INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

DYNAMIC LOAD BALANCING ISSUES
IN THE EARTH RUNTIME SYSTEM

by
Kamala Prasad Kakulavarapu

School of Computer Science
McGill University, Montréal
Québec, Canada
December 1999

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF
MASTER OF SCIENCE

Copyright © 1999 by Kamala Prasad Kakulavarapu

i+l

National Library Bibliothéque nationale
of Canada du Canada
uisitions and Acquisitions et
Bibliographic Services services bibliographiques
Ottwa ON KA ONS Otwa ON K1 N4
Canada Canada
Your fle Votre résrence
Ouwr Be Notre rildrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64378-6

Canadi

Abstract

Multithreading is a promising approach to address the problems inherent in multiproces-
sor systems, such as network and synchronization latencies. Moreover, the benefits of
multithreading are not limited to loop-based algorithms but apply also to irregular paral-
lelism. EARTH - Efficient Architecture for Running THreads, is a multithreaded model
supporting fine-grain, non-preemptive threads. This model is supported by a C-based
runtime system which provides the multithreaded environment for the execution of con-
current programs.

This thesis describes the design and implementation of a set of dynamic load balanc-
ing algorithms, and an in-depth study of their behavior with divide-and-conquer, regular,
and irregular classes of applications. The results described in this thesis are based on
EARTH-SP2, an implementation of the EARTH program execution model on the IBM
SP-2, a distributed memory multiprocessor system. The main results of this study are as
follows:

e A randomizing load balancer with both sender and receiver components using
global load state information provides scalable, robust performance for recursive
and irregular applications. Furthermore, a randomizing algorithm performs the best
as long as the cost of computing the random number does not dominate the overall
time of thread execution.

e Load state information outperforms history information for irregular and recursive
applications. However for regular applications, history information is more prefer-
able.

e A purely sender-initiated algorithm is the best choice in two scenarios: barrier-
synchronized applications, and very fine-grain applications at low input workloads.

o A simple, work-stealing load balancer is preferable for applications with modest
thread granularities, and very low workloads.

i

Other major contributions include:

o Description of a runtime system for a non-blocking, non-preemptive multi-threaded
programming model.

o A detailed analysis of costs associated with EARTH operations, and a comparative
study of EARTH performance on three different platforms.

o Proposal of a new classification scheme for multi-threaded systems. This is supple-
mented by an extensive literature survey.

Résumé

Les systémes concurrents a fil d’exécution muitiple représentent une approche promet-
teuse dans la résolution des problémes tels que les réseaux ou les latences dies a la syn-
chronisation inhérents aux systémes multi-processeurs. De plus, les bénéfice des systémes
concurrents 2 fil d’exécution multiple ne sont pas limités aux algorithmes basés sur des
boucles mais touchent également le parallélisme irrégulier. EARTH, une architecture ef-
ficace pour exécuter des fils d’exécution, est un modéle a fil d’exécution multiple qui
supporte des fils d’exécution non-préemptifs et a forte granularité. Ce modéle est struc-
turé autour d’un environnement d’exécution basé sur C qui fournit aux systémes a fil
d’exécution multiple la possibilité d* exécuter un programme concurrent.

Cette thése décrit la conception et la réalisation d’un ensemble d’algorithme dy-
namique de répariition de charge, ainsi qu’une étude approfondie de leur comportement
sur des classes d’applications réguliéres, irréguliéres ou basées sur la notion de la division
pour conquérir. Les résultats décrits ici sont basés sur EARTH-SP2, une réalisation du
modele d’exécution de programme de EARTH sur une machine IBM SP-2, un systéme
multi-processeur 2 mémoire distribuée. Les principaux résultats de cette thése sont les
suivantes:

e Un répartiteur de charge al€atoire, avec un émetteur et un récepteur utilisant
P'information de I'état de charge globale, fournit des performances robustes et
évolutives pour des applications récursives et irréguliéres. De plus, un algorithme
aléatoire est le meilleur pour autant que le coit pour calculer le nombre aléatoire ne
domine pas le temps d’exécution d’un fil d’exécution.

e L’information de 1’état de charge est meilleure que I’historique pour les applications
irréguliéres et récursives. Par contre pour les applications réguliéres, I’historique
est préférable.

e Un algorithme initié seulement par I'émetteur est le meilleur choix pour deux

iv

scénarios: les applications synchronisées par barriére et les applications a forte
décomposition travaillant sur des entrées peu consommatrice en ressource.

e Un répartiteur de charge “voleur de tiche” est préférable pour les applications avec
des fils d’exécution de ganularit€ moyenne et des faibles charges.

Les autres contributions de cette thése incluent:

e [a description d’un environnement d’exécution pour un modéle de programmation
a fil d’exécution muitiple, non bloquant et non préemptif.

e Un analyse détaillée des coiits associés aux opérations exécutées sous EARTH
et une étude comparative des performances de EARTH sur trois platformes
différentes.

e La proposition d’une nouvelle méthode de classification pour les systémes a fil
d’exécution multiple, le tout augmenté d’un vaste survol de I'état de I’art.

Acknowledgements

It was a typical summer afternoon in Montréal. [was going to meet Prof. Guang R. Gao
for the first time, two months after he agreed to be my external supervisor. After an hour,
I was convinced that he is in a hurry to change the world. Today, [am happy to be part of
the changed world. I am grateful to Prof. Gao for giving me the opportunity to work in the
EARTH project, and for his constant motivation and support. I thank him for arranging
my visit to the CAPSL Lab at the University of Delaware, where I could complete a major
portion of this thesis. My discussions with him always helped me understand the issues
better, and have elevated the contents of this thesis immeasurably. From my association
with him, [have learnt a lot both in research, and in real life.

I am fortunate to have worked with Dr. Olivier Maquelin. Olivier introduced me to
multithreading, answered my questions on the EARTH runtime system, and guided me
in modeling dynamic load balancer behavior in the EARTH system. This thesis drew
immensely from his work on the EARTH runtime system. I sincerely appreciate the
interest he showed in my career, and his patience with my learning curve. Throughout
this thesis, he has been a tremendous source of inspiration, and I value his advice on
research and professional skills. Olivier is very hard to emulate, but [will try.

[sincerely thank Prof. Laurie J. Hendren for the financial support despite knowing
me only as a former ACAPS lab member. Laurie’s kind consideration has helped me a lot
during the crucial last semester of my thesis.

Dr. Ruppa K. Thulasiram has been my mentor during my stay at the CAPSL lab. He
was always patient to listen to my wild ideas, and offer comments which significantly
affected the quality of this thesis. His remarks on the time requirements of this thesis, and
his motivation have helped me work hard to complete my thesis in time.

It has been my pleasure to know personally Dr. Kevin B. Theobald. I learnt from
his experience on the EARTH project, and his remarks about thesis preparation. I thank
him for providing me access to the CAPSL computer systems, and for many quick hacks

which made life before deadlines a little less unpleasant. Qutside office, he was lots fun
to hang around with, and I will miss the dinner routine.

Dr. José Nelson Amaral made a big impact on my technical writing skills. I have
learnt from him better ways to organize ideas, and to present issues in a clear, coherent
manner, though [admit I still have a long way to go. [have enjoyed our collaboration on
different papers based on contents of this thesis.

This thesis would not have been possible if not for the efforts of former and cur-
rent members of the ACAPS lab, McGill University, and the CAPSL Lab, University of
Delaware. Dr. Olivier Maquelin has implemented the Threaded-C preprocessor and the
runtime system. The benchmarks used in this thesis to analyze overheads and latencies of
multithreaded operations are also part of his work. I thank Dr. Xinan Tang for pointing us
the paper on the supermarket model, which convinced us to go ahead with the randomiz-
ing balancer in this thesis. Andres Marquez did an excellent job of presenting our paper
on dynamic load balancing at a workshop in Orlando on our behalf. My discussions with
Parimala Thulasiraman on Threaded-C programming, and distributed algorithms were
very educative. Christopher Morrone is another runtime system person in the group, and
we had very interesting discussions about implementation issues of the runtime system.
[thank Kevin Theobald, and Chris Morrone for performing some experiments on the
MANNA and the Beowulf systems which are used for comparative performance in this
thesis. Chrislain Razafimahefa translated the abstract into French in a very short time.

While performing my thesis research at two Universities enriched my experience, it
also brought with it quite a few personal down-times. I am fortunate to have friends who
helped me in these situations with moral, financial, and logistical support. Parimala and
Thulasi were always there to help me. They were instrumental in my maintaining my
sanity during many a trying times. Vijay Sundaresan is a great buddy, and I appreciated
another cricket enthusiast for company. Besides cricket, Vijay was someone to whom I
could always turn to, and he always surprised me with his quick and wholesome support.
[enjoyed our long conversations, and heated debates about everything from academics
to cricket teams. I had a great time hanging around with Tripat Gill. Tripat is an artist
at drinking coffee, and no doubt we spent most of our time in coffee shops. [appreciate
his support in more ways than I can count. Chrislain Razafimahefa provided the soccer
connection. I could appreciate the significance of World Cup Soccer to this planet after
watching him at work on an unrepentant television. He is a very understanding and gen-
erous friend. Mike Soss and Tallman were great office mates, and completed the buffet

vii

gatherings. Kunal and Rashmi Gupta are great friends, and I can never forget their as-
sistance in my initial days in North America. Danielle Azar is my officemate and helped
me in many ways a friend and an officemate could do. Next time, I should remember to
leave the key on her desk. Charles Abety helped me during thesis submission time, and
it made a crucial difference. I appreciate the friendship and support of Krishna Mohan,
Hari, Suresh, Balaji, and Srinivas; talking to them always made me feel good.

Special thanks are due to Sean Ryan, and Danielle Azar. Sean reviewed the technical
memos that were part of this thesis and gave valuable comments that improved their
presentation. Danielle allocated more than a fair share of her busy schedule in reading
through the final thesis, and helped improve the quality of the presented thesis.

[acknowledge with gratitude the Cornell Theory Center, Cornell University for allow-
ing us access to their BM SP-2 system, on which the results in this thesis are based upon.
[thank the Argonne High-Performance Computing Research Facility, and CACR, Caltech
for allowing us access to their [BM SP-2 systems which helped us perform wide-ranging
experiments.

[could never hope to reach this stage without the support of Franca Cianci. Franca was
very understanding, supportive, and super fast in her replies to my not so uncomplicated
questions. I am grateful for the support of Lise Minogue who made signing TA contracts
such a pleasure. I thank Lucy St-James for her patience and prompt addressal of my
administration related queries. [thank Marilyn Gombe for her help during my thesis
submission. [thank Vicki Keirl for providing me the facilities to complete my Masters
program.

Finally, I can never repay the debt to my family. They were enormously patient,
solidly supportive, and never flinching in their confidence in me. [am immensely grateful
to my Parents for their love, support, and encouragement. They always gave me the
independence to pursue my choice, but also worked very hard to give me the strength to
face the world. In the past few months, my brother Sudhakar turned out to be a great
motivator. [can never thank them enough.

To my Parents, for their boundless love, support and encouragement

Contents

Abstract
Résumé
Acknowledgements

1 Introduction
1.1 Background

.................................

1.1.1 ParallelJobScheduling
1.1.2 Dynamic LoadBalancing
1.1.3 TheEARTHSystem
1.2 Motivation e e e

1.3 ProblemStatement e

14 Contributions
1.5 ThesisOrganization

2 The EARTH Multithreading System
2.0.1 Current Implementations
2.1 Threaded-C

......................

.................................

2.I.1 ProgrammingModel

2.2 Preprocessing Threaded-C
221 GlobalAddresses
222 SyncSlot e
223 SLOTADR. it
224 FramebasedDataStructures
225 INITSYNC i it
226 SPAWN

..............................

227 INVOKE
2.2.8 Frame Passing

229 Variable ParameterPassing
2.2.10 Preprocessed Code for Fibonacci - Detailed Study
2.2.11 Sequential-Call mechanismwithCALL
2.2.12 LoopsspreadoverThreads

2.3 The Runtime System

........

............................

23.1 ContextSwitching
2.3.2 Scheduling of Threads
2.3.3 Thread Execution by the Runtime System
2.3.4 Dynamic Load Balancing
235 NetworkLayer
236 CommonRTScore
2.3.7 Architecture Specific Code
2.3.8 Portability

.......................

.....................

....................

..............................

3 Dynamic Load Balancers in the EARTH Runtime System

31 Background e
3.2 The Rand Balancer
3.3 Other Balancers
3.3.1 Receiver-Initiated Balancers
3.3.2 Sender-Initiated Balancers
3.3.3 Hybrid Load Balancers
3.3.4 Performance Bound

.............................
...............................
....................
.....................
.......................

........................

Experimental Framework
4.1 Benchmarks
42 PerformanceEvaluation.
4.3 EARTH-SP Implementation

.................................

........................

Performance Results

5.1 Overall Performance

52 RandBalancer.
521 RandversusMinima
5.22 Scalabilityof RandBalancer

............................

70
70
73
74

523 Parallel Efficiency 87

5.24 Overheads for Supporting a Multithreaded Environment 88
5.2.5 Distribution of Total Elapsed Time 91
5.2.6 Load State Information and Low Load Applications 96
5.3 The Rand Balancer-ADetailedStudy 97
54 OtherBalancers 105
55 ProgramBehavior. 107
5.5.1 Transition Pointand Peak Point 107
5.5.2 Effect of Grain Size and PollingInterval 109
553 EffectofWorkload 115
5.5.4 Effect of Application level Load Balancing 116
555 TokenDistrbution 118
EARTH Operations - A Performance Study 121
6.1 Overheads of Threaded-C Instructions 122
6.2 Latenciesof EARTHOperations 125
6.3 DataCommunication0.... 126
6.4 BlockmoveOperations 128
A Comparative Performance Study of Fine-Grain Multi-threading on Dis-
tributed Memory Machines 130
7.1 Execution Model versus Architecture Performance 130
7.2 HardwarePlatforms, 131
7.3 Latencyof EARTHOperations 132
7.4 Comparison of Application Perfformance 136
7.5 PerformanceOverview 140
Related Work 141
8.1 ThreadingModels., 142
8.2 Software Multithreaded Systems 143
8.2.1 Implementations of Multithreaded Systems 144
8.3 Language-BasedSystems 148
8.3.1 TheCilk Multi-threaded Language 148
8.3.2 The Threaded Abstract Machine 150
8.3.3 The Dllinois Concert C++ Language 151

834 The Java ProgrammingLanguage 152

84 Library-BasedSystems 154
8.4.1 DistributedFilaments 154

842 TheOpusLanguage 154

843 TPVM e e 155

844 Nano-Threads. 156

845 ActiveThreads 157

846 StackThreads 157

847 StructuredThreads 158

848 DSM-Threads. 158

849 Aradne oo, 159

84.10 Athapascan 160

8.5 DynamicloadBalancing 160
Bibliography 188
A EARTH Primitives in Threaded-C 189
A.l ThreadsandFunctions 189
A.2 Thread Synchronization 190
A.3 Data Transfer Primitives 192
A4 Global AddressSupport. 193

B Putting it all Together 194
B.l ParallelExecution, 194
B.2 InvokingaLocalFunction 195
B.3 ExecutionofaRemote GETSYNCL 196
B.4 Run-TimeSystemDirectory 197
B.5 Running Threaded-CPrograms 199

C Profiling support in the EARTH Runtime System 203
C.l1 A Distribution of Total Elapsed Time 204
C2 ProfileData 207

D EARTH on Different IBM SP Installations 210
D.1 EARTH-SPatCACR,Caltech 210
D.2 EARTH-SP at Argonne NationalLabs 213

D21 BMSP3-Quad 213
D22 IBMSP2 213

E Additional Experiments 217

Xiv

List of Figures

1.1 Performance of different balancers for Fibonacci(28). 10
2.1 Translation Sequence of Threaded-Ccode 15
22 ThreadStates e 17
Parallel Function Invocation in Fibonacci Program 19
24 ActivationTreeforFib4), 20
A Generic Activation tree for a Threaded-C program. 21
Threaded-C version of Vector Addition 22
A Node in Activation Tree with a Spawn Construct 22
2.8 A Node in Activation Tree for Vector Addition 23
2.9 Runtime System’s view with Activation Frames forfib(3) 24

2.10 Type definition to represent a Global pointer and the preprocessed code

fOrTOGLOBAL .« . . . o v it it et e e e e e e e e et e e 26
2.11 TypedefinitionforSyncSlot 27
2.12 Structures generated for Frame-passing 28
2.13 Preprocessedcode for SPAWN(I) 29
2.14 Preprocessed code for INIT.SYNCandINVOKE 30
2.15 Frame passing among 2 threads of Fibonacci function 33
2.16 Pre-processing of CALL instruction 39
2.17 Pre-processing of While Loop spreadover Threads 41
2.18 Internal Queuesinthe EARTHRTS 45
2.19 ASample ActivationTree. 46
220 RTSactivityatPolling 49
2.21 Thedual, snd and range load balancers 33
2.22 Send routines for Active Messages L. 55
2.23 Invoking handler forSyncOperation 56
2.24 Handlerfor Syncoperation 57

5.1

52

53
54
55
5.6
5.7
58
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20
5.21
522
5.23
5.24
525
5.26
5.27
5.28
5.29

Performance comparison between Minima, Nop and other Balancers of

differentbalancers. 86
Performance comparison between Minima, Nop and other Balancers of

differentbalancers. 86
Absolute and Relative Speedups for Fibonacci(33) 87
Absolute and Relative Speedups for Queens(12) 88
Absolute and Relative Speedups for Traveling Salesman Problem(10) . . 88
Relative Speedup forKnary(7,7.2) 89
Relative Speedup for Knary(2,5120) 89
Absolute and Relative Speedups for Matrix(1024X1024) 90
Absolute and Relative Speedups for Tomcatv(257) 90
Relative Speedup for SPMD(1,1,0) 91
Relative Speedup for SPMD(44,0) 91
Absolute and Relative Speedups for Paraffins(28) 92
Scalability Test for Queens(12) 92
Scalability Test for Queens(12) 93
Parallel Efficiency 93
Parallel Efficiency for Paraffins(28) 94
A Distribution of Elapsed Time for Fibonacci(33)on 8 nodes 94
A Distribution of Elapsed Time for Fibonacci(33) with Rand Balancer on

Bnodes e e e e 96
A Distribution of Elapsed Time for Queens(12)on8nodes 96
A Distribution of Elapsed Time for Queens(12)on8nodes 97
A Distribution of Elapsed Time for Knary(7.7.2)on8 nodes 97

A Distribution of Elapsed Time for Knary(7,7,2), Rand Balancer on 8 nodes 98

A Distribution of Elapsed Time for SPMD(4.4,0)on 8 nodes 98
A Distribution of Elapsed Time for SPMD(4,4,0)on 8 nodes 99
A Distribution of Elapsed Time for Paraffins(28) on8nodes 99
A Distribution of Elapsed Time for Paraffins(28) on 8 nodes 99
Distribution of Elapsed Time for Fibonacci(6) 100
Distribution of Elapsed Time for Fibonacci(6) 100
Performance of Queens(12) while varying the number of random probe

destinations et 102

xvi

5.30

5.31
5.32
5.33
5.34
5.35

5.36

5.37
5.38
5.39
5.40

5.41
542
543
5.44
5.45
5.46
547

548

5.49

5.50
5.51
5.52
5.53
5.54
5.55

Effect of Load balancing with Rand Balancer. Load balancing threshold

isvariedinthebalancer. 102
Performance of different randomizing policies 103
Performance of different randomizing policies 104
Performance of different randomizing policies 104
Effect of Information policy inthe Rand balancer 105

Relative performance of balancers at low workloads (a)Low loads, very
fine grain threads (b) Low loads, grain size [00us, polling interval 50us . 105
Comparision of speedup against overheads with the increase in the num-

berof NodesforFibonacci 108
A comparision of Transition points for different balancers for Fibonacci(12).108
Peak performance points for Fibonacci(12) 109
Peak performance points for Fibonacci(12) 109
Performance comparision at low loads at polling interval of 50us for

Knary(3,30). e 110
Relative Speedup with grainsize200us 110
Relative Speedup for Knary(2,512,0y 111
Performance of Knary(2,512,0) for different grainsizes tl
Performance of Knary(4,4,0) and Knary(7,7,2) [12
Performance of Knary(4,4,0) and Knary(7,7,2) i12
Performance of SPMD(3,3,0) at polling interval of SOus 113
Performance of SPMD(3,3,0). (a) Polling Interval 50 us (b) Polling In-

terval 100 s e e 113
Performance of SPMD(3,3,0). (a) Polling Interval 150 us (b) Polling In-

terval 25 1S . . . L L. e e 114
Performance of SPMD(3,3,0) at grain size of 1800 us and polling interval

of ISOpus. . . . o o e e 114

Performance of SPMD at grain size 200 us, and polling interval of 50 us 115
Performance of SPMD at grain size 200 us, and polling interval of 50 s 115

Effect of workload on different balancers for Fibonacci 116
Effect of workload on different balancers for Fibonacci 116
Effect of workload on different balancers for Paraffins 116
Effect of workload on different balancers forParaffins 117

xvil

5.56 Scalability test for Knary(7,7,X) where X is varied. X is the number of
children of each node that need to be locally executed.
5.57 Scalability test for Knary(7,7,X) where X is varied. X is the number of
children of each node that need to be locally executed.
5.58 Effect of Load balancing for Knary(7,7,X), where X is the number of
children of each node that need to be locally executed.
5.59 Effect of Load balancing for Knary(7,7.X), where X is the number of
children of each node that need to be locally executed.
5.60 Token Distribution forFibonacci(33)
5.61 Token Distribution forQueens(12)
5.62 Token Distribution for SPMD(4,4,0)
5.63 Token Distribution for Paraffins(28)
7.1 Exchange of synchronization signals for the sequential and pipelined

measurements of the latency of a sync operation.
7.2 Absolute Speedup for Queens(12)
7.3 Absolute Speedup for Paraffins(28)
7.4 Absolute Speedup for Matrix(1024X1024)
B.1 RTS performing Local Function Invocation
B.2 Usage and preprocessed code for GET RSYNC.L
B.3 RTSfunctionetcgetsyncl.
B4 Handlerhdlgetsynct
B.5 Macro Definitionsin filedata_inc.c
B.6 Partial EARTH Directory Structure
B.7 Sample Output for the Fibonacci - Fib(33)on 32 nodes
C.1 A Breakup of Program Execution Time on 2 nodes - A Template
E.1 Relative Speedups of different balancers for Fibonacci
E.2 Relative Speedups of different balancers for Fibonacci
E.3 Relative Speedups of different balancers for Paraffins
E.4 Relative Speedups of different balancers for Paraffins

Chapter 1

Introduction

1.1 Background

Designing multiprocessor systems that deliver a reasonable price-performance ratio us-
ing off-the-shelf processor {111] and compiler technologies is a major challenge. While
modern processors can issue multiple instructions per cycle, they lack the features re-
quired to address fundamental issues in multiprocessing systems: latency, bandwidth and
synchronization overheads. A well designed parallel system must balance the trade-off
between a fine task granularity [142] and the impact of communication latencies on per-
formance. Coarse-grain parallel systems can tolerate long latencies if the application
provides enough parallelism because each task is long enough to amortize the communi-
cation overheads. But coarse grain systems do not fully exploit the parallelism in irregular
applications. Fine-grain parallelism, on the other hand, enables further parallelization of
many applications, but has proved to be difficult to support due to the higher relative cost
of communication latencies [142].

Multi-threading is a promising approach to overcome two major pitfalls of conven-
tional parallel computing, and in particular fine-grain parallelism - communication and
synchronization latencies [30, 13, 10, 49, 55, 131, 75, 83, 82, 170, 112, 72, 76, 102,
106, 134, 138, 148, 149, 137, 162, 161]. Multi-threaded languages efficiently manage
the low computation to communication ratio (R/C) in fine-grain parallelism by support-
ing several threads of control per node and switching to a new thread whenever a long
latency operation is encountered. The fine-grain threads offer better expressiveness, low
thread management overheads, and higher processor utilization. These features facilitate

significant performance improvements for all classes of applications, including the irreg-
ular and dynamic applications which are difficuit to program efficiently with coarse-grain
parallelism.

Messina et al. [115] study the current trends in high performance computing, and
evaluate future requirements in architecture and programming models in order to sus-
tain current tempo in system performance into the next decade. According to this study,
Moore’s law will hold true for at least two more generations, until feature sizes of 0.08-
0.13 um are reached. At this point in 2010, the limits of CMOS silicon will have been
reached'. One of the approaches suggested, besides developing alternate component tech-
nologies, is multithreading. Multi-threading allows hiding of the rapidly increasing dis-
parity between processor and memory speeds. Work is decomposed into individual tasks
(threads), which are scheduled on processors after their data/synchronization constraints
are met. One requisite condition for hiding memory latencies is that the ratio of threads to
processors should be high enough so that there is always work to be done by a sufficient
number of ready threads.

Recent studies have shown that it is possible to support fine-grain multi-threading
efficiently with off-the-shelf technology [112, 156]. According to this study [153], three
features are required for efficient runtime support of fine-grain threads. Threads should
be abundant, balanced, and cheap. Having an abundant number of active threads on a
processor increases processor utilization, because if one thread is delayed, another thread
can start execution. A large pool of threads also offers good potential for load balancing.
Economic load balancing is essential in order to adapt to dynamic application behavior
at runtime. Finally, thread creation, termination, synchronization, and context-switching
should be cheap.

Using off-the-shelf technology implies ruling out custom hardware in building multi-
threaded systems. An alternative is to emulate the multi-threaded model in software. A
runtime system for multithreaded systems assumes the responsibility to provide an ideal
interface between the multithreaded code and the hardware platform, and implements an
environment for efficient execution of threads. A significant component of the runtime
system is the dynamic load balancer. The dynamic load balancer reacts to load imbal-
ances at runtime, and aims to keep all the nodes busy. Past studies in dynamic load
balancing have focussed on two objectives: keeping all the nodes busy; and optimizing

!According to the Semiconductor [ndustry Association, the clock speed for high performance micro-
processors between now and 2010, is expected to increase from 500 MHz to 1,100 MHz [115].

load balancing by minimizing balancer overheads and maximizing benefits due to load
balancing. However, the understanding gained so far has been limited to distributed com-
puting, and these results are to be studied in the context of multithreaded systems, where
dynamic task generation, fine-grain parallelism impose challenging constraints on the dy-
namic load balancer. Furthermore, maximum utilization of CPU cycles for application
workload becomes even more hard to achieve for distributed memory based applications
whose behavior is difficult to predict at compile-time.

Section 1.1.1 introduces parallel job scheduling in multiuser environments. Various
issues involved in building a dynamic load balancer are studied in section [.1.2. Sec-
tion 1.1.3 introduces the current status of the EARTH project, and the role of dynamic
load balancing in the EARTH program execution model. Section 1.2 lays down the case
for a better understanding of load balancer behavior in fine-grain multithreaded systems,
and the aim of this thesis is stated in section 1.3. Section 1.4 concludes the chapter by
summarizing the contributions of this thesis.

1.1.1 Parallel Job Scheduling

Scheduling in uniprocessor systems decides the next thread which is to be allocated CPU
time. In multiprocessor systems, additional aspects of scheduling have to be considered:
where, when, and which thread. These decisions can be made by the operating sys-
tem, by the language runtime system, or by the application itself. There is an additional
scheduling decision to be made in multiuser, multiprocessor systems - resources have to
be allocated to the application before starting its execution.

Scheduling in multiuser environments usually is the combination of two actions: first,
allocating resources for an application execution, and second, deciding the next thread to
execute in a pool of ready threads. The second stage is similar to dispatching in operating
systems. Another runtime aspect of parallel execution that operates at one level higher
than dispatching is dynamic load balancing. The goal of dynamic load balancing is to
ensure maximum possible utilization of the CPU resources. This is different from the ob-
Jective of selecting a particular thread for execution. While dynamic load balancing aims
to ensure that all processors are busy with adequate workloads on each node, scheduling
selects the next available thread to execute.

Two approaches to scheduling jobs® in multiuser multiprocessor systems are stud-
ied [54]. With single-level scheduling, the operating system performs the actions of allo-
cating resources for an application, and allocating CPU time to competing threads in the
same job. These two actions are decoupled in two-level scheduling, where, the operating
system allots the resources to a job, and the scheduling of threads is done by a higher-level
software, either by a runtime system or by the application itseif. A major implementation
related distinction between the two scheduling policies is partitioning of resources along
the time or space axis. Space-slicing requires exclusive allocation of resources, leaving
the operating system with less control. Time-slicing, on the other hand, is more flexible,
but comes with higher overheads.

Single-level scheduling causes operating system overhead for every scheduling deci-
sion, and this is very costly for fine-grain applications with a high number of synchro-
nizations. On the other hand, two-level scheduling is more suited for shared memory
machines rather than for distributed memory architectures, especially if the programs are
written in the SPMD style.

A popular approach is to partition the resources among jobs, and then run a single
thread on each processing element. This is easy to implement, and suits SPMD prozrams
which run in batch mode. This approach allows dedicated access to muitiprocessor ma-
chines for parallel applications. The operating system sees only a single thread, which is
the user-level runtime system. Application threads are invisible to the operating system,
and their management, synchronization, and load balancing is performed at application
level in the user space. Parallel applications in the EARTH system are executed in this
manner.

Another important feature to be considered in parallel applications is the type of jobs
with respect to the processor allocation [53, 54]. Jobs can be of the following types:
Rigid jobs require a certain number of processors. They will not run on fewer, and will
not utilize more. Moldable jobs allow the number of processors to be set at the outset, but
it cannot be changed thereafter. Evolving jobs have changing requirements, for instance a
sequence of serial and parallel phases. At the beginning of each phase, the job requests the
system for the resources it needs for this phase, and at the end of the phase it releases themn.
Jobs submitted for execution in the EARTH system belong to the moldable category.
Dynamic load balancing has very high potential in this type of jobs because, application
performance depends on the ability of the balancer to map a\ uilable concurrency in the

2A job is an application in execution, as known by the operating system.

application onto varying number of processors efficientiy.

Finally, the initial placement of threads determines the job elapsed time, and thereby
the importance of dynamic load balancing in the system. Load-balancing is most cru-
cial in systems where all the threads are placed in a single node initially. In the case of
EARTH, the first thread is placed on node 0, and this thread generates the parallel work-
load, which is subsequently distributed across all the nodes in the parallel execution by the
dynamic load balancer. Applications which have a sequential-parallel-sequentiai phases
of computation represent another domain of applications where load balancing assumes
an important role. For instance, in a barrier-synchronized application, node 0 generates
paralle! workload, and waits till all the nodes complete, and then issues the next set of
work. In this case, very fast load distribution is required.

1.1.2 Dynamic Load Balancing

The total elapsed time of an application running in parallel over multiple nodes is limited
by the slowest node. One way of speeding up the program execution is to allow equal
distribution of workloads on all the processors, so that the prospect of few nodes executing
most of the parallel workload while other nodes are idle is avoided. Load balancing is the
strategy used to minimize the total execution time, by distributing workload equally over
all the nodes participating in the execution.

In distributed systems, an attempt to distribute workload equally involves very high
computational overheads. Most of the work is spent on collecting global state. If the
applications considered demonstrates a pattern of frequent communication and synchro-
nization, this global state changes rapidly, making load balancing unviable. Furthermore,
if the grain size of the transfered work is not big enough to amortize the load balanc-
ing overheads, load balancing is not preferable even if the balancer algorithm guarantees
accurate decisions based on global system state. In these situations, an alternative to dis-
tributing workload equally, is to ensure that all nodes are busy. Reducing idle times, and
thereby the total program execution time is a far more preferable objective than attempt-
ing to distribute the workload equally. This strategy is called load sharing [136]. Most
systems including the EARTH system implement load sharing rather than load balancing.
These two terms are now being used interchangeably. The term load balancing should be
read as load sharing in the EARTH system.

Load balancing can be performed at compile time and runtime. Static load balanc-
ing is done by the programmer/compiler, and is more suitable for regular applications
where it is possible to predict communication patterns, and also where moving workload
at runtime entails a huge cost due to data locality. However, static load balanciny is not
suitable for dynamic, irregular applications, where it is not possible to predict not only
the communication patterns of applications, but also the grain size of the workload on
each node. Dynamic load balancing algorithms use system state information in making
runtime decisions in migrating workloads. An unavoidable consequence of this reliance
on dynamic system state is the high overheads associated with this approach. In addition,
care should be taken to avoid using old state information in order to avoid potential inac-
curacies in balancer decisions, and as a result instability in the system. It is a challenging
task therefore, to design dynamic load balancer algorithms that take into account system
state, application behavior, and make quality decisions at minimum overheads to ensure
minimum idle times.

In an ideal scenario. adaptive load balancing algorithms provide the best possible
performance. These algorithms adapt to the global state by changing their policies, and
algorithms at runtime. It is well known that it is difficult to have a good load balancer
for all applications. With adaptive algorithms, it is possible to switch to the appropriate
balancer at runtime, as a response to change in application load conditions. However,
these balancers are difficult to implement.

A typical load balancer algorithm has four phases - processor load evaluation, load
balancing profitability determination, task selection, and task migration [168, 165]. For
systems where load has to be distributed equally, the task selection phase has in tumn two
stages: in the first stage, the amount of workload to transfer in order to achieve system-
wide load balance, is computed; in the second stage the actual tasks whose computation
time represents the difference of the workloads, are selected.

The different phases of the load balancer are implemented by the four components in
any load balancer [136]:

Transfer Policy : A transfer policy determines whether current load state on a node
warrants the initiation of task transfer, with the node either as a sender or as a
receiver. Usually the transfer policy is based on threshold policy. The state of a
node with respect to load balancing is determined as per the values of predetermined
upper and lower thresholds.

Selection Policy : This policy identifies a task for migration. Several factors are consid-
ered in task selection. Firstly, the overhead due to task transfer should be minimal.
Secondly, the task should execute long enough to amortize the transfer overheads.
Finally, any location dependencies should be maintained.

Location Policy : A partner node for the task migration is identified with the location
policy.

Information Policy : The information policy decides when information about other
nodes is to be collected, from where it is to be collected, and what information
is to be collected. Three types of information policies are reported in the litera-
ture. A demand-driven policy allows a node to collect load information only when
it necds to transfer work. With the periodic policy, a node collects load informa-
tion periodically, depending on the information collected, the transfer policy may
decide to initiate task transfer. Finally, under the state-change-driven policy, nodes
dessiminate their load information when their states change by a certain degree.
This policy differs from the demand-driven policy in that nodes dessiminate their
load information, in contrast to soliciting load information of other nodes.

The transfer policy determines the mode of the balancer, either as a sender or receiver.
This brings up the issue of balancer initiation. Balancers can be receiver-initiated (work-
stealing), or sender-initiated (work-sharing), or hybrid (symmetric) [136, 33]. Receiver-
initiated load balancers transfer the load balancing overheads onto the idle node. Because
the load balancing actions are triggered by change in local state, this approach results
in minimum overheads. On the other hand, sender-initiated balancers dispose their ex-
tra workload onto other nodes in the system. This strategy may result in instability of
the system, due to multiple redundant load balancing actions on all the nodes in the sys-
tem. The hybrid balancers seek to include the advantages from both receiver-initiated and
sender-initiated balancers, and are usually preferable for all load conditions.

The topology of the interconnection network assumed in the load balancer model also
plays an important role in performance. Typical interconnection topologies are mesh,
ring, complete graph, and hypercube. Besides their influence on node-to-node commu-
nication latencies, routing of the load balancing messages through the interconnection
network, opens the possibility of collecting load state information effortlessly.

1.1.3 The EARTH System

EARTH (Efficient Architecture for Running Threads) is a parallel multi-threaded envi-
ronment developed at McGill University [84, 82, 156, 153], and is now an active research
topic at the University of Delaware. The EARTH programming model has been imple-
mented on several existing, conventional multiprocessors such as MANNA (developed at
GMD-FIRST, Germany), IBM SP-2, Beowulf, and Sun SMP Cluster. The research areas
pursued in EARTH are architecture design, run-time systems, dynamic load balancing,
parallelizing compilers, and parallel applications [160, 159, 158, 72, 98, 14, 153]. The
program execution model of the EARTH system is a crucial component in the Hybrid
Technology Multi-threaded Architecture project (HTMT) [67, 154, 62, 64].

Multi-threaded programming support can be provided in two ways. One possibil-
ity is to make the threads explicit using a threaded extension to a general purpose lan-
guage. This choice gives the programmer more freedom, allows expressiveness and effi-
ciency for multi-threaded programs [151]. An alternative is to provide a more traditional
high-level language together with compilation techniques to automatically generate multi-
threaded code [75]. EARTH-C is a user-friendly language that is automatically translated
to EARTH Threaded-C, an explicitly parallel language. The translation sequence, includ-
ing code generation for the target machine is summarized in Fig. 2.1.

Initially, research in the EARTH model was based on the MANNA platform. Later,
a portable implementation of the EARTH environment was developed in order to support
a larger number of target architectures. Currently, significant effort is being directed into
providing efficient multi-threading support, even on conventional multiprocessors and
networks of workstations.

Dynamic load balancing was part of the EARTH programming model from the be-
ginning. It is tightly integrated into the run-time system, which manages both descriptors
for threads that are ready to execute, the Ready Queue (RQ), as well as the units of work
used for load balancing: the Tokens stored in the Token Queue (TQ). Fig. 2.18 shows how
these two queues are interconnected, as well as the interface to the node’s CPU and the
interconnection network.

The load balancing policy supported by default by the run-time system has proved
to work fairly well on a large number of applications. However, there is still room for
improvement [33]. Moreover, as devising a general-purpose and efficient load balancing
policy is not an easy task, we think it is necessary to get 2 better understanding of dynamic
load balancing behavior in the context of multi-threaded multiprocessor systems.

8

1.2 Motivation

Previous studies [33] have shown that it is difficult to come up with one load balancer
that suits all applications. While this work has been a very good starting point for gaining
an understanding of load balancer behavior for fine-grain multi-threaded systems, much
work needs to be done to develop scalable and stable load balancers, and understand bal-
ancer behavior for both commonly occurring, and extreme load imbalances. Most impor-
tantly, the understanding gained from past work in dynamic load balancing for process-
based distributed computing needs to be evaluated in a multi-threaded context.

Our experiments have shown varying performance for the different load balancers.
The unpredictable behavior of fine-grain threads in dynamic applications, as well as the
multiple dependences among threads running on different nodes make it difficult to come
up with a complete analytical model of the load balancer behavior. Nevertheless, sev-
eral aspects of dynamic load balancing can be empirically studied, allowing us to make
predictions on the system behavior.

| Benchmark Dual | Spn | Shis | Snd | His | Range | Catapult | Rand
Fibonacci(33) 3 2 7 8 4 6 S 1
Queens(12) 6 2 7 3 5 4 8 1
TSP(10) 7 5 8 6 3 4 2 1
Knary(7. 7.2) 7 3 8 6 2 4 5 1
Matrix(1024X1024) | 7 5 8 4 1 2 6 3
Tomcatv(257) 4 3 8 8 2 I 8 5
SPMD(4.4,0) 6 2 8 1 4 5 7 _ 3
Paraffins(28) 5 3 7 _ 6 2 4 8 1]
Average 156 [31]76[53]29] 38 6.1 2
Rank 6 3 8 5 2 4 7 1

Table 1.1: Relative ranking of the different balancers based on their elapsed times as
shown in Table §.1.

Threaded-C programs written for divide-and-conquer, regular, and irregular classes
of applications are executed with eight dynamic load balancers in the EARTH system.
Table 5.2 shows individual rankings of the balancers for each of the applications. A rank-
ing of the balancers for this set of applications is provided in the last row. The results
for the first seven balancers shew that while there is significant improvements over a

“no-load balancing” situation, there is no consistent winner for all applications. Further-
more, balancer performance is not consistent even across applications belonging to the
same programming model. Here, a few points are worthy of further discussion: Is the
system behavior predictable? How would these balancers perform when the load param-
eters like input workload, number of nodes, application grain size, programming model
of the application, or architectural parameters like polling interval, etc. are varied? Is it
possible to achieve better performance? The rankings for the last balancer - Rand indi-
cate its ability to achieve better, consistent, and scalable performance. It is possible to
deduce after considerable experimentation that the Rand balancer performs very well for
the divide-and-conquer, and irregular classes of applications, while it is not preferable for
regular applications. Similarly, what would be a preferable balancer for very fine-grain
applications with minimal amount of exploitable parallelism? Or, what is the preferable
balancer for barrier-synchronized applications? Is it possible to implement randomizing
algorithms in fine-grain multi-threaded systems? Considering that a typical randomizing
function costs around 22 us, what strategies are required to achieve good speedups?

Figure 1.1: Performance of different balancers for Fibonacci(28).

Fig. 1.1 shows the scalability of different balancers for the Fibonacci (28) benchmark.
The Threaded-C program for the Fibonacci comprises of very fine-grain threads (approx.
2 us), and the only work performed in these threads is to spawn parallel workload. The
Fibonacci benchmark represents one extreme of fine-grain applications. It is difficult to

10

achieve scalable performance for applications like Fibonacci, without any programmer
effort to coarsen the grain size. However, it is equally important to show that dynamic
load balancing is an asset for such fine-grain applications. The Rand balancer performs
very well relative to the other balancers, specially the His balancer’ both in terms of
speedup, and scalability. It is therefore worthwhile to investigate the impact of different
balancer policies on widely varying load situations.

This dissertation attempts to answer the above questions. Our aim is to perform a
comprehensive study of load balancing for fine-grain multi-threaded systems in terms of
algorithms, applications, and architecture. As a part of this study, we have made a compar-
ative study of different load balancer policies, understood their behavior at varying load
parameters, and have suggested the suitability of appropriate balancer for diverse load
situations. On the basis of these results, we have implemented a dynamic load balancer
algorithm that is scalable and robust enough under varying circumstances.

In addition, we describe the implementation of a runtime system for a non-blocking,
non-preemptive multi-threading model, and analyze the latencies and overheads of vari-
ous multi-threaded operations. Finally, we provide the results of an extensive survey into
related work in multi-threaded systems, and their dynamic load balancing policies.

In conclusion, our research is leading to a better understanding of dynamic load bal-
ancing policies and their impact on application performance. This research should also be
applicable to similar parallel systems based on multi-threading and will hopefully allow
future systems to achieve better performance on a broad range of algorithms.

1.3 Problem Statement

e To design and implement a scalable, efficient, consistent, and robust load balancer
for fine-grain multi-threaded systems.

A runtime system with an efficient balancer shows significant performance im-
provements over another system with no load balancer. Performance should scale
well across a wide range of nodes, with minimum degradation in performance as
the number of nodes is increased. Consistency of the balancer in all load situations
improves predictability of the load balancer behavior. A robust balancer does not
cause instability in the system, and always terminates in a deterministic manner.

3The His balancer is shown as the best balancer for different applications in {33].

i1

o To study the impact of balancer algorithms for different load situations, and sug-
gest appropriate balancer policy for an application with approximate amounts of

parallelism, task grair. size, task generation rate, and synchronization patterns.

1.4 Contributions

We have implemented eight dynamic load balancers, and compare their performance
against seven existing balancers. Initially, we study the advantages of different dynamic
load balancer policies against a situation where there is no load balancing. We then study
the benefits of a randomizing load balancer in a fine-grain multithreading environment
with varying application and workload parameters, and compare its performance against
seven existing balancers. Next, we look at the different factors that have contributed to
the relatively better performance of the randomizing algorithm, by comparing it against
different versions of itself, each with varying degrees of sophistication. Finally, we study
the influence of various program, architecture, and implementation related parameters on
program performance.

The main results of this study are as follows:

1. Forirregular and highly recursive programs, it is beneficial to generate large (abun-
dant) number of threads to facilitate the work of the load balancer.

¢ Furthermore, a randomizing algorithm (Rand) performs the best as long as the
cost of computing the random number does not dominate the overall time of
thread execution.

o When this is not favorable for applying the Rand balancer, a hybrid history
information based algorithm (His), a simple work-stealing algorithm (Spn)
are best suitable in decreasing order.

"~

. The Rand balancer is "good” for fine-grain applications. An in-depth study of the
Rand balancer performance in different load scenarios is performed

3. When the Rand balancer does not perform well, the suitability of alternate balancers
is examined.

4. In order to understand the different factors that contribute to the good performance
of the Rand balancer, a comparative study of the Rand balancer with different ver-
sions of itsclf each with varying degrees of sophistication, is performed.

12

5. Design of a spectrum of experiments to understand application behavior with dif-
ferent load balancers.

Other contributions of this thesis include the following:

1. Description of the runtime system for a non-blocking, non-preemptive multi-
threaded programming model. Implementation of an elaborate profiling framework
in the runtime system, which will aid in better understanding of the time spent in
various runtime system activities during program execution.

"~

. Implementation of a balancer - Minima, to provide a lower bound for parallel per-
formance.

3. A detailed analysis of costs associated with EARTH operations.

4. Proposal of a new classification scheme for multi-threaded systems. This is supple-
mented by an extensive literature survey.

1.5 Thesis Organization

The Threaded-C programming model, and the implementation of the runtime system are
described in chapter 2. Chapter 3 introduces the dynamic load balancing algorithms
designed and implemented in this thesis. The experimental framework is discussed in
chapter 4. Chapter 5 analyzes the performance of different balancers for fine-grain ap-
plications. Chapter 6 discusses the costs and overheads of various EARTH operations on
the [BM SP-2 system. A comparative study of performance of EARTH implementations
on three different distributed memory platforms is studied in chapter 7. Related work,
both in in terms of runtime systems for multithreaded models, and different dynamic load
balancing techniques, is studied in section 8. Appendix B studies the parallel environ-
ment in the EARTH system, and gives easy illustration of typical EARTH operations like
invoking local functions. or performing data synchronization. Appendix C lists the pro-
filing support built into the EARTH runtime system. Appendix E lists the results of some
additional experiments conducted.

13

Chapter 2

The EARTH Multithreading System

EARTH - Efficient Architecture for Running THreads [84, 150] is a multi-threaded ar-
chitecture and execution model that supports fine-grain, non-preemptive threads and al-
lows the implementation of a multi-threaded execution model with off-the-shelf micro-
processors in a distributed memory environment. In order to reduce OS related costs,
EARTH threads operate at the user-level. The EARTH runtime system assumes the re-
sponsibility to provide an interface between an explicitly multi-threaded program and a
distributed memory hardware platform. The runtime system performs thread scheduling,
context switching between threads, inter-node communication, inter-thread synchroniza-
tion, global memory management, and dynamic load balancing.

In the EARTH architecture, applications are written in Threaded-C [152], a multi-
threaded variant of C. Threaded-C can also be used as a compilation target for other
parallel languages [74]. Threaded-C provides constructs for the definition of fine grain,
non-preemptive threads, for the specification of data transfers, and for synchronization
among threads. [n Threaded-C computations may be composed from arbitrary function
call graphs. Multiple threads can be enabled simultaneously either because data is pro-
duced or because synchronization signals arrive. Alternatively, threads may also be ex-
plicitly spawned. Threaded-C implements a global memory space comprising the local
memories on all nodes in the system.

The translation sequence for programs written in Threaded-C is shown in Fig. 2.1.
Threaded-C programs are first preprocessed into sequential C programs by the Threaded-
C preprocessor (etcpre). Each of the threads is transformed into a separate C function,
with the Threaded-C constructs replaced by equivalent C code according to their seman-
tics. The preprocessed code is compiled to object code with a traditional C compiler. The

14

Threaded-C

LThrmded—ClPrepmccuoﬂ
ANSIC
| CCompiler |

Application Object Code — RTS Object Code

[sk |

Executable

Figure 2.1: Translation Sequence of Threaded-C code

final executable is obtained by linking the application object code with the runtime system
object code.

Communication latencies associated with remote operations pose a challenge to im-
plement fine-grain parallelism in a distributed memory platform. Implementing efficient
communication on EARTH is important because of its fine-grain threaded model, where
the threads can be very short (typically a few hundred us on the IBM SP-2). The EARTH
runtime system seeks to minimize the overheads involved in data communication, syn-
chronization, and load balancing.

This chapter presents a description of the portable EARTH runtime system. The
implementation of the runtime system from the Threaded-C language - runtime system
boundary to the final execution of code is studied. Initially, we look at the preprocessed
code from Threaded-C to see the realization of Threaded-C constructs in the runtime sys-
tem. This is followed by a detailed explanation of the strategies adopted to implement the
runtime system functionality.

The rest of the chapter is organized as follows. Section 2.1.1 describes EARTH pro-
gramming model and illustrates the Threaded-C language for the Fibonacci example.
Section 2.2 describes the translation of Threaded-C constructs into sequential C and the
emulation of a global address space on a distributed memory architecture. Section 2.3
describes the implementation of the EARTH runtime system, including its dynamic load
balancing algorithms. Scheduling of threads is explained in section 2.3.2. The runtime
system behavior while implementing two EARTH operations is traced in section B.

I5

2.0.1 Current Implementations

EARTH is currently implemented on multiple platforms - network of Sun workstations,
MANNA, IBM SP-2, Beowulf, and a SUN SMP cluster. All platforms except for the
Sun SMP cluster are distributed memory implementations. The core of the runtime sys-
tem is the same on all platforms. Specific interfaces with the CPU and the network are
implemented for each platform. The portable runtime system stresses minimum interac-
tions with the hardware, as might be observed in minimum amount of assembly code and
references to machine specifications. Unlike the platforms mentioned above, the runtime
system for Manna is not portable. However, portable Threaded-C programs can execute
on the Manna version of the runtime system.

Earlier studies on EARTH (84, 111] described the implementation of the EARTH
model on the MANNA machine, which has two processors in each processing node. In
such a platform one processor can execute threads while the other is in charge of inter-
node communication, synchronization and dynamic load balancing. In this dissertation
we report results of the EARTH implementation on the IBM SP-2 that has a single pro-
cessor per processing node. In this implementation all the activities of the EARTH model

are supported by the same processor.

2.1 Threaded-C

Threaded-C was originally conceived as an intermediate language for a higher level par-
allel language - the EARTH-C [74] as part of the EARTH project [84]. As the name
suggests, Threaded-C extends the C language with threaded constructs. With gradual
improvements, Threaded-C emerged as a programming language in its own right. It is
complete in the sense that, it provides for constructs that fully capture the multithread-

ing model, giving the programmer complete control of thread construction and thread
launching.

Some salient features of the Threaded-C language are as follows:

e Fine grain, non-preemptive, non-blocking threads perform the multithreaded com-
putation.

¢ Multithreaded computations may be composed from arbitrary call graphs.

16

o Rich semantics associated with the Threaded-C constructs support thread definition,
parallel invocation, synchronization and inter-thread communication.

e Multiple threads can be launched simultaneously, either on the receipt of relevant
data for which the threads are waiting (in a dataflow-like fashion), or by synchro-
nization signals sent to the waiting thread by the programmer. Alternatively, threads
may also be explicitly spawned.

e Applications execute in a global memory space comprising the local memories on
all nodes in the system. Local and global pointers on Network of Workstations can
be accessed in the programs.

Multithreaded computation on NOW provides for temporal and spatial parallelism.
The partial ordering of instructions, unlike in sequential programming, allows for con-
siderable dynamic behavior. This dynamic schedule is governed by the RTS at run-time,
while the language helps specify a call graph sequence at compile-time.

2.1.1 Programming Model

A thread is a set of instructions that is executed sequentially in an atomic fashion. Fine-
grain, non-preemptive threads which when started execute till complietion, are the atomic
units of multithreaded computation in EARTH. Interacting threads sharing context are
grouped into bigger units - threaded functions [151]. Every thread in a threaded function
is numbered, with numbers starting from 0. The execution of a threaded function always
starts from thread 0. Further-on, the term "function’ is to be read as threaded function
unless otherwise specified.

Sync Count

760 Execution

Complete

CPU
ready

Figure 2.2: Thread States

Threads are enabled for execution through synchronization signais. A threaded func-
tion can allocate an array of sync slots. Typically each one of the slots in the array is

17

associated with a different thread and the slot counter is initialized with an initial value.
When the arrival of a signal causes the counter of a slot to reach zero, the runtime system
moves the thread associated with the slot from the dormant state to the enabled state, and
resets the counter to a pre-specified reset value.

In Threaded-C, the producer and consumer parts of the code are split into two threads,
both of which are linked by synchronization slots. The sync slots mechanism provide a
unique handle to address individual threads, enabling the definition of any arbitrary thread
activation graph. Fig. 2.2 shows the various states associated with a thread. Initially the
thread is in the dormant state when it is yet to receive certain number of synchronization
signals required for its execution. Synchronization signals may or may not be preceded
by any data for the thread. After receiving the required number of synchronization sig-
nals, the thread is enabled and placed for execution in a ready queue. When the CPU is
available, the thread moves to the active state where it starts execution. Once a thread is
active, it must run to completion without preemption. The thread boundary is a point in
a threaded function where one thread finishes, and another starts. At the thread bound-
ary, while the consumer thread is waiting for a sync signal, another active thread is exe-
cuted. The split-phase nature of EARTH operations overcomes communication latencies
by switching to another active (or enabled) thread, while servicing the communication
requirements of another thread.

The context for a threaded function includes the array of sync slots, the function ar-
guments and the local variables. At any instant of time, only one thread is running on a
processor, though there may be multiple threads belonging to the same application run-
ning on multiple processors. A detailed explanation of the portable Threaded-C language
model is given in [151, 146].

Parallelism is realized through threaded function calls. When a threaded function is
invoked, the caller and the callee execute concurrently (if there are available CPUs). Exe-
cution of a multi-threaded program with concurrent function invocations leads to dynarmic
unfolding of the computation and the activations form a tree referred to as activation tree.
The nodes and edges of this tree represent the threaded functions and their synchroniza-
tion dependences respectively. After a function invocation, both the caller and the callee
may run in parallel. All the function frames are active, and the caller continues execu-
tion after invoking the callee. This is in contrast to the normal sequential function call
mechanism, where the caller suspends until the callee returns.

A sample threaded function that computes the n** element of a Fibonacci sequence is

18

THREADED f£ib (SPTR done, int n, int *GLOBAL result)
{

SLOT SYNC_SLOTS [1];

int rl, r2;

INIT_SYNC(0, 2, 2, 1);

if (n < 2) {
rl =1; r2 = 0;
SPAWN(1);

} else {

INVOKE(0, f£ib, SLOT_ADR {0), n - 1, TO_GLOBAL (&rl));
TOKEN(fib, SLOT_ADR (0), n - 2, TO_GLOBAL (&r2));
} END_THREAD() ;

THREAD_1:

DATA_RSYNC_L (rl + r2, result, done);
END_FUNCTION ():

}

Figure 2.3: Parailel Function Invocation in Fibonacci Program

shown in Fig. 2.3. The THREADED keyword indicates that the function £ib is a threaded
function, and its activation frame is allocated on the heap. The SPTR keyword is a type
definition for a synchronization slot. After declaring an array of sync slots (in this case one
slot), the sync slots are associated with threads by the INIT_SYNC (slotnum, cnt,
rst, th.no) statement, where cnt is the initial count and rst is the reset count. In
Fig. 2.3, sync slot 0 is associated with thread 1. Thread 1 will be ready for execution after
receiving two synchronization signals. The SPAWN primitive moves a local thread from
the dormant to the enabled state. The parent thread continues execution after executing
SPAWN. The INVOKE and TOKEN constructs are used to launch child threaded functions
that run in parailel with the parent threaded function. When the TOKEN construct is
used, the processing node that will execute the function is decided by the dynamic load
balancer at runtime, whereas the INVOKE construct specifies the processing node that
must execute the function as its first argument'. The DATA_RSYNC.L primitive places
the data (r1 + r2)atthe destination memory location pointed to by the global variable

!Normally, the first recursive call in Fig. 2.3 would also be issued with the TOKEN construct to ensure
maximum dispersability of the tokens. In this example we are using the INVOKE construct to itlustrate its
use. In order to show all parallel constructs, an optimized version is not presented here.

19

@ X0 |0@ <

fib(1) fib(0)

Figure 2.4: Activation Tree for Fib(4)

result and sends a synchronization signal to the sync slot pointed to by the variable
done. The last statement to be executed in the threaded function is the END_FUNCTION
construct, which results in the deallocation of the activation frame.

Threads are in the dormant state when expecting results from a subcomputation or
during communication latencies while waiting for data. Any arbitrary call sequence may
be launched by manipulating the sync slots (or the synchronization slots). Any synchro-
nization, whether related to computation or communication, is performed through the
sync slots. The declaration for the sync slots is expected to be the first statement in a
threaded function with more than one thread. All threads that are to be enabled with the
sync edges, except for thread 0 which is by default the starting thread in a threaded func-
tion, are associated with a sync slot by the statement INIT.SYNC (slotnum, cnt,
rst, thno). Another exception to this rule are the threads that may be explicitly
spawned, using the SPAWN construct. The value cnt indicates the number of sync sig-
nals the thread th_no is waiting for, before getting fired. As each data unit is received,
the cnt value is decremented, and the thread is enabled for execution when it reaches
zero. The cnt value is reset to rst, and the thread is placed in the queue for scheduling.

Fig. 2.4 shows the activation tree for the Fibonacci program, while Fig. 2.5 shows
a generic activation tree to illustrate that the execution of a Threaded-C program might
result in the construction of an arbitrary activation tree. The rectangular blocks represent
the threaded functions, and the inner circles represent the threads. The parallel function
calls or the TOREN/ INVOKE/CALL edges (the TIC edge) are shown as solid arcs. The

20

Thread
Threaded Function

INVOKE/TOKEN

sync signal

Figure 2.5: A Generic Activation tree for a Threaded-C program.

dashed arcs (or the sync edges) between different threads denote the dependencies among
threads. For every dependence that is satisfied, a synchronization signal is sent to the
dormant thread. The spawning of threads local to a function is depicted by the dotted
arcs.

By definition, when a threaded function is invoked, its thread 0 is enabled. All the
remaining threads of the function can be enabled in any arbitrary order through the ma-
nipulation of synchronization slots. Threaded-C provides for both concurrent (INVOKE,
TOKEN) and sequential call mechanisms(CALL) for threaded functions. The syntax is
described in [128]. Fig. 2.3 shows the concurrent function invocation in the Fibonacci
program. Besides the INVOKE and TOKEN mechanisms, Threaded-C also provides
sequential-call mechanism for threaded functions, where the thread of the the caller that
executed a CALL primitive suspends until the callee returns. The callee function is exe-
cuted immediately on the same node as the caller.

Note that Threaded-C allows for normal sequential C function calls. These functions
are allocated on the stack. However, these C functions are semantically different from
the threaded functions that are initiated with the sequential cail mechanism (by using the
CALL construct). The C functions are not allowed to have any Threaded-C constructs,
except for the POLL primitive for network polling. The only similarity between the C
functions and the threaded functions invoked with the CALL construct, is the manner in
which they return. In both cases, the caller function is suspended until the callee returns.

21

. Also, when the callee returns, execution resumes from a point after the function call.

THREADED vadd (SPTR done, int N, float *GLOBAL a,

float *GLOBAL b, float *GLOBAL res)
{

SLOT SYNC_SLOTS [2];
int i;
float la, lb;

INIT_SYNC (0, 2, 2, 1);
INIT_SYNC (1, 1, 1, 2);
for (i = 0; i < N; i++) {
GET_SYNC_F (a++, TO_GLOBAL (&la), 0):

GET_SYNC_F (b++, TO_GLOBAL (&lb), 0);
END_THREAD ();

THREAD_1:
DATA_SYNC_F (la + lb, res++, 1l);
END_THREAD () ;

THREAD 2:;
}
RSYNC (done);
END_FUNCTION {):

Figure 2.6: Threaded-C version of Vector Addition

O—0O--0

Figure 2.7: A Node in Activation Tree with a Spawn Construct

Fig. 2.7 shows the graph representation for a threaded function that uses the SPAWN
construct. The solid arc denotes the spawn edge, while the dotted arc denotes a synchro-
nization edge. The spawned thread is now in the enabled state and therefore ready for
execution. No synchronization slots are invoived in this case of explicit firing of a thread.
. In this figure, thread O spawns thread 1, and thread 1 enables thread 2 by sending it a
sync signal.

In some cases, threads in a function frame may be linked by data synchronization
conditions. Here, the data-synchronization is not between the parent and child threaded
functions, but between the threads of the same threaded function. For example, Fig. 2.6
shows a threaded code for vector addition. Thread 1 is waiting for data from thread 0. In
a way, these threads represent the producer-consumer relationship.

@00

Figure 2.8: A Node in Activation Tree for Vector Addition

Fig. 2.8 shows a typical function frame for the vector addition (vadd) in one iteration.
The dotted arcs represent the data synchronization edges. Another ready thread may be
scheduled for execution at the thread boundary while the communication latency is being
serviced. Observe that there are no TIC edges, but only sync edges.

The TIC edge may be seen as the passing of arguments from the parent node to the
subcomputation represented by the child node. A TIC edge in the activation tree implies
that the child node will not be invoked before the computation of its arguments. Thus we
can state that Threaded-C is a strict language. When the sync edges from the child nodes
end up only in their parent nodes, then the activation tree is fully strict. Threaded-C in
addition, supports back-sync arcs, and any arbitrary call sequence as shown in Fig. 2.5.
Efficient execution schedules with bounds on time and space are possible for strict com-
putations [25]. The computation in Fig. 2.4 is fully strict.

There is a constraint on the TIC edge when the child threaded function is instantiated
with the CALL construct. In this case, the sync edge from the child node can be destined
only to the next consecutively numbered thread in the parent node which started the child
computation with the CALL construct. For instance in Fig. 2.4, if the child nodes were
started with the CALL construct in thread 0, then the sync edges have to return only to
thread 1 in the parent node, whereas there is no such restriction with the TOKEN or the
INVOKE constructs. They could have been sent to another thread, say thread 2 if desired.
This is because, after the CALL construct was used to instantiate a child threaded function,
the parent threaded function stalls. It resumes execution from the point after the function
call, only after the child threaded function returns. However, threaded functions that
are started with TOKEN or INVOKE constructs do not return any values, and therefore,
can execute concurrently with the parent threaded functions. These child computations

23

fib(3)
sync [r
local vars T
result
arguments
fib(2) fib(1)
sync [» sync I I
local vars local vars
result result —
arguments arguments
fib(1) fib{0)
sync | ‘ sync [
local vars local vars
result resuit —
arguments arguments

Figure 2.9: Runtime System’s view with Activation Frames for fib(3)

can direct their sync edges to any thread in any threaded function, though generally they
follow the fully strict property by sending a sync edge to some thread in their parent
threaded function.

For threaded functions which are instantiated with the TOKEN construct, the host node
is decided by the dynamic load balancer at runtime. The INVOKE construct specifies the
node on which the function is to be executed. The thread 0 of the child threaded function
is placed among other ready threads to enable execution on the node specified. The CALL
construct guarantees that the child threaded function will be scheduled on the same node
as the parent node, and also will be immediately executed. Also, the caller is suspended
until the callee returns. The SPAWN construct spawns a local thread. If a sequential C
function is started, the C function is executed on the same node as the caller function, and
also returns as per normal C convention. The frames for the callee and any further nesting
are allotted on the stack.

The RTS view of the Fibonacci threaded function is shown in Fig. 2.9. Thread 0
launches the subcomputations, while thread 1 is waiting for two sync signals. The acti-
vation frame comprises of the arguments for this threaded function, sync slots and local
variables as declared in the beginning of the threaded function. The context for a threaded

24

function is contained in the activation frame. The sync slots help the RTS keep track of
the scheduling status of those threads. All the activation frames corresponding to threaded
functions ure aiiotted on the heap, while those of sequential functions are allotted on stack.
From Fig. 2.9, it can be seen that arrival of results from child computations signal the cor-
responding sync slot in the parent computation, which enables the associated thread for
execution.

Applications with dynamic behavior, involving high levels of communication pose
significant challenge to multithreaded languages. Performance studies so far have shown
significant speedups with Threaded-C. This better performance is attributed to the abil-
ity of Threaded-C to handle fine-grain parallelism and the close interaction between the
Threaded-C compiler and the runtime system. An efficient thread scheduling policy, and
a wide choice of dynamic load balancing algorithms have helped overcome the commu-
nication/synchronization latencies.

This section summarized the model of muitithreaded computations in EARTH, and
prepared ground for a detailed study of the strategies required to implement a multi-
threaded environment in the RTS.

2.2 Preprocessing Threaded-C

This section studies the preprocessed code for a Threaded-C version of the Fibonacct pre-
sented in Fig. 2.3. The code generated contains sequential C equivalents of corresponding
Threaded-C constructs. The preprocessed code for individual Threaded-C constructs in
the Fibonacci program are studied. Later, at the end of this section, all these pieces are
added to obtain the total translation for a threaded function. The final translation for the
threaded function is listed in Fig. 2.15.

The preprocessed code for each Threaded-C construct can be divided into two parts.
The first part sets the arguments for a later call to a RTS function. The second part
actually calls a RTS function. It is important here that a distinction be made between the
preprocessor (etcpre) and the preprocessed code. This section looks at the preprocessed
code. Further on, the term 'function’ may be read as threaded function unless specified
otherwise.

Threads from the Threaded-C code are transformed into functions in the C language
along with necessary linkage code. The translation sequence for Threaded-C code is

shown in Fig. 2.1. The etcc driver initially invokes the Earth Threaded-C preproces-
sor (etcpre) on the input Threaded-C code. The preprocessed output is C code, with
threads replaced by functions and relevant caiis io the RTS. The Threaded-C constructs
are transformed into equivalent C code according to their semantics. The next step of
the etcc driver is to compile the preprocesssed output to object files through a C com-
piler. The resulting object code is linked with the RTS object code to obtain the final
executable. The etcc driver checks the command line options, and accordingly invokes
different modules. The options for the etcc driver are a superset of those of any com-
mercial C compiler. The result of a successful use of etcc is the final executable. The
syntax of etcc may be observed with the "-h’ option. The use of etcc is explained in
section B.S. The preprocessed code for the Fibonacci threaded function is studied in this
section.

A point worth mentioning before proceeding further is the allocation and disposal of
heap memory. To optimize its execution and avoid frequent allocations and releases of
small memory blocks, before starting the execution of an application, the runtime system
reserves some heap memory into a list of available blocks, called the free lisz. Dynamic
memory requirements of the runtime system during application execution, are met from
the free list. When the free list becomes empty, memory is dynamically allocated using
the malloc statement. After use, the memory is returned back to the free list. There is
a free list in the address space of the RTS on every node. The contents of the free list on
different nodes are not coherent.

2.2.1 Global Addresses

typedef struct etc_gptr {
void *ptr; _gptrl.pode = etc_rts.node_id:
int node; _gptrl.ptr = &_fp->rl;
} etc_gptr;
(a) Type definition (b) Preprocessed code

Figure 2.10: Type definition to represent a Global pointer and the preprocessed code for
TO_GLOBAL

The EARTH model provides a global address space that allows every node to address
the entire memory of the machine. EARTH constructs a global address space on dis-
tributed memory platforms by creating a global pointer that is formed by a node id and
an address. In Threaded-C the distinction between a global and a local pointer is made

26

visible to the compiler [152]. Because the EARTH implementations use hardware and
compiler off-the-shelf technology, the runtime system has no access to the memory man-
agement unit. Therefore global pointers are implemented in software. The data structure
that stores a global address is shown in Fig. 2.10.a. To allow the use of global pointers for
all standard and user defined data types, Threaded-C implements a type modifier called
GLOBAL. Conversions such as TO_LOCAL and TO.GLOBAL are available in the language.
Fig. 2.10.b shows the preprocessed code for the Threaded-C construct TO_GLOBAL. Lo-
cal pointers are converted into global pointers by enclosing the node number and the local
address as the two fields of a variable of type etc_gptr defined in Fig. 2.10.

2.2.2 Sync Slot

typedef struct etc_slot {
int cnt;
int rst;
etc_handler ip;

long fp;
} ete_slot;

Figure 2.11: Type definition for Sync Slot

Like global addresses, synchronization slots are implemented in software in the run-
time system of EARTH. Fig. 2.11 shows the data structure used to define a synchro-
nization slot. The ip field is an instruction pointer that contains the address of the first
instruction of a thread. The £p field is a frame pointer that contains the address of the
frame of the threaded function to which the thread belongs. The slot counter cnt con-
tains the current value and indicates how many signals must be received before the thread
associated with the slot becomes enabled and the counter cnt is reseted to the value in
rst.

The key for identifying a thread is the combination called the thread pointer - activa-
tion frame pointer and the instruction pointer. One way of invoking a thread at runtime
without knowing its name is through the function pointer. The instruction pointer is used
to initiate thread execution by invoking the pointer to the C function representing the
thread. The arguments and the context are obtained from the activation frame, which is
pointed to by the frame pointer.

27

A thread with a non-zero sync count can be viewed as consumer thread (execution
starts only after receipt of all relevant data). Usually the producer (which is another thread
sending data or results of a subcomputation), after depositing the data in some global
location say result, decrements the sync count of the consumer thread. Alternatively,
the sync signal may not be preceded by any data. If the sync count reaches zero, the
enabled thread is ready for execution.

The RTS keeps track of threads from the information contained in the sync slots. It
updates the status of the thread whenever a sync signal is received at the associated sync
slot. For those threads which have become enabled, the RTS fetches the thread pointer

from the structure for the sync slot, and places the thread among other ready threads for
execution.

2.2.3 SLOTADR

The structure for the sync slot is allocated from dynamic memory of the corresponding
node. When the sync slots are to be globally accessed, the node number and the slot
number form the global address of the sync slot. This is precisely the result of using the
Threaded-C construct SLOT_ADR. Preprocessed code for this may be seen in the first two
lines of Fig. 2.14.b. For instance, while constructing the parameters for a subcomputation,
the global address of sync slot is passed as the return sync pointer ’done’, as may be seen
in line 6 of Fig. 2.14.b.

2.2.4 Frame based Data Structures

typedef struct (N
etc_slot _slots(l]: R ef strucc {

X long _next, _prev, _ip, _fp:
i'znnc.ione, SPTR done:;
’ int n;
::i_ﬁtrtz?sult. etc_gptr resulc:;
} _token_fib_F: - ’ } _token_£ib_P;

(a) Activation Frame (b) Parameter Frame

Figure 2.12: Structures generated for Frame-passing

The context of a threaded function is stored in an activation frame. A function’s
activation frame contains local variables, arguments and an array of sync slots. Because
Threaded-C supports parallel function invocations, various functions can be active at the

28

same time and terminate in arbitrary order. Thus the activation frames are stored on a
tree structure in the heap, rather than on the C stack. For instance, Fig. 2.12.a shows the
structure used to store the activation frame for the Fibonacci function presented in Fig. 2.3.
In Fig. 2.12, n, done, and result are parameters passed to the threaded function £ib;
rl, r2 are local variables, and the slots[1] array is the sync slot allocated within
fib().

In Threaded-C the invocation of a parallel function results in the insertion of the thread
0 of the function in the ready queue of the specified processing node. There are no
assurances that the closures will be selected for execution in order. Therefore Threaded-
C cannot rely on a common stack to store the parameters passed to parallel functions.
A parameter frame is used to pass the parameters to a newly invoked threaded function.
A pointer to a parameter frame structure is passed as argument to the thread 0 of every
function. The parameter frame for £ib () is shown in Fig. 2.12.b.

2.2.5 INIT.SSYNC

The sync slots are initialized with the count and reset values, and are associated with a
thread through the INIT_SYNC statement. Consider the preprocessed code for threaded
macro INIT.SYNC in Fig. 2.14. Once the control enters a threaded function, and the
activation frame is allocated on heap, the sync slot components are filled in with data
pertaining to the relevant thread. This data includes current sync count, reset count, and
the thread pointer.

2.2.6 SPAWN

_gptrl.node = etc_rts.node_id;
-gptrl.ptr = _fp;
etc_spawn(_gptrl, _fib_1);

Figure 2.13: Preprocessed code for SPAWN(1)

The SPAWN (1) construct spawns locally thread 1 of the threaded function, that has
the SPAWN construct. The preprocessed code is shown in Fig. 2.13. The frame pointer is
converted into a global pointer. The thread pointer (instruction pointer and frame pointer)

29

is passed as an argument to the RTS function etc_spawn. This spawns the thread 1 in
the Fibonacci threaded function.

2.2.7 INVOKE

_gptrl.node = etc_rts.node_id;
—gptrl.ptr = _fp->_slots « 0;
_gptr2.node = etc_rts.node_id;

_fp->_slots[0].cnt = 2; gptr2.ptr = &_fp->rl;

_fp->_slots{0].rst = 2;

_fp->_slots(0].ip = _token_£ib_1; _fib pp = (_£fib_P *) etc_rts.next_free;

~fp->_slots({0].fp = (long} _fp: _fib_pp->done = _gptrl;
_fib_pp->n = _fp->n - 1;
_fib_pp->result = _gptr2;
ecc_invoke (0, _fib_0, 24};

(a) INIT.SYNC(0,2.2.1) (b) INVOKE _fib function

Figure 2.14: Preprocessed code for INIT_.SYNC and INVOKE

The preprocessed code for the parailel construct INVOKE of the £ib() function is
shown in part (b) of Fig. 2.14. The arguments for this construct: the sync slot address and
the destination location where the result is to be placed, are stored in a parameter frame
structure _£ib_pp that is allocated from the free list. The addresses for result and for
the slot of the caller are converted to global addresses (gptrl and gptr2) before they
are stored in the parameter frame. Once the arguments for the INVOKE construct are set
up, the RTS function etc_invoke is invoked. The preprocessed code for the TOKEN
construct is very similar, except that it does not have a processing node specification.

Fig. 2.14, part (b) shows the preprocessed code for the INVOKE (0, _fib,
SLOTADR(0), n - 1, TOGLOBAL(&rl)) construct. A variable of type pointer
to parameter structure (token_fib_pp) of the threaded function that is going to be in-
voked is declared at the beginning of the C function representing the first thread of the
caller threaded function. Memory for this variable is allocated on top of the free list. The
arguments for the child threaded function are assigned to the fields of the parameter struc-
ture variable token_f£ib_pp. Those arguments that represent addresses are converted
into global pointers, and stored in two variables - gptrl and gptr2, which are then
assigned to the fields of .£ib_pp. Thus, with the arguments for the threaded function
on top of the free list, the RTS function etc_invoke is called with the name of the
first thread of the child threaded function (pointer to a C function), and the size of its

30

arguments.

2.2.8 Frame Passing

Each one of the threads in a threaded function is compiled into a C function. The C
function representing the thread 0 of a threaded function is the first function to be executed
in a given invocation and it executes only once, i.e., there are no synchronization slots
associated with thread 0, and thread 0 cannot be spawned. The C function that implements
thread 0 receives a pointer to the parameter frame of the threaded function. The parameter
frame contains the arguments for this threaded function. The C function is responsible
for building an activation frame that will be shared by all threads of the function. The
activation frame shown in Fig. 2.12.a, is created in the C function for thread 0 of £ib ().
At the beginning of this C function, a request for a 64 byte buffer element from the free
list is made. If no element of that size exists in the free list, then the memory is obtained
by using the malloc statement®.

Whenever a thread becomes enabled for execution, a closure representing the sequen-
tial function that contains the code for that thread is placed in a ready queue where it is
scheduled for execution. This closure contains the address of the activation frame of the
function that contains the enabled thread. In the preprocessed code all references to local
variables or to function parameters are converted to references to fields of the activation
frame structure. Thus threads belonging to the same function will share the context stored
in the activation frame.

Because individual threads are transformed into C functions, thread switching is ac-
complished by the termination of a sequential C function and the starting of another func-
tion. Furthermore, these functions have a single parameter, the activation frame pointer.
Therefore the cost to switch to another enabled thread in Threaded-C is very low.

Fig. 2.15 shows the preprocessed code for the two threads of the Fibonacci threaded
function shown in Fig. 2.3. This example provides a detailed look at the frame-passing
mechanism to share context among the threads of a threaded function.

The data structures holding the activation frame and the parameter frame of a threaded
function are named with the threaded function name followed by a letter, either 'F’ or 'P’.
A pointer to the parameter frame is passed as argument to thread 0. Memory is allocated
for the frame pointer in the C function for the first thread (thread 0), and its fields are

2The activation frame on the heap is deallocated from memory, when the END_FUNCTION primitive is
executed.

31

filled with arguments for the threaded function, local variables and the sync slots. The
arguments for the child threaded function are specified in the TOKEN, INVOKE or the
CALL constructs. The local variables and the sync slots are obtained from the Threaded-
C code for the child threaded function. The current frame pointer value is stored in the
frame field (fp) of the sync slot that is associated with the second thread (thread 1). When
this sync slot receives a sync signal that changes status of thread 1 from enabled state to
active state, the RTS uses the instruction pointer to invoke the C function _£ib_1 with
the frame pointer as its argument. Thus, context of a threaded function is passed between
the C functions representing its threads. Observe that the threads of a threaded function

are executed at different points on the time axis, though they all will execute on the same
node.

2.2.9 Variable Parameter Passing

Each threaded function can have different number of parameters, and it is required to
accommodate the arguments on an intermediate data structure accessible to the runtime
system. The parameters for a threaded function are set up before calling the runtime sys-
tem constructs for INVOKE, TOKEN or CALL. Memory is allocated on the top of the free
tist for the parameter structure of the invoked threaded function, and the function parame-
ters are loaded into this structure. Using this approach we can delay the allocation of heap
memory for the function until its thread 0 is activated. The runtime system function call
(either etc_invoke or etc.token) receives the size of the parameter structure along
with the function pointer for the starting thread of the threaded function, as shown in lines
35, 44 of Fig. 2.15.

The thread pointer is used in initiating the first thread of a threaded function, in case
the threaded function is scheduled for execution on the current node. However, when a
locally instantiated threaded function is scheduled for remote consumption, the runtime
system sends a message that contains a pointer to the parameter structure and the address
of the function to the remote node. When another node decides to execute the function,
it first has to copy the parameter frame structure from the node where the function was
instantiated.

32

1: void _£ib 0 (_£ib_P *_pp)

2: {

3: etc_gptr _gptrl, _gptrl;

4: _fib F *_fp;

5: void _£fib_1 (};

6: _fib_P *_fib_pp;

7: void _£ib_0 ();

/* Obtain memory for frame pointer */
8: _fp = (_fib_F *) etc_rts.free_64;
9: if (_fp)

10: etc_rts.free_64 = _fp->_slots{0].cnt;
11: else

12: _fp = (_£fib_F *) malloc (64});

13: _fp->done = _pp->done;

14: _fp->n = _pp->n;

15: ~fp->result = _pp->result;

/* Insert code for INIT_SYNC(O, 2, 2, L) <*/
16: _fp->_slots(0].ent = 2;

17: _fp->_slots(0].rst = 2;

18: ~fp->_slots(0]).ip = _£fib_1;

19: fp->_slots(0].fp = (long) _fp;
20: if (_fp->n < 2} {

21: _fp-»>rl = 1;
22: _fp->r2 = 0;
/* Insext code for SPAWN(1) */

Vad

The local context of threaded function
passed between threads through the
frame pointer ./

: void _fib_1 (_fib P *_£p)

. 2: {
iz ﬁzii:::;iez—_:;f_:ts.node_zd. 3: etc_gptr _gptrl, _gptr2;
25: etc_spawn (_gptrl, _£fib_l);
26: } else {
/* Globalize the local variables 4: etc_data_sync_l (_ip-:rl * -f.p-)rz..
syncs slot and rl . -fp->result, _fp->done);
27: _gptrl.node = etc_rts.node_id: /* End of code for Thread 1 */
28: _gptrl.ptr = _fp->_slots « 0O; : _end_fun:
ig ji:;:::'je;:;:::::;m“‘m’ 6: _fp->_slots(0].cnt = etc_rts.free_64;
/* Obtain memory for Parameter structure */ .
31: _fib pp = (_£ib_P *) etc_rts.next_free: " Reu;m s‘?ce forl.&me pmnter.
/* Load parameters for INVOKE onto to tree element lisc !
N 7: etc_rts.free_64 = (long) _fp:;
the top of free element list ¢/ 8: }
32: _£ib_pp->done = _gptrl; -
33: _fib_pp->n = _fp->n - 1;
34: _fib_pp->result = _gptr2:
/* Once the arguments are set up,
call the RTS function ./
35: etc_invoke(0, _£ib_0, 24);
/* Repeat same process as above for
next TOKEN call v/
36: _gptrl.node = etc_rts.node_id;
37: _gptrl.ptr = _fp->_slots + 0:
38: _gptr2.node = etc_rts.node_id;
39: _gptr2.ptr = &_£fp->r2;
40: _fib pp = (_£fib_P <)} etc_rts.next_free;
41: _fib_pp->done = _gptrl;
42: _fib _pp->n = _fp->n - 2;
43: _fib pp-»result = _gptr2;
44: etc_token (_£fib_0, 24);
45: }
/* End of code for Thread 0 °*/
46: }
(a) Thread 0 {b) Thread I

Figure 2.15: Frame passing among 2 threads of Fibonacci function

33

2.2.10 Preprocessed Code for Fibonacci - Detailed Study

The preprocessed code for the Fibonacci threaded function from Fig. 2.3 is listed in
Fig. 2.15. A typical activation tree for this code is shown in Fig. 2.4. The RTS view
of this tree is depicted in Fig. 2.9.

A pointer to the parameter frame containing the arguments for the threaded function is
passed as a parameter to the C function representing the first thread - _£ib_0. The frame
pointer is allocated and the relevant slots are filled in to store the local context. Next, the
parameter frame structure which holds arguments for subcomputations is placed on the
top of the free list. The parameters for the INVOKE statement are stored in the parameter
structure on the top of the free list. Once the parameters are set up, the RTS function
etc.invoke is called with the destination node for execution, instruction pointer and
the size of the parameter structure stored on top of the free list. The same procedure is
repeated for the TOKEN statement as well. The C function for the second thread in the
threaded function, _£ib_1 is passed the frame pointer as parameter, thus ensuring that
the second thread has access to the context of the threaded function. A line by line study
of the preprocessed code for the Fibonacci follows.

line no : Comments for preprocessed code for Thread 0, shown in part (a) of Fig. 2.15

line 1: The C function corresponding to the first thread in the threaded function is
_£ib_0. The arguments to the threaded function are placed in a parameter frame structure,
and a pointer to this structure is passed as argument to _£ib_0.

line 3: A maximum of two global addresses are used in any statement in the threaded
function £ib. So, two dummy declarations for global pointers are made to accommodate
remote references.

line 4: A variable is declared to hold the frame pointer. Please refer to Fig. 2.12 to
view the type definition of activation and parameter frames.

line 6: A variable is declared to hold the parameter frame pointer. This holds the
parameters for subcomputations (used in variable parameter passing).

lines 8,12: Memory for the frame pointer allocated from the free list. If memory is not
available on the free list, dynamic memory is obtained by an explicit use of the malloc
statement.

lines 13,15: The arguments to the threaded function are copied into the frame pointer
structure from the parameter frame structure. Maintaining the values for arguments in the
activation frame is required for context sharing.

lines 16-19: This code corresponds to the INIT_SYNC construct from the threaded

34

function £ib in Fig. 2.3. The preprocessed code may be seen in part (a) of Fig. 2.14.
From the parameters of the INIT_SYNC construct in £ib, the values for sync count,
reset count are filled into the sync slot structure for the thread in the activation frame. The
thread pointer is obtained from the thread, with which this sync slot is associated.

line 20: If n<2, then send data to the global pointer in result, and decrement the
sync slot done (both obtained from the activation frame).

lines 23-25: The local thread 1 (_£ib_1) is to be spawned here. The frame pointer is
made a global pointer, and passed along with the function pointer for _£ib_1 to the RTS
function.

lines 27-35: This C code corresponds to the TOKEN statement. Initially, the location
for storing the result and the relevant sync slot are to be converted into global addresses.
From the declaration of the frame pointer, we can see that sync slot 0 and the local variable
rl are not global pointers. Note the SLOT_ADR and the TO_GLOBAL prefixes to the sync
slot 0 and the result location rl in the TOKEN statement in the threaded function. Lines
27-30 perform this function.

line 31: The arguments for TOKEN may be any in number. An intermediate buffer area
is required to hold the parameters, as its not possible to assign any specific data structure
to hold the parameters, without knowing their number and type. So, the top element of
the free list is type casted to the parameter frame type.

Lines 32-34 correspond to filling in the values for the newly declared parameter frame
structure on top of the free list. In this case, the arguments for the TOKEN construct - the
sync slot 0, the value n-1, and the result location r1, are loaded onto the top of the free
list.

Now, the setup for the TOKEN construct is complete. The RTS function, etc_token
is called with the instruction pointer, and the size of the parameters on top of the free
list. The destination node for execution is determined by the RTS at runtime, through
dynamic load balancing. The only difference between the INVOKE and TOKEN is that,
the programmer decides the node for the execution of a threaded function in the case of
the INVOKE.

line 36-44: The same procedure as above, is repeated for the next TOKEN construct.
Note that, the destination node number is not specified in the final RTS call etc_token.

line 46: The code for _£ib_0 is complete now, and the function returns.

line no: Comments for preprocessed code for Thread 1, shown in part (b} of Fig. 2.15

From the lines 16-19 in the C function _£ib_0, the activation frame has the sync

35

slot information corresponding to thread 1. When the required number of sync signals
have been received at the sync slot, the RTS obtains thread pointer for Thread 1 from the
sync slot, and invokes the C function corresponding to Thread 1, by using the instruction
pointer (a function pointer in C), and passing it the frame pointer as argument.

line 1: A pointer to the frame pointer, which has the local context for this threaded
function, is passed as parameter to the C function representing thread 1 (_.£ib_1). This
frame pointer is allocated from the dynamic memory of the node on which the threaded
function is scheduled, and hence the restriction that all threads belonging to a threaded
function should be scheduled on the same node.

line 4: The sum is placed in the location result and the relevant sync slot (done)
decremented, within the data_sync function call.

line 5: This statement marks the end of code for thread 1.

line 7: The frame pointer is returned (deallocated) to the free list.

2.2.11 Sequential-Call mechanism with CALL

The discussion on frame-passing mechanism for threaded functions so far has dealt
with concurrent-call mechanism for threaded functions. Its implementation for the
sequential-call mechanism is slightly different.

The threaded function that calls another threaded function is the caller, while the
threaded function that is called is the callee. In a sequential function call mechanism?,
the caller is suspended until the callee returns. In this case, the C function corresponding
to the first thread (thread 0) of the callee has two additional parameters - the caller frame
pointer and a pointer to the instruction after the CALL statement in the caller. Similariy,
the last statement in the C function that represents the last executed thread of the callee, is
acall to the RTS function etc_return. This statement is generated by the preprocessor
from the Threaded-C primitive RETURN.

The preprocessed code for threaded functions with the CALL construct has at least as
many C functions as the number of CALL instructions so that each CALL instruction is
serviced in one C function. Each of these C functions terminates after calling the first
thread of the callee with arguments. These C functions are formed in two phases. In
the first phase, the arguments for the callee are stored in a parameter frame structure.

3Invoking child threaded functions with the CALL statement.

36

A pointer to the parameter frame is declared and is allocated heap memory. Some ar-
guments, like the resulr, may have to be converted into global addresses. This parameter
frame is referenced by the parameter pointer. In the second phase, the callee is invoked by
calling the C function corresponding to its first thread with three arguments: the parame-
ter pointer (to access the arguments) and the return thread pointer* for the next thread in
the caller. The C function in the caller terminates immediately after initiating the callee
in this manner.

The parameters for the callee and the return thread pointer are stored in the activation
frame of the callee. There is no difference between the preprocessed codes for threaded
functions instantiated with CALL, with INVOKE, or with TOKEN, except for the parame-
ters to the callee , and its exit semantics.

The preprocessed code for a callee is shown in Fig. 2.16. Preprocessed code for a
threaded MAIN function using two CALL instructions is shown in part (a), while the pre-
processed code for the callee is shown in part (b). The code shown here is not complete,
only the parts relevant to the discussion are included.

line no : Comments for part (a) of Fig. 2.16

line 3: The CALL construct is used to invoke the chiid threaded function
call_token_£ib with two arguments.

line 4: Another threaded function call mixed_£ib is the callee with two argu-
ments.

line 7: Preprocessed code for the first thread of the MAIN threaded function is shown
here. Though there is only one thread in the MAIN threaded function, three C functions
are present in the preprocessed code, because of its two CALL statements.

line 11: A pointer is declared to parameter frame of function call_token_£ib.

line 12: Function declaration of next C function, to which control has to be returned
by the callee threaded function.

lines 18-19: The result location is converted into a global address.

line 20: Obtain heap memory for parameter pointer.

lines 22-23: Upload arguments into parameter frame of the callee threaded function.

line 24: A C function call to the first thread of the callee threaded function, with
parameter pointer (for arguments), return instruction pointer (function pointer for next C
function of MAIN), and return frame pointer (frame pointer of the caller) is made.

line 26: The first C function for the MAIN threaded function ends. The remaining

“Thread pointer is the combination of instruction pointer and frame pointer.

37

part of the MAIN code is executed in the next two C functions. This is done to enable
specification of the program counter, now pointing to the statement following the CALL
instruction in MAIN threaded function, as the return instruction pointer.

line 27: Control reaches here, when the callee threaded function returns, as may be
seenin line 52 of part (b) of Fig. 2.16.

lines 28-40: The same steps as above, repeated for the second CALLed function
call mixed_fib.

lines 41-44: This is the last C function representing the MAIN threaded function.
Control reaches here after the callee call_mixed_fib has returned.

line no : Comments for part (b) of Fig. 2.16

We shall discuss the preprocessed code for one of the callees, the call_token_fib.

line 8: Declaration for return function pointer.

line 9: Declaration for return frame pointer.

line 14: This is the first thread of the callee. The C function receives as parameters, the
return thread pointer (instruction pointer, and frame pointer) and a pointer to the param-
eter frame holding arguments for this child threaded function. The thread pointer points
to the C function of the caller, to which control has to be returned when this threaded
function exits.

lines 26-27: The thread pointer (as obtained from the parameter pointer) is stored in
the activation frame of the callee.

line 45: Start of second thread of the callee. The return thread pointer is preserved in
the activation frame pointed to, by frame pointer.

line 51: Retuming memory held by activation frame to heap.

line 52: Retuming control to C function of the caller threaded function.

The END_FUNCTION and RETURN constructs are two different ways of returning
from threaded functions. END_FUNCTION is used when a threaded function is invoked
with the concurrent-call mechanism (using TOKEN or INVOKE). The invoking function
and the invoked function can execute simultaneously. The RETURN is used in the case
of sequential-call mechanism (using CALL), when the caller is blocked until the callee
returns. For this purpose, the return thread pointer in the caller is passed as one of the
arguments to the callee.

38

1l:typedef struct {
2: lomg _next, _prev, _ip, _fp;
3: int n:
. . 4: etc_gptr resulc;
p g ERDED MAT (void) 5:} _call_token_fib_P;
i . 6:typedef struct {
:CALL {call_token_£ib, val, TO_GLOBAL (&res)); Z :gzastftr;ilztls“('}f
4:CALL (call_mixed_fib, val, TO_GLOBAL (&res)); | o5 void ("_ret_ip) (}):
9: void *_ret_fp;
5z RETURN (); 5
6:) 10: int n;
. 11: etc_gptr result;
. . 12: int r;
e e 13:}_call_coken_fib_F:
3: erc_gpur _gperl; 14:void _call_token_£ib_0 (
10: MAINF *_fp; call_coken_£ib_p *
11: .call_token_fib P *_call_token_fib_pp; 15: void _ret i "“‘ vo;gp'_ ret_fp)
12: void MAIN.CL {); 16it -rec-ip O, -Fes-te
B - " A 17: etc_gptr _gptrl, _gptr2;
1’::: Tg;:a(-f(TbIAIN_F) etc_rts.free_64; 18: _call_token_£ib F *_fp:
15: etc‘rts-EZee 64 = _fp->_slots[0].cnt; 19 void _call_token fib_L ();
: -7 =% = e I 20: _token_fib_P *_token_fib_pp:;
16: else
17: _fp = | MAINF °) malloc (64); 21: _fp = (_call_token_£ib_F *)
18: _gptrl.node = etc_rts.node_id; 22: if (_fp) etc_res. free_64;
13: _gperl.ptr = &_fp->res; : - = fme N
20: _call token_fib pp = (_call_token fib_p «) | 22; Stc-Fes.free 84 = _fp->_slocs(0].cne;
21: etc_rts.next_free; X _ ; . .
22: _call_token_fib_pp->n = _fp->val; 3: _Ep-; 1;:a{.1_zok:::f;:TF } malloc (64};
23: _call_roken_fib_pp->result = _gperl; el TiPT>.FELip = _ret_ip:
N . 27: ~fp->_rec_£fp = _ret_f£p:;
24: ~call_token_fib_0 (_call_token_fib_pp,
25: MAIN C1, _fp): 28: fp->n = pp->n;
25:} = = e 29: _fp->result = _pp->result;
: 30; _fp->_slots[0}.cnc = 1;
e . 31: _fp->_slots{0}.rsc = 1;
g;:\{roxd - €L ¢ -F *_fp) 32: fp~>_slots(0]).ip = _call_token_fib_1;
: 33: _fp->_slots(0].fp = (long) _fp:
29: etc_gptr _gperl; A _ el
30: _call_mixed_fib_p *_call_mixed_fib_pp: 34: gp:rl.noile_- etc_rci.node_-c.i.
11: void MAIN.CZ (); 38: gperl.per = _fp->_slots - 0
= - : 36: _gptr2.node = etc_rts.node_id:
. _ - 37: —gptr2.ptr = &_fp->r;
gi Jpzxi.nzcr!e--&e;.c:::::.xode_zd. 38: _token_fib_pp = (_token_fib_P *)
P -gptrl.per = kI . . . 39: etc_rts.next_free;
34: —call_mixed_fib_pp = (_cail_mixed_fib P *) .
40: _token_fib_pp->done = _gptrl:;
35: etc_rts.next_free; R _
36: call_mixed_fib_pp->n = _fp->val; 41: -~token_£ib pp->n = _fp->n;
Py - X - by ’ 42: _token_fib_pp->result = _gptr2;
37z _call mixed fib pp->result = _gperl; 43: etc_invoke (0, _token_fib_0, 24);
38: _call_mixed fib_0 (_call_mixed_fib_pp, oo - » ~token_tin 9. &8):
39: _MAIN_C2, _fp): :
40:) - .
. I . 45:void _call_token_£fib_1 (
:;:‘{m’d - €2 (. _F *_fp) _call_token_fib_F *_fp)
: . . 46:(
43: etc_gptr _gperl; 47: etc_gptr _gptrl, _gptr2;
:::: 48: *{int *) _fp->result.ptr = _fp->r;
aa:) 49:_end_fun:
- 50: _fp->_slots([0].cnt = etc_rts.free_64;
Si: etc_rts.free_64 = (long) _fp;
52: etc_return {_fp->_ret_ip, _fp->_ret_£p};
S3:}
(a) MAIN threaded function (b) Callee threaded function call. token.fib

Figure 2.16: Pre-processing of CALL instruction

39

2.2.12 Loops spread over Threads

Threaded-C allows for loops to be spread over more than one thread. In the prepro-
cessed code, the loop will be represented in all the C representations of the threads. How-
ever, control does not toggle between these C functions, as it does among the threads. A
threaded function, with a long while loop spread among 2 threads is shown in part (a) of
Fig. 2.17, and its preprocessed code is shown in part (b) of Fig. 2.17.

Before proceeding further, we define the term ready queue. Threads guaranteed to be
scheduled on a node are placed in the ready queue (RQ) of that node. Threads from the
ready queue are executed in the FIFO fashion.

For instance, the while loop is spread over threads 0 and 1, in part (a) of Fig. 2.17.
The loop ends in the second thread (line [3). At the threaded function level, the under-
standing of execution of this loop is that, when thread 0 finishes, control enters thread 1
(as this thread is spawned from thread 0), and after executing the only statement before
the ending brace for while loop, control jumps back to the beginning of the loop body in
thread 0. This continues until the termination of the loop. However in the preprocessed
code for thread 0 (_get.loops_pl.0) seen in part (b) of Fig. 2.17, the while state-
ment is replaced by an if statement (line /4). Part of the loop body, that is in thread 0,
is mapped into the C function representing that thread, i.e. part of the first iteration of the
loop is retained in this C function.

In the C function representing the second thread, the complete while loop is retained,
including a C return statement (preprocessed code for END.THREAD), at the thread
boundary (line 42). However, the thread 0 part of the first iteration in this while loop
is skipped, by using a C goto statement (line 34), as that part must already have been
executed in code for thread 0.

When the thread 0 completes execution, it has spawned thread 1 (line /7). Control
jumps to end of loop in C function corresponding to thread 1, increments the loops
variable (line 44), and jumps back to start of the while loop (line 35). The loop body is
executed for next iteration, but the function terminates and exits at the return statement
(line 42). Nevertheless, there is another thread 1 spawned in the loop body that shares
the same activation frame. Execution of the new C function for thread 1 starts, and ends
in same fashion as earlier. This continues until the loop counter reaches its limit. In
the last iteration, when the loop condition fails, control jumps to the statements after the
loop body (line 46), thus skipping the return statement. After the execution of the
statements at end of thread 1 after the loop body, the C function terminates properly, and

40

1: THREADED get_loops_pl (SPTR done,
2: int *GLOBAL result)

3: {

4: SLOT SYNC_SLOTS [l}];
S: int del, loops;

6: loops = 0;
7: while (!'stop)

8: SPAWN (1);
9: wait (10);
10: END_THREAD
11:THREAD_1:

12: loops »= L;

13: 1}

14: DATA_RSYNC_L
15: stop = O;

16: END_FUNCTION
17:}

(loops, resulr,
done) ;

():

(a) Threaded function with While loop
spread over threads

1:void _get_loops_pl 0 (_get_loops_pi_P *_pp)
2:(

3: etc_gptr _gptrl;

4: _get_loops_pl_F *_fp:

S: wvoid _get_loops_pl_1l {);

6: _fp = (_get_loops_pl_F *} etc_rts.free_64;
T: if (_£p)

a: etc_rts. free_64 = _fp->_slots{0].cnc:
9: else

10: _fp = (_get_loops_pl_P *} malloc (64);
11: _fp->done = _pp->done;

12: _fp->result = _pp->resulc;

13: _fp->loops = 0;

14: if (!stop) (

15: _gptrl.node = etc_rts.node_id;

16: _gptrl.ptr = _fp;

17: etc_spawn (_gptrl, _get_loops_pl_1);

18: for (_fp->del = 0; _fp->del < 10 * 4;

19: _fp->del++)

20: nop ();

21: return;

22: }

23: etc_data_sync_l (_£fp->loops,
_fp->resulc,

24: _fp->done) ;

25: stop = 0;

26: _end_fun:

27: _fp->_slots(0].cnt = etc_rts.free_64;

28: etc_rts.free_64 = (long) _fp:

29:}

30:veid _get_loops_pl_l(_get_loops_pl_F *_fp)
31:(

32: etc_gptr _gptrl;

33: void _get_loops. pl_1 ();:

34: goto THREAD_1;

3S: while (!stop) {

36: _gptrl.node = etc_rts.node_id;

37: _gptrl.ptr = _fp;

38: etc_spawn (_gptrl, _get_loops_pl_1);
39: for (_fp->del = 0; _fp->del < 10 * 4:
40: _fp->delsr+)
41: nop (};

42: return;

43:THREAD_1:

44: _fp->loops += 1;

45: }

46: etc_data_sync_l (_fp->loops, _fp->result,
47: _fp->done) ;
48: stop = 0;

49:_end fun:

50: _fp->_slots{0].cnt = etc_rts.free_64;
51: etc_rts.free_64 = (long} _fp:

52:}

(b) Pre-processed code for While loop

Figure 2.17: Pre-processing of While Loop spread over Threads

41

exits.

One fact to be noted is that the threads spawned in each iteration will be placed at end
of the ready queue, and therefore will be executed after the threads already in the queue.
The early threads may correspond to another threaded function. Thus, splitting loops
over threads provides a chance for threads of other threaded functions to be executed
alongside/among the threads of this threaded function.

In summary, threaded code might be preprocessed into individual C functions for the
following reasons:

¢ To separate long latency operations into separate threads, i.e., place the request for
an operation in one thread, and code that uses the results of the operation in another
thread. The decision to split threaded functions into individual threads is made by
the Threaded-C programmer. Here each thread is represented by a C function.

¢ To facilitate restart of execution of a threaded function from the instruction next to
the one in which a callee is instantiated with the CALL construct. By translating
the remaining part of the threaded function into another C function, the C function
pointer can be easily specified as instruction pointer in the return thread pointer.
Here the preprocessor makes the decision as to the number and structure of the C
functions to represent the threaded code.

¢ To enable a scheduling fashion in which, a thread can be made to execute among
other threads (belonging to another threaded function), that are ahead in the ready
queue. Here, the loop is designed by the Threaded-C programmer, while the pre-
processor generates a C function for each thread. The structure of these individual
C functions allows for the representation of a loop spread over multiple threads.

To elaborate the third point further, some applications require that a thread be sched-
uled on a remote node, while there is another thread (say Th. A) that is still executing
there, i.e. scheduling a thread (say 7h. B) on a remote node, while another thread is, for
example, executing a long loop there. However, threads in EARTH are fine-grain, and
non-preemptive. In such a case, the remote thread (Th. A) will be executing forever, and
the later threads will never get CPU time. If, instead, the long loop in the remote thread
(Th. A) is spread over two threads, and the first thread spawns the second thread, as shown
in Fig. 2.17, then the second thread will be placed behind 7h.B in the RQ, thus enabling
Th. B to execute among the threads of another threaded function scheduled earlier on the
RQ.

42

2.3 The Runtime System

The Runtime System (RTS) provides a multithreaded environment for running applica-
tion threads efficiently. Its core responsibilities are thread-scheduling, context switching,
data communication, synchronization, global memory management and dynamic load
balancing.

Before proceeding further, it is important to study the representation of the threaded
function in the runtime system. A foken is the runtime system handle to execute a threaded
function. A token consists of two parts: the name of the C function corresponding to
the thread 0 of the threaded function (instruction pointer), and the amount of memory,
measured in bytes, required to store the arguments for the threaded function. Tokens are
created with the TOKEN construct and are the units used for dynamic load balancing.

Threaded functions that are instantiated by a TOKEN statement can be executed in any
processing node, while a function instantiation initiated by an INVOKE statement must
be executed in the node specified in the first parameter of the INVOKE statement.

When a token is created, heap memory for the activation frame has not yet been al-
located and hence the tokens are free to migrate to remote nodes. Once the threaded
function is scheduled for execution on a node, i.e. guaranteed to execute on a node, mem-
ory is allocated for the frame pointer on that node during the first thread of the threaded
function, and the arguments for the threaded function are down-loaded into the param-
eter frame structure. The frame now contains the context of the threaded function, and
can be passed onto remaining threads of the threaded function. Thus the activation frame
for a threaded function is expanded. Once the activation frame has been expanded, the
threaded function cannot migrate to another node. Also, all the threads of the threaded
function have to execute on the same node.

Though this document details the SP-2/tb-3 version of RTS, the operating principles
are the same among all versions, barring minor implementation detaiis that are localized
to a few routines in the CPU and network interfaces.

2.3.1 Context Switching

Regarding context-switching, threads in Threaded-C are non-preemptive, therefore the
term context here does not mean the usual combination of the register file, program

43

counter, stack pointer, and the status register. Instead, the context of a threaded func-
tion includes the arguments, sync slots and local variables of a threaded function. There-
fore, context-switching should be seen as context-sharing in Threaded-C. Once the token
representing an unexpanded Threaded-C function is expanded, the component threads
form separately invocable C functions representing the non-preemptive threads. Context-
switching between threads is made simple by terminating one C function, and starting
another C function. This manner of context-switching reduces overheads as it does not
require any context (register file, program counter, stack pointer, status register) to be
saved. Absence of such context savings improves portability, as the RTS code does not
need to access any machine specific areas. Context sharing between threads of a threaded
function has been explained in section 2.2.8.

2.3.2 Scheduling of Threads

Scheduling a thread involves two important decisions: where the thread should be exe-
cuted, and when it should start execution. In the EARTH architecture model, these two
decisions are kept separate. It is the responsibility of the load balancer to decide where the
tokens will be executed, while the EARTH scheduler decides the local thread execution
order within a node.

In the EARTH model scheduling is the last action performed by the runtime system on
a thread before its execution, similar to dispatching in process scheduling. The node that
will execute a thread is identified prior to scheduling either by the compiler/programmer
or by the dynamic load balancer. Load balancing is at a higher level in the RTS functional
hierarchy than scheduling, as may be noticed in Fig. 2.20. Load balancing makes threads
available for scheduling. While scheduling is confined to one node, load balancing hap-
pens between all nodes.

To allow the migration of tokens between nodes and to enable the implementation
of dynamic load balancing, two queues - the ready queue (RQ) and the token
queue (TQ), are maintained by the runtime system on each processing node. When-
ever a thread becomes enabled it is inserted in the RQ. An INVOKE causes the thread 0 of
the invoked function to be placed in the RQ while a TOKEN causes a token representing
the token-ed function to be placed in the TQ. Load balancing operates on the TQ, whereas
scheduling operates on the RQ.

Threads, rather than tokens, are the units of work in the RQ. These threads are the

components of the threaded functions that are guaranteed to execute on a node. The
threads in the RQ are in the enabled state since all of their synchronization conditions have
been met. While threads of a threaded function may execute in consecutive order, this
order is not guaranteed as the firing of a thread depends on its synchronization conditions.
Remember that all the enabled threads of a threaded function have to execute on the same
node. The FIFO scheduling policy is used to execute threads in the RQ. Threads are added
at the tail, and removed from the head of the queue. Whenever the RQ is empty, a token
is fetched from the TQ and the instruction pointer from the token is used to launch the
first thread of the threaded function.

In contrast, the TQ in contrast is a DEQUE - a data structure similar to a queue, but
operatable on both ends. Tokens are the units of work in the TQ. The TQ behaves locally
like a stack. When a node generates a token, the token is appended to the tail of the
TQ (PUSH operation). For local consumption, a token is extracted from the tail (POP
operation). However, the TQ acts like a FIFO queue when a token is to be sent to remote
nodes as part of a load balancing operation. A token is removed from the head of the
TQ, and sent to a remote node. When remotely generated tokens are received at a node.
they are added at the head of the TQ. The basic principle is that, tokens are removed
from the tail of the TQ for local consumption, and from the head of the TQ for remote
consumption. The flow of tokens amongst the application, RQ, TQ and remote nodes is
shown in Fig. 2.18.

5 T | .
3 a 5
R} 2
3| |ra g
< L

Run-Time System

Figure 2.18: Internal Queues in the EARTH RTS

The TQ design is intended to reduce token migrations and thereby reduce space ex-
plosion (memory space for holding the activation frames). When expanding tokens or
exchanging them with other nodes, the choice of a token is important as it determines
the order in which the program is executed. The execution order in turn determines the

45

. amount of parallelism which can be exploited and the amount of memory needed to exe-
cute the program [109, 107].

Le] Lo

Figure 2.19: A Sample Activation Tree

Fig. 2.19 shows the activation tree of a simple, doubly recursive function. The rect-
angular blocks represent threaded functions, while the edges represent the TIC edges.
If both calls can be executed in parallel, several execution sequences are possible. For
instance, the sequence 1, (2,3), 4, 5,6, 7), (8, 9, 10, 11, 12, 13, 14, 15) corresponds to a
breadth-first execution. This execution order makes it possible to execute threaded func-
tions 8 to 15 in parallel, i.e. maximum parallelism of 8. On the other hand, the sequence
1,2.4,8,9, 10, 11, 3,6, 12, 13, 7, 14, 15 corresponds to a depth-first execution. In that
case all threaded functions are executed sequentially.

The main differences between these two execution orders are the amount of paral-
lelism that can be exploited and the amount of memory needed to execute the program.
The depth-first strategy, which is the normal execution strategy for sequential processors,
does not exploit parallelism, but at most 4 instances of the threaded function are active
at the same time. On the other hand, the breadth-first approach takes advantage of all
available parallelism but there must be enough memory to keep all 15 activation frames
in memory at the same time. The choice of the execution order depends on the number
of nodes in the multiprocessor system, , the time needed to start a threaded function on
another node, the amount of work available to the other nodes, etc. An optimum strategy
would be to exploit just enough parallelism to keep all processors busy while at the same
time minimizing memory usage.

The TQ design approximates the ideal behavior, as explained above, quite well. For
instance, when all processors are busy, no tokens are exchanged over the network. The

. TQ acts like a stack, and the token that was generated last is the first to be expanded. This

46

corresponds to the normal depth-first execution strategy of sequential processors. On the
other hand, when a node sends the tokens it has produced to one of its neighbors, it is
the oldest token which is sent first. The resulting execution order is breadth-first, as the
threaded functions nearest to the root of the activation tree are executed first.

The execution order therefore becomes dependent on the load of the machine. As
long as the machine is busy, the code will be executed mostly in a depth-first order, using
minimum of resources. As soon as one of the processors needs more work, however,
tokens are sent to it in breadth-first order and some more parallelism is exploited.

Another advantage of this strategy is that it is able to take some advantage of locality.
Executing code depth-first means that threaded functions are executed on the same node as
their parent. Because parameters and results can be created and accessed locally, network
traffic is reduced. This works especially well in the case of recursive functions.

To summarize, depth-first expansion of the activation tree is desired locally, whereas
breadth-first expansion is preferred over a set of nodes. Function frames at higher levels
in the activation tree represent more work than those in lower levels. Therefore, frames
with more work in the activation tree should migrate to remote nodes. to offset the work
done on remote nodes with the migration costs. Depth-first expansion on a node not only
reduces token migrations, but also adds to the locality of the tokens migrated. When this
idea is mapped on to queue structure, the tokens near the head of the TQ correspond to
the functions on the top level of the activation tree. Hence the TQ is accessed in FIFO
fashion for remote consumption, and in stack fashion for local consumption. The effect
of a DEQUE structure for token queue is described in [109, 107] and [33].

2.3.3 Thread Execution by the Runtime System

The multi-threading support provided by the runtime system includes updating thread’s
state according to the synchronization operations performed, scheduling enabled threads
for execution, polling the network at thread boundaries for messages, performing dynamic
load balancing, and sending data and synchronization signals to remote nodes. The RTS
keeps track of tokens produced in the token queue, ready threads in ready queue, and
initiates the threads by accessing their C function pointers.

During initialization, the executable of a Threaded-C program is loaded into memory
of all nodes participating in the execution. Remember that the executable includes object
code for both the RTS and the application. Thread launching starts on node 0 from the

47

" MAIN_O’ function, which corresponds to the first thread of the MAIN function of the
Threaded-C program. Child threaded functions are initiated by adding tokens to the TQ
on the relevant node. Enabled threads are placed in the RQ for execution. In the case of
idle nodes, the dynamic load balancer on that node is invoked and it fetches tokens from
other nodes according to the load balancing policy. Eventually threads are running on all
nodes. The execution ends when no more threads remain to be executed.

When the execution of a thread completes the runtime system polls the network to
check for any incoming messages. After processing all the incoming messages, it calls
the load balancer algorithm. The normal conditions for the load are established by the
load balancer algorithm. The load is abnormal if the node has less tokens than a minimal
threshold or more tokens than a maximum threshold. If the load is normal, the load
balancer returns immediately and the RTS fetches the next thread in the ready queue
and starts to execute it. If the RQ is empty, the RTS fetches a token from the token
queue. If the TQ is also empty, the load balancer on the node is invoked to request remote
workload. The choice of the remote node is based on the load balancer policy. All load
balancer related activities like: token request; token response; token forwarding: and any
updation of load state information, happen at the thread boundary. The RTS activity [33]
at a thread boundary is depicted in Fig. 2.20.

An incoming message is in one of the four groups :

Sync Request : For a sync operation, the message contains the address of a synchroniza-
tion slot. The sync count is decremented, and if it becomes zero, the sync count is
reset and the relevant thread is placed in the ready queue for execution. The handler
routine is etc_synec.

Data Request : In the case of a request from a remote node for local data, the address of
the first location and the size of the data block requested, and the global address of
the destination are in the message. The local data is composed into a message and
sent to the requesting node. The handler routine is etc_get_sync X.

Response to Data Request : When remote data is received following a request sent ear-
lier (etc.get_sync_X), the message contains the data, the destination address and
the address of a sync slot that is to be synchronized to signal the arrival of the data.
The data is placed in the local destination address, and the sync count decremented.
The sync count is accessed from the sync slot that is specified in the message. The
handler routine is etc_data sync X.

48

Message Type ?)

dara_sync

Put data at
destination addr

Load Balancing Request : A load-balancing request is serviced depending on the load-
balancing policy. In general a node that has few tokens will store an arriving token
on its token queue and reject a request for token. A node that has a lot of tokens will
reply to requests with tokens and will reject new tokens. Otherwise, the request is
forwarded to the next logical neighbor. The handler routine is hd1l_token_req.

Response to load balancing request : The incoming message contains a token from a
remote node. This token is consumed if the node is still idle. Otherwise, depending
on the load balancer policy, this extra token is either appended to the tail of the TQ,
or forwarded to next neighbor. The handler routine that performs this operation is
hdl_token.

When data requests are received, the destination to where the data is to be sent is
specified as a global address. Likewise the synchronization slot that is to be synchronized

Invoke Load Invoke Scheduler
Balancer
RQ empty ?
Y
TQempty ?

Pick task from
| head of RQ

Pick task from
t wlof TQ

| Load balancing
request

®©

Figure 2.20: RTS activity at Poiling

49

when a data transfer is completed is specified by a global address. The runtime system
reads the node portion of these addresses to decide about where to send the data reply
or the synchronization signal. For efficiency, the RTS implements a number of special-
ized “handler” functions to process each kind of message. This multiple handlers system
prevents unnecessary function invocations when a message arrives.

2.3.4 Dynamic Load Balancing

Dynamic load balancers have been well studied for coarse-grain parallel distributed com-
puting. However, the balancer overheads in such systems are not permissible in fine-grain
systems like EARTH where a token can take as little as 2 us to run. In such systems the
load balancer overheads must be kept to a minimum.

The load balancing goal in EARTH is to ensure that all nodes are busy rather than to
balance the tokens equally among all the nodes. A node is idle when it has no threads to
execute, while a node with surplus workload is rich. The balancers are implemented in a
distributed manner, i.e. any load distribution information is kept by each node and there
is no central authority to distribute the load. The action of individual load balancers must,
over time, ensure that most of the nodes are busy when there is enough parallelism avail-
able in the application. The balancer on each node is invoked at every thread boundary
whenever tokens are to be sent or received. Tokens, the units of workload, are stored on
the token queue on all nodes. Migratable tokens might be produced locally or they might
arrive at the node as a result of load balancing requests sent when the node was idle.

The initial version of the portable EARTH runtime system supported seven dynamic
load balancer policies [33, 34]. The goal is to design simple balancers that deliver good
load distribution with minimum overheads. A virtual ring network topology is adopted
in all the balancers with nodes numbered clock-wise. The balancing activities might be
initiated by an idle node that wants work, called a receiver-initiated balancer, or by a rich
node that wants to distribute some of its extra work, called a sender-initiated balancer; or
it might be initiated by either type of node, called a hybrid balancer.

Two types of messages are exchanged among the nodes to implement dynamic load
balancing:

Load balancing request : A load-balancing request is serviced according to the load-
balancing policy. In general, if there are surplus tokens in the token queue, a token
is sent to the remote node that requested work. Otherwise, the request is forwarded

50

to the next logical neighbor in the ring.

Response to load balancing request : The incoming message contains a token from a
remote node. If the node is still idle, it consumes the token. Otherwise, the token
might be inserted in the head of the TQ or it might be forwarded to the next neighbor
in the ring. The action taken in this case depends on the load balancer policy.

We now present a brief description of the policy adopted by each load balancer.

Dual In this load balancer a request does not contain the identification of the node that
originated it. When a node is idle it creates a request and sends it to its previous
neighbor in the ring. When a rich node receives a request it sends a token from its
TQ to its successor. When an idle node receives a request it forwards the request
to its predecessor. When a rich node receives a token, it forwards the token to its
successor. When an idle node receives a token it schedules the token for execution.
Notice that requests will circulate counter-clockwise in the ring while tokens will
circulate in a clockwise fashion.

In EARTH implementations in which there is a single processor in each node the
processor has to perform the functionality of both the execution unit and the syn-
chronization unit. In such an implementation the dual load balancer might result in
poor performance because the processor of busy nodes might be overloaded with
the passing of tokens and requests. However the dual balancer can work quite well
in implementations in which there is a separate processor to implement the func-
tionality of the synchronization unit.

Spn This balancer is similar to the Dual balancer, except that it is designed for single
processor nodes. To reduce the communication traffic, a request contains the iden-
tification of the node that originated it. Requests are still circulated around the ring
in a counter-clockwise fashion. However, when they arrive at a rich node, the node
sends the reply directly to the node that has originated the request. This policy
eliminates the work that intermediate nodes would have to do to forward tokens.

Shis In the Shis balancer the rich node that sent a token in response to a reply attaches
its own id to the token. The idle node that receives the token “remembers” where
it comes from and directs its request to the rich node that sent work the last time.
If now that node is no longer rich, the request is circulated around the ring in a

51

counter-clockwise fashion by the formerly rich node. This policy eliminates the
overhead of forwarding tokens and reduces the overhead of forwarding requests.

Snd The sender balancer starts working when the number of tokens in the TQ reaches
a threshold. The tokens are sent around the ring in a round-robin fashion to avoid
overloading other nodes. If a rich node receives a token it will forward it according
to its own round-robin sequencing. If a token arrives back at the node that first sent
it out, it is no [onger sent out. Under this policy an idle node does not attempt to
balance the load. It stays idle until it receives work from a rich node.

His This history balancer employs both receiver and sender initiated strategies to dis-
tribute load. Each node keeps a list of nodes that are likely to be idle and of
nodes that are likely to be rich. Such list is compiled from the recent history of
load balancing activities. Nodes that sent request for work recently are likely to be
idle. Nodes that replied to requests for work providing tokens are likely to be rich.
When the TQ becomes empty, the history balancer sends requests to the nodes that
are likely to be rich. When its TQ becomes larger than a given threshold. it sends
tokens to the nodes that are likely to be idle.

Range and Catapult Requests are sent to the predecessor node as in the dual and spn
balancers. When a token request reaches a node, it implies that all the nodes in the
ring between the node that originated the request and the node that received it are
idle. A range list is compiled to store the ranges of nodes that are idle. When the
TQ of a node surpasses a given threshold the node will send tokens to the nodes in
the range list. The catapult balancer sends tokens to the near end of the range list,
whereas the range balancer sends them to the far end of the range list.

If a token reaches a node that is no more idle, the range balancer on that node
forwards the token to its predecessor and sends a message to the source node to
notify that it is no longer idle. The source node then updates its range list.

Fig. 2.21 shows the virtual ring and the functionality of receiver-initiated, sender-
initiated and hybrid balancers in the EARTH runtime system. The seven load balancer
policies provide a platform to study the various parameters that affect application per-
formance, like the application model, grain size, logical topology, polling interval, and
scalability. Our experimental results so far, show that there is no perfect load balancer for

52

[1-3}

Q)
() Dual Balancer {b) Snd Balancer (c) Range Balancer
. Wealthy Node == Reyuest for Token
--e-=--& Respoading Token
. Hungry Node o

oo m o Load Update Message
O Non-wealthy Node

Figure 2.21: The dual, snd and range load balancers

all application models. However, hybrid balancers that are based on history information
performed well in most situations.

2.3.5 Network Layer

The services provided by the RTS that require inter-node data communication are based
on the technique of active messages [163]. An active message contains data and a pointer
to a function that is to be invoked in the destination node when the message is received.
Remote operations involving spawning of threads, sync operations, handling global mem-
ory, and inter-node data communication are based on the technique of active messages.
For efficiency, and to isolate the interactions with the network from the rest of the RTS, a
limited set of functions is used for inter-node communication.

The arrival of an active message causes a function handler to be invoked at the des-
tination which acts on the data transmitted. The message transmitted contains two parts:
the name of the handler routine to be invoked at the remote node, and the parameters for
this handler routine. The C function pointer is used to represent the starting address of
the handler routine on the remote node.

The data packets are identified depending on the number and size of the parameters
transmitted as part of the active message. The RTS provides four primitives for sending
active messages. All data packets have the handler routine name, but differ in the number

of parameters they support. The handler routine at the remote node is invoked with these
parameters.

e etc_send2: For data packets with two parameters.

53

e etc_send4: For data packets with four parameters.
e etc_send6: For data packets with six parameters.
e etc_send2n: For data packets with two parameters and a data block.

e etc_send4n: For data packets with four parameters and a data block.

These five prototypes are sufficient to achieve inter-node communication for all types
of data. They are part of the network interface of the RTS, and access the network card
data structures (the tb-3 card data structures on the IBM SP-2 platform). To maintain
speedy communications, the network card data structures are retained in the RTS com-
munication interface, but this interaction is very limited to a few routines. By maintaining
the above prototypes for the etc_send routines, the rest of the RTS code is independent
of the network platform on the underlying parallel machine.

The number of tasks and the identity of the current node is obtained from the network
environment. The network parameters like pointers for the send, receive, and overflow
buffers are initialized in the network card data structures. Acknowledgment messages
are sent so that remote nodes can send some more packets. When the send queue is full,
outgoing messages are shifted to the overflow buffer, from where they are later sent.

Active messages are sent through the etc_sendX routines. The data packet is loaded
into the tb-3 network data structure along with the number of parameters required for
executing the handler routines at the remote end - either 2, 4, or 6. The composed data
packet is placed in the network send queue. Fig. 2.22 shows the prototypes for the send
routines.

Polling the network is performed at the thread boundary, or at the explicit use of the
"POLL’ statement [108]. The incoming message is picked from the receive queue, and
depending on the message type (number of parameters), the handler routine is invoked
with the parameters (both obtained from the message).

The RTS makes use of the et c_send primitives to implement remote data communi-
cation, remote synchronization, global memory management, and dynamic load balanc-
ing. The handler routines are present on all nodes, as the same executable is running on
all the nodes. For instance to implement remote synchronization, the RTS on the local
node composes an active message with the handler routine name (etc_sync) and the
global address of the sync slot. The handler routine on invocation at the remote node
checks for node identity, and then performs the synchronization operation. While dealing

54

void etc_send2(int dest,etc_handler hdl, int pil,
int p2)

void etc_send4 (int dest etc_handler hdl, int pl,
int p2,int p3,int p4)

void etc_send6 (int dest,etc_handler hdl, int pl,
int p2,int p3,int p4,int p5,int pé)

void etc_send2n (int dest,etc_handler hdl, int pl,
int p2,void *p,long bytes)

void etc_send4n (int dest,etc_handler hdl, int pl,
int p2,int p3,int p4,void *p,
long bytes)

Figure 2.22: Send routines for Active Messages

with global addresses such as that of the sync slot in this example, the handler routine first
checks the node number in the global address. If the node identity number matches the
node number in the global address, then the requested operation is performed, otherwise
the message is forwarded through an etc_sendX routine to the destination node. Thus
global addresses are supported over the network layer.

2.3.6 Common RTS core

This section looks at the organization of the RTS source code while implementing some
of the RTS core functionality - synchronization and scheduling, data communication and
global memory management.

The starting point for the executable is the 'main’ function in the file rts.c. The
RTS variables, timer, network, load balancer, and profiler (if load balancer and profiler
are chosen as options on etcc command-line) are initialized. The etc_run () function
starts the execution of the Threaded-C code from it’s MATN_O function and from here
on, the RTS keeps track of application execution. The etc_next._thread function
specified in the load balancer modules, determines the next thread to be executed - either
from the RQ, TQ, or if both are empty, by requesting from the logical neighbors as per the
load balancing policy. The threads are placed in the RQ by placing the function pointer

55

in the ’ip’ field, and the parameters in the 'fp’ field.

The file data.c contains the macro names for the handlers. The inline expanded
macro definitions are given in the file data_inc.c. The handlers are organized in two
levels. The first level corresponds to the handler name obtained from the incoming mes-
sage at polling. These invoked handlers have their name starting with the keyword etc_
(for ex. etc_sync). The function of etc XXX is to determine if the message is meant
for the current node. If the message is for the local node, the corresponding function
whose name starts with the keyword hdl_ is invoked. The routine hdl XXX proceeds
to act on the parameters and perform relevant function. On the other hand, if etc XXX
determines that the incoming message is not meant for the local node, it forwards the han-
dler name and parameters to the destination node. Fig. 2.23 gives an example of invoking
handlers with the code for etc_sync. The code for hd1l_sync is shown in Fig. 2.24.

/ *
void inline_etc_sync (s_node, s_sp)
*/
#define inline_etc_sync(s_node, s_sp) \
A\
buf_elem *bp; \
\
if (s_node == etc_rts.node_id) { \
inline_hdl_sync (((etc_slot *) s_sp)); \
} else (\
etc_send2 (s_node, hdl_sync, (int) s_sp, 0}; \
INC_REMOTE \
} A
}

Figure 2.23: Invoking handler for Sync Operation

Global memory management makes use of the handlers as specified above. For a
global address, the RTS on a node sends a request to a remote node which hosts the global
address. The destination node, on identifying the node number in the global address as
its own, immediately composes an active message with the data and the name of handler
routine and sends it to the requesting node. On the other hand, if the node number in
the global address does not match the node identity, the RTS forwards the message to the
correct destination. This strategy of checking for the node number before performing an

56

operation, not only provides fault-tolerance from missing messages, but also enables the
RTS code to run on any interconnection network in the parallel machine.

To access a global address, the requesting node composes an active message with
the global address, and the handler routine etc_get_sync _X. This message is sent to
the node which hosts the global address. When the host node receives a get_sync, it
constructs a etc_data_sync X message which after returning the data content, also
decrements the sync counter for the relevant thread. If the sync count is zero, the thread
is placed in the RQ.

Regarding thread synchronization, an explicit sync message causes the handler routine
etc._sync to be invoked on the destination node. The handler routine decrements the
sync counter, and if the sync count reaches zero places the corresponding thread in the
RQ. Fig. 2.24 shows a typical handler for sync operation.

#define inline_hdl_sync(sp) \
N\
buf_elem *bp; \
\
if (sp->cnt == 1) (\
sp->cnt = sp->rst;\
bp = etc_rts.next_free;\
etc_rts.rdy_t->next = bp;\
etc_rts.rdy_t = bp;\
etc_rts.next_free = bp->next;\
bp->ip = sp->ip;\
bp->fp = sp->fp;\
if (letc_rts.next_free)
etc_alloc_buf_elem ();\
} else\
sp->cnt -= 1;\
}

Figure 2.24: Handler for Sync operation

2.3.7 Architecture Specific Code

Instruction timing and cache parameters directly influence the execution time. Timing
statistics for the instructions are obtained by accessing the on-board programmable timer.
Assembly language routines for the IBM SP platforms retum the accurate real-time clock,

57

after accessing the on-board 64 bit time base register. These routines are called from the
C function, etc_time() whenever system time is required. The etc_time routine
returns time in seconds, as a double-precision value.

In the early versions of the portable RTS, the ct_read() routine is used to obtain
timing information. This routine was used to maintain compatibility with the Threaded-
C code developed for the EARTH-MANNA. The ct_read() routine in turn called
etc_time_raw (), which is in assembly, and returned time in nanoseconds as a double
precision value. But since the current version of the portable RTS, etc_time() is the
routine used to access on-board real time clock, and should be used in future Threaded-C
applications and the RTS profiling code.

To obtain exact execution times, cache misses are reduced by touching both the code
and data segments initially. Corresponding assembly language routines flush cache lines
specified as a single address or in an address range. In addition, memory-to-memory
copy operation optimized for small blocks using both integer and floating-point registers
is provided. Time delay is provided by an assembly language routine etc_delay().

The above stated functions contribute to the minimal machine specific code of the
portable RTS. These routines are available for RS6000 CPU, and SUN workstations re-
spectively.

2.3.8 Portability

Two features that affect the portability of an implementation of a parallel programming
model are the interfaces with the hardware and with the interconnection network. The
EARTH runtime system is written in a standard programming language (in this case
ANSI-C) that is supported by most parallel machines. The EARTH runtime system mini-
mizes specific references to architecture or hardware features and network protocols. To
further enhance portability, specific tasks required to interact with a given network are
written as a separate set of functions with a clearly defined interface with the rest of the
runtime system.

When threads can be preempted the context in which a thread is executing -program
counter, status registers, stack pointers and architectural registers, must be saved when the
thread loses the CPU. Because threads run to completion in EARTH, context only has to
be saved at the thread boundaries. At that point there is no need to save the values stored
in the architectural register, program counter stack pointer or status register. The context

58

here, means the combination of the parameters, local variables, and the sync slots for a
threaded function. All the context that is shared among EARTH threads belonging to the
same threaded function is stored in the local variables of the function and thus is stored in
the activation frame. Because there are no architectural dependent values to be saved and
restored during the execution of EARTH, the runtime system can be made very portable.

The current version of the runtime system is ported onto the SUN workstations, IBM
SP-2, and the Beowulf. Its network interfaces maybe myrinet, tb-2, tb-3,
and TCP/ IP. The RTS can be ported onto new platforms very easily and quickly.

59

Chapter 3

Dynamic Load Balancers in the
EARTH Runtime System

Dynamic load balancing in fine-grain multithreaded systems places the following de-
mands on a load balancer: accuracy, inexpensiveness, quick response time, simplicity,
stability, efficiency, and scalability. An efficient balancer provides agreeable performance
improvement with load balancing, when compared to a “no-load balancer” situation.
These demands are understandable in the EARTH system, where average grain size can
be 200 us (approx. 12500 cycles). Another important expectation from a load balancer
is that it should perform well for all applications, in high/low load situations. In other
words, the balancer should be able to exploit the available parallelism in any application
at runtime, and minimize the idle times by keeping all the processors busy.

To meet ail the demands enumerated above, a balancer should not only be able to
respond to rapidly fluctuating loads, but also be able to make accurate decisions based on
global system state, and also consume minimum CPU cycles for load balancing purposes.
As a study in this direction, the Rand balancer is presented in this chapter. This balancer is
based on a randomizing algorithm, performs the roles of both sender and receiver accord-
ing to the current load situation, considers global load state before choosing a target node
for work transfer, and uses a completely connected graph as a logical topology between
all the nodes in the execution.

Before proceeding further, certain assumptions in the load model are restated here.
Firstly, scheduling is separated from the task of dynamic load balancing in the EARTH
system. As explained in section 2.3.2, scheduling decides on the next thread to execute
from locally available work in the ready queue, whereas load balancing operates between

60

the token queues on different nodes. The DEQUE structure of the token queue supports
locality considerations by allowing depth-first search locally, and breadth-first search re-
motely. Tokens are the units of dynamic load balancing. Secondly, the goal of load
balancing here is to keep all the processors busy, rather than balancing workload equally
on all the processors.

A node is said to be in the idle state when it has no threads to execute. A node with
surplus workload is called a rich node. Threshold values for workload classify the nodes
as either rich or idle. Distributing the workload during application execution is achieved
by sending the tokens to the balancers on remote nodes. A token contains all the necessary
information to create a new thread. Tokens are stored in the token queue on each node.
The token queue is based on the DEQUE data structure, which acts as a stack for local
consumption and as a FIFO queue for remote consumption. Tokens eligible for migration
are obtained in two ways: by generating locally, and as a result of load balancing requests.
The token execution time determines the grain size.

This chapter is organized as follows: Section 3.1 reviews previous work on random-
izing algorithms. Section 3.2 describes the Rand balancer algorithm. Section 3.3 iso-
lates various features of the Rand balancer, and studies their effect on performance. Sec-

tion 3.3.4 presents the algorithm for a balancer that allows to execute parallel applications
with no load balancing.

3.1 Background

In the random mapping strategy, initial placement of threads is done by choosing a pro-
cessor at random, and map that thread to that processor [99, 18, 54]. It has been shown
that this scheme has a bad worst-case behavior when a highly loaded processor is cho-
sen [50, 78, 136]. An alternative approach is to first probe a limited number of nodes at
random, and then choose the best one [17, 136]. Even probing only two nodes reduces
the expected maximum load when mapping n threads from O(log n/ log log n) to O(log
log n) [20].

Mitzenmacher et al. [119] improvise on the work in [20]. They consider the following
dynamic model: customers arrive as a Poisson stream of rate at a collection of n servers.
Each customer chooses some d servers independently and uniformly at random from the n
servers, and waits for service at the one with the fewest customers. Customers are served
according to the first-in-first-out (FIFO) protocol, and the service time for a customer is

61

distributed with mean 1. This model is called the supermarket model. In this model,
customers arrive over time, and the number of customers is not fixed. It has been shown
that the maximum load is then only (log log n)/log d + O(1) with high probability. This
same result can be observed even in a static system, in which n balls are placed into n bins,
each bin chosen independently and at random. Here, each ball is placed sequentially into
the least full of d bins chosen independently and uniformly at random. In the static model,
the number of balls and bins are fixed. The difference between the model considered here
and the one shown in Azar et a [is that in the latter, there are a fixed number of customers
to be distributed who never leave the system. In addition, a customer who completes
service is recirculated in the system.

Dynamic task arrivals, and variable number of tasks in an execution suit the multi-
threaded model. However, implementing the random probes is a costly process in fine-
grain systems. Executing a random function for every decision, and polling overheads
due to the load probes pose the biggest challenge to make load balancing profitable in
fine-grain multithreaded systems such as EARTH.

The basis for the Rand balancer is the supermarket model [119] in distributed com-
puting. The resuts show that giving each ball two choices instead of just one leads to an
exponential improvement in the maximum load on any node. The system considered has
a very high number of queues to chose from, in the order of hundreds. While having more
than a hundred processors is possible, their number is rarely more than 32, or at most 64 in
actual application executions. The value for d has not been formulated in [119]. Finally,
the supermarket model is considered for process-based distributed computing, where the
queuing theory principles apply. However, in multithreaded systems, task arrival rate is
not independent of task consumption rate. Furthermore in fine-grain multithreaded sys-
tems, the application grain size is very small, and the simulation results in [119] do not
apply here. Therefore, the Rand balancer has to be very lean, and resort to various other
techniques so that the balancing benefits dominate the balancer overheads.

3.2 The Rand Balancer

The main features of the Rand balancer are as follows:

62

The balancer is hybrid (symmetric)!. The balancer has both sender and receiver
initiated components.

In the receiver mode, load probes are sent to randomly chosen nodes. The least
loaded node is chosen as the destination node for load transfer. Load probes are not
used in the sender mode of the balancer.

Load information is collected from load probes, load messages, and piggy-backed
messages. This load information is used in deciding a destination node for load
transfer. Care is taken to avoid aging of the load information. If the load informa-
tion is not recent, then a node is chosen at random.

The balancer assumes a completely connected graph as a logical topology between
the nodes. All nodes are within one hop distance of each other.>

A load threshold is used to limit excessive load transfers in the sender mode, and
thus avoid load thrashing common in sender-initiated balancers.

The four phases in dynamic load balancing are - load evaluation, load balancing prof-

itability determination, task selection, and task migration. The second phase is more
common in process-based parallel systems, and is not affordable for fine-grain multi-
threading due to its high cost. Load transfers are always assumed profitable because the
goal here is to minimize idle time rather than balancing load equaily. Task selection in the
third phase is automatic in the EARTH model, due to the DEQUE structure for the token
queue. Tokens from the top of the token queue are always chosen to migrate.

Transfer Policy: This policy determines the balancer initiation strategy, i.c. whether

the current load situation warrants the initiation of load transfer.

The receiver mode of the Rand balancer is switched on in three situations:

e The scheduler finds no ready thread to execute in both the ready queue and token

queue.

e On receiving a load request, two scenarios are possible: a receiving node for the

load request is already idle; after responding to the request, a node finds an empty
token queue.

!The term hybrid is known as symmetric elsewhere in the literature.
*This may not be true in the underlying physical architecture.

63

o After receiving a token from the network, an idle node notices that it has no extra
tokens.

The sender mode of the Rand balancer is switched on, when the number of entries in
the local token queue equals a particular threshold. The threshold is calculated by an em-
pirical formula, which takes into account the number of nodes in the system. This formula
has been fine-tuned experimentally until satisfactory results are observed. The threshold
is double the number of probes sent. The number of probes sent, in turn, depends on the
number of nodes in the execution. If the threshold is computed to be less than five, it is
normalized to value that provides a good balance between aggressive and conservative
load migration.

Selection Policy: This policy selects the token for migration. There is no extra effort
invested in identifying a suitable token to migrate. The token queue simplifies this policy,
as the tokens at the top of the token queue are expected to be higher in the activation tree,
are expected to have more work. Locality requirements of communicating threads are
taken care of, by adopting a depth-first search pattern for local thread execution.

Location Policy: A partner for load migration is identified in this policy. In the
receiver mode, the objective of the balancer is to find the richest possible node in the
whole system. Load probes are sent to randomly chosen nodes. Once all the probes are
acknowledged with the load status on remote nodes, the richest node is determined by
comparing the load status from the probes. Finally, a token request message is sent to the
richest node.

An important variable is the number of load probes. The number chosen should be
large enough to represent the total number of nodes in the execution, but at the same time
must be small enough not to cause an explosion of load probe messages, and as a result
unacceptable load overheads. An empirical formula after thorough experimentation has
been determined for the number of load probes.

d = (Number of Nodes)/10 +1)

The value for d, the number of load probes is constant for a whole execution. It
has worked very well for the portable EARTH runtime system on the [BM SP-2. Its
value may need a change on other parallel systems, like the Fast Ethernet based Beowulf
system, where the network latencies and polling overheads are relatively high.

In the sender mode, the load state information database on each node is checked for
the poorest, or the most idle node in the system. If this cannot be determined from the

64

database, then a node is chosen at random. A message with a token is sent to the chosen
node. No load probes are sent during the sender mode. Making the most accurate choice
in the sender mode is not as important as in the receiver mode. While care is taken to make
the best choice with available information, there is no need to spend too much CPU time
on load balancing overheads, especially when the local processor has enough application
threads to execute.

Information Policy: A global load information database is maintained on every node.
Initially ambitious plans with sophisticated search patterns were conceived, but our exper-
iments have convinced us of the need for a simple, and effective database access. Instead
of checking the load information for every node, a reverse approach is adopted in the
design of the data structure for the database. A single-dimensional array indexed by load
is maintained. Each of the elements of the array have a structure with fields for a node
number, and a reuse flag. As the balancer is always searching for the richest, or poorest
nodes, this approach works fine. Whenever load information is received, the node is en-
tered into the array slot with corresponding load index. The reuse flag is set to indicate
that this information is very recent. Once the information is used in making a decision,
the reuse flag is reset in order to avoid using old and inaccurate load information.

Load information is collected in three ways: load probes, load balancing messages,
and piggy-backed information. When a load probe is acknowledged, the data is stored in
the database. Also, when a load request or load probe is received, then it is easy to assume
that the sender has zero workload. Finally, local load information is piggy-backed over
token transfer messages sent abroad.

Whenever a load balancing message is received at a node, a corresponding handler
is invoked. The behavior of the Rand balancer for different load balancing messages is
listed below:

Receiving a load probe : Local load information (entries in the token queue) is com-
posed into a message and sent to the sender node. An entry is made in the load
information database, to record the idle state of the sender node.

Receiving probe data : Store the load information in the database. If all the load probes
are acknowledged, then compare the data from all the probes to determine the best
destination. Then, a token request message is sent to the chosen node.

Receiving a token request : Update the node information in the load database, to reflect
the idle status of the sender node. If token queue is not empty, respond with a token

65

to the request. After the token transfer,if the token queue is empty, then initiate
the receiver mode of the load balancer. On the other hand, if there were no tokens
when the request was received, initiate the receiver mode of the balancer. Note
that, a token request is satisfied, even if it is the only token in the token queue.
Previous experience has shown us that, performance degrades if a token request is
not satisfied due to the lack of spare tokens.

Receiving a token : Down-load the piggy-backed load information into the database. If
this node is idle, consume the token, and send a token request. If it is not idle, and
the number of tokens in the token queue equals the load threshold, then initiate the
sender mode and forward the token to a chosen destination. If the workload on the
current node is below the threshold, add the token to the token queue.

Sending a token request: If the number of load probes for this execution is one, then

select a node at random. Otherwise, issue d number of load probes to randomly selected
nodes.

3.3 Other Balancers

This section describes the algorithms for eight other balancers implemented in the
EARTH runtime system. Six of these balancers are implemented in order to highlight
the individual significance of various features that together form the Rand balancer. The
Minima balancer does not perform any load balancing, and therefore provides the lower
bound for parallel performance. The Central balancer implements a centralized load bal-
ancing algorithm on distributed memory machines, and is intended to point out th result-
ing degradation in performance. The load balancers are as listed below:

Receiver-Initiated : Rand-Rcv-Info, Rand-Rcv
Sender-Initiated : Rand-Snd-Info
Hybrid : Rand-Hybrid-Noinfo, Rand-Hybrid, Rand-Hybrid-Piggyback

Performance Bound : Minima

The balancers based on the randomizing algorithm allow a comparative study of the
Rand balancer with respect to their transfer policy, and information policy. The studies

66

on the transfer policy establish the fact that the hybrid nature of the Rand balancer out-
performs the sender/receiver-initiated versions of itself. Comparison of different levels of
sophistication in the information policy confirms the soundness of the information policy
in the Rand balancer.

3.3.1 Receiver-Initiated Balancers

The Rand-Rcv-Info balancer is similar to the Rand balancer with its sender component
excluded. This balancer is strictly receiver-initiated. Whenever, there is a shortage of
tokens, a token request is sent abroad. Token transfers occur only as response to token
requests. However, the selection, location, and information policies remain the same as
the Rand balancer. A database is maintained on each node with load information collected
from probe data, load messages, and piggy-backed data. The load database is used in
choosing a destination for load request, when there is only one ready thread in the ready
queue. This balancer compares the receiver-initiated policy versus the hybrid policy of
the Rand balancer.

The Rand-Rcv balancer differs from the Rand-Rcv-Info balancer in that, no load in-
formation is considered in choosing the destinations for load requests. This balancer is
to highlight two issues in receiver-initiated balancers: significance of the super-market
model, where load probes are sent to randomly chosen nodes, and the node with highest
workload is chosen as the target for token request; and the relevance of information pol-
icy in token transfers. This balancer uses a simple work-stealing algorithm in which the
destination node is picked on random. No load probes are sent, nor any load information
database is maintained.

3.3.2 Sender-Initiated Balancers

The Rand-Snd-Info balancer is a sender-initiated balancer. It differs from the Rand bal-
ancer in two respects: there is no receiver-initiated component; and no load probes are
sent. Barring these two differences, the balancer is similar to the Rand balancer.

Load probes are not used in order to avoid instability in the system due to very high
balancer related message traffic. However, a load information database is maintained on
each node. Load information gleaned from load messages, and piggy-backed messages is
mapped into the database.

A load threshold is used to initiate load transfers. When workload on a node equals

67

the threshold, a target node is chosen either from the current load information, or by using
a randomizing function.

3.3.3 Hybrid Load Balancers

The Rand-Hybrid-Noinfo balancer differs from the Rand balancer in that it does not main-
tain a load state database on each node. The Rand balancer uses global load state informa-
tion to a small extent in the receiver mode, and in a major way in the sender component.
This use of load state information is excluded in the Rand-hybrid-Nolnfo algorithm. In
the receiver mode, target nodes are chosen by sending random probes, and selecting the
most appropriate node. In the sender mode, a load destination is picked at random. The
objective of this balancer is to highlight the difference that the load information policy in
the Rand balancer makes to total elapsed time.

The Rand-Hybrid balancer is an extension to the Rand-Rcv balancer in that, a sender
component also is also included. This balancer is a simple hybrid balancer in which
target nodes for both token requests, and token transfers are chosen at random. The
major difference with the Rand balancer lies in the location policy and information policy.
No load probes are sent, neither is any global load state information considered in the
decision making process. this balancer is created to observe the performance of a naive,
hybrid, randomizing algorithm. Its performance makes the benefits of load probes, and
information policy in the Rand balancer obvious.

The Rand-Hybrid-Piggyback balancer extends the Rand-Hybrid balancer by consid-
ering load state information collected from load messages and piggy-backed messages,
before choosing a destination node for token transfer. The performance of this balancer,
when compared to the Rand balancer, isolates the effect of load probes and accurate globai
load information on application performance.

3.3.4 Performance Bound

The Minima load balancer provides a realistic lower bound for performance in the "par-
allel” execution of Threaded-C programs. It is basically a dummy load balancer. It does
not do any load balancing.

The Minima balancer is created as an improvement over the Nop balancer [33] in the
EARTH runtime system. The Nop balancer launches the executable® on all the nodes in

3Combination of application code and runtime system code

68

the execution, with one process on each node. After this, unless the programmer maps
some work onto a node, the whole work is executed on node 0. Runtime load balancing
is non-existent. However, this policy does not provide a realistic lower bound of parallel
performance. Unless application threads are running on all the nodes, it cannot be termed
a parallel execution. What the Nop balancer provides is a sequential execution, combined
with the overheads of maintaining a parallel environment.

The Minima balancer avoids this scenario by ensuring that every node gets to exe-
cute at [east one token. Of course, this is subject to the availability of parallelism in the
application. Once each node receives one token, the runtime load balancer is switched
off. Parallel execution proceeds without any more load balancing, and the total elapsed
time reflects the lower bound in parallel performance. The performance of the Minima
balancer can be compared to other balancers to determine their improvements/overheads.
In other words, the Minima balancer provides a realistic, experimental lower bound for
parallel application performance.

In order to initiate parallel execution of the activation tree, every rich node passes its
second token to its logical neighbor, i.e. node 0 passes a token to node 1, node 1 to node
2, and so on, until the final node - NUM _NODES - 1 is reached. A node is rich if it
has at least one token. After exporting a token abroad, each node consumes all the tokens
it generates. There is no load balancing through the remaining part of the application
execution. In addition to the token and its children that a node gets to compute, a node
may also receive tokens when the programmer/compiler map certain workload onto a
node using the INVOKE instruction.

69

Chapter 4
Experimental Framework

In this chapter, we present the framework in which the different load balancers in the
portable EARTH runtime system on the [BM SP-2 system are evaluated. Initiaily, we
enumerate the benchmarks used to study the suitability of various balancers to different
applications. Second, we briefly review the experiments planned, and particular char-
acteristics of the load balancers which are under observation. Finally, we describe the
hardware platform on which these experiments are performed.

4.1 Benchmarks

The domain of applications considered in this study are Threaded-C programs belonging
to the divide-and-conquer, regular, and irregular classes of applications. These applica-
tions are characterized by fine-grain threads with very short run-times, frequent communi-
cations and synchronizations, and varying amounts of parallelism that can be exploited by
the runtime system. Therefore responsiveness, ability of the balancer to choose the right
destination (either for a sender or receiver) in minimum steps, and minimum balancer
overheads are crucial for better performance [34].

The benchmark programs used in our experiments are taken from the EARTH Bench-
mark Suite (EBS) [160]. Table 4.1 gives a brief overview of these benchmarks. Fibonacci,
N-Queen and TSP (Traveling Salesperson Problem) are typical examples of recursive
divide-and-conquer algorithms. The Paraffins benchmark is somewhat special in that it
generates very irregular load units and has only a short execution time. Matrix Multiply
and Tomcatv, on the other hand, perform regular SPMD computations.

70

Benchmark Name || Problem Domain Type Tokens Threads
Generated | executed
Fibonacci (33) Combinatorial Divide and conquer | 11405772 | 17108661
N-Queen (12) Graph Searching Divide and conquer 9916 24791
TSP (10) Graph searching Divide and conquer 5861 18407
Knary (7,7,2) Computation Trees Divide and Conquer | 98040 274516
Matrix Multiply Numerical Computation | Regular SPMD NA NA
Tomcatv (257) Scientific Computation | Regular SPMD 101 304
SPMD (4,4,0) Scientific Computation | Regular SPMD 2100 4301
Paraffins (28) Chemistry Irregular 1843 1904

Table 4.1: The EARTH Benchmark Suite

The Fibonacci benchmark is programmed in a recursive fashion, as per the divide-
and-conquer programming model. Each token does very little work other than spawning
two children. The Fibonacci program presents an interesting problem - how to tackle ex-
tremely fine-grain applications. Secondly, this program also showcases the ability of the
multithreaded environment to create, maintain, and terminate a large number of threads
with minimum overheads. As shown in Table 4.1, the Fibonacci(33) problem creates
11405772 tokens, and 17108661 threads. This benchmark represents a challenge to the
load balancer, not because of any difficulties in understanding the program behavior, but
due to its very fine-grain threads. In order to achieve any kind of improvement, the load
balancer has to be very simple, with absolutely minimum overheads, and perform load
balancing only when required.

The N-Queens is a typical recursive program that counts how many ways N queens
can be placed in an V x .V chess board so that no queen may attack another. In the version
that we used, NV = 12, and the parallelism is “throttled”. When four queens are placed
on the board, the program switches to a sequential execution and no longer generates
migratable tokens. The idea is that at the level of the recursion enough instantiations
of the recursive function have been generated to distribute the computation among the
processors in the machine. Our implementation, initially expands the board with breadth-
first search, and then switches to depth-first search. In order to coarsen the grain size, a
throttling threshold is used.

The Traveling Salesperson Problem (TSP) is another graph-theoretic problem. Here,
the aim is to find a Hamiltonian tour when a traveling salesperson visits N cities, each
city exactly once, and returns to the city of origin. The salesperson is expected to cover

71

all cities and optimize cost for the whole trip. A complete weighted graph is used to
represent the cities, and the costs of inter-city travel.

The K-nary models the divide-and-conquer strategy. It generates a k-ary computation
tree, i.e. each node has k children [34]. By changing the depth and width of the tree,
we can simulate many common situations. The Knary (n,k,r) represents a k-ary tree with
depth n and r children being executed locally. Some knary trees have special interest to
load balancing studies. For instance, Knary (2, 512, 0) is a two-level knary tree. The root
of the knary tree generates 512 children and waits for their termination. These 512 chil-
dren are in the form of tokens, and are free to relocate to remote nodes. As these tokens
are created on one node initially, the speed with which they are distributed determines the
elapsed time.

The dense matrix multiply algorithm that we used in this study is a simple minded,
non-blocking algorithm that computes C = A x B, where A, B and C are N x N matrices
(in our measurements N = 1024). Both matrices A and B are stored in node zero and the
resulting matrix C is to be also stored in the memory of node zero. Node zero generate
migratable tokens that are to compute one row of the matrix C' and move the result back
to node zero. The first time that a node ¢ executes a token, it copies the entire matrix
B to its local memory and the specified row of 4. [t retains the copy of B to reuse in
the computation of future tokens. Although a dense matrix multiply is a very regular
algorithm, this version relies in the dynamic load balancer to distributed the load among
the processors.

The Tomcatv is a floating point SPEC92 benchmark and represents large data-parailel
applications [33] with 257 x 257 meshes. initially, each iteration updates the meshes
using near-aeighbor calculations, and then by performing calculations with horizontal
loop-carry dependencies. Separate rows synchronize with each other using a pure data-
flow paradigm. The data set is fixed to a node, while tokens migrate between the nodes.
The token migration is decided by the dynamic load balancer, rather than by compile-time
partitioning of the problem. From a modeling point of view, this applications highlights
the provision in Threaded-C to perform peer-level synchronizations between nodes at the
same level in an activation graph.

In the SPMD model, loop indices are divided among the nodes statically. This can
lead to poor performance when the execution time is not the same for all indices. Dy-
namic SPMD, on the other hand, is a more flexible approach that relies on the load bal-
ancer to distribute the parallei loops [34]. This results in a large number of tokens being

72

generated for each loop, after which node 0 waits for all iterations to complete, performs
some sequential computations, and then starts another parailel loop. The generalized dy-
namic spmd program computes a Knary (n,k,r) tree in each one of these iterations. This
application models a typical barrier-synchronized application. In order to achieve good
performance on such programs it is important to minimize the time needed to distribute
the tokens to all nodes and the time to achieve an even load distribution.

Paraffins is one of the four “Salish-an problems™ from the 1988 Salish-an High-
Speed Computing Conference. Paraffins enumerates all distinct isomers of each paraffin
(molecule of the form C, Hy,+2) of size up to a given maximum. The problem solved by
paraffins is similar to the problem of detecting isomorphisms in labeled free trees. A list
of paraffins is generated and the program returns an array filled with the number of distinct
paraffins of each size up to and including the maximum. To exploit parallelism, functions
are invoked in all the processors to compute the radicals and then tokens are generated to
compute the paraffins of the required size. This benchmark belongs to the irregular class
of problems, with irregular communication patterns, and unbalanced computations. In
our experiments we measured the performance for Paraffins(28).

4.2 Performance Evaluation

We identify different parameters that influence program performance, and study their
effect with respect to different load balancers. The objective is to identify ideal load bal-
ancer policies for different application load situations, and arrive at a lowest denominator
balancer that performs relatively better in most situations.

We have implemented ten dynamic load balancers, and compare their performance
against seven existing balancers. Initially, we compare distributed dynamic load balanc-
ing against centralized dynamic load balancing for distributed memory machines. Then
we study the benefits of a randomizing load balancer in a fine-grain multithreading envi-
ronment with varying application and workload parameters, and compare its performance
against seven existing balancers. We identify the different factors that have contributed to
the relatively better performance of the randomizing algorithm, by comparing it against
different versions of itself, each with varying degrees of sophistication. Finally, we re-
view the advantages of different dynamic load balancer policies against a situation where
there is no load balancing.

The performance at varying workloads with different benchmarks is observed for each

73

load balancer. In each of the cases, the elapsed time, idle time, number of balancing
activities, token distribution, percentage of migrated tokens, etc. are measured. The
time spent on different runtime system activities is documented. In addition, changes in
performance are noted with varying architectural parameters like polling interval, number
of nodes, communication topology, token prefetching, and application parameters like
workload, grain size, call-graph size and shape.

Finally we measure the latencies and overheads associated with EARTH operations,
and make a comparative study of EARTH operations on three different implementations
of EARTH.

4.3 EARTH-SP Implementation

The EARTH-SP system realizes the EARTH model on the IBM SP-2 system. The [BM
RS/6000 Scalable POWER Parallel System (SP-2) is a distributed memory multiproces-
sor [8]. Each processing node is equipped with a 120 MHz POWER2 Super Chip, 128
KB of data cache, 32 KB of instruction cache, at least 64 MB of RAM, and operate with a
256 bit memory bus. The tb-3 switch provides a network interface with a peak hardware
bandwidth of 150 MB/s in each direction. A detailed description of the EARTH-SP2
implementation is provided in [92, 33].

The POWER2 Super Chip is an improvement of the POWER2 processor. [ts main
features include: dual floating point and fixed point units, peak execution rate of 6 in-
structions per cycle, improved instruction set (quad-word load/store, zero-cycle branches,
hardware square root, etc.)

The SP2 high performance switch is a connecting network which allows any node
on the SP2 to communicate directly with any other SP2 node [37]. The switch is a high
bandwidth, low latency, bidirectional, multi-stage, omega, buffered-wormhole routing
packet switch [88, 87]. The tb-3 switch interfaces between the network switch and the
compute node. The tb-3 card data structures are mapped into the user space, and can be
accessed from the application program. In our case, the application interface that accesses
the tb-3 card data structures is the communication layer in the portable EARTH runtime
system. The performance benefits by accessing the send/receive buffers in the network
switch interface far outweigh the advantages of using the communication layer of the
MPI provided on the IBM SP-2. Modularity of the communication layer in the runtime
system ensures that the rest of the runtime system code is independent of the tb-3 switch

74

interface, and therefore is portable.

User jobs are submitted in batch mode using the EASY-LL batch system on the IBM
SP-2 [38]. Load Leveler is a batch system originally developed for the [BM SP-2, and
it allocates resources across a network while attempting to maintain a balanced load,
fair scheduling, and an optimal use of resources. EASY was originally developed at the
Argonne National. The EASY algorithm schedules the job queue on a FCFS basis. It
allows smaller jobs further down the queue to run as long as they complete before the
waiting job ahead in the queue is scheduled to run. The EASY-LL is a collaboration of
the EASY and LoadLeveler algorithms.

75

Chapter 5

Performance Results

In this chapter, the performance results of the load balancers presented earlier for appli-
cations described in chapter 4 are studied, and the behavior of the balancers for different
work descriptions is analyzed.

The main results of this study are listed below:

e For imregular and highly recursive programs, it is beneficial to generate large (abun-
dant) number of threads to facilitate the work of the load balancer. See section 5.1.

~ Furthermore, a randomizing algorithm (Rand) gives the best performance as
long as the cost of computing the random number does not dominate the over-
all time of thread execution.

- When it is not favorable for applying the Rand balancer, a hybrid history in-
formation based algorithm (His), a simple work-stealing algorithm (Spn) are
preferable in the descending order.

o The Rand balancer is good for fine-grain applications. An in-depth study of the
Rand balancer is performed. See section 5.2.

o In order to understand the various factors that contribute to the good performance of
the Rand balancer, a comparative study of the Rand balancer, and different versions
of itself each with varying degrees of sophistication, is performed. See section 5.3.

e When the Rand balancer does not perform well, a detailed study is performed on
alternate balancers. See section 5.4.

76

o A spectrum of experiments are designed to understand application behavior with
different load balancers. See section 5.5.

e An analysis of the overheads and latencies of various multithreaded operations sup-
ported in the EARTH system, shows that it is possible to emulate a multithreaded
environment in software with minimum overheads, and derive scalable performance
for fine-grain applications. See chapter 6.

o The ratio of CPU speed to network speed is a crucial factor that determines per-
formance of EARTH applications across a range of machines. Besides network
bandwidth, costs associated with the network interface in the runtime system also
makes a significant impact on application performance. See chapter 7.

Each of the above points are discussed in detail in the following sections.

5.1 Overall Performance

For irregular and highly recursive programs, it is beneficial to generate large (abundant)
number of threads to facilitate the work of the load balancer.

¢ Furthermore, a randomizing algorithm (Rand) gives the best performance as long
as the cost of computing the random number does not dominate the overall time of
thread execution.

e When it is not favorable for applying the Rand balancer, a hybrid history informa-
tion based algorithm (His), a simple work-stealing algorithm (Spn) are preferable
in the descending order.

There are two minimum conditions for load balancing to be successful. Firstly, there
should be enough parallelism to exploit in the application. Application parallelism de-
pends on the programming model of the application, and on the input workload. While
the programming model is a characteristic of the program, the input workload is a preperty
of a particular execution of the application. The input workload determines the number
of available threads in a particular execution, and as a result the number of ready threads
at any point of time during the execution. A split-phase nature of threading models, as
in Threaded-C, allows to start executing another ready thread while the current thread

77

meets a long-latency operation. There is higher probability of a successful choice of a
destination in load balancing, if the number of ready threads in the execution is high.

Secondly, the work migrated should dominate the load balancing overheads. As the
grain size of work decreases from the whole program (in sequential execution) to a set
of instructions (threads), the amount of parallelism in the application increases. But at
the same time, the load balancer has to become more lean and inexpensive in order to be
profitable. An illustration of this feature can be observed in Figs. 5.3, 5.36, 5.27, 5.28.
Average token size in the Fibonacci is around 2 4 s on the IBM SP-2. As the input
workload increases, however, the amount of parallelism increases, and also the amount of
work transfered is considerably higher than typical balancer overheads. This is possible
due to the token queue in the EARTH runtime system which allows work at higher levels
in the activation tree to be migrated to remote nodes.

Benchmark Dual | Spn | Shis { Snd His | Range | Catapuit | Rand
Fibonacci(33) I.14 | 1.14 | 13.66 | OF .19 1.21 1.2 1.02
Queens(12) 024 | 0.167 | 471 |0Q.171 | 0.176 | 0.175 OF 0.165
TSP(10) 0.43 | 032 7.8 036 | 028 | 0.29 0.28 0.27
Knary(7, 7.2) 213 1 093 | 24.76 | 1.037 | 0.908 | 0.94 0.95 | 0.906

Knary(2,512,0) 0.054 | 0.013 | 0.169 | 0.085 | 0.0076 | 0.014 OF 0.015
Matrix(1024X1024) | 70.31 | 49.53 | 293.79 | 17.52 | 12.21 | 14.66 | 6342 | 16.96

Tomcatv(257) 345 | 1.78 | OF | OF | 054 | 039 | OF | 56
SPMD(1.1,0) 025 | 0.16 | 068 | 0.08 | 0.11 | 0.1 | 063 | 0.15
SPMD(4,4,0) 19 [072 | 14 | 063 | 086 | 127 | 13| 0.79 |
Paraffins(28) 743] 655 | 104 | 754 | 654 | 619 | OF | 646]

Table 5.1: Overview of Resuits. Elapsed times in seconds are shown for different bench-
marks belonging to the recursive (divide-and-conquer), regular and irregular program-
ming models against various dynamic load balancers belonging to the receiver-initiated,
sender-initiated and hybrid categories. Measurements are based on 32 node runs. These

elapsed times include the time spent on profiling the runtime system actions. Table E. 1
shows elapsed times without profiling effects.

Table 5.1 shows the elapsed times for different balancers for applications belonging to
a wide-ranging set of programming models, and load situations. The divide-and-conquer,
regular, and irregular classes of applications are considered for experimental evaluation
of the balancers. In addition, applications with very low workloads are included to study
the ability of the balancer to distribute load rapidly, and also to showcase the potential
of a balancer for very low load situations where the emphasis is on minimum balancer

78

overheads rather than maximum processor utilization.

The relative ranking of the balancers for different applications is shown in Table 5.2.
The Rand balancer performs very well for divide-and-conquer, and irregular classes of
applications. This can be attributed to the ability of the Rand balancer to distribute load
equally among all nodes in the system, which in turn is a result of the accuracy of its
load balancing decisions. Another reason is the relatively better scaling of both thread
execution time and overheads in the Rand balancer. While it is good for regular applica-
tions, the His balancer is more preferable. Gathering load information is an unnecessary
overhead for regular applications, where the workload is more or less evenly distributed.
A history information based balancer is more than adequate to address the minor load
imbalances.

LBenchmark Dual | Spn | Shis | Snd | His | Range | Catapult TRzmd
Fibonacci(33) 3 [2] 78] 4 6 5 1
Queens(12) 6 | 2] 7|35 4 8 1
TSP(10) 7 5] 8] 6] 3 4 2 1
Knary(7, 7.2) 7 13181 6] 2 4 5 1
Knary(2,512,0) 6 | 3] 7 | 2|1 4 8 5
Matrix(1024X1024) | 7 | 5 | 8 | 4 | 1 2 6 3
Tomcatv(257) 4 | 3] 8|82 1 8 5
SPMD(1,1,0) 6 | S| 8113 2 7 4
SPMD(4.4,0) 6 |28 1 [4] 5 7 3

[Paraffins(28) s 3] 7]6]2 4 8 1
Average 55 (3376 |45]27] 36 6.4 25
Rank 6 | 3] 8|52 4 7 1

Table 5.2: Relative ranking of the different balancers based on their performance as shown
in Table 5.1

For barrier-synchronized appliications (SPMD), the Snd balancer is a clear winner.
Barrier-synchronized applications place two challenging demands on a load balancer:
first, they are traditionally low-load applications, i.e. irrespective of the input workload,
the number of tokens in every phase cannot be substantially higher than the number of
nodes; secondly, the fast token distribution capability of the load balancer is of prime
importance. Usually, a node 0 computes work for the next phase, and issues it, and when
these tokens are consumed by other nodes and synchronization has taken place among
all the nodes, the node O issues the next set of tokens. The Snd balancer performs well

79

here due to its ability for rapid disposal of tokens to other nodes in the system without
spending too much time in the target deciding phase. As the negative impact of instability
is only possible for high load situations, the sender-initiated balancer does very well for
barrier-synchronized applications. If the workload for a barrier-synchronized application
is reasonably higher, the Rand balancer performs at a respectable third position.

For very low load applications (Knary(2,512,0), SPMD(1,1,0)), the balancers which
perform effective load distribution at minimum overheads do well. The Rand balancer
understandably cannot win this race, due to its relatively longer decision making phase.

On the whole, the Rand balancer performs the best on a wide range of applications.
Another hybrid balancer, but based on history information rather than global load in-
formation (His), comes a clear second. A simple receiver-initiating balancer, the Spn
balancer, results in agreeable performance for fine-grain applications due to its low over-
heads, and comes third.

The Range balancer is the fourth best balancer. This confirms the limited use of the
range list information. The sender component of the Range balancer sends extra tokens to
the far node in the range list. It works reasonably well for low load situations, because the
far node is more likely to be idle than the near node as load state fluctuates very rapidly in
low load situations. However, for high load situations, the impact of the range information
is less significant. because As shown in Table 5.2, the Range balancer does well only in
low load applications.

The Catapult balancer is one of the poor performers. Despite its similarities with the
Range balancer, the Catapult balancer ranks well below the Range balancer. Furthermore,
in many instances, it causes an explosion of balancer related message traffic and termi-
nates the application. The reasons are not difficult to observe. A Range balancer differs
from the Catapult balancer in two ways:

e when a node receives a token (if it is wealthy), the Catapult balancer passes the

token to the nearest node in it’s range list, while the Range balancer passes it to it’s
predecessor.

e The Range balancer after passing the token to it’s predecessor,sends an update mes-
sage to the sender of the token (asking to be removed from its range list).

The ring topology assumed in the Dual balancer severely limits its scalability, ability
to respond rapidly to fluctuating load situations, and fast token distribution capabilities.
However,its algorithm is extremely simple, that makes it very useful for applications with

80

very fine-grain threads, and low load situations. The Shis balancer causes high message
traffic, and indicates the non-utility of the history information for purely receiver-initiated

balancers.

[Benchmark l Time (secs) Dual Spn Snd His l Rand
Fibonacci(33) | Elapsed Time 1.137067 | 1.136061 OF 1.18523 | 1.01747
Execution Time 0.554408 | 0.550621 —_ 0.55286 | 0.442716
Balancer Overhead | 0.12063 | 0.112915 — 0.141178 | 0.000359
Polling Overhead | 0.258839 | 0.262019 _ 0.287827 | 0.247186
Idle Time 0.041404 | 0.031044 — 0.052133 | 0.020562
Rank 3 2 5 4 l
Queens(12) Elapsed Time 0.240889 | 0.167472 | 0.170896 | 0.175538 | 0.165809
Execution Time 0.156755 | 0.159375 | 0.164493 | 0.161955 | 0.155494
Balancer Overhead | 0.001435 | 0.001458 | 0.002793 | 0.00534 | 0.000682
Polling Overhead | 0.033116 | 0.018975 | 0.020644 | 0.020861 | 0.017798
Idle Time 0.095079 | 0.019033 | 0.017112 | 0.022409 | 0.02154
Rank 5 2 3 4 l
Knary(7,7.2) | Elapsed Time 2126129 | 0.926829 | 1.03691 | 0.907591 | 0.906191
Execution Time 0.904189 | 0.899871 | 0.952327 | 0.893569 | 0.893569
Balancer Overhead | 0.008455 | 0.007272 } 0.033319 | 0.002861 | 0.001547
Polling Overhead | 0.249025 | 0.021644 | 0.051247 | 0.016732 | 0.015995
Idle Time 0.913451 | 0.024985 | 0.081386 | 0.013053 | 0.012389
Rank 5 3 4 2 1
SPMD(4.4.0) | Elapsed Time 1.903876 | 0.719708 | 0.632134 | 0.859295 | 0.794468
Execution Time 0.454005 | 0.474271 | 0.469349 | 0.550345 | 0.462295
Balancer Overhead | 0.008217 | 0.0479 | 0.02079 | 0.139989 | 0.017921
Polling Overhead | 0.285509 | 0.074199 | 0.050056 | 0.115658 | 0.078894
Idle Time 1.255786 | 0.170489 | 0.164918 | 0.114992 | 0.326268
Rank 5 2)\ 4 3 |
Paraffins(28) | Elapsed Time 742791 | 6.554465 | 1.541764 | 6.543834 | 6.458399
Execution Time 6.564703 | 6.412043 | 6.570584 | 6.390272 | 6.393398
Balancer Overhead | 0.002117 | 0.002517 | 0.001366 | 0.001039 | 0.001359
Polling Overhead | 0.232714 | 0.096929 | 0.251115 | 0.0962 | 0.079782
Idle Time 0.875255 | 0.155766 | 0.983546 | 0.165938 | 0.077731
Rank 4 3 5 2 i

Table 5.3: A breakup of the total elapsed time. Execution time corresponds to the time
spent on executing application threads. All time measurements are in seconds. Measure-
ments are based on 32 node runs. All measurements except the elapsed time are average
of values from 32 nodes.

The average values on 32 nodes for thread execution time, and other overheads inher-
ent in a parallel environment are shown in Table 5.3. A breakup of the total elapsed times,

81

corresponding to those in Table 5.1. The Rand balancer provides a better balancing of
work and overheads on all the nodes in the execution. For the divide-and-conquer classes
of applications (Fibonacci, Queens, and Krary), the application thread execution time for
the Rand balancer is less than or equal to that of other balancers. In those cases where
thread execution time is equal to that of other balancers (Knary), the Rand balancer scores
better due to its relatively low overheads and idle time.

For barrier-synchronized applications like the SPMD, the Rand balancer spends more
time in polling overheads when compared to the Spn and Snd balancers. Due to the low
load situation, the receiver component of the Rand balancer sends lots of load probes
leading to increased network communications. This also increases the per-node idle time.

For irregular applications like the Paraffins, despite having a slightly higher per-node
thread execution time than the His balancer, the hybrid nature of the Rand balancer re-
sponds very well to the irregular parallelism and minimizes idle time significantly.

The profile data collected during an 8-node execution is shown in Table 5.4. A list
of the profile data collected at runtime is summarized in chapter C. The data shown
here is the number of acts under each category. Remote communications are the total
number of messages sent abroad in order to satisfy global memory and synchronization
requirements. Balancing acts is the sum of requests sent, requests received, tokens sent,
tokens received. [dle time is the percentage of balancer related idle time in the total
elapsed time.

Normally 8 nodes is a small number for the Rand balancer to scale well when com-
pared to other balancers. However, the randomizing algorithm starts giving early gains
for irregular applications, such as the Paraffins.

5.2 Rand Balancer

The Rand balancer is good for fine-grain applications. An in-depth study of the Rand
balancer is performed.

e The hybrid (symmetric) nature of the Rand balancer, its use of load state informa-
tion, and the completely connected graph topology assumed between the nodes, are
the most important factors for its good performance.

e Accurate global load state information is a crucial component of the Rand balancer,
and an important reason for its good performance. This result is in contrast to

82

App-Balr. | Activity Nodes

0 1 2 3 4 5 6 7
Toks. Gen. 1454 | 1218 | 1100 | 1104 | 1286 | 1276 | 1306 | 1172
Toks. Con. 1423 | 1244 | 1156 | 1125 | 1249 | 1277 | 1284 | 1158
His Threads Run 3574 | 3097 | 2862 | 2802 | 3i41 | 3192 | 3221 | 2902
0.6384s | Rem. Comms. | 118 157 160 96 172 119 100 149
Bal. Acts 518 559 | 491 392 626 | 427 | 438 651
Queens Extra Tokens 71 97 84 61 72 58 61 118
(12) Idle Time 0.17 | 081 | 081 | 057 | 0.59 | 041 | 034 | 038
Toks. Gen. 1140 | 1210 | 1280 | 1108 | 1174 | 1328 | 1192 | 1484
Toks. Con. 1128 | 1206 | 1276 | 1098 | 1185 | 1351 | 1186 | 1486

Rand Threads Run 2827 | 3017 | 3192 | 2750 | 2957 | 3366 | 2968 | 3714
0.6404s Rem. Comms. || 117 73 64 61 49 61 60 79

Bal. Acts 2322 | 2054 | 1246 | 1057 | 1087 | 1520 | 1209 | 1238
Extra Tokens | 802 | 741 | 368 | 365 | 395 | 443 | 403 | 391

Idle Time 0.16 | 089 | 0.75 | 067 | 062 | 055 | 033 | 0.27

Toks. Gen. 2772 | 2000 [2032 | 2020 | 2008 | 2012 | 2024 | 1932

Toks. Con. 2096 | 2090 | 2106 | 2104 | 2113 | 2114 | 2084 | 2093

His Threads Run | 4293 | 4180 | 4212 | 4208 | 4226 | 4228 | 4168 | 4186
0.5372s | Rem. Comms. | 694 | 774 | 769 | 767 | 768 | 806 | 805 | 853

Bal. Acts 14999 | 14541 | 14341 | 14331 | 13901 | 14265 | 14332 | 14308

SPMD Extra Tokens || 2089 | 2273 | 2203 | 2219 | 2131 | 2251 | 2260 | 2266
(4.4,0) Idle Time 58 | 99 | 92 9 9 89 | 9.6 | 92
Toks. Gen. 2940 | 2052 | 1948 | 2004 | 1956 | (952 | 1952 | 1996

Toks. Con. 2137 | 2018 | 2109 | 2117 | 2118 | 2088 | 2089 | 2124
Rand Threads Run 4375 | 4036 | 4218 | 4234 | 4236 | 4176 | 4178 | 4248
0.5637s | Rem. Comms. | 539 | 524 | 505 | 459 | 501 529 | 499 | 504

Bal. Acts 15501 | 11497 | 8170 | 7974 | 8119 | 8962 | 8277 | 8245
Extra Tokens || 2097 | 1407 | 1045 | 982 | 992 | [I1l1 | 1008 | 1025
Idle Time 6.88 | 1685 | 16.35 | 1695 | 1639 | 1695 | 17.39 | 16.02
Toks. Gen. 254 | 302 | 319 | 212 | 178 | 230 | 278 | 266
| Toks. Con. 185 | 250 | 354 | 263 | 182 | 246 | 284 | 275
His ThreadsRun || 202 | 265 | 373 | 277 | 194 | 263 | 298 | 285
26.47s Rem. Comms. | 9 64 81 69 42 26 20 21
Bal. Acts 1814 | 3280 | 592 | 888 | 797 | 2429 | 9l 91
Paraffins | Extra Tokens | 414 | 746 | 145 | 212 | 192 | 610 | 20 20
(28) Idle Time 0.01 | 0.09 0 0.03 0 0 0.01 0
Toks. Gen. 253 | 232 | 355 | 252 | 231 | 208 | 267 | 241
Toks. Con. 181 | 144 | 528 | 262 | 243 | 197 | 277 | 207

Rand Threads Run 198 154 542 274 263 214 291 221
26.398 s | Rem. Comms. 9 6 179 46 38 28 30 10

Bal. Acts 29316 | 31051 | 14240 | 66898 | 10350 | 15278 | 12749 | 18035
Extra Tokens | 7387 | 7520 | 3851 | 3681 | 3754 | 4036 | 3759 | 3609
Idle Time 0 0 0.02 0 0.01 0 0 0

Table 5.4: Node-wise Profiling Datgn 8 nodes. The time is in seconds.

the common intuition that load balancer overheads spent in the accumulation of
global load information dominate any possible performance benefits, and therefore
such an information policy is not viable, especially for fine-grain parallelism. The
Rand balancer overcomes this bottleneck by locating the load information gathering
actions in the receiver part of the load balancer, and using this information in the
sender part. The information policy is demand-driven and receiver-initiated.

5.2.1 Rand versus Minima

The Rand balancer provides the best relative performance against a no-load bal-
ancing situation for parallel applications.

The Minima balancer ensures that the application is executed in a true parallel fash-
ion, i.e. each node gets to execute atleast one token. After that the load balancer on
each node is switched off. This allows us to compare the utility of load balancers
against a situation where there is no load balancing in a parallel execution. The
performance of the Minima balancer can be seen as a higher bound for total elapsed
time for parallel applications (or lower bound of parallel performance). Any bal-
ancer is expected to do much better than the Minima baalncer, and their relative
performance against the Minima balancer can be used to rank them.

Table 5.5 compares the performance of current receiver-initiated, sender-initiated,
and hybrid balancers in the EARTH runtime system. Also, the performance num-
bers for the Nop balancer are shown. The Nop balancer does not perform any load
balancing. It differs from the Minima balancer in that, it offers basically sequen-
tial execution in a multithreaded environment. Unless the programmer specifically
launches a token on some node, all nodes except node 0 are idle. Further, the se-
quential elapsed times are burdened by multithreading overheads. In contrast, the
Minima balancer provides an upper bound on the total elapsed time for realistic
parallel executions.

In Table 5.5, the Rand balancer achieves higher speedup and percentage reduction
in total elapsed times for the divide-and-conquer and irregular classes of applica-
tions. Understandably, it does not do well for barrier-synchronized applications.

Figs. 5.1, 5.2 show the speedups for different classes of applications for the Minima
and other balancers. It can be observed that the Minima balancer performs distinctly

84

[fBenchmark Attribute Spn | Snd His Rand‘ Nop | Minima

Fibonacci(33) | Elapsed Time | 1.14 OF 1.19 1.02 249 23.29
% Reduction | 95.12 - 9491 9563 | -6.94 0
Speedup 20.50 - 19.65 {2289 | 094 1
Queens(12) Elapsed Time | 0.167 | 0.171 | 0.176 | 0.166 | 5.05 0.754
% Reduction | 77.79 | 77.34 | 76.72 | 78.01 | -570.34 0

Speedup 450 | 441 | 430 | 455 | 0.15 1

TSP(10) Elapsed Time | 032 | 0.36 | 0.275 [0.269 | 86 | 7.78
% Reduction | 9591 | 95.34 | 9647 [96.54 | -1053 | 0
Speedup 2445 | 2145 | 2835 | 2890 | 0.90 1

Knary(7,7,2) Elapsed Time | 093 | 1.04 | 0907 | 0.906 | 28.87 | 24.77
% Reduction | 96.26 | 95.81 | 96.34 | 96.34 | -16.57 0
Speedup 26.72 | 23.88 | 27.30 | 27.33 | 0.86 1
Knary(2,512,0) | Elapsed Time | 0.013 | 0.0082 | 0.0073 | 0.012 | 0.1684 | 0.1682
% Reduction | 92.21 | 95.14 | 95.67 | 91.52 | -0.10 0
Speedup 12.84 | 20.58 | 23.08 j11.80 | 1.00

SPMD(4,4,0) | Elapsed Time | 0.72 | 0.63 | 0.86 | 0.79 | 14.038 [14.037
% Reduction | 94.87 | 95.50 | 93.88 | 94.34 | -0.01 0
Speedup 19.50 | 2221 | 1634 | 1767 | 1.00 1
SPMD(1.1,0) | Elapsed Time | 0.161 | 0.081 | O.IT | 0.15 | 0.75 | 0.67
% Reduction | 76.14 | 87.96 | 83.19 | 77.60 | -10.61 0
Speedup | 4.19 | 831 | 595 | 446 | 090
[Paraffins(28) | Elapsed Time | 6.55 | 7.54 | 6.54 | 6.46 | 121.7 | 118.8 |
% Reduction | 94.48 | 93.65 | 94.49 | 94.56 | -2.41
Speedup 18.13 | 15.76 | 18.16 | 18.40 | 0.98 1

—

Table 5.5: Performance comparison for all the benchmarks with different load balancer
policies. For each benchmark, the first row shows the elapsed times for 32 nodes, and
the measurements are in seconds. The second row shows percentage reduction in total
elapsed times when compared to the Minima balancer. The third row shows speedup for
each balancer as compared to the Minima balancer.

better than the Nop balancer for most of the applications, due to the initial load
balancing when each node receives a single token. After this the curve flattens
out. Other balancers perform very well when compared to the Minima balancer, as
expected. Their performance relative to that of the Minima balancer isolates and
quantizes the peformance benefits from load balancing.

85

bt

faging

(] [} Hl [] » » »

Natnn
(a) Fibonacci(33 } (b) Queens(12}

Figure 5.1: Performance comparison between Minima, Nop and other Balancers of dif-
ferent balancers

L]
(2) SPMD(4.4,0) (b) Paraffins(28)

Figure 5.2: Performance comparison between Minima, Nop and other Balancers of dif-
ferent balancers

5.2.2 Scalability of Rand Balancer

e The Rand balancer is highly scalable and robust (stable) for irregular and divide-
and-conquer (recursive) classes of applications. However, this balancer is not ap-
propriate for regular applications.

The performance results in this section show the absolute and relative speedups
for different applications for different balancers. Absolute speedup is the ratio of
sequential elapsed time to parallel elapsed time. Relative speedup is the ratio of
single node parallel time and multiple node parallel time. The absolute speedup
indicates the benefits from parallelizing an application. The relative speedup shows
the scaling of multithreading and load balancing overheads in a parallel application,
when compared to single node parallel execution.

86

For the Knary and the SPMD applications, sequential version is not avail-
able. Therefore all experiments with these two benchmarks will show
only the relative speedup. The speedup for all appaications are shown in
Figs.5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11, 5.12.

8 &
1
1

Relative Spesdup
5230
g

2 v
Y

Figure 5.3: Absolute and Relative Speedups for Fibonacci(33)

Figs. 5.13, 5.14 show the scalability of various components that together make up
the total elapsed time, such as application thread execution, load balancing over-
heads, polling overheads, and idle time. Average values for these components on
each node are computed, and their scalability compared for the Queens applica-
tion. The Rand balancer scales very well for application thread execution time, and
polling overheads. For idle dle time it scales well, but lags behind the His balancer.

5.2.3 Parallel Efficiency

e The Rand balancer provides relatively good parallel efficiency for both recursive
and irregular classes of applications!. Furthermore, this efficiency is constant as
the number of nodes are varied, suggesting a uniform scaling of parallelism.

Figs. 5.15, 5.16 show a near constant scaling for the Rand baalncer.

'Parallel Efficiency is the ratio of absolute speedup and number of nodes in the execution.

87

8 &
—
1

Relative Speedup
- 3]

- .
Q «
¥ Y Y

[
Y

Cl

Figure 5.5: Absolute and Relative Speedups for Traveling Salesman Problem(10)

5.2.4 Overheads for Supporting a Multithreaded Environment

The uni-node support efficiency or USE factor [84, 156] is the ratio of sequen-
tial execution time and the elapsed time for one-node parallel execution. An ideal

88

h 8 &

Dual
Spn
Shis
Snd

His
Range
Catapuit
Rand
Linear

el " |
o o

Relative Speedup
]

o w

8 8

|

Dual
—e— Spn
—— Shis
—+— Snd
——t— His
—— Range
--- Catapult
- - - Rand

x Linear

8

Relative Speedup
o

-
[~]

o v

Figure 5.7: Relative Speedup for Knary(2,512,0)

100% use-factor indicates minimum overheads imposed by the multi-threaded en-
vironment, and the presence of enough parallelism in the form of threads to hide
the latencies of the multi-threaded operations. A unity USE factor also symbol-
izes good absolute speedup, and indicates the possibility of better and equal load
balancing on multiple nodes.

Table 5.6 shows the absolute and relative speedups, and the USE factor for 32 node
executions of the complete set of benchmarks. The Rand balancer provides better
USE factor than the His balancer for most of the applications, except for Queens and
Tomcatv. In the case of the Queens application, both absolute and relative speedups
with the Rand balancer are higher than their counterparts for the His balancer. This
results in better elapsed time for the Rand balancer for Queens, but in the case of

89

-
Ll

-
o

Absoiute Speedup

Figure 5.8: Absolute and Relative Speedups for Matrix(1024X1024)

Figure 5.9: Absolute and Relative Speedups for Tomcatv(257)

Tomcatv the performance is much worser than that of the His balancer.

3 Dual

] Spn

& Shis

3 Snd

f_:'f His

« Range
Catapuit
Rand

S ——— Dual

g ' —e— Spn

7] —+— Shis

2 —+— Snd

s —s— His

e —— Range
-=-- Catapult
- - - Rand

Figure 5.11: Relative Speedup for SPMD(4,4,0)

5.2.5 Distribution of Total Elapsed Time

o The Rand algorithm results in nearly equal distribution of both workload and over-
heads on all the nodes, thereby minimizing system-wide idle time and balancer
overheads. One of the reasons for the equal distribution is that, the critical path in
the application is executed early in the execution.

A breakup of the total elapsed time is provided for the Fibonacci, Queens, SPMD,
and the Paraffins benchmarks, when they are executed with four different load bal-
ancers. Ideally, we would show the bar graph for 32 node executions, but due to
space constraints, we are limiting the number of nodes to 8. A description of the
profiling strategy is provided in Appendix C.

91

—p—
———
—+— Snd
——
L 3

| !)

pEgy

Hi

0] 3 E-) F3 o =) s) [» F 0

(a) Thread Emun;: Time (b) Balancing Overheads

Figure 5.13: Scalability Test for Queens(12)

For Fibonacci(33), the high workload in the application causes the Snd balancer
cause an explosion of load balancing messages resulting in instability in the system.
Among the three graphs shown in Figs. 5.17, 5.18, the Rand balancer results in
most equal distribution of workload and overheads. However for 8 nodes, the His
balancer provides the best performance.

From Figs. 5.19, 5.20 the results for Queens(12) show the better suitability of the
Spn balancer for a high workload, fine-grain application. A work-stealing balancer

92

Faspbet L srny

.I b _—h‘}.
\ - =
\ —e— Dua
I ol !
—_—, i
\\ 2
[

i Son ‘ N \ — Sn
- ol | =
B o M' — :n
I L
i
L] ” ‘\
cmp !
|
8 aoth ’
(a) Polling Ove:h:n& (b) Idle Time -
Figure 5.14: Scalability Test for Queens(12)
— L |
i Ramg| I
=& \ l

|

|

«h \\ 4:

/ . N
\'/ [L \,

Mutng
(a) Fibonacci(33) (b) Knary(7.7.2)

Figure 5.15: Parallel Efficiency

involves very less balancer overheads for high workload applications, as the bal-
ancer is invoked only when the local node is idle. On the other hand, the Snd
balancer sends tokens to remote nodes, causing useless load balancing and wasting
CPU time on balancer code more often than necessary. The Rand balancer per-
forms some token sending, and this causes a slight degradation in performance. In
high load situations, the sender component should be restrained to avoid unneces-
sary load exchanges. While it is important that a balancer distributes workload and
overheads as equally as possibie on all the nodes in the execution, it is even more
important that the balancer should offer scalable performance at higher nodes as
well. Results from Fig. 5.4 shows that only the Rand balancer is able to provide
scalable performance after 8 nodes.

Figs. 5.21, 5.22 show the bar-graph for Knary(7,7,2). The Knary(7,7,2) benchmark
is a very high load application, and accordingly all the balancers spend a lot of time

93

B

Paranel Ethciency
Y

geag

L]
(a) Spn (b} His

Figure 5.17: A Distribution of Elapsed Time for Fibonacci(33) on 8 nodes

executing application threads, except for the Snd balancer which fails due to the
high instability in the system.

The SPMD(4,4,0) application is a barrier-synchronized application. All work is
created by node 0, and distributed to other nodes in the system in each phase.
Therefore it is expected that in Figs. 5.23, 5.24, node 0 spends relatively more time
on thread execution. The Snd balancer achieves near perfect equal distribution of
work and polling overheads. This can be attributed to its fast token distribution

Benchmark Balancer | Absolute | Relative | USE-
Speedup | Speedup | factor %
Fibonacci(28) His 0.88 18.49 477
Rand 1.03 17.47 5.89
Queens(12) His 25.95 28.74 90.29
Rand 27.47 30.91 88.89
TSP(10) His 28.66 31.31 91.55
Rand 29.21 31.89 91.62
Knary(7, 7,2)) His NA 31.62 NA
Rand NA 31.60 NA
Knary(2,512,0) His NA 23 NA
Rand NA 11.75 NA
Matrix(1024X1024) | His 24.71 26.23 94.18
Rand 17.29 16.77 103.07
Tomcatv(257) His 8.69 13.88 62.63
Rand 0.84 1.37 61.57
SPMD(1,1,0) His NA 0.18 NA
Rand NA 0.14 NA
SPMD(4,4,0) His NA 0.05 NA
Rand NA 0.55 NA
Paraffins(28) His 873 | 3148 | 2172
Rand 8.84 31.88 27.74

Table 5.6: Absolute and Relative speedups for benchmarks considered in Table 5.1. The
USE factor is the Uni-node Support Efficiency, and is the ratio of absolute speedup to
relative speedup. The numbers above pertain to 32 node runs.

capability. In fact, node 0 spends less time on thread execution as it spends consid-
erable time disposing extra tokens. The His and the Rand balancers show expected
trends, though the former is able to distribute work from node 0 better. The Rand
balancer executes more tokens on node 0 as the threshold value is always below the
number of tokens in the token queue due to the low load situation, and therefore
the sender component is invoked less than the required number of times. The Spn
balancer performs poorly in this application, as a receiver-initiated balancer is not
good for fast token distribution and in low load situations. Further, sending requests
with the ring topology in the Spn balancer highlights another limiting factor: each
subsequent node farther from node 0 gets to execute even lesser tokens than its
predecessor.

The irregular nature of the Paraffins application in Figs. 5.25, 5.26 causes wide load

95

Figure 5.18: A Distribution of Elapsed Time for Fibonacci(33) with Rand Balancer on 8
nodes

(a) Spn (b) Snd

Figure 5.19: A Distribution of Elapsed Time for Queens(12) on 8 nodes

imbalances with the Snd balancer. The Rand balancer provides the best distribution
of workload and overheads.

5.2.6 Load State Information and Low Load Applications

e In low load situations, when the amount of parallelism in the application is min-
imum, using load state information degrades application performance. This is
because collecting load state information involves considerable CPU costs, and

96

3.3

Nt
{a) His (b} Rand

~— v — v T Y g 4 ™ 2 —r

L)
(a) Spn (b) His

Figure 5.21: A Distribution of Elapsed Time for Knary(7,7,2) on 8 nodes

polling overheads. These costs are avoidable as the overheads dominate the execu-
tion time. They are unnecessary because load status of a node changes very rapidly
in low load situations, and even the most elaborate information policy cannot guar-
antee accurate load information. This behavior is demonstrated in Figs. 5.27, 5.28.

The Rand Balancer - A Detailed Study

o The hybrid nature of the Rand balancer is the most crucial factor for its good perfor-

mance. From Tables 5.8, 5.9, it can be seen that for the given set of applications, the
order of balancers according to their performance is: Rand, Rand-Hybrid-Noinfo,
Rand-Rcv-Info, Spn, His, Dual, where the Rand balancer is the best, while the Dual
balancer yields the poorest performance. This order is determined after ranking

97

Nutn
(a) Spn (b) Snd

Figure 5.23: A Distribution of Elapsed Time for SPMD(4,4,0) on 8 nodes

the different balancers for different applications, and then computing the average
rank. The Rand-Hybrid-Noinfo balancer performs second best after the Rand bal-
ancer even without the information policy. The Rand-Rcv-Info is a receiver-initiated
balancer with information policy, but still lags behind the Rand-Hybrid-Noinfo bal-
ancer in performance.

Optimum values for threshold to initiate load balancing, and probe limit depend on
the number of nodes in the execution.

98

L]
(a) His (b) Rand

Figure 5.24: A Distribution of Elapsed Time for SPMD(4,4,0) on 8 nodes

- T T g v s

(a) Spn (b) Snd

Figure 5.25: A Distribution of Elapsed Time for Paraffins(28) on 8 nodes

Fig. 5.29 shows that the number for load probes (d) derived in section 3.2 reflects
the system configuration well. The number of load probes when computed from the

Figure 5.26: A Distribution of Elapsed Time for Paraffins(28) on 8 nodes

99

« B

Tore foscaretey
g

L]
(a) Snd (b) Rand

Figure 5.27: Distribution of Elapsed Time for Fibonacci(6)

Thraad Esecution Time
Poling Overasg: y

L
(2) Dual (b) His

Figure 5.28: Distribution of Elapsed Time for Fibonacci(6)

number of nodes in the execution, balances the trade-off between overheads from
load probes, and better accuracy of the execution. Queens(12) is a very fine-grain
application with high workload. The benefits of computing the number of load
probes in this manner will be more apparent for other applications.

Fig. 5.30 shows the impact of varying the upper threshold, i.e. the threshold on
crossing which the sender component in the balancer is initiated.

Sending load probes to collect global load information is beneficial in the receiver
mode, but not in the sender mode. Therefore, it is preferable to initiate load probes
in the receiver mode, and use this information in the sender mode. From Ta-
bles 5.8, 5.9, the performance of the Rand-Snd-Info balancer compares very poorly
against that of the Rand and the Rand-Rcv-Info balancers.

100

Benchmark | Rand-Hybrid-Info | Rand-Hybrid-NoInfo | Rand-Snd-Info | Rand-Rev-Info
Fibonacci(33) 1.02 1.15 OF 1.22
Queens(12) 0.165 0.168 0.19 0.167
TSP(10) 0.27 0.29 0.31 0.28
Knary(7.7.2) 0.906 0.913 OF 0907 |
| SPMD(4,4,0) 0.79 0.77 1.74 0.82 |
| Paraffins(28) 6.46 6.51 8.33 652 |

Table 5.7: Performance of the Rand balancer in different modes. The Rand-Hybrid-Info
balancer is a hybrid rand balancer that used load state information. The other modes are
self explanatory. All measurements are in seconds, and correspond to total elapsed times
on 32 nodes. These numbers include the time spent on profiling code.

Benchmark Dual | Spn | Rand-Rcv-Info | Snd | Rand-Snd-Info | His
Fibonacci(33) | 1.14 | .14 1.22 OF 1.19
Queens(12) 0.24 | 0.167 0.167 0.171 0.19 0.176
TSP(10) 043 | 032 0.28 0.36 0.31 0.28
Knary(7,7,2) | 2.13 | 0.93 0.907 1.037 OF 0.908
| SPMD(4,4,0) | 1.9 | 0.72 0.82 0.63 1.74 0.86
| Paraffins(28) | 7.43 | 6.55 6.52 1.54 8.33 6.54

Table 5.8: Performance comparison between the receiver-initiated, sender-initiated and
hybrid balancers and their counterparts using the randomizing algorithm. All measure-
ments are in seconds and represent 32 node runs.

1 Benchmark LRand Rand-Hybrid-Noinfo | Rand-Rcv | Rand-Hybrid | Rand-Hybrid-Piggyback
Fibonacci(33) | 1.02 1.15 2534 1.18 36.05
Queens(12) 0.165 0.168 1242 474 5.05
TSP(10) 0.27 0.28 0.78 0.29 1.82
Knary(7, 7,2) | 0.906 0913 25.22 0.965 28.95

| SPMD(4,4,0) | 0.79 0.775 0.83 0.70 14.18

[Paraffins(28) | 6.46 6.1 52 7.08 90,65

Table 5.9: Performance comparison between different versions of the Rand balancer.
This table shows the relevance of the randomization policy, information policy, and re-
ceiver/sender/hybrid policy, which together make up the Rand balancer. All measure-
ments above are in seconds, and are based on 32 node runs.

101

Figure 5.29: Performance of Queens(12) while varying the number of random probe
destinations

5 L J L] =

L]
(a) Knary(7,7.2) (b) Queens(12)

Figure 5.30: Effect of Load balancing with Rand Balancer. Load balancing threshold is
varied in the balancer.

o The sender mode in the hybrid balancer reacts very adversely with inaccurate global
load state information, often causing instability. On the other hand, accurate load
information improves performance and robustness significantly.

e A work-stealing randomizing balancer using global load information outperforms
a hybrid balancer using history information. From Table 5.8, the Rand-Rcv-Info
balancer outperforms the His balancer by a convincing margin.

102

¢ A hybrid, randomizing balancer - Rand-Hybrid, that does not use load state infor-
mation at all (no load probes) provides the second-best performance for barrier-
synchronized applications. This relatively better performance when compared to
the Rand balancer can be attributed to the avoidance of polling overheads in col-
lecting load state information.

e A simple, randomizing, work-stealing balancer with no access to global load infor-
mation results in unacceptable performance for Threaded-C applications, as shown
in Table 5.9. The Rand-Rcv balancer is based on a simple work-stealing algorithm,
and chooses load destinations by executing a randomizing function. This policy
does very poorly for Threaded-C applications.

The scalability of different versions of the Rand balancer are compared in
Figs. 5.31, 5.32, 5.33. The Rand-hybrid-Info balancer in these figures refers to the Rand
balancer. The Rand balancer leads with better performance for all recursive and irregular
applications, confirming the utility of all features that combinedly form the Rand bal-
ancer. For the irregular application Paraffins, the Rand balancer initially lags behind the
Rand-Hybrid-Noinfo and Rand-Rcv-info balancers. this is because the sender component
of the Rand balancer chooses destinatoins based on load information collected previously
by the receiver component. Due to the irregular nature of the Paraffins application, this
load information is not valid anymore, and as a result useless load balancing occurs. How-
ever, as the number of nodes are increased, the Rand balancer starts dominating the other
balancers.

-]
.
-%—
\\
A
[
S —
] -]
¥
.
Y
AN
\
\
A KY
\n
N

[
S
A Y
9
X
.
\
-
——

TR
—
X
\
X
\

\

\

F SR }

(

SN

1
(] s a k) E] E) » =) s o . » s »

()Fibonaci(33) (b)Queens(12)

Figure 5.31: Performance of different randomizing policies

The effect of information policy in the Rand balancer on application performance is
shown in Fig. 5.34. Different levels of information availability are considered.

103

[s L] " » »] »

Nntes:
{a)TSP(10) (b) Knary(7.7.2)

Figure 5.32: Performance of different randomizing policies

—
——
——

ask \ 1)
a) \ L
oy s w w)) » » . G) 0 = £ »
o~ —
(2) SPMD(4.4.0) (b) Paraffins(28)

Figure 5.33: Performance of different randomizing policies

They are: no load information and no load probes (Rand-Hybrid); limited load informa-
tion available only by piggybacking on regular load balancing messages (Rand-hybrid-
Piggyback); no load information in the sender component, though load probes are used in
receiver component (Rand-Hybrid-Nolnfo),and finally the regular Rand balancer (Rand-
hybrid-info). The Rand balancer outperforms other versions of itself.

Table 5.10 shows the profile data for an 8-node execution for Fibonacci(33). The re-
sults shown here help us better understand the utility of the load balancer in impoving the
performance for a particular application. Locality is the ratio of tokens that are generated
locally and locally consumed over all the tokens consumed locally. Migration is the ratio

of tokens that are migrated to remote nodes over all the tokens generated and received on
a node.

104

Nasine
(a) Fibonacci(33) (b) Queens(12)

Figure 5.34: Effect of Information policy in the Rand balancer

5.4 Other Balancers

When the Rand balancer does not perform well, an in-depth study is performed on alter-
native balancers.

ZE|] -
— He
1 -- Rand

%ﬂn'

Idp

[* L] % n E] » =
L]
(a) Fibonaci(6) (b) Knary(3.3.0)

Figure 5.35: Relative performance of balancers at low workloads (a)Low loads, very fine
grain threads (b) Low loads, grain size 100pus, polling interval 50us

e A sender-initiated balancer (Snd) is the best choice in two scenarios: barrier-
synchronized applications, and very fine-grain applications at low input workloads.
This is shown in part(a) of Fig. 5.3, and Figs. 5.10, 5.11.

o A simple receiver-initiated balancer (Dual) is preferable for fine-grain applications
with modest thread granularities and at very low input workloads, as shown in
part(b) of Fig. 5.35. This policy uses a ring as logical topology to send requests,
and to receive workloads.

105

Balancer | Attribute Nodes
0 1 2 3 4 5 6 7
Rand- Requests 155 237 { 200 | 188 | 215 | 205 | 211 | 132
Hybrid- | Idle Periods | 27 23 13 21 14 23 24 13
Info Extra Tokens | - - - - - - - -
4.ls Locality % 99 99 99 99 99 99 99 99
Migration % | 0.04 || 0.03 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
Rand- Requests 166 || 262 [237 [214 | 206 | 187 | 182 [142
Hybrid- | Idle Periods | 40 27 24 14 21 16 21 14
Nolnfo | Extra Tokens | 887 872 | 443 | 444 | 434 | 497 | 490 | 453
4.48s Locality % 99 99 99 99 99 99 99 99
Migration % | 0.07 || 0.06 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03
Rand- Requests 266 253 | 154 [190 | 173 | 198 | 173 | 202
Hybrid Idle Periods | 16 23 18 14 29 24 18 21
4.12s Extra Tokens | 5201 || 5351 | 2640 | 2635 | 2616 | 2869 | 2732 | 2630
Locality % 99 99 99 99 99 99 99 99
Migration % | 040 || 041 | 0.18 | 0.18 | 0.18 | 0.20 | 0.19 | 0.18
Rand- Requests 158 || 280 | 221 | 195 | 207 | 186 | 161 | 136
Rcv-Info | Idle Periods | 32 32 20 14 24 21 27 21
4.49s Extra Tokens | 116 118 | 54 59 80 81 74 62
Locality % 99 99 99 99 99 99 99 99
Migration % | 0.01 || 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 0
Dual Reqﬁests 67 66 68 77 80 77 77 73
4.05s Idle Periods | 20 18 23 16 15 17 21 17
Extra Tokens | 59 59 | 58 | 70 | 74 | 70 | 67 | 63
Locality % 99 99 99 99 99 99 99 99
Migration % | 0.01 | 0.00 | 0.01 | 0.01 | 0.0l | 0.01 | 0.01 0
Spn Requests 136 146 | 145 | 153 | 144 | 139 | 140 | 140
4.11s Idle Periods | 21 24 25 25 23 26 34 22
Extra Tokens | 75 76 | 712 | 18 | 714 | 710 | 66 | 77
Locality % 99 99 99 99 99 99 99 99
Migration % | 0.01 || 0.01 | 0.0t | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
His Requests 399 ﬁSl 329 | 357 | 371 | 391 | 446 | 371
4.24s Idle Periods | 49 37 56 56 64 47 57 45
Extra Tokens | — - - - - - - -
Locality % 99 99 99 99 99 99 99 99
Migration % | 0.03 || 0.01 | 002 | 0.02 ; 0.02 | 0.02 | 0.03 | 0.02

Table 5.10: A study of load balancer behavior for Fibonacci(33)

106

o History information (His) performs better than global load information (Rand) for
regular applications. This is shown in Fig. 5.8, 5.9.

5.5 Program Behavior

We designed a spectrum of experiments to understand application behavior with different
load balancers. Wherever speedup curves are mentioned, we mean absoulte speedup, with
the number of processors along the x-axis, and the absolute speedup along the y-axis.

e The application and runtime parameters that determine performance are: program-
ming model, parallelism grain size, input workload, polling interval, number of
nodes, load balancer strategy. Load balancer related issues like balancer policies,
logical topology, quality of load state information, message complexity, CPU time
spent on executing the balancer code play a significant role. Other system related
factors are: ratio of CPU speed to network speed, network bandwidth, network
topology, network interface in the runtime system.

o For irregular and recursive applications, load state information outperforms history
information. However for regular applications, load state information actually de-
grades performance.

5.5.1 Transition Point and Peak Point

e A transition point is the absolute speedup for a 2-node execution. It represents the
transition from one-node execution to parallel execution. The performance at this
point is indicative of the amount of parallelism in the application, and how well the
system is able to exploit the available parallelism. The higher the absolute speedup
at this point, the better is the suitability of the balancer for this application. This
also provides an early trend to the relative performance of different load balancers
for this application, for any workload and for a reasonable number of nodes. An
upward or downward slope of the curve at this point reflects on the balance between
load balancer overheads and benefits from parallel execution.

Fig. 5.36, part(a) shows the transition and peak points for Fibonacci(12). At 2
nodes, the Dual, His, Rand, Snd balancers are in decreasing order of performance.

107

gEeg |
HH
PHR
N

Hi

>

q k4 4 [. a 7 " - L] »n 9 L] = » - w -
Nt . ot
(a)Fibonacci(12) (b) Fibonacci(28)

Figure 5.36: Comparision of speedup against overheads with the increase in the number
of Nodes for Fibonacci

Part(b) shows the absolute speedups for Fibonacci(28). Until 32 nodes, the Dual
balancer leads the rest of the balancers. The Dual is followed by His (until 14
nodes), Rand, and Snd. This is according to the predictions made from the tran-
sition point from part(a). As explained before, the transition point does not cover
scalability, and is valid for only a modest number of nodes. The Rand balancer is
seen here dominating from 40 nodes onwards.

Thread Execution Time
Load Balr Overhead
Polfing Qverhead

Total Idie Time

Context Switching Time

T

3 4 S]
2 Nodes (0.1) for Ousd, Snd, His and Rengt

Figure 5.37: A comparision of Transition points for different balancers for Fibonacci(12).

108

L tisne.. 1]

(a) Dual

Figure 5.38: Peak performance points for Fibonacci(12)

(b)Rand

Figure 5.39: Peak performance points for Fibonacci(12)

A peak point is the highest point on the speedup curve. After this point, the speedup
curve usuaily becomes constant or dips downward. The higher the number of pro-
cessors at this point, the better the scalability of the balancer. This point predicts
the same scalability trend of the balancer for any workload.

From Fig. 5.36, part(a), the peak points according to decreasing order belong to
Snd, Rand, Dual, and His balancers. This pattern can be observed in part(b) of
this figure. Th Rand balancer is not only scalable, but also stable, unlike the Snd
balancer which fails after creating instability in the system due to load thrashing.

5.5.2 Effect of Grain Size and Polling Interval

Increase in grain size improves application performance as long as there is enough
parallelism to be exploited. Similarly increase in workload represents high amount

109

of parallelism in the application. This provides a better amortization of load bal-

ancer overheads and resuits in better load balancer performance. At low workloads,
a balancer with least overheads performs best.

P
L] $ © L3) = » =

ed
(a) Grain Size 150 us (b) Grain Size 200 us

Figure 5.40: Performance comparision at low loads at polling interval of 5Ous for
Knary(3,3,0)

Fig. 5.40 shows that with increase in grain size, the His balancer outperforms the
Spn balancer. This is due to the fact that the increased grain size dominates the
balancer overheads of the His balancer.

L L
(a) Knary(2.512,0) (b) SPMD(2,512,0)

Figure 5.41: Relative Speedup with grain size 200us

In Fig. 5.41, the His balancer proves to be more scalable than the Snd balancer.
This result also highlights the ability of the His balancer to distribute tokens very
fast. However, part(b) of Fig. 5.41 shows that for the same workload, the low load

situation for each phase in a barrier-synchronized application suits a pure sender-
initiated balancer better.

110

9 § a "m E - n E 3

L
(2) Grain Size 400 ps (b) Grain Size 600 ps

Figure 5.42: Relative Speedup for Knary(2,512,0)

In Fig. 5.42, doubling the token grain size slightly improves corresponding numbers
for speedup achieved. It should be noted that with increase in grain size, and no
corresponding increase in workload, the amount of exploitable parallelism in the
application dwindles.

\

15

ut

~
Y

Matmy
(a) Dual (b)His and Rand

Figure 5.43: Performance of Knary(2,512,0) for different grain sizes

Fig. 5.43 shows that increase in grain size improves performance. However, this
improvement is not much significant for the Dual balancer as it is for the other
balancers partly due to the fact that ring topology is not equipped for fast token dis-
tribution, and secondly becasue of the receiver-initiated policy of the Dual balancer
finds it difficult to locate a rich node in a low load situation. Only a few nodes
close to the rich nodes end up consuming all the tokens. Therefore, after achieving
certain initial speedup, the curve flattens out.

11

o At lower workloads, polling interval has a significant impact on application perfor-

mance. However at higher workloads, the effect of polling interval is not as relevant
as at low workloads.

=
— 44050 —— 40 H
—— 4-4-0100ps —e— 44-0100p8 {
B ——— T-7-2 SOps b all—* 7725 :
—.— 7-7-2 1Cus -=- 7-7-21004s 1

i
(a) Spn (b) Snd

Figure 5.44: Performance of Knary(4,4,0) and Knary(7,7,2)

Fig. 5.44 shows the equation between workload and polling interval, for the Spn
and Snd balancers. At small workloads, increase in polling interval improves per-
formance due to the minimization of network access overheads. However, this does
not make much difference at high workloads. There is a slight difference for high
workloads with increase in polling interval for the Snd balancer, because of the
dependence of the Sad balancer on token disposal across the network.

o Higher polling interval improves performance due to low polling overheads, un-

less the balancer depends significantly on remote communications (for instance the
Rand balancer).

4—4-0 50 us

—— 4-4-0 50 us
—— 4-4-0 1008
——

7-7-250 48
- 17210088

——
——
——

L}
{a) His (b) Rand

Figure 5.45: Performance of Knary(4.4,0) and Knary(7,7,2)

112

1 == M " ==
of | == &1 - d
TR =& 1\ =&
ok \
! as -
: \\
Poie r,; N D
l : 1 N 1nn \ {\'-*»_\\
asr RS Y e ;
A N |
as- X — [N \\\\\
6“" i\\.\:\\“ \- -r ‘\:\ \\\\\
, \\. ‘...:—\\\‘
o3 \‘1\\:\\‘-\&* i " ’\:-Tj\“\;
\\: te— .
°‘0] e s —— E -] a3 D t] .‘0 k] A 's - n 3 » n
() Grain Size 200 us (b) Grain Size 400 us

Figure 5.46: Performance of SPMD(3,3,0) at polling interval of 50 us

Fig. 5.46 demonstrates similar behavior for barrier-synchronized applications with
increase in grain size. Corresponding numbers for speedup have increased with
increase in grain size.

X —
ask pe- —— Sng ;-

v ‘\ [s ! l
ar - :4 . :;) .
i“? ‘ IO T
Josk - n???“\“:lu
See - \“: i
o . .'
n;- 7‘ .
il ;

L

o s -0 kY - » » »

L e
(a) Grain Size 600 us (b) Grain Size 400 us

Figure 5.47: Performance of SPMD(3,3,0). (a) Polling Interval 50 us (b) Polling Interval
100 us

In Fig. 5.47, an increase in grain size amortizes the balancer overheads of the His
balancer so that it starts dominating the Spn balancer.

o For an application at a given workload, increasing grain size will not affect the rela-
tive performance of different load balancers, until a certain point when the relation
between grain size, polling interval and balancer overhead favors a particular load
balancer.

Fig. 5.48, part(a) shows that when the equation between grain size, polling interval,
workload, and balancer overheads reaches an optimum value for a balancer, that particular

113

|

HH
gFes

] 3 W [3 »n » = -) s Y " »n s x

Notnn
(a) Grain Size 600 us (b) Grain Size 300 us

Figure 5.48: Performance of SPMD(3,3,0). (a) Polling Interval 150 us (b) Polling Interval
25 us

balancer starts performing better. Here the Rand balancer is outperforms other balancers,
though with increase in nodes beyond 32, its performance may degrade.

Figure 5.49: Performance of SPMD(3,3,0) at grain size of 1800 s and polling interval of
150 us.

In Fig. 5.49, with increase in grain size performance did not improve, as there was not
much parallelism available in the workload. Therefore individual performance dips when
compared to Fig. 5.48.

114

T ———
—_—— 1.l-o|
—— 2-2-0
1 o —— 330
— 4D
aa oo e
ar
}u.
st
ad
a \ 4
» G‘O ; a " o n n »

Nedwn
(a) Spn (b) Snd

Figure 5.50: Performance of SPMD at grain size 200 us, and polling interval of 50 us

(a) His (b) Rand

Figure 5.51: Performance of SPMD at grain size 200 us, and polling interval of 50 us

5.5.3 Effect of Workload

Workload is the input parameter to a program execution. The workload is the total amount
of work in a sequential execution, and influences the amount of parallelism in a parallel
application. Increasing the workload increases the parallelism in the application, and
makes loadbalancing that much more productive. This is because the load balancer over-
heads are dominated by the work transferred, so a load balancer with high overheads may
start performing better as the workload is increased. Similarly, a load balancer that is
performing better at low loads, may be unable to scale uniformly to the parallelism in the
application, and may cause instability (for instance the Snd balancer).

In this section, the workload is varied for the Fibonacci and the Paraffins applications,
and the variance in load balancer behavior is observed. Fibonacci has extremely fine-grain
threads, and the Paraffins demonstrates irregular parallelism.

115

;
géey
o
pFe

N

O\ {
o [y] 1% » 3 £} % [] ‘ L) 3 »
Tmtng Nastes.
(a) Fibonacci(28) (b)Fibonacci(30)

Figure 5.52: Effect of workload on different balancers for Fibonacci

= n
9 4
Ll d 4
arr g

A ,/////”//////‘ ' [l
1"..(/""”é¢éé4”/””%¢,,;ﬁﬁf“ il

(@) Fibonacci(33) (b)Fibonacci(35)

-—— Sn —— Spn
we— Snd asb| —=~ Snd
25| —+— Ha —e— Hs
—e— Ramt —+— Ramt

Figure 5.53: Effect of workload on different balancers for Fibonacci

5.5.4 Effect of Application level Load Balancing

One alternative to control the amount of load balancing at the runtime system level is to
determine the locality constraints explicitly in the application. The Knary(n,,r) applica-
tion specifies that r children among the total k children at every level in the n level tree

(a) anﬁnsrﬁ) (b) Paraffins(24)

Figure 5.54: Effect of workloadﬁrtdifferem balancers for Paraffins

L] 13 L] "] » n =

Mume
(2) Paraffins(26) (b) Paraffins(28)

Figure 5.55: Effect of workload on different balancers for Paraffins

should be executed locally. By controlling the value of r, different test cases for load
balancers can be created.

peg

") .
(I
NN N NN
LRriias

Figure 5.56: Scalability test for Knary(7,7,X) where X is varied. X is the number of
children of each node that need to be locaily executed.

Initializing the value of X to zero allows maximum load balancing, and probably some
load thrashing as well. increasing the value of X limits the amount of load balancing, and
finally, the speedup becomes constant when all the children are executed locally.

Another way of looking at the effect of X on the balancer performance is shown
in Fig. 5.58. here. as the value X is increased, parallel performance equals sequential
performance.

17

Figure 5.57: Scalability test for Knary(7,7,X) where X is varied. X is the number of
children of each node that need to be locally executed.

H
i

......................

1 3
(a) Spn h (b) Snd

Figure 5.58: Effect of Load balancing for Knary(7,7,X), where X is the number of chil-
dren of each node that need to be locally executed.

5.5.8 Token Distribution

[deally, a load balancer should distribute qork equally among all the nodes in the exe-
cution. However, with this objective, the determination of workload to be transferred is
very complex process, and definetly not sustainable with fine-grain multithreading. On
the other hand, the profile data reveals that balancers which distribute workload and over-
heads equally perform relatively better. If a line is drawn connecting all points in a graph,
where each point represents the number of tokens executed on a node, then in the ideal
case the line should be a straight line.

In the experiments in this section, we profiled the number of tokens executed on each
node as per a particular load balancer policy, and then connect these points and observe
the ability of the balancer to distribute load equally.

118

1)
(@) His ’ (b} Rand

Figure 5.59: Effect of Load balancing for Knary(7,7,X), where X is the number of chil-
dren of each node that need to be locally executed.

0 14

—— rae

IS . g

T8

-
Eaa——

T

gigy

<
N\

H
it

2 3 . s . L s L] "

L
(a) 8 Nodes (b) 16 Nodes

Figure 5.60: Token Distribution for Fibonacci(33)

L] ' E g b} 4 $ 3 T e $ L %

L
{a) 8 Nodes (b) 16 Nodes

Figure 5.61: Token Distribution for Queens(12)

119

¥
H
g¥e

2 3 . 3 . r

LY
(a) B Nodes (b) 16 Nodes

Figure 5.62: Token Distribution for SPMD(4,4,0)

HH
pigy

HH
gEge

L) ovs
(a) 8 Nodes (b) 16 Nodes

Figure 5.63: Token Distribution for Paraffins(28)

120

Chapter 6

EARTH Operations - A Performance
Study

The overheads and latencies involved in supporting a parallel environment play a signif-
icant role in the application performance. In other words, an efficient implementation of
this parallel environment with minimum costs favors lower application elapsed times. In
order to understand the application performance, a detailed study of these overheads is
necessary.

The parallel execution time of a Threaded-C program can be roughly divided into
three major chunks: time spent in executing application threads; overheads, latencies and
throughput of parallel operations; and finally the overheads involved in maintaining a
multithreaded environment - load balancing overheads, initiation and termination costs
of parallel execution. Application thread execution depends on various factors like the
programming model, parallelism grain size, load balancer strategy, polling interval, etc.
and is discussed in section 5. The load balancer overheads result from the CPU time spent
in executing the load balancer code. The parallel operations in EARTH are the paraliel
invocations of threaded functions, thread management - instantiation, termination and
synchronization of EARTH threads, and remote data communications. The Threaded-C
language provides instructions to specify the EARTH operations in application programs.
In this section, we study the parallel constructs in the Threaded-C language and their
implementation in the EARTH runtime system from a performance perspective.

The overheads of the Threaded-C instructions are discussed in section 6.1. The la-
tencies of EARTH operations are computed and analyzed in section 6.2. The overhead
costs and throughput for data communication primitives in the Threaded-C language are

121

presented in section 6.3. Section 6.4 compares the throughput for local and remote block-
moves of data. A similar set of experiments are performed on the other EARTH-SP
platforms and the results are presented in section D.

The EARTH-SP2 at the Cornell Theory Center is considered in this section for ana-
lyzing the performance of the EARTH muitithreaded environment. An important reason
for choosing this SP-2 platform' is to maintain compatibility of the results in this section
with the applications performance in section 5. This system has 137 nodes where parallel
jobs can be submitted in batch mode. Each node includes a P2SC CPU running at 120
MHz, 128 KB data cache, 256 MB main memory and 256 bit memory bus. The nodes are
interconnected through the SP switch [37]. The tb-3 card is the network switch interface
and offers a peak hardware bandwidth of 150 MB/sec.

6.1 Overheads of Threaded-C Instructions

The overheads for executing the multithreaded constructs in a Threaded-C program are
shown in Table. 6.1. Threaded-C instructions are executed on local and remote nodes and
the timing costs are measured. The instruction is executed a certain count number of
times, and the average values are presented here.

Table 6.1 shows the overheads for local and remote invocations of a Threaded-C
instruction. For local operations, the time spent by a local execution unit in issuing a
Threaded-C instruction is shown under the column “EU costs”. For remote operations,
the time spent in issuing a instruction on the source node is shown under the column “Lo-
cal Costs”, and the CPU time spent in executing the Threaded-C instruction on the remote
node is attributed to the column “Remote Costs”. Profiling code inserted before and after
the Threaded-C instruction gives the total time spent in issuing and executing an instruc-
tion. Special care is taken to consider only the CPU time spent in issuing the instruction
as the instruction overhead. The time spent in actually performing the corresponding
EARTH operation is ignored.

When obtaining remote costs, it is important to create normal working conditions on
the remote node. This is done by executing some [oops on the remote node before actually
issuing a remote operation. The remote operation has to compete with other work for
CPU time on the remote node, before its execution. This ensures realistic overheads for
remote operations. At the same time, the exact CPU time spent on the remote instruction

ICornell Theory Center, Cornell University, Ithaca, New York.

122

EARTH Operation Local Operation Remote Operation
EU Costs Local Costs Remote Costs

SYNC 145.13 ns 225181 ns 1128.59 ns
SPAWN 109.73 ns 2043.41 ns 2058.76 ns
END_THREAD 920.30 ns NA NA
INCR_SYNC 168.04 ns 2205.58 ns 1207.30 ns
DATA_SYNC 170.61 ns 2173.61 ns 1149.36 ns
GET_SYNC 173.85ns 1550.09+1971.31 ns | 3448.32 ns
INVOKE(1) 119.14 ns 217721 ns 2339.53 ns
END _FUNCTION(1) 1044 .41 ns NA NA
INVOKE(5) 126.74 ns 2230.15 ns 2442.57 ns
END _FUNCTION(S 1114.69 ns NA NA
INVOKE(9) 134.02 ns 2220.46 ns 2541.75 ns
END_FUNCTION(9) 1177.44 ns NA NA
INVOKE(18) 180.26 ns 233121 ns 2655.50 ns
END_FUNCTION(18) 1203.32 ns NA NA

Table 6.1: Overhead for Threaded-C instructions on EARTH-SP2

is measured by isolating it from the CPU time spent on the loops execution.

Normal working conditions are maintained on remote nodes by executing a simple
while loop that is terminated only after completing execution of the Threaded-C in-
struction. In order to allow for the execution of a thread containing the remote Threaded-
C instruction, the while loop is split into two threads as described in section 2.2.12.
The thread with the Threaded-C instruction under consideration, is placed in the ready
queue along with two threads corresponding to the while loop. This creates an envi-
ronment similar to those found in normal application programs. While computing the
remote costs of remote operations, the time spent on executing Threaded-C instructions
is dealt with separately from the time spent on executing the loops. This is easy, as the
remote Threaded-C instruction and loops are the only computation load belonging to the
application on the remote node. The time spent on loops is computed by determining the
time spent on executing each loop and the total number of loops executed at the end of
execution.

The SYNC construct is translated into a runtime system function call to etc_sync.
If the sync slot is present on the local node, the sync count is decremented and if its value
is zero, the associated thread is placed in the ready queue. On the other hand, if the sync
slot is present on a remote node, a message is composed and sent to the remote node. A

123

count number of synchronization operations are issued and their completion is marked
by the firing of the associated thread. The timer is set off in the first statement of the
newly enabled thread. The overhead of the SYNC instruction is computed by deleting a
time approximation for the EARTH operation from the total elapsed time.

The SPAWN construct is less expensive than the SYNC construct, as checking for sync
count is unnecessary. The associated thread is directly placed in the ready queue. The
END.THREAD primitive indicates the end of the current thread, and therefore prepro-
cessed into a return statement at the end of the C function representing the thread.
The END_THREAD primitive pertains to the current thread and is more of a directive
rather than as an instruction. Computing remote costs for it is not possible, as it is not
an EARTH operation. The cost of END_THREAD is the same as that of terminating a C
function.

The INCR_SYNC instruction costs more than the SYNC instruction because of an in-
crementing operation done prior to normal synchronization operation. A DATA_SYNC
instruction places the data at destination location and sends a sync message to the asso-
ciated sync slot. Hence it costs more than a sync operation. A GET_SYNC instruction
determines the source node of the data from its arguments, and composes a message
to the node hosting that global memory location. The receiving node then composes a
DATA_SYNC message with the required data to the requesting node. Understandably, it
costs more than a DATA_SYNC operation.

The INVOKE instruction launches the Threaded-C function directly on the node spec-
ified. Before making the corresponding RTS call to etc_invoke, the arguments for
the Threaded-C function are converted into global pointers where required, and this data
is placed in the runtime data structures. The variable parameter passing mechanism, as
explained in section 2.2.9, is used here. On the node where the threaded function is
scheduled, the parameters have to be down-loaded from the parameter pointer into their
respective slots in the frame pointer. Thus it is interesting to see the overheads involved
in having different number of arguments to the INVOKE instruction. The timing costs
for 1,5, 9, and 18 arguments for the INVOKE instruction are studied. As expected, they
show an increasing trend as the number of arguments increases. As is the case with ail
Threaded-C instructions, the overhead costs for the INVOKE instruction are isolated from
the latencies of parallel function invocation in the EARTH system.

The END.FUNCTION instruction indicates the end of a Threaded-C function (similar

124

to the END_THREAD primitive which signifies the end of a thread). The dynamic mem-
ory allocated for the activation frame is returned, as shown in the preprocessed code in
section 2.2.10. To simulate common application scenarios, Threaded-C functions with 1,
5, 9, and 18 parameters having just a single instruction - END_FUNCTION are invoked,
and the results are observed. The costs represent the time for obtaining the parameters
from the parameter frame, returning memory to heap, and terminating the C function
representing the last thread in the Threaded-C function.

6.2 Latencies of EARTH Operations

The timing requirements for various EARTH operations like thread spawning, thread
synchronization, parallel function invocation and data communication are studied in Ta-
ble 6.2. The EARTH operation is initiated in one thread (start-thread) and the completion
of the operation marks the firing of another thread (end-thread). All these EARTH opera-
tions end with a synchronization signal.

The time taken for the entire EARTH operation is studied with respect to the man-
ner in which it is issued - sequential and pipelined. In the sequential issue, a single
EARTH operation is initiated and completed before the next issue. In the pipelined is-
sue, multiple instances of an EARTH operation are started without waiting for the earlier
instantiations to complete. The pipelined issue is expected to resuit in improvements in
latencies because of three reasons: the start-thread need not wait for acknowledgment
from the end-thread before issuing the next instance; there will be fewer context-switches
between the start-thread and end-thread; and finally, the synchronization cost to fire the
end-thread is minimal in the case of the pipelined issue when compared to the sequen-
tial issue. Benefits due to cache reuse, though minor in comparison, also add to the
performance improvement. Both the sequential and pipelined types of initiating EARTH
operations are programmed in Threaded-C, and any speedup observed is over and above
the instruction-level parallelism offered by the underlying architecture.

Table 6.2 shows the sequential and pipelined latencies for local and remote operations.
One uniform trend visible among all operations is that the sequential execution costs far
exceed those of the pipelined execution. The latencies include the time from the issue of
the operation through a Threaded-C instruction, till the completion of the operation in the

*The runtime system code in etc_sync function that is executed to place an enabled thread in the
ready queue needs to be executed only once for all instances of the EARTH operation.

125

end-thread. This is different from the timing overheads seen in Table 6.1, where the time
is strictly the overhead for executing a Threaded-C instruction.

The local sequential execution has higher costs than the local pipelined costs, because
of the time savings available when certain part of the RTS code is executed only once
for all instances of the EARTH operation in the pipelined execution. For example for
the SYNC operation, the RTS code that resets the sync count and places the thread in the
ready queue is executed only for the last instance in the pipelined execution. In contrast,
this is done for every instance in the sequential execution.

Writing a word takes (DATA_SYNC.x) lesser time than reading a word
(GET.SYNC_x). This same behavior is visible even in Table 6.2.

The function call operations show increasing time overheads as the number of param-
eters increases. This is understandable as the time spent in executing extra RTS code for
uploading/down-loading each parameter to/from the parameter frame.

| Operation Local Seq. | Remote Seq. | Local Pipe. | Remote Pipe.
Sync Thread: I117.18 ns | 22750.51 ns | 200.53 ns 3580.52 ns
Spawn Thread: | 1094.680 ns | 22623.864 ns NA NA
Read Word: 1263.690 ns | 44695.379ns | 268.174ns | 5790.639 ns
Write Word: 1176.486 ns | 44714817 ns | 225.756ns | 5751.444 ns
Fun. Call (1): | 2373.947 ns | 45444.014 ns | 1420.094 ns | 6635911 ns
Fun. Call (5): | 2464.970ns | 46504.802 ns | 1505.723 ns | 7111.021 ns
Fun. Call (9): | 2547.251 ns { 46312.331 ns | 1592.606 ns | 7383.772 ns
Fun. Call (18): | 2641.083 ns | 46734.277 ns | 1678.828 ns | 7016.261 ns

Table 6.2: Latencies for EARTH operations on EARTH-SP2

6.3 Data Communication

The EARTH runtime system supports global memory access over a distributed memory
platform. Therefore all the remote memory access is performed through message-passing.
Another reason for remote communications is dynamic load balancing. While the bal-
ancer stresses on ensuring locality between function invocations, it is also possible that
varying load situations resuit in threaded functions sharing synchronization dependences
being scheduled on different nodes. Therefore, it is interesting to note the time costs in
moving data among local/remote destinations.

126

The overhead costs and throughput achieved by using the GET.SYNCx and
DATA_SYNC.x operations are listed in Table 6.3. The sending/receiving of data is
performed to/from local and remote destinations. The entries in Table 6.3 show the
overhead in nanosecs, and the throughput in MB/secs as a result of local/remote data
transfers. Data of all sizes are transferred - byte, short, long, double, of
sizes 1, 2, 4, and 8 bytes respectively. The difference between the start and end times
of GET.SYNC_x/DATA_SYNC.x operations is the time overhead, and the throughput
achieved is the total amount of data transferred divided by the elapsed time.

[nitially, the source array of data is initialized on node 0 by a threaded function (say
Th. A). Another threaded function (say Th. B) creates dynamic memory for the desti-
nation array and resets its contents to zero. For initiating local data transfer, the second
threaded function (Th. B) is invoked on node 0, whereas for remote operations it is in-
voked on node 1. All data transfer happens between the source array (declared in Th. A),
and the destination array (declared in Th. B).

Operation Local Remote
Overhead | Throughput | Overhead | Throughput

[DATA SYNCB | 282.00 ns/op | 3.55 MB/s | 5933.00 ns/op | 0.17 MB/s |
DATA_SYNC.S | 272.00 ns/op | 7.35 MB/s | 5882.00 ns/op | 0.34 MB/s
DATA_SYNC_L | 256.00 ns/op | 15.61 MB/s | 5844.00 ns/op | 0.68 MB/s
DATA_SYNC.D | 238.00 ns/op | 33.59 MB/s | 5668.00 ns/op | 1.41 MB/s
GET_SYNCB | 328.00 ns/op | 3.05 MB/s | 5921.00 ns/op | 0.17 MB/s
GET.SYNC.S | 322.00ns/op | 6.20 MB/s | 5892.00 ns/op | 0.34 MB/s
GET.SYNC_L | 307.00 ns/op | 13.03 MB/s | 5900.00 ns/op | 0.68 MB/s
GET.SYNC.D | 333.00 ns/op | 23.99 MB/s | 5677.00 ns/op | 1.41 MB/s

Table 6.3: Overhead costs and Throughput for Data Communication in EARTH-SP2

Remote memory access is costlier than local memory access (approx. 20 times). The
overhead costs are almost the same for data of all sizes (though they show a negligible
decreasing trend from byte to double for the DATA_SYNC_x operation). The throughput
goes on increasing from byte to double, as the amount of data transferred is increasing
while the time taken is almost same.

127

6.4 Blockmove Operations

Performancewise, moving blocks of data is more beneficial than multiple datum transfers
due to low synchronization costs. A single synchronization signal is needed to signal the
completion of a blockmove operation, whereas individual data transfers require as many
synchronization signals as the number of data transfer operations.

The throughput resulting from block movement of data to local/remote destinations
is shown in Table 6.4. Typically, block moves of data result in a throughput of around
243MB/s (local) and 95.06MB/s (remote) for O byte aligned data block movement.

Align Local Remote

Single Dual Single Dual
0 243.22 MB/s | 247.20 MB/s | 95.06 MB/s | 99.89 MB/s
16 247.77 MB/s | 247.95 MB/s | 94.28 MB/s | 98.93 MB/s
8 247.13 MB/s | 247.80 MB/s | 91.94 MB/s | 94.10 MB/s
4 238.73 MB/s | 247.98 MB/s | 90.88 MB/s | 99.95 MB/s
1 231.24 MB/s | 231.07 MB/s | 87.32 MB/s | 99.41 MB/s

Table 6.4: Throughput for Blockmove operations on EARTH-SP2

The results are obtained by varying destinations among local/remote, single/dual
blocks to transfer, and the byte alignment of data. In the single block transfer, data is
transferred between one pair of source-destination during the time observed. With dou-
ble block transfer, data is transferred between two pairs of source-destinations. In either
cases, a single block-move operation is performed. If 20 sync signals are to be gener-
ated to enable a consumer thread to act on the blocks of data transferred, the 20 signals
may be generated after transferring single block data 20 times, or they may be split up
between two block transfers (each generating 10 sync signals). In addition, the data is
0, 1, 4, 8, 16 bytes aligned. For example, the first entry in Table 6.4 shows the transfer
of zero aligned data, i.e. the data from the very first byte of array at source location is
transferred. Both the source and destination locations are on the local memory for lo-
cal transfers, whereas in the case of remote block transfer remote data is transferred to
local destination. Elapsed times are measured while transferring single and dual blocks
of data. Thus the entries in Table 6.4 show throughput in MB/s achieved by moving ap-

propriately aligned data, stored in single/dual blocks among local source/destinations and
remote source to local destinaticns.

128

Local block transfer, as expected, achieves better throughput (approx. 2.6 times) than
remote block transfer. This is understandable as the overhead costs associated with remote
memory write and sync operations are quite high. For any alignment, the dual block
transfer achieves higher bandwidth than the corresponding single block transfer. This
suggests lesser time required for dual block transfer than single block transfer.

129

Chapter 7

A Comparative Performance Study of
Fine-Grain Multi-threading on
Distributed Memory Machines

This section provides a comparative study of the implementation of the Efficient Archi-
tecture for Running THreads (EARTH) on IBM SP-2, Beowulf, and the MANNA ma-
chine [93, 94]. Each platform presents different constraints on the interaction between
the EARTH runtime system and the network. Threaded-C, the programming language for
EARTH, provides a uniform address space to allow data exchange among the processing
nodes in all these distributed-memory platforms. The performance in each implementa-
tion is characterized by measuring the cost of EARTH operations, such as the exchange
of synchronization signals, the spawning of threads, and the movement of data across
processing nodes. This is followed by a detailed study of the performance of applications
belonging to three different programming models.

7.1 Execution Model versus Architecture Performance

Designing multiprocessor systems that deliver a reasonable price-performance ratio us-
ing off-the-shelf processor and compiler technologies is a major challenge. While mod-
ern processors can issue multiple instructions per cycle, they lack the features required

130

to address fundamental issues in multiprocessing systems: latency, bandwidth and syn-
chronization overheads. A well designed parallel system must balance the trade-off be-
tween a fine task granularity [143] and the impact of communication latencies on per-
formance. Coarse-grain parallel systems can tolerate long latencies if the application
provides enough parallelism because each task is long enough to amortize the communi-
cation overheads. But coarse grain systems do not fully exploit the parallelism existing
in irregular parallelism. Fine-grain parallelism, on the other hand, enables further paral-
lelization of many applications, but has proved to be difficult to support due to the higher
relative cost of communication and synchronization latencies [143].

We present performance results from three implementations of EARTH: EARTH-SP2,
EARTH-Beowulf, and EARTH-MANNA. All these implementations run the same appli-
cation program written in or compiled to Threaded-C, an explicitly multi-threaded exten-
sion of C. In all three implementations the Threaded-C code is converted by a prepro-
cessor into ANSI-C with calls to runtime system functions. The translation sequence of
Threaded-C programs into final executable is shown in Fig. 2.1. The runtime system per-
forms thread scheduling, context switching between threads, inter-node communication,
inter-thread synchronization, global memory management, and dynamic load balancing.

Given the EARTH programming and execution model, and its implementation on
platforms with different processor-network, processor-memory and network-memory in-
terfaces, it is interesting to study if the EARTH multithreading model can effectively de-
liver performance improvements for a range of applications across these platforms. One
should expect that obtaining performance improvements on tightly coupled architectures
should be easier than on loosely coupled ones.

7.2 Hardware Platforms

We select three machines for this comparative study: the MANNA, the [BM-SP2, and
the EARTH-Beowulf. This machines represent different levels of availability, cost, and
effort to implement a parallel system. The MANNA is a research machine with dual
processor nodes interconnected through a cross-bar switch. The EARTH team had direct
access to the network interface and hardware storage in the machine, and thus was able
to produce a very efficient implementation of the EARTH model. Only a few installa-
tions of MANNA exist. The IBM SP-2 is an inherently parallel machine that is typically
available in computing centers. The EARTH team was also granted access to the network

131

card data structures in the IBM-SP2 to enable the EARTH runtime system to directly start
network operations. The Beowuif implementation uses exclusively off the shelf compo-
nents, hardware, network drivers, and operating system. It is the most portable version
of EARTH, and the most available because the cost and effort to construct a Beowulf
cluster is minimal. However this portability imposes a hit on the latency of the EARTH
operations.

The MANNA (Massively parallel Architecture for Non-numerical and Numerical Ap-
plications) was developed at GMD-FIRST in Berlin, Germany, in the early 90’s [31].
Each node of the machine contains two 50-MHz Intel i860XP RISC processors, each
with on-chip data cache and instruction cache of 16KB each. The two processors share
32 MB of DRAM on a common bus, and stay coherent with this memory and each other
using bus snooping and the MESI protocoi. The bus also runs at 50 MHz. Multiple
dual processor nodes of the MANNA are connected through a custom-designed 16 x 16
packet-switched crossbars. Each input port can accept one data byte per 20 ns cycle, and
the input is buffered by a FIFO. The crossbar bandwidth is 800 MB/s if all 16 inputs are in
use and each transmits to a different output port. The EARTH-MANNA implementation
has been described previousiy [156].

The IBM RS/6000 Scalable POWER Parallel System (SP-2) is a distributed memory
multiprocessor. Each processing node is equipped with a 120 MHz POWER?2 Super Chip,
128 KB of data cache, 32 KB of instruction cache, at least 64 MB of RAM, and operate
with a 256 bit memory bus. The tb-3 switch provides a network interface with a peak
hardware bandwidth of 150 MB/s in each direction. A detailed description of the EARTH-
SP2 implementation is explained in chapter 2 and also in [92].

The Beowulf cluster [141] is equipped with 200MHz Pentium Pros, each node with
128 MB of RAM. The nodes are interconnected through a 100 Mb/s switched ethernet
network. The EARTH inter-node communication and synchronizations are implemented
on top of the TCP/IP protocol.

7.3 Latency of EARTH Operations

The machines that we are studying have different processor and network speeds, and
distinct implementations of the EARTH runtime system. The latency of the operations
required to communicate and synchronize across processing nodes is a determinant factor
in the performance of some applications. In this section we measure the latency of some

132

X . Sequential Pipelined
Machine Operation Local | Remote | Local | Remote

Sync Thread || 116 199 | 420 | 497
Spawn Thread || 113 213 — —

MANNA = GetSync || 141 | 348 | 568 | 940
beycle= hasync | 138 | 333 | 530 | 907
200s Fan. Call (1) || 250 | 450 | 159 | 140
Fun. Call (1I8) || 410 | 628 | 276 | 223

Sync Thread 104 2751 24 414

- Spawn Thread | 101 | 2652 | — | —

! ovele = Get.Sync 122 | 5366 | 322 | 699
cycle = DataSync || 107 | 5276 | 272 | 695

8.31s Fun. Call () | 231 | 5553 | 140 | 784
Fun. Call (18) | 262 | 3656 | 171 | 831 |
Sync Thread || 1146 | 21014 | 15.7 | 227552
Spawn Thread || 1193 | 22863 | — —

Beowulf GetSync || 1211 | 41614 | 265 | 11482

; ‘(:)y:f = [DamsSync | 1201 | 41513 | 272 | 312712

Fun. Call (1) || 2416 | 42728 | 1228 | 176389
Fun. Call (I8) | 2514 | 43735 | 1339 | 160271

Table 7.1: Latency of EARTH operations, measured in number of cycles.

EARTH operations in all three platforms. These measurements are presented in terms
of the number of processor cycles in the machine to facilitate a comparison between the
machines. It is important to observe that the processor is not busy with the operation for
the number of clock cycles shown in Table 7.1. Most of the remote operation time is spent
either waiting on queues or in the network, releasing the processor to execute other ready
threads.

Table 7.1 displays the latency of EARTH operations in the three platforms used in
this comparative study. In the measurements in the “sequential” column the next EARTH
operation is issued after the receipt of a synchronization signal confirming that the current
operation is completed. For instance two threads, thread a and thread b, are necessary to
measure the latency of a synchronization operation. Thread a issues the operation, and
terminates, while the launching of Thread b marks the completion of the operation. After
executing the runtime system code for the operation and thread b is enabled, thread b is
placed in the ready queue for execution. In the case of the “pipelined” measurements,
multiple operations are issued from thread a, which then terminates. The elapsed time is
measured in thread b.

133

The measurements in the first row of Table 7.1 are obtained as follows:

Sequential Local: Thread a issues a synchronization signal that causes thread b to be-
came enabled. When enabled thread b issues a synchronization signal that causes
thread c to became enabled. This cycle is repeated NV times (we used N = 100000
in our tests). The time required for the NV repetitions is measured and the average
per synchronization signal is computed.

Sequential Remote: Same as above but thread a and thread b are scheduled in different

processors, thus there is a delay of going through the network to perform remote
operations.

Pipelined Local: Thread a starts the clock and issues N synchronization signals without
waiting for any synchronization signal. After receiving N signals thread b is en-
abled and stops the clock. This version is called “pipelined™ because in a machine
with separate SU and EU units, the operation of the EU, SU and the network can be
superposed in a pipelined fashion. Even in single-processor nodes, this results in
performance gains because the sender CPU does not need to wait for a reply from
the receiver CPU, before sending the next request. In addition, the synchronization
is handled in a different manner with the pipelined version, that results in fewer
context-switches than in the sequential style of execution.

Pipelined Remote: Similar, but thread a and thread b execute in different processors.
When enabled, thread b sends a synchronization signal to another thread in the
same processor as thread a (thread c) to stop the clock.

Both in the MANNA and in the [BM-SP2 the EARTH runtime system has direct ac-
cess to the network interface and can start network operations without any context switch-
ing. In fact in the case of the MANNA, the second processor performs all network related
operations. In both cases, the runtime system has direct access to the network card data
structures which makes network communications and polling faster. This is in contrast to
the relatively high overheads associated with traversing through the TCP/IP stack in the
case of the Beowulf. Further, when a message arrives, an interruption is generated to force
the operating system to handle the message. This causes a context switching between the
EARTH runtime system and the Linux operating system !. We are currently reviewing

!The times reported for the Beowulf runs are “wall clock time™ and thus include the costs of the interven-
ing operating system activities. This is a correct measurement because under the current implementation,

134

Sequentiai Measurement Pipelined Measurament

Figure 7.1: Exchange of synchronization signals for the sequential and pipelined mea-
surements of the latency of a sync operation.

the EARTH-Beowulf implementation to reduce the penalty of the intervening OS actions
in the latency of the EARTH operations.

Figure 7.1? illustrates the sequential and the pipeline measurements. The latency of
EARTH operations are shown in Table 7.1. One observation common to most operations
is the high latencies associated with sequential execution when compared to the corre-
sponding pipelined measurements. This is expected, as the overheads associated with
issuing the operations sequentially are absent in the pipelined runs. The difference in the
processor speeds is very well reflected in the different pipelined speedups for the latencies
for local operations (ratio of sequential latencies over pipelined latencies). This ratio is
even higher in the case of the Beowulf, because of factors other than the processor speed.
The EARTH runtime system polls the network at the termination of every thread. After
responding to synchronization or load balancing requests, execution continues with the
next thread in the ready queue. Since a sequentially issued operation is terminated in
another thread, the polling costs add to the locai CPU costs.

Remote operations cost less in the MANNA than in the IBM SP-2 or the Beowulf,
because of the second processor in the MANNA which takes care of the communication

the user will not be able to distinguish between the time spent in the operating system and in the EARTH
runtime system

2For the sake of clarity of presentation, a particular case is shown here. In general, the source and
destination threads for EARTH operations may be in the same threaded function. Further, threaded function
B can be executed either on local or remote nodes.

135

and synchronization operations. The remote costs for sequentially issued operations cost
higher in the Beowulf, because of the time required to compose the sending and receiving
messages in addition to the polling time.

Pipelined execution of remote operations on the Beowulf is an exception, where the
sequential version runs far faster. This is because of the higher context-switching over-
heads endured between the runtime system code, and the operating system code, while
sending messages across the network. After executing the runtime system code for the
operation, control switches to the operating system to perform the actual communica-
tion, after which control again switches back to the runtime system code for issuing the
next operation. This switch between the kernel and user space is the reason for the poor
performance of remote pipelined operations.

The other EARTH operations measured in Table 7.1 include the direct spawning of
a thread; a get_sync operation in which thread | requests a word of data from thread
2 and thread 2 synchronizes thread | when the data arrives; a data_sync operation in
which thread 1 sends a word of data to thread 2 and thread 2 synchronizes thread | when
the data arrives; and function calls with 1 and with 18 parameters, which represent the
invocation of a threaded function either in the same node or in a remote node.

7.4 Comparison of Application Performance

[n this section we present performance results for three applications: N-Queens, Paraf-
fins(28), and a dense matrix multiply, in all three platforms. These benchmarks are de-
scribed in section 4.1.

The Figures 7.2, 7.3, 7.4 show the absolute speedup for three benchmarks on each
machine. The table 7.2 displays the actual execution time for the applications in the three
platforms. The absolute speedup is measured as the quotient between the time required
to execute a sequential version of the code and the time required to execute the parallel
version in P processors.

An interesting observation to note is the disparity between the CPU speeds and net-
work speeds. In the case of the MANNA, the slow CPU speed results in high elapsed time
for sequential execution. In addition, the Dual load balancer provides a very simple load
balancing algorithm, with minimum overheads. The extra messages generated due to the
ring topology adopted in the Dual balancer, are compensated by a dedicated processor on
each node to deal with the network traffic.

136

Figure 7.3: Absolute Speedup for Paraffins(28)

The His balancer on the SP-2 and the Beowulf, on the other hand works on single

processor nodes. In order to reduce the network traffic, the His balancer uses history

. information to send tokens directly to the destination nodes, rather than following the ring
topology. This balancer works very well in the case of the IBM SP-2, due to its efficient

137

it 1 —e—

Figure 7.4: Absolute Speedup for Matrix(1024X1024)

network interface. However, in the case of the Beowulf, high CPU speed and low network
speed result in comparatively poor performance, especially in the case of irregular, and
communication intensive applications. Due to the high CPU speed, the computation time
is usually not high enough to amortize the remote communication costs.

Another important factor is the uni-node support efficiency or USE factor [84, 156].
The USE factor is the ratio of sequential execution time and the elapsed time for one-node
parallel execution. The USE factor is described in section 5.2.4.

In the case of Queens(12), both the MANNA and the SP-2 implementations of
EARTH deliver aimost linear speedup. The His balancer on the SP-2 performs better than
the Dual balancer which is tuned for the dual processor MANNA. However the speedup
of the Beowulf implementation tapers off after a small number of processors. We believe
that this happens mostly because of the iterations between the EARTH runtime system
and the Linux operating system actions, including the frequent interruptions to the kernel
because of frequent arrival of small messages. In addition, the USE factor on the Be-
owulf for the Queens benchmark is quite low. This is because of the significant amount
of multi-threaded overheads endured, despite the throttling of parallelism.

The IBM SP-2 platform performs best for the irregular application Paraffins (28).
However, the elapsed time for sequential execution on the SP-2 is low, resulting in a
very low USE factor. This in turn results in poor absolute speedup when compared to

138

arallel: Ni
Benchmark Machine SEQ Parallel: Num of Processors

1 2 4 8 12 16
MANNA || 17.25 | 1746 8.74 | 437 | 2.19 | 146 | .10
Queens(12) SP2 479 | 478 | 2.50 | 1.21 | 0.58 | 041 | 0.30

Beowulf 6.63 | 11.56| 65! | 3.60 | 222 | 1.77 | 1.59

MANNA 398 | 398 | 200 101 | 51.0 | 34.7 | 25.8

Paraffins(28) SP2 573 | 206 104 52 [264 | I8 13

Beowulf 168 342 174 |} 88.2 | 459 | 33.5 | 249

MANNA 364 | 542 | 271 138 | 704 |36.71 | 30.70

Matrix SP2 28347 | 284 |149.95| 72 |3197|2048 | 394

(1024X1024) | Beowulf 245 | 249 | 128.22 | 66.27 | 34.98 | 25.68 | 21.22

Table 7.2: Execution time (in seconds) for the sequential and parallel versions of three
benchmarks on the MANNA, [BM-SP2, and Beowulf platforms.

the MANNA or the Beowulf. The dynamic computation in this application is handled
very well by the high speed processors of the Beowulf when compared to the MANNA.
This can be observed in the low sequential execution time for the Beowulf, in contrast to
MANNA.

The matrix multiplication application represents the regular class of problems, where
the computation time can amortize the minimal muiti-threading overheads. This is visible
in the near unity USE factors for the SP-2 and the Beowulf platforms. On the other hand,
with the MANNA platform, the extremely regular computation requiring lots of memory
accesses fails to hide or overlap with the multi-threading overheads on the slow CPU. This
application relies a lot on equal distribution of the workload by the load balancer. Here,
the His balancer (in the SP-2 and Beowulf) scores very well against the Dual balancer
in the MANNA runtime system. The long token distribution latencies due to the ring
topology, minimal load state information of the Dual balancer fail to exploit the regular
nature of the application and result in unequal load distribution.

The three machines studied in this paper are quite different. The runtime system is
tuned to take advantage of specific features of the MANNA hardware, whereas a portable
runtime system is used in the case of the SP-2 and the Beowulf. The Beowulf cluster is
the most “off-the-shelf”” and most affordable machine; it uses readily available proces-
sors, networks, compilers and operating systems. Although commercially available, the
IBM-SP2 is not as affordable, and thus is only accessible in computer centers. Further, the
runtime system has direct access to the network data structures, which facilitates lower

139

communication overheads when compared to the TCP/IP interface in the Beowulf. Al-
though the MANNA is a very good platform from a computer organization stand-point,
it might have a longer execution time than an SP-2 or Beowulf platform for the same
aumber of processors. On the contrary, the Beowulf is a very affordable and interesting
option for using off-the-shelf technology; however, the performance for irregular applica-
tions is limited by the network speed. The IBM SP-2 performs reasonably well for most
applications, with a very effective network interface.

7.5 Performance Overview

The relatively poor performance for both the EARTH-SP2 and the EARTH-Beowulf for
the paraffins benchmark reflects the difference in speed between the processor and the
network of these machines. For instance, on Table 7.1 we observe that a remote sync
operation on EARTH-SP2 requires 14 times more cycles than on EARTH-MANNA. On
EARTH-Beowulf requires on average 106 more processor cycles to perform a remote
sync operation than EARTH-MANNA.

The dense matrix multiplication algorithm used in this study was designed to test
the EARTH load balancer *. The speedups shown in Figure 2(c) for all three machines
demonstrate that the load balancer effectively distributes the processing load among the
nodes.

Applications belonging to three different programming models- recursive, irregular
and regular classes are studied for their performance on the three different platforms.
While the CPU speed, USE factor and the load balancer adopted are seen to affect perfor-
mance in a major way across all the platforms, the high communication costs associated
with the network interface seemed to have a bigger impact on all communication intensive
applications in the EARTH-Beowulf.

3Because of data locality, a blocking algorithm would deliver better performance.

140

Chapter 8

Related Work

Multithreaded systems are a feasible approach to exploit both regular and irregular paral-
lelism. Today a large collection of multi-threading systems with different threaded mod-
els, and implementation platforms are available. These systems provide support for mul-
tithreading either at hardware level, with custornized functional units, or at the software
level, as emulators written in some high-level language. The later approach is usually
preferred because of its favorable price tag, speed of development, and portability.

Dynamic load balancing is a runtime issue that has attracted a lot of attention in par-
atlel and distributed computing. Load balancing algorithms for different applications and
their impact on performance has been well documented in the work done so far. How-
ever, similar studies for multithreaded systems are still in the early stages. It is interest-
ing to study the application of the significant knowledge gained from load balancing in
distributed computing systems to multithreaded systems, especially those implementing
fine-grain threads. Here, the goals and constraints for load balancing are different from
those of distributed computing. The emphasis is more on minimal load balancer over-
heads rather than on intelligent but complicated load balancer policies. The grain size in
fine-grain systems makes it imperative to strike a balance between load balancing benefits
and load balancer overheads.

In this chapter we review some of the multithreaded systems focusing on their
threaded models and load balancing support for irregular, data-parallel and recursive ap-
plications. Most of the muitithreading systems [91] that we reviewied here are software
emulations based on off-the-shelf hardware and compiler technologies. Later in the chap-
ter we study the current and past work done in dynamic load balancing.

141

8.1 Threading Models

Multi-threading systems might be characterized by their threading model. Threads can be
designed according to the cooperative multithreading model, where threads voluntarily
release the CPU, or the preemptive model where threads can utilize the CPU only as long
as certain conditions specified by the scheduler are valid. Cooperative threads can be
non-blocking or blocking. In a non-blocking system, threads must run until completion.
Under a blocking threading model a thread can block when an operation with long or
unpredictable latency is encountered in the application. In this case the thread relinquishes
the CPU, the machine state is saved for later restoration, and another thread is scheduled
for execution. When the long latency operation is completed and all dependences are
met, the blocked thread is rescheduled for execution. With this case, threads are blocking,
and non-preemptive {41]. In a preemptive threading model, the scheduler policy which
determines the running time of a thread may be based on: thread priority, time-slices,
synchronization or /O dependences, or a combination of any of these. In a preemptive
threading system, threads are always blocking, and threads enter the blocked state either
due to an operation in the program or due to a scheduling decision.

In a non-blocking and non-preemptive thread model, operations with long or unpre-
dictable latencies must be executed in a split-phase fashion. The first phase of the opera-
tion, also referred to as the issuing of the operation is performed in one thread, while the
second phase, sometimes referred to as the consumption of the result of the operation is
performed in another thread. When such a thread model is chosen, a mechanism must be
provided to enable the issuing thread to specify which one is the consuming thread. There
is no need to preserve machine state during context-switch time.

Neither cooperative blocking thread model nor a preemptive threading model are very
attractive for fine-grain multi-threading architectures because the removal of the context
of a thread from the processing unit requires that the contents of the registers and the
stack must be saved in a temporary user-area before context-switching, and these must
be reloaded again when the suspended threads are enabled at a latter time. In addition,
this model might be unyielding for the implementation of machine-independent multi-
threaded platforms. Also dynamic and irregular applications might cause excessive waste
of cycles when mapped to a blocking thread model.

142

8.2 Software Multithreaded Systems

In the classical strict data-flow model of computation, an instruction is enabled for exe-
cution when all its operands are available [66, 85, 63, 65, 68, 47, 155, 70, 77, 127, 130,
86, 123, 125, 12, 97, 133, 132, 124, 15, 17, 45, 57, 150, 140]). To enforce the enabling
condition, the instructions that produce such operands must be able to send a synchro-
nization signal to all the instructions that will consume the recently produced result. This
model proved unyielding for the implementation of machines based on current standard
off-the-shelf hardware and compiler technology. However many research groups have
successfully implemented a model of computation that is a direct evolution of the classi-
cal data-flow model: fine grain multi-threading. In the later, the unit of computation is no
longer an instruction, but a code-block formed by many instructions. A code-block when
scheduled for execution, runs until completion without preemption or blocking due to un-
predictable latencies. An instantiation of the code-block running on a processing node is
called a thread, thus the name muiti-threading for these systems. Threads, and not indi-
vidual instructions, are enabled by synchronization signals. The central idea behind many
multithreaded models [7, 11, 19, 27, 43, 46, 113, 114, 157, 96, 167] is to allow the execu-
tion of these threads (code-blocks) to overlap with communication and synchronization
latencies.

Around the same time that architectures derived from the data-flow model were pro-
posed, the term thread started to be used to refer to multiple contexts of computation
in operating systems. These threads represent different lines of control that are ac-
tive at the same time within an OS process. We refer to such threads as OS-threads.
Well known OS-thread systems include POSIX Threads, Solaris Threads, OS/2 and NT
Threads. OS-threads share all the resources of a process such as memory space, files,
and device drivers. However, each thread has its own set of registers, and its own stack,
which are either stored in heap memory (as in POSIX or Solaris threads) or in kernel
space (as in NT threads). Context-switching between these threads is far easier than that
between processes, as there is no need to save and restore memory pointers and other
process related resources. Only the contents of the thread specific stack and register set
need to be swapped at context-switch time. Programming applications at the level of
these threads, rather than at the process level is advantageous because of the high-speed
context-switching among threads.

There is a major historical difference between the fine grain threads discussed earlier

143

and the OS-threads. Fine grain threads are generated from code-blocks that grow upwards
from the data-flow single instruction. A fine grain thread is the largest unit of code that
can run without incurring any long latencies due to dependence on other pieces of code
or on data stored remotely. OS-threads grow downward from the process abstraction in
operating system. An OS-thread is the smallest segment of code that can share a set
of resources with the other threads of the same process. Typically OS-threads exploit
parallelism at a coarser grain than fine grain threads, and thus must execute a higher
number of instructions between thread switchings.

In the multi-threading systems that we discuss here, each processing unit issues in-
structions from a single thread at any time !. An alternative multi-threading system is
called simultaneous multi-threading (SMT). In an SMT system a single processor is ca-
pable of issuing instructions from multiple threads simultaneously [52]. Machines with
such an organization use multiple threads of computation to hide the latency incurred
due to the fetching of data from the iocal memory. An example of the later is the Tera
machine [11].

Both shared and distributed memory based platforms are considered in this study.
These platforms are implemented with off the shelf computers and use threads of com-
putation to hide latencies associated with either the fetching of data from remote regions
of the memory, or synchronizing among other threads. These platforms do not use multi-
threading to hide the latency caused by a cache miss, i.e., as long as the memory address
referenced is in the memory hierarchy of the local processing node, the reference is re-
garded as a local access.

Section 8.2.1 classifies existing software multithreaded systems on the basis of their
implementation strategy. In section 8.3 we present an discussion of EARTH, Cilk, and
TAM, three multi-threading systems with extensive effort on language support. In sec-
tion 8.4 we review many multi-threading systems whose implementation is based on func-
tion libraries and that rety on OS-threads.

8.2.1 Implementations of Multithreaded Systems

All the multithreaded systems considered here are implemented in software, and are based
on off-the-shelf hardware and compiler technology. These systems can be broadly divided
in two classes.

'When these systems are implemented on top of super-scalar/super-pipelined processors multiple in-
structions belonging to the same thread can be issued at one time.

144

. Language-Based Systems: These systems often offer a language with multi-threaded
constructs, and a source-to-source translator to convert this language to a stan-
dard and broadly supported language, such as C. Threaded program execution is
based on the support of a custom runtime system. The runtime system imple-
ments an interface with the hardware and the system level software in the ma-
chine and provides a standard interface for portable implementations of the multi-
threading program environment. The language offers high amount of expressive-
ness and flexibility ins designing multithreaded programs. Another advantage of
these systems is that threads are usually non-blocking and execute in user space.
Thus overheads associated with thread switching are reduced, resulting in very
light-weight threads. These systems can be implemented efficiently in both shared
and distributed memory platforms. Examples of systems in this class include
EARTH [84, [11, 82, 150, 92, 74], Cilk [60], TAM {43], and C+ [29].

Java is a programming language [80] with support for user-defined threads. Java
programs are translated into byte-codes, which is the instruction set for an abstract
computer - the Java Virtual Machine. Currently, the JVM is implemented in soft-
ware, and provides the runtime environment for the execution of Java programs.
Java threads are blocking in nature. Early versions of the Java Virtual machine
were designed to run on single processor nodes. However, with the current popu-
larity of SMP systems, the Virtual machine for Java 1.2 maps the Java Threads API
onto threads library supported by the underlying operating system.

Library-Based Systems: These systems provide a library of multi-threaded primitives
to manage user level threads on top of OS threads. In this approach the management
of threads requires a few system calls, which is costly in terms of execution cycles.
Most of the thread library packages that we found in the literature are designed
for shared memory or distributed shared memory systems. One exception is the
Chant library [114] that extends the POSIX standard for light-weight threads with
functionality for distributed memory environments. Examples of systems based on
library of primitives include Nano-threads [19], Ariadne [113], Opus [I 4], Struc-
ture Thread Library [157], and Active Threads [167].

The muitithreaded program is written in an existing high-level language such as C,
‘ along with some keywords that provide multithreaded functionality. The keywords

145

. represent function names, which are defined in the multithreaded library. The func-
tion names are declared with their interfaces in the header files that are included in
the multithreaded programs. The application is compiled to object code, and linked
with the multithreaded library.

The basic differences in thread modeling between multithreaded languages, and mul-
tithreaded libraries® are as follows:

o Threads in multithreaded languages are designed bottom-up - from a few in-
structions, to small functions. The idea here is to clearly overlap communica-
tion/synchronization latencies with computation. Threads with multithreaded li-
braries are designed with the intention to reduce switching overheads between pro-
cesses, by mapping parallel segments of the application into different threads. The
incentive and emphasis here is more in reducing the /O and process switching over-
heads, and increasing throughput and processor utilization. To summarize, while
threads with languages can grow from a few instructions upwards, threads from
library implementations grow downwards from the whole program down to a few
routines. Language-based threads originate from the data-flow paradigm, whereas
library-based threads offer performance improvements over multitasking processes.

¢ Threads designed with multithreaded languages are associated or synonymous with
the application code, or the associated problem that multithreading is expected to
solve. i.e. there is always a "code segment (+ some data)” associated with a thread.
But this definition of thread does not hold for library implementations {104, 23].
Here, a thread is just a vehicle for implementing concurrency, more like a virtual
processor. It is not associated with any code or data. It can run any function, any
part of the user code. The thread library schedules parallel segments of the code
onto a thread.

o Library based threads are good for coarse-grain parallelism. However, their rela-
tively high overheads make them unsuitable for fine-grain multithreading. On the
other hand, language based threads are a natural fit for fine-grain parallelism, as
their small thread sizes allow better exploitation of parallelism in the application.

Though Java offers multithreaded constructs in its language, its threads are modeled on the basis of

' library threads.

146

e Library based threads are most suited for SMP processing, rather than distributed
memory. Its very difficult (almost impossible) to get the same performance as lan-
guage based threads in a distributed memory environment.

e Language threads provide the flexibility, and expressiveness to design multi-
threaded applications. Thread design with libraries, on the other hand, is influenced
more by system considerations than application semantics.

Some implementation related differences between language library based threads are
as follows:

e Library based threads are usually preemptive, and therefore have to be associated
with some data structure in user space to hold their book-keeping data, just as pro-
cesses need to do in kemnel space. This data usually consists of the thread stack,
stack pointer, registers, program counter, and some thread specific data like thread
id, thread scheduling priority, etc. Therefore the number of active threads at any
time is given by the ratio of heap memory size, and the minimum stack size re-
quired for each thread. Where the library is implemented in kemel space, even
fewer threads can be supported simultaneously. Besides imposing constraints on
the amount of parallelism that can be exploited, saving system state also makes
context-switching an expensive process.

e A compiler is required for translating a multithreaded language into a general pur-

pose programming language like C. In contrast, multithreaded libraries need only
to be linked to the application program.

e As the language threads are independent of the OS platform, they can run (after
recompilation) on any platform, without any changes in the code that implements
multithreaded functionality. On the other hand, porting library threads between
different platforms depends on the compatibility between the respective OS thread
interfaces.

¢ Collection of runtime statistics, and debugging multithreaded applications require
more program involvement with library threads.

147

8.3 Language-Based Systems

In this section we present four fine-grain multi-threading systems - EARTH, Cilk,
Threaded Abstract Machine (TAM) and Concert. Each of these systems supports non-
blocking, non-preemptive threads. An exception in this category of muitithreaded sys-
tems is the Java programming language. Java threads execute in user space and execution
of Java programs requires a source to source translator and a runtime system just as in
the other systems described here. One major point of difference though is the blocking
nature of Java threads. Java threads are very useful in improving interactiveness, through-
put, better resource utilization and distributed computing. However, Java threads are not
very suitable for high performance parallel applications, especially fine-grain parallelism.
First we mention our own home-grown EARTH system. The development of EARTH
started at the McGill University in Montreal, Canada, and continues at the University of
Delaware, USA. The original inspiration for EARTH has been derived from the McGill
Data-flow Machine [66]. The research around EARTH has spawned over many fields
including the development of pre-processors, runtime systems, language development,
application studies, source-to-source compilers, and dynamic load balancers. Recently
an evolutionary path for the EARTH system was envisioned chartering the progressive
development of further customized platforms [150]. The EARTH system has been imple-
mented on the MANNA machine, IBM SP-2, Beowulf and on a SUN SMP cluster.

8.3.1 The Cilk Multi-threaded Language

Cilk is an algorithmic multi-threaded language currently designed for symmetric multi-
processors (SMP’s). Central to Cilk’s development is the scheduling of multi-threaded
computations using a work-stealing mechanism®. The Cilk computation model and its
implementation are described in [27]. Earlier releases of Cilk implement the memory
model called “dag consistency” [28, 26]. Cilk is a succinct extension to C and has the
*“C elision property”: when all the Cilk constructs are removed from a Cilk code, what
remains is a legal C code. The most recent release of Cilk is described in [60]. The Cilk
group is well known for their implementation of world-class chess programs on the Cilk
platform. A unique feature of Cilk is the development of a novel debugging tool, called
“Nondeterminator”, that finds data races in the execution of programs [40].

The Cilk multi-threaded language processes user-level fine-grain, non-blocking

3Cilk threads are not mapped onto OS threads. Therefore dynamic load balancing is required.

148

threads in a shared memory environment. The Cilk compiler and runtime system jointly
play an active role in dynamic load balancing®. The Cilk compiler generates two ver-
sions of target C code for each Cilk procedure - a fast clone and a slow clone. The fast
clones are meant for local execution of a procedure, and the slow clones are used as units
for dynamic load balancing. The Cilk runtime system [27] employs a randomizing, work-
stealing scheduler and operates on a double-ended queue that is similar to the token queue
in the EARTH runtime system [84]. Such queuing structure was developed earlier in the
ADAM architecture [110]. While there has been theoretical study of the load balancer
performance [24] there has not been much study of the load balancer with respect to over-
heads and alternate policies. A work-stealing, randomizing load balancer still has enough
overheads to discourage load migration, especially in fine-grain multi-threaded systems.
Experimental studies in EARTH have shown that a randomizing hybrid [oad balancer that
uses load state information provides excellent performance with high scalability for irreg-
ular and divide-and-conquer classes of applications, even in the absence of any compiler
support.

The generation of two clones for every Cilk procedure is an application of the work-
first principle [60]. This principle prefers minimizing the scheduling overheads borne by
the work of a computation, and specifically to move overheads out of the work and into
the critical path. Work is the total time needed to execute the computation serially, and
its critical-path length is its execution time on an infinite number of processors. One of
the key assumptions of this principle is that in the common case, the average-parallelism
of a Cilk program exceeds the number of processors in the execution by a sufficient mar-
gin. Average-parallelism is defined as the quotient of the work of the computation on
one node and the time spent executing the critical-path of the computation. While this
may be true for some divide-and-conquer applications, it is not a common case among
applications of all classes. In addition, this assumption limits the scalability of the sys-
tem as average-parallelism cannot dominate with an increase in the number of processors.
Further, it is difficult to maintain good scalable speedup with a work-stealing scheduler,
when compared to a hybrid balancer as in EARTH. Another interesting observation made
in [60] is about the problem size. Modest to big problem sizes are required to main-
tain high amount of parallelism, which are required to provide acceptable performance in
Cilk. It would be interesting to observe Cilk performance on applications with small to
reasonable workloads which represent typical fine-grain parallelism.

*This is unlike EARTH, where dynamic load balancing is a purely runtime system activity.

149

The Cilk threading model is very amenable for the solution of divide-and-conquer
problems, and is most suited for fully-strict computations [27]. While the directed-acyclic
graph formed from a Cilk multi-threaded computation allows communications between
parent and child procedures, it does not support communications between threads be-
longing to different Cilk procedures that are at the same level in the activation graph. In
contrast, the EARTH threaded model enables the implementation of any arbitrary activa-
tion graph through the exchange of synchronization slot addresses.

The first release of Cilk-1 [28] was implemented on distributed memory machines.
The Cilk-5 release was for the SMPs [61] with shared memory. While this version of the
Cilk runtime system is released for state of the art SMP systems (8 nodes) available, it
is still to be seen if there can be as many processors on SMP nodes in the near future to
support massively parallel applications. The SMP version of EARTH maintains shared
memory environment within each node, and makes use of the GLOBAL type qualifier and
the existing inter-node communication layer for remote memory access.

8.3.2 The Threaded Abstract Machine

The Threaded Abstract Machine project [43] at the University of Berkeley, California
presents an execution model in which the compiler controls the synchronization, schedul-
ing and storage management. The role of the compiler in scheduling and management of
threads is emphasized to take advantage of critical processor resources such as register
storage and exploit considerable inter-thread locality. TAM was one of the first muiti-
threaded systems that were built through software emulation with minimal hardware sup-
port. The compiler translates programs written in the functional language /d into an in-
termediate language called TLO, which includes code generated for thread support [135]
in a distributed memory environment. An important feature in TAM is the introduction
of inlets which are specialized message handlers to support inter-frame communications.
These inlets are generated by the compiler, one for every value to be received.

A TAM program is a collection of code-blocks, similar to EARTH programs which
are collections of threaded functions [43]. Each code-block, like a threaded function
in EARTH, consists of several threads. However, a code-block also includes code for
the inlets. Since an activation frame corresponding to a code-block is allocated on a
processor, all the threads belonging to a code-block execute on the same processor. For
this reason, code-blocks are the units of workload rather than individual threads, as is the

150

@

case of threaded functions in EARTH. However the distribution of this workload onto
the processors in the system is decided by the TAM compiler [135], whereas in EARTH
the workload is dynamically distributed at runtime by the load balancer. For instance,
with no support for dynamic load balancing, distributing fine-grain workload statically
for irregular and dynamic applications is not trivial.

A quantum in TAM is the number of threads belonging to a code-block that are en-
abled for execution at any particular instant of time. All the threads in a quantum are
executed consecutively, and values defined and used within a thread can be retained in
processor registers. This is unlike EARTH, where enabled threads belonging to different
threaded functions are placed in a FIFO ready queue, and therefore threads from differ-
ent threaded functions execute on a first-come basis. In EARTH, threads in a threaded
function usually have synchronization dependences between them. Therefore, it is highly
unlikely that there many threads of the same threaded function are enabled at the same
time to take advantage of TAM's register usage technique. Further, the gains from register
usage as in TAM may be insignificant when there is a single or a few enabled threads in
a quantum. Another difference between EARTH and TAM is the dynamic scheduling of
threads. In EARTH, the ready queue (FIFO) and the token queue (DEQUE) are used for
local and remote scheduling of threads, whereas complex entry and exit codes have to be
generated for each quantum by the compiler in TAM.

8.3.3 The lllinois Concert C++ Language

The Concert runtime system [95, 96] proposes close coupling with the compiler and hard-
ware to overcome overheads associated with thread management and communication in a
distributed memory environment, especially when dealing with fine-grain threads for dy-
namic and irregular applications. The hybrid stack-heap execution mechanism overcomes
multi-threading overheads, and the pull-based messaging technique minimizes communi-
cation overheads.

The Concert runtime system provides primitives for communication and thread man-
agement, as well as data-locality and load balancing mechanisms. The runtime system has
the same underlying structure on both distributed memory and cache-coherent loads and
stores against memory. Interaction across address spaces is via software communication
and object-caching mechanisms.

151

The load balancing mechanism in the Concert system is geared to keep all the pro-
cessors busy, balance overheads against locality considerations for irregular applications.
An interesting feature of load balancing here is to allow the language specify a particular
load balancer policy for a set of threads. Consequently, different load balancer policies
may be chosen for a single execution. Thread placement policies include work-stealing,
work-sharing, and work-sharinglocal. The work-stealing is a receiver-initiated policy,
the work-sharing mechanism allows rich nodes to send extra work to randomly selected
nodes, and the work-sharinglocal enhances data reuse by mapping all threads accessing
the same set of objects to the same processor.

8.3.4 The Java Programming Language

The Java programming language [69, 100, 80] is an object-oriented, distributed, inter-
preted, architecture-neutral, muitithreaded, dynamic language. Java programs are com-
piled into byte code, which serves as machine instructions for the Java Virtual Machine,
an abstract machine. The JVM serves as the runtime system and currently is implemented
in software. Java supports threads at the language level with the support of the runtime
system and thread objects. The JVM assumes the responsibility for thread management.

Java threads are conceptually related to processes, but they differ from processes in
that threads are user-level entities and many threads reside inside a process [23, 104].
While Java threads can be considered to be [imited in features when compared to other
library based threaded systems, they are preferable due to their simplicity, syntactical ex-
pressiveness in building multithreaded programs and easy to use synchronization mecha-
nisms. One major advantage of Java threads over the library based threads is in the locking
mechanism. Java makes the locking error-free by using a simplistic locking mechanism
that is controlled by the JVM. Once the programmer specifies the protected sections of
the code, the runtime system manages the locking of the designated areas. The Java locks
are built on monitors and condition variable concepts.

The scheduling scheme for Java threads is a preemptive, priority-based and non-
timeslicing algorithm that allows highest priority threads to run as long as they need
to [23, 69, 103, 100, 126]. Depending on the platform, the scheduler can be time-slicing
as well. The algorithm works well in user mode and makes no system calls.

The early versions of the JVM ran on single processor nodes. This gives the feel of

152

concurrent execution, as multiple threads compete for CPU time and are executed in over-
lapping fashion across the time space. At any time time only one thread is in execution.
However, this does not support parallelism, as applications run faster when threads are
executed simultaneously on multiple CPUs [79, 23]. The OS does not know of the exis-
tence of application threads, rather it sees the whole task in the form of a single process.
It is possible to start multiple instances of the JVM on different nodes in a NOW, and
communicate through message-passing. However, this is very difficult to implement and
unsuitable for parallel applications not only from the efficiency point of view, but also
with respect to thread modeling, and system implementation issues such as inter-node
communication, thread synchronization and dynamic load balancing. This kind of paral-
lelism is possible in EARTH because of global pointers and thread synchronization slots
which are supported by active messages in the communication layer. Similarly parallelism
in distributed memory is achieved in TPVM [58] by running threads within cooperating
processes on different nodes, which communicate through message-passing. The HotSpot
JVM [90] for the Java 2 platform now is multithreaded and takes advantage of the host
operating system’s thread model. Fully preemptive Java programming language threads
are supported using the host OS thread scheduling mechanism. A major advantage of
using OS threads is the built-in multiprocessing support in SMP systems and parallel ex-
ecution of Java programs. Another advantage of using the OS threads is is that there is no
more need for dynamic load balancing.

Multiple threads can be supported by the JVM at the same time [105]. Each JVM
thread has its own pc (program counter). At any point each JVM thread is executing the
code of a single method. If that method is not native, the pc register contains the address
of the JVM instruction being executed. The value of the pc register is undefined, if the
current method being executed is native. The local variables, partial results of a Java
method are stored in a JVM frame for that method. A new frame is created each time a
Java method is invoked and destroyed after the method terminates. Along with its own set
of local variables, each frame has an operand stack®. At any given point of time, only one
frame is active for a given thread of control. Each JVM thread has a private Java stack,
created at the same time as the thread. A Java stack stores the JVM frames.

It is interesting to examine the JVM support for blocking threads in Java. When it is
time to restore for execution a previously blocked thread after it has satisfied its synchro-
nization requirements, the frame for the thread is made the current frame, and the stored

5The JVM is a stack based machine.

153

value of the pc register is used to restart execution inside the code for a method. This is
possible because the pc register has the address of the next byte code to be executed. In
EARTH, the non-preemptive, non-blocking threads are mapped into C functions, and it is
not possible to maintain and access the program counter register in user space. Here, the
non-blocking nature of the threads helps in avoiding this situation. Even in the JVM, the
pc register is of no use when executing native code.

8.4 Library-Based Systems

In this section we present multi-threaded systems that are implemented on top of operating
system based threads. Although such systems might be more portable because they can
run in any machine that supports the underlying operating system, they pay a high price
on the cost of system calls to implement thread switching.

8.4.1 Distributed Filaments

The distributed Filaments system [59] offer multi-threaded primitives to implement fine-
grain threads in a distributed shared memory model. The Filaments runtime system im-
plements distributed shared memory with no hardware support over distributed memory
systems. The threads are blocking in nature, and favor irregular, data-parallel and re-
cursive applications. There are multiple server threads per-node, and each server thread
executes a set of sharing context filaments (called a pool). In the case of irregular and
data-parallel threads, the programmer/compiler has to assign context-sharing filaments
to poois on different nodes so as to maintain locality and equal task distribution. How-
ever, a simple receiver-initiated scheduler distributes workload in the case of recursive
threads. This balancer queries other nodes in a round-robin fashion to steal work. A fil-
ament blocks when a long latency operation is encountered. Though there is a provision
for the programmer/compiler to enable/disable load balancing in Filaments, it is difficult
to estimate runtime load imbalances at compile-time, especiaily in the case of fine-grain
applications.

8.4.2 The Opus Language

The Opus language [114] provides Fortran language extensions to support task and data
parallelism. Independent tasks representing coarse-grain parallelism, communicate and

154

synchronize through monitor-like structures called shared-data-abstractions. The Opus
runtime system relies on a light-weight threads package called Chant, to support multi-
threading functionality in a distributed memory environment. The Chant threads package
extends the Pthreads interface with primitives for remote communications, remote thread
operations by using existing communication library (MPI standard). Workload has to be
mapped onto different nodes by the programmer/compiler keeping in mind locality of the
tasks as there is no runtime dynamic load balancing support.

843 TPVM

TPVM is a threads based interface to the PVM distributed computing model [58]. TPVM
is built as a subsystem of PVM [144] in order to address some disadvantages of a process
based model. The design goals of TPVM are minimum task initiation and scheduling
costs, overlapping computation and communication on a single processor, smaller gran-
ularity, and supporting event or data driven, active message based computation [145].
While the Chant threads package extends the Pthreads interface with message-passing
primitives, TPVM takes the opposite direction - it adds a threads subsystem to an already
existing process based, message-passing computation model.

A thread in TPVM is a light-weight process as defined by the underlying threads
subsystem - essentially a subroutine/procedure (or a code segment including nested pro-
cedure invocations, identified by one entry point). The first version of TPVM is based
on GNU/REX threads package [42]. Units of computation are threads rather than pro-
cesses. Processes only serve as shells around constituent threads. An important feature of
TPVM threads is their coarse-grain data-flow model. Threads are activated for execution
only after all their dependencies have been satisfied. This means that the threads are non-
blocking in nature. The purpose of this feature is to delay the binding of work units to
computational resources until they are fired for execution. This reduces workload alloca-
tion and scheduling costs in NOW, where resources are not dedicated. Another advantage
is that it removes complexities in the underlying message-passing model by relieving the
programmer of the burden of task creation and synchronization. In order to fire waiting
threads for execution, trigger messages have to be sent, and these trigger messages are
based on the active message model [163]. Remote memory allows asynchronous read
and write of a thread’s address space by another, even when they are part of different
processes, and reside on different machines. The implementation of TPVM threads over

155

the REX threads package is very close to that of EARTH. The TPVM runtime system
includes a master thread and the TPVM library system® for each process, and a thread
server module. A version of the TPVM threads also runs on the Solaris threads library,
where unlike the description here , the threads run in a preemptive environment.

The TPVM threads are very similar to EARTH threads. The EARTH threaded
model is two-layered with threaded functions and non-preemptive threads at a finer level.
Threads in EARTH are associated with sync slots, whereas TPVM threads are identified
by their thread id’s. Load distribution in TPVM is done at compile time, and there is
no reference to dynamic load balancing TPVM threads, or how the dynamic load bal-
ancing primitives in PVM are supported at the threads level. Experimental studies with
TPVM have shown that TPVM is not suited for regular SPMD style of applications,
whereas EARTH with its extensive load balancing support has been successfully applied
for different models of computation. PVM supports utilization of processor cycles in a
heterogeneous workstations, and while this is a very positive feature, one casualty is the
accuracy of execution times over CPUs of different speeds and configurations. this accu-
racy is very important for high performance parallel applications, and also for effective
load distribution. Another factor is a reliance on a TCP/IP stack for network performance.
The communication overheads might be significant for fine-grain parallelism, unless the
thread model allows aggressive exploitation of parallelism in the application. Enough
amount of work has to be represented in the form of abundant quantity of fine-grain
threads. TPVM currently limits the number of threads to 256 at any given time for each
process, though this restriction is to be lifted soon.

8.4.4 Nano-Threads

The Nano-Threads [19] are user-level threads built on top of kemel threads. The
Nano-threads library provides primitives to support multi-threading efficiently in a
multi-user/multiprocessor environment with shared memory. A compiler takes as input
C/Fortran programs with Nano-Threads keywords, and generates target C/Fortran code
(Nano-Threads) along with code to manage an intermediate representation of varying
levels of parallelism in the application, cailed the Hierarchical Task Graph. The asso-
ciated code chooses the appropriate granularity for execution at runtime, depending on
the availability of resources. Each Nano-Thread is associated with a per-thread-counter

STPVM library primitives depend on PVM library for services such as message-passing.

156

and a nano-thread descriptor. Nano-Threads block so that child threads can access local
variables from the address space of the parent nano-thread. All enabled Nano-threads are
placed in globally accessible and manageable ready queue called GQ (FIFO). To preserve
locality, each node has its own local queue (FIFO) that is accessible from all nodes. The
objective of load balancing in the Nano-Threads system is to distribute the load equally
among all the nodes. This is a different goal from the one adopted on EARTH, where
the aim is to keep all processors busy, thereby minimizing balancer overheads in an ex-
tremely fine-grain environment. Another potential balancing overhead may be the con-
tention problems for controlling the global queue which may degrade scalability of the
system.

8.4.5 Active Threads

The Active threads library [167] define an interface for supporting fine-grain, non-
preemptive, blocking threads over traditional kernel threads. They can be used to
hand code applications, or as virtual machine target for compilers of parallel languages.
Threads sharing context are grouped into bundles. Each bundle has its own scheduler
and the scheduler may be chosen by the application from a set of schedulers distributed
with the active threads package. The scheduler maps active threads onto processor thread
dispatch buffers for each processor. Though the fast threading primitives ensure low
overheads for thread operations, the multi-threading overheads for thread initialization,
context-switching, thread stack management and synchronization are quite high for irreg-
ular applications employing fine-grain threads. In contrast, context-switching in EARTH
is as cheap as a C function call, and there is no need for thread stack management.

8.4.6 StackThreads

StackThreads [147] provide low-level support for fine-grain software multithreaded envi-
ronment. on stock microprocessors. Thread management is performed by calling Stack-
Threads primitives, which are provided as a library, and can be used as compilation tar-
get. Supporting high-level abstractions on top of these base primitives is left for language
designers and implementers. Unlike other multithreading schemes, it does not assume
a customized frame format designed for a particular programming language or a set of

multithreading primitives. Instead, it operates on standard C stack frames and calling
conventions.

157

The threading model is blocking in nature. When a new thread is forked, the procedure
comprising that thread is called as a sequential function call. When the new thread blocks,
the caller is resumed by moving the new thread’s frame from the stack to the heap and
unwinding the stack. When the blocked thread is rescheduled, the context is restored on
top of the stack and control transfers to the point where the thread biocked earlier.

The multithreading mechanism here, does not provide for thread migration. Further,
this scheme does not address location-transparent access to data.

8.4.7 Structured Threads

The work on structured threads [157] at Caltech provides multi-threading support for high
performance parallel applications on top of kernel threads in Windows NT. Applications
can be written at two levels: as a pragma based notation in Multithreaded C, or as library
calls to the Sthreads library at a lower level. The Sthreads library is built as a very thin
layer on top of the Windows NT thread interface. Multithreaded C is implemented as a
source-to-source preprocessor that directly transforms annotated blocks and for loops
into equivalent calls to the Sthreads library. The Sthreads library and Mulitithreaded C
preprocessor are integrated with Microsoft Developer Studio Visual C++. This work is
aimed at providing a structured, light-weight, and less complicated threading environment
on top of OS threads in SMP systems.

Application threads are mapped onto the kernel threads. Thread scheduling depends
both on the Sthreads library and the kernel threads scheduler. Therefore there is no explicit
dynamic load balancer. However, in order to adapt dynamically to varying load conditions
and to offset the thread management and synchronization overheads, the thread model al-
lows dynamic creation of large numbers of lightweight threads that can take advantage of
whatever processor resources become available during execution. This model is suitable
only for SMP systems, and therefore scalability is limited by the number of processors
in a node, and the maximum number of threads that can be profitably supported on each
node.

8.4.8 DSM-Threads

Distributed Shared Memory threads [121] support distributed threads on top of POSIX
Threads (Pthreads) via distributed shared memory (DSM). The goal is to support mi-
gration of applications from a concurrent programming model with shared memory

158

(Pthreads) to a distributed model with minimal changes of the application code. The
reasons for this migration are the significant computational capabilities of network of
workstations, their cost-effectiveness, and the limited scalability of SMP clusters (typ-
ically no more than 40 CPUs) due to the system bus bottleneck. A programmer may
continue to use the shared-memory algorithms and exploit the processing power of dis-
tributed systems without dealing with the more complex models of distributed algorithms.
The DSM runtime system is itself implemented as a multithreaded system over Pthreads
on each node and copes without compiler or operating system modifications.

Distributed virtual shared memory is used to address the absence of global state in
a distributed system. Address references can be distinguished between local memory
accesses and DSM accesses, thus creating a NUMA architecture.

The threads interface allows the programmer to specify a destination node during
thread creation. If no destination is specified, the DSM system will select such a node
using a history of load information and CPU throughput. For repeated executions of an
application, trace data and thread group information may be used to distribute threads
upon creation.

8.4.9 Ariadne

Ariadne [113] is a user-space threads library that is modeled for process-oriented parallel
and distributed simulations in multi-user environments. Ariadne threads are implemented
in shared and distributed memory models. Each thread is assigned an identifier that is
unique to its host process. Along with the process id, this forms a unique combina-
tion to identify a thread among a system of processes. non-blocked thread gets executed
first. The built-in scheduler allocates portions of a host process’s time-slice to its resident
threads. The internal scheduling policy is based on priority queues, i.e. a highest priority
non-blocked thread gets executed first. Within a priority class scheduling is FIFO. An
executing thread continues to run until it terminates, completes a time-slice, or suspends
execution. In addition, Ariadne also provides for customizable schedulers. This library is
more suited for coarse-grain parallelism.

Ariadne’s support for concurrent execution of threads on shared-memory muitiproces-
sors precludes the OS kemnel involvement due to portability requirements. The multipro-
cessing power is exploited by multiplexing threads on distinct processes, generally using
as many processes as available processors. The threads interact via Ariadne primitives

159

which in turn operate on shared memory.

Ariadne threads form the basic unit of computation in the distributed model. Threads
can move between all processes in the distributed environment. Typically, threads move
to access global objects at other Ariadne processes - as computations that chase data. For
thread migration, Ariadne depends on the use of an object-locator: a migrating thread
needs to know which host it must migrate in order to access required data. The commu-
nication layer in Ariadne is based on any arbitrary communications subsystem, such as
PVM 3.3.4 and Conch.

8.4.10 Athapascan

Athapascan-1 [36] is a data-flow language designed for parallel computation. It is imple-
mented as a C++ library for multithreaded parallel programming. Explicit parallelism is
expressed through asynchronous remote procedure calls, denoted as tasks, that communi-
cate and are synchronized through shared memory. Application execution is data-driven:
the precedences between the tasks, the needed communications or the data copies are
ensured by the runtime system. The scheduling of the created tasks is enforced by cus-
tomizable schedulers that are fully separated from the application.

8.5 Dynamic Load Balancing

Load balancing algorithms have been an active topic of research in the distributed com-
puting field [168, 50, 51, 136, 73, 9, 129, 48, 39, 139, 89, 169]. Various load balancing
algorithms, as well as comparative studies of their performance have been published. Of-
ten the applications considered are either too regular in nature with high coarseness, or
the balancers studied are relevant only for particular architectures and network topolo-
gies on which the studies were conducted. Another important concern is the definition
of fine-grain parallelism. It is well known that in fine-grain applications the CPU time
spent on communication overheads dominates the computation time [142]. In the process
based model of distributed computing, this definition implies a high number of processes
with small grain sizes. While this model supports the exploitation of parallelism at a finer
level, the grain size is still relatively higher than the grain size in typical fine-grain multi-
threaded applications (order of us). Fine-grain threads allow parallelism at instruction

160

level [84, 60, 43] and are usually non-preemptive and non-blocking’. Studies on load
balancing in distributed computing provide useful information, however, they cannot be
directly applied to muiti-threaded systems where the equation between quality of bal-
ancing decisions, balancer overheads, load imbalances, and application grain size is very
delicate. This is even more important for irregular and dynamic applications where the
computation and communication patterns cannot be identified at compile time.

While there has been a good understanding of load balancers behavior in distributed
systems [16, 122, 21, 118, 22], the study of dynamic load balancers for fine-grain multi-
threaded systems is still in the early stages. Existing studies are often purely theoretical.
based on queuing models or simulations. On the other hand, the results in EARTH are
based on an actual multithreaded emulator built on top of off-the-shelf processors, with
real applications. In this section, we review work done in dynamic load balancers for
distributed computing systems, and compare the policies with those in EARTH wherever
applicable. The load balancing policies studied here, distribute tasks belonging to a single
application among the nodes participating in the execution. Further, we do not consider
static load balancing or thread partitioning/placing policies.

Adaptive load sharing for distributed systems is studied with respect to the relative
advantages of load sharing policies with increasing levels of sophistication and global
state information is documented in {50]. Three sender-initiated load sharing policies are
modeled: random, threshold, and shortest. The random policy selects a node at random
for load migration. The threshold policy polls the load state of other nodes until a node is
found whose load is less than a threshold. The shortest algorithm probes a set of randomly
chosen nodes for their load status, and chooses the node with the shortest queue length.
Only non-executing tasks are migrated. The authors show by analytical modeling that the
random policy improves performance against no load balancing, and the threshold pol-
icy performs very well with its limited system state information, and the shortest policy
performs best with its global load information, though not significantly better than the
threshold policy. We have implemented two load balancers in the EARTH runtime sys-
tem (Rand-Rcv and Rand) that are similar to the random and shortest balancer policies.
The Rand balancer works in a hybrid® mode, and uses global foad state information. The
Rand-Rcv balancer performs poorly in relative comparison with other balancers, though

TWe define fine-grain threads as threads with very small grain size, independently synchronized units of
computation, and non-blocking in nature.
8Also referred to as symmetric policy.

161

it does well against a no balancer situation. In contrast, the Rand balancer is the best bal-
ancer for different classes of applications. The reasons are obvious. Firstly, the grain size
of threads in EARTH is very small compared to processes considered in [50]. Therefore,
the load balancer has to be very lean, and should make intelligent decisions when using
network-based communications or randomizing algorithms. Secondly, the balancers in
[50] work only in sender-initiating mode, unlike the hybrid nature of the Rand balancer.
Finally, the execution model of the EARTH system is different from that assumed here.
For instance, one of the assumptions made on the application model is that, all nodes
are subjected to the same average arrival rate of tasks, which are of a single type. This
assumption is not valid for EARTH, where the task arrival rate, communication and com-
putation patterns cannot be predicted. Another factor in the assumption in the analytical
model that the cost of probing a node is negligible. This constitutes a significant cost
especially when compared to typical fine-grain threads in EARTH, as it involves packing
a message and communicating over the network.

Eager er al. [51] compared two policies for adaptive load sharing: receiver-initiated
and sender-initiated. In both cases the victim node is chosen at random. If that choice
turns out to be wrong, the probing process is simply repeated until a limit is reached.
Based on a queuing model and simulation results, they conclude that the sender-initiated
policy is preferable since, in their model, the receiver-initiated policy would require the
migration of a running task. This assumnption is not applicable to the EARTH system,
where tokens? rather than executing tasks are allowed to migrate.

The diffusive method [166, 81] is a well explored load balancing mechanism in the
distributed computing field. Each node in the network calculates how much of its work-
load needs to be transferred based on its local load information and a diffusion equation.
Then, the system exchanges work units accordingly between the nodes. After several it-
erations, the system load will become balanced. One of the problems with this approach
is that it usually needs a lock-step mechanism to synchronize the nodes and requires that
the system load doesn’t change much during the diffusion phase. It also assumes that it
is possible to migrate work units. However, the EARTH load balancer is only allowed
to decide where new tasks should be allocated; i.e. the destination nodes for new tasks.
Generalized dimensional exchange (GDE) [44] and hierarchical balancing (HB) [81] are
other common load balancing methods, which face the same problems in a fine-grain
multi-threaded environment as the diffusive method.

Tokens consist of context-sharing, non-preemptive threads.

162

The trade-off between knowledge - the accuracy of each load balancing decision, and
overhead - the amount of added processing and communication incurred by the balanc-
ing process, is illustrated with five different dynamic load balancing schemes in [168].
The sender (receiver) initiated diffusion strategies are asynchronous schemes which use
near-neighbor information. The hierarchical balancing method organizes the system into
hierarchy of subsystems within which balancing is performed independently. The gradi-
ent model employs a gradient map of the proximities of under-loaded processors in the
system to guide the migration of tasks between overloaded and under-loaded processors.
The dimension exchange method requires a synchronization phase prior to load balanc-
ing and then balances iteratively. All five strategies have been implemented on an Intel
iPSC/2 hypercube. They show that the RID approach performs well, and can most easily
be scaled to support highly parallel systems. Receiver-initiated balancers perform very
well in EARTH, but not as well as hybrid balancers that rely on load state and history
information. The load balancing model in this work is very much different from that
of the EARTH system. Unlike EARTH, load-balancing in [168] tries to balance load
on all the nodes equally. Secondly, their load model assumes a fixed number of tasks
present in the system at initialization time. All tasks are independent and may be exe-
cuted on any processor in any sequence, unlike locality and dependency constraints in
a multithreaded model. Consequently, they do not consider dynamic task creation as in
any multithreaded system. Further, in order to simplify the workload characterization,
each task is estimated to require equal computation time. In contrast it is not possible
to estimate the grain sizes of EARTH tokens. Another important feature concerns the
information policy. All the nodes periodically exchange their load information with other
nodes in their balancing domain. Each balancing domain can extend from the neigh-
boring nodes to all nodes in the system. Understandably, periodic load update messages
result in high overheads, which are difficult to be amortize by fine-grain workloads in
the EARTH system. Instead, more sophisticated load update policies are implemented
such as: piggy-backing every load balancing message with load state information, using
load probes on randomly selected nodes, taking advantage of the sending/receiving paths
for load transfers, and using history information. Information policy in the dynamic load
balancers in EARTH is a demand-driven policy unlike the periodic policy here. It is well
known that demand-driven policies reflect the system state better in the load balancing
decisions unlike periodic policies [136]. Care is taken to consider the aging factor of
available load information.

163

A parabolic load balancing method for problems in computational fluid dynamics is
presented in [73). This paper presents a diffusive load balancing method with emphasis
on scalability to a large number of multicomputers interconnected with mesh topology.
The work here presents a parabolic load balancing method, proves its correctness, conver-
gence and scalability, and simulates applications to generate problems in computational
fluid dynamics. Randomizing algorithms though considered scalable and flexible are not
considered here, because the assumption that disturbances occur frequently and have short
life spans is not valid in CFD applications where disturbances arise occasionally and are
long lasting. The load balancing method here is based on the properties of the parabolic
heat equation, which describes the diffusion of heat energy from hot regions into cold
regions until the entire volume is of the same temperature. This study applies the finite
difference techniques to derive an unconditionally stable discrete form of the heat equa-
tion, and uses a scalable iterative method to invert the resuiting coefficient matrix. The
goal of load balancing here is to ensure that all processors have equal workloads, unlike
the EARTH system where stress is on keeping the processors busy. In this algorithm,
each processor concurrently executes an arithmetic iteration which calculates an expected
workload at each processor. Processors periodically exchange units of work with their
immediate neighbors in order to make their actual workload equal to the expected work-
toad. This method preserves adjacency relationships among elements of a computational
domain, thereby minimizing the communication costs.

An adaptive heat diffusion scheme as well as a task selection mechanism that can
preserve or improve communication locality is presented in [164]. The goal of load bal-
ancing is to find a mapping of tasks to computers that results in each computer having
an approximately equal amount of work. This is in contrast to load balancing strategy in
EARTH, where the aim is to keep all the processors busy. All phases of a typical load
balancing algorithm - load evaluation, profitability determination, work transfer vector
calculation, task selection, and task migration are described. This algorithm is not ap-
plicable to systems like EARTH, where it is not possible to evaluate complex equations
before taking load balancing decisions.

The multi-threaded model is applied for parallel adaptive partial differential equation
solving in [41]. An interesting feature in this work is that the dynamic load balancer
runs as a thread, and competes with the application threads for CPU time. In addition
to application execution, multi-threading here is used as a mechanism for the concurrent
execution of actions required for load balancing - information dessimination, decision

164

making and data migration. Application threads can be in new, ready, running, blocking,
or dead states. At thread creation time, each thread is associated with a counter, similar
to a sync count in Threaded-C. Once all the dependencies for a thread are satisfied, and
the counter reaches zero value, the thread is placed in the ready pool. The co-operative
threading model is adopted here, i.e. threads run to completion or voluntarily yield the
CPU. Thread scheduling is non-preemptive. An advantage of this scheduling strategy is
the reduction of overhead by minimizing the number of context-switches. This threading
model is a perfect example of those systems in which, threads are non-preemptive and
blocking. EARTH supports non-blocking, non-preemptive threads. The goal of load bal-
ancing is to minimize idle times on the nodes, rather than to balance workloads equally
among all the nodes. This approach is similar to that used in EARTH. A significant
deviation in the load model from other systems is the process of h-refinement. In this
process, the mesh is refined in areas where the resolution of the solution is larger than
a given tolerance. After the mesh refinement, each thread can be split into two or more
threads depending on the required load balancing resolution. The load balancing strategy
is receiver-initiated. An analytical model is built and the results are verified with experi-
mental observations to show that it is beneficial to support load balancing as a thread. This
feature is not viable in the EARTH system, because, our load balancing is more demand-
driven, and services recursive, irregular and regular applications of very fine grain sizes.
Therefore, it is important in EARTH that load balancing actions consume minimum CPU
time when compared to fine-grain application threads, and be as unobtrusive as possible.
Furthermore, there is no concept of priority for threads in the EARTH model. Therefore,
we cannot guarantee that the load balancing thread executes only in the absence of any
application threads.

Load distributing algorithms for distributed systems are studied, and their perfor-
mance is compared in [136]. Many issues concemning load distribution are reviewed
here. Some of the key results are: sender-initiated balancers perform well at low to mod-
erate workloads, whereas, the receiver-initiated balancer provides a robust performance at
all workloads especially at high workloads, symmetrically (hybrid) balancers are the best
choice, and complex load information policies do not necessarily resuit in good perfor-
mance. These results are quite intuitive, and are based on a load model which assumes that
receiver-initiated work transfers are preemptive. The tasks are independent, and belong to
a very general class of applications. The only application dependent feature in choosing
a particular balancer is workload. There is no reference to the programming model of the

165

application, grain size, or architectural parameters like topology, polling interval, etc., in
the choice of balancers. Despite the differences in program execution models, the above
results are valid for EARTH, and additional studies have been performed regarding the
balancers performance under different load conditions, as explained in section §.

Balter et al. [71] argue that contrary to previous reports, the performance benefits of
preemptive migration are significantly greater than those of non-preemptive migration,
even when the memory transfer cost is high. A distribution of lifetimes of UNIX pro-
cesses in an academic environment are studied, and this information is used in deriving
a preemptive policy. Performance results based on trace-driven simulations are studied
to compare this preemptive policy with other preemptive and non-preemptive policies.
The migration policy in the load balancing algorithm decides the eligibility of a process
for migration as a function of its current age, migration cost, and the loads at its source
and target hosts. They suggest that it is preferable to migrate older processes because
these processes have a higher probability of living long enough to amortize their migra-
tion cost. In the EARTH system this is automatically taken care of by the token queue,
which facilitates breadth-first expansion of the activation tree across all the nodes. The
reason stated for the better performance of preemptive migration for older processes over
non-preemptive migration is the load imbalance caused due to the unpredictability of job
execution times with the latter. Further, a preemptive policy is able to make a more accu-
rate prediction about the duration of a process (based on its age)'® and, more importantly,
if the prediction is wrong, it can recover by migrating the process later. While evaluating
the migration cost for a process, this model does not evaluate any dependency, locality
constraints, and the resultant remote communications these work transfers may spawn in
the future. The task model is completely different from that of EARTH, and the results in
this paper are not applicable to the EARTH system.

Casavant et al. [35] study three distributed dynamic load balancing algorithms - bi-
directional multi-lateral, bidding, and Bayesian decision or team theory, with emphasis
on the effect of global state information on application performance. They describe sim-
ulation experiments which measured the performance and efficiency of distributed algo-
rithms with respect to their reliance on global knowledge. Their results indicate that, for

19Current load is the best load predictor. As a rule of thumb, the probability that a process with CPU age
of one second uses more than T seconds of total CPU time is 1/T. The age of a process must exceed the
migration cost.

166

the algorithms studied, increasing reliance on dynamically accumulated global informa-
tion at the expense of reducing response to dynamic system perturbations is rarely bene-
ficial. This work includes the effects of both static and dynamic global knowledge. This
results is due to the overhead associated with discrete passing of messages in compari-
son with the extremely simple objective of load balancing. In addition, their simulation
shows that it may be more beneficial to only use information about a small subset of the
system which is known to be accurate, than to try to maintain information describing the
state of the whole system which may be inaccurate to a greater degree. Besides possible
inaccuracy of the collected information, the added time delay in gathering the informa-
tion hinders performance by slowing response. These results are even more important
in the case of very fine-grain multithreaded systems like EARTH, where task grain size
may be as small as 12500 cycles. The balance between the overheads in collecting global
state information, and the intelligence of balancer decisions based on this information,
enables EARTH balancers to scale well for all classes of applications. In contrast to the
information policy in this work, EARTH balancers do not exchange periodic load update
messages. Instead, remote load information is obtained from piggy-backing normal load
balancing messages with load information, history information, and information gleaned
from messages that are routed through a node.

The influence of different workload descriptions on a heuristic load balancing scheme
is studied in [101]. A task scheduler based on the concept of a stochastic learning au-
tomaton [116] on a network OS Unix workstations, is implemented. An artificial, exe-
cutable workload is created, and a number of experiments are conducted to determine the
effect of different workload descriptions. These workload descriptions characterize the
load at one host and determine whether a newly created task is to be executed locally or
remotely. Typical workload descriptors are: number of tasks in the run queue, size of
the free available memory, rate of CPU context switches, rate of system calls, 1-min load
average, and the amount of free CPU time. They conclude that, while all the examined
workload descriptors lowered the mean response time of tasks when compared to the “no
load balancing” case, the best single workload descriptor is the number of tasks in the run
queue. Further, combining two of the best descriptors in making load balancing decisions
did not result in performance improvements. A similar workload descriptor - number of
tokens in the token queue, is employed in the EARTH system.

The Chare [56] system allows users to plug in different load balancing algorithms.

167

The main load balancer used in their study is ACWN (adaptive contracting-within-
neighborhood). It works in a sender-initiated way: when a new chare (similar to tokens
in EARTH) is created, the load balancer determines the least loaded neighbor and sends
the chare to that node. System load is determined either from load information that is
piggy-backed on message packets, or from periodic load status exchanges. Like the other
sender-initiated load balancing algorithms, it diffuses the tokens fast when the system
load is low, but suffers from unnecessary traffic when the system load is high. For larger
grain sizes (10 ms - 1000 ms), chare reportedly achieves good performance.

Most of the load balancing studies in distributed computing are based on queuing
models. Each node in the network is modeled as a queuing center, with ne w tasks arriving
at an average rate A. However, such models do not accurately match the behavior of
multi-threaded architectures, where there is no external arrival of tasks. Rather, a single
computation graph is expanded dynamically and some branches are migrated among the
nodes to balance the load. The creation of tokens as the graph is expanded cannot be
viewed as a random process, as the rate of token generation is linked to the consumption
rate.

Compiler and runtime support for adaptive load balancing in software distributed
shared memory systems is studied in {89]. Load balancing is studied in workstation en-
vironments where the machines might be shared by many users. The compiler is used to
provide information that is used to help the run-time system to distribute the work of the
parallel loops, not only according to the relative power of the processors, but also in such
a way as to minimize communication and page-sharing.

Job scheduling in multiuser environments is of critical importance in large multipro-
cessor systems. The tasks of a parallel job must be co-scheduled in order to avoid in-
efficient communication behavior results. Without CO-scheduling, receivers may not be
ready when senders are and vice-versa. The gang-scheduling algorithm [120] developed
at the Lawrence Livermore Laboratory for the IBM RS/6000 SP system supports time and
space sharing of parallel jobs. This policy guarantees that tasks of the same job execute
simuitaneously.

Coordinated thread scheduling for tightly coupled parallel jobs on workstation clus-
ters running NT, is examined in [32]. This scheduling system coexists with the Win-
dows NT scheduler, and provides coordinated scheduling and can generalize to provide
a wide range of resource abstractions. The approach used here is called "demand-based
coscheduling”.

168

Job scheduling for muitiuser environments in large multiprocessors systems is pro-
vided in [54].

The previous work in the EARTH system [33] laid a groundwork for the study on
dynamic load balancers in this thesis. This thesis can be seen as an extension or logical
follow-up of [33, 34]. The previous results show that a hybrid, history information based
balancer provides the best possible performance for most classes of applications. Further,
the results show that it is impossible to build a single load balancer for all classes of ap-
plications. A set of program, architectural and balancer related parameters like grain size,
application model, polling interval, logical topology, balancer algorithm determine pro-
gram performance. In this thesis, we add few more features to this list like workload, num-
ber of nodes, quality of load state information, message complexity, non-intrusiveness of
the balancer from application execution, ratio of network speed to CPU speed, network
bandwidth, network interface in the runtime system. Further, we show that load state
information performs better than history information, and it is possible to tolerate the
overheads from load information gathering actions, and randomizing functions, and still
achieve scalable, robust performance for fine-grain applications. We base the Rand bal-
ancer on existing theoretical proof for distributed computing models, and show that it does
outperform the best balancers suggested in [33]. We implement a new balancer, Minima
that provides a realistic lower bound for parallel performance and compare it to the Nop
balancer proposed earlier. Finally, we clearly identify appropriate balancers for different
applications and load situations. While reviewing the results in [33], it must be noted
that the CPU speed in that case was 62.5 MHz, whereas our resuits are based on a 120
MHz CPU. This increase in speed decreases the sequential execution time considerably,
making it more challenging to achieve linear speedups.

We presented the distinction between fine grain multi-threading systems that evolved
from the classical data-flow model, and operating system based multi-threading systems
that are a refinement of the concept of a process in operating system. The first exploits
parallelism at a finer grain and has a lower thread switching cost than the later. Both sys-
tems find appropriate areas of applications. We then described several implementations
of multi-threading systems implemented in each category, and referred to the dynamic
load balancing work in these systems. Finally we reviewed the work done in the area of
dynamic load balancing in distributed computing so far.

169

Bibliography

[1] CAPSL tech. memo, Dept. of Elec. and Computer Eng., U. of Delaware, Newark,
Del. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

[2] Tech. rep. mit/Ics/tr-, MIT Lab. for Comp. Sci.

[3] Proc. of the 19th Ann. Intl. Symp. on Computer Architecture, Gold Coast, Australia,
May 1992.

[4] Proc. of the IFIP WG [0.3 Working Conf. on Parallel Architectures and Compila-
tion Techniques, PACT "95, Limassol, Cyprus, Jun. 1995. ACM Press.

[5]1 Proc. of the 1996 Conf. on Parallel Architectures and Compilation Techniques
(PACT ’96), Boston, Mass., Oct. 1996. IEEE Comp. Soc. Press.

[6] Proc. of the ACM SIGPLAN '98 Conf. on Programming Language Design and
Implementation, Montréal, Qué., Jun. 1998.

[7] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz,
John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nuss-
baum, Mike Parkin, and Donald Yeung. The MIT Alewife machine: A large scale
distributed-memory multiprocessor. Tech. Memo MIT/LCS/TM-454, MIT Lab.
for Comp. Sci., 1991.

[8] T. Agerwala, J. L. Martin, I. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir. SP2
System Architecture. In IBM Systems Journal, Reprint Order No. G321 - 5563,
volume 34, 1995.

[9] Rakesh Agrawal and Ahmed K. Ezzat. Location Independent Remote Execution
in NEST. In [EEE Transactions on Software Engineering, volume 13, pages 905—
913, August 1987.

170

(10] Haitham Akkary and Michael A. Driscoll. A dynamic multithreading processor.

In Proc. of the 31st Ann. Intl. Symp. on Microarchitecture, pages 226-236, Dallas,
Tex., Nov.-Dec. 1998.

[11] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. The Tera Computer System. In Proc., 1990 Intl. Conf. on
Supercomputing, Amsterdam, The Netherlands, pages 1-6, Jun. 1990.

[12] Makoto Amamiya. An ultra-multiprocessing architecture for functional languages.
In Gaudiot and Bic [68], chapter 3, pages 95-119. Book contains papers presented
at the First Workshop on Data-Flow Computing, Eilat, Israel, May 1989.

[13] Makoto Amamiya, Tetsuo Kawano, Hiroshi Tomiyasu, and Shigeru Kusakabe. A
practical processor design for multithreading. In Proc. of Frontiers '96: The Sixth
Symp. on the Frontiers of Massively Parallel Computation, pages 23-32, Annapo-
lis, Mary., Oct. 1996.

[14] José Nelson Amaral, Guang R. Gao, Phillip Merkey, Thomas Sterling, Zachary
Ruiz, and Sean Ryan. An HTMT performance prediction case study: Imple-
menting Cannon’s dense matrix multiply algorithm. CAPSL Tech. Memo 26,
Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Feb. 1999. In
ftp:/ftp.capsl.udel.edw/pub/doc/memos.

[15] Boon Seong Ang, Arvind, and Derek Chiou. StarT the Next Generation: Inte-
grating global caches and dataflow architecture. CSG Memo 354, Computation
Structures Group, MIT Lab. for Comp. Sci., Aug. 1994.

[16] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread Scheduling for
Multiprogrammed Multiprocessors. In Proc. of the Tenth Annual ACP Symposium
on Parallel Algorithms and Architectures, Puerto vallarta, Mexico, pages 119-129,
June-July 1998.

[17] Arvind and Kim P. Gostelow. The U-Interpreter. Computer, 15(2):42—49, Feb.
1982.

[[8] W.C. Athas and C. L. Seitz. Multicomputers: Message-Passing Concurrent Com-
puters. [n Computer, volume 21, pages 9-24, August 1988.

171

[19] Eduard Ayguade’, Mario Furnari, Maurizio Giordano, Hans-Christian Hoppe, Je-
sus Labarta, Xavier Martorell, Nacho Navarro, Dimitrios Nikolopoulos, Theodore
Papatheodorou, and Eleftherios Polychronopoulos. Nano-Threads: Programming

Model Specification. In Deliverable M1.DI, ESPRIT Project NANOS (No. 21907),
University of Patras, Jul. 1997.

[20] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced Allocations. In Proc.
of the 26th Ann. Symp. Theory of Computing, pages 593-602, May 1994.

{21] Hannah Bast. Dynamic Scheduling with Incomplete Information. In Proc. of the
Tenth Annual ACP Symposium on Parallel Algorithms and Architectures, Puerto
vallarta, Mexico, pages 182-191, June-July 1998.

{22] Petra Berenbrink, Tom Friedetzky, and Emst W. Mayr. Parallel Continous Ran-
domized Load Balancing. In Proc. of the Tenth Annual ACP Symposium on Parallel
Algorithms and Architectures. Puerto vallarta, Mexico, pages 192-201, June-July
1998.

[23] Daniel J. Berg. Java Threads. In A White Paper, Sun Microsystems, California,
USA, pages 109-114, March 1996.

[24] Robert Blumofe and Charles Leiserson. Scheduling Multithreaded Computations
by Work Stealing. In Proc. of the 35th Annual Symposium on foundations of Com-
puter Science (FOCS), Santa Fe, New Mexico, pages 356368, Nov. 1994.

[25] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. Technical
report, Laboratory of Computer Science, Massachussetts Institute of Technology,
Boston, USA, 1995. PhD thesis, 1995.

[26] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and
Keith H. Randall. An analysis of dag-consistent distributed shared-memory algo-
rithms. In Proc. of the 8th Ann. ACM Symp. on Parallel Algorithms and Architec-
tures, pages 297-308, Padua, Italy, Jun. 1996.

[27] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime
System. In Journal of Parallel and Distributed Computing, volume 37, pages 55—
69, Aug. 1996.

172

[28] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proc. of the Fifth ACM SIGPLAN Symp. on Principles & Practice of
Parallel Programming, pages 207-216, Santa Barbara, Calif., Jul. 1995.

[29] Nanette Jackson Boden. Runtime Systems for Fine-Grain Multicomputers. In
Ph.D Thesis, Department of Computer Science, California Institute of Technology,
Pasadena, California (also available as Technical Report - Caltech-CS-TR-92-10),
1993.

[30] Bob Boothe and Abhiram Ranade. Improved multithreading techniques for hiding
communication {atency in multiprocessors. In Proc. of the [9th Ann. Intl. Symp.
on Computer Architecture [3], pages 214-223.

[31] U. Bruening, W. K. Giloi, and W. Schroeder-Preikschat. Latency hiding in
message-passing architectures. In Proc. of the 8th Intl. Parallel Processing Symp.,
pages 704—709, Canciin, Mexico, Apr. 1994. [EEE Comp. Soc.

[32] Matt Buchanan and Andrew A. Chien. Coordinated Thread Scheduling for Work-
station Clusters Under Windows NT. In Technical Report, Concurrent Systems Ar-
chitecture Group, Deparment of Computer Science, University of [llinois, Urbana-
Champaign, 1999.

(33] Haiying Cai. Dynamic load balancing on the EARTH-SP system. Master’s thesis,
McGill U., Montréal, Qué., May 1997.

[34] Haiying Cai, Olivier Maquelin, Prasad Kakulavarapu, and Guang R. Gao. Design
and Evaluation of Dynamic Load Balancing Schemes under a Fine-grain Multi-
threaded Execution model. In Proc. of the Multithreaded Execution Architecture
and Compilation Workshop, Orlando, Florida, Jan. 1999.

[35] Thomas L. Casavant and Jon G. Kuhl. Analysis of Three Dynamic Distributed
Load-Balancing Strategies with Varying Global Information Requirements. In
IEEE Computer, pages 185-192, August 1987.

[36] Gerson G. H. Cavalheiro, Francois Galilee, and Jean-Louis Roch. Athapascan-i:
Parallel programming with asynchronous tasks. In Technical Report, LMC-IMAG-
APACHE Project, Grenoble, Franca, http:/fwww-apache.imag.fr, 1999.

173

[37] Comell Theory Center. The SP2 Switch. In Documentation at
http:/fwww.tc.cornell edw/Edu/Talks/SP/switch.html.

[38] Cornell Theory Center. What are LoadLeveler, EASY, and EASY-LL. In Docu-
mentation at http:/fwww.tc.cornell.edu/UserDoc/ SP/Batch/what.html.

f39] Soumen Chakrabarti. Efficient Resource Scheduling in Multiprocessors. In Ph.D,
University of California, Berkeley, 1996.

[40] Guang-len Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew E. Stark. Detecting Data Races in Cilk Programs that Use Locks. In
Proc. of 10th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA'98), Puerto Val larta, Mexico, pages 298-309, June 1998.

[41] Nikos Chrisochoides. Mulitithreaded Model for Dynamic Load Balancing Parallel
Adaptive PDE Computations. In Technical Report, Advanced Computing Research
Institute, Cornell Theory Center, Cornell University, Ithaca, New York, 1994.

(42] S. Crane. The REX Lightweight Process Library. In Computer Science Technica
Report, Imperial College of Science and Technology, London, England, 1993.

{43] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain Parallelism with Minimal Hardware Support: A Compiler-
Controlled Threaded Abstract Machine. In Proc. of the Fourth Intl. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems, Santa
Clara, CA, Apr. 1991.

[44] C.Xu and FLau. Load Balancing in Parallel Computers. In Kluwer Academic
Publishers, Boston,MA, 1997.

[45] Jack B. Dennis. First version of a data-flow procedure language. In Proc. of the
Colloque sur la Programmation, number 19 in Lec. Notes in Comp. Sci., pages
362-376, Paris, France, Apr. 9-11, 1974. Springer-Verlag.

[46] Jack B. Dennis and Guang R. Gao. Multithreaded architectures: Principles,
projects, and issues. In Robert A. Iannucci, Guang R. Gao, Robert H. Halstead,
Jr., and Burton Smith, editors, Multithreaded Computer Architecture: A Summary
of the State of the Art, chapter 1, pages 1-72. Kluwer Academic Pub., Norwell,

174

Mass., 1994. Book contains papers presented at the Workshop on Multithreaded
Computers, Albuquerque, N. Mex., Nov. 1991.

[47] Jack B. Dennis, Guang-Rong Gao, and Kenneth W. Todd. Modeling the weather

with a data flow supercomputer. /EEE Trans. on Computers, 33(7):592-603, Jul.
1984.

(48] Fred Douglis and John Qusterhout. Transparent Process Migration: Design Al-
ternatives and the Sprite Implementation. In Software - Practice and Experience,
volume 21, pages 757-78S, August 1991.

[49] Pradeep K. Dubey, Kevin O'Brien, Kathryn O’Brien, and Charles Barton. Single-
program speculative multithreading (SPSM) architecture: Compiler-assisted fine-
grained muitithreading. In Proc. of the IFIP WG 10.3 Working Conf. on Parallel
Architectures and Compilation Techniques, PACT '95 (4], pages 109-121.

[50] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load sharing in
homogeneous distributed systems. In /[EEE Transaction on Software Engineering,
volume 12, pages 662~675, May 1986.

[S1] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. A Comparison of
Receiver-Initiated and Sender-Initiated Adaptive Load Sharing. In Performance
Evaluation, volume 6, pages 53-68, 1986.

[52] Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebe cca Stamm, and Dean
Tullsen. Simultaneous Multithreading: A Platform for Next-generation Proces-
sors. In Proc. of IEEE Micro, pages 12—18, sept 1997.

[53] D. G. Feitelson and L. Rudolph. Toward Convergnce in Job Schedulers for Par-
allel Supercomputers. In In Job Scheduling Strategies for Parallel Processing, D.
G. Feitelson and L. Rudolph (eds.), Springer Verlag, Lecture Notes in Computer
Science, volume 1162, pages 1-26, 1996.

[54] Dror G. Feitelson. Job Scheduling in Multiprogrammed Parallel Systems. In
Technical Report, Institute of Computer Science, The Hebrew University, 91904
Jerusalem, Israel. Original version of this work done at IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, August 1997.

i75

[55] Edward W. Felten and Dylan McNamee. Improving the performance of message-
passing applications by multithreading. In Proc. of the Scalable High Performance
Computing Conf. (SHPCC-92), pages 8489, Williamsburg, Virginia, Apr. 26-29,
1992. IEEE Comp. Soc.

[56] W. Fenton, B. Ramkumar, V.A. Saletore, A.B. Sinha, and L.V. Kale. Supporting
Machine Independent Programming on Diverse Parallel Architectures. In Proc. of
the International Conference on Parallel Processing, pages 193-201, Aug. 1991.

[57] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal
language project. J. of Parallel and Distrib. Computing, 10(4):349-366, Dec. 1990.

[58] Adam Ferrari and V. S. Sunderam. TPVM: Distributed Concurrent Computing with
Lightweight Processes. In Technical Report, Dept. of Mathematics and Computer
Science, Emory University, Atlanta, GA, USA, 1994.

[59] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed
Filaments: Efficient Fine-grain Parallelism on a Cluster of Workstations. In Proc.
of the First Symposium on Operating Systems Design and Implementation, Usenix
Association, Nov. 1994,

[60] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the cilk-5 multithreaded language. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, Jun. 1998.

[61] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the Cilk-5 multithreaded language. In Proc. of the ACM SIGPLAN '98 Conf. on
Programming Language Design and Implementation [6], pages 212-223.

[62] Guang Gao, José Nelson Amaral, Andres Marquez, and Kevin Theobald. A
refinement of the HTMT program execution model. CAPSL Tech. Memo 22,
Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Jul. 1998. In
ftp://ftp.capsl.udel.edu/pub/doc/memos.

{63] Guang R. Gao. An Efficient Hybrid Datafiow Architecture Model. In Journal of
Parallelism, volume 19, Dec. 1993.

[64] Guang R. Gao, José Nelson Amaral, Andrés Mérquez, Kevin B. Theobald, Sean
Ryan, Zachary Ruiz, Thomas Geiger, and Christopher J. Morrone. HTMT phase 2

176

report. CAPSL Tech. Memo 31, Dept. of Elec. and Computer Eng., U. of Delaware,
Newark, Del., Jul. 1999. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

[65] Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot, editors. Advanced Top-
ics in Dataflow Computing and Multithreading. TEEE Comp. Soc. Press, 1995.
Book contains papers presented at the Second Intl. Work. on Datafiow Computers,
Hamilton Island, Australia, May 1992.

[66] Guang R. Gao, Herbert H. J. Hum, and Yue-Bong Wong. Parallel Function In-
vocation in a Dynamic Argument-Fetching Dataflow Architecture. In Proc. of
PARBASE-90: Intl. Conf. on Databases, Parallel Architectures, and their Appli-
cations, Miami Beach, Florida, pages 112-116, Mar. 1990.

[67] Guang R. Gao, Kevin B. Theobald, Andrés Mdirquez, and Thomas Sterling.
The HTMT program execution model. CAPSL Tech. Memo 09, Dept. of
Elec. and Computer Eng., U. of Delaware, Newark, Del., Jul. 1997. In
ftp://ftp.capsl.udel.edu/pub/doc/memos.

[68] Jean-Luc Gaudiot and Lubomir Bic, editors. Advanced Topics in Data-Flow Com-
puting. Prentice-Hall, Englewood Cliffs, N. Jer., 1991. Book contains papers
presented at the First Workshop on Data-Flow Computing, Eilat, Israel, May 1989.

[69] James Gosling and Henry McGilton. The Java Language Environment. In A White
Paper, Sun Microsystems, California, USA, pages 1-95, May 1996.

{70] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataflow
computer. Comm. of the ACM, 28(1):34-52, Jan. 1985.

[71] Mor Harchol-Balter and Allen B. Downey. Exploiting Process Lifetime Distribu-
tions for Dynamic Load Balancing. In Proceeedings of ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer Systems, Philadelphia, PA, pages
13-24, May 1996.

[72] Gerd Heber, Rupak Biswas, Parimala Thulasiraman, and Guang R. Gao. Using
multithreading for the automatic load balancing of adaptive finite element meshes.
In Proc. of the 5th Intl. Symp. on Solving Irregularly Structured Problems in Par-
allel, number 1457 in Lec. Notes in Comp. Sci., pages 132-143, Berkeley, Calif.,
Aug. 1998. Springer-Verlag.

177

[73] Alan Heirich and Stephen Taylor. A Parabolic Load Balancing Method. In Techni-

cal Report, Scalable Concurrent Programming Laboratory, California Institute of
Technology, 1993.

(74] L. J. Hendren, X. Tang, Y. Zhu, G. R. Gao, X. Xue, H. Cai, and P. Ouellet. Com-
piling C for the Earth Multithreaded Architecture. In Proc. of the 1996 Conf. on
Parallel Architectures and Compilation Techniques (PACT'96), Boston, Mass.Intl.
Journal of Parallel Programming, pages 12-23, Oct. 1996.

(75] Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Xue, Haiying
Cai, and Pierre QOuellet. Compiling C for the EARTH multithreaded architecture.
In Proc. of the 1996 Conf. on Parallel Architectures and Compilation Techniques
(PACT '96) [5], pages 12-23.

[76] Sébastien Hily and André Seznec. Branch prediction and simultaneous multi-
threading. In Proc. of the 1996 Conf. on Parallel Architectures and Compilation
Techniques (PACT '96) [5], pages 169-173.

[77] Kei Hiraki, Satoshi Sekiguchi, and Toshio Shimada. Status report of SIGMA-1:
A data-flow supercomputer. In Gaudiot and Bic [68], chapter 7, pages 207-223.
Book contains papers presented at the First Workshop on Data-Flow Computing,
Eilat, Israel, May 1989.

(78] R. Hofman and W. G. Vree. Distributed Hierarchical Scheduling with Explicit
Grain Size Control. In Future Generation Computer Systems, volume 8, pages
[11-119, July 1992.

[79] Allen Holub. Progrmmaing Java threads in the real world. In Java Threads Series,
JavaWorld, http:/fwww.javaworld.com/javaworld/jw-09-1998/jw-09-threads.htmil,
pages 109-114, Feb. 1996.

[80] Cay S. Horstmann and Gary Comell. Core JAVA. In Vol. I and II, The Java Series,
Sun Microsystems, California, USA, 1997.

[81] G. Horton. A multi-level diffusion method for dynamic load balancing. In Parallel
Computing Journal, volume 19, pages 209-218, 1993.

178

. [82] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R.
Gao, and Laurie J. Hendren. A study of the EARTH-MANNA multithreaded sys-
tem. Intl. J. of Parallel Programming, 24(4):319-347, Aug. 1996.

{83] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xi-
nan Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hen-
dren, Alberto Jimenez, Shoba Krishnan, Andres Marquez, Shamir Merali,
Shashank Nemawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu.
The Multi-Threaded Architecture multiprocessor. ACAPS Tech. Memo 88,
Sch. of Comp. Sci., McGill U., Montréal, Qué., Dec. 1994. In fip://ftp-
acaps.cs.mcgill.ca/pub/doc/memos.

[84] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xinan
Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hendren, Alberto
Jimenez, Shoba Krishnan, Andres Marquez, Shamir Merali, Shashank S. Ne-
mawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu. A design study
of the EARTH multiprocessor. In Proc. of the IFIP WG 10.3 Working Conf. on
Parallel Architectures and Compilation Techniques, PACT '95 [4], pages 59-68.

[85] Herbert Hing-Jing Hum. The Super-Actor Machine: a Hybrid Dataflow/von Neu-
mann Architecture. PhD thesis, McGill U., Montréal, Qué., May 1992.

[86] Robert A. Iannucci. Toward a datafiow/von Neumann hybrid architecture. [n Proc.
of the 15th Ann. Intl. Symp. on Computer Architecture, pages 131-140, Honolulu,
Haw., May-Jun. 1988.

[87] IBM. Interconnection Technologies for High-Performance Computing (RS/6000
SP). In Documentation at http://www.rs6000.ibm.com/resource/technology/sp-
sw2/spswp2-1.html.

[88] IBM. The RS/6000 SP High-Performance Communication Network. In Documen-

tation at http://iwvww.rs6000.ibm.com/resourceftechnology/sp-sw/spswp . .book-
Lhtml.

[89] Sotiris Ioannidis and Sandhya Dwarakadas. Compiler and Run-Time Support
for Adaptive Load Balancing in Software Distributed Shared Memory Systems.

. In Technical Report, Department of Computer Science, Univeristy of Rochester,
Rochester, New York 14627-0226, 1997.

179

[90] JavaSoft. The JAVA HOTSPOT Performance Engine Architecture. In A
White Paper, Sun Microsystems, California, USA, http:/fwww.java.sun.com/ prod-
ucts/hotspot/whitepaper.html, April 1999.

[91] Prasad Kakulavarapu and José Nelson Amaral. A survey of load balancers in mod-
emn multi-threading systems. In Proc. of the 11th Symp. on Computer Architecture
and High Performance Computing, pages 10-16, Natal, Brazil, Sep.—Oct. 1999.

[92] Prasad Kakulavarapu, Olivier Maquelin, and Guang R. Gao. Design of the run-
time system for the Portable Threaded-C language. CAPSL Tech. Memo 24,
Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Jul. 1998. In
ftp://ftp.capsl.udel.edu/pub/doc/memos.

[93] Prasad Kakulavarapu, Christopher J. Morrone, Kevin B. Theobald, José Nelson
Amaral, and Guang R. Gao. A Comparitive Study of Multithreaded Environment
on Distributed Memory Machines. In To appear in Proc. of the 19th [EEE In:l. Per-
formance, Computing, and Communications Conference-IPCCC 2000, Embassy
Suites Phoenix North, Phoenix, Arizona, USA, February 2000.

[94] Prasad Kakulavarapu, Christopher J. Morrone, Kevin B. Theobald, José Nelson
Amaral, and Guang R. Gao. A Comparitive Study of Multithreaded Environment
on Distributed Memory Machines. In CAPSL Technical Memo 35, University of
Delaware, Newark, Delaware, USA, November 1999.

[95] Vijay Karamcheti. Run-time techniques for dynamic multithreaded computations.
In Ph.D Thesis, Department of Electrical Engineering, University of lllinois at
Urbana-Champaign, 1998.

[96] Vijay Karamcheti, John Plevyak, and Andrew A. Chien. Runtime Mechanisms for
Efficient Dynamic Multithreading. In Journal of Parallel and Distributed Comput-
ing, volume 37, pages 2140, Aug. 1996.

[97] Tetsuo Kawano, Shigeru Kusakabe, Rin ichiro Taniguchi, and Makoto Amamiya.
Fine-grain multi-thread processor architecture for massively parallel processing. In

Proc. of the First Intl. Symp. on High-Performance Computer Architecture, pages
308-317, Raleigh, N. Caro., Jan. 1995.

180

98] Ashfaq A. Khokhar, Gerd Heber, Parimala Thulasiraman, and Guang R. Gao. Load
adaptive algorithms and implementations for the 2D discrete wavelet transform on
fine-grain multithreaded architectures. In Proc. of the 13th Intl. Parallel Processing
Symp. and the 10th Symp. on Parallel and Distributed Processing, pages 458462,
San Juan, Puerto Rico, Apr. 1999. IEEE Comp. Soc. and ACM SIGARCH.

[99] D. Klappholz and H-C. Park. Parallelized Process Scheduling for a Tightly-
Coupled MIMD Machine. In Proc. of the Intl. Conf. on Parallel Processing, pages
315-321, August 1984.

[100] Douglas Kramer. The Java Platform. In A White Paper, Sun Microsystems, Cali-
fornia, USA, pages 1-24, May 1996.

[101] Thomas Kunz. The Influence of Different Workload Descriptions on a Heuristic
Load Balancing Scheme. In [EEE Transactions on Software Engineering, vol-
ume 17, pages 725-730, July 1991.

[102] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A multithread-
ing technique targeting multiprocessors and workstations. In Proc. of the Sixth
Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 308-318, San Jose, Calif., Oct. 1994.

[103] Doug Lea. Concurrent Programming in Java - Design Principles and Patterns. In
Addison-Wesley, 1997.

[104] Bil Lewis and Daniel J. Berg. Threads Primer - A Guide to Multithreaded Program-
ming. In Sunsoft Press, Sun Microsystems Inc., 2550 Garcia Avenue, Mountain
View, California 94043-1100, USA, 1996.

[105] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. In The
Java Series, Sun Microsystems, California, USA, 1997.

[106] Mat Loikkanen and Nader Bagherzadeh. A fine-grain multithreading superscalar
architecture. In Proc. of the 1996 Conf. on Parallel Architectures and Compilation
Techniques (PACT '96) 5], pages 163-168.

[107] Olivier Maquelin. The ADAM architecture and its simulation. TIK-
Schriftenreihe 4, Computer Engineering and Networks Laboratory, Swiss Federal
Institute of Technology, Ziirich, Switzerland, 1994. PhD thesis, 1994.

181

[108] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald, and
Xin-Min Tian. Polling Watchdog: Combining polling and interrupts for efficient
message handling. In Proc. of the 23rd Ann. Intl. Symp. on Computer Architecture,
pages 178-188, Philadelphia, Penn., May 1996.

[109] Olivier C. Maquelin. Load balancing and resource management in the ADAM
machine. In Gao et al. [65], pages 307-323. Book contains papers presented at
the Second Intl. Work. on Dataflow Computers, Hamilton Island, Australia, May
1992.

[110] Olivier C. Maquelin. Load balancing and resource management in the adam ma-
chine. In Second Workshop on Dataflow Computing, Hamilton Island, Australia,
1992, Published in Advanced Topics in Dataflow Computing and Multithreading,
Lubomir Bic, Guang R. Gao, Jean-Luc Gaudiot editors, IEEE Computer Society,
1995.

(L11] Olivier C. Maquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and Benefits
of Multithreading with Off-the-Shelf RISC Processors. In Proc. of the First Inil.
EURO-PAR Conference, no. 966 in Lecture Notes in Computer Science, Stockholm,
Sweden, pages 117-128, Aug. 1995.

[112] Olivier C. Maquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and bene-
fits of multithreading with off-the-shelf RISC processors. In Proc. of the First
Intl. EURO-PAR Conf., number 966 in Lec. Notes in Comp. Sci., pages 117-128,
Stockholm, Sweden, Aug. 1995. Springer-Verlag.

[113] Edward Mascarenhas and Vernon Rego. Ariadne: Architecture of a Portable
Threads system supporting Thread Migration. In Software - Practice and Expe-
rience, volume 26(3), pages 327-356, Mar. 1996.

[114] Piyush Mehrotra and Matthew Haines. An Overview of the Opus Language and
Runtime System. Technical report, May 1994.

[115] Paul Messina, David Culler, Wayne Pfeiffer, William Martin, J. Tinsley Oden, and
Gary Smith. Architecture - The High-Performance Computing Continuum. In
Communications of the ACM, volume 41, pages 3644, November 1998.

182

[116] Ravi Mirchandaney and John A. Stankovic. Using a Stochastic Learninmg Au-
tomaton for Job Scheduling in Distributed Processing Systems. In Journal of Par-
allel and Distributed Computing, pages 527-551, 1986.

[117] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Adaptive Load Shar-
ing in Heterogeneous Distributed Systems. In Journal of Parallel and Distributed
Computing, number 9, pages 331-346, 1990.

[118] Michael Mitzenmacher. Analyses of Load Stealing Models Based on Differential
Equations. In Proc. of the Tenth Annual ACP Symposium on Parallel Algorithms
and Architectures, Puerto vallarta, Mexico, pages 212-221, June-July 1998.

[119] Michael David Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. In Ph. D Thesis, University of California, Berkeley, California. 1996.

[120] J. E. Moreira, H. Franke, W. Chan, and L. L. Fong. A Gang-Scheduling System
for ASCI Blue-Pacific. In Technical Report RC 21359 (96204), IBM Research
Division, December 1998.

[121] Frank Mueller. Distributed Shared-Memory Threads: DSM-Threads. In Technical
Report, Work in Progress, Humboldt-Universitat zu Berlin, Institut fur Informatik,
10099 Berlin, Germany, 1998.

[122] S. Muthukrishnan and Rajmohan Rajaraman. An Adversial Model for Distributed
Dynamic Load Balancing. In Proc. of the Tenth Annual ACP Symposium on Paral-

lel Algorithms and Architectures, Puerto vallarta, Mexico, pages 47-54, June-July
1998.

[123] W. Najjar and J.-L.. Gaudiot. Multi-level execution in data-flow architectures. In
Proc. of the 1987 Intl. Conf. on Parallel Processing, pages 32-39, St. Charles, IlI.,
Aug. 1987.

[124] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreaded massively
parallel architecture. In Proc. of the 19th Ann. Intl. Symp. on Computer Architecture
[3], pages 156-167.

[125] Rishiyur S. Nikhil and Arvind. Can dataflow subsume von Neumann computing?

In Proc. of the 16th Ann. Intl. Symp. on Computer Architecture, pages 262-272,
Jerusalem, Israel, May-Jun. 1989.

183

[126] Scott Oaks and Henry Wong. Java Threads. In First Edition, O’Reilly and Asso-
ciates, USA, Jan. 1997.

[127] Gregory Michael Papadopoulos. Implementation of a general purpose dataflow
multiprocessor. Tech. Rep. MIT/LCS/TR-432, MIT Lab. for Comp. Sci., Aug.
1988. PhD thesis.

[128] Hisham Petry. Earth Threaded-C Programming Manual. Technical report, Mar.
1996.

[129] C. Gary Rommel. The Probability of Load Balancing Success in a Homogeneous
Network. In IEEE Transactions on Software Engineering, volume 17, pages 922-
933, September 1991.

[130] James Rumbaugh. A data flow multiprocessor. [EEE Trans. on Computers,
26(2):138-146, Feb. 1977.

[131] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von Eicken. Analy-
sis of Multithreaded Architectures for Parallel Computing. In Technical Report,

Computer Science Division, University of California, Berkeley, California 94720,
1995.

[132] Shuichi Sakai, Kazuaki Okamoto, Hiroshi Matsuoka, Hideo Hirono, Yuetsu Ko-
dama, and Mitsuhisa Sato. Super-threading: Architectural and software mecha-
nisms for optimizing parallel computation. In Conf. Proc., 1993 Intl. Conf. on
Supercomputing, pages 251-260, Tokyo, Japan, Jul. 1993.

[133] Mitsuhisa Sato, Yuetsu Kodama, Suichi Sakai, Yoshinori Yamaguchi, and Yasuhito
Koumura. Thread-based programming for the EM-4 hybrid dataflow machine. In
Proc. of the 19th Ann. Intl. Symp. on Computer Architecture [3], pages 146—155.

[134] Klaus Eric Schauser, David E. Culler, and Thorsten von Eiken. Compiler-
controlled multithreading for lenient parallel languages. Rep. No. UCB/CSD
91/640, Comp. Sci. Div., U. of Calif. at Berkeley, 1991.

[135] Klaus Erik Schauser, David E. Culler, and Thorsten von Eicken. Compiler-
Controlled Multithreading for Lenient Parallel Languages. In Proc. of FPCA '91
Conference on Functional Programming Languages and Computer Architecture,
Spring er Verlag, aug 1991.

184

[136] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load Distributing
for Locally Distributed Systems. In IEEE Computer, pages 33 — 44, December
1992.

[£371 Andrew Sohn, Chinhyun Kim, and Mitsuhisa Sato. Multithreading with the EM-4
distributed-memory multiprocessor. In Proc. of the IFIP WG 10.3 Working Conf.
on Parallel Architectures and Compilation Techniques, PACT 95 [4], pages 27-36.

[138] Andrew Sohn, Mitsuhisa Sato, Namhoon Yoo, and Jean-Luc Gaudiot. Effects of
multithreading on data and workload distribution for distributed-memory multipro-
cessors. In Proc. of the 10th Intl. Parallel Processing Symp., Honolulu, Haw., Apr.
1996. [EEE Comp. Soc. and ACM SIGARCH.

[139] Bin Song. Scheduling Adaptively Parallel Jobs. In Masters Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy, Boston, January 1998.

(140} Vason P. Srini. An architectural comparison of dataflow systems. Computer,
19(3):68-88, Mar. 1986.

[i41] T.L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters. MIT Press, 1999.

(142] Harold S. Stone. High-Performance Computer Architecture. In Addison-Wesley
Publishing Company, Massachusetts, 1993.

[143] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley Pub.
Co., 3rd edition, 1993.

{144] V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing. In Jour-
nal of Concurrency: Practice and Experience, volume 2(4), pages 315-339, De-
cember 1990.

[145] V. S. Sunderam. TPVM: A Threads-Based Interface and Subsystem for PVM.
In Draft Version, Dept. of Mathematics and Computer Science, Emory University,
Atlanta, GA, USA, June 1994.

[146] Xinan Tang, Olivier Maquelin, Kevin B. Theobald, Guang R. Gao, and Prasad
Kakulavarapu. A portable Threaded-C language for EARTH multiprocessors.

185

CAPSL Tech. Note 02, Dept. of Elec. and Computer Eng., U. of Delaware, Newark,
Del., Jan. 1998.

[147] Kenjiro Taura. Efficient and Reusable Implementation of Fine-Grain Muitithread-
ing and Garbage Collection on Distributed-Memory Parallel Computers. In Ph.D
Thesis, Department of Information Science, University of Tokyo, 1997.

[148] Kenjiro Taura and Akinori Yonezawa. Fine-grain multithreading with minimal
compiler support — a cost effective approach to implementing efficient multi-
threading languages. In Proc. of the ACM SIGPLAN ’97 Conf. on Programming
Language Design and Implementation, pages 320~333, Las Vegas, Nev., Jun. 1997.

[149] Scott R. Taylor. A comparison of multithreading implementations. In Proc. of the
Yale Multithreaded Programming Work., New Haven, Conn., Jun. 8-9, 1998.

[150] Kevin B. Theobald. EARTH - an Efficient Architecture for Running THreads.
Technical report, School of Computer Science, McGill University, Montreal,
Québec, 1999. PhD thesis, 1999.

[151] Kevin B. Theobald, José Nelson Amaral, Gerd Heber, Olivier Maquelin, Xinan
Tang, and Guang R. Gao. Overview of the Threaded-C language. CAPSL Tech.
Memo 19, Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Mar.
1998. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

[152] Kevin B. Theobald, Jose Nelson Amaral, Gerd Herber, Oliver Maquelin, Xinan
Tang, and Guang R. Gao. Overview of the Threaded-C Language. In Technical
Memo 19, CAPSL Lab, University of Delaware, Mar. 1998.

[153] Kevin B. Theobald and Guang R. Gao. The Benefits of Hardware-Assisted Fine-
Grain Multithreading. In Technical Memo 32, CAPSL Lab, University of Delaware,
Newark, Delaware, USA, pages 1-27, July 1999.

[154] Kevin B. Theobald, Guang R. Gao, and Thomas L. Sterling. Superconducting pro-
cessors for HTMT: Issues and challenges. In Proc. of Frontiers ‘99: The 7th Symp.

on the Frontiers of Massively Parallel Computation, pages 260-267, Annapolis,
Mary., Feb. 1999.

186

[155] Kevin Bryan Theobald. Adding fault-tolerance to a static data flow supercomputer.
Tech. Rep. MIT/LCS/TR-499, MIT Lab. for Comp. Sci., Apr. 1991. Master’s the-
sis, Dec., 1990.

{156] Kevin Bryan Theobald. EARTH: An Efficient Architecture for Running Threads.
PhD thesis, McGill U., Montréal, Qué., May 1999.

[157] John Thomley, K. Mani Chandy, and Hiroshi Ishii. A System for Structured High-
Performance Multithreaded Programming in Windows NT. In Proc. of the 2nd
USENIX Windows NT Symposium, pp. 67-76, Seattle, Washington, Aug. 1998.

[158] Ruppa K. Thulasiram and Guang R. Gao. Option Pricing Problem on a Mul-
tithreaded Parallel Architecture. In CAPSL Technical Memo 25, University of
Delaware, Newark, Delaware, USA, November 1998.

[159] Ruppa K. Thulasiram and Guang R. Gao. A Multithreaded Parallel Computational
Approach for Valuing Derivatives. In Proc. of the st WAFA Conference, George
Mason University, April 1999.

[160] Xinmin Tian, Olivier Maquelin, Xinan Tang, Kevin Theobald, Guang R. Gao, and
Herbert HJ. Hum. The Mcgill Earth Benchmark Suite EBS. Technical report,
1996.

[161] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting
fine-grained synchronization on a simultaneous multithreading processor. In Proc.
of the Fifth Intl. Symp. on High-Performance Computer Architecture, pages 54-58,
Orlando, Flor., Jan. 1999.

{162] Uzi Vishkin, Shiomit Dascal, Efraim Berkovich, and Joseph Nuzman. Explicit
Multi-Threading (XMT) Bridging Models for Instruction Parallelism. In Proc.
of the Tenth Annual ACP Symposium on Parallel Algorithms and Architectures,
Puerto vallarta, Mexico, pages 140151, June-July 1998.

[163] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: A Mechanism for Integrated Communication and
Computation. In Proc. of the 19th Intl. Symposium on Computer Architecture,
ACM Press, Gold Coast, Australia, May 1992.

187

[164] Jerrell Watts and Stephen Taylor. A Practical Approach to Dynamic Load Bal-
ancimg. In Technical Report, Scalable Concurrent Programming Laboratory, Syra-
cuse University, Syracuse, New York, December 1997.

[165] Jerrell Watts and Stephen Taylor. A practical approach to dynamic load balancing.
In IEEE Transaction on Parallel and Distributed Systems, volume 9, Mar. 1998.

[166] Jerrell Watts and Stephen Taylor. A Practical Approach to Dynamic Load Bal-
ancing. In [EEE Transaction on Parallel and Distributed Systems, volume 9, Mar.
1998.

[167] Boris Weissman. Active Threads: an Extensibie and Portable Light-Weight Thread
System. Technical report, Sep. 1997.

[168] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for Dynamic Load
Balancing on Highly Parallel Computers. In [EEE Transaction on Parallel and
Distributed Systems, volume 4, No. 9, pages 979-993, Sep. 1993.

[169] Mohammed Javeed Zaki, Wei Li, and Srinivasan Parthasarathy. Customized
Dynamic Load Balancing for a Network of Workstations. In Technical Report
602, Computer Science Department, University of Rochester, Rochester, New York
14627, pages 1-23, December 1995.

[170] Yingchun Zhu and Laurie J. Hendren. Communication optimizations for parallel
C programs. In Proc. of the ACM SIGPLAN 98 Conf. on Programming Language
Design and Implementation [6}, pages 199-211.

188

Appendix A
EARTH Primitives in Threaded-C

This appendix gives a complete list of all the EARTH Threaded-C primitives and briefly
explains how they are used.

A.1 Threads and Functions

THREADED
Keyword for a threaded function declaration.

THREAD.n

Marks the beginning of a thread, n is an integer value greater than 0. This number
labels a thread within a function.

void END_THREAD(void)
Marks the end of a thread. Control then switches to another ready thread.

int NUM_NODES

Run-time system variable set to the number of available nodes in the system.

int NODE_ID

Run-time system variable set to the local node number. This number ranges from 0
to NUM_NODES - 1.

void POLL(void)
Polls the network and handles any available messages. Together with the
NUM_NODES and NODE_ID primitives, this is one of the only primitives that

189

can be used from non-threaded functions. Inserting POLL statements into long

threads can significantly improve overall performance, as external requests are han-
dled more quickly.

void CALL(func_name, ...)
Calls function func_name sequentially and blocks until that function termi-

nates. Functions invoked with CALL must terminate with RETURN instead of
END_FUNCTION.

void RETURN(void)
Ends a function that will be called with the CALL primitive. This tells the compiler
to generate sequential entry/exit code.

void INVOKE(int node, func_name, ...)

The programmer specifies the processing node on which the function func_name
will be executed. Function func_name must terminate with END_FUNCTION.

void TOKEN(func_name, ...)
Similar to INVOKE, but it is the runtime system that decides on which node the
function will execute. Function func_name must terminate with END_FUNCTION.

void END_FUNCTION(void)
Marks the end of a threaded function that is called with INVOKE or TOKEN.

A.2 Thread Synchronization

Threads are often associated with a synchronization slot. The sync count in that slot
represents how many signals the thread has to wait for before it can be activated. The
programmer can initialize the sync count and update the count to control the firing of a
thread. We use the following EARTH primitives to operate on the sync slots:

SLOT
A pre-defined type for synchronization slots.

SLOT SYNC_SLOTS(N]
This is how synchronization slots have to be declared at the beginning of a function.

190

SPTR
A pre-defined type defined as: typedef SLOT *GLOBAL SPTR.

void *GLOBAL FRAME_ADR(void)
Returns a global pointer to the current frame.

void *IP_ADR(int thread_num)
Returns a (local) pointer to the first instruction of thread thread_num. This does not
have to be a global pointer, as each node has a copy of the program code located at
the same addresses.

SPTR SLOT_ADR(int slot_num)

Retumns a global pointer to sync slot slot_num.

void INIT_SYNC(int slot_num, int init_count, int reset_count, int thread_num)
Initializes sync slot slot_num with the initial counter value init_count, the reset value
reset_count, and a thread pointer for thread thread_num.

void SYNC(int slot_num)
Decreases the sync count of slot slot_num by one. If the count reaches zero the
corresponding thread is scheduled for execution.

void RSYNC(SPTR slot.adr)
Same as SYNC(), but the sync slot is specified by a global address.

void INCR_SYNC(int slot_num, int val)
Increases the sync count of slot slot_num by val. If the count becomes zero the
corresponding thread is scheduled for execution.

void INCR_RSYNC(SPTR slot_adr, int val)
Same as INCR_.SYNCY(), but the sync slot is specified by a global address.

void SPAWN(int thread_num)
Schedules local thread thread _num for execution.

void RSPAWN(void *GLOBAL FP, void *IP)
Same as SPAWN(), but the thread is specified explicitly with its frame and instruc-
tion pointers.

191

Implicit sync operation
All data transfer primitives also perform a sync operation after the data has reached
its destination.

A.3 Data Transfer Primitives

The data transfer primitives support remote memory accesses and block data tran-
fers. Short data transfers of single bytes or words of memory are supported by the
GET_SYNC._x and DATA_SYNC_x. Several versions of these primitives exist, which
are distinguished by their suffix. For example, the suffix _L is used for 32-bit (long word)
values. Here is the complete list of suffixes:

B (char): Single byte (8 bits).

S (short): Short word (16 bits).
L (long): Long word (32 bits).

F (float): Float size (32 bits).

D (double): Double size (64 bits).

-G (void *GLOBAL): Global pointer (either 32 or 64 bits).

In addition, the sync slot that should be signalled when the opeation terminates can
either be specified as a (local) slot number (.SYNC. variants), or as a global pointer
(.RSYNC. variants). Here are the basic communication primitives:

void DATA _SYNC _x(T datum, void *dest, int slot_num)
Sends a value to the destination address and then update the specified sync slot. The

type of the value has to be assignment compatible to either a byte, a short, a long, a
float, a double or a global pointer.

void DATA _RSYNC x(T datum, void *dest, SPTR slot_adr)
Same as DATA_SYNC_x(), but the sync slot is specified as a global address.

void GET_SYNC _x(void *GLOBAL src, void *GLOBAL dest, int slot_num)
Reads a value from the source address and copy it to the destination address. Then,
update the specified sync slot.

192

void GET_RSYNC x(void *GLOBAL src, void *GLOBAL dest, SPTR slot_adr)
Same as GET_SYNC_x(), but the sync slot is specified as a global address.

void BLKMOV _SYNC(void *GLOBAL src, void *GLOBAL dest, long length,
int slot_num)

Copies length bytes of data from the source to the destination address and updates
the specified sync slot.

void BLKMOV _RSYNC(void *GLOBAL src, void *GLOBAL dest, long length,
SPTR slot_adr)
Same as BLKMOV _SYNCY(), but the sync slot is specified as a global address.

A.4 Global Address Support

GLOBAL

Type qualifier used to distinguish global pointers (64-bit entities) from local (nor-
mal) pointers.

T *GLOBAL TO.GLOBAL(T *ptr)
Turns a local pointer into a global pointer that points to address ptr on the local
node. In the portable implementation the type of the result depends on the type of
the argument. On MANNA, the result is of type pointer to void.

T *TO_LOCAL(T *GLOBAL gptr)
Turns gper into a local pointer (extracts the address part of a global pointer). Note
that it is possibie to dereference a global pointer without first turning it into a local
pointer. On MANNA, the result is of type pointer to void.

T *GLOBAL MAKE_GPTR(int node, T *ptr)
Takes a node number and a local address and returns the corresponding global
pointer. On MANNA, the result is of type pointer to void.

int OWNER_OF(T *GLOBAL gptr)
Returns the node pointed to by gptr (extracts the node part of a global pointer).

int IS_ OWNER(T *GLOBAL gptr)
Returns true if gptr points to the local node.

193

Appendix B
Putting it all Together

The parallel execution of applications by the runtime system is reviewed in section B.1.
Further, this section examines the RTS behavior in two specific cases - invoking a local
function, and execution of a remote GET_SYNC_L operation. The Run-time system di-
rectory structure (as is presently on the EARTH SP-2 system) is presented in section B.4.
Finally, using the portable Threaded-C system is mentioned in section B.5. The parallel
execution of applications by the runtime system is reviewed in section B. 1.

B.1 Parallel Execution

At any point of time only one application thread can run on a node. To achieve parallel
execution in a NOW with distributed memory, multiple instances of the executable' are
invoked on all the nodes participating in the parallel execution. This means that the
program variables are stored at the same relative positions within the application address
space on each node, though there is no attempt to maintain coherence among their values
across the nodes. The runtime system on these nodes supports inter-node communication
through message-passing. The runtime system itself is coded in the SPMD programming
model.

The application execution starts on node 0 with the first thread of the MAIN threaded
function in the Threaded-C program. The setjmp statement in C is used to preserve
the context before starting the application execution. As new tokens are generated on
node 0, the load balancers on other nodes start sending load requests to the destinations

!Combination of object codes for the runtime system and Threaded-C application
2One instance per node.

194

chosen according to their balancer policy. When the rich nodes start responding to the
load requests, the work load gets distributed across all the nodes in the parallel execution.

The execution stops when there are no more threads to execute. The runtime system
on node O sends a termination message to all other nodes. Each node then executes the

longjmp statement to revert back to their contexts before starting the parallel execution,
and terminates.

B.2 Invoking a Local Function

Consider the Threaded-C code for invoking a local function in Fig. 2.3. The local
function invocation statement, INVOKE (NODE_ID, fib, SLOT-ADR(0), n-1,
TO.GLOBAL (&rl)) is preprocessed into C code shown in Fig. 2.14. The sync slot and
the result location address are converted into global addcesses so as to be accessible by
remote nodes (SLOT_ADR makes sync slot global, while TO_.GLOBAL makes an address
globally accessibie). The parameter pointer is assigned the top of free element buffer on
current node, and parameters assigned to the fields of this structure.

vaoid etc_invoke (int node, etc_handler fun,
long bytes)
{
static void hdl_invoke (etc_handler fun, buf_elem °*bp;
long bytes)
{ if (node == etc_rts.node_id] (
buf_elem *bp, *bn: bp = etc_rts.next_free;
etc_rts.rdy_t->next = bp;
bp = etc_rts.next_free; etc_rts.rdy_t = bp:
etc_rts.rdy_t->next = bp; etc_rts.next_free = bp->next;
etc_rts.rdy_t = bp: bp->ip = fun;
etc_rrs.next_free = (bn= bp->next); bp->fp = {long) bp:
bp->ip = fun; if (letc_rts.next_free)
bp->fp = {(long) bp: etc_alloc_buf_elem (};
if ('bn) etc_alloc_buf_elem (): } else
etc_get2n (bp->parms, bytes): etc_send2n {node, hdl_invoke,
} (int) fun, bytes,
etc_rts.next_free->parms,
bytes) ;
}
(a) Handler routine (b) RTS routine for INVOKE staternent

Figure B.1: RTS performing Local Function Invocation

The last statement in the preprocessed code is etc_invoke, a function call to the
RTS. The function etc_invoke is defined in the file calls.c. This function has the
current node id (0 in this case), the instruction pointer for first thread in this threaded

195

. function, and the size of the parameter structure stored on top of free element list in bytes,
as arguments.

The function definition for et c_invoke is shown in part (b) of Fig. B.1. The node
number (a parameter) is compared with the current node number. If they are the same, the
top element from free element list is grabbed, it’s instruction pointer filled and placed on
the RQ. The free element list is a singly linked list of free nodes, each node with fields for
instruction pointer, frame pointer, an array for parameters, and typical link fields (prev,
next). Dynamic memory is usually accepted and returned from this list. Memory is
allocated manually (by using the malloc statement), only when the free element list is
empty. [t may be noted that the top of the free element list already has parameters stored
on it. On the contrary, if node number is not the same as current node number, then the
arguments as well as the contents of top of free element list are composed into an active
message with a handler routine to perform the invocation on remote node (though this
case won't arise in case of local function invocation) and sent to neighboring node, the
message destined to reach the node with id as the node number.

. B.3 Execution of a Remote GET_SYNC_L

The implementation strategy of the EARTH communication primitives (GET_SYNC X,
and DATA_SYNC_X) had been mentioned in section 2.3.5. The behavior of a remote
GET_SYNC_L 1s explained with an example in this section.

-] T = - 4 -

THRERD T (tpai - 00+ 25003, (epai > 1)
Time_! = ci_read (); = —=Bm>L = s «uBYl, <P

for (i = gount; L > 0; i--) ¢ X 1 P

nc_l fp—> fp->r

GET_RSYNC_L (vaip, resp, sspQ); sceger_sync Lf-,:?g;-- prozese.
END_THREAD O —-pm>sspls

. return;

(a)Typical use of the GET_RSYNC_L primitive (b)Preprocessed code for GET_RSYNC_L primitive

Figure B.2: Usage and preprocessed code for GET_RSYNC_L

Consider the use of the primitive GET_RSYNC_L as shown in Fig. B.2. The prepro-
cessed code for this segment is shown in part (b) of Fig. B.2.
The GETRSYNC.L primitive is used to request for long data from a re-
. mote location. As may be noticed in the generated code, a function call to RTS
(etc_get.sync-_l) is made. This function in the file data.c has a macro call in it’s

196

body (inline_etc_get_sync_l) as shown in the Fig. B.3. The arguments for the
macro are formed from the components of global pointer structures for source and desti-
nation locations. The macro definition for inline_etc_get_sync._1 is included in the
file data_inc.c. This macro checks if the source node number is the same as current
node number, and if so, calls another handler routine (inline hdl_get_sync.l), as
shown in in Fig. B.S, that composes a data_sync message with the value taken from
source location. The data_sync message places the value at the destination location
and decrements the relevant sync count.

void etc_get_sync_l (etc_gptr src, etc_gptr dest,
etc_gptr s)
{
inline_etc_get_sync_l (src.node, {(leng *) src.ptr),
dest.node, ((long *} dest.ptr),
s.node, ((etc_slot *) s.ptr)):

Figure B.3: RTS function etc_get_sync_]

static void hdl_get_sync_l (long *src_ptr, int dest_node,
long *destc_ptr,int s_node, etc_slot *s_sp)
{
inline_hdl_get_sync_l (src_ptr, dest_node, dest_ptr,
s_node, s_sp):

Figure B.4: Handler hdl_get_sync_{

On the other hand, if source node number is different from current node number,
the inline_etc_get_sync_1 routine sends an active message to the source node
with a handler name hdl get_sync.l in file data.c. This handler definition is
shown in Fig. B.4. The handler routine hdl _get_sync_l makes a macro call to
inline hdl _get_sync._call, whose definition is in file data_inc. c. This macro,
as mentioned above, composes a data_sync message to the destination location.

B.4 Run-Time System Directory

The portable EARTH programming environment consists of several tools, in particular
the etcc compiler driver, the etcpre preprocessor and the run-time system libraries.

197

/r

void inline_hdl_get_sync_ ! (leng *src_ptr,
int dest_node, long *dest_ptr,int s_node,
etc_slot_ptr s_sp)

-/

fdefine inline_hdl_gex_sync_l(src_ptr,
dest_rode, dest_ptr, s_nocde, s_sp) \

[EAY

inline_etc_da%a_sync_l ((*(long *} src_ptr),

dest_ncde, dest_ptr, s_node, s_sp); \
I3

(a) Macro inline_hdl_get_sync_l

tdefine inline_etc_get_sync_l (src_node,
src_ptr, dest_node, dest
s_niode, s_sp) \

-
T,

i\

if (src_rode == etc_rts.node_id} { \
inline_hdl_get_sync_! {(src_ptr,
dest_niode, dest_ptr, s_node, s_sp); \

telse{ \
etc_send6 (src_rode, hdi_get_sync_l,
(int) src_ptr, dest_node, (int) dest_ptr,
s_nade, (int) s_sp, C); \
INC_REMOTE \

PA

(b) Macro inline_cte_get_sync.l

Figure B.5: Macro Definitions in file data-inc.c

The EARTH home directory, pointed to by the EARTH_HOME environment variable,
contains all these tools, as well as the necessary include files and libraries. The latest sta-
ble version of the source code is also available on some machines. The resulting directory
structure for the portable runtime system is summarized in Fig. B.6.

EARTH

]

bin

x867¥un5 x86

sund rs6000 Sund

lib

x86

rs6000

sunS sund4 16000 b seq

SIC [N N

ms TN

eicpre elcrts EICC sww

h2 3 top

Figure B.6: Partial EARTH Directory Structure

As can be seen from Fig. B.6, three machine architectures are supported: Sund4/Sun5
(Sun workstations), rs6000 (RS6000 workstations and SP-2/SP-3 machines) and the Be-
owulf (LINUX PCs). In fact, MANNA would be a fourth architecture, but we do not
include it in this diagram as the runtime system for the MANNA is written mostly in
1860 assembly language, and therefore not portable across platforms. However, it may be
noted that portable Threaded-C programs execute on the Manna architecture.

198

A closer look at the etcrts directory, which contains the source code for the run-
time system libraries, shows separate subdirectories for the different machine architec-
tures (sun4, sun5, X86 and rs6000), the load balancers (1b), and each network im-
plementation (seq, tb2, tb3 and TCP/IP). Different combinations of the CPU and
network interfaces may be specified on the command-line to enable linking of the applica-
tion object code with different versions of the run-time system object code. The machine
and network independent parts of the run-time system are linked with one of the machine-
dependent modules, a network module to generate the final executable. In addition, one
of the load balancers, and the profiling option may be included on the command-line at
compile-time. Off-the-shelf NOWs may operate in sequential mode, or may be connected
with the TCP/ IP interface. NOW products like the IBM SP-2, SP-3 are interconnected
with the tb-2 and tb-3 network interface cards. The command-line arguments are fed
to the etcc compiler driver which after finding no errors, generates the final executable.

B.S Running Threaded-C Programs

Presently, we support a 137 node IBM SP-2 at the Cornell Theory Center, an 80 node
IBM SP-3 at the Argonne National Labs, and an 8 node Beowulf at the CAPSL Lab at the
University of Delaware. This section details the compilation and execution sequences for
Threaded-C programs on the [BM SP platforms.

In order to run Threaded-C programs, it is necessary to first compile them. In order for
the Threaded-C compiler to work properly, the user’s environment has to be set properly.
The following paragraphs give a brief overview of what has to be done. More information
can be found on the Web at http: //www-acaps.cs.mcgill.ca/info/EARTH,
though part of the information that is found there is specific to the EARTH-MANNA
implementation.

In order to use the portable run-time system, the EARTH_HOME and the PATH envi-
ronment variables have to be setup.

On the IBM SP-3 at the Argonne National Labs:

setenv EARTH HOME kakulava/EARTH

On the IBM SP-2 at the Comnell Theory Center:

setenv EARTH HOME kprasad/EARTH

The PATH variable should be set as follows:

set path=($EARTH HOME/bin/rs6000 S$Spath)

199

After the environment has been set up, programs can be compiled with the etec com-
mand. This command is similar to the cc compiler driver and supports similar switches.
For example, the following command can be used to compile the file hello.c and
to generate a sequential version that runs on the Sun: etec -0 hello.c -target
sund-seq. The resulting Sun Sparc executable can be run as any sequential program.
When accessing a parallel machine, on the other hand, some tool has to be used to get
access to the machine and start the program on a specific number of nodes. The tools
used for that purpose are : th3run on the CACR SP-2, and submit on the Argonne SP-2
and Cornell SP-2. Note that this is not an exhaustive list, as more versions of the portable
EARTH run-time system are being implemented.

A detailed explanation of the options for etcc, is present at http://www-
acaps.cs.mcgill.ca/info/EARTH/earth-manna/etcc.html. The op-
tions supported by etcc are similar to those typically supported by other compilers.
The relevant options for compiling Threaded-C programs on the IBM SP machines are as
given below.

etcc -target target-arch[-prof] [-1b dual|spn|nop|snd|range|
his|shis|rand|minima] [-h][v]{-keep]l[-O[level]][-o
filel[-c][-S][-E] [-Dname([=def]] [-Uname] file...

-target target-arch Specifies the target architecture. Code may be generated
for the following IBM SP machines.

rs6000-seq : Generate a sequential executable that runs on a single IBM RS6000
CPU.

rs6000-th2 : Generate code for the Argonne SP-2 cluster of workstations. This
implementation directly accesses the tb-2 network card for better performance.

rs6000-tb3 : Generate code for the Caltech CACR IBM SP-2 cluster of worksta-
tions. This version also directly accesses the tb-3 network card.

-prof Link with a different version of the portable run-time system that gathers pro-
filing information and prints it after the program has terminated.

-1b dual|spn|nop|snd|range|his|shis{rand|minima Selects one of
the possible dynamic load balancers. the spn balancer is used by default, except for the
sequential targets which use the nop load balancer.

For example, to run the program £1ib. c, the following steps are to be followed after
setting the environment variable EARTH_HOME. Consider the platform to be IBM SP-3,
load balancer to be dual, and the profiling option included.

200

etcc -target rs6000-tb3 -prof -1b dual -02 -o
fib.dual.prof fib.c

Altematively, the applications may be compiled using the compile script. Usage
information is printed by typing compile.

compile [cf1lag] {bal] [prof] progname

- cflag: Any of the C optimization flags - O, 02,03.

- bal: name of any of the load balancers, listed above.

- prof: Include profiling data in output.

- progname: Application name, without .c extension

To submit the executable for execution,

submit num nodes max_time programf[arguments...]

- num_nodes: Number of nodes requested.

- max.time: Maximum time that the application may take to execute.

- program: Name of the application exceutable

- arguments: Any application arguments may be included here

Usage information is printed by typing submit.

The resulting output gives the concatenated output of all nodes in one file. The pro-
filing code if included, helps provide statistical information as to the number of threads
generated, number of remote communications, number of tokens migrated etc.

Fig. B.7 shows a segment of the sample output for the Fibonacci Threaded-C pro-
gram. The f£ib threaded function from Fig. 2.3 is compiled with the dual balancer and
the profiling options. The executable is run with 32 nodes on the IBM SP-2 at the Cor-
nell Theory Center. The sample output in Fig. B.7 shows the program result, and some
profile information on node 0. The actual output includes profiling information for var-
ious idle periods when the node is idle, and this sequence is repeated for all 32 nodes
that participated in the execution. An explanation for the profile statistics is provided in
Appendix C.

201

O:###% Start (32 nodes, dual)

0:£ib(33) = 5702887

0:ELAPSED Time is 31.467594 s

0:### Elapsed time: 31.468582 s

R PROFILING DATA for 0/32 --=e-==--
0:Tokens consumed: 4317400

0:Tokens generated: 4894583

0:Threads running: 20040574

of balancing activities: 1154366

:# of requests sent: 0

of requests received: 577183

of tokens sent: 577183

of tokens received: @

of remote communications: 808304

of idle periods: 12

Total idle time: 1435.0414 (1433.6824) us

a:
u.
0:
Q:
a:
0:
a.
Q:

Figure B.7: Sample Output for the Fibonacci - Fib(33) on 32 nodes

202

Appendix C

Profiling support in the EARTH
Runtime System

To monitor the performance of Threaded-C program execution, profile data is produced
along with the application output on all the nodes participating in the parallel execution.
This profiling support is based on a set of profiling parameters which account for the
runtime system behavior during program execution. The generated profile data roughly
falls into two categories': a breakup of the total elapsed time with regard to the execution
of application code and runtime system code; a count of the number of different individual
RTS operations in the execution of a Threaded-C program. This profile data is useful in
constructing a cost model for program execution on the EARTH RTS, and also identify
possible design areas (both within the RTS and the application) for further optimization.

The profile code is mainiy present in the files prof .hand pro£ . c. As may be noted
from the command-line options of the etcc (EARTH Threaded-C Compiler), the prof
option allows this profiling code to be linked in making the final executable. The profiling
data is declared in prof.h and initialized in prof . c. Throughout the RTS, whenever
a RTS operation is performed, relevant profile data is updated. The code to update this
data is conditionally compiled along with the rest of the RTS (based on whether the prof
option is included in the etcc command-line).

The profiling support is currently implemented on the EARTH-SP2 and the EARTH-Beowulf. The
breakup of the elapsed time is not currently available on the EARTH-Beowulf.

203

C.1 A Distribution of Total Elapsed Time

As the executable contains the object codes for both the Threaded-C application and the
runtime system, it is important to study a breakup of the CPU time spent executing the
application and implementing the runtime system functionality. Ideally the overheads
for supporting a multi-threaded environment are expected to be minimal, and this cannot
be overemphasized for fine-grain multi-threaded systems supporting non-blocking, non-
preemptive threads. Therefore, a breakup of the total elapsed time offers a chance to
make two important observations: application thread execution time versus time spent in
the runtime system; and the relative comparison between times spent on different services
offered by the runtime system. This comparison provides a detailed understanding of both
the application and the runtime system behaviors during program execution. Inferences
made from this study can be used to improve the application as well as the runtime system
design.

The timing function used in Threaded-C programs is etc_time (). This function
accesses the on-board timer and returns time in seconds with nanoseconds resolution®.
The cost of executing the etc_time () function is 113 nanoseconds (14 cycles) . The
minimum time that can be measured by this function is 238 nanoseconds (29 cycles).
With this resolution. it might not be possible to measure correctly the time taken by some
runtime system services which cost less than 29 cycles. However, this breakup is im-
portant in order to identify and categorize different runtime system services. Whenever a
timer with better resolution is available in the future, those runtime system services which
cannot be measured currently can be appended to provide a more realistic breakup of the
elapsed time.

The elapsed time might be divided into seven components. Fig. C.1 shows a typical
breakup of the CPU time on application and runtime system activities.

o Application Execution Time: Time spent executing application threads on a node.

o Thread Management Time: Time spent in spawning and supporting parallelism in
the form of threaded functions and threads. The thread management functions that
are considered here include parallel function invocation, filling thread specific data
structures (frame pointer), and context-switching. Parallel function invocation in-
volves the following items::

20n 120 MHz CPUs at the Cornell Theory center and the Argonne National labs (Quad), 1 cycle = 8.33
nanoseconds.

204

Thread Exacution Time
Thread Management Time
Thread Synchronization Time
Thread Scheduling Time
Load Balr Qverhead

Total idle Time

Polling Time

Figure C.1: A Breakup of Program Execution Time on 2 nodes - A Template

- Time spent in filling the parameter frame with arguments for child computa-
tions.

- Frame creation time.

— Frame filling time.

- Time spent in placing the child threaded functions in the ready queue or the
token queue.

The term context-switching between two threads is the time from the exit of the
first thread to the start of the second thread. Generally, context-switching between
threads is a a light-weight operation than switching between processes. In systems
that employ blocking multithreaded model, context-switching involves restoring
the machine state and restarting the stalled thread. In EARTH, threads are non-
blocking in nature, therefore when a thread exits there is no need to save the ma-
chine state. Context-switching here is as simple as an exit from a C function, and
starting another C function. This time difference between these two events is the
context-switching overhead between two threads. The total context-switching over-
head on a node depends on the context-switching time between two threads and the
total number of threads executed on a node.

205

Only context-switching overheads among the thread management functions above
can be measured with the current timer resolution.

Thread Synchronization Time:

Thread synchronization time in EARTH is the time spent on satisfying control and
data dependences between threads. There are no shared data structures because of
two reasons: the memory model is based on distributed memory; and threads are
non-blocking. Therefore the runtime system does not support any locks and this
eliminates the synchronization overheads due to shared data access. The thread
synchronization time in the runtime system consists of the the following compo-
nents:

~ Time spent in preparing for data communication, i.e. time spent in handlers
for sending data (this may include time spent in the network stack, until the
data is placed in the final send buffers).

- Time spent in invoking receiving handlers.

~ Time spent in local synchronizations (both communication-related and com-
putation related). This time includes the time spent in executing the handler
code and placing related threads in the RQ.

Each occurrence of thread synchronization costs less than 29 cycles, and therefore
is not instrumented in the runtime system.

Thread Scheduling Time:

The runtime system schedules an enabled thread at each thread boundary. An en-
abled thread is picked from one of the queues and dispatched for execution. The
runtime system initially checks the ready queue for an enabled thread. If the ready
queue is empty, it will schedule a thread from the token queue for execution. The
thread scheduling time is the time spent at each thread boundary looking for a thread
to start execution. Thread scheduling could not be measured with the current timer
function.

Load Balancing Time:

Time spent in executing load balancing related handlers and functions. The han-
dlers in the load balancer code access the two queues to add and remove tokens.

206

o [dle Time:

The time spent by the CPU waiting for work to arrive. At the thread boundary,
when the runtime system notices that both the ready and token queues are empty, it
switches on the idle time counter and starts the load balancer. The idle time counter
is switched off, when work arrives at the node, or work is generated on this node
itself.

¢ Polling Time:

The runtime system polls the network at every thread boundary. The network is
also polled if a POLL statement is used in the Threaded-C program. This does not

include the polling time initiated by the ioad balancer, which is masked under idle
time.

C.2 Profile Data

A list of the items collected under the profile data is provided below.

o Application Elapsed Time: The total time for the execution of the application, from
the start of first thread on node 0, till the end of execution of last thread in the
application.

e Tokens Consumed: The number of tokens consumed on this node.

o Local Tokens Consumed: The number of locally generated locally consumed to-
kens.

o Tokens Generated: The number of tokens generated on this node (by executing the
function call etc_token).

e Threads Running: The number of threads executed on this node. It may be noted
that the number of threads may not equal the number of tokens (the former is gen-
erally higher).

o Number of Balancing Activities: The total number of dynamic load balancing ac-
tivities during the execution. This is the number of load balancing related commu-
nication activities (does not include the CPU time spent on load balancing).

207

No. of Load Balancing Activities = No. of Requests Sent + No. of Requests
Received + No. of Tokens Sent + No. of Tokens Received

- Number of Requests Sent. The number of requests for tokens sent by the load
balancer on this node to remote nodes.

— Number of Requests Received: The Number of requests received by this node
from remote nodes.

—~ Number of Tokens Sent: The number of tokens sent by the load balancer on
this node to remote nodes (maybe as response to earlier received requests or
because of the sender/hybrid policy of the load balancer).

— Number of Tokens Received: The number of tokens received on this node
(maybe as response to earlier sent requests, or because of sender/hybrid load
balancer policies like Snd, his, etc. or maybe because this node is an inter-
mediate node as part of the logical ring topology, while the token is on its way
to destination).

o Number of Remote Communications: The total number of remote communications
involved in implementing global memory management in remote memory access,
synchronization, and spawning of threads etc_spawn. These are the commu-
nication activities spent in ensuring that certain RTS operations are performed at
designated nodes, i.e. the intermediate message transfers until the message reaches
the destination node (for the relevant handler to be invoked to implement the RTS
operation). These communications don’t include those required in implementing
INVOKE and TOKEN and load balancing operations.

o Extra Tokens: Number of tokens received on a rich node. This count highlights the
accuracy of the location policy of the balancer. It also helps focus on the accuracy
of load state information and useless load-balancing during program execution.

e Total Idle Time: The total time that this node has been idle, i.e. without any ap-
plication threads to execute. When a node has no threads to execute (both Ready
Queue and Token Queue empty), it idles while polling the network.

e Number of Idle Periods: The number of idle periods throughout the application
execution, that sum up to make the total idle time.

208

e [dle Period Type: The idle periods are of two types - application and balancer.
A thread may be ready for execution in two ways - a token may be received as
response for request sent earlier, or a token may be generated on this node itself. If
the token is received as a result of load balancing, then the idle period is classified
as balancer related idle period, whereas if the token is generated locally, the idle
period is called application idle period.

e Idle Period: A time interval, indicating the start and end of each idle period. A set
of such intervals are shown for all idle periods.

o Balancer Idle Time: Total balancer related idle time. It is a sum of all the time spent
during balancer idle periods.

209

Appendix D

EARTH on Different IBM SP
Installations

D.1 EARTH-SP at CACR, Caltech

The EARTH-SP2 (EARTH on RS/6000 [BM SP-2 system) at CACR!, has 9 nodes
(Power2 CPU) running at different individual clock speeds of 67MHz, 77MHz, and 135
MHz respectively. The L1 cache is of 32KB, L2 cache is 2 MB, and memory is of either
128MB or 512MB, depending on the node’s classification. Network interface is through
the tb-3 card. The point-to-point peak bandwidth on the 135MHz wide nodes is rated at
90.41MB/s and one way node-to-node latency is approximately 19 us. The performance

of EARTH on this platform is shown in Figures D.1, D.2, D.3 and D 4.

Operation Local Seq. | Remote Seq. | Local Pipe. | Remote Pipe. |
Sync Thread: 661ns | 2092lns | (78ns 3147 ns
Spawn Thread: | 639 ns 20888 ns NA NA

Read Word: 762 ns 41031 ns 241 ns 5563 ns
Write Word: 689 ns 41011 ns 201 ns 5642 ns
Fun. Call (1): 1445 ns 42165 ns 922 ns 6183 ns
Fun. Call (5): 1528 ns 43045 ns 986 ns 6879 ns
Fun. Call (9): 1631 ns 43141 ns 1060 ns 6917 ns
Fun. Call (18): | 1686 ns 43225 ns 1154 ns 6527 ns

Table D.1: Overhead costs for EARTH operations on EARTH-SP2 (CACR)

Uhttp:/fwww.cacr.caitech.edu/resources/sp2/

210

EARTH Operation Local Operation Remote Operation
EU Costs Local Costs | Remote Costs

SYNC D 140 ns 2349 ns 896 ns
SPAWN 138 ns 2061 ns 1009 ns
END_THREAD 456 ns NA NA
INCR_.SYNC 159 ns 1921 ns 898 ns
DATA_SYNC 163 ns 1920 ns 1127 ns
GET_SYNC 165 ns 1720+168S ns 3143 ns
INVOKE(1) 117 ns 1901 ns 1101 ns
END_FUNCTION(!) 567 ns NA NA
INVOKE(S) [1lns 1684 ns 1213 ns
END_FUNCTION(S 646 ns NA NA
INVOKE(9) 120 ns 1952 ns 1194 ns
END_FUNCTION(9) 691 ns NA NA
INVOKE(18) 152 ns 1842 ns 1265 ns
END_FUNCTION(18) 702 ns NA NA

Table D.2: Overhead for Threaded-C instructions on EARTH-SP2 (CACR)

Operation Local Remote
Overhead | Throughput | Overhead | Throughput |
DATA_SYNCB | 249 ns/op | 4.02 MB/s | 5632 ns/op | 0.18 MB/s
DATA _SYNC.S | 240 ns/op | 8.33 MB/s | 5616 ns/op | 0.36 MB/s
DATA_SYNC.L | 228 ns/op | 17.55 MB/s | 5591 ns/op | 0.72 MB/s
DATA_SYNC.D | 212 ns/op | 37.74 MB/s | 5454 ns/op | 1.47 MB/s
GET_SYNCB | 286 ns/op | 3.50 MB/s | 5615 ns/op | 0.18 MB/s
GETSYNC.S | 287 ns/op|{ 6.97 MB/s | 5614 ns/op | 0.36 MB/s
GETSYNCL | 272ns/op | 14.72MB/s | 5620 ns/op | 0.71 MB/s
GET_SYNCD | 296 ns/op | 27.01 MB/s | 5475 ns/op | 1.46 MB/s

Table D.3: Overhead costs for GET_SYNC operation on EARTH-SP2 (CACR)

211

Align Local Remote

Single Dual Single Dual
0 230.06 MB/s | 230.99 MB/s | 90.41 MB/s | 98.04 MB/s
16 230.63 MB/s | 230.61 MB/s | 90.21 MB/s | 97.61 MB/s
8 227.89 MB/s | 229.67 MB/s | 89.71 MB/s | 96.19 MB/s
4 229.84 MB/s | 230.11 MB/s | 91.29 MB/s | 97.44 MB/s
I 216.74 MB/s | 217.38 MB/s | 91.78 MB/s | 97.35 MB/s

212

Table D.4: Bandwidth for Blockmove operations on EARTH-SP2 (CACR)

D.2 EARTH-SP at Argonne National Labs

D.2.1 IBM SP3-Quad

The performance of the EARTH multithreaded environment on the IBM SP3 (Quad)® at
the Argonne National Labs is reviewed here. The configuration of this platform is as
follows: 80 node RS/6000 workstations, each single processor node running the P2SC
CPU at 120 MHz. The tb-3 card is the network switch interface with a a peak bandwidth
of 150 MB/s. Each node has 256 MB main memory, 256 KB cache and total disk space
of 9 GB.

The latencies and overheads associated with EARTH operations are shown in Fig-
ures D.5,D.6,D.7 and D.8.

EARTH Operation Laocal Operation Remote Operation
EU Costs Local Costs Remote Costs

SYNC 10441 ns 2526.86 ns 1723.87 ns
SPAWN 121.59 ns 2361.79 ns 2926.71 ns
END_THREAD 120591 ns NA NA
INCR_.SYNC 175.96 ns 2362.96 ns 1730.98 ns
DATA_SYNC 145.84 ns 232496 ns 1834.14 ns
GET.SYNC 393.61 ns 2566.51+2229.79ns | 4491.60 ns
INVOKE(]) 129.12 ns 3229.34 ns 4033.40 ns
END_FUNCTION(1) 1353.34 ns NA NA
INVOKE(5) 121.88 ns 3040.48 ns 3786.50 ns
END_FUNCTION(S) 1421.65 ns NA NA
INVOKE(9) 139.06 ns 337481 ns 4158.61 ns
END_FUNCTION(9) 1485.84 ns NA NA
INVOKE(18) 157.78 ns 3825.99 ns 4730.58 ns
END_FUNCTION(18) 1529.01 ns NA NA

Table D.5: Overhead for Threaded-C instructions on EARTH-SP2 (Quad)

D.22 IBMSP2

This section documents the performance of the EARTH-SP2°. The performance figures
shown in Figures D.9, D.10, D.11 and D.12, are based on the SP2 machine with 56 nodes

*hitp://www-fp.mcs.anl.gov/computing/machines/quad/
3Located at Argonne National Laboratories, Portland, USA

213

| Operation Local Seq. | Remote Seq. | Local Pipe. | Remote Pipe.
Sync Thread 1436.26 ns | 24967.18ns | 200.37 ns 3914.76 ns
Spawn Thread | 1404.437 ns { 25354.698 ns NA NA
Read Word 1593.722 ns | 47804.368 ns | 267.105ns | 6863.099 ns
Write Word 1443.896 ns | 47833.272ns | 239.688 ns | 6614.358 ns
Fun. Call (1) | 3236.203ns | 51388.782 ns | 1735.278 ns | 7882.220 ns
Fun. Call (5) | 3086.590 ns | 52467.688 ns | 1825.649 ns | 8404.783 ns
Fun. Call (9) | 3179.877 ns | 52709.572 ns | 1902.766 ns | 8733.468 ns
Fun. Call (18) | 3247.824 ns | 54818.314 ns | 2001.446 ns | 9029.014 ns

Table D.6: Overhead costs for EARTH operations on EARTH-SP2 (Quad)

Operation Local Remote
Overhead | Throughput | Overhead | Throughput
DATA_SYNC.B | 271.00 ns/op | 3.68 MB/s | 6538.00 ns/op | 0.15 MB/s
DATA_SYNC.S | 273.00 ns/op | 7.34 MB/s | 6601.00 ns/op | 0.30 MB/s
DATA_SYNC_L | 260.00 ns/op | 15.37 MB/s | 6576.00 ns/op | 0.61 MB/s
DATA_SYNC.D | 241.00 ns/op | 33.22 MB/s | 6378.00 ns/op | 1.25 MB/s
GETSYNCB | 321.00ns/op | 3.11 MB/s | 6831.00 ns/op | 0.15 MB/s
GET_SYNC.S | 324.00 ns/op | 6.18 MB/s | 6535.00 ns/op | 0.31 MB/s
GET.SYNC.L | 311.00ns/op | 12.85 MB/s | 6512.00 ns/op | 0.61 MB/s
GET.SYNC.D | 339.00 ns/op | 23.63 MB/s | 6976.00 ns/op | 1.15 MB/s

Table D.7: Overhead costs for GET.SYNC operation on EARTH-SP2 (Quad)

running at 62.5MHz, 128 MB memory, and an instruction/data cache of 32 KB each.
The tb-2 card provides the network interface. Peak point-to-point bandwidth is 35 MB/s,
and one way node-to-node latency is 30 microsecs. Access to this platform is no more

Align Local Remote

Single Dual _Single Dual
0 163.58 MB/s | 166.40 MB/s | 45.98 MB/s | 47.97 MB/s
16 | 165.47 MB/s | 166.27 MB/s | 46.72 MB/s | 47.75 MB/s
8 166.19 MB/s | 166.56 MB/s | 46.49 MB/s | 48.16 MB/s
4 166.79 MB/s | 163.92 MB/s | 86.95 MB/s | 90.22 MB/s
1 165.34 MB/s | 166.44 MB/s | 86.02 MB/s | 88.97 MB/s

Table D.8: Bandwidth for Blockmove operations on EARTH-SP2 (Quad)

214

available.

The portable Threaded-C programs implemented to obtain the timing information of
various EARTH operations are the same as those, described in ??. The performance is
relatively better on the EARTH-SP2*, than on the EARTH-SP2 reviewed here, because of
faster clock speed, less network latency, and larger memory on the former, not withstand-
ing the lack of homogeniety among it’s nodes.

EARTH Operation Local Operation Remote Operation
EU Costs Local Costs | Remote Costs

SYNC 301 ns 2486 ns 1895 ns
SPAWN 460 ns 2530 ns 2031 ns
END_THREAD 992 ns NA NA
INCR_SYNC 334 ns 2496 ns 1864 ns
DATA_SYNC 427 ns 2849 ns 2282 ns
GET_SYNC 550 ns 2664+2796 ns 4527 ns
INVOKE(1) 413 ns 3167 ns 2736 ns
END_FUNCTION(1) 1402 ns NA NA
INVOKE(S) 506 ns 2993 ns 2468 ns
END_FUNCTION(S) 1603 ns NA NA
INVOKE(9) 503 ns 2897 ns 2571 ns
END_FUNCTION(9) 1789 ns NA NA
INVOKE(18) 611 ns 3732 ns 2849 ns
END_FUNCTION(18) 1982 ns NA NA

Table D.9: Overhead for Threaded-C instructions on EARTH-SP2 (ANL)

“Located at CACR, Caltech, USA

215

Operation Local Seq. | Remote Seq. | Local Pipe. | Remote Pipe.
Sync Thread 1773 ns 28699 ns 464 ns 4047 ns
Spawn Thread | 1561 ns 28595 ns NA NA
Read Word 2156 ns 56742 ns 690 ns 7249 ns
Write Word 1934 ns 56121 ns 609 ns 7077 ns
Fun. Call (1) 3863 ns 60094 ns 2365 ns 8364 ns
Fun. Call (5) 4102 ns 60713 ns 2603 ns 8593 ns
Fun. Call (9) 4354 ns 61077 ns 2863 ns 8761 ns
Fun. Call (18) | 4853 ns 63651 ns 3325 ns 9659 ns

Table D.10: Overhead costs for EARTH operations on EARTH-SP2 (ANL)

Operation Local Remote
Overhead | Throughput | Overhead | Throughput
DATA_SYNCB | 810 ns/op | 1.24 MB/s | 7071 ns/op | 0.14 MB/s
DATA_SYNC.S | 817 nsfop | 2.45MB/s | 7101 ns/op { 0.28 MB/s
DATA_SYNC_L | 811 ns/op | 493 MB/s | 7066 ns/op | 0.57 MB/s
DATA_SYNC.D | 918 ns/op | 8.7l MB/s | 7156 ns/op | 1.12 MB/s
GET.SYNCB |89%0nsfop| [.12MB/s | 7095 ns/op | 0.14 MB/s
GET.SYNC.S | 896 ns/op | 2.23 MB/s | 7081 ns/op | 0.28 MB/s
GET.SYNC.L | 908 ns/op | 440 MB/s | 7088 ns/op | 0.56 MB/s
GET.SYNCD | 967 ns/op | 8.28 MB/s | 7159 ns/op | 1.12 MB/s

Table D.11: Overhead costs for GET_.SYNC operation on EARTH-SP2 (ANL)

Align Local Remote

Single Dual Single Dual
0 69.96 MB/s | 69.93 MB/s | 34.09 MB/s | 39.46 MB/s
16 69.83 MB/s | 69.88 MB/s | 34.09 MB/s | 39.23 MB/s
8 69.83 MB/s | 69.75 MB/s | 34.12 MB/s | 39.72 MB/s
4 71.16 MB/s | 71.16 MB/s | 32.90 MB/s | 33.69 MB/s
1 66.32 MB/s | 66.29 MB/s | 32.65 MB/s | 33.65 MB/s

Table D.12: Bandwidth for Blockmove operations on EARTH-SP2 (ANL)

216

Appendix E

Additional Experiments

Benchmark Dual | Spn | Shis | Snd | His | Range | Catapult | Rand |
Fibonacci(33) 0.807 | 0.86 | 9.82 26 OF 0.93 092 | 0.809
Queens(12) 0.28 | 0.17 | 468 | 5.04 | 0.18 0.2 OF 0.23
TSP(10) 04 | 028 | 7.76 | 865 | 0.29 0.29 0.28 0.32
Knary(7, 7,2) 213 | 093 | 2476 | 1.037 | 091 094 0.95 091
Knary(2,512,0) 0.053 [0.013 | 0.17 | 0.171 ; 0.0067 | 0.013 NA 1 -
Matrix(1024X1024) | 70.31 | 49.53 | 293.79 | 17.52 | 12.2]1 | 14.66 | 6342 | 16.96
Tomcatv(257) 245 | 1.78 OF OF 0.54 OF OF 5.6
SPMD(1,1,0) 025 | 016 | 0.68 | 0.08 | O.I1 0.1 0.63 0.15
SPMD(4,4,0) 1.9 | 0.72 14 0.63 | 0.86 1.27 I3 0.79
Paraffins(28) 742 | 669 | 104.1 | 1233] 6.72 6.75 NA 6.65

Table E.1: Overview of Results. Elapsed times in seconds are shown for different bench-
marks belonging to the recursive (divide-and-conquer), regular and irregular program-
ming models against various dynamic load balancers belonging to the receiver-initiated,
sender-initiated and hybrid categories. Measurements are based on 32 node runs. The
elapsed times do not include profiling overheads. Table 5.1 shows elapsed times with

profiling effects

217

LBenchmark Dual | Spn | Shis | Snd | His | Range | Catapult | Rand
Fibonacci(33) 1 3 6 7 8 5 4 2
Queens(12) 5 1 6 7 2 4 8 3
TSP(10) 6 1 7 8 4 3 2 5
Knary(7, 7,2) 6 4 7 8 1 3 2 5
Knary(2,512,0) 512167 1] 3 g 3
Matrix(1024X1024) | 8 | 3 | 5 | 8 | 8 | | 2 2
Tomcatv{257) 4 3 8 8 2 1 8 5
SPMD(1,1,0) 5 3 7 8 I 4 6 2
SPMD(4.4,0) 5 1 8 7 3 4 6 2

[Paraffins(28) 5 21617]3] 4 g 1
Average 5 23166 |75 (33| 32 59 28
Rank 5 1 7 8 4 3 6 2

Table E.2: Relative ranking of the different balancers based on their performance as
shown in Table E.1

it
gFey
\

]
il

[VOO VN VI S SPY P

A

L
(a) Fibonacci(28) (b) Fibonacci(30)

Figure E.1: Relative Speedups of different balancers for Fibonacci

jigy

Hil

7z

e e b — |

a s o 3 » £ » =

(a) Fibonacci(33) (b) Fibonacei(35)

Figure E.2: Relative Speedups of different balancers for Fibonacci

218

(0) Paraffins(22) (b} Paraffins(24)
Figure E.3: Relative Speedups of different balancers for Paraffins

~——— Spn
——— S
wpj —~e— Ha
—o— Rand
ut
I
4
-y
[+ 2
= X . - - =

(a) Paraffins(26) (b) Panfins(28)
Figure E.4: Relative Speedups of different balancers for Paraffins

219

