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Abstract 

Generalized structured component analysis (GSCA) is a component-based approach to structural 

equation modeling (SEM) that postulates and examines various directional relationships among 

latent and observed variables. GSCA constructs components or weighted composites of observed 

variables as proxies for latent variables. It combines three sub-models, such as measurement, 

structural, and weighted relation models, into a unified formulation, and estimates all model 

parameters simultaneously via least squares. Over the past decade, GSCA has been extended to 

deal with a wider range of data types including discrete, multilevel, or intensive longitudinal data, 

as well as to accommodate a more variety of complex analyses such as latent moderation 

analysis, the capturing of cluster-level heterogeneity, and regularized analysis. To date, 

nonetheless, there has been no attempt to generalize the scope of GSCA into the Bayesian 

framework. In this dissertation, a novel extension of GSCA, called Bayesian GSCA, is proposed 

that estimates parameters within the Bayesian framework. Bayesian GSCA can be more 

attractive than GSCA in numerous respects. Firstly, it infers the probability distributions of 

parameters, treating the parameters as random variables, which in turn facilitates the 

interpretation of the parameters. Secondly, it permits specifying various structures of error terms 

in the measurement model, which are left unspecified in GSCA. Thirdly, it provides additional 

fit measures for model assessment and comparison from the Bayesian perspectives. Lastly, it 

allows directly incorporating external information on parameters, which may be obtainable from 

past research, expert opinions, subjective beliefs or knowledge on the parameters, as the form of 

prior distributions in the modelling process. Bayesian GSCA adopts a Markov Chain Monte 

Carlo method, i.e., Gibbs Sampler, to update the posterior distributions for parameters. The 

dissertation begins by describing two building blocks of Bayesian GSCA – GSCA and Bayesian 
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inference, and subsequently discusses the technical underpinnings of Bayesian GSCA. It also 

demonstrates the usefulness of Bayesian GSCA based on the analyses of both simulated and real 

data.  
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Abrégé 

L’analyse en composantes structurée généralisée (ACSG) est une approche de la modélisation 

par équations structurelles (MES) basée sur les composantes qui postule et examine divers liens 

directionnels entre des variables latentes et observées. L’ACSG construit des composantes ou 

des ensembles pondérés de variables observées pour représenter des variables latentes. Elle 

combine trois sous-modèles, soit le modèles de mesure, le modèle structurel et le modèle des 

liens pondérés dans une formulation unifiée et estime tous les paramètres des modèles 

simultanément via la méthode des moindres carrés. Durant les dix dernières années, l’ACSG a 

évolué pour traiter une plus grande gamme de types de données, notamment des données 

discrètes, multiniveaux, et longitudinales avec de nombreuses mesures sur une longue durée, 

ainsi que pour s’adapter à une plus grande variété d’analyses complexes telles que l’analyse de 

modération avec des variables latentes, la mesure de l’hétérogénéité au niveau d’un sous-groupe 

et l’analyse régularisée. À date, néanmoins, il n’y a pas encore eu de tentative de généralisation 

de l’ACSG dans le cadre bayésien. Dans cette thèse, une nouvelle extension de l’ACSG, appelée 

ACSG bayésienne, évaluant les paramètres à l’intérieur du cadre bayésien, est proposée. 

L’ACSG bayésienne peut se prouver plus attractive que l’ACSG à de nombreux égards. 

Premièrement, elle déduit la loi de probabilité des paramètres, en traitant les paramètres comme 

des variables aléatoires, ce qui facilite alors l’interprétation des paramètres. Deuxièmement, elle 

permet de spécifier plusieurs structures de terme d’erreur dans le modèle de mesure qui ne sont 

pas spécifiées dans l’ACSG. Troisièmement, elle fournit des mesures d’ajustement 

supplémentaires pour l’évaluation et la comparaison du modèle d’une perspective bayésienne. 

Enfin, elle permet d’incorporer de l’information externe sur les paramètres, qui peut provenir de 

recherches passées, d’opinions d’experts, de croyances subjectives ou de connaissances sur les 
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paramètres, directement sous la forme de distributions préalables dans le processus de 

modélisation. L’ACSG bayésienne adopte une méthode de Monte-Carlo par chaînes de Markov, 

soit l’échantillonnage de Gibbs, pour mettre à jour les distributions postérieures des paramètres. 

La thèse commence par une description des deux fondations de l’ACSG bayésienne – l’ACSG et 

l’inférence bayésienne, avant d’examiner les fondements techniques de l’ACSG bayésienne. Elle 

démontre également l’utilité de l’ACSG bayésienne pour l’analyse de données simulées et  

réelles. 
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Chapter 1. Introduction 

Structural Equation Modeling (SEM) is used for examining various directional relationships 

among observed variables and hypothetical constructs, also called latent variables, which are not 

directly measurable. SEM is comprised of two sub-models: measurement and structural models. 

The measurement model specifies the hypothesized relationships between latent and observed 

variables, whereas the structural model reflects the hypothesized directional relationships among 

latent variables.  

In general, there are two different domains of SEM: factor-based (Jöreskog, 1969) and 

component-based (Wold, 1975; Hwang & Takane, 2004). As the names suggest, the former was 

developed in the framework of common factor analysis, whereas the latter originated from 

component analysis. Specifically, factor-based SEM assumes that a latent variable can be 

approximated by a factor accounting only for the common variance of an observed variable. 

Since basic factor-based structural equation models were formulated as a combination of 

confirmatory factor analytic and path analytic models for continuous data (e.g., Jöreskog, 1969), 

they have been extended and elaborated over the past several decades by relaxing various 

assumptions, such as multivariate normality of observed variables or linear models, or by taking 

into account more complex data types. A few examples of such extensions include non-linear 

SEM accommodating interaction or quadratic terms of latent variables (e.g., Jöreskog & Yang, 

1996; Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Schumacker & Marcoulides, 1998), 

multilevel SEM for handling nested structures of data (e.g., Bollen & Curran; 2006; Muthén, 

1994; Satorra & Muthén, 1995), and SEM for non-normal or discrete data (e.g., Chou, Bentler, & 

Satorra, 1991; Finney & DiStefano, 2006; Hau & Marsh, 2004; Moustaki, 2003; Muthén, 1984; 

Shimizu & Kano, 2008).  
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On the other hand, component-based SEM combines component analytic and path 

analytic models. In component-based SEM, a weighted composite or component of a set of 

observed variables is assumed to be a proxy for a latent variable, capturing the most 

representative variation of each of the observed variables. The first approach to component-

based SEM is partial least squares path modeling (PLS-PM), which was initiated by Wold (1975, 

1982) and became popularized with a number of user-friendly software programs being available, 

including PLS Graph (Chin, 2001), LVPLS (Lohmöller, 1984), and SmartPLS (Ringle, Wende, 

& Will, 2005). PLS-PM has some practical advantages over factor-based SEM. For example, it 

does not require any distributional assumption and is less likely to encounter non-convergence or 

convergence to improper solutions even in small samples. Nonetheless, PLS-PM carries out two 

separate stages sequentially to estimate parameters, i.e., one stage for estimating components and 

the other for estimating remaining parameters such as path coefficients and loadings (e.g., 

Hwang, Takane, & Tenenhaus, 2015; Tenenhaus, Vinzi, Chatelin, & Lauro, 2005). In the first 

stage, an iterative algorithm (Wold, 1982, 1985; Lohmöller, 1989) is used to estimate the 

components and their weights, although it is unknown what optimization criterion this algorithm 

generally seeks to minimize or maximize. In the second stage, the remaining parameters are 

estimated by applying a series of linear regression analyses based on the component estimates 

from the first stage. In other words, PLS-PM has no global optimization criterion for estimating 

all the parameters in both stages simultaneously. This makes it difficult to calculate overall fit 

measures that are often proportional to the value of the global optimization criterion at 

convergence (McDonald, 1996).  

More recently, generalized structured component analysis (GSCA; Hwang & Takane, 

2004, 2014) was introduced as another component-based approach to SEM. In GSCA, another 
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sub-model, called the weighted relation model, is specified to explicitly express a latent variable 

as a component of a set of observed variables. GSCA combines the three sub-models, i.e., 

measurement, structural, and weighted relation models, into a single formulation. It aims to 

minimize a global least squares optimization criterion, which is derived from the single 

formulation, to estimate all parameters simultaneously. Accordingly, unlike PLS-PM, GSCA 

allows the calculation of overall fit measures to evaluate how well a given model fits to the data 

as a whole and to compare competing models. In addition, GSCA can deal with a wider range of 

data types, including multi-level data (Hwang, Takane, & Malhotra, 2007), time-dependent 

repeated measures data (Jung, Takane, Hwang, & Woodward, 2012), categorical data (Hwang & 

Takane, 2010), and functional data (Suk & Hwang, 2016). Furthermore, it can conduct a more 

variety of complex analyses in a technically more coherent and straightforward manner, 

including multiple group analysis with the imposition of cross-group equality constraints 

(Hwang and Takane, 2004), the analysis of interaction terms of latent variables (Hwang, Ho, & 

Lee, 2010), and regularized analysis (Hwang, 2009). For these advantages, GSCA can be 

considered an alternative to PLS-PM. Thus, this dissertation focuses on GSCA as the main 

approach to component-based SEM. Free online software (available at http://www.sem-

gesca.org/) and an R package, gesca (Hwang, Kim, Lee, & Park, 2016) are currently available 

for implementing various GSCA models. 

Owing to the revolution of computer-intensive sampling methods, Bayesian approaches 

to SEM have grown in popularity, particularly for factor-based SEM, including those for 

standard linear SEM (Muthén & Asparouhov, 2012; Scheines, Hoijtink, & Boomsma, 1999), 

nonlinear SEM (Arminger & Muthén, 1998; Lee, 2006; Lee, 2007; Lee & Zhu, 2000), and 

multilevel SEM (Ansari, Jedidi, & Jagpal, 2000; Song & Lee, 2004; Lee & Song, 2012). Lee 

http://www.sem-gesca.org/
http://www.sem-gesca.org/
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(2012) provides a comprehensive review of Bayesian extensions of factor-based SEM. In general, 

there are three advantages of adopting a Bayesian approach to factor-based SEM, although they 

are not just unique to this methodology, but rather applicable to other methodological extensions 

of Bayesian inference. Firstly, a Bayesian approach allows for probabilistic interpretations of 

parameters by treating the parameters as random variables. By being random, a variable can take 

on a set of values with probability and thus should be described by a probability distribution. In 

turn, this provides simpler interpretations on probability values (i.e., p-values) for testing 

statistical hypotheses as well as interval estimates of parameters, as compared to a non-Bayesian 

approach (e.g., Congdon, 2007; Kaplan & Depaoli, 2012; Song & Lee, 2012). For example, in 

the non-Bayesian approach, a 95 % confidence interval of a parameter estimate is a range of 

values that 95% of the intervals computed from repeated sampling would contain the parameter. 

This suggests that the probability of containing the parameter value in a particular interval is 

either zero or one. On the other hand, in the Bayesian approach, a 95 % confidence interval 

estimate (also called credible interval; Edwards, Lindman & Savage, 1963) is directly interpreted 

as an interval that includes the parameter value with a 95 % probability. Similarly, the 

interpretation of a p-value is more intuitively appealing in the Bayesian approach because it 

simply indicates the posterior probability of the null hypothesis given the data, whereas the non-

Bayesian approach’s p-value indicates the probability of obtaining a test statistic value at least as 

extreme as the one observed given that the null hypothesis is true. Hence, a Bayesian approach 

provides more intuitive interpretations of parameters with probabilistic statements by deriving 

their posterior distributions. 

Another notable advantage of adopting a Bayesian approach is that it can incorporate 

external information on parameters, such as previous research findings or expert opinions, which 
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might otherwise be neglected in the modeling process. A Bayesian approach enables to assign 

probability distributions to the parameters, called prior distributions, by formally quantifying 

uncertainty about the parameters (e.g., Hoff, 2009; Gelman, Carlin, Stern, & Rubin, 2004). This 

allows integrating any relevant information about the parameters into the modeling process and 

enhances the accuracy of parameter estimates, unless the specified prior information is 

completely incorrect.  

Lastly, a Bayesian approach would perform well even when sample size is small (e.g., 

Muthén & Asparouhov, 2012; Palomo, Dunson, Bollen, 2007; Scheines et al., 1999). This is 

because the Bayesian approach does not rely on asymptotic theory (i.e., large-sample 

approximations), but rather it simulates samples from a posterior distribution and computes test 

statistics by summarizing the posterior distribution itself.  

In contrast to the Bayesian developments in factor-based SEM, to date, there has been no 

attempt to apply a Bayesian approach to GSCA. It is partially attributed to the fact that 

parameters in GSCA are estimated and tested without imposing any distributional assumptions. 

This distribution-free feature had provided little rationale to apply to GSCA an alternative 

estimation method that in fact requires some extent of distributional assumptions. However, 

GSCA can benefit from adopting a Bayesian approach in several respects. In addition to the 

advantages of Bayesian factor-based SEM delineated above, a Bayesian extension of GSCA 

refines the original GSCA by providing three more features in the modeling process. Firstly, it 

allows estimating the true measurements of observed data, eliminating random errors. The 

updated true measurements are then used in place of the observed data for specifying the sub-

models in GSCA. This would be preferable to using original observed data themselves, 

particularly when the observed data are greatly contaminated by a large magnitude of random 
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errors. As the prior distributions for unknown parameters are specified, one may also formulate a 

prior distribution for the true measurements, integrating any relevant background knowledge, 

which is possibly available from previous research (e.g., mean values or dispersions of the true 

measurements), so as to improve the accuracy of their estimates. Secondly, unlike the original 

GSCA, the Bayesian extension of GSCA permits specifying parameters associated with 

measurement error terms (e.g., the means, variances, and covariances of the error terms) as an 

additional set of parameters to be estimated. Thirdly, a Bayesian extension of GSCA can offer 

more flexibility in assessing the adequacy of a hypothesized model than what the original GSCA 

currently offers. Technically, model fit measures that are commonly used in factor-based SEM 

and/or their corresponding Bayesian approaches can also be obtained in the Bayesian extension 

of GSCA. As a special case, when uniform prior distributions are assigned to all parameters, the 

goodness of fit of the GSCA model can be statistically tested using a chi-square statistic, as in 

factor-based SEM. One may also utilize a range of other fit criteria to test overall model fit, for 

example, GFI, SRMR, RMSEA, NFI, and CFI (e.g., Mulaik, 2009, Chapter 15), which are 

available for factor-based SEM. When there exist several theoretically plausible alternative 

models, the Bayesian extension of GSCA further enables to compare them, using the Bayes 

factor (Kass & Raftery, 1995) or its approximated information criteria, BIC (Kass & Raftery, 

1995) and DIC (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). 

In this dissertation, I thus propose Bayesian generalized structured component analysis 

(BGSCA), which integrates the original GSCA (Hwang & Takane, 2004) into a Bayesian 

framework. More specifically, in the weighted relation model of BGSCA, latent variables are 

defined as weighted composites of so-called error-free data that are considered true 

measurements of observed data, eliminating noises or random errors. The posterior distributions 
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for the parameters in the three sub-models of BGSCA are then estimated via the Gibbs Sampler 

algorithm (Geman & Geman, 1984).  

The remaining chapters of the dissertation are organized as follows. Chapters 2 and 3 

provide descriptions of the two building blocks of BGSCA – GSCA and Bayesian inference. 

Chapter 4 discusses the technical underpinnings of BGSCA. Chapter 5 reports two simulation 

studies that examine the accuracy of parameter recovery of BGSCA and the sensitivity of 

BGSCA results against different specifications of prior distributions. Chapter 6 illustrates the 

empirical usefulness of BGSCA by applying it to a real data set. The final chapter summarizes 

the implications of BGSCA and discusses potential topics for future research. 
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Chapter 2. Generalized Structured Component Analysis 

As stated in the previous chapter, GSCA is proposed for component-based SEM that investigates 

a variety of directional relationships among latent variables as well as the relationships between 

latent and observed variables, in which latent variables are defined as weighted composites of 

observed variables. In this chapter, the original GSCA model and its parameter estimation are 

recapitulated in order to facilitate an understanding of Bayesian GSCA that shall be discussed in 

Chapter 4.  

2.1. Model Specification 

GSCA specifies three sub-models to construct a general structural equation model. The three 

sub-models are measurement, structural, and weighted relation models (e.g., Hwang & Takane, 

2014, Chapter 2). Let xi denote a J1 by 1 vector of observed exogenous variables for the ith 

subject (i = 1,…, I). Let yi denote a J2 by 1 vector of observed endogenous variables for the ith 

subject. The measurement model specifies the relationships between observed variables and their 

latent variables, as follows 

( ) ( ) ( )

( ) ( ) ( ) ,

i i i

i i i

 

 

x x x

y y y

x C γ δ

y C γ δ
                                                      (2.1) 

where 
( )

i

x
γ and 

( )

i

y
γ are P1 by 1 and P2 by 1 vectors of the latent variable scores for the ith subject, 

C
(x)

 and C
(y)

 are P1 by J1 and P2 by J2 matrices of loadings relating the latent variables to the 

corresponding observed variables, respectively. In (2.1), 
( )

i

x
δ  and 

( )

i

y
δ denote J1 by 1 and J2 by 1 

vectors of measurement errors for the observed variables for the ith subject. Let 
i

i

i

 
  
 

x
z

y
and 

( )

( )

i

i

i

 
  
 

x

y

γ
Γ

γ
. Then, the two equations in the measurement model can be unified as 
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,i i i
 z CΓ δ

    
                                                      (2.2) 

where 
( )

( )

 
  

  

x

y

C 0
C

0 C

and 
( )

( )

i

i

i

 
  
 

x

y

δ
δ

δ
.  

The structural model defines the relationships between latent variables, expressed as 

  ,i i i Γ BΓ τ
    

                                                      (2.3) 

where B is a (P1+P2) by (P1+P2) matrix of path coefficients reflecting directional relationships 

among latent variables, and iτ is a (P1+P2) by 1 vector of errors of latent variables.  

As in component analysis, GSCA constructs components or weighted composites of 

observed variables as proxies for latent variables. The weighted relation model is used to express 

such relationships between latent and observed variables. This sub-model is written as  

,i i
Γ W z

    
                                                         (2.4) 

where
( )

( )

 
  
 

x

y

W 0
W

0 W
is a (J1+J2) by (P1+P2) matrix of (component) weights assigned to 

observed variables: in specific, ( )x
W  is a J1 by P1 matrix of weights for the exogenous observed 

variables, and ( )y
W  is a J2 by P2 for the endogenous observed variables.  

For illustration, a hypothetical example of a structural equation model with three latent 

variables (P1+P2 = 3) is displayed in Figure 2- 1 . In the figure, two latent variables are 

considered exogenous (P1 = 2) and the remaining one is endogenous (P2 = 1). The first and 

second exogenous latent variables are associated with three and two observed variables, 

respectively, yielding J1 = 5. The endogenous latent variable is associated three observed 

variables, i.e., J2 = 3. A straight line represents a weight assigned to each observed variable, 

whereas an arrow signifies either a loading for an observed variable or a path coefficient relating 

latent variables.  
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Figure 2- 1. A hypothetical example of a structural equation model. 

 

The measurement model for the hypothetical example is given as 

( )

11 1

( )

2 22

( )
3 3 ( ) 3

1 ( )
4 4 ( ) 4

2 ( )
5 5 1( )

1 ( )
61 1

( )
72 2

( )
83 3

δx 0 0

x δ0 0

x 0 0 δ
γ

x 0 0 δ
γ

x 0 0 δ
γ

0 0y δ

0 0y δ

0 0y δ

ii

i i

i i
i

i i
i

i i

i
i i

i i

i i

c

c

c

c

c

c

c

c

    
   
   
   
    
          
          
   
   
      

x

x

x
x

x
x

x

y

y

y

y

,

,i i i














 z C Γ δ
  

                                     (2.5) 

where 
1 2 3( )

4 5

0 0

0 0 0

c c c

c c

 
  
 

x
C  and  ( )

6 7 8c c cy
C . The structural model is given as  

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2

( ) ( )
1 2 11 1

γ γ γ0 0 0

0 0 0 ,γ γ γ

0 ζγ γ

.

i i i

i i i

ii i

i i i

b b

      
      

       
            

 

x x x

x x x

y y

Γ BΓ τ

  

                                       (2.6) 

The weighted relation model for this hypothetical example is specified as 
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2
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4( )

4 52

5( )
6 7 81

1

2

3

x

x

x
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x
0 0 0 0 0 0 ,γ

x
0 0 0 0 0γ

y

y

y

,

i

i

i

i

i

i

i

i
i

i

i

i i

w w w

w w

w w w

 
 
 
 

     
          
       

 
 
 
  



x

x

y

Γ W z

                            (2.7) 

where

1

2

( )

3

4

5

0

0

0

0

0

w

w

w

w

w

 
 
 
 
 
 
 
 

x
W  and 

6

( )

7

8

w

w

w

 
 


 
  

y
W . 

2.2. Parameter Estimation 

As indicated in the above equations, the GSCA model contains three sets of parameters to be 

estimated: loadings (C), path coefficients ( B ), and weights (W). These unknown parameters are 

estimated by minimizing the following least-squares criterion: 

1

,
I

i i i i

i




 δ δ τ τ

 

                                                      (2.8) 

subject to the standardization constraint 
2

1

)

1

(
I

i

i p I


 x
γ and 

2

2

)

1

(
I

i

i p I


 y
γ . This least-squares criterion 

is equivalent to the sum of all squared errors in both measurement and structural models in (2.2) 

and (2.3) over I subjects. An alternating least-squares (ALS) algorithm (de Leeuw, Young, & 

Takane, 1976) was developed to minimize the criterion (Hwang & Takane, 2004).  

The ALS algorithm alternates three main steps until convergence. In the first step, for 

fixed B and W, C is updated in the least-squares manner. Because C is involved in the 

measurement model only, this is equivalent to minimizing the following criterion:  
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 

      

1

1

SS

SS vec vec ,

I

i i

i










 

  

δ δ

Z Γ C

Z I Γ C

                                         (2.9) 

where  1 2, ,..., I
Z z z z is an I by (J1+J2) matrix of observed variables,  1,..., I

 Γ Γ Γ is an I by 

(P1+P2) matrix of latent variables,SS( ) tr( )A A A ,  vec Z is a super-vector obtained by stacking 

the columns of Z in order, and indicates the Kronecker product. Given that C contains 

constants such as zeros as shown in (2.5), (2.9) can be rewritten as  

  1 1SS vec ,  Z Ξ c
                  

                              (2.10) 

where 
c is a vector formed by eliminating all zero elements from vec(C), and 1Ξ  is a matrix 

formed by eliminating the columns of I Γ corresponding to the zero elements in vec(C). By 

solving 
1 /   c 0 , the least-squares estimate of 

c is given by 

   
1

1 1 1
ˆ vec .

  c ΞΞ Ξ Z
             

                                  (2.11) 

The updated ˆc is reshaped into C.  

In the second step, B is updated for fixed C and W. As B is involved in the structural 

model only, this is equivalent to minimizing  

 

      
  

2

1

2

SS

SS vec vec

SS vec ,

I

i i

i




 

 





 

  

 

 τ τ

Γ Γ B

Γ I Γ B

Γ Ξ b

                                      (2.12) 
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where 
b is a vector formed by eliminating zero elements from vec(B), and 2Ξ  is a matrix 

formed by eliminating the columns of I Γ  corresponding to the zero elements in vec(B). The 

least-squares estimate of 
b is updated by  

 𝐛̂⨁    
1

2 2 2vec ,
   Ξ Ξ Ξ Γ

      
                                            (2.13) 

and the updated B is reconstructed by putting the estimate of 𝐛̂⨁ into B.  

In the third step, for fixed C and B, W is updated. Note that W is involved in both terms 

in (2.8). The criterion can be rewritten as  

   
   

    

 

1

SS SS

SS SS

SS

SS ,

I

i i i i

i




  

 

   

   

 

 

δ δ τ τ

Z Γ C Γ Γ B

Z ZWC ZW ZWB

Z I W ZW C B

ZT ZWA

                                 (2.14) 

where I is the identity matrix of size J1 + J2, T = [I  W] is a (J1+J2) by (J1+J2+P1+P2) matrix, 

and A = [C  B] is a (P1+P2) by (J1+J2+P1+P2) matrix. Because only some columns of W are 

duplicated in both T and W in (2.14), each column of W is separately updated at a time. Let wp 

denote the pth column of W (p = 1,…, (P1+P2)). Let T(-p) denote T whose pth column is replaced 

by a vector of zeros, and T(p) denote T whose columns are all zero vectors except the pth column 

(i.e., T = T(-p) + T(p)). Let ( )pΛ be a product matrix of W whose pth column is the vector of zero 

and A. Then, to update wp, (2.14) can rewritten as:  
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    

    

  

   

   

3 ( ) ( ) ( )

*

( ) ( ) ( )

SS

SS

SS

SS

SS vec ,

p p p p p

p p p p

p p p p

p p p

p p p

  

 

   

   

  

  

  
     

  

ZT ZT ZΛ Zw a

ZT ZΛ Zw a ZT

Δ Zw a Zw u

Δ Zw a u

Δ a u Z w

 (2.15) 

where ap is the pth row of A, and up indicates a 1 by (J1+J2+P1+P2) vector whose pth element is 

unity but all the other elements are zeros.
 
Let p


w  denote a vector formed by eliminating zero 

elements in wp and 3Ξ a matrix formed by eliminating the columns of  p p


 a u Z

corresponding to the zero elements in wp. The least-squares estimate of p


w  is obtained by  

 𝐰̂𝑝
⨁    

1

3 3 3vec .


  Ξ Ξ Ξ Δ  (2.16) 

After reconstructing ˆ
pw from 𝐰̂𝑝

⨁, the updated ˆ
pw is multiplied by 

p p

I

 w Z Zw
 to satisfy the 

standardization constraint 
2

1

)

1

(
I

i

i p I


 x
γ and 

2

2

)

1

(
I

i

i p I


 y
γ . The abovementioned three steps can 

reduce to two steps by updating both C and B in a single step (see Hwang and Takane, 2004). 

However, to facilitate an understanding of the estimation algorithm that shall be proposed for 

Bayesian GSCA in Chapter 4, separate steps for estimating C and B are presented in this chapter. 

Also refer to Chapter 2 in Hwang and Takane (2014) or the Appendix in Hwang, DeSarbo, and 

Takane (2007) for more details on the two-step ALS algorithm.   

 In GSCA, an overall fit measure, called FIT (Hwang & Takane, 2004) can be calculated 

to assess whether a given hypothesized model fits well to the data. The FIT indicates the total 
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variance of all observed and latent variables accounted for by a specified model, which is given 

by:  

 
 

FIT=1 ,
SS




ZT
 (2.17) 

where  SS ZT is the sum of squares of all observed and latent variables in (2.14). The values of 

FIT range from 0 to 1. The larger FIT value, the more variance is explained. The Adjusted FIT 

(AFIT) is also available as a variant of FIT, which takes into account model complexity (Hwang, 

DeSarbo, & Takane, 2007). Moreover, there are two additional measures of overall model fit, 

Goodness-of-fit index (GFI) and standardized root mean square residual (SRMR). These 

measures evaluate the discrepancy between the sample covariances and model-implied 

covariances re-reproduced by model parameter estimates. More details on these overall fit 

measures can be found in Hwang and Takane (2014, Chapter 2).   
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Chapter 3. An Overview of Bayesian Inference 

This chapter provides a brief introduction to Bayesian inference. In Section 3.1, main 

characteristics distinguishing a Bayesian approach from a non-Bayesian approach, also called 

classical or Frequentist approach, are discussed, followed by a description of key sources of 

information required for adopting a Bayesian approach. In Section 3.2, the process of deriving 

posterior distributions for unknown parameters via Bayes’ theorem is explained. Bayes’ theorem 

is a basis for obtaining posterior probabilities of parameters given data and updating one’s 

existing beliefs in the light of new evidence collected from the data. In Section 3.3, computer-

intensive sampling methods, referred to as Markov Chain Monte Carlo (MCMC) methods, are 

described for updating the posterior distributions and conducting Bayesian inference. This 

section also provides an example of applying a Bayesian approach to a simple linear regression 

analysis through the implementation of an MCMC method, called Gibbs Sampler. In Section 3.4, 

model evaluation and comparison in Bayesian inference are presented. 

3.1. Two Philosophies for Statistical Inference 

When making statistical inference about an unknown parameter, there are two distinct 

perspectives: Frequentist and Bayesian approaches. The Frequentist approach associates a 

probability with the relative frequency of outcomes in repeated samples. In this approach, data is 

considered random while a parameter is unknown but fixed. Accordingly, inference about the 

parameter is made from a hypothetical distribution of estimates of the parameter generated under 

repeated sampling of data. On the other hand, the Bayesian approach considers the unknown 

parameter random and quantifies the uncertainty about the parameter with a probability 

distribution representing the degree of belief about a certain value of the parameter. Treating an 
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unknown parameter as a random variable is the foundation of the Bayesian approach. Table 3- 1 

summarizes the differences between Frequentist and Bayesian approaches.   

 

Table 3- 1. Differences between Frequentist and Bayesian approaches. 

 Frequentist  Bayesian 

Nature of parameters 

in a model  

Unknown but fixed; 

population parameter has a 

true fixed value. 

Unknown and random; population 

parameter follows a probability 

distribution. 
  

Definition of 

probability  

Relative frequency. Degree of belief about the value of 

a parameter. 
 

Inference Using sampling distribution 

of an estimate.  

Using the posterior probability 

distribution for a parameter.  

 

In a Bayesian approach, a probabilistic statement about the parameter is formally made 

by synthesizing two sources of information, prior beliefs and evidence collected from data. The 

first source of information refers to knowledge on the parameter prior to observing the data and 

is expressed in the form of a probability distribution. This is specifically called the prior 

distribution. The second source of information amounts to knowledge on observed data, which is 

expressed as the likelihood function of the observed data, i.e., a function of parameters given the 

observed data. Then, the current state of knowledge is updated by combining the two sources of 

information. The two sources of information are discussed below in more detail.  

Prior distribution  

Let  1,..., Q θ denote a vector of Q (random) parameters whose values lie in the parameter 

space Θ  (
q Θ ). Let  p θ  denote the probability density function of the prior distribution for

θ . The prior distribution is to formally incorporate any knowledge available for the parameters 

before observing actual data. Such knowledge originates from not only subjective beliefs but also 
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previous research findings. Depending on how much knowledge researchers have prior to data 

collection, a prior distribution is specified accordingly. Typically, there are two options for 

constructing a prior distribution (e.g., Carlin & Louis, 2008; Robert 2007). In some cases, we 

may have little information to suggest which values of the parameters might be more plausible 

than others. Then, we may consider using a diffuse (or uninformative) prior distribution (e.g., 

Box & Tiao, 1992; Press, 2003), assigning equal probabilities to a wide range of values of the 

parameters. A common diffuse prior is a uniform probability distribution. In the other cases, we 

may have considerable information about the parameters in advance, enabling the specification 

of so-called an informative prior distribution. When adopting a Bayesian approach to SEM, the 

shape of the informative prior is often chosen in such a way that the prior and posterior 

distributions fall into the same distributional family for a given data likelihood function (e.g., 

Kaplan & Depaoli, 2012; Lee & Song, 2012). Such type of the prior distribution is also known as 

a conjugate prior (Schlaifer & Raiffa, 1961). For instance, given that the data likelihood function 

is based on a normal distribution, choosing a normal prior distribution becomes a conjugate prior 

because it will yield a normal posterior distribution. In this dissertation, prior distributions are 

specified as conjugate priors, while assigning different values for the parameters of the prior 

distributions, specifically called hyperparameters.  

Likelihood function of data 

Evidence collected from the observed data is another source of information to solve for the 

parameters that make the occurrence of the data most likely. Such information is formally 

expressed by the likelihood function, defining the probability of the data being conditional on the 

values of θ . Suppose that 1g ,...,gI are independent observations of a random variable. Then, the 

joint probability of  1= g ,...,g I
g is expressed as    

1

| g |
I

i

i

p p


g θ θ . This is referred to as 
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the likelihood function of the observed data, and the likelihood function depends on a probability 

distribution that is thought to give rise to the observed data. Overall, the likelihood function 

examines how probable we would observe the data given fixed values of the parameters.  

3.2. Bayes’ Theorem 

As specified in the previous section,  p θ  and  |p g θ  denote the probability density function of 

the prior distribution and the likelihood function, respectively. Let  |p θ g denote the probability 

density function of the posterior distribution for θ  given the observed data.  |p θ g
 
is obtained 

by combining the likelihood function of the observed data with the prior distribution. In other 

words, it specifies how one should update the existing beliefs in the light of newly introduced 

evidence. The probability density function of the posterior distribution is updated via Bayes’ 

theorem as follows: 

              
 

   

   

|
| .

|

p p
p

p p d






g θ θ
θ g

g θ θ θ
 

 

(3.1) 

Because the denominator in (3.1) is a normalizing constant that rescales    |p pg θ θ to have a 

proper probability distribution for  |p θ g on a [0, 1], (3.1) can be rewritten as  

             
     | | ,p p pθ g g θ θ  

 

(3.2) 

where the symbolmeans ‘is proportional to’. From the resultant posterior distribution, one 

would further compute summary statistics (e.g., posterior mean and variance) by taking an 

expectation of a function of parameters ( )f θ , as follows: 

             
   ( ) ( ) | ,f f p d


 θ θ θ g θ  

 

(3.3) 

where ( )f θ θ  for computing the mean and   
2

( )f  θ θ θ for computing the variance.  
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Despite the theoretical simplicity of Bayes’ theorem, the practical use of a Bayesian 

approach was limited owing to high dimensional integrations required for obtaining a posterior 

distribution. That is, with two or more parameters, calculating the normalizing constant in (3.1) 

(or even obtaining summary statistics in (3.3)) is often intractable or cannot be carried out in 

closed form (e.g., Bolstad, 2007; Gilks, Richardson, & Spiegelhalter, 1996; Robert & Casella, 

2004). Such intractable integration problem has remained the major obstacle in conducting 

Bayesian inference until the advent of Markov Chain Monte Carlo (MCMC) methods. 

3.3. Markov Chain Monte Carlo (MCMC) Methods 

Markov Chain Monte Carlo (MCMC) has revolutionized the application of a Bayesian approach 

along with the advance of computation power, making it possible to draw samples from a 

complex distribution of interest without actually evaluating integrations implied in the 

calculation. MCMC, which was developed in the early 1950s (Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953), is so named because it simulates a sequence of random 

variables (
(1) ( 1) ( ) ( 1) ( ),..., , , ,...,s s s S 
θ θ θ θ θ ; where s = 1,…, S), whose values in the sth iteration ( )s

θ  

depends only on those in the previous iteration ( 1)s
θ . This describes the ‘Markov Chain’ part of 

the term MCMC. The ‘Monte Carlo’ part is to denote that the simulated samples are used to 

approximate the integrations, as in (3.3), which are intractable in high dimensions. With the 

MCMC methods, adopting a Bayesian approach has become feasible even with high-dimensional 

integrations, because MCMC enables to not only update the posterior distribution but also 

construct estimators for the unknown parameters on the basis of the updated posterior 

distribution.    

In practice, two MCMC methods are commonly used for Bayesian inference: the 

Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) and Gibbs Sampler (Geman & 
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Geman, 1984) algorithms. The two algorithms are prevalent because they construct a Markov 

chain in such a way that the chain eventually reaches a unique stationary (or invariant) 

distribution, fulfilling the conditions of detailed balance and ergodicity (e.g., Chib & Greenberg, 

1995; Gilks et al, 1996, Chapter 4; Robert & Casella, 2004, Chapter 6). Detailed balance is 

satisfied when, for every pair of two possible values of the chain, it allows the transition between 

the two values to be reversible with an equal probability. Namely, this ensures the Markov chain 

to avoid getting stuck in only one part of the distribution. Ergodicity is a property to ensure the 

existence of a unique stationary distribution independent of a starting point of the chain. In 

particular, a Markov chain is said to be ergodic when the probability of moving from one value 

to another is expressed always positive and the chain does not repeat an identical cycle between a 

set of values. Since a sequence of samples obtained from one of these MCMC methods will 

eventually converge to a unique stationary distribution, which is the posterior distribution in a 

Bayesian approach, the expectation of a function ( )f θ in (3.3) would be estimated by 

approximating the integration with Monte Carlo integration, as follows:  

              
𝑓 ̂(𝛉) ( )

1

1
( ),

S
s

s

f
S 

  θ  

 

(3.4) 

where ( )s
θ is the sth iteration’s sample from  |p θ g , and 𝑓 ̂(𝛉) is called a Monte Carlo estimator 

for θ .  

Let 
θ  and ( 1)s

θ denote the candidate and current values of the parameters in the Markov 

chain, respectively. Given the objective of constructing a Markov chain of ( )s
θ with  |p θ g  as 

the desired target distribution, at the sth iteration, the Metropolis-Hastings algorithm proposes 


θ  according to a proposal distribution  ( 1)| sq  

θ θ , a distribution that enables to draw new 
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candidate values conditional upon the current values of the parameters. An example of a 

proposal distribution would be a normal distribution whose mean is set to ( 1)s
θ .  

Then, the transition of the chain (i.e., a transition from 
θ  to ( )s

θ ) will occur based on a so-called 

acceptance probability  ( 1), s  
θ θ  

                

 
   
   

 

( 1)

( 1)

( 1) ( 1)

| |
, min 1,

| |

min 1, ,

s

s

s s

p q

p q

R



  

 

  

  
  

  



θ g θ θ
θ θ

θ g θ θ  

 

 

(3.5) 

where R is called the acceptance ratio that assess the plausibility of the candidate value 
θ  

relative to the current value ( 1).s
θ  If the acceptance ratio is equal to or greater than one, the 

candidate value will be always accepted as 
( ) ,s
θ  making a transition from 

θ  to ( ).s
θ   If it is 

smaller than one, the candidate value will be accepted based on the probability of  ( 1), s  
θ θ . 

For this, a random number is drawn from a uniform distribution on the interval [0, 1], and if this 

random value is smaller than  ( 1), s  
θ θ , then ( )s

θ = 
θ . Otherwise, the Metropolis-Hastings 

algorithm would not move and remain the same as the current value. This is reiterated as follows:  

           

 ( )

( 1)

with probability min 1,

otherwise.

s

s

R




 


θ
θ

θ
 

 

(3.6) 

This process repeats until s reaches S, and the collected samples are called posterior samples. 

Table 3- 2 describes a generic Metropolis-Hastings algorithm in detail.  
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Table 3- 2. A description of the Metropolis-Hastings algorithm. 
 

Step 1. Generate initial value (0)
θ at random, subject to  (0) |p θ g  > 0.  

Step 2. At the sth iteration, generate a candidate value 
θ from a proposal density function 

             
 ( 1)| sq  
θ θ .  

Step 3. Given the candidate value, compute the ratio of the density at the candidate ( 
θ )  

             and current ( ( 1)s
θ ) values   

   
   

( 1)

( 1) ( 1)

| |

| |

s

s s

p q
R

p q

  

  


θ g θ θ

θ g θ θ
 

 

Step 4. Accept the candidate value according to  

    

 ( )

( 1)

with probability min 1,

otherwise

s

s

R




 


θ
θ

θ
 

 

Step 5. Set s = s + 1, and repeat Steps 2 to 4 until s = S.  

 

Importantly, computing the ratio of two probability density functions 
 
 ( 1)

|

|s

p

p





θ g

θ g
 in (3.5) 

cancels out the normalizing constant. Thus, the Metropolis-Hastings algorithm does not require 

computing the normalizing constant in (3.1), although the desired target distribution is the full 

posterior distribution. Also, the acceptance probability  ( 1), s  
θ θ  in (3.5) is constructed to 

ensure that the transition or Markov kernel, the conditional probability distribution of ( 1)s
θ , 

would satisfy the detailed balance condition when generating a Markov chain (Chib & 

Greenberg, 1995; Robert & Casella, 2004, Chapter 6). Based on Chib & Greenberg (1995), the 

transition kernel K is expressed as  

           

          ( 1)

( 1) ( 1) ( 1) ( 1), | , 1 ,s

s s s sK q r  

         
θ

θ θ θ θ θ θ θ θ  
 

(3.7) 

where ( 1)s 
θ

is the standard dirac-delta function (i.e., ( 1)s 
θ

goes to infinite when ( 1)s θ θ , zero 

otherwise) and      ( 1) ( 1) ( 1), |s s sr q d      θ θ θ θ θ θ . Mathematically, the detailed balance is 

satisfied when  
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       ( 1) ( 1) ( 1), | , | .s s sK p K p     θ θ θ g θ θ θ g  
 

(3.8) 

By multiplying  ( 1) |sp 
θ y  to the first term of (3.7) and using distributive rule, (3.8) is satisfied, 

as follows:   

 

           

     

 
   
   

 

   
   

 

 
   
 

( 1) ( 1) ( 1)

( 1)

( 1) ( 1)

( 1) ( 1)

( 1)

( 1) ( 1)

( 1)

( 1) ( 1)

( 1)

(

| , |

| |
| min 1, |

| |

| |
| min | ,

|

| |
| min

|

s s s

s

s s

s s

s

s s

s

s s

s

s

q p

p q
q p

p q

p q
q p

q

p q
q

p q

    

  

  

  

  

  

 

  

 

 

  
  

  

  
  

  



θ θ θ θ θ g

θ g θ θ
θ θ θ g

θ g θ θ

θ y θ θ
θ θ θ g

θ θ

θ g θ θ
θ θ

θ g θ 
 

     

1)

( 1) ( 1)

,1 |
|

| , | .s s

p

q p





    

  
 
  



θ g
θ

θ θ θ θ θ g
     

 

 

 

 

 

(3.9) 

Another popular MCMC method is the Gibbs Sampler algorithm (Geman & Geman, 

1984), which will be primarily adopted in this dissertation. The Gibbs Sampler algorithm is one 

of the most common algorithms used in a Bayesian approach to SEMs because it naturally 

provides a (simpler) distribution from which samples are drawn, without the need to concern 

about how to design a proposal distribution from the joint posterior distribution (e.g., Lee & 

Song, 2012; Palomo et al., 2007). The main idea behind the Gibbs Sampler algorithm is that it 

simplifies the simulation procedure by sampling from so-called full conditional distributions, 

each of which is a conditional distribution of a parameter while fixing the remaining parameters 

to constants. In particular, the Gibbs Sampler algorithm is a special case of the Metropolis-

Hastings algorithm wherein the proposal distribution is replaced by a sequence of full 

conditional distributions and the acceptance ratio in (3.5) is computed to be always one (Gelman 

et al, 2004, Chapter 11; Robert & Casella, 2004, Chapter 7). With Q random variables
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1 2, ,..., Q     θ , a generic description of the Gibbs Sampler algorithm is provided in Table 3- 

3.  

 

Table 3- 3. A description of the Gibbs Sampler algorithm. 
 

Step 1. Generate initial values of parameters (0)
θ at random, subject to  (0) |p θ g  > 0.  

Step 2. At the sth iteration, successively generate new values of ( ) ( ) ( )

1 2, ,...,s s s

Q     θ from    

            the full conditional distributions, as follows.   

        

       Step 2-1. Draw a new value of 1  from  ( ) ( 1) ( 1) ( 1)

1 1 2 3~ | , ,...,s s s s

Qp        

       Step 2-2. Continue from q = 2,…, Q  using  ( ) ( ) ( ) ( 1) ( 1)

1 1 1~ | , , ,...,s s s s s

q q q q Qp      

 
 

 

Step 3. Set s = s + 1, and repeat Step 2 until s = S.   

 

As the derivation of full conditional distributions becomes more straightforward owing to 

the adoption of conjugate priors for parameters, the Gibbs Sampler algorithm is more frequently 

used in practice because it would provide posterior distributions in closed form and eliminate a 

step of selecting proposal distributions required in the Metropolis-Hastings algorithm. Moreover, 

when the number of parameters to estimate is large, as in structural equation models, the Gibbs 

Sampler algorithm is computationally more efficient, dividing the parameters into several subsets 

of them (e.g., Arminger & Muthén, 1998; Scheines et al., 1999). For these reasons, I will focus 

on the implementation of the Gibbs Sampler in the dissertation.  

To illustrate the Gibbs sampler algorithm, let us consider a simple linear regression 

model  

           

0 1+ x ,i i iy e    
 

(3.10) 

where
 iy  and x i are the response and exploratory variables’ scores of the ith observation (i = 1, 

…, I), respectively, 0 is the intercept, and 1  is the slope or regression coefficient. Assume that 
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 ~ 0,ie Normal  , where   is the error variance. Given 1,..., Ie e are independent and identically 

distributed as  0,Normal  , the distribution of iy  for each x i is expressed as  

           

 

 

0 1~ + x ,

, ,

i i

i

y Normal

Normal

  

 x β
 

 

(3.11) 

where ix  represents a matrix with one in the first column and ix ’s in the second columns, 

0

1





 
  
 

β . Then, the likelihood function can be written as, up to a normalizing constant, 

           

   
2/2

1

1
| , exp .

2

I
I

i i

i

p y 






 
   

 
y β x β  

 

(3.12) 

To discuss a Bayesian approach for fitting the simple linear regression model, prior distributions 

for the parameters  ,θ β must be specified. In this example, we specify the distribution for β

as being independent of  (i.e.,      ,p p p β β ), and consider the conjugate prior 

distributions for both sets of parameters, so as to have full conditional distributions in the same 

distributional family as the posterior distributions. The prior distributions are specified as follows:  

           

   
   

~ ,

~ , ,

p Normal

p IG a

 

 

β μ Σ
  

 

(3.13) 

where IG stands for an inverse gamma distribution with the shape parameter a  and the scale 

parameter  . Following Bayes’ theorem in (3.1), the joint posterior distribution is expressed as 

           

 
     

     

| ,
, | ,

| ,

p p p
p

p p p d d

 


  




y β β
β y

y β β β
 

 

(3.14) 

Under this model, combining (3.12) and (3.13), the probability density function of the joint 

posterior distribution is obtained, up to a normalizing constant, as 
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 
 

     
/2 1 2 1

1

1
, | exp 2 .

2

I a
I

i i

i

p y     


  




   
        

  
β y x β β μ Σ β μ  

 

(3.15) 

Here, the Gibbs Sampler algorithm can be used because sampling from the full conditional 

distributions is much easier and quicker than drawing directly from a complex joint posterior 

distribution expressed in (3.15). As such, (3.15) is further simplified with the full conditional 

distributions  | ,p β y  and  | ,p  β y . The full conditional distribution for β  is obtained by 

rearranging (3.15) as follows:  

           

  1 1 1

1

1
| , ~ , ,

I

i i

i

p Normal y   


  



     
  
β y Ω x Σ μ Ω  

 

(3.16) 

where 1

1

1 I

i i

i

 






   
 
Ω x x Σ . Likewise, the full conditional distribution for   is given by 

           

   
2

1

1
| , ~ , .

2 2

I

i i

i

I
p IG a y 



 
   

 
β y x β  

 

(3.17) 

Thus, the Gibbs Sampler algorithm can proceed as follows: at the sth iteration, it draws ( )s
β from

 ( 1)| ,sp  
β y  and subsequently draws ( )s from  ( )| ,sp  β y .  

Although the abovementioned algorithm ensures convergence to the target distribution in 

theory, its successful implementation depends on the number of iterations (S). This is because we 

initialize the starting values with random values, so that the posterior samples may not 

necessarily guarantee the convergence especially when the number of iterations is not large 

enough. To examine if a sequence of posterior samples obtained from an MCMC method 

converges to the target distribution after S iterations, we would draw trace plots for the samples 

against S iterations. When the values of the samples move up and down around the mean of the 

distribution but with a relative small amount of fluctuations, we may conclude that the samples 

have reached the target distribution sufficiently well. On the other hand, when a lack of 
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convergence is suspected by showing a systematic trend over the iterations (e.g., staying in a 

certain range of values for a longer period of time rather than traversing up and down), we would 

need to increase the total number of S iterations. Alternatively, we would increase the number of 

early iterations to discard in the chain (i.e., burn-in sample size). In practice, first 1000 to 5000 

samples are thrown out. Moreover, an autocorrelation between the generated samples can be 

used as another diagnostic measure for assessing convergence (e.g., Lynch, 2007). The 

autocorrelation among the obtained MCMC samples for the qth parameter of interest (
q ) over 

lag U is computed as the correlation between the value of every sample and that of the Uth lag as 

follows:  

           

  

 

( ) ( )

1

2
( )

1

ACF = ,

S U
s s U

q q q q

s
U S

s

q q

s

   

 








 






 

 

 

(3.18) 

where q  represent the mean of all sampled values for 
q . We expect the autocorrelation over 

lag U to be smaller as the value of U increases. When a high autocorrelation is present, we need 

to increase the value of U, also called thinning, beyond which the autocorrelation becomes small 

enough to ignore, preferably very close to zero.   

In addition to obtaining a posterior distribution for parameters, a Bayesian approach 

enables to have a predictive distribution for making inferences about an unknown but potentially 

observable quantity, such as future observations (Congdon, 2007; Gelman et al., 2004, Chapter 

6). Denoting g
rep

 as the replicated future observations, the probability density function for the 

replicated data is called the posterior predictive distribution, and is expressed as  
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       

   

| | |

| | .

rep rep

rep

p p p p d

p p d









g g g θ g θ θ θ

g θ θ g θ
 

 

(3.19) 

When an MCMC method is employed to generate θ  from the posterior distribution, we may 

simulate g
rep

 from the posterior predictive distribution as a part of the MCMC method. Given 

values of ( )s
θ obtained via an MCMC method at the sth iteration, a new observation g

rep
  is 

generated from the likelihood function of the observed data  ( )| sp g θ . This posterior predictive 

distribution would be of particular use for evaluating the overall fit of a hypothesized model, 

which will be discussed in the following section.  

3.4. Model Assessment and Comparison in Bayesian Inference 

It is important to assess the plausibility of a hypothesized model, examining if the model 

provides a reasonable summary of the data. For this, so-called posterior predictive checking 

proposed by Gelman, Meng, and Stern (1996) can be adopted. The basic idea of the posterior 

predictive checking is to replicate data under the hypothesized model and compare them with the 

original observed data. If the model fits well to the observed data, there would be little 

discrepancy between the replicated and observed data. To formally quantify this model fit, a set 

of replicated data g
rep

 is first generated based on ( )s
θ , being of the same size as the original data, 

under the fitted model M. Then, the chi-square statistic based on the likelihood function is 

computed to measure discrepancy for both g
rep

 and g, denoted by  ( );rep sD g θ and  ( ); sD g θ , 

respectively. Having obtained      ( ) ( ); , ; , 1,...,rep s sD D s Sg θ g θ , we compute a Bayesian 

posterior predictive p-value (PPPb) (e.g., Lynch, 2007; Scheines et al., 1999) as follows:  

           

   
1

1
; ; | , ,

S
rep

b s

s

PPP p D D M
S




   
  g θ g θ g  

 

(3.20) 
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where 1s  if    ( ) ( ); ;rep s sD Dg θ g θ and 0 otherwise. Overall, PPPb provides a proportion of 

the discrepancy measure of the replicated data equal to or greater than that of the actual observed 

data. A PPPb value around 0.50 indicates a good fit, whereas an extreme value (e.g., value close 

to either 0 or 1) suggests a bad fit.   

Besides evaluating the adequacy of a single model, researchers may also be interested in 

comparing two or more models that are all theoretically plausible. In a Bayesian approach, such 

model comparison is addressed using the Bayes factor (Berger, 1985; Kass & Raftery, 1995) or 

its variants. The Bayes factor is considered the Bayesian counterpart of classical hypothesis 

testing that is based on p-values determined by asymptotic distributions of a test statistic. In this 

section, we introduce the Bayes factor for model comparison, assessing which model accounts 

for data better among two or more competing models. If there are two competing models for 

observed data g, say M0 and M1, the Bayes factor provides a quantity that expresses the extent to 

which g supports M0 over M1 by taking the ratio of two integrated likelihoods (Kass & Raftery, 

1995). Specifically, the Bayes factor for M0 against M1, denoted as K01, is given as  

           

 

 
0

01

1

|
,

|

p M
K

p M


g

g
 

 

(3.21) 

where the marginal likelihood  | kp Mg  indicates the probability of observing g given the kth 

model, integrating over kθ , given by      0 0 0 0 0 0| | , |p M p M p M d g g θ θ θ  and 

     1 1 1 1 1 1| | , |p M p M p M d g g θ θ θ , in which  | ,k kp Mg θ indicates a probability density 

function of data parameterized by kθ  
in the kth model. Note that this marginal likelihood is 

equivalent to the normalizing constant used in the Bayes’ theorem in (3.2).  
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Nevertheless, as stated earlier,  | kp Mg is often hard to evaluate analytically when it 

requires integration over a large number of parameters. As a result, several alternative methods 

had been proposed to approximate the marginal likelihood: Monte Carlo estimator via 

importance sampling (Newton & Raftery,1994; Gelfand & Dey, 1994), Laplace-Metropolis 

estimator (Lewis & Raftery, 1997), Chib’s estimator (Chib, 1995), bridge sampling estimator 

(Meng & Wong, 1996), path sampling estimator (Gelman & Meng, 1998), and annealed 

importance sampling estimator (Neal, 2001).  

Of these methods, in this dissertation, I focus on Chib’s estimator because it is easily 

computable based on the results obtained from the Gibbs Sampler algorithm and flexible for 

accommodating a various range of models, from the simplest case with a single parameter to 

more general cases with more than two parameters. To illustrate how this method works, let us 

assume that there are two unknown parameters, i.e., 𝛉 =
 
(𝜃1, 𝜃2). Chib (1995) had introduced an 

efficient method that approximates the marginal likelihood by substituting the posterior means 

computed from the Gibbs output, denoted by 𝛉#= (𝜃1
#, 𝜃2

#), for the parameters and rearranging 

the Bayes’ theorem in (3.1), on the logarithm scale, as follows: 

           

       # # #ln | ln ln | .p p p p  y g θ θ θ g  
 

(3.22) 

Having two unknown parameters, the third term in (3.22) is rewritten as 

           

   

   

# # #

1 2

# # #

1 2 1

| , |

| | , .

p p

p p

 

  





θ g g

g g
 

 

(3.23) 

Then, by obtaining the posterior draws of 2  (i.e.,
      1 2

2 2 2, ,...,
S

   from the Gibbs Sampler  

algorithm over S iterations), a Monte Carlo estimator of the first term in the right side of (3.23) is 

updated by   
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(3.24) 

Similarly, the second term in the right side of (3.23) is estimated by implementing another Gibbs 

Sampler algorithm to draw samples of 𝜃2, but now being conditional on 𝜃1
# rather than the sth 

iteration’s output of 𝜃1. Then,  # #

2 1| ,p  g
 
is estimated by  

              p ̂(𝜃2
#| 𝐠, 𝜃1

#)  # #

2 1

1

1
| , .

S

s

p
S

 


  g  

 

(3.25) 

The Monte Carlo estimator obtained from (3.24) and (3.25) are used to compute (3.23) and 

consequently the Bayes factor in (3.21). 

Bayesian information criterion (BIC), also called Schwarz criterion (Schwarz, 1978), is a 

measure derived by approximating the Bayes factor. This approximation is appealing in many 

Bayesian modeling problems especially when the integrated likelihoods are computationally hard 

to evaluate or there is lack of appropriate priors for the parameters (Kass & Raftery, 1995; Kass 

& Wasserman, 1995). The BIC is defined as BIC =  *2ln logq I L , where *lnL  is the 

maximized value of a log-likelihood function of data given estimated values for parameters and a 

model (i.e.,  | ,p M L g θ ), and q is the number of parameters to be estimated. The second 

term on the right-hand side of the BIC is to handle an over-fitting problem by imposing a penalty 

on the number of parameters. When the objective of study is to compare several models, the 

difference between two BICs can be computed as  

           

   01 0 1 0 1 0 1

1
ΔBIC = BIC -BIC ln ln log ,

2
M M M M q q I    L L  

 

(3.26) 

where q0 and q1 indicate the numbers of free parameters in M0 and M1, respectively. If the BIC 

difference is greater than six, there is strong evidence that the model with the smaller BIC would 

be favored (Kass & Raftery, 1995). 



3.4. Model Assessment and Comparison in Bayesian Inference  

 

33 

 

 Deviance information criterion (DIC) (Spiegelhalter et al., 2002) is another information 

criterion used for model comparison. The DIC for a single model is computed as 

               

DIC , p    

   

 
 

(3.27) 

where    p θ and     
θ

θ , in which       2log | 2log h   θ g θ g is a 

deviance measure, θ  is the posterior mean of the parameters,  θ refers to a conditional 

expectation of the deviance statistic given the parameters, and  h g is a standardizing factor 

irrelevant to the parameters in a given model, which will be cancelled out when comparing 

models. A model with a smaller DIC value is preferred to other models with larger DIC values.  
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Chapter 4. Bayesian Generalized Structured Component Analysis 

The previous two chapters discussed the technical underpinnings of the original GSCA and 

Bayesian inference. In this chapter, Bayesian GSCA or simply BGSCA is developed by 

integrating the original GSCA into a Bayesian framework. The chapter begins with model 

specification of BGSCA, followed by its parameter estimation procedure. It also discusses other 

possible extensions of BGSCA.  

4.1. Model Specification 

Let iz  denote a (J1+J2) by 1 vector of observed variables, as defined in (2.2). Let 𝐳̿𝑖 = [
𝐱̿𝑖

𝐲̿𝑖
 ] 

denote a (J1+J2) by 1 vector of so-called error-free variables, where 𝐱̿𝑖 and 𝐲̿𝑖 are J1 by 1 and J2 

by 1 vector of the error-free counterparts of exogenous and endogenous observed variables, xi 

and yi, respectively. The error-free variables 
iz  contain true underlying scores or values of iz  

(Nounou, Bakshi, Goel, & Shen, 2002; Wentzell, Andrews, Hamilton, Faber, & Kowalski, 1997), 

and the observed variables iz  are thus assumed to be the realizations of the true measurements 

perturbed by additive noises or random errors. Hereafter, the double bar symbol (=) is used to 

indicate the true or error-free counterparts of variables or parameters in original GSCA. 

Mathematically, this relationship can be expressed as  

𝐳𝑖 = 𝐳̿𝑖 + 𝛆𝑖                                                            (4.1) 

where 𝛆𝑖 = [
𝛆𝒊

(𝐱)

𝛆𝒊
(𝐲)

] is a (J1+ J2) by 1 of the noise/error terms. Note that (4.1) was also 

contemplated in maximum likelihood principal component analysis (MLPCA; Tipping & 

Bishop,1999; Wentzell et al., 1997) and Bayesian principal component analysis (BPCA; Bishop, 

1999; Nounou et al., 2002). 
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As in BPCA, BGSCA defines latent variables as weighted composites of the error-free 

variables 
iz  rather than the observed variables iz . Because BGSCA enables to take into account 

information about the noise/error terms when constructing latent variables, this would be of 

particular use when the sizes of the noise terms are perceived to be relatively large. Accounting 

for the noise terms in all observed variables, BGSCA modifies the weighted relation model in 

(2.4) as follows:  

,i i
Γ W z                                                             (4.2) 

As 
iz  is of the same size as iz ,

 

( )

( )

i
i

i

 
 
 
 

x

y

γ
Γ

γ

 is a (P1+P2) by 1 vector of the latent variable scores 

that are defined as the composites of  𝐳̿𝑖, where 
( )

i

x

γ and 
( )

i

y

γ are a P1 by 1 and P2 by 1 vector of 

exogenous and endogenous error-free latent variable scores for the ith subject, respectively. Let 

( )

( )

 
 
 
 

x

y

W 0
W

0 W

 denote a (J1+J2) by (P1+P2) matrix of weights assigned to 
iz . From (4.2), the 

measurement model of BGSCA is specified as    

,ii i
 z C Γ δ                                                            (4.3) 

where 
( )

( )

 
  

  

x

y

C 0
C

0 C

 and 
( )

( )

i

i

i

 
  
 

x

y

δ
δ

δ
contains the measurement errors for the observed 

variables, taking into account the unexplained variance of the observed variables by the error-

free latent variables.  

Let H denote a P2 by P1 matrix relating endogenous to exogenous latent variables and N 

denote a P2 by P2 matrix relating endogenous latent variables to other endogenous variables. 
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Combining those two matrices,  V H N  is a P2 by (P1+ P2) matrix of path coefficients of all 

latent variables affecting 
( )

i

y

γ . Let iζ  denote a P2 by 1 vector of errors of endogenous latent 

variables. Then, the structural model of BGSCA is expressed as 

( )

.i ii
 

y

γ VΓ ζ                                                            (4.4) 

 
Figure 4- 1. A hypothetical BGSCA model. 

 

 

To illustrate model specification of BGSCA, let us use the same hypothetical example 

introduced in Section 2.1. Figure 4- 1 displays the hypothetical model with the error-free 

counterparts of the observed variables, which are represented as rectangles in dashed line. The 

weighted relation model for this example is expressed as follows: 
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 
 
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 

     
     
     
     
     
      

 
 
 
  



x

x

y

Γ W z

                           (4.5)                                                            

The measurement model is specified as  

( )

11 1

( )

2 22

( ) ( )
3 3 3

1
( )

( )4 4 4

( )2
5 5 1

( )
( )
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( )
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          
    
      

   
   

      

x

x

x x

x
x

x

y
y

y

y

,

,ii i











 
 
 



 z C Γ δ
                  

                     (4.6) 

In Figure 4- 1, it is assumed that the error-free endogenous latent variable 
( )

1
γ

i

y

is affected by two 

error-free exogenous latent variables 
( )

1
γ

i

x

and 
( )

2
γ

i

x

. Thus, the structural model is expressed as  

 

( )

1
( )

( )

1 2 11
2

( )

1

( )

γ

γ 0 ζ ,γ

γ

.

i

ii
i

i

i ii

b b

 
 
  
 
 
  

 

x

y
x

y

y

γ VΓ ζ
  

                  

                       (4.7) 
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4.2. Parameter Estimation 

To estimate unknown parameters in the BGSCA model, the likelihood function of the observed 

data and prior distributions should be specified from the outset, as discussed in Section 3.1. The 

construction of the likelihood function is dependent on how we specify the distributions for the 

error terms in the measurement and structural models. I here follow the specification of 

distributions typically contemplated in linear factor-based SEMs (e.g., Bollen, 1989). 

Specifically, in the measurement model, the error vectors ( )

i

x
δ  and ( )

i

y
δ are assumed to be 

independent of the latent variables iΓ  and the structural error term iζ . They are also assumed to 

follow a normal distribution.   

( )

( )

~ ( , )

~ ( , ),

i

i

Normal

Normal

x

x

y

y

δ 0 Σ

δ 0 Σ
                                                      (4.8) 

where  
1 1

( ) ( ),..., Jdiag   x x

xΣ is a J1 by J1 diagonal matrix and  
1 2

( ) ( ),..., Jdiag   y y

yΣ  is a J2 by 

J2 diagonal matrix. Assuming such diagonal matrices is common but not required. In the 

structural model, the P2 by 1 vector of the errors of endogenous latent variables
 iζ is assumed to 

be independent of exogenous latent variables 
( )

i

x

γ and to follow a normal distribution:  

 ~ , ,i Normalζ 0 Ψ                                                       (4.9) 

where  
2

( ) ( )

1 ,..., pdiag   γ γ
Ψ is a P2 by P2 diagonal matrix. Given the specifications of its sub-

models and distributional assumptions, overall, BGSCA involves five sets of parameters to be 

estimated: the scores of error-free observed variables (
iz ), weights ( W ), loadings (C ), path 

coefficients ( V ), and the variances of the error terms in the measurement and structural models 
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(
1

( ) ( )

1 ,..., ,J x x

1 2

( ) ( ),..., J y y , and 
2

( ) ( )

1 ,..., p γ γ ). Tables 4- 1 and 4- 2 summarize notations of all 

variables and parameters in BGSCA, along with distributional assumptions on all the error terms. 

 

Table 4- 1. Summary of notations for the variables in BGSCA. 

Symbol Dimension Definition 

Error-free observed random variables 

𝐱̿𝑖 J1 × 1 Error-free observed exogenous variables 

𝐲̿𝑖 J2 × 1 Error-free observed endogenous variables 

𝐳̿𝑖 (J1+J2) × 1 All error-free observed variables,  

Latent random variables  

γ̿𝑖
(𝐱)

 P1 × 1 Latent exogenous variables  

γ̿𝑖
(𝐲)

 P2 × 1 Latent endogenous variables 

𝚪̿𝑖 (P1+P2) × 1 All latent variables, i.e., 𝚪̿𝑖 = [γ̿𝑖
(𝐱)

;  γ̿𝑖
(𝐲)

] 

Error random variables 

𝛅𝒊
(𝐱)

 J1 × 1 Measurement error terms in xi 

𝛅𝒊
(𝐲)

 J2 × 1 Measurement error terms in yi 

𝛅𝑖 (J1+J2) × 1 Measurement error terms in all observed variables (zi) 

iζ  P2 × 1 Structural error terms for γ̿𝑖
(𝐲)

  

   

Model parameters 

( )x

W  
J1 × P1 Component weights applied to xi  

( )y

W  
J2 × P2 Component weights applied to yi  

C
(x)

 P1 × J1 Loadings relating γ̿𝑖
(𝐱)

 to xi 

C
(y)

 P2 × J2 Loadings relating γ̿𝑖
(𝐲)

to yi 

V P2 × (P1+ P2) Path coefficients in the structural model  

xΣ (
1

( )

j
x ) J1 × J1 Measurement error variances for xi 

yΣ (
2

( )

j
y ) J2 × J2 Measurement error variances for yi 

Ψ (
2

( )

p
γ ) P2 × P2  Latent error variances 

 

  



Chapter 4. Bayesian Generalized Structured Component Analysis 

 

40 

 

Table 4- 2. Specification of BGSCA sub-models and distributional assumptions. 

Measurement model  
( )

( ) ( )

i ii
 

x
x x

x C γ δ  

 

( ) ( , )i Normalx

xδ 0 Σ  

( )
( ) ( )

i ii
 

y
y y

y C γ δ  
 

( ) ( , )i Normaly

yδ 0 Σ  

Or  
 

ii i
 z C Γ δ  ( , ),i zNormalδ 0 Σ  where 

 
  
 

x

z

y

Σ 0
Σ

0 Σ
 

Structural model  
( )

.i ii
 

y

γ VΓ ζ  

 

( , )i Normalζ 0 Ψ  

  

Weighted relation model  

i i
Γ W z  

 

 

  

 

Unlike the original GSCA, BGSCA is capable of deriving the likelihood function of the 

observed data. Let  1,..., I
Z z z denote an I by (J1+J2) matrix of observed variables, where 

1,..., Iz z are independent and identically distributed. Then, the likelihood function is given by  

   
1

| , | , ,
I

ii

i

p Normal


Z Z θ z z θ                                         (4.10) 

where  , , , , zθ W C V Σ Ψ . Since the measurement error vectors ( )

i

x
δ  and ( )

i

y
δ  are assumed to be 

independent of each other, the likelihood function of the observed data in (4.10) can be rewritten 

as the product of the individual likelihood functions of  1,..., I
X x x and  1,..., I

Y y y as 

     
1

| , , | , , , | , , .
I

i i i i

i

p p p


 Z Z θ X Y X Y θ x y x y θ                         (4.11) 

 



4.2. Parameter Estimation  

 

41 

 

For parameter estimation in BGSCA, conjugate prior distributions are specified with 

different values of hyperparameters, depending on prior information available from analyses of 

similar or previous data. An advantage of using such conjugate prior distributions is that it 

simplifies the process of deriving full conditional distributions required in the Gibbs Sampler 

algorithm. Because the number of parameters to update in θ  is typically large in SEM, it is 

customary to employ the Gibbs Sampler algorithm and further specify conjugate prior 

distributions to obtain a posterior distribution in closed form (Kaplan & Depaoli, 2012; Palomo 

et al., 2007; Scheines et al., 1999). More specifically, given the distribution form of the 

likelihood function in (4.10), we choose normal priors for  𝐳̿𝒊, W , C , and V . Inverse gamma 

distributions are specified as the prior distribution for 
1

( ) ( )

1 ,..., ,J x x

1 2

( ) ( ),..., J y y
, and 

2

( ) ( )

1 ,..., p γ γ
, 

which are consistent with what has been assumed in Bayesian linear regression models (e.g., 

Carlin & Louis, 2008) or Bayesian factor-based SEM (e.g., Muthén & Asparouhov, 2012). The 

specification of the conjugate prior distributions will be delineated below.  

The Gibbs Sampler algorithm for BGSCA consists of several steps, at each of which, a 

set of parameters is sampled from the corresponding full conditionals.  

Step 1. This step generates the error-free variables 𝐳̿𝑖, given the observed data zi and the 

parameters. As ( )

i

x
δ  and ( )

i

y
δ  are assumed to be independent of each other, the error-free variables 

can be estimated by using the individual likelihood functions of xi and yi. The prior distribution 

for 𝐱̿𝒊 is specified to follow a normal distribution with a J1 by 1 mean vector xm and J1 by (J1+J2) 

covariance matrix x
Q , i.e.,  ~ ,i Normal x xx m Q . This prior is known to be a reasonable and 

common choice for the error-free variables (e.g., Nounou et al., 2002). Combining the prior 
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distribution with the likelihood function, the full conditional distribution for 1,..., I

 
  

X x x is 

derived as:          

   

     

   

( ) ( )

1

( ) ( )
(x) 1 (x)

i

1

( ) ( ) ( ) ( ) ( ) ( )
1 1

| , | , | , ,

1
exp

2

.

I

i i ii i

i

I

i i i

i

i ii i i i i i

p p p p






 

 
  

 

              
   

    
           
    





y x

x x

x

y y x y y x

x x x

X X θ x x θ γ x w V x

x C W x Σ x C W x

γ Nγ Hγ Ψ γ Nγ Hγ x m Q z m

 

 

 

 

 

(4.12) 

 

Rearranging (4.12) with respect to 𝐱̿𝑖 results in  

     x

1

1
| , exp ,

2

I

i i

i

p


  
    

  
 x x

X X θ x μ Ω x μ                           (4.13) 

where  

( ) ( ) ( ) ( )
( ) 1 ( ) 1 1

( ) ( ) ( ) ( )
1 ( ) 1 1 1

i i i

  

   

    

        
  

x x x x
x x

x x z

x x y y
x

x x x x x

Ω C W Σ W C W HΨ H W Q

μ Ω C W Σ x W HΨ γ Nγ Q m

                 (4.14) 

Thus, the values of the error-free variables are drawn from the posterior distribution for 𝐱̿𝑖 

conditional on the observed data and parameters, which is given by  1| , , .i i Normal 

x x
x x θ μ Ω   

The full conditional distribution for 
1
,..., yI

 
  

Y y is obtained as 

   

     

   

1

( ) ( )
( ) 1 ( ) 1

i y y
1

| , | ,

1
exp ,

2

I

i i i

i

I

i i i i i

i

p p p


 





                  
     




y y

y y

y y

Y Y θ y y θ y

y C W y Σ y C W y y m Q y m

 

 

 

 

(4.15) 
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where 

 

       

( )
1

y

( ) ( )
1 1 1 11 1 ,



    

 
 

  

 
      

 

x
y

x

x x
y

xy

m Δ I S HW m

Q Δ I S HW Q W H I N I N Ψ I N

         (4.16) 

and 

1
(y) (y) (y)



 
  
 

y
Δ W W W . Rearranging (4.15) with respect to 𝐲̿𝑖 yields 

     
1

1
| , exp ,

2

I

i i

i

p


  
    

  
 y y y

Y Y θ y μ Ω y μ                             (4.17) 

where 
( ) ( )

( ) 1 ( ) 1   
y y

y y

y y y
Ω C W Σ W C Q  and 

( )
1 ( ) 1 1

i

      
 

y
y

y y y y y
μ Ω C W Σ y Q m . 

Step 2. This step updates the weights ( W ) to obtain the error-free latent variables in (4.2). To 

obtain the posterior in the same distributional family given the likelihood function in (4.10), the 

unknown parameters in each column of 
( )x

W are assumed to have a normal prior distribution with 

two following hyperpareamters: a J1 by 1 vector 
1W1( )pm as the mean hyperparameter and a J1 by 

J1 covariance matrix 
1W1( )pS as the covariance hyperparameter. That is, 

1
1 1

( )

W1( ) W1( )( , )p p pNormal
x

w m S  ( p1 =1,…, P1). Combining the prior distributions and the 

likelihood function of the observed data in (4.11), the posterior distribution for
( )x

W becomes 

proportional to  
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(4.18) 

where 
 ( ) xW
θ  represents all the other model parameters except 

1

( )

p

x

w . Consequently, samples from 

the weights for exogenous latent variables are generated from the following full conditional 

distribution for 
1

( )

p

x

w : 

    
( )

1
1 W1( ) 11

( )
1 1 ( ) 1 1

W1( )| , , ~ tr , ,
p

p p pNormal
       

 

xx W x

x x x
w X X θ Φ XX Σ c S m Φ             (4.19) 

where 
1 1 W1( )1

( ) ( ) 1 1

pp p

  x x

x xΦ c c X XΣ S . Similarly, the posterior distribution for the weights for 

endogenous latent variables are updated combining a normal prior distribution with 

hyperparameters
2W2( )pm and 

2W2( )pS , 
2

2 2

( )

W2( ) W2( )( , )p p pNormal
y

w m S  (p2 = 1,…, P2), and the 

likelihood function in (4.11). This results in the following full conditional for 
2

( )

p

y

w :  

    
( y)

2
2 W 2( ) 22

( )
1 1 ( ) 1 1

W2( )| , , ~ tr , ,
p

p p pNormal
       

 

y W y

y y y
w Y Y θ Φ YY Σ c S m Φ             (4.20) 

where 
2 2 W 2( )2

( ) ( ) 1 1

pp p

  y y

y yΦ c c Y YΣ S . 

Step 3. This step updates the loadings ( C ) in the measurement model. As in step 2, a normal 

prior distribution for each p1th row of ( )x
C (p1 =1,…, P1) is assumed: 

1 1 1

( )

C1( ) C1( )( , )p p pNx
c m S , 

where 
1C1( )pm is a J1 by 1 vector of prior means and 

1C1( )pS is a J1 by J1 matrix of prior covariance 

matrix. The full conditional for 
1

( )

p

x
c  follows a normal distribution, that is,  
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 ( )

1 1 C1( ) 11

( ) 1 1 ( ) 1 1

C1( )| , , , ,
pp p pNormal

    
  

   
  

x
Cx x

x x x
c X X θ Π Σ X Xw S m Π             (4.21) 

where 
1 1 C1( )1

( ) ( ) 1 1

pp p

 
   
 

x x

x xΠ w X X w Σ S . Likewise, samples for the loadings of endogenous 

latent variables are drawn from
 ( )

2

( ) | ,p ip
 

 
 

yCy
c y θ . By combining the prior 

2 2 2

( )

C2( ) C2( )( , )p p pNormaly
c m S  (p2 = 1,…, P2) and the likelihood function in (4.11), the full 

conditional for 
2

( )

p

y
c  is 

 ( )

2 2 C2( ) 22

( ) 1 1 ( ) 1 1

C2( )| , , ~ , ,
pp p pNormal

    
  

   
  

y
Cy y

y y y
c Y Y θ Π Σ Y Y w S m Π                (4.22) 

where

 
2 2 C2( )2

( ) ( ) 1 1

pp p

 
   
 

y y

y yΠ w YY w Σ S  

Step 4. In this step, the variances of the measurement error term are updated. Assuming a 

conjugate prior distribution for the variance of each measurement error term, the j1th 
1

( )

j
x

( j1 = 

1,…, J1) follows an inverse gamma distribution with a shape hyperparameter 
1x0( )a j  

and scale 

hyperparameter
1x0( )j . That is, 

1 1 1

( )

x0( ) x0( )IG(a , )j j j x
. The full conditional for 

1

( )

j
x

is written as:  

     

      

 

1( ) a 11 1x 0( )

1 1 1 1 1 11

x 0( ) 1

1 1 1 1

2
( )

( ) ( ) ( ) ( ) ( ) ( )2
x0( )

1 1

2
( )a 1

( ) ( ) ( )2

x0( )

1

1
| x , exp x exp

2

1
exp x

2

j

j

I J I

j i j j j j j jii j
j i

I I

j j j jii j
i

p


     

  
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

 

 
   
 


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   

 



x x
x x x x x x

x
x x x

θ γ C

γ C
1

1

.
J

j

  
 
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

 

 

 

(4.23) 

This shows that the full conditional distribution for 
1

( )

j
x

given the observed variable
1( )xi j

and 

other parameters is given by  

   
 ( )

1 1 1 1 1

2
( )

( ) ( )

x0( ) x0( ) ( )

1

1
| x , IG a , x .

2 2

I

j i j j i j ji

i

I
 





  
       


x x

x x
θ γ C                  (4.24) 
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Similarly, the posterior distributions for the variances of ( )

i

y
δ are updated with the same inverse 

gamma distribution but with different shape and scale hyperparameters 
2Y0( )a j

and 
2Y0( )j , 

respectively ( j2 = 1,…, J2). The full conditional for 
2

( )

j
y

follows an inverse gamma distribution, 

   
 ( )

2 2 2 2 2

2
( )

( ) ( )

Y0( ) Y0( ) ( )

1

1
| y , IG a , x

2 2

I

j i j j i j ji

i

I
 





  
       


y y

y y
θ γ C                  (4.25) 

Step 5. This step updates the path coefficients ( V ) in the structural model. From samples 

generated in step 1 and step 2, the error-free latent variables are imputed according to the 

weighted relation model in (4.2). Let 
( ) ( ) ( )

1
,...,

I

 

  

x x x

Γ γ γ denote an I by P1 matrix of error-free 

exogenous latent variables, and 
( ) ( ) ( )

1
,...,

I

 

  

y y y

Γ γ γ denote an I by P2 matrix of error-free 

endogenous latent variables. Using (4.4) and (4.9), the likelihood function of the endogenous 

latent variables is written as:  
( ) ( )

1

| , ,
I

i

i

p Normal


 
 

 


y x

Γ Γ θ Γ V Ψ . Given
( )

i

x

γ , each endogenous 

latent variable is assumed to be independent of each other, and so that the p2th latent variables 

can be updated separately. Let
2( )p


V denote a row vector consisting of the unknown parameters 

only in the p2th row of V. Let 
( ) ( )  

   

x y

Γ Γ Γ . Then, 
2(~ )p



Γ is a matrix of columns of 


Γ

corresponding to non-zero elements in the p2th row of V. The prior distribution for 
2( )p


V  is 

specified to follow a normal distribution with hyperparameters of 
2V( )pm and 

2V( )pS : 

 
2 2 2( ) V( ) V( )~ ,p p pNormal V m S . The posterior distribution for 

2( )p


V becomes proportional to 

 2
2

( ) ( )

( )| ,p pp p  
 
 

y x

Γ Γ θ V , where 
2

( )

p

y

Γ refers to an I by 1 vector of the p2th latent variable scores. 
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Hence, the samples of unknown parameters in V are drawn from the full conditional for 
2( )p


V , 

which is given by  

 
  1

2 2
2 2 2 2

( )
1 ( ) 1 1

(~ )( ) V( ) V( )| , , , ,p pp p p pNormal 



   

         
   

y
V γ

V V
V X Y θ Ω Γ Γ S m Ω             (4.26) 

where 
1

2 2
2 2

( ) 1
(~ ) (~ ) V( )p p p p


 


 

  
 

γ

VΩ Γ Γ S .  

Step 6. This step updates the variances of the structural errors iζ  (i.e., 
2

( ) ( )

1 ,..., p γ γ
), given the 

same likelihood function used in the previous step. As used in the measurement error terms, the 

prior distribution for each structural error is specified as an inverse gamma distribution with a 

shape and scale hyperparameters,
2LV0( )a p

and 
2LV0( )p , respectively. The full conditional 

distribution for 
2

( )

p
γ

 
follows an inverse gamma distribution with a shape parameter of 

2LV0( )a
2

p

I


and a scale parameter of 2
2 22

2

( )

(~ )LV0( ) ( )( )

1

1

2

I

i pp pi p

i






 
   

 


y

γ V Γ .  

In BGSCA, the parameters of the prior distributions, called prior hyperparameters, are 

assumed to be known constants. Their values are chosen based on our belief or prior knowledge 

about the magnitude of θ . While a mean hyperparameter is to specify the central location of a 

prior distribution, the variance hyperparameter determines the variability or magnitude of the 

spread of a prior. If we have very little prior knowledge about what value a parameter might take, 

then we may adopt a prior that considers a wide range of values of the parameter, involving a 

large variance hyperparameter value. Such a prior is called a diffuse or uninformative prior. For 

example, a normal prior distribution with a variance hyperparmeter value of 100 amounts to a 
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diffuse prior. On the other hand, when we have substantial prior knowledge about the variance of 

the parameter, we would specify a prior distribution with a small variance value.  

We also need to set the number of total iterations (S) as well as burn-in sample size. 

Typically, the number of total iterations is set as 10,000, whose first 1000 iterations are discarded 

as the burn-in sample size. Convergence of the MCMC chain is evaluated via drawing trace plots. 

If a trace plot displays some trends other than shifting up and down (e.g., staying in a certain 

values long), it indicates that there is no convergence reached yet. In such cases, albeit 

computationally intensive, we would need to increase S, and/or discard a bigger proportion of 

early iterations.  

4.3. Other Extensions 

This section discusses other possible technical extensions that would further improve the 

generality of BGSCA. These extensions pertain to the accommodation of correlated error terms 

in the measurement model (Section 4.3.1) and the analysis of categorical data (Section 4.3.2).   

4.3.1. Correlated error terms in measurement models 

The estimation procedure in Section 4.2 was developed under the assumption that each 

error term in the measurement model is independent of one another, yielding a diagonal 

covariance matrix for the measurement error terms. As stated earlier, although this is a 

conventional assumption made in standard linear SEMs, it is not required and can be relaxed. 

Practically, we may hypothesize that two or more observed variables share something in 

common, which is not explained by their latent variables explicitly specified in the model. To 

accommodate such situations, BGSCA can be extended to relax independence of the observed 

variables by allowing the estimation of both variances and covariances of the measurement error 

terms. This can be technically done by modifying the specification of a conjugate prior 
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distribution for the covariance matrix of the measurement error terms as an inverse Wishart 

distribution. Specifically, step 4 in Section 4.2 is changed as follows:   

Step 4. A covariance matrix of the measurement error term x
Σ is updated by using a conjugate 

prior distribution, an inverse Wishart distribution. The inverse Wishart distribution for a J1 by J1 

matrix x
Σ is expressed as: x0 x0IW( , )xΣ R , where x0R  is a J1 by J1 positive definite matrix

 

and x0 a positive integer. The inverse Wishart distribution is considered a multivariate extension 

of an inverse gamma distribution. The hyperparameters of an inverse Wishart prior distribution 

are often set as results obtained via maximum likelihood (e.g., Bouriga & Féron, 2013; Haff, 

1980), and such method is called an empirical Bayes. Empirical Bayes is a procedure of 

estimating a prior distribution from the data. By combining the specified inverse Wishart prior 

with the likelihood function of data, the full conditional distribution for x
Σ is expressed as:  

      

  
x 0 1

( ) ( )
( ) 1 ( )

2

1

( 1)

12
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1
| , exp

2

1
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II

i ii i

i

J

p



 



 
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
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    
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x x
Σ x x

x x x

x x

Σ X θ Σ x γ C Σ x γ C

Σ Σ R

 

 

 

(4.27) 

A covariance matrix of the measurement errors for xi is sampled from the full conditional for x
Σ , 

that is,  

 
( ) ( )

( ) ( )

x0 x0

1

| , IW , .
I

i ii i

i

I+




          
    
 
x

x x
Σ x x

x
Σ X θ x γ C x γ C R                    (4.28) 

Likewise, the posterior distribution for the covariances and variances of the endogenous 

observed variables
y

Σ is updated by combining the data likelihood function and an inverse 

Wishart prior distribution with two hyperparameters
y0R

 
and 

y0 . The full conditional for 
y

Σ  is   
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  ( ) ( )
( ) ( )

y0 y0

1

| , , IW , ,
I

i ii i

i

I+




          
    
 
y

y y
Σ y y

y
Σ Y θ y γ C y γ C R  and samples for the 

covariances and varianaces of the measurement errors are generated accordingly.  

4.3.2. Analysis of categorical data 

Until now, the observed data are assumed to be continuous and sampled from a 

multivariate normal distribution. However, data in the social sciences are often categorical in 

nature. In particular, perhaps the most common type of categorical data in SEMs is ordered 

categorical, e.g., questionnaire items on three-, five-, or seven- point Likert scales (e.g., Lee, 

2012; Rhemtulla, Brosseau-Liard, & Savalei, 2012). Because such categorical data would likely 

follow skewed distributions, treating them simply as continuous and normal would likely yield 

misleading results, including biased parameter estimates (Muthén & Kaplan, 1985; Rhemtulla et 

al., 2012).  

BGSCA is extended to analyze categorical data based on the latent response variable 

formulation, as in a Bayesian approach to factor-based SEM (e.g., Lee, 2012, Chapter 5). The 

basic idea of the latent response variable formulation is that responses of each categorical 

variable come from an underlying continuous variable that follows a normal distribution. A set 

of thresholds is then used to discretize the normal distribution, resulting in non-equidistance 

intervals of the observed categories (e.g., Finney & DiStefano, 2006; Lee & Song, 2004). 

Suppose that zi now contains (J1+J2) categorical variables. Let L denote the number of response 

choices of each categorical variable zik (k = 1,…, J1+J2). With the latent response variable 

formulation, the observed response zik is thought to arise from a latent response variable *

ikz  as 

follows:  
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(4.29) 

where l  is a category threshold discretizing the underlying continuous response variable into 

observed categorical responses (l =1, 2, …, 1L ). Generally speaking, within this formation, the 

category thresholds linking the observed responses and underlying continuous latent responses 

are first updated. The zik in (4.3) is in turn replaced with the estimated *

ikz  in the measurement 

model for the subsequent steps for parameter estimation in BGSCA. 

To implement the latent response variable formulation, a Metropolis-Hastings algorithm 

is included as an additional step (e.g., Lee, 2012) before applying the proposed BGSCA 

algorithm. Let kα denote a 1 by ( 1L ) vector of category thresholds for the kth observed 

variable, 
1 ( 1),....k k L k  

   α . From a Metropolis-Hastings algorithm, at the sth iteration, 

possible new candidate values for kα are simulated from a truncated normal proposal distribution 

defined on a bounded range 
( 1) ( 1),j k j k  

    (j = 1,…, 1L ). Because threshold values in kα

define a set of specific ranges that each category would belong in a continuum scale, a truncated 

normal distribution seems appropriate. Then, ( )s

kα (s = 1,…, S) are successively generated 

according to the following algorithm.  

Step 1. Set s = 1, and generate a vector of new candidate values 
k


α  at random from a  

proposal density function  ( 1)| s

k kq  
α α , where (0)

kα is a vector of randomly chosen 

initial values.  

Step 2. Given 
k


α , compute the acceptance ratio between the candidate (

k


α ) and current  
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( ( 1)s

k


α ) values as 

   

   

* ( 1)

( 1) * ( 1)

, | , , |

, | , , |

s
ik ik ik k k

s s
ik ik ik k k

p q
R

p q

  

  


α z z Γ θ α α

α z z Γ θ α α
                                 (4.30) 

Step 3. Decide whether to accept the candidate vector 
k


α  with probability of  min 1, R .  

Keep the current values ( 1)s

k


α  otherwise.  

             Step 4. For the accepted candidate value only, simulate a new set of *

ikz  from a truncated  

normal distribution. 

             Step 5. Set s = s + 1, and repeat steps 2 - 4 until s = S.   
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Chapter 5. Simulation Study 

This chapter presents two simulation studies. The first simulation study is conducted to evaluate 

the performance of BGSCA, focusing on how the amount of variability in the error-free data, the 

magnitude of measurement error variances, and sample size would affect the parameter recovery 

capability of BGSCA. The second simulation is to study the effects of specifying different 

hyperpameters for the prior distributions on the performance of BGSCA. This can provide a 

general guideline on how to choose hyperparameter values for BGSCA.  

5.1. Simulation Study 1 

5.1.1. Simulation Design and Data Generation  

In the first simulation study, we considered a model that involved three latent variables, 

each of which consisted of five observed variables. The structural model was hypothesized such 

that the first two error-free latent variables,
1γ and

2γ , influenced the other error-free latent 

variable,
3γ , as shown in Figure 5- 1. This led to P1 = 2, P2 =1, J1 = 10, and J2 = 5. All free 

parameter values in the weight matrix ( W ) were prescribed to 0.3, and those in the loading 

matrix (C) were to 0.8. We also chose two path coefficients in V (b1 and b2) and the error 

variance of the endogenous latent variable ( var( )ζ ) as 0.6, 0.4, and 0.48, respectively.  

 
Figure 5- 1. The structural model specified for simulation study 1. 
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There were three manipulated factors in this simulation study. The first factor was the 

amount of the variance of the error-free observed exogenous variables (var( x
Q )) for generating 

the error-free latent variables, and it varied at three levels: 1, 2, and 3. The second factor was the 

magnitude of the measurement error variances ( ivar( ) δ ), which was also manipulated to vary 

at three levels: 0.3, 1, and 2. The last factor was the number of subjects (I), varying at three 

levels: 50, 100, and 200. Thus, this study involved 3 3 3   = 27 conditions. For each condition, 

500 simulated sets were generated, thus yielding a total of 13,500 data sets.  

To generate a data set, a P1 by 1 vector of the exogenous latent variable scores for the ith 

subject 
( )

1i

i

i2

 
 
 
 

x γ
γ

γ

was first generated. Let xm denote an J1 by 1 mean vector of zeros, and x
Q  

denote an J1 by J1 diagonal matrix whose diagonal element was one of the three levels of 

var( x
Q ). Let ix  denote a J1 by 1 vector of error-free observed exogenous variables. Assuming

 ~ ,i Normal x xx m Q , 
( )

i

x

γ was generated from
( ) ( ) ( )

,Normal
 
 
 

x x x

x xm W W Q W .This way of 

generating these latent variables was derived based on the weighted relation model of BGSCA 

defined in (4.2). Then, the endogenous latent variable 
i3γ was generated from the structural 

model as specified in Figure 5- 1. The error term ζ  in the structural model was assumed to be 

uncorrelated with the two exogenous latent variables (i.e.,    1 2
cov , cov , 0 γ ζ γ ζ ), and thus 

the variance of the endogenous latent variable was set as

       2 2

1 2 1 23 1 2 1 2
var var var 2 cov , var( ).b b b b   γ γ γ γ γ ζ  Note that assuming the diagonal 

matrix for x
Q set the third term of  3

var γ to be equal to zero. Given the latent variables 
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generated, their corresponding observed variables were subsequently generated based on the 

measurement model defined in (4.3).  

Each of the 13,500 data sets was analyzed by BGSCA with diffuse prior distributions, 

which were the most commonly used specification in Bayesian analyses (e.g., Spiegelhalter, 

Thomas, Best, & Gilk, 2003; Chen, Bakshi, & Goel, 2009). Specifically, for 𝐳̿𝒊, W , C , and V , 

normal distributions were assumed with mean hyperparameter value of zero and variance 

hyperparameter of 100. To specify diffuse prior distributions for 
1 1

( ) ( ),..., J x x
, 

1 2

( ) ( ),..., J y y
, and 

var( )ζ , inverse-gamma distributions with both shape and scale hyperparameter values of 0.0001 

were assumed, each of which would resemble a uniform distribution. A MATLAB code was 

written to update the posterior distributions for the parameters in BGSCA.  

5.1.2. Results 

To evaluate parameter recovery, the mean square errors (MSE) of the parameter estimates 

were calculated as 
2MSE= [( ) ]est  , where  and est  denote a parameter and its estimate – 

here, the posterior mean. Although there is no clear-cut criterion to be considered an acceptable 

level of MSE, it should be a small value close to zero. Table 5- 1 provides the average MSE 

values of the weight estimates. As shown in the table, when the sample size increased, the MSE 

values tended to decease regardless of the amount of variability in the error-free data and the 

magnitude of the measurement error variances. When I ≥ 100, the MSE values of the weight 

estimates were very small, i.e., less than 0.01, except for the cases where the measurement error 

variances were large. At each sample size, moreover, the changes of the MSE values over the 

different values of   were negligible. Thus, overall, BGSCA recovered the weights well under 

the different conditions.  
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Table 5- 1. The average values of mean square error (MSE) of the estimates in the weighted 

relation model obtained from BGSCA. 

 
 

var( )
x

Q = 1  var( )
x

Q = 2  var( )
x

Q = 3 

 N 0.3   1   2    0.3   1   2    0.3   1   2   
 

( )x

W  
50 0.0430 0.0459 0.0549  0.0442 0.0453 0.0457  0.0449 0.0457 0.0530 

100 0.0041 0.0047 0.0051  0.0042 0.0049 0.0052  0.0041 0.0044 0.0052 

200 0.0019 0.0021 0.0048  0.0017 0.0021 0.0046  0.0019 0.0020 0.0049 
 

( )y

W  
50 0.0361 0.0438 0.0707  0.0362 0.0420 0.0701  0.0363 0.0420 0.0719 

100 0.0042 0.0085 0.0128  0.0041 0.0082 0.0129  0.0046 0.0085 0.0133 

200 0.0031 0.0011 0.0041  0.0032 0.0017 0.0047  0.0031 0.0018 0.0041 

 

Table 5- 2 presents the average MSE values of the loadings and error term estimates in 

the measurement model. The MSE values of both sets of the estimates decreased with the sample 

size, regardless of the levels of the other factors. The MSE values also remained similar across 

the different levels of var( x
Q ), suggesting that the performance of BGSCA was reasonably 

stable against changes in the amount of variability in the error-free data. Nevertheless, at each 

level of var( x
Q ) and when I = 50, the MSE values increased rather sharply as   increased. This 

may be attributed to the large amount of uncertainties in both sources of information (i.e., 

information from the prior distributions and the observed data). When less information was given 

from the observed data with the small sample size, the resulting posterior distributions would be 

more influenced by the information provided from the prior distributions. However, specifying 

diffuse priors indicated that there was little information to suggest which values of the parameter 

might be more plausible than others. Thus, when I = 50, insufficient information on both sources 

of information might contribute to the steep increase in the MSE values. As the sample size 

increased, such dramatic changes in the MSE values did not occur, being complemented by more 

information provided from the observed data.  

 



5.1. Simulation Study 1  

 

57 

 

Table 5- 2. The average values of MSE of the estimates in the measurement and structural model 

obtained from BGSCA. 

 
 

var( )
x

Q = 1  var( )
x

Q = 2  var( )
x

Q = 3 

 I 0.3   1   2    0.3   1   2  0.3   1   2   
 

( )x
C  

50 0.0014 0.0204 0.0955  0.0014 0.0207 0.0958  0.0014 0.0205 0.0957 

100 0.0007 0.0173 0.0178  0.0010 0.0172 0.0178  0.0017 0.0171 0.0187 

200 0.0006 0.0148 0.0175  0.0006 0.0144 0.0180  0.0003 0.0148 0.0187 
 

( )y
C  

50 0.0025 0.0436 0.0888  0.0028 0.0420 0.0881  0.0026 0.0429 0.0869 

100 0.0012 0.0357 0.0387  0.0011 0.0359 0.0382  0.0014 0.0365 0.0387 

200 0.0011 0.0020 0.0073  0.0012 0.0016 0.0080  0.0007 0.0018 0.0084 
 

( )x
Σ  

50 0.0254 0.0892 0.2169  0.0262 0.0858 0.2036  0.0257 0.0897 0.2269 

100 0.0047 0.0326 0.0633  0.0063 0.0303 0.0628  0.0053 0.0269 0.0655 

200 0.0028 0.0030 0.0094  0.0035 0.0036 0.0098  0.0031 0.0036 0.0107 
 

( )y
Σ  

50 0.0110 0.0606 0.2466  0.0136 0.0628 0.2122  0.0143 0.0678 0.2140 

100 0.0053 0.0369 0.0718  0.0073 0.0362 0.0729  0.0072 0.0389 0.0717 

200 0.0026 0.0072 0.0154  0.0036 0.0086 0.0143  0.0030 0.0098 0.0157 

 

Table 5- 3 shows the average values of MSE of the path coefficient and error variance 

estimates in the structural model. The general trend of the MSE values was similar to that shown 

in Table 5- 2, except that the rate of increase in the MSE values across the different levels of   

seemed to be less dramatic. When the sample size was large (I = 200), all MSE values under the 

different conditions were smaller than 0.01. In sum, in the weighted relation and structural model, 

BGSCA was able to recover the parameters sufficiently well across all conditions. In the 

measurement model, BGSCA also performed well unless the sample size was too small (I ≤ 50) 

and at the same time the measurement error variance was too large (  ≥ 2).  
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Table 5- 3. The average values of MSE of the estimates in the structural model obtained from 

BGSCA. 

 
 

var( )
x

Q = 1  var( )
x

Q = 2  var( )
x

Q = 3 

 I 0.3   1   2    0.3   1   2    0.3   1   2   
 

V 
50 0.0106 0.0350 0.0745  0.0110 0.0335 0.0743  0.0111 0.0343 0.0739 

100 0.0074 0.0130 0.0408  0.0076 0.0126 0.0456  0.0083 0.0122 0.0465 

200 0.0031 0.0060 0.0147  0.0031 0.0059 0.0137  0.0034 0.0053 0.0138 

 
ψ  

50 0.0186 0.0244 0.0851  0.0211 0.0245 0.0872  0.0195 0.0217 0.0889 

100 0.0139 0.0235 0.0683  0.0142 0.0211 0.0667  0.0152 0.0214 0.0664 

200 0.0050 0.0064 0.0150  0.0042 0.0066 0.0152  0.0039 0.0072 0.0154 

 

5.2. Simulation Study 2 

5.2.1. Simulation Design 

The second simulation study focused on examining how robust BGSCA results are to 

different specifications of prior distributions. This is called a sensitivity analysis in the Bayesian 

framework (e.g., Berger, 1990; Depaoli, 2014; Ghosh, Delampady, & Samanta, 2007). As 

weights ( W ), loadings ( C ), and path coefficients ( V ) were often the main parameters of 

interest in SEM, we focused on investigating the sensitivity of their posterior results. For this 

second study, we used a subset of the simulated data generated from the previous study under 

var( x
Q ) = 1,  = 1, and I = 100, and considered four different conditions while varying the mean 

and variance hyperparameters of the prior distributions for W , C , V as listed in Table 5- 4. 

 

Table 5- 4. Specification of different hyperparameter values. 

 Hyperparameter values for the priors 

 Weights  Loadings  Path coefficients 

mean variance  Mean variance  mean variance 

Condition 1 0.4 0.1  0.7 0.1  0.5 0.1 

Condition 2 0.4 100  0.7 100  0.5 100 

Condition 3 0.8 0.1  0.0 0.1  0.0 0.1 

Condition 4 0.8 100  0.0 100  0.0 100 
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In the table, the first condition was regarded an accurate and informative prior 

specification, because the mean hyperparameters were set to be close to the prescribed true 

values and their variance hyperparmeters were all specified with a small value (being certain 

about the corresponding mean hyperparameters). The second condition was specified as an 

accurate but diffuse (or uninformative) prior distribution with a larger variance hyperparameter 

value. In contrast to the first two conditions, the third and fourth conditions were considered 

inaccurate prior specifications because their mean hyperparameter values were set to be far from 

the corresponding prescribed true values. Expressing the extent of uncertainty about the mean 

hyperparameters, the third condition was an informative prior with a small variance 

hyperparameter, whereas the fourth condition was considered a diffuse prior with a large 

variance value. For each condition, 500 simulated data sets were analyzed by BGSCA. The prior 

distributions for 𝐳̿𝒊, 
1 1

( ) ( ),..., J x x
, 

1 2

( ) ( ),..., J y y
, and var( )ζ  remained the same as the previous 

simulation study. The same MATLAB code was used again for this study.  

5.2.2. Results and Discussion 

As in the previous study, the mean square errors (MSE) of the estimates of W , C , V

were calculated as a measure of parameter recovery. Table 5- 5 provides the average MSE values 

of the parameter estimates across the four different specifications of prior distributions. In the 

table, all MSE values from the first condition were always smaller than those from the third 

condition. Similarly, the MSE values from the second condition were smaller than those from the 

fourth condition. It indicated that given the same variability, as expected, an accurate prior 

specification led to a good approximation to the true values. When comparing the MSE values 

regardless of the variance hyperparemters, a relatively good approximation to the true values was 

also achieved with their mean hyperparameters being accurately specified. Importantly, even in 
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the cases of specifying the mean hyperparameter inaccurately, the MSE values tended to be close 

to zero if it was paired with a large variance hyperparameter. Consequently, BGSCA was 

generally robust to the misspecification of prior specifications as long as their variance 

hyperparameters were set to be large. 

  

Table 5- 5. The average values of MSE of the estimates of weights, loadings, and path 

coefficients across four different specifications of hyperparameter values. 

Parameters Condition1 Condition2 Condition3 Condition4 
( )x

W  0.0035 0.0036 0.0258 0.0083 
( )y

W  0.0059 0.0062 0.0199 0.0097 
( )x

C  0.0024 0.0045 0.0239 0.0167 
( )y

C  0.0017 0.0037 0.0403 0.0349 

V 0.0054 0.0075 0.0213 0.0098 

 

Although this simulation study was useful to examine the performance of BGSCA under 

the misspecification of prior distributions, it can be further elaborated. For example, the study 

only manipulated the values of the hyperparameters, while holding all the other factors, such as 

the sample size or the magnitude of the measurement error variance, constant. It would be 

worthwhile to assess BGSCA’s robustness to the misspecification, considering the other factors 

at the same time. In addition, the study was designed to assign user-specific, known values to the 

hyperparameters. However, these values may be decided in two other ways. One way is to treat 

the hyperparameters themselves as another set of unknown parameters, so that they also involve 

their own prior distributions, called hyper-priors, as another level of uncertainty in the modeling 

process (e.g., Gelman, 2004; Gilks et al, 1996). The other is to apply an Empirical Bayes method, 

in which the hyperparameter values are determined from the observed data (e.g., Carlin & Louis, 

2000).  
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Chapter 6. An Empirical Example  

6.1. Data Description and Model Specification 

The present example is a subset of the organizational identification survey data used in Bergami 

and Bagozzi (2000) (available at http://www.sem-gesca.org/). In this example, 305 employees 

(male = 157 and female = 148) from the electronics division of a large conglomerate in South 

Korea were asked to evaluate how strongly they agree on 21 survey items or observed variables 

associated with four constructs or latent variables, called organizational prestige, organizational 

identification, affective commitment (joy) and affective commitment (love). 

Organizational prestige represented an employee’s beliefs about whether her/his 

significant others would highly regard one’s organization. Organizational identification was 

capturing how one perceives about the company and oneself within the company. Affective 

commitment (joy) was a type of emotional attachment to the organization, and hence higher 

latent scores of joy was an indicative of “happiness arisen from the organization” (Bergami & 

Bagozzi, 2000, p. 560). Compared to joy, affective commitment (love) involved somewhat 

stronger emotional states, defined as “emotional attraction or affection towards the organization” 

(Bergami & Bagozzi, 2000, p. 560).  

Each latent variable in the model was assumed to underlie a set of observed variables, as 

shown in Table 6- 1. In the table, Organizational prestige (OP) and organizational identification 

(OI) were assumed to be associated with eight (op1 – op8) and six (oi1 – oi6) observed variables, 

respectively, measured using Mael and Ashforth’s (1992) scale. Affective commitment (joy) and 

affective commitment (love) were assumed to be associated with four (acj1 – acj4) and three (acl1 

– acl3) observed variables, respectively, whose scales were developed by Allen and Meyer 

(1990). Note that the three observed variables for affective commitment (love) were negatively 

http://www.sem-gesca.org/
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worded: an employee with a lower score on each of these variables was more likely to feel 

stronger affection toward the organization. The relationships among the four latent variables 

were hypothesized in the structural model as displayed in Figure 6- 1. It was assumed that 

organizational prestige affected organizational identification, which in turn influenced both 

types of affective commitments. 

 

Table 6- 1. Twenty-one observed variables for four latent variables in Bergami and Bagozzi’s 

(2000) organizational identification data. 

Latent 

variables
1
 

Observed variables 

Label Description 

OP op1 My relatives and people close or important to me believe that [Company X] is 

a well-known company. 

op2 My relatives and people close or important to me believe that [Company X] is 

a highly respected company. 

op3 My relatives and people close or important to me believe that [Company X] is 

an admired company. 

 op4 My relatives and people close or important to me believe that [Company X] is 

a prestigious company. 

 op5 People in general think that [Company X] is a well-known company. 

 op6 People in general think that [Company X] is a highly respected company.  

 op7 People in general think that [Company X] is an admired company. 

  op8 People in general think that [Company X] is a prestigious company. 

OI oi1 When someone criticizes [Company X] it feels like a personal insult. 

 oi2 I am very interested in what others think about [Company X].  

 oi3 When I talk about [Company X], I usually say “we” rather than “they”.  

 oi4 [Company X’s] successes are my successes.  

  oi5 When someone praises [Company X] it feels like a personal compliment. 

 oi6 If a story in the media criticized [Company X], I would feel embarrassed.  

AC_J acj1 I would be very happy to spend the rest of my career with [Company X].  

 acj2 I enjoy discussing [Company X] with people outside of it.  

 acj3 I really feel the problems of [Company X] are my own.  

  acj4 [Company X] has a great deal of personal meaning for me. 

AC_L acl1 I do not feel like part of a family at [Company X]. 

 acl2 I do not feel emotionally attached to [Company X]. 

 acl3 I do not feel a strong sense of belonging to [Company X]. 
1
 Note that OP = organizational prestige, OI = organizational identification, AC_J = affective 

commitment (joy), and AC_L = affective commitment (love).   
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Figure 6- 1. A hypothesized model for the organizational identification data 

 

6.2. Analysis  

BGSCA was applied to fit the specified model to the example data. As discussed in Chapter 4, 

the Gibbs sampler algorithm was used to obtain the posterior distributions for the model 

parameters. Given little prior knowledge on the parameters, we used conjugate prior distributions 

with moderate-to-large variance hyperparameters. Specifically, for 𝐳̿𝒊, W , C , and V , normal 

distributions were assumed with mean hyperparameter value of zero and variance 

hyperparameter of ten. Prior distributions for
1

( ) ( )

1 ,..., ,J x x

1 2

( ) ( ),..., J y y
, and 

2

( ) ( )

1 ,..., p γ γ
 were 

assumed to follow inverse-gamma distributions with a relatively large variance as follows. Given 

that the mean and variance of an inverse-gamma distribution were computed as
a 1




 and 

   

2

2
a 1 a 2



 
 (where a is the shape and  is the scale parameter of the distribution), respectively; 

we set the shape parameter as five and the scale parameter as eight. In the analysis, the first 1000 
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iterations were discarded as the burn-in sample size, after which another set of 6000 iterations 

were run while saving samples at every second iteration from the algorithm for the posterior 

inferences. For comparison, the original GSCA was also applied to the same data using the R 

package gesca.  

6.3. Results 

Figures 6- 2 and 6- 3 display the trace and ACF plots of the estimates of several parameters only 

because those of the remaining parameter estimates showed similar patterns. A trace plot is to 

visualize how samples drawn from a posterior distribution for a parameter change over iterations. 

As shown in Figure 6- 2, the estimates of each parameter sampled over iterations did not show a 

systematic trend fluctuating around the center of its MCMC chain. An ACF plot can be used for 

evaluating whether or not the correlation between adjacent samples decays toward zero as the 

time lag increases. As shown in Figure 6- 3, the autocorrelation values for all the parameter 

estimates were very close to zero at either the first or second lag. Thus, overall, the Gibbs 

Sampler algorithm used in the analysis reached convergence.  
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Figure 6- 2. Trace plots of the estimates of (a) weights, (b) loadings, and (c) path coefficients. 

1
 (a-1) is a trace plot of 

( )

1w x
(op1  OP); (a-2) 

( )

1w y
(oi1  OI); (b-1) 

( )

1c x
 (OP  op1); (b-2) 

(y)

2c  (OI  oi2); (c-1) v1 (OP  OI); (c-3) v3 (OI  AC_L). 
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Figure 6- 3. ACF plots of the estimates of (a) weights, (b) loadings, and (c) path coefficients. 

 (a-1) is an ACF plot of 
( )

1w x
(op1  OP); (a-2) 

( )

1w y
(oi1  OI); (b-1) 

( )

1c x
 (OP  op1); (b-2) 

(y)

2c  (OI  oi2); (c-1) v1 (OP  OI); (c-3) v3 (OI  AC_L). 

 

BGSCA resulted in PPPb = 0.60, indicating that that the chi-square statistic value of the 

observed data was less likely to be significantly different from that of replicated data drawn 

based on the resultant posterior estimates, because PPPb = 0.50 is considered a good fit, as 

discussed in Chapter 3. Accordingly, the hypothesized model seemed to fit acceptably well to the 

data. The original GSCA estimation provided GFI = 0.99 and SRMR = 0.08. Given that a GFI 

value close to one and an SRMR value close to zero are considered a good fit (Hwang & Takane, 

2014, Chapter 2), both GSCA and BGSCA suggested a good model fit. To describe the resultant 

posterior distributions obtained from BGSCA, the means, standard deviations (SD), medians of 
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the posterior distributions were calculated. Moreover, their credible intervals (C.I.) were 

computed to provide regions in which 95% of the posterior distributions for the parameters lie. 

Table 6- 2 summarizes the results of the posterior distributions for the weight parameters. 

In the table, the last column contains the weight estimates obtained from original GSCA. The 

weight estimates show the contribution of each variable to defining its latent variable. As shown 

in Table 6- 2, the weight estimates for all observed variables per latent variable were similar to 

one another and statistically significant, indicating that the observed variables contributed 

equally well to determining their latent variables. Both BGSCA and original GSCA led to the 

same interpretations, although BGSCA tended to produce larger weight estimates than those 

from original GSCA. 

   

Table 6- 2. Results of the weight estimates obtained from BGSCA. 

 

Parameter 

BGSCA  Original 

GSCA Mean SD Median C.I.  

Weights 

 

 

 

 

op1  OP  0.2225 0.018 0.2221 [0.1843  0.2589]  0.1502 

op2  OP 0.2367 0.016 0.2365 [0.2034  0.2711]  0.1597 

op3  OP 0.2179 0.018 0.2183 [0.1814  0.2551]  0.1570 

op4  OP 0.2287 0.017 0.2281 [0.1949  0.2643]  0.1470 

op5  OP 0.2304 0.017 0.2304 [0.1974  0.2713]  0.1619 

op6  OP 0.2454 0.016 0.2458 [0.2125  0.2778]  0.1683 

op7  OP 0.2210 0.018 0.2211 [0.1837  0.2586]  0.1503 

op8  OP 0.2268 0.017 0.2265 [0.1895  0.2620]  0.1544 

 

 

 

 

oi1  OI 0.2965 0.024 0.2963 [0.2478  0.3450]  0.2191 

oi2  OI 0.2782 0.026 0.2788 [0.2277  0.3274]  0.2109 

oi3  OI 0.2192 0.003 0.2193 [0.1605  0.2774]  0.1944 

oi4  OI 0.3224 0.023 0.3227 [0.2758  0.3689]  0.2610 

oi5  OI 0.3208 0.023 0.3211 [0.2760  0.3652]  0.2373 

oi6  OI 0.2753 0.026 0.2746 [0.2242  0.3244]  0.1840 

 acj1  AC_J 0.3700 0.039 0.3706 [0.2893  0.4443]  0.3024 

acj2  AC_J 0.4060 0.037 0.4057 [0.3338  0.4802]  0.3296 

acj3  AC_J 0.4313 0.037 0.4326 [0.3577  0.5058]  0.3645 

acj4  AC_J 0.3343 0.042 0.3356 [0.2454  0.4197]  0.3035 

 acl1  AC_L 0.5136 0.061 0.5149 [0.3888  0.6412]  0.4531 

acl2  AC_L 0.4461 0.056 0.4474 [0.3243  0.5670]  0.3874 

 acls3  AC_L 0.4861 0.060 0.4874 [0.3643  0.6048]  0.4663 
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Table 6- 3. Results of the loading estimates obtained from BGSCA. 

 

Parameter 

BGSCA  Original 

GSCA Mean SD Median C.I.  

Loadings 

 

 

 

 

OP  op1 0.7413 0.041 0.6589 [0.7403  0.8219]  0.7806 

OP  op2 0.7883 0.037 0.7129 [0.7903  0.8599]  0.8247 

OP  op3 0.7267 0.042 0.6797 [0.7252  0.8432]  0.7699 

OP  op4 0.7687 0.038 0.6844 [0.7687  0.8432]  0.8037 

OP  op5 0.7673 0.041 0.6841 [0.7662  0.8482]  0.8014 

OP  op6 0.8112 0.036 0.7416 [0.8113  0.8819]  0.8430 

OP  op7 0.7344 0.043 0.6494 [0.7361  0.8150]  0.7764 

OP  op8 0.7606 0.039 0.6844 [0.7592  0.8398]  0.8010 

 

 

 

 

OI  oi1 0.7284 0.042 0.6443 [0.7276  0.8073]  0.7870 

OI  oi2 0.6904 0.045 0.5997 [0.6908  0.7850]  0.7580 

OI  oi3 0.5392 0.034 0.4315 [0.5396  0.6458]  0.6366 

OI  oi4 0.7973 0.038 0.7201 [0.7383  0.8741]  0.8234 

OI  oi5 0.7937 0.039 0.7102 [0.7939  0.8741]  0.8107 

OI  oi6 0.6821 0.047 0.5955 [0.6821  0.7794]  0.7430 

 AC_J  acj1 0.6247 0.053 0.5169 [0.6254  0.7273]  0.7480 

AC_J  acj2 0.6889 0.051 0.5848 [0.6913  0.7886]  0.7900 

AC_J  acj3 0.7284 0.048 0.6333 [0.7291  0.8227]  0.8199 

AC_J  acj4 0.5719 0.049 0.4572 [0.5739  0.6782]  0.7072 

 AC_L  acl1 0.6278 0.061 0.4960 [0.6268  0.6812]  0.7959 

AC_L  acl2 0.5445 0.056 0.4158 [0.5407  0.6805]  0.7094 

 AC_L  acl3 0.5859 0.068 0.4567 [0.5861  0.7149]  0.7817 

 

The means, SD, medians, and 95% C.I. of the loading estimates are given in Table 6- 3. 

All four latent variables were positively and statistically significantly related to their 

corresponding observed variables. OP was highly linked to all the eight observed variables 

having a mean loading estimate higher than 0.70, but in particular its association was most 

salient with op6 (
( )

6c x
= 0.81, C.I. = [0.81 0.88]). OI had the highest association with the 

variables oi4 (
( )

4c y
= 0.80, C.I. = [0.74 0.87]) and oi5 (

( )

5c y
= 0.79, C.I. = [0.79 0.87]), followed 

by oi1 (
( )

1c y
= 0.73, C.I. = [0.73 0.81]), oi2 (

( )

2c y
= 0.69, C.I. = [0.69 0.79]), oi6 (

( )

6c y
= 0.68, C.I. 

= [0.68 078]), and oi3 (
( )

3c y
= 0.54, C.I. = [0.54 0.65]). The observed variable acj3 was more 

highly loaded on AC_J (
( )

9c y
= 0.73, C.I. = [0.73 0.82]) than the remaining three observed 
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variables. Although all the loading estimates in related to AC_J were found to be statistically 

significant, the magnitude of the effects on acj1 (
( )

7c y
= 0.62, C.I. = [0.63 0.73]) and acj4 (

( )

10c y
= 

0.57, C.I. = [0.57 0.68]) were relatively weak. AC_L was most highly related to acl1 (
( )

11c y
= 0.73, 

C.I. = [0.63 0.68]), followed by acl3 (
( )

13c y
= 0.59, C.I. = [0.59 0.71]) and acl2 (

( )

12c y
= 0.63, C.I. = 

[0.63 0.68]). Compared to original GSCA, BGSCA yielded smaller loading estimates. This may 

be due to the fact that BGSCA obtained the estimates under the explicit specification of 

measurement error variances, as in factor-based SEM (see Chapter 4). It is well known that 

factor-based analyses involving such model specifications tend to provide smaller loading 

estimates than component-based analyses (e.g., Chin, 1995; Snook & Gorsuch, 1989; Widaman, 

2007).  

Table 6- 4 presents the means, standard deviations, medians, and 95% C.I. of the 

posterior distributions for the path coefficients. As expected, OP had a positive and statistically 

significant effect on OI (v1 = 0.38, C.I. = [0.38 0.49]). This implied that employees with higher 

levels of OP were more likely to identify themselves with their organization. The effect of OI on 

AC_J was found to be statistically significant and positive (v2 = 0.61, C.I. = [0.61 0.72]), 

suggesting that when employees were more likely to identify themselves with the organization, 

they were more intrinsically motived and likely to internalize values of the organization. The 

effect of OI on AC_L was statistically significant and negative (v3 = -0.42, C.I. = [-0.42 -0.30]), 

indicating that as employees were more inclined to identify themselves with the organization, 

they tended to have stronger psychological attachment to the workplace. Compared to original 

GSCA, BGSCA resulted in slightly larger path coefficients estimates. Again, factor-based 

analyses involving the specification of measurement error variances are expected to yield larger 
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path coefficient estimates than component-based analyses (e.g., Chin, 1995; Dijkstra & Henseler, 

2015; Lu, Kwan, Thomas, & Cedzynski, 2011).  

 

Table 6- 4. Results of the path coefficient estimates obtained from BGSCA. 

 

Parameter 

BGSCA  Original 

GSCA Mean SD Median C.I.  

Path 

coefficients 

OP OI 0.3766 0.057 0.2680 [0.3777  0.4852]  0.3615 

OI  AC_J 0.6144 0.053 0.5069 [0.6140  0.7164]  0.6138 

OI  AC_L -0.4225 0.061 -0.5411 [-0.4241  -0.2966]  -0.4041 

 

As discussed in Chapter 3, BGSCA allows comparing two (or more) competing models, 

using the Bayes factor ( 01K ). For an illustrative purpose only, suppose that the first model M0 is 

the hypothesized model in Figure 6- 1 and the second model M1 is the one displayed in Figure 6- 

4. M1 added the direct effects of organizational prestige on both affective commitment_joy and 

affective commitment_ love to M0. 

 

Figure 6- 4. A hypothetical model specified for model comparison. 
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The Bayes factor 01K  measures the degree to which a model predicts the data better than 

the other competing model, Table 6- 5 provides the interpretation of different values of 01K , 

based on Kass and Raftery (1995). In this example, BGSCA provided 01K  = 7.3891 (or 

equivalently  012ln 4K  ), indicating that the data favored M0 by a factor of about 7.39. Thus, 

we might conclude that M0 was more supported by the data than M1. In the original GSCA, 

model comparison was carried out by comparing the AFIT values of the two competing models: 

the larger difference in the AFIT values indicates stronger evidence for a model with the higher 

AFIT value. The original GSCA provided the AFIT of M0 = 0.5322 and that of M1 = 0.5335. 

Although M1 provided a higher AFIT value, the difference between the two values was trivial 

(M1 – M0 = 0.0013), and so we might also choose a more parsimonious model M0 as the final one. 

Although both BGSCA and original GSCA reached the same conclusion, BGSCA enabled to 

provide an explicit measure that quantifies the relative strength in supporting a model against 

another.   

 

Table 6- 5. Different Bayes factors and their interpretations. 

01K   012ln K  Interpretation (compared to M1) 

1 – 3 0 – 2 No or week evidence for  

3 – 20 2 – 6 Positive evidence for M0 

20 – 150 6 – 10 Strong evidence for M0 

> 150 > 10 Very strong evidence for M0 
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Chapter 7. Summary and Discussion 

Bayesian GSCA or BGSCA was proposed to integrate the original GSCA into a Bayesian 

framework. As in the original GSCA, BGSCA combines three sub-models - measurement, 

structural, and weighted relation models, in a unified manner. Unlike the original GSCA, 

however, BGSCA estimates the true measurements of observed data, called error-free data, in 

order to discard additive noises or random errors given in the observed data and construct the 

weighted composites of the error-free data as proxies for latent variables. BGSCA also permits 

the incorporation of any prior knowledge on a parameter, in the form of a prior distribution, into 

the modeling process before observing the data, which is in turn combined with the likelihood 

function of the data. In BGSCA, Gibbs Sampler is used to update the posterior distributions for 

the parameters. Accordingly, the samples generated from each posterior distribution are used to 

calculate the mean, median, standard deviation, and 95% credible interval of the posterior 

distribution. 

The performance of BGSCA was examined based on both simulated and real data sets. 

The first simulation study discussed in Chapter 5 showed that BGSCA recovered parameters 

reasonably well under various conditions. The second simulation study was to examine the 

sensitivity or robustness of BGSCA results under different specifications of prior distributions. 

BGSCA was also applied to fit a hypothesized model to a real data set. BGSCA generally 

yielded solutions similar to those obtained from the original GSCA, leading to the same 

interpretations. Nonetheless, it was able to explicitly take into account measurement errors of 

observed variables, which were neglected in the original GSCA, so that it seemed to circumvent 

the propensity of overestimating loadings and underestimating path coefficients in the original 

GSCA when the errors are present.  
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Despite the technical and empirical implications, BGSCA can be further extended to 

improve its scope of applicability. The current BGSCA employs the standard GSCA model that 

assumes only linear relations among latent variables. However, researchers may be interested in 

examining nonlinear relationships among latent variables. In the literature, such nonlinear SEM 

has received considerable attention (e.g., Henseler, & Chin, 2010; Kenny & Judd, 1984; 

Schumacker, & Marcoulides, 1998). For example, when an interaction term between the latent 

variables ( )

1γi

x and ( )

2γi

x in Figure 2- 1 is assumed, the structural model would be specified as  

 ( ) ( ) ( ) ( ) ( )

1 1 1 2 2 3 1 2γ γ γ γ γ ζ .i i i i i ib b b   y x x x x  (7.1) 

To accommodate various forms of nonlinearities in general, including both interaction and 

quadratic terms of latent variables, (7.1) can be rewritten as follows:  

  ( ) ( ) ( ) * ( ) ( )

1 1 1 2 2 (3) 1 2γ γ γ γ , γ ζ ,i i i i i ib b   y x x x x
b F  (7.2) 

where 
*

(3)b  is a vector of path coefficients of the nonlinear latent variables affecting the 

endogenous latent variable, and  ( ) ( )

1 2γ , γi i

x x
F is a vector of nonlinear functions of ( )

1γi

x and ( )

2γi

x . 

For example, for the model in (7.1), the third term in (7.2) is expressed as  

 
2

2

( ) ( )

1 2

* ( ) ( ) * * * ( )

(3) 1 2 (3).1 (3).2 (3).3 1

( )

2

γ γ

γ , γ γ

γ

i i

i i i

i

b b b

 
 

    
 
  

x x

x x x

x

b F
                               

 (7.3) 

A promising way of extending BGSCA to handle these nonlinear relations is to adopt a 

similar method proposed by Guo, Zhu, Chow, and Ibrahim (2012). They approximate nonlinear 

functions of latent variables by a linear combination of known basis functions, which is called 

the basis function expansion approach. Specifically, each nonlinear term in  ( ) ( )

1 2γ , γi i

x x
F in (7.2) 

can be approximated by a weighted sum of tensor product basis functions as follows:   
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      
1 2

1 2 1 2

1 2

( ) ( ) ( ) ( )

1 2 1 1 2 2

1 1

γ , γ γ γ ,
M M

i i m m m i m i

m m

  
 

x x x x
f  (7.4) 

where 
11m and 

22m refer to the basis functions for the first and second exogenous latent variable, 

respectively, and
1 2m m indicates the basis coefficient of the m1 and m2th basis functions. 

Moreover, a Bayesian Lasso method (Park & Casella, 2008) is used to address potential over-

fitting and accomplish variable selection simultaneously, extracting only a subset of exogenous 

latent variables whose nonlinear terms would have strong associations with endogenous latent 

variables. This method can readily be combined with BGSCA, enabling to capture various forms 

of nonlinearities more effectively and at the same time, to select a subset of exogenous latent 

variables. 

The abovementioned basis function expansion can be applied even further for the 

analysis of functional data that are collected in the form of smooth curves or functions varying 

over a continuum such as time or space (Ramsay & Silverman, 2005). To accommodate 

functional data, the observed variables and loadings in the measurement model of BGSCA would 

be replaced by data functions and loading functions, respectively. There are generally two 

Bayesian approaches to the analysis of functional data: One has been built upon the conventional 

basis function expansion but extended such that selecting the number and/or locations of the 

knots for the basis functions (i.e., a sequence of breakpoint values that divide the entire interval 

into subintervals) are considered the parameters to be estimated (DiMatteo, Genovese, & Kass, 

2001; Kohn, Smith, & Chan, 2001; Lindstorm, 1999). The other approach is to obtain smooth 

functions using a nonparametric Bayesian model, in which parameters are assumed to be 

spanned on an infinite dimensional space, called stochastic processes (e.g., Behseta, Kass, & 

Wallstrom, 2005; Ferraty & Vieu, 2006; Rodríguez, Dunson, & Gelfand, 2009). Although both 
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approaches seem to be applied to BGSCA, future studies are warranted to investigate the 

technical and empirical feasibility of these extensions.  

In the current BGSCA, parameters are estimated under the assumption that all 

observations in data are collected from a single population. This is considered aggregate sample 

analyses in that parameters are estimated by pooling the data across all observations. 

Nonetheless, such homogeneity assumption is often challenging to satisfy, and instead it may be 

more realistic to assume that observations are compounded from a number of heterogeneous 

subgroups, each of which shows distinct relationships between independent and dependent 

variables. The importance of distinguishing such heterogeneous subgroups has been emphasized 

in various studies, for instance, in modeling brand choice decision (e.g., Kamakura & Russell, 

1989; Kamakura, Kim, & Lee, 1996), customer satisfaction (e.g., Swait & Sweeney, 2000), and 

cognitive strategies in children’s executive control processes (e.g., Dauvier, Chevalier, & Blaye, 

2012). To partition observations into heterogeneous subgroups, it would be worthwhile to 

consider combining BGSCA with Bayesian mixture models (e.g., Dieblot & Robert, 1994; Neal, 

1992; Richardson & Green, 1997; Svensén & Bishop, 2005). This mixture extension can be 

regarded as an alternative to fuzzy clusterwise GSCA (Hwang et al., 2007), because it would 

allow selecting the optimal number of subgroups automatically. With fuzzy clusterwise GSCA, 

the number of subgroups needs to be empirically selected by examining how the global 

optimization criterion and/or other cluster validity measures change against different numbers of 

subgroups, whereas with the Bayesian mixture model, the number of subgroups can be treated as 

another parameter and hence estimated via an MCMC method. 
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