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Abstract

In this thesis, we study toy models of two-dimensional gravity. We first review two known
models: the classical and quantum corrected CGHS models and the quantum corrected
model of RST. These two models have black holes solutions with curvature singularities,
similar to the Schwarzschild black hole. This singularity becomes naked in the RST model
at a cerlain event during the evaporation. In the third chapter, we build a more general
version with new quantum corrections beyond those presented in the RST model, which
cnable us 1o find a model without curvature singularities. We will also see that these new

(uantum corrections can affect the rate of Hawking radiation flowing from the black hole.



Résumé

Dans cette thése, nous étudions des modeles de gravité dilatonique bi-dimensionuelle.
Nous allons premierement aborder deux modeles existant: les modeles classique et quan-
tique de CGHS, ainsi que le modele de RST. Ces deux modeles possedent des solutions de
types Lrous noirs ayant une singularité semblable & celle de la solution de Schwarzschild,
Dans le cas du modéle de RST, cette singularité évolue jusqu’a étre nue & un certain
événement lors de ['évaporation de Hawking. Dans le troisicme chapitre, nous constru-
isons une version généralisée des corrections quantiques introduites préccdemmient, nous
permettant ainsi de construire un modéle ne contenant pas les singularités rencontrées

dans les modeles précédents. De plus, ces corrections quantiques peuvent aflecter le llux

de la radiation de Hawking émise par le trou noir.

—
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Introduction

The Universe. The large scale world where mankind is living has always been the subject
of our admiration for its mysterious beauty. However, Man always wants more than just
observation and has the desire to understand the laws driving our Universe. Many good
scientists have spent their lives to improve our understanding of the Universe. One of the
most famous is surely Sir Isaac Newton. He was the first physicist to give a good physical

and mathematical description of the force that rules the large scale world, gravity.

His work remained the Bible of physicists for more than two hundred years. Then,
Albert Linstein came at the dawn of this century with his theory of Special Relativity
(1905) and one decade later with 2 modern theory of gravity (1914), the General Relativity.
This beautiful theory gives a different explanation of phenomena already described by
Newton’s laws, but il also goes beyond that. It predicted new amazing phenomena such
as deflection ol light, gravitational red-shift, gravitational lensing and, one of the most
famous, black hole. The latter will be the main subject of this thesis, so it is necessary

to give a briel outlook of its origin.

When a huge cloud of dust and particles collapses, it heats until nuclear reactions
start. in its core. The energy radiated away by these nuclear reactions stops the collapse
and we obtain a stable star such our Sun. After the star has burned most of its nuclear
fuel, the collapse starts again and the future of the star depends on its mass. For stars
like the Sun, i.e. around one solar mass (Mg), the stellar evolution model predicts that
the star will end its life as a white dwarf. For masses around 2M, the remnant will be a
neutron star. In each of these two cases, it is the quantum Pauli exclusion principle that

stops the collapse, leaving a stable remnant that will cool down with time.

I'or bigger stars ol masses above 3 or 4M, there are no known processes that can stop

the collapse, and the star will undergo complete gravitational collapse to form a black



hole. A black hole is a very spectacular objeet: below a certain limit, called the horizon,
nothing can escape the black hole. Even light is trapped by the gravitational field, 'This

is why they are called dlack holes,

These stellar monsters were not present in the gravitational theory of Newton: they
are children of Einsteins General Relativity, The first appearance! of black holes as a
solution ol Einstein's equation was found by Schwarzschild in 196 [3] and it deseribes
spherically symmetric, non-rotating and uncharged black holes. Note that the interpre-
tation of this solution as black hole was not yet understood until a few years later, Alter
this first appearance in physicists™ world, new type ol black holes were discovered: axially

symimeltric, rotating and charged.

As described above, all black holes were thought to be completely black, and com-
pletely invisible from direct observations, In 1975, §. W. Hawkiung [1] shocked the world of
physics when he showed that black holes are not entirely black: they radiate away energy,
This spectacular result was obtained by using the tools of the other important branch of
modern physics: quantum field theory. He proved by a semiclassical argument that black
holes radiate energy when one includes quantum mechanical effects in the classical theory
ol General Relativity. Here, the word semiclassical, means thal we keep the spacetime

fixed.

Usually, we should expect the black hole space-time to he modified by the Hawking
evaporalion since if it radiales away energy, its mass should decrease. Beeanse the space-
time curvature is mass dependent, we expect the spacetime to be modified. Let us poiut
out that as {ar as we know, there is no satisfactory scenario for the end point of Hawking
radiation (for an hypothesis, see [5]). Physicists hope thal a complete theory of quantum

gravity will eventually emerges and provide an answer to this question.

Such a theory would describe gravity in a complete quantum formalism. Unflortunately,
we do not have this theory yet. So, how could we take backreaction into account? One
approach is to look for toy models in which we can compule backreaction in an exact,
solution. The use of these toy models will, we hope, help us to understand how to build

a quantum theory in a realistic case,

IHowever, during the 18% century, Laplace studied heavy objects from which light eatnot escape,
within the context of Newton’s gravity [1]. See also appendix A of [2].



Usnally these toy models are formulated in 1 4 1 dimensions where quantum effects
are casier Lo understand, One such model was proposed in 1992 by C.G. Callan, S.B.
Giddings, J.A. Harvey and A. Strominger (CGHS) [6] in which they used a string-inspired
action. Their model has classical black hole solutions and they have been able to include
gquantum corrections. A lot of work has been done on this model and the related ones
(see for example [7, 8, 9, 10]) and there is surely more to be done. Especiaily, there are
some models like the one of J.G. Russo, L. Susskind and L. Thorlacius (RST) [8] that
can be solved exactly, including backreaction. This thesis is based on a model of this
form. These models add counterterms to the one-loop corrected CGHS model to make
it exactly solvable, but we will see that these new counterterms will affect the rate of

Hawking radialion.

We will first review the two-dimensional model of CGHS, because it forms the basis
of two-dimensional dilaton gravity models. In the second chapter, we will focus on the
model of RST where a new counterterm is added to the quantum corrected CGHS model.
The next chapter is the main part of the thesis and is a generalization of the RST model,
which has strong effects on the rate of Hawking radiation and the creation of spacetime
singularities. Finally, we will conclude by emphasizing on the results of the generalized
model. Note that a short discussion of the Bondi mass for black hole’s physics in two

dimensions is presented in appendix A.



Chapter 1

The CGHS Model

In this chapter we will review the famous work of C.G. Callan, S.B. Giddings, J.A. Harvey
and A. Strominger [6]. This model was developed lor the study ol black holes evaporation
in two dimensions and it is known as a two-dimensional dilaton gravity theory!. They used
a “classical” model containing black hole solutions and then they attempted to quantize

it, taking advantage of the simplicity of the two-dimensional character of the model,

The classical action used by CGHS was already present in string theory as an effective
action describing the radial modes of extremal dilatonic black holes in four or higher
dimensions [6). Apart from the origin of the action, it has an interesting feature: it is
renormalizable. This is a great advantage for this toy model because as far as we know,
all the theories of fundamental interactions are renormalizable and it is conjectured that
the quantum theory of gravity should also be rencrmalizable. Some previous models of

quantum gravity were not renormalizable and il was shown that they faced serious Haws,

This chapter will begin with the description of the classical solutions obtained from the
classical action. In the following section, we will see how CGHS included some quantum

effects in the theory, enabling them to describe Hawking radiation in a fixed background.

'Two-dimensional models are not recent in gravity physics and have been studied even hefore the
discovery of Hawking [11]. Since Hawkiig's paper, a lot of work has been done on the evaporation of
four-dimensional spherically symmetric black heles, which are effectively described by the two-dimensional

metric of the r — { coordinates. See for example, the work of Unruh [12] and Hajicck [13] and references
therein.



1.1 Classical Solutions

[n this section, we will look at the classical solutions de ived {rom the classical action
studied by CGHS. We will focus our attention on the solutions describing black holes,
i.¢. solutions with an event horizon and a physical singularity. Such solutions are similar
to the radial part of the four-dimensional Schwarzschild black hole. The classical action
describes dilaton gravity coupled to N massless scalar fields:

v N

5=—fd2r\/_[ (R + (V) + 407 - S IV (1.1)

"l 1
In this equation, ¢, ¢ and f; represent the metric, dilaton and matter fields respectively.
‘vhe constant A is part of a dilaton dependent cosmological constant e~2¢\2. As it is
common in classical physics, the equations of motion for the various fields will be derived
[rom the minimum action principle, which means that 65 = 0. The coefficients of §¢ will
give the equation of motion for the dilatonic field and similarly for the matter fields f;.
The terms proportional to éges, the variation of the metric, will give us a set (three) of
equations of motion for the metric. By functional differentiation, we obtain the covariant

equations of motion of the dilaton and the matter fields:

27 85 a
=5 - 89°VadVed — [R+4(Ve)? +4)7| —4V24 =0 (1.2)
r 6-5' - v2fi =0 (1.3)

vV—9bfi
and the metric covariant equations of motion (stress-energy tensor) are

2r 685 1

o= =i = §g.w{ % [R+ 4(Vg)? +4z\2]~-~_1 Vf.)}

+ 7% {2V, V3§ — gasg™ (40:$0ué — 20:044) — Ras }
‘\l‘
+ 2 VafiVafi=0. (1.4)

!=1
Covariance means that tensors transform according to simple rules under coordinate trans-

formations (diffeomorphisms) [3].

Now, we would like to remove diffeomorphism invariance by imposing a particular
form to the metric. However, this will not take rid of all coordinates invariance since

a residual freedom will remain in the theory (see discussion before {1.19) below). It is

5



common, and useful, in this simple model to work with the conformal gauge in which the

two-dimensional metric takes ihe form:

1

J+- =735

A
e-r

s §- =944 =10 {1.5)

where the null coordinates are defined by &% = (2% £ &'). With this choice of the metric,

we have for the metric-related objects:

Ri. = -20,0_.p , R=8e%8.0_p (1.6)
(Vo) = —4e™0,40-4 (1.7)
¥, = 28 (1.8)
V3¢ = —4e7%8,0_¢ (1.9)

where all other components of the Christoffel’s symbol and the Ricci tensor are vanishing.
Now all the information about the spacetime is encoded in the conformal field p. FFrom
the three metric equations, it turns out that one of them is the equation of motion (7’;.)
and the two others are constraints (Tis). The latter are called contraints since they
are obtained from the functional differentiation of the action with respect to metrie’s

components which are set to zero in 1.5. The components of T ave:

Ty = e72(20,0_9 - 40,40-¢ — \'¢*) =0 (1.10)
1 ¥

Tee = e (435:P3:s:¢ - 23i¢) +35 Y 0x:fidsfi =0, (1.11)
“ =1

while the dilaton and matter equations of motion will be respectively given by:

e (—40,0_4 + 40, $0_¢ + 20,0_p + N%¢*) = 0 (1.12)
0.0_fi = 0 (1.13)

for all . Let us notice that we have N + 2 functions Lo solve, i.e. f;, ¢ and p, and have
N + 4 equations for them. However, these equations are not all independent by virture of
conservation of the stress-energy tensor VT, = 0, which is a reflection of the covariance
of the theory. This system of N + 4 differential equations has a current equation that will
be really helpful all along this work. This current is given by adding T to the dilaton

equation of motion;

0:0-(p—4)=0. (1.14)



This enables us to write down a simple relation between p and ¢:

p—o= é (w.;_(nr*')-l-w_(.r')) (1.15)

where we(w¥) are called gauge functions for reasons that will become clear in a moment.

A general solution of the equations of motion (1.10) and (1.12) is given by:
. r=F =
e = uptu.— A'f dy'*'e“’*] dy~e"- (1.16)

xt E
P O . [u++1t_—A2 f dy+ et / dy“e“’“] . (1.17)

Now, we have to solve for the free fields vy and wy. We can solve for ug by substituting
our solution for ¢ and p in the two constraints 7oy = 0. This procedure gives us a solution

in term of wy:

M1 e v Al
uy(z¥) = ‘I-’X -3 dy* {e“’* / dz¥e ey aifgaif.-} (1.18)
=1

where M is an integration constant. And what about wi? None of our equations of
motion can make it explicit. However, the choice of the conformal gauge that we made
belore leaves a subgroup of diffeomorphism unfixed. This can be seen if we look at a

coordinate transformation {z*} — {o%} of the form:
ot = hE(o%) . (1.19)
The metric will transform as a tensor by the rule:
Govr = A1 A% gas (1.20)

where the transformation factor is given by A%, = %}‘; with a, b taking values £. For the

conformal metric, we obtain:

gex = 0
Gae = =20kt O, (1.21)
- _%ezﬁ
where we defined a new conformal field j:
. 1
p=p+5[In{8sh*] +1n[0,-57]] . (1.22)

7



Thus, one sees that we recover a conformal metric by a coordinate transformation de-
scribed by h%(o*) which means that there is a subgroup of diffeomorphism that preserves
the conformal gauge. From the simple current equation, we can relate the lunctions h*
to the gauge functions wy. If one starts with a system where wy = 0, so that p = ¢ and
makes a coordinate transformation to another system of coordinates {at}, we will have
the relation

p=0o+ ;l)-ln [aa+la+a,,-1;.‘] . (1.23)

Thus, from the simple current relation (1.15) we can write:
ws = In [B,thi(o'*(::ri))] . (1.24}

In other words, a particular choice for the gauge functions wy is simply a choice of the
set of coordinates we will use. Thus, we will choose the simplest expression lor the gauge
functions, namely:

wy(2%) =0 (1.25)
which is called the Kruskal gauge. This choice simplifies the solulions and we obtain:

M
e = = —_ \lptp—

A
1 =+ N oy N
- 5 l:q:"t‘/ dy+ Z&.;.f.-&f.‘ -+ 21_/ dy™ ;B_f,-t)_f; . (1.26)

i=1
We still have to solve for the matter fields f;, but the matter equation of motion (1.13)

can easily be integrated out to yield the general solution:

fi= fi @%) + fin(@7) (1.27)

and the special solutions will depend on the matter distribution we want to study. This

completes the derivation of the general solution of the classical action (1.1).

Now we will look at some special cases of the general solution (1.26).. We first. look at
the system where there are no matter fields: f; = 0 for all i. Thus, the sclution (1.26)

becomes:

e =g %= %/{- = Nztz—, (1.28)

The case M = 0 is simply the linear dilaton vacuum as it appears in higher-dimensional
dilaton gravity. It has this name because this vacuum state is a linear function of the

coordinates, in the Minkowskian vacuum (¢ = $(¢~ — o)) as we will see later on. When

8



the constant, M is different than zero, we have a black hole of mass M. The solution is
similar to the r = ¢ plane of the (static) Schwarzschild black hole. even if the metric does

not. have exactly the same form. Here the line element is written as:

i

ds® - 3&2"437"'([.1"

1 dxtdz~
2MN = Nuta=

il

This spacelime has a physical singularity (i.e. R — oo) at Natz™ = M/A.

It order to well understand the geometry of this spacetime, we can construct its
Penrose (conformal) diagram. A Penrose diagram enables us to describe the infinite
spacetime within a diagram of finite dimensions. This is done by performing the following

conlormal transformation of the coordinates:

M

at = e tan(gF) (1.30)
where
—Zcgt<s (1.31)
5 <4¢ 5 .

According to (1.22), the conlormal factor of the classical black hole (1.28) becomes:
- -1
— 2, =e¥ = [cos q" cos ¢~ cos(qt + q“)] . (1.32)

The Penrose diagram constructed from this metric is depicted in figure 1.1. The points
i corresponds to the spatial infinity where # — =00 at time ¢ = 0. The two t;ther points
i~ and it are the past and future timelike infinities, respectively, for x = 0. The four
lines (called null infinities) J, F}h. ., represents the regions at infinity joining the four points

described above. The physical singularities are obtained from the Ricci scalar

R

8¢~ *20,40,-p

= 4cosqtcosq” [cos(q+ +¢7) +sin(g* + ¢”) tan(g* + q')] (1.33)
which diverges for ¢t - ¢~ = £3. We readily see that this Penrose diagram is identical to
the diagram of the extended Schwarzschild spacetime, built from the well known metric
21 |
ds* = — (1 - ¥) di® + (1 - %)_ dr? 4 r2dO2 . (1.34)



singularity

singularity

Figure 1.1: Penrose diagram of the extended Schwarzschild black hole.

This shows that the classical black hole described by (1.28) has the same causal structure

as the r-t part of the four-dimensional Schwarzschild metric.

The fact that the constant M is the mass of the black hole is not obvious a priori,
but it can be seen by a computation of the Bondi mass, as done in Appendix A. So,
we have obtained a solution describing a static and uncharged black hole in vacuum.
Apart from this solution, we could imagine a solution describing the collapse of matter,
creating a black hole. One possible choice for snch a collapsing configuration is given by

the stress-energy tensor:
1 N
T{, = 3 > 04 fi0s fi = mb(z* — zf)
i=1

N
T/_ = %ZB_f.-a_f,:o (1.35)

i=1
which represents an infalling shock wave with amplitude m. This stress-energy tensor can
be obtained from the singular limit of a gaussian wavepacket. By inserting these relations
in the equations for the functions u. in Kruskal gauge, we perform the integral and we

obtain the solution for a collapsing matter wave:
e = g% = —m(at - z})(z* — z}) — Nztz—. (1.36)
This spacetime is depicted in figure 1.2.
For z+ < zt this solution represents the linear dilaton vacuum discussed above. So,

10



singularity

Figure 1.2: Penrose diagram of infalling matter creating a classical black hole.

observers in this region of spacetime do not see any black hole. For z* > zf, we can
shift z= by m/A\? and we obtain a classical black hole of mass mz3 A, by comparison with
the solution (1.28). Again the mass can be computed with the Bondi mass method (see
Appendix A).

In this section, we have only solved classical equations; there was no quantum effects
on our system. We can conjecture that the inclusion of such effects in the theory would
make the black hole emit energy, according to the famous conclusion of S.W. Hawking:
black holes evaporate {4]. We will see in the next section how to take some quantum

effects into account in this model.

1.2 One-Loop Corrections

In this section, we will show how to include quantum effects in the classical theory pre-
sented in the previous section. Obviously, our goal is to study Hawking radiation ema-
nating from black holes. In quantuin mechanics, there are two principal formalisms for
the quantization of a system: the canonical and the path integral formalism. The latter

is today’s most popular and most efficient method in field theory and we will use it for

11



the quantization of the model of dilaton-gravity coupled to matter (1.1).

Following the usual procedure of path integral. we will ook at the functional integral:
7= f Dlg. . [;)eiSo+iss (1.37)

where Sp is the dilaton gravity action and S;; is the matter action, both in (1.1), and
Dlg. ¢. f;) represents the measures for the metric, dilaton and matter ficlds. It can be
found in the literature how to integrate the matter functional integral at first order in the

loop expansion {14], and it gives the familiar Polyakov-Liouville action:

[ DUt = gins (1.3%)
with
1 o 1
= —— ‘o —gh— H
Spi Srfd o/ gRo R (1.39)
where we defined x = N/12 and @ = a*. The Green'’s function gz = G(a,y) of the

d’Alembertian satisfies VIG(z,y) = 6%(x — y}. Thus, our system is now described by the

path integral:
Z = [ D(g,g)eirinsn (1.40)

and then we have to solve the equalions of motion for this one-loop corrected action. Let
us note something about the matter functional integral. The integration leading to the
Polyakov-Liouville action is, in some sense, arbitrary. This means thal the functional
integral over the matter fields f; permits the addition of local, covariant counterterms
to Spr. In this chapter, we will not add such arbitrary terms and we will only keep the
Polyakov-Liouville action. However, in the next chapters, we will see how the addition

of such counterterms will modify the theory and how we can make a solvable quantum-

corrected theory.

We do not want to solve the full quantum theory, which is beyond the scope of this
thesis. We only want to solve the semi-classical system, using the minimum action prin-
ciple, as done in the classical case. We will also work in the large N limil, where the
contributions from the ghosts, dilaton and conformal measure to the effective action are
negligible. This requirement will hold for the CGHS model, but it will not be used in the
discussion of the generalized model in the third chapter of this thesis. So, we can derive

the stress-energy tensor’s components Ty from the effective action S = Sy + £Spy, and we

12



obtain:

Tw = TS — 2T = 0 (1.41)
where
T = 4gopg™0:04p0 + 4T2,0:p0 — 40,05p0 — 29aspoR + 400 Rap
+ 2901,9° OepoDapo — 10, paBspo . (1.42)

In this stress-energy tensor, the conformal field po comes from the application of the

Green's function gz on the Ricei scalar R:

1
oift = [ & Glay) Ry) = =20 (1.43)

We arc denoting the conformal field arising from the Green’s function differently because
we could want to use a different reference vacuum for the propagator of the massless
scalar field and then relate it Lo p by a coordinate transformation®. On the other hand,
the dilaton equation of motion (1.12) remains unchanged by the addition of quantum
corrections, since (1.39) is dilaton independent. Thus, we now have a quantum correction

to the stress-energy tensor, whose components are:

TE™ = 801pdzpo — 401podxpo — 493 p0 (1.44)
T = 40,8.p0 . ' (1.45)

We can relate the conformal field pg to the field p by a relation pg = p + vy where
ty = vo(w¥,27) is an arbitrary function. We can constrain the form of the function vy by

applying the operator V2 on the left-hand side of equation (1.43):

/ PyViG(z,y) Ry) = R(z) = 8e~20,0_p (1.46)
where we used V2G(z,y) = 8%(z — y). For the right-hand side, we have:

—2V2(p 4+ vo) = 8e720,.80.p + 8e~ 8, 0_vy . (1.47)
Thus, the equality will hold if Vv = 0 i.e. if vo = (v (2*) + v-(z7)), yielding;:

po=p+ 3 (vale®) +o-(a) . (1.49)

*For the CGHS model, we will take py = p, so that the vacuum of the propagator is defined using the
present coordinates where g4_ = —Le?, However, this equality will not hold in the next chapter where
we study the RST model.
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In this case, the quantum stress-energy tensor's components will be given by

- . R ‘l
To = —1(8ip - 0xp0sp) — ~ta(a) (1.19)
TN = 49.0_p (1.50)
where we defined
te(ot) = t—;- [‘333:05: + 5:1:(.!3:3:&05:] . (1.51)

Thus we see that a complete quantum stress-energy tensor must include the functions
t+(2%). These functions are related to the zero-modes ambiguity of the Green’s function

G(z,y) = gz as it can be seen in the following derivation [15]. Let us look at the

eigenfunctions of the d’Alembertian V?:
Viw;(:c) = \wy(2) (1.52)

where J; is the eigenvalue corresponding to the eigenfunction w;(a) and x = #*. We can
use these eigenfunctions as a basis for function, say (), so that we can decompose them

on this basis: "
B(e) = T awi() - (1.53)
;
These eigenfunctions also satisty an orthogonality relation:
[d":u wi(w)wj(z) = &; . (1.54)

One would like to write the Green’s function G(z,y) in the basis {w;}, i.e. we must
determine the constants a; for this function. We will show that the correct decomposition

for the Green’s function would be:

Glay) = ¥ wilehaly) (1.55)

i
To check this expression, we will use the definition of the Green’s function V2G(xz,y) =

6%(z — y) and the integral of the Dirac delta function:

[y 8@ - 9)bly) = (=) (1.56)

Using (1.52) and (1.55) we obtain:

ViG(z,y) = 3 wi(z)eily) (1.57)
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and we have to check if it is equal to the Dirac delta-function 62(z — y). In fact, we can
show that the RHS of (1.57) behaves like a Dirac deita function:
f Py Y wile)wily) Do aworly) = 3 awwi(x)8ix
i k ik

= Z a,-w,-(:r:) (1.58)

—

where we used the orthogonality relation (1.54). Thus, we see that the decomposition
(1.55) is appropriate for the Green’s function G(z,y). On the other hand, this decom-
position of the Green'’s function is obviously undetermined for the zero mode A; = 0.
For these modes, we have Viwg(a) = 0 which has the same form as the condition on
the function wo(x) that generated the functions ¢4(z*) discussed above. This establishes

the relation between the zero modes ambiguity of the Green’s function and the functions

la(aF).

The explicit form of these functions will be determined in the next section, where we
compute Hawking radiation in a fixed background. In the next chapter, we will see another
way ol determining these functions, which is more convenient in some generalizations
beyond the CGHS model. In the third chapter, we will see that the two methods used

lead to different Hawking radiation rates and we will discuss this discrepancy.

Now, we have a semiclassical theory of two-dimensional gravity which has black hole
solutions. As shown by 5.W. Hawking [4], including quantum corrections in a classical
black hole solution will force the black hole to evaporate. In the next section, we perform

a first computation of Hawking radiation in a classically fixed background.

1.3 Hawking Radiation in a Fixed Background

Now we will make a first calculation of Hawking radiation. The following calculation
does not include the backreaction effect on the spacetime caused by the decreasing of
the mass of the evaporating black hole. The computation will be done for the collapsing
malter wave solution (1.36), which will be our fixed spacetime. Of course, this method of
computation is only an approximation because in reality the spacetime will be modified

during the evaporation, as a consequence of the decrease of black hole’s mass. Anyway,
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it is very instructive to see some qualitative features of the Hawking rvadiation lor this

systeni,

Before going into direct computation, we will perform a coordinate transforimation on
the metric (1.36). The new coordinate svstem will often be referved 1o as asyimptotically
Minkowskian, because it is a manifestly Minkowski lat spiacetime “lar™ from the origin
(asymptotic region) and will be much more natural for the deseription ol the black hole
evaporalion. We use it because in Minkowskian coordinates, the notion ol particles is
well defined in feld theory, while it is not the case in a general curved spacetinie, where
curvature can “create” particles, leading to a problem in the delinition of particles [16].
The coordinate transformation {@%} — {o*}, lor (1.36) with o > &, is delined as:

at = l(:‘\"+ (1.59)

I

and
1

7" = -3 - ’\i . T (1.60)

For the region below the infall line, the line element in g-coordinates is llat Minkowskian:

ds? = —édo""da“ (1.61)

and it is asymptotically flat on J7F, ie. in the limit ot - 4o00. This latter Hmit
corresponds to the limit #¥ — +oo in the a-coordinates. Note that this coordinate
system describes the spacetime only above the classical event horizon &~ = {3. According
to equation (1.22) and following, the conformal field does not translorm as a scalar. ‘Thus,
using the transformations (1.59) and (1.60), the spacetime (1.36) for the collapsing matter

will now be written as:

e = [1 + ("—-\‘) e'\"_]-l for 0% < of

Nom ot aat 1] N (1.62)
= [1 + (%) eMoT ot ey )] for % > oy
and the components of the quantum stress-energy tensor become simply:
. L 4. ’
B = A0xp0sp ~ 03] — ~li(0*) (1.63)
Tt = 9,0_p (1.64)

where J: now represents a derivative with respect to 0% and ix(0%) is defined in terms
of tz(z*) by:

" Y
fa(o¥) = eV ¥ 1, (z2(0F)) + "T (1.65)
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for both regions #* < af and a* > 2f.

Because this fixed spacetime satisfies the classical equations of motion, so that TSP =

0, the quantum expectation value of the stress-energy tensor’s components will only be
the quantum corrections:
. K o~

(Tub) — _IT(:E"““ (1()6)

We still have to find the correct expression for the functions {x. For this, we apply
boundary conditions on the quantum expectation values, and the most natural one in
this case, is to require that the quantum expectations values vanish in the linear dilaton
vacuum, which is present at o* < o . As a result of this condition , the complete equation
of motion T'GGHS — fff‘,f’g’““t = 0 will be satisfied. This requirement ({T,s) = 0) forces the

functions fx(a¥) to be:
iy(c®) = 0
LIV PO LR b .
4/\ ll (1+)\c ) ] (1.67)

This completes the expression for the stress-energy tensor in the spacetime. Now let us

{_(c7)

evaluate this solution at the future null infinity J3, far from the black hole, i.e. in the
limit ot — co. In this limit we recover a Minkowski metric since § — 0, leaving vanishing

values lor (T4 ) and (7). but:

(T__) — -"—} [1 -1+ %c‘\"_)‘ﬂ (1.68)

thus, far observers will detect energy coming from the black hole. This represents a
flux of J-matter particles reaching the future null infinity J7 and it is interpreted as
Hawking radiation {flowing from an evaporating black hole, since (Tub}LDv = 0. There
are some interesting features about this radiation. First of all, it tends to zero at the
spacelike infinity ©° (¢~ — —c0). This result corresponds to the intuitive fact that there
is no Hawking radiation when observers are unaware of the formation of a black hole.
However, it-is not surprising that at the future timelike infinity ¢*, Hawking radiation
does not stop. This is a consequence of the use of a fixed background; because the
black hole geometry does not change, its mass remains the same and it can evaporate
forever. This non-stopping radiation has a constant flux that asymptotically (¢~ — o0)

Fy2 . . . . . e . s
tends to %, which is curiously mass-independent. This is a characteristic feature of two-

dimensional gravity [6], while in four dimensions it is mass-dependent [4]. Moreover, this
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unending flux is unreasonable since as radiation is flowing out, the mass should decrease
and reach an endpoint where radiation will stop. So, because this computation is somehow
incomplete, we would like to compute Hawking radiation by including the backreaction
on the geometry. This might be done by a computation of the Bondi mass (see Appendix
A) for the one-loop corrected solutions. Unfortunately, it cannot be done exactly for
this model because the quantum corrected equations of motions are not exactly solvable.
We will see in the next chapters how to modify the theory so tl'..t we obtain a solvable

quantum corrected theory.
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Chapter 2

The RST Model

In this chapter we will examine an interesting variation of the CGHS model, studied in
the previous chapter. The work presented here was done by J.G. Russo, L. Susskind
and L. Thorlacius (RST) [8] and was an attempt to make the semiclassical CGHS theory
exaclly solvable at the one-loop level. They have essentially added a new local, covariant
counterterm and made a field redefinition, which leads to a solvable Liouville theory. It is
not the only solvable model obtained from a variation of the CGHS model. A. Bilal and
C. Callan [7] studied one of these CGHS inspired model. They essentially modified the
cosmological constant to make the model solvable. The RST model has the advantage
ol having exact classical solutions, but, as we will see, the new fields do not span the
whole real axis giving rise to a spacetime singularity. We will first see how they modified
the CGHS one-loop corrected model by adding another counterterm. In the next section,
we will solve the semiclassical equations using a fields redefinition. At the end, we will

consider some features of the solutions.

2.1 New Counterterm

The important point of this section, is that the matter path integral (1.39) may be changed
by the addition of local covariant counterterms since, in the functional integration, the
measure is ill-defined and can be modified by such counterterms. The addition of these
new c?iinterterms may have strong effects on the theory. For example, in the present
chapter, the added counterterm will produce a solvable semiclassical theory as we will

see. Russo et al. investigated the modified action § = Sy + S; + S, where Sy is the CGHS
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action and

Sl = h‘Spl, = b d*a ry/— R—-H (2.”

is the Polyakov-Liouville action derived in the CGHS model, with x = lz The last term

S, = -Si_ f Ee /=g 2R (2.2)

is the new local counterterm they added to the theory. Again. we will use the conformal

gauge (1.5) in which the action takes the form:

N
= —/d“ { 2040-p — 40, 60_¢ + N c*?) Z()+ fio_fi

l-'l

~ K{B4p-p + 6040-p) } (23)

As before, we use the minimum action principle to derive the equations of motion for the
metric, matter and dilaton fields. This procedure is correct for a semiclassical theory,
which might differ from the full quantum theory. These equations will essentially be
the same as in the previous chapter, apart from some extra terms coming {rom the new
counterterm. We obtain for the stress-energy tensor’s components:
) _ K (m(1) {2) .

Tu =T - 7 (T’ + Ta') =0 (24)

where F(u) TSCHS is given by (1.4) and:

T(l) = ~2gupR — 40,0pp + 405, 0.p + ‘lgubgmacadﬂ
+ 4pRap + 20a69%0.p04p — 10.p0p (2.5)

TS = gadR + 20,056 — 20,00 — 2000:0u6 — 26 R, -

Note that everything is expressed in terms of the conformal field p and there is no py.
The conlributions of the latter are incorporated in the functions {x(x¥), which are part of
Tia, and remain to be determined (see discussion following equation (1.45)). Explicitly,

we obtain one equation of motion and two constraints for the metric:

Il

Ty

(% + %) (10up0ss — 2029) + 5 Zaif.aif.

+ & (820 — Bxpdsxp) + La(z®)
Ty = €7 (20:0-¢ — 404400 - M2e??) (2.6)
+ 5 (9:0-4 - 20,0.p) .
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Of course, the N matter equations of motion survive in the same form:
d.0-fi=0. (2.7)
Finally, the dilaton equation of motion is modified to:
¢ [40,0-9 — 20,0_p — 40,606 — Ne¥| - 20,0_p = 0. (2.8)

All these equations of motion and constraints contain the one-loop corrections and so,
they have evaporating black hole solutions. The addition of the counterterm in the one-
loop corrected action has the advantage of restoring the classical current 8+8-(p—¢) =0
at the one loop-level as can be seen by adding the dilaton equation of motion to Iy = 0.
This current was essential for the solvability of the classical CGHS theory and it was
destroyed in the one-loop corrected CGHS model {6]. It has been shown recently by Y.
Kazama ef al. that this condition is essential for the solvability of two-dimensional dilaton
models [17]. We will see later that this characteristic greatly simplifies the solutions of
the RST model.

2.2 Liouville-Like Theory

Now we wanl to solve the equations of motion derived in the previous section. In their
given form, the solutions are not obvious. If we make a field redefinition, we can transform

to a simpler solvable theory. So, let us define [8]:
1 1 o9
N = 2(,‘6 + —e

X

1,1 g
——d+ = 9
P Qé + Re . (""9)
These definitions change the action to a Liouville-like action:
L 7o '3y 2 2x-m)] 4 Lo
S = ;]d & {6 [~0:X0_X + 8,00_0 + N2e*D)] 4 S 0ufo-fif . (210)
i=1
Applying the transformations (2.9) to the stress-energy tensor {2.6), we obtain:

Tee = & [—a*xaix + 0:00:0 + aiX]

1N ,
+52 0 fife fi + t2(2*) = 0 (2.11)
~i=1
Ti- = —k0,0.X = \22-) =g (2.12)
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and the simple current equation may be written as:
G, 0. (N - =0. (2.13)

This theory can be solved exactly. We will derive the general solution of the Liouville
theory in the next chapter where we will look at a more general model of dilaton gravity.
For now, we want to point out that the new field Q does not range over the whole real
values as we might expect; the function Q{¢) has a minimum at a critical value ¢ = ¢y

and this point turns out to be a spacetime singularity.

2.2.1 Curvature singularity

The fact that the field  is bound from below gives rise to a curvature singularity. This

can be seen by looking at the Ricci scalar (R) of gqs:
R =28e79,0-p {2.14)

in the conformal metric. From the definitions of the Liouville fields, the Laplacian of the
conformal field p in the Ricei scalar may be rewritten as:

QH

1
3.,.3. = ﬁ [{9.,.3_,\’ - F

ama_n] . (2.15)

where the prime (') denotes a derivalive with respect to the field ¢. A curvature singularity

will arise at ' — 0, i.e. when
1 K .
¢’ = tJbt:rh. = —'Elll [I] . (2]())

This critical value of the dilaton field will define a curve in spacetime, whose characteristic
will depend on the particular solution we want to investigate. We will have Lo be very
careful when the dilaton field reaches the critical value on account of the fact that the
solutions will not be properly defined on this curve, since the Ricci scalar blows up. One
usually wants to impose boundary conditions on the fields on this critical curve to get a
well behaved theory. Many authors attempted to find the right boundary conditions and
it is beyond the scope of this thesis to go into the details of such problems. We refer the

reader to (8, 18] and references therein for such an analysis.

We will see in the next chapter how we can remove this singularity, by taking advantage

of the addition of new counterterms. For now, we will look at some solutions of the
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equations of motions. There are two main types of solutions: eternal and evaporating
black holes. The difference between the two types comes [rom the different choices of
the functions t4(x*), which correspond to different choices of reference vacuum for the
matter propagator. For eternal black hole, these functions are set to zero, while for the

evaporaling black holes they are non-vanishing,.

2.3 Evaporating black hole

Since the Liouville theory obtained is classically solvable, we can now analyze the different

solutions. Before solving for the fields, we must find the right expressions for the functions
1
V2
1). In the previous chapter, we determined these functions by requiring the quantum

t+(x%), which arise from the zero-modes ambiguity of the Green’s function 25 (see chapter
expectation values of the stress-energy tensor to vanish in the linear dilaton vacuum. In
the present chapter, we will use a different method, which, in fact, yields the same results.
We will define the vacuum of the Green’s function gz in the Minkowskian coordinates
{o%} and then transform to the {z*} coordinates system. We use the stress-energy
tensor (1.45) derived from the Liouville-Polyakov action, which depends on both pg and
p. We already know that the conformal field does not transform as a scalar, but rather

tLransforms according to equation (1.23):
1
po=p+; (w+(:c"') +w_ ('c')) : (2.17)

'I'his transformation has the same form as (1.48) if we substitute vy(z) — wy(2®).
'I'his now makes a relation between the quantum functions ¢:(z%) and the coordinate

transformation which is, from (1.51):
ti(wi) = :’:- [2811:)* + aiwiaiwﬂ,] . (218)

Now, we must determine the functions ws(z*) which correspond to a transformation
to Minkowskian vacuum. We already know the correct form from the computation of

Hawking radiation in a fixed background:

we(z*) = Qln [i,\m*] , (2.19)
where Q is a constant, and it yields to the functions 4 (a®):
- P '
ta(zt) = —Z 2.2
:l:(w ) 4 (.13:&)2 ( 0)



with the redefinition P = Q(@ — 2). The constant P labels different Minkowskian vacua
with line element given by:

|
ds” = —;-)—I"rfcr+(fa' . (2.20)

We can solve the equations of motion with these funictions in the static vacuum case
T{. = 0, we obtain the following solution. in the Kruskal gauge, for asymptotically flat
spacetime:

., P " \/
KQ = kX = =Naete™ — Th'. In [—,\".tr"’.'l.'_] + fT

(2.22)
where the constant M labels different solutions, The solution for P = 0 is called eternal
black hole solution because its mass would not decrease when it evolves. This might seem
surprising since we are including quantum effects in these solutions and we would expect
that, for this reason, black hole solutions would always evaporate. This can be remedied if
one considers the black hole as being in thermal equilibrium with an heat bath at infinity
[19]. Note that the fact that the black hole stays in thermal equilibriun indicates that,

the Hawking temperature of these two-dimensional black hole is independent of the mass

[4].

The case where P # 0, is more interesting because it corresponds to an evaporating
black hole. First of all, we examine the limit M = 0. By comparison with the transfor-
mations (2.9) in Kruskal gauge, we see that it corresponds Lo the linear dilaton vacuum
if P = 1. Since this solution is a vacuum solution, the Bondi mass of the system must
vanish. This would be the case only if the constant P = |. In the olher cases where
P # 0 and P # 1, the Bondi mass on 77 diverges, and it has no good solutions for Lhe
description of black holes physics. Thus one can claim that the most natural choice is

P =1 for black holes physics.

A physical siress-energy tensor for the mattler is the collapsing shock wave tensor.

Now let us look at the solution obtained from the collapse ol a matter shock wave as we

did for the CGHS model:

TI, = mé(z* - ) (2.23)

i

0. (2.24)
The solution of the equation of motion and constraints is then, in the Kruskal gauge:

KQ = kX = =Natz — z-ln [¥ata] - m(a* - 2)0(a* - =) (2.25)
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where mis the amplitude of the incoming matter wave. First of all, this black hole has an
apparent horizon defined by the curve 8,6 = 0 [20]. In the Liouville fields, this definition

translates to @40 = 0, since we can write:
0, 0=00,6=0 (2.26)

as long as the function Q'(¢) is well behaved (which is not the case at the spacetime
singularity ' = 0), the equation defining the apparent horizon may be derived from
the above equation. This equation defines a curve (z};, %) given by the substitution of
solution (2.25) above the infall line (2% > 2f) in definition {2.26):

IS 1

+ —_——— .
tH 4 Ay +m

(2.27)

The singularity also defines a curve (zt.x7) in spacetime, given by the substitution of

$erie in solution (2.9):

K 4N 4
| —1In [I] = —T:L':'m; —In [—/\2:1:;":8:] - :m(m;" —at). (2.28)
The rate al which the apparent horizon recedes agrees with the semiclassical calculations

ol Hawking radiation performed by CGHS [8].

Al a certain evenl in spacetime, the apparent horizon and the singularity will meet
cach other. The intersection event (z§,25) = (zF,z7) = (¢}, z7), which is above the

infall line is:

- m —dmz} Ix -1
£y = —,\_2.(1 - nxy )

K - K _ -Imz:"'/x 99
i = (1 - etmeginy (2.29)

AL this event, the singularity goes from being spacelike to timelike, giving rise to a naked
singularity. Therelore, we cannot determine uniquely the future evolution of the black hole
without making any assumption on the boundary conditions on this singularity, What
physically happens when a singularity becomes naked is not well understood and Hawking
has speculated that the formation of a naked singularity would produce a cataclysm, called

a thunderbolt, which would propagate outward at the speed of light [5].

However, the singularity is still present in the vacuum since the critical value e

does not depend on the particular solution we are looking at. So, even in the linear



dilaton vacuum we have the problem of a naked singularity and one must also solve this
question in order to find out what happen with a naked singularity. As we pointed out
in the discussion of curvature singularity, the hope is to apply a proper set of boundary

conditions on this singularity and it is still an open question.

We now turn our attention to a generalization of the two dilatonic models studied
above. In the next chapter, we build a generalized model for two-dimensional dilaton
gravity which will have some interesting features about the rate of Hawking radiation aund

the presence of the singularity in the quantum corrected model.
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Chapter 3

Generalized Model

In this chapter, we will apply the ideas of the previous chapter to a more general one-loop
correction to the two-dimensional dilaton gravity of CGHS. We will first introduce our
new counterterms, which are a generalization of the RST counterterm. We will see that
the rate of Hawking radiation can be affected by the choice of these counterterms. We
will impose conditions on the coefficients of these counterterms such that we recover the

same current as in the classical CGHS and RST models, namely:
0,0_(p—9)=0. (3.1)

This condition, which makes the theory solvable, will be referred to as the simple current

condition.

In the two previous models, the quantization assumed that the contributions from the
ghosts was negligible because the models were designed to work in the large N limit, but
we will not make this assumption in the present chapter. We will include the ghosts’
contribution to the action in an attempt to construct a more complete quantum theory at
the one-loop level. This introduction of the ghosts in the theory will give us a conformal
field theory as it will be checked by solving the B-functions. After this, we will try to
compute Hawking radiation in a fixed background, but the computation will be altered
by a non-vanishing vacuum’s contribution to the flux. Finally, we will compute the Bondji

mass of our evaporating black hole solution.



3.1 Onme-loop Corrected Action

As in the RST model. we will add counterterms to the usual one-loop anomaly term. Qur
choice for these counterterms is based on the conditions that they must be local, covariant
and have the proper mass dimension. which restrict us to terms with two derivatives of
the dilaton. The action we will study will be written as § = & 4+ S; + Sy + Sy where S,

is the classical CGHS action (1.1) and the other terms are:

: - 1 ,
S, = —bir / Fav=g Rz R (3.2)
Sy = —g"; f &*x/=g [adR + B(V )] (3.3)

K y A n n— 2 ,
53 = —g;fd‘mﬁ 7§2 [a"(,?-l? R+ b:l¢’ 1(Vd)) ] (‘l"l)

where a, 8, a, and b, are constants parameters, &' is an integer and x = N/12. We have
separated the n = 1 term (i.e. §3) of the sum for simplicity of derivation in the future.
The counterterms Sy and Sy are new to this thesis, even though some special cases have
been studied in the literature. For example, the case o = 2 and g = 0 corresponds Lo
the RST model studied in the previous chapier. Also, the case o = 4 and = -4 yields
a model studied by Bose et al. [21]. If we were to proceed as before we would derive
the equation of motions and then transform to a Liouville-like theory. This procedure
would be right if we assumed that the number of matter fields is large, so that the ghosts’

contribution is negligible. However in this chapter, we will include Lhe ghosts’ contribution

into the equations of motion.

3.1.1 Contribution from the ghosts

The work presented here is based mainly on the work of A. Strominger [22] (see also [23]},
in which he describes an original procedure to include the ghost effects in the one-loop

corrected two-dimensional dilaton gravity. This procedure will immediately lead us to a

conformal field theory.

We first rewrite the action S in term of a fixed background metric g defined by the

relation:

Jab = €*Gap . (3.5)
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By substituting this metric in the definition for the Ricci tensor and all metric-related
ubjeets wied in General Relativity, we can derive the following relations between the

fiducial (fixed background) objects and the original one. We have, in two dimensions:
V= eV, Veg=ePVag
Rub = Rnb_gubvzp
R = 3'2" (R - Qﬁzp)
(Vé)? = e ¥VeVe. (3.6)

"The symbol = means that the dot product is taken with respect to the fiducial metric and

similarly for V. These relations, will transform the action into the following form:

‘ N
Sy = ‘)Lfdzm\/——ﬁ—' [e_2¢ (R — AV + 4V + 4,\2e2") Z(Vf.) ]

2 i=1
S = —-—fd‘m\/_ [RV R~ lpR—tLVpTVp]
Sy = —2 f P2 /=F [a¢R+2a¢Wﬁp+ BV ]
Sy = —— _[ d*a/=§ Z [an 8" R + 20,n6"" 'V Vp + b,8" VT . (3.7)
n=2

This action includes the one-loop contribution of the matter only. However, as it is well
known in quantum field theory, a more complete quantum theory also includes terms
arising [rom the measure of others fields present in the theory and also from the ghosts’
liclds. Previous altempts to build a correct action including all measure terms, simply

N2|

shilted the constant & from 7 bo . Unfortunately, this shift brings some problematic

results when we look at the Hawl\mg radiation of the black hole.

Usually, the purpose of the introduction of the ghosts in quantum field theory, is to
simplify the computations of Feynman diagrams. It is only a mathematical trick and
the ghosts cannot be considered as real particles and they should never appear as free
particles in any process. The problem here is that the simple shift mentioned before makes
black holes to Hawking radiate ghosts. In fact, the black hole will gain mass by Hawking
radiating negalive-energy ghosts, which is certainly unphysical, when we perform a fixed
bacl;ground computation of Hawking radiation. Thus, we must find a different method

to include ghosts in the quantum corrected two-dimensional dilaton gravity.
A, Strominger proposed a solution to this problem in (22]. Mainly, his proposition
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was to use a different metric to define the measure of the dilaton’s and metrie's path
integrals. Instead of using the standard metric g = €**§ap, we should use the “shifted”
metric €™ %g, = e*?~Hg,. This kind of shift is permitted in the theory, because of the
freedom we have to add local, covariant counterterms at the one-loop level, Of course,
other choices {or the ghosts metric are permitted by this freedom, but it is vasier to use

the simplest one.

So, the ghosts will now contribute to the action by shifting the action:
J,V Sqnmll(?]’ p) = N Squmu.(g‘ p) —2 Sqmmt (!—" p— ‘f’) (33)

where S is the complete one-loop correction (1/N)(S) 4+ Sa + Sy). By adding this

term to the action derived carlier, we obtain the complete action:

S = :)l_f(iQm \/—g {(;l_c""-]‘f' - '6'—}-1' - '}"(3,1(25" —_—a — ”“”(bll'—l _ 2) -Y-?ql):ﬁ(ﬁ
AT

+ (—-46"2“"' — 27 — Qanu')u!qsn—l + l) ﬁ(ﬁ:‘fjﬂ
N

+ 47’V p-Vp + 422204 — l) N VIV
==l

+ [e'% +24 47 (‘lp - R% - afd — a,.¢“)] R} (3.9

where we defined

1.1 L (N = 24)
Y=oV = (k=) = )
==

For simplicity, we dropped the summation sign over n but the reader must keep in mind

(3.10)

it is still present. Now we will analyse the action (3.9) in a similar way as done belore.

However, let first look at the conformal character of the theory.

3.1.2 Conformal invariance

A theory will be called conformally invariant if it is invariant under conformal transfor-

mations like:
g—=4g =g (3.11)

where (1 is some conformal factor. Usually, quantum gravity theories are conformally

invariant and we will lock if it is the case for our model. For more information, see
(186, 23, 24, 25].
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We will eheck if our model is conformally invariant, which is a consequence of the
covariance of General Relativity, A conformally invariant theory may be written in the

form of a a-mmodel theory, Note that string theory is such a theory:
i - ™ 14— 1~ 1 . - -
Sig.X) = —-.)I—_]d'.r\/—_r) [G’,w(.\ WEXSTXY + 5O(A MR+ T(XY) (3.12)

where ¢ ts the fiducial metrie described before and X* = (8, p, f;). The quantum theory
deseribed by this action will be conformally invariant if it satisfies three sets of equations
called p-functions. These functions are usually very difficult to solve exactly and one must
look at a small parameter (usually &) expansion of the theory to solve these functions.
IFor dilaton gravity, such a parameter would obviously be ¢*®. The reason for this is that
the Lagrangian in the classical action (1.1) is proportional to e=2° and when we built the
one-loop correction we assumed e~2* 3> 1 for the perturbation expansion. Then the first
order A-Innctions are:

gt = %V,,(DV"T - 2T - %V"’T +...=0

g, = V,V. 04 %R,.,, +...=0 (3.13)

gt = é(vtb)ﬁ— 31- PO+27+R+...=0

where the covariant derivatives are taken with vespect to the metric G, and R, is the
Ricei tensor of Gy, The dots (...) stand for the terms of higher order in the expansion.
I we compare the action (3.12) with our action (3.9), we can write down the following

expression for G, ¢ and T

Goo = ~4e™ 4+ 7 + b V¢ + o+ anng™ +2
Gop = 27+ a7 +an¥ng*! =2
G = -4
Gus = % (3.14)
¢ = -2 —8¥p+ 2076+ 20,7'¢" — d¢ + zv'R_vsz
T = —4)\2ele—9)

Substituting these equations in the 8-functions (3.14), we can check that 5% and ﬁﬂu are
exactly satisfied at first order in the parameter expansion. For the tachyon 8-function, 57,

the first order terms give an expression proportional to e**. However, we must remember
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that our expansion parameter in the J-functions is ¢*°. hence ¢* < 1. Thus, all 3-
functions are satisfied at first order and we can conclude that we have a conformal tield

theory. at least to leading order in €*°.

Now the task is to solve the model developed so far. which includes ghosts and is
conformally invariant, We will solve it {from a minimum action principle (i.e. by using

65 = 0). as we did for the two previous models.

3.2 Equations of Motion

As done before, we have to derive the stress-energy tensor components, the dilaton and
the matter equations of motion. For this purpose. we need to rewrite Lhe action (3.9) in
terms of the metric g instead of the fiducial metric §. In order to recover the conformal

metric (1.5), we require the fiducial metric to be flat;

- . 1 :
gt = 0 y Y- = —5' . (J.l.r))
Substituting this metric in the action (3.9) and after some algebra, we can write the action

i" th‘.‘ CO\’Rl'ia.nt; fOl‘m:
= n a-r q 2 + (,b + 4. + 2 < Ji

T o1 ¥
-sheEh -3 [
N
3 [and™ R + 6" (V9)?] (3.16)

n=2

K
lcr +2+ 3 unnqﬁ"'l} (V) + q‘)li}

n=2

adli + B(V4)]

- o2

where we have reinstated the sum over n. This is essentially the same action as (3.4) except
that « has been replaced by 7 and we gained some extra terms from the introduction of the
ghosts, dilaton and metric measures. This action shows explicitly that the prescription of
A. Strominger for the contribution from the ghosts is different from the shift & — & — 2

used before. We can simplify the above action by redefining the constant parameters:

a — &:a—§
pr
- 4 8 ,
8 — h=f+atz (3.17)

b, — f}n=bn+%ann.
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The action then becomes:

5’:1;/(["1 —g{ -2°[R+1vo IA]+ Z\"/f,

%R%R -3 [aoR+ 3(Vo)’]

1 ’z or6" -+ b7} (3.18)

This rewriting has the advantage of collecting all the quantum correction into terms

proportional to 7, so that the classical limit is obtained by 7 — 0.

We can derive the stress-energy tensor components by {unctional differentiation as be-
fore. The complete expression is Ty, = T(0)+ ‘:T“)+ ’Tm + }Ta(f) = 0. The components

aroe.
(0) 2 2 L&
T = % (daipafé - ‘23;69) +5 > 04 fis f:
= =1

18] = 4800 =48pdup + ts(a®)

TH = 260.p0s0 — 6036 + (0:00:0 (3.19)
. N
T8 = 3 {0 [26" 7 0updsg — 6" 026 — (n — 1)¢" 2010020
n=2

+ bn¢" ' 00016}

where the Tunctions 24(2®) appear because of the zero modes ambiguity of the Green’s

function %, as discussed in chapter 1. Moreover, the off-diagonal components are:

T = ¢ 2%(20,0_¢ — 40, 60_¢ — A2e?)

T“_) = —484.5._,0

T® = a9,0.¢ (3.20)
K

T = 3 an (¢ 040-0 + (n — 1)¢"*0,60-9) .

For the dilaton equation of motion we obtain:

DY = ¢ (40,0_¢ ~ 2040.p — 40, 60_¢ — Ne*)

puit = 0
DB = _aa+a_p B0.8_6 (3.21)
DB® = Z [—a ng" "' 0,0_p — bug" 1 040-4 + b a(n —1)¢" 720, ¢'a-¢]

n=2
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with the dilaton equation of motion:

1 o JRPTE S
Dm+~ﬂﬂ”+TD“L+Tmﬂ=u. (3.22)

We remember that in the classical CGHS and RST model. we got a simple current
9+.9-(p — @) = 0 by subtracting the dilaton equation of motion from the metric equation
of motion T = 0. With this current. we have the [reedom to conformally transform wo
the Kruskal gauge ¢ = p. We will demand that this current equation arises in this model
also, so that we will get relations between the constants parameters in our connterterms,
The subtraction gives:
0 = 2e7%9,9_(p—¢)
LR 0 s A N
+1 (& = 4)2,:8_p + (6 + B)D4.0-9]
b vy o .
+ o n [(a"n + 0,)040-¢ — a,nd.0- ,0] (3.23)
v 3 a e
+ "2 gl = 1)(bn + 2a,n)0440-¢ .

The simple current must be satisfied for all powers of ¢. For ¢°, we obtain the lollowing

relation between the constanis & and 3:

(6 —4) = —(&+ B)
= 2a=4-§. (3.24)

For ¢"~!, the simple current condition leads to the constraint:

—apn = (ayn+ f),l)
1l -
= a, = _Eb" . (1.25)

For ¢"~%, we only have 0,.¢0_¢ and it must vanish if we wani to have the simple current
in our theory. The vanishing of this coefficient reproduces the same constraints (3.25) as
before. It is attractive to obtain the same condition in the last Ltwo cases, since il means

that the simple current is satisfied for all powers of n.

All these conditions come from the arbitrary imposition of a simple current condition.
We must remember that we made this choice to produce a solvable set of equalions of
motion. It could look strange that the spectrum, N, of massless scalar fields appears in

our conditions, through the definitions of &, 2 and b,, but for us it is only a mathematical
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trick 1o make the theory solvable. Whether or not Nature arranges itself to be solvable is

another question.

Since we have obtained a conformal theory including one-loop quantum effects, the
natural question to ask is whether or not black holes will evaporate in this theory. The
natural way lo answer this question would be to perform a semiclassical computation of
[lawking radiation in a fixed classical background. We will see that such a computation
is really problematic for the generalized model since the linear dilaton vacuum is not a

solution ol the equations of motion Ty.. = 0 and D =0, and the constraints Txy = 0.

3.3 Problems with Hawking Radiation in a Fixed
Background

In this section, we will show that the introduction of the new counterterms makes the
computation of Hawking radiation in a fixed background impossible to perform in the
simple way introduced by CGHS. The reason for this behavior of our generalized model
comes [rom the fact that the linear dilaton vacuum (LDV) is no longer a solution of
the complete theory, which includes classical and quantum terms in the action. As a
consequence, energy will be created from the vacuum suggesting that the LDV is not the
proper vacuum for the theory. To see where the problems come from, we will perform the

calculatious as far as we can with the method of CGHS.

As in the CGHS morel, we will use the classical solution of a collapsing matter shock
wave producing a vacuum region (z* < ) and a black hole region (z* > af). The

tmetric is given by (1.36), in the Kruskal gauge p = ¢:
e = ¢ = —m(at — z)0(zt ~ 2F) ~ XNzt (3.26)

where m is the amplitude of the matter wave (1.35). We will perform a coordinate
transformation to the asymptotically Minkowskian coordinate system {o*} defined by a
general transformation x* = h*(g*). Usually, the functions h*(o¥) are given by (1.59)
and (1.60) for the collapsing matter solution, but we will keep them undetermined for the
moment. This system is the most natural because, for this Minkowskian system, we have
a good definition for particles in the asymptotic (flat) region; for others, the concept of

particles is not well defined [16]. This coordinate transformation preserves the conformal
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gauge and the new conformal field is given by (see chapter 1):
!
p=p+3 [In[dﬂh"'] + ln[&,-h']] . (3.27)

Under this coordinate transformation, the stress-energy tensor components will transform

in the usual way:
Ty = I\"au\bbrl’[‘ub . (3.
This transformation leads to the following tensor's components in the a-coordinates (using

(3.21) and (3.20)):

Tas = |7+ F(6)] (102026 — 2058) + G($)Dxp0s6

+7 (035 — 0xp0:p) + Ty + is(0™) (3.20)
Toe = e (20,0.6 — 40,60-¢ — N*e%) ~V0,0_
~ K 5 K ,
+7 la +3 a,,nqé""] D 0_¢ — T S agn(n = 1)¢"dppd- g (3.30)
n=2 o=y
where ~ denotes the ¢-coordinales and we redefined dy = %5 We have also defined the
functions:
0} Iy
F(¢) = 3 [ +, aund»“"] (3.31)
n=2
T, &g .
Glp) = n [ﬂ +> (b"qﬁ“" —ayn(n - l)cf:"'z)l (3.32)
- n=2
. v
[a(0%) = (9eh) ta(et (o)) — sDgh* (3.33)

the Schwarz derivative being defined by:

o3 ht 3 /(8% I 2
+ + + 3.9
Dih B Bihi 2 (a:hhi) ' (s “)

The dilaton equation of motion (3.22) keeps the same form except that p — j and

dox — Oy,

From these expressions, we derive the quantum expectation values for the stress-energy
tensor’s components, which are only the quantum corrections Lo the classical stress-energy
tensor, because T’ = 0 since the fixed metric is classical. So,

(Tee) = F($)40:p0:6 — 201 9)
+ V(825 — 0+50+p) + G(¢)D:¢0s¢ + [1(a®) (3.35)
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n=2

() = {n+Za,,n®“ N, 0_¢ }
1

{Z ann(n — 10" 20,606 — 40,0_p } (3.36)

n= A

Now, we have to find the functions ix(e*). In this section, we will use the method of
(!GiHS, which requires that the quantum expectation values of the stress-energy tensor
vanish in the linear dilaton vacuum. However, we will see that this requirement is unfor-

tunately impossible for the generalized model.

3.3.1 Linear dilaton vacuum region

The classical spacetime (3.26) has a linear dilaton vacuum region (z* < zg) which is

described in the g-coordinates by:

p o= = [Inl0sh*a_h] - =AWt (3.37)
6 = —=In[—Nh*h] (3.35)

where Lhe relation for j comes from (3.27) with p = ¢. By substituting these relations

into the quantum expectation values, we obtain what we call (T,;)Lpv whose components

are]

A(p) Dyh+O_h- .

(Th-duov = ffb) S (3.39)

. B dph*E ¥ /

{(Texhov = ‘(fé) l%—-l {D hE la‘;l .l }+ti(a*) (3.40)
where

T Y K 1 214 n—-2
A) = AU = 3D aun(n=1) [—;ln[ AhH - ]] (3.41)
. K n-
B(#)= BUH W) = 1B+ 350, [~5 (=22t - ]]
n—2
~y N n—2
- —Zann (n—=1) [——ln[ —AZht g ]] : (3.42)
n=2

We must remember that in the CGHS model, we get {T'.-)Lov = 0 independently of the
particular transformation relations that we have, because of the special form of the stress-

energy tensor. This allowed us to set all components to zero in the LDV, which means that
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there were no incoming particles from the vacuum region except for the collapsing matter,
For the generalized model. it is obvious from (3.39) and (3..10) that we cannot demand
(Tub)LD\.-‘ = 0 in the whole vacuum region ot < gf. Also. demanding (’i‘:fi)l.n\" =0
will require the functions 75 to depend on both o and ¢~ which is not a permitted
solution. This dependence is forbidden by the vanishing divergence of the stress-cnergy
tensor: V, 7% = 0.

Since we cannot set {Ty)pv = 0 in the whole LDV, we can look at a specific region
where it is zero. From (3.39), we see that {I'y_)ppv will vanish at the zeros of A(ht, h7),
which are at —A?AT/~ = 1. From now on. we will use the asymptotically Minkowskian

coordinates defined by:

1
bt = Te'\“+ (3.13)
1 - m
h™ = ——e™VT - e (3.44)
/ /\"
Using these relations, the zeros of A(h*, h~) will then lie on a curve defined by:
ot = —jl\-ln "—\I + e"\"—] (3.15)

I'he interesting behavior of this curve is that it brings the zeros to the asymplotic region
ot — —o0 if ¢ — —00. So, we could be tempted to impose the condition of vanishing
quantum expectation values at the past timelike infinity i=. At other events in the LDV
region, the vacuum will create particles since the yuantum expectalion values are non-

zero. Imposing the weaker condition (Tu)ipy = 0, we can derive the expressions for the

functions tx(o%):

{(c*) = -%2 3 (3.46)
2 . . _.
[_(67) = % ltl — (8 +4) (l + ?c‘\"-) 2] . (3.47)

We have to make two remarks on these functions. First of all, we would have obtained
the same results if one considers the case ¢, = b, = 0, where we do nol encounter the
problems of a non-vanishing (T+_)LDV. This special case will be discussed later. Secondly,
the function A(R¥,h~) has no zeros when n = 2 and there is no asymplotic past region

where we can find a vanishing (T4_)Lpv.

The quantum expectation values are now completely determined and we can study the

black hole region. However, since (3.39) and (3.40) are not vanishing, particles creation
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will take place in the vacuum and we should expect a vacuum contribution to the radiation
flowing out to Ji¥. As a consequence, Hawking radiation should be obtained after the
subtraction of this vacuum contribution from the total radiation. In order to determine
the vacuum contribution, we can consider the black hole as a “perturbation” of the linear
dilaton vacuum. Thus, the radiation flowing out to infinity will have a part coming {rom
the vacuum energy flux at Jf. So, we will have to substract the quantum expectation

. Tt
values (7 ;b)‘[ﬂ’;v from the one obtained in the black hole region. We have:

-1
——fZan?—l(l-i-A )

I 1
( [+_ )L[})‘V

" AL ll LR n-2

x lim —§(cr —a)-—;n[-}-Te ]

N L N m o]
(Teify = W,“EL,{,,Z?” [ —o7) = yin[1+ 5]

ml:-

—Zann(n—l [

n=2

n—2
Cal -¢7)=-35ln [1+-xe' ]] } (3.48)
RN 3 M y\o=\"2,m JF
(T--Nbv = (1 + e e ) Ty )iBv -
We see that these expressions are divergent in the limit ¢+ — oo, and one might hope

that they will extract the possible divergences in some radiation flowing out from the

black liole region. Now we turn our attention to this black hole region ot > of.

3.3.2 Black hole region

Now, we can compute the Hawking radiation flowing from the black hole using the CGHS
method described in chapter 1. We will use the asymptotically Minkowskian coordinate
system (3.44) and we will evaluate (3.35) and (3.36) in this region (¢* > o). The dilaton

and conformal fields, in the black hole region, are given by:
p = —=hn [1 + JeloTorael )] (3.49)
¢ = —%ln [ (o*=e") 4 T “] : (3.50)

With these fields, we compute the quantum expectation values and we evaluate them at

the future null infinity J&. Let us first evaluate the dilaton on 7, }'{' :

. . 1
o = Jim ~ghn [T+ ]
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at—cs 2

l -
= lim —= {,\(a"" —c”)+1In [l + %c'\(" —n++‘.;,]}
= lim —%(¢* —07)

im =3 . {3.51)

The quantum expectation values become:

. A2 K . n—1
(S = S tim Z{bu [—.— ]

¥ oo n=2
A "“
—a,n(n—1) [—-)-(a' } (3.52)
" + A2
(T__)gﬁ = -I_GT('B-E- 1){ (l L0 i pro” }
YA2 i .
+1—6"31123:':"22{b,l [—5(0 —-o” ]
A _ n—"2
—apn(n —1) l-—-_;-(or'*' -c )] } (3.51)
. A n=_
(T+_)‘g5 = ——’TUIIELOZ& att(? [ 2(0"" —cr')] . (.54}

All these expressions are diverging, but we would be able to extract the contribution of
the vacuum (3.48) and then obtain the Hawking radiation of the black hole. When we

look in the far past (¢~ — —o0), we can subtract the vacuum contributions (3.48) and

we get the Hawking radiation there:

lim (To )R = 0

lim (T++);l,’ﬁ —~ 0 (3.55)
lim (FL)3E - 0 (.56)

which agrees with the computations of CGHS, namely that there is no radiation il we do
not observe a black hole in spacetime. When we look in the far {uture (¢~ — 00), we

cannot explicitly extract the vacuum contributions and the quantum expectlation values

remain divergent.

There are some possible answers for the failure of the computation of Hawking radia-
tion in a fixed background. One possibility is to argue that the one-loop corrections are so
strong that any semiclassical approximation is wrong. If this is the case, we must. perform

a computation of Hawking radiation that takes care of the backreaction of the metric and
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this will be done later when we will compute the Bondi mass of the generalized model. It
is also possible that the method used Lo extract the diverging vacuum contribution to the
raciation at J;& was wrong. In this case, interpreting the black hole as a perturbation
of the vaenum would be wrong and we should find another way for the extraction of the

vacuum contribution. It is also possible that the condition {(T,)Lpv = € is not the right

condition to impose, but we do not know what should be the right one.

We noticed in the subsection on the linear dilaton vacuum region that there was a
special case where everything was similar to the CGHS model. We will discuss this case

shortly.

3.3.3 Special case

We can easily see that there is no problem at all for the case a, = b, = 0 because (3.39)
and (3.40) are similar to the CGHS model:

Y, [0:hE]" Y 1[9:h%12] . ]
(Teghovy = Eﬂ[ ii l +;{Dihi+3[ ii ] }-}-ti(ai). (3.53)

Since (ff;._)LDv is vanishing, we can perform the semiclassical computation as in the
CGHS model. Using the usual asymptotically Minkowskian coordinates, we obtain for
[y (o®):

I(o%) = —%)\26 (3.59)
7 -y 1 2 _B+4 E .\a‘)_2
() = 1A [1 = (1+ Te . (3.60)

Now, we turn oul to the black hole region. We can evaluate the quantum expectation

values on the future null infinity J7 and we obtain:

(Fo)oi = 0 (3.61)
(T++)gf§ =0 (3.62)
. + Y R _\ 2

(T__)oE = IEA'*’(B+4) [1-(1+'—j\3e"°) ] . (3.63)

The last of these three equations is the Hawking radiation flowing out on J7. It has the

same behavior as the expression derived by CGHS, which can be recovered in the limit
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8 — 0 and 7 — N/12. We also recover the RST model in this limit, which implies that
both models have the same Hawking radiation flux. The flux of Hawking radiation goes

to a constant at the future timelike infinity it (¢~ — oo):

(T--)an = ﬁ (3 + 1) : (3.64)

We also notice that the flux of radiation depends on the parameter 3. For the special
case where B = —4, the Hawking radiation is zero. So, for these two-dimensional models,
we see that the rate of Hawking radiation is sensitive to the choice of the parameter for
the counterterms. Then, it is possible to find quantum black holes that are not radiating,
as in classical General Relativity. In the other hand, we cannol remove the spacetime

singularity as we will do for the general case where a, % 0 and b, # 0, as we will see in

the following sections.

Let us emphasize again on the assumptions of the calculations done belore. These
calculations use a fixed classical background, but since energy is emitted by the black
hole, its mass should decrease and when the mass is changing, the geometry should also
change. Thus, it would be very interesting to include this backreaction in our calculations
and see how the black hole evolves. To include the backreaction, we will use a method

tuspired {rom the field redefinition performed in the RST model.

3.4 Liouville Theory

Since we are not able to compute Hawking radiation in a semiclassical way, we would like
to be able to compute it with a method that includes the backreaction of the metric. In
chapter 2, we showed that Russo el al. performed a field redefinition that led them to
a Liouville-like theory. Their new fields were bound {rom below: they did not cover the

complete range of values.

We will also perform a similar fields redefinition, but we will see that we can obtain
fields with more natural range, if we impose some consiraints on the free parameters of

the theory. The new fields will be defined by the following relations with the previous
fields p and ¢:

X = p-——¢+—e ——Zanq’)"

n—2
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& | 5e 1m0 -
N = [1——]é¢+-e?==> a,p". (3.65)
4 L 4 n=2

These definitions considerably simplify the expression for the action (3.18) and the stress-
energy lensor’s components (3.20) and (3.21), since we obtain a Liouville theory. We
obtained similar expressions for the RST model, except that s is changed to 7:
- L[ e 9 v : 2 2(x-q) , L o :
S = —/d 24 VO XOX + 79, 00_0 + e + 530 fid-fip (3.66)
7

=1

Teg = —V0XOLX +70:00:0 + YN + Ty + ta(a®) (3.67)
Toe = =¥9.0_X = N9 (3.68)

We pointed out in the discussion of the RST model that @ was bound from below and
this turned out to coincide with a spacetime singularity, as it was seen from the Ricci

scalar:

R = 8e™8.0.p
Q”

S, -2p L .
= de 2 8.,.6_,\—6;-5

o 8,00_9 (3.69)

where the prime designates a derivative with respect to ¢. The curvature will blow up
when Q' will be zero, which is the extremum of the function £2(¢). So, could it be possible
in a generalized model to prevent { from having an extremum? The answer is yes.
However, the transcendentality of {(#) prevents us to find an analytic solution to the
cquation 2’ # 0. On the other hand, it is still possible to find numerical solutions. Let

us wrile 2(4) in the form:

K
N=Ad+ D B.p"+Ce™® (3.70)
n=2
where
&
A= 1- n
B, = —éau
1
C = 5 (3.71)
Then, Q' is given by:
K
(@) =A+ D nBg" ! —20e?. (3.72)
n=2
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Figure 3.1: Sketch of the field dependence of a bound Q(¢) {left) and of an unbound (¢)
{right).

From this, we immediately see that the function (@) will be unbound if n takes only odd

values and if the following conditions are satisfied

A>0, B,>0, C<0 | (3.73)

or

A<0, B,<0, C>0. (3.74)

Because C changes sign when N crosses 24, the above conditions imply that A and B,
are also proportional to N — 24, For n even, the problem is more subtle and. we must look

at the function  numerically in order to see whether or not it has an extrcinum.

Let us look at special cases for n even, where A = 0, and see how the function ((¢)
behaves. There is a possibility of having no extrema only when B, and C have opposite
signs, depending on the particular relative values of these constants and X. This must

be checked numerically because we could have two possibilities, shown in figure 3.1.

For example, the right graph of figure 3.1 could be obtained by setting X = 2 and
B; = —C. It is not necessary that the equality holds exactly, but B, and C must at
least be very close to each other. Thus it is possible to build a theory without singularity
or, equivalently, an unbound 2. This feature would be very interesting if we could prove
that the Hawking radiation of such models without singularity has a good behavior. This
means that the Hawking radiation should be positive definite for any number of matter

fields N and, if possible, goes to zero at future timelike infinity (i*).
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The latter can not be satisfied since most of the existing models of two-dimensional
dilaton gravity have a problem with this point: the Hawking radiation goes to a constant.
even when we include the backreaction. We will see that it is still a problem with the
generalized model, For the positiveness, we have scen in the previous section thal a
semiclassical calculation did not solve this question; we have not been able to obtain a
good description of Hawking radiation, except for the special case a, = EJ" = 0. In this
special case, 2, = 0 and it is not possible to build an unbound field Q(¢), i.e. we cannol

remove the spacetime singularity.

Now, we have to solve the equations of motion and constraints of this Liouville theory.

3.4.1 Solutions

Since we transformed to a Liouville theory, the solutions will be similar to the ones of
RSI, hut here, we will make a more detailed derivation of the various solutions of the
Liouville theory. We will simplify the Liouville theory a bit further by making a field

redefinition:

~
U = ';(Q + X)
V = X=-0. (3.79)

These simplify the action, equation of motion and constraints to:

, L[ 1 X . e

§ = = j d*x {—26+UEJ_ V+ A% + 5; 04 Ji0- [ (3.76)

m ; i 2 o2 mnf * q ==
Tyy = —20iUB¢V-|-36i1/+0iU+fﬂ+i¢(w )=0 (3.77)
Tyo = —28:0-V —8,0.U — X2e? =0 (3.78)
9.0V = 0 (3.79)

where the last equation is the simple current obtained before from I, — D = 0. Asa
consequence of the latter, we assume that the simple current conditions (3.24) and (3.25)
are satisfied. If not, the generalized theory will not be solvable. This action is essentially
the classical CGHS action if we would have defined the fields U and V as:

U = &%

Vo= p-6. (3.80)



From this similarity, we should expect that the two models will have solutions of the same
form. In the other hand. we must notice that the constraints of the generalized model are
different from that of the classical CGHS model since we have terms proportional to 2
and ¢z (r%). This will bring dowr some difference in the general solutions. We first solve

the simple current, which yields:

o
I = 3(11‘-.,. + w.l) (3.81)

where the functions wy(2x%) are called gauge functions. Then we can substitute this

solution in the equation of motion T = 0, which gives us the solution:

o at Fan
U=uy +u- — A“f n'y'*c“’*"f dy~c"-. (3.82)

The functions ug(2®) will be determined by the constraints Ty = 0. Substituting the

solution for £/ in them, we obtain the constraints:
) . ‘ 7 ey - ’
Tie = a:'!':ug: - diu:h()iwi -+ :[();:'wi -+ [i:t -+ a'.:;:(;!.‘:h) =1 (3.83)

and the solution of this equation may be written in the following form:
¢ x* yE v
ug () = :_,\ - dy* e“’*f dsEevs [T:{i + :l-aiwi + f,i] (3.84)

where 1t is a constant of integration. The matter stress-energy lensor .’Fii depends on the
particular distribution of matter in spacetime. In the other hand, we have alrcady scen
how to determine the two other functions ti{z*) in the first chapter (sce discussion fol-
lowing equation (1.45)). These functions depends on the particular choice of the reference

vacuum we are considering for the massless matier field propagator.

As a special case, the Kruskal gauge wy(2%) = 0 simplify the solutions, as we saw
in the CGHS model. This choice for the gauge [unctions wy was allowed because of the
invariance of the conformal metric under a subgroup of diffeomorphisms (sce chapter 1).

In this gauge the solutions are given by:

U=70 = TX
X = % - Azt~ - /r+ jy+ dytdz* [T_{_,, + I.+]
_ j : f Y dyds [Tl +1.]. (3.85)
V =10 .
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The solutions of the equations of motion (3.79) may also be written, in Kruskal gauge,

HEN

zt eyt = oy
TR =X % - Nrtem — f /J dytdz*t, —/ fu dy=d="1_

—at P (et + A at) - 2" Po(zT) + A_(z7) (3.87)
where we defined

Pi(e®) = [ ay*Tiay®)
r& F;
Aue®) = [ ytTLar®). (3.88)

However, there is another useful gauge, which defines the asymptotically Minkowskian
coordinate system. This gauge is often referred as the o-gauge and is defined by wy(o¥) =
+Aat. We will denote by a “~" the objects defined in this gauge, so that the stress-energy

tensor components are:
. . . 7 . .~ . -
Tex = —20:00sV + 501V + 030 + Tf, +ix(0®) (3.89)
Toe = —0,0.U — NV (3.90)
where we used 9,9V = 0. Then, the general solution is given by:

U = iy +i +eMet-o7) (3.91)

V = é(a*’—a“) (3.92)

where the functions iig(o%) are given by

ok " _ .
Ug = éux —f dy* {ei‘\y* /y dzteFr" [T;i:fi: + i-j:]} . (3.93)

Now, we have the general solutions expressed in two different gauges: the Kruskal
gauge and the o-gauge. The former is useful when we analyse the curves defined by the
apparent horizon and the curvature singularity. The o-gauge is useful when we compute
the Boudi mass for a specific matter stress-energy tensor. One such stress-energy tensor

describes the collapsing matter wave, and we will focus on this one in the next section.

3.4.2 Collapsing Matter

In this section, we will derive the solution for the collapsing matter stress-energy tensor

in both the Kruskal and the o-gauges. We first look at the Kruskal gauge and, as in the
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previous models. we will assime that all the matter fields f; are vanishing, except for one

of them, say fi. Then the matter stress-energy tensor has the usual form:

T£+ = md(at =) (3.04)

Ti_ = 0. (3.95)

When we substitute them in the general solutions, we obtain after integration in the

Kruskal gauge:

Y= = K\t - m(at — a0t — &)

A a s u I! |IU
at yt '
—/ jJ dytd="e, —-f ju «

ly~dz"1_- . (3.96)
Now, we have to integrate the functions tx(x%). When we discussed Hawking radiation
in a fixed background, we tried to derive these functions by requiring the quantum ex-
pectation values of the stress-energy tensor to vanish in the linear dilaton vacuum and
we had some problems as discussed earlier. For the present calculation, we will derive
these functions using the method developed in the RST model, i.e. by fixing the refer-
ence vacuum of the matter propagator to be Minkowskian. Since the addition of our new
counterterms did not change the Green’s function gz, we will obtain the same Ly (%) as
derived in the RST model. One may think that we should shift x — 7 since the ghosts
contribute a non-local term like Sy in (3.2) to the total action given in (3.17). So, we still
use (2.20) with P =1:

te(rt) = —= (3.97)

Then, we can integrate and (3.96) becomes:
T =7X = &~ A2pta - m{z* — 25 )0(z* — ) - % [—X‘r'*‘m‘] (3.98)
— rd — A [ ! D -l D 4 » . Fen
In the other hand, we will also need the solution in the asymptotically Minkowskian

coordinates {c*}. These coordinates, for the black hole spacetime, are related Lo Lhe

Kruskal coordinates by the transformations:

2t = hH{ot) = %e‘a" (3.99)
= =h~(c7)= —lxe"\”- - %n; . (3.100)
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Also, the functions tx(2z*) will transform according to equation (3.33), with A*(o®) de-

fined above. Using these transformations and the functions tx(2%) in Kruskal gauge, we

obtain:
. A2
l+(0+) = T("f - x) (3.101)
. A2 K
t(o7) = —|T=——"—7
"1 (l + %C'\a-)

The stress-energy lensor is also given by:

T4, = méle* - o) (3.102)
T/ =0

T'hus, performing the integrals in equation (3.93). we obtain the solutions:

7 = % 4 oMet=aT) _ ’_;1 (e.\(a+_a,;‘) _ 1) B(c* - o)
: SV S S
_% In [1 + %.\a ] L_ne--‘v + 21— 8) (o* = 07) (3.103)
vV = % (ot -07) . (3.104)

'M'he solution in terms of the Relds X and € are easily obtained from the definitions of the
fliclds &7 and V, which are similar to the definitions (3.75) of the fields U and V. Now, we

have to determine the Hawking evaporation rate of this black hole.

3.5 Bondi Mass of Evaporating Black Hole

In the present section, we will try to answer a very important question for the study of
Hawking evaporation: what is the mass of the black hole. We are mainly interested in the
evolution of the mass, which should decrease as the black hole evaporates. The method

used is explained in Appendix A and is known as the Bondi mass.

Since a large class of two-dimensional dilaton gravity can be expressed as a Liouville
theory by a proper field redefinition, even the classical theory of CGHS, we can derive a
general expression for all these theories. We first need the linearizations 674 and 67—

of the stress-energy tensor’s components, which are obtained from the variation of (3.89)
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and (3.90). Explicitly. we have:

(5.'[".*..!. = —'264.[.'.08.{..6‘.' - 264. 1-;]()4.61 f + ()_f_b(hf' (3. | (15)
§Tve = —0,0.607 = 23\ og1 (3.100)

The fields {7y and ¥, are the reference solutions around which we are making the lineariza-
tion. These reference fields are usually taken to be the solutions where there is no matter
in the spacetime, which defines the vacuum state for a particular set of coordinates. From
the derivation of equations (3.103) and (3.104). we see that the case where m = 0 leads

to the reference solutions:

A

1= By Mooy A - .
O = J+e + 30 ®) (o* - o7) (3.107)
Vo = g(a'*' - U‘) . (3.108)

We note that this vacuum solution, does not reduce to the linear dilaton vacuum when
we tranform back to the original fields p and ¢. This was the cause of the problems in
the computation of Hawking radiation in a fixed background. However, it reduces to the
LDV at the past timelike infinity :~, so that we can argue that it is closely related to the
LDV. To compute the Bondi mass of the black hole formed by the collapse of matter, we

use the definition (A.1) stated in Appendix A, and after inlegrating it, we obtain:
—_— 1 R -
M{o™) = 22eMet-r7)g7 4 o [;m — R)SV + au]

2 [046V — 0_6V] + 060 — 0480| . (3.109)
2 :{,*"
The linear variations 60 and 6V will be obtained by writing the solutions (3.103) and
(3.104) in the linear form:

0 = 00+50
V = V46V, (3.110)
which imply that we have:
7 = I (Met-od) _ +_oehy_k LGPt o
U = —A(e o 1)@(0’ o) 4ln[1+’\c ]
tA -

+ f;;e'A’ (3.111)
§V = 0. (3.112)



The Bondi mass (3.109) is then given by:

M(e™)=1m - ilh {ln [1 + %c‘\"_] + A—e_—gil_l—-_—*_*r—n-} . (3.113)
A similar expression for the Bondi mass was derived in {18] for a conformally invariant
maodel of two-dimensional dilaton gravity. This mass tends to the amplitude m of the
incoming matter at the past infinity (6~ — —c0). However, at the future infinity i* (the
limit ¢~ — oo}, the Bondi mass goes to large negative values (—oo). This is obviously
nonscense, because the black hole cannot Hawking radiate more energy than its initial
mass. This suggests that the vacuum is unstable; there is no stable ground state where
the black hole could stop its evaporation. This diverging mass is present in most two-
dimensional dilaton gravity models, but some models use new boundary conditions at
' = 0 to stabilize the vacuum [18]. This problem can also be seen by looking at the
Hawking radiation rate, defined as the variation of the Bondi mass with respect to o™,
e

dM(c™) A? l

We rcadily see that the radiation tends to a constant fux at the future infinity ¢~ — oo,

(3.114)

which means that the radiation never stops. This is a very important problem of these
Lwo-dimensional models, because this unending Hawking radiation occurs even when we
are taking the backreaction of the metric into account. Previous attempts to find the right
boundary condition on the singularity ' = 0 were also designél:;l to render a well-behaved
vacuum state lor the theory. It is also important to notice that the Hawking radiation
rate is proportional to x = N/12 and not to ¥ = (N — 24)/12, so that the black hole
does nol Hawking radiate ghosts as some computations of Hawking radiation in a fixed

background had shown for some early models.

Oa the other hand, for a proper choice of the parameters, we can now have a model
without singularity, and this property enables us to avoid the problem of the possible event
where the singularity becomes naked [5]. Thus in the generalized model we have developed
so far, there is no point where the evolution of the spacetime becomes non-unique and
where a cataclysm could happen. One would like io be able to modify the theory such
that the Hawking radiation is well-behaved for the whole lifetime of the black hole, i.e.
that it will stop somewhere, leaving either the vacuum or some sort of remnant. It could

also be interesting to look at the possible implications of this model on the problem of
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the information loss in black holes physics. Interesting proposals on this subject can be

‘ found in [26].



Conclusion

In this thesis, we studied black holes solutions of two-dimensional dilaton gravity models.
First, we saw in the CGHS [6] model that we can add quantum corrections to a classical
model and make it Hawking evaporate. In this model, the quantum correction is simply
the Polyakov anomaly term. We were able to compute the rate of Hawking radiation for a
fiducial observer in a semiclassical approximation where the metric is kept fixed. The flux
obtained has a good behavior in the far past, but tends to a constant in the far future. This
unphysical constant rate was claimed to be caused by the approxination stated above.
One would want to be able to include the dynamics of the metric in the computation of
Hawking radiation, but the one-loop corrected model is not solvable. So, one would like

to have a completely solvable model which will take care of the backreaction.

In the second chapter, we studied one solvable model: the RST model. In this model,
a new counterlerm has been added to the theory, making it solvable. Since the the-
ory is completely solvable, we can take the backreaction into account in the Hawking

evaporation. This model also has a curvature singularity defined by the equation

50
5= (3.115)

As the black hole evaporates, the apparent horizon recedes and the singularity will even-
tually become naked. A naked singularity is timelike and its evolution is not uniquely
determined. So, in order to overcome this uniqueness problem, some authors tried to
impose boundary conditions on the singularity, but nobody has found a satisfactory set
ol boundary conditions and research is still progressing on this subject [18, 26]. Another

solution to the naked singularity problem is to build a model without singularity.

In the last chapter, we attempted to build such a model. We modified the quantum
corrections to the classical model which gave what we called the generalized model action

(3.4). We imposed a simple current relation, which enabled us to transform the theory to
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a solvable Liouville theory. The imposition of the simple current puts constraints on the
parameters of the theory, which must satisly the particular relations (3.2:4) and (3.25).
We first tried to make a semiclassical computation of Hawking radiation, but it was not
possible to perform it in a simple way. Then. we computed it using the Bondi mass
method, but we obtained an unending Hawking radiation. This behavior is pathological
to two-dimensional dilaton gravity models, and remained present in our generalized model,

suggesting that the vacuum used in the dilaton gravity theorics is not stable.

The important feature of the generalized theory is that we can build a theory with-
out singularity by a proper choice of the parameters. Working with a theory without
singularity removes the problem of the boundary conditions on a naked singularity. It is
appealing that the quantum corrections to the classical CGHS model are able to remove
the classical singularity and one might hope that such a behavior would appear to be true
in higher dimensional black hole physics. This has to be checked, and there is no obvious
way how to generalize the procedure developed in this thesis for higher dimensions. In
higher dimensions, the dilaton field will not have a mass dimension of zero preventing us
to add terms proportional to ¢ to the power of n. Also, the anomaly term would certainly
be different from the simple Polyakov action arising from the matter path integral, since

we cannot perform this path integral in four dimensions.

Finally, let us note that all these models are solved classically, .¢. using the minimal
action principle 65 = 0 to derive the equations of motion. This procedure leads to a
deterministic solution which is opposite to the spirit of quantuin mechanics, In quantum
mechanics, we usually have a probabilistic evolution, which is absent from thesce two-
dimensional models of dilaton gravity. So, one would like to bring this property in the
models and one possible way to do it could be to use the influence functional method of

Feynman and Vernon [27]. This still has to be done for the models studied in the present

thesis.
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Appendix A

Bondi Mass

Il is often very usefu] to know the total energy (the mass) of a system when we are
dealing with General Relativity. Since the discovery of Hawking evaporation, this question
becones more important if one wants to be able to follow the evolution of the black hole
as it evaporates. Such a definition of the residual mass of 2 system is provided by the so-
called Bondi mass (see [25] and [28] for application to black holes physics.}. This appendix

presents a briel descriplion of this mass definition and we will compute a simple example.

A.1 Definition

First of all, the Bondi mass must be computed in an asymptotically Minkowskian coordi-
nate system {o%} because field theory is well understood in Minkowski spacetime. More
precisely, the concept of particles is well defined [16]. Also, the computation is taken
around a reference solution of the system for which we are computing the mass. Let us
define 67, as the first variation of the stress-energy tensor's components around some
reference solution, static or not. Then, the Bondi mass as measured at future null infinity

Ji is defined by [25):
T . T . .
M(o™) = f " dot 60 = _j " do* (6T s +6T4-) . (A.1)

This is a simple expression; all we have to compute is the first variation 6T;; of the stress-
energy tensor. From this definition, we can define in a natural way the Hawking radiation
as the rate of decay of the Bondi mass with respect to o=, i.e. 8,-M(c~). Now let us

compute a simple example.
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A.2 Classical CGHS Black Hole

We first have to look at the stress-energy tensor expressed in asymptotically Minkowskian

coordinates

1
rt o= :i:v’h"t. (A2

The stress-energy tensor’s components (1.10) and (1.11) transform according to equations

(3.30) and (3.29):

Tee = ¢ (.«mﬂat)ﬂb—za;gs) (A3)
T = ¢ (20406 — 10, 60-6 — N (A1)

. a . P . - . rp
where we redefined 9 = 3z, It is now simple to compute the lincar variations of Ty

§Tee = =267 (402500100 — 20360) 6¢
+ €72% (40 GoDx 6 + 48 podxb — 20°69) (A.5)
T = =27 (20,0_¢o — 104 600_dy — N2e) 5¢

+ 720 (20, 0_66 — 10,.800_¢y — 10460084 — 2N EH)  (AL6)

where fy and @o are the relerence solutions around which we lincarize and d¢ and bp
are the linear variations of the fields from these relerence solutions., The lirst part of
each equation vanishes because the reference solution must satisly the metric equation of
motion and constrainis Tub = 0. Now we have to select a reference solution. The obvious

choice here is the linear dilaton vacuum:

e = o720 o N2ty (A7)

However, in the o-coordinates (A.2) defined above, this turus out to

¢0 = —%/\(Cl'-l. —U_)

fo = 0. (A.8)

Thus, the variations are given by:

Tee = 2eM7*~07) (2\D.675 — 8364) (A.9)
6Ty = 2eM7" =770 (9,0_6¢ + A(D- — O,)86 — N*67) . (A.10)
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Substituting these results in the definition of the Bondi mass, we have:

JJ'T P Vat - - Mot bl P . .
M(o™) = ] do* 20, AN =7)8j 1 N0 (@, — 0.)84)|
= 2NN (A8 + D466 — D-69) | 7 - (A.11)

This is the result obtained by CGHS [6]. Note that this expression has to be evaluated at
the futere null infinity J3F, which is the limit &% — oo. The variations é¢ and 65 depend
on the particular solution we are looking at. For example, for the classical static black

hole solution:

y \ -
T % Mat=a7)
wg \: -
e = 14 i:\ie"\("h" ', (A.12)

the variations are derived from the equations

¢ = ¢+ 80 (A.13)

p = po+bp. (A.14)

Using the linear dilaton vacuum (reference solution) o and ¢g, we get:

56 5= M griorrr)

G (A.15)

Substituting this into the Bondi mass, we simply get the constant mass M(c™) = M.
This proves that the constant of integration of the solution (1.28), suggestively named

M, was in fact, the mass of this classical black hole.
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