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ABSTRACT 

Objective:  Graft-versus-host disease (GVHD) is a major complication of allogeneic 

hematopoietic cell transplantation (AHCT).  We investigated whether the Center for 

International Blood and Marrow Transplant Research registry could be useful for 

(1) determining if the sequence of administering non-specific, highly T-

lymphodepleting (NHTL) therapeutics in GVHD prophylaxis and in refractory GVHD 

impacts survival and (2) identifying donor- and patient-related factors that may 

guide individualized selection of classes of immunosuppressant agents over time, i.e. 

to develop adaptive treatment strategies (ATSs). 

Method:  We employed a backwards induction method derived from reinforcement 

learning in a large cohort of patients who underwent AHCT for acute myeloid 

leukemia and myelodysplasia between 1995 and 2007.  We devised logistic Q-models 

that first estimate the optimal treatment for each patient with refractory acute GVHD and 

then use a pseudo-outcome approach to estimate the optimal patient-specific GVHD 

prophylaxis, with the goal of maximizing 2-year disease-free survival (DFS). 

Results:  In unadjusted analysis, NHTL prophylaxis and NHTL treatment of 

refractory acute GVHD were associated with inferior DFS compared to non-NHTL 

therapeutics.  Yet, among the 9563 patients, the Q-model predicted that 4762 (50%) 

would have a higher probability of 2-year DFS with NHTL prophylaxis.  For the 1411 

patients with refractory acute GVHD, the Q-model predicted that 492 (35%) would 

have had a higher probability of 2-year DFS with NHTL salvage therapy.  The 

magnitude of projected patient-specific benefit from choosing the optimal class of 

agent was modest.  The models suggested that patient-specific combinations of 

characteristics could influence the choice of GVHD prophylaxis and treatment. 

Conclusions:  Retrospective analysis with Q-learning can be used to propose 

personalized ATSs for GVHD prevention and treatment, which may then be tested in 

sequentially-randomized clinical trials. An important limitation which threatens the 

validity of the registry-derived strategies is that lack of detailed information about 

the indication for each immunosuppressant and other salient patient characteristics 

may lead to residual confounding. 
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RÉSUMÉ 

Objectif:  La maladie du greffon contre l’hôte (‹‹GVH››) est une complication 

majeure de la greffe de cellules souches hématopoïétiques.  Nous avons tenté de 

déterminer si les données du registre du Center for International Blood and Marrow 

Transplant Research pourraient déterminer (1) si la séquence d’administration de 

thérapie immunosuppressive lymphopéniante non-spécifique (‹‹non-specific, highly 

T-lymphodepleting, NHTL››) en prophylaxie et en traitement de GVH réfractaire avait 

un impact sur la survie et (2) si des caractéristiques des donneurs ou receveurs 

pourraient servir à déterminer le choix du type d’immunosuppresseurs à 

administrer au fil du temps, afin d’élaborer des stratégies de traitement 

personnalisées. 

Méthode:   Suivant la méthode d’induction vers l’arrière dérivée de l’apprentissage 

par renforcement dans une grande cohorte de patients ayant subi une greffe pour 

une leucémie myéloïde aigue ou des syndromes myélodysplasiques entre 1995 et 

2007, nous avons mis au point un modèle de régression logistique de type Q pour 

déterminer le traitement optimal de la GVH réfractaire, puis avons utilisé une 

approche de pseudo-résultat pour estimer la prophylaxie optimale de chaque 

patient, cherchant à maximiser la survie sans maladie (SSM) à 2 ans. 

Résultats:  En analyse non-ajustée, la prophylaxie et le traitement NHTL sont 

associés à une SSM inferieur au traitement non-NHTL.  Néanmoins, sur les 9563 

patients étudiés, le modèle-Q a su prédire que 4762 (50%) d’entre eux auraient une 

meilleure SSM à 2 ans avec la prophylaxie NHTL. Pour 1411 patients avec GVH aigue 

réfractaire, le modèle-Q a démontré que 492 patients (35%) auraient eu une plus 

haute probabilité de SSM à 2 ans avec le traitement NHTL de sauvetage.  L’ampleur 

du bénéfice pour les patients dans le choix optimal de classe des agents était 

généralement modeste. Notre modèle suggère que les caractéristiques combinées 

d’un patient peuvent influencer le choix de prophylaxie et de traitement de la GVH. 

Conclusions:  L’analyse rétrospective par l’apprentissage Q peut être utilisée pour 

choisir un traitement immunosuppresseur prophylactique et thérapeutique de la 

GVH; ceci peut subséquemment être testé dans une étude clinique randomisée en 

séquence. L’absence d’information précise concernant l’indication de traitement et 

d’autres caractéristiques des patients amène une limitation importante pouvant 

remettre en question la validité des résultats. 
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GLOSSARY OF STATISTICAL TERMS 

Action (a): A treatment or intervention (manipulated exposure). 

Adaptive treatment strategy: A set of decision rules for choosing the optimal 

treatment for individuals where the input includes personal fixed and time-varying 

characteristics and treatment history. 

Contrast function: The function used to describe the impact of an interval-specific 

treatment relative to some reference treatment, such as placebo or standard-of-care.  

Collider stratification bias: Bias that arises when conditioning on a covariate that 

is a common effect (or cause) of the treatment of interest and the outcome (or one of 

its causes). 

Counterfactual outcome: The outcome that would have been observed had a given 

individual received treatment a when in actuality some alternative treatment (or no 

treatment) was received.  The counterfactual outcome can never be directly 

observed so must be estimated by studying an appropriate comparison group. 

Decision rule:  A rule that maps the entirety of a patient’s history that is available 

up until the time of the treatment decision, taking account of the tailoring variables 

(input), to an individualized treatment recommendation (output).   

Dynamic treatment regime: See adaptive treatment strategy. 

Pseudo-outcome: The expected outcome for a patient with a given history if he or 

she goes on to receive optimal treatment in all subsequent stages. 

Prescriptive variable: See tailoring variable. 

Q-function:  “Quality-of-treatment” function that estimates the total expected future 

outcome if starting from stage j with covariate history hj, and following the set of 

decision rules d thereafter. 

Q-learning:  A reinforcement learning technique used to find the optimal sequence 

of actions from time-varying sets of possible actions by using the Q-functions to 

assign values to the expected outcome resulting from each possible pairing of 

history and treatment choice. 
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Reinforcement learning:  The approach of fitting models to example inputs 

(“learning”) in order to decide on the optimal action by predicting how each 

possible action would affect some long-term or cumulative outcome.  

Sequential multiple-assignment randomized trial (SMART): A clinical trial 

design developed for collecting data suitable for developing adaptive treatment 

strategies while avoiding collider stratification bias. 

Stage:  The interval from the moment of treatment assignment until the next 

decision point or, in the case of the last stage, until observation of the final outcome. 

Tailoring variable: A personal characteristic used to adapt the choice of treatment 

to an individual rather than merely assign a prognosis.  

Trajectory: The actual (observed) longitudinal experience of a given patient 

including the covariates measured prior to each treatment beginning at each stage, 

the actual treatment assigned at each stage, the outcome of each stage (response or 

non-response to treatment), and the overall, long-term outcome. 
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1. INTRODUCTION 

The primary objective of this thesis is to address a central problem where 

personalized medicine is at odds with traditional clinical trials methodology:  How 

can we optimize the sequence of specific treatments for specific patients?  This is 

particularly relevant to the field of blood and marrow transplantation, where 

immunosuppressive therapeutics are often administered sequentially, and their 

delayed effects, their potential synergy or antagonism, and their appropriateness 

given the complex and evolving characteristics of individual patients, remain poorly 

characterized.  Moreover, because of limited monetary resources, logistic 

challenges, and heterogeneity (yet relative scarcity) of patients who develop the 

most severe post-transplant complications, such as treatment-refractory graft-

versus-host disease (GVHD), there is a dearth of large randomized clinical trials to 

guide practice; registry data has likewise proved difficult to exploit for the purposes 

of developing “precision medicine” approaches.  Therefore, the current work seeks 

to apply new statistical methodologies to the longstanding clinical problem of how 

best to prevent and treat GVHD. 

 

The thesis is organized as follows: 

(1) The first Literature Review (Section 2, pages 3 to 14) provides an overview 

of allogeneic hematopoietic cell transplantation and GVHD for those less 

familiar with the field.    

(2) The second Literature Review (Section 3, pages 14 to 37) introduces 

adaptive treatment strategies and explores how to develop potential strategies 

relevant to GVHD through sequential multiple-assignment randomized trials.  

The end of this section considers the utility of observational data for informing 

the design of such trials, and serves as a bridge to the original work.   
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(3)  The Objective section (page 37) and Methods section (pages 38 to 48) 

provide details on how CIBMTR data were used to propose an adaptive 

treatment strategy to prevent and treat GVHD.   

(4) The Results section (pages 49 to 73) presents the adaptive treatment 

strategy. 

(5) The Discussion (pages 74 to 94) elaborates on the originality and the 

limitations of the present work.   

(6) Under Future Directions (pages 89 to 94), I explain how I plan to move this 

work forward and discuss legal, cultural and infrastructural challenges to 

widely applying machine learning in medicine, while the Conclusion (page 95) 

emphasizes the lessons that may be drawn at this time.   
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2. LITERATURE REVIEW: STEM CELL TRANSPLANTATION 

2.1 Overview of the transplantation procedure 

Allogeneic hematopoietic stem cell transplantation (AHCT) refers to the 

transplantation of self-renewing stem cells whose progeny eventually form the 

terminally-differentiated cellular components of the blood and the immune system – 

such as red cells, white cells and platelets.1  AHCT is useful for treating both 

malignant and non-malignant diseases of the bone marrow, blood and lymph nodes.  

Approximately 25,000 allogeneic stem cell transplants are performed worldwide 

annually.2 

The source of allogeneic hematopoietic stem cells (the “graft”) may be a blood 

relative or an unrelated healthy volunteer donor.  The graft may be extracted from 

bone marrow, from peripheral (circulating) blood, or from umbilical cord blood.  In 

addition to stem cells, the graft usually contains an array of other types of white 

blood cells, each with a specialized function, such as T cells, B cells, natural killer 

(NK) cells, monocytes, and dendritic cells.  

Human leukocyte antigens (HLAs) are glycoproteins found on most cells in the 

body.  The genetic sequences at the HLA loci, and consequently the exact structures 

of the HLA proteins that are produced, vary tremendously among humans.  

Therefore, the HLA proteins identify cells as belonging to “self” or “non-self” and are 

paramount in directing the immune system to attack any foreign cells.  In standard 

AHCT, preference is given to selecting donors who share most, if not all, key HLA 

proteins with the recipient.3,4  

In standard AHCT, recipients receive a preparative “conditioning” regimen that 

comprises chemotherapy with or without radiation, as well as immunosuppressive 

drugs or antibodies (such as antithymocyte globulin, ATG).  The conditioning 

regimen aims to prevent the recipient’s immune system from rejecting the graft in 

the same way a functioning immune system would normally reject any foreign cells.  

Secondarily, it sometimes helps to eradicate any residual malignancy.  Unfit or older 



 

4 

 

recipients receive milder “reduced intensity” or “non-myeloablative” rather than 

myeloablative conditioning regimens.  While these less intense regimens minimize 

the risk of regimen-related toxicity, they confer a greater risk of cancer relapse.5 

After completion of the conditioning phase, the graft is infused into the 

patient’s bloodstream in a single session, similar to a blood transfusion.  With the 

exception of syngeneic (identical twin to identical twin) transplantation, even where 

donors are “HLA-identical” to the recipients, recipients and donors still differ in 

many other cell-surface glycoproteins called “minor histocompatibility antigens” 

(MiHAs).  Differences in HLA molecules or in MiHAs lead donor cells to attack both 

the recipient’s normal tissues, resulting in graft-versus-host disease (GVHD), as well 

cancerous tissue, resulting in the graft-versus-tumor effect (GVT).  GVT effects 

contribute to long-term cures.6  The long sought-after Holy Grail in AHCT is a 

method for separating the GVH and GVT effects.  Until such a method is developed, 

traditional immunosuppressive modalities will continue to be crucial to patient 

survival by minimizing the incidence and extent of GVHD, albeit at the expense of 

controlling the malignancy. 

The two forms of GVHD, acute and chronic, are discussed subsequently.  In 

order to minimize the incidence and extent of GVHD, recipients receive prolonged 

pharmacologic immunosuppression.  Such immunosuppression entails a plethora of 

side effects but the goal is to gradually withdraw these drugs as the donor immune 

system learns to “tolerate” the foreign patient tissues.  The taper schedule varies 

widely across centers and even among clinicians at the same center.  Factors such as 

the aggressiveness of the underlying malignancy, the disease stage at the time of 

conditioning, subtle or florid evidence of post-transplant disease persistence or 

relapse, the degree of HLA mismatch between the recipient and the donor cells, 

prior manifestations of GVHD, and any medication-induced adverse effects the 

patient is experiencing are taken into account in determining the taper speed.   

Apart from GVHD, AHCT recipients frequently suffer other short-term and 

delayed complications of the procedure.  These include infections, medication 



 

5 

 

reactions, lung injury, cardiovascular disease, metabolic disease, and secondary 

malignancies.1,7,8  The original disease might also relapse.  This is especially true of 

acute myeloid leukemia (AML) and its precursor, myelodysplastic syndrome (MDS), 

which are the focus of the present study; reported relapse rates range from 10% to 

40% for disease that is in first remission at the time of AHCT, but exceed 40% to 

50% among patients transplanted with active leukemia.5,9  

2.2  Alloreactivity and lymphodepletion 

Alloreactivity is the immune response that leads to destruction of foreign cells 

(i.e., cells that differ in genetic sequence from the host and that do not naturally 

reside in the host organism).  Alloreactive responses can be divided into two broad 

categories: cell-mediated responses and humoral responses.  Cell-mediated 

alloreactivity is executed by antigen-presenting cells and T cells, and in HLA-

mismatched contexts, by NK cells.  Humoral responses are characterized by the 

production of antibodies by B cells.  Hyperacute rejection of solid organ grafts is a 

humoral response but is not relevant to AHCT.  In AHCT, acute rejection of the 

recipient tissues by the donor immune cells – i.e., acute GVHD – is mainly cell-

mediated.  Chronic rejection of the recipient tissues by donor immune cells – i.e., 

chronic GVHD – entails both cellular and humoral responses.  This is one reason 

why the strategies for immunosuppressive pharmacotherapy differ between acute 

and chronic GVHD. 

Therapy to prevent and treat GVHD generally targets one or more steps in the 

cascade of alloreactivity that ultimately leads to tissue destruction.10  For the 

purposes of this project, a number of therapies that non-selectively deplete both 

activated and resting T cells, including regulatory T cells, have been grouped 

together and coined “non-specific highly T-lymphodepleting” (NHTL) therapy.  

These include ATG, anti-lymphocyte globulin (ALG), alemtuzumab, and certain anti-

CD45, anti-CD2, and anti-CD3 monoclonal antibodies, most prominently 

muromonab (OKT3).  When given post-infusion to treat GVHD, purine analogue 

chemotherapy is also included in the NHTL category.  The myriad of other therapies 
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that, for the most part, selectively target activated T cells or B cells without causing 

profound lymphopenia are grouped together as “standard” therapy, although the 

breadth of this list attests to the lack of any gold standard.   

The significance of distinguishing between NHTL and standard therapy lies in 

the observation that profound lymphodepletion perpetuates a high risk of life-

threatening opportunistic infections.11-14  This distinction is also reasonable because 

NHTL therapeutics have been associated with higher relapse rates compared to 

standard immunosuppressants, particularly after reduced-intensity and non-

myeloablative conditioning or when given in high doses, as was common practice in 

the era to which the CIBMTR data used in this analysis belong.  For these reasons, 

NHTL prophylaxis and treatment are expected to impact survival-related outcomes 

differently than “standard” therapy.  Note that the term “NHTL prophylaxis” refers 

to NHTL therapies administered prior to the development of GVHD, and “NHTL 

treatment” refers to NHTL therapies deployed in the setting of clinically-relevant, 

steroid-refractory GVHD.   

The timing of NHTL therapies and their interaction with manipulable factors 

such as the intensity of the conditioning regimen might also influence their effect on 

overall survival.  In fact, the impact of NHTL prophylaxis on AML and MDS relapse 

rates is an area of ongoing investigation, with many trials currently recruiting.  For 

patients with AML in remission at the time of myeloablative AHCT, studies have 

generally not demonstrated an increase in relapse incidence with NHTL 

prophylaxis.15-18  Those employing non-myeloablative conditioning without T cell 

add-back (whereby donor lymphocytes are infused in a prophylactic or pre-emptive 

manner post-transplant) usually,19-22 but not universally,23 reported unacceptably 

high relapse rates.  Thus, we hypothesize that early in the transplant course, when 

minimal residual malignancy is likely to be present, NHTL prophylaxis might 

promote relapse by delaying GVT effects, which would decrease survival, 

particularly in recipients of non-myeloablative conditioning.  By contrast, by the 

time GVHD supervenes, hopefully with accompanying GVT effects, patients might 

harbour less quiescent leukemia, so the impact of NHTL treatment on relapse rates 
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relative to standard GVHD treatment might be lessened.  On the other hand, this 

may be offset by an increased risk of opportunistic infection in GVHD patients who 

have already been exposed to pharmacologic immunosuppression for a long period.  

The optimal sequence of NHTL therapies for patients with different time-varying 

characteristics is one question the present work aims to elucidate.  Because of 

limitations detailed in Section 7.4, the present work should be viewed as an 

investigation into the extent to which registry data can be leveraged to answer this 

highly relevant clinical question.  For the results to be generalizable to today’s 

practice, the work would need to be repeated with a more modern data set that 

would include certain confounding variables not currently available (such as better 

indicators of the infirmity of patients at the time NHTL or standard treatment is 

deployed). 

2.3 Clinical diagnosis and scoring of GVHD  

GVHD is the most common short- and long-term complication of AHCT.  When 

debilitating, it can negate the disease-curing benefit of transplantation.  Diagnosis is 

often based on the pattern of organ involvement and timing of manifestations 

observed clinically because histologic confirmation from biopsies of target organs, 

while desirable, may be risky to obtain or falsely negative due to sampling error. 

As a result of a National Institutes of Health (NIH) Consensus Conference, 

GVHD is now provisionally classified into acute and chronic forms based on the 

timing of onset, the pattern of organ involvement, and the tempo of evolution from 

inflammatory (acute) to fibrotic (chronic) manifestations.24  However, prior to 2005, 

only the onset – arbitrarily divided at < 100 days or ≥ 100 days post-transplant – 

was considered.25,26  Acute and chronic forms can be present simultaneously.  

Because the data available for this thesis concern transplants conducted between 

1995 and 2007 and lack sufficient detail to apply the new classification 

retrospectively, the older classification scheme is used.  
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Acute GVHD usually occurs in the first 100 days after AHCT, with a median 

time to onset of 17 to 27 days, depending on the study, in patients who receive 

myeloablative conditioning and 3 months in those who receive non-myeloablative 

conditioning.27-29  Acute GVHD typically involves some combination of skin, liver and 

gut.  The manifestations of acute inflammation may be mild (e.g., minimally 

symptomatic rashes, jaundice, or dyspepsia) or severe (e.g., bullae and burn-like 

desquamation of the skin, liver failure, and hemorrhagic diarrhea).  Due to immune 

dysfunction and to the pharmacologic immunosuppression used to treat GVHD, 

infections are also a frequent complication and may be fatal.  The severity of acute 

GVHD is scored using the modified Seattle Glucksberg criteria accepted by the 

Keystone Consensus in 1994 (Appendix Section 9.1)25,26 or International Bone 

Marrow Transplantation Registry (IBMTR) criteria that were developed by 

experienced clinicians on the basis of intuition.30  These scoring systems are subject 

to substantial inter-rater variability31 and observer bias (in that treating centers 

tend to assign lower scores than expert reviewers when ambiguity between grade II 

and grade III arises32) and they only account for a small proportion of the variability 

in overall survival.33  Although alternative retrospective,31,34,35 prospective,36,37 and 

dynamic38 acute GVHD scoring systems have been developed for the purpose of 

predicting survival, often highlighting the utility of such protean predictors as 

caloric intake, performance score or lymphopenia, none has been validated in 

multiple settings or gained widespread acceptance. 

Chronic GVHD usually arises between 3 months and 2 years post-transplant.  It 

presents similarly to an autoimmune syndrome.  It may affect almost any organ and 

is clinically characterized by slow-brewing inflammation culminating in fibrosis and 

scarring.  Again, infections are a frequent complication of the underlying immune 

dysfunction and of treatment.  Chronic GVHD also predisposes to solid cancers, such 

as skin cancer and esophageal cancer.  Chronic GVHD is scored imprecisely using the 

traditional criteria of “limited” versus “extensive” disease that were proposed in 

1980 based on only 20 subjects (Appendix Section 9.2).39  This 2-category scale is 

useful for distinguishing patients requiring systemic immunosuppression from 
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those for whom local treatment might suffice.  Therefore, the heterogeneity of organ 

involvement, clinical severity, and prognosis within the extensive category was 

purposefully omitted from the scale.  This scale, as well as a clinical “gestalt” of 

global functional impact (mild/moderate/severe) are included in the CIBMTR 

database.  Chronic GVHD may also be scored precisely using the 2005 NIH 

Consensus Criteria24 and other schemes,40-42  but these metrics are not available for 

historical patients included in the registry.  Even with the 2-category scale, 

misclassification is frequent; one large CIBMTR registry-based study noted incorrect 

designation of “limited” stage disease among 65% to 67% of sibling transplants and 

43% of unrelated donor transplants.43  Nonetheless, the original (misclassified) 

assignments performed better than the corrected assignments in predicting overall 

survival, suggesting that clinicians may often use “limited” and “extensive” in 

accordance with intuition rather than heed their strict definitions.  The clinical 

impression of mild/moderate/severe outperformed both the (uncorrected) 

limited/extensive scale and an alternative scoring system developed using 

information available in the CIBMTR predecessor registries in predicting overall 

survival.43  Because of a paucity of patients treated who received NHTL therapy for 

refractory chronic GVHD in the CIBMTR data set, the current project focuses only on 

acute GVHD treatment. 

It is also worth noting that none of the scores developed for acute or chronic 

GVHD are specific to patients transplanted for AML or MDS.  A recent meta-analysis 

showed that the survival trade-off between avoiding relapse versus incurring 

treatment-related mortality due to increasingly severe GVHD may vary according to 

the malignancy for which AHCT was performed.44,45 

2.4 Inadequacy of GVHD prevention 

The most important advances in preventing acute GVHD were improved HLA 

typing to aid donor selection, the development of prophylaxis containing calcineurin 

inhibitors and methotrexate, and limiting the toxicity of conditioning regimens such 

as by reducing the dose of total body irradiation (TBI).46  Nonetheless, clinically-
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significant acute GVHD affects 35% to 40% of patients who receive T cell-containing 

transplants from HLA-matched siblings and 40% to >50% of those whose receive 

transplant from unrelated donors.46  Increased risk for developing acute GVHD is 

conferred by greater degrees of HLA disparity, unrelated compared to related 

donors, female donor to male recipient gender disparity, more intense conditioning 

regimens, TBI, and particular regimens for GVHD prophylaxis, while peripheral 

blood grafts confer a greater risk than bone marrow grafts, which in turn confer a 

greater risk than umbilical cord blood grafts.29,47-51  Studies have identified other 

risk factors less consistently, e.g., increasing recipient age29,47,49,52 and chronic 

cytomegalovirus (CMV) carriage by the recipient or donor.49,51   

With traditional conditioning and immunosuppressive regimens, chronic 

GVHD affects up to 80% of patients.24  The main risk factor for developing chronic 

GVHD is prior acute GVHD, but chronic GVHD can occur de novo.53  Other risk factors 

for chronic GVHD are similar to those for acute GVHD, including HLA disparity, 

female donor to male recipient gender disparity, graft source, and older patient and 

donor age.48,52-55   

Both these conditions incur substantial morbidity and mortality.7,56,57  

However, to date, innovative methods for preventing acute and chronic GVHD, such 

as ex-vivo T cell depletion of the graft or the use of NHTL prophylaxis, entrain higher 

infection and (particularly with non-myeloablative conditioning) higher relapse 

rates so have not improved overall survival.  Pre-emptive treatment of subclinical 

chronic GVHD found in surveillance skin and lip biopsies also proved unsuccessful 

in preventing overt chronic GVHD.58  Therefore, better methods for preventing 

GVHD are urgently needed. 

2.5 Inadequacy of first-line treatment for acute GVHD   

The decision to initiate treatment depends on the certainty of the diagnosis of 

GVHD, the rate of progression, the organs involved and the degree of tissue damage 

or dysfunction, the side effects of therapy, and the risk of relapse of the underlying 
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malignancy.  Consensus first-line treatment for acute GVHD is the use of high dose 

glucocorticoids, most commonly intravenous methylprednisolone or oral 

prednisone.  A systematic review by the American Society of Blood and Marrow 

Transplantation (ASBMT) weighted the results from studies meeting minimal 

quality standards by the number of patients enrolled.59  The authors found the 

complete response (CR) rate with prednisone alone was 48% (36% in 6 prospective 

studies and 65% in 3 retrospective studies) and the estimated probability for 

surviving 6-months post glucocorticoid initiation was 66%.   

The optimal glucocorticoid dose remains unclear.  In 1998, a randomized 

controlled trial (RCT) established that starting at 2 mg/kg/day methylprednisolone 

(equivalent to prednisone 2.5 mg/kg/day) yielded similar complete response rates, 

rates of progression to grade III to IV GVHD and overall survival (OS) as 10 

mg/kg/day, allowing for the fact that 55% of patients in the low-dose arm switched 

to the higher dose after 5 days of treatment.60  Since that publication, the 

methylprednisolone dose is almost universally capped at 2 mg/kg/day.  A 

subsequent retrospective study published in 2009 indicated that in patients with 

grade I-II GVHD, initiating treatment with prednisone 1 mg/kg/day was sufficient.61  

A prospective trial addressing the preferred glucocorticoid dose for first-line 

treatment of acute GVHD has completed accrual (NCT00929695).  Meanwhile, there 

is variability among centers and among clinicians within a given center in the dose 

of steroids prescribed for patients with grade I-II acute GVHD.59 

The optimal duration of full-dose steroid therapy and the optimal rate for 

tapering steroid doses are likewise undefined.  Because of their adverse effects, the 

taper is usually initiated as soon as patients show substantial improvement, but the 

benchmarks for successful tapering are not clearly established.62 

As reviewed by the ASBMT, no well-designed RCT has demonstrated any 

benefit to combining glucocorticoids with other immunosuppressive drugs for first-

line treatment.59  These studies suffer from misclassification of acute GVHD severity, 

small sample size, variable timing of response assessment, variable definitions of 
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complete response, the inclusion of patients with mild disease (grades I-II) 

alongside those with severe disease (grades III-IV), and occasionally the use of 

historical controls or the absence of any glucocorticoid-only control arm.  Moreover, 

overall survival is a poor marker for drug efficacy because patients who survived 

thanks to subsequent salvage treatments are counted as successes instead of 

failures, thus inflating the apparent efficacy of the investigational agent.  Despite the 

lack of any apparent benefit to first-line multidrug therapy, in clinical practice, 

patients often receive combination therapy because they were already on an (often 

tapering) immunosuppressive drug at the time acute GVHD developed, or in order 

to spare steroid side effects, or as part of a clinical trial.  Importantly, no trial has 

examined whether particular drugs used for preventing GVHD influence the efficacy 

of specific drugs later deployed for treating GVHD.    

In summary, approximately one out of every two patients with acute GVHD 

fails to respond adequately to first-line treatment.   

2.6 Inadequacy of treatment for refractory acute GVHD 

The prognosis of patients requiring second-line therapy is poor.  The 

aggregated CR rate among 28 studies reviewed by the ASBMT was 32%, with lower 

CR rates reported among the 11 prospective studies.59  The weighted probability of 

OS 6-months after initiation of second-line therapy was 49%.  Nearly all studies of 

agents to treat glucocorticoid-refractory acute GVHD were retrospective or single-

arm phase II trials.  In addition to the caveats noted for interpretation of studies in 

the first-line treatment setting, interpretation of the results of second-line trials is 

hampered by the lack of a uniform definition of steroid-refractory acute GVHD.  

Again, no trial has examined whether particular drugs used for prophylaxis or for 

first-line treatment of GVHD influence the efficacy of specific drugs later deployed 

for treating refractory GVHD. 
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2.7 Inadequacy of treatment for chronic GVHD 

Failure to use validated criteria for diagnosing chronic GVHD and scoring its 

severity limit the generalizability of most reported trials in this area.63-65  Until the 

2005 NIH consensus, there were no uniform response definitions either.66  Current 

consensus for first-line therapy was outlined at the 2009 Regensberg conference.  

First-line treatment for mild and moderate chronic GVHD should generally include 

systemic corticosteroids and topical immunosuppressive agents.  No retrospective 

or controlled studies have established the optimal dose of prednisone but a starting 

dose of 1 mg/kg/day is extrapolated from the acute GVHD setting.  Randomized 

controlled trials showed no benefit to incorporating azathioprine,67 mycophenolate 

mofetil,68 cyclosporine,69 thalidomide,70 or hydroxychloroquine71 in first-line 

therapy.  Nonetheless many of these and other agents, which have not been studied 

in the first-line setting, are often used “off-label” in an attempt to permit a lower 

dose of steroids (to decrease their myriad adverse effects) or because 

corticosteroids alone are felt to be inadequate for severe chronic GVHD (albeit no 

controlled trial has established the optimal treatment for severe disease).63 

Approximately half of patients with chronic GVHD require “second-line” 

therapy.64  Failure of first-line treatment was associated with a 10-year cumulative 

incidence of death from chronic GVHD of 62% (95% CI, 51% to 72%).40  No 

controlled studies inform the choice of therapeutic agent in this population, and as 

noted in the Regensberg consensus document, “a ‘trial-and-error’ approach remains 

the only way to identify the drug or drug combination effective in an individual 

patient.”64  

Most patients require long-term treatment.  Among surviving patients with 

chronic GVHD, less than 15% successfully discontinue immunosuppressive therapy 

at 1 to 2 years following transplantation, ~25% remain on therapy beyond 4 years, 

and ~5 to 15% are treated beyond 7 to 10 years.56,72,73 
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Recommendations for the treatment of chronic GVHD are hampered by the 

fact that no trial has examined whether particular drugs used for prevention and for 

treatment of acute GVHD influence the efficacy of specific drugs later deployed for 

treating chronic GVHD.  Also, since the publication of the 2005 NIH Consensus 

definition for the diagnosis of acute and chronic GVHD that no longer relies on the 

arbitrary delineation at day 100, studies have reclassified 15% to 48% of “chronic 

GVHD” patients as actually manifesting “persistent, recurrent or late-onset acute 

GVHD” and 20% to 48% as manifesting “overlap syndrome,” while only 5% to 57% 

retained a diagnosis of classic chronic GVHD.74-77  The problem of labelling “late 

acute GVHD” and “overlap syndrome” as “chronic” GVHD is especially pertinent to 

the current project because patients who were first treated for “chronic” GVHD were 

not entered into the analysis of the best treatment for steroid-refractory acute 

GVHD.  It is possible that many such patients would now be classified under “late 

acute GVHD” or “overlap syndrome.”  The Regensberg consensus document 

speculates that late acute GVHD and overlap syndrome with “dominating acute 

features” should be treated analogously to classic acute GVHD.63 

3. LITERATURE REVIEW: ADAPTIVE TREATMENT STRATEGIES 

3.1 Personalized medicine and GVHD 

Individual patients respond differently to the same treatments, bearing in 

mind both the primary outcome and side effects.  Traditional design and reporting 

of clinical trials aim to capture and explain the heterogeneity of responses through 

stratification according to baseline risk or other salient patient characteristics or 

through subgroup analysis.  Nonetheless, the “best” treatment identified by a 

generic RCT might not be the “best” treatment for a particular patient because (1) 

the combination of characteristics that is the “signature” of a particular patient 

might not be captured by the coarse strata or the coarse subgroups in the RCT; (2) 

the effect of time-varying characteristics of the patient might dwarf the initial effect 

of the baseline strata or subgroup to which the patient belonged; and (3) there may 

be delayed synergism or antagonism between the treatment examined in the trial 
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and heterogeneous upstream or downstream treatments not included in the data 

capture or analysis.  Inter-patient variability and intra-patient variability over time 

leading to heterogeneity of responses is the motivation for “personalized medicine” 

– a paradigm that emphasizes systematic use of an individual patient’s ever-updated 

information to optimize that patient’s health care.78  Management of chronic 

disorders poses challenges for the personalized medicine paradigm because the 

personalization must be marshalled through multiple stages of intervention.  These 

challenges obviously apply to chronic GVHD because the median duration of 

immunosuppression is 2 to 3 years from its initial diagnosis and ~15% of patients 

require more than 7 years of immunosuppression.56,72,73  However, they apply to 

“acute” GVHD as well because although 35% to 50% of patients respond to first-line 

steroid treatment, achieving CR in a median of 3 to 7 weeks (depending on the 

study79-81), two-thirds of responders will relapse with acute GVHD,81 and 40% to 

47% of patients who experience acute GVHD will develop chronic GVHD, often 

within a year of initiating steroids.29,81  Consequently, the first episode of acute 

GVHD is often a prelude to long-term, continuous immunosuppressive therapy.   

3.2 Adaptive treatment strategies 

“Dynamic treatment regimes” (DTRs) are sequences of decision rules (one per 

stage of intervention) for adapting treatments to the time-varying state of an 

individual patient, where decisions made at one stage may affect those to be made at 

a future stage and where the long-term effect of the current treatment may depend 

on the performance of future treatment choices.82  For example, giving prednisone 

at a dose of 1 mg/kg to a patient newly presenting with grade II acute GVHD is a 

legitimate option because if it fails, evidence from a retrospective study shows that 

the patient can likely be salvaged with 2 mg/kg of prednisone or with other agents, 

and starting with the lower dose will not compromise her long-term outcome.61  The 

term DTR is frequently used in the statistical literature to describe a specific 

instance of a personalized treatment regimen.  We use the term “adaptive treatment 

strategy” (ATS) instead of DTR because it better communicates this intent to 
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clinicians.  ATSs operationalize the sequential decision-making process involved in 

the personalized chronic care model.  The decision points in a longitudinal ATS may 

occur at regular intervals, such as bimonthly follow-up visits, or at defined clinical 

events, such as remission, relapse or onset of a complication.  The ATSs are 

considered dynamic because the recommended actions in regard to a particular 

patient can change based on observations made about him or her over time (such as 

whether the patient’s GVHD responds to first-line glucocorticoids).  By formalizing 

and studying ATSs, we hope to improve long-term outcomes.  This can be done by 

comparing two (or more) ATSs in terms of their utility, or by identifying an optimal 

ATS.   

3.3 Notation and data structure 

For simplicity, the approach83  will be expounded for the setting of two 

treatment intervals, but these methods extend naturally to any finite number of 

intervals.  Longitudinal data on a single patient are given by the trajectory (C1, O1, A1, 

C2, O2, A2, Y), where Cj and Oj (j = 1, 2) denote the set of covariates measured prior to 

treatment beginning at the jth interval.  Y is the outcome at the end of interval 2; the 

choice of outcomes is discussed in Section 3.8 below.  Aj (j = 1, 2) is the set of actions 

(treatments), one of which could be assigned at the jth interval subsequent to 

observing Oj.  The possible actions within the set are represented by akj.  Two types 

of covariates are distinguished.  Those represented by Oj interact with treatment 

and are called tailoring or prescriptive variables; they directly impact the optimal 

choice of akj from Aj.  Those represented by Cj do not interact with treatment but 

potentially confound the relationship between treatment and outcome or may 

simply be risk factors for the outcome (but not predictive of treatment choices and 

hence not true confounders).  Any variable included in Oj may also be a confounding 

variable, i.e., a shared independent cause of both treatment and outcome. 

The data set consists of a random sample of n patients.  The history at each 

interval is defined as H1 = (C1, O1) and H2 = (C1, O1, A1, C2, O2).  Two possible 

treatments at each interval are coded as Aj ϵ {0, 1}.84 However, analysis and 
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inference methods for 3 or more possible discrete actions at time j85,86 or for 

“continuous” actions corresponding to percent changes in dose87 have been 

developed.  Treatment assignment from Aj may depend on the values of covariates Cj  

and Oj.  A two-interval ATS consists of two decision rules, (d1, d2), with dj ≡ dj(Hj) ϵ 

Aj.  Alternative notation schemes are detailed by Wallace and Moodie.88  

3.4 Estimating optimal ATSs 

Several analysis and inference methods have been developed to estimate the 

optimal ATS drawing on the fields of reinforcement learning (computer science) and 

causal inference.  They include frequentist89-91 and Bayesian85,92,93 parametric 

approaches as well as semi-parametric approaches.84,94  Two ways to distinguish 

among these methods are by how they handle collider stratification bias and how 

they estimate the contrast between different trajectories. 

Collider stratification bias arises when conditioning on an intermediate 

observation leads to spurious correlation between the exposure (i.e., treatment) and 

outcome of interest because of unmeasured or unknown variables that are a 

common cause of both the intermediate observation and outcome (Figure 1).95-97  

Figure 1. Collider stratification bias. Suppose the choice of GVHD prophylaxis (A1) truly has no 
effect on mortality (Y). Suppose there is an unobserved variable U, such as a pharmacogenetic 
polymorphism that decreases the probability of responding to prophylaxis and is positively 
correlated with the severity of GVHD (O2) and with mortality (Y). If randomization to prophylaxis is 
successful, there should be no correlation between A1 and U. However, there will be a conditional 
correlation between A1 and U given GVHD severity: A patient with severe GVHD is more likely to 
harbour the deleterious polymorphism. Running a regression of Y on (O1, A1, O2, A2) necessarily 
conditions on the intermediate observation O2. Conditional on O2, there may be a non-zero effect of 
A1 on Y, which is different from the true effect. Thus, all “all-at-once” regression may yield a biased 
assessment of the effectiveness of treatment. 
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A mathematical proof how collider stratification bias arises from regressing 

the outcome on entire trajectories “all-at-once” is found in Chakraborty and 

Moodie.98  Methods of estimating the effect of different ATSs must avoid introducing 

this bias by eliminating conditioning on intermediate observations (e.g., with 

weighting techniques or stage-wise estimation), or by assuming that no such 

unmeasured variables on a common causal pathway exist. 

Another distinguishing characteristic of approaches to estimating the best ATS 

is the contrast function that is employed, i.e., the function used to describe the 

impact of an interval-specific treatment relative to some reference treatment, such 

as standard of care.  For example, a regret function is loosely defined as the 

difference between the utility of the optimal decision for a fixed set of patient 

characteristics and treatment options and the actual decision taken,99 while the 

welfare contrast (or blip) is the difference between the utilities corresponding to 

any two decisions under the same set of patient characteristics and treatment 

options.84  Where one of these two decisions is the optimal decision, the welfare 

contrast is equivalent to the regret function.  Thus, two broad approaches to 

designing ATSs are: 

(1) Explicitly estimating parameters of the regret or blip functions and 

minimizing those functions; or 

(2) Directly estimating the utility of different strategies and seeking to 

maximize the utility.   

The stage-wise approach used in this thesis, Q-learning, belongs to the first category.   

3.5 Decision rules 

It warrants emphasizing that an ATS is a collection of decision rules, not the 

actual experiences of patients that result from them.  Thus, under the rule “Give 

induction chemotherapy A1 = 1 followed by maintenance chemotherapy A2 = 1 if 

response, else if no response give second-line induction A2 = 0,” some patients will 
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realize the experience A1 = 1 → response →  A2 = 1 while others will realize the 

experience A1 = 1 → no response → A2 = 0.   

All treatment-relevant information from the patient’s entire history, i.e., 

tailoring variables such as responses to past treatments or lack thereof, is input into 

the decision rule.  The decision rule in turn outputs individualized treatment 

recommendations.  Such recommendations may include when to start treatment, 

when to stop treatment, when to modify or completely change treatment, and which 

specific treatment to deploy subsequently. 

3.6 Fundamental approach to Q-learning 

Q-learning is a form of dynamic programming in that estimation begins at the 

last interval and the optimal treatment at each interval, moving backwards in time, 

is then found by estimating the impact of treatment in that interval on a “pseudo-

outcome.”  The “pseudo-outcome” is constructed by assuming all subsequent 

treatments are optimal; it is the patient-specific predicted (counterfactual) outcome 

had that patient received optimal treatment in future intervals.  

In observational settings, confounding variables are typically present.  In 

randomized trials, we assume there are no confounding variables Cj since successful 

balanced randomization will preclude any association between Cj and treatment 

assignment.  However, there may be risk factors that predict outcome but are not 

useful for tailoring treatments, and so we retain Cj.  Whatever the data source, we 

consider H1 = (C1, O1) and H2 = (C1, O1, A1, C2, O2).  The Q-functions are defined as 

follows:100,101 

𝑄2(𝐻2, 𝐴2) =  𝐸[𝑌|𝐻2, 𝐴2], 

𝑄1(𝐻1, 𝐴1) =  𝐸[𝑄2(𝐻2, 𝑎𝑘2
𝑜𝑝𝑡

)|𝐻1, 𝐴1].   

 

where 𝑎𝑘2
𝑜𝑝𝑡

is the optimal treatment that could have been administered for action A2.  

Put into words, the first formula yields the expected mean outcome given a 

particular history observed up until the start of interval 2.  The second formula 
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yields the mean outcome given the history observed from baseline up until time 1 

and given the actual treatment administered for A1 while assuming optimal 

treatment is administered in the second interval.  An omniscient analyst with 

knowledge of the true multivariate distribution of the data could therefore deduce 

the optimal ATS = (d1, d2) using backwards induction, so that 

𝑑𝑗
𝑜𝑝𝑡

= arg max
𝑎𝑗

𝑄𝑗(ℎ𝑗 , 𝑎𝑘𝑗
𝑜𝑝𝑡

),    𝑗 = 1, 2 

where hj is the individual patient’s history up until the start of interval j and 𝑎𝑘𝑗
𝑜𝑝𝑡

 is 

the optimal treatment that could have been administered during interval j.  In 

practice, the true Q-functions must be estimated from the data.  Any model may be 

assumed for the Q-functions.  For illustrative purposes, consider a linear model so 

that the jth interval Q-function is modelled as 

𝑄𝑗(𝐻𝑗 , 𝐴𝑗; 𝛽𝑗 , 𝜓𝑗) =  𝛽𝑗
𝑇𝐻𝑗0 + (𝜓𝑗

𝑇𝐻𝑗1)𝐴𝑗 

where Hj0 contains the collection of variables that have a predictive (prognostic) 

effect on the outcome and do not modify the treatment effect while Hj1 contains the 

covariates that do affect the choice of treatment as they represent effect modifiers.  

Both Hj0 and Hj1 contain a constant (intercept) term.  Note that (𝜓𝑗
𝑇𝐻𝑗1)𝐴𝑗 describes 

a contrast function.  The regression coefficient parameters 𝛽𝑗  indicate the strength 

of the effect of the predictive variables, and those belonging to 𝜓𝑗  correspond to the 

potential tailoring variables.  The Q-learning algorithm for identifying the optimal 

ATS is implemented in five steps: 
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Table 1.  Q-learning algorithm illustrated with linear Q-functions for binary 
treatments 

Step 1: Estimate the interval 2 parameters.  Use ordinary least squares to regress 

the outcome at the final date of follow-up on all confounding variables, the 

treatments of interest, and interactions between the treatments and potential 

tailoring variables: 

(𝛽̂2, 𝜓̂2) = arg min
𝛽2,𝜓2

1

𝑛
∑ (𝑌𝑖 −  𝑄2(𝐻2𝑖 , 𝐴2𝑖;  𝛽2

𝑛
𝑖=1 , 𝜓2))2 

where i = 1, . . . , n indexes the patients. 

Step 2: Estimate the optimal interval 2 rule by substitution: 

𝑑̂2
𝑜𝑝𝑡(ℎ2) = arg max

𝑎2

𝑄2 ( ℎ2, 𝑎2; 𝛽̂2, 𝜓̂2). 

Step 3:  Create the “pseudo-outcome” of interval 1 by assuming that patients had 

received optimal treatment for interval 2.  Patient by patient, determine which A2 

treatment would lead to the best outcome given each patient’s observed values of 

all previous treatments and confounding variables, using the regression 

parameter estimates from Step 1.  For each patient i, create a “pseudo-outcome” 

that is the predicted outcome for that patient under his or her own optimal 

treatment at the A2 decision point:   

𝑌̃1𝑖 = 𝑄2(𝐻2𝑖 , 𝑎2 ; 𝛽̂2, 𝜓̂2). 

Note that estimation of the contrast function is inherent in finding 𝑄2(𝐻2𝑖 , 𝑎𝑘2
𝑜𝑝𝑡

).  

That is,  

𝑄2(𝐻2𝑖 , 𝑎2
𝑜𝑝𝑡

) =  {
𝛽̂𝑗

𝑇𝐻𝑗𝑜                                  if 𝑑2𝑖(𝐻2𝑖) = 0

𝛽̂𝑗
𝑇𝐻𝑗𝑜 + (𝜓𝑗

𝑇𝐻𝑗1)𝐴𝑗           otherwise.      
 

Step 4: Estimate the interval 1 parameters.  Using ordinary least squares 

regression, regress the pseudo-outcome from Step 2 on all confounding variables, 

all interval 1 treatments, and interactions between the interval 1 treatments and 

all potential tailoring variables:   

(𝛽̂1, 𝜓̂1) = arg min
𝛽1,𝜓1

1

𝑛
∑ (𝑌̃1𝑖 −  𝑄1 (𝐻1𝑖 , 𝐴1𝑖;  𝛽1

𝑛
𝑖=1 , 𝜓1))2. 

Step 5: Estimate the interval 1 optimal rule by substitution.  Patient by patient, 

determine which A1 treatment would lead to the best outcome given each 

patient’s observed values of baseline/confounding variables, using the regression 

parameter estimates from Step 4:   

𝑑̂1
𝑜𝑝𝑡(ℎ1) = arg max

𝑎1

𝑄1 ( ℎ1, 𝑎1; 𝛽̂1, 𝜓̂1). 
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Note that in Steps 3 and 5, the optimal ATS is identified for each patient given 

the tailoring variables included in the model.  In steps 1 and 4, treatment is 

personalized on the variables for which interactions with treatment were included 

in the model.  The estimated optimal ATS is given by (𝑑̂1, 𝑑̂2).  From the above, it is 

evident that stage-wise methods like Q-learning are not vulnerable to collider 

stratification bias because they do not condition on any covariate that occurs after 

the treatment of interest in that stage. 

3.7 Tailoring variables 

Tailoring variables must be able to discriminate optimal treatments. That is, 

the effect sizes for the fixed treatment options must vary meaningfully as a function 

of the tailoring variables.  Technically, this can be expressed as follows:  Let O 

represent a putative tailoring variable (hence o represents specific levels of that 

variable), A the treatment type coded as a = 0 or  a = 1, and Y the primary outcome 

(where a higher value is preferred).  Then, 

Y = β0 + β1o + ψ 0a + ψ1oa + error 

     = β0 + β1o+ (ψ0 + ψ1o)a + error. 

If (ψ0 + ψ1o) is positive for some values of O and zero or negative for other 

values of O, then O is truly a tailoring variable.  The magnitude of the absolute value 

of (ψ0 + ψ1o) will determine the strength of the “prescriptive” effect of the tailoring 

variable, i.e., the impact that the variable has on the choice of therapy, as shown in 

Figure 2 on the following page.  

The net effect of multiple covariates can also be used for tailoring treatment, 

even if each individual covariate does not qualitatively interact with treatment.  

That is,  (ψ0 + ψ1O1 +  ψ2O2 + .  .  . + ψp On) may be positive for some values (o1, o2, . . . , 

op) and zero or negative for other values of the linear combination of predictors.  

This makes it possible to tailor treatment to the individual patient by accounting for 

many characteristics of the person simultaneously.   
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Defining good tailoring variables is a legitimate primary or secondary 

objective in designing optimal ATSs.  The Food and Drug Administration defines a 

predictive biomarker as “a baseline characteristic that categorizes patients by their 

likelihood of response to a particular treatment relative to no treatment” when 

measured prior to treatment.102  A broader definition would acknowledge that the 

Figure 2. Some covariates are useful for individualizing treatment choice. Assume the goal is to 
maximize the outcome. Panel A shows no interaction: Treatment 1 is equally and uniformly better 
than treatment 0 at all levels of the covariate. Panel B shows a non-qualitative interaction: The 
magnitude of the benefit of treatment 1 over treatment 0 differs depending on the level of the 
covariate. However, the covariate is not a tailoring variable because the same treatment choice would 
apply to all patients. Panel C shows a large qualitative interaction. Treatment 0 is better at low levels 
of the covariate while treatment 1 is preferred at higher levels of the covariate. The covariate is useful 
for tailoring treatment to the individual patient. Panel D shows a qualitative interaction of lesser 
magnitude, but the same conclusion as in panel C applies.  
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predictive biomarker might predict response relative to alternative treatment 

choices.  Many of the biomarkers that we colloquially call “prognostic” are in fact 

“predictive” in this sense.  For example, translocation of chromosomes 15 and 17 in 

AML predicts response to all trans-retinoic acid (ATRA) and arsenic; its favourable 

“prognostic” implication depends entirely on the treatment we plan to give.  We use 

the term prescriptive variables for information that changes what we ought to write 

on the prescription pad.  With regard to all patients with AML, t(15;17) serves as a 

prescriptive variable because it identifies which patients ought to be prescribed 

ATRA.  

Categorical and continuous covariates may be used as tailoring variables.  For 

example, the ideal target range of a manipulable biologic variable may need to be 

identified in order to optimize survival.  Cotton and Heagerty103 provide an example 

of how to do this by considering ATSs in end-stage renal disease patients that adjust 

erythropoietin dose Aj at time j multiplicatively based on the dose level in the 

previous month, Aj-1, and the most recent hematocrit measurement, Oj.:  

𝐴𝑗  ∈  {

𝐴𝑗−1 × (0, 0.75)  𝑖𝑓 𝑂𝑗 ≥  𝜑 − 3

𝐴𝑗−1 × (0.75, 1.25)  𝑖𝑓 𝑂𝑗 ∈ (𝜑 − 3, 𝜑 +  3)

𝐴𝑗−1 × (1.25, ∞)  𝑖𝑓 𝑂𝑗 ≥  𝜑 + 3

 

where 𝜑 is the midpoint of the target hematocrit range and hematocrit is the 

percentage of the total blood volume constituted by red blood cells.  To find the 

optimal ATS that would maximize survival time, 𝜑 was varied from 31% to 40% and 

hence each patient’s observed hematocrit at a given time point, Oj, became a 

tailoring variable.  Estimating the ideal target hematocrit, or equivalently estimating 

which hematocrit upper and lower boundaries should prompt a change in 

erythropoietin dose, was the goal of the analysis.   

In the erythropoietin example, the parameter 𝜑 does not vary over time, but 

rather is the same at each month j.  This property is called parameter sharing (over 

time).  One could envision situations in which it might be desirable to use time-

varying values of 𝜑.  For example, in the treatment of chronic myeloid leukemia 
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(CML), the rate at which patients who initiate treatment with a tyrosine kinase 

inhibitor (TKI) ought to achieve particular levels of reduction in BCR-ABL mRNA 

transcripts detectable in the blood in order to maximize survival time can be 

captured by assigning 𝜑 decreasing values of transcript burden the further away 

from the patient is from TKI initiation (e.g., ≤10% International Scale by 3 months 

and ≤ 0.1% IS by 12 months).104-106  An ATS for CML might be represented by the 

following rule: 

𝐴𝑗  ∈  {
𝑆𝑤𝑖𝑡𝑐ℎ 𝑡𝑜 𝑎𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑇𝐾𝐼 𝑖𝑓 𝑂𝑗 >  𝜑𝑗

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝐾𝐼 𝑖𝑓 𝑂𝑗 ≤ 𝜑𝑗
 

where Aj is the action to be taken at time j, Oj is the observed quantification of BCR-

ABL transcripts at time j, and 𝜑 j is the upper acceptable limit for Oj.  Competing 

ATSs incorporating different time-varying values of 𝜑 j, as well as different static 

parameters such as baseline Sokal risk scores, could be compared for their effect on 

survival.  Studies that take this approach to estimating the time-varying target 

ranges that ought to prompt a switch of therapy would be particularly interesting in 

CML, acute lymphoblastic leukemia, and other malignancies where quantification of 

“minimal residual disease” (MRD) is being incorporated into treatment algorithms 

but “safe” and “dangerous” MRD levels likely depend on the initial burden of disease, 

on the time since initiating therapy, on the toxicity of the alternative treatments, and 

on patient-specific covariates, and are not yet clearly defined.   

3.8 Choice of endpoints 

What is an optimal ATS?  The answer depends on the clinical question.  

Traditionally, the goal was to optimize the mean long-term outcome, i.e., the 

outcome observed at the final stage of intervention or at the final observation time.  

However, any utility function can be employed as the optimization criterion.  Thus, 

the outcome Y may be a single measurement at a uniform or patient-specific time 

point, or a function, 𝑓(∙), of some or all covariates measured throughout the study.  

Appendix Section 9.3 offers examples of endpoints and corresponding optimization 

criteria that can be the focus of an ATS.  The aim of the current work is to maximize 



 

26 

 

the proportion of patients alive and disease-free at 2 years post AHCT.  The binary 

endpoint (alive and disease free versus dead and/or relapsed) mandates a logistic 

regression. (Ongoing work on maximizing disease-free survival time and minimizing 

the duration of immunosuppression is not presented here but is noted in Section 

7.5, Future Directions.) 

3.9 Form of the Q-function to accommodate the endpoint used in 
this thesis 

With binary (Bernoulli) outcomes, the logistic model of the form 

𝑄1
𝑜𝑝𝑡

(𝐻1, 𝐴1;𝛽1,𝜓1
) = 𝑄2(𝐻2𝑖 , 𝑎2

𝑜𝑝𝑡
; 𝛽̂2, 𝜓̂2) = expit(𝛽̂2

𝑇𝐻20,𝑖 + |𝜓̂2
𝑇𝐻21,𝑖 |) 

can be used,107,108 where expit(x) = ex/(1 + ex) is the inverse logit function, bounded 

by [0, 1].  To find the pseudo-outcome specific to each patient i, the strictly-

increasing logit of the probability of success in the 2nd interval under the optimal 

DTR, 𝛽̂2
𝑇𝐻20,𝑖 + ( |𝜓̂2

𝑇𝐻21,𝑖|)  is maximized as in Table 1, Step 3 because that enables 

the use of ordinary least squares regression to estimate the interval 1 parameters in 

Step 4.  Thus, the patient-specific pseudo-outcome 𝑌̂1𝑖 is not the predicted value of 

the second-interval Q-function under optimal treatment (i.e., it is not 1 = success and 

0 = failure); instead, it represents a transformation of that expected outcome and 

can be interpreted as the probability of achieving success given optimal treatment.  

This is the method used for the 2-year disease-free survival analysis in this work.  

The Q-learning algorithm for a discrete outcome is detailed in Table 2. 
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Table 2. Q-learning algorithm for a discrete outcome 

Step 1: Estimate the interval 2 parameters.  Use generalized linear modelling 

(GLM) regression with a strictly increasing link function, 𝑓(∙), to estimate (𝛽̂2, 𝜓̂2) 

of the conditional mean model for the outcome f(E[Y|𝐻2𝑖 , 𝐴2𝑖]) = 

𝑄2 (𝐻2𝑖 , 𝐴2𝑖; 𝛽2𝜓2).  A logistic link function satisfies the requirement for being 

strictly increasing. 

Step 2: Estimate the optimal interval 2 rule by substitution: 

𝑑̂2
𝑜𝑝𝑡(ℎ2) = arg max

𝑎2

𝑄2 ( ℎ2, 𝑎2; 𝛽̂2, 𝜓̂2). 

Step 3:  Create the “pseudo-outcome” of interval 1 by assuming that patients had 

received optimal treatment for interval 2. Set:   

𝑌̃1𝑖 =  𝑓−1(𝑄2(𝐻2𝑖 , 𝑎2
𝑜𝑝𝑡

; 𝛽̂2, 𝜓̂2)),    𝑖 = 1, … , 𝑛. 

Step 4: Estimate the interval 1 parameters.  Using another GLM, regress the 

pseudo-outcome from Step 3 on all confounding variables, all interval 1 

treatments, and interactions between the interval 1 treatments and all potential 

tailoring variables. 

Step 5: Estimate the interval 1 optimal rule by substitution.  Patient by patient, 

determine which A1 treatment would lead to the best outcome given each 

patient’s observed values of baseline/confounding variables, using the regression 

parameter estimates from Step 4:   

𝑑̂1
𝑜𝑝𝑡(ℎ1) = arg max

𝑎1

𝑄1 ( ℎ1, 𝑎1; 𝛽̂1, 𝜓̂1). 

 

3.10 Standard errors when using Q-learning 

There are two difficulties in using standard methods to calculating accurate 

standard errors and confidence intervals for regression performed in the course of 

Q-learning.  The first problem is that except for the last interval, the pseudo-

outcome is used in the regressions.  The pseudo-outcome depends on previously-
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estimated parameters 𝛽̂𝑗  and 𝜓̂𝑗  from later intervals.  The variability of those 

quantities needs to be taken into account.  The second problem is that constructing 

the pseudo-outcome requires taking a maximum, and the resulting non-smoothness 

violates the usual large-sample assumptions.  Therefore, in this work, bootstrapped 

analysis is used to calculate standard errors on the regression coefficients in the Q-

functions.109  

3.11 Practical development of ATSs with SMARTs 

Sequential-multiple assignment randomized trials (SMARTs) entail 

randomizing patients to interventions each time a treatment choice must be made.  

SMART designs provide data that can be used to assess the comparative efficacy of 

the treatment options available at each isolated decision point, but they also provide 

data essential for comparing the effectiveness of entire strategies and for 

personalizing treatment over time. 

SMARTs are becoming popular in the field of psychology.  Published or 

completed studies address ATSs for drug addiction110, attention deficit-

hyperactivity disorder111, schizophrenia112, depression113,114, alcoholism 

(NCT00115037), and Alzheimer disease.115  Ongoing SMARTs are addressing 

treatment of bipolar disorder (NCT01588457), obsessive-compulsive disorder 

(NCT01148316), depression (NCT01880814), autism (NCT01724047), obesity 

(NCT1350531) and illicit drug use during pregnancy (NCT01177982).  Although 

studies may be designed as SMARTs115-117, the outcomes from the different 

randomizations (e.g., initial treatment versus treatment for those not responding to 

initial treatment) are sometimes reported in separate publications, as is the case 

with Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE)-

Schizophrenia112,118, CATIE-Alzheimer disease119 and Sequenced Treatment 

Alternative to Relieve Depression (STAR*D).120  If the goal is to identify an optimal 

ATS, we encourage reporting the results in a comprehensive publication to 

communicate the proposed optimal ATS clearly. 
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3.12 A SMART might address GVHD prophylaxis and treatment 
better than other study designs 

Because of the diversity of possible prophylactic and therapeutic treatments 

for GVHD, the current work simplifies the choices by categorizing them as “non-

specific highly T-lymphodepleting” (NHTL) or not.  Based on the ASBMT systemic 

review,59 suppose that the incidence of acute GVHD is 40% with standard 

prophylaxis and that 52% of patients who develop GVHD require salvage treatment, 

regardless of the type of prophylaxis received.  Further suppose that NHTL 

prophylaxis decreases the incidence of steroid-refractory GVHD by half and that 

NHTL treatment improves 1-year survival among those requiring salvage treatment 

from 49% to 59% in patients who did not receive NHTL prophylaxis, but due to 

infection and relapse, decreases 1-year OS to 25% in those who previously received 

NHTL prophylaxis.  Finally, suppose that among those without GVHD or with 

steroid-responsive GVHD, a rapid taper of immunosuppression improves 1-year 

survival compared to a slow taper, at 76% versus 66%, in the standard prophylaxis 

arm, but due to infection and relapse, a slow taper decreases survival among those 

who received NHTL prophylaxis to 60%.  An omniscient being would know the true 

trajectories and survival rates of all groups of patients in the population, as depicted 

in Figure 3 (next page). 

There are 8 possible adaptive treatment strategies, which we can consider 

“clinical practice guidelines.”  Under these assumptions, the anticipated 1-year OS 

for a population that followed the given practice guideline is indicated in 

parentheses:   

1.  A1 = 1 followed by A2-taper = 1 if response, else A2-treatment = 1 (70.7%);   

2.  A1 = 1 followed by A2-taper = 0 if response, else A2-treatment = 0 (58.9%);  

3.  A1 = 1 followed by A2-taper = 1 if response, else A2-treatment = 0 (73.2%);   

4.  A1 = 1 followed by A2-taper = 0 if response, else A2-treatment = 1 (56.4%);    

5.  A1 = 0 followed by A2-taper = 1 if response, else A2-treatment = 1 (72.5%);    

6.  A1 = 0 followed by A2-taper = 0 if response, else A2-treatment = 0 (62.5%);    

7.  A1 = 0 followed by A2-taper = 1 if response, else A2-treatment = 0 (70.4%);  

8.  A1 = 0 followed by A2-taper = 0 if response, else A2-treatment = 1 (64.5%).  
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Figure 3. Trajectories post allotransplant in a population. At the A1 decision point, action 
1 refers to non-specific highly T-lymphodepleting (NHTL) prophylaxis and action 0 to 
“standard” (non-NHTL) prophylaxis.  At the A2 decision point, patients with steroid-refractory 
GVHD may receive NHTL treatment (action 1) or “standard” treatment (action 0). Patients 
with no or minimal, steroid-responsive GVHD may be prescribed a rapid taper (action 1) or a 
slow taper (action 0) of immunosuppression. The incidence of GVHD and the true 1 year OS for 
each trajectory are depicted, but would only be known to an omniscient being.  

 

Institutional practice guidelines aimed at improving the overall survival of a 

population are often constructed through stringing together the results of single-

stage trials.  For example, at the A1 decision point, 7 randomized trials compared 

highly-lymphodepleting prophylaxis (ATG) versus standard prophylaxis (e.g., 

cyclosporine and methotrexate), showing a reduction in the proportion of patients 

developing grade II-IV acute GVHD but no benefit in terms of overall survival.121,122  

In another trial, rapid taper (A2-taper = 1) versus slow taper (A2-taper = 0) were 

compared in responders, i.e., in patients without GVHD or with steroid-responsive 

GVHD.60  In yet another trial among patients with acute GVHD who did not respond 
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to steroids alone, highly lymphodepleting GVHD second-line treatment (ATG for A2-

treatment = 1) was compared to high dose methylprednisolone (A2-treatment = 0) on the 

basis of the proportion achieving complete or partial responses after 1 month, 

toxicity, and survival.123  It may seem logical to piece together the results from these 

(and other) separate trials to figure out the “best strategy” among the 8 outlined 

above.  For example, we could deduce the best “A1” prophylaxis for preventing 

GVHD, and then the best “A2” treatment for prolonging survival if GVHD were to 

occur.  However, particular choices for A1 prophylaxis might yield fewer patients 

with GVHD but might also have other effects that render intensification at the time 

GVHD develops less effective with respect to prolonging survival.  Because of such 

delayed effects and difficult-to-predict net effects, it is preferable to study entire 

strategies. 

One way to account for the upstream effect of prophylaxis when deciding on 

taper speed or GVHD treatment, and to account for the downstream effect of taper 

speed or GVHD treatment when deciding on prophylaxis, is to conduct a 2-stage 

RCT.  Patients would be randomized up-front to either NHTL or standard 

prophylaxis.  Later, those who develop no or minimal GVHD would be randomized 

to a rapid or a slow immunosuppression taper.  Those who develop steroid-

refractory GVHD would be randomized to NHTL or standard second-line treatment.  

However, allowing for optimal randomization probability at the prophylaxis stage, 

80% power (and 5% type I error) in detecting each of the salient interactions 

outlined above, and no losses-to-follow-up, such a trial would require enrolling 

4932 patients.  Alternatively, we could design this trial with a full factorial approach 

where patients would be randomized up-front to one of four blocks: 

AB: NHTL prophylaxis with NHTL treatment or rapid taper, depending on 
response. 

Ab: NHTL prophylaxis with standard treatment or slow taper, depending on 
response. 

aB: Standard prophylaxis with NHTL treatment or rapid taper, depending on      
response. 

ab: Standard prophylaxis with standard treatment or slow taper, depending on 
response. 
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While a factorial design would be more efficient than an RTC in estimating the 

main effects of treatment, unfortunately, because the effect of the interactions is 

lesser in magnitude than the main effects, and because of the relative scarcity of 

patients with steroid-refractory GVHD, in this instance a factorial design would not 

offer any efficiency over an RCT.  With the same assumptions as above, 4932 

patients would still be required.  

 We could use SMART designs to inform the selection of the optimal 

treatment for each patient at each time (i.e., at the prophylaxis stage, when the 

patient is ready for tapering, or when the patient requires augmented treatment for 

GVHD).  The SMART would recapitulate the design of the 2-stage RCT but the 

analysis would be performed with Q-learning.  As a simulation exercise, I created a 

population of 20,000 patients whom the “Omniscient Being” pre-programmed by 

coding their individual trajectories respecting the incidences of minimal and 

steroid-refractory GVHD and the 1-year survival rates depicted in Figure 3.  The 

trajectories included the prophylaxis to which they were to be assigned, whether 

they would get refractory GVHD or not, if yes, then the second-line treatment to 

which they would be randomly assigned, and if not, then the taper speed to which 

they would be randomly assigned, and their outcomes.  To simulate the trial, I 

randomly drew a sample of size n from the population of 20,000.  I conducted the 2-

stage RCT on this sample (with a randomization probability of 50% for each A1 and 

A2 decision) and developed Q-learning models from the trial results to predict which 

drug is the best prophylaxis, which is the best second-line treatment, and which 

taper speed is best.  Then, to simulate clinical practice after the trial results are 

reported, I randomly sampled 300 new patients from the same 20,000 patient 

population, and asked the Q-learning algorithm to predict which prophylaxis and 

which taper speed or treatment, as applicable, was optimal for each of the 300 

patients.  Finally, for each patient, I compared the individual patient prediction to 

what was known by the Omniscient Being to be the true best drug for that patient at 

that time.  I repeated this procedure of drawing random samples, running the trial, 

fitting the model, and out-of-sample individual patient prediction on 300 random 
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patients 1000 times for each trial sample size n, varying n from 40 to 996.  Figure 4 

shows what proportion of the 1000 times the algorithm selected the correct drug 

for all subsequent 300 non-trial patients.  At sample sizes of approximately 560 trial 

patients, all salient interactions are detected with 100% patient-level accuracy by 

the models developed from at least 80% of trials.  Although the confidence intervals 

for the estimated outcomes given alternative drug choices can overlap, the selection 

is made by comparing the point estimates for the outcomes.  Note that this may not 

be reflective of the performance of an estimated ATS in the “real world,” where 

institutions or clinical societies may be hesitant to endorse a strategy that is not 

“statistically significant” in some sense or other.  That is, “real world” adoption of an 

ATS would need to be shown to be statistically superior to some alternative before it 

is likely to be widely adopted.  Potential approaches to validating the practical utility 

such ATSs are discussed under Section 7.5.3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Simulation of a SMART. The graph depicts the probability of correctly classifying 100% of 
a random sample of 300 patients with respect to the optimal prophylaxis drug, taper speed, and 
treatment for refractory GVHD. The blue line represents selecting a rapid taper instead of a slow 
taper in patients who received NHTL prophylaxis and developed no or minimal GVHD. The green line 
represents choosing standard second-line GVHD treatment over NHTL GVHD treatment for patients 
who developed refractory GVHD after NHTL prophylaxis. The red line represents choosing NHTL 
second-line GVHD treatment over standard GVHD treatment for patients who developed refractory 
GVHD after standard prophylaxis. The yellow line represents recognition that under optimal 
subsequent treatment or taper speed, NHTL prophylaxis is better than standard prophylaxis. 
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Assessing potential tailoring variables other than the sequence of treatments 

would require increasing the sample size to ensure sufficient representation of all 

combinations of relevant covariates (i.e., to have sufficient power to yield consistent 

estimates).  Nonetheless, this example illustrates the expected efficiency gain in 

recruitment targets, administrative costs, and time to obtaining important results 

for both responding and non-responding patients associated with a SMART analysis 

compared to a standard 2-stage RCTs or factorial design, or to multiple individual 

trials with separate protocols. 

A thorough discussion of sample size estimation for SMARTs when the 

confidence intervals of effect sizes are of interest is beyond the scope of this thesis.  

Suffice it to mention that a simple way to calculate the required sample size is to 

identify the primary hypothesis and apply traditional sample size formulae.124  Thus, 

the SMART may be powered to detect a difference between initial treatments 

(controlling for later treatments) or to detect a difference between salvage 

treatments (controlling for the initial treatments).  While that approach still allows 

testing hypotheses about synergistic and antagonistic effects of sequential 

treatments without confounding bias thanks to randomization at each decision step, 

it may not afford sufficient power to answer those research questions definitively 

and does not take advantage of the information that can be gleaned from an 

adequately-powered SMART.   

Two potential research questions can only be answered with a SMART 

design.125  These are (1) comparing effects of two entire strategies within a 

population and (2) choosing the single best (or worst) overall strategy for particular 

patients and by extension, for the population.  Most researchers have considered 

that a SMART would aim to identify which ATSs are scientifically interesting (either 

because their performance seems particularly good or poor).  The one or two 

interesting ATSs would then be tested in a traditional RCT against a suitable control 

arm.  Such an RCT would be powered in the usual way and require fewer patients 

than a SMART, because the SMART would contain many trajectories that would 

ultimately not warrant further testing.  Because SMARTs are typically viewed as 
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“hypothesis generating” rather than as confirmatory trials, little attention has been 

paid to preserving a trial-wise type I error.   

3.13 SMARTs are not adaptive designs 

In adaptive trials, the probability of being randomized to a particular 

treatment depends on the results obtained for the various treatments by patients 

already enrolled in the trial.  Adaptive trials classically seek to minimize the number 

of patients exposed to inferior treatments.  They can be implemented when the 

outcome follows fairly quickly from the time treatment is started and recruitment is 

slow relative to the time that typically elapses between assignment and outcome.  

By contrast, in SMARTs, although randomization probabilities might depend on the 

covariates, the randomization probabilities applicable to any given set of covariates 

remain constant throughout the time the study is being conducted.82  Some 

researchers are developing ways to integrate adaptive trial methodology into 

SMARTs, but that is not yet common practice.85,126 

3.14 Using observational data to inform SMART design 

If all conceivable ATSs for a particular disease were under study, the cost, time 

and logistic barriers to launching a SMART in order to discover the likely optimal 

ATSs could be formidable.  Therefore, it is advisable to choose which ATSs to test in 

a SMART carefully.  This selection can be accomplished by turning to observational 

data from such sources as cohort studies, registries, administrative databases or 

hospital medical records.  However, there are two potentially insurmountable 

pitfalls in using observational data to propose ATSs.  The first is that if candidate 

tailoring variables are missing from the data set, it will be impossible to learn about 

their potential for improving treatment through personalization.  The second is that 

all confounding variables at each decision point must be recorded; otherwise, 

confounding bias is likely to lead to flawed proposals.  Sensitivity analyses might be 

able to inform us about the magnitude of potential bias when the prevalence of 

unmeasured confounders at each decision point and the strength of their 

association with the endpoint can be estimated.  Sensitivity analyses have been 
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developed in many settings, though to date none has been proposed for any method 

of estimation for ATSs.  Thus, although the SMART retains its status as the gold 

standard for ATS discovery, observational data might also provide information that 

is useful to developing ATSs.  Moodie and colleagues recently studied four methods 

for handling confounders including direct adjustment and different ways of 

incorporating propensity scores (the predicted probability of receiving a particular 

treatment given a set of covariates).83,107  Direct adjustment generally performed 

best. 

Sample size estimation, or the corresponding power calculation, for 

developing ATSs from observational data has not been addressed.  In practice, as in 

this thesis, the most common approach in observational studies is to use all 

available patients because the added computational costs are trivial.  The adequacy 

of the attained power may be explored in retrospect. 

3.15 Censoring 

Whether in the context of a SMART or observational data, right censoring can 

be handled by inverse probability of censoring weights: The probability of not being 

censored is modeled and all observations leading to estimations of 𝛽̂𝑗  and 𝜓̂𝑗  are 

weighted by the inverse of that probability, thereby up-weighting those individuals 

whose events are observed to represent both themselves and individuals who are 

“similar” (with respect to measured covariates) but whose events are censored.  

This technique can also handle the situation where not all participants consent to 

re-randomization at the second treatment allocation point (in the case of a 2-stage 

SMART), where information on the second treatment is not available for a subset of 

patients (in the case of observational data), or where individuals are lost to follow-

up for other reasons.127 
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4. OBJECTIVE 

The present work seeks to answer the question of whether observational data 

from a particular registry are useful for discovering ATSs related to management of 

immunosuppression in the context of AHCT; any interesting ATSs could then be 

subjected to a confirmatory SMART or RCT.  For example, patients could be 

randomized to care guided by an online application that selects the best GVHD 

prophylaxis and, if necessary, treatment versus usual physician-directed choices.  

Alternatively, an institution might choose to implement the online algorithm for a 

year, withdraw it for a year, and then re-implement it for a year.  If disease-free 

survival is better for the patients who were transplanted and treated in the years 

when the algorithm was in place, and that benefit extinguished in the year the 

algorithm was withdrawn, that finding would serve as circumstantial evidence that 

personalized ATSs developed with Q-learning from observational data could add 

value.  The path to clinical translation of this work in particular and of machine 

learning approaches in general is discussed in more detail in Sections 7.5.3 and 7.5.4 

respectively. 

This is a “feasibility study” because the registry was not originally designed for 

analyzing sequences of treatment.  The primary aim is to propose an ATS for 

immunosuppressive management that would maximize disease-free survival at 2 

years post AHCT performed for AML and MDS.  Because the choice of GVHD 

treatment might be affected by the type of GVHD prophylaxis received, and the 

optimal GVHD prophylaxis might also vary according to individual patient and 

donor characteristics, this project begins to develop personalized 

immunosuppressive strategies at the stage of GVHD prophylaxis.  Next, because 

glucocorticoids are established as first-line treatment and there was not a lot of 

variability in “first-line” treatment (the majority of patients having received steroids 

plus a calcineurin inhibitor), we did not create a “decision node” for first-line 

therapy.  Because the CIBMTR does not collect information on the steroid taper 

speed, rapid versus slow taper, as envisioned in the in silico SMART, could not be 
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studied in the database.  The decision at the second stage of personalization of 

therapy thus entailed the choice between NHTL versus non-NHTL salvage treatment 

in patients who failed to respond to systemic steroids plus one other systemic agent.  

We recognize that because the indication for each drug is not recorded by the 

CIBMTR, in reality the non-steroid systemic agent might have been instituted (1) to 

minimize the dose and therefore the side effects of steroids, or (2) as a concurrent 

steroid-potentiating agent for patients in whom steroids alone were instinctually 

projected to be insufficient, or (3) because of failure of GVHD to respond to steroids 

alone.  Because patients in whom the first or second reason applies might not be as 

“sick” as patients for whom the third reason applies, we avoided defining “salvage 

treatment” as merely requiring 2 drugs.  By defining salvage treatment as requiring 

a minimum of 3 systemic drugs, at least one of which was a systemic corticosteroid 

and at least 1 of which was not merely continued from prophylaxis, we sought to 

attain a homogeneously “sick” sample of GVHD patients who truly needed more 

than steroids alone.  Only two stages of personalization were considered.  

5. METHODS 

5.1 Center for International Blood and Marrow Transplant 
Research 

The CIBMTR was established in 2004 as a collaboration of the International 

Bone Marrow Transplant Registry, the Autologous Blood and Marrow Transplant 

Registry, and the National Marrow Donor Program (NMDP).  It comprises 450 

health care institutions across the globe that report longitudinal data on consecutive 

allogeneic and autologous hematopoietic stem cell transplants to the statistical 

center at the Medical College of Wisconsin (Milwaukee, WI) and the NMDP 

Coordinating Center (Minneapolis, MN).  In accordance with Public Laws 109-129 

(2005) and 111-264 (2010), American transplant centers must submit outcomes 

data on every allogeneic transplant to the CIBMTR.  American transplant centers 

may voluntarily submit data on autologous transplants, and centers outside the 

United States voluntarily submit data on both autologous and allogeneic transplants.  
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The clinical database now comprises more than 330,300 transplant recipients.  Data 

quality is ensured by computerized checks for discrepancies, physician review of 

submitted data, and on-site audits for the compliance of participating centers.128,129  

The CIBMTR collects data two levels of resolution: Transplant Essential Data 

(TED) and Comprehensive Report Form (CRF) data.  TED include age and sex of the 

recipient, disease type, date of diagnosis, pre-transplantation disease stage, graft 

source, conditioning regimen, post-transplantation blood count reconstitution, 

development of GVHD, disease progression and survival, secondary malignancies, 

donor cell infusions, and cause of death.  All contributing centers report TED.  The 

CRFs are more extensive.  They include more details regarding all the 

aforementioned categories of information, as well as data on infections, organ 

toxicity, organs involved in acute and chronic GVHD, immunosuppressant drugs, 

and chimerism studies.  A subset of registered patients is selected for CRF 

submission by a weighted randomization scheme.  Both TED and CRFs are collected 

at specified time points: before transplantation, then 100 days, 6 months and 

annually after transplantation or until death.130  

5.2 Study Population 

To expedite availability of a data set, the CIBMTR selected 11,141 patients 

transplanted between 1995 and 2007 who had been retrieved for a study on chronic 

GVHD.131  Use of the registry data was approved by the CIBMTR Committee on Graft-

versus-Host Disease (#GV13-02) and by the McGill University Research Ethics Board 

(#A07-E61-13A).  Eligible diagnoses included AML and MDS.  Exclusion criteria 

included lack of documented GVHD prophylaxis, ex vivo T cell depletion or CD34+ 

cell selection of the graft, lack of information about how acute GVHD was treated, 

and acute GVHD treatment that did not meet standard of care because multiple 

systemic agents without a systemic corticosteroid were administered.  Early status 

disease was defined as AML in first complete remission (CR1), MDS subtype 

refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS), or 

MDS with <5% marrow blasts prior to AHCT.  Intermediate status disease was 
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defined as AML in second or higher CR (≥ CR2).  Advanced status disease was 

defined as AML in relapse or primary induction failure, refractory anemia with 

excess blasts (RAEB), RAEB in transformation (RAEB-T), or MDS with marrow blasts 

≥ 5%.  Patients with marrow blasts < 5% pre-AHCT but unspecified disease status 

were analyzed in the intermediate status group.131  Patients received a variety of 

conditioning regimens with and without total body irradiation (TBI) and more 

rarely, total lymphoid irradiation (TLI) or thoraco-abdominal irradiation (TAI).  

Conditioning regimens were classified as “myeloablative,” “reduced-intensity,” or 

“non-myeloablative” according to the current CIBMTR directive.132,133  Briefly, 

myeloablative conditioning was defined by single-dose TBI ≥ 500 cGy or ≥ 800 cGy 

total in fractionated doses, busulfan ≥ 9 mg/kg PO or ≥ 7.2 mg/kg IV, melphalan ≥ 

150 mg/m2, or thioptepa ≥  10 mg/m2.  Reduced-intensity regimens included those 

with 200 to 500 cGy TBI in a single fraction or 800 cGy fractionated, busulfan-

fludarabine with less than myeloablative doses of busulfan, fludarabine with < 150 

mg/m2 melphalan, and cyclophosphamide/etoposide.  Non-myeloablative regimens 

included those with 200 cGy TBI and purine-analogue based regimens such as 

fludarabine-cyclophosphamide.  Patients also received a variety of regimens for 

GVHD prophylaxis.  These were classified as calcineurin-inhibitor (CNI) based or 

not, with or without mycophenolate mofetil, methotrexate, or other drugs.  HLA 

matching was classified as well-matched, partially-matched, or mismatched 

according to CIBMTR criteria.134  Well-matched pairs had either no identified HLA 

mismatch and informative data at four loci (i.e., HLA-A, -B, -C and -DRB1) or allele 

matching at the four loci.  Partially-matched pairs had a single locus mismatch 

and/or missing HLA data at a single locus.  Mismatched pairs had ≥2 allele or 

antigen mismatches.  If 2 umbilical cord grafts were administered, the worst match 

to the patient was entered into the analysis.  Only first transplants were considered.  

Patients were censored at the time of second transplant, loss-to-follow-up, or when 

they received NHTL salvage treatment for chronic GVHD prior to or without 

requiring treatment for acute GVHD.  
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5.3 Definition of outcomes  

Hematopoietic reconstitution was defined as an absolute neutrophil count 

≥500 × 109/L that was maintained for 3 consecutive days.  Acute GVHD grade was 

defined by consensus criteria.26  Chronic GVHD grade was defined by the Seattle 

criteria.39  Chronic GVHD severity43 and onset135 were defined per previously-used 

CIBMTR definitions.  The time to acute (or chronic) GVHD was defined as the time 

from graft infusion (day 0) until the first recorded date-of-onset of acute (or 

chronic) GVHD; death without acute (or chronic) GVHD was considered a competing 

event.  The date of relapse post AHCT was the first recorded date of relapse detected 

by hematological, FISH or conventional cytogenetic methods.  The primary outcome 

was disease-free survival (DFS), defined as survival time after day 0 without 

confirmation of disease persistence, relapse or death.  Therefore, patients not in CR 

at the time of transplant were included in the DFS estimate. 

5.4 Simplification of GVHD prophylaxis and treatment 

Because the data set contained over 11 classes of agents indicated for GVHD 

prophylaxis and over 22 classes of agents for treatment of acute and/or chronic 

GVHD, the pre-specified plan was to compare NHTL therapies to the ensemble of 

non-NHTL therapies.  NHTL therapy included ATG and ALG, alemtuzumab, anti-

CD45 antibodies, OKT-3, other anti-CD3 antibodies that do not exhibit strong 

selectivity for activated T cells, anti-CD2 antibodies, and (when used after day 0) 

purine analogue chemotherapy.  Antibodies such as ATG and alemtuzumab were 

considered as GVHD prophylaxis even if they were administered concurrently with 

conditioning and not after day 0 because of their long half-life in circulation and 

their proven ability to induce profound lymphodepletion for months post-

infusion.136-142   The ensemble of non-NHTL therapies included drugs that inhibit but 

do not necessarily deplete T cells, such as calcineurin inhibitors and mTOR 

inhibitors, and monoclonal antibodies that more selectively deplete activated T cells, 

such as monoclonal antibodies directed against CD25,143-145 the anti-CD3 

visilizumab (HUM291)146 and the anti-CD147 gavilimomab,147 as well as 
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extracorporeal photopheresis.  Topical treatment was defined as cutaneous, 

ophthalmic and inhaled corticosteroids, creams and ointments such as tacrolimus 

and pimecrolimus, cyclosporine eye drops (Restasis™), and psolaren/ultra-violet A 

(PUVA).  Oral beclomethasone and budesonide were counted as a “topical 

treatment” of the gastrointestinal tract per CIBMTR directives148,149 because they 

are poorly-absorbable and subject to high levels of first-pass metabolism.150-152  

Only immunomodulating therapies were considered; symptomatic treatments such 

as octreotide (for diarrhea) and anti-pruritics were ignored.  Although intravenous 

immunoglobulin (IVIG) may be given with the intent of immunomodulation in doses 

of 0.8 – 2.0 g/kg, it is often given as “immune replacement therapy” in doses of 0.2 – 

0.5 g/kg to prevent or treat infection.  Because information on the dose of IVIG was 

not available and the intent of IVIG therapy could easily be misclassified, and 

because there is no conclusive evidence that IVIG is effective prophylaxis or 

treatment for GVHD,153 IVIG was not counted in the GVHD prophylactic or 

therapeutic arsenal. 

Because therapies given in the preceding interval are inventoried en bloc at the 

time each subsequent CRF is completed but the start and stop dates for each drug 

are not recorded, the CIBMTR registry affords no ability to accurately distinguish 

lines of therapy.  Moreover, while corticosteroids usually figure in first-line therapy, 

they may do so alone or in combination with “steroid-sparing” agents.  For the 

purposes of this analysis, “first-line” therapy for acute or chronic GVHD was 

considered to be (1) any 2 systemic therapies, which might include a systemic 

corticosteroid, with any number of topical treatments, or (2) continuation of a 

prophylaxis regimen with any number of systemic drugs without increasing their 

doses (e.g., cyclosporine + mycophenolate), with or without a systemic 

corticosteroid continued from prophylaxis and with or without the addition of 

topical agents, or (3) any number of topical therapies.  “Salvage” treatment was 

defined as ≥ 3 systemic therapies, at least one of which was a systemic 

corticosteroid, and at least one of which was new (not merely continued from 

prophylaxis).  Note that “salvage” patients could have received any number of 
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topical therapies but only systemic therapies were counted towards assigning the 

“salvage” designation. 

For the purposes of counting treatments, note that all topical corticosteroids 

were lumped together, such that a patient who received dexamethasone mouth 

rinses, fluocinonide cream and oral budesonide would have been considered to have 

a “topical treatment” count of 1.  All systemic calcineurin inhibitors (CNIs) were 

lumped together as one drug for the purpose of counting the number of systemic 

agents used during the course of GVHD “salvage” treatment, because switching from 

cyclosporine to tacrolimus or vice-versa is usually intended to minimize adverse 

effects or because tacrolimus is perceived to be marginally more effective for GVHD; 

it does not change the therapeutic mechanisms of action.  However, if a patient 

switched from one prophylactic CNI to the other CNI for treatment at the time GVHD 

was diagnosed, that patient was considered to have embarked on a new treatment 

and not to have simply continued prophylaxis.  Twenty-five patients received NHTL 

treatment as first-line therapy for acute GVHD according to this definition; they 

were excluded from the analysis cohort.  For chronic GVHD requiring treatment 

before acute GVHD, no patient received NHTL therapy first-line but 18 received 

NHTL salvage therapy.  All 1382 patients who were treated for chronic GVHD before 

acute GVHD were ineligible to proceed to the “second decision stage” which entailed 

studying the effect of NHTL salvage therapy for acute GVHD.  The original analysis 

plan had been to analyze acute and chronic GVHD salvage patients together, but 

their baseline and outcome characteristics were quite different.  In the absence of 

detailed descriptions of their clinical presentation and in view of the fact that the 

distribution of drugs differed strongly for patients in whom “chronic” GVHD was 

treated before or without subsequent acute GVHD treatment, combining these 

patients with those treated first for acute GVHD was deemed non-justifiable.  

Indeed, the combined model “diluted” the effects of NHTL salvage therapy for acute 

GVHD.  Therefore, separate models were created for patients with acute-GVHD-

treated-first and patients with chronic-GVHD-treated-first.  However, due to only 18 

patients not first diagnosed with treatment-requiring acute GVHD having received 
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NHTL treatment as salvage therapy (and 0 as first-line therapy) for chronic GVHD, 

there were insufficient numbers to sustain the chronic GVHD second-stage decision 

model.  Therefore, only the results for patients first treated for acute GVHD are 

presented here.  Lastly, because each CRF only captures the maximum grade of 

GVHD in the interval it covers but does not provide any details of how the global or 

organ-specific severity changed in response to therapy, we assumed that the 

maximum GVHD grade recorded on the same form on which any GVHD treatment is 

first recorded corresponds to the grade at the time treatment-requiring GVHD was 

first diagnosed.  The impact of this assumption is discussed under Limitations in 

Section 7.4.    

5.5 Data management  

5.5.1 Defining “first-line” versus “salvage” therapies 

Several series of CRFs were used for this study because different CRFs were 

implemented over the years.  Variable names and levels were harmonized across 

different CRFs.  For each patient, the first CRF on which specific therapies were 

documented for acute GVHD yielded the list of (acute) GVHD treatments from which 

“first-line” and “salvage” treatments were assigned.  Acute GVHD treatments 

trumped chronic GVHD treatments.  Only if no specific treatment for acute GVHD 

was documented on any form, then the first form on which specific therapies were 

documented for chronic GVHD yielded the list of “first-line” and “salvage” (chronic) 

GVHD treatment.  Inherent in this approach is the simplification that acute GVHD 

always precedes chronic GVHD in patients who develop both.  Data collected by the 

NMDP prior to the inception of the CIBMTR had been transferred to the CIBMTR 

database as though derived from a single CRF, so separation of salvage treatments 

across multiple forms with known timing was not available for “NMDP Legacy” 

patients. NMDP Legacy patients comprised 23% of the entire cohort and 16% of 

patients at the second-stage (A2) decision. If specific therapies for acute GVHD were 

indicated on “untimed” forms, then we assumed that treatment-requiring acute 

GVHD occurred first; otherwise, the “untimed” treatments for chronic GVHD were 
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extracted.  For “timed” patients, treatments administered in subsequent years (i.e., 

listed only on forms following the index form that declared the initiation of GVHD 

treatment) were not considered. 

5.5.2 Assigning a time for making the A2 decision 

Because the date of initiation of “salvage” therapy was not collected, the date 

of diagnosis of acute or chronic GVHD (whichever came first) was used for the time 

the A2 decision would be made.  Essentially, this means that the proposed ATS 

recommends the choice of salvage treatment at the time of acute GVHD diagnosis, in 

the eventuality that front-line treatment fails.  This time point will be called the “A2 

decision point.”  As mentioned, there were insufficient numbers of patients who 

received NHTL as salvage treatment for chronic GVHD (n = 18) to warrant a 

separate analysis of NHTL salvage versus standard salvage for chronic GVHD. 

5.5.3 Missing Data 

Patients who were missing all documentation of specific drug treatment for 

GVHD and had maximum acute GVHD grades of 0 or I and maximum chronic GVHD 

severity of “none” or “mild” over their entire post-transplant course were presumed 

to have needed no GVHD treatment or only first-line treatment and so were not 

considered “missing” from the sample of patients needing salvage treatment.  By 

contrast, patients with maximum acute GVHD grades of II–IV or maximum chronic 

GVHD severity scores of “moderate” or “severe” in the post-transplant course but 

lacking any documentation of specific immuosuppressive treatments could possibly 

have needed salvage treatment. They were therefore considered “missing” from the 

sample of patients destined to estimate the best patient-specific salvage therapy.  

Because their need for salvage treatment and the specific treatments administered 

were impossible to glean from the data set, they were excluded from the entire 

analysis cohort (including analyzing the efficacy of NHTL prophylaxis).  

Multiple imputation using chained equations (MICE) was used to impute 

missing values of covariates or outcomes where <10% of values were missing.154 
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For variables missing 10% or more values, a “missing” category was created.  

Creating multiple imputations with MICE, as opposed to single imputations, 

accounts for the statistical uncertainly in the imputations.155  The “mice” package in 

R was used to implement predictive mean matching for numeric variables, logistic 

regression for binary variables, and multinomial logistic regression for factor 

variables with >2 levels.154  Because of computational intensity, time-to-event 

variables were imputed using conditional random sampling.  For example, time to 

acute GVHD was imputed by randomly sampling from a group of patients with the 

same conditioning intensity, graft source, donor relation, and HLA match, and 

survival time less than or equal to that of the target patient with missing data.  

5.6 Data Analysis 

5.6.1 Descriptive statistics 

Covariates available in the data set and known from existing literature to be 

associated with outcome were tested for their univariable association with NHTL 

therapy at each stage (Tables 3 and acute GVHD-related variables in Table 4).  None 

of these covariates were thought to be mediators, i.e., they were considered pre-

treatment factors (pre-prophylaxis or pre-salvage therapy, as appropriate) and not 

intermediaries in the causal pathway linking the type of therapy to relapse or 

survival time.  Intermediate and ultimate outcomes are also described (Table 4).  

The Chi-squared test was used to compare categorical variables, the Fisher exact 

test for categorical variables with small cell size (≤5 observations), the Mann-

Whitney-Wilcoxon test for continuous variables, and Gray’s method for comparisons 

of cumulative incidence.  Univariable probabilities of DFS and OS were calculated 

using the Kaplan-Meier estimator with Greenwald’s formula for the variance.  

Probabilities of acute and chronic GVHD, non-relapse mortality and relapse were 

additionally calculated using cumulative incidence curves to accommodate 

competing risks.156   
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5.6.2 Q-model construction 

Logistic forms of the Q-functions were used to study 2-year disease-free 

survival.  All variables that would be useful to test for interaction with prophylaxis 

or treatment type were considered.  Recipient and donor age were initially modelled 

linearly but ultimately a categorical parameterization was selected to be consistent 

with CIBMTR practice.  This necessitated creating a combined donor age-graft 

categorical variable to avoid attributing a donor age to cord blood grafts yet permit 

a single model applicable to all graft types. (Alternatively, separate models for 

marrow/peripheral blood grafts and for cord blood grafts would have been needed.) 

As well, year of transplant (modelled linearly, categorically, and with polynomial 

terms) and center practice (whether the center contributed patients to the NHTL 

prophylaxis arm and whether the center contributed patients to the NHTL salvage 

arm) were tested as potential confounders without interacting them with 

prophylaxis or treatment type.  Bidirectional model selection using the Akaike 

Information Criterion was abandoned because each imputation yielded a slightly 

different set of suggested predictors.  Instead, saturated models were tested and 

particular variables removed if they worsened the fit as judged by plotting the 

observed 2-year DFS distribution within quartiles of the predicted 2-year DFS 

stratified by patient age and prophylaxis or treatment type.  In particular, year of 

transplant and center practice were non-contributory (non-significant p-values) and 

in fact worsened model fit, so were removed.  

Five imputed data sets were analyzed separately, and the results of the 

analyses were combined by averaging the model coefficients.  To account for both 

within-imputation and between-imputation variance,157  confidence intervals for the 

predictors were constructed by bootstrapping the imputations and averaging the 

coefficients of Q-models constructed on blocks of 5 imputed data sets (all 5 being 

derived from the same bootstrapped sample of patients), 570 times.  A p-value of < 

0.05 was considered significant so the 2.5%th and 97.5th% percentiles of the 

distribution of “bootstrapped” beta coefficients defined the confidence intervals of 
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the beta coefficients.  Patient-specific predictions for the best intervention at each 

stage were made from each of the original 5 imputed data sets by predicting the 

outcome on the log-odds scale under each potential intervention (NHTL or salvage).  

The 5 predictions were then averaged to yield a final patient-specific prediction on 

the log-odds scale, which was then transformed into a predicted probability of 2-

year DFS by applying the expit function.  

Inverse probability of censoring weights (IPCW) were calculated to account 

for the “absence” of particular patients from the A2 and A1 models due to losses-to-

follow-up (LTFU).  Patients were deemed LTFU in the first interval if they were not 

known to die before 2 years or to survive to that time, and did not progress to the 

second treatment interval because they did not require acute GVHD salvage 

treatment or were “ineligible” for inclusion in the A2 model on the basis of having 

first developed chronic GVHD requiring treatment.  Patients were considered LTFU 

in the second interval if they were known to initiate salvage therapy, but their two 

year outcome was unknown. IPCW serves to remove the selection bias that can arise 

when loss to follow-up depends on measured covariates.  The approach works by 

up-weighting those patients who remain in the study and are similar to lost patients, 

so that the observed patients effectively count for themselves and their equivalent, 

but incompletely observed, counterparts.127  The final IPCW used in the A2 model 

was the product of the IPCW for the first interval (from prophylaxis until the A2 

decision point) and the IPCW for the second interval (from the A2 decision point 

until 2 years post AHCT).  Variables where at least 1 level significantly predicted 

censoring in at least 1 imputed data set (p-value < or ≈ 0.05) were retained for 

constructing the models for the IPCW (Appendix Section 9.4).  Type of GVHD 

prophylaxis or treatment were not significant predictors of censoring. 

All work was performed using R, versions 3.0.1 to 3.1.2.158 
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6. RESULTS 

6.1 Patient selection 

A total of 11,141 records were available for analysis.  After exclusion of 

patients who received ex-vivo T cell depleted (n = 807) or CD34-selected (n = 205) 

grafts, NHTL treatment early in the course of GVHD therapy (n = 38), GVHD 

treatment that was “outside the standard of care” because it entailed ≥ 3 systemic 

agents (not all merely continued from prophylaxis) without first or concurrently 

trying systemic corticosteroids (n = 116), and patients missing information about 

GVHD treatment (n = 412), a total of 9563 patients were retained for analysis 

(Figure 5, next page).  These patients were contributed by 330 different centers.  

Five (1%) centers contributed ≥200 patients each, 16 (5%) each contributed 100 to 

200 patients, 85 (26%) each contributed 25 to <100 patients, 145 (44%) each 

contributed 5 to <25 patients, and 78 (25%) each contributed <5 patients.  A total of 

21 (6%) of centers contributed patients only to the NHTL prophylaxis cohort, 100 

(30%) only to the standard prophylaxis cohort, and 209 (63%) to both prophylaxis 

cohorts.  A total of 21 (6%) of centers contributed patients only to the NHTL salvage 

cohort, 90 (27%) only to the standard salvage cohort, and 112 (34%) to both 

salvage cohorts.  One hundred and seven (32%) centers did not contribute any 

patients to the salvage cohorts, but this is understandable in light of the bulk of 

centers each contributing fewer than 25 patients and the relative infrequency of 

acute GVHD necessitating triple systemic immunosuppression (see below). 
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Figure 5. Selection of the analysis set.  After exclusion of patients who received ex-vivo T 
cell depleted (n = 807) or CD34-selected (n = 205) grafts, NHTL treatment early in the course 
of GVHD therapy (n = 38), patients missing information about GVHD treatment (n = 412), 
those who received GVHD treatment that was “outside the standard of care” because it 
entailed ≥3 systemic agents (not all merely continued from prophylaxis) without first or 
concurrently trying systemic corticosteroids (n = 116), and a total of 9563 patients were 
retained for analysis .   
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6.2 Patient characteristics 

6.2.1 Baseline characteristics 

Table 3 describes patient-related, disease-related and transplantation-related 

baseline characteristics according to intervention stage.   

Table 3. Baseline characteristics of the entire cohort and according to stage 1 and stage 2 intervention 
 
Characteristic Entire analysis 

cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis 
(n =  6920) 

p-value1 NHTL 
salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

No. of centers, (% 
of all centers)2 

330 (100) 230 (43) 309 (83) <0.001 133 (40) 202 (60) <0.001 

No. of centers 
reporting both 
NHTL and non-
NHTL 
prophylaxis or 
treatment 

-- -- 209 -- 112 -- 

Year of transplant, no. (%)      <0.001     <0.001 
1995-1999 2892 (30) 451 (17) 2441 (35)  158 (46) 183 (17)  
2000-2003 2766 (29) 866 (33) 1900 (27)  96 (28) 365 (33)  
2004-2007 3905 (41) 1326 (50) 2579 (37)  93 (27) 527 (50)  
Recipient age at transplant            
Median age, yr 
(range) 

40 (<1–79) 41 (<1–77) 40 (<1–79) 0.282 36 (<1–79) 42 (<1–75) <0.001 

Age category, yr, no. (%)      <0.001     0.006 
0-9 913 (9) 390 (15) 523 (8)  41 (12) 93 (9)  
10-19 1101 (12) 314 (12) 787 (11)  37 (11) 93 (9)  
20-29 1296 (14) 285 (11) 1011 (15)  57 (16) 129 (12)  
30-39 1518 (16) 308 (12) 1210 (17)  68 (20) 171 (16)  
40-49 1971 (21) 436 (16) 1535 (22)  55 (16) 219 (21)  
50-59 1844 (19) 543 (21) 1301 (19)  60 (17) 230 (22)  
60+ 920 (10) 367 (14) 553 (8)  29 (8) 129 (12)  
Male gender, no. 
(%) 

5089 (53) 1414 (53) 3675 (53) 0.748 205 (59) 595 (56) 0.333 

Karnofsky/Lansky score at 
transplant, no. (%) 

     0.943     0.001 

<80% 899 (9) 248 (9) 651 (9)  44 (13) 85 (8)  
≥80% 8336 (87) 2314 (88) 6022 (87)  299 (86) 936 (88)  
Missing 328 (3) 81 (3) 247 (4)  4 (1) 43 (4)  
Disease for which transplant 
was performed, no. (%)  

     0.010     0.275 

AML 9318 (97) 2557 (97) 6791 (98)  336 (97) 1043 (98)  
MDS 245 (3) 86 (3) 159 (2)  11 (3) 21 (2)  
Disease status at transplant, 
no. (%)3 

     <0.001     0.164 

Early 4166 (44) 979 (37) 3187 (46)  122 (35) 409 (38)  
Intermediate 2180 (23) 710 (27) 1470 (21)  95 (27) 262 (25)  
Advanced 3155 (33) 931 (35) 2224 (32)  129 (37) 388 (36)  
NOS but <5% BM    42 (<1) 16 (<1) 26 (<1)  1 (<1) 0 (0)  
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Table 3. Baseline characteristics of the entire cohort and according to stage 1 and stage 2 intervention 
 
Characteristic Entire analysis 

cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis 
(n =  6920) 

p-value1 NHTL 
salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

blasts4 
Missing 20 (<1) 7 (<1) 13 (<1)  0 (0) 5 (<1)  
Median % bone 
marrow blasts 
pre-HCT (range) 

2 (0–100) 2 (0–100) 2 (0–100) 0.194 2 (0–100) 2 (0–100) 0.305 

Bone marrow blasts pre-
HCT, no. (%) 

     0.021     0.573 

< 5% 5899 (62) 1603 (61) 4296 (62)  200 (59) 647 (61)  
6-19% 1280 (13) 374 (14) 906 (13)  51 (14) 133 (12)  
≥20% 1355 (14) 408 (15) 947 (14)  61 (17) 169 (16)  
Missing 1029 (11) 258 (10) 771 (11)  35 (10) 115 (11)  
Conditioning regimen 
intensity, no (%)5  

     <0.001      <0.001 
 

Myeloablative 7312 (76) 1678 (63) 5634 (81)  286 (82) 724 (68)  
- With TBI, TAI, or TLI 3611 (38) 739 (28) 2872 (42)  167 (48) 408 (38)  
 Reduced-intensity 915 (10) 437 (17) 478 (7)  22 (6) 95 (9)  
- With TBI, TAI or TLI 256 (3) 94 (4) 162 (2)  7 (2) 28 (3)  
Non-myeloblative 548 (6) 108 (4) 440 (6)  11 (3) 117 (11)  
- With TBI, TAI or TLI 380 (4) 56 (2) 324 (5)  8 (2) 84 (8)  
Unknown 788 (8) 420 (16) 368 (5)  28 (8) 128 (12)  
- With TBI, TAI or TLI 26 (<1) 20 (1) 6 (<1)  0 (0) 0 (0)  
TBI, no. (%) 4231 (44) 886 (34) 3345 (48) <0.001 181 (52) 516 (48) 0.261 
Conditioning regimens, no. 
(%)5 

     <0.001     <0.001 

Bu-Cy based 3169 (33) 552 (21) 2617 (38)  103 (30) 262 (25)  
Cy-TBI based 3211 (34) 636 (24) 2575 (37)  144 (41) 357 (34)  
Flu-Cy (no TBI) based 211 (2) 60 (2) 151 (2)  3 (1) 37 (3)  
Flu-Mel based 582 (6) 328 (12) 254 (4)  26 (7) 105 (10)  
Bu-Flu (no Mel) based 1025 (11) 642 (24) 383 (5)  26 (7) 103 (10)  
Flu-TBI based 644 (7) 172 (7) 472 (7)  16 (5) 120 (11)  
Others6 without TBI   303 (3) 152 (6) 151 (2)  7 (2) 37 (3)  
Others6 with TBI 418 (4) 101 (4) 317 (5)  22 (6) 43 (4)  
Donor-recipient HLA match, 
no. (%)7 

     <0.001     <0.001 

HLA-identical 
sibling 

3623 (38) 313 (12) 3310 (48)  79 (23) 254 (24)  

Other relative 388 (4) 136 (5) 252 (4)  30 (9) 48 (5)  
- Well matched 81 (1) 11 (<1) 70 (1)  3 (1) 8 (1)  
 - Partially matched 217 (2) 63 (2) 154 (2)  21 (6) 28 (3)  
 - Mismatched 90 (1) 62 (2) 28 (<1)  6 (2) 12 (1)  
URD 4917 (51) 1744 (66) 3173 (46)  217 (63) 687 (65)  
- Well matched 2773 (29) 966 (37) 1807 (26)  84 (24) 382 (36)  
- Partially matched 1562 (16) 561 (21) 1001 (14)  81 (23) 222 (21)  
- Mismatched 582 (6) 217 (8) 365 (5)  52 (15) 69 (6)  
UCB matched (6/6) 35 (<1) 28 (1) 7 (<1)  1 (<1) 6 (1)  
UCB 1 mismatch (5/6) 110 (1) 78 (3) 32 (<1)  4 (1) 17 (1)  
UCB ≥ 2 mismatches      
(≤4/6) 

490 (5) 344 (13) 146 (2)  16 (5) 66 (6)  

Donor age        
Median donor age, 
yr (range)8 

34 (<1–85) 33 (<1–78) 35 (<1–85) <0.001 36 (<1–71) 36(<1–72) 0.855 
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Table 3. Baseline characteristics of the entire cohort and according to stage 1 and stage 2 intervention 
 
Characteristic Entire analysis 

cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis 
(n =  6920) 

p-value1 NHTL 
salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

Donor age category, yr, no. 
(%)8 

     <0.001     0.287 

0-9 298 (3) 10 (<1) 279 (4)  7 (2) 13 (1)  
10-19 527 (6) 42 (2) 485 (7)  13 (4) 19 (2)  
20-29 2066 (22) 550 (21) 1516 (22)  65 (19) 223 (21)  
30-39 2599 (27) 703 (27) 1896 (27)  110 (32) 333 (31)  
40-49 2039 (21) 524 (20) 1515 (22)  81 (23) 240 (23)  
50-59 882 (9) 207 (8) 675 (10)  33 (10) 107 (10)  
60+ 324 (3) 75 (3) 249 (4)  6 (2) 24 (2)  
Missing 202 (2) 82 (3) 120 (2)  11 (3) 16 (2)  

Donor-recipient sex, no. (%)      <0.001      0.212 
Female-to-male 1894 (20) 509 (19) 1385 (20)  84 (24) 221 (21)  
Other combination 7501 (78) 2062 (78) 5439 (79)  258 (74) 824 (77)  
Missing 168 (2) 72 (3) 96 (1)  5 (1) 19 (2)  
Donor-recipient CMV status, 
no. (%) 

     <0.001      0.598 
 

Negative/negative 2287 (24) 573 (22) 1714 (25)  94 (27) 273 (26)  
One or both positive 6834 (71) 1888 (71) 4946 (71)  230 (66) 727 (68)  
Missing or inconclusive 442 (5) 182 (7) 260 (4)  23 (7) 64 (6)  
Graft type, no. (%)      <0.001      <0.001 

 
Bone marrow 4251 (44) 904 (34) 3347 (48)  177 (51) 368 (35)  
Peripheral blood 4677 (49) 1289 (49) 3388 (49)  149 (43) 607 (57)  
Cord blood 635 (7) 450 (17) 185 (3)  21 (6) 89 (8)  
GVHD prophylaxis, no. (%)      <0.001     <0.001 
FK506 + MMF ± others9 

(except MTX) 
487 (5) 147 (6) 340 (5)  23 (7) 114 (11)  

FK506 + MTX ± others9 
(except MMF) 

2018 (21) 571 (22) 1447 (21)  72 (21) 240 (23)  

CSA + MMF ± others9 
(except FK506, MTX) 

644 (7) 212 (8) 432 (6)  21 (6) 160 (15)  

CSA + MTX ± others9 
(except FK506, MMF) 

4454 (48) 849 (32) 3695 (53)  166 (48) 365 (34)  

CSA +/or FK506 + MMF 
+ MTX ± others9 

631 (7) 297 (11) 334 (5)  25 (4) 99 (9)  

CSA +/or FK506 ± 
others9 (except MMF, 
MTX) 

1112 (12) 537 (20) 575 (8)  36 (10) 74 (7)  

Only non-CNI drugs or 
antibodies for GVHD 
prophylaxis 

127 (1) 30 (1) 97 (1)  4 (1) 12 (1)  

Non-NHTL GVHD 
prophylaxis, simplified 
classification, no. (%)  

           

Calcineurin inhibitor 9436 (99) 2613 (99) 6823 (99) 0.358 343 (99) 1052 (99) 1.000 
Methotrexate 7103 (74) 1717 (65) 5486 (79) <0.001 263 (75) 704 (66) 0.001 
Mycophenolate 1762 (18) 656 (25) 1106 (16) <0.001 69 (20) 373 (35) <0.001 
Systemic 
corticosteroids (not for 
nausea), no. (%) 

1699 (18) 567 (21) 1132 (16) <0.001 104 (30) 170 (16) <0.001 
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Table 3. Baseline characteristics of the entire cohort and according to stage 1 and stage 2 intervention 
 
Characteristic Entire analysis 

cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis 
(n =  6920) 

p-value1 NHTL 
salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

Anti-CD25 (e.g., 
basiliximab, 
daclizumab) 

33 (<1) 25 (1) 8 (<1) <0.001 1 (<1) 10 (1) 0.312 

NHTL in conditioning or as 
GVHD prophylaxis, no. (%) 

           

Any NHTL prophylaxis -- -- -- -- -- -- -- 110 (32) 286 (24) 0.095 
Any ATG10 2263 (24) 2263 (86) -- -- -- 102 (29) 259 (24) 0.071 
- Pre-infusion 1833 (19) 1833 (69) -- --  62 (18) 209 (20)  

- Post-infusion  187 (2) 187 (7) -- --  23 (7) 26 (2)  

- Pre- and post-infusion  243 (3) 243 (9) -- --  17 (5) 24 (2)  

- None 7253 (76) 377 (14) -- --  245 (70) 805 (76)  

- Missing both pre- and 
post-infusion ATG 
information  

47 (<1) 3 (<1) -- --  0 (0) 2 (0)  

Any alemtuzumab 
(anti-CD52) 

315 (3) 315 (12) -- -- -- 5 (1) 15 (1) 1.000 

- Pre-infusion 234 (2) 234 (9) -- --  2 (<1) 13 (0)  
- Post-infusion  50 (1) 50 (2) -- --  2 (<1) 2 (0)  
- Pre- and post-infusion  31 (<1) 31 (1) -- --  1 (<1) 0 (0)  
Other NHTL 
prophylaxis 

68 (1) 68 (3) -- -- -- 3 (1) 12 (1) 1.000 

1.  The Chi-squared test was used to compare categorical variables, the Fisher exact test for 
categorical variables with small cell size (≤5 observations), and the Mann-Whitney-
Wilcoxon test for continuous variables.  

2. Only 223 centers contributed any patients who received GVHD salvage treatment. This 
is understandable in light of the fact that acute GVHD requiring “salvage” therapy is 
relatively uncommon and many centers each contributed few patients to the entire 
cohort (see text). 

3.  Disease status is categorized as follows: Early = AML in CR1, RA or RARS or MDS with 
marrow blasts pre-HCT <5%. Intermediate = AML in ≥ CR2. Advanced = relapsed AML 
or primary induction failure, RAEB, or RAEB-t, or MDS with marrow blasts ≥5%.  

4.  Classified as Intermediate for analysis purposes. 
5.  Myeloablative conditioning was defined by single-dose TBI ≥500 cGy or ≥800 cGy total 

in fractionated doses, busulfan ≥9 mg/kg PO or ≥7.2 mg/kg IV, melphalan ≥150 mg/m2, 
or thioptepa ≥10 mg/m2.  Reduced-intensity regimens included those with 200–500 cGy 
TBI in a single fraction or 800 cGy fractionated, busulfan-fludarabine with less than 
myeloablative doses of busulfan, fludarabine with < 150 mg/m2 melphalan, and 
cyclophosphamide/etoposide. Non-myeloablative regimens included those with 200 
cGy TBI and purine-analogue based regimens such as fludarabine-cyclophosphamide. Of 
the “unknown” category, n = 649 patients could be assigned to one of the other 
categories based on examining the chemotherapeutic agents prescribed (e.g., 
fludarabine-cyclophosphamide would be considered non-myeloablative), while n = 139 
lacked sufficient information to be classified (e.g., it was not possible to distinguish 
whether fludarabine-melphalan or busulfan-fludarabine were reduced intensity or 
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myeloablative if the dose of busulfan or melphalan were unknown). These 139 missing 
values were imputed. 

6.  “Fludarabine” refers to fludarabine or cladribine. “Others” includes chemotherapy drugs 
or monoclonal antibodies. Intrathecal chemotherapy and corticosteroids, when listed as 
part of conditioning, were ignored.  

7.  HLA match: Well-matched URD had either no identified HLA mismatch and informative 
data at 4 loci or allele matching at HLA-A, -B, and _DRB1. Partially matched pairs had a 
defined, single-locus mismatch and/or missing HLA data. Mismatched cases had ≥2 
allele or antigen mismatches. “Other relative” might include non-HLA-identical siblings. 
“Mismatched sibling” without further specification (n = 2) was counted as “Partially 
matched other relative.” 

8.  Excludes cord blood. 
9.  “Others” refers to other drugs, including corticosteroids, or antibodies. Keratinocyte 

growth factor and ursodiol were ignored. A total of 9436 (99%) patients received 
calcineurin inhibitor-based prophylaxis, including 257 (3%) who received both CSA and 
FK506 prophylaxis.  No patient treated with salvage therapy for acute GVHD received 
both CSA and FK506 prophylaxis.  

10.  For analysis purposes, it was assumed that no ATG or alemtuzumab was given if no ATG 
or alemtuzumab was documented. Source of ATG used in the conditioning regimen ATG 
(horse or rabbit) was recorded for only 327 (3%) patients. Source of prophylactic ATG 
administered post-infusion (and source of ATG used to treat GVHD) was not available 
for any patient. 

 

 Most patients (97%) were transplanted for AML.  A large proportion (55%) 

had intermediate or advanced disease status.  Cytogenetic and molecular data were 

not available for analysis.  As expected, over 60% of patients did not have an HLA-

identical sibling donor.  Conditioning regimens were mainly myeloblative (76%) 

and TBI was common (44%).  GVHD prophylaxis was generally with a calcinuerin 

inhibitor and methotrexate (76%) but a sizable proportion of patients received 

mycophenolate with or without methotrexate (18%).   

 Of the entire cohort, 2643 (27%) patients received NHTL prophylaxis, which 

was mainly ATG (86%) or alemtuzumab (12%).   Compared to those who received 

standard prophylaxis, NHTL prophylaxis patients had a higher prevalence of 

reduced-intensity/non-myeloablative conditioning (23% vs. 13%, p < 0.001), 

unrelated donors (66% vs. 46%, p < 0.001), partially-matched or mismatched non-

cord blood donors (33% vs. 21%, p < 0.001), and cord blood grafts (17% vs. 3%, p < 

0.001).  They also had a lower prevalence of TBI (34% vs. 48%, p < 0.001) and early 

disease status (37% vs. 46%, p < 0.001).  Thus, not surprisingly, NHTL prophylaxis 

was favoured in situations where the risk of GVHD was perceived to be high (i.e., 
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unrelated and mismatched donors) and where the risk of graft rejection was 

perceived to be high (i.e., reduced intensity conditioning and cord blood grafts).  The 

use of NHTL prophylaxis increased over the years (p < 0.001). 

 Confounding by indication was likewise evident in the choice of salvage 

therapy.  Younger patients were more heavily represented in the NHTL treatment 

group (median age 36 vs. 42, p < 0.001).  Clinicians might also have been inclined to 

re-administer NHTL agents when patients required salvage treatment, with the 

prevalence of prior receipt of NHTL prophylaxis being 32% among NHTL salvage 

patients and 25% among standard salvage patients (p = 0.095), perhaps reflecting 

institutional bias in believing in the efficacy of NHTL agents, although this assertion 

is speculative because it lacks statistical significance, which might reflect an 

underpowered comparison.  However, the most striking source of confounding is 

probably that NHTL salvage patients were sicker than standard salvage patients at 

the time salvage treatment was being decided and perhaps at the onset of GVHD, 

although this is conjectural (Table 4).  Indeed, the prevalence of grade III-IV acute 

GVHD was nearly double among NHTL salvage patients than standard salvage 

patients (85% vs. 46%, p < 0.001) and NHTL salvage patients required more 

systemic acute GVHD treatments (median of 4 vs. 3 systemic immunosuppressant 

indicated for acute GVHD on their index forms, p < 0.001).  Finally, contrary to 

prophylaxis, the use of NHTL salvage therapy declined over the years (p < 0.001). 

6.2.2 Unadjusted outcomes 

Median follow-up of survivors was 75.0 months (range, 3.1 to 218.6 months) 

in the NHTL prophylaxis group and 88.0 months (range, 3.0 to 222.7 months) in the 

non-NHTL prophylaxis group (p < 0.001).  Median follow-up of survivors was 73.5 

months (range, 3.2 to 186.9 months) in the NHTL salvage group and 89.5 months 

(range, 3.2 to 214.4 months) in the non-NHTL salvage group (p = 0.133).   
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Only 590 (6.1%) patients did not attain hematologic recovery, 111 of whom 

had documented persistence of disease.  Chimerism data were not available for 

analysis. 

The 2-year cumulative incidence of acute GVHD was 60% (95% CI, 59% to 

61%) and was no different for patients treated with NHTL or standard prophylaxis 

(p = 0.229).  The 2-year cumulative incidence of grade III-IV was very slightly lower 

for patients treated with NHTL prophylaxis (15%, 95% CI, 15% to 16% vs. 18%, 

95% CI, 17% to 19%, p < 0.001).  The median time to acute onset in those eventually 

developing severe acute GVHD was statistically significantly but only slightly 

delayed in recipients of NHTL prophylaxis; the CIBMTR does not collect the date of 

diagnosis of particular grades of acute GVHD, so it would not be possible to infer 

whether the onset of severe acute GVHD was in fact delayed.   

As previously reported, the primary benefit of NHTL prophylaxis appeared to 

be in preventing or delaying chronic GVHD.  The overall occurrence of chronic GVHD 

was less among recipients of NHTL prophylaxis, and the 2-year cumulative 

incidence of extensive chronic GVHD was 40% (95% CI, 28% to 42%) with NHTL 

prophylaxis vs. 49% (95% CI, 48% to 50%) with standard prophylaxis (p < 0.001).   

Among those 3526 patients who received only first-line therapy for acute 

GVHD, 8% received systemic steroids alone, 2% topical treatment alone, 69% 

received systemic steroids with one other non-steroid systemic treatment, and 15% 

received 1 or 2 systemic non-steroid drug(s), with or without topical treatment.  

Among those who received salvage therapy, the median number of total treatments 

(systemic and topical drugs, antibodies, ECP or PUVA) was 3 (range 3 to 9), the 

median number of systemic treatments was 3 (range 3 to 8), and the median 

number of classes of topical treatments was 0 (range 0 to 2).  Appendix Section 9.5 

further breaks down the pattern of GVHD therapies according to acute versus 

chronic GVHD groups.  Clearly patients with acute GVHD tended to receive different 

treatments than patients with chronic GVHD.  Appendix Section 9.6 presents the 

various acute GVHD therapies according to “first-line” and “salvage” stages.  Most 



 

58 

 

agents other than cyclosporine and topical steroids were far more likely to be 

deployed at the “salvage” stage than as “first-line” treatment.  Duration of 

immunosuppression was not evaluable because a stop date was only recorded for 

1761 (18%) of patients (chiefly those with chronic GVHD).  

The 2-year cumulative incidence of relapse was higher among recipients of 

NHTL prophylaxis (37%, 95% CI, 35% to 39%) compared to those who received 

standard prophylaxis (33%, 95% CI, 32% to 34%, p = 0.003).  With NHTL salvage, 2-

year cumulative incidence of relapse was lower than with standard salvage (16%, 

95% CI, 12% to 20% vs. 31%, 95% CI, 29% to 30%, p < 0.001) but that benefit was 

offset by a higher incidence of death from non-relapse causes.  By the Kaplan-Meier 

method, the probabilities of 2-year DFS and OS for patients treated with NHTL 

prophylaxis were 37% (95% CI, % 34 to 41%) and 41% (95% CI, 38% to 44%) and 

for patients treated with standard prophylaxis they were 42% (95% CI, 40% to 

43%, p = 0.002) and 45% (95% CI, 45 to 47%, p = 0.002), respectively (Figure 6).  

NHTL salvage treatment was associated with substantially reduced probability of 2-

year DFS (12%, 95% CI, 9% to 16% vs. 27%, 95% CI, 25% to 30%, p < 0.001) and OS 

compared to standard salvage (13%, 95% CI, 9% to 17% vs. 29%, 95% CI, 26% to 

32%, p < 0.001; Figure 6).  In unadjusted analysis, there appeared to be no effect 

modification of salvage treatment by prior prophylaxis: OS and DFS did not differ 

between those who were sequentially treated with NHTL prophylaxis followed by 

standard salvage vs. standard prophylaxis followed by standard salvage (p = 0.420 

for DFS and p = 0.414 for OS).  OS and DFS did not differ either for those who were 

sequentially treated with NHTL prophylaxis followed by NHTL salvage vs. those who 

were treated with NHTL prophylaxis followed by NHTL salvage (p = 0.744 for DFS 

and 0.938 for OS). The salvage treatment dominated the effect on DFS and OS.  
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Table 4 shows additional information related to the development of GVHD, relapse, 
survival, and length of follow-up.   

Table 4. Unadjusted outcomes of the entire cohort and according to stage 1 and stage 2 intervention 

Characteristic Entire analysis 
cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis (n 
=  6920) 

p-
value1 

NHTL salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

Acute GVHD 
Any acute GVHD, 
no. (%) 

5719 (60) 1577 (60) 4142 (60) 0.885 -- -- -- -- -- 

2-year 
cumulative 
incidence of 
acute GVHD, % 
(95% CI) 2 

60 (59–
61) 

60 (58–
61) 

60 (58–
61) 

0.229 100 -- 
 

100 -- -- 

Median time 
from HCT to 
acute GVHD 
onset, months, 
(range) 

0.9 (0.03– 
120.9) 

0.9 (0.07– 
61.4) 

0.8 (0.03–
120.9) 

<0.001 0.7 (0.1– 
5.5) 

0.7 (0.1–
23.6) 

0.172 

Maximum acute GVHD grade during 
follow-up, regardless of treatment, 
no. (% of entire cohort)3 

    
<0.001 

    
-- 

Grade I-II 4048 (42) 1180 (45) 2868 (41)  -- -- -- --  
Grade III-IV 1618 (17) 389 (15) 1229 (18)  -- -- -- --  
Missing 53 (1) 8 (<1) 45 (1)  -- -- -- --  
2-year 
cumulative 

17 (16–
18) 

15 (15–
16) 

18 (17– 
19) 

<0.001 85 (81–
89) 

47 (44–
50) 

<0.001 

Figure 6. Kaplan-Meier estimates of disease-free survival. Results are shown according to prophylaxis  
(left panel) and salvage (right panel) groups. The blue lines indicate standard drug classes. The red lines 
indicate NHTL therapeutics.  Dashed lines show 95% confidence intervals. 



 

60 

 

Table 4. Unadjusted outcomes of the entire cohort and according to stage 1 and stage 2 intervention 

Characteristic Entire analysis 
cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis (n 
=  6920) 

p-
value1 

NHTL salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

incidence of 
grade III-IV acute 
GVHD, % (95% 
CI)4 
Indication for GVHD Treatment on 
Index Form, no. (%)5,6 

 
   

<0.001 
    

-- 

Acute GVHD, with 
or without chronic 
GVHD treatment 

4937 (52) 1378 (52) 3559 (51)  347 (100) 1064 (100)  

Chronic GVHD, 
without acute 
GVHD treatment 

1382 (14) 262 (10) 1120 (16)  0 (0) 0 (0)  

Never required 
GVHD treatment 

3244 (34) 1003 (38) 2241 (32)  0 (0) 0 (0)  

Median no. of 
systemic acute 
GVHD 
treatments on 
the index CRF, 
(range)5 

2  (0–8)  2 (0–7) 2 (0–8) 0.523 4 (3–8) 3 (3–6) <0.001  

Acute GVHD grade at “start” of acute 
GVHD treatment, on the index form, 
no. (% of n 1st treated for acute 
GVHD)5 

    

<0.001 

    

<0.001 

Grade I-II 3336 (68) 994 (72) 2342 (66)  49 (14) 554 (52)  
Grade III-IV 1493 (30) 358 (26) 1135 (32)  296 (85) 492 (46)  
Missing 108 (2) 26 (2) 82 (2)  2 (1) 18 (2)  
Maximum grade of acute GVHD 
during follow-up in those 1st treated 
for acute GVHD, no. (% of n first 
treated for acute GVHD)5 

    

<0.001     <0.001 

Grade I-II 3356 (68) 1000 (72) 2356 (66)  50 (14) 557 (52)  
Grade III-IV 1535 (31) 370 (27) 1165 (33)  296 (85) 499 (47)  
Missing 46 (1) 8 (1) 38 (1)  1 (<1) 8 (1)  

Chronic GVHD 
Any chronic 
GVHD, no. (%) 

4625 (48) 1112 (42) 3513 (51) <0.001 151 (38) 556 (52) 0.005  

2 year 
cumulative 
incidence of 
chronic GVHD, 
(95% CI)7 

47 (46–
48) 

40 (38–
42) 

49 (48–
50) 

<0.001 43 (39–
48) 

52 (49–
55) 

<0.001  

Median time 
from transplant 
to chronic GVHD 
onset, months, 
(range) 

5.5 (0.1–
187.2) 

5.7 (0.2– 
142.0) 

5.5 (0.1–
187.2) 

0.235 3.5 (0.7 –
87.3) 

4.7 (0.1–
146.7) 

<0.001 

Type of cGVHD onset, no. (% of all 
patients with chronic GVHD)8 

  
 

 
<0.001 

    
0.114 

Progressive/ 
Interrupted/ 
Quiescent 

1158 (25) 332 (30) 826 (24)  48 (31) 170 (31)  
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Table 4. Unadjusted outcomes of the entire cohort and according to stage 1 and stage 2 intervention 

Characteristic Entire analysis 
cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis (n 
=  6920) 

p-
value1 

NHTL salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

De novo 490 (11) 132 (12) 358 (10)  25 (11) 60 (11)  
Missing 2977 (64) 648 (58) 2329 (66)  78 (59) 326 (59)  
2-year 
cumulative 
incidence of 
extensive 
chronic GVHD, % 
(95% CI)9 

34 (33–
36) 

26 (24–
28) 

38 (37–
39) 

<0.001 40 (35–
45) 

46 (42–
49) 

0.011 

2-year 
cumulative 
incidence of 
moderate or 
severe chronic 
GVHD, % (95% 
CI)10 

30  24 (22–
26) 

33 (32–
34) 

<0.001 40 (35–
45) 

43 (40–
46) 

0.058 

Median no. of 
systemic chronic 
GVHD 
treatments on 
the index CRF 

(range)5 

2 (0–9) 2 (0–5) 2 (0–9) 0.090 -- -- -- -- -- 
 

Chronic GVHD grade at “start” of 
first GVHD treatment, no. (% of n 
first treated for chronic GVHD)5 

   
 <0.001     -- 

Limited 478 (35) 116 (44) 362 (32)  -- -- -- --  
Extensive 836 (60) 134 (51) 702 (63)  -- -- -- --  
Missing 68 (5) 12 (5) 56 (5)  -- -- -- --  
Chronic GVHD severity at 
start of treatment, no. (% 
of n first treated for chronic 
GVHD)5 

     

0.234     0.058 

Mild 740 (53) 152 (58) 588 (52)  -- -- -- --  
Moderate  390 (28) 68 (26) 322 (29)  -- -- -- --  
Severe 148 (11) 23 (9) 125 (11)  -- -- -- --  
Missing 104 (8) 19 (7) 85 (8)  -- -- -- --  

Maximum chronic GVHD grade 
during follow-up in those 1st treated 
for chronic GVHD, no. (% of n first 
treated for chronic GVHD)5 

   

 <0.001     -- 

Limited 377 (27) 102 (39) 275 (25)  -- -- -- --  
Extensive 1073 (73) 159 (61) 844 (75)  -- -- -- --  
Missing 2 (<1) 1 (<1) 1 (<1)  -- -- -- --  

Maximum chronic GVHD severity 
during follow-up in those 1st treated 
for chronic GVHD, no. (% of n 1st  
treated for chronic GVHD)5 

   

 0.001     -- 

Mild 570 (41) 128 (49) 442 (39)  -- -- -- --  
Moderate  514 (37) 98 (37) 416 (37)  -- -- -- --  
Severe 245 (18) 26 (10) 219 (20)  -- -- -- --  
Missing 53 (4) 10 (4) 43 (4)  -- -- -- --  

DCI given prior to acute GVHD onset, 
no. (% of pts with acute GHVD) 

    
0.251 

    
0.326 
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Table 4. Unadjusted outcomes of the entire cohort and according to stage 1 and stage 2 intervention 

Characteristic Entire analysis 
cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis (n 
=  6920) 

p-
value1 

NHTL salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

Yes 59 (1) 20 (1) 39 (1)  0 (0) 3 (<1)  
No, given after 397 (4) 120 (5) 277 (4)  3 (1) 24 (2)  
Missing timing of 
DCI relative to 
acute GVHD 

4 (<1) 2 (<1) 2 (<1) 
 

0 (0) 1 (<1) 
 

DCI given prior to chronic GVHD 
onset, no. (% of pts with chronic 
GVHD) 

    
0.226 

    
0.665 

Yes 80 (1) 28 (1) 52 (1)  1 (<1) 6 (1)  
No, given after 373 (4) 111 (4) 260 (4)  1 (<1) 9 (1)  
Missing timing of 
DCI relative to 
chronic GVHD 

7 (<1) 3 (<1) 4 (<1)  0 (0) 0 (0)  

Relapse and Survival 
Any relapse, no. 
(%) 

3546 (37) 1030 (39) 2516 (36) 0.019  57 (16) 433 (34) <0.001  

Median time to 
relapse, months 
(95% CI) 

4.4 (0.03– 
142.9) 

3.9 (0.03– 
106.2) 

4.6 (0.03– 
142.9) 

<0.001 3.1 (0.03–
33.1) 

3.9 (0.03– 
103.3) 

0.008  

Cumulative 
incidence of 
relapse by 2 
years, % (95% 
CI)11 

34 (33–
35) 

37 (35–
39) 

33 (32–
34) 

0.003 16 (12–
20) 

31 (29–
34) 

<0.001 

Alive at last 
follow-up, no. 
(%) 

3422 (36) 911 (34) 2511 (36) 0.102 37 (11) 246 (23) <0.001 

Vital status at 2 
years, no. (%) 

      
<0.001     <0.001 

Alive 3882 (41) 989 (37) 2893 (42)  39 (11) 293 (28)  
Dead 5215 (54) 1527 (58) 3688 (53)  300 (86) 741 (70)  
Lost-to-follow-up  466 (5) 127 (5) 339 (5)  8 (2) 30 (3)  
Disease-free 
survival at 2 
years, no. (%) 

      
<0.001 

    
<0.001 

Alive, relapse-free 3556 (37) 892 (34) 2664 (39)  38 (11) 273 (26)  
Dead and/or 
relapsed 

5587 (58) 1639 (62) 3975 (57)  302 (87) 762 (72)  

Lost-to-follow-up 
without relapse 

420 (4) 121 (5) 299 (4)  7 (2) 29 (3)  

Median disease-
free survival, 
months (range) 

8.9 (0–
222.7) 

7.3 (0.03–
218.6) 

9.8 (0–
222.7) 

<0.001 2.9 (0.03–
186.9) 

5.1 (0.03–
214.4) 

<0.001 

Disease-free 
survival 
probability at 2 
years, % (95% 
CI)11 

40 (39–
41) 

37 (34–
41) 

42 (40–
43) 

0.002 12 (9–16) 27 (25–
30) 

<0.001 

Median survival, 
months (range) 

12.4 (0–
222.7) 

10.8 (0.03–
218.6) 

13.2 (0–
222.7) 

<0.001 3.1 (0.6–
186.9) 

6.6 (0.5–
214.4) 

<0.001 

Overall survival 
probability at 2 

44 (43–
45) 

41 (38–
44) 

45 (45–
47) 

0.002 13 (9–17) 29 (26–
32) 

<0.001 
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Table 4. Unadjusted outcomes of the entire cohort and according to stage 1 and stage 2 intervention 

Characteristic Entire analysis 
cohort 
(n =  9563) 

NHTL 
prophylaxis 
(n = 2643 ) 

Non-NHTL 
prophylaxis (n 
=  6920) 

p-
value1 

NHTL salvage  
(n = 347) 

Non-NHTL 
salvage 
(n = 1064) 

p-
value1 

years, % (95% 
CI) 
Median follow-
up of survivors, 
months (range) 

84.7 (3.0–
222.7) 

75.0 (3.1-
218.6) 

88.0 (3.0–
222.7) 

<0.001 73.5 (3.2–
186.9) 

89.5 (3.2–
214.4) 

0.133 

1. The Chi-squared test was used to compare categorical variables, the Fisher exact test for 

categorical variables with small cell size (≤5 observations), and the Mann-Whitney-Wilcoxon 

test for continuous variables, and Gray’s method for comparisons of cumulative incidence. 

Univariable probabilities of DFS and OS were calculated using the Kaplan-Meier estimator 

with Greenwald’s formula for the variance.   

2. Death without developing acute GVHD is a competing risk.  

3. Regardless of whether required GVHD treatment at all, and regardless of whether treatment 

was first administered for acute or chronic GVHD. 

4. Death without grade III-IV acute GVHD, including death with only grade I-II acute GVHD, 

is a competing risk. 

5. The index CRF is the first CRF describing acute or chronic GVHD treatment (whichever 

occurred first) over the interval preceding the CRF (6 months for the first follow-up form, 12 

months for subsequent follow-up forms). The grade at the “start” of treatment was considered 

to be the grade recorded on the index form, which is actually the maximum grade in the 

preceding interval. The actual grade at the start of treatment is not collected by the CIBMTR. 

The assumption that the maximum grade equalled the “treatment triggering” grade was made 

for the purpose of this proof-of-principle analysis. 

6. Treatment could be topical and/or systemic. Patients who required GVHD treatment but in 

whom details of the drugs administered were missing were excluded from the analysis set. 

7. Death without developing chronic GVHD is a competing risk. 

8. The level “chronic GVHD flare” was considered as “Interrupted.” 

9. Death without extensive chronic GVHD, including death with only limited chronic GVHD, is 

a competing risk. 

10. Death without moderate or severe chronic GVHD, including death with only mild chronic 

GVHD, is a competing risk. 

11. Death without relapse is a competing risk. 

 

6.3 Personalized treatment strategy recommendations 

6.3.1 Censoring 

The A2 model included 1411 patients who received salvage treatment for 

acute GVHD within 2 years of AHCT.  Thirty-six patients were lost-to-follow-up 

(LTFU) after receiving acute GVHD salvage treatment but before the 2-year mark.  

Inverse probability of censoring weights were calculated to account for their 
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absence from the A2 model.  Their pseudo-outcomes were predicted and they were 

included in the prophylaxis model.  Four thousand one hundred and seventy-four 

patients died before 2 years without requiring salvage treatment for acute GVHD, 

including 317 who required treatment for chronic GVHD before acute GVHD and 

died before 2 years.  These 317 patients, as well as another 1065 survivors and 34 

who were LTFU before 2 years, were ineligible for the A2 model on the basis of their 

treatment-requiring chronic GVHD preceding any treatment-requiring acute GVHD.  

Another 1047 patients were never diagnosed with treatment-requiring GVHD, and 

1472 received only “first-line” treatment for acute GVHD (including 4 patients who 

were only diagnosed with treatment-requiring acute GVHD after the 2-year mark) 

while 432 were LTFU before the 2-year mark and not recorded as having required 

salvage therapy for acute GVHD.  Thus, a total of 4333 patients were deemed 

ineligible for the A2 model and were therefore assigned IPCW for the first interval 

(i.e., from prophylaxis to the never-reached A2 decision point).  Note that relapse 

itself did not preclude acute GVHD salvage treatment, so the actual number of 

losses-to-follow-up in the prophylaxis model was 384 patients (i.e., 36 who were 

LTFU after receiving salvage acute GVHD treatment were not LTFU for the purpose 

of the prophylaxis model because their pseudo-outcomes were used as the 

dependent variable, and 12 whose vital status was unknown at 2 years had recorded 

dates of relapse, so were not LTFU with respect to the A1 model outcome of 2-year 

disease-free survival).  Observed disease-free survival time (rather than time-to-

acute or time-to-chronic GVHD, if applicable) was used to compute outcomes for all 

patients in the prophylaxis model who were not lost-to-follow-up and not requiring 

a pseudo-outcome.  Several factors were associated with the probability of being 

censored in the post-A1 interval and not proceeding to A2 (Appendix Section 9.4).  

The resultant A1 weights ranging from approximately 1.0 to 4.5 depending on the 

imputed data set, indicating that no individual patient was given an extreme weight.  

Fewer factors were associated with the probability of being censored (i.e., LTFU) in 

the post-A2 interval, with the resultant weights ranging from approximately 1.0 to 

1.3 (Appendix Section 9.4).  These yielded final weights for the A2 model (after 

multiplying by the A1 weights) that ranged from approximately 1.0 to 4.5.  The small 
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magnitude of these weights implies that the factors considered did not strongly 

predict censoring.  That is, censoring was apparently random with respect to 

measured baseline characteristics, particularly for the A2 model. 

6.3.2 Adaptive treatment strategies 

From the unadjusted Kaplan-Meier estimates, NHTL prophylaxis and NHTL 

salvage both seem detrimental when judged by DFS and OS (Figure 6).  By contrast, 

Tables 5 and 6 summarize the results of Q-learning applied to the decision of 

whether to use NHTL therapy for prophylaxis and/or for salvage treatment in 

multivariable analysis using a cut-point of 2 years.  The relative risks of 2-year DFS 

estimated in the multivariable analysis using backwards stage-wise estimation 

suggest no effect of either NHTL prophylaxis or NHTL salvage at the population level 

because the confidence intervals all cross unity.  However, putting aside the issue of 

possible lack of power for the sake of demonstrating how Q-learning makes patient-

specific predictions, using the point estimates of effect we were able to identify 

patients who might benefit more from one intervention compared to the alternative.  

The A1 model predicted that 4762 patients (50%) would have a higher 

probability of 2-year DFS with NHTL prophylaxis and 4801 (50%) would fare better 

with standard prophylaxis.  Remarkably, these proportion were stable across 

models employing slightly different predictors and different parameterizations of 

the current predictors; the proportion of patients predicted to benefit more from 

NHTL prophylaxis was always 49% to 50%.  The magnitude of benefit was modest.  

Among patients predicted to benefit more from standard prophylaxis, the absolute 

difference in 2-year DFS probability predicted under standard prophylaxis vs. NHTL 

prophylaxis was a median of 5% (range, nearly 0% to 26%).   Likewise, among 

patients predicted to benefit more from NHTL prophylaxis, the absolute difference 

in 2-year DFS probability predicted under NHTL prophylaxis vs. standard 

prophylaxis was a median of 4% (range, nearly 0% to 33%).  A total of 4700 (49%) 

patients were predicted to have 2-year DFS differences ≥5%, and 2005 (21%) were 
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predicted to have 2-year DFS differences ≥10%, with the alternative prophylaxis 

options.   

For the 1411 patients requiring salvage treatment for acute GVHD, the A2 

model predicted that 492 patients (35%) would have a higher probability of 2-year 

DFS with NHTL prophylaxis and 919 (65%) would fare better with standard 

prophylaxis.  These proportions were fairly stable across models employing slightly 

different predictors and different parameterizations of the current predictors; the 

proportion of patients predicted to benefit more from NHTL salvage was always 

33% to 37%.  The contrast between predicted 2-year DFS for the alternative salvage 

choices was often substantial.  Among patients predicted to benefit more from 

standard prophylaxis, the absolute difference in 2-year DFS probability predicted 

under standard prophylaxis vs. NHTL prophylaxis was a median of 9% (range, 

nearly 0% to 79%).   Similarly, among patients predicted to benefit more from NHTL 

salvage, the absolute difference in 2-year DFS probability predicted under NHTL 

prophylaxis vs. standard prophylaxis was a median of 12% (range, nearly 0% to 

65%).  For 948 (67%) patients, the predicted 2-year DFS with the alternative 

salvage options differed by ≥5% and for 711 (50%) patients, it differed by ≥10%.  

Table 5. Predictors of 2-year disease-free survival at the prophylaxis stage 

Characteristic 

Main Effect 
 

Effect of NHTL versus 
Standard Prophylaxis, 

Given the Characteristic1 
RR 95% CI RR 95% CI 

Type of prophylaxis 
Standard 1 -- NA NA 
NHTL 0.98 (0.63, 1.46 ) NA NA 
Recipient age (years) 
0-10 1 -- 0.98 (0.63, 1.46 ) 
10-19 0.95 (0.84, 1.06) 0.87 (0.53, 1.35) 
20-29 0.99 (0.87, 1.11) 0.68 (0.41, 1.11) 
30-39 0.94 (0.82, 1.06) 0.71 (0.41, 1.18) 
40-49 0.85 (0.73, 0.97) 075 (0.43, 1.32) 
50-59 0.82 (0.69, 0.94) 0.69 (0.38, 1.26) 
60+ 0.73 (0.56, 0.89) 0.79 (0.41, 1.46) 
Karnofsky/Lansky performance status at time of transplant 
≥ 80% 1 -- 0.98 (0.63, 1.46 ) 
< 80% 0.68 (0.63, 0.79) 1.00 (0.54, 1.80) 



 

67 

 

Table 5. Predictors of 2-year disease-free survival at the prophylaxis stage 

Characteristic 

Main Effect 
 

Effect of NHTL versus 
Standard Prophylaxis, 

Given the Characteristic1 
RR 95% CI RR 95% CI 

Disease status at time of transplant 
Early 1 -- 1 -- 
Intermediate 0.89 (0.82, 0.95) 1.04 (0.64, 1.60) 
Advanced 0.41 (0.35, 0.48) 1.14 (0.58, 2.12) 
Donor relation 
Related 1 -- 0.98 (0.63, 1.46 ) 
Unrelated 0.86 (0.80, 0.94) 1.20 (0.79, 1.78) 
HLA match 
Well-matched 1 -- 0.98 (0.63, 1.46 ) 
Partially-matched 1.08 (0.97, 1.22) 1.08 (0.75, 1.47) 
Mismatched 1.24 (1.09, 1.43) 1.01 (0.73, 1.30) 
CMV status 
Donor or recipient 
positive 

1 -- 0.98 (0.63, 1.46 ) 

Negative-Negative 1.08 (1.01, 1.15) 1.01 (0.69, 1.44) 
Sex match (donor-recipient) 
Male-male, female-
female, or male-
female 

1 -- 0.98 (0.63, 1.46 ) 

Female-male 1.03 (0.96, 1.11) 1.00 (0.64, 1.45) 
Graft source/donor age (years)1 
Umbilical cord 1 -- 1 1 
BM, 0-19 0.96 (0.86, 1.09) 0.92 (0.66, 1.27) 
BM, 20-49 0.89 (0.75, 1.11) 0.88 (0.48, 1.35) 
BM, 50+ 0.83 (0.69, 1.03) 1.52 (0.98, 2.16) 
PB, 0-19 1.01 (0.90, 1.16) 1.04 (0.78, 1.35) 
PB, 20-49 0.88 (0.74, 1.05) 1.03 (0.70, 1.49) 
PB, 50+ 1.14 (0.97, 1.41) 0.71 (0.52, 0.93) 
Conditioning intensity 
Myeloblative 1 -- 0.98 (0.63, 1.46 ) 
RIC/NMA 0.98 (0.88, 1.07 ) 0.90 (0.55, 1.40) 
Total body irradiation 
No 1 -- 0.98 (0.63, 1.46 ) 
Yes 0.98 (0.92, 1.03) 1.05 (0.68, 1.57) 
Other Components of GVHD Prophylaxis 
Absence of drug listed 
below 

1 -- 0.98 (0.63, 1.46 ) 

Mycophenolate 1.01 (0.90, 1.13) 0.93 (0.58, 1.44) 
Methotrexate 1.04 (0.96, 1.14) 0.96 (0.64, 1.37) 
Corticorsteroids (not 
for nausea) 

0.92 (0.84, 0.99) 1.07 (0.68, 1.58) 
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Table 5. Predictors of 2-year disease-free survival at the prophylaxis stage 

Characteristic 

Main Effect 
 

Effect of NHTL versus 
Standard Prophylaxis, 

Given the Characteristic1 
RR 95% CI RR 95% CI 

1. This column shows the combined effect of tailoring variables with NHTL prophylaxis, 
i.e., the result of the main effects and of interactions between the characteristic and the 

class of prophylaxis treatment, calculated as 𝑅𝑅 = 𝑒𝑥𝑝𝑖𝑡(𝛽̂0  +  𝛽̂𝑛 +  ( 𝜓̂0 +  𝜓̂𝑛)𝑎)/

𝑒𝑥𝑝𝑖𝑡(𝛽̂0 +  𝛽̂𝑛) where 𝛽̂0 is the model intercept, 𝛽̂𝑛 is the coefficient for the for the main 

effect of the candidate tailoring variable, 𝜓̂0 is the coefficient for the main effect of NHTL 

prophylaxis, 𝜓̂𝑛  is the coefficient for the interaction of NHTL prophylaxis with the 
candidate tailoring variable, and action 𝑎 = 1 for NHTL prophylaxis while 𝑎 = 0 for 
standard prophylaxis; n indexes tailoring variables.  Note that the impact of the reference 
categories is subsumed in the estimated main effect of NHTL vs. standard prophylaxis. 

 

Table 6. Predictors of 2-year disease-free survival in patients requiring treatment 
for acute GVHD before or without treatment for chronic GVHD, and proceeding to 
acute GVHD salvage treatment 

Characteristic 

Main Effect Effect of NHTL versus 
Standard Salvage, Given the 

Characteristic1 
RR 95% CI RR 95% CI 

Type of salvage 
Standard 1 -- NA NA 
NHTL 0.67 (0.02, 1.47) NA NA 
Recipient age (years) 
0-10 1 -- 0.67 (0.02, 1.47) 
10-19 0.79 (0.48, 0.97) 0.58 (<0.01, 2.17)  
20-29 0.79 (0.48, 0.98) 0.62 (<0.01, 2.21) 
30-39 0.76 (0.43, 0.96) 0.67 (<0.01, 2.55) 
40-49 0.70 (0.37, 0.94) 0.35 (<0.01, 2.03) 
50-59 0.67 (0.33, 0.94) 0.26 (<0.01, 1.91) 
60+ 0.67 (0.31, 0.93) 0.28 (<0.01, 2.48) 
Karnofsky/Lansky performance status at time of transplant 
≥ 80% 1 -- 1 -- 
< 80% 0.75 (0.31, 0.96) 0.81 (<0.01, 3.80) 
Disease status at time of transplant 
Early 1 -- 0.67 (0.02, 1.47) 
Intermediate 0.98 (0.87, 1.06) 0.88 (0.01, 1.68) 
Advanced 0.76 (0.51, 0.95) 0.69 (0.04, 2.43) 
Donor relation 
Related 1 -- 0.67 (0.02, 1.47) 
Unrelated 0.76 (0.48, 0.95) 1.01 (0.02, 2.65) 
HLA match 
Well-matched 1 -- 0.67 (0.02, 1.47) 
Partially-matched 1.09 (1.00, 1.43) 0.53 (0.01, 1.08) 
Mismatched 1.08 (0.99, 1.41) 0.83 (0.09, 1.21) 
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Table 6. Predictors of 2-year disease-free survival in patients requiring treatment 
for acute GVHD before or without treatment for chronic GVHD, and proceeding to 
acute GVHD salvage treatment 

Characteristic 

Main Effect Effect of NHTL versus 
Standard Salvage, Given the 

Characteristic1 
RR 95% CI RR 95% CI 

CMV status 
Donor or recipient 
positive 

1 -- 0.67 (0.02, 1.47) 

Negative-Negative 1.02 (0.98, 1.15) 0.79 (0.03, 1.44) 
Sex match (donor-recipient) 
Male-male, female-
female, or male-
female 

1 -- 0.67 (0.02, 1.47) 

Female-male 1.00 (0.92, 1.10) 0.89 (0.07, 1.60) 
Graft source/donor age (years)1 
Umbilical cord 1 -- 0.67 (0.02, 1.47) 
BM, 0-19 0.85 (0.59, 1.11) 0.50 (0.01, 1.66) 
BM, 20-49 0.59 (<0.01, 0.99) <0.01 (<0.01, 0.18) 
BM, 50+ 0.62 (<0.01, 1.15) 0.75 (<0.01, 

5857010.45) 
PB, 0-19 0.87 (0.59, 1.13) 0.56 (0.02, 1.71) 
PB, 20-49 0.88 (0.58, 1.19) <0.01 (<0.01, <0.01) 
PB, 50+ 0.95 (0.74, 1.42) 0.40 (<0.01, 1.25) 
Conditioning intensity 
Myeloblative 1 -- 0.67 (0.02, 1.47) 
RIC/NMA 1.02 (0.84, 1.15) 0.98 (0.08, 1.62) 
Total body irradiation 
No 1 -- 0.67 (0.02, 1.47) 
Yes 1.06 (1.01, 1.23) 0.70 (0.01, 1.35) 
GVHD Prophylaxis 
Absence of drug listed 
below 

1 -- 0.67 (0.02, 1.47) 

Mycophenolate 0.99 (0.87, 1.09) 0.54 (<0.01, 1.40) 
Methotrexate 0.97 (0.84, 1.09) 0.54 (0.02, 1.51) 
Corticosteroids (not 
for nausea) 

0.90 (0.68, 1.00) 0.48 (<0.01, 1.61) 

NHTL prophylaxis 1.07 (1.01, 1.30) 0.79 (0.02, 1.34) 
Time from graft infusion to acute GVHD 
< 1 month 1 -- 0.67 (0.02, 1.47) 
≥ 1 month 0.97 (0.83, 1.03) 0.83 (0.02, 1.70) 
Grade of acute GVHD at “start” of treatment (maximum grade on the index form) 
I-II 1 -- 0.67 (0.02, 1.47) 
III-IV 0.75 (0.47, 0.95) 0.25 (<0.01, 1.76) 
Four or more immunosuppressors to treat acute GVHD on the index form 
No 1 -- 0.67 (0.02, 1.47) 
Yes 0.95 (0.76, 1.03) 0.51 (<0.01, 1.62) 
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Table 6. Predictors of 2-year disease-free survival in patients requiring treatment 
for acute GVHD before or without treatment for chronic GVHD, and proceeding to 
acute GVHD salvage treatment 

Characteristic 

Main Effect Effect of NHTL versus 
Standard Salvage, Given the 

Characteristic1 
RR 95% CI RR 95% CI 

Chronic GVHD (not needing treatment) diagnosed before acute GVHD 
No 1 -- 0.67 (0.02, 1.47) 
Yes 0.65 (<0.01, 0.98) 0.23 (<0.01, 

32029.44) 
1. This column shows the combined effect of tailoring variables with NHTL salvage, i.e., 
the result of the main effects and of interactions between the characteristic and the class 

of salvage treatment, calculated as as 𝑅𝑅 = 𝑒𝑥𝑝𝑖𝑡(𝛽̂0  +  𝛽̂𝑛 +  ( 𝜓̂0 +  𝜓̂𝑛)𝑎)/𝑒𝑥𝑝𝑖𝑡(𝛽̂0 +

 𝛽̂𝑛) where 𝛽̂0 is the model intercept, 𝛽̂𝑛 is the coefficient for the for the main effect of the 

candidate tailoring variable, 𝜓̂0 is the coefficient for the main effect of NHTL salvage, 𝜓̂𝑛  is 
the coefficient for the interaction of NHTL salvage with the candidate tailoring variable, 
and action 𝑎 = 1 for NHTL salvage while 𝑎 = 0 for standard salvage; n indexes tailoring 
variables. Note that the impact of the reference categories is subsumed in the estimated 
main effect of NHTL vs. standard salvage. 

 

6.3.3 Tailoring variables for 2-year DFS  

After controlling for the factors in Tables 5 and 6, the main effects of NHTL 

prophylaxis (RR = 0.98, 95% CI, 0.63 to 1.46) and the main effect of NHTL salvage 

(RR = 0.67, 95% CI, 0.02 to 1.47) on 2-year DFS were not statistically significant.  

Although many candidate tailoring variables were not statistically significant 

(Tables 5 and 6), certain combinations of values or levels of the potential tailoring 

variables could “tip the balance” in favor of using NHTL prophylaxis or NHTL 

salvage.  For example, from the point estimates of the effects, there is a suggestion 

that NHTL prophylaxis might benefit patients who receive TBI and those in 

unrelated donor settings, i.e., the RR of 2-year DFS is greater than 1 with NHTL 

prophylaxis and below 1 with standard prophylaxis.  The association of NHTL 

prophylaxis compared to standard prophylaxis with increased chances of 2-year 

DFS for patients with intermediate and advanced disease status is counterintuitive 

because other studies suggest that NHTL prophylaxis increases the chance of 

relapse, at least in non-myeloablative settings.  It is important not to over-

emphasize these associations that are not statistically significant and to temper 
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those estimates with the finding that NHTL prophylaxis might be detrimental in 

reduced intensity and non-myeloablative settings (RR for 2-year DFS 0.90, 95% CI, 

0.55 to 1.40).  Recall, however, that the RRs presented in Table 5 compare standard 

versus NHTL prophylaxis under the assumption that it will be followed by the 

optimal, personalized salvage therapy should it be needed.  The estimates in Table 5 

are not, therefore, directly comparable to results from other studies.  Similarly, all 

other factors being equal and assuming optimal salvage treatment for those with 

refractory GVHD, NHTL prophylaxis might be more beneficial than standard 

prophylaxis in the unrelated, mismatched donor setting (RR2-year DFS = 

𝑒𝑥𝑝𝑖𝑡(𝛽̂0 + 𝛽̂𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑+ 𝛽̂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑+ 𝜓̂0 + 𝜓̂𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑∙𝑝𝑟𝑜𝑝ℎ𝑦𝑙𝑎𝑥𝑖𝑠+ 𝜓̂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑∙𝑝𝑟𝑜𝑝ℎ𝑦𝑙𝑎𝑥𝑖𝑠)

𝑒𝑥𝑝𝑖𝑡(𝛽̂0 + 𝛽̂𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑+ 𝛽̂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑)
   = 

1.17 in favour of NHTL prophylaxis, 95% CI, 0.86 to 1.51), although this result was 

not statistically significant.  

At the salvage stage, NHTL treatment appears detrimental for the majority of 

patients.  In particular, there is a suggestion that NHTL treatment should not be 

administered to patients who received NHTL prophylaxis (RR of 2-year DFS if NHTL 

prophylaxis followed by standard acute GVHD salvage treatment = 1.07, 95% CI, 

1.01 to 1.30, versus RR = 0.79, 95% CI, 0.02 to 1.34 if NHTL therapeutics are used for 

both prophylaxis and salvage).  Also, there is a suggestion that NHTL therapy 

compounds the deleterious prognosis of grade III-IV acute GVHD or needing ≥4 

immunosuppressant drugs.  However, it would be premature to conclude that NHTL 

therapy should be avoided in these sickest patients because of residual confounding, 

as discussed below in Section 7.4.3. 

6.3.4 Model fit 

Figure 7 shows the model fit as assessed by first finding the mean of the 

quartiles of predicted 2-year survival within each combination of age group and 

intervention, and then finding the observed 2-year DFS proportion within each 

combination of age group, intervention, and quartile of predicted probability (see 

also Appendix Section 9.7). Overall the fit is moderately poor.  Concentrating on the 

age categories where the bulk of the patients lie, the model substantially over-
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estimated probability of 2-year DFS with both NHTL prophylaxis in the 20 to 39 

year olds and in the highest quartile of 40 to 59 year olds.  The model tended to 

underestimate 2-year DFS in those aged 60 and older across the board.  The model 

was not useful for 0 to 19 year old patients treated with NHTL salvage, where means 

of the quartiles of predicted 2-year DFS and the corresponding observed 2-DFS 

proportion were 5% vs. 10%, 16% vs. 5%, 30% vs. 42%, and 56% vs. 10%.  The 

reason the model fared so poorly here is that there were only 31 patients under 20 

years old who received NHTL salvage treatment.  In subgroups of the population 

with adequate representation, fit was somewhat better. 
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Figure 7. Assessment of model fit. Within each age category, the mean of each quartile of 
predicted probability of 2-year disease-free survival is plotted as a red square. The observed 
proportion surviving 2-years disease-free, within each category of age and quartile of 
predicted probability, is plotted as a black circle.   
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7. DISCUSSION 

7.1 Results in the context of attainable power 

It is crucial to bear in mind that the aim of this work was to see if a particular 

reinforcement learning strategy could be applied to CIBMTR data, and not to yield 

clinically-actionable algorithms.  If this study were not subject to the limitations 

discussed below, the salient results would be that despite the apparent detrimental 

effect of NHTL prophylaxis and NHTL salvage on DFS at the population level, at the 

individual-patient level, a substantial proportion of patients are expected to actually 

benefit from NHTL prophylaxis (50%) and from NHTL salvage (35%).  This 

conclusion would still need to be tempered by the realization that the model fits 

poorly, particularly in recipients of NHTL salvage treatment at the extremes of age.  

Even though the model fits were better for both prophylaxis and salvage 

interventions in the middle age ranges, the small magnitude of the projected 

survival benefit from choosing the “best” prophylaxis treatment relative to the 

discrepancy in the model fit raises cause for concern.   

This conclusion must also be tempered by understanding that it stems from 

imprecise estimates.  The required sample size can be estimated from the 

equation159 

𝑛𝑡𝑜𝑡𝑎𝑙 >  (𝑧𝛼
2⁄ +  𝑧𝛽)

2
 ×  

1 −  𝜋

𝜋
  ×

1

𝑉𝑎𝑟[𝑋]
 ×

1

(1 − 𝑟𝑋 𝑤𝑖𝑡ℎ 𝐶
2 )

×  
1

∆2
 

where 𝑛𝑡𝑜𝑡𝑎𝑙 is the total sample size, 𝑧𝛼
2⁄  is the normal deviate for a 2-sided test 

with a false positive rate of α, 𝑧𝛽 is the normal deviate for a false negative rate of β to 

yield overall power of 100(1-β)%, 𝜋 is the probability of 2-year DFS for the entire 

cohort, X is the variable of interest – in this case receipt of NHTL instead of standard 

intervention,  𝑉𝑎𝑟[𝑋] is the variance of the distribution of X, 𝑟𝑋 𝑤𝑖𝑡ℎ 𝐶
2  is the 

correlation of X with the other covariates in the model, and Δ is the difference 

between the non-null and null values of log(RR), and the null hypothesis is RR = 1.  

Keeping the assumptions already mentioned, taking the observed 𝜋 = 0.23 for the 
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salvage cohort, and ignoring for the moment the issue of 𝑟𝑋 𝑤𝑖𝑡ℎ 𝐶
2 ,  the estimated 

number of salvage and initial cohort patients needed to detect a RR2-year DFS that 

spans confidence interval limits of NHTL vs. standard salvage from 0.02 to 1.47 is 

shown in Figure 8.  At RR2-year DFS = 0.67, for example, a total of 863 patients would 

be required at the salvage stage which would imply including 5843 patients in the 

initial analysis cohort. 

 An equivalent of 𝑟𝑋 𝑤𝑖𝑡ℎ 𝐶
2  that holds whether regressing X on factor variables 

or continuous variables could be derived from the equation for the generalized 

variance inflation factor.160  The mean 𝑟𝑋 𝑤𝑖𝑡ℎ 𝐶
2  for lymphodepleting salvage 

treatment across the 5 imputed data sets was 0.212.  (This was calculated with the 

“car” R package161 and interaction terms were omitted from the model for this 

calculation because for each patient’s treatment obviously matches the treatment 

component of the interaction term.)  This result suggests there is no strong 

association between receipt of NHTL salvage (or not) and one or more of the 

predictors.  For the current model, accounting for the strength of association 

between salvage choice and other predictors increases the required sample size by 

about 27%, such that for RR2-year DFS = 0.67, for example, a total of 1093 patients 

would be required at the salvage stage which would imply including 7408 patients 

in the initial analysis cohort.  Thus, the wide confidence intervals do not simply stem 

from small sample size (since the sample included 9563 initial patients and 1411 

salvage patients); rather, other factors influencing the behaviour of the logistic 

models must be considered. 
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Figure 8. Post-hoc power/sample size calculation. The horizontal axis depicts the relative 
risk (RR) of 2-year disease-free survival (DFS) if using NHTL salvage vs. standard salvage. The 
strength of association between choice of salvage intervention and other predictors does not 
pose a problem for the current model in the registry setting; a reasonable number of registry 
patients would be required to detect the clinically-relevant RRs with 80% power and a 2-sided 
significance of 0.05. However, these sample sizes are not feasible for a randomized trial. 
Salvage cohort sizes (left vertical axis) and initial cohort sizes (right vertical axis) needed to 
detect RRs of 0.02 to 0.90 and 1.10 to 1.47 are shown. 
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A rule-of-thumb derived from an often-cited simulation study162 is that with 

fewer than 10 outcome events per predictor variable in a logistic regression, 

variability and bias in the estimated coefficients increases and confidence interval 

coverage is wider than the nominal value (although the confidence intervals found 

from bootstrapping the data as done for the current analysis mitigate the latter 

problem163).  Because the interactions between each predictor and prophylaxis or 

salvage choice were included as separate terms in the models and multi-level factors 

(including age categories) were dummy coded, the prophylaxis model contained 51 

predictors and the salvage model contained 61 predictors.  Considering the outcome 

event of disease-free survival at 2 years, the event-to-predictor ratio was 70:1 for 

the prophylaxis model but only 5:1 for the salvage model.  Twice as many patients 

would need to be included in the study in order to satisfy the 10:1 event-to-

predictor ratio criterion at the salvage stage, assuming the same proportion of 

subjects requiring acute GVHD salvage therapy and the same relapse and survival 

rates as in the current cohort.  Increasing the event-to-predictor ratio by increasing 

the sample size might yield narrower confidence intervals and less biased estimates.  

Lastly, some patterns of covariates were hardly represented (the most 

egregious examples being patients receiving NHTL salvage GVHD treatment after 

bone marrow transplant from donors > 50 years old, n = 12, and NHTL salvage 

patients with chronic GVHD not needing treatment diagnosed prior to acute GVHD, 

n = 1).  Although R produced no explicit warnings about empty or small cells, their 

presence explains why the upper limit of the estimated coefficients for certain 

categories is exceedingly high, and these variables should be eliminated from the 

model in future work.164 

7.2 Results in the context of previous studies 

Conceptually, this work illustrates how observational data can be used to give 

highly personalized treatment recommendations.  As examples: Our model 

predicted that an 18 year-old, CMV-positive male recipient of a female, partially-

matched peripheral blood graft to treat early stage AML after cyclophosphamide-
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TBI myeloablative conditioning would have an absolute 25% greater chance of DFS 

if given NHTL prophylaxis along with cyclosporine-methotrexate instead of solely 

standard prophylaxis.  Our model predicted that a 48 year-old, CMV-positive woman 

with intermediate status AML who was conditioned with myeloablative busulfan-

fludarabine, received an HLA-matched sibling peripheral blood graft after 

prophylaxis with tacrolimus-methotrexate, and now required a third drug to treat 

grade III acute GVHD that presented 1.05 months post-transplant would have an 

absolute 18% probability of 2-year DFS if given non-NHTL salvage but nearly 0% 

probability of 2-year DFS if given NHTL salvage.  By contrast, a 48 year-old CMV-

negative man with intermediate-risk AML who received a CMV-negative well-

matched unrelated donor peripheral blood graft after reduced intensity busulfan-

fludarabine conditioning and tacrolimus-methotrexate-ATG prophylaxis and now 

required a third drug to treat grade II acute GVHD that presented 1.8 months post-

transplant was predicted to derive an absolute 55% 2-year DFS benefit from NHTL 

instead of standard salvage (predicted 2-year DFS 94% vs. 39%).  As a final example, 

our model predicted that a 48 year-old CMV-negative man with advanced AML who 

received a CMV-negative, female, well-matched unrelated donor bone marrow graft 

after unspecified but non-TBI-containing conditioning and tacrolimus + 

mycophenolate prophylaxis and required a third drug to treat grade III acute GVHD 

with no signs of chronic GVHD presenting 2.1 months post-transplant would have a 

4% probability of 2-year DFS with standard treatment and a 15% probability of 2-

year DFS with NHTL salvage.  (In fact, he received glucocorticoids, mycophenolate 

and sirolimus and died of bacterial infection and hemorrhage 3.4 months from 

transplant.)   

The treatment recommendations above are derived from averaging the results 

across all 5 imputations.  The stability across the different imputations provides 

some reassurance about the robustness of these recommendations.  Only 9% of 

patients received a conflicting prophylaxis recommendation in at least 1 of the 5 

imputations.  For the 1411 refractory acute GVHD patients, 14% received a 
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conflicting recommendation about salvage treatment in at least 1 of the 5 

imputations (Figure 9). 

 

Figure 9. Stability of treatment recommendation across imputations. For most patients, 
the prophylaxis or salvage recommendation was consistent across the 5 imputations such that 
the standard intervention was recommended in all 5 or in none of the imputations. In a 
minority of patients, the recommendation differed in at least 1 of the imputations.  

 

Randomized studies have been unable to identify any subgroup of patients 

who, in terms of overall, relapse-free or disease-free survival, could benefit from 

ATG prophylaxis,121,165 ATG/prednisone first-line acute GVHD treatment,166 or ATG 

salvage.123,147  There is no direct evidence that particular subgroups of patients 

benefit from other types of NHTL prophylaxis167 or salvage.59  (For example, one 

study suggested that recipients of mismatched grafts might benefit from 

alemtuzumab prophylaxis, but in fact it would be impossible to conclude from this 

non-randomized study whether the patients with mismatched donors had better-

than-expected survival or whether the patients with matched donors had worse-

than-expected survival, leading to comparable 3-year survival rates.168)  By contrast, 

our approach allows for highly-personalized prophylaxis and treatment 

recommendations.  We were able to propose narrow subsets of patients for whom 
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NHTL prophylaxis and/or NHTL salvage may be preferable, although our patient-

specific predictions must be tempered by the limitations discussed in Section 7.4.  

An ongoing large trial randomizing patients to rabbit ATG prophylaxis vs. placebo is 

currently being conducted by the Blood and Marrow Transplant Clinical Trials 

Network (NCT01295710); applying our analysis methods to that study might be 

appealing.  

7.3 Strengths 

The originality of this work lies in having used registry data in combination 

with a highly innovative analytic approach.  This analytic approach is useful because 

in reality, clinicians engage in sequential treatment decision-making over time 

based on accruing observations about the individual patient; providing data-driven 

evidence to support this form of decision-making is critical.  Like the CIBMTR data, 

clinical practice also encompasses far more diverse patient characteristics than 

found in the “silos” of tightly selected patient populations on which RCTs generally 

focus.  Finally, in clinical practice, there are usually many possible treatments at 

each decision point, but studies usually limit these possibilities sharply and so fail to 

capture the complexity of real-life clinical decisions.  Given the large samples 

afforded by registry databases, the analytic approach developed here could be 

extended to examine more than 2 treatment options at the prophylaxis and salvage 

stages, such as polyclonal NHTL therapy (ATG, ALG) versus therapies that primarily 

target activated T cells (e.g., anti-CD25 antibodies) versus therapies that deplete 

neutrophils and antigen presenting cells along with activated T cells (e.g., 

alemtuzumab).   

In the dawn of the “precision medicine” era, the AHCT field is currently 

challenged with assessing many novel, possibly prescriptive biomarkers in the face 

of many traditional and novel sequentially-administered treatments.  There simply 

are not enough patients or resources to enroll into comparative trials to answer all 

key questions.  Using observational data to propose personalized, adaptive 

treatment algorithms through Q-learning or other backwards stage-wise estimation 
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techniques and then testing those algorithms prospectively is a credible solution.  

Prospective testing could be applied in a SMART that compares the most promising 

competing ATSs identified through retrospective analysis, or it could consist of a 

traditional RCT comparing the single most promising ATS to usual care.  

Alternatively, individual centers could be randomized to implementing or not 

implementing the ATS for a set period of time.  Even within one center, the ATS 

could be implemented for a year or two, then “withdrawn,” and later re-instituted. 

When patients would develop acute GVHD, they would be treated under the policy 

that was “in force” at their date of transplant (ATS or clinician-determined care).  

This nuance is necessary because the ATS starts at the prophylaxis stage, so if their 

prophylaxis was chosen according to the ATS, their acute GVHD salvage treatment 

ought to be chosen according to the ATS as well.  If GVHD or survival indices were to 

improve for patients transplanted under the ATS and if the improvement were to 

extinguish after withdrawing the ATS, we would have strong, albeit circumstantial, 

evidence of benefit.  The development of a web applet that operationalizes the 

finalized Q-learning models would allow complex results from research studies to 

be effectively and easily incorporated into subsequent clinical trials and clinical 

practice. 

7.4 Limitations 

7.4.1 Limitations that stem from assumptions made to structure the data 

Two limitations of this work stem directly from the two assumptions that were 

necessary in order to generate a sequence of events for each patient.  Recall that 

information about the exact start and stop dates of immunosuppressive drugs and 

the exact timing of the response to treatment are not recorded.  The two 

assumptions were: 

(1) Certain drugs or drug combinations comprise “first-line treatment” and 

others would be used exclusively for salvage treatment; and  
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(2) The grade recorded on the first form on which specific GVHD treatment 

was documented represents the grade that prompted treatment initiation 

rather than the maximum grade in the interval covered by the CRF. 

7.4.1.1 Problems with the first assumption 

A major limitation is the uncaptured heterogeneity of prophylactic and acute 

GVHD treatment practices across centers.  The European Group for Blood and 

Marrow Transplantation conducted two surveys that span the time period of the 

data set available for this thesis work.169,170  Both surveys revealed marked inter-

center variability in GVHD prophylaxis and treatment strategies.  Moreover, policies 

that appeared superficially similar often differed in key details.  For example, the 

day on which cyclosporine is initiated pre-transplant, the loading dose, the target 

blood concentration, and the planned duration of prophylactic therapy all differed 

substantially across centers, even in the 2012 survey.  When patients developed 

acute GVHD, 100% of centers initiated corticosteroids as first-line therapy in both 

time periods.  However, the trigger for initiating systemic therapy differed among 

centers both in regard to the minimum grade of acute GVHD (with 62% and 82% 

initiating steroids only for grade II or higher and 34% and 17% for grade I disease, 

in 1994-95 and 2010 respectively) and in regard to the need for histological 

documentation (with 82% of centers treating based only on clinical signs and ~16% 

to 18% awaiting histology results, a stable finding in both time periods).  Thus, over 

time, the tendency to treat mild GVHD using systemic therapy decreased.  The dose, 

route and frequency of administration differed across centers and over time as well.  

Finally, the operational definition of steroid refractoriness differed in both the 

minimum time of steroid monotherapy needed and the minimum dose needed to 

confer this designation.  Specifically, the minimum “declarative” time ranged from 2 

to 21 days, with the bulk (44%) of centers waiting 6–7 days before declaring steroid 

refractoriness (in 2010; not directly asked in 1994–95).  The minimum “declarative” 

dose decreased over time, with 43% of centers using a dose of ≥10 mg/kg/day (in 

methylprednisolone-equivalent units) in 1994–95 but only 10% using such high 
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doses in 2010 before declaring “refractoriness.”  Although a similar detailed analysis 

is not available from the CIBMTR, from discussions with colleagues at other centers 

and reading the clinical literature, it seems extremely likely that similar variability 

and similar time-trends would be observed in prophylactic and treatment strategies 

across CIBMTR member institutions.  The ASBMT consensus guidelines for first-line 

and salvage treatment of acute GVHD59 also attests to tremendous heterogeneity of 

acceptable practices.  While the heterogeneity of prophylaxis and treatment options 

is a strength that enabled estimating ATSs, the unmeasured heterogeneity within 

each A1 and A2 option in terms of the specific drugs, their specific doses and their 

schedules of administration represents a source of confounding that likely biases 

any effect toward the null.  

 A second problem with the way that “first-line” and “salvage” treatments 

were identified is that if a patient was found to have only “first-line” treatments on 

his reference form, the subsequent CRFs were not automatically searched for 

additional treatments that could be considered “salvage.”  Consequently, patients 

who received “first-line” treatment documented on one form and salvage treatments 

documented on future forms would have been misclassified as having received only 

“first-line” treatment.  Similarly, for the few patients with treatment documented on 

both timed and untimed forms, information from the timed forms was favoured. 

Another limitation is the impossibility of distinguishing lines of salvage 

treatment.  One reason for not combining treatments grouped on sequential forms is 

that we are interested in comparing patients at the same phase of GVHD illness.  

Ideally, we would restrict the second-stage analysis to patients receiving NHTL or 

non-NHTL treatment for their first salvage regimen.  Unfortunately, in the absence 

of accurately-recorded start dates, it is impossible to know whether particular 

“salvage” treatments were deployed for first, second, third or later salvage attempts.  

Also, it is impossible to know whether salvage treatment was administered for 

failure of response to first-line therapy (as we assume to be the case) or for 

intolerable side effects of first-line therapy (which might not confer the same poor 

prognosis as non-response).  The only way to surmount these problems would be 
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for the CIBMTR to collect more detailed data about the timing and clinical 

indications for each immunosuppressive treatment.  

7.4.1.2 Problems with the second assumption 

Some patients would obviously have worsened after the introduction of GVHD 

treatment, so this assumption introduces misclassification.  This misclassification is 

expected to be non-differential with respect to receipt of NHTL or non-NHTL 

salvage treatment but is likely to be differential with respect to outcome.  Yet the 

direction of the association between misclassification of GVHD grade at treatment 

initiation and outcome is not predictable.  One possibility is that patients who died 

would have been more likely to have progressed from low to high grades (and 

hence, to have been misclassified as having a high grade at the outset) compared to 

patients who did not die.  The other possibility is that patients who died would have 

been less likely to have started off with a low GVHD grade compared to survivors; 

under that scenario, patients who died would have been less likely to have been 

misclassified compared to patients who did not die.  In either case, the fact that we 

grouped grades I-II versus III-IV acute GVHD mitigates the impact of the 

misclassification somewhat.  Although the incidence of progressing from low (I-II) 

to high (III-IV) acute GVHD grade after initiation of treatment has not been directly 

estimated, extrapolating from studies where “progression” and “stability” were both 

grouped in the “non-response” category suggests such progression is 

uncommon.79,171 

7.4.2 Limitations that stem from grouping NHTL therapies 

Grouping all NHTL therapies together may be problematic because these drugs 

and antibodies differ in the extent to which they deplete non-T-cell populations.  For 

example, it has been suggested that immunosuppressive treatments that selectively 

deplete T and NK cells but spare B cells increase the risk of post-transplant 

lymphoproliferative disorder (PTLD) while therapies that deplete only T cells, or all 

of T, NK and B cells, confer less risk of PTLD.172,173  To overcome the problem of 
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diluting important effects because of treatment heterogeneity, NHTL therapies 

could be further divided into specific T cell depleters (e.g., ATG, OKT3), T/NK cell 

depleters (e.g., spilizumab), T/B cell depleters (e.g., purine analogues), and T/NK/B 

cell depleters (e.g., alemtuzumab).  Alternatively, the individual treatments, 

particularly the most common NHTL therapy, ATG, could be examined in isolation.  

Another concern is that the dose of each NHTL therapy may drastically change its 

risk-benefit profile, pharmacodynamic effects differ unpredictably between 

individuals (so cannot be reliably inferred from dose or clinical patient 

characteristics), and NHTL therapies are frequently combined with other therapies 

that intentionally or inadvertently impair immune cell subsets other than T cells.  To 

circumvent these problems, assessing the impact of the entire combination of 

treatments administered at their specific dosages would be necessary.  The only 

way to do that reliably would be to directly measure the quantity and functional 

activity of various immune cell subsets in the peripheral blood and, ideally, in target 

organs.  Such thorough assessments are logistically and financially difficult to 

orchestrate.  Our work is predicated on the assumption that grouping NHTL 

therapies is justifiable on the basis of the added risks of these therapies, which are 

similar in nature and in incidence across the spectrum of NHTL therapies (being 

primarily opportunistic infections and PTLD).  Nonetheless, we acknowledge that 

certain other immunosuppressants used concurrently with or following NHTL 

therapies, and not accounted for in this analysis, probably increase the magnitude of 

the additional risk by delaying post-NHTL immune reconstitution. 

7.4.3 Limitations that stem from unavailability of other important covariates 

The data set lacked certain covariates that, if accounted for, might alter our 

conclusions.  For example, cytogenetic and molecular features of AML and MDS are 

among the strongest determinants of post-transplant survival,174 but were not 

available in the data set.  This information is collected by the CIBMTR so, given time 

and resources, it can be extracted from the database.  By contrast, some types of 

amino acid substitutions in the HLA molecules lead to so-called “permissive” 
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mismatches that have no impact on the incidence of GVHD or OS175 but such detailed 

HLA typing results are not available for the majority of patients in this data set.  This 

might have led to underestimating a true detrimental effect of “mismatched” or 

“partially matched” donor-recipient pairs compared to well-matched pairs, because 

approximately 7% of supposedly mismatched transplants might actually have had 

permissive mismatches,176 keeping in mind that determining the net effect of a 

mismatched unrelated donor with this model requires combining the estimates for 

2 variables (“HLA matching” and “donor relation”).  Also, the impact of NHTL 

therapies in non-permissively mismatched pairs might have been diluted. 

Another major limitation is that the time when A2 treatment is started is not 

recorded.  It is likely that patients who had lower grades of GVHD at onset had a 

longer time to progression, and hence a longer time to needing A2 treatment, than 

patients who had higher grades of GVHD at onset.  Therefore, by using the time of 

onset of GVHD, the post-A2 survival time estimates for patients with lower GVHD 

grades are likely over-estimated.  This has implications for design of future CIBMTR 

CRFs.  If studying sequential data is valuable, then future CRFs should contain the 

start (and stop) dates of major medications and interventions.   

A third major limitation related to lack of relevant covariates is that only 

immunosuppressive treatments were studied for their effect on GVHD and survival, 

but other types of treatment might influence survival through decreasing infectious 

complications (e.g., use of triazole antifungal medication and pre-emptive treatment 

of CMV and Epstein-Barr virus viremia), decreasing complications related to ABO 

mismatching, or altering the risk of developing intestinal GVHD (e.g., use of certain 

antimicrobials for gut decontamination).177  The use of such “supportive” treatments 

undoubtedly varied markedly across centers and over time, but details about these 

sorts of covariates are not available.  Unmeasured concurrent antimicrobial 

strategies are of particular concern because they might be more important to 

patients receiving NHTL interventions, which naturally carry a higher risk of life-

threatening infections.  Controlling for antimicrobial strategies might have lessened 

the decrement in survival observed in the NHTL groups.  Infectious complications 
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are less problematic with modern viral and fungal monitoring and pre-emptive 

treatment, and modern anti-infective prophylaxis.  Indeed, a recent randomized 

GVHD prophylaxis trial found no increase in the incidence of serious infections in 

the ATG arm compared to the no-ATG arm.122    

A fourth limitation is that we presumed that antibodies given prior to graft 

infusion as part of conditioning with the primary intent of preventing graft rejection 

were also useful for preventing GVHD.  This presumption is reasonable because of 

their prolonged half-life in circulation142 but sometimes that might not be the case.  

For instance, a subset of patients might rapidly clear NHTL antibodies due to genetic 

polymorphisms or if extremely low doses of antibodies were used.178  Some 

researchers suggest the necessity of delivering at least one post-infusion ATG 

dose.179  It is also worth considering that ATG doses higher than 7.5 mg/kg have 

been associated with detrimental survival outcomes because of excessive infection-

related mortality.179  Doses of NHTL therapies used for salvage therapy, their exact 

schedule of administration for prophylaxis and salvage, and individual-patient 

serum antibody levels were not available in the data set.  The source of ATG 

administered in conditioning or as prophylaxis was available for only 3% of 

patients, and ATG sources was not available when administered as GVHD treatment. 

Another limitation is that by excluding IVIG from prophylaxis and treatment of 

GVHD and by lacking information about the dose, schedule and reasons for IVIG 

administration, an effect on survival mediated through IVIG-induced reduction of 

CMV reactivation or prevention of severe CMV disease might have been missed.  The 

effect of IVIG might have been more important in recipients of NHTL therapies 

because they increase the risk of CMV-related complications.  While it is not 

necessary to adjust for CMV reactivation or disease because that is essentially a 

mediator on the causal pathway from NHTL exposure to death, it would be desirable 

to account for receipt of IVIG because IVIG could modify the effect of NHTL 

therapies.  In particular, NHTL therapies might be safer in patients who received 

prophylactic IVIG. 
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7.4.4 Limitations that stem from unreliability of data 

Any lack of reliability or systematic bias in measurement of a putative tailoring 

variable will impair its performance.  The frequency of most misclassification likely 

does not differ according to exposure group (NHTL prophylaxis or NHTL salvage 

treatment vs. non-NHTL therapies) or according to outcomes and hence should bias 

towards the null hypotheses.  One exception is the high rate of misclassification of 

grade II versus III acute GVHD, as discussed in Sections 2.3.31,32 Because of the strong 

association between grade III-IV acute GVHD (versus grade I-II acute GVHD) and 

receipt of NHTL salvage therapy, misclassification of GVHD grades II and III might 

introduce bias.  If the direction of the effect of GVHD grade is the same within each 

exposure group (exposure being receipt of NHTL or standard salvage), which is 

likely the case, the result is expected to lie between the crude and the true value on 

the relative risk or odds ratio scale.  However, if the effect of GVHD grade is to 

reduce DFS in one exposure group and to increase DFS in the other exposure group, 

then the magnitude and direction of bias are not easily predictable.180 

Specific treatments received for GVHD might have also been misclassified.  For 

example, it is possible that some patients were recorded as having received 

“systemic steroids” when in fact all they received were “topical” beclomethasone 

and/or budesonide, so the use of systemic steroids might be over-estimated.  Such 

misclassification of particular drugs is likely to be non-differential with respect to 

exposure and outcomes, again biasing the effect of NHTL therapy toward the null. 

7.4.5 Limitations that stem from lack of representativeness 

The 9563 patients analyzed this thesis represent <10% of all patients 

transplanted for AML and MDS in 1995 to 2007.  Selection bias is introduced 

because only a subset of transplant centers worldwide supply data to the CIBMTR 

and, of those, only a subset supply the comprehensive CRFs needed for this study.  

Generalizability of our findings may also be limited because multiple aspects of 

medical practice in the mid-1990s and the first decade of 21st century are very 
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different compared to standard procedures employed today.  Also, although it is 

likely that patients treated for “chronic GVHD first” actually had acute GVHD, only 

18 patients received NHTL salvage treatment for “chronic GVHD first,” making it 

impossible to offer firm conclusions for this subgroup.  Whether our findings apply 

to patients with acute GVHD diagnosed according to the updated consensus criteria 

is unknown.  Ultimately, the ATSs proposed herein would need to be prospectively 

tested in a modern multi-center study before they can be recommended. 

 

7.5 Future Directions 

7.5.1 Alternative model forms 

 
We are currently developing a survival time model to address the same 

questions as the current analysis because by avoiding an arbitrary cut-off at 2 years, 

more relevant information about a patient’s survival trajectory can be harnessed, so 

predictions from the survival model are expected to be more accurate than 

predictions from the logistic regression.  In Q-learning, the outcome in the last 

interval and under each future treatment option in prior intervals must be predicted 

for each patient in order to estimate that patient’s outcome under the (possibly-

counterfactual) optimal treatments.  It is far more convenient to use a parametric 

approach (such as an accelerated failure time model) to predict an individual 

patient’s outcome than a non-parametric approach, such as a Cox proportional 

hazards model.  This is because the Cox model readily gives a hazard ratio for death 

accounting for a patient’s unique set of covariate values, which can be used to 

predict a median survival time for a population of similar patients, but does not 

readily provide predicted survival times as the baseline hazard rate is left 

unspecified in a Cox model.   

Another challenge with right-censored AHCT survival data is that a group of 

censored patients might be immune to relapse and can be considered “cured.”  

However, some censored patients might not, in fact, be cured.  Estimating the cure 
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fraction and examining the effect of covariates on the cure rate can be useful for 

predicting the pseudo-outcome.  Fortunately, this can be accomplished with 

parametric cure models.  A common form for the cure model is 

𝑆(𝑡|𝐻) =  𝜋(𝐻) + (1 −  𝜋(𝐻))𝑆𝑢(𝑡|𝐻), 

where T is the time-to-event (survival time), S(t) = P(T > t) is the survival function of 

T, Su(t) is the survival function given that the patient is “uncured”, H is the set of 

confounding and potential tailoring variables, Cj and Oj, as well as the treatments Aj 

received up to the point of the current decision are as already defined in Section 3.3, 

and 𝜋(𝐻) is the cure rate, which is a function of those covariates.  The cure rate and 

covariate effects on the cure rate are often modelled parametrically with the expit 

function, i.e., by 𝜋(𝐻) = 𝑒𝛽̂𝐻/(1 + 𝑒𝛽̂𝐻), which is the “mixture cure model.”  Next, 

Su(t) can likewise be estimated with a parametric approach.  To create the cure 

model  𝑆(𝑡|𝐻), the model predicting the cure rate, 𝜋(𝐻), and the survival model 

restricted to patients at risk of the event, 𝑆𝑢(𝑡|𝐻), are fit jointly and borrow 

information from each other.181  We have chosen to use a cure model for future 

work, based on the strong plateau observed in the Kaplan-Meier plots (Figure 6). 

7.5.2 Methodological challenges 

 
Future work will also address how to perform sensitivity analysis within the 

context of Q-learning backwards interval estimation to assess the potential impact 

of unmeasured confounding.  We are also interested in useful methods for 

quantifying the uncertainty in individual patient-level predictions.  In situations 

where the confidence intervals (or prediction intervals) for the effect of some ATS 

versus an alternative ATS, or for the effect of some intervention versus an alternative 

intervention at each decision point, overlap, the sheer fact that the algorithm usually 

“votes” for a particular ATS or intervention given specific patient characteristics 

might serve to increase “confidence” in the veracity of the prediction.  The ability of 

the algorithm to choose a particular ATS or intervention in the face of uncertainty 

(where uncertainty is defined as overlapping confidence intervals) is not necessarily 
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a weakness.  On the contrary, it mirrors what clinicians do on a daily basis.  Q-

learning and similar approaches can be harnessed to make decisions in the face of 

uncertainty more rationally by making the effect of a combination of patient-specific 

characteristics explicit. 

7.5.3 Translating the current work to clinical practice 

 
The current analysis, as well as the Q-learning survival analysis, ought to be 

repeated in a modern cohort, because the relative harm or benefit of NHTL 

prophylaxis and acute GVHD treatment is probably very different in the current era 

of sensitive monitoring for viral reactivation and invasive fungal infections, pre-

emptive anti-viral treatment, and broader-spectrum anti-fungal and anti-bacterial 

drugs.  It would also be interesting to evaluate the question of prophylaxis and 

GVHD treatment among patients with different malignant diseases.  The risk factors 

for acute GVHD differ somewhat according to disease, prompting the development 

of disease-specific GVHD risk models,49 so it is reasonable to hypothesize that the 

relative harm or benefit of NHTL prophylaxis or treatment would also differ by 

disease.  When considering disease-specific models, it bears mentioning that the 

choice of endpoint for a time-to-event outcome should be appropriate to the natural 

history of the disease under study.  Because relapsed AML post AHCT is so often and 

so quickly fatal, the difference between relapse-free survival and overall survival is 

generally <3% in the setting of AHCT for AML.  Therefore, in the current work, 

relapse and death from relapse or non-relapse causes was treated equivalently.  In 

situations where patients may survive a long time after relapse, such as in AHCT for 

indolent lymphoma, a modification of Q-learning to assess failure-free time in a way 

that does not penalize ATSs as strongly for relapses as for deaths has been 

developed.182  

7.5.4 Translating machine learning to clinical practice 

 

On its own, physician judgment may not perform well in synthesizing a 

plethora of genetic, proteomic, clinical and demographic attributes – some of which 
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may change predictably or unpredictably over time – in order to reach the optimal 

treatment plan.  ATSs developed using machine learning approaches on 

observational data or through SMARTs, and validated in traditional RCTs that test 

ATS-guided care vs. usual care, could be made available to clinicians on various 

platforms such as internet-accessible applications.  These ATS algorithms could 

even be updated in real time based on a continuous input of information drawn 

from recent and current patients.  Having more precisely generated probabilities of 

treatment success or failure would help us choose appropriate therapy.  However, 

even once accessible algorithms that offer accurate patient-specific predictions are 

developed, how we ought to integrate that information into our practices will require 

additional study.  For example, how is a clinician to assess whether she should follow the 

suggestion offered by the algorithm rather than her own judgment?  We suggest greeting 

the uptake of machine learning-developed ATSs with cautious optimism and healthy 

academic skepticism.  Legal, cultural and infrastructural challenges lie ahead. 

7.5.4.1  Infrastructural challenges 

The robustness of machine learning algorithms can only be ensured if the data 

used to develop them are of sufficient scale (i.e., a large number of patients and events), 

quality (i.e., measurement or classification of the predictors of response and of the 

responses as well as data entry must be reliable), and richness (i.e., all relevant attributes 

including variables related to socio-economic status, lifestyle, tolerance of side effects, 

etc. would ideally be collected).  These are the same challenges faced by existing patient 

registries.130  The CIBMTR can aim for flexibility in data collection, for example adding 

detailed questions about a particular topic for a set time period (or until sufficient patients 

are accrued to answer the question) to allow for “prospective,” relevant data collection 

within the registry framework.  As electronic instead of paper CRFs become the norm, 

adding and removing supplemental questions may become logistically and financially 

more facile.  We predict that in addition to leveraging our field’s existing infrastructure 

for collaborative retrospective research, innovative efforts to link electronic medical 

records across institutions and automatically mine various sources of data such as 

pharmacy dispensaries and laboratory information systems will bear fruit over the 
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coming years.183  Importantly, natural-language processing has matured to the point 

where useful information can be extracted automatically from unstructured chart notes.  

Patients might also wish to contribute information via social media, online portals, or 

wearable monitors (e.g., Fitbit™).  Suitable methods and software for data storage, 

automatic data pre-processing, handling missing data, and reducing dimensionality are 

already commonly applied to biomedical “big data” (dozens of terabytes to 

pentabytes).184 

7.5.4.2  Cultural challenges 

Many physicians and patients do not feel comfortable with opaque decision 

making software that does not show the reasons why a particular choice was suggested.  

By way of example, this sentiment was voiced by oncologists who beta-tested IBM 

Watson’s Oncology Expert Advisor.185  Doctors must be able to explain the choice to 

patients, ethics committees, review boards, and courts of law.  On the other hand, our 

culture of scientific inquiry might facilitate adoption of ATSs into clinical practice if we 

treat machine learning ATS algorithms like any other experiment, treatment or risk score.  

(1) Confirm reproducibility: We expect that the results of machine learning algorithms 

should be reproducible with different, valid techniques.  Just as our confidence that a 

particular cellular pathway is activated if authors not only report up-regulation of its 

components’ gene expression but also confirm increased production of the downstream 

protein products, if a particular variable reliably predicts response to a particular 

treatment, we expect that finding to be apparent using different machine learning 

techniques.  (2) Confirm generalizability:  For retrospective studies, the machine learning 

algorithms ought to be tested in different, independent data sets. For prospective studies, 

the ATSs ought to be developed through SMARTs conducted across different institutions 

or at least verified in different institutions subsequently. This is the same standard we 

apply to predictive risk scores.  (3) Study the effect of their implementation: The survival 

(or other) benefit of the proposed ATSs would need to be confirmed in clinical trials or in 

ecological studies before their adoption.  By the latter, we mean that the performance of 

institutions that implement the ATSs could be compared to those that do not, or within a 

given institution the algorithm could be implemented for a year or two, then 
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“withdrawn,” and later re-instituted.  In our hypothetical example, when patients would 

develop acute GVHD, they would be treated under the policy that was “in force” at their 

date of transplant (ATS or clinician-determined care).  This nuance is necessary because 

the ATS starts at the prophylaxis stage, so if their prophylaxis was chosen according to 

the ATS, their acute GVHD salvage treatment ought to be chosen according to the ATS 

as well.  If GVHD or survival indices were to improve for patients transplanted under the 

ATS and if the improvement were to extinguish after withdrawing the ATS, we would 

have strong, albeit circumstantial, evidence of benefit.  In summary, adoption of a 

particular ATS could only be endorsed if it was developed and evaluated with the same 

rigor as other prognostic and treatment approaches.   

7.5.4.3. Legal challenges 

Evidence that is used to reach a diagnosis or recommend a treatment plan 

must be archived.  If an algorithm that suggests treatment is updated periodically or 

automatically updated continuously, a report of the algorithm’s recommendation 

must be preserved in an unalterable format.  ATSs may generate legal uncertainties.  

If harm results from implementing a treatment recommendation made by a 

computer algorithm, would the prescribing physician or the developers of the 

algorithm be accountable?  We suggest that the current legal framework of clinical 

practice guidelines offers a structure in which algorithmic ATSs could be “non-

litigiously” adopted.186 
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8. CONCLUSION 

The danger of lacing together results from different RCTs or different “factorial 

comparisons” to recommend an ATS is that such an approach could fail to detect 

delayed effects that might enhance or abrogate the benefit of a future treatment, fail 

to detect side effects that preclude the use of a future treatment, and fail to elicit 

valuable diagnostic information, such as depth of response or adherence, that allows 

personalized selection of the next treatment (the so-called “prescriptive effect” or 

“diagnostic effect”).  The approach used in this work personalizes the sequential 

selection of medical treatments while avoiding those pitfalls.  Backwards stage-wise 

estimation could contribute to refining GVHD therapy as well as to improving the 

management of other diseases where multiple induction, consolidation, 

maintenance, or salvage therapies exist and the optimal combination or sequence of 

treatment is currently unclear.   

This work also demonstrates how observational data, especially registry data, 

could be useful in designing adaptive treatment strategies.  Prior to investing time 

and financial resources into a complex SMART or traditional RCT, exploitation of 

registry data can identify which ATSs merit prospective evaluation.  Moreover, 

registries are useful for addressing the question of the best sequence of therapy in 

groups of patients who might be underrepresented in clinical trials.  We successfully 

implemented Q-learning with a binary outcome despite the peculiarities of an AHCT 

registry population (such as steep initial mortality, the cure plateau, and censoring 

for second transplants and other reasons).  Given a sufficient sample size with 

representation of all sorts of patients, our approaches could easily be extended to 

include more decision-making stages, more treatment options at any decision point, 

or more covariates, as well as other types of outcomes – especially survival time 

outcomes.  To bring about “precision medicine,” both retrospective analyses and 

prospective studies could therefore be used to develop clinically-relevant, 

personalized adaptive treatment strategies. 
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9. APPENDICES 

9.1 Consensus Acute GVHD Grading26 

Step 1:  Perform staging of individual organ systems for acute GVHD 
Skin Stage: 
+ 1 Maculopapular eruption involving less than 25% of the body surface 
+ 2 Maculopapular eruption involving 25%-50% of the body surface 
+ 3 Maculopapular rash > 50% of the body surface 
+ 4 Generalized erythoderma with bullous formation and often with desquamation 

 
Liver Stage* 
+ 1 Bilirubin 35-50 µmol/L 
+ 2 Bilirubin 51-100 µmol/L 
+ 3 Bilirubin 101-255 µmol/L  
+ 4 Bilirubin > 255 µmol/L 
 *If the patient has documented GVHD of the liver and documented alternative cause of 
hyperbilirubinemia (i.e. veno-occlusive disease) then downstage liver GVHD by 1 stage. 

 
Gut Stage**      
+ 1 Diarrhea volume = 500-900 mL/day or persistent nausea (+ vomiting) with histological 

proof of GVHD within the gut 
+ 2 Diarrhea volume = 1000-1500 mL/day 
+ 3 Diarrhea volume > 1500 mL/day 
+ 4 Severe abdominal pain or ileus    
**If the patient has documented GVHD of the gut and alternative cause of diarrhea (i.e. 
severe mucositis, CMV enteritis, or C.difficile infection), then downstage gut by 1 stage. 
 
Step 2:  Add organ staging together to determine overall clinical grade. 
 

Table A1. Consensus clinical grading of severity of acute graft-versus-host disease 

GRADE SKIN LIVER GUT 
0 (none) 0 0 0 
I (mild) +1 to +2 0 0 
II (moderate) 0 to +3* +1 +1 
III (severe) -- +2 to +3 +2 to +4 
IV (life-
threatening)** 

+4 +4 -- 

*Skin stage 3 alone is also considered overall grade II 
**Severe decrease in performance status due to GVHD should be considered grade IV 
irrespective of organ stages. 
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9.2 Traditional Chronic GVHD Grading39 

Limited Chronic GVHD 
Either or both: 
1. Localized skin involvement 
2. Hepatic dysfunction 
 
Extensive Chronic GVHD 
Either: 
1. Generalized skin involvement or 
2. Generalized skin involvement and/or hepatic dysfunction plus 

i. Liver histology showing aggressive hepatitis, bridging necrosis or 
cirrhosis, or 

ii. Involvement of eye:  Schirmer’s test with <5 mm wetting, or 
iii. Involvement of minor salivary glands or oral mucous demonstrated on 

labial biopsy specimen, or 
iv. Involvement of any target organ e.g. esophageal abnormalities, 

polymyositis. 
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9.3 Choice of endpoints for developing adaptive treatment strategies 

Table A2. Examples of endpoints and optimization criteria for evaluating adaptive treatment strategies, 
and sample references 
Structure of the 
endpoint 

Clinical endpoint example Possible optimization criteria Derivation or 
application of the 
optimization algorithms 
(first author, year, 
reference) 

1. Binary logistic -  Proportion of patients surviving at 1 
year (alive vs. dead) 
- Proportion of patients achieving CR 
(vs. no CR), regardless of subsequent 
relapses 

- Maximizing the proportion achieving  
“success” at a given time point, at any time 
during the study, or at the end of individual 
follow-up1 

Wang 2012187 

2. Trinary logistic  - Effective AML induction treatment vs. 
treatment failure due to lack of efficacy 
(primary refractory disease or relapse) 
vs. treatment failure due to toxicity  
 

- Maximizing the proportion in the 
“success” category 
- Compiling utility estimates of the three-
way trade-off between the likelihood of 
success, failure due to lack of efficacy, and 
failure due to treatment-related toxicity 
from patients and physicians and 
optimizing the “net projected benefit”2 

Thall 200285 

3. Continuous or 
ordinal  
(assuming higher 
score is better)3 

- Quality-of-life score at 1 year post 
AHCT 
- Tumor antigen-specific effector T cell 
titers achieved in response to  
vaccination with tumor-specific peptide 
measured serially 
-  Platelet count in aplastic anemia 
patients assessed 3 months after all 
study treatments are withdrawn 

- Maximize the group mean or median score 
- Maximize quantiles of a distribution 
- Minimize number or magnitude of 
deviations from a target salutary or 
therapeutic range 

Rich 201487 

4. Survival time - Overall survival from diagnosis 
- Disease-free survival 
- Survival times accounting for 
competing risks 
- Failure times with a combined 
endpoint of death/relapse/toxicity 

- Maximize the group mean or median 
survival time 
- Maximize the median residual lifetime 
- Maximize quantiles of  
the distribution 

Huang 2012188 
Wang 2012187 
Huang 2014182 
Kidwell 2014189 

5. Count data - Number of hospital-free days in a year 
- Number of multiple sclerosis relapses 
over a decade 

- Maximize or minimize the number of in a 
time period 

Oetting 2011125 

6. Time-varying - Functional level (e.g., daily 
questionnaire on ability to accomplish 
activities at home) 
- Symptom level (e.g., peripheral 
neuropathy in myeloma patients, bone 
pain in metastatic carcinoma patients) 

- Maximize total functional level over time 
- Minimize total symptom burden over time 
- May incorporate a minimum threshold 
(e.g., maximize functional level above some 
minimal acceptable cut-off) 

Fonteneau 2008190 
Chakraborty 2009191 

7. Cost-utility - Quality-adjusted life years 
- Disability-adjusted life years 

- Maximize mean, median, or quantiles of a 
QALY distribution 
- Minimize years of life lost to disability or 
death 

Requires further 
development, but see 
Rosenheck 2006192 

Notes: 1. “At a given time point” implies after the same length of follow-up for each patient. “At any point during the study” implies at any 
point before the study is administratively terminated, or at each patient’s own end of study, with variable lengths of follow-up.  “At the 
patient’s own end-of-study time” likewise implies variable lengths of follow-up. 2. This also allows creation of decision-making support 
tools that can be used to elucidate individual patient and physician preferences. See Thall and Estey 2002.85 3. Since most of the literature 
discusses maximization, if minimizing a score is desired then one might simply maximize the difference between the maximum possible 
score and the attained score.  Abbreviations: AHCT – allogeneic hematopoietic cell transplantation, AML – acute myeloid leukemia, CR – 
complete remission, QALY – quality-adjusted life year. 
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9.4 Inverse probability of censoring weights 

Table A3. Model for the probability of censoring in the first interval 
Predictor Beta coefficient1 95% CI1 
Intercept –92.172 (–120.791, –63.553) 
Year of transplant 0.046 (0.032, 0.061) 
Recipient age, years –0.010 (–0.007, –0.013) 
Karnofsky/Lanksy performance status 
≥ 80% REF –– 
< 80% –0.708 (–0.880, –0.536) 
Disease status 
Early REF –– 
Intermediate –0.230 (–0.338, –0.122) 
Advanced –1.120 (–1.225, –1.014) 
Conditioning intensity 
Myeloablative REF –– 
Reduced intensity or non–myeloablative –0.181 (–0.301, –0.062) 
Graft type 
Bone marrow REF –– 
Peripheral blood 0.018 (–0.088, 0.125) 
Umbilical cord blood –0.249 (–0.029, –0.469) 
Donor relation 
Related REF –– 
Unrelated –0.390 (–0.283, –0.497) 
HLA match 
Well–matched REF –– 
Partially–matched 0.223 (0.042, 0.404) 
Mismatched 0.491 (0.317, 0.666) 
1The beta coefficients represent the average of 5 imputations. The confidence intervals were 
calculated from standard errors derived according to Rubin’s formula.157 

 

 

Table A4. Model for the probability of censoring in the second interval 
Predictor Beta coefficient1 95% CI1 
Intercept –1.870 (–2.669, –1.071) 
Recipient age, years –0.027 (–0.006, –0.048) 
Conditioning intensity 
Myeloablative REF –– 
Reduced intensity or non–myeloablative 0.949 (0.067, 1.832) 
Donor relation 
Related REF –– 
Unrelated –1.333 (–0.2019, –0.647) 
Grade of acute GVHD at “start” of treatment (maximal grade on the index form) 
I-II REF –– 
III-IV –0.658 (–1.343, 0.028) 
1The beta coefficients represent the average of 5 imputations. The confidence intervals were 
calculated from standard errors derived according to Rubin’s method.157 
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9.5 Distribution of GVHD therapies 

Table A5. Therapeutics for acute and chronic GVHD (regardless of line of treatment) 
Drug Action recorded Acute GVHD 

(n =4937) 
Chronic GVHD 

(n = 1382) 
n % n % 

Systemic corticosteroids Administered 4332 88 3244 79 
Not administered 594 12 278 20 
Missing 11 22 11 <1 

Topical 
corticosteroids  

Administered 1520 31 477 35 
Not administered 3378 68 890 64 
Missing 39 <1 15 1 

ATG (or ALG) 
 

Administered 286 6 6 <1 
Not administered 4609 93 1359 98 
Missing 42 <1 17 1 

Cyclosporine (oral) Administered 3025 61 491 35 
Not administered 1898 38 883 64 
Missing 14 <1 8 <1 

Tacrolimus (oral) Administered 1693 34 3244 39 
Not administered 2741 56 809 58 
Missing 503 10 40 3 

ECP Administered 69 1 74 5 
Not administered 1154 23 976 71 
Missing 3714 75 332 24 

Anti-CD25 (including 
daclizumab and basilizumab) 

 

Administered 207 4 11 <1 
Not administered 2940 59 476 34 
Missing 1790 36 895 65 

Alemtuzumab  Administered 18 <1 4 <1 
Not administered 1670 34 314 23 
Missing 3249 66 1064 77 

Etanercept Administered 37 <1 12 <1 
Not administered 1475 30 198 14 
Missing 3425 69 1172 85 

Infliximab   Administered 123 3 10 <1 
Not administered 56 1 36 3 
Missing 4758 96 1136 97 

OKT3 Administered 25 <1 2 <1 
Not administered 1646 33 276 20 
Missing 3266 66 1104 80 

In vivo immunotoxin 
(including denileukin 
defitox) 

Administered 27 <1 -- -- 
Not administered 4842 98 -- -- 
Missing 68 1 -- -- 

Methotrexate Administered 325 6 -- -- 
Not administered 3147 64 -- -- 
Missing 1465 30 -- -- 

Mycophenolate mofetil Administered 976 20 321 23 
Not administered 1845 37 749 54 
Missing 2116 43 312 23 
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Table A5. Therapeutics for acute and chronic GVHD (regardless of line of treatment) 
Drug Action recorded Acute GVHD 

(n =4937) 
Chronic GVHD 

(n = 1382) 
n % n % 

Sirolimus Administered 154 3 96 7 
Not administered 2464 50 952 69 
Missing 2319 47 334 24 

Blinded randomized trial or 
unnamed investigational 
agent 

Administered 25 <1 16 1 
Not administered 4844 98 1349 98 
Missing 68 1 17 1 

Azathioprine or mizoribine Administered -- -- 25 2 
Not administered -- -- 1341 97 
Missing -- -- 16 1 

Etretinate Administered -- -- 3 <1 
Not administered -- -- 1045 76 
Missing -- -- 334 24 

Hydroxychloroquine  Administered -- -- 7 <1 
Not administered -- -- 874 63 
Missing -- -- 501 36 

Clofazimine Administered -- -- 0 0 
Not administered -- -- 1048 76 
Missing -- -- 334 24 

Pentostatin Administered -- -- 7 <1 
Not administered -- -- 873 63 
Missing -- -- 502 36 

Thalidomide Administered -- -- 13 1 
Not administered -- -- 1354 98 
Missing -- -- 15 1 

Other systemic non-NHTL 
treatment 

Administered 69 1 46 3 
Not administered 4868 99 1336 97 

Other topical treatment 
(including PUVA) 

Administered 91 2 48 3 
Not administered 4846 98 1334 97 

Other highly 
lymphodepleting treatment 
(pentostatin for acute GVHD, 
fludarabine or cladribine for 
acute or chronic GVHD, 
certain monoclonal 
antibodies) 

Administered 38 1 0 0 
Not administered 4899 99 1382 100 
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9.6 Distribution of “first-line” vs. “salvage” acute GVHD treatment 

Table A6. “First-line” and “salvage” treatments for acute GVHD 
Drug Action recorded First-line 

(n = 3526) 
Salvage 

(n = 1411) 
n % n % 

Systemic corticosteroids Administered 2921 83 1411 100 
Not administered 594 17 0 0 
Missing 11 <1 0 0 

Topical 
corticosteroids  

Administered 1097 31 423 30 
Not administered 2397 68 981 69 
Missing 32 <1 7 <1 

ATG (or ALG) 
 

Administered 0 0 286 20 
Not administered 3493 99 1116 79 
Missing 33 <1 9 <1 

Cyclosporine (oral) Administered 2142 61 883 63 
Not administered 1372 69 526 37 
Missing 12 <1 2 <1 

Tacrolimus (oral) Administered 1019 29 674 48 
Not administered 2113 60 628 44 
Missing 394 11 106 8 

ECP Administered 9 <1 60 4 
Not administered 921 26 233 17 
Missing 2596 74 1118 79 

Anti-CD25 (including 
daclizumab and basilizumab) 

 

Administered 15 <1 192 14 
Not administered 2065 58 875 62 
Missing 1446 51 344 24 

Alemtuzumab  Administered 0 0 18 1 
Not administered 1238 35 432 31 
Missing 2288 65 961 68 

Etanercept Administered 4 <1 33 2 
Not administered 860 24 615 44 
Missing 2662 75 763 54 

Infliximab   Administered 9 <1 114 8 
Not administered 15 <1 41 3 
Missing 3502 99 1256 89 

OKT3 Administered 0 0 25 2 
Not administered 1223 35 423 30 
Missing 2303 65 963 68 

In vivo immunotoxin 
(including denileukin 
defitox) 

Administered 2 <1 25 2 
Not administered 3467 98 1375 97 
Missing 57 2 11 <1 

Methotrexate Administered 66 2 259 18 
Not administered 2585 73 562 40 
Missing 875 25 590 42 

Mycophenolate mofetil Administered 172 5 804 57 
Not administered 1620 46 225 16 
Missing 1734 49 382 27 
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Table A6. “First-line” and “salvage” treatments for acute GVHD 
Drug Action recorded First-line 

(n = 3526) 
Salvage 

(n = 1411) 
n % n % 

Sirolimus Administered 32 <1 122 9 
Not administered 1741 49 723 51 
Missing 1753 50 566 40 

Blinded randomized trial or 
unnamed investigational 
agent 

Administered 6 <1 19 1 
Not administered 3463 98 1381 98 
Missing 57 2 11 <1 

Other systemic non-NHTL 
treatment 

Administered 3 <1 66 5 
Not administered 3523 99 1345 95 

Other topical treatment 
(including PUVA) 

Administered 54 2 37 3 
Not administered 3472 98 1374 97 

Other highly 
lymphodepleting treatment 
(pentostatin, fludarabine, 
cladribine, and certain 
monoclonal antibodies) 

Administered 0 0 38 3 
Not administered 3526 100 1373 97 

 
 
  



 

104 

 

9.7 Internal model validation 

Table A7. Internal validation: Mean of the quartile of predicted probability of 2-year 
disease-free survival compared to the observed 2-year disease-free survival 
proportion within the quartile of predicted probability 

Age group 

Standard Prophylaxis NHTL Prophylaxis Standard Salvage NHTL Salvage 

Predicted Observed Predicted Observed Predicted Observed Predicted Observed 

O to 19 

0.21 0.23 0.18 0.19 0.09 0.15 0.05 0.10 

0.47 0.48 0.37 0.38 0.27 0.24 0.16 0.05 

0.59 0.58 0.49 0.55 0.46 0.41 0.30 0.42 

0.67 0.66 0.59 0.59 0.71 0.72 0.56 0.10 

20 to 39 

0.18 0.17 0.16 0.17 0.05 0.03 0.02 0.00 

0.42 0.35 0.32 0.24 0.16 0.12 0.08 0.10 

0.56 0.55 0.47 0.45 0.33 0.35 0.16 0.13 

0.65 0.67 0.59 0.52 0.61 0.55 0.38 0.29 

40 to 59 

0.15 0.14 0.15 0.17 0.04 0.08 0.01 0.00 

0.30 0.29 0.27 0.23 0.12 0.12 0.03 0.00 

0.46 0.45 0.43 0.44 0.25 0.21 0.07 0.04 

0.58 0.56 0.55 0.48 0.51 0.47 0.24 0.21 

60+ 

0.13 0.14 0.12 0.17 0.04 0.08 0.01 0.00 

0.24 0.29 0.20 0.23 0.12 0.12 0.03 0.00 

0.39 0.45 0.34 0.44 0.21 0.21 0.07 0.04 

0.50 0.57 0.49 0.48 0.42 0.47 0.16 0.21 
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