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ABSTRACT

The aeroelastic system studied in this thesis is a,/rigid NACA 0012 airfoil flexibly
suspended in a subsonic flow and forced to oscillate at high angles of attack. In
this thesis, a qualitative analysis of the chaotic behaviour (:a.userd by the nonlinear
aerodynamic forces of dynamic stall is presented.

A semi-empirical numerical model of dynamic stall is utilized to predict the
nonlinear aeroelastic forces due to the pitch motion of the airfoil and the aerodynamic
forces due to the plunge motion are superimposed using linear aeroelastic theory. The
structural forces are modelled using linear torsional and translational springs and the
structural damping is neglected. |

Four different types of cllaotic behaviour are presented for the single degree
of freedom (pitch) system. The first two cases show that, under certain conditions,
marginally stable periodic attractors and chaotic attractors can exist simultaneously.
In the third case, the amplitude of the forcing function is increased and the system
is shown to undergo a series of period doubling bifurcations enroute to chaos. The
fourth case' shows that chaotic vibrations at relatively high forcing frequencies may
cause divergent oscillations.

The analysis of the two degree of freedom (pitch and plunge) system is limited to
studying the effect of small amplitude plunge oscillations on the stability of two of the
aforementioned single degree of freedom cases. The analysis shows that the stability

of the system is very sensitive to changes in the ratio of the natural frequencies of

.

,-’Q,vf (

the system.



SOMMAIRE

Le systeme aéroélastique étudié dans cette these est un profil rigide NACA
- 0012 placé dans un écoulement subsonique et soumis a des oscillations forcées a des
angles d’attaque élevés. Dans cette these, une analyse qualitative du compqrtement
chaotique provoqué par les forces aérodynamiques nonlinéaires dues au décrochage
dynamique est présentée.

Un modele numérique semi-empirique du décrochage aérodynamique est utilisé
pour prédire les forces aéroelastiques nonlinéaires dues a la rdtation du profil, et
les forces aérodynamiques dues a la translation y sont ajoufées en utilisant la
théorie aéroélastique linéaire. Les forces structurales sout modélisées par des ressorts
linéaires en torsion et en translation et 'amortissement di a la structure est négligé.

Quatre types de comportement chaotique différents sont mis en évidence pour
le systéme a un degré de liberté (en rotation). Les deux premiers cas montrent
que sous certaines conditions, des attracteurs périodiques 111arginalement stables et
des attracteurs chaotiques peuvent coexister. Dans le troisiemeé cas ou I'amplitude
des pulsations forcées est plus grande, on démontre que le sysjtéme‘ suit une série
de bifurcations de doublement de période, qui conduit au chaos. Le quatrieéme cas
montre que les vibrations chaotiques a des fréquences forcées #elativement élevées
peuvent causer des oscillations divergentes.

L’analyse du systéme a deux degrés de liberté (translation et ?rotation) est limitée
a ’étude des effets des oscillations en translation de faible amplitude sur la stabilité
de deux des cas a un degré de liberté précédemment cités. L’analyse montre que la
stabilité du systeme est intimement liée aux changements du rapport des fréquehces

naturelles du systéme.
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Chapter 1
Introduction

1.1 Introduction to Aeroelasticity

Aeroelasticity can be deﬁned, in general, as the study of the mutual interaction of
aerodynamic forces and structural forces; in real aeroelastic systems, these forces
are nonlinear and the coupling between them is very complicated. These forces
often interact in such a way as to positively reinforce each other, which can lead to
divergent oscillations. Therefore, when designing an aeroelastic system, it is critical
for the mechanical engineer to have a sound understanding of the possible static and
dynamic instabilities of the system.

-Aeroelastic systems are not limited to aircraft wings, rotors or other lifting
surfaces, they include heat exchangers, nuclear reactor cooling rod arrays and even
suspension bridges. However, the study of aeroelastic systems does have its roots in
early aircraft design. One of the simplest aeroelastic systems is the linear structural
airfoil in a two dimensional, subsonic flow. This system is the focus of this thesis
and is utilized here to introduce the topic of aeroelasticity.

The interaction of aerodynamic and structural forces, with regards to the
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two degree of freedom airfoil system, can be interpreted as a continuous. cireular
relationship. Imagine that the airfoil system is in a state of static equilibrium:
the flow over the airfoil creates aerodynamic forces, usually represented as a lift
force and moment acting at the aerodynamic centre of the airfoil, which exactly
balance the structural forces, usually represented as the restoring force and torque of
springs acting at the elastic axis of the airfoil. The freestream flow velocity is then
perturbed by a small amount. This small perturbation will induce a small change in
the aerodynamic forces acting on the airfoil which, in turn, will cause a small change
in the deflection of the-airfoil. This small change in the deflection of the airfoil will
induce another small change in the aerodynamic forces, and so on and so forth. If
these alternating induced changes in the forces acting on the system diminish in time,
the system will return to its original stable position. However, if these small changes
positively reinforce each other, then small changes in the deflection of the airfoil will
grow. This means that the original equilibrium state of the airfoil was unstable.
In many real aeroelastic systems, this type of instability can lead to catastrophic
structural failure.

There are two general types of aeroelastic instabilities: static and dynamic.
Static instabilities occur at zero frequency and, thus, they are independent of the
inertia of the system. One example of a linear, static aeroelastic instability is the
failure of a wing or airfoil By static divergence. For example, if a wing or airfoil
is not sufficiently rigid in the pitch degree of freedom then, for sufficiently large
values of the dynamic pressure, the effective stiffness of the airfoil can become zero.
This aeroelastic phenomenon is caused by a negative stiffness effect induced by the
aerodynamic forces and is thought to be the primary reason for the failure of many of

the early flying machines developed at the turn of the century. With modern aircraft



analysis and design techniques this particular instability can be easily avoided.
Dynamic aeroelastic instabilities occur at given frequencies of motion of the airfoil
and, generally, depend on the coupling of the motion of the airfoil in two degrees
of freedom. For example, the coupling can occur between the pitch and plunge
motions or between the pitch motion and the motion of a control surface.. Since this
type of instability debends on the dynamic motion of the airfoil, the inertia of the
system plays an important role. One such linear, dynamic aeroelastic instability is
known as binary flutter. A complete description of binary flutter is beyond the scope
of this thesis, but a brief general description of the phenomenon is given here. As
previously stated, a small change in the angle of attack of an airfoil will cause a chain
reaction of changes in the aerodynamic and structural forces acting on the system.
The dynamic response of the airfoil in both the pitch and plunge degrees of freedom,
caused by these changing forces, will occur at certain frequencies which depend on
the structural, iﬁertial and aerodynamic characteristics of the system. For values of
the dynamic pressure less than a critical value, the oscillatory response of the system
will diminish in time; in other words energy from the flow will be dissipated by the
system. On the other hand, if the dynamic pressure is greater than this critical value,
the amplitude of the oscillations will grow in time; for each cycle of motion of the
airfoil, a small amount of energy from the flow is injected into the system through

the aerodynamic forces.

This linear dynamic instability is related to the frequencies of the response of
the airfoil in pitch and plunge. As the dynamic pressure of the system is increased,
the fundamental frequencies of the response in pitch and plunge (accounting for the
aerodynamic effects) move closer together. The coalescence 6f these two frequencies

enables the aerodynamic forces to inject a small amount of energy into the system



per cycle, and this small influx of energy causes the oscillatory response ot the airtoil
to increase in magnitude a small amount per cycle. Therefore, linear analysis of the
two degree of freedom airfoil system predicts that, for values of the dynamic pressure
greater than a critical value, divergent oscillations will oceur.

One important shortcoming of using linear techniques to analyze aeroelastic
systems is that linear flleory can ounly give information about the behaviour of the "
system up to the point of the instability. Linear analysis implies the assumption that
the dynamic response of the system will only involve small structural deflections, but
this assumption is not valid near the point of instability where linear theory predicts
deflections that approach infinity. It is obvious that in order to study the behaviour
of aeroelastic systems near the point of linear instability, the nonlinearities inherent
in both the structural and the aerodynamic forces must be included in the model of
the system.

With recent advances in the field of nonlinear dynamics, and improvements in the
performance of affordable computers, it has become possible to study the dynamic
behaviour of nonlineaf aeroelastic systems numerically. As previously -stated, the
aeroelastic system being studied in this thesis is a rigid airfoil flexibly mounted in a
subsonic flow. The airfoil must be very long in the spanwise direction and mounted
far from any boundaries so that the flow around the airfoil can be considered two-
dimensional and no boundary effects, such as vortex images, need be considered
when calculating the aerodynamic forces. The airfoil is mounted in the flow in such
a way that it is constrained by a linear rotational spring to rotate in the pitch
degree of freedom, and by a linear translational spring to move perpendicular to the
undisturbed free-stream flow. The case of structural nonlinearities in the pitch degree

of freedom has been studied by [Lee and LeBlanc, 1986a], [Tang and Dowell, 1992]



and [Price et al., 1993], and systems where aerodynamic nonlinearities dominate
have been studied previously by [Tran and Falchero, 1982], [Lee and LeBlanc, 1936h]
and [Tang and Dowell, 1992], but these latter systems are still not well understood.

When an airfoil is forced to oscillate at large mean values of the pitch angle, the
flow over the airfoil will separate and reattach as the pitch angle changes; this process
is known as dynamic stall and is described in detail by [Ericsson and Reding, 1988a]
and [Ericsson and Reding, 1988b] and is dealt with in a later section of this thesis.
Linear aerodynamic theory is not sufficient to calculate the aerodynamic forces acting
on an airfoil undergoing dynamic stall because the nonlinear effects of the unsteady,
turbulent wake cannot be accounted for by linear theory. Therefore, a new model
of the aerodynamic forces, which takes into account the complicated and unsteady
process of flow separation and reattachment, is required.

There are many different models of dynamic stall, such as that developed at

ONERA ! by [Tran and Petot, 1981] and at NASA ? by [Bielawa et al., 1983]. The

- semi-empirical ONERA model of dynamic stall assumes that the aerodynamic forces

can be written as a function of the variables describing the motion of the airfoil.
These functions are obtained by curve fitting expressions to available experimental
data. Although the results of this model have shown good agreement with experiment
for harmonically oscillating airfoils, there is no attempt made by this approach to
model the effects of any of the physical flow phenomena associated with dynamic
stall. Furthermore, the amount of information available as to how to implement this
model of dynamic stall is limited and, therefore, this model was not utilized in the

research presented in this thesis.

10Office National d’Etudes et de Recherches Aérospatiales

*National Aeronautics and Space Administration
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The dynamic stall model utilized in this thesis is a modified form of the semi-
empirical Bielawa model. This model describes the effect of the main flow phenomena
associated with dynamic stall with semi-empirical numerical expressions which are
obtained by least squares curve fitting experimental data. These expressions are then
incorporated into the general expressions for the aerodynamic forces, which are also
obtained by a curve fitting procedure. The strengths of this model lie in the fact that
it gives very good results compared with experiments; it is formulated in the time
domain and thus it is easy to implement as part of the solution of the aeroelastic
equations; and the structure of the model is such that the aerodynamic loads can be
calculated easily from the pitch and pitch rate of the airfoil. Furthermore, there is a
detailed account given by [Bielawa et a,l.,. 1983] of how this model can be developed
from a set of experimental data.

One important drawback concerning this dynamic stall model is that it only
accounts for the effects of pitch motion of the airfoil on the dynamic stall events and
the unsteady aerodynamic forces. Therefore, it is necessary to make the assumption
that the eﬁ’ects of the plunge motion, compared to the effects of the pitch motion,
are relatively small in order that the aerodynamic forces due to this motion can be
superimposed by linear aerodynamic theory. Due to the errors that result from this
assumption, the main focus of this thesis is the study of the single degree of freedom
system, in which the airfoil cannot move perpendicular to the flow, and only a brief
study of the two-dimensional system is attempted.

The aeroelastic equations used to describe this system are given in [Fung, 1955]
‘and are also given in [Bisplinghoff et al., 1957]. The nonlinear analysis of this system
is accomplished by solving these aeroelastic equations numerically by a method

developed by [Houbolt, 1950]. This numerical method was implemented because



it possesses the following advantageous qualities: the unknown future position of the
airfoil can be expressed in terms of t.he known positions of the airfoil at previous
time steps, and the entire system of equations can be written in the form of matrix
equations, making it well suited for use with computers. F urthermore, this numerical
method has been shown to posses the desirable property of combining good stability

with sufficient accuracy.

1.2 Introduction to Nonlinear Dynamics

Until recently, most aeroelastic systems were approximated by linear equations
because the solutions to these equations are unique and their behaviour is well
understood. However, with recent advances in the field of nonlinear dynamics, non-
unique steady-state solutions have been shown to be meaningful. In a nonlinear
dynamical system the response may be chaotic; this implies that the final solution
will be very sensitive to the initial conditions of the system. This is profoundly
different from the behaviour of linear dynamic systems.

The response of a dynamic system can be viewed in the time domain, with
the appropriate positiony variable shown as a function of time, but a more useful
representation is the phase domain (plane), with the same variable and its time
derivative shown as a function of time. Ordinarily the time axis is oriented
perpendicular to the plane of the page and what is viewed is a projection of the
response onto the position and velocity plane. The phase plane is a very convenient
way of viewing the response of a nonlinear system because the difference between
periodic behaviour and aperiodic behaviour is immediately obvious.

In Figure 1.1 (a), the phase plane plot of a period-four response is shown. As

can be seen from the plot, the response is stable and repeats itself every four cycles.



In Figure 1.1 (b), the phase plane of an aperiodic (chaotic) response is shown and
the differences between the two cases are obvious. The chaotic respounse is not stable
and does not appear to repeat itself even after ma,ny‘cycles.

The steady-state solution of a nonlinear dynamic system may behave very

differently from the steady-state response of a linear system. There is the possibility
that the steady-state solution of a nonlinear system will not be unique; which steady-
state solution is chosen depends on the initial conditions of the system. When this
occurs, the response is may be chaotic. A chaotic response also implies that two
solutions that begin very nearly at the same initial conditions, but not exactly, will
not be close together after a certain amount of time has passed. In other words,
solutions that begin very close together and eventually diverge from one another,
but remain bounded, may be chaotic. This is due to the stretching and folding of
the different steady-state solutions in the phase plane. The topographical process
of stretching and folding is discussed in detail in [Thompson and Stewart, 1986] and
[Moon, 1987] and will not be discussed further here; it is sufficient to know that this
divergence of similar solutions is caused by the nonlinearities of the system and is
not necessarily a consequence of computer or numerical errors.

An interesting question posed by [Thompson and Stewart, 1986] is why bother
to numerically integrate a chaotic solution? Since numerical integration is only an
approximation, two solutions that begin at exactly the same initial conditions, but
are integrated numerically with two different techniques, will eventually diverge from
one another due to the chaotic nature of the system. However, there is an entity that
will remain common between the two solutions; this entity is k110w11 as the chaotic
or strange attractor of the response. In this thesis, the attractor of a response is

viewed by sampling the phase plane data once every period of the externally applied
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harmonic forcing function. After a large number of these data points have been
plotted, the attractor of the response becomes visible. This diagram. composed of
discrete points in the phase plane, is called a Poincaré sectiouf

If the response of the system is periodic, with the same period as the forcing
function, then the attractor will consist of a single point in the phase plane. If
the response is chaotic, one might believe that the chaotic attractor will consist
of a random placement of points in the phase plane, but this is not the case. A
chaotic attractor consists of many points in the phase plane, but there is always an
underlying structure to the attractor that is sometimes very (:ompli(:ated, and it is
this underlying structure that is common to all the possible steady-state solutions of
a chaotic system.

Figure 1.2 (a) shows the Poincaré attractor for the period-four phase plane plot,
illustrated in Figure 1.1 (a), over twenty thousand periods. As can be seen, the
attractor is comprised of four groups of points. Since these groups are not points,
the period-four oscillation is not perfectly stable, but it is almost stable. Figure 12
(b) shows the chaotic attractor of the chaotic phase plane plot illustratea in Figure
1.1 (b) over twenty thousand periods. The structure of the chaotic attractor is easily
identifiable as a set of curves in the phase plane.

As previously stated, two different initial conditions will lead to two different
steady-state solutions, but, the chaotic attractor will be the same in both cases. This

settling of solutions to the same chaotic attractor is the result of energy dissipation

 within the system [Thompson and Stewart, 1986]. The main role of the Poincaré

section is to illustrate the underlying structure of the chaotic attractor, and in so
doing, provide the common thread between all of the possible chaotic solutions.

The aperiodic nature of a chaotic response can also be viewed by examining
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the power spectral density, or Fourier spectrum, of the response. In Figure 1.3 (a).
the Fourier spectrum of the period-four response is shown. The frequency of the
forcing function is 0.044 and, as the figure shows, this is the frequency corresponding
to the largest spike. ‘The three subharmonic spikes in the frequency range below
0.044 indicate that the response is a period-four oscillation. Figure 1.3 (b) shows
the Fourier spectrum of the chaotic response. The spike at the forcing frequency is
still evident but, the subharmonic range is now dominated by broadband noise. This
noise is not caused by any external sources but is a product of the nonlinearities of
the system and is a signature of chaos.

In nonlinear dynamic systems, multiple attractors are common and chaotic and
periodic attractors can even be present at the same time. Furthermore, as the various
parameters of a nonlinear system are varied, different attractors will appear and
others will disappear. This implies that as a system parameter is varied across a
certain critical value, a change in the steady-state or long term behaviour of the
system can occur. This change in behaviour is known as a bifurcation. Bifurcations
can be viewed qualitatively in a bifurcation diagram. These are constructed by
recording the values of the system parameter at which changes in the long term
~ behaviour of the system take place over a given range of the parameter. In this thesis,
bifurcation diagrams are constructed by recording the maximum and minimum values
of the pitch at increasing values of a certain system parameter. A typical bifurcation
diagram is shown in Figure 1.4.

The above discussion of nonlinear dynamic theory and qualitative analysis
techniques is only intended as an introduction to what is to come in this thesis.

For a more detailed discussion of the theory of chaos in nonlinear systems the reader

is referred to [Thompson and Stewart, 1986] and [Moon, 1987].
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The study of the effect of nonlinear aerodynamics on the linear airfoil system
has been attempted previously. The nonlinear analysis of the dynamics of a
NACA 3 0012 airfoil forced to oscillate at large initial angles of attack and for
large amplitudes was undertaken by [Lee and LeBlanc, 1986b]. However, since
this research pre-dates many of the recent developments of nonlinear dynamics
theory it did not take advantage of the qualitative nonlinear analysis techniques
now available and, subsequently, there are areas of the report that can be further
explored. The aeroelastic system consisting of a linear NACA 0012 airfoil structure
and nonlinear aerodynamic stall model was also studied by [Tran and Falchero, 1982]
and [Tang and Dowell, 1992], but, in these cases, the dynamic stall model utilized
was the ONERA model, and an in depth discussion of the chaotic dynamics was not
given. At present, there has been no detailed investigation of the dynamic response
of a linear airfoil with nonlinear aerodynamics modelled using the Bielawa model of

dynamic stall.

1.3 Motivation

The previous discussion on aeroelastic systems led to the following conclusion: in
order to understand the behaviour of airfoils oscillating at high angles of attack,
or for large amplitude oscillations, the nonlinearities inherent in the system must
be included in the numerical model of the system. Nonlinear aeroelasticity implies
that either the structural components that comprise the system are nonlinear in
nature, the aerodynamic forces are nonlinear, or both. The nonlinear behaviour
of an aeroelastic system is an extremely important consideration for mechanical

engineers designing systems such as airplanes, helicopters, free-standing towers, heat

3National Advisory Committee for Aeronautics
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exchangers, nuclear reactor cooling rod arrays and suspension bridges. In these
systems, understanding the types of nonlinear instabilities that occur is essential to
avoiding structural fatigue and catastrophic failure.

Nonlinear structural forces can arise in a system in many ways. For example.
when a flexible component of a structure is displaced from its equilibrium position
by a sufficiently large amount to cause plastic deformations in the material, or when
there is freeplay in a joint, the resultant structural forces are nonlinear. Nonlinear
aerodynamic forces can also be caused in different ways. Unsteady flow phenomena,
such as the separation of the low around sharp corners or moving boundaries, the
turbulent flows found in high speed turbomachinery applications and the formation of
local shocks in transonic flow around airfoils are all examples of aeroelastic systems in
which the aerodynamic forces are nonlinear. The case of an airfoil forced to oscillate
in dynamic stall is an example of a nonlinear aeroelastic system that is presently not
well understood.

In general, modelling a three-dimensional nonlinear aeroelastic system, such as
an aircraft or suspension bridge, is, to say the least, a very complicated problem. In
the nonlinear analysis of such complicated systems, it is advantageous to simplify the
system as much as possible, while retaining only the most important nonlinearities.
The aeroelastic system that is being analyzed in this thesis is a rigid airfoil flexibly
mounted in a subsonic flow. Since the airfoil is rigid it does not deform under
the aerodyn;unic loads but, because it is flexibly suspended in the flow, it does
move under the influence of these forces. This airfoil is forced to oscillate at large
angles of attack, and, therefore, the flow around the airfoil does not always remain
attached. Because of the high angles of attack and the subsequent flow separation

and reattachment, the resultant aerodynamic forces are nonlinear. The study of the
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dynamic behaviour of this simplified system is of fundamental importance to the
understanding of the behaviour of more complicated aeroelastic systems.

Since many high performance aircraft and turbines operate at high angles of
attack, understanding the dynamic behaviour of an airfoil forced to oscillate in
dynamic stall is extremely important. It is hoped that the qualitative analysis
presented herein will further the understanding of the different types of chaotic

instabilities that can result from the nonlinear aerodynamic forces of dynamic stall.

1.4 Objectives of this Thesis

The main objective of this research is to give a qualitative description of the types
of chaotic behaviour that the modified Bielawa model of dynamic stall predicts for
a single degree of freedom airfoil system. This includes explanations of how the
response of the system changes from periodic behaviour to chaotic behaviour, as well
as explanations of the different types of chaotic behaviour exhibited by the system.
This thesis also examines the effect of adding the plunge degree of freedom on the
response of the system, and the effect that the ratio of the natural frequencies of the
system has on the stability of the response.

In Chapter 2, the dynamic stall process is explained in terms of the physical
properties and structures of the flow. It also discusses, in detail, the modified Bielawa
model of dynamic stall, including how the major dynamic stall events are modelled
numerically and how these expressions are incorporated into a comprehensive model
of the unsteady aerodynamic forces. This Chapter also contains a description of
the. general two degree of freedom aeroelastic equations and a discussion of the
assumptions that were made that allow these equations to be simplified. There is also

a discussion of Houbolt’s numerical procedure for solving this system of equations.



L4

The one degree of freedom system is discussed in detail in Chapter 3. It

begins with a description of the system, including all necessary assumptions aud
simplifications. Next, the nouliﬁear analysis techniques are defined and discussed.
These techniques include bifurcation diagrams, phase plane plots, Fourter spectra
and Poincaré sections. The analysis is divided into four cases based on the values of
the system parameters at which the chaotic behaviour occurs and the type of chaotic
behaviour that is observed. The dynamics of the system as a whole are analyzed
by exploring the system dynamics over a wide range of values of certain system
parameters; this is accomplished with the use of bifurcation diagrams. The regions
of potentially chaotic behaviour are then studied in further detail with more detailed
bifurcation diagrams, time histories, phase plane plots, Fourier spectra and Poincaré
sectioﬁs and maps. Wherever possible, the Poincaré maps are compared with maps
from known analytical systems, or they are modelled by simple sets of equations, in
order to obtain an improved understanding of the dynamics of the system.

Chapter 4 briefly describes the two-dimensional system and the limitations of
superimposing linear aérodynamic theory. The main objectives of this (:;llapter are
to show the effect of adding the plunge degree of freedom on the chaotic responses
of the single ‘degree of freedom system and to show how the ratio of the natural
frequencies in pitch and plunge affect the stability of the system. This is accomplished
by examining bifurcation diagrams that illustrate the stability of the respouse, and
Poincaré sections that qualitatively show the long term behaviour of the response.

The analysis of the dynamics of a linear structural airfoil with nonlinear
aerodynamic forces that is given in this thesis is not a typical aeroelastic analysis.
The chaotic instabilities that are encountered in the a.pa.lysis are not self-excited;

there is an externally applied forcing function that is always driving the system.
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Therefore, the focus of this thesis is to analyze the different types of chaotic behaviour
exhibited by the system and not to find Hutter boundaries or other self-excited
instabilities.

The final Chapter of this thesis gives the main conclusions of the nonlinear
analysis and also includes recommendations for areas of possible future research. [t is
hoped that at the conclusion of this section the reader will have a clear understanding
of the different types of chaotic behaviour that are exhibited by this system and some

understanding as to how this chaotic behaviour develops.
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Chapter 2

The Dynamic Stall Model and

Numerical Techniques

2.1 Characteristics of Dynamic Stall

Dynamic stall of an airfoil undergoing an oscillatory motion in the pitch degree of
freedom is a highly nonlinear process. Therefore, it is difficult to predict analytically
’the aerodynamic loads acting on the airfoil. The three main events of the dynamic
stall process are illustrated in Figure 2.1. The first event is the formation of a leading
edge vortex, which occurs as the angle of attack of the airfoil is increased beyond
the static stall angle. As the angle of attack of the airfoil continues to increase,
the leading edge vortex grows until it detaches from the leading edge of the airfoil
and is convected downstream by the free stream flow. This vortex shedding process
is associated with an almost instantaneous decrease in the circulation around the
airfoil, which causes a rapid loss of lift. As the low pressure centre of this vortex
travels downstream near the surface of the airfoil, the distribution of lift on the

airfoil is altered; as illustrated in Figure 2.2. The second significant event of the

20
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dynamic stall process arises as the shed vortex approaches the trailing edge of the
airfoil. The localized a,re;m of low pressure associated with the centre of the vortex
causes an increase in the local lift coefficient near the trailing edge of the airfoil.
[t is this increase in the local lift coefficient which induces a sharp decrease in the
moment coefficient (measured positive in the nose up direction) as the vortex leaves
the trailing edge of the airfoii. The final significant event in the dynamic stall process
is the reattachment of the flow over the airfoil. This usually occurs after the vortex
has left the trailing edge of the airfoil and the angle of attack of the airfoil has
decreased below the static stall angle.

Typical graphs of the lift coefficient and moment coefficient versus angle of attack
for an airfoil undergoing simple harmonic motion in pitch are shown in Figure 2.3.
This Figure illustrates that a significant amount of nonlinear hysteresis exists in the
aerodynamic loads of an airfoil experiencing dynamic stall as compared to static
stall. This nonlinear hysteresis in the lift and moment coefficient curves, caused by
cha.rac‘teristic delays in the boundary layer separation and reattachment, is impossible
to accurately predict using any of the present analytical, aerodynamic theories.

The main parameters that influence the amount of hysteresis in the dynamic lift
and moment curves are the mean angle of attack and the amplitude and frequency of
the oscillation. Other parameters that influence the static lift and moment curves, as
well as the dynamic curves, are the airfoil shape, the Mach number and the Reynolds
number of tl;e flow. These parameters strongly influence the three most significant
events that occur during dynamic stall: bthe production and the subsequent shedding
of a leading edge vortex, the time at which this vortex reaches the trailing edge of the
airfoil and the reattachment of the flow around the airfoil. These events cause the

observed overshoot and undershoot of the dynamic lift coefficient as compared to the



static lift coefficient, and the characteristic sharp decrease in the moment coefficient
typical of airfoils undergoing dynamic stall [Bielawa et al., 1983].

The observed overshoot of the dynamic lift coefficient as compared to the static
lift coefficient, as the angle of attack is increased beyond the static stall angle, is
due to a delay in the separation of the boundary layer near the leading edge of the
airfoil. The boundary layer is made less susceptible to s.epa,ration near the leading
edge of the airfoil by a combination of two main effects. The first is due to the
induced acceleration of the flow near the surface of the leading edge, caused by the
motion of the airfoil. This induced acceleration causes a decrease in the pressure
gradient along the surface of the airfoil, as compared to the static pressure gradient
at the same angle of attack. Therefore, the downstream separation of the bouﬁdary
layer is delayed, in the dynamic case, because the boundary layer profile is made
les;s susceptible to separation by the more favourable upstream pressure gradient
[Ericsson and Reding, 1988a]. The second effect is due to the moving boundary of
the airfoil which improves the boundary layer profile immediately downstream of the
stagnation point. The motion of the surface of the airfoil, in the direction of the
freestream ﬁow, as the angle of attack of the airfoil is increased, has the net effect
of increasing the flow velocity component tangential to the airfoil surface. This
increases the amount of kinetic energy in the boundary layer flow nearest to the
surface of the airfoil, thus strengthening the boundary layer and delaying separation.
This moving boundary effect is also greatly responsible for the delayed reattachment
of the flow as the angle of attack of the airfoil is decreased below the static stall angle |

[Ericsson and Reding, 1988a].



2.2 An Empirical Model of Dynamic Stall

The model utilized herein to predict the unsteady, stalled aerodynamic loads
acting on ‘an airfoil undergoing a general pitching motion was developed by
[Bielawa et al., 1983]. The model involves several analytical expressions, which
are simple mathematical models of the main dynamic stall events, to describe
the aerodynamic loads acting on the airfoil in the time domain. The analytical
expressions are comprised of numerous unknown coefficients, which are determined
by curve fitting data from wind tunnel tests of oscillating airfoils to the expressions
using a least squares minimization technique. Since this dynamic stall model
describes the liff and moment coeflicients in the time domain, the main parameteﬁ
utilized to predict the unsteady aerodynamic loads are the airfoil geon‘letriC angle of
attack and pitch rate, which are simple to define both physically and mathematically.
The model does not utilize the frequency of the airfoil oscillation as a parameter
because of the difficulty of mathematically defining the instantaneous frequency of

an airfoil undergoing quasi-periodic or chaotic motion.

2.2.1 Definition of Dynamic Parameters

In order to at least partially account for the time history of the airfoil’s motion,
an unsteady decay parameter, aw, is defined. The physical interpretation of this
parameter is that it represents the difference between the instantaneous, geometric

angle of attack, o, and the effective angle of attack, ag,
aw = a— ag. (2.1)

This interpretation of the unsteady decay parameter is only strictly correct when the

flow over the airfoil is attached. However, this parameter is also utilized to predict
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certain dynamic stall events and to approximate the aerodynamic loads even when
the airfoil is stalled. The effective angle of attack, for attached flow, can be detined

using Duhamel’s integral as:

N
N
~

s D
ag = a(0)e(s, M) + /0 =2 Bols — o, M)do (2.

where «(0) is the initial angle of attack of the airfoil, 8 = /1 — M2 (in this thesis

M

0.6), and the non-dimensional time is given by s = Ut/b, where U is the
freestream flow velocity and b is the semi-chord. The quantity é¢ is a form of the
Wagner function, which has been corrected for compressibility effects, and gives the
response of the airfoil to a step change in the angle of attack. The expression for é¢

is as follows:

b (s, M) = (1=0.165exp(~0.0455(1 — M?)s) — 0.335exp(—0.3(1 — M?)s))/v/1 — M?
(2.3)

For an airfoil undergoing a general pitch oscillation, the following recursive
relatio'nships were utilized to obtain the angle of attack (), the pitch rate (A,)

and the unsteady decay parameter ((aw),) at each time step [Bielawa et al., 1983]:

a, =0, (2.4)

% (40, .
An - (As)" (Z..))

(aW)'n. =, + Yn (2())

Tn = Ty_1ezp(—0.0455(1 — M?)(As),) + 0.165(c,, — tp—y) (2.7)
Yn = Yn-1€xp(—0.3(1 — M?)(As),) + 0.355(c,, — atp_y) (2.8)

where 6, is the geometric angle of attack at time step ‘n’.



2.2.2 Modelling the Dynamic Stall Events

[n order to accurately model the unsteady aerodynamic loads acting on an airfoil
undergoing dynamic stall, it is important to be able to predict the onset of the
three major dynamic stall events: the formation and shedding of a leading edge
vortex (onset of dynamic stall), the arrival of this vortex at the trailing edge and the
reattachment of the flow over the airfoil.

Dynamic stall occurs after the angle of attack of the airfoil has exceeded the
static stall angle, and occurs at the angle of attack at which the leading edge
vortex breaks away from the leading edge of the airfoil. The model used herein
to predict the instantaneous angle of attack at which dynamic stall occurs ntilizes
a‘semj-émpirical relationship between the instantaneous angle of attack and the
main factors influencing dynamic stall. The model assumes that the main factors
influencing dynamic stall include the airfoil shape, the Mach and Reynolds numbers
of the flow, and the pitch rate and effective angle of attack of the airfoil. The static
stall of an airfoil depends on the first three factors stated above, and therefore the
effect of these factors on the dynamic stall is taken into account by incorporating
the static stall angle into the empirical equation for the dynamic stall angle. The
effective angle of attack of the airfoil is taken into account by the unsteady decay
parameter, aw, defined in equations (2.1) and (2.2). The model assumes a functional
relationship between the instantaneous angle of attack of the airfoil at dynamic stall
and the static staﬂ angle, the pitch rate and the effective angle of attack of fhe,
airfoil. By linearizing this functional relationship about the quasi-static stall angle,
(i.e. agss = (14¢)ass), an empirical expression for the dynamic stall angle of attack

is obtained and is given by,

apm = (1 + e+ CAMADM + CwMaWM)a,_S (2.9)

7]
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where app is the instantaneous angle of attack, Apa is the pitch rate and ayyy is
the unsteady decay parameter at the point of dynamic stall, and ¢, Cypy and Cyyy
are empirically determined constants. The last two terms in equation (2.9) account
for the difference between the angle of attack at dynamic stall and the angle of attack
at quasi-static stall.

After dynamic sﬁall, the leading edge vortex is convected downstream over the
upper surface of the airfoil and it strongly influences the aerodynamic loads on the
airfoil. The lift produced by the airfoil, while the vortex is being convected, can vary
depending on the strength of the vortex and the distance between the vortex and
the surface of the airfoil. The main‘ effect of the vortex on the distribution of lift
around the aiffoil is to increase the negative (nose down) pitching moment of the
airfoil.. The negative pitching moment reaches a maximﬁm when the vortex arrives
at the trailing edge of the airfoil. The model utilizes a semi-empirical relationship
to predict the amount of non-dimensionalized time (spr) required for the vortex to
travel from the leading edge to the trailing edge of the airfoil. The expression for

sy 18 given below:
_ 1.0
CarApm + CoTapm

SMT (2.10)
where C 41 and C’;,T are empirically determined coefficients.

The instantaneous angle of attack at which the flow around the airfoil becomes
reattached is denoted by agg. The method for predicting the reattachment angle of

attack is the same as for predicting the dynamic moment stall angle of attack appy.

The appropriate expression is given below:
arg = (1 — €+ CarApm + Cwrawn)ass (2.11)

where ¢ is the same as in equation (2.9), but Cag and Cy g are not the same as (4

and Cwp.
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2.2.3 The Unsteady Lift and Moment Coefficients

Dynamic lift stall is a phenomenon characterized by a sudden loss of lift due to
the increased distance between the shed leading edge vortex and the upper surface
of the airfoil. It can also be interpreted as a sudden loss of lift due to the almost
instantaneous loss of circulation around the airfoil contained in the shed leading edge
vortex. The model used herein to describe the aerodynamic loads acting on an airfoil
undergoing dynamic moment stall takes into account this sudden loss of lift implicitly

with the following expressions [Bielawa et al., 1983]:

CL=Crs(a — A — Aay) + aor Ay + ACL; + ACL, (212)
Ay = (P1A + Piaw + P3)ass (2.13)
Aa2 = 52055 (214)
« @ 2 ‘
ACL = PyA + Psaw + Ps(—) + Po(—) (2.15)
ass ass
21— exp(—(Bisur)?
ACLs = Psby + Polay + Proady [P (ﬂ;“’”) )| (2.16)
(Brsm) ‘
where the following definitions apply:
Ut -t
sy = _(b_DM) (2.17)
0,  fora < ass
(-1, for ags < a < apy
61 = 4 o (218)
(824 —1)(1 = (2L)?), for 0 < sy < smT
0, for sy > syt

\



0, for a < ags
(-0, for ags < a < apy
6y = ¢ (528 — 1), for 0 < sy < sy (2.19)
(R4 — 1);=2BE- for app < @ < orE
0, ’ for o < agg

In the above equations, the parameter 3 is an empirically determined constant.
given by [Bielawa et al., 1983] to be equal to 0.18, and sp is the non-dimensionalized
time measured from the instant that dynamic moment stall occurs until the instant
the vortex reaches the trailing edge of the airfoil (i.e. when spr = sy then a = arg).
As can be seen in equation (2.12), the total lift coefficient, Cp, is expressed as a sum
of the static lift coefficient curve [Abbott and von Doenhoff, 1959] at a shifted angle
of attack, o — Aay — A« , plus the static lift curve slope, apr, multiplied by the
incremental angle of attack, Aay, plus the sum of two incremental lift coefficients,
ACL; and ACL;. The incremental angle of attack, Aay, is present at all times,
whereas the incremental angle of attack, Acs, is only non-zero when the flow over the
airfoil is stalled; therefore, it must at least in part account for the effects associated
with dynamic moment stall and flow reattachment. The incremental lift coefficient,
AC, is primarily responsible for the difference between the unsteady lift coefficient
and the steady lift coefficient, especialiy when the flow over the airfoil is unstalled,

whereas the incremental lift coefficient, ACp;, is responsible only for the lift effects

-of the shed leading edge vortex as it is convected over the surface of the airfoil. The

coefficients, P;... Py, are empirical constants determined by least squares curve fitting
available data from wind tunnel tests of oscillating airfoils to the above expression

for Cp.

The model to predict the unsteady moment coefficient, C)y, utilizes a similar set



24
of equations as those described above. The equation for (s is given below,
Cy = Cpys(a — Aay) + apmAay + ACy (2.20)

where the following definition applies:

L« A o

ACy = Q1A+Q20w+Q3(a )+Q4 | aw | +Qs6+ QA +Qrapm Apmsy (2.21)
s8

The parameter aom

is the static moment coefficient curve [Abbott and von Doenhoff;, 1959] slope at zero
angle of attack, which is zero for symmetric airfoils. The last term of equation (2.21)
represents the effects of the shed leading edge vortex, and the constants, Q;...Q7, are
determined by curve fitting windtunnel data to the above expressions using a leaét
squares technique. The coeflicients of the dynamic stall model are given in Appeﬁdix

A.

2.2.4 Modification and Verification of the Dynamic Stall

Model

Two simple modifications were made to the dynamic stall model described above,
keeping in mind that the lift and moment coefficient curves must be at least piece-
wise continuous in the time domain and that they must always take on physically
realizable values.

The first 1116diﬁca.tion was to restrict the domains of the dynamic moment stall
angle of attack, appy, and the flow reattachment angle of attack, agrg. The reason for
introducing this restriction was to ensure that both apy and agg obtained physically
realizable values for cases when the airfoil was undergoing extreme oécilla.tions, such
as very high or very low frequencies or large amplitudes. The domain of apy was

restricted to values greater than the static stall angle of attack, agg, and the domain
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of arg was restricted to values less than cgg. It can be argued that apy must
always be greater than ags due to the boundary layer improvements, discussed in
Section 2.1, caused by the dynamics of the airfoil as the angle of attack is increasing.
Similarly, it can be argued that agrg must always be less than agg since the dynamic
effects are also present as the angle of attack of the airfoil is decreasing, and these
effects will act to destabilize the boundary layer and delay reattachment of the flow.
Unfortunately, in the case of the flow reattachment angle of attack, this is not always
the case. Since static stall can be induced by local shocks for Mach numbers greater
than about 0.6 it is possible for the flow to reattach at an angle of attack greater than
agss. Therefore, by introducing the previous assumptio}ns the model is restricted to
cases where stall is not induced by local shocks.

The second modification to the dynamic moment stall model was made in order
to ensure that the lift and moﬁwnt coefficient curves remained at least piece-Wise
continuous. Very often the model correctly predicted that the shed vortex did not
reach the trailing edge of the airfoil before the angle of attack of the airfoil had
decreased below the predicted flow reattachment angle. In other words, the two
conditions, sy < syt and o < agg, existed simultaneously. It can be seen from
equations (2.18) and (2.19) that the model does not allow for this occurrence. The
result was that the function 6, was discontinuous because the stage where the shed
vortex is gone, sps > spyr, but the flow is not yet reattached, apg < a < arg , was
omitted, therefore, the lift and moment coefficient curves were also discontinuous.
To avoid this discontinuity, the expressions for 6,, ACy, and ACys were modified for
the instances when both conditions, sy < syt and o < agg, occur sinmltaneously.

The modified expressions are:

8, = (aDM

- 1)[1 - exp(Kl(sM - SMT))] (222)

ass



ACL, = P3by + PoAwy

exp(—Pism)?
(B150m)*

_ Q
ACy = A+ Qraw + Q:za— + Q4| aw | +@s6,
X8S

+ Py [l — [l — exp(Kq(sp — smT))] (2.23)

+ QsAay + QrapmApmsm|l — exp(Ki(sy — smr))] (2.24)

where the parameter, K, is a constant equal to 3.0. The terms that are modified
are those that are supposed to be zero as the vortex detaches from the leading edge,
sM = smT, and reach a certain value as the flow reattaches after the vortex has been
shed. However, since the model predicts that the flow will reattach before the vortex
is shed, these terms are multiplied by the expression [1 — exp(K1(sm — sup))], which
ensures that they will tend to the appropriate values as sp; becomes increasingly
larger than spr. The value of K; was determined empirically by comparing the
modified expressions with the actual wind tunnel data.

In Figure 2.4, the lift and moment coefficient curves from wind tunnel tests
are plotted versus angle of attack and compared to the predicted lift and moment
coefficient curves of the modified and unmodified dynamic stall models for a case
where arg < agg. As can clearly be seen, the two dynamic stall models give
identical results until the stage where the angle of attack, o, decreases to less than
agre but is still greater than arg. Through this range the modified dynamic stall
model is continuous, but the unmodified dynamic stall model is discontinuous at the
point when a = arg.

The curve fitting of the windtunnel test data to the expressions for the unsteady
lift and moment coefficients was done with the use of the ‘Amoeba’ subroutine
found in [Press et al., 1986] and ‘a least squares method. Eighteen data loops from
[Gray and Liiva, 1968] were utilized in determining the unknown coefficients, thus

ensuring that the model would be valid over a wide range of non-dimensional
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frequencies, »k(0.044,...,0.256), amplitudes &(2.5°,...,7.5°), and mean angles of
attack (0.0°,...,10.0°). In Figures 2.5 and 2.6 some typica,l comparisons are
made between the lift and moment coefficient curves from the windtunnel test data
and the lift and moment curves predicted by the modified dynamic stall model for
four different non-dimensional frequencies, amplitudes and mean angles of attack.
Appendix B contains most of the data-model comparisons of the lift and moment
coefficient data for a Mach number of 0.6 and a Reynolds number of 6.2 * 10° given

in [Gray and Liiva, 1968].

2.3 Two Degree of Freedom Airfoil System

The details of the two degree of freedom airfoil system are illustrated in Figure 2.7.
The angle of attack, a, is ineasured positive in the nose up direction, and the non-
dimensionalized vertical displacement, £ = h/b, is measured positive downwards.
The elastic axis is located a distance a,b behind the midchord of the airfoil, and the
centre of mass of the airfoil is located a distance z,b behind the elastic axis.

The non-dimensionalized two degree of freedom aeroelastic equations, from

[Fung, 1955], are:

iy , - ¢ w (‘D)Z — ]' P(S)b 5 X 14
St ol t 2l + e = TRV T (2.25)
Lo 2 9 a7_a T = 20 9 96
zoé + i+ 2( U*a+ (U*)2a wpcM(s)+7nU2 (2.26)

where (, and (¢ are the viscous damping ratios in the pitch and plunge degrees of
freedom, respectively, @ = we/w, is the ratio of uncoupled natural frequencies and
[/* = U/bw, is the non-dimensional velocity. The airfoil air-mass ratio is defined as
p = m/mpb?, where m is the airfoil's mass per unit span, p is the air density and

b is the semi-chord. The non-dimensionalized radius of gyration about the elastic
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axis is 74. Cn(s).and Cpy(s) are the lift and moment coefficients, respectively. taken
about the elastic axis and P(s) and Q(s) are the externally applied force and torque.
respectively, applied at the elastic axis.

For the two degree of freedom airfoil system studied herein, it is assumed that
the plunge oscillations are very small compared to the pitch oscillations. This implies
that the stiffness of the airfoil in the plunge degree of freedom is much greater than
the stiffness in the pitch degree of freedom, or that @ is large. Furthermore, as & tends
to infinity, the system tends to a single degree of freedom in pitch. Since the pitch
degree of freedom dominates the motion of the airfoil, the main contribution to the
aerodynamic loads must be from the pitch oscillation and therefore, the effect of the
plunge motion can be added on using linear aerodynamic theory (see [Mazelsky, 1952]
and [Mazelsky and Drischler, 1952]). It should be noted that if the above assumption
is not employed, calculation of the aerodynamic forces becomes extremely difficult

and is beyond the scope of this thesis.

2.4 Solution of the Aeroelastic Equations

The finite difference method employed to solve the aeroelastic equations, ( 22‘3) and
(2.26), was Houbolt’s implicit method [Houbolt, 1950]. This method approximates
the derivatives at the current time step with difference equations that depend on the
position of the airfoil at the current time step and the three previous time steps. The

- finite difference equations for a general coordinate, 7, are:

. 1 ‘
M = g;[l 17711. - 18"]71-1 + 977':1,-2 - 27]1&—3] (227)

.1
M = ;3[27771. - 5"771—1 + 47711,—2 - 7’7;—3] (228)
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where € is the constant time step size. After substituting the appropriate expressions
for the derivatives of  and £ into equations (2.25) and (2.26), the equations can be
solved for a,, and £, The complete equations are given in Appendix (¢ and ounly the
matrix formulation is given below.

Zlf'n. + Z2an = ZB

(2.29)
Z4£n + ZSQH = Z6

where Z3 and Zg are functions of the variables at the previous time steps and Zy,
Zy, Z4 and Zs are constants.

Since Houbolt’s method requires that the position of the airfoil be known for
three previous time steps, a special procedure must be implemented for the first
time step, when only the initial conditions are known. Given that the aerodynamic
loads can be found at the initial conditions, equations (2.25) and (2.26) can be solved
for the second derivatives of a and ¢ at time zero. By using the second derivatives
in a Taylor expansion around time zero, the position of the airfoil at times s = +As
and s = —As can be approximated [Lee and LeBlanc, 1986b]. The position of the
airfoil is now known for s = —As, s = 0 and s = +As; therefore, Houbolt’s implicit
method can be utilized to find the position of the airfoil at s = +2As.

Houbolt’s method requires that the aerodynamic loads at time step ‘n’ be known
in order to calculate the position of the airfoil at time step ‘n’. However, because the
aerodynamic loads at time step ‘n’ depend on the position of the airfoil at time step
‘n’, a recursive predictor-corrector procedure must be implemented. The first step
of this procedure is to calculate the aerodynamic loads at time step ‘n’ based on the
position of the airfoil at time step ‘n — 1’. Next, these aerodynamic loads are used
to calculate the predictor position of the airfoil at time step ‘n’, and based on tilis
predictor value, the aerodynamic loads are recalculated. Finally, these recalculated

aerodynamic loads are used to find the corrector position of the airfoil. If the absolute
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difference between the predictor value and the corrector value is within a specified
tolerance (approximately 1.0E-()6.), theu the corrector value is accepted and the time
step is successful. If the absolute difference is greater than the tolerance, then the
entire procedure must be halted. A time step control algorithm cannot be utilized to
converge to an acceptable solution because the Houbolt’s method that was utilized
assumes that the time step remains constant.

The convergence of this corrector-predictor method was verified using two
different methods: the first method utilized different techniques to calculate the
predictor values and the second method involved utilizing different time step sizes.

There are many techniques and levels of accuracy that can be utilized to calculate
the predictor values of the pitch and pitch velocity of the airfoil: the lowest-order
approximation of these variables is to use the values at the previous time step and
higher order approximations utilize the pitch velocity and acceleration at a previous
time step to estimate the pitch and pitch velocity at the next time step. If the solution
is a periodic oscillation, the method and accuracy of calculating the predictor values
does not influence the final corrector solution. However, if the solution is chaotic,
the different methods of calculating the predictor values lead to solutions that are
initially almost identical but, after a number of oscillations, these solutions diverge
from one another. This type of behaviour is typical of chaotic solutions - the presence
of chaos implies that knowledge of initial conditions is lost after many oscillations
[Moon, 1987]. Most importantly, the chaotic behaviour of the system was found to
occur regardless of the method utilized to calculate the predictor values.

The convergence of the numerical procedure was also verified using different time
step sizes. For periodic solutions, the choice of the time step size, within reéso'uable

limits, did not affect the final corrector solution and for chaotic solutions, the different
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solutions would begin almost identically and then diverge from one another as time
continued. For sufficiently small time steps, the recursive predictor-corrector method
was found to converge for almost all cases. The only exceptions to this are cases in
which the airfoil undergoes high frequency chaotic oscillations or when the airfoil is

very near divergence.
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Figure 2.1: A conceptual presentation of the three main events of dynamic stall: (a)
the leading edge vortex is shed from the leading edge of the airfoil, (b) the vortex

arrives at the trailing edge and (c) the flow reattaches around the airfoil.
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Figure 2.2: The lift distribution as a function of the chord as the leading edge vortex
is convected downstream: (a) vortex at the leading edge, (b) vortex approaching the

trailing edge, (c) vortex at the trailing edge.
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Figure 2.3: Lift and moment coefficient curves as a function of angle of attack for

an oscillating NACA 0012 airfoil: (a) and (b) k = 0.211, o, = 9.70° and & = 5.59°,

(c) and (d) & = 0.045, a, = 7.39° and & = 4.94°. (From ref. Gray, L. and Liiva, J.

(1968))
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Figure 2.4: Comparison of the (a) lift coefficient and (b) moment coefficient of the
actual data (solid line) with the Bielawa model (dotted line) and the modified Bielawa

model (’x’ line) for the cases k = 0.252, a, = 4.39° and & = 5.96°.
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Figure 2.5: Comparison of actual lift coefficient data (solid line) with the lift
coeﬁicient predicted by the modified Bielawa model (dashed line) for cases: (a)
k = 0.045, o, = 7.39°, a = 4.94°% (b) k = 0.165, a, = 0.20°, & = 5.49% (c)
k =0.088, a, = 9.75°, @ = 5.01% and (d) k = 0.129, o, = 7.62°, & = 5.28°.
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 Figure 2.6: Comparison of ‘actual moment coefficient data (solid line) with the
moment coefficient predicted by the modified Bielawa model (dashed line) for cases:
(2) k= 0.045, o, = 7.39°, G = 4.94% (b) k = 0.165, a, = 0.20°, & = 5.49°% (c)
k =0.088, o, = 9.75°, @ = 5.01° and (d) k = 0.129, o, = 7.62°, & = 5.28°.



MOMENT COEFFICIENT

()

K=0,088, ALPHA.O=9.75, D.ALPHA =5.01
0.04, : : .
0.02- !

of ]

002t ]
004F ]
0.06- ]
008 ]
o1k o — |

DATA = solid line )
a12b .- COMPUTED = dashed line - N/ 1
014} ‘ -
016, 6 3 10 12 14 16

ANGLE OF ATTACK (deg)
(d)

K=0.129, ALPHA.O=7.62, D.ALPHA =5.28
0.04 : . . .
.0‘1 - I J

DATA = solid line
Q12 - COMPUTED = dashed line ]
0141 ,.
-0.16; 4 6 8 10 12 14

ANGLE OF ATTACK (deg)

44



V2. 7
~ —— Linear Spring
~ Torsional Spring
X

Aerodynamic Centre —X

Elastic Axis Centre of Gravity

A.C. EA. CG

1/2 b ab—~

Figure 2.7: The two degree of freedom airfoil system.



Chapter 3

The One Degree of Freedom

Syste»m

3.1 System Description

The general two degree of freedom system is represented by equations (2.25) and
(2.26). When the ratio of uncoupled natural frequencies, @, is very large, the stiffness
in the plunge degree of freedom, £, is much greater than the stiffness in the pitch
degree of freedom, «, and therefore, any blunging motion can be assumed to be
negligible. With this assumption the two degree of freedom system reduces to the

following one degree of freedom system:

5. 203 r2 2
'2 . O . « .
raa+ ——a+ (U*)"a = ;“—’M(S) + Q(s) (3.1)

where Cy(s) = Cpy,,, +Cr_,, (% + i) is the total moment coefficient about the elastic

axis, aj, is the non-dimensional distance from the mid-chord to the elastic axis, s = %5
is the non-dimensional time, Q(s) = @, sinks is the non-dimensional externally

applied torque about the elastic axis, k = “l’—,b is the non-dimensional frequency of

the externally applied torque and U/* = ga'l is the non-dimensional velocity. The one
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degree of freedom system is illustrated in Figure 3.1.

The lift and moment coefficients, obtained using the dynamic stall model
described in the pi‘evious chapter, are about the one-quarter chord position and
the unsteady lift and moment coefficient data, taken from [Gray and Liiva. [96¥].
are for a NACA 0012 airfoil oscillating about the one-quarter chord position. Thus,
in order to most closely approximate the actual oscillating airfoil system, the position
of the elastic axis was taken to be at the one-quarter chord position, hence ¢, = —0.5
and Cy(s) = Cp,,,(8), for all the simulations that were done as part of this thesis.
The centre of mass was positioned one eighth of a chord behind the elastic axis
(xq = 0.25), the non-dimensional radius of gyration about the elastic axis, r,, was
chosen to be 0.5 and the airfoil air-mass ratio, y, was fixed at a value of 100.

A further simplification of the system described by equation (3.1) is possible as
the structural damping term is known to be small compared to the aerodynamic
damping term. Therefore, the structural damping coefficient, (,, is assumed to be
zero in all the simulations done as part of this research.

It is not obvious from equation (3.1) what range of values of the magnitude of the
externally applied torque, @,, should be utilized in order to obtain airfoil oscillations
with reasonable amplitudes (i.e. in the range of five to fifteen degrees). Although the
appropriate values of ), will depend on the magnitudes of all the terms in equation
(3.1), as a first order approximation the appropriate values of 0, should be of the
same order of magnitude as the aerodynamic moment term, }ZICM(S)- Therefore, by
substituting the average value of Cp, into equation 3.1, it is possible to obtain an
approximation of the appropriate order of magnitude of the term Q,.

For large amplitude oscillations at very high angles of attack, the magnitude of

the moment coefficient, Cys, can instantaneously be as large as 0.2, but the average
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value is typically near 0.05. Substituting this average value of Cys into equation (3.1)
yields a value of approximately 3%10~* as the magnitude of the aerodynamic moment
term. Therefore, the appropriate values of (), for reasonable amplitude oscillations

should on the order of 1074,

3.2 Non-Linear Analysis Techniques

The focus of this non-linear analysis is to find when the response of the system.
given by equation (3.1), becomes unpredictable or chaotic, and to describe how the
transition from predictable behaviour to chaotic behaviour occurs. Since the system
has only one degree of freedom and all the structural terms in equation (3.1) are
linear, any chaotic vibrations could only be caused by the non-linear aerodynamic
loads. The aerodynamic model, discussed in the previous chapter, is not analytical
and, therefore, most of the analytical techniques developed for studying non-linear
systems cannot be utilized. However, many numerical techniques exist to find and
characterize chaotic vibrations. The techniques utilized herein include bifurcation
diagrams, spectral analysis, phase plane plots and Poincaré sections and maps.

The first step in analysing the very complicated system dynamics was to choose
a set of system parameters and generate a set of bifurcation diagrams. A bifurcation
denotes a sudden change in the steady state response of a system; for example when
a stable fixed point changes to a stable or unstable limit cycle motion [Moon, 1987].
- Bifurcation diagfams can be constructed in many ways. In this thesis the maximum
and minimum value of the angle of attack was stored over a certain number of
periods, typically about 50. Then one of the systexﬁ parameters was incremented
and this process was repeated until a predetermined range of the system parameter

was analyzed. These diagrams give a good qualitative description of how the response
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of the system changes as a system parameter is varied. They also make it easy to
pinpoint critical values of a system parameter at bifurcation points and they highlight
regions where the oscillations may be chaotic or quasi-periodic.

The next step in the analysis was to determine if the regions found in the
bifurcation diagrams were chaotic or quasi-periodic. This was done by examining
the time histories, phase plane plots, Fourier spectra and Poincaré sections of the
response of the system at certain values of the system parameters. The Poincaré
sections were obtained by storing the value of the angle of attack and pitch rate once
every period of the sinusoidal forcing function, ¢ = @), sin ks. Thus, if the response
of the system was periodic the Poincaré section would consist of a finite number of
points, if the response was quasi-periodic it would reveal a closed curve and if the
responsé was chaotic it would reveal a chaotic or ‘strange’ attractor [Moon, 1987].
As further proof of chaotic behaviour, the Poincaré maps were, wherever possible,
compared to simpler analytical maps which either were known to be chaotic, or for
which analytical methods could be utilized to show that the response was chaotic.
A system response was labelled chaotic only if all of the aforementioned techniques

yielded results that exhibited the characteristics of chaotic behaviour.

3.3 Discussion of Results

The aerodynamic loads acting on an airfoil oscillating at large angles of attack are '
highly nonlinear making the dynamic response of the single degree of freedom system
very complicated. Furthermore, there are three independent system parameters that,
when varied, strongly influence the dynamic response of the system; these are the
amplitude of the non-dimensional externally applied torque, @Q,, the non-dimensional

velocity, U”, and the non-dimensional frequency of the externally applied torque, k.
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A close examination of the single degree of freedom equation (3.1) reveals that
the inverse of the non-dimensional velocity represents the 11’011-di111mlsiona,l strictural
natural frequency of the airfoil. Thus, the product of the non-dumensional frequency
of the extemally applied torque, &, and the non-dimensional velocity, U*, gives the
ratio of the forcing frequency to the structural natural frequency. Another important
point to note, which is not obvious from equation (3.1), is that the structural natural
frequency and the natural frequency of the system will not, in general, be the
same because the aerodynamic moment term, %CM(.S), will contain stiffness terms.
Furthermore, due to the complicated nature of the aerodynamic loads, the natural
frequency of the system cannot be calculated explicitly.

The non-linear analysis attempted herein is divided into four different case studies
based on the values of the system parameters for which chaotic oscillations were found
and the type of chaos that occurred. The first case study is for low frequency, high
velocity, intermittent chaos; the seéond is for low frequency, low velocity intermittent
chaos; the third is for low frequency, high velocity, classical chaos; and the fourth

case study is for high frequency, high velocity, classical chaos.
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3.3.1 Case I: Low Frequency, High Velocity, Intermittent

Chaos

This section considers the possibility that chaotic vibrations occur for airfoils forced
to o.scil]ate at high initial angles of attack, a, (this is the angle of attack of the
airfoil at time zero), low non-dimensional frequencies, k, and high non-dimensional
velocities, [/*. The first stage in this investigation is to develop a general picture of
the overall behaviour of the system as certain system parameters are varied over a
wide range of values. Bifurcation diagrams are presented in which the»amplitude of
the non-dimensional externally applied torque, Q,, the non-dimensional velocity,
U*, and the non-dimensional frequency of the externally applied torque, k, at;e,
varied over a wide range of values in an effort to discover any regions of potential]);
chaotic behaviour. Next, these potentially chaotic regions are more closely examined
by providing more detailed bifurcation diagrams that focus 01ﬂy on the range of
parameters for which the response may be chaotic. The response in these regions
is explored further by comparing the time traces, phase plpts and Fourier spéctra ‘
for four separate cases in order to illustrate how the response changes as one of the
system parameters 1s varied. The Poincaré sections for these cases are then examined
to show the long term behaviour of the system and to help classify the response as

either chaotic or quasi-periodic.

Bifurcation Diagrams

The first set of system parameters considered were: the initial angle of attack,
a, = 8.90° , the non-dimensional velocity, U* = 21.0227, and the non-dimensional
forcing frequency, k = 0.044. The first bifurcation diagram, Figure 3.2, was obtained

by allowing the value of @, to vary over the range (0.0 < Q, < 1.18 % 107%),



while the rest of the system parameters were held constant. In Figure 3.2, it can
be seen that the amplitude of the response of the airfoil increases almost linearly
as the magnitude of @, increases. Furthermore, the system undergoes two period
doubling bifurcations, the first at approximately @, = 0.20 * 10™* and the second at

approximately Q, = 0.88 x 10%. A region of possibly chaotic motion can be seen to

 exist in the range (1.00 x 107% < Q, < 1.09 x 10™4), and for values of @), larger than

1.09 * 10~ the system returns to a stable period two oscillation.

The next bifurcation diagram was obtained by fixing the value of Q, = 1.02+107¢,
which is in the apparently chaotic region of Figure 3.2, and allowing the value of
U™ to vary over the range (5.0 < U* < 23.0). "The results, illustrated in Figure
3.3, show that the amplitude of the response generally increases as the magnitude;
of U* increases, and that the system undergoes a period doubling bifurcation at
approximately U/* = 10.4. A region of possibly chaotic motion exists for values of
U* in the range (20.5 < U* < 21.2).

To create the third bifurcation dia,gra.xﬁ, Q. and U* were heldvconstant at values of
1.02%10™* and 21.0227, respectively, while the non-dimensional forcing frequency, .
was varied over the range (0.02 < k < 0.225). The value of /* = 21.0227 corresponds
to a non-dimensional structural natural frequency of 0.0476. The results, illustrated
in Figure 3.4, reveal that the response vof the system increéses to a maximum near
k = 0.075 and decreases for larger values of k. The system can be seen to undergo
several diﬂ'e?ent types of bifurcations, and there are two regions of possibly chaotic
behaviour. The focus of the remainder of this section will be on the low frequency
region, near k = 0.044. The higher frequency region, near k£ = 0.170, will be discussed

in a later section.

The bifurcation diagrams in Figures 3.2,...,3.4 give the amplitude of oscillations
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that are obtained as certain syétem parameters are varied over a wide range of values.
However, the most interesting system dynamics occur in the narrow regions where
the response is potentially chaotic. In Figures 3.5 - 3.7, the bifurcation diagrams
are expanded in the regions where the response of the system changes from periodic
motion to chaotic or quasi-periodic motion.

In the bifurcation diagram shown in Figure 3.5, J, is varied over a small range of
values (0.98+107* < @), < 1.10% 10%). This corresponds to the region in Figure 3.2
where the response of the system begins to appear chaotic or quasi-periodic. As @,
is increased from 0.98 x 10~* the well defined lines, characteristic of periodic motion,
begin to spread out or diffuse into one another. Furthermore, at values of @, equal
to approximately 1.003 * 10™* and 1.0062 % 10~4, the system appears to underg(é
complicated bifurcations; these are indicated by the appearance of many new lines
or regions where the lines diffuse suddenly. These new lines are unstable and diffuse
quickly as @, is illcreased indicating that the oscillations corresponding to these lines
are not very stable. According to thié bifurcation diagram, the response of the system
is chaotic or quasi-periodic for @, greater than approximately 1.0062 % 10~*, and the
transition from periodic to chaotic or quasi-periodic behaviour is a gradual decrease in
the stability of the periodic oscillations. This bifurcation diagram does not provide a
means of clearly defining a critical value of the parameter @,. A critical value should
divide the region of periodic behaviour from the chaotic or quasi-periodic region,
but in fact the chaotic or quasi-periodic behaviour tends to creep gradually into
the solutions. After Q, exceeds a value of approxima.tely 1.079 % 10~*, the response
returns to a stable, period two oscillation. Within the apparently chaotic region
(1.0062 x 107* < @, < 1.079 * 10~*), there are smaller regions where the response is

stable and periodic, for example near Q, = 1.058 * 10™* and Q, = 1.065 * 10~4.
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In Figure 3.6, the non-dimensional velocity, {7*, is varied over the apparently
chaotic region, (20.00 < U~ < 21.38) of Figure 3.3. The system undergoes
bifurcations at several values of [/, including 20.13, 20.19 and 20.46. The response
of the system appears to become chaotic or quasi-periodic for values of {7 greater
than approximately 20.66. However, once again it is difficult to define a critical value
with certainty because the transition to chaotic or quasi-periodic motion is gradual.
The system returns to a stable, period two oscillation for values of U* greater than
approximately 21.35.

The small chaotic or quasi-periodic region shown in Figure 3.4, near k = 0.044, is
shown in more detail in Figure 3.7. As the non-dimensional frequency, k. is increased
to values greater than approximately 0.041, the response of the system can be seen:
to undergo a series of bifurcations. The response appears to be chaotic or quasi-
periodic for values of k greater than approximately 0.0434, whereas, for k greater
than approximately 0.045, the response suddenly returns to a stable, period-two
oscillation. Furthermore, just prior to the onset of the chaotic or quasi-periodic
motion at k = 0.0433, fl1e response is stable and periodic, and other smailer regions

within the chaotic or quasi-periodic region also show signs of periodic behaviour.

Case Studies

The next stage in the nonlinear analysis consists of comparing the time histories,
phase plane plots and Fourier spectra for four different test cases. In these test
“cases the non-dimensional velocity, U*, and the non-dimensional frequency, k,
were fixed at 21.0227 and 0.044, respectively, while the value of Q, was set at
1.00 * 104, 1.006 + 10~%,1.02 + 10~* and 1.05 + 10,

Figure 3.8 shows a small section of the time history of the response for each oi

the four different test cases. In Figure 3.8 (a), the response is a stable, period-four



oscillation. The responses shown in Figure 3.8 (b). (c), and (d) exhibit some higher
order periodic, or even quasi-periodic behaviour. The pattern of the response repeats
itself éver the time interval shown in Figure 3.8 (b) and (d), and the period of the
response in Figure 3.8 (¢) is of the order of the timé interval shown.

Figure 3.9 shows the phase plane plots, over the same time interval as in Figure
3.8, for the four different test cases. In Figure 3.9 (a), the response remains in a
stable, period four oscillation, while, in Figure 3.9 (b), the stable curve begins to
break down and the plot suggests a higher order periodic response. In Figure 3.9 (¢),
the period reaches a maximum, and it is not obvious whether the response repeats
itself over the given time interval, whereas, in Figure 3.9 (d), the response returns
to a high order periodic oscillation.

The Fourier spectra of the’ four different responses are shown in Figure 37.10.
Figure 3.10 (a) confirms that the response for the case in which Q, = 1.00x 107 *is a
period four oscillation. The largest spike occurs at the forcing frequency, k = 0.044,
with three other subharmonic spikes at £ = 0.011,k = 0.022 and k£ = 0.033. The
higher frequencies shown are the higher order harmonics of these 'four main frequency
components. In Figure 3.10 (b), there are many well defined subharmonic spikes,
indicating that the response, over the given time interval, is periodic. In Figure 3.10
(c), it is difficult to define any subharmonic spikes; instead the response has more of
a broad band spectrum, indicating that the response may be chaotic. The Fourier
spectrum shown in Figure 3.10 (d) contains many well defined spikes confirming that

the response is once again periodic over the given time interval.

Poincaré Sections

The next step in the analysis involves studying the long term behaviour of the

response by examining the Poincaré sections. Each Poincaré section was constructed
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with a minimum of twenty thousand points, corresponding to a time interval equal
to twenty thousand periods of the forcing function. Furthermore, before any points
wete retaﬁled, the system was allowed to run for a minimum of one hundred periods
to allow time for any transient motions to die out.

The Poincaré section for the case where @, = 1.00 % 10~* is shown in Figure 3.11
(a). The four groups of points shown in this plot indicate that the respousé of the
system is a period four oscillation. However, since the groups are not exact points.
this period-four oscillation is not perfectly stable. In Figure 3.11 (b), each pitch
data point is plotted versus the number of the period for which that data point was
obtained, therefore, the x-axis can be interpreted as a discretized time variable. This
method of plotting the Poincaré data is useful in helping to determine the long term_:
behaviour of the system since the general characteristics of the long term behaviour
can be captured with very few data points. Figure 3.11(b) shows that the period-
four response remains stable for approximately the first ten thousand periods, hut
becomes slightly unstable for an almost equally long time before settling back down
to the original period four oscillation. The response is not chaotic while the period
four attractor is slightly unstable, instead it changes from one high order periodic
state to another, as indicated by the different lines thé,t appear in the Lplot. These
new higher order periodic states may exist for only a few periods or they may exist
for several hundred periods.

The next Poincaré section, for the case where @, = 1.006%1074, is given in Figure
3.12 (a). The four groups of points observed in Figure 3.11 (a) have diffused into fine
lines and a pattern is beginning to emerge in the way the data points are distributed
in the phase plane. This ‘pattern is normally referred to as an attractor. Figure

3.12 (b) illustrates that the response changes from one periodic state to another, and
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that each state may remain stable for up to several hundred periods. Occasionally as
the response of the system is changing from one of these periodic states to another.
it will become very highly periodic, perhaps even quasi-periodic or chaotic, but this
behaviour lasts only for a’very short period of time, on the order of about ten periods.

The structure of the attractor is clearly visible in the Poincaré section for
Qo = 1.02 % 107*, shown in Figure 3.13 (a). Aside from one small area near the
top of the plot, all the data points fall along several very well defined curves. From
Figure 3.13 (b), the long term behaviour of the system can be seen to be very
complicated. Initially the response is a high-order periodic oscillation and it remains
in this state for approximately the first 2500 periods, then the response goes through
approximately 500 oscillations where it is either quasi-periodic or chaotic, then 1t
returns to a periodic oscillation that remains stable fo; approximately 5000 periods.

The periodic response then suddenly becomes unstable. During this unstable
phase the response undergoes frequent transitions from high order periodic phases
to quasi-periodic or chaotic phases, and the number of different high order periodic
phases is very large. As can be seen from the plot, these high order periodic phases
appear in a seemingly random fashion and can remain stable for as long as several
hundred periods. On the other hand, the @wsi-periodic or chaotic phases are usually
very short, on average lasting only about ten periods before the response restabilizes
into a new and different high order periodic phase. After approximately 8000
periods the fesponse stabilizes into another periodic oscillation, this time a period-
one oscillation. After approximately 4000 periods this response becomes unstable
and the more complicated behaviour returns.

The attractor shown in the Poincaré section in Figure 3.14 (a) is for the case in

which @, = 1.05 * 104, The overall shape of this attractor is very similar to the
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shape of the attractor in Figure 3.13 (a), for the case where @, = 1.02 % 107, except
that it has been stretched into a slightly different orientation in the phase plaue.
This different orientation of the attractor results in a different overall pattern of the
response, which is illustrated in Figure 3.14 (b). The response does not remain in
any periodic state for as long as in the previous case as the maximum time span
for a periodic state to exist is reduced from approximately 5000 to 1000 periods.
However these periodic sfates occur more frequently so that the periods of chaotic or
quasi-periodic behaviour are distributed more evenly over the time interval shown.
The attractors in Figures 3.13 (a) and 3.14 (a) are not as one-dimensional as the
Figures suggest. The regions outlined in boxes in Figure 3.13 (a) are shown in detail
in Figure 3.15 (a) and (b). In these enlarged views, the attractor can be seen to
vary in thickness with definite boundaries defining its shape. Within the boundaries
of the attractor there is an internal structure: the data points are distributed in
short, discrete, quasi-parallel groups that are approximately perpendicular to the

orientation of the attractor.

Poincaré Maps and Intermittent Chaos

To examine how the complicated behaviour illustrated in Figures 3.13(b) and 3.14(b)
arises, the case where @, = 1.02x10~* will be studied in further detail by examining
the Poincaré data in the form of first and second return maps. The first return map
plots the ‘n + 1’ pitch data point versus the ‘n’ pitch data point, similarly the second
return map plots the ‘n 4 2’ pitch data point versus the ‘n’ pitch data point. With
these maps, the response of this system can be shown to share some similarities with
systems that exhibit intermittent chaos.

Intermittent chaos is observed in theoretical systems, such as the Lorenz

model, and also in experimental systems, such as Rayleigh-Bérnard convection
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[Bergé et al., 1986]. The response of a system exhibiting classical intermittent
chaotic behaviour will be periodic for a certain length of time, then there will
be a short burst of chaotic activity followed by a return to the same periodic
behaviour. The transition from a chaotic burst back to periodic behaviour is known
as the relaminarization of the response. There are three different types of classical
intermittency, types I, II and III, each having _different qualitative characteristics.
Type | intermittency involves the destabilization of a periodic trajectory, for
values of a system parameter greater than a critical value, caused by the crossing
of an eigenvalue of the Floquet matrix with the unit circle of the complex plane
at +1 [Bergé et al., 1986]. The main characteristic of type I intermittency is that
a laminarization channel exists in the first return map. This channel is a regio_n;
~ of the attractor that lies near the identity line (the 45° line) and is tangent to the
identity line at some point, a typical channel is illustrated in Figure 3.16 (a). The
response enters this channel at a point near the bottom end and, with successive
iterations of the map, it moves through the channel as shown. While the response
is in the channel it is feasonably stable and therefore the behaviour of ‘the system
appears periodic. The length of time required for the response to move through
the channel can be relatively long depending on the width of the channel. After
the system leaves the channel it moves to another part of the phase plane where
the attractor is chaotic, this corresponds to a chaotic outburst in the response. The
“system will remain in the chaotic region of the phase plane until it is mapped back to
the beginning of the channel, this is the relaminarization process. The length of time
that the response spends in the laminar phase depends on the type of intermittency,
for type I intermittency the probability of the response remaining in a laminar phase

of length ‘T" is given by the characteristic distribution shown in Figure 3.16 (b). The
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shape of this distribution indicates that for type I intermittency there will be many
laminar phases of approximately the same length, some very short laminar phases
and there is a definite maximum laminar phase length which is system dependant.

Type Il intermittency is caused by two complex conjugate eigenvalues of the
Floquet matrix crossing the unit circle of the complex plane [Bergé et al., 1936].
The theory of type Il intermittency is reasonably well understood but, as of yet,
there have been no examples of systems, either numerical or experimental, which
have been proven to exhibit type II intermittent cilaos.

Type III intermittency is caused by an eigenvalue of the Floquet matrix crossing
the unit circle of the complex plane at —1 [Bergé et al., 1986]. The laminarization
channel for this type of intermittency is found in the second return map and 13
illustrafed in Figﬁre 3.17 (a). This characteristic shape in the second return lha,p
is caused by the first return map crossing the identity line at a slope slightly less
than —1. While the system is in this channel the response is periodic, as in type
I intermittency, an important characteristic of this type of intermittency is that
the approach of the chaotic outburst is signalled by the growth of a subharmonic
oscillation. This subharmonic oscillation increases in amplitude until at some point
there is a chaotic burst, usually in the form of a sudden increase in the amplitude
of the response. The characteristic probability distribution of the average lengths of
time of the laminar phases is shown in Figure 3.17 (b). This distribution illustrates
that for type III intermittency there is a definite minimum length of the laminar
phases and that some laminar phases can last for a very long time.

The first return map for the case of ), = 1.02+107* is shown in Figure 3.18 (a).
The attractor can be divided into three separate regions: the first, for angles of attack

less than approximately 0.9 degrees, consists of an almost straight line; the second,
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for angles of attack between 0.9 and 3.6 degrees, consists of three curves, two of which
cross the identity line at slopes less than —1; the third, for angles of attack greater
than 3.6 degrees, consists of 'a single short line. The corresponding second return
map, shown in Figure 3.18 (b), is composed of several curves distributed thronghout
the plane. The first and second réturn maps for the case where Q, = 1.05 % 1074,
shown in Figures 3.19 (a) and (b) respectively, are very similar in appeérance.

These return maps do not show the type of characteristics described previously
for systems that exhibit classical type [ or type III intermittency. Furthermore, the
long term behaviour of the system, as illustrated in Figures 3.13 (b) and 3.14 (b).
is not typical of these types of intermittency in two respects. Firstly, the responses
show regions of very long periodic phases and very short periodic phases. This 1s
especially true for the case illustrated in Figure 3.13 (b), which suggests that the
behaviour is a combination of type I and type III intermittency, and secondly, after
each chaotic burst the system does not return to the same periodic oscillation but
instead tends to find a new periodic state.

The reason the response can be labelled as intermittently chaotic is because of
the time scale of the chaotic behaviour and the marginal stability of the response.
To illustrate the time scale of the chaos consider the following: if the response is
analyzed over any short period of time (less than approximately 200 periods), one
may find that it is periodic and stable, however, if a longer time scale is chosen
the response will be chaotic because, even though the behaviour is mostly periodic,
the final state of vthe system is completely unpredictable. Furthermore, since the
response of the system spends most of its time in a periodic oscillation, and the
unstable phases are usually very short, the behaviour of the system can be described

as marginally stable. It is these two characteristics that the system shares with other
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systems that exhibit the more classical types of intermittency.

One of the purposes of comparing the intermittently chaotic behaviour of this
system with systems that exhibit classical intermittency is to illustrate that there are
important differences in the long term behaviour of the two cases. It is important to
remember that the type of intermittently chaotic behaviour found herein is a direct
result of the numerical dynamic stall model. Therefore, like any other numerical
model, the long term behaviour of the system, as illustrated by the Poincaré sections
and maps, should show behaviour similar to other numerical models regardless of
their origin. However, the type of marginally stable long term behaviour exhibited
by this system seems to be unique to this particular model. Furthermore, since this
behaviour is a product of the numerical model it cannot be stated absolutely tllat;
it is the result of the dynamic stall phenomenon, only that it is the result of this

particular dynamic stall model.

Analytical Modelling of the Return Maps

In order to better understand the complicated behaviour of this system, the first

return map was modelled by the analytical system given below:

—0.6x,, + 0.645, for 0 <=1z, < 0.4 _
Tn+1 = ('32)
(z, +0.6)77, for 04 <=1, <= 1.0
This model of the first return map was obtained by inspection and it should be noted
that it is not identical to the system first return map; it is not multi-valued and the
region being mapped has been scaled to fit the region (0 <= z,, <= 1.0). However,
the general shape of the attractor, shown in Figures 3.18 (a) and 3.19 (b), is captured
by this model with only a single parameter, 7.

In Figures 3.20 (a), (b) and (c) the first return map , the second return map

and the long term behaviour of this analytical system, respectively, are shown for
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the case where the value of v is equal to 11.00. These plots illustrate that the
behaviour of the system is periodic, however, a large number of iterations of the
map are required before the system repeats itself. In Figures 3.21 (a), (b) and (¢)
the value of 4 is increased to 11.05 and, as can be seen from the plots, this almost
imperceptible change in the orientation of the attractor results in a significant change
in the dynamics of the map. The value of v is increased to 11.10 in Figures 3.22
(a), (b) and (c) and the system dynamics once again undergo a significant change
back to a periodic state. It is evident from the plots in Figures 3.20 to 3.22 that for
very small changes in the value of the parameter v, resulting in slight changes in the
orientation of the attractor, a wide range of highly periodic and chaotic responses
can be created.

The Lyapunov spectrum for this analytical system is shown in Figure 3.23 for a
narrow range of values of the parameter . It should be noted that the Lyapunov
exponent for the case where y = 11.00 is greater than zero, which indicates a chaotic
response, however, from Figures 3.20 (a) - (c) it is obvious that the response is not
chaotic. In this case, the periodicity of the map is so large that an infinite number
of itérations of the map would be required for the Lyapunov exponent to approach
zero. These highly periodic states are the dominant type of response for the system
for values of the parameter v in the range (10.0 < v < 13.2).

In Figure 3.24 the region outlined by the boxes in Figure 3.18 (a), which is the
first return map for the case where @, = 1.02 * 10™*, is shown in greater detail.
The internal structure of the attractor consists of short lines or small groups of
data points, similar to those in Figures 3.15(a) and (b). Different combinations of
these groups of data points correspond to different periodic solutions. The quantized

structure of the attractor implies a periodic response because it consists of a finite
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number of groups of points; but, since these groups of points have a two dimensional
structure and are not one dimehsional points, the periodic responses are unstable.

An example of the implications of this quantized internal structure can be seen
from the data for the case where Q, = 1.02 * 107*. According to Figure 3.13 (b),
after aﬁproximately 16500 periods the system begins a marginally stable period-one
oscillation that persists for approximately 4000 periods. In order for a marginally
stable period one oscillation to exist the attractor of the first return map must
intersect the identity line at a slope slightly greater than —1 or slightly less than
+1, otherwise successive iterations of the map will quickly move away from the
intersection point and the period-one oscillation will be unstable. The orientation of
the attractor for the first return map, shown in Figure 3.18(a), shows that the slope Qf:
the attractor at the intersection point is significantly less than —1, therefore, no stable
period-one oscillation should exist. However, as seen in Figure 3.24, the microscopic
structure of the attractor makes it possible for two of the internal structures of the
attractor to intersect the identity line at slopes that result in a marginally stable
period-two oscillation. The two internal structures are so close to the identity line
that, at the normal scale of the Poincaré map, this marginally stable period-two
oscillation appears as a period-one oscillation.

By examining the Poincaré data at the microscopic level, it is obvious that the
internal structure of the attractor plays an important role in the marginal stability
of this type of chaotic response. However, how this particular internal structure

develops is still unclear.

Evidence of Transient Chaos

Continuing the discussion of the long term behaviour of the system, the Poincaré

section for the case where ), = 1.05 * 10™* was obtained for the time interval from



6H

twenty thousand periods to fifty thousand periods of the forcing function. and is
shown in Figure 3.25(a). The long term behaviour of the system, shown in Figure
3.25(b), indicates that the previously described complicated behaviour persists for
up to approximately forty thousand periods, however, after this point a pattern
begins to emerge. This pattern is comprised of blocks, approximately 4000 periods
in length, which repeat themselves. This indicates that the response has undergone
a transition from unpredictable, chaotic oscillations to predictable, quasi-periodic
oscillations.

Further evidence of this transition from chaotic to quasi-periodic behaviour can
be seen by studying the internal structure of the attractor; the region of the attractor
outlined by the box in Figure 3.25(a) is shown in greater detail in Figure 326
The pattern of the attractor repeats itself as the entire structure appears to drift
downward and slightly to the left in the phase plane. It is not unreasonable to
extrapolate these results and assume that if the simulation were allowed to continue
for many thousands more periods the structure of the attractor would trace a closed
curve in the phase plane. As stated earlier, a Poincaré section that traces a closed
curve in the phase plane is indicative of a quasi-periodic response.

The preliminary indications from this very long term analysis of the response
is that the intermittent chaotic oscillations, characterized by phases of periodic
behaviour mixed with phases of quasi-periodic or chaotic behaviour, may be transient
in nature. However, due to the limits imposed by the amount of memory required to
run a simulation of the system for the required 1ength of time, confirmation of the

possible transient nature of the chaos will have to be left for future investigation.
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3.3.2 Case II: Low Frequency, Low Velocity, Intermittent

Chaos

In this section, the system dynamics are analyzed for a case where the airfoil is
forced to oscillate at a relatively low non-dimensional frequency, k = 0.088, low non-
dimensional velocity, {/* = 12.20, and high initial angle of attack, o, = 9.76°. The
response of the system is first presented in a bifurcation diagram in which @), is varied
over a wide range of values, then the region where the response is quasi-periodic or
chaotic is presented in a more detailed bifurcation diagram. The response of the
system is then analyzed for many different test cases within the apparently chaotic
region and for each of these test cases the time histpries, phase plane plots, Fourit;,t

spectra and Poincaré sections are analyzed.

Bifurcation Diagrams

In Figure 3.27, the bifurcation diagram for the case where «, = 9.76°, k = 0.088,
U* = 12.20 and where the value of Q, is varied over the range (5.0 x 107% < Q, <
12.0 #107°) is presented. The large region (6.3 * 10~° < Q, < 7.2 107%), where the
response becomes either quasi-periodic or chaotic, is the main focus of this section.
There are other regions where the response appears to go unstable, for example at
approximately @, = 7.8%10~° and ), = 8.4x107%, however, due to time constraints,
these regions will have to be left for future studies.

The region (6.12 % 107° < @, < 7.30 * 107%) is shown in more detail in Figure
3.28. The response can be seen to undergo many bifurcations as the value of (), is
increased and it appears to be either quasi-periodic or chaotic for Q, greater than
approximately 6.4 x 1075, ‘The general appearance of Figure 3.28 is very similar to

the bifurcation diagram shown in Figure 3.5. The similarities include the gradual
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decrease in the stability of the periodic oscillations and regions of periodic behavionr
that frequently disrupt the apparently chaotic regions. Furthermore, these islands
of periodic behaviour appear and disappear without warning, for example, in Figure
3.28 the region of apparently chaotic behaviour is subdivided by a region of periodic
behaviour near Q, = 6.8 * 107°, and the transitions to periodic behaviour and back
to quasi-periodic or chaotic behaviour are very sudden.

The response of the system in the region shown in Figure 3.28 is studied in more
detail by analysing the timé histories, phase plane plots, Fourier spectra and Poincaré

sections for different test cases.

Case Studies

The case studies analyzed in this section will focus on the values of the parameter
@, for which the response undergoes the transition from periodic behaviour to
quasi-periodic or chaotic behaviour. In the first such region, (6.30 * 10™° < @), <
6.60 * 10~%), the transition is gradual, and in the second region, (6.81 x107° < @, <
7.00 x 107°), the transition is very abrupt.

In Figures 3.29, 3.30 and 3.31 (a) - (d), the time histories, phase plane plots and
Fourier spectra of the responses, for the first transition region, are shown for the
cases where @), equals 6.30 %1075, 6.35% 107%, 6.4 % 10~° and 6.6 + 10~°, respectively.
As can be seen from these Figures, the response is a stable period-five oscillation for
Q, = 6.30* 1'0"5, and as @, is increased to 6.35+ 10~3 the periodicity of the response
increases. Although there are many well defined spikes in the Fourier spectrum of
Figure 3.31 (b), some of these spikes are nearly of the same order as the background
noise. Therefore, it is difficult to define the periodicity of the response. As Q,
is increased further to 6.40 * 107>, the response becomes increasingly higher order

periodic. The time history of the response, Figure 3.29 (c), appears periodic and
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stable, however, the phase plane plot, Figure 3.30 (c), is becoming increasingly
unstable, and the Fourier spectrum, Figure 3.31 (c), shows signs of a period-five
response. It also has a broadband structure indicating that the response is not
stable._ For the case where Qo is increased to 6.60 * 107°, the time history of the
response, Figure 3.29 (d), appears stable, but the phase plane plot. Figure 3.30 (d).
is not characteristic of a stable response, and ﬂle Fourier spectrum, Figure 3.31 (d).
has many subharmonic spikes indicating that the response may be quasi-periodic.

In Figures 3.32 to 3.34 the time histories, phase plane plots and Fourier spectra
are shown for test cases in the second transition region. These test cases are for
Q. equal to 6.815927 * 1075, 6.815928 % 10~ and 7.00 * 107, respectively. Figures
3.32 (a), 3.33 (a) and 3.34 (a) show that for Q, = 6.815927 * 107° the response is»a;
stable period-two oscillation. However, if the value of @), is increased by the slightest
amount to 6.815928+107°, the response immediately becomes unstable, as illustrated
in Figures 3.32 (b), 3.33 (b) and 3.34 (b). In Figures 3.32 (c), 3.33 (¢) and 3.34 (¢),
the response for the case where @, = 7.00 * 107° is also shown to be unstable.

The evidence from the time histories, phase plane plots and Fourier spectra
does not prove that the response goes from periodic behaviour to chaotic behaviour,.
moreover, since the Fourier spectra for smﬁe of the unstable cases show definite
subharmonic spikes, the evidence does suggest that the response may become quasi-
periodic. Conclusive evidence of chaotic behaviour can only be found in the long term
behaviour of the responses, which are illustrated by the P~oincaré data discussed in

the following section.

Poincaré Sections

The Poincaré sections and the long term behaviour of the responses, for each of the

above test cases, are shown in Figures 3.35 to 3.41.
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For the first transition region, the response for the case where ), = 6.30 x 10~°
is a stable period-five oscillation; the Poincaré section, shown in Figure 3.35 (a), is a
five point attractor and the long term behaviour, shown in Figure 3.35 (b), shows five
lines. In Figures 3.36 (a) and (b), Q), is increased to 6.35%107%, and the (:orre;p(mding
Poincaré section shows fourteen distinct groups of data points indicating that the
response is a period-fourteen oscillation, however, the long term behaviour of the
response shows that this periodic oscillation is slightly unstable. As @), is increased
to 6.40 * 1075, the finite number of points shown in the previous Poincaré section
begin to form curves in the phase plane, as illustrated in Figure 3.37 (a). The long
term behaviour of the response, as illustrated in Figure 3.37 (b), shows that the
response has become even more unstable and that it alternates between marginally;
stable phases of periodic and quasi-periodic behaviour. In Figures 3.38 (a) and (b),
the value of @, is increased to 6.60 *x 107> and the corresponding Poincaré section
has become more complex and the long term behaviour shows that the response has
become increasingly unstable.

In the second transition region, the response of the system starts out .as a stable,
period-two oscillation, for the case where Q, = 6.815927 x 10~°, as illustrated in the
Poincaré section and the long term behaviour shown in Figures 3.39 (a) and (b),
respectively. However, as @, is increased only slightly to a value of 6.815928 x 10-%,
the response of the system immediately becomes unstable, as illustrated by the
complicated Poincaré section and long term behaviour shown in Figures 3.40 (a) aﬁd
(b), respectively. The Poincaré section and long term behaviour of the response are
shown in Figures 3.41 (a) and (b), resi)ectively, for the case where @), = 7.00 * 1075,

The long term behaviour of the responses illustrated in Figures 3.38 (b) and 3.41

(b), is very similar in appearance to the responses shown in Figures 3.13 (b) and 3.14
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(b), however, the shapes of the Poincaré sections in these cases are not very similar. In
Figures 3.37 (a) and 3.38 (a) the Poincaré attractors are very complicated structires.
comprised of many curves, whereas, in Figures 3.13 (a) and 3.13 (b), the attractors
are simple structures, comprised of only a few curves. The connection between the
different shapes of the Poincaré sections and the similarity of the responses in these
two cases lies in the internal structure of the Poincaré sections. In Figure 3.42, the
internal structure of the Poincaré section outlined by the box in Figure 3.41 (a) is
shown. The data points seem to be organized in quasi-parallel groups, this type of
internal structure is very similar to the internal structure of the Poincaré section
illustrated in Figures 3.15 (a) and (b). Furthermore, it was shown in the previous
section that this internal structure was necessary for marginally stable periodic aqd:
quasi-periodic states to exist.

The marginally stable, or intermittently chaotic, responses discussed in Cases |
and II are one type of chaotic behaviour that is observed in this system. The route
to this intermittently chaotic behaviour begins with a stable periodic oscillation
and, as the value of @), is increased, this periodic oscillation becomes increasingly
unstable. When the instability is at a maximum the long term response of the system
is dominated by many different periodic and quasi-periodic states which remain stable

for unpredictable lengths of time.



3.3.3 Case III: Low Frequency, High Velocity, Chaos

[n this section, the response of the system is analyzed at higher values of the non-
dimensional velocity than in case I The analysis begins with a series of bifurcation
diagrams that give a general overview of the response and also focus oun the transition
regions where the dynamics are most interesting. Then, several case studies are
presented, the purpose of which is to illustrate the transition of the response from
periodic behaviour to chaotic behaviour. Finally, Poincaré sections are presented
for several different examples within the chaotic ‘r\egion, and these results are then

compared with other theoretical systems that exhibit similar behaviour.

Bifurcation Diagrams

In Figure 23;43, the following system parameters are held fixed: the non-dimensional
frequency, k£ = 0.088, the initial angle of attack, a, = 9.76° and the amplitude of the
non-dimensional externally applied torqﬁe, @, = 0.82 x 10~%, The value of the non-
dimensional velocity, U*, is varied over the range (5.0 < UU* < 28.0). Two separate
regions of chaotic behaviour are shown: the first region, near the low velocity end of
the bifurcation diagram, was studied in the previous section and the second region,
near /* = 25.0, is the main focus of this section.

In Figure 3.44, the value of U™ is fixed at 25.2 and the value of @), is varied over
thé range (0.0 < @, < 1.0 10~%). The amplitude of the response increases as Q,
is increased, and at @, equal to approximately 5.75 * 10~> the response undergoes
a period doubling bifurcation. The response can be seen to undergo another period
doubling bifurcation at approximately @, = 6.5 * 10~° and after this bifurcation
the system quickly becomes unstable, the instability reaches a maximum near

Qo = 7.2%107°, and then restabilizes into a period-two oscillation at approximately



Q, = 9.00 % 107°.

The unstable region, shown in Figure 3.44, is shown in more detail in Figure 3.45.
[n this diagram the period doubling bifurcations are easily identified; as (), increases.
the system undergoes a series of period doubling bifurcations until, at approximately

Q, = 6.90 * 107>, the response appears chaotic.

Case Studies

In this section, the pefiod doubling cascade and chaotic response are verified by
examining a number of different test cases. The period doubling phenomena begins
with the response of the system in a period-one oscillation and, at Q,, equal to
approximately 5.75 * 107, the response undergoes a bifurcation to a period-t\yq:
oscillation. The value of @, is then increased to approximately 6.60 * 10~°, where
the period of the response changes to a period-four oscillation and, at a value of @,
equal to approximately 6.86 * 10™°, the period of the response doubles again to a
period-eight oscillation. For values of (), greater than approximately 6.86 x 1073, the
response is chaotic.

In Figures 3.46, 3.47 and 3.48 (a) to (d) the time histories (for a short time
interval), phase plane plots and Fourier spectra, respectively, are shown for four
different test cases at different values of (), along the period doubling cascade. This
is done in order to verify that the period of the response is actually doubling at each
bifurcation ﬁoint. In case (a) @, = 5.50%107°, the response is a period-one oscillation
and at @, = 6.40 * 107° the response changes to a period-two oscillation, shown in
case (b). In case (c) @, = 6.75  10~°, the response has undergone another period
doubling bifurcation and is a period-four oscillation. As @, is increased beyond this

value the period of the response increases quickly and for case (d) Q, = 6.92 x 10~5,

the response is chaotic.
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According to the bifurcation diagram shown in Figure 3.45, the chaotic behavionr
reaches a maximum near Q, = 7.3 * 107>, In Figure 3.49 the time history. phase
plane plot and Fourier spectra are shown for this case. The Fourier spectrum shows

an obvious broadband frequency characteristic that is typical of a chaotic response.

Poincaré Sections and Maps

In this section, the Poincaré sections, maps and long term behaviour of the system
are shown for several different cases for which the response is chaotic. As the value of
Q, is increased in each case, the Poincaré attractor can be seen to changes its shape
and orientation in the phase plane. The evolution of the Poincaré attractor, maps
and long term behaviour of the response is then compared to the Henon map - d.
~well documented, two-dimensional, analytical map that is known to exhibit chaotic
behaviour - in order to help in discovering the source of the chaotic behavioﬁr.

In Figure 3.50 (a), the Poincaré section for the case in which Q, = 6.90 x 107>
(this is near the onset of the chaotic region of Figure 3.45) is shown. The general
shape of the attractor indicates that the response follows a period-four attractor.
The second return map for this case is shown in Figure‘3.50 (b): twob curves are
located near the larger values of the pitch and two other curves intersect near the
identity line at the lower values of the pitch. The long term behaviour of the response
is shown in Figure 3.50 (c): the four part attractor is evident in this diagram as the
chaotic behaviour is confined to within four distinct bands. The two overlapping
curves of the second return map attractor correspond to the two overlapping bands
evident in the lower values of the pitch.

The Poincaré section for the case where @, = 7.00 * 107° is shown in Figure
3.51 (a). The four part attractor structure, evident in Figure 3.50 (a), has evolved

into a two part attractor; the two pairs of curves of the previous attractor have



(B!

grown to overlap each other’s domain so that only two independent curves can he
distinguished. The second return map, shown in Figure 3.51 (b), illustrates how
these curves have grown into one another. The distinctive feature of this attractor
is the section at the lower values of pitch that resembles an o’ shape. The long
term behaviour of the response, shown in Figuré 3.51 (b), indicates that the chaotic
behaviour is now. confined to within two distinct bands, whﬂe the previous four part
attractor is still partially evident as indicated by the darker sections of the two bands.
The Poincaré section for the case where @, is increased to a value of 7.30 % 107°,
shown in Figure 3.52 (a), is considerably different in appearance from the previous
two cases. In this case, some bending or folding of the attractor is evident. This is
indicated by the two-dimensional banded structure of the attractor - the attractor qo_.
longer appears as a collection of one dimensional curves, but now each independent
curve is composed of a series of parallel curves very closely spaced. In the second
return map, shown in Figure 3.52 (b), the attractor has the same general shape
as for the previous case, but the shape has become more complicated with more
smaller attractors and- a folded type structure. The long term beha,vi.our of the
response, shown in Figure 3.52 (c), is considerably different than for the previous
two cases. The wide bands that contained the chaotic behaviour in the two previous
cases are gone, and they have been replaced with thinner bands. There are at least
eleven distinguishable bands, but, the chaotic behaviour is not always confined within
these bands. At seemingly random intervals the chaotic behaviour will burst out of
| this multi-banded structure for a short period of time, and fill a large, two banded
structure in which the first band contains the upper six bands of the multi-banded
structure and the second band contains the lower five bands of the multi-banded

structure.



In Figure 3.53 (a), the Poincaré section for the case where Q, = 7.60 107" is
shown. The overall shape of this attractor is very similar to the previous case with
the folded type structure still apparent. However, the second return map, shown in
Figure 3.53 (b), has changed considerably in its shape and orientation: the “o/-type
structure of the. previous two attractors is no longer evident and there are at least
six different sections to the new attractor. The long term behaviour of the system,
shown in Figure 3.53 (¢), has also changed considerably from the previous case. The
most significant change is that the double banded structure has returned, indicating
that the response is no longer wandering around the unstable periodic attractor of
the previous case.

The Poincaré section for the case where @, = 8.20 % 1073 is shown in Figure 354
(a) and the second return map is shown in Figure 3.54 (b). The general characteristics
of the two plots are similar to the previous case, however, the long term behaviour
of the response, shown in Figure 3.54 (c), indicates that the dynamics are different.
The two banded structure is still evident, however, at certain times the response can
be seen to change from chaotic to periodic behaviour. These intervals of periodic

behaviour occur several times over the time period studied but, they do not remain

- stable for more than approximately one thousand periods. Furthermore, the dark

and light bands within the double banded structure are aligned with the periodic
regions, this implies that the chaotic behaviour is confined to wander around an

unstable periodic attractor.

In Figure 3.55, a small section of the Poincaré attractor, for the case shown in
Figure 3.51 (a) (@, = 0.7%107%), is illustrated in order to show the internal structure
of the attractor. The data points within the attractor can be seen to be organized

into distinct, quasi-parallel groups of points. This ‘striped’ internal structure was
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also evident in cases [ and Il

Comparison with the Henon Map
The Henon map is given in equation (3.3).

Tpp1 =1 — v +y, (33)
Yug1 = —JTn

It is a two dimensional map that stretches (|J] > 1) or contracts (|J] < 1) and beunds
areas in the x-y plane. The result of many iterations of this map, corresponding
to many contractions and foldings of areas in the phase plane, is that vinforma,tion
about the initial conditions is lost and the behaviour becomes chaotic [Moon, 1987].-
In the examples of this map shown as part of this thesis, the value of J is fixed af
—0.3 and the value of the parameter v is varied. The results of the Henon map, for
different values of the parameter v, are presented and then compared qualitatively
with the results of the Poincaré sections and maps presented in the previous section.
The goal of this qualitative comparison is to gain insight into the possible cause of
the chaotic behaviour of the oscillating airfoil system, by comparing its behaviour

with that of an analytical system.
In Figure 3.56, the bifurcation diagram of x,, versus v is shown for the case where
J is tixed at —0.3 and v is varied from 0.9 to 1.1. The importance of this diagram is
that it shows qualitatively that the route to chaos for this system is period doubling.
The phase plane plot of y,, versus z,, which is similar to the Poincaré section
for a continuous system, for the case where v is equal to 1.065 is shown in Figure
3.57 (a). The attractor, composed of four distinct curves in the phase plane, is
similar in appearance to the four piece attractor shown in Figure 3.50 (a). The

fourth return map for the x variable, shown in Figure 3.57 (b), shares a common
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physical characteristic with the second return map shown in Figure 3.50 (b). namely
the development of a small loop structure near the identity line. The long term
behaviour of the response, shown in Figure 3.57 (¢), is illustrated by plotting each
value of the x variable against the number of the iteration for each data point. This
figure shares the same banded structure as shown in Figure 3.50 (¢). Furthermore.
within these bands can be seen some darker and lighter bands, which is also a common
characteristic of the two systems.

In Figures 3.58 (a), (b) and (c) the value of the parameter v is increased to 1.077,
and the corresponding phase plane plot, fourth return map and long term behaviour,
respectively, are shown. The impbrtaut changes to the attractor are as follows: the
distinct curves of the four piece attractor of the phase plane plot have lengthened;
the loop type structure of the attractor in the fourth return map has become more
pronounced and the bands of chaotic activity, shown in the long term behaviour, have
widened. As the parameter v is increased even further, several important qualitative
changes in the attractor become apparent.

In Figures 3.59 (a), (b) and (c) the value of v is increased to 1.085. The phase
plane attractor, illustrated in Figure 3.59 (a), has developed into a two piece attractor
and the shape of each of the curves has developed a folded appearance. This folded,
two piece attractor is qualitatively very similar to the attractor shown in Figure 3.51
(a). Also, the pronounced loop type structure of the fourth return map, shown in
Figure 3.59 (b), is similar to the type of structure seen in the second return map of
Figure 3.51 (b). Furthermore, the long term behaviour of the system, illustrated in
Figure 3.59 (c), shows the same double banded structure with dark and light internal

bands as the long term behaviour of the system illustrated in Figure 3.51 (c).

While it is not surprising that the oscillating airfoil system becomes chaotic
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after a series of period doubling bifurcations, similar to the Henon system. it is
very surprising that the Poincaré sections and maps and the long term behaviour
of a system designed to model an aerodynamic system should strongly resemble
the corresponding plots of a system designed to model the contraction and folding
of areas in the phase plane. The Henon map is known to become chaotic due to
the fact that the stable and unstable manifolds of the Poincaré section intersect

an infinite number of times in the phase plane. The result is that if a Poincaré
point lies near one of these intersection points it will be mapped to all the other
iutersec‘tion points in future iterations, the curve on which these points lie is called
a homoclinic orbit [Moon, 1987]. It cannot be proven that the stable and unstable
manifolds of the oscillating airfoil system intersecf and that a homoclinic orbit exist»sz'
(if it can be proven it is well beyond the scope of this thesis), but, homoclinic orbits
are known to be of fundamental importance in the type of chaotic behaviour found
in horseshoe~ty§é maps such as the Henon map. The similarities in the Poincaré
data of the oscillating airfoil system and the Henon system suggest that the chaotic
behaviour in both systems may be caused by the same type of phenomena, namely,
the existence of a homoclinic orbit. However, due to the overwhelming (:01111)l§xity'
of proving such a link between the two systems, further study along these lines will

have to be left as a possible topic of future research.
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3.3.4 Case IV: High Frequency, High Velocity, Chaos

The fourth type of chaotic behaviour found in the single degree of freedom system
involves high non-dimensional velocities and higher frequency oscillations than in
the previous cases. The analysis begins with bifurcation diagrams, in which the non-
dimensional frequency, k, or the non-dimensional forcing amplitude, ¢,. are varied,
which pinpoint the regions of chaotic behaviour. Next, a series of examples are
presented that focus on the transition to chaos and the types of bifurcations which
the system undergoes. Finally, Poincaré sections and the long term behaviour of the

response, for several different chaotic cases, are presented.

Bifurcation Diagrams

The bifurcation diagram shown in Figure 3.60 illustrates how the maximum
amplitude of the response changes as the non-dimensional frequency, k&, is increased
for the case where o, = 7.62°, U* = 20.265 and @, = 8.40 x 10~°. The maxinmm
amplitude of the resﬁqnse occurs at a frequency of approximately k¥ = 0.068, this
implies that the natural frequency of the entire system, including the aerodynamics,
lies near this value. For completeness the structural natural frequency of the system
is shown on the plot in order to illustrate that the two frequencies are not the same.
The response becomes either quasi-periodic or chaotic at a value of approximately
k = 0.150, and then restabilizes at approximately k& = 0.215.

In the next bifurcation diagram, shown in Figure 3.61 (a), the initial angle of
attack, ,, and the non-dimensional velocity, /*, remained unchanged at 7.62° and
20.265, respectively, and the frequency was fixed at k¥ = 0.156 while Q, was varied
over the range (0.00 < @, < 1.50 * 10™*). The plot illustrates a number of different

characteristics of the response: the maximum amplitude of the response generally
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increases as (), increases, secondly, the response undergoes a series of bifurcations
that eventually lead to an unstable response, and finally, the observed unstable
response persists over a wide range of values of @), before it restabilizes in a period-
two oscillation.

The bifurcation diagram shown in Figure 3.61 (b) is a detailed view of the
transition region of Figure 3.61 (a). In this plot the bifurcations leading to the
chaotic response are clearly visible. At @), equal to approximately 3.40 * 1073, the
response changes from a period-one oscillation to a period-four oscillation and then,
at Q, equal to 3.90 * 1073, the response changes from period-four to period-six. The
response undergoes another bifurcation at @), equal to approximately 4.15 % 1075 to
a higher ordef periodic oscillation and then, at Q, equal to 4.24 x 10~° the respougé

suddenly becomes unstable and may be chaotic.

Case Studies

The four case studies discussed in this section are from the different regions of Figure
3.61 (b) where the response changes to higher order periodic states leading to the
potentially chaotic region. The values of @, for these test cases are: (a) 3.6%107°, (b)
4.0%107%, (c) 4.2%107° and (d) 4.3+ 1073, all of the other system parameters remain
the same as in Figures 3.61 (a) and (b): a, = 7.62°, U* = 20.265 and k = 0.156.

Iﬁ Figures 3.62, 3.63 and 3.64 (a) - (d), the time histories, phase plane plots and
Fourier spectra for each of the four values of @, are shown, respectively. In case (a),
the value of @), is 3.6 * 1075, and the response is a stable period-four oscillation, in
‘ca,se (b) the value of Q, is increased to 4.0 * 10~° and the period of the response
increases to period-six. In case (c) the value of Q, is increased to 4.2 * 10~° and
from the time history and Fourier spectrum the response can be seen to be a stable

period-nine oscillation. In case (d), the value of @, is increased to 4.3 * 10~° and is
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within the unstable region of Figure 3.61 (b). As indicated by the phase plane plot.
the response does not repeat itself ovér the sampled time period (the time history
does not show all of the data that was sampled to obtain the phase plane plot and
Fourier spectrum). Furﬂlettllore, the Fourier ;pectrum shows a definite spike at the
forcing frequency, k = 0.156, and a broadband spectrum in the subharmonic range
which is typical of chaotic signals.

An important point to note regarding the above case studies is that the respouse
of the system does not period double before the onset of the chaotic behaviour, as
was the case‘ in the previous section. However, the system does undergo a series

of bifurcations that increase the periodicity of the response until, at a value of the

forcing amplitude of approximately 4.24 * 103, the response becomes chaotic.

Poincaré Sections

In this section, the Poincaré sections and long term behaviour of the response are
illustrated for three different test cases within the unstable region of Figure 3.61 (b),
and one high frequency test case from case I.

In Figures 3.65, 3.66 and 3.67 (a) and (b), the Poincaré sections and long term
dynamics of the response are illustrated for these three different test cases. In each
case, the parameters o, = 7.62°, k = 0.156 and U* = 20.265 are the‘same and only
the value of @, is different.

The attractor shown in Figure 3.65 (a), for the case where Q, = 4.30%10~5, has a
definite structure within the phase plane that is characteristic of a strange or chaotic
attractor; the data points are formed into a complex but highly organized structure
comprised of many intersecting curves. The long term behaviour of the response,
shown in Figure 3.65 (b), has the same general type of pattern found in cases [ and

IT (the intermittent type chaos), however, in this case, the response always returns to
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the same periodic oscillation after each outburst of chaotic behaviour. This indicates
that the response is under the influence of a weak periodic attractor.

In Figures 3.66 and 3.67 (a) and (b), the Poincaré sections and long term
behaviour of the system are illustrated for the cases where Q, = 4.45 % 10™% and
Q, = 4.70 * 1073, respectively. The similarity between the shapes of these two
Poincaré attractors is unmistakable, in fact they are nearly identical. The differences
between these Poincaré attractors and those of cases [, II and III (see Figures 3.13
(a), 3.40 (a) and 3.51 (a), respectively) is also evident; the Poincaré attractors for
these high frequency chaotic cases have more of a two-dimensional structure than the
attractors in the other lower frequency chaotic cases. From Figures 3.66 (b) and 3.67
(b), it can be seen that the long term behaviour is not confined to within deﬁnipe.‘;
“bands, as in case III, and is not intermittent or mafginally stable, as in cases | and
[1, although there are regions in Figure 3.66 (b) that appear periodic they are very
unstable and quickly disappear.

In general, the type of chaotic behaviour found in this high velocity - high
frequency case is different from the previous cases in at least one significant way:
the high frequency chaotic response is much more gnpredictable or chaotic than the
lower frequency chaotic responses. The meaning of the term predictable can best be
defined as how close the response is to being stable or periodic. This difference in
behaviour is best illustrated by comparing the time histories of the response for test
cases from e;.ach of the four cases studied, as shown in Figures 3.68 (a) - (d). The
responses illustrated in Figures 3.68 (a) through (c) have been shown in previous
sections to be chaotic, however, these oscillations do not appear to be completely
unstable - in other words, the position of the airfoil ca,n.not be predicted exactly

from a previously known position, however, the oscillations do not tend to behave



N3

in an extremely erratic manner either, therefore, these responses can be described
as only ‘weakly’ chaotic. On the other hand, the response illustrated in Figure 3.68
(), for the high frequency chaotic case, is extremely unpredictable. This response
has regions of small amplitude oscillations and regions of large amplitude oscillations
that appear at seemingly random intervals and when compared with the three other
cases is far more unstable. Therefore, this response is characterized as ‘strongly’
chaotic.

The type of behaviour illustrated in Figures 3.65 - 3.67 is typical of the
behaviour that is found when the system is forced at a frequency in the range
(0.150 < k < 0.185), with large initial angles of attack and high velocities. For
example, in Figures 3.69 (a) and (b), the Poincaré section and long term behavioqr,:
respectively, are shown for the case in which a, = 8.90°, k = 0.165, U~ = 21.0227
and @, = 1.02 x 10~%, this is é high frequency case using other parameters equal to
those for case | (see Figures 3.13 (a) and (b)). The Poincaré attractor and the long
term behaviour are remarkably similar to the cases shown in Figures 3.65 - 3.67. The
complicated internal structure of this Poincaré attractor is revealed in the magnified
view shown in Figure 3.70. On the microscopic scale, the data points are organized
into well defined groups of parallel curves and are not randomly distributed within
the attractor. This internal organization of the data points, or fractal structure, is a
characteristic of all chaotic, or strange, attractors [Moon, 1987].

The instability of the numerical method (discussed in Chapter 2) is evident
in Figure 3.68 (b). The solution converges for approximately nineteen thousand
periods of the forcing ﬁmction, and then it diverges. The error at each time step
is approximated by the difference between the predictor and corrector values of the

pitch. This estimated error is usually well below the predetermined tolerance level



(1 * 107%), but the high-velocity chaos is prone to sudden large increases in the
amplitude of the response which causes sudden increases in the estimated error.
Occasionally, these increases in the estimated error become greater than the toléranoe
level and the time step cannot be accepted. It is not obvious what causes these
large increases in the estimated error but, in the future, a more accurate method
of calculating the predictor values of the pitch and pitch rate may decre#se the

magnitude of the estimated error and allow the simulation to continue.

st - e |
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behaviour of the analytical system given by equation (3.2) for the case of v = 11.00.
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(c) @, = 0.640 x 10~* and (d)

Q, = 0.660 + 10~*.
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Figure 3.69: (a) The Poincaré section and (b) the long term behaviour of the system

for the case: Qo = 1.02 1074, o, = 8.90°, F* = 21.0227 and k = 0.170.
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Chapter 4

The Two Degree of Freedom

System

The non-dimensionalized aeroelastic equations for the two degree of freedom airfoil

system, first introduced in Chapter 2, are given below:

: ; @, (@, 1 P(s)b
€+xaa+2€€ﬁ£+ (U*)2€ - —;;CN(S)+ mU? (41)
sof 12+ 2R 1 Taa = gy () 4 2L (4.2)

U+ (U*)? M mU?
where (, and (¢ are the viscous damping ratios in the pitch and plunge degrees
of freedom, respectively, @ = we/w, is the ratio of uncoupled natural frequencies
in pitch and plunge and U* = U/bw, is the non-dimensional velocity. The airfoil
air-mass ratio is defined as u = m/rpb?, where m is the airfoil’s mass per unit
span, p is the air density and b is the semi-chord. The non-dimensionalized radius
of gyration about the elastic axis is r4. Cn(s) and Cp(s) are the lift and moment
coeflicients, respectively, taken about the elastic axis and P(s) and Q(s) are the
externally applied force and torque, respectively, applied at the elastic axis. In all

of the cases studied as part of this thesis the externally applied force P(s) and the
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viscous damping ratios, (, and (¢ are zerobfor all time. The two degree of freedom
system is illustrated in Figure 4.1.

As mentioned in Chapter 2, the effect of the plunge degree of freedom on the
aerodynamic loads is taken into account by a linear approximation: if the magnitude
of the plunge motion is small compared to the pitch motion, then the effect of the
plunge motion on the aerodynamic loads can be assumed small compared to the
effect of the pitch motion. Therefore, for small plunge motions, the aerodynamic
loads are predominantly a function of the pitch motion and the small adjustments
for the plunge motion can be accounted for by superimposing linear aerodynamic
theory (please see [Mazelsky, 1952] and [Mazelsky and Drischler, 1952]). Without
this assumption calculating the aerodynamic loads becomes a very complicated
problem that is beyond the scope of this thesis.

There are at least two flaws with the assumption of linear plunge motion effects.
First of all, it is only strictly valid for large values of @ and when the flow around the
airfoil is attached. Therefore, when the airfoil is stalled this assumption is invalid
and, in reality, the effect of the plunge motion on the aerodynamic loads is not well
understood. Secondly, by adding the effects of the plunge motion to the aerodynamic
loads as a linear correction the aerodynamic model fails to account for the effect of
the plunge motion on the dynamic stall events. Thus, the effect of the plunge motion
on the three main dynamic stall parameters, app, syt and agg, is not taken into
account.

Despite the flaws mentioned above, and for lack of more detailed theory, the
assumption of linear plunge motion effects is maintained and the results presented

in this chapter are based on this assumption.
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4.1 Discussion of Results

As previously stated, the assumption that the effects of the plunge motion on the
aerodynamics can be linearized is an essential part of the analysis presented here
and, since the subsequent error due to this assumption is unavoidable, the analysis
of the two degree of freedom system attempted herein is limited in scope. The goal
of the analysis is to determine the effect of plunge motion on the chaotic oscillations
discussed in the previous chapter, and also to qualitatively show the effect of the ratio
of natural frequencies, @, on the stability of the system. The time history, phase plane
plot and Fourier spectrum are presented for a typical chaotic case and the effect of
the ratio of natural frequencies on the stability of the response is presented in a series
of bifurcation diagrams. The effect of the plunge motion on the long term stability.

and behaviour of the system is explored through the use of Poincaré sections.

4.1.1 The Effect of Adding Plunge Motion to a Typical

Chaotic Case

The example studied in this section is a two degree of freedom version of case I
(see section 3.3.1) with the following values of the system parameters: «, = 8.90°,
Q, = 1.02 x 1074, U* = 21.0227, k = 0.044 and the ratio of the natural frequencies
is @ = 10.67.-

In Figure 4.2 (a), (b) and (c), the time history, phase plane plot and Fourier
spectrum, respectively, are presented for a short time interval of the response of the
airfoil in pitch. The effect of the plunge motion on the response is not evident in
the time history of the response, but, the phase plane plot clearly shows the effect

of the plunge motion, especially when compared with the single degree of freedom
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case, shown in Figure 3.9 (c). The plunging motion superimposes fluctuations on the
pitch and pitch rate of the airfoil which are evident in the 'wavy’ appearance of the
phase plane plot. The Fourier transform of the response contains the same general
characteristics as in the single degree of freedom case; the main frequency components
are at the forcing frequency and higher order harmonics and the broadband structure
of the spectrum between these frequencies indicates that the response is probably
chaotic. The higher frequency components, present at approximately k& = 0.570,
are due to the higher non-dimensional structural natural frequency of the plunge
motion. The non-dimensional structural natural frequency of the plunge motion can
be calculated as approxima,tel}; @/U* = 0.508 and the plunge natural frequency of
the system will be slightly higher due to the effect of the aerodynamics.

The time history, phase plane plot and Fourier spectrum of the response of the:
airfoil in plunge, for the same set of conditions as above, are shown in Figure 4.3 (a),
(b) and (c), respectively. The high frequency components of the plunge response,
caused by the high plunge natural frequency, are evident in the time history of the
response; a high frequency, small amplitude oscillation is superimposed on the main
frequency of the response, which is at the forcing frequency. The high frequency
components of the plunge response are also evident in the Fourier spectrum at
approximately & = 0.570. The phase plane plot of the plunge response does not
repeat itself over the time interval shown and the Fourier spectrum of the plunge
response has a broadband structure with peaks at the forcing frequency and higher

order harmonics. Together these plots suggest that the response may be chaotic.
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4.1.2 The Effect of the Ratio of Natural Frequencies on the

Stability of the Response

In this section, the effect of the natural frequency ratio, @, on the stability of the
system in pitch and the long term behaviour of the system is studied through the
use of a series of bifurcation diagrams and Poincaré sections. Two separate examples
are examined: the first is from case I (see section 3.3.1) for which «, = 8.90°,
Q. = 1.02 % 10~%, U* = 21.0227, and k = 0.044; and the second is from case III (see

section 3.3.3) for which o, = 9.76°, @, = 0.70 * 1074, U* = 25.20, and k = 0.088.

Example One

The bifurcation diagram, shown in Figure 4.4, shows the effect of increasing @ on.
the stability of the pitch response for the case of o, = 8.90°, Q, = 1.02 % 10‘4,‘
U* = 21.0227, and k = 0.044. As can be seen from the diagram, when @ is less than
approximately 6.8, the response of the system is stable and periodic. However, as
the value of @ is increased beyond this value the response suddenly changes from
a stable periodic oscillation to what appears to be a chaotic oscillation. For @
greater than approximately 10.0, the response appears to always be chaotic. This
bifurcation diagram suggests that decreasing the ratio of natural frequencies can have
a stabilizing effect on airfoils undergoing chaotic oscillations due to dynamic stall.
In Figure.4.5 (a), (b) and (c), the Poincaré sections are shown for three different
~values of @. In each case the system parameters are the same as in the bifurcation
diagram shown in Figure 4.4, but, @ is equal to 8.54, 10.67 and 13.81 for the three
cases, respectively. In Figure 4.6, the Poincaré section for the corresponding one

degree of freedom system (@ is infinite) has been reproduced because the effect of

the plunge motion on the Poincaré attractors can best be seen when these three
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sections are compared to the single degree of freedom case. The main curves that
make up the one degree of freedom attractor can be identified in the two degree of
freedom attractors but, they have been twisted into slightly modified orientations in
the phase plane. These new orientations have a more two-dimensional appearance
than the corresponding one degree of freedom attractor.

Figure 4.7 (a), (b) and (c) shows the long term behaviour of the system for
the same cases discussed above and, in Figure 4.8, the long term behaviour of the
system is shown for the corresponding one degree of freedom case. As can be seen
from the diagrams, the marginally stable, intermittently chaotic behaviour, described
in section 3.3.1, persists in the two degree of freedom systems with one interesting
change. In the one degree of freedom case, a single marginally stable periodic state,
such as the period-one oscillation beginning after approximately 17 000 periods, does’
not reoccur. However, in each of the two degree of freedom cases there is at least
one marginally stable state that can be seen to repeat. For example, in Figure
4.7 (a) there are two stable periodic states that repeat; the first is approximately
a period-twenty oscillation located at the beginning of the data and again after
approximately 3000 periods and the second is a period-three oscillation which occurs
after approximately 11 500 periods and again after approximately 14 500 periods.

This behaviour implies that while the one degree of freedom case wanders through
a seemingly endless array of different marginally stable periodic attractors and never
shows any indication of favouring one over the other, the two degree of freedom cases
may wander near certain more favourable periodic attractors. Thus, it is possible
that one of the effects of adding the plunge degree of freedom is to increase the

strength of certain periodic attractors and in so doing increase the stability of the

system.
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Example Two

The bifurcation diagram shown in Figure 4.9 (a) is for the case a, = 9.76°,
Q, = 0.70 * 10~*, U* = 25.20, k¥ = 0.088 and the ratio of natural frequencies, @,
is varied from 7.00 to 70.00. As can be seen from the diagram, the chaotic behaviour
of the system is greatly influenced by the value of @. As @ is varied, the response
of the system undergoes many bifurcations alternating between regions of periodic
and chaotic behaviour. In Figure 4.9 (b), the region of the bifurcation diagram
for which the value of & is varied from 40.00 to 50.00 is shown in greater detail.
From this magnified view of the bifurcation diagram, it is evident that the response
is very sensitive to small changes in @. The fact that the response is sensitive to
small changes in the ratio of natural frequencies for very small amplitude plunge
oscillations implies that one of the effects of adding even a small amount of plungej
motion can be to stabilize the response of the system. However, the results shown
here indicate that this newly acquired stability is very fragile. In other words, a small
change in the ratio of natural frequencies could cause the response of the system to
change from periodic to chaotic.

In Figure 4.10 (a), (b) and (c), the Poincaré sections for three different values
of @ are shown. In each of these examples the following system parameters remain
constant: o, = 9.76°, Q, = 0.70 x 104, U* = 25.20, k = 0.088 and the values of
@ are 44.00, 46.50 and 48.00, respectively. In Figure 4.11, the Poincaré section for
the corresponding one degree of freedom system is reproduced for the purpose of
comparison. As in Example One, the effect of the plunge motion on the Poincaré
section is to create waves on the attractor that cause it to change its shape and
orientation in the phase plane. These changes in the orientation of the attractor lead

to different types of long term behaviour of the response.
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The long term behaviour of the three different two degree of freedom systems are
shown in Figure 4.12 (a), (b) and (c), respectively and the long term behaviour of the
one degree of freedom system is shown in Figure 4.13 for comparison purposes. In
Figures 4.12 (a) and (c), the Poincaré data points are confined to within two bands,
each band having its own internal structure of light and dark coloured bands; this
behaviour is very similar to the single degree of freedom case shown in Figure 4.13.
However, in Figure 4.12 (b), the Poincaré data points are loosely grouped into many
more thinner bands, with occasional outbursts of data points outside of these bands.
This behaviour is very similar to the type of behaviour exhibited by the one degree
of freedom case for which a, = 9.76°, @, = 0.73 x 10™*, U* = 25.20 and k = 0.088
which is reproduced in Figure 4.14.

The aforementioned examples of the Poincaré sections for three separate values of
@ illustrate that the long term behaviour of the system is very sensitive to changes in
the ratio of natural frequencies, even for very small plunge oscillations. Furthermore,
by changing the value of @ the long term behaviour of the two degree of freedom
system can change in such a way as to mimic the changes of the one degree of
freedom system as (), is varied. Both Example One and Two indicate that despite the
assumptions that the effect of plunge motion on the aerodynamic loads is small and
the plunge motion itself is small, the stability of the system can be very sensitive to
changes in the ratio of natural frequencies. This causes some concern about whether
it is reasonable to assume that the effect of plunge motion on the aerodynamic forces
is small. Thus, until an improved two degree of freedom model of dynamic stall is
developed, the usefulness of further work on the two degree of freedom system is

questionable.
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Chapter 5

Conclusions and

Recommendations

In this thesis, the dynamic response of a linear structural airfoil forced to oscillaté
at high angles of attack was studied. In the discussion sections, many conclusions
about the dynamic behaviour of the airfoil system were made and, in this section,
fhe most important of these conclusions are summarized and recommend&ions as to

the direction of possible future research are given.

5.1 The Dynamic Stall Model

The Bielawd model of the dynamic stall process, discussed in Chapter 2, was
developed based on windtunnel tests of airfoils constrained to oscillate in simple
harmonic motion. As can be seen from the results of this model compared with
experiment, shown in Appendix A, the model predicts the aerodynamic forces very
well for airfoils oscillating in simple harmonic motionlin pitch. However, this model

has two main weaknesses tliat need to be addressed.
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The Bielawa model of dynamic stall is based on the assumption that as an airfoil
oscillates in dynamic stall a series of dynamic stall events occur in a specific order. It
was found that, for an airfoil undergoing a general type of motioxi. these dynamic stall
events do not always occur in this predetermined order. The result is that, in some
cases, the dynamic stall model will predict aerodynamic forces that are discon.tinuous
in the time domain. This problem was rectified by incorporating exponential terms
into the model that make the aerodynamic loads at least piece-wise continuous in
the time domain.

Another weakness of the dynamic stall model utilized herein is that it does not
take into account the effect of the plunge degree of freedom on the main events of
dynamic stall. Therefore, the results obtained in this thesis for the two degree of

freedom airfoil system must be interpreted with this assumption in mind.

5.2 The One Degree of Freedom System

For the single degree of freedom system, discussed in Chapter 3, it was found that
the nonlinearities present in the aerodynamic forces were sufficient to cause chaotic
responses for several different values of the system parametérs. Furthermore, the
characteristics of the chaotic behaviour were found to differ substantially in some of
these cases.

The first case of chaotic behaviour occurs at low values of the non-dimensional
frequency and high values of the non-dimensional velocity. The type of behaviour
exhibited by the system was classified as a marginally stable, chaotic response. This
type of response is characterized by long periods of time in which the response

is periodic, interrupted by periods of chaotic motion. The response also showed a

tendency to change from one periodic state to another in a seemingly random fashion.
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This marginally stable behaviour was shown to be neither type [ nor type 11 classical
intermittent chaos. However, the behayiour was defined to be intermittently chaotic
because of two main characteristics: the system spends most of its time in some.
type of periodic oscillation, and the response can only be defined as chaotic, or
unpredictable, if it is analyzed for a sufficiently long period of time.

Systems that exhibit classical intermittency can remain in a periodic oscillation
for a very long period of time, but, eventually the response is interrupted by a
short burst of chaotic activity and then the system returns to the original periodic
oscillation. However, this system tends to remain in one type of periodic oscillation
for a long period of time, until it is interrupted by a short burst of chaotic activity
and then, instead of returning to its original periodic oscillation, the response changes
to a new and different periodic oscillation. Furthermore, after many of these chaotic
outbursts have been observed, there does not appear to be any preferred periodic
state. In other words, the response wanders through a seemingly endless supply of
periodic attractors.

The intermittent chaotic behaviour exhibited by this system was shown to be
related to the microscopic internal structure of the chaotic attractor. The general
shape of the first return map attractor was modelled by a simple set of equations
and it was found that many differenp high-order periodic and chaotic states could be
achieved by small changes in the orientation of this attractor in the‘ phase plane.
The Poincaré data of the aeroelastic system tends to be organized into a finite
number of quasi-parallel groups of data points. The tendency of the Poincaré data
to organize into these groups and not definite points allows the response to wander
from one attractor to the next. Moreover, the orientation of these quasi-parallel

groups occasionally permits the existence of marginally stable low-order periodic
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oscillations. These periodic oscillations can persist for thousands of periods of the
forcing function before going unstable.

There is evidence that this intermittent chaotic behaviour may be transient in
nature. If the system is allowed to run for a very long time, it was shown that the
response will eventually settle into a quasi-periodic os‘cillation. However, in general,
the intermittent chaos persists for such an extremely long time (greater than thirty
thousands periods of the forcing function) that it is not feasible to do an extensive
analysis to determine if the intermittent chaotic behavioqr is always transient.

The second case of chaotic behaviour was found to occur at much lower values
of the non-dimensional velocity and at a slightly higher non-dimensional frequency
than the first case. In this case, the shape of the Poincaré attractor was much
more complicated than the first case but the same typé of intermittent chaotic
behaviour was shown to occur. It was also shown that for very small changes in the
amplittide of the forcihg function the response could suddenly change from stable
and periodic behaviour to the intermittently chaotic behaviour discussed previously.
This transition from ﬁeriodic to chaotic behaviour could not always b.e predicted
from the behaviour of the system prior to the bifurcation.

The similarities in the long term behaviour of the response shared by the first two
case studies are undeniable. The intermittent chaotic behaviour was shown to exist
at low values of the non-dimensional frequency for both high and low values of the
non-dimensional velocity. This marginally stable long term behaviour of the system
is only one type of chaotic behaviour predicted by the modified Bielawa model of
dynamic stall.

The third type of chaotic behaviour for the single degree of freedom system

was found to occur at relatively low non-dimensional frequencies and high non-
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dimensional velocities. As the amplitude of the forcing function was increased. the
response of the system was found to undergo a series of period doubling bifurcations
that eventually lead to chaotic oscillations.

The period doublhig route to chaos has been found to exist in many noulinear
systems; one such system is known as the Henon map. The Poincaré sections and
maps that were obtained for this case study were compared qualitatively with those
of the Henon map and many similarities were found to exist. Firstly, the two systems
both become chaotic via the period doubling route. Secondly, the Poincaré attractors
both consisted of a set of curves in the phase plane that appeared to fold back
on themselves as a given system parameter was increased. Finally, the long term
behaviour of both systems were found to be similar; the Poincaré data points were
confined to within definite bands.

The Henon map is known to go unstable due to the infinite number of
intersections of the stable and unstable manifolds of the Poincaré attractor. The
intersection points of these two manifolds is called a homoclinic orbit. Further work
is necessary to prove the existence of a homoclinic orbit in the aeroelastic system, but
the similarities in the chaotic behaviour of this system and the Henon map suggest
that the presence of a homoclinic orbit is the possible cause of the chaotic behaviour
found in this particular case.

The final type of chaotic behaviour that was discussed in the single degree of
freedom section was found to occur at relatively high non-dimensional frequencies
and high non-dimensional velocities. The type of chaotic behaviour found in this
case was shown to be more unstable than the previous cases.

A characteristic of the type of chaotic behaviour found in this case was a tendency

for the amplitude of the response to suddenly increase. These outbursts of large
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amplitude oscillations appear irregularly and do not last for a very long time, but.
they are accompanied by sudden increases in the estimated error of the numerical
scheme. This increase in the estimated error occasionally exceeded the pre-defined
tolerance limit of the numerical methovd and the corrector iteration diverged. The
divergence of the solution was found to occur even after many thousands of cycles
of motion for which the numerical scheme converged. Further work is required to
determine if the divergence of the response is a property of this type of chaotic

behaviour or if it is due to the numerical procedure.

5.3 The Two Degree of Freedom System

The second degree of freedom, plunge motion, was added to the system with the
assumptions that the motion must be small compared to the pitch motion and that
the effect of the plunge motion on the main events of dynamic stall are small enough
to be ignored. These assumptions, if correct, permit the use of linear aerodynamic
theory to calculate the aerodynamic forces due to the plunge motion. Since the
plunge degree of freedom was added as a linear approximation, the scope of the
investigation of the two degree of freedom system was limited to a discussion of the
effect of the plunge motion on the chaotic dynamics of the single degree of freedom
system.

When the system ﬁarameters are set to values that cause the response of the
single degree of freedom system to be chaotic, the stability of the response can be
strongly influenced by the addition of a very small amount of plunge motion. The
stability of the response was also found to be very dependent on the ratio of thé
natural frequencies in pitch and plunge. A small change in this ratio can change the

response of the system from periodic to chaotic oscillations or vice-versa.
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The sensitivity of the response of the system to the addition of small amplitude
plunge motion and changes in the ratio of natural frequencies suggests that the
assumption of small, linear effects of the plunge motion on the aerodynamic forces
may not be valid. Further research into the two degree of freedom airfoil system
with nonlinear aerodynamic forces requires a model of dynamic stall that explicitly
incorporates the effect of plunge motion on the main events of dynamic stall and the

unsteady aerodynamic forces.
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Appendix A

Coefficients of the Dynamic Stall

Model

In this Appendix, the coefficients of the dynamic stall model are listed.

A-1



A-2

The coefficients of the dynamic stall model are:

" P, = 10.593687777057760; P; = 10.832854524817120; P; = —0.018632566823462;
Py = —1.367529319089629; P; = —4.164299690698649; Ps = —0.184990006133694;
Py = 0.051047607973315; Py = 0.382202466218984; P, = 2.669455333726313;
Pio = ~1.743978009850223

Q: = —1.757201145145348; Q, = —0.082550541677624; Q3 = 0.006018886629636;
@4 = —0.062061284628051; Qs = 0.048939583548136; Qs = —0.777320074011365;

Q7 = —5.964050461851018

B1 = 0.18; Cur = 16.6502; Cyp = 54.9273; Cwar = 10.5179; Cwpr = —8.6689;
Car = 54204; C,r = 0.4884; ¢ = —0.0139;



Appendix B

Comparison of the Modified

Bielawa Model with Experi‘ment'

This Appendix contains graphical comparisons of the lift and moment coefficients
predicted by the modified Bielawa dynamic stall model with the experimental lift
- and moment coefficients obtained by Gray, L. and Liiva, J. (1968) for the NACA
0012 airfoil. The lift coefficient data is given first followed by the moment coefficient

data.
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Appendix C

Coefficients for the Recursive

Matrix

The complete equations for a, and §,, from equation (2.29) are:

237,
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where the following definitions apply:
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where € is the constant time step size and the coefficients, a,...as are the

coefficients of equations (2.25) and (2.26). These coefficients are given below:

a) = Tq (C.g) '
w
as = 2(5@ (CIO)
U‘Jz
aq4 = -—'7;;; (012)
= p? |
as =r; (C.13)
2r2 (.
ag = ;;'G (C.14)
2
a7 = -2 (C.15)
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Appendix C

Coeflicients for the Recursive
Matrix

The complete equations for a, and ¢, E?Equuation (2.29) are:

- Zaay (R
|
|

& Dupe. }?][zs‘— 2o (C2)

where the following

RS —

Z, = 2o - (C.3)

62 as .

2 »llae ar

Zy = — 4+ — )
=Gt 5em T a (C.4)
a 1 5  3Jag 4 3
Zs= CM,.(;%) + Q"(a_s) + aﬂ*l(e‘—g + ;;;) —aua(5 + 5;%)+
sl + 3 bar(5 D) ~ a5 ) + bs(5 D) (5
"R T 3ea, n1l el g "2 g "_3(62 a5) (C.5)

C-1



