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• ABSTRACT 

The aeroelastic system studied in this thesis is a rigid NACA 0012 airfoil flexibly 

suspended in a subsonic. flow and forced to oscillate at high angles of attack. In 

this thesis, a qualitative, analysis of the chaotic behaviour caused by the nonlinear 

aerodynamic forces of dynamic stall is presented. 

A semi-empirical numerical model of dynamic stall is utilized to predict the 

non linear aeroelastic forces due to the pitch motion of the airfoil and the aerodynamic 

forces due to the plunge motion are superimposed using linear aeroelastic theory. The 

structural forces are modelled using linear torsional and translational springs and the 

structural damping is neglected. 

Four different types of chaotic behaviour are presented for the single degree 

of freedom (pitch) system. The first two cases show that, under certain conditions, 

• marginally stable periodic attractors and chaotic attractors can exist simultaneously. 

In the third case, the amplitude of the forcing function is increased and the system 

is shown to undergo a series of period doubling bifurcations enroute to chaos. The 

fourth case shows that chaotic vibrations at relatively high forcing frequencies may 

cause divergent oscillations. 

The analysis of the two degree of freedom (pitch and plunge) system is limited to 

studying the effect of small amplitude plunge oscillations on the stability of two of the 

aforementioned single degree of freedom cases. The analysis shows that the stability 

of the system is very sensitive to changes in the ratio of the natural frequencies of 

the system . 
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SOMMAIRE 

Le systeme aeroelastique etudie dans cette these est un profil rigide N A< ~A 

0012 place dans un ecoulement subsonique et soumis a des oscillations forcees a des 

angles d'attaque eleves. Dans cette these, une analyse qualitative du comportement 

chaotique provoque par les forces aerodynam.iques nonlineaires dues au decrochage 

dynamique est presentee. 

Un modele numerique semi-empirique du decrochage aerodynamique est utilise 

pour predire les forces aeroelastiques nonlineaires dues a la rotation du profil, et 

les forces aerodynamiques dues a la translation y sont ajoutees en utilisant la 

theorie aeroelastique lineaire. Les forces structurales sout modelisees par des ressorts 

lineaires en torsion et en translation et l'amortissement du a la structure est neglige. 

Quatre types de comportement chaotique differents sont m.is en evidence pour 

le systeme a un degre de liberte (en rotation). Les deux premiers cas montrent 

que sous certaines conditions, des attracteurs periodiques marginalement stables et 

des attracteurs chaotiques peuvent coexister. Dans le troisiem~ cas ou }'amplitude 

des pulsations forcees est plus grande, on demontre que le sy$teme suit une serie 

de bifurcations de doublement de periode, qui conduit au chaos. Le quatrieme cas 

montre que les vibrations chaotiques a des frequences forcees telativement elevees 

peuvent causer des oscillations divergentes. 

L'analyse du systeme a deux degres de liberte (translation et 
1

rotation) est limitee 

a l 'etude des effets des oscillations en translation de faible amplitude sur la stabilite 

de deux des cas a un degre de liberte precedemment cites. L'analyse montre que la 

stabilite du systeme est intimement liee aux changements du rapport des frequences 

naturelles du systeme . 
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Chapter 1 

Introduction 

1.1 Introduction to Aeroelasticity 

Aeroelasticity eau be defined, in general, as the study of the mutual interaction of 

aerodynamic forces and structural forces; in real aeroelastic systems, these forces 

are nonlinear and the coupling between them is very complicated. These forces 

often interact in such a way as to positively reinforce each other, which can lead to 

divergent oscillations. Therefore, when designing an aeroelastic system, it is critical 

for the mechanical engineer to have a sound understanding of the possible static and 

dynamic instabilities of the system. 

-Aeroelastic systems are not limited to aircraft wmgs, rotors or other lifting 

surfaces, they include heat exchangers, nuclear reactor cooling rod arrays and even 

suspension bridges. However, the study of aeroelastic systems does have its roots in 

early aircraft design. One of the simplest aeroelastic systems is the linear structural 

airfoil in a two dimensional, subsonic flow. This system is the focus of this thesis 

and is utilized here to introduce the topic of aeroelasticity . 

The interaction of aerodynamic and structural forces, with regards to the 

1 
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two ctegree of freedom airfoil system, can be interpreted as a continuous, circular 

relationship. Imagine that the airfoil system is in a state of static equilibrium: 

tht> flow over the airfoil creates aerodynamic forces, usually represented as a lift 

force and moment acting at the aerodynamic centre of the airfoil, which exactly 

balance the structural forces, usually represented as the restoring force and torque of 

springs acting at the elastic axis of the airfoil. The freestream flow velocity is tlwn 

perturbed by a small amount. This small perturbation will induce a small change in 

the aerodynamic forces acting on the airfoil which, in turn, will cause a small change 

in the deflection of the airfoil. This small change in the deflection of the airfoil will 

induce another small change in the aerodynamic forces, and so on and so forth. If 

these alternating induced changes in the forces acting on the system diminish in time, 

the system will return to its original stable position. However, if these small changes 

positively reinforce each other, then small changes in the deflection of the airfoil will 

grow. This means that the original equilibrium state of the airfoil was unstable. 

In many real aeroelastic systems, this type of instability can lead to catastrophic 

structural failure. 

There are two general types of aeroelastic instabilities: static and dynamic. 

Static instabilities occur at zero frequency and, thus, they are independent of the 

inertia of the system. One example of a linear, static aeroelastic instability is the 

failure of a wing or airfoil by static divergence. For example, if a wing or airfoil 

is not sufficiently rigid in the pitch degree of freedom then, for sufficiently large 

values of the dynamic pressure, the effective stiffness of the airfoil can become zero. 

This aeroelastic phenomenon is caused by a negative stiffness effect induced by the 

aerodynamic forces and is thought to be the primary reason for the failure of many of 

the early flying machines developed at the turn of the century. With modern aircraft 
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analysis and design techniques this particular instability can be easily avoided . 

Dynamic aeroelastic instabilities occur at given frequencies of motion of the airfoil 

and, generally, depend on the coupling of the motion of the airfoil in two degrt->es 

of freedom. For example, the coupling can occur between the pitch and plunge 

motions or between the pitch motion and the motion of a control surface. Sinct' this 

type of instability depends on the dynamic motion of the airfoil, the inertia of the 

system plays an important role. One such linear, dynamic aeroelastie instability is 

known as binary flutter. A complete description of binary flutter is beyond the scope 

of this thesis, but a brief general description of the phenomenon is given here. As 

previously stated, a small change in the angle of attack of an airfoil will cause a chain 

reaction of changes in the aerodynamic and structural forces acting on the system. 

The dynamic response of the airfoil in both the pitch and plunge degrees of freedom, 

caused by these changing forces, will occur at certain frequencies which depend on 

the structural, inertial and aerodynamic characteristics of the system. For values of 

the dynamic pressure less than a critical value, the oscillatory response of the system 

will diminish in time; in other words energy from the flow will be dissipated by the 

system. On the other hand, if the dynamic pressureis greater than this critical value, 

the amplitude of the oscillations will grow in time; for each cycle of motion of the 

airfoil, a small amount of energy from the flow is injected into the system through 

the aerodynamic forces. 

This linear dynamic instability is related to the frequencies of the response of 

the airfoil in pitch and plunge. As the dynamic pressure of the system is increased, 

the fundamental frequencies of the response in pitch and plunge (accounting for the 

aerodynamic effects) move closer together. The coalescence of these two frequencies 

enables the aerodynamic forces to inject a small amount of energy into the system 
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per cycle, and this small influx of energy causes the oscillatory responst> of tllt' airfoil 

to increase in magnitude a small amount per cycle. Therefore, linear analysis of tilt' 

two degree of freedom airfoil system predicts that, for values of the dynamic prt->ssun-· 

,grt->ater than a critical value, divergent oscillations will occur. 

One important shortcoming of using linear techniques to analyze aerodastic 

systems is that linear theory can only give information about the behaviour of the · 

system up to the point of the instability. Linear analysis implies the assumption that 

the dynamic response of the system will only involve small structural deflections, but 

this assumption is not valid near the point of instability where linear theory predicts 

deflections that approach infinity. It is obvious that in order to study the behaviour 

of aeroelastic systems near the point of linear instability, the nonlinearities inherent 

in both the structural and the aerodynamic forces must be included in the model of 

the system . 

With recent advances in the field of nonlinear dynamics, and improvements in thf' 

performance of affordable computers, it has become possible to study the dynamic 

behaviour of nonlinear aeroelastic systems numerically. As previously stated, the 

aeroelastic system being studied in this thesis is a rigid airfoil flexibly mounted in a 

subsonic flow. The airfoil must be very long in the spanwise direction and mounted 

far from any boundaries so that the flow around the airfoil can be considered two­

dimensional and no boundary effects, such as vortex images, need be considered 

when calculating the aerodynamic forces. The airfoil is mounted in the flow in such 

a way that it is constrained by a linear rotational spring to rotate in the pitch 

degree of freedom, and by a linear translational spring to move perpendicular to the 

undisturbed free-stream flow. The case of structuralnonlinearities in the pitch degree 

of freedom has been studied by [Lee and LeBlanc, 1986a], [Tang and Dowell, 1992] 



• 

• 

• 

:) 

and [Price et al., 199:3], and systems where aerodynamic nonlinearities dominatt> 

have been studied previously by [Tran and Falchero, 1982], [Lee and LeBlanc. l9~bb] 

and [Tang and Dowell, 1992], but these latter systems ar~ still not well undt>rstood. 

\i\/hen an airfoil is forced to oscillate at large mean values of the pitch an)?;le, the 

flow over the airfoil will separate and reattach as the pitch angle changes; this proct>Ss 

is known as dynamic stall and is described in detail by [Ericsson and Reding, 1988a] 

and [Ericsson and Reding, 1988b) and is dealt with in a later section of this thesis. 

Linear aerodynamic theory is not sufficient to calculate the aerodynamic forces acting 

on an airfoil undergoing dynamic stall because the nonlinear effects of the unsteady, 

turbulent wake cannot be accounted for by linear theory. Therefore, a new model 

of the aerodynamic forces, which takes into account the complicated and unsteady 

process of flow separation and reattachment, is required. 

There are many different models of dynamic stall, such as that developed at 

ONERA 1 by [Tran and Petot, 1981) and at NASA 2 by [Bielawa et al., 198:l]. The 

. semi-empirical ONERA model of dynamic stall assumes that the aerodynamic forces 

can be written as a function of the variables describiug the motion of the airfoil. 

These functions are obtained by curve fitting expressions to available experimental 

data. Although the results of this model have shown good agreement with experiment 

for harmonically oscillating airfoils, there is no attempt made by this approach to 

model the effects of any of the physical flow phenomena a::;sociated with dynamic 

stalL Furthermore, the amount of information available as to how to implement this 

model of dynamic stall is limited and, therefore, this model was not utilized in the 

research presented in this thesis. 

1 Office National d'Etudes et de Recherc.hes Aerospatiales 

2National Aeronautics and Space Administration 
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The dynamic stall model utilized in this thesis is a modified form of tlw sPmi­

empirical Bielawa model. This model describes the effect of the main flow phenonwna 

associated with dynamic stall with semi-empirical numerical expressions which art" 

obtained by least squares curve fitting experimental data. These expressions are then 

incorporated into the general expressions for the aerodynamic forces, which are also 

obtained by a curve fitting procedure. The strengths of this model lie in the fact that 

it gives very good results compared with experiments; it is formulated in tlw tinw 

domain and thus it is easy to implement as part of the solution of the aeroelastic 

equations; and the structure of the model is such that the aerodynamic loads can be 

calculated easily from the pitch and pitch rate of the airfoil. Furthermore, there is a 

detailed account given by [Bielawa et al., 198:3] of how this model can be developed 

from a set of experimental data. 

One important drawback concerning this dynamic stall model is that it only 

accounts for the effects of pitch motion of the airfoil on the dynamic stall events and 

the unsteady aerodynamic forces. Therefore, it is necessary to make the assumption 

that the effects of the plunge motion, compared to the effects of the pitch motion, 

are relatively small in order that the aerodynamic forces due to this motion can be 

superimposed by linear aerodynamic theory. Due to the errors that result from this 

assumption, the main focus of this thesis is the study of the single degree of freedom 

system, in which the airfoil cannot move perpendicular to the flow, and only a brief 

study of the two-dimensional system is attempted. 

The aeroelastic equations used to describe this system are given in [Fung, 1955] 

and are also given in [Bisplinghoff et al., 1957]. The nonlinear analysis of this system 

is accomplished by solving these aeroelastic equations numerically by a method 

developed by [Houbolt, 1950]. This numerical method was implemented because 
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it possesses the following advantageous qualities: the unknown future position uf tllt-' 

airfoil can lw expressed in terms of the known positions of the airfoil at prt>vious 

time steps, and the entire system of equations can be written in the form of matrix 

equations, making it well suited for use with computers. Furthermore, this muuerical 

method has been shown to posses the desirable property of combining good stability 

with sufficient accuracy. 

1.2 Introduction to Nonlinear Dynamics 

Until recently, most aeroelastic systems were approximated by linear equations 

because the solutions to these equations are unique and their behaviour is well 

understood. However, with recent advances in the field of nonlinear dynamics, non­

unique steady-state solutions have been shown to be meaningful. In a nonlinear 

dynamical system the response may be chaotic; this implies that the final solution 

will be very sensitive to the initial conditions of the system. This is profoundly 

different from the behaviour of linear dynamic systems. 

The response of a dynamic system can be viewed m the time domain, with 

the appropriate position variable shown as a function of time, but a more useful 

representation is the phase domain (plane), with the same variable and its time 

derivative shown as a function of time. Ordinarily the time axis is oriented 

perpendicular to the plane of the page and what is viewed is a projection of the 

response onto the position and velocity plane. The phase plane is a very convenient 

way of viewing the response of a nonlinear system because the difference between 

periodic behaviour and aperiodic behaviour is immediately obvious. 

In Figure 1.1 (a), the phase plane plot of a period-four response is shown. As 

can be seen from the plot, the response is stable and repeats itself every four cycles. 
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In Figure 1.1 (b), the phase plane of an aperiodic (chaotic) response is shown and 

the differences between the two cases are obvious. The chaotic response is not staldt> 

and does not appear to repeat itself even after many cycles. 

The steady-state solution of a nonlinear dynamic system may behave very 

differently from the steady-state response of a linear system. There is the possibility 

that the steady-state solution of a nonlinear system will not be unique; which steady­

state solution is chosen depends on the initial conditions of the system. When this 

occurs, the response is may be chaotic. A chaotic response also implies that two 

solutions that begin very nearly at the same initial conditions, but not exactly, will 

not be dose together after a certain amount of time has passed. In other words, 

solutions that begin very dose together and eventually diverge from one another, 

but remain bounded, may be chaotic. This is due to the stretching and folding of 

the different steady-state solutions in the phase plane. The topographical process 

of stretching and folding is discussed in detail in [Thompson and Stewart, 1986] and 

[Moon, 1987] and will not be discussed further here; it is sufficient to know that this 

divergence of similar solutions is caused by the nonlinearities of the system and is 

not necessarily a consequence of computer or numerical errors. 

An interesting question posed by [Thompson and Stewart, 1986] is why bother 

to numerically integrate a chaotic solution? Since numerical integration is only an 

approximation, two solutions that begin at exactly the same initial conditions, but 

are integrated numerically with two different techniques, will eventually diverge from 

one another due to the chaotic nature of the system. However, there is an entity that 

will remain conunon between the two solutions; this entity is known as the chMtic 

or strange attractor of the response. In this thesis, the attractor of a response is 

viewed by sampling the phase plane data once every period of the externally applied 
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harmonic forcing function. After a large number of these data points haw lwen 

plotted, the attractor of the response becomes visible. This diagram. composed of 

discrete points in the phase plane, is called a Poincare section. 

If the response of the system is periodic, with the same period as the forcing 

function, then the attractor will consist of a single point in the phast> plane. If 

the response is chaotic, one might believe that the chaotic attractor will consist 

of a random placement of points in the phase plane, but this is not the case. A 

chaotic attractor consists of many points in the phase plane, but there is always an 

underlying structure to the attractor that is sometimes very complicated, and it is 

this underlying structure that is common to all the possible steady-state solutions of 

a chaotic system. 

Figure 1.2 (a) shows the Poincare attractor for the period-four phase plane plot, 

illustrated in Figure 1.1 (a), over twenty thousand periods. As can be sreu, the 

attractor is comprised of four groups of points. Since thE>.se groups are not points, 

the period-four oscillation is not perfectly stable, but it is almost stable. Figure 1.2 

(b) shows the chaotic at tractor of the chaotic phase plane plot illustrated in Figure 

1.1 (b) over twenty thousand periods. The structure of the chaotic at tractor is easily 

identifiable as a set of curves in the phase plane. 

As previously stated, two different initial conditions will lead to two different 

steady-state solutions, but, the chaotic attractor will be the same in both cases. This 

settling of solutions to the same chaotic attractor is the result of energy dissipation 

within the system [Thompson and Stewart, 1986]. The main role of the Poincare 

section is to illustrate the underlying structure of the chaotic attrador, and in so 

doing, provide the common thread between all of the possible chaotic solutions. 

The aperiodic nature of a chaotic response can also be viewed by examining 
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the power spectral density, or Fourier spectrum, of the response. In Figure t.:l (a) . 

the Fourier spectrum of the period-four response is shown. The frequency of tlw 

forcing function is 0.044 and, as the figure shows, this is the frequency correspon(ling 

to the largest spike. The three subharmonic spikes in the frequency rangt> lwlow 

0.044 indicate that the response is a period-four oscillation. Figure 1.:3 (b) shows 

the Fourier spectrum of the chaotic response. The spike at the forcing frequency is 

still evident but, the subharmonic range is now dominated by broadband noise. This 

noise is not caused by any external sources but is a product of the nonlinearities of 

the system and is a signature of chaos. 

In nonlinear dynamic systems, multiple attractors are common and chaotic and 

periodic attractors can even be present at the same time. Furthennore, as the various 

parameters of a nonlinear system are varied, different attractors will appear and 

others will disappear. This implies that as a system parameter is varied across a 

certain critical value, a change in the steady-state or long term behaviour of the 

system can occur. This change in behaviour is known as a bifurcation. Bifurcations 

can be viewed qualitatively in a bifurcation diagram. These are constructed by 

recording the values of the system parameter at which changes in the long term 

behaviour of the system take place over a given range of the parameter. In this thesis, 

bifurcation diagrams are constructed by recording the maximum and minimum values 

of the pitch at increasing values of a certain system parameter. A typical bifurcation 

diagram is shown in Figure 1.4. 

The above discussion of nonlinea.r dynamic theory and qualitative analysis 

techniques is only intended as an introduction to what is to come in this thesis. 

For a more detailed discussion of the theory of chaos in nonlinear systems the reader 

is referred to [Thompson and Stewart, 1986] and [Moon, 1987] . 
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The study of the effect of nonlinear aerodynamics on tlw linear airfoil systt'm 

has been attempted previously. The nonlinear analysis of the dynamics of a 

N ACA :3 0012 airfoil forced to oscillate at large initial angles of attack and for 

large amplitudes was undertaken by [Lee and LeBlanc, 198tib]. However. since 

this research pre-dates many of the recent developments of nonlinear dynamics 

theory it did not take advantage of the qualitative nonlinear analysis techniques 

now available and, subsequently, there are areas of the report that can be further 

explored. The aeroelastic system consistiug of a linear N ACA 0012 airfoil structure 

and nonlinear aerodynamic stall model was also studied by [Tran and Falchero, Hl82] 

and [Ta~1g and Dowell, 1992], but, in these cases, the dynamk stall model utilized 

was the ONERA model, and an in depth discussion of the chaotic dynamics was not 

given. At present, there has been no detailed investigation of the dynamic response 

of a linear airfoil with nonlinear aerodynamics modelled using the Bielawa model of 

dynamic stall. 

1.3 Motivation 

The previous discussion on aeroelastic systems led to the following conclusion: in 

order to understand the behaviour of airfoils oscillating at high angles of attack, 

or for large amplitude oscillations, the nonlinearities inherent in the system must 

be included in the numerical model of the system. Nonlinear aeroelasticity implies 

that either the structural components that comprise the system are nonlinear in 

nature, the aerodynamic forces are nonlinear, or both. The nouliuear behaviour 

of an aeroelastic system is an extremely important consideration for mechanical 

engineers designing systems such as airplane.s, helicopters, free-standing towers, heat 

3 National Advisory Committee for Aeronautics 
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exchangers, nuclear reactor cooling rod arrays and suspension bridges. ln thest> 

systems, understanding the types of nonlinear instabilities that occur is t>sst>ntial to 

avoiding structural fatigue and catastrophic failure. 

Nonlinear structural forces can arise in a system in many ways. For example. 

when a flexible component of a structure is displaced from its equilibrium position 

by a sufficiently large amount to cause plastic deformations in the material, or when 

there is freeplay in a joint, the resultant structural forces are nonlinear. Nonlinear 

aerodynamic forces eau also be caused in different ways. Unsteady flow phenomena, 

such as the separation of the flow around sharp corners or moving boundaries, the 

turbulent flows found in high speed turbomachinery applications and the formation of 

local shocks in transonic flow around airfoils are all examples of aeroelastic systems in 

which the aerodynamic forces are nonlinear. The case of an airfoil forced to oscillate 

in dynamic stall is an example of a nonlinear aeroelastic system that is presently not 

well understood. 

In general, modelling a three-dimensional nonlinear aeroelastic system, such as 

an aircraft or suspension bridge, is, to say the least, a very complicated problem. In 

the nonlinear analysis of such complicated systems, it is advantageous to simplify the 

system as much as possible, while retaining only the most important nonlinearities. 

The aeroelastic system that is being analyzed in this thesis is a rigid airfoil flexibly 

mounted in a subsonic flow. Since the airfoil is rigid it does not deform under 

the aerodynamic loads but, because it is flexibly suspended in the flow, it does 

move under the influence of these forces. This airfoil is forced to oscillate at large 

angles of attack, and, therefore, the flow around the airfoil does not always remain 

attached. Because of the high angles of attack and the subsequent flow separation 

and reattachment, the resultant aerodynamic forces are nonlinear. The study of the 
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dynamic behaviour of this simplified system is of fundamental importance> to the> 

understanding of the behaviour of more complicated aeroelastic systems. 

Since many high performance aircraft and turbines operate at high angles of 

attack, understanding the dynamk behaviour of an airfoil forced to oscillatf' m 

dynamic stall is extremely important. It is hoped that the qualitative analysis 

presented herein will further the understanding of the different types of chaotic 

instabilities that can result from the nonlinear aerodynamic forces of dynaruic stall. 

1.4 Objectives of this Thesis 

The main objective of this research is to give a qualitative description of the types 

of chaotic behaviour that the modified Bielawa model of dynamic stall predicts for 

a single degree of freedom airfoil system. This includes explanations of how the 

response of the system changes from periodic behaviour to chaotic behaviour, as well 

as explanations of the different types of chaotic behaviour exhibited by the system. 

This thesis also examines the effect of adding the plunge degree of freedom on the 

response of the system, and the effect that the ratio of the natural frequencies of the 

system has on the stability of the response. 

In Chapter 2, the dynamic stall process is explained in terms of the physical 

properties and structures of the flow. It also discusses, in detail, the modified Bielawa 

model of dynamic stall, including how the major dynamic stall events are modelled 

numerically and how these expressions are incorporated into a comprehensive model 

of the unsteady aerodynamic forces. This Chapter also contains a description of 

the general two degree of freedom aeroelastic equations and a discussion of the 

assumptions that were made that allow these equations to be simplified. There is also 

a discussion of Houbolt's numerical procedure for solving this system of equations. 
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The one degree of freedom system is discussed in detail in Chaptt>r :t It 

begins with a description of the system, including all necessary assumptions and 

simplifications. Next, the nonlinear analysis techniques are defined and discussf'd. 

Thesf' techniquf's include bifurcation diagrams, phase plane plots, Fourier spectra 

and Poincare sections. The analysis is divided into four cases hasf'd on the vah1t>s of 

the system parameters at which the chaotic behaviour occurs and the typt> of chaotic 

behaviour that is observed. The dynamics of the system as a whole are analyzed 

by exploring the system dynamics over a wide range of values of certain system 

parameters; this is accomplished with the use of bifurcation diagrams. The regions 

of potentially chaotic behaviour are then studied in further detail with more detailed 

bifurcation diagrams, time histories, phase plane plots, Fourier spectra and Poincare 

sections and maps. Wherever possible, the Poincare maps are compared with maps 

from known analytical systems, or they are modelled by simple sets of equations, in 

order to obtain an improved understanding of the dynamics of the system. 

Chapter 4 briefly describes the two-dimensional system and the limitations of 

superimposing linear aerodynamic theory. The main objectives of this Chapter are 

to show the effect of adding the plunge degree of freedom on the chaotic responses 

of the single degree of freedom system and to show how the ratio of the natural 

frequencies in pitch and plunge affect the stability of the system. This is accomplished 

by examining bifurcation diagrams that illustrate the stability of the response, and 

Poincare sections that qualitatively show the long term behaviour of the response. 

The analysis of the dynamics of a linear structural airfoil with nonlinear 

aerodynamic forces that is given in this thesis is not a typical aeroelastic analysis. 

The chaotic instabilities that are encountered in the analysis are not self-excited; 

there is an externally applied forcing function that is always driving the system . 
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Then~fore, the focus of this thesis is to analyze the different types of chaotic lwhavionr 

exhibited by the system and not to find flutter boundaries or other self-excited 

iustahilities. 

The final Chapter of this thesis gives the mam conclusions of the nonlinear 

analysis and also includes recommendations for areas of possible future research. It is 

hoped that at the conclusion of this section the reader will have a dear understanding 

of the different types of chaotic behaviour that are exhibited by this system and somt> 

understanding as to how this chaotic behaviour develops . 
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Chapter 2 

The Dynamic Stall Model and 

Numerical Techniques 

2.1 Characteristics of Dynamic Stall 

Dynamic stall of an airfoil undergoing an oscillatory motion in the pitch degree of 

freedom is a highly nonlinear process. Therefore, it is difficult to predict analytically 

the aerodynamic loads acting on the airfoil. The three main events of the dynamic 

stall process are illustrated in Figure 2.1. The first event is the formation of a leading 

edge vortex, which occurs as the angle of attack of the airfoil is increased beyond 

the static stall angle. As the augle of attack of the airfoil continues to increase, 

the leading edge vortex grows until it detaches from the leading edge of the airfoil 

and is convected downstream by the free stream flow. This vortex shedding process 

is associated with an almost instantaneous decrease in the circulation around the 

airfoil, which causes a rapid loss of lift. As the low pressure centre of this vortex 

travels downstream near the surface of the airfoil, the distribution of lift on the 

airfoil is altered, as illustrated in Figure 2.2. The second significant event of the 

20 
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dynamic stall process arises as the shed vortex approaches the trailing Pdge of the 

airfoil. The localized area of low pressure associated with the centre of the vortex 

causes an increase in ·the local lift coefficient near the trailing edge of the airfoil. 

[t is this increase in the local lift coefficient which induces a sharp decrease in the 

moment coefficient (measured positive in the nose up direction) as tlw vortPx lt>avPs 

the trailing edge of the airfoil. The final significant event in the dynamic stall process 

is the reattachment of the flow over the airfoil. This usually occurs after the vortex 

has left the trailing edge of the airfoil and the angle of attack of the airfoil has 

decreased below the static stall angle. 

Typical graphs of the lift coefficient and moment coefficient versus angle of attack 

for an airfoil undergoing simple harmonic motion in pitch are shown in Figure 2.:3. 

This Figure illustrates that a significant amount of nonlinear hysteresis exists in the 

aerodynamic loads of an airfoil experiencing dynamic stall as compared to static 

stall. This nonlinear hysteresis in the lift and moment coefficient curves, caused by 

characteristic delays in the boundary layer separation and reattachment, is impossible 

to accurately predict using any of the present analytical, aerodynamic theories. 

The main parameters that influence the amount of hysteresis in the dynamic lift 

and moment curves are the mean angle of attack and the amplitude and frequency of 

the oscillation. Other parameters that influence the static lift and moment curves, as 

well as the dynamic curves, are the airfoil shape, the Mach number and the Reynolds 

number of the flow. These parameters strongly influence the three most significant 

events that occur during dynamic stall: the production and the subsequent shedding 

of a leading edge vortex, the time at which this vortex reaches the trailing edge of the 

airfoil and the reattachment of the flow around the airfoil. These events cause the 

observed overshoot and undershoot of the dynamic lift coefficient as compared to the 



• 

• 

• 

static lift coefficient, and the characteristic sharp decrease in the momt>nt cm,fficiPut 

typical of airfoils undergoing dynamic stall [Bielawa et al., l98:J]. 

The observed overshoot of the dynamic lift coefficient as compared to thf' static 

lift coefficient, as the angle of attack is increased beyond the static stall anglt>, is 

due to a delay in the separation of the boundary layer near the leading edge of thf' 

airfoil. The boundary layer is made less susceptible to separation near the leading 

edge of the airfoil by a combination of two main effects. The first is due to tlw 

induced acceleration of the flow near the surface of the leading edge, caused by the 

motion of the airfoil. This induced acceleration causes a decrease in the pressure 

gradient along the surface of the airfoil, as compared to the static pressure gradient 

at the same angle of attack. Therefore, the downstream separation of the boundary 

layer is delayed, in the dynamic case, because the boundary layer profile is made 

less susceptible to separation by the more favourable upstream pressure gradient 

[Ericsson and Reding, 1988a]. The second effect is due to the moving boundary of 

the airfoil which improves the boundary layer profile immediately downstream of the 

stagnation point. The motion of the surface of the airfoil, in the direction of the 

freestream flow, as the angle of attack of the airfoil is increased, has the net effect 

of increasing the flow velocity component tangential to the airfoil surface. This 

increases the amount of kinetic energy in the boundary layer flow nearest to the 

surface of the airfoil, thus strengthening the boundary layer and delaying separation. 

This moving boundary effect is also greatly responsible for the delayed reattachment 

of the flow as the angle of attack of the airfoil is decreased below the static stall angle 

[Ericsson and Reding, 1988a] . 
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2.2 An Empirical Model of Dynamic Stall 

The model utilized herein to predict the unsteady, stalled aerodynamic loads 

actin~ on an airfoil undergoing a general pitching motion was dt>veloped by 

[Bielawa et al., 198:3). The model involves several analytical expressions, which 

are simple mathematical models of the main dynamic stall events, to describe 

the aerodynamic loads acting on the airfoil in the time domain. The analytical 

expressions are comprised of numerous unknown coefficients, which are determined 

by curve fitting data from wind tunnel tests of oscillating airfoils to the expressions 

using a least squares minimization technique. Since this dynamic stall model 

describes the lift and moment coefficients in the time domain, the main parameters 

utilized to predict the unsteady aerodynamic loads are the airfoil geometric angle of 

attack and pitch rate, which are simple to define both physically and mathematically . 

The model does not utilize the frequency of the airfoil oscillation as a parameter 

because of the difficulty of mathematically defining the instantaneous frequency of 

an airfoil undergoing quasi-periodic or chaotic motion. 

2.2.1 Definition of Dynamic Parameters 

In order to at least partially account for the time history of the airfoil's motion, 

an unsteady decay parameter, aw, is defined. The physical interpretation of this 

parameter is that it represents the difference between the instantaneous, geometric 

angle of attack, a, and the effective angle of attack, aE, 

(2.1) 

This interpretation of the unsteady decay parameter is only strictly correct when the 

flow over the airfoil is attached. However, this parameter is also utilized to predict 
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certain dynamic stall events and to approximate the aerodynamic loads even when 

the airfoil is stalled. The effective angle of attack, for attached flow, can be defi.ne.d 

using Duhamel's integral as: 

(2.2) 

where a(O) is the initial angle of attack of the airfoil, (3 = v'l - 1\12 (in this thesis 

M = 0.6), and the non-dimensional time is given by .s = Utfb, where U is the 

freestream flow velocity and b is the semi-chord. The quantity <Pc is a form of the 

Wagner function, which has been corrected for compressibility effects, and gives the. 

response of the airfoil to a step change in the angle of attack. The expression for <Pc 

is as follows: 

<fyc(.s,M) = (1-0.165exp(-0.045.5(1-M2)s)-0.3:35exp(-O.:J(l-M2)s))/Vl- M 2 

• (2.:J) 

For an airfoil undergoing a general pitch oscillation, the following recursive 

relationships were utilized to obtain the angle of attack (an), the pitch rate (An) 

and the unsteady decay parameter ( ( aw )n) at each time step [Bielawa et al., 198:3]: 

A~ __ (D..O)n 
.. - (2.5) 

(D..s)n 

(aw)n = Xn + Yn (2.6) 

where 0,. is the geometric angle of attack at time step 'n' . 

• 
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2.2.2 Modelling the Dynamic Stall Events 

In order to accurately model the unsteady aerodynamic loads acting on an airt()il 

undergoing dynamic stall, it is important to be able to predict the onsf't of tlw 

three major dynamic stall events: the formation and shedding of a leading edgf' 

vortex (onset of dynamic stall), the arrival of this vortex at the trailing edgf' and tlw 

reattachment of the flow over the airfoil. 

Dynamic stall occurs after the angle of attack of the airfoil has exceeded tht> 

static stall angle, and occurs at the angle of attack at which the leading edgf' 

vortex breaks away from the leading edge of the airfoil. The model used herein 

to predict the instantaneous angle of attack at which dynamic stall occurs utilizes 

a semi~empirical relationship between the instantaneous angle of attack and the 

main factors influencing dynamic stall. The model assumes that the main factors 

influencing dynamic stall include the airfoil shape, the Mach and Reynolds numbers 

of the flow, and the pitch rate and effective angle of attack of the airfoil. The static 

stall of an airfoil depends on the first three factors stated above, and therefore the 

effect of these factors on the dynamic stall is taken into account by incorporating 

the static stall angle into the empirical equation for the dynamic stall angle. The 

effective angle of attack of the airfoil is taken into account by the unsteady decay 

parameter, aw, defined in equations (2.1) and (2.2). The model assumt>s a functional 

relationship between the instantaneous angle of attack of the airfoil at dynamic stall 

and the static stall angle, the pitch rate and the effective angle of attack of the 

airfoil. By linearizing this functional relationship about the qua.si~static stall angle, 

(i.e. C¥Qss = ( 1 + f )ass), an empirical expression for the dynamic stall angle of at tack 

is obtained and is given by, 

(2.9) 
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when~ O:DM is the instantaneous angle of attack, AoM is the pitch ratt> and n1-v.u is 

tht> unsteady decay parameter at the point of dynamic stall, and f, CAiH and C'wJ4 

are empirically determined constants. The last two terms in equation (2.9) account 

for the difference between the angle of attack at dynamic stall and the angle of attack 

at quasi-static stall. 

After dynamic stall, the leading edge vortex is convected downstream over the 

upper surface of the airfoil and it strongly influences the aerodynamic loads on the 

airfoil. The lift produced by the airfoil, while the vortex is being convected, can vary 

depending on the strength of the vortex and the distance between the vortex and 

the surface of the airfoil. The main effect of the vortex on the distribution of lift 

around the airfoil is to increase the negative (nose down) pitching moment of the 

airfoil. The negative pitching moment reaches a maximum when the vortex arrives 

at the trailing edge of the airfoil. The model utilizes a semi-empirical relationship 

to predict the amount of non-dimensionalized time (.sMr) required for the vortex to 

travel from the leading edge to the trailing edge of the airfoil. The exp-ression for 

BMT is given below: 

1.0 
(2.10) 

where CAT and CaT are empirically determined coefficients. 

The instantaneous angle of attack at which the flow around the airfoil becomes 

reattached is denoted by aRE· The method for predicting the reattachment angle of 

attack is the same as for predicting the dynamic moment stall angle of attack aD M. 

The appropriate expression is given below: 

(2.11) 

where f is the same as in equation (2.9), but CAR and Cwn are not the same as (;AM 

and CwM· 
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2.2.3 The Unsteady Lift and Moment Coefficients 

•)~ 
-1 

Dynamic lift stall is a phenomenon characterized by a sudden loss of lift dnt> to 

the increased distance between the shed leading edge vortt>x and the upper surfact-> 

of the airfoil. It can also be interpreted as a sudden loss of lift due to tht> almost 

instantaneous loss of circulation around the airfoil contained in the shed leadin.e; t->dg;e 

vortex. The model used herein to describe the aerodynamic loads acting on an airfoil 

undergoing dynamic moment stall takes into account this sudden loss of lift implicitly 

with the following expressions [Bielawa et al., 198:1]: 

(2.12) 

(2.1:3) 

(2.14) 

(2.1fi) 

(2.16) 

where the following definitions apply: 

(2.17) 

0, for a ::; ass 

(~ -1) 
ass ' for ass < a ::; aDM 

(2.18) 



• 0, for a :S ass 

(~ -1) 
("(SS ' 

for ass < a :S anM 

82 = (:~~ - 1), for 0 :::::; .5M :::::; 8MT (:l.l9) 

(~ _ l) C<-C<Rlif 

OISS "TE-C<RE 
for 0:RE :::::; a :S <1TE 

0, for a< aRE 

In the above equations, the parameter #1 is an empirically determined constant. • 

given by [Bielawa et al., 198:3] to be equal to 0.18, and .sM is the non-dimensionalized 

time measured from the instant that dynamic moment stall oecurs until tlw instant 

the vortex reaches the trailing edge of the airfoil (i.e. when .SM = .5MT then a= arE). 

As can be seen in equation (2.12), the total lift coefficient, c:L, is expressed as a sum 

of the static lift coefficient curve [Abbott and von Doenhoff, 1959] at a shifted angle 

of attack, a - ~a1 - ~a2 , plus the static lift curve slope, aoL, multiplied by the 

• inaemental angle of attack, ~a1 , plus the sum of two incremental lift coefficients, 

~CL1 and ~C£2 • The incremental angle of attack, ~a1 , is present at all times, 

whereas the incremental angle of attack, ~a2 , is only non-zero when the flow over the 

airfoil is stalled; therefore, it must at least in part account for the effects associated 

with dynamic moment stall and flow reattachment. The incremental lift coefficient, 

~C Lt, is primarily responsible for the difference between the unsteady lift coefficient 

and the steady lift coefficient, especially when the flow over the airfoil is unstalled, 

whereas the incremental lift coefficient, ~CL1., is responsible only for the lift effects 

· of the shed leading edge vortex as it is convected over the surface of the airfoil. The 

coefficients, P1 ••• P10, are empirical constants determined by least squares curve fitting 

available data from wind tunnel tests of oscillating airfoils to the above expression 

• The model to predict the unsteady moment coefficient, CM, utilizes a similar set 
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of equations as those described above. The equation for CM is given below . 

(~-~0) 

where the following definition applies: 

The parameter 

is the static moment coefficient curve [Abbott '!'nd von Doenhoff, 1959] slope at zero 

angle of attack, which is zero for synm1etric airfoils. The last term of equation (2.~ 1) 

represents the effects of the shed leading edge vortex, and the constants, Q1 ••. Q7 , are 

determined by curve fitting windtu11nel data to the above expressions using a least 

squares technique. The coefficients of the dynamic stall model are given in Appendix 

A . 

2.2.4 Modification and Verification of the Dynamic Stall 

Model 

Two simple modifications were made to the dynamic stall model described above, 

keeping in mind that the lift and moment coefficient curves must be at least piece-

wise continuous in the time domain and that they must always take on physically 

realizable values. 

The first modification was to restrict the domains of the dynamic moment stall 

angle of attack, avM, and the flow reattachment angle of attack, fiRE· The reason for 

introducing this restriction was to ensure that both avM and aRE obtained physically 

realizable values for cases when the airfoil was undergoing extreme oscillations, such 

as very high or very low frequencies or large amplitudes. The domain of avM was 

restricted to values greater than the static stall angle of attack, ass, and the domain 
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of etRE was restricted to values less than etss· It can be argued that f'<DM must 

always be greater than etss due to the boundary layer improvements, discusst>d in 

Section 2.1, caused by the dynamics of the airfoil as the angle of attack is increasing. 

Similarly, it can be argued that etRE must always be less than ass since tht> dynamic 

effects are also present as the angle of attack of the airfoil is decreasing, and thest> 

effects will act to destabilize the boundary layer and delay reattachment of the flow. 

Unfortunately, in the case of the flow reattachment angle of attack, this is not always 

the case. Since static stall can be induced by local shocks for Mach numbers greater 

than about 0.6 it is possible for the flow to reattach at an angle of attack greater than 

ets8 . Therefore, by introducing the previous assumptions the model is restricted to 

eases where stall is not induced by local shocks. 

The second modification to the dynamic moment stall model was made in order 

• to ensure that the lift and moment coefficient curves remained at least piece-wise 

continuous. Very often the model correctly predicted that the shed vortex did not 

reach the trailing edge of the airfoil before the angle of attack of the airfoil had 

decreased below the predicted flow reattachment angle. In other words, the two 

conditions, sM < .9MT and et < etRE, existed simultaneously. It can be seen from 

equations (2.18) and (2.19) that the model does not allow for this occurrence. The 

result was that the function 82 was discontinuous because the stage where the shed 

vortex is gone, sM > i3MT, but the flow is not yet reattached, aRE <et< are , was 

omitted, therefore, the lift and moment mefficient curves were also diseontinuous. 

To avoid this discontinuity, the expressions for 82 , D..CL2 and D..OM were modified for 

the instances when both conditions, sM < BMT and a < aRe, occur simultaneously. 

The modified expressions are: 

• (2.22) 
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where the parameter, /{11 is a constant equal to :3.0. The terms that are modified 

are those that are supposed to be zero as the vortex detaches from the leading edge, 

8M .5MT, and reach a certain value as the flow reattaches after the vortex has been 

shed. However, since the model predicts that the flow will reattach before the vortex 

is shed, these terms are multiplied by the expression [1- exp( /{1 (sM- .'lMT) )], which 

ensures that they will tend to the appropriate values as s M becomes increasingly 

larger than .c.MT· The value of /{1 was determined empirically by comparing the 

• modified expressions with the actual wind tunnel data . 

In Figure 204, the lift and moment coefficient curves from wind tunnel tests 

are plotted versus angle of attack and compared to the predicted lift and moment 

coefficient curves of the modified and unmodified dynamic stall models for a case 

where aTE < aRE. As can clearly be seen, the two dynamic stall models give 

identical results until the stage where the angle of attack, a, decreases to less than 

aRE but is still greater than aTE· Through this range the modified dynamic stall 

model is continuous, but the unmodified dynamic stall model is discontinuous at the 

point when a = aTE· 

The curve fitting of the windtunuel test data to the expressions for the unsteady 

lift and moment coefficients was done with the use of the 1 Amoeba' subroutine 

found in [Press et al., 1986] and a least squares method. Eighteen data loops from 

• [Gray and Liiva, 1968] were utilized in determining the unknown coefficients, thus 

ensuring that the model would be valid over a wide range of non-dimensional 
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frequencies, k(0.044, ... , 0.256), amplitudes a(2.5°, ... , 7.5°), and mean anglt>s of 

attack o 0 (0.0°, ... , 1 0.0°). In Figures 2.5 and 2.6 some typical comparisons art> 

madt> between the lift and moment coefficient curves from the windtumwl tt>st data 

and the lift and moment curves predicted by the modified dynamic stall model for 

four different non-dimensional frequencies, amplitudes and mean angles of attack. 

Appendix B contains most of the data-model comparisons of the lift and momt>nt 

coefficient data for a Mach number of 0.6 and a Reynolds number of 6.2 * 106 given 

in [Gray and Liiva, 1968]. 

2.3 Two Degree of Freedom Airfoil System 

The details of the two degree of freedom airfoil system are illustrated in Figure 2.7. 

The angle of attack, a, is measured positive in the nose up direction, and the non-

d.imensionalized vertical displacement, e = h/ b, is measured positive downwards. 

The elastic axis is located a distance ahb behind the midchord of the airfoil, and tlw 

centre of mass of the airfoil is located a distance x(Vb behind the elastic axis. 

The non-dimensionalized two degree of freedom aeroelastic equations, from 

[Fung, 1955], are: 

. ; .. 2'" w t (w )2 ~ 1 c ( ) P(.c; )b "'+ x(Va + ~oe U*"' + (l/"')2.,. = -- 'N s + -[!2 . . rp m. 
(2.25) 

i 2 •• 2~" 1'; . 1'; 2 (" ( ) Q(8) 
x(V.,+1·aa+ '>(VU*a+(U*)2a=rp 'M·s +rnU2 (2.26) 

where (a and (e are the viscous damping ratios in the pitch and plunge degrees of 

freedom, respectively, w = wefwa is the ratio of uncoupled natural frequencies and 

ll* = U /bwa is the non-dimensional velocity. The airfoil air-mass ratio is defined as 

p = rnfrpb2
, where m is the airfoil's mass per unit span, p is the air density and 

b is the semi-chord. The non-dimensionalized radius of gyration about the elastic 



• ax1s 1s 7'a· (;N(8),and c;M(8) are the lift and moment coefficients, respt>ctively. taken 

about the elastk axis and P(.5) and Q(.s) are the externally applied force and torque. 

respectively, applied at the elastic axis. 

For the two degree of freedom airfoil system studied herein, it is assumed that 

the plUiige oscillations are very small compared to the pitch oscillations. This implies 

that the stiffness of the airfoil in the plunge degree of freedom is much greater than 

the stiffness in the pitch degree offreedom, or that w is large. Furthermore, as w tends 

to infinity, the system tends to a single degree of freedom in pitch. Since the pitch 

degree of freedom dominates the motion of the airfoil, the main contribution to the 

aerodynamic loads must be from the pitch oscillation and therefore, the effect of the 

plunge motion eau be added on using linear aerodynamic theory (see [Mazelsky, 1952] 

and [Mazelsky and Drischler, 1952]). It should be noted that if the above assumption 

• is not employed, calculation of the aerodynamic forces becomes extremely difficult 

and is beyond the scope of this thesis. 

2.4 Solution of the Aeroelastic Equations 

The finite difference method employed to solve the aeroelastic equations, (2.25) and 

(2.26), was Houbolt's implicit method [Houbolt, 1950]. This method approximates 

the derivatives at the current time step with difference equations that depend on the 

position of the airfoil at the current time step and the three previous time steps. The 

· finite difference equations for a general coordinate, ry, are: 

(2.27) 

• (2.28) 
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where f is the constant time step size. After substituting the appropriatP t>Xprt>ssions 

for the derivatives of a and~ into equations (2.2!)) and (2.26), tlw equations can IH-' 

solved for a 11 and ~n The complf\te f\quations are givf\n in Appendix C and only the 

matrix formulation is given below. 

Zt~n + Z2an = Z3 

z4en + Zsan = Z6 

(2.29) 

where z3 and z6 are functions of the variables at the previous time steps and z1' 

Zz-, Z4 and Z5 are constants. 

Since Houbolt 's method requires that the position of the airfoil be known for 

three previous time steps, a special procedure must be implemented for the first 

time step, when only the initial couditions are known. Given that the aerodynamic 

loads can be found at the initial conditions, equations (2.25) and (2.26) can be solved 

for the second derivatives of a and e at time zero. By using the second derivatives 

in a Taylor expansion around time zero, the position of the airfoil at times .s = +~.c; 

and .s = -~s can be approximated [Lee and LeBlanc, 1986b]. The position of the 

airfoil is now known fors= -~s, .s = 0 and s = +~~~; therefore, Houbolt's implicit 

method can be utilized to find the position of the airfoil at s = +2~s. 
Houbolt's method requires that the aerodynamic loads at time step 'n' be known 

in order to calculate the position of the airfoil at time step 'n'. However, because the 

aerodynamic loads at time step 'n' depend on the position of the airfoil at time step 

'n', a recursive predictor-corrector procedure must be implemented. The first step 

of this procedure is to calculate the aerodynamic loads at time step 'n' based on the 

position of the airfoil at time step 'n - 1 '. Next, these aerodynamic loads are used 

to calculate the predictor position of the airfoil at time step 'n', aud based on this 

predictor value, the aerodynamic loads are recalculated. Finally, these recalculated 

aerodynamic loads are used to find the corrector position of the airfoil. If the absolute 
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:n 

difference betwt>en the predictor value and the corrector vahtt> i~ within a spt>cifit-·d 

tolerance (approximately l.OE-06), then the corrector value is accepted and tht> timt> 

stt>p is successful. If the absolute difference is greater than the tolerance, then the 

entire procedure must be halted. A time step control algorithm cannot be utilized to 

converge to an acceptable solution because the Houbolt's method that was utilized 

assumes that the time step remains constant. 

The convergence of this corrector-predictor method was verified usmg two 

different methods: the first method utilized different techniques to calculate the 

predictor values and the second method involved utilizing different time step sizes. 

There are many techniques and levels of accuracy that can be utilized to calculate 

the predictor values of the pitch and pitch velocity of the airfoil: the lowest-order 

approximation of these variables is to use the values at the previous time step and 

higher order approximations utilize the pitch velocity and acceleration at a previous 

time step to estimate the pitch and pitch velocity at the next time step. If the solution 

is a periodic oscillation, the method and accuracy of calculating the predictor values 

does not influence the final corrector solution. However, if the solution is chaotic, 

the different methods of calculating the predictor values lead to solutions that are 

initially ahnost identical but, after a number of oscillations, these solutions diverge 

from one another. This type of behaviour is typical of chaotic solutions- the presence 

of chaos implies that knowledge of initial conditions is lost after many oscillations 

[Moon, 1987]. Most importantly, the chaotic behaviour of the system was found to 

occur regardless of the method utilized to calculate the predictor values. 

The convergence of the numerical procedure was also verified using different time 

step sizes. For periodic solutions, the choice of the time step size, within reasonable 

limits, did not affect the final corrector solution and for chaotic solutions, the different 
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solutions would begin almost identically and then diverge from out> anotlwr as tinw 

continued. For sufficiently small time steps, the recursive predictor-corrector method 

was found to converge for almost all cases. The only exceptions to this are cases in 

which the airfoil undergoes high frequency chaotic oscillations or when the airfoil is 

very near divergence . 
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(b) 

(c) 

~-Leading Edge 
Vortex 

37 

Figure 2.1: A conceptual presentation of the three main events of dynamic stall: (a.) 

the leading edge vortex is shed from the leading edge of the airfoil, (b) the vortex 

arrives at the trailing edge and (c) the flow reattaches around the airfoil. 
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(a) 

1 
Fraction of the Chord 

(b) 

1 
Fraction of the Chord 

(c) 

1 
Fraction of the Chord 

Figure 2.2: The lift distribution as a function of the chord as the leading edge vortex 

is convected downstream: (a) vortex at the leading edge, (b) vortex approaching the 

trailing edge, (c) vortex at the trailing edge . 
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Figure 2.3: Lift and moment coefficient curves a.s a function of angle of attack for 

an oscillating NACA 0012 airfoil: (a) and (b) k = 0.211, a 0 = 9.70° and a= 5.59°, 

(c) and (d) k = 0.045, a 0 = 7.39° and a= 4.94°. (From ref. Gray, L. and Liiva, J. 

{1968)) 
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Figure 2.4: Comparison of the (a) lift coefficient and (b) moment coefficient of the 

actual data (solid line) with the Bielawa model (dotted line) and the modified Bielawa 

model ('x' line) for the cases k = 0.252, a0 = 4.39° and a = 5.96° . 
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Figure 2.5: Comparison of actual lift coefficient data (solid line) with the lift 

coefficient predicted by the modified Bielawa model (dashed line) for cases: (a) 

k = 0.045, ao = 7.39°, a = 4.94°; (b) k = 0.165, ao = 0.20°, a = 5.49°; (c) 

k = 0.088, ao = 9.75°, a= 5.01°; and (d) k = 0.129, ao = 7.62°, a= 5.28° . 
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Figure 2.6: Comparison of actual moment coefficient data (solid line) with the 

moment coefficient predicted by the modified Bielawa model (dashed line) for cases: 

(a) k = 0.045, ao = 7.39°, a= 4.94°; (b) k = 0.165, ao = 0.20°, a= 5.49°; {c) 

k = 0.088, ao = 9.75°, a= 5.01°; and (d) k = 0.129, ao = 7.62°, a= 5.28° . 
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Figure 2. 7: The two degree of freedom airfoil system . 
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Chapter 3 

The One Degree of Freedom 

System 

3.1 System Description 

The general two degree of freedom system is represented by equations (2.25) and 

(2.26). When the ratio of uncoupled natural frequencies, w, is very large, the stiffness 

in the plunge degree of freedom, e, is much greater than the stiffness in the pitch 

degree of freedom, a, and therefore, any pluuging motion can be assumed to be 

negligible. With this assumption the two degree of freedom system reduces to the 

following one degree of freedom system: 

2r·2 ~" r·2 2 
2 " + ·~~Cl' • + Cl' c ( ) + Q( ) r·aa u.-a (U*)2a = 1rf.t 'M s s (:}.1) 

where CM( s) = C Me/4 + Chcl• ( S::: + ~) is the total moment coefficient about the elastic 

axis, ah is the non-dimensional distance from the mid-chord to the elastic axis, s = l~t 

is the non-dimensional time, Q(.s) = Qo sin k.s is the non-dimensional externally 

applied torque about the elastic axis, k = ~; is the non-dimensional frequency of 

the externally applied torque and U* = !!! is the non-dimensional velocity. The one 
Wa 
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degree of freedom system is illustrated in Figure :3.1 . 

The lift and moment coefficients, obtained using the dynamic stall nH)dt>l 

dt>:::>cribed in the previous chapter, are about the one-quartt>r chord position and 

the unsteady lift and moment coefficient data, taken from [Gray and Liiva, l96K]. 

are for aN ACA 0012 airfoil oscillating about the one-quarter chord position. Thus, 

in order to most dosely approximate the actual oscillating airfoil system, tlw position 

of the elastic axis was taken to be at the one-quarter chord position, hence ah = -O.!l 

and CM(.c;) = C:Met
4
(i3), for all the simulations that were done as part of this thesis. 

The centre of mass was positioned one eighth of a chord behind the elastic axis 

(;ea = 0.25), the non-dimensional radius of gyration about the elastic axis, re, was 

chosen to be 0.5 and the airfoil air-mass ratio, p,, was fixed at a value of lOO. 

A further simplification of the system described by equation (:3.1) is possible as 

the structural damping term is known to be small compared to the aerodynamic 

damping term. Therefore, the structural damping coefficient, (a, is assumed to he 

zero in all the simulations done as part of this research. 

It is not obvious from equation (:3.1) what range of values of the magnitude of the 

externally applied torque, Q0 , should be utilized in order to obtain airfoil oscillations 

with reasonable amplitudes (i.e. in the range of five to fifteen degrees). Although the 

appropriate values of Qo will depend on the magnitudes of all the terms in equation 

(:3.1 ), as a first order approximation the appropriate values of Q0 should be of the 

same order of magnitude as the aerodynamic moment term, 'lr
2
1J. CM(.s ). Therefore, by 

substituting the average value of CM into equation 3.1, it is possible to obtain an 

approximation of the appropriate order of magnitude of the term Q0 • 

For large amplitude oscillations at very high angles of attack, the magnitude of 

the moment coefficient, CM, can instantaneously be as large as 0.2, but the average 
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value is typically near 0.05. Substituting this average value of CM into equation (:t l) 

yields a value of approximately :}* 1 o-4 as the magnitude of the aerodynamic moment 

term. Therefore, the appropriate values of Qo for reasonable amplitude oscillation:; 

should on tllf~ order of 1 o-4
• 

3.2 Non-Linear Analysis Techniques 

The focus of this non-linear analysis is to find when the response of the systt~m. 

given by equation (:3.1 ), becomes unpredictable or chaotic, and to describe how tlu .. 

transition from predictable behaviour to chaotic behaviour occurs. Since the system 

has only one degree of freedom and all the structural terms in equation (:3.1) are 

linear, any chaotic vibrations could only be caused by the non-linear aerodynamic 

loads. The aerodynamic model, discussed in the previous chapter, is not analytical 

and, therefore, most of the analytical techniques developed for studying non-linear 

systems cannot be utilized. However, many numerical techniques exist to find and 

characterize chaotic vibrations. The techniques utilized herein include bifurcation 

diagrams, spectral analysis, phase plane plots and Poincare sections and maps. 

The first step in analysing the very complicated system dynamics was to choose 

a set of system parameters and generate a set of bifurcation diagrams. A bifurcation 

denotes a sudden change in the steady state response of a system; for example when 

a stable fixed point changes to a stable or unstable limit cycle motion [Moon, 1987]. 

· Bifurcation diagrams can be constructed in many ways. In this thesis the maximum 

and minimum value of the angle of attack was stored over a certain number of 

periods, typically about 50. Then one of the system parameters was incremented 

and this process was repeated until a predetermined range of the system parameter 

was aualyzed. These diagrams give a good qualitative description of how the response 
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of the system changes as a system parameter is varied. They also make it easy to 

pinpoint critical values of a system parameter at bifurcation points and they hi.e;hli,e;ht 

regions where the oscillations may be chaotic or quasi-periodic. 

The next step in the analysis was to determine if the regions found in the 

bifurcation diagrams were chaotic or quasi-periodic. This was done by examining 

the time histories, phase plane plots, Fourier spectra and Poincare sections of the 

response of the system at certain values of the system parameters. The Poineani. 

sections were obtained by storing the value of the angle of attack and pitch rate Oll(~e 

every period of the sinusoidal forcing function, Q = Q o sin b. Thus, if the response 

of the system was periodic the Poincare section would consist of a finite number of 

points, if the response was quasi-periodic it would reveal a closed curve and if the 

response was chaotic it would reveal a chaotic or 'strange' attractor [Moon, 1987]. 

As further proof of chaotic behaviour, the Poincare maps were, wherever possible, 

compared to simpler analytical maps which either were known to be chaotic, or for 

which analytical methods could be utilized to show that the response was chaotic. 

A system response was labelled chaotic only if all of the aforementioned techniques 

yielded results that exhibited the characteristics of chaotic behaviour. 

3.3 Discussion of Results 

The aerodynamic loads acting on an airfoil oscillating at large angles of attack are 

highly nonlinear making the dynamic response of the single degree of freedom system 

very complicated. Furthermore, there are three independent system parameters that, 

when varied, strongly influence the dynamic response. of the system; these are the 

amplitude of the non-dimensional externally applied torque, Q0 , the non-dimensional 

velocity, U*, and the non-dimensional frequency of the externally applied torque, k. 
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A dose examination of the single degree of freedom equation (:U) rt>veats that 

the inverst> of the non-dimensional velocity represents the non-dimensional structural 

natmal frequency of the airfoil. Thus, the product of the non-dimt>usional frequency 

of the externatly applied torque, k, and the non-dimensional velocity,{!*, gives the 

ratio of the forcing frequency to the structural natural frequency. Another important 

point to note, which is not obvious from equation (:3.1 ), is that the structural natural 

frequency and the natural frequency of the system will not, in general, be the 

same because the aerodynamic moment term, ;~cM(s), will contain stiffness terms. 

Furthermore, due to the complicated nature of the aerodynamic loads, the natural 

frequency of the system cannot be calculated explicitly. 

The non-linear analysis attempted herein is divided into four different case studies 

based on the values of the system parameters for which chaotic oscillations were found 

and the type of chaos that occurred. The first case study is for low frequency, high 

velocity, intermittent chaos; the second is for low frequency, low velocity intermittent 

chaos; the third is for low frequency, high velocity, classical chaos; and the fourth 

case study is for high frequency, high velocity, classical chaos . 
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3.3.1 

.i l 

Case I: Low Frequency, High Velocity, Intermittent 

Chaos 

This section considers tlw possibility that chaotic vibrations occur for airfoils forced 

to oscillate at high initial angles of attack, a 0 (this is the angle of attack of tlw 

airfoil at time zero), low non-dimensional frequencies, k, and high non-dimensional 

velocities, l!*. The first stage in this investigation is to develop a general pi et ure of 

the overall behaviour of the system as certain system parameters are varied over a 

wide range of values. Bifurcation diagrams are presented in which the amplitude of 

the non-dimensional externally applied torque, Q0 , the non-dimensional velocity, 

(!*, and the non-dimensional frequency of the externally applied torque, k, art: 

varied over a wide range of values in an effort to discover any regions of potentially 

chaotic behaviour. Next, these potentially chaotic regions are more closely examined 

by providing more detailed bifurcation diagrams that focus only on the range of 

parameters for which the response may be chaotic. The response in these regions 

is explored further by comparing the time traces, phase plots and Fourier spectra 

for four separate cases in order to illustrate how the response changes as one of the 

system parameters is varied. The Poincare sections for these cases are then examined 

to show the long term behaviour of the system and to help classify the response as 

either chaotic or quasi-periodic. 

Bifurcation Diagrams 

The first set of system parameters considered were: the initial angle of attack, 

ao = 8.90° , the non-dimensional velocity, U* = 21.0227, and the non-dimensional 

forcing frequency, k = 0.044. The first bifurcation diagram, Figure :3.2, was obtained 

by allowing the value of Qo to vary over the range (0.0 < Q0 < 1.18 * w-4 ), 



• while the rest of the system parameters were held constant. In FignrP :L2, it eau 

bt> set>n that the amplitude of the response of the airfoil increases almost liut>arly 

as the magnitude of Qo increases. Furthermore, the system undergoes two period 

doubling bifurcations, the first at approximately Q0 = 0.20 * ro-4 and the second at 

approximately Q0 = 0.88 * ro-4• A region of possibly chaotic motion can be sPen to 

exist in the range (1.00 * w-4 < Qo < 1.09 * ro-4
), and for values of Qo larger than 

1.09 * w-4 the system returns to a stable period two oscillation. 

The next bifurcation diagram was obtained by fixing the value of Qo = 1.02* ro-4
, 

which is in the apparently chaotic region of Figure :3.2, and allowing the value of 

U* to vary over the range (5.0 < U* < 2:3.0). The results, illustrated in Figure 

:t:~, show that the amplitude of the response generally increases as the magnitud~ 

of U* increases, and that the system undergoes a period doubling bifurcation at 

• approximately l!* = 10.4. A region of possibly chaotic motion exists for values t>f 

(!* in the range (20.5 < []* < 21.2). 

To create the third bifurcation diagram, Qo and U* were held constant at values of 

1.02 * ro- 4 and 21.0227, respectively, while the non-dimensional forcing frequency, k, 

was varied over the range {0.02 < k < 0.225). The value of U* = 21.0227 corresponds 

to a non-dimensional structural natural frequency of 0.0476. The results, illustrated 

in Figure :J.4, reveal that the response of the system increases to a maximum near 

k = 0.07.5 and decreases for larger values of k. The system can he seen to undergo 

several different types of bifurcations, and there are two regions of possibly chaotic 

behaviour. The focus of the remainder of this section will be on the low frequency 

region, near k = 0.044. The higher frequency region, near k = 0.170, will be discussed 

in a later section . 

• The bifurcation diagrams in Figures 3.2, ... ,:1.4 give the amplitude of oscillations 
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that are obtained as certain system parameters are varied over a wide rangt-> of vahws . 

However, tlw most interesting system dynamics occur in the narrow regions wlwre 

tlw response is potentially chaotic. In Figures :3.5 - :t 7, the bifurcation diagrams 

are expanded in the regions where the response of the system changes from rwriodic 

motion to chaotic or quasi-periodic motion. 

In the bifurcation diagram shown in Figure :3.5, Q0 is varied over a small range of 

values (0.98 * 10-4 < Qo < 1.10 * w-4 ). This corresponds to the region in Figure :3.2 

where the response of the system begins to appear chaotic or quasi-periodic. As Q o 

is increased from 0.98 * 10-4 the well defined lines, characteristic of periodic motion, 

begin to spread out or diffuse into one another. Furthermore, at values of Qo equal 

to approximately 1.00:1 * 10-4 and 1.0062 * 10-4, the system appears to underg~ 

complicated bifurcations; these are indicated by the appearance of many new lines 

or regions where the lines diffuse suddenly. These new lines are unstable and diffuse 

quickly as Q0 is increased indicating that the oscillations corresponding to these lines 

are not very stable. According to this bifurcation diagram, the response of the system 

is chaotic or quasi-periodic for Q0 greater than approximately 1.0062 * 10-4, and the 

transition from periodic to chaotic or quasi-periodic behaviour is a gradual deerease in 

the stability of the periodic oscillations, This bifurcation diagram does not provide a 

means of clearly defining a critical value of the parameter Q0 • A critical value should 

divide the region of periodic behaviour from the chaotic or quasi-periodic region, 

but in fact the chaotic or quasi-periodic behaviour tends to creep gradually into 

the solutions. After Q 0 exceeds a value of approximately 1.079 * 10-4 , the response 

returns to a stable, period two oscillation. Within the apparently chaotic region 

(1.0062 * 10-4 < Qo < 1.079 * 10-4
), there are smaller regions where the response is 

stable and periodic, for example near Qo = 1.058 * w-4 and Qo = 1.065 * w-4 . 
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In Figure :3.6, the non-dimensional velocity, fi*. is varied over the apparently 

chaotic region, (20.00 < l!* < 21.:)8) of Figure :>.:3. The· system undergoes 

bifurcations at several values of U*, including 20. U, 20.19 and 20.4f). The response 

of the system appears to become chaotic or quasi-periodic: for values of fT* greater 

than approximately 20.6(). However, once again it is difficult to define a critical valne 

with certainty because the transition to chaotic or quasi-periodic motion is gradual. 

The system returns to a stable, period two oscillation for values of U* greater than 

approximately 21.35. 

The small chaotic or quasi-periodic regiou shown in Figure :).4, near k = 0.044, is 

shown in more detail in Figure :t 7. As the non-dimensional frequency, k, is increasf.'A.i 

to values greater than approximately 0.041, the response of the system can be see11 

to undergo a series of bifurcations. The response appears to be chaotic or quasi­

periodic for values of k greater than approximately 0.0434, whereas, for k greater 

than approximately 0.045, the response suddenly returns to a stable, period-two 

oscillation. Furthermore, just prior to the onset of the chaotic or quasi-periodic 

motion at k = 0.043:}, the response is stable and periodic, and other smaller regions 

within the chaotic or quasi-periodic region also show signs of periodic behaviour. 

Case Studies 

The next stage in the nonlinear analysis consists of comparing the time histories, 

phase plane plots and Fourier spectra for four different test cases. In these test 

eases the non-dimensional velocity, U*, and the non·dimensional frequency, k, 

were fixed at 21.0227 and 0.044, respectively, while the value of Q0 was set at 

1.00 * 10-\ 1.006 * 10-4, 1.02 * w-4 and 1.05 * 10-4 
• 

Figure :3.8 shows a small section of the time history of the response for each of 

the four different test cases. In Figure :3.8 (a), the response is a stable, period-four 
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oscillation. The responses shown in Figure :).8 (b). (c), and (d) exhibit somt-> hight->r 

order periodic, or even quasi-periodic behaviour. The pattern of the response rt->twats 

itself over the time interval shown in Figure :t8 (b) and (d), and the period of the 

response in Figure :3.8 (c) is of the order of the time interval shown. 

Figure :3.9 shows the phase plane plots, over the same time interval as in Figure 

:J.8, for the four different test cases. In Figure :3.9 (a), the response remains in a 

stable, period four oscillation, while, in Figure :3.9 (b), the stable curve begins to 

break down and the plot suggests a higher order periodic response. In Figure :}.9 (c), 

the period reaches a maximum, and it is not obvious whether the response repeats 

itself over the given time interval, whereas, in Figure :3.9 (d), the response returns 

to a high order periodic oscillation. . . 

The Fourier spectra of the four different responses are shown in Figure :1.10 . 

Figure :3.10 (a) confirms that the response for the case in which Q 0 = 1.00 * w-4 is a 

period four oscillation. The largest spike occurs at the forcing frequency, k = 0.044, 

with three other subharmonic spikes at k = O.Oll, k = 0.022 and k = O.O:J:3. The 

higher frequencies shown are the higher order harmonics of these four main frequency 

components. In Figure :3.10 (b), there are many well defined subharmonic spikes, 

indicating that the response, over the given time interval, is periodic. In Figure :3.10 

(c), it is difficult to define any subharmonic spike.s; instead the response has more of 

a broad band spectrum, indicating that the response may be chaotk. The Fourier 

spectrum shown in Figure :3.10 (d) contains many well defined spikes confirming that 

the response is once again periodic over the given time interval. 

Poincare Sections 

The next step in the analysis involves studying the long term behaviour of the 

response by examining the Poincare sections. Each Poiucare section was constructed 
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with a minimum of twenty thousand points, corresponding to a tinw intf'rval equal 

to twenty thousand periods of the forcing function. Furtlu~nnore, before any points 

wf're retained, the system was allowed to run for a minimum of one hundred periods 

to allow time for any transient motions to die out. 

The Poineare section for the case where Qo = 1.00 * 10-4 is shown in Figure :l.ll 

(a). The four groups of points shown in this plot indicate that the response of the 

system is a period four oscillation. However, since the groups are not exact points. 

this period-four oscillation is not perfectly stable. In Figure :~.11 (b), each pitch 

data point is plotted versus the number of the period for which that data point was 

obtained, therefore, the x-axis can be interpreted as a discretized time variable. This 

method of plotting the Poincare data is useful in helping to determine the long tern1 

behaviour of the system since the general characteristics of the long term behaviour 

can be captured with very few data points. Figure :3.11 (b) shows that the period­

four response remains stable for approximately the first ten thoilsand periods, but 

becomes slightly unstable for an almost equally long time before settling back down 

to the original period four oscillation. The response is not chaotic while the period 

four attractor is slightly unstable, instead it changes from one high order periodic 

state to another, as indicated by the different lines that appear in the plot. Thest­

new higher order periodic states may exist for only a few periods or they may exist 

for several hundred periods. 

The next Poincare section, for the case where Q0 = 1.006* 10-4, is given in Figure 

:tl2 (a). The four groups of points observed in Figure 3.11 (a) have diffused into fine 

lines and a pattern is beginning to emerge in the way the data points are distributed 

in the phase plane. This pattern is normally referred to as an attractor. Figure 

:tl2 (b) illustrates that the response changes from one periodic state to another, and 
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that each state may remain stable for up to several hundred periods. Occasionally as 

the response of the system is changing from one of thest- periodic states to another. 

it will become very highly periodic, perhaps even quasi-periodic or chaotic, but this 

behaviour lasts only for a very short period of time, on the order of about ten periods. 

The structure of the attractor is dearly visible in the Poincare section for 

Q o = 1.02 * w-4, shown in Figure :3.1 :3 (a). Aside from one small area near t lw 

top of the plot, all the data points fall along several very well defined curves. From 

Figure :3.1:1 (h), the long term behaviour of the system can be seen to be very 

complicated. Initially the response is a high-order periodic oscillation and it remains 

in this state for approximately the first 2500 periods, then the response goes through 

approximately 500 oscillations where it is either quasi-periodic or chaotic, then it 

returns to a periodic oscillation that remains stable for approximately 5000 periods . 

The periodic response then suddenly becomes unstable. During this unstable 

phase the response undergoes frequent transitions from high order periodic phases 

to quasi-periodic or chaotic phases, and the number of different high order periodic 

phases is very large. As can be seen from the plot, these high order periodic phases 

appear in a seemingly random fashion and eau remain stable for as long as several 

hundred periods. On the other hand, the quasi-periodic or chaotic phases are usually 

very short, on average lasting only about ten periods before the response restabilizes 

into a new and different high order periodic phase. After approximately 8000 

periods the response stabilizes into another periodic oscillation, this time a period­

one oscillation. After approximately 4000 periods this response becomes unstable 

and the more complicated behaviour returns. 

The at tractor shown in the Poincare section in Figure :3.14 (a) is for the case in 

which Qo = 1.05 * 10-4
• The overall shape of this attractor is very similar to the 



• shapt> of the attractor in Figure :3.l:l (a), for the case where Qo = l.O~ * w- 4
• t>xcept 

that it has been stretched into a slightly different orientation in tlw phase plaue. 

This different orientation of the attractor results in a different overall pattern of tht> 

response, which is illustrated in Figure :t14 (b). The response does not remain in 

any periodic state for as long as in the previous case as the maximum time span 

for a periodic state to exist is reduced from approximately 5000 to 1000 periods. 

However these periodic states occur more frequently so that the periods of chaotic or 

quasi-periodic behaviour are distributed more evenly over the time interval shown. 

The at tractors in Figures :3.1 :~ (a) and 3.14 (a) are not as one-dimensional as tbe 

Figures suggest. The regions outlined in boxes in Figure 3.1 :J (a) are shown in detail 
. 

in Figure :J. 1.5 (a) and (b). In these enlarged views, the at tractor can he seen t<? 

vary in thickness with definite boundaries defining its shape. Within the boundaries 

• of the attractor there is an internal structure: the data points are distributed in 

short, discrete, quasi-parallel groups that are approximately perpendicular to the 

orientation of the attractor. 

Poincare Maps and Intermittent Chaos 

To examine how the complicated behaviour illustrated in Figures :l.l:J(b) and :J.14(b) 

arises, the case where Q0 = 1.02 * 10-4 will be studied in further detail by examining 

the Poincare data in the form of first and second return maps. The first return map 

plots the 'n + 1' pitch data point versus the 'n' pitch data point, similarly the second 

return map plots the 'n + 2' pitch data point versus the 'n' pitch data point. With 

these maps, the response of this system can be shown to share some similarities with 

systems that exhibit intermittent chaos . 

• Intermittent chaos is observed in theoretical systems, such as the Lorenz 

r!10del, and also in experimental systems, such as Rayleigh-Bernard convection 



• 

• 

• 

.)~) 

[Berge et al., 1986]. The responsf' of a system exhibiting classical intt>rmittt>ut 

chaotic behaviour will be periodic for a certain length of time, tben tlwre will 

b'e a short burst of chaotic activity followed by a return to the same periodic 

behaviour. The transition from a chaotic burst back to periodic behaviour is known 

a." the relaminarization of the response. There are three different types of classical 

intermittency, types I, 11 and Ill, each having different qualitative characteristics. 

Type I intermittency involves the destabilization of a periodic trajectory, for 

values of a system parameter greater than a critical value, caused by the crossing 

of an eigenvalue of the Floquet matrix with the unit circle of the complex plane 

at + 1 [Berge et al., 1986]. The main characteristic of type I intermittency is that 

a laminarization channel exists in the first return map. This channel is a regiotl . 

of the attractor that lies near the identity line (the 45° line) and is tangent to the 

identity line at some point, a typical channel is illustrated in Figure :1.16 (a). The 

response enters this channel at a point near the bottom end and, with successive 

iterations of the map, it moves through the channel as shown. While the response 

is in the channel it is reasonably stable and therefore the behaviour of the system 

appears periodic. The length of time required for the re.sponse to move through 

the channel can be relatively long depending on the width of the channel. After 

the system leaves the channel it moves to another part of the phase plane where 

the attractor is chaotic, this corresponds to a chaotic outburst in the response. The 

system will remain in the chaotic region of the phase plane until it is mapped back to 

the beginning of the channel, this is the relam.inarization process. The length of time 

that the response spends in the laminar phase depends on the type of intermittency, 

for type I intermittency the probability of the response remaining in a lamiuar phase 

of length 'T' is given by the characteristic distribution shown in Figure :3.16 (b). The 
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shap~ of this distribution indicates that for type I intermittency then:- will lw many 

laminar phases of approximately tlw sam~ length, som~ very short laminar phast->s 

and there is a definite maximum laminar phase length which is syst~m depetHlant. 

Type 11 intermittency is caused by two complex conjugate ~igenvalnes of the 

Floqllet matrix crossing the unit circle of the complex plane [Berge et al., 19Kt1]. 

The theory of type li intermittency is reasonably well understood but, as of y~t, 

there have been no examples of systems, either numerical or experimental, which 

have been proven to exhibit type 11 intermittent chaos. 

Type Ill intermittency is caused by an eigenvalue of the Floquet matrix crossing 

the unit circle of the complex plane at -1 [Berge et al., 1986]. The laminarization 

channel for this type of intermittency is found in the second return map and i~ 

illustrated in Figure :3.17 (a). This characteristic shape in the second return map 

is caused by the first return map crossing the identity line at a slope slightly less 

than -1. While the system is in this channel the response is periodic, as in type 

I intermittency, an important characteristic of this type of intermittency is that 

the approach of the chaotic outburst is signalled by the growth of a subharmonic 

oscillation. This subharmouic oscillation increases in amplitude until at some point 

there is a chaotic burst, usually in the form of a sudden increase in the amplitude 

of the response. The characteristic probability distribution of the average lengths of 

time of the laminar phases is shown in Figure :t 17 (b). This distribution illustrates 

that for type Ill intermittency there is a definite minimum length of the laminar 

phases and that some lam.inar phases can last for a very long time. 

The first return map for the case of Q0 = 1.02 * w-4 is shown in Figure :l.l8 (a). 

The attractor can be divided into three separate regions: the first, for angles of attack 

less than approximately 0.9 degrees, consists of an almost straight line; the second, 
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for angles of attack between 0.9 and :3.6 degrees, consists of three curves. two of which 

cross the identity line at slopes less than -1; the third, for angles of at tack greatt->r 

than :3.6 degrees, conRists of a single short line. The corresponding second return 

map, showti in Figure :3.18 (b), is composed of several curves distributed throughout 

the plane. The first and second return maps for the case where Q 0 = 1.05 * w-.t. 

shown in Figures :3.19 (a) and (b) respectively, are very similar in appearancf'. 

These return maps do not show the type of characteristics described previously 

for systems that exhibit classical type I or type Ill intermittency. Furthermore, the 

long term behaviour of the system, as illustrated in Figures :3.1:l (b) and :3.14 (b). 

is not typical of these types of intermittency in two respects. Firstly, the responses 

show regions of very long periodic phases and very short periodic phases. This i~ 

especially true for the case illustrated in Figure :3.1:1 (b), which suggests that the 

behaviour is a combination of type I and type Ill intermittency, and secondly, after 

each chaotic burst the system does not return to the same periodic oscillation but 

instead tends to find a new periodic state. 

The reason the response can be labelled as intermittently chaotic is because of 

the time scale of the chaotic behaviour and the marginal stability of the response. 

To illustrate the time scale of the chaos mnsider the following: if the response is 

analyzed over any short period of time (less than approximately 200 periods), one 

may find that it is periodic and stable, however, if a longer . time scale is chosen 

the response will be chaotic because, even though the behaviour is mostly periodic, 

the final state of the system is completely unpredictable. Furthermore, since the 

response of the system spends most of its time in a periodk oscillation, and the 

unstable phases are usually very short, the behaviour of the system can be described 

as marginally stable. It is these two characteristics that the system shares with other 
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systems that exhibit the more classical types of intermittency . 

One of the purposes of comparing the intermittently chaotic behaviour of this 

system with systems that exhibit classical intermittency is to illustrate that there art> 

important differences in the long term behaviour of the two cases. It is important to 

remember that the type of intermittently chaotic behaviour found herein is a dirt>ct 

result of the numerical dynamic stall model. Therefore, like any other numerical 

model, the long term behaviour of the system, as illustrated by the Poincare sections 

and maps, should show behaviour similar to other numerical models regardless of 

their origin. However, the type of marginally stable long term behaviour exhibited 

by this system seems to be unique to this particular model. Furthermore, since this 

behaviour is a product of the numerical model it cannot be stated absolutely tha~ 

it is the result of the dynamic stall phenomenon, only that it is the result of this 

• particular dynamic stall model. 

Analytical Modelling of the Return Maps 

In order to better understand the complicated behaviour of this system, the first 

return map was modelled by the analytical system given below: 

{ 

-0.6xn + 0.645, for 0 <= x,. < 0.4 
Xn+l = 

(x,. + 0.6)-'Y, for 0.4 <= Xn <= 1.0 
(:3.2) 

This model of the first return map was obtained by inspection and it should be noted 

that it is not identical to the system first return map; it is not multi-valued and the 

region being mapped has been scaled to fit the region (0 <= Xn <= 1.0). However, 

the general shape of the attractor, shown in Figures :3.18 (a) and :3.19 (b), is captured 

by this model with only a single parameter, 'Y· 

• In Figures :3.20 (a), (b) and (c) the first return map , the second return map 

and the long term behaviour of this analytical system, respectively, are shown for 
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the case where the value of 1 is equal to 11.00. These plots illnstrate that the 

beha.viour of the system is periodic, however, a largt> number of itt>rations of tht> 

map are required beforf' the system repeats itself. In Figures :3.21 (a), (h) and (c) 

tht> value of 1 is increased to 11.05 and, as can be seen from the plots, this almost 

imperceptible change in the orientation of the at tractor results in a significant changt' 

in the dynamics of the map. The value of ; is increased to 11.10 in Figures :t22 

(a), (b) and (c) and the system dynamics once again undergo a significant change 

back to a periodic state. It is evident from the plots in Figures :3.20 to :l.22 that for 

very small changes in the value of the parameter 1, resulting in slight changes in the 

orientation of the attractor, a wide range of highly periodic and chaotic responses 

can be created. 

The Lyapunov spectrum for this analytical system is shown in Figure :t2:3 for a 

narrow range of values of the parameter ; . It should be note(l that the Lyap1inov 

exponent for the case where; = 11.00 is greater than zero, which indicates a chaotic 

response, however, from Figure.s 3.20 (a)- (c) it is obvious that the response is not 

chaotic. In this case, the periodicity of the map is so large that an infinite number 

of iterations of the map would be required for the Lyapunov exponent to approach 

zero. These highly periodic states are the dominant type of response for the system 

for values of the parameter; in the range (10.0 < 1 < 1:3.2). 

In Figure 3.24 the region outlined by the boxes in Figure 3.18 (a), which is the 

first return map for the case where Q0 = 1.02 * w-4, is shown in greater detail. 

The internal structure of the attractor consists of short lines or small groups of 

data points, similar to those in Figures :l.15( a) and (b }. Different combinations of 

these groups of data points c.orrespond to different periodic solutions. The quantized 

structure of the attractor implie.s a periodic response because it consists of a finite 
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number of groups of points; but, since these groups of points have a two dimensional 

structure and are not one dimensional points, the periodic responses are unstable. 

An example of the implications of this quantized internal structure ran Lw set->n 

from the data for the case where Qo = 1.02 * 10-4 • According to Figurf! :tt:l (b), . . 

after approximately 16500 periods the system begins a marginally stable period-one 

oscillation that persists for approximately 4000 periods. In order for a marginally 

stable period one oscillation to exist the attractor of the first return map mu::;t 

intersect the identity line at a slope slightly greater than 1 or slightly less than 

+ 1, otherwise successive iterations of the map will quickly move away from the 

intersection point and the period-one oscillation will be unstable. The orientation of 

the attractor for the first return map, shown in Figure :3.18( a), shows that the slope of 

the at tractor at. the intersection point is significantly less than -1, therefore, no stable 

• period-one oscillation should exist. However, as seen in Figure :3.24, the microsr.opic 

structure of the attractor makes it possible for two of the internal structures of the 

attractor to intersect the identity line at slopes that result in a marginally stable 

period-two oscillation. The two internal structures are so close to the identity line 

that, at the normal scale of the Poincare map, this marginally stable period-two 

oscillation appears as a period-one oscillation. 

By examining the Poincare data at the microscopic level, it is obvious that the 

internal structure of the attractor plays an important role in the marginal stability 

of this type of chaotic response. However, how this particular internal structure 

develops is still unclear. 

Evidence of Transient Chaos 

• Continuing the discussion of the long term behaviour of the system, the Poincare 

section for the case where Qo = 1.05 * 10-4 was obtained for the time interval from 
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twenty thousand periods to fifty thousand periods of tlw forcin,2; function. and i~ 

shown in Figure :3.2!l( a). The long term behaviom of the system, shown in Fi,2;1.m-· 

:3.25(b ), indicates that the previously described complicated behaviour persists for 

up to approximately forty thousand periods, however, after this point a pattt>rn 

begins to emerge. This pattern is comprised of blocks, approximately 4000 pt>riods 

in length, which repeat themselves. This indicates that the response has undergunt> 

a transition from unpredictable, chaotic oscillations to predictable, quasi-periodic 

oscillations. 

Further evidence of this transition from chaotic to quasi-periodic behaviour can 

be seen by studying the internal structure of the attractor; the region of the attractor 

outlined by the box in Figure :3.25(a) is shown in greater detail in Figure :t26! 

The pattern of the attractor repeats itself as the entire structure appears to drift 

downward and slightly to the left in the phase plane. It is not unreasonable to 

extrapolate these results and assume that if the simulation were allowed to continue 

for many thousands more periods the structure of the attractor would trace a dosed 

curve in the phase plane. As stated earlier, a Poincare section that traces a dosed 

curve in the phase plane is indicative of a quasi-periodic response. 

The preliminary indications from this very long term analysis of the response 

1s that the intermittent chaotic oscillations, characterized by phases of periodic 

behaviour mixed with phases of quasi-periodic or chaotic behaviour, may be transient 

in nature. However, due to the limits imposed by the amount of memory required to 

run a simulation of the system for the required length of time, confirmation of thf' 

possible transient nature of the chaos will have to be left for future investigation . 
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3.3.2 Case II: Low Frequency, Low Velocity, Intermittent 

Chaos 

In this section, the system dynamics are analyzed for a case when' the airfoil is 

forced to oscillate at a relatively low non-dimensional frequency, k = 0.088, low nun-

dimensional velocity, l!* = 12.20, and high initial angle of attack, Ct'0 = ~).7() 0 • Tht> 

response of the system is first presented in a bifurcation diagram in whieh Qa is varied 

over a wide range of values, then the region where the response is quasi-periodic or 

chaotic is presented in a more detailed bifurcation diagram. The response of t lw 

system is then analyzed for many different test cases within the apparently chaotic 

region and for each of these test cases the time histories, phase plane plots, Fouriet 

spectra and Poincare sections are analyzed . 

Bifurcation Diagrams 

In Figure :3.27, the bifurcation diagram for the case where a 0 = 9.76°, k = 0.088, 

U* = 12.20 and where the value of Q0 is varied over the range (5.0 * w-s < Q0 < 

12.0 * 10-5
) is presented. The large region (6.:3 * w-s < Qo < 7.2 * 10-5), where the 

response becomes either quasi-periodic or chaotic, is the main focus of this section. 

Then" are other regions where the response appears to go unstable, for example at 

approximately Q 0 = 7.8 * w-5 and Q 0 = 8.4 * w-s' however' due to time constraints, 

these regions will have to be left for future studies. 

The region (6.12 * 10-5 < Qo < 7.:10 * 10-5 ) is shown in more detail in Figure 

:3.28. The response can be seen to undergo many bifurcations as the value of Q0 is 

increased and it appears to be either quasi-periodic or chaotic for Q0 greater than . . 

approximately 6.4 * w-s. The general appearance of Figure :3.28 is very similar to 

the bifurcation diagram shown in Figure :J.5. The similarities include the gradual 
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th-·cre.ase in the stability of the periodic oscillations and regions of periodic hehavionr 

that frequently disrupt the apparently chaotic regions. Furthennort>, thest> islands 

of pe-riodic behaviour appear and disappear without warning. for examplt', in Fignre 

:l.28 the region of apparently chaotic behaviour is subdivided by a region of periodic - -

ht>haviour near Q 0 = 6.8 * w-s' and the transitions to periodic behaviour and back 

to quasi-periodic or chaotic behaviour are very sudden. 

The response of the system in the region shown in Figure :3.28 is studied in more 

detail by analysing the time historie.s, phase plane plots, Fourier spectra and Poincare 

sections for different test cases. 

Case Studies 

The case studies analyzed in this section· will focus on the values of the parameter 

Qo for which the response undergoes the transition from periodic behaviour to 

quasi-periodic or chaotic behaviour. In the first such region, (6.:30 * w-s < Qo < 

6.60 * 10-5
), the transition is gradual, and in the second region, (6.81 * w-s < Qo < 

7.00 * w-5
), the transition is very abrupt. 

In Figures 3.29, 3.:10 and 3.:n (a) - (d), the time histories, phase plane plots and 

Fourier spectra of the responses, for the first transition region, are shown for the 

eases where Qo equals 6.:JO * 10-5
, 6.:35 * 10-5 , 6.4 * 10-5 and 6.6 * 10-S, respectively. 

As can be seen from these Figures, the response is a stable period-five oscillation for 

Q 0 = 6.:30 * w-5
' and as Q 0 is increased to 6.:35 * w-5 the periodicity of the response 

increases. Although there are many well defined spikes in the Fourier spectrum of 

Figure a.:H (b), some of these spikes are nearly of the same order as the background 

noise. Therefore, it is difficult to define the periodicity of the response. As Q
0 

is increased further to 6.40 * w-s' the response becomes increasingly higher order 

periodic. The time history of the response, Figure :1.29 (c), appears periodic and 
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stable, however, the phase plane plot, Figure :1.:10 (c), is becoming incrt->asin.e;ly 

unstable, and the Fourier spectrum, Figure :3.:31 (c), shows signs of a JWriod-five 

response. It also has a broadband structure indicating that the response is not 

stable. For the case where Qo is increased to 6.60 * w-s, the time history of the 

n~spouse, Figure :3.29 (d), appears stable, but the phase plane plot. Figure :CJ() (d). 

is not characteristic of a stable response, and the Fourier spectrum, Figure :l.:H (d). 

has many subharmonic spikes indicating that the response may be quasi-periodic. 

ln Figures :t:J2 to :3.:34 the time histories, phase plane plots and Fourier spectra 

are shown for test cases in the second transition region. These test cases are for 

Qo equal to 6.815927 * w-S, 6.815928 * w-s and 7.00 * 10-5, respectively. Figures 

:3.:32 (a), :3.:3:3 (a) and :3.:34 (a) show that for Qo = 6.815927 * w-s the response is il; 

stable period-two oscillation. However, if the value of Q0 is increased by the slightest 

amount to 6.81.5928 * 10-5, the response immediately becomes unstable, as illustrated 

in Figures :3.:32 (b), :t:3:J {b) and :t:J4 (b). ln Figures :3.:32 (c), :3.:3:3 (c) and :t:34 (c). 

the response for the case where Q0 = 7.00 * w-s is also shown to be unstable. 

The evidence from the time histories, phase plane plots and Fourier spectra 

does not prove that the response goes from periodic behaviour to chaotic behaviour. 

moreover, since the Fourier spectra for some of the unstable cases show definite 

subharmonic spikes, the evidence does suggest that the response may become quasi­

periodic. Conclusive evidence of chaotic behaviour can only be found in the long term 

behaviour of the responses, which are illustrated by the Poincare data discussed in 

the following section. 

Poincare Sections 

The Poincare sections and the long term behaviour of the responses, for each of the 

above test cases, are shown in Figures :3.:35 to :1.41. 
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For the first transition region, the response for the case where Q" = 6.:UJ * to-·' 

is a stable period-five oscillation; the Poincare section, shown in Figurt> :3.:35 (a), is a 

five point attractor and tlw long term behaviour, shown in Figure ;3,:35 (b), shows five 

lint>S. In Figures a.:36 (a) and (b), Qo is increased to 6.:35*10-·5 , and the corresponding 

Poincan~ section shows fourteen distinct groups of data points indicating that the 

response is a period-fourteen oscillation, however,- the long term behaviour of the 

response shows that this periodic oscillation is slightly unstable. As Q" is increased 

to 6.40 * w-s, the finite number of points shown in the previous Poincart~ section 

begin to form curves in the phase plane, as illustrated in Figure :3.:37 (a). The long 

term behaviour of the response, as illustrated in Figure :3.:37 (b), shows that the 

response has become even more unstable and that it alternates between marginallY. 

stable phases of periodic and quasi-periodic behaviour. In Figures :3.:J8 (a) and (b), 

the value of Q0 is increased to 6.60 * w-s and the corresponding Poincare section 

has become more complex and the long term behaviour shows that the response has 

become increasingly unstable. 

In the second transition region, the response of the system starts out as a stable, 

period-two oscillation, for the case where Qo = 6.815927 * w-s, as illustrated in the 

Poincare section and the long term behaviour shown in Figures :3.:39 (a) and (b), 

respectively. However, as Q0 is increased only slightly to a value of 6.815928 * I0-5, 

the response of the system iuuuediately becomes unstable, as illustrated by the 

complicated Poincare section and long term behaviour shown in Figures :3.40 (a) and 

(b), respectively. The Poincare section and long term behaviour of the response are 

shown in Figures :3.41 (a) and (b), respectively, for the case where Q0 = 7.00 * 10-s. 

The long term behaviour ofthe responses illustrated in Figures :J.:J8 (b) and :3.41 

(b), is very similar in appearance to the responses shown in Figures :J.l :3 (b) and :3.14 
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(b). however, the shapes of the Poincan~ sections in these cases are not very similar. In 

Figures :3.:H (a) and :3.:38 (a) the Poincar~ attractors are very complicated structnrt>s. 

comprised of many curves, whereas, in Figures :tl:l (a) and :U:l (h). tlw attradors 

an" simple structures, comprised of only a few curves. The connection between the 

different shapes of the Poincare sections and the similarity of the responses in thest> 

two cases lies in the internal structure of the Poincare sections. In Figure :3.42, the 

internal structure of the Poiucare section outlined by the box in Figure :).41 (a) is 

shown. The data points seem to be organized in quasi-parallel groups, this type of 

internal structure is very similar to the internal structure of the Poincan~ section 

illustrated in Figures :3.15 (a) and (b). Furthermore, it was shown in the previous 

section that this internal structure was necessary for marginally stable periodic an4 

quasi-periodic states to exist . 

The marginally stable, or intermittently chaotic, responses discussed in Cases I 

and 11 are one type of chaotic behaviour that is observed in this system. The route 

to this intem1ittently chaotic behaviour begins with a stable periodic oscillation 

and, as the· value of Qo is increased, this periodic oscillation becomes increasingly 

unstable. When the instability is at a maximum the long term response of the system 

is dominated by many different periodic and quasi-periodic states which remain stable 

for unpredictable lengths of time . 
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3.3.3 Case Ill: Low Frequency, High Velocity, Chaos 

[n this section, the response of the system is analyzed at higher values of the non­

dimensional velocity than in case Il. The analysis begins with a series of bifurcation 

diagrams that give a. general overview of the response and also focus on the transition 

regions where the dynamics are most interesting. Then, several case studies art> 

presented, the purpose of which is to illustrate the transition of the responsP from 

periodic behaviour to chaotic behaviour. Finally, Poincare sections an~ presented 

for several different examples within the chaotic region, and these results are then 

compared with other theoretical systems that exhibit similar behaviour. 

Bifurcation Diagrams 

In Figure :J.4:J, the following system parameters are held fixed: the noQ-dimensional 

frequency, k = 0.088, the initial angle of attack, a 0 = 9. 76° and the amplitude of the 

non-dimensional externally applied torque, Q0 = 0.82 * 10-4 • The value of the non­

dimensional velocity, U*, is varied over the range (5.0 < U* < 28.0). Two separate 

regions of chaotic behaviour are shown: the first region, near the low velocity end of 

the bifurcation diagram, was studied in the previous section and the second region, 

near U* = 25.0, is the main focus of this section. 

In Figure :J.44, the value of U* is fixed at 25.2 and the value of Q0 is varied over 

the range (0.0 < Q0 < 1.0 * 10-4). The amplitude of the response increases as Q0 

is increased, and at Qo equal to approximately 5. 75 * 10-s the response undergoes 

a period doubling bifurcation. The response can be seen to undergo another period 

doubling bifurcation at approximately Qo = 6.5 * w-s and after this bifurcation 

the system quickly becomes unstable, the instability reaches a maximum near 

Qo = 7.2 * 10-5
, and then restabilizes into a period-two oscillation at approximately 
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Tht> unstable region, shown in Figurt> :3.44, is shown in more dt>tail in Fignrt> :~.-Vi. 

In this diagram the period doubling bifurcations are easily identified; as Qo increases. 

the system undergoes a series of period doubling bifurcations until, at approximately 

Q0 = 6.90 * 10-5 , the response appears chaotic. 

Case Studies 

In this section, the period doubling cascade and chaotic response are verified by 

examining a number of different test cases. The period doubling phenomena begins 

with the response of the system in a period-one oscillation and, at Q0 , equal to 

approximately 5.75 * 10-5 , the response undergoes a bifurcation to a period-tw~ 

oscillation. The value of Qo is then increased to approximately 6.60 * 10-5
, where 

the period of the response changes to a period-four oscillation and, at a value of Q0 

equal to approximately 6.86 * w-s, the period of the response doubles again to a 

period-eight oscillation. For values of Qo greater than approximately 6.86 * w-5 , the 

response is chaotic. 

In Figures a.46, :3.47 and :3.48 (a) to (d) the time histories (for a short time 

interval), phase plane plots and Fourier spectra, respectively, are shown for four 

different test cases at different values of Q0 along the period doubling cascade. This 

is done in order to verify that the period of the response is actually doubling at each 

bifurcation point. In case (a) Qo = 5.50* w-s, the response is a period-one oscillation 

and at Qo = 6.40 * 10-5 the response changes to a period-two oscillation, shown in 

case (b). In case (c) Qo = 6.75 * 10-5
, the response has undergone another period 

' . 

doubling bifurcation and is a period-four oscillation. As Q0 is increased beyond this 

value the period of the response increases quickly and for case (d) Q0 = 6.92 * 10-S, 

the response is chaotic. 
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According to the bifurcation diagram shown in Figure :3.45, the chaotic hf'haviollr 

reaches a maximum near Q0 = 7.:~ * 10-5 . In Figure :J.49 the time history. pbast> 

plane plot and Fourier spectra are shown for this case. The Fourier spectrum shows 

an obvious broadband frequency characteristic that is typical of a chaotic rPspousf'. 

Poincare Sections and Maps 

ln this section, the Poineare sections, maps and long term behaviour of the system 

are shown for several different cases for which the response is chaotic. As the value of 

Q0 is increased in each case, the Poincare attractor can be seen to changes its shape 

and orientation in the phase plane. The evolution of the Poincare attractor, maps 

and long term behaviour of the response is then compared to the Heuon map - . ~ 

well documented, two-dimensional, analytical map that is known to exhibit chaotic 

behaviour - in order to help in discovering the source of the chaotic behaviour . 

In Figure :3.50 (a), the Poincare section for the case in which Qo = 6.90 * w-s 
(this is near the onset of the chaotic region of Figure :3.45) is shown. The general 

shape of the attractor indicates that the response follows a period-four attrador. 

The second return map for this case is shown in Figure :L50 (b): two curves are 

located near the larger values of the pitch and two other curves intersect near the 

identity line at the lower values of the pitch. The long term behaviour of the response 

is shown in Figure :3.50 (c): the four part attractor is evident in this diagram as the 

chaotic behaviour is confined to within four distinct bands. The two overlapping 

curves of the second return map attractor correspond to the two overlapping bands 

evident in the lower values of the pitch. 

The Poincare section for the case where Qo = 7.00 * 10-5 is shown in Figure 

:3.51 (a). The four part attractor structure, evident in Figure :3.50 (a), has evolved 

into a two part attractor; the two pairs of curves of the previous attractor have 
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grown to overlap each other's domain so that only two independent cnrws can lw 

distinguished. The second return map, shown in Figure :3.51 (b), illustratt->s bow 

these curves have grown into one another. The distinctive feature of this attractur 

is tht-> section at the lower values of pitch that resembles an ·c/ shape. Tlw lon,g 

term behaviour of the response, shown in Figure :3.51 (b), indicates that the chaotic 

behaviour is now. confined to within two distinct bands, while the previous four part 

at tractor is still partially evident as indicated by the darker sections of the two bands. 

The Poincare section for the case where Q0 is increased to a value of 7.:30 * l0-·5 • 

shown in Figure :3.52 (a), is considerably different in appearance from the previous 

two cases. In this case, some bending or folding of the attractor is evident. This is 

indicated by the two-dimensional banded structure of the attractor- the at tractor no 

longer appears as a collection of one dimensional curves, but now each independent 

curve is composed of a series of parallel curves very closely spaced. In the st->corul 

return map, shown in Figure :3.52 (b), the attractor has the same general shape 

as for the previous case, but the shape has become more complicated with more 

smaller attractors and a folded type structure. The long term behaviour of the 

response, shown in Figure 3.52 (c), is considerably different than for the previous 

two cases. The wide bands that contained the chaotic behaviour in the two previous 

cases are gone, and they have been replaced with thinner bands. There are at least 

eleven distinguishable hands, but, the chaotic behaviour is not always confined within 

these bands. At seemingly random intervals the chaotic behaviour will burst out of 

this multi-banded structure for a short period of time, and fill a large, two banded 

structure in which the first band contains the upper six bands of the multi-banded 

structure and the second band contains the lower five bands of the multi-banded 

structure. 
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• In Figure :3.5:3 (a), the Poincare section for the case where Qo = 7.60 * 10- 5 is 

shown. The overall shape of this attractor is very similar to the previous cast> with 

the folded type structure still apparent. However, the second return map, shown in 

Figure :3.5:3 (h }, has changed considerably in its shape and orientation: tlw •oJ-type 

structurt> of the previous two attractors is no longer evident and there are at least 

six different sections to the new attractor. The long term behaviour of the system, 

shown in Figure :3.5:3 (c), has also changed considerably from the previous case. The 

most significant change is that the double banded structure has returned, indicating 

that the response is no longer wanderiug around the unstable periodic attractor of 

the previous case. 

The Poincare section for the case where Q0 = 8.20 * w-s is shown in Figure :u54 - -

(a) and the second return map is shown in Figure :3.54 (b). The general characteristics 

• of the two plots are similar to the previous case, however, the long term behaviour 

of the response, shown in Figure :3.54 (c), indicates that the dynamics are different. 

The two banded structure is still evident, however, at certain times the response can 

be seen to .change from chaotic to periodic behaviour. The.se intervals of periodic 

behaviour occur several times over the time period studied but, they do not remain 

stable for more than approximately one thousand periods. Furthermore, the dark 

and light hands within the double banded structure are aligned with the periodic 

regions, this implies that the chaotic behaviour is confined to wander around an 

unstable periodic attractor. 

In Figure :3.55, a small section of -the Poincare attractor, for the case shown in 

Figure :3.51 (a) (Qo = 0.7d0-4
), is illustrated in order to show the internal structure 

of the attractor. The data points within the attractor can be seen to be organized 

• into distinct, quasi-parallel groups of points. This 'striped' internal structure was 
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also evident in cases I and II . 

Comparison with the Henon Map 

The Henon map is given in equation (:3.:3). 

Xn+ 1 = 1 - vx~ + Yn 

Yn+l = -Jxn 

It is a two dimensional map that stretches (IJ1 > l) or contracts (IJ1 < 1) and br>tHls 

areas in the x-y plane. The result of many iterations of this map, corresponding 

to many contractions and foldings of areas in the phase plane, is that information 

about the initial conditions is lost and the behaviour becomes chaotic [Moon, 1987). 

In the examples of this map shown as part of this thesis, the value of J is fixed at 

-O.:l and the value of the parameter v is varied. The results of the Henon map, for 

different values of the parameter 11, are presented and then compared qualitatively 

with the results of the Poincare sections and maps presented in the previous section. 

The goal of this qualitative comparison is to gain insight into the possible cause of 

the chaotic behaviour of the oscillating airfoil system, by comparing its behaviour 

with that of an analytical system. 

In Figure :3.56, the bifurcation diagram of Xn versus 11 is shown for the case where 

J is fixed at -0.:3 and 11 is varied from 0.9 to 1.1. The importance of this diagram is 

that it shows qualitatively that the route to chaos for this system is period doubling. 

The phase plane plot of Yn versus Xn, which is similar to the Poincare section 

for a continuous system, for the case where 11 is equal to 1.065 is shown in Figure 

:3.57 (a). The at tractor, composed of four distinct curves in the phase plane, is 

similar in appearance to the four piece attrador shown in Figure :1 . .50 (a). The 

fourth return map for the x variable, shown in Figure :3.57 (b), shares a common 
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physical characteristic with the second return map shown in Figure :3.GO (h). nanwly 

the development of a small loop structure near the identity line. The lon,g term 

behaviour of the response, shown in Figure :3.57 (c), is illustrated by plotting each 

value of the x variable against the number of the iteration for each data point. This 

figure shares the same banded structure as shown in Figure :3.50 (c). Furthermore. 

within these bands can be seen some darker and lighter bands, which is also a common 

characteristic of the two systems. 

In Figures :3.58 (a), (b) and (c) the value of the parameter v is increased to 1.077, 

and the corresponding phase plane plot, fourth return map and long term behaviour, 

respectively, are shown. The important changes to the attractor are as follows: the 

distinct curves of the four piece attractor of the phase plane plot have lengthene~r 

the loop type structure of the attractor in the fourth return map has become more 

pronounced and the bands of chaotic activity, shown in the long term behaviour, have 

widened. As the parameter 11 is increased even further, several important qualitative 

changes in the attractor become apparent. 

In Figures :3.59 (a), (b) and (c) the value of 11 is increased to 1.089. The phase 

plane attractor, illustrated in Figure :3.59 (a), has developed into a two piece attractor 

and the shape of each of the curves has developed a folded appearance. This folded, 

two piece attractor is qualitatively very similar to the attractor shown in Figure :3.51 

(a). Also, the pronounced loop type structure of the fourth return ma.p, shown in 

Figure :3.59 (b), is similar to the type of structure seen in the second return map of 

Figure :l.51 (b). Furthermore, the long term behaviour of the system, illustrated in 

Figure :3.59 (c), shows the same double banded structure with dark and light internal 

bands as the long term behaviour of the system illustrated in Figure :3.51 (c) . 

While it is not surprising that the oscillating airfoil system bewmes chaotic 
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aft~r a s~n~s of period doubling bif1ucations, similar to tlw Ht>non syst~m. it is 

v~ry surprising that th~ Poincare sections and maps and th~ long term lwhavinm 

of a system designed to model ad aerodynamic system should strongly r~sembl~ 

th~ corresponding plots of a system designed to model the contraction and folding 

of areas in the phase plane. The Henou map is known to become chaotic du~ to 

the fact that the stable and unstable manifolds of the Poincare section intersect 

an infinite number of times in the phase plane. The result is that if a Poincar~ 

point lies near one of these intersection points it will be mapped to all the other 

intersection points in future iterations, the curve on which these points lie is called 

a homodinic orbit [Moon, 1987]. It cannot be proven that the stable and unstable 

manifolds of the oscillating airfoil system intersect and that a homodinic orbit exists; 

(if it can be proven it is well beyond the scope of this thesis), but, homodinic orbits 

are known to be of fundamental importance in the type of chaotic behaviour found 

in horseshoe-type maps such as the Henon map. The similarities in the Poincare 

data of the oscillating airfoil system and the Henon system suggest that the chaotic 

behaviour in both systems may be caused by the same type of phenomena, namely, 

the existence of a homocliuic orbit. However, due to the overwhelming complexity 

of proving such a link between the two systems, further study along these lines will 

have to be left as a possible topic of future research . 
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3.3.4 Case IV: High Frequency, High Velocity, Chaos 

Thf> fourth type of chaotic behaviour found in tllf' singlf' degref' of frf't>dom systt>m 

involves high non-dimensional velocities and higher frequency oscillations t ban in 

tlw previous cases. The analysis begins with bifurcation diagrams, in which thf' non­

dimensional frequency, k, or the non-dimensional forcing amplitude, Q0 , art'"' varic->d, 

which pinpoint the regions of chaotic behaviour. Next, a series of examplt-'s arc-> 

presented that focus on the transition to chaos and the types of bifurcations which 

the system undergoes. Finally, Poiucare sections and the long term behaviour of the 

response, for several different chaotic cases, are presented. 

Bifurcation Diagrams 

The bifurcation diagram shown in Figure :J.60 illustrates how the maxnuum 

amplitude of the response changes as the non-dimensional frequency, k, is increased 

for the case where 0'0 = 7.62°, U* = 20.265 and Q0 = 8.40 * 10-5 • The maximum 

amplitude of the response occurs at a frequency of approximately k =_ 0.068, this 

implies that the natural frequency of the entire system, including the aerodynamics, 

lies near this value. For completeness the structural natural frequency of the system 

is shown on the plot in order to illustrate that the two frequencies are not the same. 

The response becomes either quasi-periodic or chaotic at a value of approximately 

k = 0.150, and then restabilizes at approximately k = 0.215. 

In the next bifurcation diagram, shown in Figure :3.61 (a), the initial angle of 

attack, 0'0 , and the non-dimensional velocity, U*, remained unchanged at 7.62° and 

20.265, respectively, and the frequency was fixed at k = 0.156 while Q0 was varied 

over the range (0.00 < Qo < 1.50 * 10-4
). The plot illustrates a number of different 

characteristics of the response: the maximum amplitude of the response generally 
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increases as Q0 increases, secondly, the response undergoes a seriPs of hib1rcations 

that eventually lead to an unstable response, and finally, the ubst>rved uBstahlt> 

response persists over a wide range of values of Q o before it restabilizes in a period­

two oscillation. 

The bifurcation diagram shown in Figure :3.61 (b) is a detailed vww of t lw 

transition region of Figure :3.61 (a). In this plot the bifurcations leading to the 

chaotic response are dearly visible. At Qo equal to approximately :J.40 * w-r,, tlw 

response changes from a period-one oscillation to a period-four oscillation and then, 

at Qo equal to :3.90 * 10-5 , the response changes from period-four to period-six. Tlw 

response undergoes another bifurcation at Q 0 equal to approximately 4.15 * w-s to 

a higher order periodic oscillation and then, at Qo equal to 4.24 * 10-5 the respons~ 

suddenly becomes unstable and may be chaotic . 

Case Studies 

The four case studies discussed in this section are from the different regions of Figure 

:3.61 (b) wl~ere the response changes to higher order periodic states leading to the 

potentially chaotic region. The values of Q0 for these test cases are: (a) :3.6* 10-5 , (b) 

4.0 * 10-5
, (c) 4.2 * 10-5 and (d) 4.:h 10-5

, all of the other system parameters remain 

the same as in Figures 3.61 (a)·and (b): 0:0 = 7.62°, U* = 20.265 and k = 0.156. 

In Figures 3.62, :3.63 and :3.64 (a)- (d), the time histories, phase plane plots and 

Fourier spectra for each of the four values of Q0 are shown, respectively. In case (a), 

the value of Qo is :3.6 * 10-5
, and the response is a stable period-four oscillation, in 

case (b) the value of Q 0 is increased to 4.0 * 10-5 and the period of the response 

increases to period-six. In case (c) the value of Q0 is increased to 4.2 * 10-5 and 

from the time history and Fourier spectrum the response can be seen to be a stable 

period-nine oscillation. In case (d), the value of Q0 is increased to 4.:3 * 10-s and is 
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within tht> unstable region of Figurt> :3.61 (b). As indicate-d by tlw phast> plant> plot. 

the response does not repeat itself over the sampled time period (the tinw histor.v 

does not show a11 of the data that was sampled to obtain the phast> plant> plot and 

Fourier spectrum). Furthermore, the Fourier spectrum shows a definite spike at tht> 

forcing frequency, k = 0.156, and a broadband spectrum in the subharmonic rangf' 

which is typical of chaotic signals. 

An important point to note regarding the above case studies is that the response 

of the system does not period double before the onset of the chaotic behaviour, as 

was the case in the previous section. However, the system does undergo a series 

of bifurcations that increase the periodicity of the response until, at a value of tht> 

forcing amplitude of approximately 4.24 * w-s' the response becomes chaotic. 

Poincare Sections 

In this section, the Poincare sections and long term behaviour of the response are 

illustrated for three different test cases within the unstable region of Figure :3.61 (b), 

and one high frequency test case from case I. 

In Figures 3.65, 3.66 and :1.67 (a) and (b), the Poincare sections and long term 

dynamics of the response are illustrated for these three different test cases. In each 

case, the parameters a 0 = 7.62°,_ k = 0.156 and U* = 20.265 are the same and only 

the value of Q0 is different. 

The attractor shown in Figure :3.6.5 (a), for the case where Q0 = 4.:10* w-s, has a 

definite structure within the phase plane that is characteristic of a strange or chaotic 

attractor; the data points are formed into a complex but highly organized structure 

comprised of many intersecting curves. The long term behaviour of the response, 

shown in Figure :3.65 {b), has the same general type of pattern found in cases I and 

II (the intermittent type chaos), however, in this case, the response always returns to 
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the same periodic oscillation after each outburst of chaotic behaviour. This indicatf's 

that the response is under the influence of a weak periodic attractor. 

In Figures :3.66 and :J.67 (a) and (b), the Poincare sections and long term 

behaviour of the system are ilh1strated for the cases where Qo = 4.45 * w-s and 

Q o = 4. 70 * 10-5
, respectively. The similarity between the shapes of these two 

Poincare attractors is unmistakable, in fact they are nearly identicaL The differences 

between these Poincare attractors and those of cases I, 11 and Ill (see Figures :3.1:3 

(a), :3.40 (a) and :3.51 (a), respectively) is also evident; the Poincare attractors for 

these high frequency chaotic cases have more of a two-dimensional structure than tlw 

at tractors in the other lower frequency chaotic cases. From Figures :3.66 (b) and :3.67 

(b), it can be seen that the long term behaviour is not confined to within defini~~ 

bands, as in case Ill, and is not intermittent or marginally stable, as in cases I and 

II, although there are regions in Figure :J.66 (b) that appear periodic they are very 

unstable and quickly disappear. 

In general, the type of chaotic behaviour found in this high velocity - high 

frequency case is different from the previous cases in at least one significant way: 

the high frequency chaotic response is much more unpredictable or chaotic than the 

lower frequency chaotic responses. The meaning of the term predictable can best be 

defined as how close the response is to being stable or periodic. This difference in 

behaviour is best illustrated by comparing the time histories of the response for test 

cases from each of the fourcases studied, as shown in Figures :l.68 (a) (d). The 

responses illustrated in Figures :3.68 (a) through (c) have been shown in previous 

sections to be chaotic, however, these oscillations do not appear to be completely 

unstable - in other words, the position of the airfoil cannot be predicted exactly 

from a previously known position, however, the oscillations do not tend to behave 
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in an extremely erratic manner eitheL therefore, these responses can lw desnilu:-'d 

as only 'weakly' chaotic. On the other hand, the response illustratt>d in Fig;me :u;x 

(d), for the high frequency chaotic case, is extremely unpredictable. This rt>spons<-' 

has regions of small amplitude oscillations and regions of large amplitudf' oscillations 

that appear at seemingly random intervals and when compared with the three other 

cases is far more unstable. Therefore, this response is characterized as 'strongly' 

chaotic. 

The type of behaviour illustrated in Figures :J.65 - :3.67 is typical of tlw 

behaviour that is found when the system is forced at a frequency in the range 

(0.150 < k < 0.185), with large initial angles of attack and high velocities. For 

example, in Figures :3.69 (a) and (b), the Poincare section and long term behaviour a 

respectively, are shown for the case in which O!o = 8.90°, k = 0.165, u· = 21.0227 

and Q 0 = 1.02 * w-s' this is a high frequency case using other parameters equal to 

those for case I (see Figures :tl:l (a) and (b)). The Poincare at tractor and the long 

term behaviour are remarkably similar to the cases shown in Figures :}.65- :t67. The 

complicated internal structure of this Poincare attractor is revealed in the magnified 

view shown in Figure :J. 70. On the microscopic scale, the data points are organized 

into well defined groups of parallel curves and are not randomly distributed within 

the attractor. This internal organization of the data points, or fractal structure, is a 

characteristic of all chaotic, or strange, attradors [Moon, 1987]. 

The instability of the numerical method (discussed in Chapter 2) is evident 

m Figure 3.68 (b). The solution converges for approximately nineteen thousand 

periods of the forcing function, and then it diverges. The error at each time step 

is approximated by the difference between the predictor and corrector values of the 

pitch. This e.stimated error is usually well below the predetermined tolerance level 



• (1 * w-6 ), but the high-velocity chaos is prone to sudden large increases in the 

amplitude of the response which causes sudden increases in the estimated error. 

Occasionally, these increases in the estimated error become greater than the tolerance 

level and the time step cannot be accepted. It is not obvious what causes these 

large increases in the estimated error but, in the future, a more accurate method 

of calculating the predictor values of the pitch and pitch rate may decrease the 

magnitude of the estimated error and allow the simulation to continue . 
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Figure 3.1: The single degree of freedom a.irfoil system . 
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Figure 3.2: Bifurcation diagram for the case: a0 = 8.90°, U* = 21.0227, k = 0.044 

and 0.0 < Qo ~ 1.18 * w-4 • 
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Figure 3.4: Bifurcation diagram for the case: a 0 - 8.90°, Q0 - 1.02 * 10-4, 

U* = 21.0227 and 0.02 < k < 0.225 . 
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Figure 3.8: The time histories of the response of the airfoil for the cases: a 0 = 8.90°, 

U* = 21.0227 and k = 0.044 and (a) Q0 = 1.000 * 10-4, (b) Qo = 1.006 * 10-4, (c) 

Qo = 1.020 * 10-4 and (d) Q0 = 1.050 * 10-4• 
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Figure 3.9: The phase plane plots of the response of the airfoil for the cases: 

ao = 8.900, U* = 21.0227 and k = 0.044 and (a) Q0 = 1.000 * 10-4, (b) 
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Figure 3.14: (a) The Poincare section and (b) the long term behaviour of the system 

for the case: Q0 = 1.050 * 10-4 , a0 = 8.90°, U* = 21.0227 and k = 0.044. 
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Figure 3.15: The micro-structure of the Poincare attractor is shown for two separate 

regions, (a) and (b), of the case: Qo = 1.020 * w-4, ao = 8.90°, u· = 21.0227 and 

k = 0.044 (see Figure 3.13(a)). 
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Figure 3.29: The time histories of the response of the airfoil for the cases: 

a 0 = 9.16°, U* = 12.20 and k = 0.088 and (a) Q0 = 0.630*10-4, (b) Q0 = 0.635*10-4, 

(c) Qo = 0.640 * 10-4 and (d) Q0 = 0.660 * 10-4 • 
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Qo = 0.6815928 * IQ-4 and (c) Q0 = 0.700 * 10-4• 
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Figure 3.35: (a) The Poincare section and (b) the long term behaviour of the system 

for the case: Q0 = 0.630 * 10-4 , a 0 = 9.76°, U* = 12.20 and k = 0.088. 
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Figure 3.36: (a) The Poincare section and (b) the long term behaviour of the system 

for the case: Q0 = 0.635 * 10-4, 0 0 = 9.76°, U* = 12.20 and k = 0.088. 
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for the case: Q0 = 0.700 * 10-4 , a 0 = 9.76°, U* = 12.20 and k = 0.088. 
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Figure 3.54: (a) The Poincare section (b) second return map and (c) long term 

behaviour of the system for the case: Q0 = 0.820 * 10-4 , a 0 = 9. 76°, U* = 25.20 

and k = 0.088. 
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Figure 3.55: The micro-structure of the Poincare attractor for the case: Qo -

0.700 * 10-4, a 0 = 9.76°, U* = 25.20 and k = 0.088 (see Figure 3.51(a)). 
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Figure 3.62: The time histories of the response of the a.irfoil for the cases: 

a 0 = 7.62°, U* = 20.265 and k = 0.1.56 and (a) Q0 = 3.60*10-5
, {b) Q0 = 4.00*10-5, 

(c) Qo = 4.20 * w-s and (d) Qo = 4.30 * w-5
• 



Q 

0 

c 

161 

(a) 
0.15 

- 0.1 
'8 
8 
~ 

.§ 0.05 
'0 
s!: 
~ 0 
tlb 
-8 -! -0.05 

os= 

f -0.1 

-0.154 4.5 5 5.5 6 6.5 

Pitch ( deg.) 

(b) 
0.15 

0.1 -'8 
8 

0.05 a 
.§ 

l 0 

tlb ! -0.05 

B 
~ -0.1 

.. 
'i 
is:: -0.15 

-0.~.5 4 4.5 s 5.5 6 6.5 7 

Pitch (deg.) 

Figure 3.63: The phase plane plots of the response of the airfoil for the cases: 

a 0 = 7.62°, U* = 20.265 and k = 0.156 and {a) Q0 = 3.60*10-5
, (b) Q0 = 4.00*10-5
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(c) Qo = 4.20 * 10-5 and (d) Qo = 4.30 * w-5
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Figure 3.64: The Fourier spectra of the response of the airfoil for the cases: 

ao = 7.62°, U* = 20.265 and k = 0.156 and (a) Qo = 3.60* 10-5 , (b) Qo = 4.00* 10-5, 

(c) Qo = 4.20 * w-5 and (d) Qo = 4.30 * w-5• 
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Figure 3.67: (a) The Poincare section and (b) the long term behaviour of the system 

for the case: Q0 = 0.470 * 10-4 , a 0 = 7.62°, U* = 20.265 and k = 0.156. 
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Figure 3.68: The time histories of the response of the airfoil for the chaotic cases: 

(a) a 0 = 8.90°, Q0 = 1.02 * 10-4, U* = 21.0227, k = 0.044 (b) a 0 = 9.76°, 

Qo = 0.70*10-4, U* = 12.20, k = 0.088 (c) a 0 = 9.76°, Q0 = 0.76*10-4, U* = 25.20, 

k = 0.088 (d) a 0 = 7.62°, Qo = 0.55 * 10-4, U* = 20.265, k = 0.156. 
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1.02 * 10-4, a 0 = 8.90°, U* = 21.0227 and k = 0.170 (see Figure 3.69(a)). 
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Chapter 4 

The Two Degree of Freedom 

System 

0 
The non-dimensionalized aeroelastic equations for the two degree of freedom airfoil 

system, first introduced in Chapter 2, are given below: 

.. ~ w . (w) 2 1 P(s)b 
e + Xaa + 2(eU*e + (U*)2e = -1rf.l CN(s) + mU2 (4.1) 

•• 2 _ 7'!2(a . 7'! 2 C ( ) Q( S) 
xae + 1'aa + --u;-a + (U*)2 a= trp, M s + mU2 (4.2) 

where (a and (e are the viscous damping ratios in the pitch and plunge degrees 

of freedom, respectively, w = wefwa is the ratio of uncoupled natural frequencies 

in pitch and ylunge and U* = U /bwa is the non-dimensional velocity. The airfoil 

air-mass ratio is defined as p, = m/trpb2 , where m is the airfoil's mass per unit 

span, p is the air density and b is the semi-chord. The non-dimensionalized radius 

of gyration about the elastic axis is ra. CN(s) and CM(s) are the lift and moment 

coefficients, respectively, taken about the elastic axis and P( s) and Q( s) are the 

c externally applied force and torque, respectively, applied at the elastic axis. In all 

of the cases studied as part of this thesis the externally applied force P( s) and the 

170 
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viscous damping ratios, (a and (e are zero for all time. The two degree of freedom 

system is illustrated in Figure 4.1. 

As mentioned in Chapter 2, the effect of the plunge degree of freedom on the 

aerodynamic loads is taken into account by a linear approximation: if the magnitude 

of the plunge motion is small compared to the pitch motion, then the effect of the 

plunge motion on the aerodynamic loads can be assumed small compared to the 

effect of the pitch motion. Therefore, for small plunge motions, the aerodynamic 

loads are predominantly a function of the pitch motion and the small adjustments 

for the plunge motion can be accounted for by superimposing linear aerodynamic 

theory (please see [Mazelsky, 1952] and [Mazelsky and Drischler, 1952]). Without 

this assumption calculating the aerodynamic loads becomes a very complicated 

problem that is beyond the scope of this thesis. 

There are at least two flaws with the assumption of linear plunge motion effects. 

First of all, it is only strictly valid for large values of w and when the flow around the 

airfoil is attached. Therefore, when the airfoil is stalled this assumption is invalid 

and, in reality, the effect of the plunge motion on the aerodynamic loads is not well 

understood. Secondly, by adding the effects of the plunge motion to the aerodynamic 

loads as a linear correction the aerodynamic model fails to account for the effect of 

the plunge motion on the dynamic stall events. Thus, the effect of the plunge motion 

on the three .main dynamic stall parameters, avM, BMT and aRE, is not taken into 

account. 

Despite the flaws mentioned above, and for lack of more detailed theory, the 

assumption of linear plunge motion effects is maintained and the results presented 

in this chapter are based on this assumption. 
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4.1 Discussion of Results 

As previously stated, the assumption that the effects of the plunge motion on the 

aerodynamics can be linearized is an essential part of the analysis presented here 

and, since the subsequent error due to this assumption is unavoidable, the analysis 

of the two degree of freedom system attempted herein is limited in scope. The goal 

of the analysis is to determine the effect of plunge motion on the chaotic oscillations 

discussed in the previous chapter, and also to qualitatively show the effect of the ratio 

of natural frequencies, w, on the stability of the system. The time history, phase plane 

plot and Fourier spectrum are presented for a typical chaotic case and the effect of 

the ratio of natural frequencies on the stability of the response is presented in a series 

of bifurcation diagrams. The effect of the plunge motion on the long term stability 

and behaviour of the system is explored through the use of Poincare sections. 

4.1.1 The Effect of Adding Plunge Motion to a Typical 

Chaotic Case 

The example studied in this section is a two degree of freedom version of case I 

{see section 3.3.1) with the following values of the system parameters: a 0 = 8.90°, 

Qo = 1.02 * w-4, U* = 21.0227, k = 0.044 and the ratio of the natural frequencies 

is w = 10.67. • 

In Figure 4.2 (a), (b) and (c), the time history, phase plane plot and Fourier 

spectrum, respectively, are presented for a short time interval of the response of the 

airfoil in pitch. The effect of the plunge motion on the response is not evident in 

the time history of the response, but, the phase plane plot clearly shows the effect 

of the plunge motion, especially when compared with the single degree of freedom 
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case, shown in Figure 3.9 (c). The plunging motion superimposes fluctuations on the 

pitch and pitch rate of the airfoil which are evident in the 'wavy' appearance of the 

phase plane plot. The Fourier transform of the response contains the same general 

characteristics as in the single degree of freedom case; the main frequency components 

are at the forcing frequency and higher order harmonics and the broadband structure 

of the spectrum between these frequencies indicates that the response is probably 

chaotic. The higher frequency components, present at approximately k = 0.570, 

are due to the higher non-dimensional structural natural frequency of the plunge 

motion. The non-dimensional structural natural frequency of the plunge motion can 

be calculated as approximately w / U* = 0.508 and the plunge natural frequency of 

the system will be slightly higher due to the effect of the aerodynamics. 

The time history, phase plane plot and Fourier spectrum of the response of the: 

airfoil in plunge, for the same set of conditions as above, are shown in Figure 4.3 (a), 

(b) and (c), respectively. The high frequency components of the plunge response, 

caused by the high plunge natural frequency, are evident in the time history of the 

response; a high frequency, small amplitude oscillation is superimposed on the main 

frequency of the response, which is at the forcing frequency. The high frequency 

components of the plunge response are also evident in the Fourier spectrum at 

approximately k = 0.570. The phase plane plot of the plunge response does not 

repeat itself gver the time interval shown and the Fourier spectrum of the plunge 

response has a broadband structure with peaks at the forcing frequency and higher 

order harmonics. Together these plots suggest that the response may be chaotic. 
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4.1.2 The Effect of the Ratio of Natural Frequencies on the 

Stability of the Response 

In this section, the effect of the natural frequency ratio, w, on the stability of the 

system in pitch and the long term behaviour of the system is studied through the 

use of a series of bifurcation diagrams and Poincare sections. Two separate examples 

are examined: the first is from case I (see section 3.3.1) for which a 0 = 8.90°, 

Qo = 1.02 * 10-4, U* = 21.0227, and k = 0.044; and the second is from case Ill (see 

section 3.3.3) for which a 0 = 9.76°, Qo = 0.70 * 10-4, U* = 25.20, and k = 0.088. 

Example One 

The bifurcation diagram, shown in Figure 4.4, shows the effect of increasing w on 

the stability of the pitch response for the case of a 0 = 8.90°, Q o = 1.02 * w-4, 

U* = 21.0227, and k = 0.044. As can be seen from the diagram, when w is less than 

approximately 6.8, the response of the system is stable and periodic. However, as 

the value of w is increased beyond this value the response suddenly changes from 

a stable periodic oscillation to what appears to be a chaotic oscillation. For w 

greater than approximately 10.0, the response appears to always be chaotic. This 

bifurcation diagram suggests that decreasing the ratio of natural frequencies can have 

a stabilizing effect on airfoils undergoing chaotic oscillations due to dynamic stall. 

In Figure 4.5 (a), (b) and (c), the Poincare sections are shown for three different 

values of w. In each case the system parameters are the same as in the bifurcation 

diagram shown in Figure 4.4, but, w is equal to 8.54, 10.67 and 13.81 for the three 

cases, respectively. In Figure 4.6, the Poincare section for the corresponding one 

degree of freedom system (w is infinite) has been reproduced because the effect of 

the plunge motion on the Poincare attractors can best be seen when these three 
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sections are compared to the single degree of freedom case. The main curves that 

make up the one degree of freedom attractor can be identified in the two degree of 

freedom attractors but, they have been twisted into slightly modified orientations in 

the phase plane. These new orientations have a more two-dimensional appearance 

than the corresponding one degree of freedom attractor. 

Figure 4.7 (a), (b) and (c) shows the long term behaviour of the system for 

the same cases discussed above and, in Figure 4.8, the long term behaviour of the 

system is shown for the corresponding one degree of freedom case. As can be seen 

from the diagrams, the marginally stable, intermittently chaotic behaviour, described 

in section 3.3.1, persists in the two degree of freedom systems with one interesting 

change. In the one degree of freedom case, a single marginally stable periodic state, 

such as the period-one oscillation beginning after approximately 17 000 periods, does· 

not reoccur. However, in each of the two degree of freedom cases there is at least 

one marginally stable state that can be seen to repeat. For example, in Figure 

4.7 (a) there are two stable periodic states that repeat; the first is approximately 

a period-twenty oscillation located at the beginning of the data and again after 

approximately 3000 periods and the second is a period-three oscillation which occurs 

after approximately 11 500 periods and again after approximately 14 500 periods. 

This behaviour implies that while the one degree of freedom case wanders through 

a seemingly endless array of different marginally stable periodic attractors and never 

shows any indication of favouring one over the other, the two degree of freedom cases 

may wander near certain more favourable periodic attractors. Thus, it is possible 

that one of the effects of adding the plunge degree of freedom is to increase the 

strength of certain periodic attractors and in so doing increase the stability of the 

system. 
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Example Two 

The bifurcation diagram shown in Figure 4.9 (a) is for the case a 0 = 9.76°, 

Qo = 0.70 * w-4, U* = 25.20, k = 0.088 and the ratio of natural frequencies, w, 

is varied from 7.00 to 70.00. As can be seen from the diagram, the chaotic behaviour 

of the system is greatly influenced by the value of w. As w is varied, the response 

of the system undergoes many bifurcations alternating between regions of periodic 

and chaotic behaviour. In Figure 4.9 (b), the region of the bifurcation diagram 

for which the value of w is varied from 40.00 to 50.00 is shown in greater detail. 

From this magnified view of the bifurcation diagram, it is evident that the response 

is very sensitive to small changes in w. The fact that the response is sensitive to 

small changes in the ratio of natural frequencies for very small amplitude plunge 

oscillations implies that one of the effects of adding even a small amount of plunge· 

motion can be to stabilize the response of the system. However, the results shown 

here indicate that this newly acquired stability is very fragile. In other words, a small 

change in the ratio of natural frequencies could cause the response of the system to 

change from periodic to chaotic. 

In Figure 4.10 (a), (b) and (c), the Poincare sections for three different values 

of w are shown. In each of these examples the following system parameters remain 

constant: a 0 = 9.76", Qo = 0.70 * 10-4, U* = 25.20, k = 0.088 and the values of 

w are 44.00, 46.50 and 48.00, respectively. In Figure 4.11, the Poincare section for 

the corresponding one degree of freedom system is reproduced for the purpose of 

comparison. As in Example One, the effect of the plunge motion on the Poincare 

section is to create waves on the attractor that cause it to change its shape and 

orientation in the phase plane. These changes in the orientation of the attractor lead 

to different types of long term behaviour of the response. 



0 

0 

c 

177 

The long term behaviour of the three different two degree of freedom systems are 

shown in Figure 4.12 (a), (b) and (c), respectively and the long term behaviour of the 

one degree of freedom system is shown in Figure 4.13 for comparison purposes. In 

Figures 4.12 (a) and (c), the Poincare data points are confined to within two bands, 

each band having its own internal structure of light and dark coloured bands; this 

behaviour is very similar to the single degree of freedom case shown in Figure 4.1:3. 

However, in Figure 4.12 (b), the Poincare data points are loosely grouped into many 

more thinner bands, with occasional outbursts of data points outside of these bands. 

This behaviour is very similar to the type of behaviour exhibited by the one degree 

of freedom case for which a 0 = 9.76°, Qo = 0.73 * 10-4, U* = 25.20 and k = 0.088 

which is reproduced in Figure 4.14. 

The aforementioned examples of the Poincare sections for three separate values of: 

w illustrate that the long term behaviour of the system is very sensitive to changes in 

the ratio of natural frequencies, even for very small plunge oscillations. Furthermore, 

by changing the value of w the long term behaviour of the two degree of freedom 

system can change in such a way as to mimic the changes of the one degree of 

freedom system as Qo is varied. Both Example One and Two indicate that despite the 

assumptions that the effect of plunge motion on the aerodynamic loads is small and 

the plunge motion itself is small, the stability of the system can be very sensitive to 

changes in the ratio of natural frequencies. This causes some concern about whether 

it is reasonable to assume that the effect of plunge motion on the aerodynamic forces 

is small. Thus, until an improved two degree of freedom model of dynamic stall is 

developed, the usefulness of further work on the two degree of freedom system is 

questionable. 
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Figure 4.2: (a) The time history, (b) phase plane plot and (c) Fourier spectrum for 

the pitch degree of freedom for the case ao = 8.90°, Qo = 1.02 * w-4, U* = 21.0227, 

k = 0.044 and w = 10.67. 
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Figure 4.3: (a) The time history, (b) phase plane plot and (c) Fourier spectrum for 

the plunge degree offreedom for the case a 0 = 8.90°, Q o = 1.02* w-4, U* = 21.0227, 

k = 0.044 and w = 10.67. 
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Figure 4.8: The long term behaviour of the pitch variable for the one degree of 
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Chapter 5 

~i..A' 'l 
J 

Conclusions and 

Recommendations 

In this thesis, the dynamic response of a. linear structural airfoil forced to oscillate 

at high angles of atta.rk was studied. In the discussion sections, many conclusions 

about the dynamic behaviour of the a.irfoil system were made and, in this section, 

the most important of these conclusions are sulllllla.rized and recommendations as to 

the direction of possible future research are given. 

5.1 The Dynamic Stall Model 

The Biela.w<t model of the dynamic stall process, . discussed in Chapter 2, was 

developed based on windtunuel tests of a.irfoils constrained to oscillate in simple 

harmonic motion. As can be seen from the results of this. model compared with 

experiment, showu in Appendix A, the model predicts the aerodynamic forces very 

well for airfoils oscilla.tiug in simple harmonic motion in pitch. However, this model 

has two main weaknesses that need to be a.ddre.ssed. 

197 
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The Bielawa model of dynamic stall is based on the assumption that as an airfoil 

oscillates in dynamic stall a series of dynamic stall events occur in a specific order. It 

was found that, for an airfoil undergoing a general type of motion, these dynamic stall 

events do not always occur in this predetermined order. The result is that, in some 

cases, the dynamic stall model will predict aerodynamic forces that are discontinuous 

inthe time domain. This problem was rectified by incorporating exponential terms 

into the model that make the aerodynamic loads at least piece-wise continuous in 

the time domain. 

Another weakness of the dynamic stall model utilized herein is that it does not 

take into account the effect of the plunge degree of freedom on the main events of 

dynamic stall. Therefore, the results obtained in this thesis for the two degree of 

freedom airfoil system must be interpreted with this assumption in mind . 

5.2 The One Degree of Freedom System 

For the single degree of freedom system, discussed in Chapter :J, it was found that 

the nonlinearities present in the aerodynamic forces were sufficient to cause chaotic 

respouses for several differeut values of the system parameters. Furthermore, the 

characteristics of the chaotic behaviour were found to differ substantially in some of 

these cases. 

The first case of chaotic behaviour occurs at low values of the non-dimensional 

frequency and high values of the non-dimensional velocity. The type of behaviour 

exhibited by the system was classified as a marginally stable, chaotic response. This 

type of response is characterized by long periods of time iu which the response 

is periodic, interrupted by periods of chaotic motion. The response also showed a 

tendency to change from one periodic state to another in a seemingly random fashion. 
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This marginally stable behaviour was shown to be neither type [ nor typt> I II cla~~ind 

intermittent chaos. However, the behaviour was defined to be intermittently chaotic 

because of two main characteristics: the system spends most of its time in some 

type of periodic oscillation, and the response can only be defined as chaotic, or 

unpredictable, if it is analyzed for a sufficiently long period of time. 

Systems that exhibit classical intermittency can remain in a periodic o~cillation 

for a very long period of time, but, eventually the response is interrupted by a 

short burst of chaotic activity and then the system returns to the original periodic 

oscillation. However, this system tends to remain in one type of periodic oscillation 

for a long period of time, until it is interrupted by a short burst of chaotic activity 

and then, instead of returning to its original periodic oscillation, the response changes 

to a new and different periodic oscillation. Furthermore, after many of these chaotic 

outbursts have been observed, there does not appear to be any preferred periodic 

state. ln other words, the response wanders through a seemingly endless supply of 

periodic attractors. 

The iutermitteut chaotic behaviour exhibited by this system was shown to be 

related to the microscopic internal structure of the chaotic attractor. The geueral 

shape of the first return map attractor was modelled by a simple set of equations 

and it was found that many different high-order periodic and chaotic states could be 

achieved by .small changes in the orientation of this attractor in the phase plane. 

The Poincare data of the aeroelastic system tends to be organized into a finite 

number of quasi-parallel groups of data points. The tendency of the Poineare data 

to organize into these groups and not definite points allows the response to wander 

from one a.ttractor to the next. Moreover, the orientation of these quasi-parallel 

groups occasionally permits the existence of marginally stable low-order periodic 
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oscillations. These periodic oscillations can persist for thousands of pt>riods of tlw 

forcing function before going unstable. 

There is evidence that this intermittent chaotic behaviour may be transient in 

nature. If the system is allowed to run for a very long time, it was shown that the 

response will eventually settle into a quasi-periodic oscillation. However, in ger1eral, 

the intermittent chaos persists for such an extremely long time (greater than thirty 

thousands periods of the forcing function) that it is not feasible to do an extensive 

analysis to determine if the intermittent chaotic behaviour is always transient. 

The second case of chaotic behaviour was found to occur at much lower values 

of the non-dimensional velocity and at a slightly higher non-dimensional frequency 

than the first case. In this case, the shape of the Poincan~ attractor was much 

more complicated than the first case but the same type of intermittent chaoti1~ 

behaviour was shown to occur. It was also shown that for very small changes in the 

amplitude of the forcing function the response could suddenly change from stable 

and periodic behaviour to the intermittently chaotic behaviour discussed previously. 

This transition from periodic to chaotic behaviour could not always be predicted 

from the behaviour of the system prior to the bifurcation. 

The similarities in the long term behaviour of the response shared by the first two 

case studies are undeniable. The intermittent chaotic behaviour was shown to exist 

at low value& of the non-dimensional frequency for both high and low values of the 

non-dimensional velocity. This marginally stable long term behaviour of the system 

is only one type of chaotic behaviour predicted by the modified Bielawa model of 

dynamic stall. 

The third type of chaotic behaviour for the single degree of freedom system 

was found to occur at relatively low non-dimensional frequencies and high non-
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dimensional velocities. As the amplitude of the forcing function was increast>d, tlw 

response of the system was found to undergo a series of period doubling bifurcation::; 

that eventually lead to chaotic oscillations. 

The period doubling route to chaos has been found to exist in many nonlint>ar 

systems; one such system is known as the Henon map. The Poincare sections and 

maps that were obtained for this case study were compared qualitatively with those 

of the HeJ.lon map and many similarities were found to exist. Firstly, the two systems 

both become chaotic via the period doubling route. Secondly, the Poincare attractors 

both consisted of a set of curves in the phase plane that appeared to fold back 

on themselves as a given system parameter was increased. Finally, the long term 

behaviour of both systems were found to be similar; the Poincare data points were 

confined to within definite bands . 

The Henon map is known to go unstable due to the infinite number of 

intersections of the stable and unstable manifolds of the Poincare attractor. The 

intersection points of these two manifolds is called a homoclinic orbit. Further work 

is necessary to prove the existence of a homoclinic orbit in the aeroelastic system, but 

the similarities in the chaotic behaviour of this system and the Henou map suggest 

that the presence of a homocliuic orbit is the possible cause of the chaotic behaviour 

found in this particular case. 

The final type of chaotic behaviour that was discussed in the single degree of 

freedom section was found to occur at relatively high non-dimensional frequencies 

and high non-dimensional velocities. The type of chaotic behaviour found in this 

case was shown to be more unstable than the previous cases. 

A characteristic of the type of chaotic behaviour found in this case was a tendency 

for the amplitude of the response to suddenly increase. These outbursts of large 
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amplitude oscillations appear irregularly and do not last for a very long time, but. 

they are accompanied by sudden increases in the estimated error of the numerical 

scheme. This increase in the estimated error occasionally exceeded the pre-defined 

tolerance limit of the numerical method and the corrector iteration diverged. The 

divergence of the solution was found to occur even after many thousands of cycles 

of motion for which the numerical scheme converged. Further work is required to 

determine if the divergence of the response is a property of this type of chaotic 

behaviour or if it is due to the numerical procedure. 

5.3 The Two Degree of Freedom System 

The second degree of freedom, plunge motion, was added to the system with the 

assumptions that the motion must be small compared to the pitch motion and that 

the effect of the plunge motion on the main events of dynamic stall are small enough 

to be ignored. These assumptions, if correct, permit the use of linear aerodynamic 

theory to calculate the aerodynamic forces due to the plunge motion. Since the 

plunge degree of freedom was added as a linear approximation, the scope of the 

investigation of the two degree of freedom system was limited to a discussion of the 

effect of the plunge motion on the chaotic dynamics of the single degre.e of freedom 

system. 

When the system parameters are set to values that cause the response of the 

single degree of freedom system to be chaotic, the stability of the response can be 

strongly influenced by the addition of a very small amount of plunge motion. The 

stability of the response was also found to be very dependent on the ratio of the 

natural frequeucies in pitch and plunge. A small change in this ratio can change the 

response of the system from periodic to chaotic oscillations or vice-versa. 
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The sensitivity of the response of the system to the addition of small amplitude 

plunge motion and changes in the r·atio of natural frequencies suggests that tht> 

assumption of small, linear effects of the plunge motion on the aerodynamic fot'Ct>S 

may not be valid. Further research into the two degree of freedom airfoil system 

with nonlinear aerodynamic forces requires a model of dynamic stall that explicitly 

incorporates the effect of plunge motion on the main events of dynamic stall and the 

unsteady aerodynamic forces . 
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Appendix A 

Coefficients of the Dynam.ic Stall 

Model 

In this Appendix, the coefficients of the dynamic stall model are listed . 

A-1 
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A-2 

The coefficients of the dynamic stall model are: . 

P1 = 10.593687777057760; P2 = 10.832854524817120; P3 = -0.018632566823462; 

P4 = -1.367529319089629; Ps = -4.164299690698649; P6 = -0.184990006133694; 

P7 = 0.051047607973315; P8 = 0.382202466218984; P9 = 2.669455333726313; 

Pto = -1.7 43978009850223 

Q1 = -1.757201145145348; Q2 = -0.082550541677624; Q3 = 0.006018886629636; 

Q4 = -0.062061~84628051; Q5 = 0.048939583548136; Q6 = -0. 777320074011365; 

Q7 = -5.9640504:61851018 

!3t = 0.18; CAB= 16.6502; CAM= 54.9273; CwM = 10.5179; CwB = -8.6689; 

cAr= 5.4204; cctT = 0.4884; € = -0.0139; 
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Appendix B 

Comparison of the Modified 

Bielawa Model with Experiment 

This Appendix contains graphical comparisons of the lift and moment coefficients 

predicted by the modified Bielawa dynamic stall model with the experimental lift 

and moment coefficients obtained by Gray, L. and Liiva, J. (1968) for the NACA 

0012 airfoil. The lift coefficient data is given first followed by the moment coefficient 

data . 

B-1 
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ANOLBOF ATrACIC(de!) 
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K•0.166, ALPHA0•4.8S, D.ALPHA•S.4S 
l.Jr-----.-----.----~------.-~--....---=----, 

1.2 

1.1 

0.4 

4 6 8 

DATA •solid liDo 
COMPU'l"BD • dasbed liDe 

10 ll 

ANGLB OF A'ITACK(dcl) 

DATA •solid liDe 
COMPUI'BD •duhed liDe 
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464~----~~--~~~----~0~----~2~----~--~6 

ANGLB OF A'ITACIC (del) 
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K.•0.211, ALPHA.0•7.35, D.ALPHA•5.61 

1.4r----.....----...-----..---~---.----.-----. 

~~~--~2---.~--~6~--~8--~10~--1~2--~14 

ANGLE OF ATTACK (del) 

• 
K.•0.252, Al.PHA.0•-0.35, D.ALPHA•5.97 
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DATA • IOtid U. 
.0.4 COMPU'I'ED • dabed·line ·· 

.0.6-8 -6 -4 ·2 0 2 4 6 

• ANGLE OF ATTACK (del) 
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• 

•• 

K•0.2S2, ALPHA.0•4.39, D.ALPHA•S.96 
1.2,-------.....-----.----~-----.---------, 

1 

0 

ANGLE OF A TrACK (de&) 

K-o.2SS, ALPHA.0•6.91, D.AIJ'HA•.UO 

i 
"! 
i 

I 
l 

1.4r---..-----.----.....----.-----.---........,.----, 
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nlo~--~---.~--~,--~8~--~~o~--~~z--~~4 

ANGLE OF ATI'ACIC. (det) 
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K .. 0.211, ALPH.A.0•9.70, D.ALPHA•.S.59 
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1.2 -1 
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DATA • solid line 
COMPl.JTBO • dashed line 
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ANGLE OF ATIACK.(de&) 

1.05 ,------.....----.----,...........---......---.....------. 
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~~~---~6-----~~--~10~-----1~2-----~.4~----J16 

ANGLE OF ATIACIC (c:tea) 
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§ 0.7 

0.6 -· 

K•0.088, ALPHA.0•9.7S, D.ALPHA•S.Ol 

DATA .. solid tiDe 
COMPUI'ED · • dubed tiDe 

o.s.~-----7,------~8~----~.~0----~1~2------~~.~----~~ 

ANGLE OF A1TACK (del) 

K•O.t29, ALPHA.0•9.97, D.ALPHA•S.ZO 
1.4.-------.-------.......------.--------.-------.....--------, 

1.3 

u 

i 1.1 

i ~: 
§ o.a 

0.7 

DATA • solid tiDe 
COMPUTED • dulled tiDe 

0.6 

Q.j.~~--~===--~-------l~0------1~2------~~.~----~~ 

ANGLE OF A1TACK (del) 
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.().2 

. .a4... .z 0 

DATA • solid liRe 
COMPlTI'ED • dashed Unc 

z 4 6 8 

ANGLB OF A'ITACK (de&) 

10 12 14 

Ur----...----.....----.-----.-----.-----..-----., 

1.4 

1.2 

I ~ 
§ 0.6 

0.4 

DATA-• aolidb · 
COMPlTI'ED - dulled Unc 

~~---~--~~6--~.~-~1~0---1~2--~14~--~~ 

ANGLB OF A'ITACk (de&) 
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• 

• 

.0.06 

K•0.044, ALPHA.0•4.89, D.ALPHA•S.Ol 

,.-············-··"···--·--········-·····--··· 

~-~~~~-----· ... -.......................... ~ ···----------........ 

DATA • solid line 
COMPlJTED • dashed liJ1e 

.0.~2~----~0------~2------~4~-----6~----~8----~10· 

0 

.0.08 

ANGLB OP A TrACK (del) 

K•0.04S, ALPHA.0•7.39, D.ALPHA•4.94 

DATA • solid line 

C:OMPUI'ED ""-~·lipe 

.0.~~----~------~,------~8~-----170------~12----~M 

ANGLE OP A TrACK. (dq) 
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• 

• 

.K•0.088, ALPHA.0•4.92, D.ALPHA•S.19 

ANGLE OF ATI'ACK (des) 

0.~~----~------~------~----~------~----~ 

O.Ol 

1 4~ 4~ 

E: DATA • solid line 
· COMPUl"ED· • duhed line 

, I 
\ ! 

\ ' . \, i ~> 
\j 

4U 

41~~----~.------~6~-----~~-----1~0------~12~----~14 

ANGLE OF ATI'ACK (dlt) 
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8 0 
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'\, · .. 

K•O.HSS, ALPHA.0•0.20, D.ALPHA•.S.49 

DATA • solid line 
COMPtn'ED • dashed line 

····--..... _________________________ . 

·2 0 2 

ANGLE OF ATTACK (deJ) 

K•0.166, ALPHA.0•4.1S, D.ALPHA•S.4.S 

DATA • solid line 
COMPtll'EI;). -~ line 

ANGLE OF ATTACK (de&) 
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• 
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K•0.16S, ALPHA.0•7.48, D.ALPHA•5.35 

::~~~---~---------~~~~~------------~------~-----,l, 
j ,~~ l 

oL( 
c l m 4o:z 1 

i .0.04 

~ 406 r: 
.0.12 

DATA • solid liDcl 
roMPUI'BD •. dubed tiDe 

.0.14 

41~~----~4------~6~----~8------~10~----~1~2------714 

ANGLE OP A1TACK (dei) 

K•0.210, ALPHA.0•0.04, D.ALPHA•S.68 
o.m~----~------~------~----~------~----~ 

0.04 

0.03 

····························----... ___ _ 

....... , 

··-.. ,~. 
'\\ 

'\ 
~ 

DATA • aolid tiDe / 
· OOMPln'ED • dubed liDcl _../· 

~-:-:-:· 

------·-· 

ANGLE OP ATI'ACK (deJ) 
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• 

• 

K•0.211, ALPHA.0•7.3S, D.ALPHA•S.61 
a~~----~----~----~----~----~----~------

o.04 

~~~ 
8 .0.04 

1.0.06 
i .0.08 

.0.1 

-. .. ............. 

DATA • solid Hac 
. (X)MPUTEJ) • dashed tiRe 

.0.12 

.0. 1~~----~2----~.----~6~----s~----~~o----~12~--~14 

ANGLB Of ATI'ACK. (del) 

a04 

\ 

\\ 
...... , 

. ., 
'· 

DATA •solid lint 
OOMfUTED • dulled lint . 

·-,, _....-·· 
...... _ .. -.. __ .,.__ ...... ---------

•· .o.06.,::-----"'";-----'::,..---~.z~---o~----2=---~.--_J6 
ANGLE OF ATI'ACK (dei) 
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• 

0 

• 

2 

• 

K•0.2S2, ALPHA.0•4.39, O.ALPHA•5.96 
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ANGLB OF A TrACK. (del) 

DATA • solid liDe 
C:OMPtn'ED • dabed 1iDe 

.. 6 8 

ANGLB OF A'ITACK. (de&) 

i 
I 

I 
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14 
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• 

• 

• 

K ... 0.211, ALPHA.0•9.70, D.ALPHA•S.S9 
~~.-----~------~----~------~----~-------

,·· 

I 
0 \ ······-..•.... 

.o.os 

.Q.l 

1.0.15 
i 

--~--------------------------~--

DATA • solid liDe 
. COMPUTED •dashed liDe 

ANGLE OF ATTACK (del) 

~~.-----~------~------~----~------------~ 

0 

~ .().~ 
1.0.04 
1.0.06 
1.0.08 

DATA • solid liDe 
COMPurEp .• cluhcd ~ . 

I 

1 

.o.u.~----~6------~s~----~~~o------~~2~----~1.~----~~ 

ANGLE OF ATTACK (del) 
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• 
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0.041 

0.02 

0 

~ .0.02 

1:: 
1.0.08 

j .0.1 

.0.12 

.0.14 

K=0.088, ALPHA0•9.7S, D.ALPHA•S.Ol 

···················--·-···-.......... . 

DATA • IOiiclliDe 
COMPUI'ED • das.bed liDe 

l 
' 
i 

.o.~ .. ~----~,------~8~----~1~0----~1~2------~~ .. ~----~~ 

ANGLE OF ATTACK (des) 

K•O.l29, ALPHA0•9.97, O.ALPHA•S.20 
O.~r-----~------~----~------~----~------, 

DATA • aolid liDe 
COMP\TI'EI). • dubed liaD 

~ .. ~----~,------~8~----~1~0------l~Z~----~14~----~~ 

ANGLE OF ATTACK (del) 
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• 

• 

K•0.086, ALPHA.0•4.91, D.ALPHA==7.62 
0.04 

0.02~ 1 
0 ~ 

~~M 
......... _~---.. ·-- ~-- .. -- .. ---· ---- ......... -...... __ .; 

' 
.0.04 i 

I 
' .0.06 l 

~~~ 
.Q.l DATA • solidUM 

. .0.12 COMPU'I'BD • duhed lioe 

r .0.14 

.0.16_.. ·2 0 2 4 6 8 10 12 14 

ANGLE OF ATIACK (deg) 

0.~,-----------~----------~----------~-------~-------~-------~--------. 

0 

.0.2 

DATA .. solid lioe 
COMPUTED • duhed line 

.0.~2~-------.. ~----~6-------~8~--~1~0-----1~2-------~14~--~16 

ANGLE OF ATIACK (deg) 

B-21 



• 
Appendix C 

Coefficients for the Recursive 

Matrix 

• The complete equations for a,. and e,., from equation (2.29) are: 

(0.1) 

e,. = _!_(z3- Z2[Ze- Z3Zt][Zs- z2z"]-t) 
Zt Zt Zt 

(0.2) 

where the following definitions apply: 

(0.3) 

(0.4) 

• 
0-1 



• 

• 

• 

C-2 

(C.6) 

(C.7) 

where e is the constant time step size and the coefficients, a1 ••• a8 are the 

coefficients of equations (2.25) and (2.26}. These coefficients are given below: 

al = Xa 

w 
~ = 2(~(U"') 

w2 
a3 = (U•)2 

1 
a4=--

1rJJ 

a - r2 S- a 

2r!Ca 
t16 = --u· 

r2 
a7 = (U:)2 

(C.9) 

(C.IO) 

( C.ll) 

(C.I2) 

(C.l3) 

(C.l4) 

(C.l5) 



• 

• 

• 

2 
a--
8- 1rJ.L 

C-3 

(C.16) 



• 
Appendix C 

Coefficients for the Recursive 

Matrix 

• The complete equations for an and en, from equation (2.29) are: 

X (C.1) 

(C.2) 

where the following 

(C.3) 

(C.4) 

• 
as 1 5 3as 4 3as z3 =CM,.(-)+ Qn(-) + Qn-1(2 + --)- Qn-2(2 + -2 -)+ 
as as f f as f e as 

1 1 aa 5 a1 4 a1 1 a1 an-3( 2 + -3 -) + en-1( 2-)- en-2( 2-) + en-3( 2-) (C.5) 
f f as f as f as f as 

C-1 


