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Preface and Statement of Original Contribution

The present research develops a new method that integrates GSCA to a Bayesian framework.
The method provides several appealing features compared to original GSCA. It allows fitting
various structural equation models while accounting for measurement errors in the observed
variables. In addition, the method provides additional fit measures for model assessment and
model comparison from the Bayesian perspectives. I, Ji Yeh Choi, am the primary author of this
dissertation and have conceptualized and written this dissertation in its entirety. My doctoral
supervisor Professor Heungsun Hwang played an essential role in the supervision of my

dissertation research, providing important feedback and guidance at every stage.
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Abstract

Generalized structured component analysis (GSCA) is a component-based approach to structural
equation modeling (SEM) that postulates and examines various directional relationships among
latent and observed variables. GSCA constructs components or weighted composites of observed
variables as proxies for latent variables. It combines three sub-models, such as measurement,
structural, and weighted relation models, into a unified formulation, and estimates all model
parameters simultaneously via least squares. Over the past decade, GSCA has been extended to
deal with a wider range of data types including discrete, multilevel, or intensive longitudinal data,
as well as to accommodate a more variety of complex analyses such as latent moderation
analysis, the capturing of cluster-level heterogeneity, and regularized analysis. To date,
nonetheless, there has been no attempt to generalize the scope of GSCA into the Bayesian
framework. In this dissertation, a novel extension of GSCA, called Bayesian GSCA, is proposed
that estimates parameters within the Bayesian framework. Bayesian GSCA can be more
attractive than GSCA in numerous respects. Firstly, it infers the probability distributions of
parameters, treating the parameters as random variables, which in turn facilitates the
interpretation of the parameters. Secondly, it permits specifying various structures of error terms
in the measurement model, which are left unspecified in GSCA. Thirdly, it provides additional
fit measures for model assessment and comparison from the Bayesian perspectives. Lastly, it
allows directly incorporating external information on parameters, which may be obtainable from
past research, expert opinions, subjective beliefs or knowledge on the parameters, as the form of
prior distributions in the modelling process. Bayesian GSCA adopts a Markov Chain Monte
Carlo method, i.e., Gibbs Sampler, to update the posterior distributions for parameters. The

dissertation begins by describing two building blocks of Bayesian GSCA — GSCA and Bayesian



inference, and subsequently discusses the technical underpinnings of Bayesian GSCA. It also
demonstrates the usefulness of Bayesian GSCA based on the analyses of both simulated and real

data.



Abrégé
L’analyse en composantes structurée généralisée (ACSG) est une approche de la modélisation
par équations structurelles (MES) basée sur les composantes qui postule et examine divers liens
directionnels entre des variables latentes et observées. L’ACSG construit des composantes ou
des ensembles pondérés de variables observées pour représenter des variables latentes. Elle
combine trois sous-modéles, soit le modeles de mesure, le modele structurel et le modele des
liens pondérés dans une formulation unifiée et estime tous les parametres des modeles
simultanément via la méthode des moindres carrés. Durant les dix derniéres années, ’ACSG a
évolué pour traiter une plus grande gamme de types de données, notamment des données
discretes, multiniveaux, et longitudinales avec de nombreuses mesures sur une longue durée,
ainsi que pour s’adapter a une plus grande variété d’analyses complexes telles que 1’analyse de
modération avec des variables latentes, la mesure de I’hétérogénéité au niveau d’un sous-groupe
et I’analyse régularisée. A date, néanmoins, il n’y a pas encore eu de tentative de généralisation
de ’ACSG dans le cadre bayésien. Dans cette these, une nouvelle extension de I’ACSG, appelée
ACSG bayésienne, évaluant les parameétres a I’intérieur du cadre bayésien, est proposée.
L’ ACSG bayésienne peut se prouver plus attractive que ’ACSG a de nombreux égards.
Premiérement, elle déduit la loi de probabilité des parametres, en traitant les paramétres comme
des variables al€atoires, ce qui facilite alors I’interprétation des parametres. Deuxiemement, elle
permet de spécifier plusieurs structures de terme d’erreur dans le modeéle de mesure qui ne sont
pas spécifiées dans I’ACSG. Troisiémement, elle fournit des mesures d’ajustement
supplémentaires pour 1’évaluation et la comparaison du modele d’une perspective bayésienne.
Enfin, elle permet d’incorporer de I’information externe sur les paramétres, qui peut provenir de

recherches passées, d’opinions d’experts, de croyances subjectives ou de connaissances sur les



parameétres, directement sous la forme de distributions préalables dans le processus de
modélisation. L’ACSG bayésienne adopte une méthode de Monte-Carlo par chaines de Markov,
soit I’échantillonnage de Gibbs, pour mettre a jour les distributions postérieures des parametres.
La these commence par une description des deux fondations de I’ACSG bayésienne — I’ACSG et
I’inférence bayésienne, avant d’examiner les fondements techniques de I’ACSG bayésienne. Elle
démontre également 1’utilité de I’ACSG bayésienne pour I’analyse de données simulées et

réelles.
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Chapter 1. Introduction

Chapter 1. Introduction

Structural Equation Modeling (SEM) is used for examining various directional relationships
among observed variables and hypothetical constructs, also called latent variables, which are not
directly measurable. SEM is comprised of two sub-models: measurement and structural models.
The measurement model specifies the hypothesized relationships between latent and observed
variables, whereas the structural model reflects the hypothesized directional relationships among
latent variables.

In general, there are two different domains of SEM: factor-based (Jéreskog, 1969) and
component-based (Wold, 1975; Hwang & Takane, 2004). As the names suggest, the former was
developed in the framework of common factor analysis, whereas the latter originated from
component analysis. Specifically, factor-based SEM assumes that a latent variable can be
approximated by a factor accounting only for the common variance of an observed variable.
Since basic factor-based structural equation models were formulated as a combination of
confirmatory factor analytic and path analytic models for continuous data (e.g., Joreskog, 1969),
they have been extended and elaborated over the past several decades by relaxing various
assumptions, such as multivariate normality of observed variables or linear models, or by taking
into account more complex data types. A few examples of such extensions include non-linear
SEM accommodating interaction or quadratic terms of latent variables (e.g., Joreskog & Yang,
1996; Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Schumacker & Marcoulides, 1998),
multilevel SEM for handling nested structures of data (e.g., Bollen & Curran; 2006; Muthen,
1994; Satorra & Muthén, 1995), and SEM for non-normal or discrete data (e.g., Chou, Bentler, &
Satorra, 1991; Finney & DiStefano, 2006; Hau & Marsh, 2004; Moustaki, 2003; Muthén, 1984;

Shimizu & Kano, 2008).
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On the other hand, component-based SEM combines component analytic and path
analytic models. In component-based SEM, a weighted composite or component of a set of
observed variables is assumed to be a proxy for a latent variable, capturing the most
representative variation of each of the observed variables. The first approach to component-
based SEM is partial least squares path modeling (PLS-PM), which was initiated by Wold (1975,
1982) and became popularized with a number of user-friendly software programs being available,
including PLS Graph (Chin, 2001), LVPLS (Lohmaoller, 1984), and SmartPLS (Ringle, Wende,
& Will, 2005). PLS-PM has some practical advantages over factor-based SEM. For example, it
does not require any distributional assumption and is less likely to encounter non-convergence or
convergence to improper solutions even in small samples. Nonetheless, PLS-PM carries out two
separate stages sequentially to estimate parameters, i.e., one stage for estimating components and
the other for estimating remaining parameters such as path coefficients and loadings (e.g.,
Hwang, Takane, & Tenenhaus, 2015; Tenenhaus, Vinzi, Chatelin, & Lauro, 2005). In the first
stage, an iterative algorithm (Wold, 1982, 1985; Lohmoller, 1989) is used to estimate the
components and their weights, although it is unknown what optimization criterion this algorithm
generally seeks to minimize or maximize. In the second stage, the remaining parameters are
estimated by applying a series of linear regression analyses based on the component estimates
from the first stage. In other words, PLS-PM has no global optimization criterion for estimating
all the parameters in both stages simultaneously. This makes it difficult to calculate overall fit
measures that are often proportional to the value of the global optimization criterion at
convergence (McDonald, 1996).

More recently, generalized structured component analysis (GSCA; Hwang & Takane,

2004, 2014) was introduced as another component-based approach to SEM. In GSCA, another
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sub-model, called the weighted relation model, is specified to explicitly express a latent variable
as a component of a set of observed variables. GSCA combines the three sub-models, i.e.,
measurement, structural, and weighted relation models, into a single formulation. It aims to
minimize a global least squares optimization criterion, which is derived from the single
formulation, to estimate all parameters simultaneously. Accordingly, unlike PLS-PM, GSCA
allows the calculation of overall fit measures to evaluate how well a given model fits to the data
as a whole and to compare competing models. In addition, GSCA can deal with a wider range of
data types, including multi-level data (Hwang, Takane, & Malhotra, 2007), time-dependent
repeated measures data (Jung, Takane, Hwang, & Woodward, 2012), categorical data (Hwang &
Takane, 2010), and functional data (Suk & Hwang, 2016). Furthermore, it can conduct a more
variety of complex analyses in a technically more coherent and straightforward manner,
including multiple group analysis with the imposition of cross-group equality constraints
(Hwang and Takane, 2004), the analysis of interaction terms of latent variables (Hwang, Ho, &
Lee, 2010), and regularized analysis (Hwang, 2009). For these advantages, GSCA can be
considered an alternative to PLS-PM. Thus, this dissertation focuses on GSCA as the main

approach to component-based SEM. Free online software (available at http://www.sem-

gesca.org/) and an R package, gesca (Hwang, Kim, Lee, & Park, 2016) are currently available
for implementing various GSCA models.

Owing to the revolution of computer-intensive sampling methods, Bayesian approaches
to SEM have grown in popularity, particularly for factor-based SEM, including those for
standard linear SEM (Muthén & Asparouhov, 2012; Scheines, Hoijtink, & Boomsma, 1999),
nonlinear SEM (Arminger & Muthén, 1998; Lee, 2006; Lee, 2007; Lee & Zhu, 2000), and

multilevel SEM (Ansari, Jedidi, & Jagpal, 2000; Song & Lee, 2004; Lee & Song, 2012). Lee
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(2012) provides a comprehensive review of Bayesian extensions of factor-based SEM. In general,
there are three advantages of adopting a Bayesian approach to factor-based SEM, although they
are not just unique to this methodology, but rather applicable to other methodological extensions
of Bayesian inference. Firstly, a Bayesian approach allows for probabilistic interpretations of
parameters by treating the parameters as random variables. By being random, a variable can take
on a set of values with probability and thus should be described by a probability distribution. In
turn, this provides simpler interpretations on probability values (i.e., p-values) for testing
statistical hypotheses as well as interval estimates of parameters, as compared to a non-Bayesian
approach (e.g., Congdon, 2007; Kaplan & Depaoli, 2012; Song & Lee, 2012). For example, in
the non-Bayesian approach, a 95 % confidence interval of a parameter estimate is a range of
values that 95% of the intervals computed from repeated sampling would contain the parameter.
This suggests that the probability of containing the parameter value in a particular interval is
either zero or one. On the other hand, in the Bayesian approach, a 95 % confidence interval
estimate (also called credible interval; Edwards, Lindman & Savage, 1963) is directly interpreted
as an interval that includes the parameter value with a 95 % probability. Similarly, the
interpretation of a p-value is more intuitively appealing in the Bayesian approach because it
simply indicates the posterior probability of the null hypothesis given the data, whereas the non-
Bayesian approach’s p-value indicates the probability of obtaining a test statistic value at least as
extreme as the one observed given that the null hypothesis is true. Hence, a Bayesian approach
provides more intuitive interpretations of parameters with probabilistic statements by deriving
their posterior distributions.

Another notable advantage of adopting a Bayesian approach is that it can incorporate

external information on parameters, such as previous research findings or expert opinions, which
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might otherwise be neglected in the modeling process. A Bayesian approach enables to assign
probability distributions to the parameters, called prior distributions, by formally quantifying
uncertainty about the parameters (e.g., Hoff, 2009; Gelman, Carlin, Stern, & Rubin, 2004). This
allows integrating any relevant information about the parameters into the modeling process and
enhances the accuracy of parameter estimates, unless the specified prior information is
completely incorrect.

Lastly, a Bayesian approach would perform well even when sample size is small (e.g.,
Muthén & Asparouhov, 2012; Palomo, Dunson, Bollen, 2007; Scheines et al., 1999). This is
because the Bayesian approach does not rely on asymptotic theory (i.e., large-sample
approximations), but rather it simulates samples from a posterior distribution and computes test
statistics by summarizing the posterior distribution itself.

In contrast to the Bayesian developments in factor-based SEM, to date, there has been no
attempt to apply a Bayesian approach to GSCA. It is partially attributed to the fact that
parameters in GSCA are estimated and tested without imposing any distributional assumptions.
This distribution-free feature had provided little rationale to apply to GSCA an alternative
estimation method that in fact requires some extent of distributional assumptions. However,
GSCA can benefit from adopting a Bayesian approach in several respects. In addition to the
advantages of Bayesian factor-based SEM delineated above, a Bayesian extension of GSCA
refines the original GSCA by providing three more features in the modeling process. Firstly, it
allows estimating the true measurements of observed data, eliminating random errors. The
updated true measurements are then used in place of the observed data for specifying the sub-
models in GSCA. This would be preferable to using original observed data themselves,

particularly when the observed data are greatly contaminated by a large magnitude of random
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errors. As the prior distributions for unknown parameters are specified, one may also formulate a
prior distribution for the true measurements, integrating any relevant background knowledge,
which is possibly available from previous research (e.g., mean values or dispersions of the true
measurements), so as to improve the accuracy of their estimates. Secondly, unlike the original
GSCA, the Bayesian extension of GSCA permits specifying parameters associated with
measurement error terms (e.g., the means, variances, and covariances of the error terms) as an
additional set of parameters to be estimated. Thirdly, a Bayesian extension of GSCA can offer
more flexibility in assessing the adequacy of a hypothesized model than what the original GSCA
currently offers. Technically, model fit measures that are commonly used in factor-based SEM
and/or their corresponding Bayesian approaches can also be obtained in the Bayesian extension
of GSCA. As a special case, when uniform prior distributions are assigned to all parameters, the
goodness of fit of the GSCA model can be statistically tested using a chi-square statistic, as in
factor-based SEM. One may also utilize a range of other fit criteria to test overall model fit, for
example, GFI, SRMR, RMSEA, NFI, and CFI (e.g., Mulaik, 2009, Chapter 15), which are
available for factor-based SEM. When there exist several theoretically plausible alternative
models, the Bayesian extension of GSCA further enables to compare them, using the Bayes
factor (Kass & Raftery, 1995) or its approximated information criteria, BIC (Kass & Raftery,
1995) and DIC (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).

In this dissertation, | thus propose Bayesian generalized structured component analysis
(BGSCA), which integrates the original GSCA (Hwang & Takane, 2004) into a Bayesian
framework. More specifically, in the weighted relation model of BGSCA, latent variables are
defined as weighted composites of so-called error-free data that are considered true

measurements of observed data, eliminating noises or random errors. The posterior distributions
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for the parameters in the three sub-models of BGSCA are then estimated via the Gibbs Sampler
algorithm (Geman & Geman, 1984).

The remaining chapters of the dissertation are organized as follows. Chapters 2 and 3
provide descriptions of the two building blocks of BGSCA — GSCA and Bayesian inference.
Chapter 4 discusses the technical underpinnings of BGSCA. Chapter 5 reports two simulation
studies that examine the accuracy of parameter recovery of BGSCA and the sensitivity of
BGSCA results against different specifications of prior distributions. Chapter 6 illustrates the
empirical usefulness of BGSCA by applying it to a real data set. The final chapter summarizes

the implications of BGSCA and discusses potential topics for future research.
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Chapter 2. Generalized Structured Component Analysis

As stated in the previous chapter, GSCA is proposed for component-based SEM that investigates
a variety of directional relationships among latent variables as well as the relationships between
latent and observed variables, in which latent variables are defined as weighted composites of
observed variables. In this chapter, the original GSCA model and its parameter estimation are
recapitulated in order to facilitate an understanding of Bayesian GSCA that shall be discussed in
Chapter 4.

2.1. Model Specification
GSCA specifies three sub-models to construct a general structural equation model. The three
sub-models are measurement, structural, and weighted relation models (e.g., Hwang & Takane,
2014, Chapter 2). Let x; denote a J1 by 1 vector of observed exogenous variables for the ith
subject (i =1,..., 1). Let y; denote a J, by 1 vector of observed endogenous variables for the ith
subject. The measurement model specifies the relationships between observed variables and their
latent variables, as follows

X, = C®'y ) + 8%

y. = C(y)’y_(y) +6W

2.1)

where yi(x) and yi(” are P, by 1 and P, by 1 vectors of the latent variable scores for the ith subject,

C® and CY are P, by J; and P, by J, matrices of loadings relating the latent variables to the

corresponding observed variables, respectively. In (2.1), 8* and 8" denote J; by 1 and J, by 1

. i . X;
vectors of measurement errors for the observed variables for the ith subject. Let z, =[ } and

&)
I, = {Yi(y)] Then, the two equations in the measurement model can be unified as
7i
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2, =CT, +8,, (2.2)

&Y P
where C'= < O land o= ' |
0 C(y)’ ﬁi(y)

The structural model defines the relationships between latent variables, expressed as
I'=BI,+1, (2.3)
where B is a (P1+P2) by (P1+P) matrix of path coefficients reflecting directional relationships

among latent variables, and 7, is a (P1+P>) by 1 vector of errors of latent variables.

As in component analysis, GSCA constructs components or weighted composites of
observed variables as proxies for latent variables. The weighted relation model is used to express

such relationships between latent and observed variables. This sub-model is written as

r.=wWz, (2.4)

(x)
where W = {V\g V\?(Y):| is a (J1+J2) by (P1+P2) matrix of (component) weights assigned to

observed variables: in specific, W™ is a J; by P; matrix of weights for the exogenous observed
variables, and WY is a J, by P, for the endogenous observed variables.

For illustration, a hypothetical example of a structural equation model with three latent
variables (P1+P, = 3) is displayed in Figure 2- 1. In the figure, two latent variables are
considered exogenous (P; = 2) and the remaining one is endogenous (P, = 1). The first and
second exogenous latent variables are associated with three and two observed variables,
respectively, yielding J; = 5. The endogenous latent variable is associated three observed
variables, i.e., J, = 3. A straight line represents a weight assigned to each observed variable,
whereas an arrow signifies either a loading for an observed variable or a path coefficient relating

latent variables.



Chapter 2. Generalized Structured Component Analysis

563

99 9 9 ¢

Figure 2- 1. A hypothetical example of a structural equation model.

The measurement model for the hypothetical example is given as

v 7T - (5007
X C, 0 0 Sil
X|2 CZ 0 0 8|()2()
Xig | |G 0 0fr g7 (87
X, 0 c, O Yi(lx) 50
= Yio [T I(X) '
Xis 0 Cs 0 Y(y) 8i1 (25)
il
yll O 0 C6 Sg)
Yio 0 0 ¢ Sg)
| Yis _O 0 Cs | _5%’)_
z,=CT,+9,,
c, ¢, 0 O]
where C(X)=(8 5 03 - and C” =[c; ¢, ¢,]. The structural model is given as
4 Y5
2] 7o o o)y [y
7 =0 0 0|4 ||y | -
] L B Of[yY ] (G,
I' =BT, +1,.

The weighted relation model for this hypothetical example is specified as

10
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]
Xi2
! [w, w, wyuw 0 0 0 0 O Xis
vy |=[0 0 0 w, wy 0 0 0 im’ (2.7)
YW L0 0 0 0 0 wow wl "©
yil
Yiz
| Yis |
=Wz,
W 0]
w, 0 Ws
wherew® = w, o |and W% =|w,
0 w, W,
| 0wy ]

2.2. Parameter Estimation
As indicated in the above equations, the GSCA model contains three sets of parameters to be
estimated: loadings (C), path coefficients ( B ), and weights (W). These unknown parameters are

estimated by minimizing the following least-squares criterion:
|
¢:26;5i +1,1,, (2.8)
i=1

7 _

|
subject to the standardization constraint Zyi o,

|
land D y® =1 . This least-squares criterion
i=1 i=1
is equivalent to the sum of all squared errors in both measurement and structural models in (2.2)
and (2.3) over | subjects. An alternating least-squares (ALS) algorithm (de Leeuw, Young, &
Takane, 1976) was developed to minimize the criterion (Hwang & Takane, 2004).
The ALS algorithm alternates three main steps until convergence. In the first step, for

fixed B and W, C is updated in the least-squares manner. Because C is involved in the

measurement model only, this is equivalent to minimizing the following criterion:

11
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2} :_Izﬁilﬁi
-ss(z-r*C) (2.9)
= SS(vec(Z) ~(1er* )vec(C)),

where Z=[z,,2,,...2, ] is an | by (J;+J;) matrix of observed variables, I'* =[F1,...,1“, ]' isan | by

(P1+P2) matrix of latent variables, SS(A) = tr(A'A) , vec(Z)is a super-vector obtained by stacking

the columns of Z in order, and ® indicates the Kronecker product. Given that C contains

constants such as zeros as shown in (2.5), (2.9) can be rewritten as
& :SS(vec(Z)—Elc®), (2.10)
where c®is a vector formed by eliminating all zero elements from vec(C), and Z, is a matrix

formed by eliminating the columns of 1®T*corresponding to the zero elements in vec(C). By

solving o¢, / 6c® =0, the least-squares estimate of c® is given by
¢® =(=7,) Evec(2). (2.12)
The updated ¢® is reshaped into C.

In the second step, B is updated for fixed C and W. As B is involved in the structural

model only, this is equivalent to minimizing

¢2:_|eri"ri
=SS(I* -1°B) (2.12)
=SS(vec(F’)— I®F‘)vec(B))
e

(
)-2,b°),

=SS( vec

12
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where b®is a vector formed by eliminating zero elements from vec(B), and =, is a matrix

formed by eliminating the columns of 1®1* corresponding to the zero elements in vec(B). The

least-squares estimate of b®is updated by

b®=(Z,E,) "Eyvec(I"), (2.13)
and the updated B is reconstructed by putting the estimate of b® into B.

In the third step, for fixed C and B, W is updated. Note that W is involved in both terms

in (2.8). The criterion can be rewritten as

|
¢ = Zsi,& + Ti,Ti
i=1
=Ss(Z-1*C)+SS(I"* -1°B)
=SS(Z-ZWC)+SS(ZW-ZWB) (2.14)
=SS(Z[1 w]-zw]C B])
=SS(ZT-ZWA),
where | is the identity matrix of size J; + Jo, T =[I W] is a (J1+J,) by (J1+J,+P1+P>) matrix,
and A =[C B]is a (P1+P,) by (J:+J,+P;+P,) matrix. Because only some columns of W are
duplicated in both T and W in (2.14), each column of W is separately updated at a time. Let w,
denote the pth column of W (p = 1,..., (P1+P2)). Let T, denote T whose pth column is replaced

by a vector of zeros, and T ) denote T whose columns are all zero vectors except the pth column

(ie., T=Tp+ Tp). Let A, be a product matrix of W whose pth column is the vector of zero

and A. Then, to update wp, (2.14) can rewritten as:

13
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ss( p)+z 0 (ZA(_p)+ZWpap))
:SS( ZT = ZA y) (2w, ZT(p)))
=SS(A (zw,a,-2Zw,u,)) (2.15)

ss(A-(zw, (a, -u,)))
SS(vec(A a,-u )®ijpj,

where a, is the pth row of A, and u, indicates a 1 by (J;+J,+P1+P>) vector whose pth element is

unity but all the other elements are zeros. Let Wf denote a vector formed by eliminating zero

elements in w, and =, a matrix formed by eliminating the columns of (ap —up)' ®Z
corresponding to the zero elements in w,. The least-squares estimate of Wf is obtained by

wo=(=,5,) "Ejvec(A). (2.16)

After reconstructing Wp from W,?, the updated Wp is multiplied by ZI—Z to satisfy the
x/w w

p p

|
standardization constraint Zyi(x =1 and Zy(y) = | . The abovementioned three steps can
i=1 i

reduce to two steps by updating both C and B in a single step (see Hwang and Takane, 2004).
However, to facilitate an understanding of the estimation algorithm that shall be proposed for
Bayesian GSCA in Chapter 4, separate steps for estimating C and B are presented in this chapter.
Also refer to Chapter 2 in Hwang and Takane (2014) or the Appendix in Hwang, DeSarbo, and
Takane (2007) for more details on the two-step ALS algorithm.

In GSCA, an overall fit measure, called FIT (Hwang & Takane, 2004) can be calculated

to assess whether a given hypothesized model fits well to the data. The FIT indicates the total
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variance of all observed and latent variables accounted for by a specified model, which is given

by:

9
FIT=1 eait 2.17)

where SS(ZT)is the sum of squares of all observed and latent variables in (2.14). The values of

FIT range from 0 to 1. The larger FIT value, the more variance is explained. The Adjusted FIT
(AFIT) is also available as a variant of FIT, which takes into account model complexity (Hwang,
DeSarbo, & Takane, 2007). Moreover, there are two additional measures of overall model fit,
Goodness-of-fit index (GFI) and standardized root mean square residual (SRMR). These
measures evaluate the discrepancy between the sample covariances and model-implied
covariances re-reproduced by model parameter estimates. More details on these overall fit

measures can be found in Hwang and Takane (2014, Chapter 2).
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Chapter 3. An Overview of Bayesian Inference

This chapter provides a brief introduction to Bayesian inference. In Section 3.1, main
characteristics distinguishing a Bayesian approach from a non-Bayesian approach, also called
classical or Frequentist approach, are discussed, followed by a description of key sources of
information required for adopting a Bayesian approach. In Section 3.2, the process of deriving
posterior distributions for unknown parameters via Bayes’ theorem is explained. Bayes’ theorem
IS a basis for obtaining posterior probabilities of parameters given data and updating one’s
existing beliefs in the light of new evidence collected from the data. In Section 3.3, computer-
intensive sampling methods, referred to as Markov Chain Monte Carlo (MCMC) methods, are
described for updating the posterior distributions and conducting Bayesian inference. This
section also provides an example of applying a Bayesian approach to a simple linear regression
analysis through the implementation of an MCMC method, called Gibbs Sampler. In Section 3.4,
model evaluation and comparison in Bayesian inference are presented.

3.1. Two Philosophies for Statistical Inference
When making statistical inference about an unknown parameter, there are two distinct
perspectives: Frequentist and Bayesian approaches. The Frequentist approach associates a
probability with the relative frequency of outcomes in repeated samples. In this approach, data is
considered random while a parameter is unknown but fixed. Accordingly, inference about the
parameter is made from a hypothetical distribution of estimates of the parameter generated under
repeated sampling of data. On the other hand, the Bayesian approach considers the unknown
parameter random and quantifies the uncertainty about the parameter with a probability

distribution representing the degree of belief about a certain value of the parameter. Treating an
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3.1. Two Philosophies for Statistical Inference

unknown parameter as a random variable is the foundation of the Bayesian approach. Table 3- 1

summarizes the differences between Frequentist and Bayesian approaches.

Table 3- 1. Differences between Frequentist and Bayesian approaches.

Frequentist Bayesian
Nature of parameters  Unknown but fixed; Unknown and random; population
in a model population parameter has a parameter follows a probability
true fixed value. distribution.
Definition of Relative frequency. Degree of belief about the value of
probability a parameter.
Inference Using sampling distribution Using the posterior probability
of an estimate. distribution for a parameter.

In a Bayesian approach, a probabilistic statement about the parameter is formally made
by synthesizing two sources of information, prior beliefs and evidence collected from data. The
first source of information refers to knowledge on the parameter prior to observing the data and
is expressed in the form of a probability distribution. This is specifically called the prior
distribution. The second source of information amounts to knowledge on observed data, which is
expressed as the likelihood function of the observed data, i.e., a function of parameters given the
observed data. Then, the current state of knowledge is updated by combining the two sources of
information. The two sources of information are discussed below in more detail.

Prior distribution

Let 0= (491, GQ)denote a vector of Q (random) parameters whose values lie in the parameter

space ® (6, €®). Let p(0) denote the probability density function of the prior distribution for

0 . The prior distribution is to formally incorporate any knowledge available for the parameters

before observing actual data. Such knowledge originates from not only subjective beliefs but also
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previous research findings. Depending on how much knowledge researchers have prior to data
collection, a prior distribution is specified accordingly. Typically, there are two options for
constructing a prior distribution (e.g., Carlin & Louis, 2008; Robert 2007). In some cases, we
may have little information to suggest which values of the parameters might be more plausible
than others. Then, we may consider using a diffuse (or uninformative) prior distribution (e.g.,
Box & Tiao, 1992; Press, 2003), assigning equal probabilities to a wide range of values of the
parameters. A common diffuse prior is a uniform probability distribution. In the other cases, we
may have considerable information about the parameters in advance, enabling the specification
of so-called an informative prior distribution. When adopting a Bayesian approach to SEM, the
shape of the informative prior is often chosen in such a way that the prior and posterior
distributions fall into the same distributional family for a given data likelihood function (e.g.,
Kaplan & Depaoli, 2012; Lee & Song, 2012). Such type of the prior distribution is also known as
a conjugate prior (Schlaifer & Raiffa, 1961). For instance, given that the data likelihood function
is based on a normal distribution, choosing a normal prior distribution becomes a conjugate prior
because it will yield a normal posterior distribution. In this dissertation, prior distributions are
specified as conjugate priors, while assigning different values for the parameters of the prior
distributions, specifically called hyperparameters.

Likelihood function of data

Evidence collected from the observed data is another source of information to solve for the
parameters that make the occurrence of the data most likely. Such information is formally
expressed by the likelihood function, defining the probability of the data being conditional on the
values of 0. Suppose that g,,...,g, are independent observations of a random variable. Then, the

, |
joint probability of g=[g,,...,g, | is expressed as p(g|0)=] ] p(g;|0). This is referred to as

i=1
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the likelihood function of the observed data, and the likelihood function depends on a probability
distribution that is thought to give rise to the observed data. Overall, the likelihood function
examines how probable we would observe the data given fixed values of the parameters.

3.2. Bayes’ Theorem

As specified in the previous section, p(6) and p(g|8) denote the probability density function of
the prior distribution and the likelihood function, respectively. Let p(ﬂ | g) denote the probability

density function of the posterior distribution for 0 given the observed data. p(ﬂ | g) is obtained

by combining the likelihood function of the observed data with the prior distribution. In other
words, it specifies how one should update the existing beliefs in the light of newly introduced
evidence. The probability density function of the posterior distribution is updated via Bayes’

theorem as follows:

___p(gl®)p(6) ,
p<9|g)_j@p(g|e)p(e)de' (3.1)

Because the denominator in (3.1) is a normalizing constant that rescales p(g|0) p(8)to have a
proper probability distribution for p(e | g)on a [0, 1], (3.1) can be rewritten as

p(01g) = p(g10)p(90), (3.2)
where the symbol o«c means ‘is proportional to’. From the resultant posterior distribution, one

would further compute summary statistics (e.g., posterior mean and variance) by taking an

expectation of a function of parameters f (0) , as follows:
E[f(0)]=]_ f(®)p(6]g)de, (3.3)

where f (0) =0 for computing the mean and f (0) = (O—E(e))2 for computing the variance.
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Despite the theoretical simplicity of Bayes’ theorem, the practical use of a Bayesian
approach was limited owing to high dimensional integrations required for obtaining a posterior
distribution. That is, with two or more parameters, calculating the normalizing constant in (3.1)
(or even obtaining summary statistics in (3.3)) is often intractable or cannot be carried out in
closed form (e.g., Bolstad, 2007; Gilks, Richardson, & Spiegelhalter, 1996; Robert & Casella,
2004). Such intractable integration problem has remained the major obstacle in conducting
Bayesian inference until the advent of Markov Chain Monte Carlo (MCMC) methods.

3.3. Markov Chain Monte Carlo (MCMC) Methods
Markov Chain Monte Carlo (MCMC) has revolutionized the application of a Bayesian approach
along with the advance of computation power, making it possible to draw samples from a
complex distribution of interest without actually evaluating integrations implied in the
calculation. MCMC, which was developed in the early 1950s (Metropolis, Rosenbluth,

Rosenbluth, Teller, & Teller, 1953), is so named because it simulates a sequence of random
variables (0®,...,0¢™ 0% ¢ . 0®): wheres=1,..., S), whose values in the sth iteration 0

depends only on those in the previous iteration 8 . This describes the ‘“Markov Chain’ part of
the term MCMC. The ‘Monte Carlo’ part is to denote that the simulated samples are used to
approximate the integrations, as in (3.3), which are intractable in high dimensions. With the
MCMC methods, adopting a Bayesian approach has become feasible even with high-dimensional
integrations, because MCMC enables to not only update the posterior distribution but also
construct estimators for the unknown parameters on the basis of the updated posterior
distribution.

In practice, two MCMC methods are commonly used for Bayesian inference: the

Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) and Gibbs Sampler (Geman &
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Geman, 1984) algorithms. The two algorithms are prevalent because they construct a Markov
chain in such a way that the chain eventually reaches a unique stationary (or invariant)
distribution, fulfilling the conditions of detailed balance and ergodicity (e.g., Chib & Greenberg,
1995; Gilks et al, 1996, Chapter 4; Robert & Casella, 2004, Chapter 6). Detailed balance is
satisfied when, for every pair of two possible values of the chain, it allows the transition between
the two values to be reversible with an equal probability. Namely, this ensures the Markov chain
to avoid getting stuck in only one part of the distribution. Ergodicity is a property to ensure the
existence of a unique stationary distribution independent of a starting point of the chain. In
particular, a Markov chain is said to be ergodic when the probability of moving from one value
to another is expressed always positive and the chain does not repeat an identical cycle between a
set of values. Since a sequence of samples obtained from one of these MCMC methods will
eventually converge to a unique stationary distribution, which is the posterior distribution in a

Bayesian approach, the expectation of a function f (0) in (3.3) would be estimated by

approximating the integration with Monte Carlo integration, as follows:
- 13
f(@)= gz f(0), (3.4)
s=1

where 0® is the sth iteration’s sample from p(8|g), and f (8) is calle