq in (1.13) through 1 =f:. 0, pro duces a small amplitude 

short jump in the levels of A and C immediately after Tl. For fixed temperature, in (1.13) Ka is a 

linear function of Weq of the form Ka = /30 + /31 Weq , /30, /31 > O. Consequently, a step drop in Weq 

causes a step drop in Ka. The inversion of Ka in (1.11) translates this step drop into the step 

increase in the rate of production of A and C giving the bump seen in the zoomed figure. Within 

approximately 15 minutes, this jump in reaction rate is overshadowed by the strength of the force 

pulling W towards Weq , allowing excess W to escape as steam. In other words, according to the 

model, when Weq drops, the system attempts to rid itself of W through all available processes. 

Most of this excess W escapes as steam but sorne of it reacts with L ta pro duce this burnp in A 

and C. 

Figure 1-3 shows the data for each of the experimental runs. Unfortunately there are no 

observations close enough to the spike in A and C in order to be able to determine its plausibility. 

Instead, when 1 =f:. 0, the rate of exponential decay and asymptotic equilibrium levels are fine 
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Figure 1-3: The nylon observations for A and C along with the input Weq grouped together 
within each of the 6 experimental runs. Constant temperatures T of the experimental runs 
are given above component A in degrees Kelvin. Vertical axes are in concentration units and 
horizontal axes are in hours. Verticallines represent times of changes in input W eq . 
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tuned by changes in Weq . The plot shows observed components A and e as weIl as the input 

levels of Weq • Verticallines correspond to times of step changes in input Til and Ti2' This data 

and differential equation model produce sever al potential challenges: 

1. This system describes chemical concentrations which are by definition constrained to take 

on non-negative values. 

2. There are 6 experimental runs and information must be pooled across runs. 

3. The equations in (1.11) suggest that the concentrations of A and e are a result of competing 

exponential growth and decay towards the asymptotic equilibrium level. This level jumps 

abruptly in response to step changes in Weq causing discontinuities in the first derivative 

of the underlying pro cess at Til and Ti2. 

4. Since DA = De the data in figure 1-3 should only differ by a constant vertical shift. 

Instead, this figure shows that the variability in the measurement of e is larger than the 

variability of A. System outputs are measured with different precision. 

5. Given any three chemical components, the fourth can be determined algebraically using the 

mass balance ofthe system, however it was only possible to measure A and e. Consequently 

an additional state variable must be estimated. 

1.2 FitzHugh-Nagumo Non-Linear ODE model 

The FitzHugh-Nagumo system of nonlinear differential equations is used in physiology as 

an approximate model for the voltage V (t) crossing the cell membrane of a giant squid axon. 

The recovery component R(t) describing outward currents, interacts with V, using the model, 

defined by parameters 8 = [0:', {J, Î], 

DV(t) 

and DR(t) 

Î(V(t) - V~)3 + R(t)) 

-~(V(t) - 0:' + {JR(t)). 
(1.16) 

An introduction to the motivation behind these equations and other ODEs for neurophysiology 

can be found in (Wilson 1999). 

The model DV ex V - V 3 /3, when V is small, describes a positive feedback loop in which 

V exhibits exponential unbounded growth. The term - V 3 indu ces a negative feedback loop 
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Figure 1-4: Numerical solutions to the FitzHugh-Nagumo equations in (1.16), using initial system 
states [Vo, RoJ = [-1, IJ and sever al sets of parameters. Outputs V and Rare shown in blue and 
green respectively. 

which takes effect only when the voltage becomes too large allowing voltage to spill across the 

cell membrane. That is, when 1 V 1:2: J3 the sign changes on DV, returning V back towards 

zero producing oscillations. The nonlinearity in this equation allows these two feedback loops 

to compete with the dominant loop being decide by the value of V. lncluding R as a forcing 

function in DV adjusts the speed of the transition from increasing to decreasing V, and adjusts 

the value of V where the sign of DV changes. 

The equation DR ex: -j3R+ex has the same form as the nylon equations (1.8), and describes 

exponential decay towards the asymptote ex/j3. lncluding V as a forcing term in DR is equivalent 

to varying the horizontal asymptote in response to the value of V. 

Using the initial system state X o = [VO, RoJ = [-1,1], the numerical solutions Sv(O, X o, t) 

and SR(O, X o, t) to (1.16) are plotted for four sets of parameter values in figure 1-4. The scaled 
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axes represent time and voltage units in the horizontal and vertical dimensions respectively. The 

shape and period of the cycles vary considerably with the parameter values and can altogether 

disappear. The top left panel of figure 1-4 with parameters [.2, .2, 3] highlights the exponential 

growth of V, for example occurring over the interval (6.5,10). Due to the a positive value of R, 

the sign of DV changes at V(lO) = 2 instead of when V(t) = V3, as would be the case without 

the influence of R. At time t = 10 the change in sign of DV pro duces a sharp bend in the path 

of V. Compared to this panel, the period roughly doubles by changing to parameters [-.5, .5,5] 

(top right panel). lncluding a negative value for a makes it more difficult for the voltage to build 

up fram negative values, producing the long slow recovery shown in this panel. This value of a 

also reduces the duration of the positive values of V. 

In the bottom left panel, parameters [0, .8, 1] soft en the abrupt sharp change of sign in DV 

to a smaller amplitude, more sinusoidal trajectory. Changing (3 to a larger negative value with 

parameters [1, -1, 2] aIt ers the exponential decay of DR into an unregulated positive feedback 

loop giving unbounded exponential growth for R. The influence of R on DV in (1.16) forces V 

to also grow exponentially, but because R is the driving force, component R has a head start. 

Consequently, when both components are plotted on the same vertical scale, as in the bottom 

right panel, the exponential growth of V is present but not evident. Stable cyclical behaviour 

occurs when parameters are within the approximate region -.8 < a, f3 < .8 and 0 < Î < 8 for a 

wide range of initial system states. 

The variety of behaviour described by a single differential equation model pro duces flexibility 

beyond that available from a conventional linear or nonlinear models, and consequently may 

produce considerable difficulty in parameter optimization. 

As a simulation study throughout this work, 50 simulated data sets with observations V(t) 

and R(t) at times t E {O, .05, ... ,20} were produced from the numerical solution to (1.16) using 

[VO, Ra] = [-1,1] and [a, (3, Î] = [.2, .2,3]. Random mean zero Gaussian observational errors were 

added to observations with ()~ = .52 and ()~ = .42
• A representative of the 50 simulated data 
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Figure 1-5: The numerical solution to the FitzHugh-Nagumo equations with [Vo, Ho] 
and [a, {J, 1] = [.2, .2,3] along with simulated data. 

[-1,1] 

sets appears in figure 1-5. These same 50 data sets are used to compare a variety of parameter 

estimation methods in chapters 2, 3 and 4. 

1.3 Overview of this work 

An overview of sorne of the current methodological work is introduced in chapter 2, which 

demonstrates the performance and limitations of the two most widespread estimation methods for 

ODE models: nonlinear regression and Markov-Chain Monte Carlo. Both of these methods use 

the numerical solution to the ODE model in the likelihood and subsequent parameter estimation 

process. This chapter ends by discussing advances to these methods as a mis-en-scene for recent 

advances. 

The next two chapters describe collocation methods, meaning that they use a basis expan-

sion approximation to the numerical solution to the ODE model. Using a collocation method 

essentially smooths out the likelihood, simplifying the estimation process. Chapter 3 describes 

a method based on a generalized version of the maximum profile likelihood estimator allowing 
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for a constrained basis expansion. Chapter 4 develops a Bayesian method using parallel MCMC 

chains based on collocation approximations to the ODE solution. 

The results of these two methods are compared in chapter 5, which highlights the subtle 

differences in their description of the underlying process. This chapter finishes with discussion 

about current and future research directions. 
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CHAPTER 2 
Parameter Estimation for ODE Models 

The most common methods for estimating the vector of parameters 8 from ODE models of 

the form 

Dx(t) = f(x, 8, u(t), t), 

with system inputs or forcing functions u(t), are nonlinear least squares (NLS) and Markov­

Chain Monte Carlo (MCMC) methods. These two methods depend on the analytic solution to 

the ODE, or when none is available, they rely on the numeric solution 8(8, X o, u(t), ti) computed 

from the initial system states Xo with a Runge-Kutta or other numeric ODE solver. With NLS, 

8(8, X o, u(t), ti) and gradient with respect to 8 and X o are used to guide movement across the 

parameter space using Gauss-Newton iterative updates as described in section 2.1. With MCMC, 

the solution is used in a stochastic optimization and density estimation routine described in 

section 2.2. 

The performance of these two methods is demonstrated on the 50 simulated data sets from 

the FitzHugh-Nagumo equations of section 1.2 and the nylon data from section 1.1 to highlight 

the strengths and limitations of these methods. Recent extensions to these methods designed to 

fix sorne of their well known limitations are described in section 2.3. This chapter motivates the 

methodological advances described in later chapters. 

2.1 The Nonlinear Least Squares Method for Estimating ODE Parameters 

Maximum likelihood estimation for ODE models select 8 by minimizing the negative log 

likelihood. When a Gaussian likelihood is used this amounts to minimizing the squared error 

loss between the (numerical) solution to the ODE and the data: 

N 

ê = min88E = min L (y(ti) - 8{8, X o, u(t), ti})2 . 
88. , 
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Using this distributional assumption for the measurement error is referred to as Nonlinear Least 

Squares (NLS), and is described in detail in (Seber and Wild 1989) and (Bates and Watts 

1988), but an overview will be given here in order to highlight the nature of the methodological 

improvements in later chapters. 

Since the numerical solution depends on X o = X(t = to), the initial system state of com-

ponent X, these additional parameters must also be estimated. Using Gauss-Newton iterations, 

parameter estimates move through the parameter space by incrementally stepping along the 

steepest decent in the loss function as produced by a Taylor approximation to the loss surface 

using the gradients: 

dOSSE 

and -d-SSE 
dXo 

-2 L~ (y(ti) - S{O, X o, u(t), ti}) COS{O, X o, u(t), ti}) 

-2 L~ (y(ti) - S{O, X o, u(t), tJ) CXo S{O, X o, u(t), t i }) . 

Numerical estimates of 

(2.1) 

may be produced by selecting a small 6 and approximating the definition of the integral, for 

example, 

~S(O X ().) ~ S(O + 6, X o, u(t), ti) - S(O, X o, u(t), ti) 
dO ,0, ut, t~ 6 . 

These numerical gradients may perform poorly because of the strong nonlinearities. Instead, the 

much more stable analytic gradients of S(O, X o, u(t), ti) with respect to parameters 0 and initial 

conditions X o are obtained by numerically solving the sensitivity equations: 

df(X,O,U(t),t) âf(X,O,U(t),t) + âf(X,O,U(t),t) dX with dX(t) 1 = 0 
dO {JO ex dO' dO t=to (2.2) 

df(X,O,U(t),t) âf(X,O,U(t),t) dX with dX(t) 1 - 1 
dXo âX Ka' dXo t=to -

Due to the nonlinear nature of the problem and the diverse behaviours that can be modelled 

by a single ODE model, the Gauss-Newton increment may overstep the region where the Taylor 

approximation is reasonable. This may suggest a set of parameters which increase the sum of 

16 



squared errors (SSE). When this arises the step size is repeatedly discounted (often halved) and 

the SSE re-assessed until a step size which decreases the SSE is found. Where the loss surface is 

highly nonlinear, this can reduce the incremental updating of parameters to a crawl, potentially 

giving an assessment of convergence based on the minute step size which finally reduces the 

SSE. Therefore, convergence may actually be indicative of a strong departure from the linear 

approximation or a local minimum as opposed to a global optimum. Despite warnings about 

difficulties in navigating the likelihood surface and consequent potentially misleading results 

(Esposito and Floudas 2000), nonlinear least squares is one of the most used techniques for 

parameter estimation. 

2.1.1 FitzHugh-Nagurno Sirnulated Data Exarnple Using NLS 

In a simulation study, NLS was performed on the 50 FitzHugh-Nagumo data sets described 

in section 1.2 following the model with true parameters (J = [a, 13, 1'] = [.2, .2,3], 

DV(t) 

DR(t) 

1'(V(t) - V~)3 + R(t)) 

-~(V(t) - a + j3R(t)), 
(2.3) 

and beginning with the initial systems states X o = [V(t = to), R(t = to)] = [-1,1]. The itera­

tive estimation procedure was initialized using initial system states, and parameters estimated 

with draws from the prior densities of the Bayesian model described in 2.2. These same initial 

estimates are used every time these data sets are analyzed in this work. 

The NLS algorithm was stopped after 400,000 Gauss-Newton iterations if convergence had 

not already been attained, as assessed by a relative drop in the SSE of less than 10-8 from 

an additional Gauss-Newton step. In this simulation study, loss surface irregularities trapped 

one optimization in a local minima in the loss surface, meeting the convergence criteria while 

remaining far from the true parameter values. Furthermore, another 6 of the 50 simulated data 

sets did not achieve convergence in the maximum number of allotted iterations. In these 6 cases, 

the linear approximation to the likelihood surface used by the Gauss-Newton iterations was only 

reasonable over a very small region in the parameter space. Consequently, the parameters moved 

by only small steps at each iteration, stunting the optimization progress. 
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Figure 2-1: 95% confidence intervals for 50 simulated FitzHugh-Nagumo data sets using Nonlin­
ear Least Squares. Only results for optimizations which converged in less than 400,000 Gauss­
Newton iterations are shown. The horizontallines denote the true parameter values. 

Figure 2-1 shows the NLS 95% confidence intervals from the parameter estimates of 8. Using 

the observed residual variance &2, the interval estimates were computed using the standard errors: 

In the FitzHugh-Nagumo system, the initial system states X o de termine the phase of the 

oscillations in S(8(true),Xo,u(t),ti), and when those oscillations begin. Any set offinite values 

of X o will eventually produce li mit cycles when 8 = 8(true) due to the feedback regulation in 

(2.3). However, if X o is far from X6
true

) , trajectory S(8(true) , X o, u(t), ti) will not begin oscillate 

within the range of observation times. This may produce gradients in (2.1) which make the 

Gauss-Newton iterations move 8 away from 8(true) as the optimization navigates the steepest 

descent in the loss surface. The indirect path to optimization increases the number of required 

iterations in NLS. 
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2.1.2 Nonlinear Least Squares and the Nylon Data Example 

Using the nylon data system shown in figure 1-3, NLS was performed ta estimate the 

() = [kpo , Î, Kao, ~H] from the nylon system equations 

-DL=DA=DC 

DW 

i!(m) 

-l~P~O(CA - LW/Ka), 

l~P~o(CA - LW/Ka) - 24.3(W - Weq ), 

{1 + Weql~O} KTKaoi! U~:/[4)' (2.4) 

exp ( -m103 
{ ~ - A } ) , 

20.97 exp (-9.624 + 3~3) . 

The parameter estimates used to initialize the NLS algorithm were () = [kpo , Î, Kao, ~H] = 

[17.7,17.0,15, -78.1], approximations ta the parameter estimates originally obtained from linear 

regression estimation performed on subsets and transformations of the data in (Zheng, McAuley, 

Marchildon, and Zhen Yao 2005), adjusted for the reparameterization of this model. Initial 

estimates for X o = {XiO = [AiO , CiO, WiO ]; i = 1, ... , 6} were the values assumed ta be fixed 

and true in Zheng et al. (2005). Un der this assumption, AiO was observed without error, and 

CiO = AiO+p'Ci-Ai' where P,Ci-Ai is the average difference between observations of Ci and Ai' The 

value of WiO = (Weq)iO was chosen based on the assumption that the system was at equilibrium at 

the first observation time. Weighted NLS was used ta account for the relative reduced accuracy 

in the ability ta measure C compared to A. Combining experimental conditions into Ui (t), with 

weights WA and Wc playing the role of relative scaling factors, the likelihood for the model is: 

In a Gaussian likelihood, the optimal weights are proportional to the inverse measurement 

error variances. In Zheng et al. (2005), the weights WA = 1./.62 and Wc = 1./2.42 were obtained 

from replicate measurements of concentration in an earlier study. 

With the nylon data set, output W is unobserved and WiO must be estimated in order to 

produce Si{Ô, X iO , Ui(t), t}. The fit to the data, Si{ Ô, X iO , Ui(t), t}, i = 1, ... ,6 is shawn in figure 
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2-2 using the point estimates given in table 2-1. As shown in the figure, using nonlinear least 

squares, WiO is negative in four of the six experimental runs. Negative values of W eliminate the 

conservation of mass in (2.4) and have no interpretation. 

The estimates of WiO are far from equilibrium in all of the experimental runs, causing drastic 

changes in A, C and W in the first few minutes of the experiment. While these drastic changes 

are unlikely to have truly occurred, even in the non-negative cases, thanks to the estimates of 

WiO , the fit to the data is excellent or near perfect in sorne of the experimental runs, especially 

for A. The impact of the estimates of WiO and the breach of conservation of mass is quickly 

overshadowed by the strength of the force pulling W towards Weq in (2.4). Consequently, as 

shown in figure 2-2, in runs with negative estimates of WiO , the levels of A and C are declining 

for only the first few minutes until W is pulled into positive values and the conservation of mass 

dynamics return. The erratic behaviour described in the early part of figure 2-2 is not a reliable 

estimate of the fit to the data, because the chemical reactions were allowed to run for sorne 

time previous to the first observations in arder to bring the components doser to equilibrium. 

Consequently, the chemical components would have to have been initialized much further from 

equilibrium for the fit ta the data to be accurate even after the reactor was allowed to equilibrate 

somewhat before the first observation. 

lnducing the non-negativity constraint WiO = exp(wi) and subsequent estimation of Wi forces 

the initial system states to remain positive and interpretable. Exponentiation of the parame­

ters sharpens the nonlinear loss surface peaks because smaller changes in parameters pro duce 

relatively larger changes to the data fit. For the nylon data model, the NLS iterations under 

the positive parameter constraint failed to converge because the ODE solver could no longer 

produce an accurate numerical solution to the ODE. This occurred wh en the Gauss-Newton it­

erations proposed a particularly poor set of parameter values. Attempts to resolve this problem 

by re-scaling 8 and X o or using an alternative set of initial parameter estimates were not helpful. 

Fixing the initial system states at the initial parameter estimates pro duces a much improved 

fit to the data, and parameter estimates nearly identical to the those using NLS in Zheng et 
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Figure 2-2: The fit to the nylon data using the weighted nonlinear least squar~s parameter 
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Parameter 
Point 

SE 

kpo 1 
20.47 25.82 
1.30 2.90 

Kao 6.H 
50.98 -37.83 
2.79 4.17 

Table 2-1: The top table shows point estimates for the 4 parameter nylon model and the esti­
mated standard errors. 

al. (2005) subject to the rescaling of the models. However, the assumption of equilibria at the 

out set of the experiment implies that A and C should not be increasing as suggested by the 

observations, but rather these observed outputs should be at a steady state. 

With the nylon data, the parameter estimation relies on a choice between an uninterpretable 

fit to the data, strong assumptions about initial system states or a broken methodology. In the 

FitzHugh-Nagumo simulation study the results were further troubled by estimates that depend 

on the initial parameter estimates and slow or failed convergence. These problems leave a lot 

of room for improvement in likelihood based approaches to parameter estimation in differential 

equation models. 

2.2 Bayesian Parameter Density Estimation from ODE models 

As with NLS, using ODE parameters 8 and initial conditions X o, the Bayesian parameter 

estimation model uses a likelihood centered on the solution to the ODE model, 8(8, X o, ti)' For 

example, using the FitzHugh-Nagumo equations from (1.16), with 8 = [0:, (3, Il and X o = [V(t = 

to), R(t = to)], assuming a Gaussian measurement error structure, the likelihood is 

P ([V(t) , R(t)ll 8, X o, o-~, 0-1) '" N (8{8, X o, t}, [o-~, o-1D . (2.5) 

When the equations are linear in system components or an analytical solution exists, the problem 

simplifies to a Bayesian nonlinear regression model as described in (Bates and Watts 1988) or 

(Seber and Wild 1989). When there is no closed form ODE solution, numerical methods and 

Monte Carlo sampling must be used to obtain a posterior distribution. Using MCMC methods, 

this implies that for every set of proposed parameters, the equations must be numerically solved 

to compute the likelihood and make a decision about the proposed values (see (Gelman, Bois, 
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and Jiang 1996) and (Gelman, Carlin, Stern, and Rubin 2004) or (Huang and Wu 2006) in the 

context of mixed effects models). 

For the FitzHugh-Nagumo system in (1.16) with observations V(t) and R(t) taken at times 

tE {tll ... , tn} the oscillatory behaviour occurs when parameters B = [a, 13, Îl are in the approx­

imate region .8 < a, j3 < 8 and 0 < Î < 8 as determined by numerically solving the ODE over a 

coarse grid of parameter values. This prior knowledge can be expressed by the model: 

P (a) cv P (13) cv N (0, .42
) 

(2.6) 
Ph) x~ 

which places approximately 96% of the density of B in this region. When B is in this approximate 

prior region, the system will eventually pro duce oscillations for an extremely wide range of initial 

system states. 

If X o is a pair of values taken from the oscillatory behavior of the ODE model, their influence 

on S(B, X o, t) is to determine the phase of the system. If X o is not a set of values from the 

oscillations, the ODE solution must first pull V and R towards the stable limit cycles, which 

may take longer than the window of observed values. Consequently, a reasonable but vague data 

driven prior for the initial conditions is a Gaussian density centered on the observed initial state, 

with variance equal to the observed variance of the first 30 observations (from time 0 up to time 

1.5) about their mean: 

P (Va) cv N (V [t = 0], var(V [t :::; t30 ])) , 

and P (Ro) cv N (R[t = 0], var(R [t :::; t30 ])) . 

(2.7) 

This gives considerable uncertainty, due to the rapidly changing values of V and R, however, 

initial conditions can have a large impact on the shape of the ODE solution and consequently 

should not be unnecessarily restricted. 

The uninformative conjugate prior density on the variance components O'~ and 0'1 is the log 

uniform distribution, 

p(O'D oc 1/0'~, for O'~ > 0, and k E {V, R}. 
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Using the FitzHugh-Nagumo example, the standard Metropolis-Hastings MC MC method 

follows this algorithm Gelman et al. (2004): 

1. Initialize the algorithm at draw i = 0 with O(i), X6i) , (}~i) and (}~Ci). Often these are 

samples from the prior densities. Use these samples to obtain the numerical solutions 

SV,R( OCi), X6i) , t) and subsequently the un-normalized posterior. 

2. Propose X~ and ()* from the jumping distribution J([O*, X~] 1 O(i), xg), ~J) and pro duce 

the numerical solution S( 0*, X~, t) and un-normalized posterior. 

3. Draw u rv U(O, 1). If u < a, where 

(2.8) 

accept the proposed values by setting [OCHl), X6i+1)] = [0*, X~] and otherwise keep the old 

values for another iteration: [OCHl), xg+1)] = [OCi) , xg)]. Only the un-normalized posteriors 

are required to compute a in (2.8). 

4. Compute the sum of squared residuals (SSE) from the data to SV,R( OCHl) , X6H1) , t) 

5. Use a Gibbs sampling step and draw values for ()~ and (}k from: 

p((}2CHl) 1 V R X(Hl) OCHl») rv SSE Ix2 k = V R 
k "ü' k n-l' , 

6. Set i = i + 1 and retum to step 2 until i = N for sorne large value of N. 

7. Discard the first iterations as bum in to correct for over-representation of values close to 

OCü) , X6Ü) , (}~CÜ) ,(}~CÜ) in the posterior density. Sometimes the remaining posterior draws are 

further reduced by keeping only every kth draw for sorne integer k to reduce the auto cor-

relation between iterations. 

For the simulated FitzHugh-Nagumo data sets, the jumping distribution 

J([a*, (3*) ,*, Vo*, Râ] 1 [a Ci) ) (3(i» ,(i), Vo(i) , R6i
) , ]~J) was a set of independent normals with 
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Figure 2-3: The starting point of the MCMC algorithm and the fit to the FitzHugh-Nagumo 
simulated data. V is in blue and R is in black. The true parameter location is marked by a black 
star in the bottom plot and the current value is shown with a red star. 

chosen to pro duce an acceptance rate of 20-25% for the 50 simulated data sets. 

To examine how well this method works in practice, figures 2-3 to 2-8 show the path taken 

by one of the MCMC chains with true parameters (}(true) = [a(true) , j3(true) , Î(true)] = [.2, .2,3], 

from the starting point at (}(O) = [0,0,1] through 200,000 iterations of the chain. The figures 

show the path through the parameter space as well as the numerical solution to the ODE using 

the current iteration parameter values as a fit to the data. 

Figure 2-3 shows that at the starting point, S(O, X o, t) is periodic with amplitude similar to 

the data but the data and S((}, X o, t) are out of phase. Within the first few iterations in figure 

2-4, the parameters move towards a location which pro duces a reasonable fit to component R 

but a poor fit to V. Although the fit to R is more sinusoidal than the true pro cess , the fit lies 

approximately in the middle of the observations. 
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Figure 2-4: The bottom panel shows the first 10,000 posterior MCMC draws from the FitzHugh­
Nagumo model. The true parameter location is marked by a black star and the current value is 
shown with a red star. The top panel shows the fit to the data using the parameters from the 
10,000th draw. V is in blue and R is in black. 
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Figure 2-5: The bottom panel shows the first 60,000 posterior MCMC draws from the FitzHugh­
Nagumo model. The first 10,000 are in green and the next 50,000 are in blue. The true parameter 
location is marked by a black star and the current value is shown with a red star. The top panel 
shows the fit to the data using the parameters from the 60,000th draw. V is in blue and Ris in 
black. 
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Figure 2-6: The bottom panel shows the first 70,000 posterior MCMC draws from the FitzHugh­
Nagumo model. The first 60,000 are in green and the next 10,000 are in blue. The true parameter 
location is marked by a black star and the current value is shown with a red star. The top panel 
shows the fit to the data using the parameters from the 70,000th draw. V is in blue and Ris in 
black. 
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Figure 2-7: the bottom panel shows the first 80,000 posterior MCMC draws from the FitzHugh­
Nagumo model. The first 70,000 are in green and the next 10,000 are in blue. The true parameter 
location is marked by a black star and the current value is shown with a red star. The top panel 
shows the fit to the data using the parameters from the 80,OOOth draw. V is in blue and Ris in 
black. 
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Figure 2-8: The bottom panels offer two perspectives on the final 100,000 posterior draws from 
the FitzHugh-Nagumo model after discarding 100,000 for bum in. The true value is shown as a 
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For the next 50,000 draws, shown in figure 2-5, there is almost no change in parameters 

because the relative gain in fit to V compared to the loss of fit to R makes it an unattractive 

exchange and consequently occurs with very low probability. As shown in figure 2-6, by the 

70,000th draw, the chain has made it through the worst of this exchange. The shape of the fit 

to component V has become sharper comered, doser to the shape of the data, in exchange for 

moving the sinusoidal fit to R further from the middle of the data. The reduced fit to R is 

especially notable at the bottom of the valleys of the fit in the time intervals (3,6) and (11,14). 

The next 10,000 draws (figure 2-7) move quickly across the parameter space to the region of the 

true values. Discarding half the chain as bum in, the final 100,000 draws shown in figure 2-8 

pro duce an excellent fit to the data and describe the relevant portion of the posterior density 

containing the true parameter value. 

The abrupt changes in behaviour of the solution to the ODE with respect to small changes 

in the parameter values, provide abundant opportunities for the MeMe algorithm to become 

stuck. With this nonlinear ODE model, there are several of these regions in the parameter space 

providing a reasonable fit to only a fraction of the data. Improvements in fit from these regions 

require passing across regions of the parameter space fitting considerably less of the data. While 

in this case, after 70,000 posterior draws the MeMe was able to eventually move towards the 

true values, this is not always the case. Figure 2-9 shows the 95% highest posterior density 

intervals for the 50 simulated FitzHugh-Nagumo data sets, initialized using draws from the prior 

densities of (2.6) and (2.7). These prior draws are used as initial parameter estimates every time 

these simulated data sets are analyzed. Intervals shown in figure 2-9 are taken after discarding 

the first half of the 200,000 MeMe iterations as bum in. In the four cases where initial values 

of 1 were particularly large or parameters Va and Ro were far from their true values, the chains 

were not able to move towards the true value within the 200,000 draws. Extending the chains 

for 1,000,000 draws or restarting the MeMe with the same initial parameter estimates still did 

not move these chains towards their true values. However, re-running these chains from different 

starting points produced reasonable posterior densities and interval estimates. 

31 



a 

0.5 1 1 
r.~~HH~~"~~HHHH~"'-~HHHH~"~~HHHH~'-~~I, 

o 

-0.5' • 
o 5 10 15 20 25 30 35 40 45 50 

o 5 10 15 20 25 30 35 40 45 50 

:t. · ..... · . ~ .... ~ ......... 1 

•••• : •••• : •••• ~ •••• 1 

'" .:J 
o 5 10 15 20 25 30 35 40 45 50 

Figure 2-9: 95% Highest posterior density intervals for 50 simulated FitzHugh-Nagumo data sets 
with true parameters [a, {3, 1'] = [.2, .2,3]. 

The slow rate of convergence, the risk of incorrect results and answers that depend on initial 

estimates leave a lot of room for improvement in Bayesian parameter density estimation for 

nonlinear ODE models. Furthermore, the Bayesian and NLS methods share many of the same 

problems due to form of the likelihood, and many opportunities to produce a partial fit to the 

data. 

2.2.1 Prior Specification For Bayesian ODE Models 

Uninformative prior densities on the parameters of nonlinear models often produce improper 

posteriors (Bates and Watts 1988). As an example, consider a simplification ofthe nylon system 

of (2.4) with constant parameters and a single model component: DA = -klA + k2. This model 

describes exponential decay towards the asymptote k2/kl. If the only prior information is that 

both parameters are positive, this information gives the improper priors: P(k l ) "'-' P(k2 ) ex: 

1, kl > 0, k2 > O. When the data offers litt le information about the exponential decay rate kt, 
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but perhaps offers perfect information about the asymptote kdk2' the two parameters do not 

have a unique posterior mode or proper posterior density. 

To avoid uninformative priors producing improper posteriors Bates et al. (1988) suggest 

placing an uninformative prior on the shape of 8(8, X o, t) and then mapping this density back 

to the parameter space to obtain prior densities for 8 and X o. Truncated priors are often used 

instead, and then the proximity of the posterior mode and density to the truncations is used as 

a diagnostic tool for determining if the prior or the model require revising. 

In the case of the FitzHugh-Nagumo system, the prior knowledge that 8(8, X, t) should be 

oscillating induced priors on 8 and X. However, in sorne cases prior information exists for the 

functional form of 8(8, X o, t) which is from a source independent from the prior information on 

8. The prior on 8(8, X o, t) indu ces an additional prior on 8 which may confiict with the prior 

on 8 directly. A variety of methods to combine these prior information sources are compared 

in (Poole and Raftery 2000), where this pooling of prior information sources is called Bayesian 

Melding. 

2.2.2 Bayesian Posterior Density Estimation of the Nylon Model Parameters 

The conservation of mass princip le used to develop the ODE model for nylon dynamics in 

section 1.1 suggests that components A and C should rise and fall with changes in Weq , producing 

the constraints kpo > 0 and Kao > 0 in (2.4). Although the initial parameter estimates used in 

NLS estimation of section 2.1.2 came from least squares estimates of transformations of subsets 

of the data and consequently do not really constitute prior knowledge, they were helpful in 

determining the scale of the parameters. Consequently, although these parameter estimates are 

not to be strongly believed, they tell us that the parameters should not be too far from zero. 

More specifically, in the expression for Ka in (2.4), if l,lis large then {1 + Weql~O} Kao ~ 

{Weq l~O} Kao making , and kao unidentifiable. This prior information was summarized with 
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the model 

P(kpo ) rv r( 4,8) 

Ph) rv N(5, 152
) 

(2.9) 
P(Kao) r(4,8) 

and P(/:)'H) rv N(0,502
), 

where the gamma density, r(A, B) is parameterized to have mean AB and variance AB2. 

Gaussian priors, truncated at zero, were used for the initial system states. For A and 

C, these priors were centered on the observed values with prior variances equal to (20A)2 and 

(20-A?, where 0-A = .6 and o-c = 2.4 are the measurement standard deviations determined 

through replicate measurements in Zheng et al. (2005). These values were also used as weights 

in the nonlinear least squares routine of section 2.1.2. The quadrupling of the variance reflects 

potential additional measurement and model mis-specification errors in this study. Since W was 

unobserved, the prior on its initial system state was a truncated Gaussian centered on the initial 

value of Weq • Recall that Weq is the expected value of W if the system is at equilibrium. Reflecting 

considerable uncertainty in the assumption that the systems is beginning at equilibrium, and a 

desire to avoid un due restrictions of the initial system state of an unobserved component, the 

prior variance was set at 252
. 

The variance components a~ and ab were not assumed to be close to the values used as 

weights and instead uninformative log uniform priors were used: P(a~) ex: l/a~, k E {A, C}. The 

vagueness of these priors reflects the model uncertainty which is built into this residual error 

term. 

These 24 priors were combined with the information from the 120 observations of A and 

104 of C in an MCMC algorithm. Parameter proposaIs were performed in two vectors, one 

for the model parameters 8 = [kpo , i, Kao, .6.H] and another for the 18 initial system states 

X o = {AiO , CiO, WiO ; i = 1, ... , 6}. As with the FitzHugh-Nagumo example, the posterior draws 

for a~ and ab were obtained using a Gibbs sampler. Draws from the initial system states were 

stable and essentially just moved around a small neighbourhood of the prior mean values. After 
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Figure 2-10: Kernel density estimates from 50,000 draws from the posterior of the 4 nylon ODE 
parameters (blue). The green lines show the prior densities of the parameters. 

dis car ding 25,000 draws for burn in, a kernel density estimate of the final 50,000 posterior draws 

for fJ are shown in figure 2-10. The prior densities are included in this figure for comparison. 

The posterior density for 1 is truncated because in the expression for Ka in (2.4), if 1 < -15.5 

then {1 + Weq io1m} < 0, and therefore Ka < 0 in the experimental run where Weq is at its 

maximum value of 64.3. This negative value for Ka breaks the conservation of mass rule and 

suggests A.C and W can self replicate at this level of Weq . Consequently, although this was 

not included in the prior information, the likelihood provides enough information to avoid these 

values. The posterior density for !::lH has a similar spread to its prior but appears to be bimodal. 

This may be indicative of two competing models, one with !::lH = 0 and another with !::lH ~ -68. 

Overall, in figure 2-10 the prior and posterior densities are nearly identical, suggesting that the 

prior model is either near perfect or highly influential. 

To examine the importance of the prior densities, the MC MC model was run a second time 

adjusting the ODE model parameter priors to 

P(fJ) t'V i.i.d.N(50, 602
). (2.10) 
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Figure 2-11: Histograms of 50,000 posterior draws from the nylon model parameters. The prior 
on each of these parameters was N(50,602

) which is shown in green. The posterior mode is 
shown in red. 

This model has a wider prior variance suggesting diminished belief in the prior knowledge and 

allows both kpo and Kao to take on negative values. Histograms of 50,000 posterior draws 

are shown in figure 2-11 along with lines showing the shape of the prior densities. Posteriors of 

parameters kpo and Kao both became truncated at zero, values below zero break the conservation 

of mass and pro duce ODE solutions describing exponential growth. Furthermore, as with the 

results from the model with more informative priors, the posterior for r became truncated at 

-15.5. Aside from the truncations , the posterior densities offer litt le new insights not already 

expressed by the choice of prior. 

The nylon system results from competing exponential growth and exponential decay de­

scribing the production and destruction of Land W. In general, a mixture of exponentials such 

as this, is an ill-conditioned problem and parameters are difficult to estimate adequately with-

out considerable amounts of data (Gelman et al. 2004). Further diminishing the impact of the 

observations is the need to estimate 24 parameters when only [kpo , r, Kao, ~Hl are of interest. 
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Figure 2-12: The posterior density estimates for the 2 parameter nylon model is in blue and the 
prior density is in green. 

Consequently, the posterior densities are not strongly pulled by the priors, suggesting only di­

lute information from the likelihood. Since the 95% highest posterior densities of 'Y and /lH 

from models (2.9) and (2.10) overlap zero, the model was simplified by eliminating these two 

parameters. 

In an attempt to extract more information from the likelihood a reduced nylon model was 

attempted with only two parameters using the temperature dependent constant KT from (2.4): 

-DL=DA=DC 

DW 

kpo (AC - K~~ao) /1000 

-kpo (AC - K~~ao) /1000 - 24.3(W - Weq ). 
(2.11) 

This model is equivalent to setting both 'Y and /lH to zero in the model (2.4). Independent 

r( 4,8) densities were used as priors for K po and Kao. Figure 2-12 compares the kernel density es­

timate of the posterior with the prior densities. The posterior densities are again nearly identical 

to the prior densities, suggesting very little information is being passed through the likelihood to 

update parameter inference. Due to the ill-conditioned nature of the sum of exponentials driving 

this model, a Bayesian model was not helpful in updating knowledge. 
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2.3 Alternative Methods for Parameter Estimation from ODE Models 

When problems are weIl posed, the main problem with parameter estimation from ODE 

models is the difficult to navigate likelihood surface. The likelihood surface difficulties are caused 

by the variety of behaviours which may be produced by a single ODE model, and the dependence 

on the solution to the ODE which also varies considerably with the initial system states. While 

this caused problems for NLS and MCMC methods, several attempts have been made to alleviate 

this root problem from a variety of perspectives. Sorne of which are outlined in this section. 

It was suggested in (Meyer and Christensen 2000) that rather than formulating the ODE 

models with observation error é(t) for observations y(t) = S((), X o, t) + é(t), centered on the 

solution to the dynamic model S(B, X o, t), the ODE should be reformulated as a Stochastic Dif­

ferentiaI Equation (SDE) filter. In this model sorne or aIl of the observational error is modelled 

through a random forcing function in the model, so the ODE model defined by DY = f(Y, B, t) 

becomes the SDE model with stochastic error ((t); DY = f(Y, (), t) + ((t). The authors show 

that as a Bayesian formulation, this avoids the need for excessively precise and narrow prior 

knowledge of the initial system state and therefore avoids being trapped in sorne of the rela­

tively unimportant regions of the posterior. This is especially shown to be of concern when 

f(Y, (), u(t), t) describes nonlinear or chaotic behaviour. 

State space models and difference equations such as (1.1) can also be used for parameter es­

timation. From the perspective of sequential data assimilation, the goal is to accurately estimate 

the (partially) unobserved set of state variables. In (Dowd 2007), an MCMC based method for 

online estimation of state variables in a nonlinear SDE ecological dynamic model is described. 

In the example, one of the nonlinear SDE parameters are estimated as time dependent state 

variables. Estimation from state space models begins by dividing the n data points into the 

n - 1 intervals between observations. The SDE is then numerically computed over the intervals 

and state variables, which may include SDE model parameters (), are estimated within each 

interval to produce functional parameter estimates ()(t). In (Ionides, Breto, and King 2006), 
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iterative weighted averaging incrementally restricts the functional form of 8(t) to obtain the 

desired estimate of the constant 8. 

However not all are in favor ofthe SDE model formulation. For example, (Judd 2003) points 

out that it is rare if ever that stochastic errors are representative of the true error structure and 

"when a stochastic effect appears to be present, such as say thermal noise, it is just complex 

high dimension al deterministic dynamics and is therefore really model error." Furthermore, 

Judd (2003) shows that the stochastic formulation performs better than the more realistic error 

structure model because SDEs have the fiexibility to produce pseudo-orbits, approximations 

to the trajectory of the underlying dynamic process. Rather than using SDEs, the authors 

suggest an iterative gradient descent method for finding a pseudo-orbit approximation to the 

solution to the ODE, which is then used in place of the ODE solution in an approach otherwise 

equivalent to NLS. The pseudo-or bit is initially taken to be a data interpolation and incrementally 

forced to fit the ODE model. This is similar to a collocation method (a method based on data 

smoothing or basis expansion) where the smooth is taken as the solution to the ODE model, but 

profiling out the initial system states. The pseudo orbit algorithm is very similar to the profile 

estimation algorithm of chapter 3 and (Ramsay, Hooker, Campbell, and Cao 2007) except that 

Judd (2003) does not use the implicit function theorem to improve convergence, inference and 

interval estimation. 

Avoiding the solution to the ODE model, (Varah 1982) used a collocation method where 

the data are first smoothed without considering the ODE model. Holding the smooth fixed, 

parameter optimization is based on minimizing the discrepancy between the derivative of the 

smooth and the ODE model. While the smooth removes dependency on the numerical solution 

to the ODE, the derivative estimate from a general smoothing technique tends to produce a poor 

estimate of the intricacies available from an ODE model. Alternatively (Arora and Biegler 2004) 

proposed a collocation method taking into account the ODE model and subsequent optimization 

of basis coefficients and 8 simultaneously. This large scale high dimensional optimization requires 

a considerable amount of data in order to pro duce unique results. 
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An extension to NLS, similar to an ODE version of the state space model called multiple 

shooting (Bock 1983) partitions the time domain into M intervals where M < n for n observa-

tions. The ODE is numerically solved within each interval using initial system states as additional 

parameters. Parameters () are optimized globally over aIl intervals subject to the constraint that 

the numerical solution must be continuous across intervals. Conceptually this is a hybrid be­

tween collocation and NLS methods. The similarity to NLS cornes from the continuous solution 

constraint; the need for estimating the initial states in each interval disappears and ultimately 

the parameter estimation is based on the discrepancy between the data and the numerical solu-

tion to the ODE model. As initial system states within each interval are initially allowed to be 

disjoint, this is also similar to a collocation method where the basis functions are the solutions to 

the ODE within each of the disjoint time intervals. The local influence of the partitions reduces 

the threat of poor parameter values or initial system state estimates propagating a poor data fit 

across the entire time interval. 

The notion of collocation and localized parameter estimates has also been explored in a 

Bayesian context. A Bayesian model using the idea of multiple shooting is described in (Mukhin, 

Feigin, Loskutov, and Molkov 2006). However instead of constraining the intervals to form a 

continuous ODE solution, a posterior density is obtained from each of the M intervals, each 

containing w evenly spaced observations. The results are combined in using the geometric mean 

of the resulting M posterior densities: 

(2.12) 

This method requires estimation of initial system states for each interval and consequently the 

number of parameters and number of intervals increases with the amount of data. In the presence 

of potentially chaotic behaviour from the ODE, this method is shown to perform better than 

methods using a single interval for the same reasons as the multiple shooting algorithm. 
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Several recent Bayesian innovations have been developed to ease the movement around the 

posterior parameter space. While not specifically designed for ODE models, they provide sorne 

insightful ways of overcoming the problems of parameter estimation from ODE modeis. 

The Equi-energy sampler (Kou, Zhou, and Wong 2006) allows easier movement across a 

multi-modal parameter space by allowing jumps to regions with the same posterior height. The 

method uses M successive approximations to the posterior, where the m th is based on the thresh-

old Em in 

{ 

P(() 1 y) if P(() 1 y) > Em 
Pm(() 1 y) ex: . 

1 otherwise 
(2.13) 

These approximations fill in the space between modes with a uniform density. The threshold Em 

is reduced successively with each approximation until it can be fully removed to sample from 

the target posterior. To use these approximations, at each iteration with sorne probability p the 

usuai Metropolis-Hastings step is performed. With probability 1 - p an equai energy jump is 

performed by sampling from the set of points obtained in previous approximations (with larger 

Em), that have equai posterior height to the last posterior draw. These jumps move from one 

region to another identical energy (posterior height) region while passing over the Iower energy 

valleys between them. This method is shown to perform well in multi-modal densities where the 

posterior heights of the modes are comparable but the near zero energy valleys between modes 

are prohibitively large. The idea of successive approximations to move around the parameter 

space more freely is useful with Bayesian ODE models. However, ripples in the posterior surface 

are much sm aller than the mode when they are caused by the model fitting only a small subset 

of the data. One of the big problems with ODE models is finding the highest posterior mode. 

A multigrid MeMe (Liu and Sabatti 1998) also uses a hierarchy of approximations to the 

posterior surface based on interpolating across a grid of posterior values. Using a finer grid im-

proves the approximation towards the true posterior. The MeMe chains for each approximation 

are run in parallei such that at each iteration, with probability p the usuai MeMe step is taken, 

but with probability 1-p a swap is proposed. If accepted, parameters ()i and ()j from chains i and 
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j swap values. This allows the parameters from coarser approximations to the posterior to travel 

more easily around the parameter space and then pass along good sets of parameter values into 

the chain drawing from the true posterior. Well placed grid points reduce the time that coarser 

chains spend in relatively unimportant parts of the inter-modal valleys. However this method 

depends on obtaining a reasonable quality, potentially high dimension al grid representation of a 

rippled surface with an elusive highest posterior mode. 

Parallel tempering offers an alternative perspective to Equi-energy jumping and multigrid­

MeMe to cross regions of low posterior density. Like Equi-energy sampling, tempering uses 

a hierarchy of approximations to the posterior of interest, however with tempering each one is 

smoothed more and more towards a uniform posterior, maintaining smooth transitions between 

modes and their valleys. Furthermore with parallel tempering the MeMe chain approximations 

are run in parallel instead of in sequence and parameters are allowed to swap between chains. 

Parallel tempering is described further and demonstrated in chapter 4. 
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CHAPTER 3 
Profile Estimation with a Constrained Smooth 

The generalized profiling method (Ramsay, Hooker, Campbell, and Cao 2007) belongs to the 

family of collocation methods, using a data smooth in the form of the basis expansion c'cjJ(t) for 

a vector of coefficients c and basis functions cjJ(t). The basis expansion is used to approximate 

the solution to the ODE model S(O, X o, u(t), t) with model parameters O,initial system state 

X o, and input functions or experimental conditions u(t). The generalized profiling data smooth 

is guided by the ODE model by penalizing deviation at the level of the derivative. The tradeoff 

between interpolating the data and following a solution to the ODE model is controlled by the 

smoothing parameter À. The optimization of À, 0 and c depends on a hierarchy of parameters 

layered by their impact on the fit to the data. 

The incident al or local parameters in the sense of (Neyman and Scott 1948), are the basis 

coefficients c. For each À and 0, the optimal c defines a data smooth, balancing the fit between 

the data and the ODE model. Consequently, c can be written as a function of parameters 0 and 

À and will sometimes be written as c(O, À) to emphasize this relationship. 

The structural parameters 0 define the behaviour allowed by the ODE model. Changes in 

these parameters may decide between broad model features such as limit cycles or unbounded 

exponential growth. Furthermore 0 may determine asymptotic equilibrium levels, rates of decay, 

or the strength and type of feedback loops. Primary interest is in 0 because of its interpretation 

and potential use in making decisions. For any À, the profile likelihood optimization for O(À) 

maintains c(O, À) at its optimum conditional on 0, defining the second level of the hierarchy. 

The complexity parameter À, also known as the smoothing parameter, defines the top level 

of parameters to optimize. It determines how closely the data follow the ODE model adding 

flexibility to account for potential model mis-specification. Optimization of À is performed main-

taining 0 and c at their optimum conditional on À. 
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For n data observations, k unknown basis coefficients and p unknown ODE parameters, 

typically k + P + 1 > n. By defining c(8, À) and 8(À) as functions of À, the optimization pro cess 

is essentially reduced to the single parameter À. The idea of building a hierarchy of parameters, 

where lower levels are defined as functions of higher levels, called a parameter cascade, is described 

in (Cao and Ramsay 2007). 

For fixed À, the parameter estimation routine can be thought of as resulting from inner and 

outer loops to estimate c(8, À) and 8(À). While the estimation pro cess is described in detail in 

Ramsay et al. (2007), these loops are described with constraints on the data smooth in sections 

3.1 and 3.2. Section 3.3 also offers a suggestion for the optimization of À. Section 3.4 describes 

how this method deals with the challenges of the nylon system. Section 3.5 describes the results 

of the profile estimation routine on the nylon system as weIl as a simulation study based on 

the nylon system. Section 3.6 contains the estimation details and results from the 50 simulated 

FitzHugh-Nagumo data sets. 

3.1 The Inner Optimization; ODE Model-Based Data Smoothing 

U sing the continuously differentiable one to one function g{-}, the data smooth Xki (t) 

gk {C~i<Pki(t)} for the i = 1, ... ,I experimental runs and k = 1, ... , K system components, 

approximates the solution to the ODE. Function g{-} constrains the smooth to follow known 

behaviour. Sorne examples from (Ramsay and Silverman 2005) include the following: 

g{ a} = exp { a} for a positive smooth, 

g{a} = exp{a}/[l + exp{a}] for a bounded smooth, 

g{ a} = J; exp{ a }ds for a monotone smooth, 

and g{ a} = a for an unconstrained smooth. 

Model based smoothing, also known as L-spline smoothing (Heckman and Ramsay 2000), 

uses a penalty term (PEN) to enforce fidelity of the smooth to the ODE model rather than simply 

interpolating the data. For fixed À, 8 and data Yki observed at the vector of times tki, the 

coefficients c( (J, À) defining the data smooth for the ith experimental run, possibly using weights 
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Wki, are the minimizers of 

(3.1) 

This is a nonlinear least squares estimation problem corresponding to minimizing the negative 

log likelihood penalized through PEN to fit an ODE model of the form Dx = f(8, x, u(t), t), 

depending on inputs, experimental conditions or forcing functions u(t). The penalty term PEN 

penalizes discrepancy between the smooth and the ODE model at the level of the derivative 

through: 

(3.2) 

The integral in (3.2) is taken over the interval Ti = [mink(tki)' maxk(tki)], the maximum 

range of observation times over an K observed variables in the ith run. Section 3.4.2 describes 

how to approximate this integral. The choice of weights is discussed in section 3.4.3. 

3.2 The Outer Optimization; Estimating ODE parameters 

For fixed À, the estimator iJ (À) is the maximum of the profile likelihood maintaining c( iJ, À) 

at its optimum value. When a Gaussian error structure is a reasonable assumption, the profile 

likelihood is defined by 

Minimizing the negative log likelihood is equivalent to minimizing squared error loss applied to 

the discrepancy between the data and the smooth pooling information across the 1 experimental 

runs and K system components: 

l K 

H (8(À), ê(8, À) 1 y) = L L L Wki [Yki(t) - 9k {êki (8, À)' 4>ki(t)}]2 . (3.3) 
i k=l tEt ki 

There is no need to include another penalty tenn enforcing fidelity to the ODE model since c(8, À) 

is already encouraged to fit the model in the inner optimization. Although the loss function in 

equation (3.3) is based on a Gaussian model, the method is not restricted by the distributional 

assumptions. 
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To obtain the maximum profile likelihood estimate, e(O,.À) is maintained at its optimum. 

Consequently, during the estimation of iJ(.À), e(iJ,.À) must also be updated at every iteration 

conditional on the latest value of iJ(.À). Simplifying notation from H(O, e(O,.À) 1 y) to H, 

assuming that .À is fixed and simplifying g( e' cp) to g, this gives the total gradient for the outer 

optimization: 
dH aH aH dg de 
de = ae + ag dedO' (3.4) 

Using this gradient, optimization of H with respect to 0 can then be performed using Gauss-

Newton iterations. 

When f(x, u, t 1 0) is a nonlinear function of x there is typically no explicit function for 

ê(O,.À) and consequently dê/dO must be obtained using the implicit function theorem. To do 

this, assume that H and J are twice continuously differentiable with respect to 0 and e and that 

the Hessian matrices 
a2 H a2 H a2 J a2 J 
-- --and--
ao2 ' ae2 ao2' ae2 

are positive definitive over a nonempty neighbourhood of y in the data space. AIso, recall at the 

optimal value for ê from (3.1) we have dJ/de = 0, consequently at ê, 

(3.5) 

o. 

Solving for :0 pro duces 

de 1 {(dg)' a
2
J dg aJ d2g }-1 { a2

J dg} 
dO c=ê = - de ag2 de + ag de2 agae dc e=ê ' 

(3.6) 

which is substituted into (3.4) to obtain the total gradient 

dHI [aH aH dg {(dg)' a
2
J dg aJ d2g }-1 { a2

J dg}] 
de e=ê = ae - ag de de ag2 de + ag de2 agaO de 

(3.7) 

for the Gauss-Newton iterative estimation. 
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3.2.1 Interval Estimates for ÔP.,) 

Interval estimates obtained using the delta method, 

dO dO 
var(8) ~ dy var(y) dy (3.8) 

require the implicit function theorem once again to define d8/dy. Using the fact that at the 

maximum profile likelihood estimate Ô from (3.3) dH/dO = 0, and solving for dO/dy in 

(3.9) 

using 

and 

These last two equations involve the terms d2e/d02, d2e/dOdy and de/dy, aIl of which 

are obtained from further use of the implicit function theorem. These terms are given in the 

appendix. 

Equation (3.6) for point estimates and equations (3.10) and (3.11) used in obtaining confi­

dence intervals simplify when there are no constraints on the smooth. In that case g( c' cp) = c' cp 

which gives dg/de = cp and dmg/dem = 0 for an m > 1 while a positively constrained smooth 

has g( c' </» = exp( c' </» and rJ;'TI g( c' </» / dcm = </>m g( c' </» for all natural numbers m. 

3.3 Choosing the Smoothing Parameter À 

When À is smaIl, the optimal smooth from (3.1) ignores the model based penalty term PEN, 

and interpolates the data by minimizing L:t w {y(t) - X(t)}2. As À increases, emphasis shifts 
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from fitting the data to fitting the ODE model, by instead minimizing 

[ {Dx(s) - f (x, u(s), s, ê) r ds. 

Consequently, the data smooth evolves from interpolation towards the solution to the ODE. This 

shift away from the data causes an increase in the squared error discrepancy between the data 

and the smooth (SSE). This behaviour is shown in figure 3-1 for the 50 simulated FitzHugh­

Nagumo data sets and figure 3-2 for the nylon system. The SSE plateaus as À increases when the 

basis sufficiently captures the features of the ODE system. For the FitzHugh-Nagumo simulated 

data this occurs after about À = 103 and for the nylon data the region of stability in the SSE 

occurs for À E (102 ,104
). 

When À is pushed too large, bias in (J is induced by the inability of the basis to accommodate 

the ODE features to the accuracy imposed by À. This pulls the data smooth and hence the 

parameters towards an alternative solution where the discrepancy between the smooth and ODE 

can be further reduced at the detriment of the SSE (Cao 2006). This is only beginning to occur 

at the extremely high values of À shown in figure 3-1 for the FitzHugh-Nagumo simulated data, 

although its degree is very small at this vertical scale. In figure 3-2 the deterioration of the SSE 

for the nylon system is much more pronounced and occurs earlier (after À = 104
) because the 

basis used for the nylon example is coarser than the basis used for the FitzHugh-Nagumo model. 

Details of the profile estimation process for the FitzHugh-Nagumo and nylon systems are given 

in sections 3.5 and section 3.6 respectively. 

The corresponding decline in PEN, due to increasing À can be seen in figures 3-3 and 3-4 for 

the FitzHugh-Nagumo data sets and the 4 parameter nylon model respectively. The behaviour of 

the lOglO(PEN) roughly corresponds to exponential decay with increasing loglo(À), showing that 

it becomes exponentially more difficult to decrease the discrepancy between the smooth and the 

ODE model. When the data is interpolated by the smooth it is easy to obtain large gains from 

PEN by increasing À but these gains decrease quickly once a reasonable approximation to the 

ODE has been attained. 
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Figure 3-1: The change in SSE with loglO(.À) for the 50 simulated FitzHugh-Nagumo data sets. 

3000 

2500 

2000 

W 
CI) 1500 
CI) 

1000 

500 

0 
-3 -2 -1 3 4 5 

Figure 3-2: The change in SSE with loglO(,À) for the 4 parameter nylon model. 
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Figure 3-3: The change in loglQ(PEN) with loglQC).) for the 50 simulated FitzHugh-Nagumo data 
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Figure 3-4: The change in lOglO(PEN) with loglo(À) for the 4 parameter nylon model. 
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Since profile estimation attempts to fit an optimal balance between the data and the model 

under the accuracy constraints of the basis, SSE + PEN could be thought of as a composite 

measure of fit. Choosing an optimallog(À) then amounts to increasing À until it minimizes 

K = dSSE + dPEN 
dlog(À) dlog(À)' 

(3.12) 

In other words, increase À to find the best overall fit to the data but stop before the basis ap-

proximation breaks down causing an increase in SSE which can not be offset by the improvement 

to PEN. 

Using (3.12), for the 50 FitzHugh-Nagumo simulated data sets, figure 3-5 shows that ~ = 108 

is optimal. In the 4 parameter nylon example, the optimum occurs at ~ = 103 as seen in figure 3-

6. In the nylon example when À < 101, the value of K is increasing due to the large jumps in SSE 

as the smooth moves from interpolating a sparse data set towards fitting a model. This is further 

enhanced by the model mis-specification inherent in any real data system and compounded by 

fitting multiple experimental runs. Figures 3-5 and 3-6 were made by taking the difference of 

(SSEi + PENi ) - (SSEH1 + PENH1 ) and plotting this quantity at IOglO(ÀHd as a crude estimate 

of the effect of having increased from Ài to ÀHl' 

3.4 Overcoming Challenges From The Nylon Data Set 

The nylon real data system has many challenges. This section describes how profile estima­

tion overcomes them while highlighting some of the features and details behind this estimation 

process. 

3.4.1 Multiple Experimental Runs 

The data smoothing step of (3.1) is performed separately on each experimental run. How-

ever, within each run, information is pooled across the k = 1, ... , K components to com-

pute fki(Xi, Ui(t), t, 8). Estimation of 8(À) is performed by pooling data Yi(t) and smooth fits 

Yki(t) = gdC~i4>ki(t)} from all 1 experimental runs and K observed system components. 
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Figure 3-5: The change in composite fitting criteria with changes in log À for the 50 FitzHugh­
N agumo simulated data sets. 
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Figure 3-6: The change in composite fitting criteria with changes in log À for the four parameter 
nylon data set. 
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3.4.2 Step Function System Inputs 

The integral in (3.2) is evaluated using a numerical quadrature approximation which allows 

each component to have a unique differentiable basis and does not require variables to have 

been measured at the same times. It does however require that the quadrature points be the 

same for all components within a run so that information from each component is available 

to compute f(Xi, Ui(t), t, 8) over the same quadrature grid. When using b-spline bases for aIl 

components, Ramsay et al. (2007) suggests creating the quadrature grid by dividing Ti into a 

set of small intervals whose boundaries are the unique knot locations compiled over the bases 

of all K components within an experimental run. Denoting the location of the gth such point 

by çe, intervals are then split into four equal-sized subintervals, and Simpson's rule weights 

[1,4,2,4, 1] (ÇHl - çe)/5 are used to approximate the integral over each interval. 

At points of discontinuity in the first derivative 'Ti, such as when the system inputs undergo 

step changes, the derivatives in PENki are undefined. The integration avoids these points by 

removing a small 6 sized neighbourhood denoted 'T~ around them giving the PEN term 

PENki fTin-ro (DXki(S) - fk(Xi' Ui, S 1 8)? ds 
t 

f;~~::t5/2 (DXki(S) - fk(Xi' Ui, S 18))2 ds 
t 

+ f~:~2;:j22 (DXki(S) - fk(Xi' Ui, S 18))2 ds 
(3.13) 

+ f:'i~~:/2 (DXki(S) - fk(Xi, Ui, S 1 8))2 ds. 

This integral is approximated by shifting the quadrature interval boundaries at times 'TitO the 

points defining the boundaries of 'T~ and omitting quadrature weights across 'T~. 

If 'T~ is not omitted from the integral in (3.1), minimizing the discrepancy between the 

smooth and the ODE, as À increases, may amount to minimizing the discrepancy between the 

right and left hand derivatives at 'T. This implies that the criteria flattens out the resulting 

smooth which in turn pulls 8 in the outer optimization away from its true value. If the neigh­

bourhood is too large, the basis will be able to push an extremely poor fit into the neighbourhood 

which effectively allows a discontinuous smooth across 'T~. For this reason a small neighbourhood, 
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such as 10-6 x mine(çC+l -çe) while ensuring that no observations fall within this neighbourhood, 

appears adequate. 

If an observation occurs at the 'i, a small shift in the location of the 'i may be required 

to avoid this problem from occurring, although care must be taken to check the impact on the 

final results of moving 'i forward or back. Alternatively the left or right hand derivatives could 

be used at times 'i 

3.4.3 Outputs Measured With Different Precision 

In ODE systems, often components are measured in different units, scales and precisions 

consequently it is important for the optimization pro cess that weights Wki in (3.3) and (3.1) be 

chosen to bring the residualloss of all system components to approximately the same scale. In 

sorne cases this may include using a vector of weights Wki which allow observations to be weighted 

to accommodate autocorrelations in the data. For a Gaussian likelihood, the ideal choice of 

weights is Wki = at, the inverse of the measurement error variance. As with any regression or 

smoothing problem, iterative re-weighting can be applied when the relative importance of the 

weights is unknown. This can be performed using the following steps. 

1. At iteration n = 0 initialize wk7) = 1 or use another value consistent with prior information. 

2. Perform the profile estimation to obtain ê, il using weights wk7). 
3. Using the fitted data values y = g{c(O, À)'CP} obtain the vectors ofresiduals rki = Yki -Yki 

and estimate new weights wk7+1
) = (r:~ki)' the inverse of the residual variance estimate. 

4. If 1 wk7+1) - wk7) 1> E for sorne convergence tolerance E > 0, return to step 2. 

This is process is described further in the context of the nylon system in section 3.5.4. 

3.4.4 Unobserved Outputs 

When system components Xij, ... ,Xki are unobserved, their smooth estimate from (3.1) is 

the solution to the differential equation but data regularized through f(x, u(t), t, 0) in the PEN 

term by the smooth of the observed components. This is equivalent to setting À ----+ 00 for the 

unobserved components within their experimental runs or estimating the initial conditions to 

pro duce the best numerical solution to the ODE constrained to fit the observed components. 
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3.5 Nylon Results and model selection 

The positively constrained data smooth is derived from a fifth order B-spline basis with 

knots at each observation of component A was used to fit the nylon data of section 1.1. This 

basis was expanded with additional knots at a rate of 5 per hour of the experimental duration 

removing any non unique knots resulting from these two knot placement steps. Furthermore, 

additional knots at the times of step function changes in inputs were included to allow for the 

discontinuity in the first derivative of the smooth arising in the model when Weq undergoes a 

step change. Whenever C was observed there is also an observation of A, although the opposite 

is not true in aIl experimental runs. Consequently, this same set of knots was used for C and 

unobserved W. This strategy produced between 56 and 88 unique interior knots per component. 

The inverse of the measurement error, as determined from previous experiments and used in 

(Zheng, McAuley, Marchildon, and Zhen Yao 2005), were used as weights WA = 1/()~ = 1/0.62 

and Wc = 1/()~ = 2.42 in (3.1). 

Profile estimation was initialized with parameter values used by Zheng et al. (2005) or ap­

proximations to those parameters based on the discrepancy between parameterizations. Initially 

.À = 10-3 was used in the inner-optimization criteria of (3.1) until the profile estimation converged 

as determined by relative drop in SSE from one additional Gauss-Newton step of less than 10-8 . 

The profiling process was then repeated with .Ànew = .Ào1d * 10 and initialized with O~oJw = O~{~nal) , 

the final parameter values obtained with .Ào1d ' This pro cess was repeated, increasing .À by integer 

increments on the loglO scale until the optimal value of .À was found. 

As the nylon example uses real data there is likely to be sorne model mis-specification error 

and consequently the model is scrutinized in the following subsections describing the results. 
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3.5.1 Profile Estimation and the Six Parameter Nylon Model 

Initially a 6 parameter model with f) = [kpo , E, '"'i, (3, Kao, .6.H] was examined for the nylon 

data. This model, 

-DL=DA=DC 

DW 

e(m) 

and KT 

-kp(CA - LW/Ka), 

kp(CA - LW/Ka) - 24.3(W - Weq ), 

~e( E ) 
1000 8.314' 

{1 + Weq 10~/ ((3)} KTKaOe U~3~4) , 

exp ( -m103 
{ ~ - A} ) 

20.97 exp (-9.624 + 3~P) , 

(3.14) 

is slightly altered from the model in Zheng et al. (2005) in order to re-scale the initial parameter 

estimates to the same order of magnitude. Furthermore the equation for Ka in (3.14) was slightly 

adjusted to fix an inconsistency in the units of the equations. 

Using the profile estimation strategy described in section 3.5 found ~ = 103 . Parameter 

estimates were nearly identical to the point estimates to corresponding parameters via NLS in 

Zheng et al. (2005). Their initial system states were assumed to be known without error but re­

lated to observed quantities in the data and the assumption that the system was at steady state. 

However, generalized profile parameter estimates were highly dependent on the initial parameter 

estimates. Additionally, by changing the convergence tolerance values of the outer optimiza­

tion in (3.3), the parameter estimates destabilized and produced even more erratic results with 

changes in initial parameter estimates. Over numerous estimation attempts, the final parameter 

estimates contained one pair of parameters with extremely strong correlations (r2 > .99999). 

While the actual pair of parameters changed with choice of initial parameter estimates, one of 

the parameters was always (3 and the other was either .6.H or "1. In equation (3.14) parameters 

'"'i and .6.H are essentially main effect terms for Weq and T respectively, while (3 acts as an in­

teraction between T and W eq . In this model the interaction parameter is excessively correlated 

with one of the main effect terms to the point where (3 can not be properly identified. This may 

be due to insufficient data immediately after the step function input change in Weq to properly 
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identify the characteristic spike in A and C. This spike, described in section 1.1, is caused by 

including a dependency on W eq in Ka. The (3 parameter effectively allows the spike to vary in size 

with changes in temperature, however without observations to measure the spike, this amounts 

to having multiple parameters to identify the temperature dependent rate of decay in A and C. 

For this reason it makes sense to retry the model with (3 set to 0 giving the reduced model in 

section 3.5.2 

3.5.2 Profile Estimation and the five Parameter Nylon Model 

The six parameter model (3.14) is reduced by replacing the expression for Ka with 

(3.15) 

Using the same estimation process as described in section 3.5, the 5 parameter model gave 

stable estimates with respect to initial parameter estimates from Zheng et al. (2005) or random 

draws from at uniform [0,100]. Furthermore, removing the high correlation with (3 sped up the 

optimization by a factor of 20. 

In a relationship nearly identical to the one in figure 3-6, the optimal smoothing parameter 

was chosen to be ~ = 103 . Figure 3-7 shows how the parameter point and interval estimates 

change with loglQ(.'\)' AH of the point and interval estimates are most stable with respect to 

loglQ(.\.) between values of 1 and 4 with the smallest change overall occurring between values of 2 

and 3. The jump in Ô at À > 103 is due to the bias induced by the smooth attempting to reduce 

its inability to match the ODE model to the accuracy defined by À at the detriment to the fit to 

the data. Consequently, the behaviour shown in figure 3-7 is consistent with the behaviour of K 

in figure 3-6 which decreases and stabilizes over the same interval but begins to increase after 

À = 103
. The actual best value of À is a function of the number and resolution of data points, 

basis functions and the actual differential equations in the model. 

The interval estimate for E in figure 3-7 overlaps zero suggesting that a simpler model would 

be just as effective at fitting the data. Setting E to zero removes the temperature dependence 

from kp. This model and the final results are described next. 
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Figure 3-7: 95% confidence intervals for the parameters of the 5 parameter model as a function 
of the smoothing parameter À. Horizontal axis is in units of lOglO(À) and the vertical axis units 
are specifie to the parameter. Parameters in the top row are used to estimate kp and in the 
bottom row are used to estimate Ka in equations (3.14) revised with (3.15). 
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3.5.3 Profile Estimation and the four Parameter Nylon Model 

The 4 parameter nylon model, 

-DL=DA=DG 

DW 

-l~P~O(GA - LW/Ka,) 

l~~o(GA - LW/Ka) - 24.3(W - Weq ), 

{1 + Wequ?iio} KTKao f (8~~4) , 

f(m) - exp ( -m103 {~ - A}) , 
and KT 20.97 exp (-9.624 + 3~3) , 

(3.16) 

is reduced to have a single temperature dependent parameter, compared to the three Arrhenius 

type of temperature relationships for parameters (3, E and D.H in (3.14). 

The profile estimation routine of section 3.5 was performed with the initial parameter esti-

mates of Zheng et al. (2005) but the pro cess was robust to this choice over a wide range of values. 

Sorne particularly bad choices of initial estimates were also attempted, such as kpo , Kao < 0 or 

l '"Y 1 large. Allowing negative values in the rate parameters kpo and Kao pro duces positive feed­

back loops suggesting chemical components are self replicating without bound. These estimation 

attempts required an additional reduction in the initial choice of À however if a sufficiently small 

value was chosen, the data prevailed in the initial smooth and those parameter values quickly 

moved the model back to the negative feedback system. Through incremental increases in À, these 

attempts still converged to the same final result. However, the problem caused by initializing '"Y 

far from zero was not so easily fixed. As l '"Y 1 increases, {1 + Wequ?iio} Kao -+ {Wequ?iio} Kao. 

The lack of identifiability between '"Y and Kao was not resolved by a reduction in initial À. Once 

parameters become unidentifiable, the damage appears to be irreparable. 

Figure 3-6 shows the behaviour ofthe composite fitting criteria K from (3.12) with respect to 

À. This relationship did not change substantially in the model reduction process. The behaviour 

of K is echoed in figure 3-8, which shows the point and 95% interval estimates as a function of 

10glO(À). The optimal estimates barely change across the window À E (10,104
) suggesting little 

need to further refine the estimate for ~ = 103 . The final parameter point estimates and the 

standard errors from À = 103 are given in table 3-1 along with the estimates using NLS without 
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Figure 3-8: 95% confidence intervals for the parameters of the 4 parameter model as a function 
of the smoothing parameter À. Horizontal axis is in units of loglO(À) and the vertical axis units 
are specifie to the parameter. 
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parameter fJ SE(fJ) 
kpo 20.59 (20.47) 1.66 (1.30) 

1 26.86 (25.82) 3.48 (2.90) 
Kao 50.22 (50.98) 3.24 (2.79) 
!:lH -36.46 (-37.83) 3.86(4.17) 

Table 3-1: 95% confidence mtervals and pomt estImates for the generalized profile estimated 
parameters using À = 103 . The values obtained using NLS without constraint on the initial 
system states are shown in brackets. 

constraint on the initial system states. Recall from section 2.1, using NLS either produced 

negative estimates for the Wo in 4 out of the 6 experimental runs or un der the non-negative 

constraint, the optimization broke down. The influence of the weights is further explored in 

section 3.5.4. 

The parameter correlation matrix for the profile estimation is 

kpo 1 Kao !:lH 

1 0.441 1 
(3.17) 

Kao -0.407 -0.981 1 

D.H 0.219 0.446 -0.358 1. 

Correlations between Kao and 1 remain strongly negative because 1 is moderately large and 

approaching the brink of unidentifiability. The overall data fit is shown in figure 3-9. This 

figure shows that the residuals within a system component of an experimental run tend to be 

autocorrelated. This suggests a deterministic block effect on the experimental runs or sorne other 

mild form of model mis-specification but the overall fit to the data features is quite good. 

The data fit shown in figure 3-9 is the solution to the differential equation using the initial 

system state estimated by the data smooth and the final parameter estimates from the four 

parameter model. At the scale of this figure, there is no clear difference between the smooth at 

À = 103 and the solution to the ODE. Figure 3-10 highlights the difference between the smooth 

fit to the data using À E {102
, 103

, 104
} and the numerical solution to the ODE from the initial 

system state estimates from the data smooth at time zero. The integral of the square of these 

plotted curves is equal to PENki used in (3.1). Since there are no observations for W, the quality 
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Figure 3-9: The Data fit from the four parameter nylon model using generalized profile estima­
tion. 
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of the fit at aIl three À values is essentially constant. The discrepancies between the smooth 

and the ODE solutions are notably spiked. This feature represents the inability of the basis to 

accommodate the short term spike suggested by the ODE model following the step input change 

in Weq , as discussed in section 1.1. The omitted o-neighbourhoods around the times of step input 

change, shown as red lines on the figure, are much too small compared to the basis resolution 

for the lack of fit between the two models to be pushed within these ignored regions of the PEN 

integral. However with too large a o-neighbourhood this may have become a problem. 

The blue line in figure 3-10 representing the discrepancy for À = 102 strays the furthest from 

o and deviates for the longest duration. This is especially notable for C where the smooth com­

pensates for the sm aller relative weights compared to A. For example in the middle experiment 

in the top half of the figure, the blue line for C strays above zero as the smooth at this À attempts 

to accommodate the larger than expected series of observations. In general, the compensation for 

the preferential fit to A is seen by the larger deviation of the blue line from zero for C compared 

to A. When À = 103 , shown in green, stronger emphasis is placed on the fit to the ODE leaving 

only the spikes and their recovery as the notable discrepancy. Increasing to À = 104 as shown in 

black produces very litt le improvement in this PEN term. However to produce this improvement 

the smooth moves detrimentally away from the data outweighing the improved PEN with a jump 

in S SE. To put these relative discrepancies into perspective the vertical scale of this figure is on 

the order of 1 % of that of the data fit in figure 3-9. 

3.5.4 Iteratively Re-weighted Profile Estimation for the Nylon System 

Iterative re-weighting of section 3.4.3 was also attempted to accommodate potential external 

factors influencing the measurement dispersion. The following 3 schemes were applied to estimate 

the weights and compare their impact: 

• Method 1) The assumed fixed weights of Zheng et al. (2005), W a = 1/0"~ = 1;'62 and 

Wc = l/O"b = 1/2.42 were used in the profile estimation pro cess as performed in section 

3.5.3. 
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Figure 3-10: The discrepancy between the data smooth and the solution to the ODE system 
using the final estimates of the 4 parameter model and initial system states equal to the values 
of the data smooth at time O. The blue Hnes are the results for À = 102 , green is for À = 103 and 
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• Method 2) Maintaining the weight structure of model 1, the relative accuracy of measure­

ments A and C are estimated. Iterative re-weighting was performed to estimate weights 

WA and Wc pooling all information across the i = 1, ... ,6 experimental runs. Estimates 

were Wk = l/â~, k E {A, Cl, where 

ô-~ = [t, t~ (Yki(t) - C~iq,(t) )2] / ~ nki 

• Method 3) Iterative re-weighting was performed to estimate the 12 weights Wki = l/â~i' 

k E {A, C} unique to each system component- experimental run combination: 

Iterative re-weighing was performed by incorporating a weight estimation step into the 

estimation pro cess of 3.5 as described in section 3.4.3, except that À was adjusted along with the 

weights. Initially À = 10-3 was chosen and the profiling Process was initialized with the assumed 

weights suggested in Zheng et al. (2005). After Ô(À) converged, weights were updated using the 

estimate of method 2 or method 3 above. Using these new weights, the smoothing parameter 

was updated by Ànew = ÀOld * 10 and the profile method performed again. The weights were 

updated and À increased incrementally until À = 103 . Further iterations to refine weights were 

performed maintaining À at this maximum level, known to perform well with this basis and data 

set, until the weights converged as assessed by maXki 1 (w17ew
) - w1~ld)) 1< 10-4 . 

This estimation process is outlined in table 3-2 for method 2. The weights converged after 

10 iterations to â A = 2.1056 and â c = 4.2637. The estimated ratio of weights was Wc / W A = 

â~/âb = 2.10562/4.26372 = 0.2438 compared to the ratio in method 1 of WC/WA = 0.62 /2.42 = 

0.0625. This suggests that in method 2 the observations of C were deemed relatively more 

precise compared to A, than suggested by method 1. Recall that the weights in method 1 were 

determined through repeated measurements in additional experiments which were therefore not 

subject to model mis-specification. Consequently, the relative size of weights in method 2 may 
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Iteration 1 2 3 4 5 6 7 8 9 10 
O"A 0.6 1.046 1.870 2.052 2.094 2.103 2.105 2.105 2.106 2.106 
O"c 2.4 3.970 4.810 4.360 4.294 4.271 4.266 4.264 4.264 4.264 
À 1 10 100 1000 1000 1000 1000 1000 1000 1000 

Table 3-2: IteratlVely updatmg welghts for the four parameter nylon model. 

be more an indication of the relative ability of the model to accommodate the features in A and 

c. 

The fit to the data using method 1 and method 2 appears in figure 3-11. This figure shows 

the numerical solution to (3.16) using the estimated initial system states from the smooth fit 

at the optimal À = 103 . As expected by the relative weights, the main impact is a shift in the 

relative importance of fitting C. In the experiments plotted in the top right and bottom left 

corners of the figure, the impact of fitting C more closely is evident by the shifted fits. The final 

parameter estimates from method 2 were slightly influenced by changes in weights as reported in 

table 3-3. The discrepancy in parameters is also shown in figure 3-11. For example in the bottom 

left panel of the figure, the estimated initial system state is nearly identical using both weighting 

schemes, however the altered reaction rate parameters from method 2 allow an improved fit to 

C. 

Method 3 allows for the possibility that there is additional variability in the measurement of a 

component from a particular experimental run. Essentially, this model of iterative re-weighting 

determines the largest subset of the functional data observations which could best be fit by 

the model. Allowing unique weights to each experimental run-system component combination 

highlights functional observations which might be considered influential outliers, and therefore 

are less likely to be adequately fit by the model. These functional outliers may be due to model 

mis-specification or measurement errors. If both A and C in a single experimental run are heavily 

down-weighed it may be indicative of model mis-specification errors, possibly fixed by including 

a block effect due to the day that the experimental run was performed. If a single component 

within a run is strongly down-weighed it may suggest correlated measurement errors induced by 

the pro cess of taking measurements. 
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1 Parameter 1 lower point upper 
Method 1 (Fixed weights) 

kp 23.849 20.587 17.325 

Î 33.679 26.859 20.039 
Kao 56.568 50.222 43.876 
fj"H -28.887 -36.462 -44.036 

Method 2 (2 welghts) 
kp 23.400 20.432 17.463 

Î 31.238 25.216 19.193 
Kao 58.531 52.483 46.434 
fj"H -26.885 -34.238 -41.591 

Method 3 (12 welghts) 
kp 20.012 18.216 16.413 

Î 22.891 19.443 15.995 
Kao 64.618 60.10 55.590 
fj"H -26.378 -31.593 -36.808 

Table 3-3: 95% Confidence intervals for the nylon data using iteratively re-weighted profile 
estimation and the weights suggested from additional experiments. 

The final parameter values for method 3 are shown in table 3-3. As expected these parameter 

estimates are further from the method 1 values than the method 2 estimates. Figure 3-11 

compares the fit to the data from the ODE solution and the parameter estimates from all three 

methods. The estimated standard deviations (recall that Œki = l/v'wki) for method 3 are listed 

on the figure. Component W is unobserved and therefore only influenced by the weights through 

their impact on the parameter estimates. However, W is much more strongly governed by the 

input Weq in (3.16). Consequently the fit to W is omitted from this plot but the sake of reference 

is shown for method 1 on figure 3-9. 

The main impact of method 3 compared to the other weighting schemes is that method 

3 nearly ignores the top right experimental run in figure 3-11 by heavy down-weighing. This 

experimental run has notably large observations for A at times t E {4.25, 4.5} and for C at 

times t E {3.25, 4, 4.5} which show strong deviation from the model and therefore promote larger 

weights for this experimental run. 

While in general it is to be expected that the experimental runs where the data li ne up 

smoothly should have the lowest Œki' this is only true if this alignment of observations follows 
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Figure 3-11: The ODE solution fit to the data using the 4 parameter nylon model with 12 
iteratively estimated weights (in blue) with 2 iteratively selected weights (in green) and the fit 
using the assumed weights W a = 1;'62 and Wc = 1/2.42 (in red). The 12 estimated standard 
deviations are shown on the figure, where Ô-ki = 1/ y'Wki' The temperature T is given in degrees 
Kelvin for the run. 

the prescribed model. The observed values of A in the top le ft panel of figure 3-11 tightly follow 

a smooth li ne but this data is given a moderate weight because the parameter estimates causing 

the model to flow through these points harms the overall fit to the other experiments. 

To determine the quality of these estimates and to decide which sets of parameters in table 

3-3 should be finally believed and reported, a simulation study is explored in the next section. 

3.5.5 Nylon Iterative Re-Weighted Simulation Results 

The impact of miss-specifying the weights in the profile estimation process of section 3.5 

is explored through a simulation study using the nylon system. One hundred simulated data 

sets were produced with additive errors to observations from the ODE solutions SA and Sc as 

shown in (3.18) under the experimental conditions in the i = 1, ... ,6 nylon experimental runs. 
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Temperature: 557 557 557 
O"lA 2.154 0.804 2.162 
O"IC 3.728 5.095 7.517 
Temperature: 554 544 536 
O"IA 1.026 2.009 1.295 
O"IC 3.679 2.717 1.874 

Table 3-4: The true standard devlatlOns of the nOIse III the slmulated nylon data sets. 

The true parameters in this study were ()true = [kpo , ,,/, Kao, ~Hl = [20.59,26.86,50.22, -36.46], 

the final parameter estimates from section 3.5.3 using the method 1 weights WA = 1/.62 and 

Wc = 1/2.42
. Numerical solutions SAi((), AiO, u(t), t) and SCi((), CiO, u(t), t) were obtained using 

AiO = Âi(t = 0) and CiO = êi(t = 0) estimated from the data smooth of the method 1 profile 

estimation results un der the optimal À = 103 . These values were taken to be true for the 

simulation study producing the observations, 

(3.18) 

The variance of the additive random Gaussian noise, EAi "-' N(O, a-ii) and ECi "-' N(O, a-bi) , 

is specifie to each component within each experimental run such that method 3 in section 3.5.4 

could potentially accurately estimate the true measurement variance structure. The variance of 

the simulated data a-~i' was based on the centered, estimated residual variance from residuals Tki 

left over from the profile estimation with method 1 in section 3.5.3, 

f-lki 

L;!~l (Tki(t) - f-lki)2 /nki' 

L;!~l (Tki(t)) /nki' 
(3.19) 

The simulated data standard deviations used are listed in table 3-4 given in the order that 

the experimental runs are shawn in figure 3-11. 

Generalized profile estimation was performed on these 100 simulated data sets un der the 

three different weighting methods used in section 3.5.4 to evaluate the impact of potentially 

miss-specifying weights. The 95% confidence intervals resulting from the three methods appear 

in figure 3-12 for all three methods. Method 1, using two assumed and fixed weights, generally 
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Method 1 Method 2 Method 3 
Parameter True value Bias var MSE bias var MSE bias var MSE 

kpo 20.47 0.365 2.37 2.50 0.036 1.86 1.86 -0.363 1.03 1.16 

r 26.86 0.241 8.06 8.12 -0.369 6.41 6.54 -1.038 3.95 5.03 
Kao 50.22 -0.077 6.80 6.81 0.447 5.59 5.79 0.999 3.81 4.80 
~H -36.46 0.186 11.58 11.61 -0.120 10.18 10.19 -0.489 6.29 6.52 

Table 3-5: The average parameter blaS and observed vanance m the pomt estlmates from the 
100 simulated nylon data sets. 

produced the widest confidence intervals. Method 2, which estimated the two weights, produced 

noticeably narrower intervals and finally method 3, which estimates one weight for each exp er-

imental run-component combination, produced the narrowest intervals. The average parameter 

estimate bias, variance and mean squared error (MSE) of the observed estimates from the 100 

simulated runs are shown in table 3-5. In moving from fixed weights to estimating two weights to 

12 estimated weights, the variability in the estimated values of the parameters declines suggesting 

that the iteratively re-weighting improves stability in the parameter estimates. This is consistent 

with re-weighting in general which is used to improve robustness of the estimator. While there 

appears to be an increase in magnitude of the bias in moving from method 1 to method 3, an in 

depth examination of the reason is 1eft for future work. However the bias appears to be offset 

by the decrease in MSE. 

In method 1 the assumed standard deviation ofthe data is aA = .6 and ae = 2.4. In Method 

2 the inverse square root of the two average weights (an estimate of the standard deviations) 

were âA = 1.5831 and {je = 3.9188. The method 3 standard deviation estimated are shown as 

histograms in figure 3-13, listed in the same order as the experiments are shown in table 3-4 

and figure 3-11. The true values are shown in red on the figure and are placed nicely near the 

middle of the observed density suggesting that iterative re-weighting produced good estimates 

of the true weights. For reference the observed average is shown in green on the figure. 

Due to the reduction in the width of the parameter confidence intervals, higher consistency 

of the results, reduced MSE and excellent weight estimates when examining the simulated nylon 

data sets, this suggests that the best set of final parameter estimates to consider for the real 
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Figure 3-12: The 95% confidence intervals for the four parameters from the 100 simulated nylon 
data sets using method 1 weights (blue), method 2 weights (black) and method 3 weights (red). 
The true parameter value is shown in cyan. 

nylon data cornes from method 3. Furthermore, final weight estimates from method 3 in the real 

data set are useful indicators of potential functional observations or entire experimental runs 

worth re-examining due to their small weights. 

The parameter estimates from methods 1,2 and 3 are summarized in table 3-5. 

3.6 Profile Estimation of the Simulated FitzHugh-Nagumo Data Sets 

A cubic b-spline basis with one knot at each of the 399 interior observation times was used 

for both V and R. Profiling was initialized with À = 1 and parameters (}(O) were the same initial 

parameter estimates used in previous methods. These originated from draws from the prior 

densities of the Bayesian estimation process of section 2.2. The profile estimation procedure was 

run until convergence as assessed by a relative drop in the SSE of less than 10-8 from an additional 

Gauss-Newton iteration. Then the smoothing parameter was updated by Ànew = 10 X Àold and 
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Figure 3-13: Histograms of the standard deviation estimates for the method 3 iterative re­
weighting. T'rue values are shown as red lines and the mean of the 100 simulated runs is shown 
in green. 

72 



a 

:·:1 1 1 Il! 1 
1 
1 1 ~ 1 

1 
1 1 ~ 1 1 

I
l! 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 i 1 1 ~ 1 1 1 1 ~ 1 1 f 1 ~j 

0.10 5 10 15 20 25 30 35 40 45 50 

f3 

0·:1 1111 ! 1 1 Iii 1 11111111 i 1 1 1 1 1 1 1 Il! 
1 III i 1 1 f 1 i 1 1 Iii 1 1 Il! 1 

o 5 10 15 20 25 30 35 40 45 50 

'Y 

3:1 i 1 i 1 ~ 111 1 ~ 11 11 ~ i 1 i 1 ~ 1111 ~ 1111 ! 1111 ! 1111 ~ III i ! 1111 il 
2.80 5 10 15 20 25 30 35 40 45 50 

Figure 3-14: 95% Confidence intervals for the profile estimation of the 50 simulated FitzHugh­
Nagumo simulated data sets. Horizontallines mark the true values. 

the profile estimation was rerun using the initial parameter estimates 8~oJw = iJ~~nal). This was 

continued until À = 109 at which point it was deemed that ~ = 108 as seen in figure 3-5. However, 

as refiected by the stability of the SSE and PEN in figures 3-1 and 3-3 respectively, parameter 

estimates essentiaIly do not change for any À E (104 ,108 ) due to the high resolution of the basis 

knots and lack of model mis-specification error. 

Parameter estimates and intervals for the FitzHugh-Nagumo system are shown in figure 

3-14. Note that unlike in the previous methods, aIl of the point estimates converged to the 

neighbourhood of the true parameter values. Furthermore, marginal interval estimates are nearly 

identical to those of the MCMC method of 2.2 wh en those estimates converged to the correct 

location. 

3.6.1 Iteratively Re-Weighted Profile Estimation for the FitzHugh-Nagumo System 

In producing the 50 simulated FitzHugh-Nagumo data sets, Gaussian noise with variance .52 

and .42 was added for components V and R respectively. In this section the iterative re-weighting 

is applied to the FitzHugh-Nagumo data simulated data sets. 
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equal weights re-weighted 
parameter bias var MSE bias var MSE 

ex -0.80 * 10-3 0.19* 10-3 0.41 * 10-3 -0.91 * 10-3 0.20 * 10 3 0.43 * 10 3 

f3 4.74 * 10-3 3.04 * 10-3 5.49 * 10-3 4.83 * 10-3 2.99 * 10-3 5.46 * 10-3 

Î -5.81 * 10-3 0.64 * 10-3 1.30 * 10-3 -6.42 * 10-3 1.19 * 10-3 2.13* 10-3 

Table 3-6: The observed average of the blas, vanance and me an square error (MSE) of the 
observed parameter estimates for the 50 simulated FitzHugh-Nagumo data sets. 

Using the same b-spline basis from section 3.6, the re-weighted profile estimation process 

was initialized with initial weights w8) = w~) = 1. The weighted profile estimation routine 

was performed at fixed À. = 104 and the same initial parameter estimates consistently used with 

these data sets. After parameters i/l
) converged, the weights were updated with the inverse of 

the observed residual variance as described in section 3.4.3. Using the new weights, weighted 

profile estimation was again performed initialized with 8;~:t~~1 = 8j~~~ll' Weights were continually 

updated until 

Figure 3-15 shows a histogram of the inverse weight estimates, the estimated data variances, 

for the 50 simulated data sets. The red line shows the true data variance which lies towards the 

middle of the observed densities. The average of the parameter estimate bias, variance and 

mean square error (MSE) are given in table 3-6. The average bias and variance of the parameter 

estimates is smaIl, suggesting that both methods perform weIl at estimating parameters from the 

high resolution of the observations. Furthermore the MSE estimates are nearly identical between 

the two methods except for parameter Î whose MSE increased with iterative re-weighting. 

Parameter Î is important in determining the rate of exponential growth in V and, through it­

erative re-weighting component Vis down weighted by a larger residual variance estimate. While 

Î appears in DR in equation (1.16), its impact on R is diluted and confounded by parameter {J. 

Consequently, the information used to identify Î is reduced through unequal weighting. While 

iterative re-weighting provides additional information about the relative precisions of measure-

ments from V and R, it occurs at the expense of precision in the ability to estimate parameters 

tied closely to the down-weighed component. 
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Figure 3-15: The estimated data variance for V and R, where weights Wk = (}~ for k E {V, R}. 
The red lines denote the true values. 
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CHAPTER 4 
Bayesian Collocation Methods for DifferentiaI Equation Modeis 

In section 2.3 many improvements were proposed to work around the potential pitfalls of 

parameter estimation in ODE models with nonlinear least squares (NLS) and MCMC. The most 

promising of these methods use collocation, pseudo-orbits or other local approximations to the 

ODE solution to ease movement around the parameter space, and reduce the dependency on the 

initial system states. Furthermore, using these approximations has the potential to relax the 

unforgiving parameter space pitfalls caused by drastic behavioural changes in the ODE model 

from small changes in parameter values. 

While chapter 3 describes a method based on maximizing the profile likelihood to overcome 

these challenges, this chapter focuses on Bayesian methods. Section 4.1 describes a first attempt 

at producing a collocation based Bayesian model and outlines its suc cesses and shortcomings 

through a linear ODE example. Section 4.2 extends this method to nonlinear ODE models. 

Section 4.3 describes the weIl established Bayesian parallel tempering, originally developed for 

sampling from multi-modal distributions, and shows its benefit in the context of single modal 

ODE models. The advantages of these methods are combined to pro duce Bayesian Collocation 

Tempering, described in section 4.4. The remainder of the chapter focuses on the performance of 

this method using the simulated FitzHugh-Nagumo data sets and the nylon real data example. 

4.1 Bayesian Collocation ODE models 

This section develops an alternative Bayesian model (Campbell and Cao 2006) for estimating 

posterior densities of parameters fJ from the ODE model Dy = f(y, n, u(t), t) with time varying 

system outputs y(t) and input functions u(t). Rather than depending on the ODE solution, 

S(fJ, Ya, u(t), t), this method constructs a hierarchical collocation model using the smooth X(t) = 

g{ Cf <t>(t)} ~ S(fJ, YQ, u(t), t) with coefficients c, basis functions <t>(t) and constraint function g{-}. 
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The resulting model is similar to the smoothing model used for Generalized Additive Models 

(Hastie and Tibshirani 2000) and measurement error problems (Berry, Carroll, and Ruppert 

2002), however these methods use a penalty on the first or second derivative as opposed to 

the more informative ODE model in Campbell et al. (2006). Here, the hierarchical Bayesian 

model uses the ODE parameters 8 as hyper parameters describing the shape of the smooth 

approximation of the solution to the ODE. For example, the model 

P(y(t) 1 e, 8, 0-
2) rv N(e'cp(t),o-2), 

P(e l 'Y,8) rv 'Y-rn/ 2 exp (-'YPEN(8)), 

Pb) rv G(Ay , By), ( 4.1) 

P(o-2) rv lG(Aer, Ber), 

PEN( 8) fT {DX - f(X, 8, u(s), S)}2 ds, 

pro duces a posterior density for the m basis functions e, the smoothing parameter À = 'Y / 0-
2 and 

hyper parameters of interest 8. 

The density G(A, B) is the gamma distribution parameterized to have me an AB and lG 

is the inverse gamma. Parameters A-y, B-y, Aer and Ber are known in advance based on prior 

information. The conditional prior density on e is increasing as the smooth moves doser to the 

solution to the ODE, penalized at the level of the derivative, similar to the PEN term in profile 

estimation. The priors for 'Y and 0-
2 in model (4.1) are the conjugate priors. Conjugate priors 

for 8 depend on the form of PEN, however in most cases this will not have a dosed form solution 

and therefore a conjugate prior will not be available. 

If the ODE model is linear in system outputs, that is, for linear differential operator L(·) 

the model is f(e'cp, 8, u(t), t) = L(e'cp, 8, u(t), t) = e' L(cp, 8, u(t), t) then PEN can be rewritten: 

PEN = / (e' (Dcp) - e' [L( cp, 8, u(t), t)])2 dt = e' [/ ((Dcp) - [L( cp, 8, u(t), t)])2 dt] e = e' Re, 
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for matrix R, a function of e and u(t). Then the posterior for chas the closed form conditional 

posterior: 

P(e 1 y,e,0-2'1) ex: P(y(t) 1 e,e,0-2)P(e Il,e) 

ex: exp {- (y-e'p)'(y-e'p) - :tPEN} 
2a2 2 

exp {- (y-e'p)'(y-e'p) - :te' Re} 
2a2 2 

(4.2) 

rv N (M cf/y, M cf/ 0-2
) 

M [<t>' <t> + IR0-2]-I. 

This is the familiar conditional posterior used in many general Bayesian smoothing applications. 

The posterior mean is the usual least squares penalized likelihood smooth estimator. 

Samples from the conditional posterior for e can then be obtained using a Gibbs sampler. 

Similarlya Gibbs sampler may be used to obtain a sample from the conditional posteriors of 1 

and 0-2 using: 

P(0-2 1 y, e, e, 1) rv lG (Aa + n/2, [(y - e'<t>)'(y - e'<t»/2 + 1/ BarI) 

and P([ 1 y, e, e, 0-2
) rv G (A, + m/2, [PEN/2 + 1/ B,rl) 

(4.3) 

This is a hierarchical model so the posterior for e is only indirectly affected by the data 

through e via the smooth in PEN: 

p(e 1 y, e, 0-21) ex: P(y 1 e,e,0-2)P(e Il,e)p(e) 

ex: exp { _ (y-e'p;:~y-e'p) _ ,P;:N} p(e) (4.4) 

ex: exp { _yP;:N} P( e) 

The strength of the information fiow from y to e and onto e is regulated by the value l' 

4.1.1 Exponential Growth Example 

In Campbell et al (2006), this method was tested using the simple linear ODE model for 

unbounded exponential growth: DX(t) = eX(t) = f(X, e, t). Although this model has the 

solution X(t) = exp(et), the goal ofthis exercise was to avoid solving the ODE model. Using e = 

1.2, 50 evenly spaced observations were simulated over the interval [1,3] with added N(O, .752
) 
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Gaussian noise. The Bayesian model used was 

P(y(t) 1 c, {}, 0-2) N(c'cp(t),0-2), 

P(c l 'Y, (}) 'Y-m
/

2 exp (-'YPEN({})), m = 11, 

Pb) rv G(A)'l By), A-y = B-y = 2, (4.5) 

P(0-2) rv IG(Aer, Ber), Aer = Ber = 2, 

PEN({}) fr{DX - f(X,{},s)}2dsP({}) rv N(1O,252). 

The 1inear differentia1 equation DX = ()X, with the unconstrained basis expansion x(t) = 

c'cp(t) can be written as DX = L(X) = c'L(cp) = c'()cp. Consequently the penalty term can be 

expressed simply with the matrix R: 

PEN = c' {J [Dcp - {}cp]2 dt} c = c' Rc. ( 4.6) 

In this example the posterior for {} can be therefore be written as 

P({} 1 y, c, 0-2, 'Y) ex: P(y 1 C,{},0-2)P(C l 'Y, (})P({}) 

ex: exp { -'Y ft:1 [c' Dcp - {}c' cpl2 dt _ (~;~~~2} 

ex: exp { _(}2 ['Yc' ft:1 cp' cpdtc + 2(2
1
52)] + {} ['Yc' ft:1 (cp' Dcp + Dcp' cp) dtc' + 215°2 ] } • 

(4.7) 

This is in the form of an exponentiated quadratic function of {} and therefore P( {} 1 y, C, 0-2
, 'Y) 

is a normal distribution with mean: 

[ 13 10] [13 
1 ]-1 'Yc' (cp' Dcp + Dcp' cp) dtc + -2 2'YC' cp' cpdtc + -2 2 

t=l 25 t=l 5 

and variance 

[2,e' L, "" "'dte + 2~2 r 
and a Gibbs sampler can be used to obtain posterior draws. 

The parameters were initia1ized with draws from their priors. One hundred thousand poste-

rior draws were performed from the Gibbs samplers. The first 50,000 posterior draws are shown 

for 0-2
, "land {} in the 1eft hand co1umn of figure 4-1. The right hand column shows a histogram 
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Figure 4-1: The first 50,000 posterior draws for the unbounded exponential growth example of 
section 4.1.1 and histograms of the second 50,000. Parameter f) is the ODE parameter, 'Y is 
the smoothing parameter and 0"; is the measurement error variance. Red lines indicate the true 
values. 
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of the posterior draws from the second 50,000 draws. Initially, the posterior draws have a small 

'Y due to a large value of PEN, which in turn is caused by a poor value of e. When e moves 

close to its true value, in this case near draw number 10,000, the smoothing parameter 'Y jumps 

suggesting that the smooth and the ODE model agree and PEN substantially decreases. 

In this simple example, e did travel to the neighbourhood of its true value. However, the 

impact of the data on 8 is softened due to 'Y and the data smoothing process. Consequently, the 

posterior for 8 has a much larger variance than would be found by a Bayesian model depending 

on the numerical solutions to the ODE from section 2.2. While this method may occasionally 

work nicely with simple systems, in non-linear ODE models, PEN =1= ciRc and consequently there 

may not be a closed form posterior or conjugate prior for c. Using a Metropolis Hastings MCMC 

sampler for c includes fine tuning the algorithm for hundreds or thousands of basis functions, in 

order to be able to adequately model the shape of the ODE model. Since basis coefficients are 

local parameters, this problem increases in complexity with increasing numbers of observations. 

In a more general model, Metropolis Hastings MCMC instead of a Gibbs sampler will be 

also required to draw from the posterior of 8, because a closed form solution for P( 8 1 y, C, 0-
2 , 'Y) 

will not be available. The MCMC posterior sampling could then be thought of itself as being 

governed by a dynamic system, because PEN controls a feedback loop infiuencing 'Y and e in the 

posterior draws. If PEN is large, the posterior mean and variance of 'Y are reduced due to the 

inverse of PEN in (4.3). This in turn reduces the information fiow back to 8 in (4.4), returning 

P(8 1 y, C, 0-
2

, 'Y) back to P(8). This essentially cuts 8 off from the data, preventing use fuI 

information from trickling through to guide the motion of 8 towards its true value. While 8 is 

then less restricted, the algorithms convergence depends heavily on luck to randomly improve 

its value. If 8 happens to move to a more useful region, PEN will be reduced and 'Y will increase, 

feeding more information into 8. 

One way of potentially encouraging the data to guide the movement of 8 more strongly is 

to place a strong prior on 'Y. However, forcing 'Y to be too large hinders movement across the 

parameter space inducing similar problems to those of the method in section 2.2. Alternatively, 
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constraining , too small effectively eliminates the useful information in P( B 1 y, c, (J2, ,). It is 

therefore not clear that this model can be improved by choice of prior on ,. Fixing, instead 

of obtaining a posterior density for it will maintain constant pressure on B to move towards a 

reasonable set of values but even if B converges properly, however var(B 1 y, C, (J2, ,) will still be 

larger than necessary. 

4.2 Bayesian Collocation Method: A Second Method. 

An alternative Bayesian collocation model was produced, building on the method in the 

previous section, to improve by accessibility to nonlinear ODE models. The model, indu ces a 

prior on the functional form of the smooth X(t) rather than directly placing a prior on the basis 

expansion coefficients: 

P(Y(t) 1 X(t),(J2,,) r-v N(X(t),(J2) 

1f( B) <X exp (-ÀPEN) P( B) 

1f(B) <X exp (-À ft [DX(s) - j(X(s), B, u(s), S )J2 ds) P(B) 

P(À) '" G(A)" B),). 

(4.8) 

The induced prior on X(t) increases as the smooth moves towards a solution to the ODE model. 

This method is similar to the model in the previous section in that it is a collocation method 

producing a posterior density for B and À, but differs because, given B and À, the smooth X(t) 

is a deterministic function which is further refined by the data y. The induced prior on X(t) 

reduces the fine tuning problem of dealing from the posteriors of hundreds of basis coefficients. 

While the method of section 4.1 also induced a prior on X(t) = c<jJ(t) through À and B, 

a prior was also placed directly on c and hence on X(t). If the induced and the direct priors 

do not coincide, it can cause serious estimation problems. Consequently, removing the prior 

directly on c and instead depending only on the induced prior, avoids the need for Bayesian 

Melding (Poole and Raftery 2000) to combine multiple sources of prior information about X(t). 

The resulting model (4.8) is like having the generalized profile smoothing step nested within an 

MCMC collocation model. 
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Figure 4-2: The 95% highest posterior densities of the Bayesian Collocation ODE model of 
section 4.2. 

The model of (4.8) was applied to the 50 FitzHugh-Nagumo simulated data sets using a 

fifth order b-spline basis with 89 interior knots, hyper-parameters A.>, = B.>, = 2 and log uniform 

prior densities on (j~ and (j~. Prior densities on 8 were the same as those in section 2.2: 

P(a) rv P({J) rv N(O, .42
), 

(4.9) 

The 95% highest posterior density intervals using the last half of the 100,000 posterior 

draws appear in figure 4-2. While sorne of the more difficult sets of initial parameter estimates 

to estimate with the standard MCMC method of section 2.2, which included large values of " 

are no longer a problem for this model, there are several new problems. For example simulated 

data sets number 2, 25 and 45 were not able to converge to the neighbourhood of the true 

parameter values in the standard MCMC method or through NLS. With the model (4.8), these 

simulated data sets did converge to the neighbourhood of the true values. Many other simulated 

data sets however, did were not able to converge. Furthermore, even when parameters were 
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attained, the uncertainty in À and hence X(t) feeds into 0 giving extremely wide intervals 

especially in simulated data set numbers 28 and 44. Consequently, if this model do es move to 

the neighbourhood of the true parameters, the uncertainty in the posterior due to the hierarchical 

nature of the model, is considerably wider than it was in the standard MCMC model. A variation 

of this model dealing with these problems is revisited in section 4.4 building on insights from the 

next section. 

4.3 Parallel Tempering 

Although it was developed for sampling from multi-modal densities, parallel tempering 

(Geyer 1991) allows easier movement around the parameter space by building a sequence of 

approximations to the posterior density, { Pm : m = 1, ... , M}. Posterior PM is the desired 

posterior but densities Pm, m < M are approximations which have been smoothed towards the 

uniform density. The degree of the posterior approximation is determined by the temperature 

parameter Àm in 

(4.10) 

As Àm decreases, the posterior modes are less sharply peaked, and the near zero probability 

valleys separating modes become easier to cross as these regions fill in towards uniformity. When 

temperature parameter Àl = 0, Pl r"V U, a uniform density on the potentially unbounded domain 

of the parameters. 

The M approximations are run as parallel MCMC chains and parameters are allowed to 

swap between chains taking advantage of the mobility of sm aller À chains using the following 

algorithm: 

1. For draw n=l initialize the parameter values oin ) , ... , o~) where each of the M chains may 

have the same set of parameter values. 

2. With probability p sample i and j independently from the dis crete uniform density on the 

interval (1,M). 
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3. If i =1= j then propose to swap parameter values between these chains. Sample u from a 

continuous uniform on (0,1) and accept the swap by setting 8~n+1) = 8;n) and 8;n+l) = 8~n) 

if u < Ri,j where Ri,j is given by 

(4.11) 

If the swap is not accepted then retain the previous values 8~n+l) = 8~n) and 8;n+l) = 8;n) 

4. For the remaining M -2 chains, update 8in +1) , k E {1, ... , i-l, i+l, ... ,j -1,j+l, ... , M} 

omitting chains i and j, with the usual MeMe step independently for each chain. 

5. Repeat steps 2 to 4 many times. 

Parallel tempering and simulated tempering (Neal 1996), a single chain version, are com­

monly used to sample from multi-modal posterior densities. With differential equation models, 

this methodology is attractive as smoothing the posterior density should enable easier movement 

around the posterior space. 

4.3.1 Parallel Tempering and the FitzHugh-Nagumo Model 

Figure 4-3 shows several tempered approximations to the un-normalized log posterior of 1 in 

a simulated data set from the FitzHugh-Nagumo system of (1.16). In this figure, the remaining 

model parameters are held at their true values. The highest posterior mode is centered on the 

true value of 1 = 3, however a smaller mode at 1 = 9 is also present. This corresponds to the 

modal location in figure 2-9 which was trapping 1 larger than its true value using the standard 

MeMe method of section 2.2. In figure 2-9 this modal value appeared shifted towards 1 = 5 

because the other model parameters were not held fixed at their true values. While the mode 

around 1 = 9 is very small (due to it only partially fitting the data), the valley that separates this 

mode from the higher mode is very wide and deep. The smaller À parallel tempered posterior 

approximations fill in this valley. 

Parallel tempering was performed on the 50 simulated FitzHugh-Nagumo data sets of section 

2.2. Four temperatures À E {0.001O, 0.0101, 0.1111, oo}, defined the chains which were again 
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Figure 4-3: The un-normalized log posterior, Pi = P ÀI!(1+Ài ) , changing with À and l' in the 
FitzHugh-Nagumo system holding aIl other parameters at their true values. 

initialized using the same starting parameter estimates consistent with the other simulation 

studies. The values of À were chosen because they fiatten out the posterior to a relatively high 

degree but still retain sorne of its shape. Since the À = 00 chain is identical to the standard 

MeMe model tested in section 2.2, parallel tempering was run for only 5,000 iterations with 

the probability of proposing a swap between chains p = 1. The reason for using so few posterior 

draws was to examine how the parallel chains and smoother posterior approximations improve 

movement around the posterior parameter space. 

Simulated data set number 45, initialized with a particularly poor set of parameter values, 

became trapped in the higher l' smaller mode with the standard MeMe model of section 2.2. 

Figure 4-4 shows the first 200 dr aws of (} m from Pm ( (} m 1 y, 0-
2 , X O), m = 1, ... ,4 for this data 

set. The major breakthrough from parallel tempering is the fast propagation of the extremely 

large starting values of l' and poor values of a and (3 towards their true parameter values of 

Otrue = [a, (3, 1']true = [.2, .2,3]. At iteration number 9, 0 3 swaps with O2 passing values of l' near 

6 into the lower À chain in exchange for values including l' near 3. In the next iteration 03 swaps 
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Figure 4-4: The first 200 MCMC iterations for Œ(blue),,B(green) and ,(red) from aIl four ParaIlel 
Tempering chains of the FitzHugh-Nagumo simulated data set #45. 

with fJ4 passing the near true values to the top chain, and returning the poor parameter values 

(including, near 6) back to the lower À chain. While these near true values of fJ4 remain in the 

top À = 00 chain indefinitely, the poor values remain in the À3 = 0.1111 chain until iteration 

number 156, when another round of swapping pushes them into the À2 and then À1 chains. 

Parameters fJ4 , fJ3 and fJ2 essentially remain close to fJtrue for the duration of the posterior draws. 

Figure 4-5 shows the entire 5,000 posterior draws from this data set for [fJ, X o]. In addition 

to simulated data set number 45 needing to fight against an initial estimate of "((initial) = 5.1, it 

also must overcome the initial system states including xgnitial) = [Vo, RoFinitial) = [.1,1.8] when 

x~true) = [-1, lJ. Despite the fast movement of fJ towards its true value, improved initial system 

conditions swap up from Pl -t P2 -t P3 -t P4 after the 3000th posterior draws. 

Figure 4-5 also shows the increased variability in the parameters as Pm is smoothed to-

wards a uniform posterior. For example the À1 chain accepts many proposed values of "( > 10. 
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Figure 4-5: The MCMC iterations for a(blue),f3(green),')i(red), Vo(cyan) and Ro(magenta) from 
an four Parallel Tempering chains of the FitzHugh-Nagumo simulated data set #45. 
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Figure 4--6: The number of draws to reach within ±.25 of the true values of the parameters "(, Va 
and Ra using parallel tempering for the 50 simulated FitxHugh-Nagumo simulated data sets. 

This increased mobility eases movement towards higher posterior modes in the smaller À chains. 

However, each decrease in À also allows parameters to navigate into a larger region of the param-

eter space exhibiting unreasonable model dynamics and potentially chaotic behaviour. This was 

especially problematic when poor parameter values excessively slowed or altogether prevented 

the numerical ODE solver from producing a solution. This occurred quite often and in most 

cases when this prevented the parallel tempering from progressing, restarting the pro cess using 

the same set of initial parameter estimates was often aIl it took to recover. However this prob-

lem prevented simulated data sets number 32 and 40 from progressing beyond a small handful 

of draws despite numerous attempts. By increasing À, and restricting the movement of () and 

X o, this problem can be exchanged for slower mixing results more difficult navigation of the 

parameter space. 

Figure 4-6 shows the number of posterior draws required for the M th chain to reach within 

a tolerance of ±0.25 of the true values of "(, Va and Ro. These three parameters seemed to be 

the most difficult to move towards the neighbourhood of the true values. This figure shows 27 

of the 50 were able to meet the tolerance criteria within the 5,000 draws. Figure 4-7 shows a 

histogram of the time to reach within this same tolerance using the standard MCMC method of 
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Figure 4-7: The number of posterior draws required for the 50 simulated FitzHugh-Nagumo data 
sets to move to within ±.25 of the true values of "l, Va and Ra using the standard MeMe model. 

section 2.2. With the standard MeMe model only 22 of the 50 were able to meet this tolerance 

within the first 5,000 draws and 4 were not able to meet the tolerance within 200,000 draws. 

Figures 4-8 and 4-9 show the number of draws to reach within ±.25 of the true value of the 

single parameter "1 using parallel tempering and the standard MeMe method respectively. In 

the standard MeMe model, "1 is slow to travel to its proper neighbourhood and in four cases it 

does meet the criteria within 200,000 draws. By contrast in parallel tempering, "1 moves much 

faster to its true neighbourhood, meeting this tolerance within the first 1,000 draws in aIl but 4 

of the simulated data sets. With both of these methods, the initial system states are the slowest 

and most difficult parameters to move around the posterior space. While parallei tempering 

pro duces improved convergence overall, the dependency on the numerical ODE solution remains 

a major problem with this model formulation. While there is room for adaptive methods for 

adjusting the values of À, it is perhaps more reasonable to listen to the abundant caUs of section 

2.3 for incorporating pseudo-or bits or collocation methods. 
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Figure 4-8: The number of draws to reach within ±.25 of 1 using parallel tempering. 
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Figure 4-9: The number of draws to reach within ±.25 of 1 using the standard MCMC mode!. 
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4.4 Bayesian Collocation Tempering for ODE Models 

Like parallel tempering, collocation tempering uses a sequence of M parallel MCMC chains, 

{ Pm, m = 1, ... , M}, each with a smoother approximation to the posterior of interest. However 

the smooth approximations are built using the likelihood smoothing principle behind generalized 

profile estimation. The m th model uses a likelihood centered on a data smooth, X(t) = g{c'4>} 

for basis functions 4>, coefficients c and constraint function g{.} giving the model 

7r( 8) ex exp ( - ÀmPEN) P( 8) 

7r(8) ex exp (-Àm ft [DX(s) - f(X(s), 8, u(s), S )]2 ds) P(8) 
(4.12) 

Where 0< À 1 < ... < ÀM = 00. 

Centering the likelihood on the data smooth defines each of the parallel chains to be similar 

to the model in section 4.1 with fixed Àm. However this model is improved in that 7r(8) indu ces 

a prior on the shape of the functional mean X(t) which increases in density as the smooth 

approaches the solution to the differential equation. This induced prior is such that X(t) and 

hence c are deterministic functions given y and 8, through an optimization step similar to 

the generalized profile estimation smoothing in (3.1). The smoothing parameter Àm acts as 

a temperature gradient influencing the flow of information between 8 and c and consequently 

influencing the flow of information from y to 8. 

As À 1 approaches zero, the prior for X(t) is a functional uniform density and Pl (X(t) 1 y, (/2) 

is a data interpolator whose shape between observations may be non-uniquely defined depending 

on the basis functions 4>(t). Furthermore, when À 1 ~ 0, P1(8,y,X(t)(/2) ~ P(8), similar to one 

of the major problems with the model in section 4.1, except in this case .\1 is fixed and defines 

only one of several parallel chains. 

As Àm increases, the induced prior for X(t) becomes more sharply peaked, moving towards 

the solution to the differential equation. Furthermore, the posterior information flow from y ~ 8 

is more abundant, producing an even sharper peaked Pm(8 1 y, X(t), (/2). In the Mth chain, with 
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Figure 4-10: The un-normalized log posterior of the collocation tempered chains for 'Y in the 
FitzHugh-Nagumo system holding aIl other parameters at their true values. 

ÀM = 00, the induced prior on X(t) is again a uniform density but with zero probability on every 

functional shape other th an those following a solution to the ODE S(6, X o, t): 

{ 

1 if X(t) = S(6, X o, t) for any Xo 
P(X(t) 1 6) ex 

o Otherwise 

Consequently, for PM, a reasonable set of basis functions are the ODE solutions, with coefficients 

c = X o, the initial system states. If a prior is directly placed on X o instead of induced, PM is 

identical to the posterior in the standard MCMC model of section 2.2, P*(6 1 y, X o, 0-2 ). 

Using the ODE solutions as basis functions for the Mth chain, X o could be determined from 

the sensitivity equations in a nonlinear least squares (NLS) step. However, based on difficult 

experiences with NLS estimation, this is not a quick and simple optimization. Therefore using 

P* in place of PM is highly recommended. 
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Figure 4-10 shows a cross section of the un-normalized log posterior of 'Y in the FitzHugh-

N agumo model for several values of the temperature parameter with aIl other parameters held 

at their true values. As with figure 4-3, the À = 00 chain has an addition al smaller model near 

'Y = 9. While in parallel tempering the posterior approximations fiattened out, but maintained 

the locations of the posterior modes, in collocation tempering the smaller mode fiattens out 

and shifts towards the main and dominant mode. The shift in the mode occurs due to lack of 

restrictions on the initial system states from using a collocation method. This allows even the 

larger Àm approximations to use more information from the data than would be available from 

the ÀM = 00 chain with fixed initial system states. It is not clear whether a smooth enough set 

of À values will combine the modes or if the second mode simply disappears as À decreases. 

4.4.1 Collocation Tempering Algorithm 

The M collocation tempering chains are run in parallel using the following algorithm: 

1. For iteration n=l initialize the parameter values 8in
) , ... , 8~) where each of the M chains 

may have the same set of parameter values. For the M th chain also initialize X~n). 

2. With probability p sample i and j independently from the discrete uniform density on the 

interval (l,M). 

3. If i =1=- j and i, j =1=- M, then propose to swap their parameter values. Accept the swap by 

setting 8~n+l) = 8]n) and 8]n+1) = 8~n) if u < ~,j where u is sampled from a continuous 

uniform on (0,1) and Ri,j is given by 

(4.13) 

If the swap is not accepted then retain the previous values 8~n+1) = 8~n) and 8]n+1) = 8]n). 

4. If i =1=- j but either i = M of j = M, then propose to swap their overlapping parameters. 

Without loss of generality let j = M, then (X~n))i is obtained directly from the data 

smooth Xi(n)(t = 0). Accept the swap by setting 8jn+1) = 8~n), (X~n+1))j = (X~n))i and 

8~n+l) = 8jn) if u < ~,j where u is sampled from a continuous uniform on (0,1) and Ri,j is 
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given by 

R . . = min (1 Pi(8;n) 1 y)~(8~n), (X~n))i 1 y)) 
t,J , I{(8~n) 1 y)Pj (8;n) , (X~n))j 1 y) . 

(4.14) 

If the swap is not accepted then retain the previous values BJn+l) = BJn) , (X6n +1
))j = (X6n))j 

and 8~n+l) = 8~n). 

5. For the remaining M -2 chains, update 8~n+l), k E {l, ... , i-1, i+1, ... ,j-1,j+1, ... , M} 

omitting chains i and j, with the usual MCMC step independently for each chain. 

6. Repeat steps 2 to 5 many times. 

Although this pro duces a dimensional leap from PM to P m<M, in the smaller À chains, it 

takes only 8 and y to uniquely define X(t), whereas in this formulation for the Mth chain, X o is 

also required. This removes the dependency of the sm aller À chains on the initial system states, 

a benefit which is passed along to PM in every swap. The ability to change dimension between 

parallel chains borrows from a tempering generalization called sintering (Liu and Sabatti 1998). 

As Àm increases, so do es the importance of the discrepancy between the features that the 

basis can accommodate and the ODE model. This discrepancy produced bias in the generalized 

profile results when À was too large for the basis. Using a wide spread of À values and not 

restricting the pairs of chains which are permitted to swap, reduces the impact of this problem. 

A poorly chosen Àm for would effectively isolate itself from the information sharing chain swapping 

process. 

4.4.2 Bayesian Collocation Tempering Results for the FitzHugh-Nagumo System 

Collocation tempering was performed on the 50 simulated FitzHugh-Nagumo data sets, 

using the initial parameter estimates described in 1.2. A third order b-spline basis was used 

with 79 equally spaced unique interior knots at the 4 temperatures À = [10, 100, 1000,00]. The 

M = 4th chain used priors on the initial system state making this chain identical to the model 

used in 2.6 rather than using the ODE solution as the basis for this chain. The values of À 

were chosen to be comparable in impact those used in the parallel tempering attempt of section 

4.3.1. However, since the basis used here is coarser than the basis used in generalized profile 

estimation, the temperature values do not easily compare to the generalized profiling smoothing 
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Figure 4-11: The first 200 MCMC draws of a(blue),f3(green),,(red), Vo(cyan) and Ro(magenta) 
from all four Collocation Tempering chains of simulated data set #45. 

parameters. The parallel MCMC chains were run for 5,000 draws with p = 1 to examine the 

speed of convergence of the algorithm. 

Figure 4-11 shows the first 200 iterations from all four temperatures for simulated data 

set number 45. This example chain began with a challenging set of parameter estimates that 

blocked both NLS and the typical MCMC model from converging to the neighbourhood of the 

true parameter values. Furthermore, with this simulated data set, parallel tempering moved 8 

quickly to the true neighbourhood but Vo and Ro took an additional 3,000 draws to reach their 

intended location. With collocation tempering in the first 50 draws all parameters from all four 

chains moved to the neighbourhoods of the true parameters. Figure 4-12 shows the parameters 

for aIl four chains. AIl parameters remain reasonably close to the true values for almost the 

entire 5,000 draws. From this figure, the increased variance of the smaller À chains is evident. 

If a finer basis is used, in exchange for increased computational load, large À smooth chains 

can produce posterior densities with the variance asymptotically approaching that of PM' Using a 

smoother chain instead of a numerical solution as the top chain of interest avoids the potential for 
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Figure 4-12: 5,000 MCMC draws for Œ(blue),,B(green),,(red), Va(cyan) and Ro(magenta) from 
aIl four Collocation Tempering chains of simulated data set #45. 

the numerical solver to break down if particularly poor parameter values are proposed. Therefore 

Bayesian collocation tempering avoids one of the pitfalls of parallel tempering. 

Figure 4-13 shows the slowest converging of the 50 collocation tempered simulations. With 

this simulated data set, the lower temperature chains move towards the true value almost im-

mediately but the À. = 00 chain is slow to swap into an improved parameter region. Eventually 

the À. = 10 chain swaps parameters with the À. = 00 chain at close to iteration #2000. The 

lower À. chain almost immediately moves back from this pOOf parameter location towards the 

true values. AlI of the chains in aIl of the simulated data sets moved to the neighbourhood of 

the true parameter value weIl before end of the 2,500 iterations discarded to bum in. Figure 

4-14 shows a histogram of the number of draws required for the Mth chain for the 50 simulated 

data sets to reach within ±.25 of the true values for " Va and Ro. The slowest converging chain 

took 1756 draws to reach within this tolerance but the vast majority converged in less than 200 

draws. Recall from parallel tempering in figures 4-6 and 4-8, this speed of convergence was only 

possible when examining , individually and not considering the initial system states as weIl. 
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Figure 4-13: 5,000 MCMC draws of a(blue),,B(green),'Y(red), Vo(cyan) and Ro(magenta) from 
aIl four Collocation Tempering chains of simulated data set #18. 
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Figure 4-14: The number of posterior draws required for the 50 simulated FitzHugh-Nagumo 
data sets to move to within ±.25 of the true values of "'i, Va and Ra. 

Furthermore, only 27 of the 50 parallel tempered data sets had met this tolerance criteria within 

the 5,000 posterior draws. The combination of posterior density smoothing and reducing the 

impact of initial system states dramatically improves convergence. 

Figure 4-15 shows the 95% highest posterior density intervals using the last 2,500 draws 

from each of the 50 simulated FitzHugh-Nagumo data sets described in section 1.2. Although 

the number of iterations is potentially too small for reasonable inferenee on sorne quantiles, 

aIl of the chains managed to converge to a close neighbourhood of the true parameter values. 

Furthermore sinee the À = 00 chain is the same model as the typical one chain M CM C model of 

section 2.2, the posterior density estimates are asymptotically the same. However the model of 

section 2.2 may require a massive number of draws to eventually cross the low probability valley 

preventing sorne parameter values from moving to the neighbourhood of the true values. 

In attempting extremely poor choices of initial parameter estimates, Bayesian Collocation 

Tempering required additional tuning in the choiee of À. However if À1 was made small enough, 

the method was able to converge to the neighbourhood of the true parameter values relatively 
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Figure 4-15: The 95% highest posterior density intervals from Bayesian collocation tempering 
for the 50 simulated FitzHugh-Nagumo data sets. 

quickly, because if a À1 is small enough the smooth will interpolate the data. This provides 

the opportunity for 8 to move parameters governing large scale ODE features to the correct 

neighbourhood. Fine tuning of these parameters is then performed by larger À chains. 

4.5 Overcoming Challenges of the Nylon Data 

This section considers the special challenges of the nylon data set and describes how they 

might be overcome using Bayesian collocation tempering. 

4.5.1 Multiple Experimental Runs 

When there are multiple experimental runs, the collocation chains smooth the data using 

the same process as profile estimation; experimental runs can be smoothed in parallel, but all 

components within an experimental run must smoothed together. The M th chain in collocation 

tempering is based on the numerical solution to the ODE, where solutions for each experimental 

run can be computed in parallel. 
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4.5.2 Step Function System Inputs 

The collocation chains require removing a small interval from the integral in (4.12) or defining 

the right or left hand derivatives at the points of discontinuity as described in section 3.4.2 in 

the context of profile estimation. The M th chain, based on the numerical solution to the ODE, 

must be divided into intervals bounded by the times of step changes. The data fit at the step 

change is determined by the numerical solution from the interval ending at this point. The fitted 

value at this endpoint is then used to initialize the numeric solution across the next interval to 

ensure a continuous ODE solution. 

4.5.3 Outputs Measured With Different Precision 

In the profile estimation pro cess it is necessary to account for different levels of precision, 

sc ales and units of measurement in or der to optimize parameters and produce a reasonable fit to 

the data. Having different levels of precision is easily accommodated by a Bayesian model where 

it is natural to include parameters cyJ for each of the j observed system outputs. 

4.5.4 Unobserved Outputs 

The M th chain inherently suffers from the same difficult estimation pro cess as NLS and the 

basic MCMC model for unobserved outputs. With these methods, the estimation of the unob­

served components is based on the initial system state with only indirect observations through 

the observed system outputs. As with generalized profile estimation, the sm aller À chains benefit 

from the reduced impact of the initial system state and the potentially chaotic behaviour which 

can be modelled by an ODE. The chain using only the ODE solutions reaps these benefits by 

swapping values from sm aller À chains. 

4.6 Nylon Bayesian Collocation Tempering Results 

Using the 4 parameter nylon system from (2.4) Bayesian Collocation Tempering was at­

tempted using À E {5, 500, oo}. Only three chains were attempted because the smoothing step 

is relatively computationally heavy when multiple experimental runs are involved. The À = 00 

chain used the solution to the ODE and a prior on the initial system states making the M = 3 

chain equivalent to the Bayesian model of section 2.2.2. Since the Mth chain is the same as the 
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model in 2.2.2 the results were similarly inconclusive, offering little new information beyond the 

assumptions made in the prior density. 
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CHAPTER 5 
Conclusion and Future Work 

Throughout this work, two efficient and effective methods are developed to estimate parame-

ters from nonlinear ODE models: generalized profile estimation (GPE) and Bayesian collocation 

tempering (BCT). They are based on smoothing the likelihood surface to increase the basin of 

attraction and to allow parameters to cross deep and wide caverns of unlikely parameter values. 

In previous chapters, it was shown that these methods pro duce reasonable point and interval 

estimates in situations where the benchmark methods of nonlinear least squares and the stan-

dard MC MC model failed. Furthermore, GPE and BCT indu ce additional robustness to choice 

of initial parameter estimates and converge more quickly than these benchmark methods. 

While the performance of GPE and BCT have been compared to the benchmark methods 

throughout this work, the performance of GPE is compared to BCT in section 5.1. This section 

highlights the differences produced by these philosophically complimentary methods. While GPE 

and BCT represent new efficient and effective means to estimate parameters from ODE models, 

statistical research in ODE models is far from complete. Section 5.2 describes sorne directions 

for future research, a few of which already in progress. 

5.1 Comparing Generalized Profile Estimation and Bayesian Collocation Temper­
ing 

In comparing GPE and BCT, their different strategies pro duce subtle differences in results. 

Consequently, the performance of GPE and BCT are compared on two levels. Section 5.1.1 

compares the fit to the data produced by these two estimation strategies. Section 5.1.2 compares 

the performance of these two methods in terms of their point and interval estimates for the ODE 

parameters. 
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5.1.1 Comparison of Estimates of the Underlying Dynamic System 

Using a data set simulated from the FitzHugh-Nagumo system with dynamics, 

DV = ,(V - V 3/3 + R), 

DR = -~(V - ct + (3R), 
(5.1) 

with V(t) and R(t) subject to Gaussian noise with variance .52
, the estimated fit to the true 

underlying pro cess is examined in this section without being subject to model mis-specification. 

Figure 5-1 shows the functional difference between the true underlying process and the fit 

to the data using the ODE solution from parameters il = [à,~, il and initial system states 

Xo = [VA, Rol, from GPE and BCT: 

S(o(true) X(true) t) - S(il X t) '0' ,0, . (5.2) 

The green lin es in figure 5-1 show (5.2), computed using BCT as outlined in section 4.4.2, where 

parameters il and Xo are the posterior means from 5,000 posterior draws. 

As an alternative to (5.2) for GPE, the ODE solution could be approximated using the 

data smooth at the optimal À, but with a sufficiently dense basis this is equivalent to using the 

numerical solution to the ODE with initial system states estimated from the data smooth. The 

basis used to perform GPE, as outlined in section 3.6, includes 399 interior cubic b-spline knots 

for each of V and R, and .À = 108 producing strong agreement with the solution to the ODE. 

Consequently, the red lines in figure 5-1 show (5.2) computed using the ODE solution based on 

initial system states estimated from the data smooth in GPE. 

The spikes in figure 5-1 in (5.2) for component V show that the most difficult regions of 

the true underlying process to estimate are the short lived large magnitude slope segments near 

times {l, 6,10,15, 19}. These large magnitude slope regions of V are difficult to estimate because 

they contain few observations and are short lived. The regions of sharp changes towards positive 

values in V are steeper and therefore more difficult to estimate accurately at times {l, 10, 19}, 

than the counterpart regions at times {6, 15}. This behaviour in V is induced by the tendency 

towards positive values in R, which is caused by the positive value of ct in (5.1). 
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Figure 5-1: The top panel shows the fit to the data for one of the simulated FitzHugh-Nagumo 
data sets. The blue line is component V and the black Hne is component R. The bottom two 
panels show S(o(true) , x~true), t) - S(ê, Ko, t), the difference between the true underlying pro cess 
and the estimated fit to the data, using the parameter estimates from Bayesian and generalized 
profiling methods in green and red respectively. This difference is shown for component V in the 
middle panel, and component R in the bottom panel. 
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The functional residual for component R in figure 5-1 follows a wave pattern with somewhat 

of a sawtooth shape. The sharpening the residual slope coincides with the residual spikes in V. 

While the behaviour of R itself does not undergo sharp changes of growth like component V, the 

distinct functional residual shape to component R arises from the strong influence of V, and its 

functional residual on DR. 

The residual functions of the estimated underlying process are nearly identical from GPE 

and BCT, but the GPE method pro duces a slightly improved estimated V(t) in the first two 

functional residual spikes at times {1,6} while BCT produces a slightly improved to R until 

time 5. The discrepancy in fit appears to be due to the estimated initial system states and their 

treatment in the two methods. 

5.1.2 Comparison of Point Estimates 

To compare parameter estimates from GPE and BCT, the 50 simulated FitzHugh-Nagumo 

data sets were modelled with both methods without model mis-specification error. Figure 5-

2 shows the 95% confidence intervals from iteratively re-weighted GPE and the 95% highest 

posterior intervals from BCT for the 50 simulated FitzHugh-Nagumo data sets as described in 

sections 3.6.1 and 4.4.2 respectively. Both of these methods permit the model to account for the 

true error structure of the data, where the residual variances of V and Rare unequal. The point 

and interval estimates for parameter Ct using these two methods are nearly identical. Interval 

estimates for {3 have essentially the same width using the two methods, although the point and 

interval estimates for {3 from G PE are shifted slightly above those of BCT. The role of {3 in DR 

from (5.1) is to guide the rate of exponential decay of R. However, in (5.1), {3 is multiplied by 

1/" muffiing the impact in data fit due to changes in {3, and producing the widest intervals of 

any of the three parameters in figure 5-2. While le ft for future work, it seems plausible that a 

re-parametrization of the FitzHugh-Nagumo equations would improve accuracy of the parameter 

estimate intervals. 

In figure 5-2, BCT produces estimates for, that are narrower and frequently centered 

doser to the true parameter values compared to those of GPE. While the iteratively re-weighted 
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Figure 5-2: The 95% confidence intervals from the generalized profiling estimation method (in 
black) and the 95% highest posterior density estimates from the Bayesian Collocation Tempering 
method for the 50 simulated FitzHugh-Nagumo data sets. The true values are shown in green. 
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GPE method in this comparison is based on À = 104 , a larger value of À may be enough to 

account for the differences in point estimates between these two methods. The wider interval 

estimates of GPE may also be affected by this choice of À or they may be due to the delta method 

approximation. A thorough exploration of the reason behind differences in estimates using these 

two methods is left for future work. 

Overall the GPE and BCT methods align very closely, giving essentially the same results 

for estimates of the underlying process and the parameter point estimates. This suggests two 

complimentary tools for parameter estimation from ODE models. There is still however, room 

for additional statistical research with ODE models. Sorne potential areas are outlined in the 

next sections. 

5.2 Current and Future Areas of Research 

The under-representation of methods for ODE models in statisticalliterature relative to the 

popularity of their use in a variety of scientific disciplines suggests that there remain many open 

research problems. Sorne of which are outlined in this section. 

5.2.1 Extensions to Iteratively Re-Weighted Profile Estimation 

When using iteratively re-weighted GPE on the nylon system in section 3.5.4, weights were 

determined by pooling information across aIl experiments (method 2) or partitioned further to 

each system output (method 3). Weights for individual observations could be also be estimated 

using Huber, Andrews or other residual weighting functions (Huber 1981) to provide addition al 

robustness to out lier observation points. This may be a use fuI extension in the case of infiuential 

observation points producing a poor overall model based smooth fit to the data. In section 3.5.4, a 

few exceptionally large observations were enough to down-weigh an entire experimental run of the 

nylon system. Using observation specifie weights might help to extract more information from the 

'weIl behaved' observations, instead of nearly eliminating the entire experimental run through 

small weights. Furthermore, the iterative re-weighting pro cess may prove to be important in 

estimating the auto-correlation structure of the data. While it is expected that the model based 
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smoothing pro cess inherently builds in sorne robustness to outliers, a deeper exploration of this 

is left for future work. 

5.2.2 Bayesian Collocation Tempering and Model Mis-Specification 

In the BCT model, the temperature parameter Àm controls the smooth approximation to 

the ODE solution. Essentially the smaller Àm chains allow for model mis-specification. When 

multiple experimental runs are available, such as in the case of the nylon system, a Bayesian col­

location model could be reformulated so that the temperature parameter À controls a functional 

random effects term, producing insights into model mis-specification of the system. Consider the 

system with i = 1, ... ,1 experimental runs, white noise measurement error E(t) at time t, and 

smooth functional model mis-specification error Çi (t): 

Yi(t) = Xi(t) + E(t), 
(5.3) 

Xi(t) = S (B, X Oi , t) + Çi(t). 

To estimate Çi(t), it's functional form will require a roughness or model deviation penalty 

and smoothing parameter Àçi to uniquely define its functional form in the presence of observa­

tion errors E(t). It might be useful to constrain the form of ~(t) to the function space orthogonal 

to the solution space of the ODE, possibly further constrained to be 'smooth' with an addi­

tional roughness penalty. Alternatively, the shape of could be related to the ODE model itself 

under alternative parameter values, like a random effects term. The posterior shape of this 

mis-specification term could be very useful in model diagnostics and model building. It could 

potentiaUy be incorporated into a dimension jumping BCT MCMC model designed to select an 

optimal model by reducing constraints on the functional form of Çi(t). Much work needs to be 

done to ensure that the model parameters remain identifiable without increasing the variance of 

P(B 1 y), as was problematic in the methods of section 4.2. 

5.2.3 Bayesian Collocation Tempering for Multi-Modal ODE Posteriors 

Due to the large changes in the functional behaviour of ODE models that may arise from 

smaU changes in parameters, it is likely that multi-modal posterior densities are an important 
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class of problems where Bayesian methods can contribute. BCT has the potential to accom-

modate and efficiently sample from multi-modal densities because of it's similarity to parallel 

tempering. Furthermore, BCT may be modified to include a model selection jump to determine 

the posterior probabilities of competing models. Testing under these conditions is left for future 

work and is anticipated to produce even more research problems. 

5.2.4 Experimental Design and Selection of Optimal Observation Times 

In dynamic systems, such as the FitzHugh-Nagumo and nylon systems, the behaviour ex-

hibited by the system is determined by the inputs, experimental conditions and external forcing 

functions. These are often the main components of interest when determining the experimental 

design. When model building or during parameter estimation from an established model, the 

features of the model which will undergo data driven scrutiny, are only those occurring at obser-

vation times. Consequently, the system may exhibit behaviours which were entirely missed by the 

observation times. For example, if the FitzHugh-Nagumo system used in the simulation study 

were observed for only the first time unit, it would appear that V is increasing exponentially 

without bound. Alternatively, certain behaviours may be suggested by the model but there may 

not be adequate data to determine their validity. For example, in the nylon system including 

input Weq in the definition of Ka in 

-DL=DA=DC 

DW 

f(m) 

and KT 

-lk;~O(CA - LW/Ka), 

l~~o(CA - LW/Ka) - 24.3(W - W eq ), 

{1 + Weql~O} KTKao f (8~~4)' 

exp ( -m103 
{ ~ - A} ) , 

20.97 exp (-9.624 + 3~3) , 

(5.4) 

induces a bump in the levels of A and Cafter step changes in input W eq . However, there is 

insufficient data to assess the validity of the bump. 

As a first step towards assessing the quality of the observation times from the nylon exp er-

iment, 100 simulated data sets from each of three different observation time sampling schemes 

were used under the experimental conditions of the nylon experiment, outlined in section 1.1. 
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Random Gaussian noise was added to the solution to the four parameter ODE model in 5.4 with 

variance equal to the assumed measurement error variance in Zheng et al. (2005), O"~ = .62 and 

O"b = 2.42
. These measurement error variances were assumed to be known and were consequently 

used as inverse weights in the profile estimation process following the estimation details of sec­

tion 3.5. In this simulation study there is no model mis-specification or weight mis-specification 

to complicate the results. The total number of observations for each component within each 

experimental run is held constant however the observation times were determined through these 

three sampling schemes: 

• Scheme X) The observation times are identical to those used in the original nylon exper­

iment of Zheng et al. (2005), such that the nA; observations of A in the ith experimental 

run were taken at times t~~) and the nCi observations of C were taken at t~) = t~~)I;. 

The nAi by nCi indicator matrix 1; accounts for the chronological ordering of missing and 

available observations for C. 

• Scheme Y) The sampling times t2? are equally spaced throughout the experimental dura­

tion for each of the i = 1, ... ,6 experimental runs. Observations for C were taken at times 

tg? = t~)I*. 

• Scheme Z) The total number of observations nAi are divided into four groups. Three 

of those groups, each having floor(nAi/4) observations, were equally spaced in the one 

hour time intervals beginning 0.05 hours after a step change in input or the start of the 

experiment. The remaining {nAi - 3 x floor(nAd4)} observations were equally spaced 

across the experimental duration. In other words this produced the sampling times for an 

experiment running until time ~ with step input changes at times Til and Ti2 by sorting 
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Figure 5-3: A comparison of the observation times from a nylon simulation study. Black marks 
denote the observation times from scheme X, the observation times from the original experiment. 
Red marks denote the equally spaced observation times from scheme Y. Green marks represent 
the observation times using scheme Z, placing additional emphasis on taking observations im­
mediately after the step changes in input Weq . The numerical solution to the ODE is shown in 
blue. 

and combining these four sequences: 

[0, li/ {nAi - 3 x floor( nAi/ 4) - 1} , 2li/ {nAi - 3 x floor( nAd 4) - 1} , ... ,Ti] and 

.05 + [Jloor(nAd4) , 2 x floor(nAd4), ... , 1.05] and 

Til + .05 + [Jloor(nAd4) , 2 x floor(nAi/4), ... ,1.05] and 

Ti2 + .05 + [floor(nAd4), 2 x floor(nAd4) , ... , 1.05]. 

Ob t · t(Z) t(Z)I* serva IOns Ci = Ai i 

(5.5) 

Figure 5-3 shows the observation times from the three sampling schemes. Table 5-1 com­

pares the average parameter estimate bias, variance and MSE from GPE using the three different 
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parameter True Model X Model Y Model Z 
value bias var MSE bias var MSE bias var MSE 

kpo 20.587 .000 .215 .215 -.005 0.282 .282 -.812 0.182 .842 

Î 26.859 -.027 1.064 1.065 .013 1.100 1.100 -.015 1.536 1.536 
Kao 50.222 .015 .931 .931 .020 .997 .997 -.018 1.291 1.291 
6.H -36.462 -.038 2.026 2.026 -.080 2.034 2.034 -.255 1.314 1.364 

Table 5-1: A companson of pomt estImates and average 95% confidence mterval wldths for 
alternative observation time schemes. 

schemes for choosing observation times. The parameter bias induced by the observation schemes 

is negligible except in scheme Z for parameter kpo, From figure 5-3, the observations using 

scheme Z are highly concentrated in the times of sharp changes in the ODE solution. While kpo 

plays an important role in determining the rate of change in these steep regions, kpo is also an 

important parameter in determining the asymptotic equilibrium level of the system components. 

Observations taken from scheme Z are sparse in the segments where the components are near 

their steady state equilibrium levels, consequently the available information for kpo is limited 

producing bias point estimates. Using scheme Z, despite the lack of available observations as the 

system approaches equilibrium levels, point estimates for Î and Kao are approximately unbiased. 

However estimates for Î and Kao have larger variance and MSE compared to their estimates 

using the alternative observation schemes. Effectively, observation scheme Z exchanges reduced 

accuracy and precision in the estimation of Î, Kao and kpo for substantial gains in the MSE of 

6.H. 

The equally spaced observations of method Y produced a slightly worse MSE for aIl four 

parameters compared to the estimates using scheme X. This suggests that the mix of taking 

observations in the rapidly changing segments immediately after step changes in input Weq , and 

the near steady states used in scheme X, produced a good overall balance in the MSE of aIl four 

parameters. 

While far from a comprehensive review of possible sampling strategies, the observation time 

scheme can have a substantial impact in estimating parameters from ODE models. Furthermore, 
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given that the real nylon data observations cost $30,000 to obtain, carefully planned sampling 

times are a vital stage in the experimental design. 

5.2.5 Conclusion 

Parameter estimation methods for ODE models are under-represented in statisticalliterature 

relative to their popularity as modelling tools. Furthermore, the most commonly used methods, 

nonlinear least squares and the standard MCMC model, pro duce results which are not to be fully 

trusted, as they may be highly dependent on initial parameter guesses, as was shown in chapter 

2. However, GPE and BCT provide reliable parameter estimates by improving movement around 

the parameter space, and providing robustness to initial parameter estimates. Furthermore by 

comparing the fit to the data from GPE or BCT with large and small values of À, these methods 

could provide useful insights into model mis-specification. 

GPE and BCT provide two accurate and reliable methods for parameter estimation from 

ODE models spanning philosophically complementary approaches. Furthermore, the improved 

convergence rates, reduced dependence on initial system states and ability to include constraints 

on the structure of the data smooth improves accessibility of statistics to the modelers of ODEs. 
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APPENDIX A 
Additional Implicitly defined derivatives 

In this section we give the remaining implicitly defined derivatives required to obtain the 

confidence interval estimates of section 3.2.1. AH of these derivatives simplify considerably when 

the smooth is unconstrained. 

The implicit function theorem is required to define éPc/o(}oBk in (3.10). The term o2c/o(}oBk 

cornes from the fact that oJ / oc = 0 at the optimal choice of c = ê. Then differentiating twice 

with respect to (} and Bk, equivalent to differentiating (3.5) with respect to Bk pro duces (A.l) 

which is then rearranged to give the derivative in (A.2). 

(A.l) 

(A.2) 
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A.2 aê/ay 

The implicit function theorem is required to define aê/ay in (3.11). This derivative again 

uses the fact that al/ ac = 0 at the optimal choice of c = ê. Then differentiating twice with 

respect to y pro duces (A.3) which is then rearranged to give the derivative in (A.4). 

(A.3) 

(A.4) 

We obtain this derivative by differentiating (A.3) with respect to rh to pro duce equation 

(A.5). Solving for a2ê/ayae gives us the results in (A.6) . 

...L ( a2J!!:IL (!!:IL)' a2J!!:IL aê aJ d2g aê) 
- aOk dgdY dê + dê ag2 dê ay + ag dE ay 

a3 J !!:IL + a3 J !!:IL..É:L~ + a2J ~~ 
agayarh dê agayag dê dêe dOk agay dêdêe dOk 

+ (-.!!2L ~)' a2 J dg aê + (!!iL)' 1L dg aê + (dg)' a3 J !!:IL aê ..É:L ~ 
dêdêe dOk ag2 dê ay dê a92aOk dê ay dê ag3 dê ay dêe OOk 

( dg )' a2 J --.!!0L oê ~ (!!iL)' a2 J!!:IL 02ê + dê og2 dêdêe oy OOk + dê og2 dê oyoOk 

+ 02J d2g oê + ( dfl ~)' 02J d2g aê + oJ d3g oê ~ + oJ ~ 02ê 
ogoOk de ay dCe OOk ag2 di? ay ag dedêe ay OOk og dê ayook 

(A.5) 
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