
INFORMATION TO USERS

This manuscnpt has been reproduced from the miaofilm master. UMI films

the text directly from the original or copy submitted. Thus 9 sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submittecl. Broken or indistinct print coIored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Aise, if unauthorized

copyright malerial had to be removed, a note Will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left ta right in squal sections with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quarlty 6- x 9- black and white

photographie prints are available for any photographs or Dlustrations appearing

in this copy for an additional charge. Contact UMI directly to arder.

ProQuest Information and leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

DYNAMIC LOAO BALANCING ISSUES

IN THE EARTH RUNTIME SYSTEM

by

Kamala Prasad Kakulavarapu

School ofComputer Science

McGill University, Montréal

Québec, Canada

December 1999

A THESIS SUBMITTED TC THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF niE DEGREE OF

MASTER OF SCIENCE

Copyright © 1999 by Kamala Prasad KakuIavarapu

1+1 NationalLJbrary
ofC8nada

Acquisitions and
Bibliographie SeNices

395 wellngton S1r8et
OtIawa ON K1A 0N4
canada

Bibüothèque nationale
duC8nada

Acquisitions et
services bibrlOgraphiques

395. rue Welingtan
0tIawa ON K1A QN4

Canada

The author bas granted a Don
exclusive licence allowing the
National Ltbrary ofCanada to
reproduce, loan, distnbute or sen
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownersbip ofthe
copyright in tbis thesis. Neither the
thesis nor substantial extracts nom it
may be printed or otherwise
reprodoced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distnbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse..
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64378-6

Canadl

•

•

•

Abstract

Multithreading is a promising approach to address the problems inherent in multiproces

sor systems~ such as network and synchronization latencies. Moreover, the benefits of

multithreading are not limited to loop-based algorithms but apply also to irregular paraI

lelism. EARTH - Efficient Architecture for Running THreads, is a muitithreaded model

supporting fine-grain, non-preemptive threads. This model is supported by a C-based

runtime system which provides the multithreaded environment for the execution of con

current programs.

This thesis describes the design and implementation of a set of dynamic load balanc

ing algorithms, and an in-depth study of their behavior with divide-and-conquer~ regular~

and irregular classes of applications. The results described in this thesis are based on

EARTH-Sn, an implementation of the EARTH program execution model on the IBM

SP-2, a distributed memory multiprocessor system. The main results of this study are as

follows:

• A randomizing load balancer with both sender and reœiver components using

global load state information provides scalable, robust performance for recursive

and irregularapplications. Furthermore, a randomizing algorithm performs the best

as long as the cost ofcomputing the random number does not dominate the overall

time of thread execution.

• Load state information outperforms history information for itTegular and recursive

applications. However for regular applications, history information is more prefer

able.

• A purely sender-initiated algorithm is the best choice in two scenarios: barrier

synchronized applications., and very fine-grain applications at low input worldoads.

• A simple, work-stealing load balancer is preferable for applications with modest

thread granularities., and very low workloads.

ü

•

•

•

Other major contributions include:

• Description ofaruntime system for anon-blocking. non-preemptive multi-threaded

programming model.

• A detailed analysis ofcosts associated with EAlUH operations., and a comparative

study of EARTH performance on three different platforms.

• Proposai ofa new classification scheme for multi-threaded systems. This is supple

mented by an extensive literature survey.

ili

•

•

•

Résumé

IA:s systèmes concurrents à fil d'exécution multiple représentent une approche promet

teuse dans la résolution des problèmes tels que les réseaux ou les latences dûes à la syn

chronisation inhérents aux systèmes multi·processeurs. De plus, les bénéfice des systèmes

concurrents à fil d'exécution multiple ne sont pas limités aux algorithmes basés sur des

boucles mais touchent également le parallélisme irrégulier. EARTH, une architecture ef·

ficace pour exécuter des fils d'exécution, est un modèle à fil d'exécution multiple qui

supporte des fils d'exécution non-préemptifs et à forte granularité. Ce modèle est struc·

ture autour d'un environnement d'exécution basé sur C qui fournit aux systèmes à fil

d'exécution multiple la possibilité d'exécuter un programme concurrent

Cette thèse décrit la conception et la réalisation d'un ensemble d'algorithme dy

namique de répartition de charge, ainsi qu'une étude approfondie de leur comportement

sur des classes d'applications régulières, irrégulières ou basées sur la notion de la division

pour conquérir. Les résultats décrits ici sont basés sur EARTH-SP2, une réalisation du

modèle d'exécution de programme de EARTH sur une machine IBM SP-2, un système

multi-processeur à mémoire distribuée. Les principaux résultats de cette thèse sont les

suivantes:

• Un répartiteur de charge aléatoire, avec un émetteur et un récepteur utilisant

l'information de l'état de charge globale, fournit des performances robustes et

évolutives pour des applications récursives et irrégulières. De plus~ un algorithme

aléatoire est le meilleurpour autant que le coût pourcalculer le nombre aléatoire ne

domine pas le temps d'exécution d'un fil d'exécution.

• L'information de rétat de charge est meilleure que l'historique pour les applications

irrégulières et récursives. Par contre pour les applications régulières, l'historique

est préférable•

• Un algorithme initié seulement par l'émetteur est le meilleur choix pour deux

iv

•

•

•

scénarios: les applications synchronisées par barrière et les applications à forte

décomposition travaillant sur des entrées peu consommatrice en ressource.

• Un répartiteur de charge ·'voleur de tâche" est préférable pour les applications avec

des fils d~exécution de ganularité moyenne et des faibles charges.

Les autres contributions de cette thèse incluent:

• La description d'un environnement d'exécution pour un modèle de programmation

à fil d'exécution multiple, non bloquant et non préemptif.

• Un analyse détaillée des coûts associés aux opérations exécutées sous EARTH

et une étude comparative des performances de EARTH sur trois plaûormes

différentes.

• La proposition d'une nouvelle méthode de classification pour les systèmes à fil

d'exécution multiple, le tout augmenté d'un vaste survol de l'état de l'an.

v

•

•

•

Acknowledgements

It was a typical summer aftemoon in Montréal. 1was going to meet Prof.. Guang R. Gao

for the first time, two months after he agreed to he my external supervisor. After an hour,

1was convinced that he is in a hurry to change the world. Today, 1am happy to he part of

the changed world. 1am grateful to Prof. Gao for giving me the opportunity to work in the

EARTH projec~ and for his constant motivation and support. 1thank him for arranging

my visil to the CAPSL Lab al the University ofDelaware, where 1could complete a major

portion of this thesis. My discussions with him always helped me understand the issues

better, and have elevated the contents of this thesis immeasurably. From my association

with mm, 1have leamt a lot both in research, and in reallife..

1 am fortunate ta bave worked with Or.. Olivier Maquelin. Olivier introduced me to

multithreading, answered my questions 00 the EARTH runtime system, and guided me

in modeling dynamic load balancer behavior in the EARTH system. This thesis drew

immensely from bis work on the EARTH runtime system.. [sincerely appreciate the

interest he showed io my career, and bis patience with my learning curve. Throughout

this thesis, he has becn a tremendous source of inspiration, and 1 value bis advice on

research and professional skills. Olivier is very hard to emulate, but 1will try.

1sincerely thank Prof. Laurie JOo Hendren for the financial support despite knowing

me only as a former ACAPS lab member. Laurie's kind consideration bas helped me a lot

during the crociallast semester of my thesis.

Or. Ruppa K.. Thulasiram. has been my mentor during my stay al the CAPSL lab. He

was always patient to listen to my wild ideas, and offer comments which significantly

affected the quality of this thesisOo His remarks on the lime requirements of this thesis, and

his motivation have helped me work hard ta complete my thesis in lime.

It has been my pleasure ta know personally Or. Kevin B. Theobald. l learnt from

his experience on the EARTH project, and his remarks about thesis preparation. l thank

him for providing me access ta the CAPSL computer systems, and for Many quick hacks

vi

•

•

which made life before deadlines a littIe less unpleasant. Outside office, he was lots fun

to hang around with, and 1will miss the dinner routine.

Dr. José Nelson Antara! made a big impact on my technical writing skilIs. 1 have

learnt from him better ways ta organize ideas, and to present issues in a cIear, coherent

manner, though 1admit 1still have a long way to go. 1have enjoyed our collaboration on

different papers based on contents of this thesis.

This thesis would not have been possible if not for the efforts of former and cur

rent members of the ACAPS lab, MeGill University, and the CAPSL Lab, University of

Delaware. Dr. Olivier Maquelin has implemented the Threaded-C preprocessor and the

runtime system. The benchmarks used in this thesis to analyze overheads and lateneies of

multithreaded operations are aIso part of his work. 1thank Dr. Xinan Tang for painting us

the paper on the supermarket model, which convinced us to go ahead with the randomiz

ing balancer in this thesis. Andres Marquez did an excellent job of presenting our paper

on dynamie load balancing at a workshop in Orlando on our behalf. My discussions with

Parimala Thulasiraman on Threaded-C programming, and distributed algorithms were

very educative. Christopher Morrane is another runtime system persan in the group. and

we had very interesting discussions about impIementation issues of the runtime system.

1 thank Kevin Theobald, and Chris Morrone for performing sorne experiments on the

MANNA and the Beowulf systems which are used for comparative performance in this

thesis. ChrisIain Razafimahefa translated the abstraet into French in a very short time.

While perfonning my thesis research at two Universities enriched my experience, it

aIso brought with it quite a few personal down-times. l am fortunate ta have friends who

helped me in these situations with moral, financial, and logistical support. Parimala and

Thulasi were always there to help me. They were instrumental in my maintaining my

sanity during many a trying times. Vijay Sundaresan is a great buddy, and 1appreciated

another cricket enthusiast for company. Besides cricket, Vijay was someone to whom l

could always turn tOt and he always surprised me with bis quick and wholesome support.

1enjoyed our long conversations, and heated debates about everything from academics

to cricket teams. 1 had a great time hanging around with Tripat Gill. Tripat is an artist

at drinking coffee, and no doubt we spent most of our lime in coffee shops. l appreciate

his support in more ways than 1can count. Chrislain Razafimahefa provided the soccer

connection. 1could appreciate the significance of World Cup Soccer ta this planet after

watching him at work on an unrepentant television. He is a very understanding and gen

erous friend. Mike Soss and Tallman were great office mates, and completed the buffet

vii

•

•

gatherings. Kunal and Rashmi Gupta are great friencls, and 1can never forget their as

sistance in my initial days in North America. Danielle Azar is my officemate and helped

me in many ways a friend and an officemate could do. Next time, 1should remember to

leave the key on her desk. Charles Abety helped me during thesis submission time, and

it made a crucial difference. l appreciate the friendship and support of Krishna Mohan,

Hari, Suresh, Balaji, and Srinivas; taIking to them always made me feel gooet

Special thanles are due ta Sean Ryan, and Danielle Azar. Sean reviewed the technical

mernos that were part of this thesis and gave valuable comments that improved their

presentation. Danielle allocated more than a fair share of her busy schedule in reading

through the final thesis, and helped improve the quality of the presented thesis.

[acknowledge with gratitude the Comell Theory Center, ComeII University for allow

ing us access to their mM SP-2 system, on which the results in this thesis are based upon.

l thank the Argonne High-Perfonnance Computing Research Facility, and CACR, Caitech

for allowing us access to their mM SP-2 systems which helped us perfonn wide-ranging

experiments.

l could never hope ta reach this stage without the support ofFranca CiancL Franca was

very understanding, supportive, and super fast in her replies ta my not so uncomplicated

questions. 1am grateful for the support of Lise Minogue who made signing TA contracts

such a pleasure. 1 thank Lucy St-James for her patience and prompt addressal of my

administration related queries. [thank MarilYn Gombe for her help during my thesis

submission. l thank Vicki Keirl for providing me the facilities to complete my Masters

program.

Finally, [can never repay the debt to my family. They were enormously patient,

solidly supportive, and never ftinching in theirconfidence in me. 1am immensely grateful

ta my Parents for their love, support" and encouragement. They aIways gave me the

independence to pursue my choice, but aIse warked very hard to give me the strength to

face the world. In the past few months, my brother Sudhakar tumed out ta he a great

motivatar. 1can never thank them enough.

vili

•

•

To my Parents, for their boundIess love, support and encouragement

ix

•
Contents

Abstract

Résumé

Acknowledgements

ü

iv

vi

•

1 InbuductioD 1

l.i Background................................. 1

1.1.1 Parallel Job Scheduling .. 3

1.1.2 Dynamic Load Balancing 5

1.1.3 The EARTH System .. 8

1.2 Motivation.................................. 9

1.3 Problem Statement .. Il

1.4 Contributions .. 12

1.5 Thesis Organization 13

2 The EARTH Multithreading System 14

2.0.1 Current Implementations 16

2.1 Threaded-C.................................... 16

2.1.1 Programming Madel .. 17

2.2 Preprocessing Threaded-C 25

2.2.1 Global Addresses 26

2.2.2 Syne SIot 27

2.2.3 SLar..ADR................................. 28

2.2.4 Frame based Data Structures 28

2.2.5 INIT-SYNC 29

2..2.6 SPAWN 29

x

•

•

2.2.7 IN'VOKE .. 30

2.2.8 Frame Passing 31

2.2.9 Variable Parameter Passing. 32

2.2.10 Preprocessed Code for Fibonacci - Detailed Study 34

2.2.11 Sequential-CalI mechanism with CALL 36

2.2.12 Loops spread ovec Threads 40

2.3 The Runtime System .. 43

2.3.1 Context Switching .. 43

2.3.2 Scheduling ofThreads .. 44

2.3.3 Thread Execution by the Runtime System. 47

2.3.4 Dynamic Load Balancing 50

2.3.5 Network Layer .. 53

2.3.6 Common RTS core. .. 55

2.3.7 Architecture Specifie Code 57

2.3.8 Portability............................... 58

3 Dynamic Load Balancers in the EARTH Runtime System 60

3.1 Background.................................. 61

3.2 The Rand Balancer 62

3.3 Other Balancers 66

3.3.1 Receiver-Initiated Balancers 67

3.3.2 Sender-Initiated Balancees 67

3.3.3 Hybrid Laad Balancers .. 68

3.3.4 Performance Bound 68

4 Experimental Framework 70

4.1 Benchmarks.................................... 70

4.2 Performance Evaluation. .. 73

4.3 EARTH-SP Implementation 74

5 Performance ResnIts 76

5.1 OveralI Perfonnance 77

5.2 Rand Balancer. 82

5.2.. 1 Rand versus Minima 84

5.2.2 Scalability of Rand Balancer 86

xi

•

•

5.2.3 Parallel Efficiency 87

5.2.4 Overheads for Supporting a Multithreaded Environment 88

5.2.5 Distribution ofTotal Elapsed rime 91

5.2.6 Load State Information and Law Load Applications 96

5.3 The Rand Balancer - A Detailed Study 97

5.4 Other Balancers 105

5.5 Program Behavior. 107

5.5.1 Transition Point and Peak Point 107

5.5.2 Effect of Grain Size and Polling Interval 109

5.5.3 Effect ofWorkIoad 115

5.5.4 Effect of Application level Loacl Balancing 116

5.5.5 Token Distribution 118

6 EARTH Operations • A Performance Study 121

6.1 Overheads of Threaded-C Instructions 122

6.2 Latencies of EARTH Operations . 125

6.3 Data Communication 126

6.4 Blockmove Operations 128

7 A Comparative Performance Study of Fine-Grain Multi-threading on Dis

tributed Memory Machines 130

7.1 Execution Model versus Architecture Perfonnance 130

7.2 Hardware Platforms . 131

7.3 Latency of EARTH Operations . 132

7.4 Comparison of Application Performance 136

7.5 Performance Overview . 140

8 Related Work 141

8.1 Threading Models. 142

8.2 Software Multithreaded Systems . 143

8.2.1 Implementations of Multithreaded Systems 144

8.3 Language-Based Systems 148

8.3.1 The Cilk Multi-threaded Language 148

8.3.2 The Threaded Abstract Machine 150

8.3.3 The Dlinois Concert C++ Language • • • • . . • . . • • . 151

xii

•

•

8.3.4 The Java Programming Language 152

8.4 Library-Based Systems 154

8.4.1 Distributed Fùaments 154

8.4.2 The Opus Language 154

8.4.3 TPVM 155

8.4.4 Nano-Threads............................... 156

8.4.5 Active Threads 157

8.4.6 StacIcThreads............................... 157

8.4.7 Structured Threads • 158

8.4.8 DSM-Threads............................ 158

8.4.9 Ariadne................................ 159

8.4.10 Athapascan 160

8.5 Dynamic Load Balancing 160

Bibliography 188

A EARTH Primitives in Tbreaded-C 189

A.I Threads and Functions 189

A.2 Thread Synchronization . 190

A.3 Data Transfer Primitives 192

A.4 Global Address Support. 193

B Putting it ail Together 194

B.l Parallel Execution 194

B.2 Invoking a Local Function 195

B.3 Execution of a Remote GET-SYNC-L 196

B.4 Run-Time System Directory 197

B.5 Running Threaded-C Programs 199

C Profiling support in the EARTH Rontime System 203

C.I A Distribution ofTotal Elapsed Time. 204

C.2 Profile Data 207

o EARTH on Different mM SP Installations 210

D.I EARTH-SP atCA~Caltech 210

D.2 EARTH-SP at Argonne National Labs 213

xiii

• 0.2.1 mM SP3 - Quad 213

0.2.2 mM sn 213

•

E Additional KTPerïments

xiv

217

•

•

List of Figures

1.1 Performance of different balancers for Fibonacci(28). 10

2.1 Translation Sequence ofThreaded-C code 15

2.2 Thread States 17

2.3 ParaIlel Function Invocation in Fibonacci Program 19

2.4 Activation Tree for Fib(4) . • . . • • . . . • • • 20

2.5 A Generic Activation tree for a Threaded-C program. 21

2.6 Threaded-C version of Vector Addition 22

2.7 A Node in Activation Tree with a Spawn Construct 22

2.8 A Node in Activation Tree for Vector Addition 23

2.9 Runtime Systemts view with Activation Frames for fib(3) 24

2.10 Type definition to represent a Global pointer and the preprocessed code

for TO_GLOBAL • • • 26

2.11 Type definition for Sync SIot 27

2.12 Structures generated for Frame-passing 28

2.13 Preprocessed code for SPAWN(I) 29

2.14 Preprocessed code for INIT-SYNC and INVOIŒ 30

2.15 Frame passing among 2 threads of Fibonacci fonction 33

2.16 Pre-processing ofCALL instruction 39

2.17 Pre-processing of While Loop spread over Threads 41

2.18 Internai Queues in the EARTH RTS 45

2.19 A Sample Activation Tree. .. 46

2.20 RTS activity at Polling 49

2.21 The dual., snd and range Ioad balancers 53

2.22 Send routines for Active Messages 55

2.23 Invoking handler for Sync Operation 56

2.24 HandIer for Sync operation 57

xv

•

•

5.1 Perfonnance comparison between Minim~ Nop and other Balancers of

different balancers.. 86

5.2 Performance comparison between Minim~ Nop and other Balancers of

different balancers.. 86

5.3 Absolute and Relative Speedups for Fibonacci(33) 87

5.4 Absolute and Relative Speedups for Queens(12) 88

5.5 Absolute and Relative Speedups for Traveling Saiesman Problem(10) .. 88

5.6 Relative Speedup for Knary(7,7,2) 89

5.7 Relative Speedup for Knary(2,512,O) 89

5.8 Absolute and Relative Speedups for Matrix(l024XI024) 90

5.9 Absolute and Relative Speedups for Tomcatv(257) 90

5.10 Relative Speedup for SPMD(I ,1,0) 91

5.11 Relative Speedup for SPMD{4,4,0) .. 91

5.12 Absolute and Relative Speedups for Paraffins(28) 92

5.13 Scalability Test for Queens(l2) 92

5.14 ScalabiIity Test for Queens(l2) 93

5.15 Parallel Efficiency 93

5.16 ParalleI Efficiency for Paraffins(28) 94

5.17 A Distribution of Elapsed Time for Fibonacci(33) on 8 nodes 94

5.18 A Distribution ofElapsed Time for Fibonacci(33) with Rand Balancer 00

8 nodes 96

5.19 A Distribution of EIapsed Time for Queens((2) on 8 nodes 96

5.20 A Distribution of Elapsed Time for Queens((2) on 8 nodes 97

5.21 A Distribution of Elapsed Time for Knary(7,7,2) on 8 nodes 97

5.22 A Distribution ofElapsed Time for Knary(7,7,2), Rand Balancer on 800des 98

5.23 A Distribution of Elapsed Time for SPMD(4,4,O) on 8 nodes 98

5.24 A Distribution ofElapsed Time for SPMD(4,4,O) on 8 nodes 99

5.25 A Distribution of Elapsed Time for Paraffins(28) on 8 nodes 99

5.26 A Distribution of EIapsed Time for Paraffins(28) 00 8 nodes 99

5.27 Distribution ofEIapsed Tune for Fibonacci(6) 100

5.28 Distribution ofEIapsed lllIle for Fibonacci(6) 100

5.29 Performance of Queens(12) whiIe varying the oumber of random probe

destinations 102

xvi

•

•

5.30 Effect of Load balancing with Rand Balancer. Load balancing threshold

is varied in the balancer. 102

5.31 Performance of different randomizing policies 103

5.32 Performance of different randomizing policies 104

5.33 Performance of different randomizing policies 104

5.34 Effect of Infonnation policy in the Rand balancer 105

5.35 Relative performance of balancers at low workloads (a)Low loads9 very

fine grain threads (b) Low Ioads, grain size l00ps, polling interval 50ILS • 105

5.36 Comparision of speedup against overheads with the increase in the num-

ber of Nades for Fibonacci 108

5.37 A comparision ofTransition points fordifferent balancers for Fibonacci((2).108

S.38 Peak performance points for Fibonacci(12) 109

5.39 Peak performance points for Fibonacci(12) 109

5.40 Performance comparision at low loads at polling interval of SOJLS for

Knary(3 93,O).. 110

5.41 Relative Speedup with grain size 200~s 110

5.42 Relative Speedup for Knary(2,SI2,O) III

5.43 Performance of Knary(2,512,O) for different grain sizes III

5.44 Performance of Knary(4,4,O) and Knary(7,7,2) 112

5.45 Performance of Knary(4,4,O) and Knary(7,7,2) 112

5.46 Performance of SPMD(3,3,O) at polling interval of 50 ~s 113

5.47 Performance of SPMD(3,3,O). (a) Polling Interval 50 p.s (b) Polling In-

terval 1()() p.s 113

5.48 Performance of SPMD(3,3,0). (a) Polling Interval 150 ILS (h) Polling In-

terval 25 Ils . . • • • • • 114

5.49 Performance of SPMD{3,3,0) at grain size of 1800 IJS and polling interval

of 150 p.s. • . • • • • • • • . .. • • • . . • • • . • .. • • . 114

5.50 Performance of SPMD at grain size 200 JlS9 and polling interval of 50 p.s 115

5.51 Performance ofSPMD at grain size 200 J.LS., and polling interval of 50 J.LS 115

5.52 Effect of workIoad on different balancers for Fibonacci 116

5.53 Effeet of workload on different balancers for Fibonacci 116

5..54 Effeet of workIoad on different balancers for Paraffins. 116

5.55 Effect of workload on different balancers for Paraffins.. . . • .. • • • 117

xvü

•

•

5.56 Scalability test for Knary(7~7,X) where X is varied. X is the number of

children ofeach node that need to he locally exeeuted. 117

5.57 Scalability test for Knary(7,7Xl where X is varied. X is the number of

ehildren ofeaeh node that need to he local1Yexecuted. 118

5.58 Effeet of Load balancing for Knary(7,7,X)~ where X is the number of

children ofeach node that need to he locally exeeuted. . 118

5.59 Effect of Load balancing for Knary(7.7,X), where X is the number of

children ofeaeh node that need to he locally exeeuted. . 119

5.60 Token Distribution for Fibonacci{33} 119

5.61 Token Distribution for Queens(12) . 119

5.62 Token Distribution for SPMD(4.4,O) 120

5.63 Token Distribution for Paraffins(28) 120

7.1 Exchange of synchronization signais for the sequential and pipelined

measurements of the latency of a sync operation. 135

7.2 Absolute Speedup for Queens(l2) 137

7.3 Absolute Speedup for Paraffins(28) 137

7.4 Absolute Speedup for Matrix(1024XI024) 138

B.l RTS performing Local Function Invocation 195

8.2 Usage and preprocessed code for GET..RSYNC-L 196

B.3 RTS function etc_geuyncJ. 197

8.4 Handler hdLgeLsyncJ . 197

B.5 Macro Definitions in file dattinc . c 198

B.6 Partial EARTH Directory Structure . 198

B.7 Sample Output for the Fibonacci - Fib(33) on 32 nodes 202

C.l A Breakup of Program Execution TIme on 2 nodes - A Template 205

E.l Relative Speedups of different balancers for Fibonacci 218

E.2 Relative Speedups of different balancers for Fibonacci 218

E.3 Relative Speedups ofdifferent balancers for Paraffins 219

E.4 Relative Speedups ofdifferent balancers for Paraffins 219

xvili

•

•

Chapter 1

Introduction

1.1 Background

Designing multiprocessor systems that deliver a reasonable price-perfonnance ratio us

ing off-the-shelf processor [Ill] and compiler technologies is a major challenge. While

modern processors can issue multiple instnlctions per cycle, they lack the features re

quired to address fundamental issues in multiprocessing systems: latency, bandwidth and

synchronization overheads. A well designed parallel system must balance the trade-off

between a fine task granularity [142] and the impact of communication latencies on per

formance. Coarse-grain parallel systems can tolerate long latencies if the application

provides enough parallelism because each task is long enough to amortize the communi

cation overheads. But coarse grain systems do not fully exploit the parallelism in irregular

applications. Fine-grain parallelism, on the other hand, enables further parallelization of

Many applications, but has proved to he difficult to support due ta the higher relative cost

of communication latencies [142].

Multi-threading is a promising approach to overcome (WO major pitfaiis of conven

tionaI parallel computing" and in particular fine-grain parallelism - communication and

synchronization latencies [30, 13, 10, 49, 55, 131, 75, 83, 82, 170, 112, 72, 76, 102,

106, 134, 138, 148, 149, 137, 162, 161]. Multi-threaded languages efficiently manage

the low computation to communication ratio (RlC) in fine-grain parallelism by support

ing severa! threads of control per Dode and switching to a new thread whenever a long

latency operation is encountered. The fine-grain threads offer better expressiveness, low

thread management overheads, and higher processor utilization. These features facilitate

•

•

•

significant performance improvements for all classes of applications, including the ineg

olar and dynamic applications which are difficult to program efficiently with coarse-grain

parallelism.

Messina et al. [115] study the current trends in high performance computing, and

evaIuate future requirements in architecture and programming models in order to sus

tain corrent tempo in system performance ioto the oext decade. According to this study,

Moore's Iaw will hold true for at least two more generations, until feature sizes of 0.08

0.13 pm are reached. At this point in 2010, the limits of CMOS silicon will have been

reached1• One ofthe approaches suggested, besides developing altemate component tech

nologies, is muitithreading. Multi-threading aIlows hiding of the rapidly increasing dis

parity between processor and memory speeds. Work is decomposed into individual tasks

(threads), which are scheduled 00 processors after their datalsynchronization CODstraints

are met One requisite condition for hiding memory latencies is that the ratio ofthreads to

processors should he high enough so that there is aIways work to he done by a sufficient

number of ready threads.

Recent studies have shown that it is possible to support fine-grain muiti-threading

efficiently with off-the-shelf tecbnology [112, 156]. According ta this study [153], three

features are required for efficient rontime support of fine-grain threads. Threads should

he abundanc, balanced, and cheap. Having an abundant number of active threads on a

processor iocreases processor utilization, because ifone thread is delayed, another thread

can stan execution. A large pool of threads aIso offers good potential for load balancing.

Economic load balancing is essential in order ta adapt ta dynamie application behavior

at runtime. Fmally, thread creation, termination, synehronization, and context-switching

should he cheap..

Using off-the-shelfteehnology implies nùing outcustom hardware in building muIti

threaded systems. An alternative is to emulate the multi-threaded model in software. A

runtime system for muitithreaded systems assumes the responsibility to provide an ideal

interface between the multithreaded code and the hardware platform, and implements an

environment for efficient execution of threads. A significant component of the runtime

system is the dynamic load balancer. The dynamie load balancer reaets to load imbal

anees at runtime, and aims to keep aU the nodes busy. Past studies in dynamic load

balancing have focussed on two objectives: keeping aIl the Rodes busy; and optirnjzjng

LAccording to the Semiconductor Industry Association. the cIock speed for high performance micro
processors between now and 2010. is expected 10 inaease from 500 MHz lO 1.100 MHz [115].

2

•

•

load balancing by minimizing balancer overheads and maximizing benefits due ta [aad

balancing. However, the understanding gained sa far bas been limited to distributed com

puting, and these results are to he studied in the context of multithreaded systems, where

dynamic task generation, fine-grain paralIeIism impose challenging constraints on the dy

namic load balancer. Furthennore, maximum utilization of CPU cycles for application

workload becomes even more hard to achieve for distributed memory based applications

whose behavior is difficult ta predict at compile-lime.

Section 1.1.1 introduces parallel job scheduling in multiuser environments. Various

issues involved in building a drnamic (cad balancer are studied in section l.l.2. Sec

tion l.l.3 introduces the current status of the EARTH project, and the raie of dynamic

lcad balancing in the EARTH program execution madeL Section 1.2 fays down the case

for a better understanding of load balancer bebavior in fine-grain multithreaded systems,

and the aim of this thesis is stated in section 1.3. Section 1.4 concludes the chapter by

summarizing the contributions of this thesis.

1.1.1 ParaDel Job ScheduIing

Scheduling in uniprocessor systems decides the next thread which is to he allocated CPU

time. In multiprocessor systems, adclitional aspects of scheduling have to be considered:

where, when, and which thread. These decisions can he made by the operating sys

tem, by the language runtime system, or by the application itself. There is an additionaI

scheduling decision to he made in multiuser, multiprocessor systems - resources have to

he allocated to the application before starting its execution.

Scheduling in multiuser environments usually is the combination of two actions: tirst,

a1locating resources for an application execution, and second, deciding the next thread ta

execute in a pool of ready threads. The second stage is similar to dispatching in operating

systems. Another runtime aspect of parallel execution that operates at one level higher

than dispatching is dynamic load balancing. The goal of dynamic load balancing is to

ensure maximum possible utilization of the CPU resources. This is different from the ob

jective of selecting a particuIar thread for execution. Whtle dynamic 10ad balancing aims

to ensure that aIl p~'JCessors are busy with adequate worldoads on each node, scheduling

selects the next available thread to execute.

3

•

•

Two approaches to scheduling jobs2 in muItiuser multiprocessor systems are stud

ied [54]. With single-leveZ scheduling, the operating system perfanns the actions of allo

cating resources for an application. and allocating CPU lime to competing threads in the

same job. These twa actions are decoupled in two-level scheduling. where. the operating

system aliots the resources to ajob. and the scheduling of threads is done by a higher-level

software. either by a runtime system or by the application itself. A major implementation

related distinction between the two scheduling policies is partitioning of resources along

the time or space axis. Space-slicing requires exclusive allocation of resources, leaving

the operating system with less control. TIme-slicing, on the other hand, is more flexible,

but cornes with higher overheads.

Singie-ievei scheduling causes operating system overhead for every scheduling deci

sion, and this is very costly for fine-grain applications with a high number of synchro

nizations. On the other hand, two-Ievel scheduling is more suited for shared memory

machines rather than for distributed memory architectures, especially if the programs are

written in the SPMD style.

A popular approach is ta partition the resources among jobs, and then run a single

thread on each processing element. This is easy to implement, and suits SPMD programs

which run in batch mode. This approach allows dedicated access ta multiprocessor ma

chines for parallel applications. The operating system sees only a single thread, which is

the user-Ievel runtime systc~. Application threads are invisible to the operating system.

and their management, synchronization. and load balancing is performed at application

level in the user space. Parallel applications in the EARTH system are executed in this

manner.

Another important feature to he considered in parallel applications is the tyPe of jobs

with respect to the processor allocation [53. 54]. Jobs can be of the following types:

Rigid jobs require a certain numher of processors. They will not run on fewer. and will

not utilize more. Moldable jobs alIow the number of processors ta be set at the outsety but

it cannat be changed thereafter. Evolving jobs have changing requirements. for instance a

sequence ofseriai and parallel phases. At the beginningofeach phase, the job requests the

system for the resO'lrces it needs for this phase, and at theend ofthe phase it releases the"ID.

Jobs submitted for execution in the EARTH system belang ta the moldable category.

Dynamic load balancing has very high potential in this type ofjobs because, application

performance depends on the ability of the balancer ta map a\ ~Iable concurrency in the

lA job is an application in execution, as known by the operating system.

4

•

•

applicatioo ooto varying number of processors efficiently.

Finally, the initial placement of threads determines the job elapsed time, and thereby

the importance of dynamic load balancing in the system. Load-balancing is most cru

cial in systems where ail the threads are placed in a single node initially. In the case of

EARTH, the first thread is placed on node 0, and this thread generates the parallel work

load, which is subsequently distributed across ail the nodes in the parallel execution by the

dynamic load balancer. Applications which have a sequential-parallel-sequential phases

of computation represent another domain of applications wbere load balancing assumes

an important role. For instance, in a barrier-synchronized application, node 0 generates

parallel workload, and waits till all the nodes complete, and then issues the next set of

work. In this case, very fast load distribution is required.

1.1.2 Dynamic Load Balancing

The total elapsed time of an application running in parallel over multiple nodes is limited

by the slowest node. One way of speeding up the program execution is to allow equal

distribution of workloads on aIl the processors, sa that the prospect of few nodes executing

most of the parallel workload while other nodes are idIe is avoided. Load balancing is the

strategy used to minimize the total execution time, by distributing worldoad equally over

all the nodes participating in the execution.

In distributed systems, an attempt to distribute workload equally involves very high

computational overheads. Most of the work is spent on collecting global state. If the

applications considered demonstrates a pattern of frequent communication and synchro

nization, this global state changes rapidly, making load balancing unviable. Furthermore,

if the grain size of the transfered work is not big enough to amortize the load balanc

ing overheads, load balancing is not preferable even if the balancer algorithm guarantees

accurate decisions based on global system state. In these situations, an alternative to dis

tributing workload equally, is to ensure that all nodes are busy. Reducing idle times, and

thereby the total program execution time is a far more preferable objective than attempt

ing to distribute the workload equally. This strategy is called load sharing [136]. Most

systems including the EARTH system implement 1000 sharing rather than load balancing.

These two terms are DOW being used interehangeably. The term load balancing should he

read as load sharing in the EARTH system.

5

•

•

Laad balancing can he performed at compile time and runtime. Statie laad balane

ing is done by the programmer/compiler, and is more suitable for regular applications

where it is possible ta predict communication patterns, and also where maving workload

at runtime entails a huge cost due ta data locality. However, static load balancin~ is not

suitable for dynamic, irregular applications, where it is not possible to predict not only

the communication patterns of applications, but also the grain size of the workload on

each oode. Dynamic load balancing algorithms use system state information in making

runtime decisions in migrating workloads. An unavoidable consequence of this reliance

00 dynamic system state is the high overheads associated with this approach. In addition,

care should be taken to avoid using old state information in order ta avoid potential inac

curacies in balancer decisions, and as a result instability in the system. It is a challengjng

task therefore, to design dynamic load balancer algorithms that take into account system

state, application behavior, and malee quality decisians at minimum overheads to ensure

minimum idle times.

In an ideal scenario. adaptive laad balancing algorithms provide the best possible

performance. These algorithms adapt to the global state by changing their policies. and

algorithms at runtime. It is weil known that it is difficult to have a good load balancer

for ail applications. With adaptive algorithms, it is possible ta switch to the appropriate

balancer at runtime. as a response to change in application load conditions. However.

these baIancers are difficult to implement.

A typical load balancer algorithm has four phases - processor load evaluatioo, load

balancing profitability determination, task selection, and task migration [168, 165]. For

systems where load has to he distributed equally, the task selection phase has in tom two

stages: in the first stage, the amount of workload to transfer in order to achieve system

wide load balance. is computed; in the second stage the actual tasks whose computation

time represents the difference of the workloads, are selected.

The different phases of the load balancer are implemented by the four components in

any 1000 balancer [136]:

Transfer Poliey : A transfer policy determines whether current load state on anode

warrants the initiation of task transfer, with the node either as a sender or as a

receiver. Usually the transfer poliey is based on threshold policy. The state of a

node with respect to load balancing is determined as per the values ofpredetermined

upper and Iower thresholds.

6

•

•

Selection PoHey : This policy identifies a task for migration. Severa! factors are consid

ered in task selection. Frrst1y, the overhead due to task transfer should he minimal.

Secondly, the task should execute long enough to amortize the transfer overheads.

Finally, any location dependencies should he maintained.

Location Policy : A partner Dode for the task migration is identified with the location

policy.

lDfonnation PoUcy : The information policy decides when information about other

nodes is to he collected, from where it is to he collected., and whar information

is ta he collected. Three types of information policies are reported in the Iitera

tute. A demand-driven policy allows a oode ta colleet load information only when

il necds to transfer work. With the periodic policy, anode collects load informa

tion periodically, depending on the information collected, the transfer policy May

decide to initiate task transfer. Finally, under the stare-change-driven policy, nodes

dessiminate their load information when their states change by a certain degree.

This policy differs from the demand-driven policy in that nodes dessiminate their

load information., in contrasl ta soliciting load information of other nodes•

The transfer policy determines the mode of the balancer, either as a sender or receiver.

This brings up the issue ofbalancer initiation. BaIancers can he receiver-iniriared (work

stealing), or sender-initiared (work-sharing), or hybrid (symmetric) [136, 33]. Receiver

initiated load balancers transfer the load balancing overheads onto the idle Dode. Because

the load balancing actions are triggered by change in local state, this approach results

in minimum overheads. On the other band, sender-initiated balancers dispose their ex

tra worldoad ooto other nodes in the system. This strategy May result in instability of

the syste~ due to multiple redundant load balancing actions on all the nodes in the sys

tem. The hybrid balancers seek ta include the advantages from both receiver-initiated and

sender-initiated balanc~ and are usually preferable for aIlload conditions.

The topology ofthe interconnection oetwork assumed in the load balancer model also

plays an important role in performance. Typical inlerConnection topologies are mesh,

ring, complete graph, and hypercube. Resides their influence on node-to-node commu

nication latencies, routing of the load balancing messages through the intereonnection

network, opens the possibility ofcollecting load state information effortlessly.

7

•

•

1.1.3 The EARTH System

EARTH (Efficient Architecture for Running Threads) is a parallel multi-threaded envi

roornent developed al McGill University [84, 82, 156, 153], and is now an active research

tapie al the University of Delaware. The EARTH programming model has been imple

mented on several existing, conventiooal multiprocessors such as MANNA (developed at

GMD-FIRST, Gennany), IBM SP-2, Beowulf, and Sun SMP Cluster. The research areas

pursued in EARTH are architecture design, mn-time systems, dynamic load balancing,

paralJelizing compilers, and parallel applications [160, 159, 158, 72, 98, 14, 153]. The

program execution model of the EARTH system is a cmcial component in the Hybrid

Technology Multi-threaded Architecture project (HTMT) [67, 154,62,64].

Multi-threaded programming support can he provided in two ways. One possibil

ity is to make the threads explicit using a threaded extension to a general purpose lan

guage. This choice gives the programmer more freedom, allows expressiveness and effi

ciency for multi-threaded programs [151]. An alternative is to provide a more traditional

high-levellanguage togetherwith compilation techniques to automatically generate multi

threaded code [75]. EARTH-C is a user-friendly language that is automatically translated

to EARTH Threaded-C, an explicitly parallelJanguage. The translation sequence, includ

ing code generation for the target machine is summariz\:d in Fig. 2.1.

Initially, research in the EARTH model was based on the MANNA platform. Later,

a ponable implementation of the EARTH environment was developed in order to suppon

a larger number of target architectures. Currently, significant effort is being direeted into

providing efficient multi-threading support, even on conventional multiprocessors and

networks of workstations.

Dynamic load balancing was part of the EARTH programming model from the be

ginning. It is tightly integrated into the mn-time system~ which manages both descriptors

for threads that are ready to execute, the Ready Queue (RQ), as well as the units of work

used for load balancing: the Tokens stored in the Token Queue (TQ). Fig. 2.l8 shows how

these two queues are interconnected~ as weil as the interface to the node's CPU and the

interconnection network.

The Joad balancing policy supported by default by the mn-time system has proved

to work fairly weIl on a large number of applications. However, there is still room for

improvement [33]. Moreover, as devising a general-purpose and efficient load balancing

poliey is not an easy task, we think it is necessary to get a betterunderstanding ofdynamic

load balancing behavior in the context of multi-threaded multiprocessor systems.

8

• 1.2 Motivation

Previous studies [33] have shown that it is difficult to come up with one load balancer

that suits ail applications. While this work has been a very good starting point for gaining

an understanding of load balancer hebavior for fine-grain multi-threaded systems, much

work neeels to he done to develop scalable and stable load balancers, and understand bal

ancer behavior for bath commonly occurring, and extreme Joad imbalances. Most impor

tantly, the understanding gained from past work in dynamic load balancing for process

based distributed computing neeels to he evaluated in a multi-threaded context.

Our experiments have shawn varying performance for the different Joad balancers.

The unpredictable hehavior of fine-grain threads in dynamic applications, as weil as the

multiple dependences among threads running on different nodes make it difficult to come

up with a complete analytical model of the load balancer behavior. Nevertheless, sev

eraI aspects of dynamic Joad balancing can he empirically studied, allowing us to make

predictions on the system behavior.

1 Dual 1 Spn 1 Shis 1 Snd 1 His 1 Range 1 Catapult 1 Rand 1

Fibonacci(33) 3 2 7 8 4 6 5 1
Queens(12) 6 2 7 3 5 4 8 1
TSP(lO) 7 5 8 6 3 4 2 1
Knary(7.7.2) 7 3 8 6 2 4 5 1
Matrix(l024X1024) 7 5 8 4 1 2 6 3
Torncatv(251) 4 3 8 8 2 1 8 5
SPMD(4A.O) 6 2 8 1 4 5 7 3

1 Benchmark

I~P=araffi=n=s(=28=)=~ ~=4=;::=:=8=::;:=:=

I
_ARank_v_e_ra.;;.ge ---I~5.63.1 7.6 5.3 2.9 !-_3_.8_~-6_.l-_+_-2_

6 3 8 52 4 7
10---........_--"'"--

Table 1.1: Relative ranking of the different balancers based on their elapsed limes as
shown in Table 5.1.

•

Threaded-C programs written for divide-and-conquer9 regular, and irregular classes

of applications are executed with eight dynamic 1000 balancers in the EARTH system.

Table 5.2 show~ individual rankings of the baIancers for each of the applications. A rank

ing of the balancers for this set of applications is provided in the last row. The results

for the first seven balancers show that while there is significant improvements over a

9

• Uno-Ioad balancing" situatio!l, there is no consistent winner for all applications. Further

more, balancer performance is not consistent even across applications belonging to the

same programming modeL Here, a few points are worthy of further discussion: Is the

system behavior predictable? How would these balancers perform when the load param

eters like input workload, number of nodes, application grain size, programming model

of the application, or architectural parameters like poUing interval, etc. are varied? Is it

possible ta achieve better perfonnance? The rankings for the last balancer - Rand indi

cate its ability to achieve better, consistent. and scalable performance. It is possible to

deduce after considerable experimentation that the Rand balancer performs very weIl for

the divide-and-conquer, and irregular classes of applications, while it is not preferable for

regular applications. Similarly, what would be a preferable balancer for very fine-grain

applications with minimal amount of exploitable parallelism? Or, what is the preferable

balancer for barrier-synchronized applications? Is it possible to implement randomizing

algorithms in fine-grain multi-threaded systems? Considering that a typical randomizing

function costs around 22 p.s, what strategies are required to achieve good speedups?

ê]t4 - Snd
- His
--e- Rand

t2

•
Figure 1.1: Performance of different balancers for Fibonacci(28).

Fig. 1.1 shows the scalability ofdifferent balancers for the Fibonacci (28) benchmark.

The Threaded-e program for the Fibonacci comprises of very fine-grain threads (approx.

2 p.s), and the ooly work perfonned in these threads is to spawn parallel workload. The

Fibonacci benchmark represents one extreme of fine-grain applications.. It is difficult to

10

•

•

achieve scalable performance for applications like Fibonacci. without any programmer

effort to coarsen the grain size. However, it is equally important to show that dynamic

Joad balancing is an asset for such fine-grain applications. The Rand balancer performs

very weil relative to the other balancers, specially the His balancer3 both in tenns of

speedup, and scalability. It is therefore worthwhile to investigate the impact of different

balancer policies on wideJy varying Joad situations.

This dissertation attempts to answer the above questions. Our aim is to perfonn a

comprehensive study of load balancing for fine-grain multi-threaded systems in terms of

algorithms, applications, and architecture. As a part ofthis study, we have made acompar

ative study of different load balancer policies, understood their behavior at varying load

parameters, and have suggested the suitability of appropriate balancer for diverse Joad

situations. On the basis of these results, we have implemented adynamie load balancer

algorithm that is scalable and robust enough onder varying circumstances.

In addition, we describe the implementation of a runtime system for a non-blocking,

non-preemptive multi-threading model, and analyze the Iatencies and overheads of vari

ous multi-threaded operatIons. Finally, we provide the results of an extensive survey into

related work in multi-threaded systems, and theirdynamic Joad balancing policies.

ln conclusion, our research is leading to a bener understanding of dynamic load baI

ancing policies and their impact on application performance. This research should also he

applicable ta similar paraIleI systems based on multi-threading and will hopefully a1Jow

future systems to achieve better performance on a broad range of algorithms.

1.3 Problem Statement

• Ta design and implement a sea/able, efficient. consistent, and robust [oad balancer

for fine-grain multi-threaded systems.

A runtime system with an efficient balancer shows significant performance im

provements over another system with no load balancer. Performance should scale

weIl across a wide range of nodes, with minimum degradation in perfonnance as

the number of nodes is increased. Consistency of the balancer in a11load situations

improves predictability of the Ioad balancer behavior. A robust balancer does not

cause instability in the system. and always tenninates in a deterministic manner.

3The His balancer is shown as the best balancer for differcnt applications in [33}.

Il

•

•

• To study the impact ofbalancer algorithms for different 1000 situations, and sug

gen appropriate balancer policy for an application with approximate amounts of

paraIlelism, task grain size, task generation rate, and synchronization patterns.

1.4 Contributions

We have implemented eight dynamic load balancers. and compare their perfonnance

against seven existing balancers. Initially, we study the advantages of different dynamic

load balancer polides against a situation where there is no load balancing. We then study

the benefits of a randomizing load balancer in a fine-grain multithreading environment

with varying application and workload parameters, and compare its perfonnance against

seven existing balancers. Next, we look at the different factors that have contributed to

the relatively better performance of the randomizing algorithm, by comparing it against

different versions of itself, each with varying degrees ofsophistication. Finally, we study

the influence of various program, architecture, and implementation related parameters on

program performance.

The main results of this study are as follows:

1. For irregular and highly recursive programs. it is beneficial to generate large (abun

dant) number of threads to facilitate the work of the load balancer.

• Furthermore, a randomizing a1gorithm (Rand) perfonns the best as long as the

cost of computing the random number does not dominate the overall time of

thread execution.

• When this is not favorable for applying the Rand balancer, a hybrid history

information based a1gorithm (His), a simple work-stealing algorithm (Spn)

are best suitable in decreasing order.

2. The Rand balancer is "good" for fine-grain applications. An in-depth study of the

Rand balancer performance in different load scenarios is performed

3. When the Randbalancer does Dot perform well~ the suitability ofaltemate balancers

is examined.

4. In arder to understand the different factors that contribute to the good performance

of the Rand balancer, a comparative study of the Rand balancer with different ver

sions of itself each with varying degrees ofsophistication. is performed.

12

•

•

5. Design of a spectrurn of experiments to understand application behavior with dif

fereot loarl balancers.

Other contributions of this thesis include the following:

1. Description of the mntime system for a non-blocking, non-preemptive multi

threaded programming MadeL Implementation ofan elaborate profiling framework

in the runtime system, which will aid in better understanding of the time spent in

varions runtime system activities during program execution.

2. Implementation of a balancer - Minima., to provide a lower bound for parallel per

formance.

3. A detailed analysis of costs associated with EARTH operations.

4. Proposai of a new classification scheme for multi-threaded systems. This is supple

mented by an extensive literature survey.

1.5 Thesis Organization

The Threaded-C programming model, and the implementation of the runtime system are

described in chapter 2. Chapter 3 introduces the dynamic load balancing algorithms

designed and implemented in this thesis. The experimental framework is discussed in

chapter 4. Chapter 5 analyzes the performance of different balancers for fine-grain ap

plications. Chapter 6 discusses the costs and overheads of varions EARTH operations on

the mM SP-2 system. A comparative study of performance of EARTH implementations

on three different distributed memory platforms is studied in chapter 7. Related work,

both in in terms of runtime systems for multithreaded models, and different dynamic 10ad

balancing techniques, is studied in section 8. Appendix B studies the paraIlel environ

ment in the EARTH system, and gives easy illustration of typical EARTH operations Iike

invoking local funetions.. or perfonning data sYDchronization. Appendix C Iists the pro

filing support built iota the EARTH runtime system. Appendix E lists the results of sorne

additional experiments conducted.

13

•

•

Chapter2

The EARTH Multithreading System

EARTH - Efficient Architecture for Running THreads [84, 150] is a multi-threaded ar

chitecture and execution model that supports fine-grain, non-preemptive threads and aI

lows the implementation of a multi-threaded execution model with off-the-shelf micro

processors in a distributed memory environment. In order to reduce OS related costs,

EARTH threads operate at the user-leveL The EARTH runtime system assumes the re

sponsibility to provide an interface between an explicitly multi-threaded progrnm and a

distributed memory hardware platform. The runtirne system performs thread scheduling,

context switching between threads, inter-node communication, inter-thread synchroniza

tion, global mernory management. and dynamic load balancing.

ln the EARTH architecture, applications are written in Threaded-C [152], a multi

threaded variant of C. Threaded-C can also he used as a compilation target for other

parallellanguages [74]. Threaded-C provides consttucts for the definition of fine grain,

non-preemptive threads~ for the SPeCification of data transfers, and for synchronization

among threads. ln Threaded-C computations May he composed from arbitrary function

cali graphs. Multiple threads can he enabIed simultaneousIy either because data is pro

duced or because synchronization signais arrive. Altematively, threads May aIso he ex

plicitly spawned. Threaded-C impIements a global memory space comprising the local

memories on all nodes in the system.

The translation sequence for programs written in Tbreaded-e is shown in Fig. 2.1.

Threaded-C programs are fust preprocessed ioto sequentiaI C programs by the Threaded

C preprocessor (etcpre). Each of the threads is transfonned into a separate C function lt

with the Threaded-C constructs repIaced by equivalent C code according to their seman

tics. The preprocessed code is compiled to object code with a traditional C compiler. The

14

•

•

,...--- RTS Object Code

Figure 2.1: Translation Sequence of Threaded-C code

final executable is obtained by linking the application object code with the runtime system

object code.

Communication latencies associated with remote operations pose a challenge to im

plement fine-grain parallelism in a distributed memory platfonn. Implementing efficient

communication on EARTH is important because of its fine-grain threaded model, where

the threads can he very short (typically a few hundred J.LS on the IBM SP-2). The EARTH

runtime system seeks to minimize the overheads involved in data communication, syn

chronization, and load balancing.

This chapter presents a description of the portable EARTH runtime system. The

implementation of the runtime system from the Threaded-C language - runtime system

boundary to the final execution of code is studied. Initially, we look at the preprocessed

code from Threaded-C to see the realization ofThreaded-C constructs in the runtime sys

tem. This is followed by a detailed explanation of the strategies adopted to implement the

runtime system functionality.

The rest of the chapter is organized as follows. Section 2.1.1 describes EARTH pro

gramming model and illustrates the Threaded-C language for the Fibonacci example.

Section 2.2 describes the translation of Threaded-C constructs ioto sequential C and the

emulation of a global address space on a distn"buted memory architecture. Section 2.3

describes the impIementation of the EARTH runtiIDe system. including its dynamic load

balancing algorithms. Scheduling of threads is explained in section 2.3.2. The runtime

system behavior while irnplementing two EARTH operations is traeed in section B.

15

•

•

2.0.1 Current Implementations

EARTH is currently implemented on multiple platfonns - network of Sun workstations.

MANNA. mM SP-2, Beowulf, and a SUN SMP cluster. Ail platfonns exeept for the

Sun SMP cluster are distributed memory implementations. The core of the runtime sys

tem is the same on all platfonns. Specifie interfaces with the CPU and the network are

implemented for each platform. The portable runtime system stresses minimum interac

tions with the hardware, as might he observed in minimum amount of assembly code and

references ta machine specifications. Unlike the platfonns mentioned above, the runtime

system for Manna is not portable. However, portable Threaded-C programs can execute

on the Manna version of the runtime system.

Earlier studies on EARTH [84, Ill] described the implementation of the EARTH

model on the MANNA machine, which has two processors in each processing node. In

such a platform one processor can execute threads while the other is in charge of inter

node communication. synchronization and dynamic load balancing. In this dissertation

we report results of the EARTH implementation on the mM SP-2 that has a single pro

cessor per processing node. In this implementation ail the activities of the EARTH model

are supported by the same processor.

2.1 Threaded-C

Threaded-C was originally conceived as an intennediate language for a higher level par

allei language - the EARTH-C [74] as part of the EARTH project [84}. As the name

suggests, Threaded-C extends the C language with threaded constructs. With graduai

improvements, Threaded-C emerged as a programming language in its own right. It is

complete in the sense that. it provides for constructs that fully capture the multithread

ing model, giving the programmer complete control of thread construction and thread

launching.

Sorne salient features of the Threaded-C language are as follows:

• Fine gram, non-preemptive, non-blocking threads perfonn the multithreaded com

putation.

• Multithreaded computations May he composed from arbitrary cali graphs.

16

• • Rich semantics associated with the Threaded-C constnIcts support thread definition,

parallel invocation, synchronization and inter-thread communication.

• Multiple threads can he launched simultaneously, either on the receipt of relevant

data for which the threads are waiting (in a dataftow-like fashion), or by synchro

nization signais sent to the waiting thread by the programmer. Altematively, threads

may aIso he explicitly spawnecl.

• Applications execute in a global memory space comprising the local memories on

aIl nodes in the system. Local and global pointers on Network of Workstations can

he accessed in the programs.

Multithreaded computation on NOW provides for temporal and spatial parallelism.

The partial ordering of instructions, unlike in sequential programming, allows for con

siderable dynamic behavior. This dynamic schedule is govemed by the RTS at ron-time,

while the language helps specify a calI graph sequence at compile-time.

2.1.1 Programming Model

A rhread is a set of instructions that is executed sequentially in an atomic fashion. Fine

grain, non-preemptive threads which when started execute tiU completion, are the atomic

units of multithreaded computation in EARTH. Interacting threads sharing context are

grouPed ioto bigger units -threadedfunctions [151]. Every thread in a threaded function

is numbered. with numbers starting from O. The execution of a threaded fuoction always

starts from thread O. Funher-on, the term 'function' is to he read as threaded fuoction

unless otherwise specified.

Sync Count
zero Execution

Complete

Enabled
CPU
ready

•
Figure 2.2: Thread States

Threads are enablecl for execution through synchronization signais. A threaded func

tion can allocate an anay of sync slots. Typically each one of the sIots in the array is

17

•

•

associated with a different thread and the siot couoter is initialized with an initial value.

When the arrivai of a signal causes the counter of a slot to reach zero, the ruotime system

moves the thread associated with the slot from the dormant state to the enabled state, and

resets the caunter to a pre-specified reset value.

In Threaded-C, the producer and consumer parts of the code are split iota two threads,

both of which are linked by synchronization slo15. The sync slo15 mechanism provide a

unique handle to address individual threads, enabling the definition ofany arbitrary thread

activation graph. Fig. 2.2 shows the various states associated with a thread. Initially the

thread is in the dormant state when it is yet to receive certain number of synchronization

signais required for its execution. Synchronization signais May or May not he preceded

by any data for the thread. After receiving the required number of synchronization sig

nais, the thread is enabled and placed for execution in a ready queue. When the CPU is

available, the thread moves ta the active state where it starts execution. Once a thread is

active, it must run to completion without preemption. The thread boundary is a point in

a threaded function where one thread finishes, and another starts. At the thread bound

ary, while the consumer thread is waiting for a syne signal, another active thread is exe

cuted. The split-phase nature of EARTH operations overcomes communication latencies

by switching to another active (or enabled) threacL while servicing the communication

requirements of another thread.

The context for a threaded function includes the array of syne slots, the function ar

guments and the local variables. At any instant of time, only one thread is running 00 a

processar, though there May be multiple threads belonging ta the same application run

oing 00 multiple processors. A detailed explanatioo of the portable Threaded-C language

model is given in [151, 146].

Parallelism is realized through threaded function caUs. When a threaded function is

invoked. the caller and the callee execute coneurrently (ifthere are available CPUs). Exe

cution ofa multi-threaded program with concurrent function invocatians leads to dynamic

unfolding ofthe computation and the activations forro a tree referred ta as activation tree.

The nodes and edges of this tree represent the threaded functions and their synchroniza

tion dependences respectively. After a function invocation, bath the caller and the calIee

may mn in paralleL AlI the function frames are active, and the caller continues execu

tion after invoking the callee. This is in contrast to the normal sequential function cali

mechanism. where the caller suspends until the calIee retums.

A sample threaded function that computes the oth element of a Fibonacci sequence is

18

•

•

THREADED fib (SPTR done, int n, int *GLOBAL resul t)
{

SLOT SYNC_SLOTS [1};
int r1, r2;

INIT_SYNC{Q, 2, 2, 1);
if (n < 2) {

r1 = 1; r2 = 0;
SPAWN(l) ;

} else {
INVOIŒ (0, fib 1 SLOT_ADR (0), n - 1, TO_GLOBAL (&rl»;
TOKEN(fib, SLOT_ADR (0), n - 2, TO_GLOBAL (&r2)};

} END_THREAD();

THREAD_1:
DATA_RSYNC_L (r1 + r2, result, done);
END_FONCTION ();

}

Figure 2.3: Parallel Function Invocation in Fibonacci Program

shawn in Fig. 2.3. The THREADED keyword indicates that the function f ib is a threaded

function, and its activation frame is aIlocated on the heap. The SPTR keyword is a type

definition for a synchronization slol. After declaring an array ofsync slots (in this case one

slot), the sync slots are associated with threads by the INIT..5YNC (slot..num, cnt,

rst, th.no) statement, where cnt is the initial count and rst is the œset count. In

Fig. 2.3, sync slot 0 is associated with thread 1. Thread 1 will be ready for execution after

receiving two synchronization signaIs. The SPAWN primitive moves a local thread from

the dormant ta the enabled state. The parent thread continues executian after executing

SPAWN. The INVOIŒ and TOKEN canstructs are used to launch child threaded functions

that run in paraIlel with the parent threaded fonction. When the TOIŒN construct is

used, the processing node that will execute the function is decided by the dynamic (oarl

balancer at runtime, whereas the INVOKE construct specifies the processing node that

must execute the function as its tirst argument1• The DATA..R5YNC-L primitive places

the data (rI + r2) at the destination memory location pointed to by the global variable

1NormaIly, the first recursive caIl in Fig. 2.3 would aIso he issued with the TOIŒN construct to ensure
maximum dispersability of the toens. In this example we are usÎng the INVOKE consttuct ta ilIustrate its
use. In arder to show aIl parallel constcucts. an optimized version is not presented here.

19

• (2) fib(4) CD
-..-

G) fib(3) (J)
... ...

... ...

(§) fib(2) (J)
...

... ...

G) fib(2) G) Q) tib<l;G

G) fib(l;G

•

Figure 2.4: Activation Tree for Fib(4)

resul t and sends a synchranization signal ta the sync slat painted ta by the variable

done. The last statement ta be executed in the threaded function is the END-FUNCTION

canstruct, which results in the deallocatian of the activation frame..

Threads are in the donnant state when expecting results from a subcomputation or

during communication latencies while waiting for data. Any arbitrary calI sequence may

he launched by manipulating the sync slols (or the synchronization slots).. Any synchro

nization, whether related to computation or communication, is performed through the

sync slots.. The declaration for the sync slots is expected to he the tirst statement in a

threaded fonction with more than one thread.. AlI threads that are to he enabled with the

sync edges, except for thread 0 which is by default the slarting thread in a threaded func

tion, are associated with a sync slot by the statement INIT_SYNC (slot.num, cnt,

rs t, th.no). Another exception to this mie are the threads that may be explicitly

spawned, using the SPAWN construct. The value cnt indicates the number of sync sig

nais the thread th..no is waiting for, before getting fired. As each data unit is received,

the ent value is decremented, and the thœad is enabled for execution when it reaches

zero. The ent value is œset to rs t, and the thread is placed in the queue for scheduling..

Fig. 2.4 shows the activation tree for the Fibonacci program, while Fig.. 2.5 shows

a generic activation tree to illustrate that the execution of a Threaded-C program might

resu[t in the construction of an arbitrary activation tree.. The rectanguIar blocks represent

the threaded functions, and the ioner circles represent the threads. The parallel fonction

caUs or the TOKEN/INVOKE/CALL edges (the TIC edge) are shawn as solid arcs. The

20

• () Thread

• Threaded Fonction

~ INVOIŒf['OKEN

- - -~ sync signal

------",
~

\

\,,

•

Figure 2.5: A Generic Activation tree for a Threaded-C program.

dashed arcs (or the sync edges) between different threads denote the dependencies among

threads. For every dependence that is satisfied, a synchronization signal is sent to the

dormant thread. The spawning of threads local to a function is depicted by the dotted

arcs.

By definition, when a threaded function is invoke~ i15 thread 0 is enabled. AlI the

remaining threads of the function ean be enabled in any arbitrary arder through the ma

nipulation of synchronization slo15. Threaded-C provides for bath concurrent (INVOKE ,

TOIŒN) and seqllential calI mechanisms(CALL) for threaded funetions. The syntax is

deseribed in [L28]. Fig. 2.3 shows the concurrent funetion invocation in the Fibonacci

program. Besides the INVOKE and TOKEN mechanisrns, Threaded-C also provides

sequential-eall meehanism for threaded functions, where the thread of the the caller that

executed a CALL primitive suspends until the callee returns. The callee funetion is exe

cuted immediately on the same node as the caller.

Note that Threaded-C alLows for normal sequential C function calIs. These functions

are aIlocated on the stack. However, these C functions are semantically different from

the threaded funetions that are initiated with the sequential caH meehanism (by using the

CALL construet). The C funetions are not allowed to have any Threaded-C construets,

except for the POLL primitive for network polling. The only similarity between the C

fonctions and the threaded functions invoked with the CALL construct, is the manner in

which they return. In both cases, the caller fuoction is suspended until the callee returns.

21

•

•

AIso, when the callee retums, execution resumes from a point after the fuoction calI.

THREADED vadd (SPTR done, int N, float *GLOBAL a,
float *GLOBAL h, float *GLOBAL res)

{

SLOT SYNC_SLOTS [2];
int i;
float la, lb;

INIT_SYNC (0,2, 2, 1);
INIT_SYNC (l, l, l, 2);
for (i = 0; i < N; i++) {

GET_SYNC_F (a++, TO_GLOBAL (&la), O);

GET_SYNC_F (b++, TO_GLOBAL (&lb), O) ;

END_THREAD ();

THREAD_l:
DATA_SYNC_F (la + lb, res++, l);

END_THREAD ();

THREAD_2: ;
}

RSYNC (done);
END_FONCTION ();

}

Figure 2.6: Threaded-C version of Vector Addition

Figure 2.7: A Node in Activation Tree with a Spawn Construct

Fig. 2.7 shows the graph representation for a threaded function that uses the SPAWN

construct. The solid arc denotes the spawn edge, while the dotted arc denotes a synchro

nization edge. The spawned thread is DOW in the enabled state and therefore ready for

execution. No synchronization slo15 are involved in this case ofexplicit firing ofa thread.

In this figure, thread 0 spawns thread 1, and thread 1 enables thread 2 by sending it a

sync signal.

22

•

•

In sorne cases, threads in a function frame may he Iinked by data syncbronization

conditions. Here, the data-synchronization is not between the parent and child threaded

functions, but between the threads of the same threaded function. For example, Fig. 2.6

shows a threaded code for vector addition. Thread 1 is waiting for data from thread o. In

a way, these threads represent the producer-consumer relatiooship.

1 CV-~-.z01

Figure 2.8: A Node in Activation Tree for Vector Addition

Fig. 2.8 shows a typical function frame for the vector addition (vadd) in one iteration.

The dotted arcs represent the data synchronization edges. Another ready thread may he

scheduled for execution at the thread boundary while the communication latency is being

serviced. Observe that there are no TIC edges, but ooly syne edges.

The TIC edge may be seen as the passing of arguments from the parent node ta the

subcomputation represented by the child node. A TIC edge in the activation tree implies

that the child Dode will not he invoked before the computation of its arguments. Thus we

can state that Threaded-C is a strict language. When the sync edges from the child nodes

end up only in their parent nodes, then the activation tree is [ully strict. Threaded-C in

addition, supports back-sync arcs, and any arbitrary call sequence as shawn in Fig. 2.5.

Efficient execution schedules with bounds on time and space are possible for strict com

putations [25]. The computation in Fig.. 2.4 is fully strict.

There is a constraint on the TIC edge when the child threaded fonction is instantiated

with the CALL construct. In this case, the syne edge from the child node can be destined

only to the next consecutivelynumbered thread in the parent Dode which started the child

computation with the CALL construct. For instance in Fig.. 2.4, if the child nodes were

started with the CALL construct in thread 0, then the sync edges have to return ooly to

thread 1 in the parent Dode, whereas there is no such restriction with the TOKEN or the

INVOKE constructs. They could have been sent to another thread, say thread 2 ifdesired..

This is because, after the CALL construct was used to instantiate achild threaded function,

the parent threaded fonction staUs. It resumes execution from the point after the function

calI, ooly after the child threaded function retums. However, threaded functions that

are started with TOKEN or INVOKE constructs do not retum any values, and therefore,

cao execute concurrently with the parent threaded functions. These child computations

23

•

•

fib(3)

syne 1 -
local vars

result

argumenrs

fib(2) fih(1)

syne 1 1 syne 1 1

local vars local vars

resuJt result f--

argumenrs ! argumenrs

fib(l) fib(O)

syne 1 syne 1 1
local vars local vars

result result 1--

argumenrs argumenrs

Figure 2.9: Runtime System's view with Activation Frames for fib(3)

can direct their sync edges to any thread in any threaded function, though generally they

follow the fully strict property by sending a sync edge to sorne thread in their parent

threaded function.

For threaded functions which are instantiated with the TOKEN construct~ the host node

is decided by the dynamic load balancer at ruotime. The INVOIŒ construct specifies the

Dode 00 which the function is to he executed. The thread 0 of the child threaded function

is placed among other ready threads to eoable execution on the Dode specified. The CALL

construct guarantees that the child threaded function will he scheduled on the same node

as the parent node, and aIse will he irnmediately executed. Also, the caller is suspended

until the callee retums. The SPAWN construct spawns a local thread.. If a sequentiai C

function is started., the C function is executed on the same Dode as the caller function, and

aIso retums as per normal C convention. The frames for the callee and any further nesting

are allotted on the stack.

The RTS view of the Fibonacci threaded function is shown in Fig. 2.9. Thread 0

Iaunches the subcomputations, while thread 1 is waiting for two sync signais. The acti

vation frame comprises of th~ arguments for this threaded fuoction, sync sIots and local

variables as declared in the beginning of the threaded function. The context for a threaded

24

•

•

function is contained in the activation frame. The sync slots help the RTS keep traek of

the scheduling status of those threads. AlI the activation frames corresponding to threaded

funetions are aiiotted on the heap, while those ofsequential funetions are aIlotted on staek.

From Fig. 2.9, it can he seen that arrivai ofresults from child computations signal the cor

responding sync slot in the parent computation, which enables the associated thread for

execution.

Applications with dynamic behavior, involving high levels of communication pose

significant challenge to multithreaded languages. Performance studies so far have shawn

significant speedups with Threaded-C. This better performance is attributed to the abil

ity of Threaded-C to handle fine-grain paraIlelism and the close interaction between the

Threaded-C compiler and the runtime system. An efficient thread scheduling policy, and

a wide choice of dynarnic load balancing algorithms have helped overcome the commu

nicationlsynchronization latencies.

This section summarized the model of multithreaded computations in EARTH, and

prepared ground for a detailed study of the strategies required ta implement a multi

threaded environment in the RTS.

2.2 Preprocessing Threaded-C

This section studies the preprocessed code for a Threaded-C version of the Fibonacci pre

sented in Fig. 2.3. The code generated cantains sequential C equivaients ofcorresponding

Threaded-C constructs. The preprocessed code for individual Threaded-C constructs in

the Fibonacci program are studied. Later, at the end of this section, ail these pieces are

added to obtain the total translation for a threaded fonction. The final translation for the

threaded fonction is listed in Fig. 2.15.

The preproeessed code for each Threaded-C construct can he divided inta two parts.

The tirst part sets the arguments for a later call to a RTS function. The second part

actually cans aRTS function. It is important here that a distinction he made between the

preprocessor (etcpre) and the preprocessed code. This section looks at the preprocessed

code.. Further on, the tenn 'function' May he read as threaded function unless specitied

otherwise..

Threads from the Threaded-C code are transformed into fonctions in the C language

along with necessary linkage code. The translation sequence for Threaded-C code is

25

• shown in Fig. 2.1. The etcc driver initially invokes the Earth Threaded-C preproces

sor (etcpre) on the input Threaded-C code. The preprocessed output is C code, with

threads replaced by functions and relevant caiis to the RTS. The Threaded-C constnIcts

are transformed ioto equivalent C code according to their semantics. The next step of

the etcc driver is to compile the preproeesssed output to abject files through a C com

piler. The resulting abject code is linked with the RTS abject code to obtain the final

executable. The etcc driver checks the command line options, and accordingly invokes

different modules. The options for the etcc driver are a superset of those of any com

mercial C compiler. The result of a successful use of etcc is the final executable. The

syntax of etcc May he observed with the' -h' option. The use of etcc is explained in

section B.S. The preprocessed code for the Fibonacci threaded fonction is studied in this

section.

A point worth mentioning before proceeding further is the allocation and disposaI of

heap memory. To optimize its execution and avoid frequent allocations and releases of

small memory blacks, before starting the execution of an application, the runtime system

reserves sorne heap mernory iota a list of available blacks. called the free list. Dynamic

memory requirements of the runtime system during application execution, are met from

the free list. When the free list becomes empty, memory is dynarnically allocated using

the malloe statement. After use, the memory is retumed back to the free list. There is

a free list in the address space of the RTS on every node. The contents of the free list on

different nodes are not coherent.

2.2.1 Global Addresses

~ypedef s~ruc~ e~c-9Ptt {
void ·ptr: -9Ptrl.node = e~c_r~s •node_id:
int. node; -!lPtrl.ptr = &:_fp->rl:

} e~C-9Ptr:

(a) Type ddinition (b) Pleptoœssed code

•

Figure 2.10: Type definition ta represent a Global pointer and the preprocessed code for
TC_GLOBAL

The EARTH model provides a global address space that aUows every node to address

the entire memory of the machine. BARTH constructs a global address space on dis

tributed memory platforms by creatiog a global pointer that is formed by a node id and

an address. In Threaded-C the distinction between a global and a local pointer is made

26

•

•

visible to the compiler [152]. Because the EARTH implementations use hardware and

compiler off-the-shelf technology, the runtime system bas no access to the memory man

agement unit. Therefore global pointers are implemented in software. The data structure

that stores a global address is shown in Fig. 2.1O.a. To allow the use ofglobal pointers for

aIl standard and user defined data types, Threaded-C implements a type modifier called

GLOBAL. Conversions such as TO-LOCAL and TO_GLOBAL are available in the language.

Fig. 2.10.b shows the preprocessed code for the Threaded-C construct TC_GLOBAL. Lo

cal pointers are converted into global pointers by enclosing the node number and the local

address as the two fields of a variable of type etc_gptr defined in Fig. 2.10.

2.2.2 Sync Siot

typedef struct etc_slot {
int cnt;
int rst;
etc_handler ip;
long fp;

etc_slot;

Figure 2.11: Type definition for Sync Siot

Like global addresses, synchronization slots are implemented in software in the run

time system of EARTH. Fig. 2.11 shows the data structure used ta define a synchro

nizatian slat. The ip field is an instruction pointer that contains the address of the first

instruction of a thread. The fp field is a frame pointer that cantains the address of the

frame of the threaded function ta which the thread helongs. The slot couoter cnt can

tains the current value and indicates how many signais must he received before the thread

associated with the slot becomes enabled and the counter cnt is reseted to the value in

rst.

The key for identifying a thread is the combination called the thread pointer - activa

ùan frame pointer and the instruction pointer. One way of invaking a thread at runtime

without knowing its name is through the function pointer. The instruction pointer is used

to initiate thread executian by invoking the pointer to the C function representing the

thread. The arguments and the context are obtained from the activation frame, which is

pointed to by the frame pointer.

27

• A thread with a non-zero sync count can he viewed as consumer thread (execution

starts only after receipt of ail relevant data). Usually the producer (which is another thread

sending data or results of a subcomputation), after depositing the data in sorne global

location say resul t, decrements the sync count of the consumer thread. Altematively,

the syne signal may not he preceded by any data. If the sync count reaches zero, the

enabled thread is ready for execution.

The RTS keeps track of threads from the information contained in the sync slo15. It

updates the status of the thread whenever a syoc signal is received at the associated sync

slot. For those threads which have become enabled, the RTS fetches the thread pointer

from the structure for the syne slot~ and places the thread among other ready threads for

execution.

2.2.3 SLOT.ADR

The structure for the syne slot is allocated from dynamie memory of the corresponding

oode. When the syne slo15 are ta he globally accessed, the oode oumber and the slot

oumber fonn the global address of the syne slot. This is precisely the result of using the

Threaded-C construct SLOTJillR. Preprocessed code for this may he seen in the first two

lines of Fig. 2.14.b. For instance. while constructing the parameters for a subeomputation,

the global address of syne slot is passed as the retum syne pointer'done' , as may he seen

in line 6 of Fig. 2.14.b.

2.2.4 Frame based Data Structures

cypedef serucc {
etc_s1oe _s10es(11:
SPTR done;
mt n:
eeC-9Ptr result;
inc rI. r2;

} _token_fih_F.

(a) Aaiv:uiOD Fr:une

typedef strucc {
long _next. ~rev. _ip. _fp;
SPTR done;
int n;

etc-9Ptr result;
} _tokeILfib_E'.

•
Figure 2.12: Structures generated for Frame-passing

The cantext of a threaded function is stored in an activation frame. A functionYs

activation frame cantains local variables. arguments and an array of sync slots. Beeause

Threaded-C supports parallel function invocations~ varions functions can he active at the

28

•

•

same time and tenninate in arbitrary order. Thus the activation frames are stored on a

tree structure in the heap, rather than on the C staek. For instance, Fig. 2.12.a shows the

structure used to store the activation frame for the Fibonacci function presented in Fig. 2.3.

In Fig. 2.12~ ~ done, and resul t are parameters passed ta the threaded function f ib;

r 1, r2 are local variables, and the s 10ts [1] array is the sync slot allocated within

fib () .

In Threaded-C the invocation of a parallel function results in the insertion of the thread

o of the function in the ready queue of the specified processing node. There are no

assurances that the closures will he selected for executian in arder. Therefare Threaded

C cannat rely on a eomman stack ta store the parameters passed to parallel funetions.

A parameterframe is used ta pass the parameters ta a newly invoked threaded funetion.

A pointer to a parameter frame structure is passed as argument ta the thread 0 of every

funetion. The parameter frame for f ib () is shown in Fig. 2.12.b.

2.2.5 INIT-SYNC

The syne slots are initialized with the count and reset values, and are associated with a

thread through the INIT-SYNC statement. Consider the preprocessed code for threaded

macro !NIT_SYNC in Fig. 2.14. Once the control enters a threaded function~ and the

activation frame is allocated on heap, the syne slot companents are filled in with data

pertaining to the relevant thread. This data includes cucrent sync couot, reset couot, and

the thread pointer.

2.2.6 SPAWN

~trl.node = etc_rts.node_id;
~trl.ptr = _fp;
etc_spawn(-9Ptrl, _fib_l);

Figure 2.13: Preprocessed code for SPAWN(1)

The SPAWN (1) coostruet spawns locally thread 1 of the threaded function. that has

the SPAWN construct. The preprocessed code is shown in Fig. 2.13. The frame pointer is

converted ioto a global pointer. The threadpointer (instruction pointer and frame pointer)

29

• is passed as an argument to the RTS function e tc-spawn. This spawns the thread 1 in

the Fibonacci threaded function.

2.2.7 INVOKE

-9Ptrl.node = etc_rcs.node_id:
-9Ptr1.ptr =_fp->_slocs • 0:

_fp->_slots(Ol .cnt = 2:
_fp->_slots{OI.rst = 2:
_fp->_slocs{O} .ip =_coken-fio_l:
_fp->_slocs[Ol.fp = (long) _fp:

(Ol) (NIT..sYNC(Olll)

-9Pt.r2.node = ecc_rcs.node_id:
-9Ptr2.pcr = ,_fp->rl:

_fib-pp = C_fib_P .) ecc_rcs.next_free:
_fib-pp->done = -.QI)trl;
_fib-pp->n = _fp->n - 1;
_fib-pp->result = -9Pcr2:

(b) 1NV0IŒJib function

•

Figure 2.14: Preprocessed code for INIT..sYNC and INVOKE

The preprocessed code for the parallel construct INVOKE of the f ib () fuoction is

shawn in part (b) of Fig. 2.14. The arguments for this constnlct: the sync slot address and

the destination location where the result is to he placed. are stored in a parameter frame

structure _f ib_pp that is allocated from the free list. The addresses for result and for

the slot of the caller are cooverted ta global addresses (gptrl and gptr2) before they

are stored in the parameter frame. Once the arguments for the INVOKE construct are set

up, the RTS function etc..invoke is invoked. The preprocessed code for the TOKEN

construct is very similar, except that it does oot have a processing oode specification.

Fig. 2.14, part (b) shows the preprocessed code for the INVOKE (0, _fib,

SLOT.ADR {O}, n - l, TO_GLOBAL (&rl)) construcL A variable of type pointer

to parameter structure (token-fib_pp) of the threaded function that is going to he in

voked is declared al the beginning of the C function representing the first thread of the

caller threaded fonction. Memory for this variable is allocated on top of the free list. The

arguments for the child threaded function are assigned to the fields of the parameter struc

ture variable tokeILfib_pp. Those arguments tbat represent addresses are converted

into global pointers, and stored in (wo variables - gptrl and gptr2, which are then

assigned to the fields of _fib_pp. Thus, with the arguments for the threaded function

on top of the free Iis4 the lUS function etc-invoke is called with the name of the

first thread of the child threaded function (pointer to a C function), and the size of its

30

•

•

arguments.

2.2.8 Frame Passing

Each one of the threads in a threaded function is compiled into a C function. The C

function representing the thread 0 ofa threaded function is the first function ta he executed

in a given invocation and it executes only once, Le., there are no synchronization slots

associated with thread 0, and thread 0 cannot he spawned. The C function that implements

thread 0 receives a pointer to the parameter frame of the threaded function. The parameter

frame contains the arguments for this threaded function. The C function is responsible

for building an activation frame that will he shared by ail threads of the function. The

activation frame shown in Fig. 2.12.~ is created in the C function for thread aof fib () .

At the beginning of this C function, a request for a 64 byte buffer element from the free

list is made. If no element of that size exists in the free Iist, then the memory is obtained

by using the malice statement2•

Whenever a thread becomes enabled for execution, a cIosure representing the sequen

tiaI function that contains the code for that thread is placed in a ready queue where it is

scheduled for execution. This c10sure contains the address of the activation frame of the

function that contains the enabled thread. In the preprocessed code ail references ta local

variables or to function parameters are converted to references to fields of the activation

frame structure. Thus threads belonging ta the same function will share the context stored

in the activation frame.

Because individual threads are transformed into C functions, thread switching is ac

complished by the tennination of a sequential C function and the starting of another func

tion. Furthermore, these functions have a single parameter, the activation frame pointer.

Therefore the cost to switch to another enabled thread in Threaded-C is very low.

Fig. 2.15 shows the preprocessed code for the two threads of the Fibonacci threaded

function shown in Fig. 2.3. This example provides a detailed look at the frame-passing

mechanism to share context among the threads of a threaded function.

The data structures holding the activation frame and the parameter frame ofa threaded

function are named with the threaded funetion name followed by a letter, either 'F' or 'P'.

A pointer to the parameter frame is passed as argument to thread o. Memory is allocated

for the frame pointer in the C function for the tirst thread (thread 0), and its fields are

lThe activation frame on the heap is deaDocated from memory~ when the END-FUNCTION primitive is
executed.

31

•

•

filled with arguments for the threaded function. local variables and the sync slots. The

arguments for the child threaded function are specified in the TOIŒN, INVOIŒ or the

CALL constructs. The local variables and the sync slots are obtained from the Threaded

C code for the child threaded function. The current frame pointer value is stored in the

frame field (jp) of the sync slot that is associated with the second thread (thread 1). When

this sync slot receives a sync signai that changes status of thread 1 from enabled state ta

active state. the RTS uses the instruction pointer ta invoke the C function _f ib-l with

the frame pointer as its argument. Thus, cantext of a threaded function is passed between

the C functions representing its threads. Observe that the threads of a threaded function

are executed at different points on the time axis, though they ail will execute on the same

Dode.

2.2.9 Variable Parameter Passing

Each threaded function can have different number of parameters, and it is required to

accommodate the arguments on an intermediate data structure accessible to the runtime

system. The parameters for a threaded function are set up before caIling the runtime sys

tem constructs for INVOKE, TOKEN or CALL. Memory is aIlocated on the top of the free

list for the parameter structure of the invoked threaded function, and the function parame

ters are loaded into this structure. Using this approach we can deIay the allocation of heap

memory for the function until its thread 0 is activated. The runtime system function caH

(either etc-invoke or etc_token) receives the size of the parameter structure along

with the function pointer for the starting thread of the threaded function. as shown in lines

35,44 of Fig. 2.15.

The thread pointer is used in initiating the first thread of a threaded function, in case

the threaded funetion is scheduled for execution on the current node. However, when a

locally instantiated threaded function is scheduled for remote consumption, the mntime

system sencls a message that contains a pointer to the parameter structure and the address

of the function to the remote node. When anather node decides to execute the functian,

it tirst bas to copy the parameter frame structure from the node where the function was

instantiated.

32

Figure 2.15: Frame passing among 2 threads ofFibonacci function

•

•

1: void _fib_O (_fib_P --PP)
2: {
3: et.c-9Pt.r -9Pt.rl • .-QPu2;
4: _fib_F -_fp;
5: void _fib_l ();
6: _fib_p -_fib-pp;
7: void _fïb_O ();
,- Obt.ain memory for frame point.er -,
8: _fp = (_fib_F -1 et.c_rcs.free_64;
9: if LEp)
10: et.c_rt.s.free_64 =_fp->_slot.slOI.cnt.;
Il: else
12: _fp = (_fib_F -) malloc (64);
13: _fp->done = -pp->done;
14: _fp->n = -pp->n;
15: _fp->result. =-pp->result.:
,- Insert. code for IN!T_SYNC(O. 2. 2. 1) -,
16: _fp->_slots[O).cnt. : 2;
17: _fp->_slot.slO).rst. = 2:
18: _fp->_slots[O).ip =_fib_1;
19: _fp->_slot.slOl.fp = (lonq) _fp:
20: if (_fp->n < 2) (
21: _fp->rl = 1;
22: _fp->r2 = 0:
,- Insert. code for SPAWN(II -/
23: -9Pt.rl.nod-. = etc_rt.s.node_id;
24: -9Pt.rl.ptr =_fp:
25: etc_spawn C-9Pt.rl. _Eib_l):
26: l else {
,- Globalize ~e local variables

syncs sloe and rI -,
27: -9Ptr1.node =eec_rt.s.node_id;
28: -9Pt.r1.ptr =_fp->_slots • O.
29: -9Pt.r2.node =et.c_rts.node_id;
30: -9Pt.r2.pt.r = '_fp->rl;
,- Obtain memory for E'aramet.er Struct.ure -,
31: _fib-pp = (_fib_P -) etc_rt.s.next._free;
1- Load parameters for tNVOKE onto

the top of free element list. -/
32: _fib-pp->done =-9Ptr1;
33: _fib-pp->n =_fp->n - 1;
34: _fib-pp->result. =-9Ptr2;
1 - Once the arguments are set UP.

call the RTS funct.ion -/
35: et.c_invokeCO. _fib_O, 24);
,- Repeat same process as above for

next. TOlŒN calI - /
36: -9Ptrl.ncde =etc_rts.node_id;
37: -9Pt.rl.ptr =_fp->_slot.s • 0;
38: -9Ptr2.node = etc_rts.node_id;
39: -9Pt.r2.ptr = '_fp->r2;
40: _fib-pp = (_fib_P -) et.c_rt.s.next._free;
41: _fib-pp->done = -9Ptrl;
42: _fib-pp->n =_fp->n - 2;
43: _fib-pp->result. =-9Ptr2;
44: et.c_token (_Eih_O. 24);
45: }
/ - End 0 f code for Thread 0 -,
46: }

(a) l'hn:ad 0

,- The local cont.ext. of threaded funct.ion
passed bet.ween threads througn the
frame pointer -/

1: void _fih_l C_fib_F W_fp)
2: {
3: et.c-9Ptr -9Pt.rl. -9Pt.r2;

4: etc_data_sync_l (_fp->rl • _fp->r2.
_fp->resu1t, _fp->done);

,- End of code for Thread l -/
5: _encLfun:
6: _fp->_slot.s[OJ .cne =et.c_rts.free_64;

,- Ret.urn space for frame poineer
to free element. List -/

7: et.c_res.free_64 = (long) _fp:
8:

(b) ThR::Id 1

33

•

•

2.2.10 Preprocessed Code for Fibonacci- Detailed Study

The preprocessed code for the Fibonacci threaded function from Fig. 2.3 is listed in

Fig. 2.15. A typical activation tree for this code is shawn in Fig. 2.4. The RTS view

of this tree is depicted in Fig. 2.9.

Apointer to the parameter frame containing the arguments for the threaded function is

passed as a parameter to the C function representing the tirst thread - _f ib_O. The frame

pointer is allocated and the relevant slots are fiUed in ta store the local context. Nex~ the

parameter frame structure which holds arguments for subcomputations is placed on the

top of the free list. The parameters for the rNVOIŒ statement are stored in the parameter

structure on the top of the free list. Once the parameters are set up, the RTS function

ete-invoke is called with the destination node for execution, instruction pointer and

the size of the parameter structure stored on top of the free list. The same procedure is

repeated for the TOKEN statement as weil. The C function for the second thread in the

threaded funetion, _fib_l is passed the frame pointer as parameter, thus ensuring that

the second thread has access ta the context of the threaded function. A Hne by line study

of the preprocessed code for the Fibonacci follows.

Line no : Commentsfor preprocessedcodefor Thread Ot sho'H,7l in part (a) ofFig. 2./5

Une 1: The C function corresponding to the first thread in the threaded function is

-f ib_O. The arguments ta the threaded function are placed in a parameter frame structure,

and a pointer ta this structure is passed as argument ta -fib_O.

line 3: A maximum of two global addresses are used in any statement in the threaded

function f ib. Sa, two dummy declarations for global pointers are made to accommodate

remote references.

line 4: A variable is declared to hold the frame pointer. Please refer ta Fig. 2.12 to

view the type definition of activation and parameter frames.

line 6: A variable is declared to hold the parameter frame pointer. This holds the

parameters for subcomputations (used in variable parameter passing).

Iines 8,11: Memory for the frame pointer allocated from the free list Ifmemory is not

available on the free Iist, dynamic memory is obtained by an explicit use of the malloe

statement.

lines 13,15: The arguments to the threaded function are copied mto the frame pointer

structure from the parameter frame structure. Maintaining the values for arguments in the

activation frame is required for context sharing.

lines 16·19: This code corresponds to the INIT-SYNC construct from the threaded

34

•

•

function fib in Fig. 2.3. The preprocessed code may he seen in part (a) of Fig. 2.14.

From the parameters of the INIT..5YNC construct in fib, the values for sync count,

reset COllOt are filled into the sync slot struCture for the thread in the activation frame. The

thread pointer is obtained from the thread, with which this sync siot is associated.

line 20: If n <2, then send data to the global pointer in resul t, and decrement the

sync slot done (bath obtained from the activation frame).

lines 23·25: The local thread 1 C_fib-l) is ta he spawned here. The frame pointer is

made a global pointer, and passed along with the function pointer for _fib-l to the RTS

function.

Iines 27·35: This C code corresponds ta the TOKEN statement. Initially, the location

for storing the result and the relevant sync slot are to he converted into global addresses.

From the declaration of the frame pointer, we can see that syne slot 0 and the local variable

r1 are not global pointers. Note the SLOT.ADR and the TO_GLOBAL prefixes ta the sync

slot 0 and the result location rl in the TOIŒN statement in the threaded function. Lines

27-30 perform this function.

line 31: The arguments for TOKEN may he any in number. An intennediate buffer area

is required to hoId the parameters, as its not possible ta assign any specifie data structure

ta hold the parameters, without knowing their number and type. 50, the top element of

the free list is type casted ta the parameter frame type.

Lines 32-34 correspond ta filling in the values for the newly declared parameter frame

structure on top of the free list. In this case, the arguments for the TOKEN construct - the

syne slot 0, the value n -1, and the result location r 1, are loaded onto the top of the free

list.

Now, the setup for the TOKEN construct is complete. The RTS function, etc_token

is called with the instruction pointer, and the size of the parameters on top of the free

liste The destination node for execution is determined by the RTS at runtime9 through

dynamic load balancing. The ooly difference between the INVOKE and TOIŒN is that,

the programmer decides the node for the execution of a threaded function in the case of

the INVOIŒ.

line 36-44: The same procedure as above9 is rePeated for the next TOIŒN eonstruet.

Note that, the destination node number is not speeitied in the final RTS cali etc_token.

line 46: The code for 1ib_O is complete now~ and the function retums.

line no: Comments for preprocessed code for Thread 1, shown in part (b) ofFig. 2.15

From the lines 16-19 in the C function 1 ib_O 9 the activation frame bas the sync

35

•

•

slat infonnation corresponding to thread 1. When the required number of sync signais

have been received at the sync slot, the RTS obtains thread pointer far Thread 1 from the

sync slot, and invakes the C function corresponding ta Thread 1, by using the instruction

pointer (a function pointer in C), and passing it the frame pointer as argument.

line 1: A pointer ta the frame pointer, which has the local context for this threaded

function, is passed as parameter to the C functian representing thread 1 <_fib_l). This

frame pointer is allocated from the dynamic memory af the node on which the threaded

function is scheduled, and hence the restriction that ail threads belonging ta a threaded

function should be scheduled on the same node.

line 4: The sum is placed in the location result and the relevant sync slot (done)

decremented, within the datéLSync fonction calI.

line 5: This statement marks the end of code for thread 1.

line 7: The frame pointer is retumed (deallocated) ta the free list.

2.2.11 Sequentiai-Call mechanism with CALL

The discussion on frame-passing mechanism for threaded fonctions so far has dealt

with concurrent-call mechanism for threaded functions. Its implementation for the

sequential-call mechanism is slightly dîfferent.

The threaded function that caUs another threaded function is the caller, while the

threaded function that is called is the cal/ee. In a sequentiai function calI mechanism3,

the caller is suspended until the callee retums. In this case, the C function carresponding

ta the first thread (thread 0) af the callee has two additional parameters - the caller frame

pointer and a pointer to the instruction after the CALL statement in the caller. Similarly,

the last statement in the C function that represents the Iast executed thread of the callee, is

a calI ta the RTS funetion etc..return. This statement is generated by the preprocessor

from the Threaded-C primitive RETURN.

The preprocessed code for threaded funetions with the CALL construct bas at Ieast as

many C functions as the number of CALL instructions so that each CALL instruction is

serviced in one C function. Each of these C fonctions tenninates after calling the first

tbread of the eallee with arguments. These C functions are formed in two phases. In

the first phase9 the arguments for the calIee are stored in a parameter frame structure.

3Invoking ctuld threaded functions with the CALL statement.

36

•

•

A pointer to the parameter frame is declared and is allocated heap rnernory. Sorne ar

guments, like the resuIl, may have to he converted into global addresses. This parameter

frame is referenced by the parameter pointer. In the second phase, the callee is invoked by

calling the C function corresponding to its first thread with three arguments: the parame

ter pointer (to access the arguments) and the retum thread pointerA for the next thread in

the caller. The C function in the caller terminates immediately after initiating the callee

in this manner.

The parameters for the callee and the retum thread pointer are stored in the activation

frame of the callee. There is no difference between the preprocessed codes for threaded

functions instantiated with CALL, with INVOIŒ, or with TOKEN, except for the parame

ters to the callee , and its exit semantics.

The preprocessed code for a callee is shown in Fig. 2.16. Preprocessed code for a

threaded MAIN function using two CALL instructions is shawn in part (a), while the pre

processed code for the callee is shown in part (h). The code shown here is not complete,

ooly the parts relevant ta the discussion are included.

fine no: Comments for part (a) a/Fig. 2.16

line 3: The CALL construct is used to invoke the child threaded function

call_tokeILfib with two arguments.

line 4: Another threaded function call..mixecLfib is the callee with two argu

ments.

Une 7: Preprocessed code for the tirst thread of the MAIN threaded function is shown

here. Though there is only one thread in the MAIN threaded function, three C functions

are present in the preprocessed code, because of its two CALL statements.

line Il: A pointer is declared to parameter frame of function call_token_fib.

line 12: Function declaration of next C function, to which control has to he retumed

by the callee threaded function.

lines 18·19: The resul t location is converted into a global address.

Une 20: Obtain heap memory for parameter pointer.

Iines 22·23: Upload arguments into parameter frame of the callee threaded function.

line 24: A C function cali to the tirst thread of the callee threaded function, with

parameter pointer (for arguments), return instruction pointer (function pointer for next C

function of MAlN), and return frame pointer (frame pointer of the caller) is made.

Une 26: The tirst C function for the MAIN threaded function ends. The remaining

~ pointer is the combination of instruction pointer and frame pointer.

37

•

•

•

part of the MAIN code is executed in the next two C functions. This is done to enable

specification of the program counter9 now painting ta the statement following the CALL

instruction in MAIN threaded function9 as the retum instruction pointer.

line 27: Control reaches here9 when the callee threaded function retums9 as May he

seen in line 52 of part (h) ofFig. 2.16.

Iines 28-40: The same steps as above9 repeated for the second CALLed function

call...mixed.-fib.

Iines 41-44: This is the last C functiori representing the MAIN threaded function.

Control reaches here after the callee callJtÙxecLfib has returned.

line no: Commentsforpan(b) o/Fig. 2.16

We shalI discuss the preprocessed code for one ofthe callees9 the call_token_fib.

line 8: Declaration for retum function pointer.

lioe 9: Declaration for retum frame pointer.

line 14: This is the tirst thread ofthe calIee. The C function receives as parameters9 the

return thread pointer (instruction pointer, and frame pointer) and a pointer to the param

eter frame holding arguments for this child threaded function. The thread pointer points

to the C function of the caller9 to which control bas to he returned when this threaded

function exits.

Unes 26-27: The thread pointer (as obtained from the parameter pointer) is stored in

the activation frame of the callee.

lioe 45: Start of second thread of the callee. The return thread pointer is preserved in

the activation frame pointed t09 by frame pointer.

6ne 51: Retuming memory held by activation frame to heap.

line 52: Retuming control to C function of the caller threaded function.

The END..FUNCTION and RETURN constructs are two different ways of returning

from tbreaded functions. END..FUNCI10N is used when a threaded function is invoked

with the concurrent<a1l mecbanism (using TOKEN or INVOKE). The invoking function

and the invoked function can execute simultaneously. The RETURN is used in the case

of sequential-call mechanism (using CALL)9 when the caller is blocked until the calIee

returns. For this purpose9 the return thread pointer in the calIer is passed as one of the

arguments to the calIee•

38

1:THREADED MAIN (void)
2:{

if (_fpl
etc_rts.free_64 =_fp->_s1ots[O).cnt:

else
_fp = C_call_token-fib_F -1 malioc (64);
_fp->_ret_ip =_ret_ip;
_fp->_ret_fp =_ret_fp:
_fp->n =""pp->n:
_fp->result : -pp->result:
_fp->_s1ocs[OI.cnc = 1;
_fp->_slots(OI.rse = 1:
_fp->_slots[OI.ip =_call_token_fib_l:
_fp->_slots[OI.fp = (lonq) _fpô
-9Ptrl.node =ecc_rcs.node_id:
-9Pcrl.ptr : _fp->_slocs • 0;
-9Ptr2.node =etc_rts.node_id:
-9Ptr2.ptr =&_fp->r;
_token-fib-pp = C_token-fib_p e)

etc_rts.next_free:
_token-fib-pp->done =-9Ptrl:

token_fib-pp->n : _fp->n;
=token-fib-pp->result =-9Ptr2;
etc_invoke CO. _token_fib_O. 24):

21: _fp = (_call_token-fib_F .)
etc_rcs.free_64:

14:void _call_token-fib_O
_call_token_fib_P e ""pp,

15: void _ret_ip (), void e_ret_fp
16: {
17: etc--9Ptr -9Pcrl, -9Ptr2;
18: _call_token_fib_F •_fp;
19 void _call_token_fib_l ();
20: _token_fib_P e_token-fib-pp;

46:{
47: etC-9Ptr -9Ptrl, -9Ptr2;

45:void _call_token-fib_l (
_call_token_fib_F e_fp)

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:}

1:eypedef scrucc {
2: long _nexc, J'rev, _ip, _fp;
3: ine n;
4: ecc~cr resulc:
5:} _call_to~fib_P:

6:cypedef scruct {
7: ecc_sloc _slocs[ll:
8: void ('_rec_ip) ();
9: void·_ret_Epi
10: ine n;
11: ecc--9Ptr result;
12: ine r:
13:1_call_coken-fib_F;

etc-9Ptr -9Ptrl;

etc-9Ptr -9Ptrl;
_call~ixed_fib_P e_call~ed-fib-pp:

void _MAIN_C2 ();

eCC-9Pcr -!;ptrl:
_'!AnCF -_fp:
_call_token-fib_p -_call_coken-fib-pp:
void _MAIN_Cl ();

-9Pcrl.node =ecc_rts.node_id;
-9Ptrl.pcr = &_fp->res;
_call_mixecLfib-pp = Ccall_mixecLfib_P e)

ecc_rts.next_free;
_call~ed_fib-pp->n=_fp->val;
_call~ixed-fib-pp->result=-9Ptrl;
_callJlixecLfib_O Lcall_mixed-fib-pp,

_MAIN_C2. _fpl;

-!;perl.node =ecc_rts.node_id:
--9Per1.pcr = '_fp->res;
caU token fib..,pp = Ccall_token.-fib_p e)

- - - ecc_rts.nexc_free:
_call_token_fib-pp->n : _fp->val;
call~oken_fib..,pp->resulc=-9Ptr1:
call_toke~fib_O (_ca1l_coken_fib-pp,

- _MAIN_Cl, _fp);

3:CALL (ca1l_coken_fib, val, TC_GLOBAL (oUes»;
4:CALL (ca1l~ed_fib, val, TC_GLOBAL (&res));
5 : RETURN ():
6: 1

32:
33:
34:
35:
36:
37:
38:
39:
40: }
41:void J"DCC2
42:{
43 :

18:
19:
20:
21:
22:
23:
24:
25:
26: }

27:void _MAIN_Cl (_MAIN_F e_fpl
28: {
29:
30:
31:

13: _fp : (_MAIN_F -) ecc_rts.free_64:
14: if (_fp)
15: etc_rcs.free_64 =_fp->_slocs[OI.cnc;
16: e1se
17: _fp = (_MAIN_F e) malioc (64):

7:void J!AncO
8: {
9:
10:
11:
12:

•

Figure 2.16: Pre-processing ofCALL instruction•

44: }

(a) MAIN dlœ:Jded fimaiOll

48: "(int") _fp->result.pt.r = _fp->r;
49 :_encLfun:
50: _fp->_slocs[OI.cnt: etc_rts.free_64;
51: etc_rts.free_64: (long) _fp;
52: etc_return Lfp->_ret_ip, _fp->_ret_fp):
53: }

(b) CaJJec tbre:Ided functiOIl calLcoken-fib

39

•

•

2.2.12 Loops spread over Threads

Threaded-C allows for Joops to he spread over more than one thread. In the prepro

cessed code, the loop will he represented in all the C representations of the threads. How

ever, control does not toggJe between these C functions, as it does among the threads. A

threaded function, with a long white loop spread among 2 threads is shawn in part (a) of

Fig. 2.17, and its preprocessed code is shawn in part (b) of Fig. 2.17.

Before proceeding further, we define the term ready queue. Threads guaranteed ta be

scheduled on a node are placed in the ready queue (RQ) of that node. Threads from the

ready queue are executed in the AFD fashion.

For instance, the whi le loop is spread over threads 0 and 1, in part (a) of Fig. 2.17.

The loop ends in the second tbread (line J3). At the threaded function level, the under

standing of execution of this loop is that, when thread 0 finishes, control enters thread 1

(as this thread is spawned from thread 0), and after executing the only statement before

the ending brace for while loap, control jumps back ta the beginning of the loop body in

thread o. This continues until the termination of the loap. However in the preprocessed

code for thread 0 C_get-loops_pl_O) seen in part (b) of Fig. 2.17, the while state

ment is replaced by an if statement (line 14). Part of the loop body, that is in thread 0,

is mapped into the C function representing that thread, Le. part of the first iteration of the

Joop is retained in this C function.

[n the C function representing the second thread, the complete while loap is retained,

including a C return statement (preprocessed code for ENO_THREAD), at the thread

boundary (line 42). However, the thread 0 part of the first iteration in this while loap

is skipped, by using a C goto statement (line 34), as that part must a1ready have been

executed in code for thread o.
When the thread 0 completes execution, it has spawned thread 1 (line 17). Control

jumps to end of loop in C fonction corresponding to thread l, increments the loops

variable (Une 44), andjumps back ta start of the while Ioap (line 35). The Ioop body is

executed for next iteration, but the function tenninates and exits at the return statement

(line 42). Nevertheless, there is anather thread 1 spawned in the loop body that shares

the same activation frame. Execution of the new C function for thread 1 starts, and encls

in same fashion as earlier. This continues until the loop counter reaches its limit. In

the last iteration, when the loop condition fails, control jumps to the statements after the

loop body (line 46), thus skipping the return statement. After the execution of the

statements at end of thread 1 after the Iocp body, the C fonction tenninates properly, and

40

• 1:void ~et_loops-pl_O Lget_loops-pl_E' "-PP)
2: (
3 : etc~cr -9Pcrl.
4: ~et_loops-pl_F '"_fPi
5: void ~et_loops-pl_l ():

SLOT SYNC_SLOTS [l};
inc deI, loops: return;

}

etc_dat4_sync_l (_fp->loops,
_fp->resuit.
_fp->done) ;

21:
22:
23 :

24:
25: stop = 0;
26: _encLfun:
27: _fp->_slots{OI.cnt = etc_rts.free_64;
28: etc_rts.free_64 = (lonql _fp;
29:}

li: _fp = Lget_loops-pl_F ..) etc_rts. free_64;
7: if (_fp)
8: etc_rts.free_64 =_fp->_slots{O}.cnt;
9: eise
10: _fp = (-gec_loops-pl_F .) malioc (64):
Il: _fp->done = -pp->done;
12: _fp->result = ...,pp->resuIt;
13: _fp->loops = 0;
14: if (!stopl {
15: -9Pcrl.node = etc_rts.node_id;
16: .-QPtrl.ptr = _fp.
17: ecc_spawn (-9Ptrl. -get_loops...,p1_1l;
18: for (_fp->del = a: _fp->del < la '" 4;
19: _fp->del•• l
20: nop ();

6: loops = 0:
7: while (!stop)
8: SPAWN (1);
9: wait (10):
10: ENO_THREAD ();

1: THREADED qec_loops...,pl l SPTR done,
2: int '"GLOBAL result)
3 :
4:
5:

12: loops .= l;
13: }
14: DATA.-RSYNC_t. (loops, result,

donel;
15: stop -: O.
16: ~_FUNCTION (1:
17: }

jO:void ~et_loops-pl_l(-set_loops-pl_F'"_fpl
31: {
32: etc-9Ptr -9Ptrl.
33: void ~et_loops-pl_l (1;

34: goto THREAO_l.
35: while (!stop) {
36: -9Ptrl.node = etc_rts.node_id;
J7: -9Ptrl.ptr = _fp.
38: etc_spawn (~trl, -get_loops""'pl_1):
39: for (_fp->dei = 0: _fp->del < 10 • 4:
40: _fp->del++)
41: nop Cl.
42: return;

43:THREAD_l:
44: _fp->loops += 1.
45: }
46: etc_data_5Y11c_l (_fp->loops, _fp->result,
47: _fp->done) ;
48: stop = 0;
49:_encLfun:
50: _fp->_slots(Q}.cnt =etc_rts.free_64:
51: etc_rts.free_64 = (long) _fp;
52: }

Figure 2.17: Pre-processing of While Loop spread over Threads

•
(al ThIcIded funttion with While loop

spIC1d ovu tbre:Ids (b) Pre-proœssed code forWhile loop 1

41

•

•

exits.

One faet to be noled is that the threads spawned in each iteration will he plaeed al end

of the ready queue, and therefore will he executed after the threads already in the queue.

The early threads may correspond to another threaded function. Thus, splitting loops

over threads provides a chance for threads of other threaded fuoetions to he executed

alongsidelamong the threads of this threaded function.

In summary, threaded code might he preprocessed into individual C functions for the

following reasons:

• To separate long latency operations into separale threads, i.e., place the request for

an operation in one thread, and code that uses the results of the operation in another

thread. The decision to split threaded funetions into individual threads is made by

the Threaded-C programmer. Here each thread is represented by a C function.

• To facilitate restart of execution of a threaded fonction from the instruction next ta

the one in which a callee is instantiated with the CALL construct. By translating

the remaining part of the threaded function into another C function, the C function

pointer can he easily specified as instruction pointer in the retum thread pointer.

Here the prepracessor makes the decision as ta the number and structure of the C

functions to represent the threaded code.

• Ta enable a scheduling fashion in which, a thread can be made to execute among

other threads (belonging to another threaded functlon), that are ahead in the ready

queue. Here, the loop is designed by the Threaded-C programmer, while the pre

processor generates a C function for each thread. The structure of these individual

C functions allows for the representation of a loop spread over multiple threads.

Ta elaborate the third point further, sorne applications require that a thread he sched

uled on a remote node, while there is another thread (say Th. A) that is still executing

there, Le. scheduling a thread (say Th. B) on a remote node, while another thread is, for

example, execnting a long loop there. However, threads in EARTH are fine-grain~ and

non-preemptive. In snch a case, the remote thread (Th. A) will he executing forever~ and

the later threads will never get CPU time. If. inste~ the long Ioop in the remote thread

(Th. A) is spread over two threads, and the first thread spawns the second thread, as shawn

in Fig. 2.17. then the second thread will he placed behind Th.B in the RQ, thus enabling

Th. B to execute among the threads of another threaded function scheduled earlier on the

RQ.

42

•

•

2.3 The Runtime System

The Runtime System (RTS) pravides a multithreaded environment for running applica

tion threads efficiently. Its core responsibilities are thread-scheduling, context switching,

data communication, synchronization, global memory management and dynamic load

balancing.

Before proceeding further, it is imponant to study the representation of the threaded

function in the runtime system. A token is the runtime system handle to execute a threaded

function. A token consists of two parts: the name of the C function corresponding to

the thread 0 of the threaded function (instruction pointer), and the amount of memory,

measured in bytes, required ta store the arguments for the threaded function. Tokens are

created with the TOIŒN construct and are the units used for dynamic load balancing.

Threaded functions that are instantiated by a TOKEN statement can he executed in any

processing node, while a function instantiation initiated by an INVOKE statement must

be executed in the node specified in the first parameter of the rNVOKE statement.

When a token is created, heap memory for the activation frame has not yet been al

located and bence the takens are free ta migrate to remote nodes. Once the threaded

function is scheduled for execution on a node, Le. guaranteed to execute on anode, mem

ory is aIlocated for the frame pointer on that node during the first thread of the threaded

function, and the arguments for the threaded function are down-Ioaded inta the param

eter frame structure. The frame now contains the context of the threaded function, and

can he passed onto remaining threads of the threaded function. Thus the activation frame

for a threaded function is expanded. Once the activation frame has been expande~ the

threaded function cannat migrate to another node. Also, ail the threads of the threaded

function have to execute on the same node.

Though this document details the SP-21tb-3 version of RTS, the operating principles

are the same among ail versions, barring minor implementation details that are localized

ta a few routines in the CPU and network. interfaces.

2.3.1 Context SwitchiDg

Regarding context-switching, threads in Threaded-e are non-preemptive, therefore the

terrn context bere does not mean the usuai combination of the register file~ program

43

•

•

couoter, stack pointer, and the status register. Instead, the eontext of a threaded func

tian includes the arguments, sync slo15 and local variables of a threaded fonction.. There

fore, context-switching should he seen as context..sharing in Threaded~C. Once the token

representing an unexpanded Threaded-C fonction is expanded, the component threads

fonn separately invoeable C funetions representing the non-preemptive threads. Context

switehing between threads is made simple by terminating one C function, and starting

another C function. This manner of context-switching reduces overheads as it does not

require any context (register file, program counter, stack pointer, status register) to he

saved. Absence of such context savings improves portability, as the RTS code does not

need to access any machine specifie areas. Context sharing between threads of a threaded

function has been explained in section 2.2.8.

2.3.2 Scheduling of Tbreads

Scheduling a thread involves two important decisions: where the thread should be exe

cuted, and when it should start execution.. In the EARTH architecture model, these two

decisions are kept separate. It is the responsibility of the (oad balancer to decide where the

tokens will he executed, while the EARTH scheduler decides the local thread execution

order within anode.

In the EARTH model scheduIing is the last action performed by the runtime system on

a thread hefore its execution, similar ta dispatching in process scheduIing.. The Dode that

will execute a thread is identified prior to scheduling either by the compiler/programmer

or by the dynamic (oarl balancer. Load balancing is at a higher level in the RTS functional

hierarchy than scheduling, as may he noticed in Fig.. 2.20. Load balancing makes threads

available for scheduling. While scheduling is confined to one node, load balancing hap

pens between ail nodes.

Ta allow the migration of tokens hetween nodes and to enable the imp[ementation

of dynamic load balancing, two queues - the ready queue (RQ) and the token

queue (TQ), are maintained by the rnntime system on each processing node. When

ever a thread becomes enabled it is inserted in the RQ. An INVOKE causes the thread aof

the invoked function ta he placed in the RQ while a TOIŒN causes a token representing

the token-ed function ta he placed in the TQ. Load balancing operates on the TQt whereas

scheduling operates on the RQ.

Threads, rather than tokens, are the units of wode in the RQ. These threads are the

44

• components of the threaded functions that are guaranteed to execute on a node. The

threads in the RQ are in the enabled state sinee all oftheir synchronization conditions have

been met. While threads of a threaded function may execute in consecutive order, this

arder is not guaranteed as the firing ofa thread depends on its synchronization conditions.

Remember that ail the enabled threads ofa threaded function have to execute on the same

Dode. The FIFO scbeduling poIicy is used ta execute threads in the RQ. Threads are added

at the tail, and removed from the head of the queue. Whenever the RQ is empty, a token

is fetched from the TQ and the instruction pointer from the token is used ta launch the

tirst thread of the threaded function.

In contrast, the TQ in contrast is a DEQUE - a data structure similar ta a queue, but

operatable on bath ends. Tokens are the units of work in the TQ. The TQ behaves locally

like a stack. When anode generates a token, the token is appended ta the tail of the

TQ (PUSH operation). For local consumption, a token is extracted from the tail (POP

operation). However, the TQ acts like a FIFû queue when a token is to he sent to remote

Rodes as part of a Joad balancing operation. A token is removed from the head of the

TQ, and sent ta a remote node. When remotely generated tokens are received at anode.

they are added at the head of the TQ. The basic principle is that, takens are removed

from the taiI of the TQ for local consumption, and from the head of the TQ for remote

consumption. The ftow of tokens amongst the application, RQ, TQ and remote nodes is

shawn in Fig. 2.18.

•

Run-Time System

Figure 2.18: Internai Queues in the EARTH lITS

The TQ design is intended to reduce token migrations and thereby reduce space ex

p�osion (memory space for holding the activation frames). When expanding tokens or

exchanging them with other nodes, the choice of a token is important as it determines

the order in which the program is executed. The execution order in turn determines the

45

·' amount of parallelism which can he exploited and the amount of memory needed to exe

cute the pragram [109, 107].

s 9 12 15

•

Figure 2.19: A Sample Activation Tree

Fig. 2.19 shaws the activation tree of a simple" doubly recursive function. The rect

angular blacks represent threaded functions" while the edges represent the TIC edges.

If both caUs can he executed in parallel" severa! execution sequences are possible. For

instance" the sequence L. (2,3), (4" 5, 6, 7), (8, 9, 10, Il, 12, 13, 14, 15) corresponds ta a

breadth-first execution. This execution order makes it passible to execute threaded func

tians 8 to 15 in parallel, i.e. maximum parallelism of8. On the other hand, the sequence

l, 2. 4, 8, 9, 10, Il, 3, 6, 12, 13, 7, 14, 15 corresponds ta a depth-first execution. In that

case ail threaded functions are executed sequentially.

The main differences hetween these two execution orders are the amount of paral

lelism that can he exp[oited and the amount of memory needed to execute the program.

The depth-first strategy, which is the nonnal execution strategy for sequentiai proeessors,

does not exploit parallelism, but at most 4 instances of the threaded function are active

at the same time. On the other hand, the breadth-first approach takes advantage of ail

available parallelism but there must he enough memary to keep all 15 activation frames

in memory at the same time. The choice of the execution order depends on the number

of nodes in the multiprocessor system, , the time needed to start a threaded function on

another Dode, the amount of work available to the other nodes, etc. An optimum strategy

wouId he to exploit just enough parallelism to keep ail processors busy while at the same

time minimizing memory usage.

The TQ design approximates the idea1 behavior, as explained above" quïte weil. For

instance, when ail processors are busy, 00 tokens are exchanged over the oetwork. The

TQ acts like a staclc<t and the taken that was generated last is the first to he expanded. This

46

•

•

corresponds ta the normal depth-first execution strategy of sequential processors. On the

other hand~ when anode sends the tokens it bas produced to one of its neighbors. it is

the oldest token which is sent firsl The resulting execution order is breadth-first. as the

threaded funetions nearest to the root of the activation tree are exeeuted first.

The exeeution order therefore becomes dependent on the load of the machine. As

long as the machine is busy~ the code will he executed mostly in a depth-first arder. using

minimum of resources. As saon as one of the processors needs more work~ however.

tokens are sent to it in breadth-first arder and sorne more parallelism is exploited.

Another advantage of this strategy is that it is able to take sorne advantage of locality.

Executing code depth-first means that threaded funetions are executed on the same node as

their parent. Because parameters and results can he created and accessed locally~ network

traffic is reduced. This works especially well in the case of recursive functions.

To summarize~ depth-first expansion of the activation tree is desired IocaIly~ whereas

breadth-first expansion is preferred over a set of nodes. Function frames at higher levels

in the activation tree represent more work than those in Iower levels. Therefore~ frames

with more work in the activation tree should migrate to remote nodes. ta offset the work

done on remote nodes with the migration costs. Depth-first expansion on anode not only

reduces token migrations~ but aIso adds to the locality of the tokens migrated. When this

idea is mapped on to queue stnlcture~ the tokens Dear the head of the TQ correspond to

the functions on the top level of the activation tree. Hence the TQ is accessed in RFO

fashion for remote consumption, and in stack fashion for local consumption. The effect

of a DEQUE structure for token queue is descnèed in [109, 107] and [33].

2.3.3 Thread Execution by the Runtime System

The multi-threading support provided by the mntime system includes updating thread's

state according to the syochronization operations perform~ scheduling enabled threads

for execution~ polling the network al thread boundaries for messages, performing dynamie

load balancing. and sending data and synchronization signais to remote nodes. The RTS

keeps traek of tokens produced in the token queue~ ready threads in ready queue, and

initiates the threacls by accessing their C fonction pointers.

During initialization~ the executable of a Threaded-C program is loaded ioto memory

of all nodes panicipating in the execution. Remember that the executable includes abject

code for both the RTS and the application. Thread launching starts on node 0 from the

47

•

•

, ...MAIN_O' function, which corresponds to the first thread of the MAIN function of the

Threaded-C program. Child threaded functions are initiated by adding tokens to the TQ

00 the relevant node. Enabled threads are placed in the RQ for execution. In the case of

idle nodes, the dynamic load balancer on that node is invoked and it fetches tokens from

other Dodes aceording to the load balancing policy. Eventually threads are runoiog 00 ail

nodes. The execution eods when no more threads remain ta he executed.

When the execution of a thread completes the runtime system polIs the network to

check for any incoming messages. After processing all the incoming messages, it caUs

the load balancer a1gorithm. The normal conditions for the load are established by the

load balancer a1gorithm. The load is abnormal if the node has less tokens than a minimal

threshold or more tokeos than a maximum threshold. If the load is normal y the load

balancer returns immediately and the RTS fetches the next thread in the ready queue

and starts to execute il. If the RQ is empty, the RTS fetches a token from the token

queue. If the TQ is also empty, the load balancer 00 the node is invoked to request remote

workIoad. The choice of the remote node is based on the load balancer policy. Aliload

balancer related activities like: token request: token response; token forwarding: and any

updation of load state information, happen at the thread boundary. The RTS activity [33]

at a thread boundary is depicted in Fig. 2.20.

An incoming message is in one of the four groups:

Sync: Request : For a sync operation, the message contains the address of a synchroniza

tion slot. The sync count is decremented, and if it becomes zero, the syne count is

reset and the relevant thread is placed in the ready queue for execution. The handler

routine is etc_sync.

Data Request : In the case of a request from a remote node for local data. the address of

the first location and the size of the data block requested, and the global address of

the destination are in the message. The local c1ata is composed iota a message and

sent to the requesting oode. The handler routine is etc_get-5ync...x.

Response to Data Request : When remote data is received followiog a request sent ear

lier (etc_get-sync...x)~ the message contains the data, the destination address and

the address of a sync slot that is to he syochronized to signai the arrivai of the data.

The data is placed in the local destination address. and the syne canot decremented.

The syne count is accessed from the syne slol that is specified in the message. The

handIer routine is e tc_datéLSYtlc...x.

48

• N y

b

y

y

InvotelOlld
Balm:er

Figure 2.20: RTS acùvity at Polling

Load Balancing Request : A load-balancing request is serviced depending on the load

balancing poliey. In general anode that has few tokens will store an arriving token

on its token queue and reject a request for token. Anode that has a lot of tokens will

reply to requests with tokens and will reject new tokens.. Otherwise~ the request is

forwarded to the next logieal neighbor. The handler routine is hdl_token.-.req.

•

Response to load balancing request : The incoming message contains a token from a

remote node. This token is consumed if the node is still idle. Otherwise~ depending

on the load balancer policy, this extra token is either appended to the tail of the TQ,

or forwarded to next neighbor. The handIer routine that performs this operation is

hdl_token.

When data requests are receive~ the destination to where the data is to he sent is

specified as a global address. Likewise the synchronization slot that is to he synchronized

49

•

•

when a data transfer is completed is specified by a global address. The runtime system

reads the node portion of these addresses to decide about where to send the data reply

or the synchronization signal. For efficiencYt the RTS implements a number of special

ized uhandler" functions to process each kind of message. This multiple handlers system

prevents unnecessary function invocations when a message arrives.

2.3.4 Dynamic Load Balancing

Dynamic load balancers have been weil studied for coarse-grain parallel distributed com

puting. Howevert the balancer overheads in such systems are not permissible in fine-grain

systems like EARTH where a token can take as IittIe as 2 J.I.S to run. In such systems the

Joad balancer overheads must he kept to a minimum.

The Joad baIancing goal in EARTH is to ensllre that aIl nodes are busy rather than to

balance the tokens equally among all the nodes. Anode is idle when it has no threads to

execute, while anode with surplus workload is rich. The balancers are implemented in a

distributed manner, Le. any Joad distribution information is kept by each node and there

is no centrai authority to distribute the load. The action of individualload balancers mUS4

over time t ensure that most of the nodes are busy when there is enough parallelism avail

able in the application. The balancer on each node is invoked at every thread boundary

whenever tokens are to he sent or received. Tokens, the units of workIoad, are stored on

the token queue on ail nodes. Migratable tokens might he produced locally or they might

arrive at the node as a result of load balancing requests sent when the node was idle.

The initial version of the portable EARTH runtime system supponed seven dynamic

load balancer poIicies [33, 34]. The goal is to design simple baIancers that deliver good

load distribution with minimum overheads. A virtuaI ring network topology is adopted

in ail the baIancers with nodes numbered dock-wise. The baIancing activities might be

initiated by an idle node that wants work, caiIed a receiver-initiated balancer, or by a rich

Dode that wants to distribute sorne of its extra work, calIed a sender-initiated balancer; or

it might he initiated by either type of nodet called a hybrid balancer.

Two types of messages are exchanged among the nodes to implement dynamic load

balancing:

Load balancing request : A load-balancing request is serviced according to the load

balancing policy. In generaI, if there are surplus tokens in the token queue, a token

is sent to the remote node that requested work. Otherwiset the request is forwarded

50

•

•

to the next lagical neighbor in the ring.

Response to (oad balancing request : The incoming message contains a token from a

remote node. If the node is still idIe, il consumes the token. Otherwise, the token

might he inserted in the head of the TQ or it might he forwarded to the next neighbor

in the ring. The action taken in this case depends on the load balancer policy.

We now present a brief description of the POlicy adopted by each loarl balancer.

Dual In this loarl balancer a request does not contain the identification of the nade that

originated il. When a Dode is idle it creates a request and sends it ta its previous

neighbor in the ring. When a rich node receives a request it sends a token from its

TQ ta its successor. When an idle node receives a request it forwards the request

ta its predecessor. When a rich node receives a token, it forwards the token ta its

successor. When an idle Dode receives a token it schedules the token for execution.

Notice that requests will circulate counter-clockwise in the ring while tokens will

circulate in a clockwise fashion.

In EARTH implementations in which there is a single processor in each node the

processar has ta perform the functianality of both the execution unit and the syn

chronization unit. In such an implementation the dualload balancer might result in

poor performance because the processor of busy nodes might he overloaded with

the passing of tokens and requests. However the dual balancer can work quite weil

in implementations in which there is a separate processor ta implement the func

tionality of the synchronization unit

Spn This balancer is similar ta the Dual balancer, except that it is designed for single

processor nodes. To reduce the communication traffic, a request contains the iden

tification of the node that originated it. Requests are still circulated around the ring

in a counter-clockwise fashion. However, when they arrive at a rich Dode, the node

sends the reply directIy ta the node that has originated the request. This policy

eliminates the wark that intermediate nodes would have to do to forward takens.

Shis In the Shis balancer the rich node that sent a token in response to a reply attaches

its own id to the token. The idle node that receives the token ~Ioremembers" where

it cornes from and directs its request ta the rich node that sent wark the last rime.

If now that oode is no longer rich, the request is circulated around the ring in a

51

•

•

eounter-clockwise fashion by the formerly rich node. This poliey eliminates the

overhead of forwarding tokens and reduces the overhead of forwarding requests.

Snd The sender balancer starts working when the number of tokens in the TQ reaches

a threshold. The tokens are sent around the ring in a round-robin fashion ta avoid

overloading other nodes. Ifa rich node receives a token it will forward it according

to its own round-robin sequencing. Ifa token arrives back at the Dode that tirst sent

it out9 it is no longer sent out. Under this policy an idle node does not attempt to

balance the load. It stays idle until it receives work from a rich Dode.

His This history balancer employs bath receiver and sender initiated strategies to dis

tribute load. Each node keeps a Iist of nodes that are likely to he idle and of

nodes that are Iikely to be rich. Such list is compiled from the recent history of

load balancing activities. Nades that sent request for work recently are likely to he

idle. Nades that replied ta requests for work providing tokens are likely to he rich.

When the TQ becomes emptyt the history balancer sends requests to the nodes that

are likely to he rich. When its TQ becomes larger than a given threshold. it sends

tokens to the nodes that are likely to he idle.

Range and Catapult Requests are sent to the predecessor node as in the dual and spn

balancers. When a token request reaches a nodet it implies that ail the nodes in the

ring between the node that originated the request and the node that received it are

idle. A range list is compiled to store the ranges of oodes that are idle. When the

TQ of a node surpasses a given threshold the node will send tokens ta the nodes in

the range list. The catapult balancer sends takens ta the near end of the range Iist,

whereas the range balancer sends them to the far end of the range list.

If a token reaches a Dode that is no more idle, the range balancer on that node

forwards the token to its predecessor and sends a message to the source node ta

notify mat it is no longer idle. The source node then updates its range list.

Fig. 2.21 shows the virtual ring and the functionality of receiver-initiated, sender

initiated and hybrid balancers in the EARTH runtime system. The seven Ioad balancer

policies provide a platfonn ta study the varioas parameters that affect application per

formance, Iike the application model, grain size, logical topology, polling intervaI, and

scaIability. Our experimental results sa far, show that there is no perfect 1000 balancer for

52

•
• HIIIlIrY Node:

o
RapJadiaI TlICn

... • l.IXId UpdaIc Mma&c

•

Figure 2.21: The dual, snd and range 1000 balancers

all application models. However. hybrid balancers that are based on history infonnation

perfarrned weIl in most situations.

2.3.5 Network Layer

The services provided by the RTS that require inter-node data communication are based

on the technique of active messages [163]. An active message cantains data and a pointer

to a function that is ta be invoked in the destination node when the message is received.

Remote operations involving spawning of threads, syne operations, handling global mem

ory, and inter-node data communication are based on the technique of active messages.

For efficiency, and to isolate the interactions with the network from the rest of the RTS, a

limited set of functions is used for inter-node communication.

The arrivai of an active message causes a function handler to he invoked at the des

tination whieh acts on the data transmitted. The message transmitted contains two parts:

the name of the handler routine ta he invoked at the remote node, and the parameters for

this handler routine. The C function pointer is used to represent the starting address of

the handIer routine on the remote Dode.

The data packets are identified depending on the number and size of the parameters

transmitted as part of the active message. The RTS provides four primitives for sending

active messages. Ail data packets have the handIer routine name, but differ in the number

of parameters they support. The handler routine at the remote node is invoked with these

parameters.

• etc-send2: For data packets with two parameters.

53

•

•

• etc-send4: For data packets with four parameters.

• etc_send6: For data packets with six. parameters.

• etc.-.send2n: For data packets with two parameters and a data black.

• e tc.-.send4n: For data packets with four parameters and a data black.

These five prototypes are sufficient to achieve inter-node communication for all types

of data. They are part of the networlc interface of the RTS, and access the network card

data structures (the tb-3 card data structures on the mM SP-2 platfonn). To maintain

speedy communications, the network card data structures are retained in the RTS com

munication interface, but this interaction is very limited to a few routines. By maintaining

the above prototypes for the etc-send routines, the rest of the RTS code is independent

of the network platform on the underlying parallel machine.

The number of tasks and the identity of the current node is obtained from the network

environment. The network parameters like pointers for the send, receive, and overflow

buffers are initialized in the network card data structures. Acknowledgment messages

are sent sa that remote nodes can send sorne more packets. When the send queue is full,

outgoing messages are shifted ta the overftow buffer, from where they are later sent.

Active messages are sent through the etc_sendX routines. The data packet is loaded

inta the tb-3 netwarle data structure alang with the number of parameters required for

executing the handler rautines at the remote end - either 2, 4, or 6. The composed data

packet is placed in the netwarle send queue. Fig. 2.22 shows the prototypes for the send

routines.

Polling the network is perfonned at the thread boundary, or at the explicit use of the

'POLL' statement [108]. The incoming message is picked from the receive queue, and

depending on the message type (number of parameters), the handler routine is invoked

with the parameters (both obtained from the message).

The RTS makes use of the e tc.-.send primitives to implement remote datacommuni

cation, remote synchronization, global memory managemen~ and dynamic load balanc

ing. The handler routines are present on aIl nodes, as the same executable is running on

aIl the nodes. For instance to implement remote synchronization, the RTS on the local

Dode composes an active message with the handler routine name (etc-Sync) and the

global address of the sync slot. The handler routine on invocation at the remote node

checks for Dode identity, and then perfonns the synchronization operation. While dealing

54

•

•

void etc_send2(int dest,etc_handler hdl,int pl,
int p2)

void etc_send4 (int dest etc_handler hdl,int pl,
int p2,int p3,int p4)

void etc_send6 (int dest,etc_handler hdl,int pl,
int p2,int p3,int p4,int pS,int p6)

void etc_send2n (int dest,etc_handIer hdl,int pl,
int p2,void *p,long bytes)

void etc_send4n (int dest,etc_handler hdl,int pl,
int p2,int p3,int p4,void *p,
long bytes)

Figure 2.22: Send routines for Active Messages

with global addresses such as that of the sync slot in this example, the handler routine first

checks the node number in the global address. If the node identity nllmber matches the

node number in the global adclress, then the requested operation is performed~ otherwise

the message is forwarded through an etc..sendX routine to the destination node. Thus

global addresses are supported over the network layer.

2.3.6 Common RTS core

This section looks at the organization of the RTS source code while implementing sorne

of the RTS core functionality - synchronization and scheduling, data communication and

global memory management.

The starting point for the executable is the 'main' function in the file rts . C. The

RTS variables, timer, network, load balancer, and profiler (if load balancer and profiler

are chosen as options on etcc command-line) are initialized. The etc-run () function

starts the execution of the Threaded-C code from ifs -MAIN_O function and from here

on, the RTS keeps track of application execution. The etc.next_thread function

specified in the Joad balancer modules, determines the next tbread to he executed - either

from the RQ, TQt or ifboth are empty, by requesting from the IogicaI neighbors as per the

load balancing policy. The threads are placed in the RQ by placing the function pointer

55

•

•

in the 'ip' field, and the parameters in the 'fp' field.

The file data . c contains the macro names for the handlers. The inline expanded

macro definitions are given in the file àata-inc. c. The handlers are organized in two

levels. The first level corresponds ta the handJer name obtained from the incoming mes

sage at polling. These invoked handlers have their name starting with the keyward etc_

(for ex. etc-sync). The function ofetc~ is to determine if lJte message is meant

for the current node. If the message is for the local node, the carrespanding function

whose name starts with the keyword hdl_ is invoked. The routine hdl..xxx proceeds

ta act on the parameters and perform relevant function. On the other hand, if etc..xxx

determines that the incoming message is not meant for the local node, it forwards the han

dler name and parameters ta the destination node. Fig. 2.23 gives an example of invoking

handlers with the code for etc..sync. The code for hdl-sync is shawn in Fig. 2.24.

IY
void inline_etc_sync (s_node, s_sp)
YI
idefine inline_etc_sync(s_node, s_sp} \
{\

buf_elem Ybp; \
\
if (s_node == etc_rts.node_id) { \

inline_hdl_sync «(etc_slot y) s_sp»; \
} else { \
etc_send2 (s_node, hdl_sync, (int) s_sp, 0); \
INC_REMOTE \

} \

Figure 2.23: Invoking handIer for Syoc Operation

Global memory management makes use of the handlers as specified above. For a

global address, the RTS on anode sends a request to a remote node which hasts the global

address. The destinatian node, on identifying the node number in the global address as

its own, immediately composes an active message with the data and the name of handler

routine and sends it ta the requesting node. On the other hand, if the node number in

the global address does not match the oode identityp the RTS forwards the message to the

correct destination. This strategy of checking for the node number before perfonning an

56

•

•

operation, not only provides fault-tolerance from missing messages, but aIso enables the

RTS code ta run on any interconnection netwark in the parallel macmne.

Ta access a global address, the requesting Dode composes an active message with

the global address, and the handler routine etc_get_sync..x. This message is sent ta

the Dode which hasts the global address. When the hast node receives a get-sync, it

constructs a etc_data_sync..x message which after returning the data content, also

deerements the sync couDter for the relevant thread. If the syne count is zero, the thread

is placed in the RQ.

Regarding thread synchronization, an explicit syne message causes the handler routine

etc_sync ta be invoked on the destination Dode. The handler routine decrements the

syne counter, and if the sync count reaches zero places the corresponding thread in the

RQ. Fig. 2.24 shows a typical handler for syne operation.

idefine inline_hdl_sync(sp) \
{\
buf_elem *bp; \
\
if (sp->cnt == 1) {\

sp->cnt = sp->rst;\
bp = etc_rts.next_free;\
etc_rts.rdy_t->next = bp;\
etc_rts.rdy_t = bp;\
etc_rts.next_free =bp->next;\
bp->ip = sp->ip;\
bp->fp = sp->fp;\
if (!etc_rts.next_free)

etc_alloc_buf_elem ();\
else\

sp->cnt -= 1;\
}

Figure 2.24: Handler for Sync operation

2.3.7 Architecture Specifie Code

Instruction timing and cache parameters directIy influence the execution time. Timing

statistics for the instructions are obtained by accessing the on-board programmable timer.

Assembly language routines for the mM SP platforms retum the accurate real-time dock,

57

•

•

after accessing the on-board 64 bit rime base register. These routines are called frOID the

C function, etc_time () whenever system time is required. The etc_time routine

returns time in seconds, as a double-precision value.

In the early versions of the portable RTS, the ct-read () routine is used to obtain

timing information. This routine was used to maintain compatibility with the Threaded

C code devel0Ped for the EARTH-MANNA. The c t-read () routine in tum called

etc_time-raw () , which is in assembly, and retumed time in nanoseconds as a double

precision value. But since the current version of the portable RTS, etc_time () is the

routine used to access on-board real time dock, and should he used in future Threaded-C

applications and the RTS profiling code.

To obtain exact execution times, cache misses are reduced by touching both the code

and data segments initially. Corresponding assembly language routines flush cache lines

specified as a single address or in an address range. In addition, memory-to-memory

copy operation optimized for small blacks using both integer and floating-point registers

is provided. Time delay is provided by an assembly language routine etc_delay () .

The above stated functions contribute to the minimal machine specific code of the

portable RTS. These routines are available for RS6000 CPD, and SUN workstations re

spectively.

2.3.8 Portability

Two features that affect the portability of an implementation of a parallel progrnmming

model are the interfaces with the hardware and with the interconnection network. The

EARTH runtime system is written in a standard programming language (in this case

ANSI-C) that is supported by most parallel machines. The EARTH runtime system mini

mizes specifie references to architecture or hardware features and network protocols. To

further enhance portability, specifie tasks required to interact with a given network are

written as a separate set of funetions with a clearly defined interface with the rest of the

runtime system.

When threads can he preempted the context in which a thread is executing -program

counter, status registers~ staek pointers and architecturaI registers, must he saved wben the

thread loses the CPU. Becanse tbreads run to completion in EARTH, context ooly bas to

he saved at the thread boundaries. At that point there is no need to save the values stored

in the architectural register, progrnm counter staek pointer or status register. The context

58

•

•

here, means the combination of the parameters, local variables, and the sync slots for a

threaded functioo. Ail the context that is shared among EARTH threads belonging to the

same threaded fuoctioo is stored in the local variables of the fuoctioo and thus is stored in

the activation frame. Because there are 00 architectural dependeot values to he saved and

restored during the execution ofEARTHy the runtime system cao he made very portable.

The current version of the runtime system is poned ooto the SUN workstations. IBM

SP-2, and the Beowulf. Its network interfaces maybe myrinet, tb-2, tb-3.

and Tep / IP. The RTS can he poned onto new platforms very easily and quickly.

59

•

•

Chapter3

Dynamic Load Balancers in the

EARTH Runtime System

Dynamic load balancing in fine-grain multithreaded systems places the following de

mands on a load balancer: accuracy, inexpensiveness, quick response time, sirnplicity,

stability, efficiency, and scalabiIity. An efficient balancer provides agreeable performance

improvement with [oad balancing, when compared to a "no-load balancer" situation.

These demands are understandable in the EARTH system, where average grain size can

he 200 J.Ls (approx. 12500 cycles). Another important expectation from a load balancer

is that it should perform weil for ail applications, in highllow Ioad situations. In other

words, the balancer should he able to exploit the available parallelism in any application

at runtime, and minimize the idle times by keeping ail the processors busy.

To meet ail the demands enumerated above, a balancer should not only he able to

respond to rapidly fluctuating loads, but aIso he able to make accurate decisions based on

global system state, and aIso consume minimum CPU cycles for load balancing purposes.

As a study in this direction, the Rand balancer is presented in this chapter. This balancer is

based on a randomizing algorithm, perfonns the roles ofboth sender and receiver accord

ing to the current load situation, considers global loarl state before choosing a target Dode

for work transfer, and uses a completely connected graph as a logical topology between

aIl the nodes in the execution.

Before proceeding further, certain assumptions in the 1000 model are restated here.

Firstly, scheduling is separated from the task of dynamic Ioad balancing in the EARTH

system. As explained in section 2.3.2, scheduling decides on the next tbread to execute

from locally available work in the ready queue, whereas 1000 balancing operates between

60

•

•

the token queues on different nodes. The DEQUE structure of the token queue supports

locality considerations by allowing depth-first search locally, and breadth-first search re

motely. Tokens are the uoits of dynamic laad balanciog. Secondly, the goal of load

balancing here is to keep ail the processors busy, rather than balancing workload equally

on ail the processors.

A Dode is said ta be in the idle state when it has no threads to execute. A Dode with

surplus worldoad is called a rich Dode. Threshold values for worldoad classify the nodes

as either rich or idle. Distributing the worldoad during application execution is achieved

by sending the tokens to the balancers on remote nodes. A token contains ail the necessary

information to create a new thread. Tokens are stared in the token queue on each node.

The token queue is based on the DEQUE data structure, which acts as a stack for local

consumption and as a FIFO queue for remote consumption. Tokens eligible for migration

are obtained in [wo ways: by generating locally, and as a result of load baIancing requests.

The token execution ùme determines the grain size.

This chapter is organized as follows: Section 3.1 reviews previous work on random

izing algorithms. Section 3.2 describes the Rand balancer algorithm. Section 3.3 iso

lates various features of the Rand balancer, and studies their effect on performance. Sec

tion 3.3.4 presents the algorithm for a balancer that allows to execute parallel applications

with no load baIancing.

3.1 Background

In the random mapping strategy, initial placement of threads is done by choosing a pro

cessor at random't and map that thread to that processor [99, 18, 54}. It has been shown

that this scheme has a bad worst-ease behavior when a highly loaded processor is cho

sen [50, 78, 136]. An alternative approach is to tirst probe a limited number of nodes at

random, and then choose the best one [117, 136]. Even probing only two nodes reduces

the expected maximum load when mapping n threads frorn O(1og ni log log n) to O{1og

log n) [20].

Mitzenmacher et al. [1191 improvise on the work in [20}. They consider the following

dynamic model: customers arrive as a Poisson stream ofrate al a collection of n servers.

Each customerchooses sorne dservers independently and unifonnly at random from the n

servers, and waits for service at the one with the fewest customers. Custorners are served

according to the first-in-first-out (FIFO) protocol, and the service time for a customer is

61

•

•

distributed with Mean 1. This model is called the supermarket Madel. In this model,

customers arrive over time, and the number of customers is not fixed. It has been shown

that the maximum 1000 is then only (log log n)llog d + 0(1) with high probability. This

same result can he observed even in a static system. in which n balls are placed into n bins,

each bin chosen independently and at random. Here, each ball is placed sequentially into

the least full of dbins chosen independently and uniformly at random. In the static model,

the number of balls and bins are fixed. The difference between the model considered here

and the one shown in Azar et a l is that in the latter, there are a fixed number ofcustomers

to he distributed who never leave the system. [n addition, a customer who completes

service is recirculated in the system.

Dynamic task arrivaIs, and variable number of tasks in an execution suit the multi

threaded model. However, implementing the random probes is a costly process in fine

grain systems. Executing a random function for every decision, and polling overheads

due ta the Ioad probes pose the biggest challenge ta make load balancing profitable in

fine-grain multithreaded systems such as EARTH.

The basis for the Rand balancer is the supennarket model [119] in distributed com

puting. The resuts show that giving each bail two choices instead af just one leads ta an

expanential impravement in the maximum laad on any node. The system considered has

a very high number ofqueues ta chose from, in the arder of hundreds. While having more

than a hundred processors is possible, their number is rarely more than 32, or at most 64 in

actual application executions. The value for d has not been formulated in [119]. Finally,

the supermarket model is considered for process-based distributed computing, where the

queuing theory principles apply. However, in multithreaded systems, task arrival rate is

not independent of task consumption rate. Furthermore in fine-grain multithreaded sys

tems, the application grain size is very small, and the simulation results in [119] do not

apply here. Therefore, the Rand balancer has ta he very lean, and resort ta various other

techniques so that the balancing benefits donùnate the balancer overheads.

3.2 The Rand Balancer

The main features of the Rand balancer are as follows:

62

•

•

• The balancer is hybrid (symmetric)1• The balancer bas both sender and receiver

initiated components.

• In the receiver mode, load probes are sent to randomly chosen nodes. The least

loaded node is chosen as the destination node for load transfer. Load probes are not

used in the sender mode of the balancer.

• Load information is collected from load probes, load messages, and piggy-backed

messages. This load information is used in deciding a destination node for Joad

transfer. Care is taken to avoid aging of the [oad infonnation. If the Joad informa

tion is not recen~ then anode is chosen at random.

• The balancer assumes a completely connected graph as a logical topology between

the nodes. Ali nodes are within one hop distance ofeach other.2

• A load threshold is used to limit excessive load transfers in the sender mode, and

thus avoid load thrashing common in sender-initiated balancers.

The four phases in dynamic load balancing are - load evaluation, load balancing prof

itability determination, task selection, and task migration. The second phase is more

common in process-based paraIlel systems, and is not affordable for fine-grain multi

threading due to its high cast. Laad transfers are always assumed profitable because the

goal here is to minimize idle time rather than balancing load equally. Task selection in the

third phase is automatic in the EARTH model, due ta the DEQUE structure for the token

queue. Tokens from the top of the token queue are always chosen to migrate.

Transfer PoHcy: This poliey determines the balancer initiation strategy, Le. whether

the cnrrent load situation warrants the initiation of (oad transfer.

The receiver mode of the Rand balancer is switched on in three situations:

• The scheduler finds no ready thread to execute in both the ready queue and token

queue.

• On receiving a load request, two scenarios are possible: a receiving node for the

1000 request is aIreOOy idle; after responding to the request. anode finds an empty

token queue.

1The term hybrid is known as synunmic elsewhere in the literature•
2This may not he true in the underlying physical architecture.

63

•

•

• After receiving a token from the network, an idle node notices that it bas no extra

tokens.

The sender mode of the Rand balancer is switched on, when the number ofentries in

the local token queue equals a particular threshold. The threshold is caleulated by an em

pirieal formula, which takes into account the numberofnodes in the system. This fonnula

has been fine-tuned experimentally uotil satisfactory resuIts are observed. The threshold

is double the number of probes sent. The numher of probes sent, in tum, depends on the

number of nodes in the execution. If the threshold is computed to he less than five. it is

nonnalized to value that provides a good balance between aggressive and conservative

load migration.

Selection poncy: This policy selects the token for migration. There is no extra effort

invested in identifying a suitable token to migrate. The token queue simplifies this policy,

as the tokens at the top of the token queue are expected to he higher in the activation tree,

are expected to have more work. Locality requirements of communicating threads are

taken care of, by adopting a depth-first search pattern for local thread execution.

Location Poliey: A panner for Ioad migration is identified in this policy. ln the

receiver mode, the objective of the balancer is to find the richest possible node in the

whole system. Load probes are sent to randomly chosen nodes. Once ail the probes are

acknowledged with the load status on remote nodes, the richest node is determined by

comparing the [oad status from the probes. Finally., a token request message is sent to the

richest node.

An important variable is the number of load probes. The number chosen should he

large enough to represent the total number of nodes in the execution. but at the same time

must he small enough not to cause an explosion of load probe messages, and as a result

unacceptable load overheads. An empirical formula after thorough experimentation has

been determined for the number of load probes.

d = (NumberofNodes)/IO+I)

The value for d, the number of 1000. probes is constant for a whole execution. It

has worked very weIl for the portable EARI'H runtime system on the mM SP-2. Its

value may need a change on other parallel systems, like the Fast Etbemet based Beowulf

syste~ where the network lateneies and polling overheads are relatively high.

In the sender mode, the load state information database on each node is cbecked for

the poores~ or the most idle oode in the system. If this cannot he detennined from the

64

•

•

database, then anode is chosen at random. A message with a taken is sent ta the chosen

node. No load probes are sent during the sender mode. Making the most accurate choice

in the sender mode is not as important as in the receiver mode. While care is taken ta make

the best choice with available information, there is no need ta spend too much CPU tirne

on load balancing overheads, especially when the local processor has enough application

threads to execute.

Information PoHcy: AgIobalload information database is maintained on every node.

Initiaiiyambitions plans with sophisticated search patterns were conceived, but ourexper

iments have convinced us of the need for a simple, and effective database access. Instead

of checking the load information for every node, a reverse approach is adopted in the

design of the data structure for the database. A single-dimensional array indexed by load

is maintained. Each of the elements of the array have a stnlcture with fields for anode

number, and a reuse ftag. As the balancer is always searching for the richest, or poorest

nodes, this approach works fine. Whenever load information is received, the node is en

tered into the array slot with corresponding load index. The reuse ftag is set to indicate

that this information is very recent. Once the information is used in making a decision,

the reuse ftag is reset in arder to avoid using oId and inaccurate load information.

Load information is collected in three ways: load probes, load balancing messages,

and piggy-backed information. When a load probe is acknowledged, the data is stored in

the database. Also, when a load request or [oad probe is received, then it is easy ta assume

that the sender has zero worldoad. Finally. localload information is piggy-backed over

taken transfer messages sent abroad.

Whenever a load balancing message is received at a node, a corresponding handler

is invoked. The behavior of the Rand balancer for different load balancing messages is

listed below:

Receiving a load probe : Local loarl infonnation (entries in the token queue) is com

posed inta a message and sent to the sender Dode. An entry is made in the load

information database. to record the id1e state of the seoder oode.

Receiving probe data : Store the load information in the database. Ifall the load probes

are acknowledged. then compare the data from all the probes to determine the best

destination. Theo, a token request message is sent to the chosen node.

Receiving a token request : Update the node information in the load database, to reftect

the idle status of the sender oode. Iftoken queue is not emptyt respond with a token

65

•

•

to the request. After the token transfer,if the token queue is empty, then initiate

the receiver mode of the Ioad balancer. On the other hand, if there were no tokens

when the request was received, initiate the receiver mode of the balancer. Note

that, a token request is satisfied, even if it is the only token in the token queue.

Previous experience has shown us that. performance degrades if a token request is

not satisfied due to the lack of spare tokens.

ReceiviDg a token : Down-Ioad the piggy-backed Ioad information inta the database. If

this node is idle, consume the token, and send a token request. If it is not idle, and

the number of tokens in the token queue equals the Ioad threshold, then initiate the

sender mode and forward the token to a chosen destination. If the workload on the

current Dode is below the threshold, add the token ta the token queue.

Sendïng a token request: If the number of load probes for this execution is one, then

select anode at random. Otherwise, issue d number of load probes to randomly selected

nodes.

3.3 Other Balancers

This section describes the aIgorithms for eight other balancers implemented in the

EARTH ruotime system. Six of these balancers are implemented in arder to highlight

the individual significance of various features that together form the Rand balancer. The

Minima balancer does not perfonn any load balancing, and therefore provides the lower

bound for parallel performance. The Central balancer implements a centralized load bal

ancing algorithm on distributed memory machines, and is intended to point out th result

ing degradation in performance. The 1000 balancers are as listed below:

Receiver-Initiated : Rand-Rcv-Info, Rand-Rcv

Sender-Initiated : Rand.snd-lnfo

Hybrid : Rand-Hybrid-Noinfo, Rand-Hybrid, Rand-Hybrid-Piggyback

Performance Round : Minima

The balancers based on the randomizing algorithm allow a comparative study of the

Rand balancer with respect to their transfer policy, and information policy. The studies

66

•

•

on the transfer policy establish the fact that the hybrid nature of the Rand balancer out

performs the sender/receiver-initiated versions of itself. Comparison ofdifferent levels of

sophistication in the information policy confirms the soundness of the information policy

in the Rand balancer.

3.3.1 Receiver-lnitiated Balancers

The Rand-Rcv-Info balancer is similar to the Rand balancer with its sender component

excluded. This balancer is strictly receiver-initiated. Whenever, there is a shortage of

tokens, a token request is sent abroad. Token transfers accur only as response to token

requests. However, the selection, location, and information policies rernain the same as

the Rand balancer. Adalabase is maintained on each node with load information collected

frorn probe data, load messages, and piggy-backed data. The load database is used in

choosing a destination for load request, when there is only one ready thread in the ready

queue. This balancer compares the receiver-initiated policy versus the hybrid policy of

the Rand balancer.

The Rand-Rcv balancer differs from the Rand-Rcv-Info balancer in that, no load in

formation is considered in choosing the destinations for (oad requests. This balancer is

to highlight two issues in receiver-initiated balancers: significance of the super-market

model, where load probes are sent to randomly chosen nodes, and the node with highest

workIoad is chosen as the target for token request; and the relevance of information pol

icy in token transfers. This balancer uses a simple work-stealing algorithm in which the

destination node is picked on random. No load probes are sent, nor any load information

database is maintained.

3.3.2 Sender-Initiated Balancers

The Rand-Snd-Info balancer is a sender-initiated balancer. It differs fram the Rand bal

ancer in twa respects: there is no receiver-initiated component; and no load probes are

sent. Barring these two differences~ the balancer is similar ta the Rand balancer.

Load probes are not used in arder to avaid instability in the system due ta very high

balancer reIated message traffic. However~ a Ioad infonnation database is maintained on

each node. Load infonnation gleaned from Iaad messages~ and piggy-backed messages is

mapped iota the database.

A load threshold is used ta initiate Ioad transfers. When worldaad on anode equals

67

•

•

the threshold~ a target node is chosen either from the current load infonnation~ or by using

a randomizing function.

3.3.3 Hybrid Load Ralancers

The Rand-Hybrid-Noinfo balancerdiffers from the Randbalancer in that it does not main

tain a load state database on each node. The Rand balancer uses global load state informa

tion to a small extent in the receiver mode, and in a major way in the sender component.

This use of load state information is excluded in the Rand-hybrid-Nolnfo algorithm. In

the receiver mode, target nodes are chosen by sencling random probes~ and selecting the

most appropriate node. In the sender mode, a load destination is picked at random. The

objective of this balancer is to highlight the difference that the load information poliey in

the Rand balancer makes to total elapsed time.

The Rand-Hybrid balancer is an extension to the Rand-Rcv balancer in that, a sender

component also is also included. This balancer is a simple hybrid balancer in which

target nodes for both token requests, and token transfers are chosen at random. The

major difference with the Rand balancer lies in the location policy and information policy.

No Ioad probes are sent, neither is any globalload state infonnation considered in the

decision making process. this balancer is created to observe the performance of a naive,

hybrid, randomizing algorithm. Its performance makes the benefits of load probes, and

information policy in the Rand balancer obvious.

The Rand-Hybrid-Piggyback balancer extends the Rand-Hybrid balancer by consid

ering load state information collected from Ioad messages and piggy-backed messages,

before choosing a destination node for token transfer. The performance of this balancer,

when compared to the Rand balancer, isolates the effect of load probes and accurate global

Ioad information on application perfonnance.

3.3.4 Performance Round

The Minima Ioad balancer provides a realistic lower bound for performance in the "par

a1lel" execution of Threaded-C programs. It is basically a dummy load balancer. It does

not do any load balancing.

The Minima balancer is created as an improvement over the Nop balancer [331 in the

EARTH runtime system. The Nop balancer launcbes the executable3 on ail the nodes in

3Combination of application code and runtime system code

68

•

•

the execution, with one process on each node. After this, unless the programmer maps

sorne work onto a node, the whole work is executed on oode O. Runtime load balancing

is non-exÏstent. However, this policy does Dot provide a realistic lower bound of paraUel

performance. Unless application threads are ronning on all the nodes, it cannot he termed

a parallel execution. What the Nop balancer provides is a sequential execution, combined

with the overheads of maintaioing a parallel environment.

The Minima balancer avoids this scenario by ensuring that every node gets to exe

cute at least one token. Of course, this is subject to the availability of parallelism in the

application. Once each node receives ODe token, the rontime load balancer is switched

off. Parallel execution proceeds without any more (oad balancing, and the total elapsed

time reftects the lower bound in parallel performance. The performance of the Minima

balancer can be compared to other balancers to determine their improvementsloverheads.

In other words, the Minima balancer provides a realistic, experimental lower bound for

parallel application performance.

In order to initiate parallel execution of the activation tree, every rich node passes its

second token to its 10gicaI neighbor, Le. node 0 passes a token to Dode l, node 1 to node

2, and 50 on, uotil the final node - lVU1\'[..J.VODES - 1 is reached. A oode is rich if it

has at least one token. After exporting a tokeo abroad, each node consumes aIl the tokens

it generates. There is 00 (oad balancing through the remaining pan of the application

execution. In addition to the token and its childreo that a Dode gets ta compute, anode

May aIso receive tokens when the programmer/compiler map certain workload onto a

node using the INVOIŒ instruction.

69

•

•

Chapter4

Experimental Framework

In this chapter, we present the framework in which the different load balancers in the

portable EARTH runtime system on the mM SP-2 system are evaluated. Initially, we

enumerate the benchmarks used to study the suitability of various balancers to different

applications. Second, we briefty review the experirnents planned, and particular char

acteristics of the load balancers which are under observation. Finally, we describe the

hardware platform on which these experiments are perfonned.

4.1 Benchmarks

The domain of applications considered in this study are Threaded-C programs belonging

to the divide-and-conquer, regular, and irregular classes of applications. These applica

tions are characterized by fine-grain threads with very short mn-tïrnes, frequent communi

cations and synchronizations, and varying amounts of parallelism that can he exploited by

the runtime system. Therefore responsiveness, ability of the balancer to choose the right

destination (either for a sender or receiver) in minimum steps, and minimum balancer

overheads are crucial for better performance [34].

The benchmark programs used in our experiments are taken from the EARTH Bench

mark Suite (EBS) [160]. Table 4.1 gives a briefoverview ofthese benchmarks. Fibonacci,

N-Queen and TSP (Traveling Salesperson Problem) are typical examples of recursive

divide-and-conquer a1gorithms. The Paraffins benchmark is somewhat special in that it

generates very irregular load units and has ooly a short execution time. Matrix Multipiy

and Tomcatv, on the other band, perform regular SPMD computations.

70

•

•

Benchmark Name Problem Domain Type Tokens Threads
Generated executed

Fibonacci (33) Combinatorial Divide and conquer 11405772 17108661
N-Queen (12) Graph Searching Divide and conquer 9916 24791
TSP (l0) Graph searching Divide and conquer 5861 18407
Knary (7,7,2) Computation Trees Divide and Conquer 98040 274516
Matrix Multiply Numerical Computation Regular SPMD NA NA
Torncatv (257) Scientific Computation Regular SPMD 101 304
SPMD (4,4,0) Scientific Computation ReguIar SPMD 2100 4301
Paraffins (28) Chemistry Irregular 1843 1904

Table 4.1: The EARTH Benchmark Suite

The Fibonacci benchmark is programmed in a recursive fashion, as per the divide

and-conquer programming model. Each token does very little work other than spawning

two children. The Fibonacci program presents an interesting problem - how to tackle ex

tremely fine-grain applications. Secondly, this program aIso showcases the ability of the

multithreaded environment to create, maintain, and terminate a large number of threads

with minimum overheads. As shown in Table 4.1, the Fibonacci(33) problem creates

11405772 tokens, and 17108661 threads. This benchmark represents a challenge to the

load balancer, not because of any difficulties in understanding the program behavior, but

due to its very fine-grain threads. In order to achieve any kind of improvement, the load

balancer has to he very simple, with absolutely minimum overheads, and perform load

balancing only when required.

The N-Queens is a typical recursive program that counts how many ways N queens

can he placed in an lV x lV chess board so that no queen May anack another. In the version

that we used, lV = 12, and the parallelism is "throttled". When four queens are placed

on the board, the program switches to a sequentiai execution and no longer generates

migratable tokens. The idea is that at the level of the recursion enough instantiations

of the recursive function have been generated to distribute the computation among the

processors in the machine. Our implementation, initially expands the board with breadth

first search, and then switches to depth-first search. In order to coarsen the grain size, a

thronIing threshold is used.

The Traveling Salesperson Problem (TSP) is anather graph-theoretic problem. Here,

the mm is to find a Hamiltonian tour wben a traveling saiesperson visits N cities, eacb

city exactly once, and retums to the city of origin. The saiesperson is expected to cover

71

•

•

ail cities and optimize cast for the whole trip. A complete weighted graph is used to

represent the cities, and the costs of inter-city travel.

The K-nary models the divide-and-conquerstrategy. It generates a k-ary computation

tree, Le. each Dode bas k children [34]. By changing the depth and width of the tree,

wc can simulate many common situations. The Knary (n,k,r) represents a k-ary tree with

depth n and r children being executed locally. Sorne knary trees have special interest to

load balancing studies. For instance, Knary (2,512,0) is a two-level knary tree. The root

of the knary tree generates 512 children and waits for their termination. These 512 chil

dren are in the forro of takens, and are Cree to relocate ta remote nodes. As these tokens

are created on one node initially, the speed with which they are distributed determines the

elapsed time.

The dense matrix multiply algorithm that we used in this study is a simple minded<t

non-blocking algorithm that computes C =A x B, where A, B and C are lV x lV matrices

(in our measurements lV =1024). Both matrices il and B are stored in node zero and the

resulting matrix C is ta be also stored in the memory of node zero. Node zero generate

migratable tokens that are to compute one row of the matrix C and move the result back

to Dode zero. The first time that anode i executes a token, it copies the entire matrix

B ta its local memory and the specified row of il.. It retains the copy of B to reuse in

the computation of future tokens. Although a dense matrix multiply is a very regular

aIgorithm, this version relies in the dYQarnic load balancer to distributed the laad among

the processors.

The Tomcatv is a floating point SPEC92 benchmark and represents large data-paraile1

applications [33] with 257 x 257 meshes. initially, each iteration updates the meshes

using near-neighbor calculations, and then by perfonning calculations with horizontal

loop-carry dependencies. Separate rows sYQchronize with each other using a pure data

tlow paradigm. The data set is fixed to anode, while tokens migrate between the nodes.

The token migration is decided by the dynamic Ioad balancer, rather than by compile-time

partitioning of the problem. From a modeling point of view, this applications highlights

the provision in Threaded-C to perform peer-IeveI synchronizations between nodes at the

same level in an activation graph.

In the SPMD model, loop indices are divided among the nodes statically. This can

lead to paor perfonnance when the execution time is not the same for all indices. 0,

namic SPMD, on the other hand, is a more flexible approach that relies on the load bal

ancer to distribute the paralIelloops [34]. This results in a large number of tokens being

72

•

•

generated for eaeh loop, after which Dode 0 waits for aIl iterations to complete, performs

sorne sequential computations, and then starts anather parallelloop. The generalized dy

namic spmd program computes a Knary (n,/c,r) tree in eaeh one of these iterations. This

application models a typical barrier-synchronized application. In order to achieve good

performance on such programs it is important to minimize the time needed to distribute

the tokens ta all nades and the time to achieve an even load distribution.

Paraffins is one of the four "Salish-an problems" from the [988 Salish-an High

Speed Computing Conference. Paraffins enumerates all distinct isomers of each paraffin

(molecule of the form CnH2n+Û of size up to a given maximum. The problem solved by

paraffins is similar to the problem of detecting isomorphisms in Iabeled free trees. A list

ofparaffins is generated and the program retums an array filled with the number ofdistinct

paraffins ofeach size up to and including the maximum. To exploit parallelism, functions

are invoked in all the processors to compute the radicals and then tokens are generated ta

compute the paraffins of the required size. This benchmarlc belongs to the irregular class

of problems, with irregular communication patterns, and unbalanced computations. In

our experiments we measured the perfonnance for Paraffins(28).

4.2 Performance Evaluation

We identify different parameters that influence program performance, and study their

effect with respect to different 10ad balancers. The objective is to identify idealload bal

ancer policies for different application 10ad situations, and arrive at a lowest denominator

balancer that performs relatively better in Most situations.

We have implemented ten dynamic 10ad balancers, and compare their performance

against seven existing balancers. Initially, we compare distnDuted dynamic load balanc

ing against centralized dynamic [oad balancing for distributed memory machines. Theo

we study the benefits of a randomizing load balancer in a fine-grain multithreading envi

ronment with varying application and worldoad parameters, and compare its performance

against seven existing balancers. We identify the different factors that have contributed to

the relatively better performance of the randomizing algorith~ by comparing it against

different versions of itself, each with varying degrees of sophistication.. Finally, we re

view the advantages of different dynamic [oad balancer policies against a situation where

there is no load balancing.

The performance at varying workloads with ditIerent benchmarks is observed for each

73

•

•

Joad balancer. In each of the cases, the elapsed time, idle time, number of balancing

activities, token distribution, percentage of migrated tokens, etc. are measured. The

time spent on different runtime system activities is documented. In addition, changes in

perfonnance are noted with varying architectural parameters like polling interval, number

of nodes, communication topology, token prefetching, and application parameters like

workload, grain size, call-graph size and shape.

Finally we measure the latencies and overheads associated with EARTH operations,

and malee a comparative study of EARTH operations on three different implementations

ofEARTH.

4.3 EARTH-SP Implementation

The EARTH-SP system realizes the EARTH model on the IBM SP-2 system. The mM
RS/6000 Scalable POWER ParaIlel System (SP-2) is a distributed memory multiproces

sor [8}. Each processing node is equipped with a 120 MHz POWER2 Super Chip, 128

K.B of data cache, 32 KB of instruction cache, at least 64 MB of RAM, and operate with a

256 bit memory bus. The tb-3 switch provides a network interface with a peak hardware

bandwidth of 150 MB/s in each direction. A detailed description of the EARTH-SP2

implementation is provided in [92, 33}.

The POWER2 Super Chip is an improvement of the POWER2 processor. Its main

features include: dual tloating point and fixed point units, peak execution rate of 6 in

structions per cycle, improved instruction set (quad-word loadlstore, zero-cycle branches,

hardware square root, etc.)

The sn high perfonnance switch is a connecting network which allows any node

on the sn to cornmunicate directIy with any other sn node [37]. The switch is a high

bandwidth, low latency, bidirectional, multi-stage, omega, buffered-wonnhole fouting

packet switch [88,87]. The tb-3 switch interfaces between the network switch and the

compute Dode. The tb-3 card data structures are mapped into the user space, and can he

accessed from the application program. In ourcase, the application interface that accesses

the tb-3 card data structures is the communication layer in the portable EARTH runtime

system. The performance benefits by accessing the sendlreceive buffers in the network

switch interface far outweigh the advantages of using the communication layer of the

MPI provided on the mM SP-2. Modularity of the communication layer in the runtime

system ensures that the rest of the runtime system code is iodependent of the tb-3 switch

74

•

•

interface, and therefore is portable.

User jobs are submitted in batch mode using the EASY-LL batch system on the mM

SP-2 [38]. Load Leveler is a batch system originally developed for the mM SP-2, and

it allocates resources across a network while attempting to maintain a balanced load,

fair scheduling, and an optimal use of resources. EASY was originally developed at the

Argonne National. The EASY algorithm schedules the job queue on a FCFS basis. Il

allows smaIler jobs further down the queue ta run as long as they complete before the

waiting job ahead in the queue is scheduled to run. The EASY-LL is a collaboration of

the EASY and LaadLeveler algorithms.

75

•

•

ChapterS

Performance Results

In this chaptery the performance results of the load balancers presented earlier for appli

cations descn1led in chapter 4 are studie~ and the behavior of the balancers for different

work descriptions is analyzed.

The main results of this study are listed below:

• For irregular and highly recursive programsy it is beneficial to generate large (abun

dant) number of threads to facilitate the work of the load balancer. See section 5.1.

- Furthermore, a randomizing algorithm (Rand) gives the best performance as

long as the cost ofcomputing the random numberdoes not dominate the over

ail lime of thread execution.

- When il is not favorable for applying the Rand balancer, a hybrid history in

formation based algorithm (His), a simple work-stealing algorithm (Spn) are

preferable in the descending order.

• The Rand balancer is good for fine-grain applications. An in-depth study of the

Rand balancer is performed. See section 5.2.

• In order to understand the varions factors that contribute to the good performance of

the Randbalancer, a comparative study of the Randbalancer, and different versions

of itselfeach with varying degrees of sophistication9 is performed. See section 53.

• When the Rand balancer does not perform weIL a detailed study is performed on

altemate balancers. See section 5.4•

76

•

•

• A spectnlm of experiments are designed to understand application behavior with

different load balancers. See section 5.5.

• An analysis of the overheads and latencies of various multithreaded operations sup

ported in the EARTH system, shows that it is possible to emulate a multithreaded

environment in software with minimum overheads, and derive scaIable performance

for fine-grain applications. See chapter 6.

• The ratio of CPU speed to network speed is a crucial factor that determines per

formance of EARTH applications across a range of machines. Besides network

bandwidth, costs associated with the network interface in the runtime system aIso

makes a significant impact on application performance. See chapter 7.

Each of the above points are discussed in detail in the following sections.

S.l OveraU Performance

For irregular and highly recursive programs, it is beneficial to generate large (abundant)

number of threads to facilitate the work of the (oad balancer.

• Furthennore, a randomizing algorithm (Rand) gives the best perfonnance as long

as the cast of computing the random number does not dominate the overall time of

thread execution.

• When it is not favorable for applying the Rand balancer, a hybrid history informa

tion based algorithm (His), a simple work-stealing algorithm (Spn) are preferable

in the descending order.

There are two minimum conditions for load balancing to he successfuI. Firstly, there

should be enough parallelism to exploit in the application. Application parallelism de

pends on the programming model of the application, and on the input workload. While

the programming model is acharaeteristic ofthepro~ the input workload is a prcperty

of a particular execution of the application. The input workload determines the number

of available threads in a particular execution~ and as a resuIt the number of ready threads

at any point of ùme during the execution. A split-phase nature of threading models, as

in Threaded-C, allows to start executing anather ready thread whiIe the current thread

77

• meets a long-Iatency operation. There is higher probability of a successful choice of a

destination in 1000 balancing, if the number of ready threads in the execution is high.

Secondly, the work migrated should dominate the load balancing overheads. As the

grain size of wode decreases from the whole program (in sequential execution) to a set

of instructions (threads), the amount of parallelism in the application increases. But at

the same time, the load balancer has to become more lean and inexpensive in order to he

profitable. An illustration of this feature can he observed in Figs. 5.3, 5.36, S.27, 5.28.

Average token size in the Fibonacci is around 2 p. s on the mM SP-2. As the input

workload increases, however, the amount of parallelism increases, and also the amount of

work transfered is considerably higher than typical balancer overheads. This is possible

due to the token queue in the EARTH runtime system which allows work at higher levels

in the activation tree to he migrated to remote nodes.

1 Dual 1 Spn 1 Shis 1 Snd 1 His 1 Range 1 Catapult 1 Rand 1

Fibonacci(33) 1.14 1.14 13.66 OF 1.19 1.21 1.2 1.02
Queens(12) 0.24 0.167 4.71 0.171 0.176 0.175 OF 0.165
TSP(IO) 0.43 0.32 7.8 0.36 0.28 0.29 0.28 0.27
Knary(7.7.2) 2.13 0.93 24.76 1.037 0.908 0.94 0.95 0.906
Knary(2.512.0) 0.054 0.013 0.169 0.085 0.0076 0.014 OF 0.015

Matrix(1024X1024) 70.31 49.53 293.79 17.52 12.21 14.66 63.42 16.96
Tomcatv(257) 2.45 1.78 OF OF 0.54 0.39 OF 5.6
SPMD(IJ.O) 0.25 0.16 0.68 0.08 0.1I 0.1 0.63 0.15
SPMD(4,4.0) 1.9 0.72 14 0.63 0.86 1.27 13 0.79

1 Benchmark

1 Paraffins(28) 1 7.43 1 6.55 1 104 1 7.54 1 6.54 1 6.79 1 OF 1 6.46 1

Table 5.1: Overview of Results. Elapsed times in seconds are shown for different bench
marks belonging to the recursive (divide-and-conquer), regular and irregular program
ming models against various dynamic load balancers belonging to the receiver-initiated,
sender-initiated and hybrid categories. Measurements are based on 32 node mns. These
elapsed times include the time spent on profiling the runtime system actions. Table E.l
shows elapsed times without profiling effects.

•
Table S.l shows the elapsed times for different balancers for applications belonging to

a wide-ranging set of programming models, and load situations. The divide-and-conquer,

regular, and irregular classes of applications are considered for experimental evaluation

of the balancers. In addition, applications with very low worldoads are included to study

the ability of the balancer to distribute load rapidly, and aIso to showcase the potential

of a balancer for very low load situations where the emphasis is on minimum balancer

78

• overheads rather than maximum processor utilization.

The relative ranking of the balancers for different applications is shown in Table 5.2.

The Rand balancer perfonns very weB for divide-and-conquer, and irregular classes of

applications. This can be attributed to the ability of the Rand balancer to distribute load

equally among ail nodes in the system, which in tum is a result of the accuracy of its

(oad balancing decisions. Another reason is the reIatively better scaling of both thread

execution time and overheads in the Rand balancer. While it is good for regular applica

tions, the His balancer is more preferable. Gathering load infonnation is an unnecessary

overhead for regular applications, where the worldoad is more or (ess evenly distributed.

A history information based balancer is more than adequate to address the minor load

imbalances.

1 Benchmark 1 Dual 1 Spn 1 Shis 1 Snd 1 His t Range 1 Catapult 1 Rand 1

•

Fibonacci(33) 3 2 7 8 4 6 5 1
Queens(l2) 6 2 7 3 5 4 8 1
TSP(lO) 7 5 8 6 3 4 2 1
Knary(7,7,2) 7 3 8 6 2 4 5 1
Knary(2,51~O) 6 3 7 2 1 4 8 5

Matrix(l024XI024) 7 5 8 4 1 2 6 3
Tomcatv(257) 4 3 8 8 2 1 8 5
SPMD(1,1,0) 6 5 8 1 3 2 7 4
SPMD(4,4,0) 6 2 8 1 4 5 7 3

1 Paraffins(28) 4 8 1

1?=~=:mc=e=ra=ge::::::::::====~::3:~6:::::6:74:::::~:5:

Table 5.2: Relative ranking of the different balancers based on their performance as shown
in Table 5.1

For barrier-synchronized applications (SPMD), the Snd balancer is a clear winner.

Barrier-synchronized applications place two chalienging demands on a load balancer:

tirs!, theyare traditionally Iow-Ioad applicatioos9 i.e.. irrespective of the input worldoad,

the number of tokens in every phase cannat he substantially higher than the oumber of

nodes; secondlY9 the fast token distribution capability of the Ioad balancer is of prime

importance. USUallY9 anode 0 computes wade for the next phase, and issues i~ and when

these tokens are consumed by other nodes and synchronization bas taken place among

all the nodes9 the Dode 0 issues the next set of tokens.. The Snd balancer performs weil

79

•

•

here due ta its ability for rapid disposai of tokens ta other nodes in the system without

spending too much time in the target deciding pbase. As the negative impact of instability

is only possible for high load situations, the sender-initiated balancer does very well for

banier-synchronized applications. If the workload for a barrier-synchronized application

is reasonably higher, the Rand balancer performs at a respectable third position.

For very low Joad applications (Knary(2,5l2,O), SPMD(I.I,Q», the balancers which

perform effective load distribution at minimum overheads do well. The Rand balancer

understandably cannot win this race, due to its relatively longer decision making phase.

On the whole, the Rand balancer performs the best on a wide range of applications.

Another hybrid balancer, but based on history information rather than global load in

formation (His), cornes a clear second. A simple receiver-initiating balancer, the Spn

balancer, results in agreeable performance for fine-grain applications due to its low over

heads, and cornes third.

The Range balancer is the fourth oost balancer. This confirms the limited use of the

range list information. The sender component of the Range balancer sends extra tokens to

the far Dode in the range lista It works reasonably weil for low (oad situations, because the

far node is more likely to he idle than the near node as load state ftuctuates very rapidly in

low load situations. However, for high Joad situations, the impact of the range information

is less significant. because As shown in Table 5.2, the Range balancer does weil only in

low load applications.

The Catapult balancer is one of the pocr performers. Despite its similarities with the

Range balancer, the Catapult balancer ranks weil OOlow the Range balancer. Funhennore,

in many instances, it causes an explosion of balancer related message traffic and termi

nates the application. The reasons are not difficult to observe. A Range balancer differs

from the Catapult balancer in two ways:

• when anode receives a token (if it is wealthy), the Catapult balancer passes the

token to the nearest node in it's range list, while the Range balancer passes it to ifs

predecessor.

• The Range balancer after passing the token to it's predecessor,sends an update mes

sage to the senderofthe token (asking to be removed from its range list).

The ring topology assumed in the Dual balancer severely limits its scalability, ability

to respond rapidly ta fluctuating load situations, and fast token distribution capabilities.

However,its algorithm is extremely simple, that makes it very useful for applications with

80

• very fine-grain threads, and low load situations. The Shis balancer causes high message

traffic, and indicates the non-utility of the history information for purely receiver-initiated

balancers.

His 1 Rand 1SndDual 1 Spn

Fibonacci(33) Elapsed Time 1.137067 1.136061 OF 1.18523 1.01747
Execution rune 0554408 0.550621 - 0.55286 0.442716
Balancer Overhead 0.12063 0.112915 - 0.141178 0.000359
Polling Overhead 0.258839 0.262019 - 0.287827 0.247186
Idle Time 0.041404 0.031044 - 0.052133 0.020562
Rank 3 2 5 4 1

Queens(12) Elapsed Time 0.240889 0.167472 0.170896 0.175538 0.165809
Execution Tune 0.156755 0.159375 0.164493 0.161955 0.155494
Balancer Overhead OJJ01435 0.001458 0.002793 0.00534 0.000682
Polling Overhead 0.033116 0.018975 0.020644 0.020861 0.017798
Idle Time 0.095079 0.019033 0.017112 0.022409 0.02154
Rank 5 2 3 4 1

Knary(7.7.2) Elapsed Time 2.126129 0.926829 1.03691 0.907591 0.906191
Execution lime 0.904189 0.899871 0.952327 0.893569 0.893569
Balancer Overhead 0.008455 0.007272 0.033319 0.002861 0.001547
Polling Overhead 0.249025 0.021644 0.051247 0.016732 0.015995
Idle Tune 0.913451 0.024985 0.081386 0.013053 0.012389
Rank 5 3 4 2 1

SPMD{4.4.0) Elapsed Time 1.903876 0.719708 0.632134 0.859295 0.794468
Execution Time 0.454005 0.474271 0.469349 0.550345 0.462295
Balancer Overhead 0.008217 0.0479 0.02079 0.139989 0.017921
Polling Overhead 0.285509 0.074199 0.050056 0.115658 0.078894
Idle Time 1.255786 0.170489 0.164918 0.114992 0.326268
Rank 5 2 1 4 3

Parafftns(28) Elapsed Time 7.42791 6.554465 7.541764 6.543834 6.458399
Execution lime 6.564703 6.412043 6.570584 6.390272 6.393398
Balancer Overhead 0.002117 0.002517 0.001366 0.001039 0.001359
Polling Overhead 0.232714 0.096929 0.251115 0.0962 0.079782
Idle Time 0.875255 0.155766 0.983546 0.165938 0.077731
Rank 4 3 5 2 1

1 Benchmark 1 Time (secs)

•
Table 5.3: A breakup of the total elapsed time. Execution time corresponds ta the time
spent on executing application threads. Ali time measurements are in seconds. Measure
ments are based on 32 node rons. AlI measurements except the elapsed time are average
of values from 32 nodes.

The average values on 32 nodes for thread execution time, and other overheads inher

eot in a paraIIel environment are shawn in Table 5.3. A breakup ofthe total elapsed tintes,

81

•

•

corresponding to those in Table 5.1. The Rand balancer provides a better balancing of

work and overheads on all the nodes in the execution. For the divide-and-conquer classes

of applications (Fibonacci, Queens, and Knary), the application thread execution time for

the Rand balancer is less than or equal ta that of other balancers. In those cases where

thread execution time is equal ta that ofother balancers (Knary), the Randbalancer scores

better due ta its relatively low overheads and idle time..

For barrier-synchronized applications like the SPMD, the Rand balancer spends more

time in polling overheads when compared ta the Spn and Snd balancers. Due to the low

load situation, the receiver component of the Rand balancer sends lots of load probes

leading to increased network communications. This also increases the per-oode idle time.

For irreguJar applications like the Paraffins, despite having a slightly higher per-oode

thread execution time than the His balancer, the hybrid nature of the Rand balancer re

sponds very weil ta the irregular parallelism and minimizes idle time significantly.

The profile data collected during an 8-node execution is shown in Table 5.4.. A list

of the profile data collected at runtime is summarized in chapter C. The data shawn

here is the number of acts under each category. Remote communications are the total

number of messages sent abroad in order to satisfy global memory and synchronization

requirements. Balancing acts is the sum of requests sent, requests received, tokens sent,

tokens received. Idle time is the percentage of balancer related idle time in the total

elapsed time..

Normally 8 nodes is a small number for the Rand balancer ta scaIe weil when com

pared ta other balancers.. However. the randomizing aIgorithm starts giving early gains

for irregular applications~ such as the Paraffins..

5.2 Rand Balancer

The Rand balancer is good for fine-grain applications.. An in-depth study of the Rand

balancer is performed..

• The hybrid (symmetric) nature of the Rand balancer, its use of load state informa

tion, and the comp[etely conneeted graph topo[ogy assumed between the nodes, are

the most important factors for its good performance..

• Accurate global Ioad state information is a crucial component of the Rand balancer,

and an important reason for its good performance. This resuIt is in contrast ta

82

765
Nades

31 42

Tolcs. Gen. 1454 1218 1100 1104 1286 1276 1306 1172
Tolcs. Con. 1423 1244 1156 [125 1249 1277 1284 1158

His Threads Run 3574 3097 2862 2802 3141 3192 3221 2902
0.6384s Rem. Comms. 118 157 160 96 172 119 100 149

Bal. Acts 518 559 491 392 626 427 438 651
Queens Extra Tokens 71 97 84 61 72 58 61 118
(12) Idie rime 0.17 0.81 0.81 0.57 0.59 0.41 0.34 0.38

Tolcs. Gen. 1140 1210 1280 1108 1174 1328 1192 1484
Toks. Con. 1128 1206 1276 1098 1185 1351 1186 1486

Rand Threads Run 2827 3017 3192 2750 2957 3366 2968 3714
O.6404s Rem. Comms. 117 73 64 61 49 61 60 79

Bal. Acts 2322 2054 1246 1057 1087 1520 1209 1238
Extra Tokens 802 741 368 365 395 443 403 391
IdIe Time 0.16 0.89 0.75 0.67 0.62 0.55 033 0.27

Toks. Gen. 2772 2000 2032 2020 2008 2012 2024 1932
Toks. Con. 2096 2090 2106 2104 2113 2114 2084 2093

His Threads Run 4293 4180 4212 4208 4226 4228 4168 4186
0.53715 Rem. Comms. 694 774 769 767 768 806 805 853

Bal. Acts 14999 14541 14341 14331 13901 14265 14332 14308
SPMD Extra Tokens 2089 2273 2203 2219 2131 2251 2260 2266
(4,4,0) IdIe Time 5.8 9.9 9.2 9 9 8.9 9.6 9.2

Toks. Gen. 2940 2052 1948 2004 1956 1952 1952 1996
Toks. Con. 2137 2018 2109 2117 2118 2088 2089 2124

Rand Threads Run 4375 4036 4218 4234 4236 4176 4178 4248
O..5637s Rem. Comms. 539 524 SOS 459 501 529 499 504

Bal. Acts 15501 11497 8170 7974 8119 8962 8277 8245
Extra Tokens 2097 1407 1045 982 992 1111 1008 1025
IdIe Time 6.88 16..85 16.35 16.95 16.39 16.95 17.39 16..02

Toks. Gen. 254 302 319 212 178 230 278 266
Toks. Con. 185 250 354 263 182 246 284 275

His Threads Run 202 265 373 277 194 263 298 285
26.475 Rem. Comms. 9 64 81 69 42 26 20 21

Bal. AcIS 1814 3280 592 888 797 2429 91 91
Paraffins Extra Tokens 414 746 145 212 192 610 20 20
(28) Idle Time 0.01 0.09 0 0.03 0 0 0.01 0

Toks. Gen. 253 232 355 252 231 208 267 241
Toks. Con. 181 144 528 262 243 197 277 207

Rand Threads Run 198 154 542 274 263 214 291 221
26..398 s Rem. Comms.. 9 6 179 46 38 28 30 10

BaL Acts 29316 31051 14240 66898 10350 15278 12749 18035
Extra Tokens 7387 7520 3851 3681 3754 4036 3759 3609
IdIeTune 0 0 0.02 0 0.01 0 0 0

1 APP-Balrol Activity

•

•

Table 5.4: Node-wise Profiling DatI3ln 8 nodes. The time is in seconds..

•

•

the common intuition that load balancer overheads spent in the accumulation of

globalload information dominate any possible performance benefits, and therefore

such an information policy is not viable, especially for fine-grain paralIelism. The

Rand balancerovercomes this bottIeneck by Iocating the load information gathering

actions in the receiver part of the load balancer, and using this information in the

sender part. The information policy is demand-driven and receiver-initiated.

5.2.1 Rand versus Minima

• The Rand balancer provides the best relative performance against a no-/oad bal

ancing situation for paralIel applications.

The Minima balancerensures mat the application is executed in a true parallel fash

ion~ i.e. each node gets to execute atIeast one token. Mter that the [oad balancer on

each node is switched off. This allows us to compare the utility of load balancers

against a situation where there is no load balancing in a parallel execution. The

performance of the Minima balancer can be seen as a higher bound for total elapsed

time for parallel applications (or lower hound of paraIlel performance). Any bal

ancer is expected to do much better than the Minima baalncer, and their relative

performance against the Minima balancer can he used to rank mem.

Table 5.5 compares the performance of current receiver-initiate~ sender-initiated,

and hybrid balancers in the EARTH runtime system. Also, the performance num

bers for the Nop balancer are shawn. The Nop balancer does not perform any load

balancing. It differs from the Minima balancer in that, it offers basically sequen

liaI execution in a multithreaded environmenL Unless the programmer specifically

launches a token on sorne node, ail nodes except node 0 are idle. Further, the se

quentiai elapsed times are burdened by multithreading overheads. In contrast, the

Minima balancer provides an upper bound on the total elapsed time for realistic

parallel executions.

In Table 5.5, the Rand balancer achieves higher speedup and percentage reduction

in total elapsed times for the divide-and-eonquer and irregular classes of applica

tions. Understandably, it does not do weIl for barrier-synchronized applications.

Figs. 5.1, 5.2 show the speedups for different classes ofapplications for the Minima

and other balancers. It can he observed that the Minima balancer performs distinctly

84

1 Spn 1 Snd 1 His 1 Rand 1 Nop 1 Minima 1

Fibonacci(33) Elapsed Tune 1.14 OF 1.19 1.02 24.9 23.29
% Reduction 95.12 - 94.91 95.63 -6.94 0
Speedup 20.50 - 19.65 22.89 0.94 1

Queens(12) Elapsed Time 0.167 0.171 0.176 0.166 5.05 0.754
%Reduction 77.79 77.34 76.72 78.01 -570.34 0
Speedup 4.50 4.41 4.30 4.55 0.15 1

TSP(10) Elapsed lime 0.32 0.36 0.275 0.269 8.6 7.78
%Reduction 95.91 95.34 96.47 96.54 -10.53 0
Speedup 24.45 21.45 28.35 28.90 0.90 1

Knary(7.7.2) Elapsed lime 0.93 1.04 0.907 0.906 28.87 24.77
% Reduction 96.26 95.81 96.34 96.34 -16.57 0
Speedup 26.72 23.88 27.30 27.33 0.86 1

Knary(2.512.0) Elapsed Time 0.013 OJlO82 0.0073 0.012 0.1684 0.1682
% Reduction 92.21 95.14 95.67 91.52 -0.10 0
Speedup 12.84 20.58 23.08 Il.80 1.00 1

SPMD(4.4.0) EJapsed lime 0.72 0.63 0.86 0.79 14.038 14.037
% Reduction 94.87 95.50 93.88 94.34 -0.01 0
Speedup 19.50 22.21 16.34 17.67 1.00 1

SPMD(1,1.0} Elapsed lime 0.161 0.081 0.11 O.IS 0.75 0.67
% Reduction 76.14 87.96 83.19 77.60 -10.61 0
Speedup 4.19 8.31 5.95 4.46 0.90 1

Paraffins(28) Elapsed lime 6.55 7.54 6.54 6.46 121.7 118.8
% Reduction 94.48 93.65 94.49 94.56 -2.41 0
Speedup 18.13 15.76 18.16 18.40 0.98 1

1 Benchmark 1 Attribute•

Table 5.5: Performance comparison for ail the benchmarks with c1ifferent load balancer
policies. For each benchmark. the first row shows the elapsed times for 32 nodes. and
the measurements are in seconds. The second row shows percentage reduction in total
elapsed times when compared to the Minima balancer. The third row shows speedup for
each balancer as compared to the Minima balancer.

better than the Hop balancer for most of the applications. due to the initial load

balancing when each node receives a single token. After this the curve ftanens

out. Other balancers perfoon very weIl when compared to the Minima balancer. as

expected. Their performance relative to that of the Minima balancer isolates and

quantizes the peformance benefits from load balancing.

•
85

(b) Quccns(12}-(a) Fibormcci(33)

"1---
1----

j.'
J••

•

Figure 5.1: Performance comparison between Minim~ Nop and other Balancers of dif
ferent baIancers

» a lO •

il
1·

:~
'r~---

Ch) P:lr:ûfins(28)-(a) SPM[)(4.4.0l

lE]1 - Snd--_. RInd
1 --- NIlO'-
•

Figure 5.2: Performance comparison between Minim~ Nop and other Balancers of dif
ferent baIancers

5.2.2 Scalability of Rand Balancer

•

• The Rand balancer is highly scalable and robust (stable) for irregular and divide

and-conquer (recursive) classes of applications. However, this balancer is not ap

propriate for reguJar applications.

The performance results in this section show the absolute and relative speedups

for different applications for different balancers. Absolute speedup is the ratio of

sequential elapsed time [0 paral1el elapsed time. Relative speedup is the ratio of

single Dode parallel rime and multiple Dode parallel time. The absolute speedup

indicates the beoefits from parallelizing an application. The relative speedup shows

the scaling ofmultithreading and load balancing overheads in a parall~[application,

when compared to single Dode parallel execution.

86

•

•

For the Knary and the SPMD applications, sequential version is not avail

able. Therefore all experiments with these two benchmarks will show

ooly the relative speedup. The speedup for all appaications are shawn in

Figs. 5.3, 5.4, 5.5, 5.6, 5.7,5.8,5.9,5.10,5.11,5.12.

t.4,-----.,.-----r----.--~--...,.._-__,...-_____.

~o..5
~

Ju
Q.2

lJo~ESii;;;5~=::i:,0=:==::::i:'5::::==::;:2D====::::i:25====~L...J35

35,------............-..,..---.--- __

30

Oual
~ Spn

Shls
-+-- Sm
-.....- His

~
Rand

IJlI!t:az~===========:........J Unearo 10 1SN-. 20 25 30 35 ~__---J

Figure 5.3: Absolute and Relative Speedups for Fibonacci(33)

Figs. 5.13, 5.14 show the scalability of various components that together make up

the total elapsed time, snch as application thread execution, load balancing over

heads, polling overheads, and idle time. Average values for these components on

each Dode are computed, and their scaIability compared for the Queens appl ica

tian. The Rand balancer scales very weil for application thread execution time, and

polling overheads. For idle die time it scaIes weil, but lags behind the His balancer.

5.2.3 Parallel Efficiency

• The Rand balancer provides relatively good parallel efficiency for bath recursive

and irregular classes of applications l . Furthennore, this efficiency is constant as

the number of Godes are varie~ suggesting a unifonn scaling of parallelism.

Figs. 5.15, 5.16 show a neac constant scaling for the Rand baalncer.

1Parallel Efficiency is the ratio ofabsolute speedup and number of nodes in the execution.

87

• 30

25

1:
5

)'0
5

0
0

35

30

i:
i 15

: tO

0
0 10 15 20

NoM
30

35

Dual
Spn
Shls
Snd
His
Range
Catapull
Rand
Unear35 '-- ...J

Figure 5.4: Absolute and Relative Speedups for Queens(12)

3Or----.,......-----.--....,......----.,.--~-___,. ____,

5 10 15 25 30 35

10 15 20
~

25

Ouaf
Spn
Shls
Snd
His
Range
Ca
Rand
Unear35 '-- ...J

•
Figure 5.5: Absolute and Relative Speedups for Traveling SaIesman Problem(IO)

5.2.4 Overheads for Supporting a Mnltithreaded Enviromnent

The uni·node support efficiency or USE factor [84, 156] is the ratio of sequen

tial execution time and the eIapsed time for one-oode paraIIel execution. An ideal

88

Dual
-e--- Spn
---- Shis
---t-- Snd
------ His

Range
Catapult
Rand

x Unear
35302515 20

Nades
105

35....---------.,---------r---.,---.....,...-----,

30

g.25
i
8.20

CI)

! 15
Ci
~ 10

5

Ol1!~~=$!~===:i~=:::ï:::=====:=::i:~----1
o

•

Figure 5.6: Relative Speedup for Knary(7,7,2)

Dual
Spn
Shis
Snd
His
Range
Catapult
Rand
Unearx

-e--

35

x

30251S 20
Nades

10S

35r-----.------,--...,...----r--or-------.-------.

30

g.2S
i
8.20

CI)

~ 1S
Ci
~ 10

S

ol...I!!~I!:f::::::::::!!:=t:==::J~=::::z::===t::=:=::J:~--l
o

Figure 5.7: Relative Speedup for Knary(2,512,O)

•

100% use-factor indicates minimum overheads imposed by the multi-threaded en

vironment~ and the presence of enough parallelism in the fonn of threads to hide

the latencies of the multi-threaded operations. A unity USE factor also symbol

îzes good absolute speedup, and indicates the possibility of better and equal load

balancing on multiple nodes.

Table 5.6 shows the absolute and relative speedups, and the USE factor for 32 node

executions of the complete set of benchmarks. The Rand balancer provides better

USE factor than the His balancerfor most of the applications, except for Queens and

Tomcatv. In the case of the Queens application, bath absolute and relative speedups

with the Rand balancer are higher than their counterparts for the His balancer. This

results in better elapsed time for the Rand balancer for Queens, but in the case of

89

• 25

i:
li)

i tO

1

0
0 5 10 15 20 25 30 35

Nacs.

35

30

1: Oua!
~ Spn

Shis
~ 15 ~ snes
i ---- Hisl tO Range

Rand
0
0 35

Unear
tQ 15 20 25 30

NodIl

Figure 5.8: Absolute and Relative Speedups for Matrix(I024XI024)

t4r-----r"--..,......--.....----,...--..,.---~.....__- __

Figure 5.9: Absolute and Relative Speedups for Torncatv(257)

•
Torncatv the performance is much worser than that of the His balancer.

90

•
0.8

Q.
:::s
i8. 0.6
en
CD

·~0.4
CG
li
Cl:

0.2

5 tO 15 20
Nades

25 30 35

Dual
-e-- Spn
-te-- Shis
---+- Snd
~ His

Range
Cataputt
Rand

Figure 5.10: Relative Speedup for SPMD(1y l,0)

Dual
-e-- Spn
-te-- Shis
---+- Snd
~ His

Range
Catapult
Rand

35302S15 20
Nades

105
oL-.,j"------..J,--=~::::::=======~-.J
o

0.8go
i8. 0.6
ri)

~
i o.4
li
Cl:

0.2

Figure S.ll: Relative Speedup for SPMD(4y4,O)

5.2.5 Distribution of Total Elapsed Time

•

• The Rand algorithm results in nearly equai distribution of bath worldoad and over

heads on ail the nodesy thereby minimizing system-wide idle time and balancer

overheads. One of the reasons for the equal distribution is that7 the criticai path in

the application is executed early in the execution.

A breakup of the total elapsed time is provided for the Fibonacci, Queens, SPMD,

and the Paraffins benchmarks, when they are executed with four clifferent load bal

ancers. IdeaIly, we would show the bar graph for 32 Dode executions.. but due to

space constraints, we are limiting the number of nodes to 8. A description of the

profiling strategy is provided in Appendix C.

91

353025

Duai
Spn
Shis
Sncf
His

~
Rand
Unear35 ""---__----'30

20

25

15

15 20
NodI&

10

tO

• 10

i:
CI).
i 4

J 2 .

0
0

35

30

j:
i 15

~10

0
0

Figure 5.12: Absolute and Relative Speedups for Paraffins(28)

/
/

/

~ • a Il •

•
1 ê11

i =='
1

It _ AInd

.l
1

!~i
1

1
i

Il • ..
(b) Bl11ancing CMrh&:ads

10 ~ • a-(ta) Thre:Mi Execution Time:

III

...----.----.---.......------.--,

-i-- ~I- R..s

i
1,1

Figure 5.13: Scalability Test for Queens(12)

•

For Fibonacci(33)~ the high worldoad in the application causes the Snd balancer

cause an explosion of load balancing messages resulting in instability in the system.

Among the three graphs shown in Figs. 5.l7~ 5.18~ the Rand balancer results in

most equal distribution of worldoad and overheads. However for 8 nodes~ the His

balancer provides the best performance.

From Figs. 5.19, 5.20 the results for Queens(12) show the better suitability of the

Spn balancer for a high worldo~ fine-grain application. A work-stealing balancer

92

•

.. » a-(a) PoUing 0verhe00s

ur
.

~Ii Il. - ~ l- ~..
l

j f.. 1i l

j
jCllD

i
1

Il'' 1
J

1

11 1

:. • 10
" al a •-(b) [die Tune

Figure 5.14: Scalability Test for Queens(12)

"-
(a) FiboD3Cci(33)

•

(b) Kœry(1.7.2)

Figure 5.15: ParaIlel Efficiency

'\ i~~

\
\

\
\

fi

•

involves very less balancer overheads for high worldoad applications, as the bal

ancer is invoked only when the local Dode is idle. On the other hand, the Snd

balancer sends tokens to remote nodes, causing useless (oarl balancing and wasting

CPU time on balancer code more often than necessary. The Rand balancer per

forms sorne token sending, and this causes a slight degradation in perfonnance. In

high load situations, the sender component should he restrained to avoid unneces

sary loarl exchanges. While it is important that a balancer distributes worldoad and

overheads as equally as possible on all the nodes in the execution, it is even more

important that the balancer should offer scalable perfonnance at higher nodes as

weIl. Results from Fig. 5.4 shows that only the Rand balancer is able to provide

scalable performance after 8 nodes.

Figs. 5.21,5.22 show the bar-graph for Knary(7,7,2). The Knary(7,7,2) benchmark

is a very high load application, and accordinglY ail the balancers spend a lot of time

93

• 29r------r----,~-~-._,.--~-~-_..,

28

25

2.L-_.....l.-_---I__~_.__a.___......__ ____L.___Go----'

o 10 15 20 25 30 35

Figure 5.16: Parallel Efficiency for Paraffins(28)

..,--...,.....--.---.----.------------t

•

Figure 5.17: A Distribution of Elapsed TIme for Fibonacci(33) on 8 nodes

executing application threads, except for the Snd balancer which fails due to the

high instability in the system.

The SPMD(4,4,0) application is a barrier-synchronized application. Ail work is

created by node 0, and distributed to other nodes in the system in each phase.

Therefore it is expected that in Figs. 5.23, 5.24, node aspends relatively more time

on thread execution. The Snd balancer achieves near perfect equal distribution of

work and poUing overheads. This can he attributed to its fast token distribution

94

•

•

Benchmark Balancer Absolute Relative USE-
Speedup Speedup factor %

Fibonacci(28) His 0.88 18.49 4.77
Rand 1.03 17.47 5.89

Queens(12) His 25.95 28.74 90.29
Rand 27.47 30.91 88.89

TSP(10) His 28.66 31.31 91.55
Rand 29.21 31.89 91.62

Knary(7t 7t2» His NA 31.62 NA
Rand NA 31.60 NA

Knary(2,512.0) His NA 23 NA
Rand NA 11.75 NA

Matrix(1024X1024) His 24.71 26.23 94.18
Rand 17.29 16.77 103.07

Torncatv(2S7) His 8.69 13.88 62.63
Rand 0.84 1.37 61.57

SPMD(I,l,O) His NA 0.18 NA
Rand NA 0.14 NA

SPMD(4,4,0) His NA 0.05 NA
Rand NA 0.55 NA

Paraffins(28} His 8.73 31.48 27.72
Rand 8.84 31.88 27.74

Table 5.6: Absolute and Relative speedups for benehmarks eonsidered in Table 5.1. The
USE factor is the Uni-node Support Efficiency, and is the ratio of absolute speedup to
relative speedup. The numbers above pertain to 32 node mns.

capability. In faet, node 0 spends less time on thread execution as it spends consid

erable time disposing extra tokens. The His and the Rand balaneers show expected

trends, though the former is able to distribute work from node 0 better. The Rand

balancer executes more tokens on Dode 0 as the threshold value is aIways beIow the

number of tokens in the token queue due to the low load situation, and therefore

the sender component is invoked less than the required number of tirnes. The Spn

balancer perfonns poorly in this application, as a receiver-initiated balancer is not

good for fast token distribution and in low Ioad situations. Further, sending requests

with the ring topology in the Spn balancer highligbts another limiting factor: each

subsequent node farther from node 0 gets to execute even lesser tokens than its

predecessor.

The irregul:lrnature of the Paraffins application in Figs. 5.25,5.26 causes wide load

95

•

Thread ExecuUon Tune
Load BalancerOverhead
PolDng Overhead

0.5 Total JdIe T1me
Context 5witchlng Ttme

0
3 4 5 a 7

NocMa

Figure 5.18: A Distribution ofElapsed Time for Fibonacci(33) with Rand Balancer on 8
nodes

(b)Snd

J •.....
(a)Spn

u Cl'

Cli

U

1°·
lu

lU

Figure 5.19: A Distribution of Elapsed Tune for Queens(12) on 8 nodes

imbalances with the Snd balancer. The Rand balancer provides the best distribution

of workload and overheads.

•
5.2.6 Load State Information and Low Load Applications

• ln Iow Ioad situatioDSy when the amount of parallelism in the application is min

imum9 using load state information degrades application performance.. This is

because collecting load state information involves considerable CPU costs, and

96

(b)Rand

2-(a)Hï.f

III

• u U

lU

..1

t.
j
~

Figure 5.20: A Distribution ofElapsed Time for Queens(12) on 8 nodes

11

Ji

r,

2 •

---(a)Spn (b)His

Figure S.21: A Distribution of E1apsed Time for Knary(7,72) on 8 nodes

polling overheads. These costs are avoidable as the overheads dominate the execu

tion time. They are unnecessary because load status ofa node changes very rapidly

in low load situations, and even the most elaborate information policy cannot guar

antee accurate load information.. This behavior is demonstrated in Figs.. 5.27, 5.28.

5.3 The Rand Balancer • A DetaiIed Study

•
• The hybrid nature of the Randbalancer is the most crucial factor for its good perfor

mance.. From Tables 5.8, 5.9, it can he seen that for the given set ofapplications, the

arder of balancers according to their performance is: Rand, Rand-Hybrid-Noinfo,

Rand-Rcv-Info, Spn, His, Dual, where the Randbalancer is the best, while the Dual

balancer yields the poorest perfonnance. This order is determined after ranking

97

•
15

1.5

Thread Execution T1me
load Balandng Overhead
PoIIlngOverhead
Total Ide Time
Context SWItching T1me

QL...--.--.._--.. ___
o Z 3 ,,.... 5 7

Figure 5.22: A Distribution ofEIapsed Time for Knary(7,.7,.2),. Rand Balancer on 8 nodes

III

III

III

s-(a)Spn (b)Snd

•

Figure 5.23: A Distribution of EIapsed Time for SPMD(4,.4,.0) on 8 nodes

the different balancers for different applications, and then computing the average

rank. The Rand-Hybrid-Noinfo balancer performs second best after the Rand bal

ancer even without the infonnation policy. The Rand-Rcv-Info is a receiver-initiated

balancer with information policy, but stilliags behind the Rand-Hybrid-Noinfo bal

ancer in performance.

• Optimum values for threshold ta initiate Joad balancing, and probe limit depend on

the number of nodes in the execution•

98

• Cll ~

o.a aa

u

lu r4

leu !u

~ U

lU

1 1 4- -(a) His (b) RDnd

Figure 5.24: A Distribution ofEIapsed Time for SPMD(4,4,O) on 8 nodes

•

J -(il)Spn (b) SNi

Figure 5.25: A Distribution of Elapsed Time for Paraffins(28) on 8 nodes

Fig. 5.29 shows that the number for Joad probes (d) derived in section 3.2 reftects

the system configuration weil. The nurnber of load probes when computed from the

..

(b)Rand

1 4-(a) His

Figure 5.26: A Distribution ofEIapsed Tune for Paraffins(28) on 8 nodes

a

t
1

•
99

• s·,

"1
1

1

!~l
-'t

'1

j
'l-
I

u~
1

l 1-(a)Snd (b)Rand

--

Figure 5.27: Distribution of Elapsed Time for Fibonacci(6)

....
.r---...-----r----;:;;;::::====~

=

(b) His

, .-(a) DUlll

......'r----.-----.---;=====:::;,

t
!

Figure 5.28: Distribution of Elapsed Time for Fibonacci(6)

number of nodes in the execution, balances the trade-off between overheads from

load probes" and better accuracy of the execution. Queens(12) is a very fine-grain

application with high worldoad. The benefits of computing the number of load

probes in this manner will he more apparent for other applications.

Fig. 5.30 shows the impact of varying the upper threshold" Le. the threshold on

crossing which the sender component in the balancer is initiated.

•
• Sending 10ad probes ta conect globalload information is beneficial in the receiver

mode" but not in the sender mode. Therefore" it is preferable ta initiate Ioad probes

in the receiver mode, and use this information in the sender mode. From Ta

bles 5.8, 5.9, the performance of the Rand-8nd-lnfo balancer compares very poorly

against that of the Rand and the Rand-Ra-Enfo balancers.

100

Fibonacci(33) 1.02 l.15 Of 1.22
Queens(12) 0.165 0..168 0.19 0.167
TSP(10) 0.27 0.29 0.31 0.28
Knary(7,7.2) 0.906 0.913 Of 0.907

1 Benchmark 1 Rand-Hybrid-Info 1 Rand-Hybrid-NoInfo 1 Rand-Snd-Info 1 Rand-Rcv-Info 1•
1 Paraffins(28) 1

0.79

6.46

0.77

6.51

1.74

8.33

0.82

6.52

Table 5.7: Performance of the Rand balancer in different modes. The Rand-Hybrid-Info
balancer is a hybrid rand balancer that used 1000 state information. The other modes are
self explanatory. Ail measurements are in seconds. and correspond to total elapsed times
on 32 nodes. These numbers include the time spent on profiling code.

Fibonacci(33) 1.14 1.14 1.22 OF Of 1.19
Queens(12) 0.24 0.167 0.167 0.171 0.19 0.176
TSP(10) 0.43 0.32 0.28 0.36 0.31 0.28
Knary(7,7.2) 2.13 0.93 0.907 1.037 OF 0.908

1 Benchmark 1 Dual 1 Spn 1 Rand-Rcv-Info 1 Snd 1 Rand-Snd-Info 1 His 1

1 SPMD(4,4,0) [JTI 0.72 1 0.82 1 0.63 1 1.74 0.86
==:::;::=====~=*=====*==::::::

1 Paraffins(28) ~_6_.5_51__6_.5_2 _1_7_.5_4....1__8_.3_3_.-..-6_.54_

Table 5.8: Performance comparison between the receiver-initiated, sender-initiated and
hybrid balancers and their counterpans using the randomizing a1gorithm. AlI measure
ments are in seconds and represent 32 node [Uns.

Fibonacci(33) 1.02 1.15 25.34 1.18 36.05
Queens(12) 0.165 0.168 12.42 4.74 5.05
TSP(10) 0.27 0.28 0.78 0.29 1.82
Knary(7,. 7,2) 0.906 0.913 25..22 0.965 28.95

1 Benchmark 1 Rand 1 Rand-Hybrid-Noinfo 1 Rand-Rev 1 Rand-Hybrid 1 Rand-Hybrid-Piggyback 1

1 SPMD(4,4,0) 1 0.79

1 Paratlins(28) 1 6.46

o.ns
6.51

0.83

43..22

0.70

7.08

14.18

90.65

•
Table 5.9: Perfonnance comparison between different versions of the Rand balancer.
This table shows the reIevance of the randomization poticy, information poIicy~ and re
ceiverlsenderJhybrid policy~ which together make up the Rand balancer. AIl measure
ments above are in seconds. and are based on 32 node nms.

101

• 30 - 0
1

25 -- (Num.-Nodesl4) + 1
-&- Num-.nades12

Num_nades
(Num-"odeSI1 0) + 1

20

i
': 15
'!

1
10

10 35

Figure 5.29: Performance of Queens(12) while varying the number of random probe
destinations

.------ ----------

• ~ » a _ •-

~o

11nIfII*IZ
11lrWlclIIS ..
l1nIfIaId •
~1.

~32___TlnùIaIlI!
-•

•

l
l
j

(b) Quccos(12)

.. '5 ID a-(a) Knary(1.7.2>

·r:I===~=·...::::::l""'=:=:::;----------~i
• - ThniIhaId .. •

==~. 1
~~ i
~M l'......~

Figure 5.30: Effect of Load balancing with Rand Balancer. Load balancing threshold is
varied in the balancer.

• The sender mode in the hybrid balancer reacts very adversely with inaccurate global

load state information, often causing instability. On the other hand, accurate load

information improves perfonnance and robustness significantly.

•
• A work-stealing randomizing balancer using globalload information outperforms

a hybrid balancer using history information. From Table 5.8, the Rand-Rcv-Info

balancer outperforms the His balancer by a convincing margin.

102

•

•

• A hybri~ randomizing balancer - Rand-Hybrid, tbat does not use load state infor

mation at all (no load probes) provides the second-best performance for barrier

synchronized applications. This relatively better performance when compared to

the Rand balancer can he attributed to the avoidance of polling overheads in col

lecting laad state information.

• A simple, randomizing, work·stealing balancer with no access to globalload infor

mation results in unacceptable performance for Threaded-C applications, as shown

in Table 5.9. The Rand-Rcv balancer is based 00 a simple work·stealing algorithm..

and choases load destinations by executing a randomizing function. This policy

does very poody for Tbreaded-e applications.

The scalability of different versions of the Rand balancer are compared in

Figs. 5.31,5.32,5.33. The Rand·hybrid·lnfo balancer in these figures rerers to the Rand

balancer. The Rand balancer leads with better performance for all recursive and irregular

applications, confirming the utility of aIl features that combinedly fOIOl the Rand bal

ancer. For the irregular application Paraffins, the Rand balancer initially lags behind the

Rand·Hybrid·Noinfo and Rand-Rcv·info balancers. this is because the seoder component

of the Rand balancerchooses destinatoins based on load information collected previously

by the receiver component Due ta the irregular nature of the Paraffins application, this

load information is not valid anymore, and as a result useless load balancing OCCUIS. How

ever, as the number of nodes are increased, the Rand balancer starts dominating the other

balancers.

'::..:..:.~!
.tI-,-~!
;j-'-~i
Î
~~,

-(a)fibonaI:ciC33)

1

l
i
1

•
(b)QuccDs(12)

•
Figure 5.31: Performance ofdifferent randomizing policies

The effect of information policy in the Rand balancer on application performance is

shown in Fig. 5.34. Different levels of information avaiIability are considered.

103

• 1IIr;:::::=====::c;---,-............-.....,....---,1 ~ 1 "

I=~l"1_= 1

.r;::::=:::!:===~--............-----,
1IIIj~~i

, ~l

1.
1

•

-(n)TSp(lO) (b) KnaryO.1.2)

•"~~-~.~---:":-',,-~JO~-a::O=--~.-~.--
Figure 5.32: Performance of different randomizing policies

• ~ JO Il • •-(b) P:Ir:lffiDS(28)-(a) SPMD<4.4.0)

1

- - - §nd-l§--= 1
ul =~

\ -~

1::~~ .
.. \.. \
~J \ _

Figure 5.33: Performance of different randomizing policies

•

They are: no load information and no load probes (Rand-Hybrid); limited load informa

tion available ooly by piggybackiog on regular load balancing messages (Rand-hybrid

Piggyback); 00 load infonnation in the sendercomponent, though load probes are used in

receiver component {Rand-Hybrid-Nolnfol,and finally the regular Rand balancer (Rand

hybrid-info). The Rand balancer outperfonns other versions of itself.

Table 5.10 shows the profile data for an 8-node execution for Fibonacci(33). The re

sults shown here help us bener understand the utility of the load balancer in impoving the

performance for a particular application. Locality is the ratio of tokens that are generated

locally and locally consumed over all the tokens consumed locally. Migration is the ratio

of tokens that are migrated to remote nodes overail the tokens generated and received on

a Dode.

104

• .r;:::==:::!=::=::;---r--.....---ï

1
---· ëJ-5::~-~-,... --

-(:1) Fibormcci(33) (b) Queens(12)

l~
i

1l1l~~===IlI===":==a==::::;:a===.~-..J.
'-

Figure 5.34: Effect of Information policy in the Rand balancer

5.4 Other Balancers

When the Rand balancer does not perform weil, an in-depth study is perfonned on alter

native balancers.

llUlI lHJl Il

1-- SDn
~.

11" - Snd--_. ~ u

tœ III ~ ---
1 l"

UI

Ë1J.1101
-SIln
- 5nd--._---------- -------- -_. AInd

"
u

f$ » • :II • U. 10 Il » • .- •Il - -(3) Fibormcci(6) (b) Koary(3.3.0)

Figure 5.35: Relative performance ofbalancers at low worldoads (a)Low loads, very fine
grain threads (b) Low loads, grain size lOOps, polling interval50p.s

• A sender-initiated balancer (Snd) is the best choice in two scenarios: barrier

synchronized applications, and very fine-grain applications at low input workloads.

This is shown in part(a) of Fig. 5.35, and Figs. 5.10,5.11.

•
• A simple receiver-initiated balancer (Dual) is preferable for fine-grain applications

with modest thread granularities and at very Iow input workloads, as shown in

part(b) of Fig. 5.35. This policy uses a ring as (ogicaI topology to send requests,

and to receive workloads.

105

Table 5.10: A study of load balancer behavior for Fibonacci(33)

1

Nodes 1

o ~ 1 1 2 1 3 1 4 1 5 1 6 1 7
Rand- Requests 155 237 200 188 215 205 211 132
Hybrid- IdIe Periods 27 23 13 21 14 23 24 13
Info Extra Tokens - - - - - - - -
4.. 1s Locality % 99 99 99 99 99 99 99 99

Migration % 0.04 0.03 0.01 0.02 0.02 0.02 0.02 0.02

Rand- Requests 166 262 231 214 206 187 182 142
Hybrid- IdIe Periods 40 21 24 14 21 16 21 14
Nolnfo Extra Tokens 887 872 443 444 434 497 490 453
4.48s Locality % 99 99 99 99 99 99 99 99

Migration % 0.07 0.06 0.03 0.03 0.03 0.04 0.03 0.03

Rand- Requests 266 253 154 190 173 198 173 202
Hybrid [dIe Periods 16 23 18 14 29 24 18 21
4.12s Extra Tokens 5201 5351 2640 2635 2616 2869 2732 2630

Locality % 99 99 99 99 99 99 99 99
Migration % 0.40 0.41 0.18 0.. 18 0.18 0.20 0.19 0.18

Rand- Requests 158 280 221 195 207 186 161 136
Rev-Info IdIe Periods 32 32 20 14 24 21 27 21
4.49s Extra Tokens 116 118 54 59 80 81 74 62

Loeality% 99 99 99 99 99 99 99 99
Migration % 0.01 0.01 0.00 0.00 0.01 0.01 0..01 0

Dual Requests 67 66 68 77 80 77 77 73
4.05s IdIe Periods 20 18 23 16 15 17 21 17

Extra Tokens 59 59 58 70 74 70 67 63
Locality % 99 99 99 99 99 99 99 99
Migration % 0.01 0..00 0.01 0.01 0.01 0.01 0.01 0

Spn Requests 136 146 145 153 144 139 140 140
4.11s Idie Periods 21 24 25 25 23 26 34 22

Extra Tokens 75 76 72 78 74 70 66 77
Locality % 99 99 99 99 99 99 99 99
Migration % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

His Requests 399 181 329 357 371 391 446 371
4.24s Idle Periods 49 37 56 56 64 47 57 45

Extra Tokens - - - - - - - -
Locality % 99 99 99 99 99 99 99 99
Migration % 0.03 0.01 0.02 0.02 0.02 0.02 0.03 0.02

1 Balancer 1 Attribute

•

•

106

•

•

• History infonnation (His) perfonns better than global load information (Rand) for

regular applications. This is shown in Fig. 5.8~ 5.9.

5.5 Program Behavior

We designed a spectrum of experiments to understand application behavior with different

load balancers. Wherever speedup curves are mentioned~ we Mean absoulte speedup~ with

the number of processors aIong the x-axis~ and the absolute speedup along the y-axis.

• The application and runtime parameters that determine performance are: program

Ming model, parallelism grain size, input workload, polling intervaI~ number of

nodes, load balancer strategy. Load balancer related issues like balancer policies~

logical topology, quality of load state information, message complexity, CPU time

spent on executing the balancer code play a significant raie. Other system related

factors are: ratio of CPU speed to network speed~ network bandwidth, network

tapology, network interface in the runtime system.

• For irregular and recursive applications, load state information outperforms history

infonnation. However for regular applications, load state information actually de

grades performance.

5.S.1 Transition Point and Peak Point

• A transition point is the absolute speedup for a 2-node execution. It represents the

transition from one-node execution to parallel execution. The performance at this

point is indicative of the amount of parallelism in the application, and how well the

system is able ta exploit the available parallelism. The higher the absolute speedup

at this point, the better is the suitability of the balancer for this application. This

also pravides an early trend to the relative performance of different 1000 balancers

for this application, for any workload and for a reasonable number of nodes. P.o

upward or downward slope of the curve al this point reftects on the balance between

load balancer overheads and henefits from paraIIel execution.

Fig. 5.36, panCa) shows the transition and peak points for Fibonacci(12). At 2

nodes, the Dual, His, Rand. Snd balancers are in decreasing order of perfonnance.

107

QIQ~~-~~~~1CI~~;=:::::"=:;.;=::::1:.. ==ta-(a)Fibonao:i((2) (b) Fibonacci(2S) -

OUM
Snd- .-

- fWà

OGI

t.
J

•

Figure 5.36: Comparision of speedup against overheads with the increase in the number
of Nades for Fibonacci

Part(b) shows the absolute speedups for Fibonacci(28). Until 32 nodes, the Dual

balancer leads the rest of the balancers. The Dual is followed by His (until 14

nodes), Rand, and Snd. This is according to the predictions made from the tran

sition point from part(a). As explained before, the transition point does not caver

scalabiIity, and is vaIid for only a modest number of nodes. The Rand balancer is

seen here dominating from 40 nodes onwards.

.,'flO'"

Q

Thread ExecuUon T1me
Lœd Balt CMllftead
PoIng Ovemead
Total k2Ie llme
Context SWIteNng Time

2 3 & 5 a T
2~ (lLtllal' DuIf. Snd.....AInd

•
Figure 5.37: Acomparision ofTransition points fordifferent balancers for Fibonacci(12).

108

• 1· • 011
'nlNM EIK. 'TiIlII 1

.~
lai BIIr0lh1

~0WI1 1T.,.-nn.
CIIIIll.SWIda.n-

I"
!I

~.. • •• t2 • ZI III....._.lIlIoI
(a) DIUlI (b)Snd

Figure 5.38: Peak performance points for Fibonacci(12)

u

L:
1- ,

"1&1'1"
_1.1,

(:l)His (b)Rand

~-rl'"=----

-1

Figure 5.39: Peak performance points for Fibonacci((2)

• Apeak point is the highest point on the speedup curve. After this point, the speedup

curve usually becomes constant or dips downward. The higher the number of pro

cessors at this point, the better the scalability of the balancer. This point predicts

the same scalability trend of the balancer for any workload.

From Fig. 5.36, part(a), the peak points according to decreasing arder helong to

Snd, Rand, Dual, and His balancers. This pattern can he observed in part(b) of

this figure. Th Rand balancer is not only scalable, but a1so stable, unlike the Snd

balancer which fails after creating instability in the system due to Joad thrashing.

•
5.5.1 EtTect of Grain Size and Polling Interval

• Increase in grain size improves application performance as long as there is enough

paralIelism to he exploited. SimiIarly increase in workload represents bigh amount

lO9

• of parallelism in the application. This provides a better amortization of Ioad bal

ancer overheads and results in better [oad balancer perfonnance. At low worldoads,

a balancer with least overheads performs best.

u

i l5

i

'\ ~
III L---_- ~--:-_-._E

-(a) Gr:I.in Sïzc ISO IJS (b) Grain Sïzc 200 JJS -
Figure 5.40: Perfonnance comparision at low loads at polling interval of SOJ.'s for
Knary(3,3,0)

Fig. 5.40 shows that with increase in grain size, the His balancer outperforms the

Spn balancer. This is due to the fact that the increased grain size dominates the

balancer overheads of the His balancer.

lD • :II li ·1I'--~---~"-""lD-~.--~.--

u

(b) SPMD(2.S12,.O)--(a) Knmy(2.512.0)

Figure 5.41: Relative Speedup with grain sae 200ps

•
In Fig. 5.41, the His balancer proves to he more scalabIe than the Snd balancer..

This resuIt also highlights the ability of the His balancer to distribute tokens very

fast. However, part(b) of Fig. 5.41 shows that for the same workIo~ the low load

situation for each phase in a barrier-syncbronized application suits a pure sender

initiated balancer bener.

110

•., Il a--(b) <imiD Sile 600 ps--(a) Gr:Iin Sile 400 ps

• lHJ
JI

lHJ- Spn
a a - SIIl

~:..

» Il

1., i~
J --- 1

Figure 5.42: Relative Speedup for Knary(2,512,O)

In Fig. 5.42, doubling the token grain size slightly improves corresponding numbers

for speedup achieved. It should he noted that with increase in grain size, and no

corresponding increase in workload, the amount of exploitable parallelism in the

application dwindles.

i
i
1

1.,
1

1.,
1

1

• Il a JI •-

1-

I~

10

Il

1~
j

(b)Ku and Rand

10 ~ » a • •

r:
j

n

Figure 5.43: Performance ofKnary(2~12,O) fordifferent grain sizes

•

Fig. 5.43 shows that increase in grain size improves performance. However, this

improvement is not much significant for the Dual balancer as it is for the other

balancers partIy due to the fact that ring topology is not equipped for fast token dis

tribution, and secondIy becasue ofthe receiver-initiated policy of the Dual balancer

finds it difficult to locate a rich node in a low Joad situation. Only a few nodes

close ta the rich nodes end up coosuming aIl the tokens. Therefore, after achieving

certain initial speedup, the curve ftattens out

III

• • At lower workloads, polling interval bas a significant impact on application perfor

mance. However at higher workloads, the effect ofpoUing interval is not as relevant

as at low worldoads.

~501I8
4-.4-0 100 Ils
7-1-25011S
7-7-21COII8

Il

Il

'0 es ...-(3)Spn

4-+GSlII8
40+.0100 ...- 7-7-250118
7-7-2100...

1 ...
1 1.,

1
1

Il

i
1
1

1
Il ... 11 II ... Il ... •-(b)Snd

Fig. 5.44 shows the equation between workload and polling interval, for the Spn

and Snd balancers. At small workloads, increase in polling interval improves per

formance due to the minimization of network access overheads. However, this does

not make much difference at high worldoads. There is a slight difference for high

workloads with increase in polling interval for the Snd balancer, because of the

dependence of the Snd balancer on token disposai across the network.

• Higher polling interval improves perfonnance due to low polling overheads, un

less the balancer depends significantly on remote communications (for instance the

Rand balancer).

40+.050118 4-+G5O..-
40+.0 100118 4-+G100..-
7-7-250..-

1
7-7-250..-

l7-7-2100118

j
7-7-2100,,-

a , ,

1
j3D j j- ~

j~ j I~
j

III j .. J
1
l

0
0 ,. 15 3D a ... 11 ,. • JI ... 11- -• (3) Iras (b}Rmui

Figure 5.45: Performance ofKnary(4,4,O) and Knary(7,7,2)

112

•

"-
(a) Gnin Sî.ze 200 I.&S (b) Grain Sî.ze 400 I.&S

Figure 5.46: Performance of SPMD(3,3,O) at polling interval of 50 ps

Fig. 5.46 demonsb'ates similar behavior for barrier-synchronized applications with

increase in grain sile. Corresponding numbers for speedup have increased with

increase in grain size.

•
lUi- '

1

D·L ..

"-
(a) Grain Sile 600 Ils (b) Grain SizI: 400 I.&S -

.'

Figure 5.47: Performance ofSPMD(3,3,O). (a) Polling Interval50 IJS (b) Polling Interval
tOOps

In Fig. 5.47, an increase in grain size amortizes the balancer overheads of the His

balancer 50 that it starts dominating the Spn balancer.

• For an application at a given workloa~ increasing grain size will not affect the rela

tive performance of different loadbalan~ until a eenain point when the relation

between grain sïze, polIing interval and balancer overhead favors a particular load

balancer:

Fig. 5.48, panCa) shows that when the equation between grain sïze, poIIingint~

workload, and balanceroverheads reaches an optimumvalue fora balancer, that particular

113

• u

/
ê]- Snd

- Ha
la.. - FWId
la..

r4 1:/r:
~~

1
u..

u

cu
U

iU. tG ~ » a • Qca.....
(3) Gr:ùn Sile 600 Id (b) Gr.1in Sile 300 IJS

tG ~ » a _ •.....

Figure 5.48: Performance of SPMD(3,3,O). (a) Polling Interval150 p.s (h) Polling Interval
25 J.LS

balancer starts performing better. Here the Rand balancer is outperforms other balancers,

though with increase in nodes beyond 32.. its performance may degrade.

Q.!I

o.a

\L \i..c:

0.1

0.5

o.-
0 5 1Q 15 2D 25

Spn
Snd

- His
-&- Rand

:JO 35

•

Figure 5.49: Performance of SPMD(3,3,O) at grain size of 1800 J.LS and polling interval of
150 p.s.

In Fig. 5.49, with increase in grain size performance did Dot improve~ as there was not

much parallelism available in the workIoad. Therefore individual performance clips when

compared to Fig. 5.48.

114

• 1-1-0
z~-o

~ Il'- ~

2-&-G Il'
Il'

llll f'
ju r'

III

'U
U

OU lU

III U
llIl 10 " :10 a •.....

(3)Spn (b)Snd

Figure 5.50: Performance of SPMD at grain size 200 ps, and poUing interval of 50 J.1.S

Il 'Il"'"-""""'-------"'10--"o--..........-~a-......lII-~.

Il.

III

-(3) His

,-,-0
Z-Z-O
~

- 4-4-0
Z~

(b)Rund

••

-
Figure 5.51: Performance of SPMD at grain size 200 ps, and polling interval of 50 J.LS

5.5.3 ElTect of Workload

•

Workload is the input parameter to a program execution. The workload is the total amount

of work in a sequential execution, and influences the amount of paraIlelism in a parallel

application. Increasing the worldoad increases the parallelism in the application, and

makes loadbalancing that much more productive. This is because the [oad balancer over

heads are dominated by the work transferre~ so a load balancer with high overheads may

stan perfonning better as the workload is increased. SimilarlY9 a load balancer that is

performing better at Iow loads, may he unable to scale uniformly to the parallelism in the

application, and may cause instability (for instance the Snd balancer).

In this section, the workload is varied for the Fibonacci and the Paraffins applications,

and the variance in load balancerbehavioris observed. Fibonacci has extremely fine-grain

threads, and the Paraffins demonstrates irregular paraIlelism.

115

• ~.. - 5nd
- HIa
- RInd111 .

CIl

lJ2

-(3) FibomlCci(28) (b)Fibonacci(30)

.. lD a • •-
Figure 5.52: Effect of worldoad on different balancers for Fibonacci

/Gl

'r------........---.--...--...........---.-~

ul~_ ::1
- HIa

"'. - RInd

r'JG'
).4

-(3) FiboD:1Cci(33)

lJ4

Figure 5.53: Effect of workload on different balancers for Fibonacci

5.5.4 EtTect of Application level Load Balancing

One alternative to control the arnount of loarl balancing at the runtime system level is to

detennine the locality constraints explicitly in the application. The Knary(n,k,r) applica

tion specifies that r children among the total k children at every level in the n level tree

(b) Par.dliDs(24)• QlJ~~-~"----'d:---.~~"-~.-~.--(3) P:JrafIins(22)

J
J

lJO~~-~~d=--~.~~"-~.~--::!.-
Figure 5.54: Effect of worldoadt<f6different balancers for Paraffins

• 'j§Sndf _ HIs

-+- AMd

•

J.'f't
2~

+
~ a a a "-(3) P:mûfins(26)

§1 - Snd
- HIs-+- AM:I

f

-• a _ "

Figure 5.55: Effeet of worldoad on different balancers for Paraffins

should he executed locaIJy. By controlling the value of r, different test cases for Joad

balancers can he created.

• ~ • a _ •
"-

]II

7-T..lJ
7-7-1

15 7-1-2- 7-7--3
7-7~

7-7-6
:0 7-7'"

t.
7-1-7 1

1

(b)Snd-(3)Spn

----------------._--------------

lIr;::::===~-~------ï

1
- 7-7-01
- 7-7-1

]II _ 7-7-21'
1- 7-7--31
r 7-7~ 1,. J. 7-7-1 .
! - - 7-7-11i2lI 1 - -- 7-7-71

J.•

Figure 5.56: Scaiability test for Knary(7J Xl where X is varied. X is the number of
child.ren of each node that need to he locaIly executed.

•

Initializing the value ofX to zero aIlows maximum load balancing, and probably sorne

load thrashing as weiL increasing the value of X limits the amount of load balancing, and

finaIly, the speedup becomes constant when alI the children are executed locaIly.

Another way of looking at the effect of X on the balancer performance is shown

in Fig. 5.58. bere. as the value X is increased, parallel performance equals sequential

perfonnance.

117

O'CI~--!---IO':----=-ll---::'.:--~a-~»-~.

• 11= 7-7-41 -11-' 1-7-01
7-7-1

I~
7-7-1

» 7-74 . » 7-74·- 7-7-3 7-7-3
7-7~ 7-7~

Il 7-7-5 21 7-7-5 .
1-7-t 1--- 7-7"
7-7-7, 1-7-7

j- I-
j~ I~

10

--(a) His (b) Rand

------._--------
--~~:_-----------------l' • Il »

1

~

1

1
1

1

i
i
•

Figure 5.57: Scalability test for Knary(7,7,X) where X is varied. X is the number of
children of each node that need to he locally executed.

Olat-_.......-._~,-~J--6-"""":,---~
~_,.,.t.Jl

10

1nodt

• 1 2nod1a

-+-----f--\-;+~ ;aI--__-~
; \ --- 32

1 \ .-/1
~~

----:: ~----_: ::--.-. : : : .---.:.

(b)Snd

aO~---'!"""""-~J--.-~.-~~

~_""'."""',Ul

(tl)spn

f I~
11I~ ..=:==;::::::::...---Jj

i
10

Figure 5.58: Effect of Laad balancing for Knary(7,7,X), where X is the number of chil
dren of each node that need ta he locally executed.

5.5.5 Token Distribution

•

Ideally, a load balancer should distribute qork equally among all the nodes in the exe

cution. However, with this objective, the determination of worldoad to be transferred is

very complex process~ and definetly not sustainable with fine-grain multithreading. On

the other han~ the profile data reveals that balancers which distribute workIoad and over

heads equally perform relatively bener. Ifa line is drawn connecting aIl points in a graph,

where each point represents the number of tokens executed on anode, then in the ideal

case the line should be a straight Ime.

In the experiments in this section. we profiled the number of tokens executed on each

node as per a particular Ioad balancer poHcy, and then connect these points and observe

the ability of the balancer to distribute Ioad equally..

[18

• S
1

.1_ 7-7-fJ
7-7-1

Zl 7-7-2 .- 7-7-3
IlIDCM 7-7-4
2,.... JI 7-7-6 .

_al 41lllC1111 7-7'"

1 - lnadM 7-7-7

l'~ jJl32....
1"

i j "
ID

•-... - -:~--- --_:::--_:::: ---:::----_: : :••
(b}Rand

---_:::- ----_:: ~ --~--:: :_---_:;.
o'---.....-----""""'"------~Il 1 J • ,

~__• ...,.Ul

(a) His

Figure 5.59: Effect of Load balancing for Knary(7,7,X), where X is the number of chil
clren ofeach node that need to be locally executed.

la 1 If!

1"1
Ii~

,fi

~\
1 ê]J~j - Snd

] 11 r~HIII V
.~

1 -- R.nd \
11 LOI

1
1

- If- \ 11
!

\ it
Yt~

1 1:::: =.sI
1

0
..., tl-.

(a) 8 Nodcs (b) 16 Nades

Figure 5.60: Token Distribution for Fibonacci(33)

Figure 5.61: Token Distribution for Queens{12)

-o~---------"--"""'"-----"""""~ -O~---~---""l0----"",-

(b) 16 Nades-(a) 8 Nades

ttal

•
119

•

IllII

-
-(il) 8 Nades (b) 16Nodes

Figure 5.62: Token Distribution for SPMD(4.4,O)

•

5111 ..
-~ 1\ ê1J ê1J l'

- Snd

-~::: Es-- HII

-~
- RIrd 1\

1 f

d
! 1

1

1 ;\....~

l-~
1

1
1 \iSD~ /n 1 1 1

1- : --~ 1

-kJ"r
'CIl

0 10 15- -(3) 8 Nodcs (b) 16 Nodcs

Figure 5.63: Token Distribution for Paraffins(28)

120

•

•

Chapter6

EARm Operations • A Performance

Study

The overheads and latencies involved in supporting a parallel eovironment play a signif

icant role in the application performance. In other words, an efficient implementation of

this paral[e[environment with minimum costs favors Iower application elapsed times. In

order to understand the application performance, a detailed study of these overheads is

necessary.

The parallel execution time of a Threaded-C program can be roughly divided ioto

three major chunks: time spent in executing application threads; overheads, latencies and

throughput of paral[el operations; and final[y the overheads involved in maintaining a

multithreaded environment - load balancing overheads, initiation and termination costs

of parallel execution. Application thread execution depends on various factors like the

programming mode[, parallelism grain size, Joad balancer strategy, polling interval, etc.

and is discussed in section 5. The load balancer overheads resu[t from the CPU time spent

in executing the Joad balancer code. The parallel operations in EARTH are the paraUe[

invocations of threaded funetions, thread management - instantiation, termination and

synchronization of EARTH threads, and remote data communications. The Threaded-C

language provides instructions to specify the EARTH operations in application programs.

In this section, we study the paralle[constructs in the Threaded-C language and their

implementation in the EARTH runtime system from a performance perspective..

The overbeads of the Threaded-C instructions are discussed in section 6.1. The Ia

tencies of EARTH operations are computed and analyzed in section 6.2. The overhead

costs and throughput for data communication primitives in the Threaded-C language are

121

•

•

presented in section 6.3. Section 6.4 compares the throughput for local and remote block

moves of data. A similar set of experiments are performed on the other EARTH-SP

platforms and the results are presented in section D.

The EARTH-SP2 at the Comell Theory Center is considered in this section for ana

lyzing the performance of the EARTH multithreaded environment. An important reason

for choosing this SP-2 platform1 is to maiotain compatibility of the results in this section

with the applications performance in section S. This system has 137 nodes where parallel

jobs can be submitted in batch mode. Each Dode includes a P2SC CPU mnning at 120

MHz. 128 KB data cache, 256l\1B main memory and 256 bit memory bus. The nodes are

interconnected through the SP switch [37]. The tb-3 card is the network switch interface

and offers a peak hardware bandwidth of 150 MB/sec.

6.1 Overheads of Threaded-C Instructions

The overheads for executing the multithreaded constructs in a Threaded-C program are

shown in Table. 6.1. Threaded-C instructions are executed on local and remote nodes and

the timing costs are measured. The instruction is executed a certain count number of

times. and the average values are presented here.

Table 6.1 shows the overheads for local and remote invocations of a Threaded-C

instruction. For local operations, the time spent by a local execution unit in issuing a

Threaded-C instruction is shown under the column "EU cests". For remote operations,

the time spent in issuing a instruction on the source node is shown under the column "Lo

cal Costs'·, and the CPU time spent in executing the Threaded-C instruction on the remote

node is attributed to the column "Remote Costs". Profiling code inserted before and after

the Threaded-C instruction gives the total time spent in issuing and executing an instruc

tion. Special care is taken to consider ooly the CPU time spent in issuing the instruction

as the instruction overhead. The time spent in actually perfonniog the corresponding

EARTH operation is ignored.

When obtaining rernate costs, it is important to create normal working conditions on

the remote Dode. This is done by executing sorne loops on the remote node before actually

issuing a remote operation. The remote operation has to compete with other work for

CPU time 00 the remote node, before its execution. This ensures rea1istic overheads for

remote operations. At the SaIne time~ the exact CPU time spent on the rernete instruction

IComelI Theory Center~ Comell University, Ithaca. New York..

122

•

•

EARTH Operation Local Operation Remote Operation
EUCosts Local Costs Remote Costs

SYNC 145.13 ns 2251.81 os 1128.59 ns
SPAWN 109.73 os 2043.41 ns 2058.76 ns
END_THREAD 920.30 ns NA NA
INCR-SYNC 168..04 ns 2205..58 os 1207.30 ns
DATA-SYNC 170.61 ns 2173 ..61 ns 1149.36 ns
GET-SYNC 173.85 os 1550..09+1971 ..31 os 3448.32 os
INVOIŒ(l) 119.. 14 os 2177.21 ns 2339.53 ns
END.FUNCI10N(I) 1044..41 os NA NA
INVOIŒ(5) 126.74 os 2230.. 15 ns 2442.57 ns
END.FUNCI10N(5 1114.69 ns NA NA
INVOIŒ(9) 134..02 ns 2220..46 ns 2541..75 os
END.FUNCTION(9) 1177..44 ns NA NA
INVOIŒ(IS) 180..26 ns 2331..21 ns 2655.50 ns
END.FUNCI10N(18) 1203.32 ns NA NA

Table 6.1: Overhead for Threaded-C instructions on EARTH-SP2

is measured by isolating it from the CPU time spent on the loops execution.

Normal working conditions are maintained on remote nodes by executing a simple

while [oop that is terminated only after completiog execution of the Threaded-C in

struction. In order to allow for the execution of a thread containing the rernote Threaded

C instruction, the while loop is split ioto two threads as described in section 2.2.12.

The thread with the Threaded-C instruction under consideration, is placed in the ready

queue a10ng with twO threads corresponding to the while loop.. This creates an envi

ronment similar to those found in normal application programs. While computing the

remote costs of rernote operations, the time spent on executiog Threaded-C instructions

is dealt with separately from the time spent on executing the loops. This is easy, as the

remote Threaded-C instruction and loops are the only computation Ioad belonging to the

application on the remote node. The time spent on loops is computed by determining the

time spent on executing each loop and the total number of loops executed at the end of

execution.

The SYNC constnIct is translated into a runtime system function calI to etc-SyIlc.

If the sync slot is present on the local node, the syne count is decremented and if its value

is zero, the associated thread is placed in the ready queue. On the other hand, if the syne

slot is present on a remote Dode, a message is composed and sent to the remate Dode. A

123

•

•

count number of synchronization operations are issued and their eompletion is marked

by the firing of the associated thread. The limer is set off in the first statement of the

newly enabled thread. The overhead of the SYNC instruction is computed by deleting a

time approximation for the EARTH operation from the total elapsed time.

The SPAWN eonstruct is less expensive than the SYNC construC4 as checking for sync

count is unnecessary. The associated thread is directly placed in the ready queue. The

END_THREAD primitive indicates the end of the current thread, and therefore prepro

cessed into a return slatement at the end of the C function representing the thread.

The END_THREAD primitive pertains to the CUITent thread and is more of a directive

rather than as an instruction. Computing reroote eosts for it is not possible, as il is not

an EARTH operation. The cost of END_THREAD is the same as that of terminating a C

function.

The INCR..SYNC instruction costs more than the SYNC instruction because of an in

crementing operation done prior to normal synehronization operation. A DATA..SYNC

instruction places the data at destination location and sends a sync message to the asso

ciated syne slot. Henee it costs more man a syne operation. A GET_SYNC instruction

determines the source node of the data from its arguments, and composes a message

ta the Dode hosting that global memory location. The receiving node then composes a

DATA..SYNC message with the required data to the requesting node. Understandably, it

costs more than a DATA..SYNC operation.

The INVOlŒ instruction launehes the Threaded-C function directly on the node spec

ified. Before making the corresponding RTS calI ta etc-invoke, the arguments for

the Threaded-C funetion are converted into global pointers where required, and this data

is placed in the runtime data structures. The variable parameter passing mechanism, as

explained in section 2.2.9, is used here. On the node where the threaded fonction is

scheduled~ the parameters have to he down-Ioaded from the parameter pointer iota their

respective slots in the frame pointer. Thus it is interesting to see the overheads involved

in having different number of arguments to the INVOKE instruction. The timing costs

for 1, S, 9, and 18 arguments for the INVOKE instruction are studied. As expected, they

show an increasing trend as the number of arguments ïncreases. As is the case with ail

Threaded-C instructions, the overhead costs for the INVOKE instruction are isolated from

the (atencies of parallel fonction invocation in the EARTH system.

The END-FUNCTION instruction indicates the end of a Threaded-C function (similar

124

•

•

to the END_THREAD primitive which signifies the end of a thread). The dynamic mem

ory allocated for the activation frame is returne~ as shown in the preprocessed code in

section 2.2.10. To simulate common application scenarios, Threaded-C fuoctions with 1,

5, 9, and 18 parameters having just a single instruction - END-FUNCTION are invoked,

and the results are observed. The costs represent the time for obtaining the parameters

from the parameter frame, retuming memory to heap, and terminating the C function

representing the last thread in the Threaded-C function.

6.2 Latencies of EARm Operations

The timing requirements for various EARTH operations like thread spawning, thread

syochrooization, parallel function invocation and data communication are studied in Ta

ble 6.2. The EARTH operation is initiated in one thread (start-thread) and the completion

of the operation marks the firing of another thread (end-thread). AlI these EARTH opera

tions end with a synchronization signal.

The time taken for the entire EARTH operation is studied with respect to the man

ner in which it is issued - sequential and pipelined. In the sequential issue, a single

EARTH operation is initiated and completed before the next issue. In the pipelined is

sue, multiple instances of an EARTH operation are started without waiting for the earlier

instantiations to complete. The pipelined issue is expected ta result in impravements in

latencies because af three reasans: the start-thread need not wait for acknowledgment

from the end-thread before issuing the next instance; there will he fewer context-switches

between the start-thread and end-thread; and finally, the synchronization cast to tire the

end-thread is minimal in the case of the pipelined issue when compared ta the sequen

tial issue!. Benefits due to cache reuse, though minor in comparison, alsa add to the

performance improvement. Both the sequential and pipelined types of initiating EÀR.TH

operations are pragrammed in Threaded-C, and any speedup observed is over and above

the instruction-Ievel parallelism offered by the underlying architecture.

Table 6.2 shows the sequential and pipelined latencies for local and remote operations.

One uniform trend visible among all operatians is that the sequential execution costs far

exceed those of the pipelined execution.. The latencies include the time from the issue of

the operation through a Threaded-C instruction, till the completion of the operation in the

2The mntime system code in etc..sync function that is executed to place an enabled thread in the
ready queue needs to he executed ouly once for all instances of the EARI'H operation.

125

• end-thread. This is different from the timing overbeads seen in Table 6.1, where the time

is strictly the overhead for executing a Tbreaded-C instruction.

The local sequential execution has higher costs than the local pipelined costs, because

of the time savings available when certain part of the RTS code is executed ooly once

for all instances of the EARTH operation in the pipelined execution. For example for

the SYNC operation, the RTS code that resets the sync count and places the thread in the

ready queue is executed ooly for the last instance in the pipelined execution. In contrast,

this is done for every instance in the sequential execution.

Writing a ward takes (DATA..SYNC..x) lesser time than reading a word

(GET_SYNC..x). This same behavior is visible even in Table 6.2.

The function cali operations show increasing time overheads as the number of param

eters increases. This is understandable as the time spent in executing extra RTS code for

uploadingldown-loading each parameter to/from the parameter frame.

1 Local Seq. 1 Remote Seq. 1 Local Pipe. 1 Remote Pipe. 1

Sync Thread: 1117.18 os 22750.51 os 200.53 ns 3580.52 ns
Spawn Thread: 1094.680 ns 22623.864 ns NA NA
Read Ward: 1263.690 os 44695.379 ns 268.174 ns 5790.639 ns
Write Ward: 1176.486 ns 44714.817 ns 225.756 ns 5751.444 ns
Fun. Cali (1): 2373.947 os 45444.014 ns 1420.094 ns 6635.911 ns
Fun. Cali (5): 2464.970 os 46504.802 ns 1505.723 ns 7111.021 ns
Fun. Cali (9): 2547.251 ns 46312.331 ns 1592.606 ns 7383.772 ns
Fun. Cali (18): 2641.083 ns 46734.277 ns 1678.828 ns 7016.261 ns

1 Operation

Table 6.2: Latencies for EARTH operations on EARTH-SP2

6.3 Data Communication

•

The EARTH nmtime system supports global rnemory access over a distributed memory

platform. Therefore ail the remote memory access is perfonned through message-passing.

Another reason for remote communications is dynamic Ioarl balancing. While the bal

ancer stresses on ensurïng locality between fonction invocations, it is also possible that

varying load situations result in threaded functions sharing synchronization dependences

being scheduled on different nodes.. Therefore~ it is interesting to note the time costs in

moving data among locaIlremote destinations..

126

•

•

The overhead costs and throughput achieved by using the GET-5YNC..x and

DATA-SYNC...x operations are listed in Table 6.3. The sendinglreceiving of data is

performed to/from local and remote destinations. The entries in Table 6.3 show the

overhead in nanosecs, and the throughput in MB/secs as a result of locallremote data

transfers. Data of aIl sizes are transferred - byte, short, long, double, of

sizes l, 2, 4, and 8 bytes respectively. The difference between the start and end times

of GET_SYNC...x/DAT1L5YNC..x operations is the time overhead, and the throughput

achieved is the total amount of data transferred divided by the elapsed time.

Initially, the source array of data is initialized on node 0 by a threaded function (say

Th. A). Another threaded function (say Th. B) creates dynamic memory for the desti

nation array and resets its contents to zero. For initiating local data transfer, the second

threaded function (Th. B) is invoked on node 0, whereas for remote operations it is in

voked on node 1. AU data transfer happens between the source array (declared in Th. A),

and the destination anay (declared in Th. B).

Operation Local Remote
Overhead Throughput Overhead Throughput

DATA-SYNC-B 282.00 nsIop 3.55 MB/s 5933.00 ns/op 0.17 MB/s
DATA-SYNC-S 272.00 ns/op 7.35 MB/s 5882.00 ns/op 0.34MB/s
DATA-SYNC-L 256.00 ns/op 15.61 MB/s 5844.00 ns/op 0.68 MB/s
DATA-SYNC-D 238.00 ns/op 33.59 MB/s 5668.00 ns/op 1.41 MB/s
GET-SYNC..B 328.00 ns/op 3.05 MB/s 5921.00 ns/op 0.17 MB/s
GET-SYNC..s 322.00 ns/op 6.20MB/s 5892.00 ns/op O.34MB/s
GET-SYNC..L 307.00 ns/op 13.03 MB/s 5900.00 ns/op 0.68 MB/s
GET-SYNCi> 333.00 ns/op 23.99 MB/s 5677.00 ns/op 1.41 MB/s

Table 6.3: Overhead costs and Throughput for Data Communication in EARTH-SP2

Remote memory access is costlierthan local memory access (approx. 20 times). The

overhead costs are almost the same for data of ail sizes (though they show a negligible

decreasing trend from byte to double for the DATA-SYNC...x operation). The throughput

goes on increasing from byte to double, as the amount of data transferred is increasing

while the time taken is almost same.

127

• 6.4 Blockmove Operations

Performancewise, moving blacks of data is more beneficial than multiple daturn transfers

due ta low synchronization costs. A single synchronization signal is needed to signal the

completion of a blackmove operation, whereas individuaI data transfers require as Many

synchronization signais as the number of data transfer operations.

The throughput resulting from black movement of data to locallremate destinations

is shown in Table 6.4. Typically, block maves of data result in a throughput of around

243MB/s (local) and 95.06MB/s (remote) for 0 byte aIigned data block movement.

0 243.22 MB/s 247.20MB/s 95.06 MB/s 99.89 MB/s
16 247.77 MB/s 247.95 MB/s 94.28 MB/s 98.93 MB/s
8 247.13 MB/s 247.80 MB/s 91.94 MB/s 94.10 MB/s
4 238.73 MB/s 247.98 MB/s 90.88 MB/s 99.95 MB/s
1 231.24 MB/s 231.07 MB/s 87.32 MB/s 99.41 MB/s

1

Align 1_~~_L_OC..,..-aI~~~_+--~~_R_e_m.-o_te--=~_.....:
Single 1 Dual Single 1 Dual

Table 6.4: Throughput for Blockmove operations on EARTH-SP2

•

The results are obtained by varying destinations among locallremote, single/dual

blacks to ttansfer, and the byte alignment of data. In the single black transfer, data is

transferred between one pair of source-destination during the time observed. With dou

ble black transfer, data is transferred between two pairs of source-destinations. In either

cases, a single black-move operation is performed. If 20 sync signaIs are to he gener

ated to enable a consumer thread to act on the blacks of data transferred, the 20 signaIs

may he generated after transferring single block data 20 times, or they May he split up

between two black transfers (each generating 10 sync signais). In addition, the data is

0, 1, 4, 8, 16 bytes aligned. For example, the first entry in Table 6.4 shows the transfer

of zero aligned data, Le. the data from the very first byte of array al source location is

transferred. Both the source and destination locations are on the local memory for lo

cal transfers, whereas in the case of remote black transfer remote data is transferred ta

local destination. Elapsed times are measured while transferring single and dual blocks

of data. Thus the entries in Table 6.4 show throughput in MB/s achieved by moving ap

propriately aligned data, stored in single/dual blocks among local source/destinations and

remote source to local destinations.

128

•

•

Local block transfer~ as expecte~ achieves better throughput (approx. 2.6 times) than

remote black transfer. This is understandable as the overheadcosts associated with rernote

rnemory write and sync operations are quite high. For any alignrnent, the dual block

transfer achieves higher bandwidth than the corresponding single black transfer. This

suggests lesser time required for dual black transfer than single black transfer.

129

•

•

Chapter7

A Comparative Performance Study of

Fine-Grain Multi-threading on

Distributed Memory Machines

This section provides a comparative study of the implementation of the Efficient Archi

tecture for Running THreads (EARTH) on IBM SP-2, Beowulf, and the MANNA ma

chine [93, 94]. Each platfonn presents different constraints on the interaction between

the EARTH runtime system and the network. Threaded-e, the programming language for

EARTH. provides a uniform address space to allow data exchange among the processing

nodes in all these distributed-memory platforms. The performance in each implementa

tian is characterized by measuring the cast of EARTH operations, such as the exchange

of synchronization signaIs, the spawning of threads, and the movement of data across

processing nodes. This is followed by a detailed study of the performance ofapplications

belonging to three different programming models.

7.1 Execution Model versus Architecture Performance

Designing multiprocessor systems that deliver a reasonable priee-performance ratio us

ing off-the-shelf processor and compiler technologies is a major challenge. While mod

em processors can issue multiple instructions peI' cycle, they Jack the features required

130

•

•

to address fundamental issues in multiprocessing systems: latency. bandwidth and syn

chronization overheads. A well designed parallel system must balance the trade-off he

tween a fine task granuIarity [1431 and the impact of communication latencies on per

fonnance. Coarse-grain paraIlel systems can tolerate long latencies if the application

provides enough parallelism hecause each task is long enough to amortize the communi

cation overheads. But coarse grain systems do not fully exploit the parallelism existing

in irregular parallelism. Fine-grain parallelism9 on the other band, enables further paraI

lelization of Many applications. but bas proved to he difficult to support due to the higher

relative cast of communication and synchronization latencies [143].

We present performance results from three implementations ofEARTH: EARrH-5P2,

EARTH-Beowulf, and EARTH-MANNA. AIl these implementations run the same appli

cation program written in or compiled ta Threaded-C. an explicitly multi-threaded exten

sion of C. In ail three implementations the Threaded-e code is converted by a prepro

cessor into ANSI-C with caUs to runtime system functions. The translation sequence of

Threaded-C programs into final executable is shown in Fig. 2.1. The runtime system per

forms thread scheduling, context switching between threads9 inter-node communication..

inter-thread synchronization, global memory management. and dynamic Ioad balancing.

Given the EARrH programming and execution madel, and its implementation on

platforms with different processor-network.. processor-memory and network-memory in

terfaces, it is interesting to study if the EARTH multithreading Madel can effectively de

liver performance improvements for a range of applications across these platforms. One

should expect that obtaining performance improvements on tightly coupled architectures

should he easier than on loosely coupled ones.

7.2 Hardware Platforms

We select three machines for this comparative study: the MANNA, the mM-5P2, and

the EARTH-Beowulf. This machines represent different Ievels of availability, cast. and

effort ta implement a parallel system. The MANNA is a research machine with dual

processor nodes interconnected through a cross-bar switch. The EARrH team had direct

access to the network interface and hardware storage in the machine, and thus was able

to produce a very efficient implementation of the EAlUH Madel. Only a few installa

tions of MANNA exist. The IBM SP-2 is an inherently parallel machine tbat is typically

available in computing centers. The EARTH team was alsa granted access to the network

131

•

•

card data structures in the mM-SP2 to enable the EARTH runtime system to directly start

network operations. The Beowulf implementation uses exclusively off the shelf campo..

nents, hardware, network drivers, and operating system. It is the Most portable version

of EARTH, and the Most available because the cast and effort to construct a Beowulf

cluster is minimal. However this portability imposes a hit on the latency of the EARTH

operations.

The MANNA (Massively parallel Architecture for Non-numerical and Numerical Ap

plications) was developed at GMD-FIRST in Berlin, Germany, in the early 90's [31 J.
Each node of the machine cantains two 50-MHz Intel i860XP RISC processars, each

with on-chip data cache and instruction cache of 16KB each. The two processors share

32 MB of DRAM on a common bus, and stay coherent with this memory and each other

using bus snooping and the MES! protocol. The bus also mns at 50 MHz. Multiple

dual processor nodes of the MANNA are connected through a custom-designed 16 x 16

packet-switched crossbars. Each input port can accept one data byte per 20 ns cycle, and

the input is buffered by a FIFO. The crossbar bandwidth is 800 MB/s if ail 16 inputs are in

use and each transmits to a different output port. The EARTH-MANNA implementation

has been described previously [156].

The mM RS/6000 Scalable POWER Parallel System (SP-2) is a distributed memory

multiprocessor. Each processing node is equipped with a 120 MHz POWER2 Super Chip,

128 KB of data cache, 32 KB of instruction cache, at least 64 MD of RAM, and operate

with a 256 bit mernory bus. The tb-3 switch provides a network interface with a peak

hardware bandwidth of 150 MB/s in each direction. A detailed description of the EARTH

sn implementation is explained in chapter 2 and a1so in [92].

The Beowulf cluster [141] is equipped with 200MHz Pentium Pros, each node with

128 MB of RAM. The nodes are interconnected through a 100 Mb/s switched ethemet

network. The EARTH inter-node communication and synchronizations are implemented

on top of the TCPIIP protocoL

7.3 Latency of EARTH Operations

The machines that we are studying have different processor and network speeds, and

distinct implementations of the EARTH runtime system. The latency of the operations

required to communicate and synchronize across processing nodes is a determinant factor

in the performance of sorne applications. In this section we measure the latency of sorne

132

•

•

Machine Operation
Sequential PipeIined

Local Remote Local Remote
SyncThread 116 199 42.0 49.7

Spawn Thread 113 213 - -
MANNA GeLSync 141 348 56.8 94.0
1cycle = DatéLSync 138 333 53.0 90.7
20ns Fun. CalI (1) 250 451 159 140

Fun. Cali (18) 410 628 276 223

SyncThread 104 2751 24 414
Spawn Thread 101 2652 - -sn GeLSync 122 5366 32.2 699

1cycle = DatLSync 107 5276 27.2 695
8.3 ns Fun. CalI (1) 231 5553 140 784

Fun. Cali (18) 262 5656 171 831

SyncThread 1146 21014 15.7 227552
Spawn Thread 1193 22863 - -

Beowulf GeLSync 1211 41614 26.5 11482
1cycle = DaaLSync 1201 41513 27.2 37272
5.0 ns Fun. CalI (1) 2416 42728 1228 176389

Fun. Cali (18) 2514 43735 1339 160271

Table 7.1: Latency of EAlUH operations, measured in number ofcycles.

EARTH operations in aU three platforms. These measurements are presented in terms

of the number of processor cycles in the machine ta facilitate a comparison between the

machines. It is important ta observe that the processor is not busy with the operation for

the number ofdock cycles shown in Table 7.1. Most of the remote operation time is spent

either waiting on queues or in the network, releasing the processor to execute other ready

threads.

Table 7.1 displays the Iatency of EARTH operations in the three platforms used in

this comparative study. In the measurements in the Usequential" column the next EARTH

operation is issued after the receipt ofa synchronization signal confinning that the current

operation is completed. For instance two threads~ thread a and thread b, are necessary to

measure the latency of a synchronization operation. Thread a issues the operation, and

terminates, while the launching ofThread b marks the completion of the operation. After

executing the runtime system code for the operation and tbread b is enable~ thread b is

placed in the ready queue for executioD. In the case of the "pipeIined" measurements,

multiple operations are issued from thread Cl, which then terminates. The elapsed time is

measured in thread b.

133

•

•

The measurements in the first row ofTable 7.1 are obtained as follows:

Sequential Local: Thread a issues a synchronization signal that causes thread b to be

came enabled. When enabled thread b issues a synchronization signal that causes

thread c ta became enabled. This cycle is repeated N times (we used lV = 100000

in our tests). The time required for the N repetitians is measured and the average

per synchronization signal is computed.

Sequential Remote: Same as above but thread a and thread b are scheduled in different

processors, thus there is a delay of gaing through the network to perfonn remote

operations.

PipeUned Local: Thread a starts the clock and issues N synchronization signais without

waiting for any synchronization signaL After receiving lV signaIs thread b is en

abled and stops the dock. This version is called ')lipelined" because in a machine

with separate SU and EU nnits, the operation of the EU, SU and the network can he

superposed in a pipelined fashion. Even in single-processor nodes, this results in

perfonnance gains because the sender CPU does not need to wait for a reply from

the receiver CPU, before sending the next request. In addition, the sYDchronization

is handled in a different manner with the pipelined version, that results in fewer

context-switches than in the sequential style of execution.

Pipe6ned Remote: Similar, but thread a and thread b execute in different processors.

When enabled, threacl b sends a synchronization signal to another thread in the

same processor as thread a (thread c) to stop the cIock.

Both in the MANNA and in the mM-SP2 the EARTH runtime system has direct ac

cess to the network interface and can start network operations without any context switch

ing. In fact in the case of the MANNA, the second processor performs all network related

operations. In bath cases, the runtime system has direct access to the network card data

structures which makes networlc communications and poling faster. This is in contrast to

the relatively high overheads associated with traversing through the TCPIIP staek in the

case ofthe Beowulf. Further, when a message arrives, an interruption is generated to force

the oPeratïng system to banclle the message. This causes a context switching between the

EARfH runtime system and the Linux 0Perating system (. We are cunently reviewing

lThe limes reported for the Beowulfruns are '"'wall clocktime" and thus include the costs ofthe interVen
ing operating system activities. This is a caneet measurement because under the cunent implementation,

134

•

Pfpelfned IIMIurement

•

Figure 7.1: Exchange of synchronization signaIs for the sequential and pipelined mea
surements of the latency of a sync operation.

the EARTH-Beowulf implementation ta reduce the penalty of the intervening OS actions

in the latency of the EARTH operations.

Figure 7.1 2 illustrates the sequentiai and the pipeline measurements. The latency of

EARTH operations are shown in Table 7.1. One observation common to most operations

is the high latencies associated with sequential execution when compared to the corre

sponding pipelined measurements. This is expected, as the overheads associated with

issuing the operations sequentially are absent in the pipelined runs. The difference in the

processor speeds is very weil reflected in the different pipelined speedups for the latencies

for local operations (ratio of sequentiallatencies over pipelined latencies). This ratio is

even higher in the case of the Beowulf, because of factors other than the processor speed.

The EARTH runtime system polIs the network at the termination of every thread. Mter

responding to synchronization or load balancing requests, execution continues with the

next thread in the ready queue. Since a sequentially issued operation is terminated in

another threacL the polling costs add ta the local CPU costs.

Remote operations cost less in the MANNA than in the IBM SP-2 or the Beowulf,

because of the second processor in the MANNA which takes care of the communication

the user will not he able to distinguish between the time spent in the operatiog system and in the EARTH
nmtime system

2For the sake of clarity of presentation. a particular case is shown here. In general.. the source and
destination threads for EARTH operations may be in the same tbreaded funetion. Further. threaded function
B can he executed either 00 local or remote nodes.

135

•

•

and synchronization operations. The remote costs for sequentially issued operations cast

higher in the Beowulf, because of the time required to compose the sending and receiving

messages in addition to the polling time.

Pipelined execution of remote operations on the Beowulf is an exception" where the

sequential version runs far faster. This is because of the higher context-switching over

heads endured between the rontime system code" and the operating system code" while

sending messages across the network. After executing the runtime system code for the

operation, control switches to the operating system to perform the actual communica

tion, after which control again switches back to the runtime system code for issuing the

next operation. This switch between the kernel and user space is the reason for the poor

perfonnance of remote pipelined operations.

The other EARTH operations measured in Table 7.1 include the direct spawning of

a thread; a get-sync operation in which thread 1 requests a word of data from thread

2 and thread 2 synchronizes thread l when the data arrives; a data.sync operation in

which thread l sends a word of data ta thread 2 and thread 2 synchronizes thread 1when

the data arrives; and fonction caUs with l and with 18 parameters, which represent the

invocation of a threaded fonction either in the same node or in a remote Dode.

7.4 Comparison of Application Performance

In this section we present perfonnance results for three applications: N-Queens" Paraf

fios(28), and a dense matrix multiply, in all three platforms. These benchmarks are de

scribed in section 4.1.

The Figures 7.2" 7.3" 7.4 show the absolute speedup for three benchmarks on each

machine. The table 7.2 displays the actual execution time for the applications in the three

platforms. The absolute speedup is measured as the quotient between the time required

to execute a sequential version of the code and the time required to execute the parallel

version in P processors.

AD interesting observation ta note is the disparity between the CPU speeds and net

work speeds. In the case of the MANNA, the slow CPU speed results in high elapsed time

for sequential execution. In addition, the Dual load balancer provides a very simple load

balancing algorithm, with minimum overheads. The extra messages generated due to the

ring topology adopted in the Dual balancer, are compensated by a dedicated processor on

each Dode to deal with the network: traffic.

136

1::: 5E1• 18

111

14

12

110

i 8

e

,

2

°0 1 a 10
NadII

12 l'

•

Figure 7.2: Absolute Speedup for Queens(12)

10

1
i

Figure 7.3: Absolute Speedup for Paraffins(28)

The His balancer on the SP-2 and the Beowulf~ on the other band works on single

processor nodes. In order to reduce the networlc traffic, the His balancer uses history

infonnation ta send tokens directly to the destination nodes~ rather tban foIlowing the ring

topology. This balancer works very weIl in the case of the IBM SP-2~ due to its efficient

137

• 1~

12 1::: 5:E:1
10

la.
i 1

~

2

0
0 2 1 a 10 '2 l~ II

NadIa

Figure 7.4: Absolute Speedup for Matrix(I024XI024)

•

network interface. However, in the case of the Beowulf, high CPU speed and low network

speed result in comparatively poor performance, especially in the case of irregular. and

communication intensive applications. Due to the high CPU speed. the computation time

is usually not high enough to amortize the remote communication costs.

Another important factor is the uni-node support efficiency or USE factor [84. 156].

The USE factor is the ratio of sequential execution time and the elapsed time for one-node

parallel execution. The USE factor is described in section 5.2.4.

In the case of Queens(12), both the MANNA and the SP-2 implementations of

EARTII deliver a1most linear speedup. The His balancer on the SP-2 perforrns better than

the Dual balancer which is tuned for the dual processor MANNA. However the speedup

of the Beowulf implementation tapers off after a small number of processors. We believe

that this happens mostly because of the iterations between the EARTH runtime system

and the Linux operating system actions, includiog the frequent interruptions to the kernel

because of frequeot arrivai of small messages. In addition, the USE factor on the Be

owulf for the Queens benchmark is quite low. This is because of the significant amount

of multi-threaded overheads endurecL despite the throttling ofparaIlelism.

The mM SP-2 platform performs best for the inegular application Paraffins (28)..

However. the elapsed time for sequential execution on the SP-2 is Iow, resulting in a

very low USE factor. This in tnrn results in poor absolute speedup when compared to

138

•

•

Benchmark Machine SEQ
Parallel: Num of Processors

1 2 4 8 12 16

MANNA 17.25 17.46 8..74 4.37 2.19 1.46 1.10
Queens(12) sn 4.79 4.78 2.50 1.21 0.58 0.41 0.30

Beowulf 6.63 11.56 6.51 3.60 2.22 1.77 1.59

MANNA 398 398 200 101 51.0 34.7 25.8
Paraffins(28) sn 57.3 206 104 52 26.4 18 13

Beowulf 168 342 174 88.2 45.9 33.5 24.9

MANNA 364 542 271 138 70.4 36.71 30.70
Matrix SP2 283.47 284 149.95 72 31.97 20.48 39.4
(l024X1024) Beowulf 245 249 128.22 66.27 34.98 25.68 21.22

Table 7.2: Execution time (in seconds) for the sequential and parallel versions of three
benchmarks on the MANNA, mM-SP2, and Beowulfplatforms.

the MANNA or the Beowulf. The dynamic computation in this application is hanclled

very weil by the high speed processors of the Beowulf when compared to the MANNA.

This can be observed in the low sequential execution time for the Beowulf, in contrast to

MANNA.

The matrix multiplication application represents the regular cIass of problems, where

the computation time can amortize the minimal muIti-threading overheads. This is visible

in the near unity USE factors for the SP-2 and the Beowulf platforms. On the other hand,

with the MANNA platfonn, the extremely regular computation requiring lots of memory

accesses fails to hide or overlap with the multi-threading overheads on the slow CPU. This

application relies a lot on equai distribution of the workload by the Ioad balancer. Here,

the His balancer (in the SP-2 and Beowulf) scores very weil against the Dual balancer

in the MANNA runtime system. The long token distribution latencies due to the ring

topology, minimal load state infonnation of the Dual balancer fail to exploit the regular

nature of the application and result in unequalload distribution.

The three machines studied in this paPer are quite different. The nmtime system is

tuned to take advantage of specifie features of the MANNA hardware, whereas a portable

runtime system is used in the case of the SP-2 and the Beowulf. The Beowulf c1uster is

the most "off-the-shelr' and most affordable machine; it uses readily available proces

sors, networks, compilers and operating systems. Although commercially available~ the

IBM-SP2 is not as affordable, and thus is only accessible in eomputercenters. Further, the

runtime system has direct access ta the network data structures, which facilitates lawer

139

•

•

communication overheads when compared to the TCPIIP interface in the Beowulf. Al

though the MANNA is a very good platform from a computer organization stand-point,

it might have a longer execution time than an SP-2 or Beowulf platfonn for the same

number of processors. On the contrary, the Beowulf is a very affordahle and interesting

option for using off-the-shelf technology; however, the performance for irregular applica

tions is limited by the network speed. The mM SP-2 performs reasonably weil for most

applications, with a very effective network interface.

7.5 Performance Overview

The relatively poor performance for both the EARTH-SP2 and the EARTH-Beowulf for

the paraffins benehmark reftects the differenee in speed between the processor and the

network of these machines. For instance, on Table 7.1 we observe that a remote sync

operation on EARTH-SP2 requires 14 times more cycles than on EARTH-MANNA. On

EARTH-Beowulf requires on average 106 more processor cycles to perfoon a remote

syne operation than EARTH-MANNA.

The dense matrix multiplication algorithm used in this study was designed to test

the EARTH (oad balancer 3. The speedups shown in Figure 2(e) for ail three machines

demonstrate that the load balancer effectively distributes the processing load among the

nodes.

Applications belonging to three different programming models- recursive, irregular

and regular classes are studied for their performance on the three different platforms.

While the CPU speed, USE factor and the load balancer adopted are seen to affect perfor

mance in a major way across ail the platfonns, the high communication costs associated

with the network interface seemed to have a bigger impact on aU communication intensive

applications in the EARTH-Beowulf.

3Because ofdata locaIity. a blocking aIgorithm would deliver bener performance.

140

•

•

Chapter8

Related Work

Multithreaded systems are a feasihle approach to exploit both regular and irregular paraI

lelism. Today a large collection of multi-threading systems with different threaded mod

els, and implementation platforms are available. These systems provide support for mul

tithreading either at hardware level, with customized functional units, or at the software

level, as emulators written in sorne high-level language. The later approach is usually

preferred because of its favorable price tag, speed ofdevelopment, and portability.

Dynamic load balancing is a runtime issue that has attraeted a lot of attention in par

ailel and distributed computing. Load balancing algorithms for different applications and

their impact on performance has been weil documented in the work done so far. How

ever, similar studies for multithreaded systems are still in the early stages. It is interest

ing to study the application of the significant knowledge gained from load baJancing in

distributed computing systems to multithreaded systems, especially those implementing

fine-grain threads. Here, the goals and constraints for load balancing are different from

those of distributed computing. The emphasis is more on minimal load balancer over

heads rather than on intelligent but complicated load balancer policies. The grain size in

fine-grain systems makes it imperative to strike a balance between load balancing benefits

and load balancer overheads.

In this chapter we review sorne of the multithreaded systems focusing on their

threaded models and load baIancing support for irreguIar, data-paralIel and recursive ap

plications. Most of the multithreading systems [91] that we reviewied here are software

ernulations based on off-the-shelfbardware and compiler technologies. Later in the chap

ter we study the corrent and past work done in dynamic load balancing.

141

•

•

8.1 Threading Models

Multi-threading systems might he characterized by their threading modeI. Threads can he

designed according to the cooperative multithreading Madel, where threads voluntarily

release the CPU, or the preemptive model where threads can utilize the CPU only as long

as certain conditions specified by the scheduler are vaIid. Cooperative threads can he

non·blocking or blocking. In a non-blocking system, threads must run until completion.

Under a blocking threading model a thread can black when an operation with long or

unpredictable latency is encountered in the application. In this case the thread relinquishes

the CPU, the machine state is saved for later restoration, and another thread is scheduled

for execution. When the long latency operation is completed and ail dependences are

met, the blocked thread is rescheduled for execution. With this case, threads are blocking,

and non-preemptive [41]. In a preemptive threading madel, the scheduler policy which

determines the running time of a thread May he based on: thread priority, time-slices,

synchronization or UO dependences, or a combination of any of these. In a preemptive

threading system, threads are always blocking, and threads enter the blocked state either

due to an operation in the program or due to a scheduling decision.

In a non-blocking and non-preemptive thread model, operations with long or unpre

dictable latencies must he executed in a split-phasefashion. The first phase of the opera

tion, aIso referred to as the issuing of the operation is performed in one thread, while the

second phase, sometimes referred ta as the consumption of the result of the operation is

performed in another thread. When such a thread model is chosen, a mechanism must he

provided to enable the issuing thread to specify which one is the consuming thread. There

is no need ta preserve machine state during context-switch time.

Neither cooperative blocking thread model nor a preemptive threading Madel are very

attractive for fine-grain multi-threading architectures because the removal of the context

of a thread from the processing unit requires that the contents of the registers and the

stack must he saved in a temporary user-area hefore context-switching, and these must

he reloaded again when the suspended threads are enabled at a latter time. In addition,

this model might he unyielding for the implementation of machine-independent multi

threaded platforms. AIso dynamic and irregular applications might cause excessive waste

of cycles when mapped to a blocking thread Madel.

142

•

•

8.2 Software Multithreaded Systems

In the c1assical strict data-flow model of computation, an instruction is enabled for exe

cution when aIl its operands are available [66~ 85,63, 65, 68, 47, 155, 70, 77, 127, 130,

86, 123, 125, 12~ 97, 133, 132, 124, 15, 17,45, 57, 150, 140]. To enforce the enabling

condition, the instructions that produce such operands must he able to send a synchro

nization signal to aIl the instructions that will consume the recently produced result. This

model proved unyielding for the implementation of machines based on corrent standard

off-the-shelf hardware and compiler technology. However Many research groups have

successfully implemented a model of computation that is a direct evolution of the classi

cal data-flow model: fine grain multi-threading. In the later, the unit ofcomputation is no

longer an instruction, but a code-black formed by many instructions. A code-black when

scheduled for execution, runs until completian withaut preemption ar blacking due to un

predictable latencies. An instantiatian of the code-black running on a processing node is

called a thread, thus the narne multi-threading for these systems. Threads, and not indi

vidual instructions, are enabled by sYQchranization signaIs. The central idea behind Many

multithreaded models [7, Il, 19,27,43,46, 113, 114, 157,96, 167] is ta allow the execu

tian af these threads (code-blacks) to overlap with cammunication and synchronization

latencies.

Around the same rime that architectures derived fram the data-ftow model were pro

pased, the term thread started ta he used ta refer ta multiple contexts of computation

in operating systems. These threads represent different lines of control that are ac

tive at the same time within an OS process. We refer to such threads as OS-threads.

WeIl known OS-thread systems include POSIX Threads, Solaris Threads, OS/2 and NT

Threacls. OS-threads share aIl the resources of a process such as memory space, files,

and device drivers. However, each thread bas its own set af regjsters, and its own stack,

which are either stored in heap memory (as in POSIX ar Salaris threads) or in kemel

space (as in NT threads). Context-switching between these threads is far easier than that

between pracesses, as there is no need to save and restare memory pointers and other

process related resources. Only the contents of the thread specifie stack and register set

need to he swapped at context-switch time. Programming applications at the level of

these threads, rather tban at the process level is advantageous because of the high-speed

context-switching amang threads.

There is a major historical difference between the fine grain threads discussed eartier

143

and the OS-threads. Fine grain threads are generated from code-blacks that grow upwards

from the data-ftow single instruction. A fine grain thread is the largest unit of code that

can run without incurring any long latencies due ta dependence on other pieces of code

or on data stored remotely. OS-threads grow downward from the process abstraction in

operating system. An OS-thread is the smallest segment of code that can share a set

of resources with the other threads of the same process. Typically OS-threads exploit

parallelism at a coarser grain than fine grain threads, and thus must execute a higher

number of instructions between thread switchings.

In the multi-threading systems that we discuss here, each processing unit issues in

structions from a single thread at any time 1. An alternative multi-threading system is

called simultaneous multi-threading (SMT). In an SMT system a single processor is ca

pable of issuing instructions from multiple threads simultaneously [52]. Machines with

such an organization use multiple threads of computation to hide the latency incurred

due ta the fetching of data from the local memory. An example of the later is the Tera

machine [11].

Bath shared and distributed memory based platforms are considered in this study.

These platfonns are implemented with off the shelf computers and use threads of com

putation ta hide latencies associated with either the fetching of data from remote regions

of the memory, or synchronizing among other threads. These platfonns do not use multi

threading to hide the latency caused by a cache miss, i.e., as long as the memory address

referenced is in the memory hierarchy of the local processing node, the reference is re

garded as a local access.

Section 8.2.1 classifies existing software multithreaded systems on the basis of their

implementation strategy. In section 8.3 we present an discussion of EARTH, Cilk, and

TAM, three multi-threading systems with extensive effort on language support. In sec

tion 8.4 we review many multi-threadingsystems whose implementation is based on fonc

tion libraries and that rely on OS-threads.

8.2.1 Implementations ofMultithreaded Systems

AlI the multithreaded systems considered here are implemented in software, and are based

on off-the-shelfhardware and compilertechnology. These systems can he broadly divided

in two classes.

1When lhese systems are implemented on top of super-scalarlsupcr-pipelined processors multiple in
structions belonging to the same thread can he issued al one lime.

144

1

Language-Based Systems: These systems often offer a language with multi-threaded

constructs9 and a source-to-source translator ta convert this language ta a stan

dard and broadly supparted language, such as c. Threacled program executian is

based on the support of a custom runtime system. The runtime system impIe

ments an interface with the hardware and the system level software in the ma

chine and provides a standard interface for portable implementations of the multi

threading program environment. The language offers high amount of expressive

ness and ftexibility ins designing multithreaded programs. ADother advantage of

these systems is that threacls are usually non-blocking and execute in user space.

Thus overheads associated with thread switching are reduced, resulting in very

light-weight threads. These systems cao he implemented efficiently in bath shared

and distributed memory platforms. Examples of systems in this class include

EARTH [84, 111,829150,92, 74), Cille (60), TAM (43)9 and C+- [29].

Java is a programming language [80) with support for user-defined threads. Java

programs are translated into byte-codes, which is the instruction set for an abstract

computer - the Java Virtual Machine. CurrentlY9 the JVM is implemented in soft

ware, and provides the runtime environment for the execution of Java programs.

Java threads are blocking in nature. Early versions of the Java Virtual machine

were designed ta run on single processor nodes. However, with the current popu

larity ofSMP systems9the Virtual machine for Java 1.2 maps the Java Threads API

ante threads library supported by the underlying operating system.

Library-Based Systems: These systems provide a library of multi-threaded primitives

ta manage user level threads on top ofOS threads. In this approach the management

of threads requires a few system caUs, which is costly in terms ofexecution cycles.

Most of the thread library packages that we found in the literature are designed

for shared memory or distributed shared memory systems. One exception is the

Chant library [114] that extends the POSIX standard for light-weight threads with

functionality for distributed memory enviranments. Examples of systems based on

library of primitives ioclude Nano-threads [191, Ariadne [113], Opus [114], Struc

ture Thread Library [157], and Active Threads [167].

The multithreaded program is written in an existing high-Ievel language such as C9

along with sorne keywords that provide multithreaded functionality. The keywords

145

,

1

represent function names, which are defined in the multithreaded library. The func

tian names are declared with their interfaces in the header files that are included in

the multithreaded programs. The application is compiled ta abject code, and linked

with the multithreaded library.

The basic differences in thread modeling between multithreaded languages, and mul

tithreaded libraries1 are as follows:

• Threads in multithreaded languages are designed bottom-up - from a few in

structions, to small functions. The idea here is to clearly overlap communica

tionlsynchronization latencies with computation. Threads with multithreaded Ii

braries are designed with the intention to reduce switching overheads between pro

cesses, by mapping parallel segments of the application into different threads. The

incentive and emphasis here is more in reducing the lIO and process switching over

heads, and increasing throughput and processor utilization. To summarize, while

threads with languages can grow from a few instructions upwards, threads from

Iibrary implementations grow downwards from the whole program down ta a few

routines. Language-based threads originate from the data-flow paradigm, whereas

Iibrary-based threads offer performance improvements over multitasking processes.

• Threads designed with multithreaded languages are associated or synonymous with

the application code, or the associated problem that rnultithreading is expected ta

solve. i.e. there is always a "code segment (+ sorne data)" associated with a thread.

But this definition of thread does not hold for library implementations [104, 23}.

Here, a thread is just a vehicle for irnplementing concurrency, more like a virtual

processor. It is not associated with any code or data. It can run any function, any

part of the user code. The thread library schedules parallel segments of the code

onto a thread.

• Library based threads are good for coarse·grain parallelism. However, their rela

tively high overheads malee them unsuitable for fine-grain multithreading. On the

other han~ language based threads are a natura! fit for fine-grain parallelism, as

their smalt thread sizes allow hetter exploitation of parallelism in the application.

!Though Iava offers multithreaded constructs in its language, its tbreads are modeled on the basis of
library threads.

146

•

• Library based threads are most suited for SMP processing, rather than distributed

memory. 115 very difficult (almost impossible) to get the same performance as lan

guage based threads in a distributed memory environment.

• Language threads provide the fiexibility, and expressiveness ta design multi

threaded applications. Thread design with libraries, on the other hand. is inftuenced

more by system considerations than application semantics.

Sorne implementation related differences between language library based threads are

as follows:

• Library based threads are usually preemptive, and therefore have to he associated

with sorne data structure in user space to hold their book-keeping da~just as pro

cesses need to do in kemel space. This data usually consists of the thread stack,

stack pointer, registers.. program counter, and sorne thread specific data like thread

id.. thread scheduling priority, etc. Therefore the number of active threads at any

time is given by the ratio of heap memory size.. and the minimum stack size re

quired for each thread. Where the library is implemented in kemel space, even

fewer threads can be supPOrted simultaneously. Besides imposing constraints on

the amount of paralIelism that can he exploited. saving system state also makes

context-switching an expensive process.

• A compiler is required for translating a multithreaded language into a general pur

pose programming language like c. In contrast, multithreaded libraries need ooly

to he linked to the application program.

• As the language threads are independeot of the OS platform, they can run (after

recompilation) on any platfo~ without any changes in the code that implemen15

multithreaded functionality. On the ather ban~ porting Iibrary threads between

different platforms depends on the compatibility between the respective OS thread

interfaces.

• Collection of runtime statistics, and debugging multithreaded applications requite

more program involvement with library threads.

147

•

8.3 Language.Based Systems

In this section we present four fine-grain multi-threading systems - EARTH, CiIk,

Threaded Abstraet Machine (TAM) and Concert. Each of these systems supports non

blocking, non-preemptive threads. An exception in this category of multithreaded sys

tems is the Java programming language. Java threads execute in user space and execution

of Java programs requires a source to source translator and a runtime system just as in

the other systems described here. One major point of difference though is the blocking

nature ofJava threads. Java threads are very useful in improving interactiveness, through

put, better resource utilization and distributed computing. However, Java threads are not

very suitable for high performance parallel applications, especially fine-grain parallelism.

First we mention our own home-grown EARTH system. The development of EARTH

started at the McGill University in Montreal, Canada, and continues at the University of

Delaware, USA. The original inspiration for EARTH bas been derived from the McGilI

Data-ftow Machine [66]. The research around EARTH has spawned over Many fields

including the development of pre-processors, runtime systems, language development..

application studies, source-ta-source compilers, and dynamic Ioad balancers. Recently

an evolutionary path for the EARTH system was envisioned chartering the progressive

development of further customized platforms [150]. The EARTH system has been imple

mented on the MANNA machine, IBM SP-2, Beowulf and on a SUN SMP cluster.

8.3.1 The Cilk Multi·threaded Language

Cilk is an algorithmic multi-threaded language currently designed for symmetric multi

processors (SMP's). Central to Cilk's development is the scheduling of multi-threaded

computations using a work-stealing mechanism3• The Cille computation model and its

implementation are described in [27]. Earlier releases of Cille implement the memory

model called "dag consistency" [28, 26]. Cilk is a succinct extension to C and has the

IoIoC elision property": when all the Cîlk constructs are removed from a Cilk code, what

remains is a legal C code. The most recent release of Cilk is described in [60]. The Cïlk

group is weIl known for their implementation of world-.elass chess programs on the Cilk

platfonn. A unique feature of Cilk is the development of a novel debugging tool, called

UNondeterminator", that finds data races in the execution of programs [40].

The Cille multi-threaded language processes user-level fine-grain, non-blocking

lCilk threads are not mapped onto OS threads. Therefore dynamic load balancing is requircd.

148

•

threads in a shared memory environment. The Cille compiler and runtime system jointIy

play an active role in dynamic load balancing4
• The Cilk compiler generates two ver

sions of target C code for each Cilk procedure - a fast clone and a slow clone. The fast

clones are meant for local execution of a procedure, and the slow clones are used as units

for dynamic 1000 balancing. The Cilk runtime system [27] employs a randomizing, work

stealing scheduler and operates on a double-ended queue that is similar to the token queue

in the EARTH runtime system [84]. 5uch queuing structure was developed earlier in the

ADAM architecture [110]. While there has been theoretical study of the loOO balancer

performance [24] there has not been much study of the load balancer with respect to over

heads and altemate policies. A work-stealing, randomizing load balancer still has enough

overheads to discourage load migration, especially in fine-grain multi-threaded systems.

Experimental studies in EARTH have shown that a randomizing hybrid load balancer that

uses load state information provides excellent performance with high scalability for irreg

ular and divide-and-conquer classes of applications, even in the absence of any compiler

support.

The generation of two clones for every Cilk procedure is an application of the work

first principle [60]. This priociple prefers minimizing the scheduling overheads borne by

the work of a computation, and specifically to move overheads out of the work and ioto

the critical path. Work is the total time needed to execute the computation serially, and

its critical-path length is its execution time on an infinite number of processors. One of

the key assumptions of this principle is that in the common case, the average-parallelism

of a Cilk program exceeds the number of processors in the execution by a sufficient mar

gin. Average-parallelism is defined as the quotient of the work of the computation on

one node and the time speot executing the critical-path of the computation. While this

May he tnle for sorne divide-and-conquer applications, it is oot a common case among

applications of ail classes. In addition, this assumption Iimits the scalability of the sys

tem as average-parallelism cannot dominate with an increase in the numberofprocessors.

Funher, it is difficult to maintain good scalable speedup with a work-stealing scheduler,

when compared to a bybrid balancer as in EARTH. Another interesting observation made

in [60] is about the problem size. Modest to big problem sizes are required to main

tain bigh amount of parallelism, which are required to provide acceptable perfonnance in

Cilk. It would he interesting to observe Cilk performance on applications with small to

reasonable workioads which represent typical fine-grain parallelism.

~ is unlike EARfH. wbere dynamic lood balancing is a purely runtime system aetivity.

149

1

The Cilk threading model is very amenable for the solution of divide-and-eonquer

problems, and is Most suited for fully-strict computations [27]. While the directed-acyclic

graph formed from a Cilk multi-threaded computation allows communications between

parent and chiId procedures, it does not support communications between threads be

longing to different Cilk procedures that are at the same level in the activation graph. In

contras4 the EARTH threaded model enables the implementation of any arbitrary activa

tion graph through the exchange of synchronization slot addresses.

The first release of Cilk-l [28] was implemented on distributed memory machines.

The Cilk-S release was for the SMPs [61] with shared memory. While this version of the

Cilk runtime system is released for state of the art SMP systems (8 nodes) available, it

is still to he seen if there can he as Many processors on SMP nodes in the near future ta

support massively paraIlel applications. The SMP version of EARTH maintains shared

memory environment withio each Dode, and makes use of the GLOBAL type qualifier and

the existing inter-node communication layer for remote memory access.

8.3.2 The Threaded Abstract Machine

The Threaded Abstract Machine project [431 at the University of Berkeley, Califomia

presents an execution model in which the compiler controls the synchronization, schedul

ing and storage management. The raie of the compiler in scheduling and management of

threads is emphasized to take advantage of critical processor resources such as register

storage and exploit considerable inter-thread locality. TAM was one of the first multi

threaded systems that were buiIt through software emulation with minimal hardware sup

port. The compiler translates programs written in the functionallanguage Id into an in

termediate language called TLO, which includes code generated for thread support [135]

in a distributed memory environment. An important feature in TAM is the introduction

of inlers which are specialized message handIers to support inter-frame communications.

These inlets are generated by the compiler, one for every vaIue to he received.

A TAM program is a collection of code-blacks, similar to EARTH programs which

are collections of threaded functions [43]. Each code-black, like a threaded function

in EARTH. consists of severa! threads. However, a code-black a1so includes code for

the inlets. Since an activation frame corresponding to a code-black is allocated on a

processor. all the threads belooging to a code-black execute 00 the same processor. For

this reason, code-blacks are the uoits of worldoad rather than individual threads, as is the

150

case of threaded functioos in EARTH. However the distribution of this workload ooto

the processors in the system is decided by the TAM compiler [135], whereas in EARTH

the workload is dynamically distributed at runtime by the 10ad balancer. For instance,

with no support for dynamic load balancing, distributing fine-grain workload statically

for irregular and dynamic applications is not triviaL

A quantum in TAM is the nurnber of threads belanging ta a code-black that are en

abled for execution at any particular instant of time. AlI the threads in a quantum are

executed consecutively, and values defined and used within a thread can be retained in

processar registers. This is unlike EARTH, where enabled threads belonging to different

threaded functions are placed in a FIFO ready queue, and therefore threads from differ

ent threaded funetions execute on a first-come basis. In EARTH, threads in a threaded

fuoction usually have synchronization dependences between them. Therefare, it is highly

unlikely that there Many threads of the same threaded functian are enabled al the same

time to take advantage ofTAM's registerusage technique. Further, the gains from register

usage as in TAM may be insignificant when there is a single ar a few enabled threads in

a quantum. Another difference between EARTH and TAM is the dynamic scheduling of

threads. In EARTH, the ready queue (FIFO) and the token queue (DEQUE) are used for

local and remote scheduling of threads, whereas complex entry and exit codes have ta he

generated for each quantum by the compiler in TAM.

8.3.3 The DIinois Concert C++ Language

The Concert runtime system [95, 96] proposes close coupling with the compiler and hard

ware ta overcome overheads associated with thread management and communication in a

distributed memory environment, especially when dealing with fine-grain threads for dy

namic and irregular applications. The hybrid staek-heap execution mechanism overcomes

multi-threading overheads, and the puIl-based messagiog technique minimizes communi

cation overheads.

The Concert runtime system provides primitives for communication and thread man

agement, as well as data-Iocality and load baIancing mechanisms. The runtime system has

the same underlying structure on both distributed memory and cache-coherent loads and

stores agaiost memory. Interaction across address spaces is via software communication

and object-caching mechanistnS.

151

•

The load balancing mechanism in the Concert system is geared to keep all the pro

cessors busy, balance overheads against locality considerations for irregular applications.

An interesting feature of load balancing here is to allow the language specify a particular

10ad balancer policy for a set of threads. Consequently, different load balancer policies

may he chosen for a single execution. Thread placement policies include work-stealing,

work-sharing, and work-sharingIocal. The work-stealing is a receiver-initiated policy,

the work-sharing mechanism aIlows rich nodes to send extra work to randomly selected

oodes, and the work-sharinglocal enhances data reuse by mapping aIl threads accessing

the same set of abjects ta the same processor.

8.3.4 The Java Programming Language

The Java programming language [69, 100, 80) is an object-oriented~ distributed, inter

preted, architecture-neutraI, multithreade~ dynamic language. Java programs are corn

piled into byte code, which serves as machine instructions for the Java Virtual Machine,

an abstract machine. The NM serves as the runtime system and currently is implemented

in software. Java supports threacls at the language level with the support of the runtime

system and thread abjects. The NM assumes the responsibility for thread management.

Java threads are conceptually related ta processes, but they differ from processes in

that threads are user-Ievel entities and Many threads reside inside a process [23, 104].

While Java threads can he considered ta he limited in features when compared to other

library based threaded systems, they are preferable due ta their simplicity, syntactical ex

pressiveness in building multithreaded programs and easy to use synchronization mecha

nisms. One major advantage ofJava threads over the library based threacls is in the locking

mechanism. Java makes the locking ermr-free by using a simplistic locking mechanism

mat is controlled by the NM. Once the programmer SPeCifies the proteeted sections of

the code, the runtime system manages the locking of the designated areas. The Java locks

are built on monitors and condition variable concepts.

The scheduling scheme for Java threads is a preemptive, priority-based and oon

timeslicing algorithm that aIlows highest priority threads ta run as long as they need

ta [23,69, 103, 100, 126]. Depending on the platform, the scheduler can he time-slicing

as weIl. The algorithm works well in user mode and makes no system caUs.

The early versions of the NM ran on single proeessor nodes. This gives the feel of

152

•

•

•

concurrent execution't as multiple threads compete for CPU time and are executed in over

lapping fashion across the time space. At any lime lime only one thread is in execution.

However? this does not support parallelis~ as applications run faster when threads are

executed simultaneously on multiple CPUs [79, 23]. The OS does not know of the exis

tence of application thre~ rather it sees the whole task in the form of a single process.

Il is possible to start multiple instances of the JVM 00 different nodes in a NOW, and

communicate through message-passing. However? this is very difficult ta implement and

unsuitable for parallel applications not only from the efficiency point of view't but aIso

with respect ta thread modeling, and system implementation issues such as inter-node

communication, thread synchronizatioo and dynamic load balancing. This lOnd of paral

lelism is possible in EARTH because of global pointers and thread synchronization slots

which are supported by active messages in the communication layer. Similarly parallelism

in distributed memory is achieved in TPVM [58] by running threads within coaperating

processes on ditTerent nodes, which communicate through message-passing. The HotSpor

JVM [90] for the Java 2 platform now is multithreaded and takes advantage of the hast

operating system's thread model. Fully preemptive Java programming language threads

are supported using the hast OS thread scheduling mechanism. A major advantage of

using OS threads is the buHt-in multiprocessing support in SMP systems and parallel ex

ecution ofJava programs. Anather advantage of using the OS threads is is that there is no

more need for dynamic load balancing.

Multiple threads can be supported by the JVM al the same time [l05]. Bach JVM

thread has ils own pc (program counter). At any point each JVM thread is executing the

code of a single method. If that method is not native, the pc register contains the address

of the JVM instruction being executed. The value of the pc register is undefined, if the

corrent method being executed is native. The local variables, partial results of a Java

method are stored in a JVM frame for that method. A new frame is created each time a

Java method is invoked and destroyed after the method terminates. Along with its own set

of local variables, each frame bas an operand staeIc.5. At any given point of time, only one

frame is active for a given thread of control. Each JVM thread has a private Java stac~

created at the same time as the thread. A Java staek stores the JVM frames.

Il is interesting to examine the JVM support for blocking tb.reads in Java. When it is

time to restore for execution a previously blocked thread after it has satisfied its syncbro

nization requirements, the frame for the thread is made the current frame~ and the stored

snae1VM is a srack based machine.

153

,

•-

value of the pc register is used to restart execution inside the code for a method. This is

possible because the pc register has the address of the next byte code ta he executed. In

EARTH, the non...preemptive, non-blocking threads are mapped inta C functions, and it is

not possible ta maintain and access the program counter register in user space. Here, the

non-blocking nature of the threads helps in avoiding this situation. Even in the NM, the

pc register is of no use when executing native code.

8.4 Library.Based Systems

In this section we present multi-threadedsystems that are implemented on top ofoperating

system based threads. Although such systems might he more portable because they can

run in any machine that supports the underlying operating system, they paya high priee

on the cast of system caUs ta implement thread switching.

8.4.1 Distributed Filaments

The distributed Filaments system [59] offer multi-threaded primitives ta implement fine

grain threads in a distributed shared memory model. The Filaments runtime system im

plements distributed shared memory with no hardware support over distributed memory

systems. The threads are blocking in nature, and favor irregular, data"'paraIleI and re

cursive applications. There are multiple server threads per-node, and each server thread

executes a set of sharing context filaments (called a pool). In the case of irregular and

data-parailei threads, the programmer/compiler bas to assign context-sbaring filaments

to pools on different nodes sa as ta maintain locality and equal task distribution. How

ever, a simple receiver-initiated scheduler distributes workioad in the case of recursive

threads. This balancer queries other nodes in a round-robin fashion ta steal work. A fil

ament blocks when a long latency operation is encountered. Though there is a provision

for the programmer/compiler ta enableldisable load balancing in Filaments, it is difficult

ta estimate runtime load imbalances at compile...timey especially in the case of fine-grain

applications.

8.4.2 The Opus Language

The Opus language [114] provides Fortran language extensions ta support task and data

parallelism. Independent tasks representing coarse-grain parallelism, communicate and

154

synchronize through monitor-like structures called shared-data-abstraetions. The Opus

runtime system relies on a light-weight threads package calIed Chant~ to support multi

threading functionality in a distributed memory environment. The Chant threads package

extends the Pthreads interface with primitives for remote communications, remote thread

operations by using existing communication library (MPI standard). Workload has to he

mapped onto different nodes by the programmer/compiler keeping in mind locality of the

tasles as there is no runtime dynamic (oad balancing support.

8.4.3 1fJ»~

TPVM is a threads based interface to the PVM distributedcomputing model [58]. TPVM

is built as a subsystem of PVM [144] in order to address sorne disadvantages of a process

based model. The design goals of TPVM are minimum task initiation and scheduling

costs, overlapping computation and communication on a single processor, smaller gnm

ularity~ and supporting event or data driven~ active message based computation [145].

\Vhile the Chant threads package extends the Pthreads interface with message-passing

primitives. TPVM takes the opposite direction - it adds a threads subsystem to an aIready

existing process based~ message-passing computation model.

A thread in TPVM is a light-weight process as defined by the underlying threads

subsystem - essentially a subroutine/procedure (or a code segment including nested pro

cedure invocations, identified by one entry point). The first version of TPVM is based

on GNUIREX threads package [42]. Units of computation are threads rather than pro

cesses. Processes only serve as sheIIs around constituent threads. An important feature of

TPVM threads is their coarse-grain data-flow modeL Threads are activated for execution

ooly after all their dependencies have been satisfied. This means that the threads are non

blocking in nature. The purpose of this feature is to delay the binding of work units to

computational resources until they are fired for execution. This reduces workload alloca

tion and scheduling costs in NOW, where resources are not dedicated. Another advantage

is that it removes complexities in the underlying message-passing Moder by relieving the

programmer of the borden of task creation and synchronization. In order to tire waiting

threads for execution, trigger messages have to he sent~ and these trigger messages are

based on the active message model [[63]. Remote memory allows asyncbronous read

and write of a thread's address space by another, even when they are part of different

processes, and reside on different machines. The implementation of TPVM threads over

155

•

the REX threads package is very close to that of BARTH. The TPVM runtime system

includes a master thread and the TPVM library system6 for each process, and a thread

server module. A version of the TPVM threads aIso mns on the Solaris threads library,

where unlike the description here , the threads mn in a preemptive environment.

The TPVM threads are very similar to EARTH threads. The EARTH threaded

model is two-Iayered with threaded functions and non-preemptive threads at a finer level.

Threads in EARTH are associated with syne slots, whereas TPVM threads are identified

by their thread id's. Load distribution in TPVM is done at compile lime, and there is

no reference to dynamie load balaneing TPVM threads, or how the dYnamic load baI

ancing primitives in PVM are supported at the threads level. Experimental studies with

TPVM have shown that TPVM is not suited for regular SPMD style of applications,

whereas EARTH with i15 extensive Joad baIaneing support has been successfully applied

for different models of computation. PVM supports utilization of processor cycles in a

heterogeneous workstations, and while this is a very positive feature, one casuaIty is the

accuraey of execution times over CPUs of different gpeeds and configurations. this accu

racy is very important for high performance paraIlel applications, and aIso for effective

Joad distribution. Another factor is a reliance on aTCPIIP stack for network performance.

The communication overheads might he significant for fine-grain parallelism, unless the

thread model allows aggressive exploitation of paraIlelism in the application. Enough

amount of work has to he represented in the fonn of abundant quantity of fine-grain

threads. TPVM currently Iimi15 the number of threads to 256 at any given time for each

process, though this restriction is to he lifted soon.

8.4.4 Nano-Threads

The Nano-Threads [19] are user-Ievel threads built on top of kernel threads. The

Nano-threads library provides primitives to support multi-threading efficiently in a

multi-user/multiprocessor environment with shared memory. A compiler takes as input

ClFortran programs with Nana-Threads keywords~ and generates target ClFortran code

(Nano-Threads) along with code to manage an intermediate representation of varying

Ievels of parallelism in the application, caIled the HierarchicaI Task Graph. The asso

ciated code chooses the appropriate granularity for execution at mntime, depending on

the availability of resources. Each Nana-Thread is associated with a per-thread-eounter

6TPVM library primitives depend on PVM library for services such as message-passing.

156

,

and a nano-thread descriptor. Nano-Threads block so that child threads can access local

variables from the address space of the parent oano-thread. AlI enabled Nano-threads are

placed in globally accessible and manageable ready queue called GQ (FIFO). To preserve

locality, each node has its awn local queue (FIFO) that is accessible from ail nodes. The

objective of load balancing in the Nanc-Threads system is ta distribute the laad equally

amoog ail the nodes. This is a different goal from the one adopted on EARTH, where

the aim is to keep ail processors busy, thereby minimizing balancer overheads in an ex

tremely fine-grain environment. Another potential balancing overhead may be the con

tention problems for controlling the global queue which may degrade scalability of the

system.

8.4.5 Active Threads

The Active threads library [167] define an interface for supporting fine-grain, non

preemptive, blocking threads over traditional kemel threads. They can be used to

hand code applications, or as virtual machine target for compilers of paraIlel languages.

Threads sharing context are grouped into bundles. Each bundle has its own scheduler

and the scheduler may he chosen by the application from a set of schedulers distributed

with the active threads package. The scheduler maps active threads ooto processor thread

dispatch buffers for each processor. ThOUgh the fast threading primitives ensure low

overheads for thread operations, the multi-threading overheads for thread initialization,

context-switching, thread stack management and synchronization are quite high for irreg

ular applications employing fine-grain threads. In contrast, context-switching in EARTH

is as cheap as a C function cali, and there is no need for thread stack management.

8.4.6 StackThreads

StackThreads [147] provide low-level support for fine-grain software multithreaded envi

ronment. on stock microprocessors. Thread management is performed by calling Staek

Threads primitives, which are provided as a library, and can he used as compilation tar

get. Supporting high-Ievel abstractions on top of these base primitives is left for language

designers and implementers. Unlike other muItithreading schemest it does not assume

a customized frame format designed for a particular programnùng language or a set of

muItithreading primitives. Inste~ it operates on standard C stack frames and calling

conventions.

157

,

•"'.

The threading model is blocking in nature. When a new thread is forke~ the procedure

comprising that thread is called as a sequential function calI. When the new thread blocks,

the caller is resumed by moving the new thread's frame from the staek ta the heap and

unwinding the stack. When the blocked thread is reschedule~ the context is restored on

top of the stack and control transfers to the point where the thread blocked earlier.

The muItithreading mechanism here, does not provide for thread migration. Further,

this scheme does not address location-transparent access to data.

8.4.7 Structured Threads

The work on structured threads [157] at Caitech provides multi-threading support for high

perfonnance parallel applications on top of kernel threads in Windows NT. Applications

can he written at two levels: as a pragma based notation in Multithreaded C, or as Iibrary

caUs to the Sthreads library at a lower level. The Sthreads library is built as a very thin

layer on top of the Windows NT thread interface. MuItithreaded C is implemented as a

source-ta-source preprocessar that directly transfonns annotated blacks and for loops

into equivalent calls to the Sthreads library. The Sthreads Iibrary and Multithreaded C

prepracessor are integrated with Microsoft Developer Studio Visual C++. This work is

aimed at praviding astructured, light-weight, and less complicated threading environment

on top of OS threads in SMP systems.

Application threads are mapped onto the kemel threads. Thread scheduling depends

both on the Sthreads library and the kemel threads scheduler. Therefore there is no explicit

dynamic load balancer. However, in order to adapt dynamically to varying load conditions

and to offset the thread management and synchronization overheads, the thread model aI

lows dynamic creation of large numbers of Iightweight threads that can take advantage of

whatever processor resources become avaiIabIe during execution. This model is suitable

ooly for SMP systems, and therefore scaIability is limited by the number of processors

in a Dode, and the maximum number of threads tbat cao he profitably supported on each

Dode.

8.4.8 DSM·Threads

Distributed Shared Memory threads [121] support distributed threads on top of POSIX

Threads (Pthreads) via distributed shared memory (DSM). The goal is to support mi

gration of applications from a concurrent programming model with shared memory

158

, (Pthreads) to a distributed model with minimal changes of the application code. The

reasons for this migration are the significant computationai capabilities of network of

workstations, their cost-effectiveness, and the Iimited scalability of SMP clusters (typ

ically no more than 40 CPUs) due to the system bus bottleneck. A programmer May

continue to use the shared-memory algorithms and exploit the processing power of dis

tributed systems without dealing with the more complex models ofdistributed algorithms.

The DSM Nntime system is itself implemented as a multithreaded system over Pthreacls

on each node and copes without compiler or operating system modifications.

Distributed virtual shared memory is used to address the absence of global state in

a distributed system. Address references can he distinguished hetween local memory

accesses and DSM accesses, thus creating a NUMA architecture.

The threads interface aIiows the programmer to specify a destination oode during

thread creation. If no destination is specified, the DSM system will select such anode

using a history of load infonnatioo and CPU throughput. For repeated executions of an

application, trace data and thread group infonnation may he used to distribute threads

upon creation.

8.4.9 Ariadne

Ariadne [113] is a user-space threads library that is modeIed for process-oriented paraIlel

and distributed simulations in muIti-user environments. Ariadne threads are implemented

in shared and distributed memory models. Each thread is assigned an identifier that is

unique to its hast process. Along with the process id, this forros a unique combina

tion to identify a thread among a system of processes. non-blocked thread gets executed

tirst. The huilt-in scheduler aIlocates portions of a host process's time-slice to its resident

threads. The internai scheduling poliey is based on priority queues9 i.e. a highest priority

non-blocked thread gets executed first. Within a priority c1ass scheduling is RFO. An

executing thread continues to run until it terminates9 completes a time-slice, or suspends

exeeution. In addition9 Ariadne aIso provides for customizable schedulers. This library is

more suited for coarse-grain parallelism.

Ariadne's support forconcurrent execution of threads on shared-memory multiproces

sors precludes the OS kemel involvement due to portability requirements. The multipro

cessing power is exploited by multiplexing threads on distinct processes9 generally using

as Many processes as available processors. The threads interact via Ariadne primitives

159

1

•

which in tum operate on shared memory.

Ariadne threads form the basic unit of computation in the clistributed modeL Threacls

can move between aIl processes in the distributed environment. Typically, threads move

to access global objects at other Ariadne processes - as computations that chase data. For

thread migration, Ariadne depends on the use of an object-Iocator: a migrating thread

needs to know which host it must migrate in arder to access required data. The commu

nication layer in Ariadne is based on any arbitrary communications subsystem, such as

PYM 3.3.4 and Conch.

8.4.10 Atbapascan

Athapascan-l [36] is a data-flow language designed for parallel computation. It is imple

mented as a C++ library for multithreaded parallel programming. Explicit parallelism is

expressed through asynchronous remote procedure caUs, denoted as tasles, that communi

cate and are synchronized through shared memory. Application execution is data-driven:

the precedences between the tasles, the needed communications or the data copies are

ensured by the runtime system. The scheduling of the created tasles is enforced by cus

tomizable schedulers that are fully separated from the application.

8.5 Dynamic Load Balancing

Load balancing a1gorithms have been an active topic of research in the distributed com

puting field [168,50, SI, 136, 73, 9, 129,48, 39, 139,89, 169]. Various load balancing

algorithms, as weil as comparative stlldies of their perfonnance have been published. Of

ten the applications considered are either too regular in nature with high coarseness, or

the balancers studied are relevant only for particular architectures and networlc topolo

gies on which the studies were conducted. Another important concem is the definition

of fine-grain parallelism. It is well known that in fine-grain applications the CPU time

spent on communication overheads dominates the computation time [142]. In the process

based model of distributed computing, this definition implies a high number ofprocesses

with small grain sizes. While this model supports the exploitation of paraIleIism at a tiner

level, the grain size is still relatively higher than the grain size in typical fine-grain multi

threaded applications (order of ps). Fine-grain threads alIow parallelism at instruction

160

,

•

Ievel [84. 60. 43] and are usually non-preemptive and non-blocking7• Studies on load

balancing in distributed computing provide useful information, however, they cannot he

directly applied to multi-threaded systems where the equation hetween quality of bal

ancing decisions, balancer overheads, load imbalances, and application grain size is very

delicate. This is even more important for irregular and dynamic applications where the

computation and communication patterns cannat he identified at compile time.

While there has been a good understanding of load baIancers behavior in distributed

systems [16, 122,21. 118,22] , the study of dynamic load balancers for fine-grain multi

threaded systems is still in the early stages. Existing studies are often purely theoretical..

based on queuing models or simulations. On the other hand, the results in EARTH are

based on an actual multithreaded emulator built on top of off-the-shelf processors, with

real applications. In this section. we review work done in dynamic load balancers for

distributed computing systems. and compare the policies with those in EARTH wherever

applicable. The load balancing policies studied here, distribute tasles belonging to a single

application among the nodes participating in the execution. Further, we do not consider

statÎC load balancing or thread partitioninglplacing policies.

Adaptive load sharing for distributed systems is studied with respect to the relative

advantages of load sharing polieies with increasing levels of sophistication and global

state information is documented in [50]. Three sender-initiated load sharing polieies are

modeled: random. threshold, and shortest. The random policy selects anode at random

for load migration. The threshold poliey polis the load state of other nodes until anode is

found whose load is less than a threshold. The shortest algorithm probes a set ofrandomly

chosen nodes for their load status, and ehooses the node with the shortest queue length.

Only non-executing tasles are migrated. The authors show by analytieal modeling that the

random policy improves performance against no load balaneing, and the threshold pol

iey performs very weil with its limited system state information, and the shortest poliey

performs best with its global load information, though not significantly better than the

threshold poliey. We have implemented (WO [oad balaneers in the EARTH runtime sys

tem (Rand-Rcv and Rand) that are similar to the random and shortest balancer policies.

The Rand balancer works in a hybrids mode, and uses globalload state information. The

Rand-Rcv ~alancer performs poorly in relative comparison with other balancers, though

1We define fine-grain threads as threads with very smaii grain size, independently syncbronized units of
computation. and Don-blocking in nature.

SAlso referred to as symmetric policy•

161

•

•

•

it does weIl against a no balancersituation. In contrast the Rand balancer is the best bal

ancer for different classes ofapplications. The reasons are obvious. Frrstlyy the grain size

of threads in EARTH is very small compared to processes considered in [50]. Thereforey

the load balancer has to he very lean~ and should maIre intelligent decisions when using

network-based communications or randomizing algorithms. Secondlyy the balancers in

[50] work only in sender-initiating modey unIike the hybrid nature of the Rand balancer.

Fmally, the execution model of the EARTH system is different from that assumed here.

For instance, one of the assumptions made on the application model is that, aIl nodes

are subjected ta the same average arrivai rate of tasksy which are of a single type. This

assumption is not valid for EARTH, where the task arrivai rate, communication and com

putation patterns cannot he predicted. Another factor in the assumption in the analytical

model that the cost of probing a Dode is negligible. This constitutes a significant cost

especially when compared to typical fine-grain threads in EARTH, as it involves packing

a message and communicating over the network.

Eager et al. [5 lJcompared two poticies for adaptive load sharing: receiver-initiated

and sender-initiated. In both cases the victim node is chosen at random. If that choice

toms out to he wrong, the probing process is simply repeated until a limit is reached.

Based on a queuing model and simulation results, they conclude that the sender-initiated

policy is preferable sïnce, in their model, the receiver-initiated policy would require the

migration of a running task. This assumption is oot applicable to the EARTH system,

where tokeos9 rather than executing tasks are allowed to migrate.

The diffusive method [166~ 81] is a well explored load balancing mechanism in the

distributed computing field. Each Dode in the network calculates how much of its work

load needs to he transferred based on its localload information and a diffusion equation.

Theo, the system exchanges work units accordingly between the nodes. After sevem1 it

erations, the system load will become balanced. One of the problems with this approach

is that it usually needs a lock-step mechanism to synchronize the nodes and requires that

the system load doesn't change much during the diffusion phase. It aIso assumes that it

is possible to migrate work unïts. However, the EARTH load balancer is ooly allowed

to decide where new tasks should be allocated; i.e. the destination nodes for new tasks.

GeneraIized dimensional exchange (GDE) [44] and hierarchical balancing (lIB) [81] are

other common load balancing methods, which face the same problems in a fine-grain

multi-threaded environment as the diffusive method.

9Tokensconsist oCcontext-sharing. non-preemptivedlreads.

162

1

,

The trade--off between knowIedge - the accuracy of each loarl balancing decision, and

overheOO - the amount of added processing and communication ineurred by the balane

ing process, is illustrated with five different dynamie 1000 balancing schemes in [168].

The sender (receiver) initiated diffusion strategies are asynchronous schemes which use

near-neighbor information. The hierarchical balancing method organizes the system into

hierarchy of subsystems within which balaneing is performed independently. The gradi

ent model employs a gradient map of the proximities of under-Ioaded processors in the

system ta guide the migration of tasks between overloaded and under-loaded processors.

The dimension exchange method requîres a synchronization phase prior to load balanc

ing and then balances iteratively. Ali five strategies have been implemented on an Intel

iPSCJ2 hypercube. They show that the RIO approach performs weil, and can most easily

be scaled to support highly parallel systems. Receiver-initiated balancers perform very

weil in EARTH, but not as weil as hybrid balaneers that rely on load state and history

information. The load balancing model in this work is very much different from that

of the EARTH system. Unlike EARTH, load-balancing in [168] tries to balance load

on ail the nodes equally. Secondly, their load model assumes a fixed number of tasles

present in the system at initialization time. AlI tasks are independent and may he exe

cuted on any processor in any sequence, unlike Iocality and dependeney constraints in

a multithreaded model. Consequently, they do not consider dynamic task creation as in

any multithreaded system. Further, in order to simplify the workload characterization.

each task is estimated to require equal computation time. ln contrast it is not possible

to estimate the grain sizes of EARTH tokens. Another important feature concems the

infonnation poliey. AlI the nodes periodically exchange their 1000 information with other

nodes in their balancïng domain. Each balancing domain can extend from the neigh

boring nodes to aIl nodes in the system. Understandab[y, periodie load update messages

result in high overheads, which are difficult to he amortize by fine-grain work.loads in

the EARTH system. Instead, more sophisticated 1000 update polieies are implemented

such as: piggy-backing every load balancing message with load state infonnation, using

load probes on randomly se[ected nodes, taking advantage of the sending/receiving paths

for [oad transfers, and using history information. Information poliey in the dynamic load

balaneers in EARTH is a demand-driven poliey unlike the periodie poliey here. It is weil

known that demand-driven policies reflect the system state better in the load balancing

decisions unlike periodic policies [136]. Care is taken to consider the aging factor of

available [000 information.

163

1

•

A parabolic load balancing method for problems in computational fluid dynamics is

presented in [73). This paper presents a diffusive load balancing method with emphasis

on scalability to a large number of multicomputers interconnected with mesh topology.

The work here presents a parabolic Joad balancing method, proves its correctness, conver

gence and scalability, and simuIates applications to generate problems in computational

tluid dynamics. Randomizing a1gorithms though considered scalable and flexible are not

considered here, because the assumption that disturbances occur frequently and have short

life spans is not vaIid in CFD applications where disturbances arise occasionally and are

long lasting. The 1000 balancing method here is based on the properties of the parabolic

heat equation, which describes the diffusion of heat energy from hot regions ioto cold

regions until the entire volume is of the same temperature. This study applies the finite

difference techniques to derive an unconditionally stable discrete fonn of the heat equa

tian, and uses a scalable iterative method to invert the resulting coefficient matrix. The

goal of load balancing here is to ensure that all processors have equal worldoads, unlike

the EARTH system where stress is on keeping the processors busy. In this aIgorithm,

each processor concurrently executes an arithmetic iteration which calculates an expected

workload at each processor. Processors periodicallyexchange units of work with their

immediate neighbors in arder to make their actual workload equal to the expected work

load. This method preserves adjacency relationships among elements of a computational

domain, thereby minimizing the communication costs.

An adaptive heat diffusion scheme as weil as a task selection mechanism that can

preserve or improve communication locality is presented in [164]. The goal ofload bal

ancing is to find a mapping of tasles to computers that results in each computer having

an approximately equal amount of work. This is in contrast to load balancing strategy in

EARTH. where the aim is to keep ail the processors busy. Ali phases of a typical 10ad

balancing algorithm - load evaluation, profitability detennination, work transfer vector

calculation, task selection, and task migration are described. This a1gorithm is not ap

plicable to systems like EARTH. where it is not possible to evaluate complex equations

before taking load balancing decisions.

The multi-threaded model is applied for paraIlel adaptive partial differential equation

solving in [41). An interesting feature in this work is that the dynamic load balancer

runs as a thread, and competes with the application threads for CPU time. In addition

to application execution, multi-threading here is used as a mecbanism for the concurrent

execution of actions required for load balancing - information dessimination, decision

164

,

•

making and data migration. Application threads can he in new, ready, running, bloc/dng,

or dead states. At thread creation time, each thread is associated with a counter, similar

to a sync count in Threaded-C. Once ail the dependencies for a thread are satisfied, and

the counter reaches zero value, the thread is placed in the ready pool. The co-operative

threading modeI is adopted here, i.e. threads mn to completion or voluntarily yield the

CPU. Thread scheduling is non-preemptille. An advantage of this scheduling strategy is

the reduction of overhead by rninimizing the number of context-switches. This threading

model is a perfeet example of those systems in which, threads are non-preemptive and

blocking. EARTH supports non-blocking, non-preemptive threads. The goal of load bal

ancing is ta minimize idle times on the nodes, rather than to balance workloads equally

among ail the nodes. This approach is similar to that used in EARTH. A significant

deviation in the load model from other systems is the process of h-refinement. In this

process, the mesh is refined in areas where the resolution of the solution is larger than

a given tolerance. After the mesh refinement, each thread can he split into two or more

threads depending on the required load balancing resolution. The load baIancing strategy

is receiver-initiated. An analytical model is built and the results are verified with experi

mental observations ta show that it is beneficial to support load balancing as a thread. This

feature is not viable in the EARTH system, because, our load balancing is more demand

driven, and services recursive, irregular and cegular applications of very fine grain sizes.

Therefore, it is important in EARTH that 10ad balancing actions consume minimum CPU

time when compared to fine-grain application threads, and be as unobtrusive as possible.

Furthennore, there is no concept of priority for threads in the EARTH model.. Therefore,

we cannot guarantee that the Joad balancing thread executes only in the absence of any

application threads.

Load distributing algorithms for distributed systems are studied, and their perfor

mance is compared in [136]. Many issues conceming Ioad distribution are reviewed

here. Sorne of the key results are: sender-initiated balancers perform weIl at low to mod

erate workloads, whereas, the receiver-initiated balancerprovides a robust performance at

ail workioads especially at high workloads, symmetrically (hybrid) balancers are the best

choice, and complex load infonnation policies do oot necessariIy result in good perfor

mance. These results are quite intuitive, and are based on a loacl model which assumes that

receiver-initiated work transfers are preemptive. The tasks are independeo~ and belong to

a very general class of applications. The ooly application dependent feature in choosing

a particwar balancer is workload. There is no reference ta the programmiog modeI of the

165

1

•

application, grain size, or architectural parameters like topology, polling interval, etc., in

the choice of balancers. Despite the differences in program execution models, the above

results are valid for EARTH, and additional studies have been performed regarding the

balancers performance under different 10ad conditions, as explained in section 5.

Balter et al. [71] argue that contrary ta previous reports, the performance benefits of

preemptive migration are significantly greater than those of non-preemptive migration,

even when the memory transfer cost is high. A distribution of lifetimes of UNIX pro

cesses in an academic environment are studied, and this information is used in deriving

a preemptive policy. Performance results based on traee-driven simulations are studied

to compare this preemptive policy with other preemptive and non-preemptive policies.

The migration policy in the loarl balancing algorithm decides the eligibility of a process

for migration as a function of its current age, migration cast, and the loads at its source

and target hasts. They suggest that it is preferable to migrate older processes because

these processes have a higher probability of living long enough to amortize their migra

tion cast. In the EARTH system this is automatically taken care of by the token queue,

which facilitates breadtb-first expansion of the activation tree across all the nodes. The

reason stated for the better performance of preemptive migration for older processes over

non-preemptive migration is the load imbalance caused due to the unpredictability ofjob

execution times with the latter. Further, a preemptive policy is able to make a more accu

rate prediction about the duration of a process (based on its age)IO and, more importantly,

if the prediction is wrong, it can recover by migrating the process later. While evaluating

the migration cast for a process, this model does not evaluate any dependency, locaIity

constraints, and the resultant remote communications these work transfers May spawn in

the future. The task model is completelydifferent from that of EARTH, and the results in

this paper are not applicable to the EARTH system.

Casavant et al. [35] study three distributed dynamic load balancing aIgorithms - bi

directional mu/ti-Lateral, bidding, and Bayesian decision or team theory, with emphasis

on the effect of global state information on application performance. They describe sim

ulation experiments which measured the performance and efficiency of distributed a1go

rithms with respect to their reliance on global knowledge. Their results indicate that, for

lOCurrent Joad is the best Joad predictor. As a ruIe ofthmnb. the probability that a process with CPU age
of one second uses more than T seconds of total CPU lime is IIr. The age of a process must exceed the
migration cost.

166

,

•

the algorithms studied, increasing reliance on dynamically accumulated global infonna

tion at the expense of reducing response ta dynamic system perturbations is rarely bene

ficiai. This wade includes the effects of bath statie and dynamie global knowledge. This

results is due to the overhead associated with discrete passing of messages in compari

son with the extremely simple objective of load balancing. In addition, their simulation

shows that it may he more beneficial to only use information about a small subset of the

system which is known to he accurate, than ta try to maintain information deseribing the

state of the whole system which may he inaccurate to a greater degree. Besides possible

inaccuracy of the collected information, the added time delay in gathering the informa

tion hinders performance by slowing response. These results are even more important

in the case of very fine-grain multithreaded systems like EARTH, where task grain size

may he as small as 12500 cycles. The balance between the overheads in collecting global

state information, and the intelligence of balancer decisions based on this information,

enables EARTH balancers to scale weil for ail classes of applications. In contrast to the

information policy in this work, EARTH balaneers do not exchange periodie load update

messages. Instead, remote load information is obtained from piggy-backing normalload

balancing messages with load information, history information, and information gleaned

from messages that are routed through anode.

The influence ofdifferent workload descriptions on a heuristic load balancing scheme

is studied in [101]. A task scheduler based on the concept of a stochastic leaming au

tomaton [116] on a network OS Unix workstations, is implemented. An artificial, exe

cutable worKIoad is created. and a number ofexperiments are conducted to detennine the

effect of different workload descriptions. These workload descriptions characterize the

load at one host and determine whether a newly created task is to he executed locally or

remotely. Typical workload descriptors are: number of tasks in the run queue, size of

the free available memory, rate of CPU context switches, rate of system calls.. l-min load

average, and the amount of free CPU time. They conclude that.. while all the examined

workload descriptors lowered the mean response time of tasks when compared to the Uno

load balancing" case, the best single workload descriptor is the number of tasks in the mn

queue. Further, combining two of the best descriptors in making load balancing decisions

did not result in performance improvements. A similar worldoad descriptor - number of

tokens in the token queue, is employed in the EARTH system.

The Cbare [56] system aIlows users to plug in ditIerent load balancing algorithms.

167

1 The main loarl balancer used in their swdy is ACWN (adaptive contracting-within

neighborhood). It works in a sender-initiated way: when a new chare (similar to tokens

in EARTH) is created, the load balancer determines the least Ioacled neighbor and sends

the chare to that node. System Ioad is determined either from load information that is

piggy-backed on message packets, or from periodic load status exchanges. Like the other

sender-initiated Ioad balancing algorithms, it diffuses the tokens fast when the system

load is low, but suffers from unnecessary traffic when the system load is high. For Iarger

grain sizes (10 ms - 1000 ms), chare reportedly achieves good performance.

Most of the 10ad balancing studies in distributed computing are based on queuing

models. Each node in the network is modeled as a queuing center, \Vith ne w tasks arriving

at an average rate À. However, such models do not accurately match the behavior of

multi-threaded architectures, where there is no external arrivai of tasks. Rather, a single

computation graph is expanded dynamically and sorne branches are migrated among the

nodes ta balance the load. The creation of tokens as the graph is expanded cannot he

viewed as a random process, as the rate of token generation is linked to the consumption

rate.

Compiler and runtime support for adaptive load balancing in software distributed

shared memory systems is studied in [89]. Load balancing is studied in workstation en

vironments where the machines might he shared by many users. The compiler is used to

provide information that is used ta help the run-tîme system ta distribute the work of the

parallelloops, not only according to the relative power of the processars, but also in soch

a way as ta minimize communication and page-sharing.

Job scheduling in multiuser environments is of critical importance in large multipro

cessor systems. The tasks of a paraIlel job must he co-scheduled in arder to avoid in

efficient communication behavior results. Withaut Co-scheduIing, receivers May not he

ready when senders are and vice-versa. The gang-scheduling aIgorithm [120] develaped

at the Lawrence Livermore Laboratory for the mM RS/6000 SP system supports time and

space sbaring of paraIlel jobs. This policy guarantees that tasks of the same job execute

simultaneously.

Coordinated thread scheduling for tightly coupled paralIel jobs on workstation c1us

ters running NT, is examined in [32]. This scheduling system coexists with the Win

dows NT scheduIer, and provides coordinated scheduling and can generalize ta provide

a wide range of resource abstractions. The approach used here is called "demand-based

coscbeduling".

168

•

•

Job scheduling for multiuser environments in large multiprocessors systems is pro

vided in [54].

The previous work in the EARTH system [33] laid a groundwork for the study on

dynamic load balancers in this thesis. This thesis can he seen as an extension or logical

follow-up of [33,34]. The previous results show that a hybrid, history infonnation based

balancer provides the best possible performance for most classes of applications. Further,

the results show that it is impossible to build a single load balancer for ail classes of ap

plications. A set of program, architectural and balancer related parameters like grain size,

application model, polling interval, logical topologyt balancer algorithm determine pro

gram performance. In this thesis, we add few more features to this list like worldoad, num

ber of nodes, quality of load state information, message complexity, non-intrusiveness of

the balancer from application execution. ratio of network speed ta CPU speed, network

bandwidth, network interface in the runtime system. Further, we show that load state

information performs better than history infonnation, and it is possible to tolerate the

overheads from load information gathering actions, and randomizing functions. and still

achieve scalable. robust performance for fine-grain applications. We base the Rand bal

ancer on existing theoretical prooffor distributed computing models, and show that it does

outperfonn the best balancers suggested in [33]. We implement a new balancer, Minima

that provides a realistic lower bound for parallel performance and compare it to the Hop

balancer proPQsed earlier. Finally, we cIearly identify appropriate balancers for different

applications and load situations. While reviewing the results in [33], it must he noted

that the CPU speed in that case was 62.5 MHz, whereas our results are based on a 120

MHz CPU. This increase in~d decreases the sequential execution time considerably,

making it more chaIlenging to achieve linear speedups.

We presented the distinction between fine grain multi-threading systems that evolved

from the c1assical data-ftow model, and operating system based multi-threading systems

that are a refinement of the concept of a process in operating system. The first exploits

parallelism at a finer grain and has a lower thread switching cast than the later. Bath sys

tems find appropriate areas of applications. We then descnOed several implementations

of multi-threading systems implemented in each category, and referred to the dynamic

load balancing worlc in these systems. Finally wc reviewed the work done in the area of

dynamic load balancing in distributed computing sa far.

169

•

•

Bibliography

[1] CAPSL tech. memo, DepL of Elec. and Computer Eng., U. of Delaware, Newark,

Del. In ftp:/Iftp.capsI.udeI.edulpub/doc/memos.

[2] Tech. rep. mitllcsltr-, MIT Lab. for Comp. Sei.

[3] l'roc. ofthe 19th Ann. IntI. Symp. on ComputerArchitecture, Gold Coast, Australia.

May 1992.

[4] l'roc. ofthe IFIP WG 10.3 Working Conf. on ParaUel Architectures and Compila

tion Techniquest PA.Cf '95, Limassol, Cyprus, Jun. 1995. ACM Press.

[5] l'roc. of the 1996 Conf. on Parallel Architectures and Compilation Techniques

(PACf '96), Boston, Mass., Oct. 1996. IEEE Camp. Soc. Press.

[6] l'roc. of the ACM SIGPlAN '98 Conf. on Programming Language Design and

Implementation, Montréal, Qué., Jun. 1998.

[7] Anant Agarwal, David Chaiken, Godfrey D'Souza. Kirk Johnson, David Kranz,

John Kubiatowicz, IGyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nuss

baum, Mike Parkin, and Donald Yeung. The MIT Alewife machine: A large scale

distributed-rnernory multiprocessor. Tech. Memo MlTILCSfI'M-454, MIT Lab.

for Camp. SeL, 1991.

[8] T. Agerwala. J. L. Martin, J. H. Mirz~ D. C. Sadler, D. M. Dias, and M. Soir. sn
System Architecture. In IBM Systems Journal, Reprint Order No. G321 • 5563,

volume 34, 1995.

[9] Rakesh Agrawal and Ahmed K. Ezzat. Location Independent Remote Execution

in NEST. In IEEE Transactions on Software Engineering, volume 13, pages 90S

913, August 1987.

170

•

•

[10] Haitham Akkary and Michael A. Driscoll. Adynamie multithreading processor.

In Proc. ofthe 31stAM. IntI. Symp. on Microarchiteeture, pages 22~236, Dallas,

Tex., Nov.-Dec. 1998.

[Il] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter

field, and Burton Smith. The Tera Computer System. In Proc.• /990 Inti. Conf. on

Supercomputing, Amsterdam. The Netherlands, pages 1-6, Jun. 1990.

[12] Makoto Amamiya. An ultra-multiprocessing architecture for functionallanguages.

In Gaudiot and Bic [68], chapter 3, pages 95-119. Book contains papers presented

at the First Workshop on Data-Flow Computing, Eilat, Israel, May 1989.

[13] Makoto Amamiya, Tetsuo Kawano, Hiroshi Tomiyasu, and Shigeru Kusakabe. A

practical processor design for multithreading. In Proe. ofFrontiers '96: The Sixth

Symp. on the Frontiers ofMassively ParaUel Computation, pages 23-32, Annapo

lis, Mary., Oct. 1996.

[14] José Nelson Amaral. Guang R. Gao. Phillip Merkey. Thomas Sterling, Zachary

Ruiz, and Sean Ryan. An HTMT perfonnance prediction case study: Imple

menting Cannon's dense matrix multiply a1gorithm. CAPSL Tech. Memo 26,

Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Feb. 1999. In

ftp:/Iftp.capsl.udel.edulpub/doclmemos.

[15] Baon Seong Ang, Arvind, and Derek Chiou. StarT the Next Generation: Inte

grating global caches and datatlow architecture. CSO Memo 354, Computation

Structures Group, MIT Lab. for Comp. Sei., Aug. 1994.

[16] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread Scheduling for

Multiprogrammed Multiprocessors. In Proe. ofthe Tenth Annual ACP Symposium

on ParallelAlgorithmsandArchiteetures~ Puerto vallarta. Mexico, pages 119-129,

June-July 1998.

[17] Arvind and Kim P. Gostelow. The U-Interpreter. Computer, 15(2):42-49, Feb.

1982.

[18] W. C. Athas and C. L. Seitz. Multicomputers: Message-Passing Concurrent Com

puters. In Computer, volume 21, pages 9-24, August 1988.

171

•

•

[t9] Eduard Ayguade', Mario Fumari, Maurizio Giordano, Hans·Christian Hoppe, Je

sus Labarta, Xavier Martorell, Nacho Navarro, Dimitrios Nikolopoulos, Theodore

Papatheodorou, and Eleftherios Polychronopoulos. Nano-Threads: Programming

Model Specification. In Deliverahle MI.DI, ESPRrr Project NANOS (No. 21907),

University ofPatras, Jui. 1997.

[20] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced Allocations. In Proc.

ofthe 26th Ann. Symp. Theory ofComputing, pages 593-602, May 1994.

[21] Hannah Bast. Dynamic Scheduling with Incomplete Infonnation. In Proc. ofthe

Tenth Annual ACP Symposium on Paral/el Aigorithms and Architectures, Puerto

vallartat Mexico, pages 182-191, June·July 1998.

[22] Petra Berenbrink, Tom Friedetzky, and Ernst W. Mayr. Parallel Continous Rao

domized Load Balancing. In Proc. ofthe Tenth AnnualACP Symposium on ParaUel

Algorithms and Architectures. Puerto val/arta, Mexico, pages 192-201, June-July

1998.

[23] Daniel J. Berg. Java Threads. In A White Paper, Sun Microsystems, Califomia.

USA, pages 109-114, March 1996.

[24] Robert Blumofe and Charles Leiserson. Scheduling Multithreaded Computations

by Work Stealing. In Proc. ofthe 35thAnnuai Symposium onfoundationsofCom.

puter Science (FOCS), Santa Fe, New Mexico, pages 35&-368, Nov. 1994.

[25] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. Technical

report, Laboratory of Computer Science, Massachussetts Institute of Technology,

Boston. USA, 1995. PhD thesis, 1995.

[26] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and

Keith H. Randall. An analysis of dag~onsistentdistributed shared-memory algo

rithms. In Proc. ofthe 8th Ann.. ACM Symp. on Parailel Algorithms and Architec·

tures, pages 297-308, Padua, Italy, JUD. 1996.

[27] Robert D. Blumofe, Christopher F. loerg, Bradley C. Kuszmaul, Charles E. Leis

erson, Keith H. Randall, and Yuli Zhou. Cïlk: An Efficient Multithreaded Runtime

System. In Journal ofParallel and Distrihuted Computing, volume 37, pages 55

69, Aug. 1996.

172

•

•

[28] Robert O. Blumofe, Christopher F. Ioerg, Bradley C. Kuszmaul, Charles E. Leis

erson, Keith H. RandaIl, and Yuli Zhou. CiIk: An efficient multithreaded runtime

system. In Proc. of the Fifth ACM SIGPLAN Symp. on Principles & Practice of

ParaUel Programming, pages 207-216, SantaBarb~ CaIif., Jul. 1995.

[29] Nanette Jackson Boden. Runtime Systems for Fine-Grain Multicomputers. In

Ph.D Thesis t Depanment ofComputer Science, Califomia Institute ofTechnology,

Pasadena, Califomia (also available as Technical Report - CaLtech·CS-TR·92·10),

1993.

[30] Bob Boothe and Abhiram Ranade. Improved multithreading techniques for hiding

communication latency in multiprocessors. In Proc. of the 19th Ann. IntI. Symp.

on Computer Architecture [3], pages 214-223.

[31] U. Bruening, W. K. Giloi, and W. Schroeder-Preikschat. Latency hiding in

message-passing architectures. In Proc. ofthe 8th IntI. Parallel Processing Symp.,

pages 704-709, Cancûn<t Mexico, Apr. 1994. IEEE Camp. Soc.

[32] Matt Buchanan and Andrew A. Chien. Coordinated Thread Scheduling for Work

station Ousters Under Windows NT. In Technical Reportt Concurrent Systems Ar·

chitecture Group, DepanmentofComputer Science. University ofILlinois, Urbana

Champaign, 1999.

[33] Haiying Caio Dynamic [oad balancing on the EARTH-SP system. Master's thesis,

McGill U., Montréal, Qué., May 1997.

[34] Haiying Cai, Olivier Maquelin7 Prasad KakuJavarapu, and Guang R. Gao. Design

and Evaluation of Dynamic Load Balancing Schemes under a Fine-grain Multi

threaded Execution model. In Proc. ofthe Multithreaded Execution Architecture

and Compilation Workshop, Orlando, Florida., Jan. 1999.

[35] Thomas L. Casavant and Jon G. Kuhi. Analysis of Three Dynamic Distributed

Load-BaIancing Strategies with Varying Global Infonnation Requirements. In

IEEE Computer, pages 185-1927 August 1987.

[36] Gerson G. H. Cavalheiro, Francois GaIilee7 and Iean-Louis Roch. Athapascan-l:

ParaIlel programming with asynchronous tasks. In Technical Repon, fMC·IMAG

APACHE Project, Grenoble, Franca, http://www--apache.imag.fr. 1999.

173

• [37] Comell Theory Center. The sn Switch.

http://www.tc.comell.edulEdulfalkslSP/switch.html.

In Documentation at

•

[38] Comell Theory Center. What are LoadLeveler, EASY, and EASY-LL. In Docu

mentation at hrrp:/Iwww.tc.comell.edulUserDodSPlBatch/what.html.

[39] Soumen Chakrabarti. Efficient Resonrce Scheduling in Multiprocessors. In Ph.D,

University ofCalifornia. Berkeley, 1996.

[40] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. RandalI, and

Andrew F. Stark. Detecting Data Races in Cilk Programs that Use Locks. In

Proc. of IOth Annual ACM Symposium on ParaUel Aigorithms and Architectures

(SPAA'98), Puerto Vallarta. Mexico, pages 298-309, June 1998.

[41] Nikos Chrisochoides. Multithreaded Madel for Dynamic Load Balancing Parallel

Adaptive PDE Computations. In Technical Report. Advanced Computing Research

lnstitute, Cornell Theory Center; Cornell University, lthaca, New York, 1994.

[42] S. Crane. The REX Lightweight Process Library. In Computer Science Technica

Report, Imperial Co/lege ofScience and Technology. London, England, 1993.

[43] David E. CulIer, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John

Wawrzynek. Fine-grain Parallelism with Minimal Hardware Support: ACompiler

Controlled Threaded Abstraet Machine. In Proc. ofthe Founh IntI. Conf on Ar

chitectural Support for Programming Languages and Operating Systems, Santa

Clara. CA, Apr. 1991.

[44] C.Xu and ELau. Load Balancing in Parallel Computers.. In Kluwer Academie

Publishers, Boston,MA, 1997.

[45] Jack B. Dennis.. Frrst version of a data-flow procedure language.. In Proe.. ofthe

Colloque sur la Programmation, number 19 in Lee. Notes in Comp. Sei., pages

362-376, Paris, France, Apr. 9-11, 1974. Springer-Verlag.

[46] Jack B. Dennis and Guang R. Gao. MuItithreaded architectures: Principles,

projects, and issues. In Robert A. Iannucci, Guang R.. Gao, Robert H. Halstead,

Jr., and Burton Smith, editors, Multithreaded Computer Architecture: A Summary

of the State of the Art, chapter 1, pages 1-72.. KIuwer Academie Pub., NorwelI,

174

•

•

Mass.~ 1994. Book cantains papers presented at the Workshop on Multithreaded

Computers, Albuquerque, N. Mex., Nov. 1991.

[47] Jack B. Dennis, Guang-Rong Gao, and Kenneth W. Todd. Modeling the weather

with a data t10w supercomputer. IEEE Trans. on Computers, 33(7):592-603, luI.

1984.

[48] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Al

ternatives and the Sprite Implementation. In Software - Practice and Experience,

volume 21, pages 757-785, August 1991.

L49] Pradeep K. Dubey, Kevin O'Brien, Kathryn O'Brien, and Charles Barton. Single

program speculative multithreading (SPSM) architecture: CompiIer-assisted fine

grained multithreading. In Proc. ofthe IFIP WG /0.3 Working Conf. on Parallel

Architectures and Compilation Techniques, PACf '95 [4], pages 109-121.

[50] Derek L. Eager, Edward O. Lazowska, and John Zahorjan. Adaptive loarl sharing in

homogeneous distributed systems. In IEEE Transaction on Software Engineering,

volume 12, pages 662-675, May 1986.

[51] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. A Comparison of

Receiver-Initiated and Sender-Initiated Adaptive Load Sharing. In Performance

Evaluation, volume 6, pages 53-68, 1986.

[52] Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebe cca Stamm, and Dean

Tullsen. Simultaneous Multithreading: A Platform for Next-generation Proces

sors. In Proc. ofIEEE Micro, pages 12-18, sept 1997.

[53] D. G. Feitelson and L. Rudolph. Toward Convergnce in Job Schedulers for Par

allel Supercomputers. In ln Job Scheduling Strategies for Parallel Processing, D.

G. Feitelson and L Rudolph (eds.), Springer Ver[ag~ Lecture Notes in Computer

Science, volume 1162, pages 1-26, 1996.

[54} Dror G. Feitelson. Iob Scheduling in Multiprogrammed ParalIel Systems. In

Technical Report, Institute of Computer Science, The Hebrew Unrtlersity, 91904

Jerusale~ Israel. Original version ofthis workdone ar IBM T. J. Watson Research

Center, Yorktown Heights, NY I0598~ August 1997.

175

•

•

[55] Edward W. Felten and Dylan McNamee. Improving the performance of message

passing applications by multithreading. In Proc. ofthe Sca/able High Performance

Computing Conf. (SHPCC-92), pages 84-89, Williamsburg, Virginia, Apr. 26-29,

1992. IEEE Camp. Soc.

[56] W. Fenton, B. Ramkumar, V.A. Saietore, A.B. Sinha, and L.V. Kale. Supporting

Machine Independent Programming on Diverse Parallel Arcmtectures. In Proc. of

the International Conference on ParaUel Processing, pages 193-201, Aug. 1991.

[57] John T. Feo, David C. Caon, and Rodney R. Oldehoeft. A report on the Sisal

language project. J. afParalleland Distrib. Computing, [0(4):349-366, Dec. 1990.

[58] Adam Ferrari and V. S. Sunderam. TPVM: DistributedConcurrent Computing with

Lightweight Processes. In Technical Report, Dept. ofMathematics and Computer

Science. Emory University, Atlanta, GA, USA, 1994.

[59] Vincent W. Freeh, David K. LowenthaI, and Gregory R. Andrews. Distributed

Filaments: Efficient Fine-grain Parallelism on a Quster of Workstations. In Proc.

ofthe First Symposium on Operating Systems Design and Implementation, Usenix

Association, Nov. 1994.

[60] Matteo Frigo, Charles E. Leiserson, and Keith H. RandaiI. The implementation of

the cilk-S multithreaded language. In ACMSIGPUN Conference on Programming

Language Design and Implementation, Jun. 1998.

[61] Matteo Frigo, Charles E. Leiserson, and Keith H. RandaIl. The intplementation of

the Cilk-S muItithreaded language. In Proc. afthe ACM SIGPlAN t98 Conf. on

Programming Language Design and Implementation [6], pages 212-223.

[62] Guang Gao, José Nelson Amaral, Andres Marque~ and Kevin Theobald. A

refinement of the HTMT program execution modeL CAPSL Tech. Memo 22,

Dept. of Elec. and Computer Eng., U. of Delaware, Newark, Del., Jui. 1998. In

ftp://ftp.capsl.udel.edulpub/doclmemos.

[63] Guang R. Gao. An Efficient Hybrid Dataftow Architecture Model. In Journal of

Parallelism, volume 19, Dec. 1993.

[641 Guang R. Gao, José Nelson Amaral, Andrés Marquez, Kevin B. Theobald, Sean

Ryan, Zachary Ruiz, Thomas Geiger, and ChristopherJ. Morrane. HTMT phase 2

176

•

•

report. CAPSL Tech. Memo 31, Dept. ofElec. and Computer Eng., U. ofDelaware,

Newark~ Del.~ Ju1. 1999. In ftp://ftp.capsLudeLedulpub/doclmemos.

[65] Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot, editors. Advanced Top

ies in Dataflow Computing and Multithreading. IEEE Camp. Soc. Press, 1995.

Book contains papers presented at the Second Inti. Work. on Dataflow Computers,

Hamilton Island~ AustraIi~ May 1992.

[66] Guang R. Gao, Herbert H. J. Hum, and Yue-Bong Wang. Parallel Function in

vocation in aDynamie Argument-Fetching Dataflow Architecture. In Proe. of

PARBASE-90: lnt/. Conf. on Databases, Parallel Architectures, and their Appli

cations, Miami Beach, Florida~ pages 112-116, Mar. 1990.

[67] Guang R. Gao, Kevin B. Theobald, Andrés Marquez, and Thomas Sterling.

The HTMT program execution model. CAPSL Tech. Memo 09, Dept. of

Elec. and Computer Eng., U. of Delaware, Newark, Del., Jul. 1997. In

ftp:/Iftp.capsl.udel.edulpub/doclmemos.

[68] Jean-Luc Gaudiot and Lubomir Bic, editors. Advaneed Topics in Data-Flow Com

pllting. Prentice-Hall, Englewood Cliffs, N. Jer., 1991. Book contains papers

presented at the First Workshop on Data-Flow Computing, Eilat, Israel, May 1989.

[69] James Gosling and Henry McGilton. The Java Language Environment. In A White

Paper. Sun Mierosyslems, Califomia, USA, pages 1-95, May 1996.

[70] J. R. Gurd, C. C. Kirkham, and 1. Watson. The Manchester prototype dataftow

computer. Comm. afthe ACM, 28(1):34-52, Jan. 1985.

[71] Mor Harchal-Balter and Allen B. Downey. Exploiting Process Lifetime Distribu

tions for Dynamic Laad Balancing. In Proceeedings ofACM Sigmetrics Confer

ence an Measllrement andModeling ofComputerSystems, Philadelphia, PA, pages

13-24, May 1996.

[72} Gerd Heber, Rupak Biswas, Parimala Thulasiraman9 and Guang R. Gao. Using

multithreading for the automatic load balancing of adaptive finite element meshes..

In Proe. ofthe 5th IntI.. Symp. on Solving lrregularly Struetured Problems in Par

allel~ number 1457 in Lee. Notes in Comp. Sei., pages 132-143, BerkeleY9 Calif.,

Aug. 1998. Springer-VerIag..

177

•

•

[731 Alan Heirich and Stephen Taylor. A Parabolic Load Balancing Method. In Techni

cal Report, Scalable Concurrent Programming Laboratory, Califomia /nstitute of

Technology, 1993.

[74] L. J. Hendren, X. Tang, Y. Zhu, G. R. Gao, X. Xue, H. Cai, and P. Ouellet. Com

piling C for the Earth Multithreaded Architecture. In Proc. of the 1996 Conf. on

ParaUel Architectures and Compilation Techniques (PACT'96), Boston, Mass./ntl.

Journal ofParallel Programming, pages 12-23, Oct 1996.

[75] Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Kue, Haiying

Cm, and Pierre Ouellet. Compiling C for the EARTH multithreaded architecture.

In Proc. of the 1996 Conf. on Parallel Architectures and Compilation Techniques

(PACT '96) [5], pages 12-23.

[76] Sébastien HHy and André Seznec. Branch prediction and simultaneous multi

threading. In Proc. of the 1996 Conf. on ParaUel Architectures and Compilation

Techniques (PACT '96) [5], pages 169-173.

[771 Kei Hiraki, Satoshi Sekiguchi, and Toshio Shimada. Status report of SIGMA-l:

A data-ftow supercomputer. In Gaudiot and Bic [68], chapter 7, pages 207-223.

Book contains papers presented at the First Workshop on Data-Flow Computing,

Eilat, Israel, May 1989.

[78] R. Hofman and W. G. Vree. Distributed Hierarchical Scheduling with Explicit

Grain Size ControL In Future Generation Computer Systems, volume 8, pages

L11-119, July 1992.

[79] Allen Holub. Progrmmaing Java threads in the real world. In Java Threads Series,

JavaWorlt/, http://www.javaworltLcom/javaworld/jw-D9-1998/jw-09-threads.html,

pages L09-114, Feb. 1996.

[80] Cay S. Horstmann and Gary Cornell. Core JAVA. In Vol./ and Il. The Java Series,

Sun Microsystems, California, USA, 1997.

[81] G. Horton. A multi-leveI diffusion method for dynamic load balancing. In Parallel

Computing Journal, volume 19, pages 209-218, 1993.

178

•

•

[82] Herbert H. J. Hum~ Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R.

Gao, and Laurie J. Henclren. A study of the EARTH-MANNA multithreaded sys

tem. IntI. J. ofParaUel Programming, 24(4):319-347, Aug. 1996.

[83} Herbert H. 1. Hum, Olivier Maquelin, Kevin B. Theobald~ Xinmin Tian~ Xi

nan Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hen

clren, Alberto Iimenez, Shoba Krishnan, Andres Marquez, Shamir Merali,

Shashank Nemawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu.

The Multi-Threaded Architecture multiprocessor. ACAPS Tech. Mema 88,

Sch. of Comp. ScL, McGiIl U., Montréal, Qué., Dec. 1994. In ftp:/Iftp

acaps.cs.mcgiILca/pub/doc/memos.

[84] Herbert H. l. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xinan

Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hendren, Alberto

limenez, Shoba Krishnan, Andres Marqu~ Shamir Merali, Shashank S. Ne

mawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu. A design study

of the EARTH multiprocessor. In Proc. of the IFIP WG 10.3 Working Conf. on

ParaUel Architectures and Compilation Techniquest PACf t95 [4], pages 59-68.

[85] Herbert Hing-ling Hum. The Super-Actor Machine: a Hybrid Dataflow/von Neu

mann Architecture. PhD thesis, McGilI U., Montréal, Qué., May 1992.

[86] Robert A. IannnccL Toward a dataftow/von Neumann hybrid architecture. In Proc.

ofthe 15th Ann. IntI. Symp. on Computer Architecture, pages 131-140, Honolulu,

Haw., May-Iun. 1988.

[87] IBM. Interconnection Technologies for High-Perfonnance Computing (RS/6000

SP). In Documentation al http://www.rs6000.ibm..comlresource/technology/sp

sw2lspswp2-I.htmI.

[88] IBM. The RS/6000 SP High-Performance Communication Network. In Documen

tation at http://www.rs6000.ibm.com/resourceltechnology/sp-swI/spswpl.book

I.html.

[89] Sotiris Ioannidis and Sandhya Dwarakadas. Compiler and Run-Time Support

for Adaptive Load Balancing in Software Distributed Sbared Memory Systems.

In TechnicaI Reportt Department of Computer Science, Univeristy ofRochester,

Rochester, New York 14627-0226, 1997.

179

•

•

[90] JavaSoft. The JAVA HOfSPOf Performance Engine Architecture. In A

White Paper; Sun Microsysrems, Califomia, USA, hnp://wwwJava.sun.com/prod

ucts/hotspot/whitepaper.html, April 1999.

[91] Prasad KakuIavarapu and José Nelson Amaral. A survey of Ioad balancers in mod

ern multi-threading systems. In Proe. ofthe Il th Symp. on Computer Architecture

and High Performance Computing, pages 10-16, Natal, Brazil. Sep.-Qct.. 1999.

[92] Prasad Kakulavarapu. Olivier Maquelin, and Guang R. Gao. Design of the run

time system for the Portable Threaded-C language. CAPSL Tech. Memo 24,

Dept.. of Elec. and Computer Eng., U. of Delaware. Newark, Del.. Jui. 1998. In

ftp:1/ftp.capsl.udel.edulpub/doclmemos.

[93] Prasad Kakulavarapu.. Christopher J. Marrane, Kevin B. Theobald, José Nelson

Amaral. and Guang R. Gao. A Comparitive Study of Multithreaded Environment

on Distributed Memory Machines. In To appear in Proc. ofthe /9th IEEE IntI. Per

formance. Computing, and Communications Conference-/PCCC 2000, Embassy

Suites Phoenix Nonh, Phoenix. Arizona, USA. February 2000.

[94] Prasad Kakulavarapu, Christopher 1. Morrone, Kevin B. Theobald, José Nelson

AmaraI. and Guang R. Gao. A Comparitive Study of Multithreaded Environment

on Distributed Memory Machines. In CAPSL Technical Memo 35, University of

Delaware. Newark, Delaware, USA, Navember 1999.

[95] Vijay Kararncheti. Run-time techniques for dYnamic multithreaded computations.

In Ph.D Thesis, Depanment of Electrical Engineering, University of Illinois at

Urbana-Champaign. 1998.

[961 Vijay Karamcheti, John Plevyak, and Andrew A. Chien. Runtime Mechanisms for

Efficient Dynamic Multithreading. In Journal ofParallel and Distributed Comput

ing, volume 37, pages 21-40., Aug. 1996.

[97] Tetsuo Kawano, Shigem Kusakabe, Rin ichiro Taniguchi, and Makoto Amamiya.

Fine-grain multi-thread processor architecture for massively parallel processing. In

Proe. ofthe First IntI. Symp. on High-Performance Computer Architecture, pages

308--317, Raleigh, N. Caro., Jan. 1995.

180

•

•

[98] Ashfaq A. Khokhar, Gerd Heber, ParimalaThulasiraman, and Guang R.. Gao. Load

adaptive algorithms and implementations for the ID discrete wavelet transform on

fine-grain multithreaded architectures. In Proc. ofthe 13th IntI. Parallel Processing

Symp. and the IDth Symp. on Parallel and Distributed Proeessing, pages 458-462,

San Juan, Puerto Rico, Apr. 1999. IEEE Comp. Soc. and ACM SIGARCH.

[99] o. KIappholz and H-C. Park. Parallelized Process Scheduling for a Tightly

Coupled MIMD Machine. In Proe. ofthe IntI. Conf. on Parallel Processing t pages

315-321. August 1984.

[100] Douglas Kramer. The lava Platform. In A White Paper, Sun Microsystems. Cali

fomi~ USA, pages 1-24, May 1996.

[101] Thomas Kunz. The Influence of Different WorkIoad Descriptions on a Heuristic

Load Balancing Scheme. In lEEE Transactions on Software Engineering, vol

ume 17. pages 725-730, July 1991.

[102] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A multithread

ing technique targeting multiprocessors and workstations. In Proc. of the Sixth

lnt!. Conf on Architectural Support for Programming LAnguages and Operating

Systems, pages 308-318, San Jose, Calif., Oct. 1994.

[103] Doug Lea. Concurrent Programming in Java - Design Principles and Patterns. In

Addison-Wesley, 1997.

(104] Bil Lewis and Daniel J. Berg. Threads Primer- A Guide to Multithreaded Program

ming. In Sunsoft Press. Sun Mierosystems Ine., 2550 Garcia Avenue. Mountain

View, California 94043-1100, USA, 1996.

[(OS] Tim Lindholm and Frank Yellin. The Java Virtuai Machine Specification. In The

Java Series. Sun Mierosystems, Califomia, USA, 1997.

[106] Mat Loikkanen and Nader Bagherzadeh. A fine-grain multithreading superscalar

architecture. In Proe. ofthe 1996 Conf. on ParalleI Architectures and Compilation

Techniques (PACT '96) [5]9 pages 163-168.

[107] Olivier Maquelin. The ADAM architecture and its simulation. TIK-

Schriftenreihe 4, Computer Engineering and Networks Laboratory, Swiss Federal

Institute ofTechnology, Züricb, Switzerlan~ 1994. PbD thesis, 1994.

181

•

•

[108] Olivier Maquelin, Guang R. Gao, Herbert H. 1. Hum, Kevin B. Theobald~ and

Xin-Min Tian. Polling Watchdog: Combining polling and interropts for efficient

message handling. In Proe. ofthe 23rdAnn. IntI. Symp. on Computer Architecture,

pages 178-188, Philadelphia, Penn.~ May 1996.

[109] Olivier C. Maquelin. Load balancing and resource management in the ADAM

machine. In Gao et aL [65], pages 307-323. Book contains papers presented at

the Second inti. Work. on Dataftow Computers~ Hamilton Island. AustraIia, May

1992.

[110] Olivier C. Maquelin. Load balancing and resource management in the adam ma

chine. In Second Workshop on Dataflow Computing, Hamilton Island. Australia,

1992, Published in Advanced Tapies in Dataflow Computing and Multithreading,

Lubomir Bic, Guang R. Gao, Jean-Luc Gaudiot editors, IEEE Computer Society,

1995.

[Ill] Olivier C. Maquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and Benefits

of Multithreading with Off-the-Shelf RISC Processors. In Proc. of the First IntI.

EURO-PAR Conference, no. 966 in Lecture Notes in Computer Science, Stockholm,

Sweden, pages 117-128, Aug. 1995.

[112] Olivier C. Maquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and bene

fits of multithreading with off-the-shelf RISC processors. In Proe. of the First

IntI. EURO-PAR Conf., number 966 in Lee. Notes in Camp. Sci.. pages 117-128,

Stockholm, Sweden~ Aug. 1995. Springer-Verlag.

[113] Edward Masearenhas and Vernon Rega. Ariadne: Architecture of a Portable

Threads system supporting Thread Migration. In Software - Practice and Expe

rience, volume 26{3}, pages 327-356, Mar. 1996.

[114] Piyush Mehrotra and Matthew Haines. An Overview of the Opus Language and

Runtime System. Technical report, May 1994.

[115] Paul Messina, David Culler, Wayne Pfeiffer, WùIiam Martin, J. TInsley Oden~ and

Gary Smith. Architecture - The High-Perfonnance Computing Continuum. In

Communications ofthe ACM, volume 41, pages 36-44, November 1998.

182

•

•

[116] Ravi Mirchandaney and John A. Stankovic. Using a Stochastic Leaminmg Au

tomaton for Job Scheduling in Distributed Processing Systems. In Journal ofPar

aIlel and Distributed Computing, pages 527-551, 1986.

[117] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Adaptive Load Shar

ing in Heterogeneous Distn"huted Systems. In Journal ofParaUel and Distributed

Computing, nurnber 9, pages 331-346, 1990.

[118] Michael Mitzenmacher. Analyses of Load Stealing Models Based on Differentiai

Equations. In Proc. of the Tenth Annual ACP Symposium on ParaIlel Algorithms

and Architectures, Puerto val/ana. Mexico, pages 212-221, June-July 1998.

[1191 Michael David Mitzenrnacher. The Power of Two Choices in Randamized Laad

Balancing. In Ph. D Thesis, University ofCalifornia, Berkeley, Califomia. 1996.

[120] J. E. Morei~ H. Franke, W. Chan, and L. L. Fang.. A Gang~cheduling System

for ASa Blue-Pacifie.. In Technical Repon RC 21359 (96204), IBM Research

Division, December 1998.

[121] Frank MueHer. Distributed Shared-Memory Threads: DSM-Threads. In Technical

Report, Work in Progress, Humboldr-Universitat zu Berlin, Institut fur lnformatik,

10099 Berlin, Germany, 1998.

[122] S. Muthukrishnan and Rajmohan Rajaraman. An Adversial Madel for Distributed

Dynamie Load BaIancing. In Proc. ofthe TenthAnnualACP Symposium on Paral

lel Algorithms and Architectures, Puerto vallarta, Mexico, pages 47-54, June-July

1998.

[1231 W. Naijar and J.-L. Gaudiat. Multi-Ievel execution in data-flow architectures. In

Proe. o/the 1987 IntI. Conf. on Paraiiei Processing, pages 32-39, St. Charles, TI!.,

Aug.1987.

[124] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreaded massively

parallel architecture. In Proe. ofthe 19th Ann. IntI. Symp. on ComputerArchitecture

[3], pages 156-167.

[125] Rishiyur S. Nikhil and Arvind. Can dataftow subsume von Neumann computing?

In Proe. of the 16th Ann. IntI. Symp. on Computer Architecture, pages 262-272,

Ierusalem, Israel, May-Jun. 1989.

183

•

•

[126] Scott Oaks and Henry Wang. Java Threads. In First Edition, O'Reilly and Asso

ciates, USA, Jan. 1997.

[127] Gregory Michael Papadopoulos. Implementation of a general purpose dataflow

multiprocessor. Tech. Rep. MITILCSrrR-432, MIT Lab. for Camp. SeL, Aug.

1988. PhD thesis.

[128] Hisham Petry. Earth Threaded-C Programming Manual. Technieal report, Mar.

1996.

[129] C. Gary Rommel. The Probability of Load Balancing Success in a Homogeneous

Network. In IEEE Transactions on Software Engineering, volume 17, pages 922

933, September 1991.

[130] James Rumbaugh. A data ftow muItiprocessor. IEEE Trans. on Computers,

26(2): 138-146~ Feb. 1977.

[131] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von Eicken. Analy

sis of Multithreaded Architectures for Parallel Computing. In Technical Report,

Computer Science Division, University ofCalifomia, Berkeley, Califomia 94720,

1995.

[132] Shuichi Sakai, Kazuaki Okamoto, Hiroshi Matsuoka, Hideo Hirono, Yuetsu Ko

dama, and Mitsuhisa Sato. Super-threading: Architectural and software mecha

nisms for optimizing parallel computation. In Conf. Proc., 1993 Inti. Conf. on

Supercomputing, pages 251-260, Tokyo, lapan, luI. 1993.

[133] Mitsuhisa Sato, Yuetsu Kodama, Suichi Sakai, Yoshinori Yamaguchi, and Yasuhito

Koumura. Thread-based programming for the EM-4 hybrid datatIow machine. In

Proc. a/the 19thAnn. Inti. Symp. on Computer Architecture [31. pages 146--155.

[134] Klaus Eric Schauser, David E. eulIer, and Thorsten von Eiken. CompiIer

controlled multithreading for lenient parallel languages. Rep. No. UCB/CSD

911640, Comp. Sci. Div., U. ofCalif. at Berkeley. 1991.

[135] Klaus Erik Schauser, David E. Culler, and Tharsten von Eicken. Compiler

Controlled Multitbreading for Lenient ParaIlel Languages. In Proe. ofFPCA '91

Conference on FlDI.etional Programming Languages and Computer Architecture,

Spring er Vérlag. aug 1991.

184

•

•

[136] Niranjan G. Shivaratri, PhiUip Kmeger, and Mukesh Singhal. Load Distributing

for Locally Distributed Systems. In IEEE Computer, pages 33 - 44, December

1992.

[137] Andrew Sohn, Chinhyun Kim, and Mitsuhisa Sato. Multithreading with the EM4

distributed-memory multiprocessor. In Proc. of the IFIP WG 10.3 Working Conf.

on Parallel Architectures and Compilation Techniques, PACf '95 [4], pages 27-36.

[138] Andrew Sohn, Mitsuhisa Sato, Narnhoon Yoo, and Jean-Luc Gaudiot Effects of

multithreading on data and workload distribution for distributed-memory multiprO

cessors. In Proc. ofthe IDth IntI. ParalleI Processing Symp., Honolulu, Haw., Apr.

1996. IEEE Camp. Soc. and ACM SIGARCH.

[1391 Bin Song. Scheduling Adaptively ParaIlel Jobs. In Masters Thesis, Department of

ElectricaI Engineering and Computer Science, Massachusetts lnstitute ofTechnol

ogy, Boston, January 1998.

[1401 Vason P. SrinL An architecturaI comparison of dataflow systems. Computer,

19(3):68-88, Mar. 1986.

[1411 T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to Build a Beowulf:

A Guide to the Implementation andApplication ofPC Clusters. MIT Press, 1999.

[142] Harold S. Stone. High-Performance Computer Architecture. In Addison-Wesley

Publishing Company, Massachusetts, 1993.

[143] Harold S. Stone. High-Performance ComputerArchitecture. Addison-Wesley Pub.

Co., 3rd edition, 1993.

[144] V. S. Sunderam. PVM: A Framework for Paraliei Distributed Computing. In Jour

nal of Concurrency: Practice and Experience~ volume 2(4), pages 315-339, De

cember 1990.

[145] V. S. Sunderam. TPVM: A Threads-Based Interface and Subsystem for PVM.

In Draft ~rsion, Dept. ofMathematics and Computer Sciencet Emory University,

Atlanta, GA, USA, June 1994.

[146] XiDan Tang~ Olivier Maquelin~ Kevin B. Theobal~ Guang R. Gao, and Prasad

KakuIavarapu. A portable Threaded-C language for EARTH multiprocessors.

185

•

•

CAPSL Tech. Note 02, Dept. ofElee. and Computer Eng., U. ofDelaware., Newark.,

Del., Jan. 1998.

[147] Kenjiro Taura. Efficient and Reusable Implementation affine-Grain Multithread

ing and Garbage Collection on Distributed-Memory Parallel Computers. In Ph.D

Thesis, Department ofInformation Science, University ofTokyo, 1997.

[148] Kenjiro Taura and Akinari Yonezawa. Fine-grain multithreading with minimal

compiler support - a cost effective approach ta implementing efficient multi

threading languages. In Proc. of the ACM SIGPUN '97 Conf. on Programming

Language Design and Implementation, pages 320-333, Las Vegas, Nev., Jun. 1997.

[149] Scott R. Taylor. A comparison of multithreading implementations. In Proc. ofthe

Yale Multithreaded Programming Work., New Haven, Conn., Jun. 8-9, 1998.

[150] Kevin B. Theobald. EARTH - an Efficient Architecture for Running THreads.

Technieal report, Schoal of Computer Science, McGill University, Montreal,

Québec. 1999. PhD thesis. 1999.

[151] Kevin B. Theobald" José Nelson AmaraI, Gerd Heber, Olivier Maquelin, Xinan

Tang, and Guang R. Gao. Overview of the Threaded-C language. CAPSL Tech.

Memo 19, Dept. of Elec. and Computer Eng., U. of Delaware, Newark, DeL, Mar.

1998. In ftp:/Iftp.capsI.udel.eduipub/doclmemos.

[152] Kevin B. Theobald, Jose Nelson Amaral, Gerd Herber, Oliver Maquelin, Xinan

Tang, and Guang R. Gao. Overview of the Threaded-C Language. In Technical

Memo 19, CAPSLlAb, University ofDelaware, Mar. 1998.

[153] Kevin B. Theobald and Guang R. Gao. The Benefits of Hardware-Assisted Fine

Grain Multithreading. In Technical Memo 32, CAPSL lAb, University ofDelaware,

Newark. Delaware, USA, pages 1-27, July 1999.

[154] Kevin B. Theobald., Guang R. Gao, and Thomas L. Sterling. Supereonducting pro

cessors for IITMT: Issues and challenges. In Proc. ofFrontiers '99: The 7th Symp.

on the Frontiers ofMassively ParaUel Computation, pages 260-267, Annapalis,

Mary., Feb. 1999.

186

•

•

[155] Kevin Bryan Theobald. Adding fault-tolerance to astatie data ftow supercomputer.

Tech. Rep. MITILCSrrR-499, MIT Lab. for Camp. SeL, Apr. 1991. Master's the

sis, Dec., 1990.

[156] Kevin Bryan Theobald. EARTH: An Efficient Architecture for Running Threads.

PhD thesis, McGiIl U., Montréal, Qué., May 1999.

[157] John Thomley, K. Mani Chandy, and Hiroshi Ishii. A System for Structured High

Performance Multithreaded Programming in Windows NT. In Pmc. of the 2nd

USENIX Windows NT Symposium. pp. 67·76, Seanle, Washington, Aug. 1998.

[158] Ruppa K. Thulasiram and Guang R. Gao. Option Pricing Problem on a Mul

tithreaded Parallel Architecture. In CAPSL Technical Memo 25, University of

Delaware. Newark, Delaware, USA, November 1998.

[159] Ruppa K. Thulasiram and Guang R. Gao. A Multithreaded Parallel Computational

Approach for Valuing Derivatives. In Proc. of the /st WAFA Conference, George

Masan University, April 1999.

[160] Xinmin Tian, Olivier Maquelin, Xinan Tang, Kevin Theobald, Guang R. Gao, and

Herbert H.J. Hum. The Mcgill Earth Benchmark Suite EBS. TechnicaI report~

1996.

[161] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting

fine-grained synchronization on a simultaneous multithreading processor. In Proc.

ofthe Fifth lntl. Symp. on High·Performance ComputerArchitecture, pages 54-58,

Orlando, Aor., Jan. 1999.

[162] Uzi Vishkin, Shlomit Dascal, Efraim Berkovicb, and Joseph Nuzrnan. Explicit

Multi-Threading (XMT) Bridging Models for Instruction Parallelism. In Proc.

of the Tenth Annual ACP Symposium on Parallel Aigorithms and Architectures,

Pueno vallana, Mexico, pages 140-151, June-July 1998.

[163] Thorsten von Eicken, David E.. CulIer, Seth Copen Goldstein, and Klaus Erik

Schauser. Active Messages: A Mechanism for Inlegrated Communication and

Computation. In Pme. of the /9th Inti. Symposium on Computer Architecture,

ACM Press, Gold Coast, Australia, May 1992.

187

•

•

[164] Jerrell Watts and Stephen Taylor. A Practical Approach to Dynamic Load Bal

ancimg. In Technicai Report, Scalable Concurrent Programming Laboratory, Syra

cuse University, Syracuse, New York, December 1997.

[165] Jerrell Watts and Stephen Taylor. A practical approach to dynamic load balancing.

In IEEE Transaction on ParaUeI and Distributed Systems., volume 9., Mar. 1998.

[166] Jerrell Watts and Stephen Taylor. A Practical Approach to Dynamic Load Bal

ancing. In IEEE Transaction on ParaUel and Distributed Systems., volume 9., Mar.

1998.

[167] Boris Weissman. Active Threacls: an Extensible and Portable Light-Weight Thread

System. Technical report, Sep. 1997.

[168] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for Dynamic Load

Balancing on Highly Parallel Computers. In IEEE Transaction on ParaUel and

Distributed Systems, volume 4, No. 9., pages 979-993, Sep. 1993.

[169] Mohammed Javeed Zaki, Wei Li., and Srinivasan Parthasarathy. Customized

Dynamic Load Balancing for a Network of Workstations. In Technical Report

602, Computer Science Department, University ofRochester, Rochester, New York

14627, pages 1-23, December 1995.

[170] Yingchun Zhu and Laurie 1. Rendren. Communication optimizations for parallel

C programs. In Proc. ofthe ACM SIGPLAN)98 Conf. on Programming Language

Design and Implementation [6], pages 199-211.

188

•

•

AppendixA

EARTH Primitives in Threaded-C

This appendix gives a complete list of ail the EARTH Threaded-C primitives and briefty

explains how they are used.

A.t Threads and Fonctions

THREADED

Keyword for a threaded function declaration.

THREADJ!

Marks the beginning of a thread, n is an integer value greater than O. This number

labels a thread within a function.

void END_THREAD(void)

Marks the end of a thread. Control then switches to another ready thread.

int NUM..NODES

Run-time system variable set to the number of available nodes in the system.

intNODE.lD

Run-time system variable set to the local node number. This number ranges from 0

to NUM-NODES - 1.

void POLL(void)

Polis the network and handles any available messages. Together with the

NUM-NODES and NODEJD primitives, this is one of the only primitives that

189

•

•

can he used from non-threaded fonctions. Inserting POLL statements into long

threads can signifieantly improve overall performance, as externaI requests are han

dIed more quickly.

void CALL(funcJUlDle, •••)

CaUs function funcJlame sequentially and blacks until that function termi

nates. Functions invoked with CALL must tenninate with RETURN instead of

END..FUNcrION.

void RETURN(void)

Ends a function that will he called with the CALL primitive. This tells the compiler

to generate sequential entry/exit code.

void INVOIŒ(int node, func..name, •••)

The programmer specifies the processing node on which the function [unc-name

will he executed. FunctionfuncJlame must terminate with END..FUNCI10N.

void TOKEN(func-llame, .••)

Similar to INVOIŒ. but it is the runtime system that decides on which node the

function will execute. FunctionfuncJlame must terminate with END..FUNCTION.

void END..FUNCTION(void)

Marks the end of a threaded function that is caIled with INVOKE or TOKEN.

A.2 Thread Synchronization

Threads are often associated with a synchronization slot. The sync couot in that slot

represents how many signais the thread has ta wait for before it cao he aetivated. The

programmer ean initialize the sync count and update the eount to control the firing of a

thread. We use the following EARTH primitives to operate on the sync slots:

SLOT

A pre-defined type for synchronization slots.

SLOT SYNC-SLOTS[N]

This is how synchronization slots have to he declared at the beginning ofa funetion.

190

•

•

SPTR

A pre-defined type defined as: typedefSLOT *GLOBAL SPTR.

void ·GLOBAL FRAME-ADR(void)

Retums aglobal pointer to the current frame.

void *IP.ADR(int thread..num)

Retums a (local) pointer to the tirst instruction of thread thread..num. This does not

have ta he a global pointer, as each Dode has a copy of the program code located at

the same addresses.

SPTR SLOT-ADR(int sloLnum)

Retums a global pointer ta sync slot slotJlum.

void INIT-SYNC(int sloLnum, int init..count, int reset_count, int tbread..num)

Initializes sync slot slotJJum with the initial caunter value init..count, the reset value

reset_count, and a thread pointer for thread thread..num.

void SYNC(int slol-num)

Decreases the sync count of slot slot..num by one. If the count reaches zero the

carresponding thread is scheduled for execution.

void RSYNC(SPTR slot..adr)

Sarne as SYNCO, but the sync sIot is specified by a global address.

void INC~YNC(int slol.num, int val)

Increases the sync count of sIot slotJlum by val. If the count becomes zero the

corresponding thread is scheduled for executioo.

void INCLRSYNC(SPTR sloLadr, int val)

Same as INClLSYNCO, but the sync slat is specified by aglobal address.

void SPAWN(int thread-num)

Schedules local thread threadJtUln for execution.

void RSPAWN(void -GLOBAL FP, void -IP)

Same as SPAWN(), but the thread is specified explicitly with its frame and instruc

tion pointers.

191

•

•

Implicit sync operation

AlI data transfer primitives also perform a sync operation after the data has reached

its destination.

A.3 Data Transfer Primitives

The data transfer primitives support remote memory accesses and black data tran

fers. Short data transfers of single bytes or words of memory are supported by the

GET-SYNC-x and DATA-SYNC-x. Severa! versions of these primitives exist~ which

are distinguished by their suffix. For example, the suffix -L is used for 32-bit (long word)

values. Here is the complete list of suffixes:

JI (char): Single byte (8 bits).

..s (short): Short word (16 bits).

..L (long): Long word (32 bits).

..F (fioat): Roat size (32 bits).

.J) (double): Double size (64 bits).

_G (void *GLOBAL): Global pointer (either 32 or 64 bits).

In addition, the sync slot that should he signalled when the opeation tenninates can

either he specified as a (local) siot number (-SYNC_ variants)~ or as a global pointer

(..RSYNC_ variants). Here are the basic communication primitives:

void DATA..8YNC-x(T datum, void *dest, int sloLnum)

Sends a value to the destination address and then update the specified sync slot. The

type of the value has ta he assignment compatible ta either a byte, a shorty a long, a

ftoat, a double or a global pointer.

void DATA-RSYNC-x(T datum, void *dest, SP1'R sloudr)

Same as DATA-SYNC-xOy but the sync sIot is specified as a global address.

void GET~C..x(void*GLOBAL src, void *GLOBAL dest, int sloLnum)

Reads a value from the source address and copy it to the destination address. Then~

update the specified sync sIot.

192

•

•

void GET-RSYNC...x(void *GLOBAL src, void *GLOBAL dest, SPTR slot-adr)

Same as GET..sYNC-xQ, but the sync slot is specified as a global address.

void BLKMOV..sYNC(void *GLOBAL SI'C, void *GLOBAL dest, long leDgth,

iDt sloLnum)

Copies length bytes of data from the source ta the destination address and updates

the specified sync slot.

void BLKMOV..RSYNC(void *GLOBAL SI'C, void *GLOBAL dest, long length,

SPTR slot-adr)

Same as BLKMOV-SYNCO, but the sync slot is specified as a global address.

A.4 Global Address Support

GLOBAL

Type qualifier used to distinguish global pointers (64-bit entities) from local (nor

mal) pointers.

T *GLOBAL TO_GLOBAL(T *ptr}

Turns a local pointer into a global pointer that points to address ptt on the local

Dode. [n the portable implementation the type of the result depends on the type of

the argument. On MANNA, the result is of type pointer to void.

T *TO-LOCAL(T *GLOBAL gptr)

Turns gptr into a local pointer (extracts the address part of a global pointer). Note

that it is possible to dereference a global pointer without first tuming it into a local

pointer. On MANNA, the result is of type pointer ta void.

T *GLOBAL MAKE_GPTR(iDt Dode, T *ptr)

Takes anode number and a local address and retums the corresponding global

pointer. On MANNA, the result is of type pointer ta void.

int OWNElLOF(T *GLOBAL gptr)

Retums the node pointed to by gptr (extraets the node part of a global pointer).

inl IS_OWNER(T *GLOBAL gptr)

Retums true if gptr points to the local node.

193

•

•

AppendixB

Putting it ail Together

The parallel execution of applications by the runtime system is reviewed in section B.l.

Further, this section examines the RTS behavior in two specific cases - invoking a local

function, and execution of a remote GET_SYNC..L operation. The Run-time system di

rectory structure (as is presently on the EARTH SP-2 system) is presented in section B.4.

Finally, using the portable Threaded-C system is mentioned in section B.S. The parallel

execution of applications by the runtime system is reviewed in section B.l.

B.l ParallelExecution

At any point of time only one application thread can run on anode. To achieve parallel

execution in a NOW with distributed memory, multiple instances of the executable l are

invoked on all the nodes2 participating in the paraIlel execution. This means that the

program variables are stored at the same relative positions within the application address

space on each Dode, though there is no attempt to maintain coherence among their vaIues

across the nodes. The runtime system on these nodes supports inter-Dode communication

through message-passing. The runtime system itself is coded in the SPl\ID programming

mode1.

The application execution starts on Dode 0 with the first thread of the MAIN threaded

fonction in the Threaded-C program.. The setjmp statement in C is used to preserve

the context before starting the application execution.. As oew tokens are generated on

node 0, the load balancers 00 other nodes start sending load requests to the destinations

l Combination ofabject codes for the runtime system and Threaded-Capplication
20neinswmcepernod~

194

• chosen according ta their balancer policy. When the rich oodes start responding to the

load requests, the work load gets distributed across ail the nodes in the parallel execution.

The execution stops when there are no more threads ta execute. The runtime system

on node 0 sends a termination message ta aIl other nodes. Each node then executes the

longjmp statement ta revert back to their contexts before starting the parallel execution,

and tenninates.

B.2 Invoking a Local Fonction

Consider the Threaded-C code for invoking a local function in Fig. 2.3. The local

function invocation statement, INVOKE (NODE-ID , f ib , SLOT.ADR (0), n -1 ,

TO_GLOBAL (&rl)) is preprocessed into C code shawn in Fig. 2.14. The sync slot and

the result location address are converted into global addcesses 50 as to be accessible by

remote nodes (5LOT.ADR makes sync slot global, while TO_GLOBAL makes an address

globaIly accessible). The parameter pointer is assigned the top of free element buffer on

current node, and parameters assigned ta the fields of this structure.

void etc_invoke (int node. etc_handler fun.
lonq bytes)

static void hdl_invoke (etc_handler fun.
lonq bytes)

bp = etc_rts.next_free;
etc_rts.rdy_t->next =bp;
etc_rts.rdy_t = bp;
etc_rts.next_free = (bn: bp->nextl;
bp->ip = fun;
bp->fp = (lonq) bp:
if (!bn) etc_alloc_buf_elem ():
etc-set2n (bp->parms. bytesl;

(:1) Handler roUlinc:

if (node == etc_rts.node_idl (
bp =etc_rts.next_free:
etc_rts.rdy_t->next =bp:
etc_rts.rày_t =bp;
etc_rts.next_free =bp->next;
bp->ip = fun:
bp->fp :: (lonq) bp;
if (!etc_rts.next_freel

etc_alloc_buf_elem (l:
} else

etc_send2n Cnode. hdl_invoke,
(int) eun. bytes,
etc_rts.next_free->parms.
bytesl;

(b) RTS mutiDc tOrINVOfŒswcment

•
Figure 8.1: RTS perfonning Local Function Invocation

The last statement in the preprocessed code is etc-invoke~ a function cali to the

RTS. The function etc..i.nvoke is defined in the file calls. c. This function has the

current node id (0 in this case)~ the instruction pointer for first thread in this threaded

195

•

•

function, and the size ofthe parameter structure stored on top of free element list in bytes,

as arguments.

The functioD definitioD for etc-invoke is shown in part (h) of Fig. B.1. The Dode

nomber (a pammeter) is compared with the cunent Dode number. If they are the same, the

top element from free element list is grabbed, it's instruction pointer filled and placed on

the RQ. The free element list is a singly linked list of Cree ROdes, each node with fields for

instruction pointer, frame pointer, an anay for parameters, and typicallink fields (prev,

next). Dynamic memory is usually accepted and retumed from this liSl Memory is

allocated manually (by using the malloc statement), only when the free element list is

empty. It May be noted that the top of the Cree element list already bas parameters stored

on it. On the contrary, if Dode number is not the same as corrent node nomber, then the

arguments as weil as the contents of top of free element list are composed into an active

message with. a handIer routine to perform the invocation on remote Dode (though this

case won't arise in case of local functioo invocation) and seot to neighboring Dode, the

message destined to reach the node with. id as the node number.

B.3 Execution of a Remote GET-SYNC-L

The implementation strategy of the EARTH communication primitives (GET_SYNc..x,

and DATA_SYNC..x) had been mentioned in section 2.3.5. The behavior of a remote

GET-SYNC-L is explained with an example in this section.

7HF.EAO_: :

~i~e_: • c~_~ead C);
:or Ci - coun~; ~ > 0; i--t
GE7_~SYYC_t (valp~ resp~ sspO);

SYO_THREAD ();
~

_~p->ti~e_l • c~_reaà c);
i: CC_:p->i - :ca • :~OO), (_:p->i > 01).

etc_gec_sync_l (_!p->valp~ _fp->~esp.

_fp->sspO);
.ret.urn:

•

Figure 8.2: Usage and preproœssed code for GE!-RSYNC-L

Consider the use of the primitive GET-RSYNC-L as shown in Fig. B.2. The prepro

cessed code for this segment is shown in part (b) of Fig. 8.2.

The GE!-RSYNC-L primitive is used to request for long data from a re

mote location. As May he noticed in the generated codet a function call to lUS

(etc_get_sync~) is made. This fonction in the file data. c bas a macro calI in it's

196

•

•

body (inline_etc_get..sync~) as shawn in the Fig. B.3. The arguments for the

macro are formed from the components of global pointer stnlctures for source and desti

nation locations. The macro definition for inline_etc_get-sync~ is included in the

file data_inc. c. This macro checks if the source node number is the same as current

node number, and if so, caUs another handler routine (inline..hdl_get_sync_l), as

shawn in in Fig. B.5, that composes a data-sync message with the value taken from

source location. The data-sync message places the value at the destination location

and decrements the relevant sync count.

void ecc-get_svnc_l (ecc-9Ptr src. etc-9Ptr dest.
etc-9Ptr s)

inline_etc~et_sync_l (src.node. «(long -) src.ptr).
dest.node. (long -) desc.ptr).

s.oode. «etc_slot -) s.ptr));

Figure B.3: RTS function etc_geLsyncJ

static void hdl-get_sync_l (long -src-ptr. int dest_node.
long -desc-Ptr.int s_node. etc_slot ·s_sp)

inl ine_hcU-sec_sync_l (src-pcr. dest_ncde. dest-Ptr.
s_node. S_5P1;

Figure B.4: Handier bdLgeLsyncJ

On the other band, if source node number is different from current node number,

the inline_etc_get..sync~ routine sends an active message to the source node

with a handler name hdl_get...sync~ in file data.c. This handler definition is

shawn in Fig. B.4. The bandler routine hdl_get...sync~ makes a macro calI to

inline-bdl_get-SYIlc_call, whose definition is in file data-.inc . c. This macro,

as mentioned above, composes a datéLSYllc message to the destination location.

B.4 Run·Time System Directory

The portable EARTH programming environment consists of severa! tool5, in particular

the etcc compiler driver, the etcpre preproces50r and the run-tîme system libraries.

197

• 1-
void inli~e-r.dl_get._sync_~ (long -src-Pt.r,

int. àest.J'Iode, long -dest.-pt.r,inc s.j~ode,

et.c_slot.-pt.r s_spl
-/
'defi~e ~~line~~dl_get._sync_:(src-Pt.r,

dest.-node, dest.-Pt.::', s-,,,ode, s_sp) \
~ \
inline_et.c_dat.a_sync_l (-(long -) src-pt.r),

dest.~.."cde, àest.-pt.:, s~"lode, s_sp): \

Idefine inline_ecc_gec_sync_l(src-node,
src-pt.r, dest.-node, dest.-pt.r,
sJ'Iode,s_spl \

i \
if (srcJ'Iode -~ et.c_~s.node_id) i \

inline-hdl_get._sync~ (s:c-Pt.::',
dest.J!ode, dest.-Ft.r, s-,,,ode, s_sp); \

relsei \
et.c_send6 (s:c.j"lode, hdl_get._sync~,

(int.) s::'c-pt.::', dest.-,,,ode, (int.) dest.-pt.:,
sJ!ode, (int.) s_sp, Cl; \
!NC_'Œ.'40r:: \

t \
~

•

Figure 8.5: Macro Definitions in file data_inc . c

The EARTH home directory, pointed to by the EARTH.JIOME environment variable,

contains aU these tooIs, as well as the necessary include files and libraries. The latest sta

ble version of the source code is also available on sorne machines. The resulting directory

structure for the ponable runtime system is sumrnarized in Fig. 8.6.

EARTH

elcns elcc •••

src •••

~

•

bin include lib

X861\sun5 X86~X8~sun5
sun4 rs6000 sun4 rs6000 sun4 156000

~~~~

x86 sun5 sun4 1'56000 lb seq lb2 tb3 tep

Figure 8.6: Partial EARTH Directory Structure

As cao he seen from Fig. 8.6, three machine architectures are supponed: Sun4lSun5

(Sun workstations), rs6000 (RS6000 workstations and SP-21SP-3 machines) and the Be

owulf (LINUX PCs). In fact. MANNA would he a fourth architecture, but we do not

include it in this diagram. as the runtime system for the MANNA is written mostly in

i860 assembly language, and therefore not portable across platforms. However, it may he

noted that portable Threaded-e programs execute on the Manna architecture.

198



•

•

A doser look at the etcrts directory, which contains the source code for the run

time system libraries, shows separate subdirectories for the different machine architec

tures (sun4, sunS, X86 and rs60QQ), the (oad balancers (lb), and each network im

plementation (seq, tb2, tb3 and TCP/IP). Different combinations of the CPU and

network interfaces May he specified on the command-line ta enable Iinking ofthe applica

tion object code with different versions of the run-time system object code. The machine

and network independent parts of the mn-time system are Iinked with one of the machine

dependent modules. a network module to generate the final executable. In addition. one

of the (oad balancers, and the profiling option May he included on the command-line at

compile-time. Off-the-shelfNOWs May operate in sequentiai mode, or may he connected

with the TCP1IP interface. NOW products like the IBM SP-2, SP-3 are interconnected

with the tb-2 and tb-3 network interface cards. The command-line arguments are fed

ta the etcc compiler driver which after finding no errors, generates the final executable.

B.S Running Threaded-C Programs

Presently, we support a 137 node mM SP-2 at the Cornell Theory Center. an 80 node

IBM SP-3 at the Argonne National Labs, and an 8 node Beowulfal the CAPSL Lab at the

University of Delaware. This section details the compilation and execution sequences for

Threaded-C programs on the IBM SP platforms.

In arder to run Threaded-C programs, it is necessary to first compile them. In order for

the Threaded-C compiler to work properly. the userfs environment has to be set properly.

The following paragraphs give a briefoverview of what has to he done. More information

can he found on the Web al http://www-acaps . cs .mcgill. cal info/EARTH,

though part of the information that is found there is specific to the EARTH-MANNA

implementation.

In arder to use the portable run-tîme system~ the EARTHJlOME and the PATH envi-

ronment variables have to he setup.

On the IBM SP-3 at the Argonne National Labs:

setenv EARTEUiOME kakulava/EARTH

On the IBM SP-2 at the Comell Theory Center:

setenv EARTEUIOME kprasad/EARTH

The PATH variable should he set as foIIows:

set path=($EARTELHOME/bin/rs6000 Spath)

199



•

•

After the environment has been set up, programs can he compiled with the etcc com

mand. This command is similar ta the cc compiler driver and supports similar switches.

For example, the following command can he used to compile the file hello. c and

to generate a sequential version that mns on the Sun: etcc -0 hello. c -target

sun4-seq. The resulting Sun Sparc executable cao he run as any sequentiaI program.

When accessing a parallel machine, on the other band, sorne tool has ta he used to get

access to the machine and start the program on a specific oumber of nodes. The tools

used for that purpose are : tb3nm on the CACR SP-2, and submit on the Argonne SP-2

and Comell SP-2. Note that this is oot an exhaustive Iist, as more versions of the portable

EARTH run-time system are being implemented.

A detailed exp[anation of the options for etcc, is present at http://www

acaps .cs .mcgill.ca/info/EARTH/earth-manna/etcc .html. The op

tions supported by etcc are similar to those typically supported by other compilers.

The relevant options for compiling Threaded-C programs on the IBM SP machines are as

given below.

etcc -target target-arch [-profl [-lb dual 1spnlnoplsndlrange 1

his 1shis 1rand 1minimal [-hl [v] [-keep] [-O[level]] [-0

file] [-cl [-Sl [-E] (-Dname[=defl 1 [-Uname] file ..•

-target target-arch Specifies the target architecture. Code may he generated

for the following IBM SP machines.

rsGOOO-seq: Generate a sequentiai executable that runs on a single IBM RS6000

CPu.
rs G000 - tb2 : Generate code for the Argonne SP-2 c1uster of workstations. This

imp[ementation directIy accesses the tb-2 networlc card for better performance.

rsGOOO-tb3 : Generate code for the CaItech CACR mM SP-2 c1uster of worksta

tians. This version aIso directly accesses the tb-3 network carel.

-prof Link with a different version of the portable run-time system that gathers pro

filing information and prints it after the program has terminated.

-lb dual 1spn 1nop 1snd 1range 1ms 1shis 1rand 1minima Selects one of

the possible dynamic laad baIancers.. the spn balancer is used by default, except for the

sequentiai targets which use the nop load balancer.

For example, to run the program fib. c~ the following steps are to he followed after

setting the environment variable EARTlUIOME. Consider the platform to be mM SP-3,

[oad balancer to he dual. and the profiling option included.

200



•

•

etcc -target rs6000-tb3 -prof -lb dual -02 -0

fib.dual.prof fib.c

Altematively, the applications may he compiled using the compile script. Usage

information is printed by typing compile.

compile [cflag] [bal] [prof] progname

- cflag: Any of the C optimization flags - 0,02,03.

- bal: name of any of the load balancers, listed above.

- pro f: Include profiling data in output.

- progname: Application name, without .c extension

To submit the executable for execution.

submit num.nodes rnax-time program [arguments ... ]

- nUItUlodes: Number of nodes requested.

- max-time: Maximum time that the application May take to execute.

- program: Name of the application exceutable

- arguments: Any application arguments May he included here

Usage information is printed by typing submit.

The resulting output gives the concatenated output of all nodes in one file. The pro

filing code if included. helps provide statistical information as to the number of threads

generated. number of rernote communications, numher of tokens migrated etc.

Fig. B.7 shows a segment of the sample output for the Fibonacci Threaded-C pro

gram. The f ib threaded function from Fig. 2.3 is compiled with the dual balancer and

the profiling options. The executable is run with 32 nodes on the IBM SP-2 at the Cor

nell Theory Center. The sample output in Fig. 8.7 shows the program result. and sorne

profile information on node o. The actual output includes profiling information for var

ious idle periods when the node is idIe, and this sequence is repeated for ail 32 nodes

that participated in the execution. An explanation for the profile statistics is provided in

Appendix C.

201



•

•

0:1" Stare (32 nodes. dual)
0:fib(33) = 5702887
O:ELAPSEO Time is 31.467594 s
0:'" Elapsed time: 31.468582 s
0:---------- PROFILING DATA for 0/32 --------
O:Tokens consumed: 4317400
o:Tokens generated: 4894583
o:Threads runninq: 20040574
0:' of balancinq aceivities: 1154366
0:' of requeses sent: a
0:' of requests received: 577183
0:1 of eokens sent: 577183
0:' of eokens received: 0
0:' of remote communications: 808304
0: t of icile periods: 12
O:Total idle time: 1435.0414 (1433.6824) us

Figure B.7: Sample OUtput for the Fibonacci - Fib(33) on 32 nodes

202



•

•

AppendixC

Profiling support in the EARTH

Runtime System

To monitor the perfonnance of Threaded-C program execution, profile data is produced

along with the application output on ail the nodes participating in the parallel execution.

This profiling support is based on a set of profiling parameters which account for the

runtime system behavior during program execution. The generated profile data roughly

faIls into two categories l: a breakup of the total elapsed time with regard to the execution

ofapplication code and runtime system code; a count of the number ofdifferent individuaI

RTS operations in the execution of a Threaded-C program. This profile data is useful in

constructing a cost model for program execution on the EARTH RTS~ and aIso identify

possible design areas (bath within the RTS and the application) for further optimization.

The profile code is mainly present in the files prof. h and prof. c. As may he noted

from the command-line options of the etcc (EARTH Threaded-C Compiler), the prof

option allows this profiling code to he linked in making the final executable. The profiling

data is declared in prof. h and initialized in prof. c. Throughout the RTS, whenever

a RTS operation is perfonned, relevant profile data is updated. The code to update this

data is conditionally compiled along with the rest of the RTS (based on whether the prof

option is included in the etcc command-line).

'The profiling suppon is currendy implemented on the EAlUH-sP2 and the EAlUH-BeowuIf. The
breakup of the elapsed lime is not cum:ntly available aD the EAlUH-Beowulf.

203



•

•

C.I A Distribution of Total Elapsed Tinte

As the executable contains the object codes for bath the Threaded-C application and the

rnntime system, it is important to study a breakup of the CPU lime spent executing the

application and irnplementing the nmtime system functionality. Ideally the overheads

for supporting a multi-threaded environment are expected to he minimal, and this cannot

he overemphasized for fine-grain multi-threaded systems supporting non-blocking, non

preemptive threads. Therefore, a breakup of the total elapsed time offers a chance ta

malee two important observations: application threacl execution time versus time spent in

the runtime system: and the relative comparison between times spent on different services

offered by the runtime system. This comparison provides a detailed understanding ofboth

the application and the runtime system behaviors during program execution. Inferences

macle from this study can he used to improve the application as weIl as the runtime system

design.

The timing function used in Threaded-C programs is etc_time (). This function

accesses the on-board timer and retums time in seconds with nanoseconds resolution!.

The cast of executing the etc_time () function is 113 nanoseconds (14 cycles) . The

minimum time that can he measured by this function is 238 nanoseconds (29 cycles).

With this resolution. it might not he possible to measure correctly the time taken by sorne

runtime system services which cost less than 29 cycles. However, this breakup is im

portant in arder to identify and categorize different runtime system services. Whenever a

timer with better resolution is available in the future, those runtime system services which

cannot he measured currently can he appended to provide a more realistic breakup of the

elapsed time.

The elapsed time might he divided iota seven components. Fig. C.l shows a typical

brealcup of the CPU time on application and runtime system activities.

• Application Execution Tune: Time spent executing application threads on anode•

• Thread Management Tune: Tune spent in spawning and supporting paraIleIism in

the form of threaded functions and threads. The thread management fonctions that

are considered here inciude parallel function invocation, filling threacl specific data

structures (frame pointer), and context-switching. ParalIel function invocation in

volves the following items::

ZOu 120 MHz CPUs al the Comell Theory center and the Argonne Nationallahs (Quad), 1cycle = 8.33
nanoseconds.

204



•
1,-.
iÎ

Thread ExecutIon TIme
Threacl Management TIme
Thl'88d Synchronlzation nme
Thread setledutlng Tune
Load BaIr Owrhead
Totaiidle lime
PoDingTine

•

Figure C.I: A Breakup of Program Execution Time on 2 nodes - A Template

- Time spent in filling the parameter frame with arguments for child computa

tions.

- Frame creation time.

- Frame filling time.

- Time spent in placing the child threaded fonctions in the ready queue or the

token queue.

The term context-switching between [Wo threads is the time from the exit of the

first thread to the stan of the second thread. GenerallYt context-switching between

threads is a a light-weight operation tban switching between processes. In systems

that employ blocking multithreaded madel. context-switching involves restoring

the machine state and restarting the stalled thread. In EARTH. threads are non

blocking in nature. therefore when a thread exits there is no need to save the ma

chine state. Cootext-switching here is as simple as an exit from a C function. and

starting another C fonction. This time difference between these two events is the

context-switchiog overbead between two threads. The total context-switching over

head on anode depends on the context-switching time between two threacls and the

total number of threads executed 00 anode..

205



•

•

Only context-switching overheads among the thread management funetions abave

can he measured with the cuneot timer resolution.

• Thread Synchronization 'lime:

Thread synchronization rime in EARTH is the rime spent on satisfying control and

data dependences between threads. There are no shared data structures because of

two reasons: the memory madel is based on distributed memory; and threads are

non-blocking. Therefore the runtime system does not support any Ioeles and this

eliminates the synchronization overheads due to shared data access. The thread

synchronization time in the runtime system consists of the the following compo

nents:

- Time spent in preparing for data communication, Le. time spent in handlers

for sending data (this May include time spent in the network staek, until the

data is placed in the final send buffers).

- Time spent in invoking reeeiving handlers.

- Time spent in local synchronizations (bath communication-related and com-

putation related). This time includes the time spent in executing the handler

code and placing related threads in the RQ.

Each occurrence of thread synchronizatioo costs less than 29 cycles, and therefore

is not instrumented in the runtime system.

• Thread Scheduiing lime:

The runtime system schedules an enabled thread at each thread boundary. An en

abled thread is picked from one of the queues and dispatched for execution. The

runtime system initially checks the ready queue for an enabled thread. If the ready

queue is empty, it will scheduIe a thread from the token queue for execution. The

thread scheduling tirne is the tiroe spent at each thread boundary looking for a thread

to start execution. Thread scheduling could not he measured with the corrent timer

funetion.

• Load Balancing Tune:

Time spent in executing load balaneing related bandlers and Cunetions. The han

dIers in the Joad balancer eode access the two queues to add and remove tokens.

206



•

•

• [dIe nme:

The time spent by the CPU waiting for work ta arrive. At the thread boundary~

when the mntime system notices tbat bath the ready and token queues are empty, it

switches on the idle time couoter and starts the load balancer. The idle time couoter

is switched off~ when work arrives at the node~ or work is generated on this node

itself.

• Polling 1ime:

The runtime system polis the network at every thread boundary. The network is

also polied if a POLL statement is used in the Threaded-C program. This does not

include the polling time initiated by the load balancer, which is masked under idle

time.

C.2 Profile Data

A list of the items collected under the profile data is provided below.

• Application Elapsed 1ime: The total time for the execution of the application, from

the start of first thread on node 0, tin the end of execution of last thread in the

application.

• Tokens Consumed: The oumber of tokens consumed on this node.

• Local Tokens Consumed: The number of locally generated locally consumed to

kens.

• Tokens Generated: The number of tokens generated on this node (by executing the

function calI etc_token).

• Threads Running: The number of threads executed on this node. It may he noted

that the number of threads May oot equal the number of takens (the former is gen

erally higher).

• Nconber ofBalancing Activities: The total number of dynamic Ioad balancing ac

tivities during the execution. This is the number of Ioad balancing related commu

nication activities (does oot include the CPU time speot on load balanciog).

207



•

•

No. of Load Balancing Activities = No. of Requests Sent + No. of Requests

Received + No. of Tokens Sent + No. of Tokens Received

- Number ofRequests Sent: The number of requests for tokens sent by the load

balancer on this Dode ta remote nodes.

- Number ofRequests Received: The Number of requests received by this oode

from remote nodes.

- Number of Tokens Sent: The oumber of tokens sent by the load balancer 00

this oode to remote nodes (maybe as response to earHer received requests or

because of the senderlhybrid policy of the load balancer).

- Number of Tokens Received: The number of tokens received on this Dode

(maybe as respoose to earlier sent requests t or because of senderlhybrid load

balancer policies like Snd. his. etc. or maybe because this node is an inter

Mediate oode as part of the logical ring topology. while the token is on its way

to destination).

• Number ofRemote Communications: The total number of remote communications

involved in implementing global memory management in remote memory access,

synchronization. and spawning of threads etc-spawn. These are the commu

nication activities spent in ensuring that certain RTS operations are performed at

designated nodes, i.e. the iotermediate message transfers until the message reaches

the destination Dode (for the relevant handler to he invoked ta implement the RTS

operation). These communications don't include those required in implementing

INVOIŒ and TOKEN and load balancing operations.

• Extra Tokens: Number of tokens received on a rich node. This count highlights the

accuracy of the location policy of the balancer. It also helps focus on the accuracy

of 1000 state information and useless 10OO-balancing during program execution.

• Total [dIe nme: The total time that this node has been idle, Le. without any ap

plication threads to execute. When anode has no threads to execute (both Ready

Queue and Token Queue empty), it idles while polling the network.

• Number of [dIe Periods: The number of idle periods throughout the application

execution. that SUIn up to make the total idle time.

208



•

•

• [dIe Period Type: The idle periods are of two types - application and balancer.

A thread May he reacly for execution in two ways - a token may he received as

response for request sent earlier, or a token May he generated 00 this Dode itself. If

the tokeo is received as a resuJt of load balancing, then the idle period is classified

as balancer related idIe period, whereas if the token is generated locally, the idle

period is called application idle period.

• [dIe Period: A time interval, indicating the stan and end of each idle period. A set

of such intervals are shawn for all idle periods.

• Balancer [dle ume: Total balancer related idle time. It is a SUffi of ail the time spent

during balancer idle periods.

209



•
AppendixD

EARTH on Different mM SP

Installations

0.1 EARTH-SP at CACR, Caltech

The EARTH-SP2 (EARTH on RS/6000 IBM SP-2 system) at CACR1, has 9 nodes

(Power2 CPU) running at different individual dock speeds of 67MHz, 77MHz~ and 135

MHz respectively. The LI cache is of 32KB, L2 cache is 2 MB, and memory is of either

128MB or 512MB, dependiog 00 the node's classification. Network interface is through

the tb-3 card. The point-to-poiot peak bandwidth on the 135MHz wide nodes is rated at

90.41MB/s and one way node-to-node lateocy is approximately 19 JJS. The performance

of EARTH on this platform is shawn in Figures 0.1, D.2~ D.3 and 0.4.

1 Operation 1 Local Seq. 1 Remote Seq. 1 Local Pipe. 1 Remote Pipe. 1

•

SYRe Thread: 661 os 20921 os 178 os 3147 os
Spawn Thread: 639 ns 20888 ns NA NA
Read Ward: 762 os 41031 os 241 os 5563 ns
Write Ward: 689 os 41011 os 201 os 5642 os
Fun. CalI (1): 1445 os 42165 ns 922 os 6183 os
Fun. CalI (5): 1528 os 43045 os 986 os 6879 os
Fun. Call (9): 1631 os 43141 os 1060 os 6917 os
Fun. CalI (18): 1686 os 43225 os 1154 os 6527 os

Table D.l: Overhead costs for EARTH operations on EARTH-SP2 (CACR)

1http://www.cacr.calteeh.edulresourceslsp21

210



•

•

EARTH Operatioo Local Operatioo Remote Operatioo
EUCosts Local Costs Remote Costs

SYNC 140 os 2349 os 896 os
SPAWN 138 os 2061 os 1009 os
END_THREAD 456 os NA NA
INCR..SYNC 159 os 1921 os 898 os
DATA-SYNC 163 os 1920 os 1127 os
GET-SYNC 165 os 1720+1685 os 3143 os
INVOIŒ(l) 117 os 1901 os 1101 os
END-FUNCIlON(I) 567 os NA NA
INVOIŒ(5) III os 1684 os 1213 os
END-FUNCI10N(5 646 os NA NA
INVOIŒ(9) 120 os 1952 os 1194 os
END-FUNCITON(9) 691 os NA NA
INVOKE(18) 152 os 1842 os 1265 os
END-FUNCITON( 18) 702 os NA NA

Table 0.2: Overhead for Threaded-C instructions on EARTH-SP2 (CACR)

Operation Local Remote
Overhead Throughput Overhead Throughput

DATA-SYNC..B 2490s/op 4.02MB/s 56320s/op 0.. 18 MB/s
DATA-SYNC-S 2400s/op 8.33 MB/s 56160s/op 0..36 MB/s
DATA-SYNC-L 2280s/op 17.55 MB/s 55910s/op 0.72MB/s
DATA-SYNC-D 212 nsIop 37.74MB/s 54540s/op 1.47 MB/s
GET-SYNC..B 2860s/op 3.50 MB/s 56150s/op 0.18 MB/s
GET-SYNC-S 2870s/op 6.97 MB/s 56140s/op 0.36 MB/s
GET-SYNC-L 272 ns/op 14.72MB/s 56200s/op 0.71 MB/s
GET-SYNC-D 296 ns/op 27.01 MB/s 54750s/op 1.46 MB/s

Table D.3: Overhead costs for GET-SYNC operatioo on EARTH-SP2 (CACR)

211



•

0 230.06 MB/s 230.99 MB/s 90.41 MB/s 98.04MB/s
16 230.63 MB/s 230.61 MB/s 90.21 MB/s 97.61 MB/s
8 227.89 MB/s 229.67 MB/s 89.71 MB/s 96.19 MB/s
4 229.84MB/s 230.11 MB/s 91.29 MB/s 97.44 MB/s
1 216.74 MB/s 217.38 MB/s 91.78 MB/s 97.35 MB/s

1

Align 1f-~~~_LOC~al----=~~-+-----=~~R_em..,....o_te---=-~_
Single 1 Dual Single 1 Dual

Table 0.4: Bandwidth for Blockmove operations on EARTH-SP2 (CACR)

•
212



•

•

D.2 EARTH-SP at Argonne National Labs

D.2.1 mM SP3 • Quad

The performance of the EARTH multithreaded environment on the IBM SP3 (Quad)2 at

the Argonne National Labs is reviewed here. The configuration of this platform is as

follows: 80 node RS/6000 workstations, each single processor node running the P2SC

CPU at 120 MHz. The tb-3 card is the oetworlc switch interface with a apeak bandwidth

of 150 MB/s. Each Dode has 256 MB main memory, 256 KB cache and total disk space

of9 GB.

The latencies and overheads associated with EARTH operations are shown in Fig

ures 0.5,0.6, 0.7 and D.8.

EARTH Operation Local Operation Remote Operation
EU Costs Local Costs Remote Costs

SYNC 104.41 os 2526.86 os 1723.87 os
SPAWN 121.59 os 2361.79 os 2926.71 os
END_THREAD 1205.91 os NA NA
INCR-SYNC 175.96 os 2362.96 os 1730.98 os
DATA-SYNC 145.84 os 2324.96 os 1834.14 os
GET..5YNC 393.61 os 2566.51+2229.79 ns 4491.60 os
INVOIŒ(1) 129.12 os 3229.34 os 4033.40 os
END.FUNCIlON(I) 1353.34 os NA NA
INVOIŒ(5) 121.88 os 3040.48 os 3786.50 os
END.FUNCI10N(5) 1421.65 os NA NA
INVOKE(9) 139.06 os 3374.81 os 4158.61 os
END.FUNCfION(9) 1485.8405 NA NA
INVOIŒ(18) 151.78 ns 3825.99 os 4730.58 os
END.FUNCIlON{ (8) 1529.01 os NA NA

Table 0.5: Overhead for Threaded-C instructions on EARTH-5P2 (Quad)

D.2.2 mMSP2

This section documents the performance of the EARTH-5P23. The performance figures

shown in Figures 0.9, 0.10,0.11 and 0.12, are based on the sn machine with 56 nodes

2http://www-fp.mcs.anl.gov/computïnglmachineslquadl
3Located at Argonne National Laboratories, PonIand. USA

213



1 Local Seq. 1 Remote Seq. 1 Local Pipe. 1Remote Pipe. 1

Sync Thread 1436.26 ns 24967.18 os 200.37 ns 3914.76 os
Spawn Thread 1404.437 os 25354.698 ns NA NA
Read Ward 1593.722 os 47804.368 ns 267.105 os 6863.099 os
Write Word 1443.896 os 47833.272 os 239.688 os 6614.358 os
Fun. Cali (1) 3236.203 os 51388.782 os 1735.278 os 7882.220 os
Fun. CalI (5) 3086.590 os 52467.688 ns 1825.649 os 8404.783 os
Fun. Cali (9) 3179.877 os 52709.572 ns 1902.766 os 8733.468 os
Fun. CalI (18) 3247.824 os 54818.314 os 2001.446 os 9029.014 os

1 Operation•

Table 0.6: Overhead costs for EARTH operations on EARTH-SP2 (Quad)

Operation Local Remote
Overhead Throughput Overhead Throughput

DATA-SYNC.B 271.00 ns/op 3.68 MB/s 6538.00 os/op 0.15 MB/s
DATA-SYNC-S 273.00 ns/op 7.34MB/s 6601.00 os/op 0.30 MB/s
DATA-SYNC~ 260.00 ns/op 15.37 MB/s 6576.00 DS/Op 0.61 MB/s
DATA-SYNC-D 241.00 ns/op 33.22 MB/s 6378.00 ns/op 1.25 MB/s
GET-SYNC..B 321.00 ns/op 3.11 MB/s 6831.00 ns/op 0.15 MB/s
GET-SYNC-S 324.00 nsIop 6.18 MB/s 6535.00 os/op 0.31 MB/s
GET-SYNC~ 311.00 ns/op 12.85 MB/s 6S12.00 os/op 0.61 MB/s
GET-SYNC..D 339.00 nsIop 23.63 MB/s 6976.00 ns/op 1.15 MB/s

Table 0.7: Overhead costs for GET-SYNC operation on EARTH-SP2 (Quad)

runoing at 62.5MHz~ 128 MB memory, and an instruction/data cache of 32 KB each.

The tb-2 card provides the networlc interface. Peak point-to..point bandwidth is 35 MB/s,

and one way oode·to..oode latency is 30 microsecs. Access ta this platform is no more

Table 0.8: Bandwidth for Blockmove oPerations on EARTH-SP2 (Quad)

0 163.58 MB/s 166.40 MB/s 45.98 MB/s 47.97MB/s
16 165.47 MB/s 166.27 MB/s 46.72MB/s 47.75 MB/s
8 166.. 19 MB/s 166.56 MB/s 46.49MB/s 48.16 MB/s
4 166.79 MB/s 163..92MB/s 86.95MB/s 9O.22MB/s
1 165.34MB/s 166.44MB/s 86.02MB/s 88.97MB/s

1

Align 1_~--:-_L"""TOC_aI----:=--~--+_,:":,,,,""-:-R_e""'""lm_o_te-=---:---...,
Single 1 Dual Single 1 Dual

•
214



•

•

available.

The portable Threaded-C programs implemented to obtain the timing information of

various EARTH operations are the same as those, described in ?? The performance is

relatively better on the EARTH-SP24, than on the EARTH-SP2 reviewed here, because of

faster dock speed, less network latency, and larger memory on the former, not withstand

ing the lack of homogeniety among ifs nodes.

EARTH Operation Local Operation Remote Operation
EUCosts Local Costs Remote Costs

SYNC 301 ns 2486 ns 1895 ns
SPAWN 460ns 2530 os 2031 ns
END_THREAD 992ns NA NA
INClLSYNC 334 os 2496 ns 1864 os
DATA-SYNC 427ns 2849 os 2282 os
GET-SYNC 550 os 2664+2796 os 4527 os
INVOIŒ(I) 413 os 3167 os 2736 os
END..FUNCIlON(I) 1402 os NA NA
INVOKE(5) 506 os 2993 os 2468 os
END..FUNcrION(5) 1603 ns NA NA
INVOKE(9) 503 os 2897 os 2571 os
END..FUNcrION(9) 1789 os NA NA
INVOKE(18) 6110s 3732 os 2849 os
END..FUNcrION( 18) 1982 os NA NA

Table 0.9: Overhead for Threaded·C instructions 00 EARTH-SP2 (ANL)

4Located at CACIt CaIlecfl. USA

215



• 1 Local Seq·l Remote Seq·1 Local Pipe. 1 Remote Pipe·l
SyncThread 1773 os 28699 os 464ns 4047 os
Spawn Thread 1561 ns 28595 os NA NA
ReadWord 2156 os 56742 os 690 os 724905
Write Word 1934 os 56121 os 609 os 7077 ns
Fun. Cali (1) 3863 os 60094 os 2365 os 8364 os
Fun. CalI (5) 4102 ns 60713 os 2603 ns 8593 ns
Fun. CalI (9) 4354 os 61077 os 2863 os 8761 os
Fun. CalI (18) 4853 os 63651 os 3325 ns 9659 os

1 Operation

Table 0.10: Overhead costs for EARTH operations on EARTH-SP2 (ANL)

Operation Local Remote
Overhead Throughput Overhead Throughput

DATA-SYNC-B 810 ns/op 1.24MB/s 7071 ns/op O.14MB/s
DATA-SYNC-S 817 ns/op 2.45 MB/s 7101 ns/op 0.28 MB/s
DATA-SYNC-L 811 ns/op 4.93 MB/s 7066 nsIop 0.57 MB/s
DATA-SYNC..D 918 ns/op 8.71 MB/s 7156 ns/op 1.12 MB/s
GET..5YNC-B 890 ns/op 1.12 MB/s 7095 ns/op 0.14MB/s
GET..5YNC..s 896 ns/op 2.23 MB/s 7081 ns/op 0.28 MB/s
GET..5YNC-L 908 ns/op 4.40MB/s 7088 ns/op 0.56MB/s
GET..5YNC-D 967 ns/op 8.28 MB/s 7159 ns/op 1.12 MB/s

Table 0.11: Overhead costs for GET..5YNC operation on EARTH-SP2 (ANL)

1

Align 1!----=~_L__,OC:__a1~=___~_+____=~-R-e__,m:__o-te_=_~~
Single 1 Dual Single 1 Dual

•

0 69.96 MB/s 69.93 MB/s 34.09 MB/s 39.46 MB/s
16 69.83 MB/s 69.88 MB/s 34.09 MB/s 39.23 MB/s
8 69.83 MB/s 69.75 MB/s 34.12MB/s 39.72 MB/s
4 71.16 MB/s 71.16 MB/s 32.90MB/s 33.69 MB/s
1 66.32MB/s 66.29MB/s 32.65MB/s 33.65 MB/s

Table 0.12: Bandwidth for Blockmove operations on EARI'H-SP2 (ANL)

216



•
AppendixE

Additional Experiments

1 Dual 1 Spn 1 Shis 1 Snd 1 His 1 Range 1 Catapult 1 Rand 1

Fibonacci(33) 0.807 0.86 9.82 26 OF 0.93 0.92 0.809
Queens(12) 0.28 0.17 4.68 5.04 0.18 0.2 Of 0.23
TSP(IO) 0.4 0.28 7.76 8.65 0.29 0.29 0.28 0.32
Knary(7, 7,2) 2.13 0.93 24.76 1.037 0.91 0.94 0.95 0.91
Knary(4512,0) 0.053 0.013 0.17 0.171 0.0067 0.013 NA -
Matrix(1024XI024) 70.31 49.53 293.79 17.52 12.21 14.66 63.42 16.96
Tomcatv(257) 2.45 1.78 Of Of 0.54 Of Of 5.6
SPMD(1,1,0) 0.25 0.16 0.68 0.08 0.11 0.1 0.63 0.15
SPMD(4,4,O) 1.9 0.72 14 0.63 0.86 1.27 13 0.79

1 Benchmark

1 Paraffins(28) 1 7.42 1 6.69 1 104.1 1 123.3 1 6.72 1 6.75 1 NA 1 6.65 1

Table E.I: Overview of Results. Elapsed times in seconds are shown for different bench
marks belonging to the recursive (divide-and..conquer), regular and irregular program
ming modeIs against various dynamic load balancers belonging to the receiver-initiated,
sender-initiated and hybrid categories. Measurements are based on 32 Dode runs. The
elapsed times do not include profiling overheads. Table 5.1 shows elapsed times with
profiling effects

•
217



• 1 Benchmark 1Dual 1Spn 1Shis 1Snd 1His 1 Range 1 Catapult 1 Rand 1

Fibonacci(33) 1 3 6 7 8 5 4 2
Queens(l2) 5 1 6 7 2 4 8 3
TSP(lO) 6 1 7 8 4 3 2 5
Knary(7. 7,2) 6 4 7 8 1 3 2 5
Knary(2.512.0) 5 2 6 7 1 3 8 4

Matrix(1024X1024) 8 3 5 8 8 1 4 2
Tomcatv{257} 4 3 8 8 2 1 8 5
SPMD(1.1,0) 5 3 7 8 1 4 6 2

SPMD(4.4.0) 5 1 8 7 3 4 6 2
1 Paraffins(28) 4 8 1
;::=========::::::; ~:::::;::::=*====;::;::==*==::;:~

1

ARankverage ~52.3 6.6 7.5 3~ 3.2 5.9 2.8
~----';:~----..-, 5 1 7 8 4 f--~3--+--6--+--2~---------- .......-~--~--

Table E.2: Relative ranking of the different balancers based on their performance as
shawn in Table E.l

(b) Fibonaa:i(30)

/

/
/

a.~~-~~.. -~.-~a---::.~--::•-

.~.. - SN
- HIa.. _ AInà

f
~

j
1

l
1

i

]
!
~
1,

....~-=---~~--:'="..-~.-~a--=~~.-(:1) Fibonacci(28)

Figure E.l: Relative Speedups of different balancers for Fibonacci

Figure E.2: Relative Speedups of different balancers for Fibonacci

• .. • a » • • .. • a » •-(h) FiboDacci(3S)-(a) Fiboaacci(33)

:l~
1

•

~
~ 1

.. - Snd
- HIa

Il - RIndIl 1- "-'d

.. 1
~

1

i~
1 IdJ1: l i:

1

1

•
218



~- SlIdM _ HII

- AIIllI

1.
1•

'-
(II) Para8iDs(22)

• • • •
(h) P:n8ias(24}

. ~ . . . .
'-

Figure E.3: Relative Speedups of different balancers for Paraffins

• • • • • • •....
(h) ParaOiDs(28)-(a) P:nmDs(26)

1
j

Figure E.4: Relative Speedups ofdifferent balancers for Paraffins

219




