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Abstract

ln t.his t.hcsis, wc st.udy t.oy mode!s of t.wo-dimensional gravity. We first review two known

models: t.he classical and quantum corrected CGHS models and the quantum corrected

mode! of RST. These t.wo models have black holes solutions with curvature singularities,

similar t.o the Schwarzschild black hole. This singularity becomes naked in the RST model

at. a cert.ain event dlll'ing the evaporation. In the third chapter, we build a more general

version with new quantum corrections beyond those presented in the RST mode!, which

enablc us t.o find a model without ctll'vatlll'e singularities. Wc will also see that these new

quantum corrections can affect the rate of Hawking radiation flowing from the black hole.
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Résumé

Dans cette thèse, nous étudions des modèles de gravit.,; dilat.onique bi·dinl,'nsionn"II".

Nous allons premièrement aborder deux modèles exist.ant.: les modèl"s dassiqu(' <'t '1u<ln·

t.ique de CGBS, ainsi que le modèle de RST. Ces deux Illodi-l"s possi,dcnt. d"s solut.ions d,'

t.ypes trous noirs ayant une singularité semblable it celle de 1<1 solution de Sdl\\·<lr~schild.

Dans le cas du modèle de RST, cette singularité évolue jusqu'il. être nue il uu l't'rt.<lin

événement lors de l'évaporation de Bawking. Dans le troisième chapit.re, nous const.l'II·

isons une version généralisée des corrections quantiques int.roduit.es précédeullllent., nous

permettant ainsi de construire un modèle ne contenant pas les siugularit.és rencoutrées

dans les modèles précédents. De plus, ces corrections quant.iques peuvent affecter le llux

de la radiation de Hawking émise pal' le trou noir.
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Introduction

TI", Ulliverse. The large seale world where mankilld is living has always been the subject

of 0111' admira.lioll fol' its mystcriolls beauty. liowever, Man always wants more than just

obscl·ViI.t.ioll alld has the desire ta llnderstand the laws driving our Universe. Many good

scÎelltists have spent their lives ta improve our understanding of the Universe. One of the

1I10St. f'1I11011S is surcly Sil' Isaac Newton. I-Ie was the first physicist ta give a good physical

allli matlwlIl1ltieal dflscriptiol1 of the force that rules the large scale world, gravity.

lIis work remained the Bible of physicists for more than two hundred years. Then,

Albert. Einstein came at the dawn of this century with his them'y of Special Relativity

(1 HOS) alld olle decade later with a modern them'y of gravity (19B), the General Relativity.

This beautiful them'y gives a different explanation of phenomena already described by

Ncwt.oll's laws, bnt it. also goes beyond that. It predicted new amazing phenomena such

as dcflec\,ion of light, gravitat.ional red-shi ft, gravitational lensing and, one of the most

famons, black hale. The latter will be the main subjed of this thesis, sa it is necessary

ta give a brier ontlook of its origin.

When a huge cloud of dust and particles collapses, it heats until nuclear reactions

st.art. in its core. The energy radiated away by these nuclear reactions stops the collapse

and wc obtain a stable star such our Sun. Arter the star has burned most of its nuclear

fuel, t.he collapse starts again and the future of the star depends on its mass. For stars

like the Sun, i.e. around one solar mass (M0 ), the stellar evolution model predicts that

t.he sIM will end its life as a white dwarf. For masses around 21'\1[0, the remnant will be a

neutron st.ar. In each of these two cases, it is the quantum Pauli exclusion principle that

stops t.he collapse, leaving a stable remnant that will cool down with time.

For bigger stars of masses above 3 or 4M0 , there are no known processes that can stop

the collapse, and the star will undergo complete gravitational collapse ta form a black

1
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hale. :\ black hol" is a n'l'Y slwclacllial' obj,'cl: 1",101\' a n'rlaill lilllil, cal!.'d 1Ill' horiZllIl .

nolhing can ('scap" Ih(' black hol,'. En'n li!\hl is Irapp,'d b,' Ih,' !!ral'ilaliollal tit'Id. 'l'his

is why lh"y ,u'e called black hol"s.

These stellar monsters I\'crc not presenl il' 1h,' !\nll'ilal ional 1h,'ory ,,1' Newlon: 1h,'y

are children of Einstein's G,'neral lll'1ativity. 'l'h,' tirsl apl"'arann,1 ,,1' black h,,!.'s as a

solution of Einstein's equalion was found by Schwarzschild in 1\)11; [:lJ ,lIld il d,'slTilll's

spherically symmetrir. non-rotaling and IInchar!\"d black h,,!.'s. N"I" I.hat Ih,' inlt'rpl'l'

tal.ion of this solution as black hale was not yl'!. undcrst""d IIntil a 1"'11' .\'l'ars lat,'r. Afl,'r

this first appearance in physicists' world, n"w typ" of black h"I,'s 11','1',' disl'llI"'I'l'd: axially

symmetric, rotating and charged.

As described above, ail black hales were thought. ta Ill' c"lllpl"t"ly black, 'lIId c"ln

pletell' invisible l'rom direcl observations. ln I!lï5, S. W. Hawking [;1] sit"l'1;,'d lit" wmld of

phl'sics when he showed that black hales arc not ('ntirell' black: titel' radia t" awal' ,'n,'r)!;)'.

This spectacular result was obtained bl' using the tools of the oth"r illlpOl'l,ant. brandI of

modern physics: quantum field theOl·Y. He proved bl' a senlidassical argnnll'nt that hlack

hales radiate energy when one includes quantum mechanical elrecls in the dasskal t,I\('ory

of General Relativity. Here, the ward semiclassical, Illeans thal. 11''' kecp il\(' sp'll·l'I.illl(~

fixed.

Usually, wc should expecl the black hale space-time ta he Illodified hl' the Ilawldng

evaporation since if it radiates away energy, its Illass should decrease. Ikcallse the space

time cmvatme is mass dependent, wc expeel tite spacctillle 1.0 he 1II0dified. Let. us poillt

out that as far as wc know, Ihere is no satisfaclory scenario l'or the end point of lIawking

radiation (for an hypothesis, sel' [5]). Physicisls hope Ihat a cOIllJllct.e theory of quantunl

gravity will eventually emerges and provide an answel' la this question.

Such a theOl'y would describe gravity in a complete quantum fOl'lnalism. UllfOl'lllllill,ciy,

wc do not have this theOl'y l'et.. Sa, hall' could we take backreact.ioll into accolllll:! Olle

approach is ta look for toy models in which we l'an compute backreaelioll ill an exad

solution. The use of these toy models will, we hope, help us ta understanu hall' to build

a quantum theOl'y in a realistic case.

1However, during the 18m century, Laplace studied heavy objecls frolll which Iig"l C11l1l1ot ""C11I":,
within the context of Newton's gravity [IJ. Sec also appelldix A of [2J .

2
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IJsllally these toy mode!s al'e formulated in 1 + 1 dimensions where quantum effeds

are ,,;,sier to understand. One such model was proposed in 1992 by C.G. Callan, S.B.

Giddinp,s, .LA. Harvey and A. Strominger (eGHS) [6] in which they used a string-inspired

action. Theil' 1II0de! has c1assica! black hole solutions and they have been able to include

'I"ant"lll corrections. A lot of work has been donc on this model and the related ones

(sc'C' for C'xample [ï. 8, 9, 10]) and there is surely more to be donc. Especiaily, there are

sonle nlOde!s like the one of .LG. Ilusso. L. Susskind and L. Thorlacius (RST) [8] that

can he solved exactly, including backreadion. This thesis is based on a model of this

forlll. These models add counterterms to the one-loop corrected CGHS mode! to make

it exactl)' solvable, but we will sel' that these new counterterms will affect the rate of

Hawking radiation.

Wc will first review the two-dimensional model of CGI-IS, because it forms the basis

of two·dimensional dilaton gravity models. In the second chapter, we will focus on the

1II0de! of IlST where a new counterterm is added to the quantum corrected CGHS mode!.

The next chapter is the main part of the thesis and is a generalization of the RST model,

which has strong effects on the rate of Hawking radiation and the creation of spacetime

singularities. Finally, we will conclude by emphasizing on the results of the generalized

1II0de!. Note that a short discussion of the Bondi mass for black hole's physics in two

dimensions is presented in appcndix A.

3
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Chapter 1

The CGHS Model

In this chapter wc will review the famous work of C.G. Callan, S.B. Giddings, .I.A. Harvey

and A. Strominger [6]. This model was developed for the study of black holes evaporill.ion

in two dimensions and it is kllown as a two-dimensional dilaton gravity theoryl. They nscd

a "classical" model containing black hole solutions and then they att.empted ta quant.i?e

it, taking advantage of the simplicity of the two-dimensional charaeter of t.he mode!.

The classical act.ion used by CGRS was already present in string theory as an ell'ect.ive

action describillg the radial modes of ext.remal dilatonic black holes in fonr or highm'

dimensions [6]. Apart l'rom the origin of the action, it has an int.eresting feat.me: it. is

renormalizable. This is a great advantage for this t.oy mode! because ilS far as We Imow,

ail the theories of fundamental interactions are renormalizable and it is conjectlll'ed that.

the quantum theory of gravity should also be renC'rmalizable. Sorne previous models of

quantum gravity were not renormalizable and it was shown that they faced serious f1aws.

This chapter will begin with the description of the classical solutions obtained l'mm the

classical action. In the following section, we will see how CG\-lS included sonle '1uant,unl

e{[ects in the theory, enabling them to describe Rawking radiation in a fixed background.

lTwo-dimensional models are not recent in gravity physics and have been studied even hefore the
discovery of Hawking [11]. Since Hawkiùg's paper, a lot of work has been donc on the evaporution of
four-dimensional spherical1y symmetric black holes, which arc cffectively described by the two-dimensional
metric of the r - t coordinates. See for example, the work of Unruh [12J and llajicek [la] and references
therein .

4



• 1.1 Classical Solutions

ln t.his section, wc will look at. t.he classical solutions de.;ved l'rom the classical action

st.udied by CG/-ISo We will focus our at.t.ention on t.he solutions describing black holes,

i.e. solut.ions wit.h an event. horizon and a physical singular::y. Such solut.ions are similar

t.o t.he radial part. of the four-dimensional Schwarzschild black hole. The classical action

describes dilaton gravity coupied 1.0 N massless scalar fields:

(1.1)

ln t.his equation, g, r/> and Ji represent the metric, dilaton and matter fields respectively.

'J'he constant ,\ is part of a dilaton dependent cosmological constant e-24> ,\2. As it is

comlllon in classical physics, the equations of motion for the various fields will be derived

fl'Om the minimum action principle, which means that SB = O. The coefficients of Sr/> will

give the equation of motion for the dilatonic field and similarly for the matter fields Ji.
The terms proportional to Sgab, the variation of the metric, will give us a set (three) of

equations of motion for the metric. By functional di!ferentiation, we obtain the covariant

equations of motion of the dilaton and the matter fields:

21l' SB
=

-/-g Sr/>
21l' SB-----/-g SJ;

(1.2)

(1.3)

•

and the metric covariant equations of motion (stress-energy tensor) are

'rab = J:g :a~b = ~gab {e-2
4> [R +4(~r/»2 +4,\2] - ~ ~(~J;)2}

+e-24> { -2~a ~br/> - gabgcd (48cr/>8dr/> - 28c.8dr/» - Rab}

1 N
+? L~aJi~bfi= O. (1.4)

- i=l

Covariance means that tensors transform according 1.0 simple rules under coordinate trans

formations (dilfeomorphisms) [3].

Now, we would like 1.0 remove di!feomorphism invariance by imposing a l'articulaI'

form 1.0 the metric. However, this will not take l'id of ail coordinates invariance since

a residual freedom will remain in the theory (see discussion before (1.19) below). It is

5
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common, and uscfuL in this simple modcl to work with the conformal gauge in which tlll'

two-dimensional metric takes the form:

( Ui)

where the null coordinates are defined by :r± = (:1'" ± .1'1). \Vith this choin' of tht' mt·tric.

we have for the metric-rclated objects:

R+_ = -28+8_p R = 8e-2"8+8_(I ( 1.(;)

('V <1>l = -4e-2P 8+<I>8_1> (U)

r~± = 28±p ( 1.8)

'V2<1> - -4e-2P8+8_<I> ( 1.\))

where all other components of the Christoffel's symbol and the Ricci tensor are vanishing.

Now all the information about the spacetime is encoded in the conformai field p. From

the three metric equ;).tions, it turns out that one of them is the equation of motion ('1+_)

and the two others are constraints (T±±). The latter are called contl'aints since they

are obtained l'rom the functional differentiation of the action with respect to mel.l'Îc's

components which are set to zero in 1.5. The components of T,.b are:

_ ,,-2<1> (28+8_</> - 48+</>8_<1> - ,\2e2") = 0

1 N
- e-2

<1> (48±p8±<I> - 28l1» + ? L 8±f;a±Ji = 0 ,
- Î=l

while the dilaton and matter equations of motion will be respectively given by:

e-2
<1> (-'18+8_</> +'18+ </>â_</> +28+8_p + ,X2e2P) _ 0

Ô+Ô-Ji - 0

( l.LO)

( I.lt)

(1.12)

(1.13)

•

for all i. Let us notice that we have N + 2 functions to solve, i.e. Ji, </> and p, and have

N +4 equations for them. However, these equations are not all indepelldent by virtul'e of

conservation of the stress-energy tensor 'V'T,b = 0, which is a reflection of the coval'Îallce

of the theory. This system of N +4 differential equations has a current equation that will

he reaHy helpful all along this work. This current is given by adding T+_ to the dilatolJ

equation of motion:

(1.14)

6



(1.16)

(1.17)

•
This ',na1>les 115 to write down a simple relation between p and cjJ:

(1.15)

where w±(;,,±) are called gauge functions for l'casons that will become clear in a moment.

i\ general solution of the equations of motion (1.10) and (1.12) is given by:

e-2~ = u+ +u_ _ ,X2 Jé dy+ew+Jr- dy-eW
-

e- 2p = e-(w++w-l [u+ +u_ _ ,X2 Jr+ dy+ew+Jr- dy-eW -]

Now, wc have to 50lve for the l'l'ce fields u± and w±. We can solve for u± by substituting

our solution for </J and p in the two eonstraints T±± = O. This procedure gives us a solution

in term of w±:

(1.18)

where l'vI is an integration constant. And what about w±? None of our equations of

motion can make it explicit. However, the choice of the conformai gauge that wc made

bcfore leaves a subgroup of diffeomorphism unfixed. This can be seen if we look at a

coordinate transformation {x±} --+ {cr±} of the form:

The metric will transform as a tensor by the rule:

- Aa Ab9a'b' = a' b'9ab

(1.19)

(1.20)

where the transformation factor is given by Aab = ~ with a, b taking values ±. For the

conformai metrie, wc obtain:

•

Y±± - 0

Y+_ = -~aa+h+âa-h-e2P

1 2-= --e P
2

where wc defined a new conformai field p:

7

(1.21 )

(1.22)



• Thus, one sees that we recover a conformaI metric by a coorciinate transformation dt"

scribed by h±(a±) which means that there is a subgroup of dilfeomorphism that presern'S

the conformai gauge. From the simple curreut equat.ion, we l'an rdat.e the funl'l.ions h±

t.o the gauge funct.ions w±. If one starts with a system where "'± = O. so tha! l' = d, and

makes a coordinat.e transformation to anot.her syst.em of roordillates {a±}. Wt' will hal'l'

the relation

p=<i>+~lll[aq+h+a"_h-l·

Thus, from the simple CUITent relation (1.15) we can write:

(I.:m

In other words, a particulaI' choice for the gauge fuuctions w± is simply a choic.c of t.he

set of coordinates we will use. Thus, we will choose the simplest. expression for the gauge

functions, namely:

(1.25)

•

which is called the Kruskal gauge. This choice simplifies the solutions and wc obtain:

e-2<i> = e-2p = ~ _ ,\2X +X -

- ~ [x+ r+ dy+~ 8+Ji8+Ji +x- r- dll-~ 8_Ji8-Ji] . (1.26)

Wc still have to solve for the matter fields Ji, but the matter equation of lllotiOIl (1.13)

can easily he integrated out to yield the general solution:

and the special solutions will depend on the matter distribution we want to study. This

completes the derivation of the general solution of the classical action (1.1).

Now we will look at sorne special cases of the general solution (1.26). We first look at

the system where there are no matter fields: Ji = 0 for ail i. Thus, the solution (1.26)

becomes:
Me-2</> = e-2p = - - ,\2 X +X - • (1.28)
,\

The case M =0 is simply the linear dilaton vacuum as it appears in higher.dimensional

dilaton gravity. It has this name because this vacuum state is a linear function of the

coordinates, in the Minkowskian vacuum (<p = ~(a- - a+)) as we will see later on. When

8
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th" constant M is dirr"rent than zero, wc have a black hole or mass M. The solution is

silllilar 10 tlu' ,. - 1 plane of the (static) Schwarzschild black hole. even if the metric does

1101. I",v" "xact.Jy the same fOITII. Here the line "'ement is written as:

(1.29)

This spacet.ime has a physical singularity (i.e. R -> 00) at ,\2X +X - = M/>'.

ln order t.o weil underst.and t.he geomet.ry of this spacetime, wc can construct its

l'emose (conformai) diagram. A Penrose diagram enables us to describe the infinite

spacet.illle wit.hin a diagram of finite dimensions. This is done by performing the following

COli formai t.ransformation of the coordinates:

whcl'c
ii ± 7i--<q <-.
2 2

(1.30)

(1.31 )

Accordillg t.o (1.22), the conformai factor of the cIassical black hole (1.28) becomes:

(1.32)

The Pemose diagram constructed l'rom this metric is depicted in figure 1.1. The points

iU corresponds to the spatial infinity where x -> ±oo at time 1= O. The two other points

i- and i+ are the past and future timelike infinities, respectively, for x = O. The four

lines (called mtll infinities) :Jff,L represents the regions at infinity joining the four points

described above. The physical singularities are obtained l'rom the Ricci scalar

R = 8e-2P8v+8v-p

= 4 cos q+ cos q- [cos(q+ +q-) +sin(q+ +q-) tan(q+ +q-)] (1.33)

•
which diverges for q+ +q- = ±~. We readily see that this Penrose diagram is identical to

the diagram of the extended Schwarzschild spacetime, built l'rom the weil known metrie

[:lI:

(1.34)

9
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singularity

iO

singularity

Figure 1.1: Penrose diagram of the extended Schwarzschild black hole.

This shows that the classical black hole described by (1.28) has the same causal structure

as the rot part of the four-dimensional Schwarzschild metric.

The fact that the constant M is the mass of the black hole is not obvious a pl'iol'i,

but it can be seen by a computation of the Bondi mass, as done in Appendix A. So,

we have obtained a solution describing a static and uncharged black hole in vacuum.

Apart from this solution, we could imagine a solution describing the collapse of matter,

creating a black hole. One possible choice for '''ch a collapsing configuration is given by

the stress-energy tensor:

(1.35)

which represents an infalling shock wave with amplitude m. This sLress·energy Lensor can

be obtained from the singular limit of a gaussian wavepacket. By inserting these relaLions

in the equations for the functions u± in Kruskal gauge, we perform the inLegral and wc

obtain the solution for a collapsing matter wave:

(1.36)

•
This spacetime is depicted in figure 1.2.

For x+ < Xd this solution represents the linear dilaton vacuum discussed above. So,

10



dngularity

Figure 1.2: Penrose diagram of infalling matter creating a classical black hole.

observers in this region of spacetime do not see any black hole. For x+ > Xd, we can

shift x- by m/,\2 and we obtain a c1assical black hole of mass mxt>., by comparison with

the solution (1.28). Again the mass can be computed with the Bondi mass method (see

Appendix A).

In this section, we have only solved classical equationsj there was no quantum effects

on our system. We can conjecture that the inclusion of such effects in the theory would

make the black hole emit energy, according to the famous conclusion of S.W. Hawking:

black holes evaporate [4]. We will see in the next section how to take sorne quantum

effects into account in this model.

1.2 One-Loop Corrections

ln this section, we will show how to include quantum effects in the classical theory pre

sented in the previous section. Obviously, our goal is to study Hawking radiation ema

nating from black holes. In quanttiin mechanics, there are two principal formalisms for

the quantization of a system: the canonical and the path integral formalism. The latter

is today's most popular and most efficient method in field theory and we will use it for

11



• the quantization of the mode! of dilaton-gravity coupled 10 mal ter (l.I) .

Following the usual procedure of pa th integral. w,' will look at th,' functioual int")':ral:

z =JD(g. o. f, ).,;.,,,+i8.\1 (1.:li)

where Sa is the <lilaton gravity action and SM is the Inatter action. hot.h in (\.\). and

V(g. eiJ. fi) l'l'presents t.he measures for t.he metric. dilat.on and matter Iields. It <"<III Il<'

found in the literature how t.o integrat.e the mat.t.er functional integral al Iirst. onler iu t.11l'

1001' expansion [14}, and it gives the familial' Polyakov-Liouville action:

( I.:I~)

(1.:1\))

with

1J"r-: 1
SPL = -;- d-xV-gR".,R

~7l" \' -

where we defined l' = N/12 and x = x:!:. The Green's function ~, = C(,,',y) of the

d'Alembertian satisfies \7;G(x,y) = é2(x - Y), Thus, our system is now dcscrihed by the

path integral:

(\ .'10)

•

and then we have to solve the equations of motion fol' this one-loop corrected action. Let

us note something about the matter functional integral. The integration leading 1.0 the

Polyakov-Liouville action is, in some sense, arbitrary. This means that the functional

integral over the matter fields fi pennits the addition of local, covariant conntel'tel'lns

to S'PL. ln this chaptel', we will not add such arbitrary terms and we will only kcep the

Polyakov-Liouville action. However, in the next chapters, we will sec how the addition

of such counterterms will modify the theory and how we ean make a solvable qU1Lutunl

cOl'l'ected theory.

We do not want to solve the full quantum theory, which is beyond the seope of this

thesis. We only want to solve the semi-classical system, using the minimum action prin

ciple, as done in the classical case. We will also work in the large N Iimit, where the

contributions from the ghosts, dilaton and conformai measlll'e to the effective action arc

negligible. This requircment will hoId for the CGI·IS model, but it will not be used in the

discussion of the generalized model in the third chapter of this thesis. So, we can derive

the stress-energy tensor's components Tub from the effective action S = Sa +l'SI'I, and wc

12



obtaill:

wlwre

T. - TCGIIS - ::TClU1\nt - 0
(lb - ab ,1 . ab -

4gabf/dOcÔriPO + 4r~bÔcpO - 4ÔaÔbPU - 2gabpoR +4poRab

+ 2gabgcriÔcPOÔdPO - 4Ô"POÔbPO .

(lAI)

(lA2)

III tilis strcss-cnergy tcnsor, the conformai field Po cornes from the application of the

Green 's function ~2 on the Ricci scalar R:

~2R = Jd2y G(x,y) R(y) = -2po. (1.43)

We arc denoting the conformai field arising from the Green's function differently because

wc couic! want to use a different reference vacuum for the propagator of the massless

scalar field and then relate it to p by a coordinate tl·ansformation2 • On the otber band,

t.he dilat.oll equation of motion (1.12) remains unchanged by the addition of quantum

cOI'I'Celiotls, sincc (1.39) is dilaton independent. Thus, we now have a quantum correction

t.o t.he stl'css-encrgy t.ensOl', whose components are:

TlJunnt =±±

Tqurmt
+-

SÔ±PÔ±Po - 4ô±Poô±Po- 48lpo

= 48+8_po.

(1.44)

(1.45)

Wc can relate the conformai field Po to the field p by a relation po - P+ va where

Vu = Vu(:l:+, x-) is an arbitrary fUl1ction. We can constrain the form of the function va by

applying the operatOl' \7; on the left-hand side of equation (1,43):

(1.46)

where wc used \7;G(x,y) =82(x - y). For the right-hand side, we have:

Thus, the cquality will hold if \7;'00 =a i.e. if va = ~(v+(x+) +v_(x-)}, yielding:

po =P+i (v+(x+) +v_(x-)) .

(1.47)

(l.4S)

:!l~or the CGHS model, we will take Po =P, sa that the vacuum of the propagator is defined using the
present coordinates where g+_ =- te:!p. However, this equality will not hold in the next chapter where
wc study the RST mode!.

13



•
In this case, the quantum stress-energy tensor's components will he gi\'en by

T~±fillt = -4 (8~1' - 8±p8±p) - ~I±(:I'±)

T~~mt = 48+8_1'

where we defined

(l.·I!!)

(1.50)

( 1.51 )

Thus we sel' that a complete quantum stress-energy t.ensor must. indude t.he fnndions

t±(x±). These functions are related to the zero-modes amhiguity of the Green's funct.ion

G(x, y) = ~2 as it can he seen in the following derivation [15]. Let. us look at. the

eigenfunctions of the d'Alemhertian \72:

\7;Wi(:C) = '\iWi(X) (1.52)

where Ài is the eigenvalue corresponding to the eigenfunct.ion Wi(":) and '" = ,,:±. Wc can

use these eigenfunct.ions as a hasis fol' funct.ion, say ·.p(x), so that we can decompose t.hem

on this hasis:

1/J(x) =L aiwi(.T) .
i

These eigenfunctions also satisfy an orthogonality relation:

( 1.5:1)

(1.54 )

One would like to write the Green's funct.ion G(x,y) in t.he hasis {Wi}, l.l!. we must

determine the constants ai for this funct.ion. We will show that the correct. decomposition

fol' the Green's function would he:

1
G(x,y) =~ ÀiWi(x)Wi(y). (1.55 )

To check this expression, we will use the definition of the Green's funct.ion \7;G(:c, y) =
82 ( X - y) and the integral of the Dirac delta function:

•
Using (1.52) and (1.55) we obtain:

\7;G(x,y) =LWi(X)Wi(y)
i
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•
and w,' have ta check if il. is equal ta the Dirac delta-function 82(x - y). In fact, we can

show that the lUIS of (1.57) behaves like a Dirac delta function:

Jd2YLw;(x)w;(Y)L(lk'''dY) = L (lkW i(X)8;k
i k i,k

= L (l;w;(:r)

= ,p(.T)

(1.5S)

•

wlwre we used the orthogonality relation (1.54). Thus, we see that the decomposition

(1.55) is ilppl'Opriatc for the Green 's function G(x, y). On the other hand, this decom

position of the Green's function is obviously undetermined for the zero mode >'i = O.

For these modes, wc have V';wo(a:) = 0 which has the same form as the condition on

t.he function 1I0(X) that generat.ed the functions t±(.T±) discussed above. This establishes

the relat.ion between the zel'O modes ambiguity of the Green 's function and the functions

I.±(:r±).

The explicit form of these funetions will be determined in the next section, where wc

cOlllpute I-Iawking radiation in a fixed background. In the next chapter, wc will sec another

way of detel"lnining these functions, which is more convenient in sorne generalizations

beyond t.he CGnS mode!. In the third chapter, we will see that the two methods used

leacl \,0 dirferent I-Iawking radiation rates and wc will discuss this discrepancy.

Now, wc have a semiclassical theory of two-dimensional gravity which has black hole

solutions. As shown by S.W. Hawking [4], including quantum corrections in a classical

black hole solution will force the black hole to evapontte. In the next section, we perform

a first computation of Hawking radiation in a classically fixed background.

1.3 Hawking Radiation in a Fixed Background

Now we will make a first calculation of Hawking radiation. The following calculation

does not include the backreaction elfect on the spacetime caused by the decreasing of

the mass of the evaporating black hole. The computation will be done for the collapsing

matter wave solution (1.36), which will be our fixed spacetime. Of course, this method of

computation is only an approximation because in reality the spacetime will be modified

during the evaporation, as a consequence of the decrease of black hole's mass. Anyway,
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•
il is "l'l'Y instructive 1.0 sel' SOUlt' qualitat i\'l' f,'at UI't.'S of 1h., lIawkin).\ r'Illiat ion for 1his

syslem,

13efore going into direct. computation, W(' willp,'rfol'nl a c')(ll'tlinal., l.ransforlllation on

the metrir (1,;W), The new coordinat(' s~'sl"111 will ot't.'n 1", l't'f"I'I','d 10 as asynlptol ieall~'

lVlinkowskian, because il is a manifest1y Minkowski liaI spact'! inl" "l'al." fronl 1h,' ol'i).\in

(asymptotir region) and will be much 11101'" nalma1 fol' t.h,' d,'sniplion of 1h,' black hol,'

evaporat.ion, \Ve use it becalls(' in Minkowskian ('oordina"'s, thl' notion of parI icl,'s is

weil defined in field theory, while il. is nol, the casl' in a g,'nl'ral cun'l't! spac<'lin\l', wh"I'"

curvature l'an "create" particles, leading 1.0 a problelll in the t!t'iinition of partiel,'s [IliJ,

The coordinate transformation {",:I:) ..... {a:l:}, fol' (1.;16) with "'+ > ,l't, is dt'iillt'd as:

and

'1'+ = .!.",'u+
, ,\ '

( Ui!))

(l.!ill)

( !.li! )

Fol' the region below the infallline, the line e\ement. in a-coordinat.l's is lIat. Minkowskian:

1
ds 2 = --da+da-

2

and il, is asympt.otically nat. on :lit, i,e. in the lilllit 0'+ ..... +00. This laU.'r linlit.

corresponds to the limit. :1'+ ..... +00 in the x-coonlinat.es. Not.e t.hat. t.his Ctlordinat.e

system describes the spacetime only above the c1assical l'vent. horizon ,,;- = ,~;. Acconling

to equation (1.22) and following, the conformai field does not transfol'ln as a scalar. 'l'hns,

using the transformations (1.59) and (1.60), the spacetil1le (1.:J6) fol' the collapsing nlatl.,'r

wiII now be written as:

fol' 0'+ < 0'.1'

fol' 0'+ > 0'.1'
( l.li2)

and the components of the quantum stress-energy tensor become simply:

T-quant
:1::1:

T"'qunnt.
+-

= 4[o:l:po±p - o~pl- ~[:I:(a:l:)
K.

= o+o_P

(1.!i:J )

(I.(H)

•
where 0:1: now l'l'presents a derivative with respect to 0':1: and [:1:(0':1:) is defincd in tel'lns

of t:l:(x:l:) by:

(1.65)
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• for IJOth regiow; :,.+ < :,.~ and .r+ > '''ci .

Becallse this fixed spaœtime satisfies the e1assical equations of motion, so that T3GHS =
0, 1.11" qlIantlIm expectatioll value of the stress-energy tensor's components will only be

the qlIantlIllI corrections:

(1' ) = _::'l--"QUlllll
{lb 4 (lb (1.66)

We still have 1.0 find the correct expression for the functions i±. For this, we apply

bOlIndary conditions on t.he quantum expectation values, and the most natural one in

t.his case, is t.o require t.hat. t.he quantum expectations values vanish in the linear dilaton

vacuum, which is present at 0'+ < O'ci. As a result of this condition, the complete equation

of mot.ion i~C;,G"S - ~T,:~""t = 0 will be satisfied. This requirement ((T.b) = 0) forces the

functions i±(:r±) t.o be:

(1.67)

(1.68)

•

This complet.es t.he expression for t.he st.ress-energy t.ensor in the spacetime. Now let us

emluat.e t.his solut.ion at. t.he fut.tIl'e null infinity :ft, far from the black hole, i.e. in the

limit 0'+ -> 00. In t.his limit wc l'ecover a Minkowski metric since p -> 0, leaving vanishing

values for ('1++) and ('(i--). but:

(T__ ) -> ,,~2 [1 _(1+ ~ e.la - t2]

t.hus, far observers will detect energy coming from the black hole. This represents a

flux of J-matt.er partieles reaching the future null infinity :ft and it is interpreted as

Hawking radiation flowing l'rom an evaporating black hole, since (T.b)LDV = 0 . There

MC some interesting feattll'es about this radiation. First of ail, it tends 1.0 zero at the

spacelikc inl1nity iO (0'- -> -00). This result corresponds ta the intuitive fact that there

is no Hawking radiation when observers are unaware of the formation of a black hale.

llowever, it. is not sUl'prising t.hat at the future timelike infinity i+, Hawking radiation

does Ilot st.op. This is a consequence of the use of a fixed background; because the

black hale geomet.ry does not change, its mass remains the same and it can evaporate

forever. This non-stopping radiation has a constant flux that asymptotically (0'- -> 00)

t.ends t.o ~~2, which is curiously mass-independent. This is a characteristic feature of two

dimensional gravity [6], while in four dimensions it is mass-dependent [4J. Moreover, this
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•

unending flux is unreasonable since as radiation is flowing out, the mass should dl'rreasl'

and reach an endpoint where radiation will stop. So, because this comput,ation is somehow

incomplete, we would like to compute Hawking radiation by incIuding th,· baàrl'ad.ion

on the geometry. This might be done by a computation or the Bondi mass (Sl'l' t\ppendix

A) for the one·loop corrected solutions. llnrortunately, it eannot be done l'xaetly roI'

this model because the quantum corrected equations or motions are not exact!y solmble.

We wiII sel' in the next chapters how to modify the theOl'Y so tl' .•t we obt,ain il sol\'ablt·

quantum corrected theory.
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Chapter 2

The RST Model

ln this chapter we will examine an interesting variation of the CGHS mode!, studied in

the previous chapter. The work presented here was done by J.G. Russo, L. Susskind

and L. Thodacius (RST) [8J and was an attempt to make the semiclassical CGHS theory

exadly solvable at the one-loop leve!. They have essentially added a new local, covariant

countet·term and made a field redefinition, which leads to a solvable Liouville theOl·Y. It is

not the only solvable model obtained from a variation of the CGHS mode!. A. BilaI and

C. Callan [71 studied one of these CGHS inspired mode!. They essentially modified the

cosll1ological constant to make the model solvable. The RST model has the advantage

of having exact classical solutions, but, as we will see, the new fields do not span the

whole l'l'al mds giving rise to a spacetime singularity. We will first see how they modified

the CGHS one-Ioop corrected model by adding another counterterm. In the next section,

we will solve the semiclassical equations using a fields redefinition. At the end, we will

consider some features of the solutions.

2.1 New Counterterm

The important point of this section, is that the matter path integral (1.39) may be changed

by the addition of local covariant counterterms since, in the functional integration, the

measure is ill-c1efined and can be modified by such counterterms. The addition of these
::-J

new counterterms may have strong effects on the theory. For example, in the present

chapter, the added counterterm will produce a solvable semiclassical theory as we will

see. Russo et al. investigatcd the modified action S =So +SI +S2 where So is the CGHS
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(2.1 )•
action and

, , h'JI" ~Rl.':i\ = ".':iPL = --, (""'V-9""U
~ii Vi"

is the Polyakov-Liouville action derived in the CGI·IS model, wit.h " = ~. The last. t."I'111

(2.2)

is the new local countert.erm they added to t.he t.heOl·Y. Again. we will lise t.he co11[Ol'll1al

gauge (1.5) in which the action t.akes t.he [orm:

c; 1 JI" { _0",( Jô fJ l"" ô' ," "l') 1~ a r') J' = - ("x e " :. + _p -. (J+tP -tP + ,,"c" +:) L.. +. iL i
Ti - ;=1

- ,,(fJ+pfJ_p +</>ô+fJ_p)} . (2.:1)

As before, we use the minimum action principle to derive t.he equations o[ 1110t,ion for the

metric, matter and dilaton fields. This procedure is correct. for a scmiclassical I.heOl'y,

which might differ from the full quantum theOl·Y. These equal.ions will essent.ially be

the same as in the previous chapter, apart [rom some extm tel'lUS coming fl'0111 the new

counterterm. We obtain for the stress-energy tensor's components:

Tb = T(O) - ~ (T(1) +T(2)) = 0
a ab 4 ab ub

where Td~> = Ta1GHS is given by (1.4) and:

Td:> = -2gabpR - 4fJaôbP +4r~bfJcp +4g"bgc<lÔcÔ,IP

+4pRab+2gabgc<lÔcPÔ<lP - ·18aPôbP

Td~) = gab</>R +2fJafJb</> - 2r~bÔc</> - 2gabÔcÔ<l</> - 2</>R"b .

(2.<1 )

(2.5)

Note that everything is expressed in terms of the conformai field P and there is 110 Pu.

The contributions of the latter are incorporated in the functiolls l±(:c±), which are part of

T±±, and remaill to be determilled (see discussion following equatioll (1.45)). Explicit1y,

we obtain one equation of motion and two constraints for the metric:

•
T±± = (e-2

4> +~) (4ô±pô±tP - 2ô~tP) +~ ~Ô±f;fJ±Ji

+K (fJ~P - ô±p8±p) + l±(x±)

T+_ _ e-24> (28+fJ_tP - 48+tPô_tP - A2e2P
)

K,+ 2' (ô+ô_tP - 28+ô_p)
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•
Of course, the N matter equations of motion survive in the same form:

(2.7)

Finally, t.he dilaton equatiou of motion is modified ta:

Ali t.hese equations of motion and constraints contain the one-loop corrections and so,

t.hey have evaporat.ing black hole solut.ions. The addition of the counterterm in the one

loop corrected action has the advantage of restoring the classical current ô+ô_(p- r/J) = 0

at the one loop-level as can be seen by adding the dilaton equation of motion ta T+_ = O.

This clII'!'ent was essential for the solvability of the classica! CGHS theory and it was

destroyed in the one-Ioop corrected CGHS model [6J. It has been shawn recently by Y.

Kazama el <I/. that this condition is essential for the solvability of two-dimensional dilaton

1lI0dels [171. We will see later that this characteristic great!y simplifies the solutions of

the RST mode!.

2.2 Liouville-Like Theory

Now we wau!, ta solve the equations of motion derived in the previous section. ln their

given form, the solutions are not obvions. If we make a field redefinition, we can transform

to a simpler solvable theory. So, let us define [8]:

n 1 1 2~- -r/J + -e-2 ,.

X 1 1 2~ (2.9)= p - -r/J + -e- .2 ,.

These definitions change the action ta a Liouville-like action:

•

s = !.Jd2x {,. [-ô+xô_x +ô+nô_n + ,.\2e2(X-nl ] +!.f ô+fiô-fi}
1r 2 i=1

Applyillg the transformations (2.9) ta the stress-energy tensor (2.6), we obtain:

TH = ,. [-ô±Xô±X +ô±nô±n +ôlx]
1 N

+ ? "'5:. ô±M±fi +t±(x±) = 0
- i=l

T+_ = -,.ô+ô_X - ,.\2e2(X-nl = 0
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• and the simple current equation may be written as:

(2.la)

This theOl'y can be solved exactly. We will derive the general solution of t.he Lionl'ille

theory in the next chapter where we will look at a more generalmodcl of dilaton gril,·ity.

For now, we want to point out that the new field n does not. range over the whol" l'cal

values as we might expectj the function n(,p) has a minimulll at il critical value ,p = ,p'''';1

and this point turns out ta be a spilcetime singularity.

2.2.1 Curvature singularity

The fact that the field n is bound from below gives rise ta a curvature singularity. This

can be seen by looking at the Ricci scalar (R) of gab:

in the conformaI metric. From the definitions of the Liouville fields, the Laplacian of the

conformaI field p in the Ricci scalar may be rewritten as:

(2.15)

(2.1 (i)

•

where the prime (') denotes a derivative with respect to the field,p. A curvature singnlarity

will arise at fl' -> 0, i.e. when

,p = ,peril = -~ ln [~] .

This critical value of the dilaton field will define a curve in spacetime, whose c111Lracterist.ic

will depend on the particular solution we want. to investigat.e. We will have ta he vel'y

careful when the dilaton field reaches the critical value on acconnt of the faet that the

solutions will not be properly defined on this curve, since the Ricci scalar blows np. One

usually wants to impose boundary conditions on the fields on this crit.ical cnrve to get a

weil behaved theory. Many authors attempted to find the right boundary conditions and

it is beyond the scope of this thesis to go into the details of such problems. Wc refer the

reader to [8, 18] and references therein for such an analysis.

We will see in the next chapter how we can remove this singularity, by taking advantage

of the addition of new counterterms. For now, we will look at sorne solutions of the
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"quations of motions. There arc two main types of solutions: etcrna! and evaporating

black holes. The difference between the two types cornes l'rom the different choiees of

the f"nctions t:!:(x:!:J, which correspond to different choices of reference vacuum for the

matter propagator. For etemal black hole, these functions are set to zero, while for the

evaporating black holes they arc non-vanishing.

2.3 Evaporating black hole

Since the Liouville theOl'y obtained is classically solvable, we can now analyze the different

solutions. Before solving for the fields, we must find the right expressions for the functions

t:!:(:r,:!: J, which arise l'rom the zero-modes ambiguity of the Green's funetion ~2 (see chapter

1). In the previous chapter, IVe determined these functions by requiring the quantum

expectation values of the stress-energy tensor to vanish in the linear dilaton vacuum. In

the present chapter, we will use a different method, which, in faet, yields the same results.

We will define the vacuum of the Green 's funetion ~2 in the Minkowskian coordinates

{o-:!:} and then transform to the {x:!:} coordinates system. We use the stress-energy

tensor (1.45) derived l'rom the Liouville-Polyakov action, which depends on both po and

fi. Wc alrendy know that the conformaI field does not transform as a scalar, but rather

transforllls according to equation (1.23):

(2.17)

This tmusformation has the same form as (1.48) if we substitute v:!:(:r:!:) -+ w:!:(x:!:).

This now makes a relation between the quantum funetions t:!:(x:!:) and the coordinate

transformation which is, l'rom (1.51):

(2.18)

Now, we must determine the functions w:!:(x:!:) which correspond to a transformation

to lVlinkowskian vacuum. We already know the correct form l'rom the computation of

Hawking radiation in a fixed background:

•
w:!:(x:!:) =QIn [±'\x:!:] ,

where Q is a constant, and it yields to the functions t:!:(x:!:):

" p
t:!:(x:!:) =-4" (X:!:)2
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• with the redefinition P = Q(Q - 2). The constant P labels dilf('I'<'nt ~Iinkowskian \'a('l1<1

with li ne element gi\'en by:

(2.2\ )

\Ve can solve the equations of motion with thes(' flludions ln the st.atic va ('II Il III ,'as('

Tf± = 0, we obtain the following solut.ion. in the Kruskal gauge. fol' aSYlllptnti('ally liai

spacetime:

" + P [ ., + 1 M"fi = "x = -,\-:1' x- - Th' ln -,\-.1' :1'- + T (2.22)

where the constant 1'1 labels dilferent solutions. The solution fol' P = 0 is eall<'d ""el'llal

black hole solution because its mass would not decrease when il. evolves. This lIIight seenl

surprising since we are induding quantulll elfeets in these solutions and we wOllld ('l'l",,·t

that, fol' this reason, black hole solutions would al ways evaporate. This can be rellledied if

one considers the black hole as being in therlllai equilibriulII with an heat bat.h al. infinit,y

[19]. Note that the faet that the black hole stays in thennal equilibriuln indicates that

the Hawking temperature of these two·dimensional black hole is independent of th" lIIi1ss

[4J.

The case where P # 0, is more interesting because it corresponds 1.0 an evaporating

black hole. First of ail, we examine the limit M = O. By comparison with t.he transI'01'·

mations (2.9) in Kruskal gauge, we see that it cOl'I'esponds to the linear dilaton vaCU11I1I

if P = 1. Since this solution is a vacuum solution, the Bondi llIaSS of the syst.elll IIIl1st

vanish. This wouId be the case only if the constant P = 1. ln the other cases where

P # 0 and P # 1, the Bondi mass on :ft diverges, and it. h;~~ no good solutions fol' the

description of black hales physics. Thus one can daim that the most natllml choiœ is

P = 1 fol' black holes physics.

A physical stress·energy tensor fol' the matter is the collapsing shock wav" t.ellsor.

Now let \IS look at the solution obtained l'rom the collapse of a matt.(~r shock wave as wc

did fol' the CGI-IS model:

The solution of the equation of motion and constraints is then, in the I<ruskal gauge:

•
T.{.+ = m6(x+ - xci)

TL - o.
(2.2:1)

(2.24 )

(2.25)
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•
wl",r" III is t.h" alnplit.lIde of t.he incoming mat.ter wavc. First of ail, this black hole has an

apparent horiwn defined by the curve 8+<P =a [20]. In t.he Liouville fields, this definition

t.ranslates to ihH = 0, since wc can write:

(2.26)

(2.27)

as long as the function n'(,,6) is weil behaved (which is not the case at the spacetime

singulal"ity n' = 0), the equation defining the apparent horizon may be derived l'rom

t.he above cqnation. This equation defines a curve (xii, .1'fi) given by the substitution of

solution (2.25) above the infallline (x+ > xt) in definition (2.26):

" 14=- .
4 ..\2 x fi +m

The singularity also defines a curve (x;. x;) in spacetime, given by the substitution of

rPeril in solutiou (2.9):

(2.28)

The rate at which the apparent horizon recedes agrees with the semic1assical calculations

of Hawking radiation performed by CGHS [8].

At a certain event in spacetime, the apparent horizon and the singularity will meet

each ot.Iter. The intersection event (xii,xfi) = (x;,x;) = (xt,xi), which is above the

infall line is:

(2.29)

•

At this cvent, the singularity goes l'rom being spacelike 1.0 timelike, giving rise ta a naked

singularity. Thercfore, we cannot determine uniquely the future evolution of the black hole

without making any assumption on the boundary conditions on this singularity. What

physically happens when a singularity becomes naked is not weil understood and Hawking

has speculated that the formation of a naked singularity would produce a catac1ysm, called

a thunderbolt, which would propagate outward al. the speed of light [5].

However, the singularity is still present in the vacuum since the critical value <Peri'
does not depend on the particular solution we are looking al.. So, even in the linear
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dilaton vacuum we have the problem of il naked singularity and one mnst also sol\'<' this

question in arder ta find out \l'hat happen \l'ith a naked singularity. As \l'e pointed ont

in the discussion of curvature singularity. the hope is ta apply a proper set. of bOllndary

conditions on Ihis singularity and il. is still an open question.

We now tum our attention ta a generalization of the t\l'O dilatonic mode!s stlldied

above. In the next chapter, \l'e build a generalized mode! for t\l'o·diml'nsional dilaton

gravity which will have some interesting features abont t1ll' l'ate of Ha\l'king radiation and

the presence of the singularity in the quantum corrected mode!.
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Chapter 3

Generalized Model

ln this chapter, we will apply the ideas of the previous chapter to a more general one-loop

correction to the two-dimensional dilaton gravity of CGHS. We will first introduce our

new counterterms, which are a generalization of the RST counterterm. We will see that

the rat.e or Hawking radiation can be affected by the choice of these counterterms. We

will illlpose conditions on the coefficients of these counterterms such that we recover the

saille cllrrent as in the classical CGI-IS and RST models, namely:

(3.1)

•

This condition, which makes the theory solvable, will be referred to as the simple current

condition.

In the two previolls models, the quantization assumed that the contributions from the

ghosts was negligible because the models were designed to work in the large N Iimit, but

we will not make this assumption in the present chapter. We will include the ghosts'

contribution t.o the action in an attelllpt to construct a more complete quantum theOl'y at

the one-Ioop leve1. This introduction of the ghosts in the theOl'y will give us a conformai

field theOl'y as it will be checked by solving the .8-functions. After this, we will try to

compute Hawking radiation in a fixed background, but the computation will be altered

by a non-vanishing vacuum's contribution to the flux. Finally, we will compute the Bondi

Illass of our evaporating black hole solution.
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• 3.1 One-Ioop Corrected Action

As in the RST mode!. wc will add counterterms to the usual one-Ioop iUlolllilly tel'lu. 0111"

choice for these counterterms is based on the conditions t.hat. t.hey must. be local, covariant

and have the proper mass dimension. which restrict. us to t.<'l'IllS wit.h I,wo derivat.i\"cs of

the dilaton. The action wc will study will be writtcn as S = Su +SI + S~ + Sa where Su

is the classical CGHS action (1.1) and the other t.erms arc:

SI li J "F9 1= -;- ,hr -g R'V, R (:1.2)
::Sr. ..

S~ = - S: J,P;rF9 [oqlH +,8('V'W] (:1.:1)

S3 = - Sh' Jd1 x.,f-g t [a l 4>"R +hllqlll-I('VqI)1] (:lA)
7r n=2

where a, ,8, an and bn are constants parameters, f{ i5 an integer and li = N/12. Wc have

separated the n = 1 term (i.e. S2) of the sum for simplicity of derivation in the fnt.ure.

The counterterms S2 and S3 are new to this thesis, l'ven though some special cases have

been studied in the literature. For example, the case a = 2 and ,8 = 0 corresponds t.o

the RST model studied in the previous chapter. Also, the case 0' =4 ilnd (1 =-4 yields

a model studied by Bose et al. [21]. If we were to proceed ilS befol'e wc wonld dCl'ive

the equation of motions and then transform to a Liouville-like theOl·Y. This procedure

would be right if we assumed that the number of matter fields is large, 50 that. t.he ghosts'

contribution is negligible. However in this chapter, we will include t.he ghosts' contribut.ion

into the equations of motion.

3.1.1 Contribution from the ghosts

The IVork presented here is based mainly on the work of A. Strominger [22] (sec also [2:3]),

in which he describes an original procedure to include the ghost elfects in the one-loop

corrected two-dimensional dilaton gravity. This procedure will immcdiately lead ilS to a

conformaI field theory.

We first rewrite the action S in term of a fixed background mctric 9 dcfined by the

relation:

• 20
gab =e gab.
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•
By slIbst.it.llting t.his met.ric in t.he definition for t.he Ricci tensor and ail metric-related

(Jbjects I!:•.,d in General Relat.ivity, we can derive the following relations between the

fidllcial (fixec! background) objects and the original one. We have, in two dimensions:

'i72 e-2PV h 2PA= -g = e -g

Rab
- _-2

= Rab - gab'i7 P

R = e-2p (R _ 2'i72p)

('i7~)2 = e-2P'i7~:'i7~ . (3.6)

The symbol : means that t.I.·e dot product is taken with respect to the fiducial metric and

similarly for 'i7. These relations, will transform the action into the following form:

sa =

SI =

5''1. =

S:l -

2~ j ([2:I:J-g [e-2~ (R - '1'i7 ~:'i7p +'l'i7~:'i7~+4A2e2P) - ~ ~('i71;)2]

-s: j d2xJ-g [R~2R - 'lpR - 4'i7p:'i7 p]

-s: j d2xA [Q~R+ 2Q~'i7~:'i7p + ,6'i7~:'i7~]

-S" jd2xJ- g t [an~nR+2ann~n-l'i7~:'i7p+ bn~n-l'i7~:'i7~] (3.7)
1r n=2

•

This action includes the one-Ioop contribution of the matter only. However, as il. is weil

known in quantum field theory, a more complete quantum theOl'y also includes terms

arising from the measure of others fields present in the theOl'y and also from the ghosts'

fields. Previous attempts 1.0 build a correct action including ail measure terms, simply

shiftcd the constant" from ~ 1.0 N~t'. Unfortunately, this shift brings sorne problematic

rcsults when wc look at the Hawking radiation of the black hole.

Usually, the plll'pose of the introduction of the ghosts in quantum field theory, is 1.0

simplify t.he computations of Feynman diagrams. Il. is only a mathematical trick and

the ghosts cannot be considered as real particles and they should never "ppear as free

part.icles in any process. The problem here is that the simple shift mentioned before makes

black holes t.o Hawking radiate ghosts. In fact, the black hole will gain mass by Hawking

radiat.ing negat.ivc-energy ghosts, which is certainly unphysical, when we perform a fixed

background computation of Hawking radiation. Thus, we must find a different method

to include ghosts in the quantum c01'1'ected two-dimensional dilaton gravity.

A. Strominger proposed a solution 1.0 this problem in [22]. Mainly, his proposition
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•
was to usc a dilfcrcnt mctric to dcfinc the meaS\ll'l' of li\(' dilaton's and n\('trÎl"s l'ath

integrals, Instead of using the standard me\.ric g"b = ,:ll'g,,;, 1I'l' shonld nsl' I.I\(' "shirtl"!"

mctric e-2
<1>g,,; = e2(p-<I»fi"b' This kincl of shift. is permit.tl'd in th,' tl\('ory, 1ll'l'll\lsl' of th"

frecdom we havc to add local, covariant counterternlS al thl' olll',loop Il'\'l'\. Of l'mll'St"

othcr choiccs fol' the ghosts mctric arc permittl'd by Ihis frl'l'dom, hnt il. is "asi,'r 10 IlSl'

the simplest onc,

So, the ghosts will noll' contribute 1.0 the action by shifting t.l\(' act.ion:

N s,,"n"tUi, l') -+ N S""",II (li, l') - 2,1 S'i1I1I1I1 Ui, l' - e/» (:uq

where S""'"" is the complcte ol1l'-loop correction (1/N)(81 + 8 2 + S:d, Ily adding this

term to the action derived cal'licr, wc obtain thc complete action:

s = -.!..- J(P :1: .j- fi
271'

where we defined

{(4e-2
<1> - ,8"1' -,'[,11<1>" - o-ll"ne/>"-I - 2) 'Y4'~'Y<I>

+ (_4e- 2
<1> - 20[" - 2n"n"<I>"-1 +,1) 'Y<I>~'Y"

- - 2 'J( ") 1~ - -+4,''Yl':'Yl' +4-\ co "-" - ? L. 'YN'YJi
... i=l

+ (e- 2
4> + 2c/> +,' (41' - R~ - oe/> - n"c/>")] R} (:UJ)

,1 1 I(N-24), = -, = -(te - 2) = ,
4 4 <\ 12

(:1.10)

For simplicity, we dropped the summation sign over 11 but the reader must keep in Illimi

it is still present, Now we will analyse the action (:.l,9) in a similal' way as donc bdore,

However, let first look at the conformai charactcr of the thCOl'Y.

3.1.2 ConformaI invariance

A theory will be called conformally invariant if it is invariant under confol'll tal transfor'

mations like:

9 -+ 9' = f2g (:.l.11 )

•
where f2 is 50me conformal factor, Usually, quantum gravity theories are conformally

invariant and we will look if it is the case for our mode\. For more information, sec

[16, 23, 24, 25].
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\V,. will d,,,c:k if our moud is conformally invariant, which is a consequence of the

"'>\"Iriillll'f' of (;"'l<'r,.1 Ildiltivity, A conformally ill\'ariant theory may be written in the

forlll IIf il rT-IIu"ld t.h"ory. :'\ot... that. st.ring I.h..ory is such a t.heory:

.'>'(!I. X) = - LJd'·I'v-fi [C:"v(X,1 )vX":vX" + ~'I)(X'I)R + 'l'(X,I)]
... 11 _

(3.12)

11'11<'1'1' !I is t.l1<' fidllc:ial Illetric d"scriiJed before and X,I = (6, p,f;). The quantum theory

d,'sc'l'ilu,d by I.his act.ion will be conforlllally invariant if it satisfies three sets of equations

Ci,II ..d Ij-fllncl.ions. These functions are usually very diflicult to solve exactly and one must

look at a slllall parame1.er (usually h) expansion of the 1.heory to solve these functions.

For dila1.o11 gravity, such a parameter would obviously be e'o. The reason for this is that

1.1", Lagrangian ill the c1assical action (1.1) is proportional to e-20 and when we built the

olle·loop correctioll we assumed .. -20 » 1 for the perturbation expansion. Then the first

ord"r rj-fllnct.ions are:

iF =

!3~" =

(3<l> =

~v,,<1>VIIT - 2'1' - ~v2T +... = 0

1
v"vv<1> + 2n"v + ... =0

1 0 1 0

2(v<1»· - :[v·,!> +2Î +n +, .. = 0

(3.13)

wh,'r(' t.1\(' covariant derivatives are taken with respect to the metric CIIV , and n,IV is the

Ricci t.l'nsor of G,,,,. The dots (.,.) stand for the terms of higher order in the expansion.

If we COlllll1lrl' the action (3.12) with our action (3.9), we can write down the following

expression for G"v, </) and '1':

(3.14)

_41'-2<1< + (31' + bnl',pn-l + Q +ann,pn-l +2

21'-2<1< +QÎ" +anl'n,pn-l - 2

-41"
1
2

<1> = -2e-2<1< - SI'p +2QI',p +2anl',pn - 4,p +21'R \
V

T = _,l,\2 e2(p-o).

G'c."l~ =
G'l,ÏtP =

G"" =
C/,j, =

•
Substitu1.ing these equations in the ,8·functions (3.14), we Can check that (34) and .B~v are

exactly satisfied at first order in the parameter expansion. For the tachyon (3·function, (F,
the firs1. order te1'll1S give an expression proportional to e2<1<. However, we must remember
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that our expansIOn parailleter in the 3-functioI1~ is f~"". IIl'nec..' f~""1 « 1. TI1\1~. ail 3

functions an' satisfied at first order and we can conc\nde that w" ha\"(' a conformai li,'Id

theory. at least to leading order in ('~".

Now the task is to solve the mode! de\'e!oped '0 far. which inclnd", gho,t, and i,

conformally invariant. \Ve will solve il. from a minimum arl i,"t principl,· (i.... hy Il,ing

oS =0). as we did for the Iwo pr"\'ious modds.

3.2 Equations of Motion

As done before, we have to derive the stress-energy ten,or compOlll'nt.,. th" dilat.on and

the matter equations of motion. For this purpose. we necd to rewrit.e t.h" action (:Ul) in

tenns of the metric 9 instead of the fiducial met.ric g. In ord"r t.o reCO\'''I' t.h" confonllal

mctric (1.5). we require the fiducial metric t.o be fiat.:

1
Yu = 0 • Y+- = -2" (;\.15)

Substituting this metric in the action (3.9) and after some algebra. wc mn write the action

in the covariant form:

{~e-2~ [R +4(\7,p? + '1'\~1 + ~ ~(\7.ri)~

"'1 l "'1 [ .']- SR\72 R - S o,pR + (3(\7,p)"

"'1 l,-sE [aur,6 U R +bur,6u-t(\7r,6)2]

- ~ [0 +2+j; ltun,pu-t] (\7,p)2 + r,6/l}

where we have reinstated the sum over n. This is essentially the sanIe action as (:3.4) except.

that "has been replaced by"'l and we gained some extra tenns from the int.rodnction of t.he

ghosts. dilaton and metric measures. This action shows explicitly that. t.he prescription of

A. Strominger for the contribution from the ghosts is dirrerent from t.he shift. " .... " - :1

used before. We can simplify the above action by redelining the constant pararnet.ers:

• 8Q .... Q=Q--
1

• 4 8f3 .... {3 ={3+ '7Q + '7 (:l.17)

• 4
bn .... bn = bn + '7unn •
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Tite action t.lten becorne"•
(3.18)

Titis rewrit.ing Itas t.ltc advant.agc of collect.ing ail the quant.um correct.ion into t.erms

proport.ional t.o l, so t.hat. t.hc classical limit. is obtained by 1 -> O.

Wc can dcrive thc stress-cnergy tensor components by functional differentiatiûn as be

forc. The cornplcte exprcssion is 'l'ab = Td~) + fTd~) + fTd~) + fT~;) = O. The components

are:

,/,(U) =±±

,/,(1) =±±

,/,(2)
. ±± -
'['(3) =±±

N

c-24• (,18±Pô±d>- 2ô~tP) + ~L 8±Ji8±fi
... i=1

? 4 ±417,- n - 48±p8±p+ :yt±(:r )

2ôB±pô±tP-ââ~tP +S8±tP8±rP
1\

L {""n [2tP,,-I Ô±PÔ±tP-d>"-18~rP - (n - 1)tP,,-28±4>ô±tP]
11=2

(3.19)

wltere t.hc fllnctions l±(:r±) appear because of the zero modes ambiguity of the Green's

fllnction ~2' as discussed in chapter 1. Moreover, the off-diagonal components are:

T~O~ _ e-2>1>(2ô+8_tP - 48+tPô_tP _ ,\2e2P)

T~~ = -48+8_p

'li:! = ââ+â_tP
I\

'li~ = L a"n (4)''-18+8_1/>+ (n -1)4>"-2â+t/>ô_t/»
fl=~

For' the dilaLon eqllaLion of motion we obtain:

(3.20)

•
D(U) = e-2>1> ('18+â_4> - 28+8_p - 48+t/>8_4> _ ,\2e2P)

D(I) = 0

D(2) = -ôâ+â_p - Pâ+8_tP (3.21)
I\

D(3) = ,~[-a"n4>"-18+â_p - b"tP"-lâ+8_1/> + ~bn(n _1)4>n-28+4>8_4>]
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with the dilaton equation of motion:

We remember that in the classical ecus and HST mode!. we got a simp!<' current

â+â_(p - dl) = 0 by subtracting the dilaton equatiou of motion l'rom the nwtric "'luatiou

of motion T+_ = O. With this current. we have the l'l'l'edam ta conformally transfol'Iu \,0

the Kruskal gauge <1> = p. vVe will demand that this CUl'l'ent equation arises in this 1Il0d"1

also, so that we will get relations between the constants pammeters in tllu' couuter\.t'I'IIIS.

The subtraction gives:

o = 2e-2~â+â_(p-rjJ)

1 .
+ 4' [(& - 4)â+ô_p + (& + ,6W+û-<I>]

+<I>"-II [(a"n +b,,)â+â_<I> - a"nâ+â_p]

+ <1>"-2 ~(n - l)(b" +2a"n)â+<I>â_</> .

The simple current must be satisfied for ail powers of rjJ. For </>0, we obtain the l'ollowiug

relation between the constants & and iJ:

(&-4) = -(&+/1)

=? 2&=4-/1.

For rjJ,,-I, the simple CUl'l'ent condition leads to the constmint:

-anll = (a;,n + b,,)
1 •

=? an = --b ('1 '>.)
'J. 11

......]

....n

For rf>n-2, we only have â+rf>â_rf> and it must vanish if we waut to have the simple CUITent

in our theot·y. The vanishing of this coefficient reproduces the same constraillts (a.25) lL~

before. II. is attractive to obtain the same condition in the last two cases, silice il. meaus

that the simple current is satisfied for ail powers of n.

Ali these conditions come l'rom the arbitrary imposition of a simple cul'l'l'nt couditiou.

We must remember that we made this choice to produce a solvable set of cquatiolls of

motion. It could look strange that the spectrum, N, of massless scalar fields appcal's iu

our conditions, through the definitions of &, iJ and bn , but for us it is only a mathemal.ical
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trick 1.0 rnake the theory solvable. Whethcr or not Nature arranges itself to be solvable is

flll(Jt.!wr quest.ion.

Sinn, wc have oiJtained a conforrnal thcory ineluding one-Ioop quantum effects, the

natnral qnestion 1.0 ask is whether or not black holes will evaporate in this theory. The

natural way to answer this question would be to perform a semielassical computation of

lIawking radiation in a fixed elassical background. We will see that such a computation

is l'caliy problematic for the generalized model since the linear dilaton vacuum is not a

solution of the equations of motion T+_ = 0 and D = 0, and the constraints T±± = O.

3.3 Problems with Hawking Radiation in a Fixed
Background

ln this section, we will show that the introduction of the new counterterms makes the

computation of Hawking radiation in a fixed background impossible to perform in the

simple way introduccd by CGI-IS. The reason for this behavior of our generalized mode!

l'Oilles from the fact that the linear dilaton vacuum (LDV) is no longer a solution of

the complete theory, which ineludes elassical and quantum terms in the action. As a

consequence, energy will be created from the vacuum suggesting that the LDV is not the

propel' vacuum for the theOl·Y. '1'0 see where the problems come from, we will perform the

calculatiolls as far as we can with the method of CGHS.

.\, in the ccms morlel, we will use the elassical solution of a collapsing matter shock

wave producÎng a vacuum region (X+ < :rt) and a black hole region (x+ > xt). The

llIetric is given by (1.36), in the Kruskal gauge p = rjJ:

(3.26)

•

where III is the amplitude of the matter wave (1.35). We will perform a coordinate

transformation to the asymptotically Minkowskian coordinate system {cr±} defined by a

general transformation :r± = h±(cr±). Usually, the functions h±(cr±) are given by (1.59)

and (1.60) for the collapsing matter solution, but we will keep them undetermined for the

moment. This system is the most natural because, for this Minkowskian system, we have

a good definition for partieles in the asymptotic (flat) region; for others, the concept of

partieles is not weil defined [16]. This coordinate transformation preserves the conformai

35



•
gauge and the new conformaI field is gin'n by (Sl't' dmp"'r 1):

( '\ ')-)•. _1

Under this coordinate trausformation. the strcss-cnt'rgy t,'nsOl' l'llmponl'nts will transfol'lll

in the usual way:

,j, \" \b'/'.I11'b,=J a'l o'·uo. ('\ "S).._~

(:I.:lll)

This transformation leads t.o the following tcnsor's componl'nts in the (T-coordinat"s (nsing

(3.21) and (:3.20)):

Tu = [e- 2<> + F(qI)] (4ihpâ±qI - 2ü~qI) +C(qI)ü±4)ch</J

+, (8~p - â±p8±p) + ti,± + i±(a±)

'1+_ _ e-2<>(2ü+8_qI - 4ü+</Jü_</J - ,\2,,2/;) - 1()+Ü_fi

,[ /\ ] 1/\+ - â +I: a"nql"-I ü+a_t/> - - I: <I"n(n - 1)t/>"->ü+t/>iJ-t/>
4 n=2 ·1 n=2

where - denotes the a-coordinat.es and we redefined ü± = ;;;;T,;) • Wc have also ddiJ",d theca

functions:

F(qI)

C( qI)

= ~ [ô+ f,a"llql"-I]
l:i n=2

= i [~+ t (b"qI,,-1 - a"n(n - 1)4/,-2)]
7&=2

= (ü±h±f l±(x±(a±)) - ~D±h±

(:1.:\ 1)

(:1.:1:1)

t.he Schwarz derivative being defined by:

D±h± = 8~JI± _ ~ (8'i h±)2
8±h± 2 ü±h±

The dilaton equation of motion (3.22) keeps t.he same f01'l11 cxccpt. t.hat. f' -> fi and

8x± -> 8u±'

From these expressions, we derive the quant.um cxpect.ation values fOl' the sl.ress-ell()l'gy

tensor's components, which are only the quantum cOl'l'ect.iolls t.o the c1assical stress-er",rgy

tensor, because j~~) = 0 since the fixed metric is c1assical. So,

• (T±±) = F(qI)(48±p8±rf> - 28~rf»

+,(8~p - 8±ii8±P) +G(rf>)8±rf>8±rf> + Î±(a±)
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• (3.36 )

Nol', l'" have t.o find t.he funct.ions i±(IT±). [n t.his sect.ion, wc will use t.he met.hod of

CC:HS, which reqnires t.hat. t.he quant.um expect.at.ion values of t.he stress-energy tensor

vanish in t.he linear dilaton vacuum. However, we will see t.hat this requirement is unfor

t.llnat.dy impossible for t.he generalized mode!.

3.3.1 Linear dilaton vacuum region

The classical spacetime (3.26) has a !inear dilaton vacuum region (x+ < xt) which is

described in the IT-coordinates by:

jJ = ~ [ln[éJ+h+ô_h-] -ln[-,\2h+h-J] (3.37)

r/J = -~ In[-,\2h+h-] (3.38)

where the relation for jJ cornes from (3.27) with p = r/J. By substituting these relations

int.o t.he quantum expect.ation values, we obtain what we cali (j~b)LDV whose components

are:

('Ï'+-)LDV (3.39)

(3.40)

whcrc

(3.42)

(3.'11)
1 1{ [ 1 ] n-2= 4'~ ann(n - 1) -2'ln[-,\2h+h-]

l' 1 1\ • [ 1 ]n-I= -(3 +- I: bn --ln[-,\2h+ h-]
4 ,1 n=2 2

1 1\ [ 1 ]n-2- 4'~ ann(n - 1) -~ In[-,\2h+h-]

Wc must remember that in the CGRS model, we gel. (T+-)LDV = 0 independently of the

part.icular t,ransformation relations that we have, because of the special form of the stress

energy t.ensor. This allowed us 1.0 set ail components 1.0 zero in the LDV, which means that•
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•

there were no incoming particles l'rom the \'acuum region except for the collapsing mal.t"l',

Fol' the genel'alized mode!. it is ob\'ious l'rom (:1,:1\») and (:l.,lll) that \\',' rannol d,'mand

(tb)LDV = 0 in' th" whole vaeunm l'egion (l'+ < (l'li, :\Iso, demanding ('i:U )L1lV = II

will l'equil'e the funetions Î± 1.0 depend on both (l'+ and (l'-. which is not a 1"'l'Init kd

solution, This dependencc is fOl'bidden by the \'anishing din'I'gene,' of the stl'<'ss"'Ilt'l'gy

tensor: v.Tab = O.

Since we cannot set (Tab)LDV = 0 in the whole LDV, we can look al. a specifie l'egion

whel'e il. is zero, From (3,39), we sel' that ('i'-r-)LDV will vanish at the zel'os of .-I(h+, h-),

which are al _,\2h+h- = 1. From now on. wc will use the asymptolically Minko\\'skian

coordinates defined by:

h+ = .!..c·\o+
,\

h- l _.\0- 711

= --c -,\ ,\2

Using these relations, the zeros of A(h+. h-) will then lie on a curve defincd by:

0'+ = _* ln [1~ + e-·\a-] ,
The interesting behavior of this cnrve is that il. brings the zeros 1.0 the aSYlllptotÎc l'egion

0'+ -+ -00 if 0'- -+ -00. So, Wc couId be tempted to impose the condition of vanishing

quantum expectation values al. the past timelike infinity ;-, At. othel' event.s in t.he LIlV

region, the vacuum will create particles sincc the quantum expectation values arc non

zero, Imposing the weaker condition (Tab}Lov = 0, wc l'an derive the expressions fol' t.he

functions t±(O'±):
1',\2 _

- -' 16 {3

- 11~2 [4 - (fi +4) (1 +~ c,\o-r2
]

We have 1.0 make two l'l'marks on these functions, First of ail, wc wonld have obtained

the same results if one considers the case an = bn = 0, where wc do not encount.el' the

problems of a non-vanishing (T+-}LDV, This special case will be discussed later, Secondly,

the function A(h+, h-) has no zeros when n = 2 and there is no asymptotic past region

where wc l'an find a vanishing (T+_}LDV'

The quantum expectation values are now completely determined and wc l'an study the

black hole region. However, since (3,39) and (3.40) are not vanishing, particles creation
~,
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will take place in the vacuum and wc should expect a vacuum contribution to the radiation

nowiug out to :Tri. As a consequence, (-Iawking radiation should be obtained after the

subtraction of this vacuum contribution from the total radiation. In order to determine

th" vacuum coul.ribution, wc cau consider the black hole as a "pertlll'batiou" of the linear

dilaton vacuum. Thus, the radiation nowing out to infinity will have a part coming from

th" vacuum energy flux at :T/t. So, we will have to substract the quantum expectation

values ('j~b)fgv from the oue obtained in the black hole region. We have:

('Ï' ).7ii -+- "DV -

(3.48)

•

W" see that. these expressions are divergent in the limit 0'+ -> 00, and one might hope

that t,bey will extraet the possible divergences in some radiation fiowing out from the

black hole region. Now we turn our attention to this black hole region 0'+ > ad.

3.3.2 Black hole region

Now, wc can compute the Hawking radiation fiowing from the black hole using the CGHS

Illcthod described in chapter 1. We will use the asymptotically Minkowskian coordinate

system (3.44) and we will evaluate (3.35) and (3.36) in this region (0'+ > ad). The dilaton

and conformal fields, in the black hole region, are given by:

jJ = -~ln [1 +7e(U--u++utl ] (3.49)

1 [( + -l m +]if> = -2ln eU -u +Teuo . (3.50)

With these fields, we compute the quantum expectation values and we evaluate them at

the future null infinity :Tt. Let us first evaluate the dilaton on :Tt:
if>1.7+ = lim -~ ln [e.l(u+-u-, + ~e·\ut]

R u+-oo 2 À
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• =

=

lim -~ {,\(a+ - a-) + ln [1 + ~c'\(O--o++ot)]}
0+_00 2 A

lim -~(a+ - a-) .
(l'+-N :2

The quantum expectation vaines becomc:

('1 "")..d_

(:l.5:1)

•

Ali these expressions are diverging, but IVe woulel be able to cxtract the contribution of

the vacuum (3.48) aud then obtain the Hawking radiation of the black hole. When we

look in the far past (a- -+ -00), we can subtract the vacuum contributions (:1.48) and

we get the Hawking radiation there:

lim (, .:rri 0'1+-)811 -+
(1---00

lim
• .:r+

0 (:1.55 )(T++)sfi -+
(1---00

lim (' ).1/t 0 (:J.5Ii)'1 __ Sil -+
(1---00

IVhich agrees with the computations of CGHS, namely that there is no radiation if IVe do

not observe a black hole in spacetime. When IVe look in the far future (a- -+ 00), IVe

cannot explicitly extract the vacuum contributions and the quantum expectation values

remain divergent.

There are sorne possible anslVers for the failure of the computation of Hawking radia

tion in a fixed background. One possibility is to argue that the one·loop corrections are so

strong that any semiclassical approximation is wrong. If this is the case, we must perfol'lll

a computation of Hawking radiation that takes care of the backreaction of the metl'ic and
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I.his will 1", doue lal.er wlwu we will compute the Bondi mass of the generalized mode!. [t

is also possible I.hal. the method used ta extract the diverging vacuum contribution ta the

radiatiou al. :rIt was wroug. ln this case, interpreting the black hale as a perturbation

of the vacuulII would 1", wl'ûug and we should fiud auother way for the extraction of the

vacuulII coutributiou. [t is also possible that the condition (Tub)LDV = r. is not the right

coudil.iou ta impose, but we do not know what should be the right one.

We uol.iced in the subsection on the linear dilaton vacuum region that there was a

special case where everything was similar ta the CGHS mode!. We will discuss this case

short.ly.

3.3.3 Special case

Wc can easily see that I.here is no problem al. all for the case an = hn = 0 because (3.39)

aud (:1.'10) are similar ta the CGI-IS model:

(3.57)

(3.5a)

(i'+-)LDV = 0

Ci±±)LDV = ~~ [Ô7,:±r +i {D±h±+ ~ [ô7,:±r} + l±(q±).

Since (i+-)LDV is vanishing, we can perform the semielassical computation as in the

CGHS mode!. Using the usual asymptotically Minkowskian coordinates, we obtain for

(3.60)

(3.59)= _:">.2~
<l

= i>'2 [1 - ~; ,1 (1+ 1~ e.'U-r2
]

Now, wc t,urn out 1.0 the black hale region. We can evaluate the quantum expectation

valucs on thc futme llllll infinity :rt and we obtain:

•

• :J+
0 (3.61 )(T+-)BA =

• :J+
0 (3.62)(T++)BA =

• .:r+
:6 >.2(~ +4) [1 - (1+ 7e,lu-r2

] (3.63)(T--)BA =

The last of these three equations is the Hawking radiation Rowing out on :rt. II. has the

same behavior as the expression derived by CGHS, which can be recovered in the limit
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• ,â -> 0 and 1 -> N/12. vVe also recover the RST mode! in this limit, which implies that

both models have the same Hawking radiation flnx. The nUl' of Hawking radiation gOl'S

1.0 a constant al. the future timelike infinity i+ (0"- -> co):

• '+ Î (' )(T--)SH = - ,a +·1 .
16

(:l.(;·I)

•

We also notice that the flux of radiation depends on the parameter J. For the special

case where ~ = -4, the Hawking radiation is zero. 50, for these t.wo·dimensional models,

we sel' that the rate of Hawking radiation is sensitive 1.0 the choice of the pal·alllet.er for

the counterterms. Then, il. is possible 1.0 find quantum black holes t.hat are not radiating,

as in classical General Relativity. In t.he other haml, we cannot. remo"!' t.he spacet.inH'

singularity as we will do for the general case where (l" # 0 and b" # 0, as l''' will sec in

the following sections.

Let us emphasize again on the assumptions of the calculations donc bdore. These

calculations use a fixed classical background, but since energy is emitted by the black

hole, its mass should decrease and when the mass is changing, the geometry shonld ,dso

change. Thus, il. would be very interesting 1.0 include this backreaction in our calculations

and sec how the black hole l'volves. '1'0 include the backreaction, wc will nse a method

iuspired from the field redefinition performed in the RST mode!.

3.4 Liouville Theory

Since wc are not able 1.0 compute Hawking radiation in a semiclassical way, wc wou III like

to be able 1.0 compute il. with a method that includes the backreaction of the met.l'Ïc. ln

chapter 2, wc showed that Russo et al. performed a field redl'finition that. lecl them to

a Lionvilll'·like theOl·Y. Theil' new fields were bonml frolll below: they clid not. cover the

complete range of values.

Wc will also perform a similar fields redefinition, but wc will sec that wc can obtain

fields with more natural range, if we impose sorne constraints on the frel' parameters of

the theOl·Y. The new fields will he defined hy the following relations with the previous

fields p and 4>:
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") lI/\"Q 26 'n!1 = 1 - - t/J + -e- - - "a '" .,1 '1' <1 L- ny

n=2
(3.65)

These definitions considerably simplify the expression for the action (3.18) and the stress"

energy tensor's component.s (:3.20) and (3.21), since we obtain a Liouville theot·y. We

obtained similar expressions for the RST model, except that. fi is changed to 1:

S' =

TH =

7+_ =

(3.66)

(3.67)

(3.68)

We pointed out in the discussion of the RST model that 11 was bound from be10w and

this t.urned out to coincide with a spacetime singu1arity, as it was seen from the Ricci

scalar:

R = 8e-2P8+8_p

= 8e-2p ~, [8+8_X - ~:: 8+118_11] (3.69)

where the prime designates a derivative with respect to,p. The curvature will b10w up

when 11' will be zero, which is the extremum of the function 11( ,p). So, could it be possible

in a genemlized mode1 to prevent 11 from having an extremum? The answer is yeso

However, the transceudentality of 11(,p) prevents us to find an analytic solution to the

equation 11' 'f O. On the other hand, it is still possible to find numerical solutions. Let

us write 11(,p) in the form:

•

where

Then, 11' is given by:

l(

11 = Ali> +L Bn,pn +Ce-2
<1>

n=2

A
&- 1- -
4

Bn
1- --a4 n

C
1

= -
1

K
11'(,p) = A +L nBn,pn-1 - 2Ce-2

<1> •

n=2
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•

Figure 3.1: Sketch of the field dependence of a bound fl(qI) (left) and of an ullbound fl(qI)
(right).

From this, we immediately see that the function fl( qI) will be unbound if Il takes only odd

values and if the following conditions are satisfied

A > 0, Bn > 0, 0 <° (3.73)

or

A < 0, Bn < 0, 0 > °. (3.74)

Because 0 changes sign when N crosses 24, the above conditions imply that A and En

are also proportional to N - 24. For n even, the problem is more subtle and. we must look

at the function fl numerically in order to see whether or not it has an extrCiillum.

Let us look at special cases for n even, where A = 0, and see how the function fl( qI)

behaves. There is a possibility of having no extrema only when Bn and 0 have opposite

signs, depending on the particular relative values of these constants and J(. This must

be checked numerically because we could have two possibilities, shown in figure 3.1.

•

For example, the right graph of figure 3.1 could be obtained by setting J( = 2 and

B2 = -O. It is not necessary that the equality holds exactly, but Bn and 0 must at

least be very close to each other. Thus it is possible to build a theory without singularity

or, equivalently, an unbound n. This feature would be very interesting if we could prove

that the Hawking radiation of such model~ without singularity has a good behavior. This

means that the Hawking radiation should be positive definite for any number of matter

fields N and, if possible, goes to zero at future timelike infinity (i+).
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TI", lilu..1' cali ""t. 1", sat.isfi..d silice most. of the exist.ing mode!s of t.wo-dimensiona!

dilat,," !\1'i1vity hilvr' il fJl'ubl ..1rt wit.h t.his fJoint: the Hawking radiation goes to a constant.

l'V"" 11'1"," 11'1' ilJ<'llIdl' ti", IlIlckl'''i1ct.ion. Wc, will see that it Îs still a pl'Oblem with the

!\l·1I1'1'i1liz..d ,""dei. F"I' th.. fJosit.iveness. wc have seen ill t.he pl'evious section that a

s"llIicliissical calclliatioll did not. solve this question; we have not been able to obtain a

!\'JOd d,'script.ioll of Hawkillg radiation, except for the special case an = bn = O. In this

SI"'l'iilll'i1Sl·. I3n = () i1nd it. is ilOt. possible t.o build an unbound lield f!(q'J), i.e. we cannot

)'('1110\'(' th" spiI('('t.ill1c sillguia.rit.y.

Now. 11''' have to solve t.he equations of mot.ion and constraints of this Liouville them·y.

3.4.1 Solutions

Silice wc transformed to a Liouville theory, the solutions will be similar to the ones of

IlST, bllt here, wc will make a more detailed derivation of the various solutions of the

Liouville t.hem·y. We will simplify the Liouville theOl'y a bit further by making a field

l'edeli Il itioll:

1
U = '2(f! + X)

V = x-no

Thesl' simplify the actioll, equation of motion and constraints to:

(3.75)

5' = .!. Jcl2:1' { -2â+Uâ_ li + ,\2e2V + ~ f. â+fiâ_fi} (3.76)
1l" ... i=l

1
7±:!: = -2â:!:Uâ:!: li + '2â~ li +â~U +Tf:!: +t:!:(x:!:) = 0 (3.77)

T -:"â+â_ V - â+â_U - ,\2e2V = 0 (3.78)+- =
2

â+â_V = 0 (3.79)

where t.he last equation is the simple current obtained before from T+_ - D = O. As a

collsequence of the lat.ter, we assume that the simple current conditions (3.2'1) and (3.25)

al'e salislied. If not, the generalized theOl'y will not be solvable. This action is essentially

the dassical caus action if we would have defined the fields U and li as:

• V = p-</>.

45

(3.S0)



• From this similarity, wc should l'l'l'l'ct. thal the t.wo modt'is will ha\"(' solnt.ions of t.ht' saml'

fortn. In t.he other haJl(1. we must. notice that. the con~t.raint.~of the gl'nt'ra!izl'd mo<\,'\ art'

different. from t.hal of the c1a~~ical CGHS modL'i ~inCt' Wt' Iw\"(' l"rtns l'rol'llI"liOlwi 101

and t±(,,,±). This will bring dow:' some di lference in t.he g('n('ra1 sol ut. ions. Wl' li l'st. s"l \"('

the simple currenL which yields:

li = ~(ll'+ + ll'_)

where the functions w±(a'±) are called gauge function~. Then wc can sub~t.it.nt." this

solution in the equation of motion T+_ = 0, which gives u~ the solnt.ion:

The functions u±(x±) will be determined by the constraint.s T±± = O. Substitut.ing t.he

solution for f} in t.hem, wc obtain t.he constraint.s:

and the solut.ion of this equation may be written in the following form:

(3,84 )

where JL is a constant of integration, The matter stress-energy tensor 'It± depends on t.he

l'articulaI' distribution of matter in spacetime. In the other haml, wc have already ~een

how 1,0 determine the two other functions t±(x±) in the first chapter (~ee discussion fol

lowing equation (1.45)). These functions depends on the l'articulaI' choiee of the rel'erencc

vacuum we are considering for the massless matter field propagator.

As a special case, the Kruskal gauge w±(:c:!:) = 0 simplify the solutions, as wc saw

in the CGBS mode!. This choice for the gauge functions 'tU:!: was allowed because of the

invariance of the conformai metric under a subgroup of difl'eomorphisms (sec c1mpter 1).

In this gauge the solutions are given by:

U = "In = "IX

il r+ r+"IX = l - ,\2X+X - - dy+dz+ [Ti+ + t+]

• -r- r- dy-dz- [TL +L] . (3.85)

V - 0 (3.86)
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The mlutions of the equations of motion (3. ï9) may also be written, in Kruskal gauge,

• as:

ln =1\ = ~ - ,\2.r+:r - - jX+ j"+ dy+dz+t+ - jX- j"- dy-dz-t_

- :,,+ P+{x+) +.6.+{:,,+) - x- P_{x-) + .6._{x-)

wher" wc dcfined

P±(.r±) = r±dy±Tfd{Y±)

.6.±{x±) = r±y:!:Tf:!: (y:!:) .

(3.8ï)

(3.88)

Howevcr, there is another useful gauge, which defines the asymptotically Minkowskian

cOOl'dinate system. This gange is often referred as the tT-gange and is defined by w±{u:!:) =

±'\u:!:. We will denote by a "-,, the objects defined in this gauge, so that the stress-energy

tensor components are:

1±± = -28±Ù8±li +~8i li +8iù +Tf± + I±(u±)

T+_ = -8+8_Ù _ ,\2e2V

where we nsed 8+8_ \i = O. Then, the general solntion is given by:

[r = ù+ + iL +e,\(uLu-)

\i = ~ (u+ - u-)
where the fnnctions ù±(u±) are given by

ù± = ;~ - r= dy± {e±'\Y± j"± dz±eT '\:± [Tf± +I±] }

(3.89)

(3.90)

(3.91 )

(3.92)

(3.93)

•

Now, we have the general solntions expressed in two different ganges: the Kruskal

gange and the u-gange. The former is useful when we analyse the curves defined by the

apparent horizon and the CUl'vature singularity. The u-gauge is nsefnl when we compute

t.he Bondi mass for a specific matter stress-energy tensor. One such stress-energy tensor

describes the collapsing matter wave, and we will focns on this one in the next section.

3.4.2 Collapsing Matter

In this section, we will derive the solution for t.he col1apsing matter stress-energy tensor

in both the Kruskal and the u-ganges. We first look at the Krnskal gange and, as in the
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• prel'ious models. we will assume that ail the malt,,!' fi"lds fi al't' vmlishitl!\. "Xl'<'pt for Olll'

of them. say fl' Thc'n the malter st rcss-energy tcnsor has till' usual fol'lu:

Ti+ = 111,1(.1'+ - .rit)

TL = [).
(:U)·I)

(:UI!i )

\\Then we substitute them in the general solutions. wc ohtaiu aft,'r inl<'!\I'ation ln th..

1\ ruskal gauge:

111 = 1X = Ï - ,\2:1'+":- - 111(:1'+ - :rit)O(:I'+ - .rit)

- jX+ jY+ dy+d=+l+ _ j"- jY- dy-d=-L. (:1.9G)

Now, we have ta integrate the functions l±(:r±). "Vhen we discussed Hawking radiation

in a fixed background, we tried to derive these funetions by requiring the quautuul ex

peetation values of the stress-energy tensor ta vanish in the liucar diiaton vacuulll and

wc had some pl'oblems as discussed earlier. For the present calculatiou, we will derive

these functions using the method developed in the RST model, i.e. by fixing the rder

ence vacuum of the matter propagator ta be Minkowskian. Since the addition of OUI' uew

counterterms did not change the Green's function ~" wc will obtain the saille l±(:r±) I~~

derived in the RST mode!. One !Tlay think that we should shift 1< -> 1 since the ghosts

contl'ibute a non-local term like SI in (3.2) ta the total action given iu (3.17). So, We st.ill

use (2.20) with P = 1:
1< 1

l±(a:±)= -4' (X±)2 .

Then, we can integrate and (3.96) becomes:

(:l,!J7)

(a.08)

•

In the other hand, we will a1so need the solution in the asymptotically Minkowskiall

coordinates {u±}. These coordinates, for the black hale spacetillle, arc rclated ta the

Kruskal coordinates by the transformations:

x+ =h+(u+) = .!.e·1u+ (a.09)
À

- =h-(u-) = l -Au- m
(:3.100)x --e - À2 •À
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Alsu, th" fUllctialls 1±(J:±) will trallsforrn accordillg 1,0 equation (3.33), with h±(o-±) de

fill"<\ "IJOve. Usillg these tt'illlsformations and the functions l±(.r-±) in Kruskal gauge, we

o!Jl.aill:

(3.101)

Th" stress-ellergy tellsor is al50 givell by:

it+ = mo(0-+ - 0-;1')

TL = 0

Thus, pel'l'orlllillg the integrals in equation (3.9:3). we obtain the solutions:

(3.102)

(3.103)

(3.104)

•

The solution in tenns of the fields Xand nare easily obtained from the definitions of the

fields Ù and i', which are similar to the definitions (3.75) of the fields U and V. Now, we

have 1,0 deterllline the Hawking evaporation rate of this black hole.

3.5 Bondi Mass of Evaporating Black Hole

ln the present section, we will try to answeI' a very important question for the study of

Hawking evaporation: what is the mass of the black hole. We are mainly interested in the

evolution of the l11ass, which should decrease as the black hole evaporates. The method

usecl is explained in Appendix A and is known as the Bondi mass.

Since a large class of t,wo-dimensional dilaton gravity can be expressed as a Liouville

theory by a proper field redefinition, even the classical theory of CGHS, we can derive a

general expression for ail these theories. We first need the linearizations oT++ and oT+_
of the stress-energy tensor's components, which are obtained from the variation of (3.89)
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• and (3.90). Explicitly. we have:

6tH = -2rJ+l\iJ+6Ï' - 2iJ+ i~,(hM r + (J~clli

ô'Ï'r_ = -ü+rJ_M' - 2.\"f"\\\i· .

(:1.I11f> )

(:l.IlHi)

The fields lio and i ùare the rderence solutions around which 11',. a\'(' Illaking the lin"ariza

tion. These reference fields are usual\y taken to be the solutions wh,·\'(' the\'(' is no Illalt"r

in the spaectime. which defines the vacuulll st,ate for a particular s<,!, of roordinat,·s. Fmnt

the derivation of equations (3.103) and (3.104). wc sec that th,' case where /11 = li It'iufs

to the referenec solutions:

(:I.IOi)

(:1.I0S)

Vve note that this vacuum solution, does not reduce to the lineill' dilaton vacnulll when

we tranform back to the original fields p aud </>. This was the cause of the pl'ûblellls in

the computation of Hawking radiation in a fixed background. However, it reduces ta t.he

LDV at the past. timelike infinit.y i-, so that we can argue that. it is c10sely l·e\at.ed to t.he

LDV. To compute the Bondi mass of the black hale formed by the col\apse of Illat.t.er, wc

use the delinition (A.1) stated in Appelldix A, and al'tel' int.egmt.ing it., wc obtain:

(:l.lml)

The \inear variations 8Ù and 8V will be obtailled by writing t.he solut.ions (3.1U3) and

(3.10')) in the \inear form:

•

Ù = ÙoHÙ

V = lÎa HV ,

which imply that wc have:

8Ù = -7 (e·l(a+-at )-1) 0(0'+ - uri) - i ln [1 +7e·1a
-]

,;,).. -~a+-e
4m

8V - o.
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(3.111)

(3.112)



(3.113)• TI", BOllui mass (:J.JO!J) is thell givell by:

lYI(17-) = III - ~/( {In [1 + ':' c"la-] +,\ 1 '~ .}
4 " e-· a +m

A silllilar pXIHessioll for the Bondi mass l'as derived ill [18] for a conformally invariant

IlIoUei of two-dimensional dilatoll gravity. This mass tends 1.0 the amplitude m of the

illcomillg mat.ter al. the past infinity (17- --> -00). However, al. the future infinity i+ (the

Iimit 17- --> 00), the Bonui mass goes 1.0 large negative values (-00). This is obviously

nonsense, becallse the black hale canllot Hawking radiate more energy than its initial

mass. This sllggests that the vacuum is unstable; there is no stable ground state where

the black hale could stop its evaporation. This diverging mass is present in most two

dimensional dilaton gravity modds, but some model, use new boundary conditions al.

fi' = 0 1.0 stabilize the vacuum [18]. This problem can also be seen by looking al. the

Hawkillg radiation rate, defined as the variation of the Bondi mass with respect 1.0 (J-,

(3.114)

l. C.:

<11'1'/(17-) = ,\2/( [ 1 2 -1] .
<117- ·1 (1 + 1'e·1a-)

We readily sec that the radiation tends 1.0 a constant flux al. the future infinity 17- -t 00,

which mealls that the radiation never stops. This is a very important problem of these

two·dimellsiollal models, because this unending Hawking radiation occurs even when we

arc taking the backreaction of the metric into account. Previous attempts to find the right
'.'f. •

boulldary condition on the singularity fi' =0 were also designed to render a well-behaved

vacuum state for the theOl'y, It is also important to notice that the Hawking radiation

rate is proportional ta /( = N/12 and not 1.0 'Y = (N - 2'1)/12, so that the black hale

does not Hawking radiate ghosts as sorne comput.ations of Hawking radiation in a fixed

background had shown for some carly models.

•

On the other hand, for a proper choiee of the parameters, wc can now have a model

without singnlarity, and this property enables us 1.0 avoid the problem of the possible event

where the singularity becomes naked [5J. Thus in the generalized model wc have developed

sa far, thert' is no point where the evolntion of the spacetime becomes non-unique and

where a cataclyslll could happen. One would like 1.0 be able 1.0 modify the theOl'y such

that the Hawking radiation is well-behaved for the whole lifetime of the black hole, i.e.

that il. will stop somewhere, leaving either the vacuum or sorne sort of remnant. II. could

also be interesting ta look al. the possible implications of this model on the problem of
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the information loss in black hol<'s physics. !ntl'n'st inp; proposais on t his subjl'l'l l'au 11\'

found in [261 .
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Conclusion

ln t.his t.hesis, we st.udied black holes solutions of two·dimensional dilaton gravity models.

First., we saw in the CGHS [6] model that we can add quantum corrections to a c1assical

model and make il. Hawking evaporate. In this model, the quantum correction is simply

the Polyakov anomaly term. We were able to compute the rate of Hawking radiation for a

fiducial observer in a semiclassical approximation where the metric is kept fixed. The flux

obtained has a good behavior in the far past, but tends to a constant in the far future. This

unphysical constant rate was c1aimed to be caused by the approxi.nation stated above.

One would want to be able to include the dynamics of the metric in the computation of

Hawking radiation, but the one·loop corrected model is not solvable. 50, one would like

to have a completely solvable model which will take care of the backreaction.

ln the second chapter, we studied one solvable model: the RST mode!. In this model,

a new counterterm has been added to the theory, making it solvable. Since the the

Ol'y is cOlllpletely solvable, we can take the backreaction into account in the Hawking

evaporation. This model also has a curvature singularity defined by the equation

on
or/> = 0 . (3.115)

As the black hole evaporates, the apparent horizon recedes and the singularity will even·

tually become naked. A naked singularity is timelike and its evolution is not uniquely

deterlllined. 50, in order to overcome this uniqueness problem, sorne authors tried to

impose boundary conditions on the singularity, but nobody has found a satisfactory set

or boundary conditions and research is still progressing on this subject [18, 26J. Another

solution to the naked singularity problem is to build a model without singularity.

ln the last chapter, we attempted to build such a mode!. We modified the quantum

corrections to the c1assical model which gave what we called the generalized model action

(3.4). We imposed a simple current relation, which enabled us to transform the theory to
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a solvable Liouville theory. The imposition of the simple current puts l'onstraints on 1.11<'

parameters of the theory, which must satisfy the part.icular rclat.ions (a.2·1) and (:1.25).

We first tried to make a semiclassical computation of Hawking radiation, but. it was not

possible to perform it in a simple way. Then. we computed il. using th., Bondi mass

method, but we obtained au unending Hawking radiation. This beha\'ior is pat,hological

to two-dimensional dilaton gravit.y models, and remained present in OUI' generalized mod"l,

suggesting that the vacuum uscd in the dilaton gravity theories is not stable.

The important feature of the generalized theOl'y is that we can build a t.heory wit.h

out singularity by a proper choice of the paramet.ers. Working with a theory withont

singularity removes the problem of the boundary conditions on a naked singularity. It is

appealing that the quantum corrections to the classical CGHS mode! are able 1.0 remove

the classical singularity and one might hope that such a behavior would appear 1.0 be tnlC

in higher dimensional black hole physics. This has 1.0 be checked, and there is no obvions

way how 1.0 generalize the procedure deve!oped in this thesis for higher dimensions. In

higher d:mensions, the dilaton field will not have a mass dimension of Zel'o preventing us

to add tenns proportional 1.0 rP 1.0 the power of n. AIso, the anomaly term would certainly

be different from the simple Polyakov action arising from the matter path integml, sinee

we cannot perform this path integral in four dimensions.

Fina11y, let us note that a11 these models are solved classically, i.e. nsing the minimal

action principle 6S = 0 to derive the equations of motion. This procedure leads 1.0 a

deterministic solution which is opposite to the spirit of quantum mechanics. In qualltul11

mechanics, we usually have a probabilistic evolution, which is absent from these two

dimensional models of dilaton gravity. So, one would like 1.0 bring this propCl'ty ill the

models and one possible way 1.0 do il. could be 1.0 use the influence functional method of

Feynman and Vernon [27J. This still has 1.0 be done for the models studied in the present

thesis.
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Appendix A

Bondi Mass

Il. is orl.en very useful 1.0 know I.he tot.al energy (the mass) of a system when we are

dcaling wit.h General Relativity. Since the discovery of Hawking evaporation, this question

bccolI\cs more import.ant if one wants t.o be able to follow t.he evolution of the black hole

as it. evaporat.es. Such il definition of the residual mass of <. system is provided by the so

called Bondi mass (see [25] and [28] for application to black holes physics.). This appendix

present.s a bdd descript.ion of this mass definit.ion and we will compute a simple example.

A.t Definition

•

First. or ail, t.he Bondi mass IllUSt. be comput.ed in an asymptotically Minkowskian coordj

nat.e syst.em {.,.±} because field t.heOl·y is weil understood in Minkowski spacetime. More

precisc1y, the concept. of part.icles is weil defined [16]. Also, the computation is taken

around a rererence solution of the system for which we are computing the mass. Let us

define 1i7:,b as t,he first variation of the stress-energy tensor's components around some

l'c!crence solution, statie or not. Then, the Bondi mass as measured at future null infinity

J/t is defined by [25]:

M(.,.-) =/T~ d.,.+oT~ =_J.J~ d.,.+ (01'++ +01'+_) (A.I)

This is a simple expression; ail we have to compute is the first variation OT.b of the stress

energy tensor. From this definition, we can define in a natural way the Hawking radiation

as the rate of decay of the Bondi mass with respect to "'-, i.e. 8u-M(.,.-). Now let us

compute a simple example.
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• A.2 Classical CGHS Black Hale

\Ve firs\. have to look at the stress-energy tensor exprl'ssl'd in asymptulically ~linkulI"skian

coordinates

(A.:!)

The stress-energy tensor's components (1.10) and (1.11) tranSfOt"lll acclH"ding tu "qnaliuns

(3.30) and (3.29):

-rH = ,-2<' (4ihf)()±lb - :W~l\)

'r+_ = e-2~ (2iJ+ iL eP - .lfJ+ePiJ-eP _ ,\2(:2';)

(:\.:1 )

(A.·I)

where we redefined iJ± = a:±' It is now simple to comput,c the linl'ar v,"'iations of 'i;",:

oTH = _2e-2~0 (48±ÎJo8±ePo - 2iJ~rPo) 0eP

+e-2~0 (4iJ±rPoâ±op+4â±pur)±orP - 2iJ20rP) (A.fi)

01'+_ = _2e-2~0 (2â+â_ePo -4â+<Poâ_<po - ,\2e21;0) /iq,

+e-2oo (2â+D_o<p - 40+orPO_rPo - 4rhl~UO_O<P - 2,\2c2,;nlifi) (A.li)

where Po and <Po are the referenee solutions around which wc lineariw and liq, and lif;

are the linear variations of the fields from these rcfl'renee solutions. The lh'st part of

each equation vanishes because the refl'renee solution must satisf.l' the nlct.l"ic equiltion of

motion and constraints T.b = O. Now we have 1.0 select il referenCl' solution. The obvions

choice here is the linear dilaton vacuum:

•

However, in the cr-coordinates (A.2) defined above, this tunls out to

1 +rPo = -2"..\(cr - (J'-)

Po = O.

Thus, the variations are gi ven by:

oTH = 2e·l(a
L

a-) (-..\fhop - 8~orP)

01'+_ = 2e.l(n
L

n-) (8+fLo<jJ +..\(8_ - â+)oq, _ ..\20p)
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• SullSt.it.uting t.hese result.s in t.he definit.ion oi t.he Bondi mass, wc have:

:r+
M(a-) = J" da+2D+ [,\{,I(O+-O-)op + ",1(0+-0-)(8+ - 8_)09]

= 2".1(0+-0-) ('\op + 8+0,p - D_or/J) l:rit . (A.ll)

This is t.he rcsult obl,ained by CGHS [6]. Note that this expression has ta be evaluated at

t.he fut.l:re miii infinity :lIt, whieh is the limit 0-+ --> 00. The variations o,p and op depend

on t.he part.ieulal· solution we are looking al. For example, for the classieal statie black

hol<' solu t.ion:

t.he variat.ions are derived from the equations

r/J = !/Jo + o!/J

p = ,io +op.

Using the linear dilaton vacuum (rererenee solution) Po and !/Jo, we get:

C!/J c- 1\1 -.\(u+-u-)
u =up =--e .

2'\

(A.12)

(A.13)

(A.14)

(A.15)

•

SlIbstituting this into the Bmldi mass, we simply get the constant mass j11(0--) = M.

This proves that the constant or Integration of the solution (1.28), suggestively named

M, was in raet. the mass of t.his classical black hole.
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