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Abstract
\Ve examine the problem of finding the exact distributions of linear functions of k inde­

pendent generalized gamma variables, Xr, X 2, .. .• )(k. Special cases of generalized gamma

distributions include the exponential, gamma and \Veibull distributions. A linear function

of such variables is often a quantity of interest in the analysis of survival data. reliability

of certain systems and stochastic processes and hence we present this problem in the con­

text of life testing. The exact distributions of these linear functions are needed to compute
survival functions, hazard functions and other important functions in practical problerns.

Stacy (1962) obtained sorne exact results involving generalized gamma variables and Huzur­
bazar and Huzurbazar (1999) used saddlepoint approximations where the input variables are
gamma or Weibull. \Ve examine this problem where the k independent real scalar random

variables, X t, .X~2, ... ,)(k, are of gamma type with general parameters. For this case, various

exact distributions are obtained and it is shown that most of these representations are easily
computable. These exact results are compared with the usual saddlepoint approximations.

We also examine numerically inverting the Laplace transfornl in this context, showing that it
is one of the most efficient and accurate ways of estimating the exact distribution for certain

cases. Results of this thesis are being published and presented in c~authorship with A.i\I.

~'1athai in Koulis and ~Iathai (2000).

Résumé
Nous étudions le problème de determination exacte de la loi de distribution d'une fonction

linéaire de k variables aléatoires indépendantes, Xt . ...y2... · . ,Xk, de t.ype gamma généralisé.
Des cas particuliers de distributions de type gamma généralisé sont la distribution exponen­

tielle, gamma et \Veibull. Une fonction linéaire de ces variables est souvent une quantité im­

portante dans l'analyse de processus stochastiques. la fiabilité d'un système ou dans l'analyse

de la survie et donc nous présentons ce problème dans le contexte de l'analyse de données de

faillite. La distribution exacte de ces fonctions linéaires est nécessaire pour calculer la fonc­
tion de survie, la fonction de risque et d'autres fonctions importantes. Stacy (1962) a obtenu

quelques résultats éxacts et Huzurbazar and Huzurbazar (1999) ont utilisés des approxima­
tions de type "point de selle" (saddlepoint) pour des variables gamma ou \Veibull. Nous

étudions ce problème où les k variables aléatoires, Xl, "'\""2, .... ~Yk, sont de type gamma avec
des paramètres généraux. Dans ce cas, quelques distributions exactes sont obtenues et c'est

montré que ces représentations sont facilement calculées. Les resultats exacts sont comparés

avec l'approximation de type "point de selle". Nous étudions aussi l'inversion numerique

de la transforme de Laplace, montrant que cette méthode est une façon efficace d'estimer

la distribution exacte pour certains cas. Quelques résultats de cette thèse seront publiés et

présentés en collaboration avec A. wl. ~Iathai dans Koulis and ~Iathai (2000).
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Chapter 1

Preliminaries

1.1 Introduction

Often in industry, a manufacturer wishes to have some information about the items it prtr

duces. One of the prevalent themes in the computer industry is detennining whether or not

a producer's computer chip is reIiable. In situations where sucb delicate equipment fails to

work once in a while, a measure of frequency of fallure is often needed. Another situation

May involve the study of an assembly Hne witb many stages where one May wish to know

how long it takes to produce an item. In medicine, researchers wish to answer questions

relating to the survival of patients amicted with potentially deadly diseases. One way to

obtain this information is by constructing life testing experiments designed to measure the

'lifetime' of a product or patient subjected to tests.

The analysis of Iife testing bas its origins in the study of population Iife tables. Recently,

methods have been developed to study diseases sncb as AlDS and cancer and to examine

various problems in engineering and industry. In general, one wishes to study subjects or

1



• groups of subjects each of whom have a predefined 'fallure' time. For example, light bulbs

may he examined, each of which have a faHure time defined to be the waiting time until

bum out or the subjects can be patients in a clinical trial where the failure time is defined

as the time in months from the beginning of the trial until death due to heart failure.

The difficulty in studying this kind of data arises when considering censored data. Often

in life testing experiments, subjects are still 'alive' at the time the experiment terminates.

Because of the context, this censored data is often called survival data, failure time data or

lifetime data.

Two fields concerned with the analysis of life testing are survival analysis and reliability.

Survival analysis is mainly concerned with the probabiIity of failure-free operation of an item

in an interval [ta, ta + t) given that the item is still 'alive' at time ta. Reliability is concerned

with a quantitative measurement of the reliahility of an item, usually in terms of average

lifetime. Survival analysis is often used in Medicine and biology and reliability usually deals

with problems in engineering and industry. Even though the two 6elds deal with different

real world problems, they can both he studied through life testing.

1.2 Failure Time

Before we begin discussing the analysis of failure time data, it is essential that we de6ne

precisely what is meant by failure time of a subject. In order to do 50, we need to define a

clear time of origjn, a scale for measuring the passage of time and what is meant by a failure

event. The waiting time between the time of origjn and the failure event is often referred to

• as the fallure time or survival time.

2
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1.2.1 Time of Origin

The time of origin is defined according ta the life testing prohlem at hand. H one is studying

the engine failure of automobiles, then a natura! measure of reliahility or failure is mileage

of the vehicle. The time of origin here is at 0 km. If we consider prostate cancer patients

in a clinicat trial then the time of origin can he chosen ta be at the time of diagnosis of the

disease. In this case, it would he appropriate ta take the exact time of onset of the disease

as the time of origin, but this is Dot a1ways possible. Note that the time of origin may Dot

be necessarily at the same calendar date for each subject. Two patients may he diagnosed

at different times in a year, however their time of origin is defined in the same way.

When considering the time of origin, it is essentiaJ to 8SSign a measuring scaJe for the

passage of time. For the survivaI of patients in a clinicaJ trial, time is measured in months

or years. In industriaJ problems, other types of infonnation can be used ta indicate the

passage of time, sucb as miJeage for engines, amount of load for springs or distance traveled

for particles.

1.2.2 Failure Event

Measurement of data for a subject in life testing ends with a faiIure event. In medical fields,

a failure event is often defined as death or as death due to a specific cause. A fallure event

may or may Dot he arhitrary, depending on the problem. For instance, when testing the

reJiability of a washing machine, a choice for the fallure event may he the instant at whicb

the performance of the machine faIls heJlow a predefined level, whereas when testing the

reliability of a lighthulb the fallure event is defined as the instant at which the light bulb

3



• burns out.

1.3 Lire Testing and Related Fonctions

In life testing, the failure time of a subject can be represented by a non-negative random

variable, X say, with a probability density function (pdf) f(x), a cumulative probability

density function (cdf) F(z) and a moment generating function (mgf) Mx(t), if it exists.

The distribution of X is referred to as the life testing model and will be the main concem in

our discussion. The probability that a subject survives beyond a time x is called the survival

function in survival analysis and the reliabilityat time x in reliability. It is denoted by

S(x) = P(X;::: x) = 1- F(x) . (1.1.1)

Throughout the text, we will refer to (1.1.1) as the survival function. Note that in life

testing, it is usually the convention to define the survival function as in (1.1.1) rather than

S(x) = p (X > x). For continuous random variables either definition will work, but for the

discrete case, results vary slightly.

The probability that a subject is failure-free in [x, x + h) given that it has survived until

x is gjven by

P(x::;X<x+h) -p (X > x)
F(z + h) - F(z)

1- F(z)
(1.1.2)

Assume that X is a continuous random variable. The instantaneous failure rate at time

x conditional upon survival to time x is called the hazard fonction and is given by

h(x) - Iim F(x + h) - F(z)
h....O h [1 - F(x)]

f(x)- 1- F(z)• f(x) (1.1.3)- S(x) .

4



• The hazard function h(x) is often called the force of mortality in actuarial science. In mast

areas of application it is called the fallure rate. The hazard function is said to he increasing

if for any Xl < X2 we have h(xd < h(X2). Analogously, the hazard function is said to he

decreasing if h(Xl) > h(X2)' For continuous distributions, we bave that
%

F(x) =Jf(t)dt, f(x) = d:F(x) and f(x) = - d: 8 (x)
o

and 50 (1.1.3) can he rewritten as

h(x) =

d
--S(x)

dx
S(x)

d= - dx log [S(x)] . (1.1.4)

Since SeO) = 1, integration of the ahove equality yields,

8(x) = exp { -/ h(t)dt + log [8(O»)} = exp { -/ h(t)dt} .

The integral round in (1.1.5)
%

H(x) = Jh(t)dt
o

is called the integrated bazarde Upon differentiation of S(x) in (1.1.5), we have

J(x) = h(x) exp {-H(x)} .

The mean residuallife time of a subject with fallure time X is defined as

met) - E(X - tlX ~ t)

Joc I(x)
- (x - t) S(t) dx .

t

(1.1.5)

(1.1.6)

(1.1.7)

(1.1.8)

Given that m(O) = E (X), the mean residuallife time cao he looked at as a generalization

•
of the mean fallure time. Note that, (1.1.8) cao he rewritten as

met) = E (XIX > t) - t , (1.1.9)



(1.1.10)

• so that a possible interpretation of m(t) is that it is the average amount of unused "life time"

of a subject at time t. Using integration by parts with u = x -t and dv = J(x)dx, we obtain
OC)

j S(x)
met) = Set) dx .

t

The fonn of the mean residuallife time in (1.1.10) gives another representation for the mean

failure time by substituting t = o. The representation is
00

E(X) =m(O) = j S(x)dx . (1.1.11)

o

If X is discrete, then some modifications of the above definitions are necessary. If X takes

on values Xl < X2 < X3 < ... then the pdf of X is defined as

The cdf and survival function of X are

F(x) = E J(x;) and S(x) = 1 - F(x) = E J(x;) J

j:Zj<Z ;:Xj~Z

respectively. For discrete distributions, the hazard at Xi is defined to be the conditional

probability of failure at Xi and we write

(1.1.12)

Note that

•
Given that S(Xl) = l, we have by recursion

S(X) - II (1 - h(Xi» and

i-l

J(Xi) - h(Xi) II (1 - h(x;»
;=L

6
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• To he consistent with (1.1.5), the convention is to define the integrated hazard as

H(x) = E log (1 - h(xj»
j:Zj<Z

(1.1.15)

so that

S(x) = exp [-H(x)] . (1.1.16)

(1.1.17)

Example 1. Assume that a system has the following reliability (survival) function:

{

exp (- 2x - 5x2) for x > 0
S(x) =

1 elsewhere.

Differentiation gives the pdf as

{

(2 + lOx) exp (-2x - 5x2
)

f(x) =
o

for x 2: 0

elsewhere

(1.1.18)

and the hazard function is

{

(2 + lOx) for x > 0
h(x) =

o elsewhere.

(1.1.19)

08OlS

11er) = (2 + 10%) exp (-2% - 5z1) 1

0.402

,.,--.....-
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t 008
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OlS

5(&,

•
Figure 1.1: Survival and Density Functions: Example 1
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• 1.4 Censoring

In a liCe testing experiment, it may not alwa.ys be possible to obtain a complete sample

of data, since this May take a long time. In industrial reliabilitY7 an experiment May he

tenninated after a certain time to minimize costs that increase with time. AIso, subjects

May fail due to reasons other than the failure event. For example, a patient in a clinical trial

May die in a car accident. This means that sorne subjects May have incomplete information

and sucb data are called time-censored. Generally speaking, censoring occurs wben exact

lifetimes are known for only a pOltion of the subjects in a life testing experiment. Because

censoring gjves partial information about the life of the subject in an experiment, it must

be recorded and included in any analysis. Censoring, however7 represents a problem in the

analysis of life time data.

A subject is right censored at a time c if it is known only that its failure time, }(, is

greater or equal to c. SimilarlY7 a subject is left censored at time c if its failure time, X, is

less than or equal to c. Both right and left censoring are special cases of interval censoring

where the failure time is observed to lie in an interval. Left and interval censoring are not

as common as right censoring7and so we will restrict our discussion of Iife testing to right

censoring.

The censoring time of a subject in a life testing experin:ent is defined to be the waiting

time from the time of origin UDtil the subject is censored. Like fallure time, censoring time

can he represented by a positive random variable, C, say. Even if a subject fails before the

experiment is terminated, it bas an inherent UDobserved censoring time. In a sunHar fashion,

• if a subject is censored, then it is assumed that it has an unobserved failure time, represented

8



• by a positive random variable X .

If a life testing experiment contains n subjects, then the data observed consist of wait-

ing times, Yb Y2, Y3, .•• ,Yn, where Yi = min (Xi, Ci), i = 1,"· ,n, along with an indicator

fonction, tSi , where

if Xi > Ci

•

and Xi and Ci are the actual failure and censoring times of subject i. If for sorne i, di = 1

then the fallure tirne of subject i was observed and Yi = Xi. If di = 0 then the subject i was

censored and Yi = Ci,

Before we include censoring in our discussion, it is important to describe sorne specific

censoring rnechanisms.

1.4.1 Type 1 Censoring

A type 1censored sampie is one in which the censoring time for all subjects is predetennined

and identical. In other words, we have Ci = c V i, i = 1,2,'·· 1 n. In real life, this type of

censoring may be considered to save time and money since a full sample may take too long

to obtain. Data obtained from sncb a life testing experiment is often called time-censored

data. Figure 1.2 shows an example of type 1 censoring with c = 6.

If n subjects start operation at different time points in an interval [0, cl, and the life

testing experiment is terminated at time c, then data obtained is called multiply censored

data. An example of multiple censoring is displayed in figure 1.3 with c = 6.

9
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Figure 1.2: Type l Censoring : c = 6; Triangle: Censor, Diamond: Failure
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Figure 1.3: Multiple Censoring : c = 6; Triangle: Censor, Diamond: Failure

1.4.2 Type II Censoring

A type II censored sampie is one in whicb only the r smallest failure times are observed

in a life testing experiment of n subjects, with 1 < r < n. This means that the life

testing experiment tenninates at the r th fallure. the data consists of the ordered sample

Y(l) < Y(2) < ... < Y(r) and Y(r) = Y(r+l) = ... = Y(n). Data obtained from type II censoring

is aIso referred to as failure-censored data. This type of censoring is often considered when

testing high cost items sncb as microchips. Figure 1.4 shows an example of type II censoring

with r = 6.

10
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Figure 1.4: Type II Censoring : r = 6; Triangle: Censor, Diamond: Failure

Lawless (1982) also considers a more general type II censoring mechanism called progres-

sive type II censoring. This involves the removal of nL subjects of a sampie of size n, nL < n,

after TL of them have failed, so that n - nl - Tl items are now remaining. The process is

then repeated by removing n2 items after T2 of the remaining n - nl - TL have failed, and so

00.

Most of the analysis conceming type II censoring can be done using order statistics as

will be seeo in chapter 2.

1.4.3 Random and Independent Censoring

In real lire situations, censoring times are often random variables. A random censoring

process is one in which subjects have a fallure time X, and a censoring time C, with X and

C independent variables with survival functions S(x) and G(x) respectively. Type 1censoring

is a special case of random censoring. There is a weaker fonn of independence between the

survival times and the censoring times, which, if satisfied by a life testing model, is sufficient

• for the establishment of Most of the asymptotic results discussed in chapter 2. This weaker

Il
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fonn is called independent censoring (not to be confused with the independence of X and

C in random censoring). Let lI(x) be the history of a subject up to time x. The history

may contain failure times and censoring times for all the subjects in a life testing model and

even covariate infonnation in the case of a regression model. We say we have independent

censoring if

P(x < X:5 x+dxIE(x), X >x) = P(x:5 X <x+dxIX > x) .

This means that independent censoring allows for censoring to depend on mechanisms ex­

temal to the failure process. Note that random censoring is a special case of independent

censoring. Note also, that in type II censoring, we do not have random censoring but we do

have independent censoring.

1.5 Bibliographie Notes

There are numerous books available presenting life testing through various levels of mathe­

matical and statistical sophistication. Books close to the spirit of our subject include Cox

and Oakes (1984), Crowder, Kimber, Smith, and Sweeting (1991), Miller (1981), Sinha

(1986) and Zacks (1992). Kalbfleisch and Prentice (1980) and Fleming and Harrington

(1991) are more advanced texts, but provide more insight into the field. Also, there are

many journals sucb as IEEE Transactions on Reliability which deals with issues in reIia­

bility in engineering. Useful sources for searching for articles in journals are the on-lîne

databases MathSciNet (http://www.ams.org/mathscinet/) and Zentralblatt MATH Database

(http://www.springer-ny.com/ZMATH/) .
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Chapter 2

Distributions and Techniques

2.1 Introduction

Now that we've discussed the nature of failure time data, we proceed to the discussion of its

modeling and analysis. With any statistical inference based on the life testing experiment

and the data acquired, one usually assumes that the data drawn is from a population with

an underlying distribution function, F(x), say. Before starting a life testing experiment,

it is often necessary to make some assumptions about the underlying pdf, J(x), or cdf,

F(x), of the population. These assumptions lead to different models for life data and sucb

characterizatioDS are discussed in detail in Kagan, Linnik, and Rao (1973), Galambos and

Kotz (1978) and Mathai and Pederzoli (1977).

In this chapter we introduce the reader to elementary and complex statistical models and

parameter estimation with and without censoring, as well as non-parametric results sucb as

the product-limit estimator for the survival funCtiOD. The likelihood function for different

censoring mechanisms is also discussed.

13



• 2.2 Elementary Models

Given that failure time is defined to he a positive random variable, it is natural ta begin with

a certain class of distributions. It is evident that the most common distribution in applied

statistics, the DonnaI distribution, will not he particularly effective for explaining life data.

From a stochastic point of view, it makes sense ta describe life data with the exponentiaI

distribution in mind. Even though the exponentiaI model is quite Iimited for life testing

experiments, it Ieads to generaIizations sucb as the gamma, Weibull and generaIized gamma

distributions whicb perfonn very weIl in applied settings.

In the next subsection, we will discuss briefty properties of these elementary modeIs. We

hegin with the simplest life testing model.

2.2.1 Exponential Model

S(x) =

H we begin with the assumption that a population has a constant hazard rate

{
X if x > 0, ,\ > 0

h(x) =
o ifx < 0

then from (1.1.5) we have that the survivaI fonction is

exp (- ~1dt) = exp(-x/A) for x >0

(2.2.1)

(2.2.2)

•

1

Application of (1.1.7) gjves the density of X as

{
!. exp (-xl'\)

I(x) = ,\
o

14

elsewhere.

for x > 0, .À > 0

elsewhere.
(2.2.3)



• The pdf in (2.2.3) is the exponential density function with parameter ~. The moment

generating function (mgf) of the exponential distribution is

1
Mx (t) = 1 _ ).t for t < 1/).. (2.2.4)

The exponential model is a natura! distribution in life testing, and is a special case of the

Weibull and gamma distributions as will be seen shortly. It is also the simplest model in life

testing and, hence, one of the most exploited distributions. The constant hazard assumption

implies that the exponential model is weIl suited for populations where there is no wearing

or aging. This is referred to as the ''no memory property" and can be expressed as

p (X ~ x + tlX > x) = P(X > t) = exp (-t/~) . (2.2.5)

This means that under the exponential model, future survival of a subject does Dot depend

on its pasto Obviously, this model is poor for explaining life data, sinee in reality most

objects age in sorne sense.

Example 2. Putting À to be equal to 1, 2 and 0.3 gives the following survival functions:

S1 (x) = exp (-x), S2(X) = exp (-x/2) and S3(X) = exp (-x/O.3) .

These are shown in figure 2.1. Their corresponding pdf and hazard functions are:

f1(X) = exp (-x) ,
1

f2(X) = 2exp (-x/2) ,
1

f3(X) = 0.3 exp (-x/O.3) ,

•
Note that for the exponential model, it is easy ta see the relationships between the hazard

function, pdf and survival function (see chapter 1).
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Figure 2.1: Exponential Density and Survival Functions

2.2.2 Gamma Model

A generalization of the exponential model discussed in section 2.2.1 is the gamma model

(2.2.6)

with two parameters. The density of the gamma distribution is

{

>,0;( ) xO- l exp (xl>') for x > 0, Q > 0, >. > 0
I(x) = Ct

o elsewhere.

The parameters Ct and ;\ represent the shape parameter and scale parameter, respectively.

An integral representation of the gamma function, r(x), is given by
00

r(x) = / tz - l exp (-t)dt, x > 0 . (2.2.7)

o

For example, f(5) = 4! and r (~) =,fii. Properties of the gamma fonction are discussed

in detail in Mathai (1993).

Putting Ct = 1 in (2.2.6) shows that the density of the exponential model given in (2.2.3)

is a special case of the gamma model. The cdf and survival function of X in this model

•
do not have closed forms and are given in tenns of incomplete gamma integrals. They are,

16



• respectively

F{x) = { :(X, a, À)

and

{

1 - 1'(x, cr, A)
S(x) =

1

The incomplete gamma function 1'(x, cr, A) is

for x > 0, À > 0, cr > 0

elsewhere,

for x > 0, A > 0, Q> 0

elsewhere.

(2.2.8)

(2.2.9)

(2.2.10)

More on the incomplete gamma function can be found in Mathai (1993). The bazard function

of X is given by

h(x) =

Ào;(a) x
O

-
l
exp (-xlÀ)

1 - "Y(x, cr, A)

o

for x > 0, À > 0, ct > 0

elsewhere.

(2.2.11)

UnIike the cdf, survival function and hazard function for this model, the mgf of }( bas a

useful cIosed fonn:

1
Mx(t) = (1 _ Àt)Q for t < 1/À. (2.2.12)

•

The choice of parameters can greatly affect the shape of the hazard function. If one puts

cr = 1 and A = 1, then we are considering an exponential mode] and the hazard is constant.

For cr = 2.3 and À = 0.3 the hazard is monotone increasing and for ct = 2 and ,\ = l.5, it

is monotone decreasing. This can he seen in figure 2.2. These choices for the parameters

produce the following density functions:

1 1.3 )
fI (x) - exp (-x) , f2(X) - .07317159387x exp(-x/0.3 ,

1 _
- 2.25xexp (-x/l.a) ,

17



• Example 3.
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Figure 2.2: Gamma Hazard and Density Functions

2.2.3 Weibull Model

Another generalization of the exponential model is the Weibull model which, like the gamma

(2.2.13)

model, has two parameters. The pdf of X in this model is

{

~xtl - l exp (-x:) for x> 0, (3 > 0, À > 0
I(x) =

o elsewhere.

Note that by substituting {3 = 1 in (2.2.13), we obtain the exponential density in (2.2.3).

The Weibull distribution is one of the most common and weil suited distributions to model

failure time data. Unlike the gamma distribution, the survival function, cdf and hazard

function have clœed forms in this case. They are

{
( xD)exp --

S(x) = 1 À

for x > 0, À > 0, {3 > °
elsewhere,

(2.2.14)

and

• {

~xB- 1 for x > 0, À > 0, fJ > 0

h(x) = 0 e1sewhere.
(2.2.15)
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• Unfortunately, the mg! of the Weibull distribution does not have a closed fonn. The moments

of X are

#-I~ = )t/6r (i + 1) for r = 1,2,3,··· (2.2.16)

H.urd: e.mp.4
1I1---- -~------------

13=1 ).:0.63

'4

'2

01

~
.8~2.1

04

0.2 __-----l.5 ~7.4

o 05 --'---'""""=fi--~----:"2.~5---'

01

5(.)

04

Figure 2.3: Weibull Hazard and Survival Functions
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Figure 2.4: Weibull Density Functions

Example 4. Just as in the exponential model, it is easy to see the relationships between the

pdf, hazard and survival functions in the Weibull mode!. However, like the gamma model, it

• depends on two parameters which determine the shape of the hazard function. The models

19



• shown in figures 2.3 and 2.4 are those corresponding to the following pdfs:

2.2.4 Generalized Gamma Model

We have seen that the exponential mode! is a special case for both the gamma and Weibull

modeJs. H we consider an even greater generalization of these modeJs, then we access a

wider, richer family with which to describe life testing data. This generalization is called the

I(x) =

generalized gamma model and it has a density function defined as:

{1 6o //J
_-=--=_xQ

-
l exp (-6x/J) for x > 0, Ct > 0, {3 > 0,6 > 0

r(;)
° elsewhere.

(2.2.17)

Putting fJ =l and 0' = l gives the exponential distribution in (2.2.3) with parameter 5 = ~.

With a = {3, we obtain the Weibull density in (2.2.13) with parameters tS = ~ and cr. For

fJ = l, we obtain the gamma density in (2.2.6) with parameters 0' and 5 = ~. In (2.2.17),

the quantities cr and {3 are referred to as the shape parameters and 6 is called the scale

parameter. Since the exponential, gamma and Weibull distributions are used often in life

testing, it makes sense to analyze life data through generalized gamma distributions.

The survival fonction and hazard function for the generalized gamma model cao be given

•
in tenns of incomplete gamma integrals. These are:

{

1- ,(x/J,a//3, 1/6) for x > 0,6> 0, o:/f3 > °
S(x) =

1 elsewhere.

20
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• and

h(x) =

fJ 6Q
/
tJxo - 1 exp (-6xtJ )

for x > 0, cS > 0, 0:/fJ > 0
r (~) (1 - -y(xll , a/p, 1/6)) (2.2.19)

o elsewhere.

The moment generating function of the generalized gamma, given in Stacy (1962), is equal

to

Mx(t) =
(

t )i (0 + i)f: 6ïï6 r T
;=0 i! r (~)

(2.2.20)

defined for t < c, 0 <c. H fJ = 1 then t < cS. However, if fJ < 1, then t < c = 0 and if 13 > 1

then c = 00. Thus, setting 0: = 13 and cS = ~ produces the moment generating function for

the Weibull distribution.

:3 6D/ 6 08

f(z) = r (Q/fJ)r-
1
exp (-6r')

011

5(.)

04

--_ œ=J~1ô=2.1
02------ 0

08 OS 12 14 III , 8 2

-"'-, a=3 Il=15=2.1

''',
a.=11l=2 5=~'\.'. IS(;r) = 1 - ..,(r'.a/8.1/6)1

'"-"'-

05

Figure 2.5: Generalized Gamma Density and Survival Functions

Example 5. H we put 0 = 3, /3 = 1 and cS = 2.1 the density is

•
) 2.13 2 ( )

fl(X = T X exp -2.1x .

For cr = 1, {3 = 2 and cS = 1 we get

21
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• and for ct = 0.8, fi = 0.5 and cS = 3 the density is

0.5 31.6
f: (x) = x-O.2exp (-3xo.s)

3 r (1.6) .

These examples are shown in figure 2.5 ahove.

2.2.5 Extreme Value Model

(2.2.23)

Another family of distributions worth mentioning is one related to the Weibull family. The

model is called the extreme value distribution and is used to study the properties of the

Iog-failure time, Y = log (X). The pdf of Y is

- 1 {Y-Il (Y-J.l)}I(y) = ~exp -q- -exp -q-

for -00 < Y< 00, -00 < Il < 00, q > o. The survivai function of Y is

(2.2.24)

(2.2.25)

for -00 < y < 00, -00 < Il < 00, q > O. Note that the extreme value distribution

has support on (-00, (0). In life testing, the extreme value distribution often arises as the

distribution of Y = log (X); this is equivalent to the assumption that ,X bas a Weibull

distribution. The relationships between parameters in (2.2.24) and (2.2.13) are

1 1
JJ = -log (À) and (j = - .

13 13
(2.2.26)

Example 6. Figure 2.6 shows three examples of extreme value density functions. These

are:

Ît(y) - ~exp{Y;l_exp(Y;l)} ,
h(y) ~ {Y-2.6 _ e- 2.6)} and- 3.7 exp 3.7 exp 3.7• h(Y) - exp {y - exp (y)} .
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• Using (2.2.26) we find the density function of X = exp (Y). The Weibull densities corre-

sponding to the pdfs above are

fl(X) 0.5 ( X
O

.
S

)- x-O•5
e- L/ 2 exp - e- L/ 2

f2(X) o27027 ( X
O

•
27027

)• -0.72973 and- 2.0192 x exp - 2.0192

f3(X) - xexp(-x) .

Denùy: Exampe 6

1l=OCJ=l

4
y

6 tO

Figure 2.6: Extreme Value Density Ftmctions

2.2.6 Normal and Log-Normal Models

Here we assume that Y = log (X)7 where Y is nonnally distributed. This is equivalent to

(2.2.28)

(2.2.27)

for -00 < y < 00, -00 < IJ. < 00 and 002 > o. The associated pdf for X is

f(x) = 1 ( (log(x) - JJ)2)
J21rq2X2 exp 20'2

assuming that X has a log-normal distribution. The pdf of the normal distribution is

- 1 ( (y - 1J)2)
J(y) = ~exp 2002

•
23



• where x > 0, -00 < P. < 00 and fil > o. The survival and hazard functions for X involve

the incomplete normal integral.

32.521.5x

J( ) =_1_ (_(log(Z> _1$)3)
Z ";21ro3z3 exp 203

Densily: Exa~1e 7

0.5o
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\
i
\
\\ ).1=-1 0=2

\
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l
\
\

\
\
\

\
0.5

1.5

y 1

Figure 2.7: Log-Normal Density Functicns

Example 7. In figure 2.7, we show three log-normal density functions. These are:

fi (x) _ 1 e (_ (log (x) + 1)2)
2x~ xp 8 '

1 ( (log (x) - 2.6)2)
f2(x) - 3.7x~exP - 2(3.7)2 and

f3(x) _ 1 exp ( (IOg(X»2).
x~ 2

2.3 Complex Models

•
In this section, we examine more complex models sncb as mixture, series, parallel and re-

placement models. Here the complexity of the models is increased to better explain life data

and real life situations. Each type of model involves k failme times X b X 2 , ••• ,X" . For

24



• each fallure time Xi, i = 1,2,"· ,k, there is an associated pdf, cdf, survival function and

hazard function, denoted hy fiez), Fi(z), Si(Z) and hï(z), respectively.

2.3.1 Mixture Models

Thus far, we have considered cases where subjects in a life testing experiment come from

the same population. Assume DOW that we have a mixed population, with k different sub..

populations. Each sub-population, i, has an inherent failure time Xi' Let Tnï he the propor­

le
tion of the i th sub..populatioD with respect to the whole population, so that E mi = 1. The

i=l

survival function for the whole population is

le

S(x) = p (X > x) = E {1nïP (Xi ~ x)}
i=l

le

- E {miSi(X)}
i=l

Thus, the pdf of X is given by

le

I(x) = E {Tnj/i(x)} ,
i=l

so that the hazard function is

(2.2.29)

(2.2.30)

h(x) =

le

E {rr1.i/i(x)}
i=l

le
E {rr1.iSi(X)}
i=l

(2.2.31)

The above equality indicates that the failure rate of the whole population is a weighted

average of the faïlure rates of the sub..populations.

Example 8. Let k = 4 with ml = 0.05, m2 = 0.55, m3 = 0.1 and m4 = 0.3 so that

4

L mi = 1. Let the failure times for the 4 populations he generalized gamma variables with
i=l

• parameters QI = l, /31 = 1, 51 = 1, Q2 = 2, /32 = 1, 52 = 0.5, Q3 = 3, l3J = 1, 53 = 2, and
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Figure 2.8: Mixtures Density Function

ct" = 1.5, (34 = 1, <5" = 0.7, respectively. The resulting density

I(x) = O.OSexp(-x) + (O.55)O.52xexp(-O.5x) +

o7l.5
O.4x2 exp (-2x) + 0.6 jrr XO.

5 exp (-0.7x)

is plotted in figure 2.8.

2.3.2 Series Models

Consider a system of k transistors arranged in a series. The failure of any one of these

transistors causes the entire system to fail. This model is known as a series model with

k modes, where a mode represents a transistor, say. Let Xi he the failure time of the i th

mode. Assuming that the failure times are mutually independent, there are two scenarios

to consider. If the mode of fallure is known, we are in a competing risks mode!. This is

discussed in more detail in Cox and Oakes (1984)) and Lawless (1982). H the mode of failure

is not known and the failure time of the whole system is X = min (XL, X 2 ,··· ,Xk ), then

only X is observable. In this situation, the survival function of X can be derived through
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• the use of order statistics.

S(x) - P (X ~ x) = P (all Xi > x; i = 1,2,··· ,k)

k

- IIp(Xi>x)
i=l

k

- II Si(x) .
i=l

(2.2.32)

(2.2.33)

(2.2.32), we obtain

Also, from (1.1.5), we have the identity Si(X) = exp { -/ h>(t)dt}. Substituting this in

S(x) - exp { - t /h>(t)dt }

- exp {-/thi(t)dt} .

The representation of S(x) in (2.2.33) gives the hazard fonction of X by comparison with

(1.1.5):
k

h(x) = L hi(x) .
i=l

(2.2.34)

Thus the hazard function in a series model is simply the sum of the hazard functions for each

mode. This indicates that the survival or reIiabiIity of the system is less than the reliability

of the individual components that make up the series.

Example 9. fi we have a series with 3 modes where the fallure time for each mode is a

Weibull random variable, Xi for i = 1, 2, 3, with parameters /31 = 1, À l = 2.3, /32 = 1.7, À2 =

(2.2.35)

0.5 and /33 = 2, À3 = 1.1, respectively, then the survival fonction of X = min (XL, X 2 , X 3) is

(

X X 1.7 x2)
S(x) = exp - 2.3 + 0.5 + 1.1

and its hazard function is

1 2
h(x) = 2.3 + 3.4xO.7 + 1.1 x .

• These functions are plotted in figure 2.9.

(2.2.36)
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Figure 2.9: Series Survival and Hazard Functions

2.3.3 Parallel Models

Consider now a system where k components are connected in parallel. Each component

i has a survival function denoted by Si(X), For each survival function Si(X) there is an

associated cdf and pdf denoted by Fi(x) and !i(X), respectively. The system fails when all

of the components fail. This system is called a parallel mode! and the failure time of the

system is X = max (X17 X 2 ,··· ,X,,). Let's assume that only X is observable and that the

fallure times Xi are mutually independent. The survival function of X is given in tenus of

its cdf.

•

S(x) - p (X > x) = 1 - P (X < x)

- 1 - P (all Xi < x)

"- l-IIp(Xi<x)
i=l

k

- 1 - II Fi(x) .
i=l

Differentiation of this equality gives the pdf, I(x), of X

/(x) = t [h(X)g{F;(Xn] .

28
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Denee, the hazard is simply the ratio of the pdf and the survival funetion as defined in• (1.1.3):

t [/;(X) lJ {Fi(X)}]
h(x) = ;#] .

1 - n fi(x)
i=l

(2.2.39)

03
oa

De

04

02

"" ISCz) = I-(l-'~) (.-.-i.r) (l-"'~ll
'",

'''.

04

i
!
1

f
02 !

1

i
i

0' i

O-.ny~'o,...
l ,

( .
1 ..

: \~

\.

\"\
,,

"-
'",.

"' .... ' ........~--_._._...

'0

Figure 2.10: Parallel Survival and Density Functions
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Figure 2.11: Parallel Hazard Function

Example 10. Examine a parallel system with three components ail having e."'<Ponential

• failure times with parameters "\1 = 1, À2 = 1.7 and ...\3 = 0.4, respectively. Then the survival
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•

•

function for the fallure time of the system is

S(x) = 1- (1 - e-%) (1 - e-1~7) (1 - e-2.5%) .

and the pdf of the failure time is

f(x) = e-% (1 - e-1~7) (1 - e-2.lô%) +

x
1 --- (1 - e-:r) e 1.7 (1 - e-2.5:r) +

1.7

2.5 (1- e-%) (1 - e-1~7) e-2.500 •

The survival function and pdf are plotted in figure 2.10.

2.3.4 Replacement Models

In real world applications, it is often necessary to have spare parts available for a crucial

component in a system. One might be interested in evaluating the reliability of a component,

given that there are only k spare parts for it. AItemativeIy, one may wish to know what the

number k should he to attain a certain level of reliahility.

Here, we denote the failure time of the first component as Xl, and the failure time of

replacement part i as Xj, i = 2,3,··· ,k + 1. Also, we assume that the failure times Xj,

i = 1,2,··· ,k + 1, are mutually independent. The failure time for the whole process of

fallure and replacement is the SUffi of alI the failure times, X = Xl + X2 + ... + Xk+[.

Depending on the type of model for each Xi, the survival function of X may not he

so easy to calculate. If the failure times are aIl from the exponential model with the same

parameter À, then the survival function of J~ is easily computed from the moment generating
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• function in (2.2.4);

(2.2.40)

(2.2.41)

Mx(t) is the moment generating function of a gamma model (2.2.12) with parameters ,\

and cr = k + 1. If we generalize further and let the failure times Kit X 2 , ••• ,Xk +1 he all

from the gamma model, then the survival function is more difficult to compute. Results

developed and discussed in chapter 3 will give computable forms for the survival function of

a replacement model with gamma type failure times.

2.3.5 Linear Risk Models

In the exponential model, we begin with the assumption that X has a constant hazard rate.

Assume now that X has a linear hazard rate

{

À +,\ x for x > 0
h(x) = l 2

o elsewhere.

The integrated hazard function is obtained by integrating (2.2.41) with respect to x and it

is

{

À2 2

H(x) = OÀIX + 2"x for x > 0

elsewhere.

(2.2.42)

•
Using results in chapter 1, one has

{

exp (-ÀlX - À
2

x 2
)

S(x) = 2

1

31

for x> 0

elsewhere

(2.2.43)



(2.2.44)
{

(Àl + À2x) exp (-À1X - À
2

x2) for x > 0
f~)= 2

o elsewhere

for the survival and pdf of X, respectively. Clearly this model can he extended ta the case

and•
where the hazard is a polynomial, h (x) = À1 + À2x + ... + Ànxn .

HCMt~" Sinftral· e....,. "

15

10

5

Figure 2.12: Linear Risk Hazard and Survival Functions
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Figure 2.13: Linear Risk Density Function

• Example Il. Figures 2.12 and 2.13 give three examples oflinear risk models. The functions
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• plotted correspond to models with the following hazard functions:

h1(x) - 3.8,

h2 (x) - 2.3 + 2.3x and

h3 (x) - 0.6 + 4.4x .

2.3.6 Regression Models

(2.2.45)

(2.2.46)

(2.2.47)

The inclusion of regressor variables for the failure time X in a life testing experiment is

another way to account for homogeneity in a population. These regressors are typically

extra variables related to the failure. For example in a lung cancer study, regressors may he

sucb variables as age and sex of a patient and the size and type of tumor. In a reliability

study for an electrical component, one may have the amount of stress or voltage administered

and the model of the component as regressors.

Regression models allow for the inclusion of regressor variables in life testing experiments.

The survival function S(x) no longer depends alone on the failure time X. If Yb Y2 ,··· , l'l

are the regressors of a model then Y = (YL, 1'2, . .• ,l'l) is the regressor vector. The survival

function is now a function of X and the regressors Y, and thus is denoted by S(xIV).

Regression models are discussed in detail by Kalbfleiscb and Prentice (1980) and Lawless

(1982).

2.3.7 Remarks

There are many reasons to select a particular life testing model. For instance, past experience

• and knowledge of the underlying fallure process may suggest the validity of a chosen mode!.
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• Often, one model is ahandoned for another because of ease of use in computations. This is

often the case with the exponential or Weibull model where the survival fonction and hazard

function have closed forms. The gamma mode! however does not have closed forms for S(x)

and h(x) but it has a closed fonn for its mgf Mx(t) which makes it particularly useful for

cases with replacement models. In cbapter 3, the mgf of the gamma model will he used ta

develop techniques for gamma type models.

2.4 Estimation and Approximations

Suppose that the survival function and related life testing functions need ta he estimated

based on failure time data Yb Y2, ... ,Yn from n subjects. There are two cases to considere

One is that the life testing experiment lasts as long as all the subjects survive. In this case,

our random sample is complete in the sense that we have failure times for all the subjects.

Here one uses standard elementary statistical methods ta analyze failure time data and ta

cbeck for the validity of a particular model. The other case ta consider is that of a life

testing experiment which yields only partial information on the failure times of the subjects.

The analysis of a failure process when censoring is present varies depending on the fonn of

the censoring mechanism. Note that, as outlined in chapter 1, determination of either the

hazard function, pdf or survival fonction detennines a given life testing model uniquely.

For the next portion of our discussion, we confine our results to the case where the failure

times of subjects are continuons. Furthermore, we only examine type l, type II and inde­

pendent censoring. For more general censorïng mechanisms sucb as independent censoring,

• results are sunHar to those of random censoring and we refer the reader to Kalbfteisch and
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• Prentice (1980), Lawless (1982) and Fleming and Harrington (1991) .

2.4.1 Parametric Estimation

We now give sorne details on maximum likelihood for the purpose of estimating the parame­

ters ~ = (817 82 , ••• ,8",)t of a certain Iife testing model. The method of maximum likelihood

is used to fit a parametric model to an observed set of Iife testing data. Let X it i = 1,· .. ,n,

be the failure times of n subjects with censoring times Ci, i = 1,··· t n. The observed Iife

data is best described using the pair of random variables (Yi,8i ) where

Yi = min (Xi, Ci) i = 1,2,··· t n

and

{

1 if Xi < Ci
8i =

o if Xi > Ci .

The observed data is thus the pairs (Yb 5d, ... ,(Yn, 6n) where Yi

(2.2.48)

(2.2.49)

= min (Xi, Ci) for i =

I t 2,··· ,n. Furthermore, assume that the failure times of the n subjects are independent

and identically distributed with pdf f(x) and survival function S(x). We use this notation

throughout the section.

Complete Sample

We begin with the assumption that the faîlure times have been observed for the n subjects

in a Iüe testing experiment. Hence~ no censoring times have been observed. The like1ihood

•
of the n observations, Xb X2, ••• ,Xn is simply

n

L(~) = II I(xi) .
i=l
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• The like1ihood is a function of the unknown parameters ~ = (9t , 92 , ••• ,9,,)t. In mast cases,

it is more convenient to work with the logarithm of the likelihood function, log (L(~». The

values of ~ which maximize L(!!.) are the same values which maximize log (L(ft». Maximum

likelihood estimators and confidence intervals for complete samples for Many life models are

discussed in detail in Zacks (1992).

Type II Censoring

In type II censoring, only the T smallest failure times are observed, l < r < n. Consider the r

fallure times Yb Y2,··· ,Yr and order them to find the ordered sample x(t) < X(2) < ... < x(r)'

From results in order statistics (see Balakrishnan and Cohen (1991)) we have that the joint

distribution of the ordered failure time sample is

(2.2.51)

The equation in (2.2.51) gives the likelihood function for type II censoring. Note that

Y(i) = x(r) for i = r + 1, r + 2, ... ,n. As a result, type II is not a case of random censoring.

Type 1 and Random Censoring

In this case, we assume random censoring which includes type 1 censoring (Ci = C "V 1 =

1,2, ... ,n, C is a constant). Let the random censoring times denoted by C ll C2 , C3 , ••• ,Cn

be independent and identically distributed with pdf g(x) and survival function G(x). Theo

the likelihood of the pair (Yil hi) is easily obtained by

• - g(t)S(t)
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• - f(t)G(t)

so that

Henee, the likelihood function for the pairs (yL, 6d, ... ,(Yn, 6n) is given by
n

L = L (ftl (Yb ( 1), ••• , (Yn' 6n» = II [f(Yi)G(Yi)]6i [g(Yi)S(yd]l-6i
•

i=l

(2.2.53)

(2.2.54)

(2.2.55)

Under the assumption that the censoring times have no eonnection to the failure times of the

subjects, the produets involving g(Yi) and G(Yi) do not involve parameters of the survival

funetion of the failure times. This assumption is known as non-informative eensoring. The

censoring functions in this case do not need to be considered when maximizing the likelihood

function (2.2.55). Note that for non-informative censoring, the lik~lihood function for Type

II censoring is the same as that for Type 1 and random censoring. It also turns out that the

likelihood above under non-informative censoring
n

L(fi) = II [f(Yi)]6i [S(Yi)] l-di

i=l

(2.2.56)

is a1so the likelihood for independent censoring under non-informative censoring (see ap-

pendix A).

Numerical Solutions

As described in ~[iller (1981), the method of scoring and the Newton-Raphson method are

useful in finding numerical solutions to max L(fl). This is equivalent to finding the solution
t

•
i. to the system of equations

Ô
Q= ~ log (L(Il» ,
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• a ( â a)twhere ô8 log (L(fl)) = ô8 log (L(fl)) , ... , 00 log (L(fl» .
_ l le

The Newton-Raphson method is the recursive solution of (2.2.57) given by

~I+l = ~I + [_ (~) (~YIOg(L@)I~=rrl ~IOg(LŒ»I~=?
The vector

~IOg(L(®)I~=r
-l

is called the score vector at ~ and the matrix

(2.2.58)

(2.2.59)

i (~I) = - (~) (~Y IOg(L(®)lf=~

-a
fJ2
(J2 10g(L(~»1 _

1 t=Il.'

-atiJfJ log (L((l)) 1

k 1 t='l
~

is called the sampIe infonnation matrix at ~.

- ÔéJ282 log (L(fi» 1

k t=i!

(2.2.60)

(2.2.61)

If the operations of integration with respect to Yi and diiferentiation with respect to ~

can be interchanged tben one can show that the score vector ~ log (L(®) has expectation

oand the covariance matrix

E (i(ft» = 1(Il) ,

where 1(fi) is the Fisher information matrix:

[(Il) = E ([~IOg(L(®)] [~IOg(L(®)n

If one uses 1(9) in (2.2.58), the recursive solution to (2.2.57) is

(2.2.62)

(2.2.63)

(2.2.64)

•
..... 1+1 ..... 1 [ ..... l ] -1 Ô 1

fi = fl + 1(!1) ôfl log (L(fi» t=l .

This is known as the method of scoring. The derivation for the Newton-Raphson method is

given in appendix B where other optimization techniques are also discussed.
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• Confidence Intervals Under General Censoring

Miller (1981) gives three methods for confidence intervals under general independent cen-

soring. He states that under smoothness conditions, the maximum likelihood estimator ~ is

asymptotically distributed as a normal random variable with mean value ~ and covariance

matrix [I(~)]-1. There are three methods for testing Ho: ~ = (JO versus Hl: ~ i: (JO. These

are based on:

• Wald's Statistic

• Score Statistic (RaO'8 Method)

[~ log (L((l» It=t>] t [I(OO)r
l [:/t log (L(It» It=t>]

• Likelihood Ratio Statistic (Neyman-Pearson/Wilks)

-210 {L(9~)} .
g L(~)

These three statistics are asymptotically distributed as a chisquare with k degrees of freedom

under Ho. In most situations, particularly when censoring is present, it is difficult ta calculate

Fisher's information matrix l(!!.). Instead we use the approximation i(fi) in the statistics given

above.

Let U(~ denote one of the statistics above. Ta find a confidence interval for U(f1l), one

finds a constant ~ (a) sucb that

and Z is distributed as a chisquare with k degrees of freedom. Thus one rejects the null

hypothesis, Ho, when U(f1l) > xi(a). Cox and Oakes (1984) state that these three methods•
p (U(iJO) < xi(a» ~ p (z < xi(Q)) = 1- a , (2.2.65)
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• usually yield the same results, but that the ükelihood ratio statistic is strongly recommended.

For more on properties of the maximum likelihood estimator, see Bamdorff-Nielsen (1983),

Barndorff-Nielsen and Cox (1984), Bartholomew (1963), Efron and Hinkley (1978) and Rao

(1973).

Example 12 (Exponential Model: No Censoring). Assume that we have a complete

sample. Let (XL, X2, X3, ••• t xn ) be random fallure times and assume that the failure times

are independent and identically distributed under the exponential model. Given the observed

failure times, we wish to estimate the mean life ,\ of the exponential model. The log-likelihood

function for this model given the data is

~X·
l(A) = -n log (À) - L-t ...! .

i=l n
(2.2.66)

•

The maximum likelihood estimator of À is the solution to

t Xi

d~ l(A) = i=l2n
- X= 0 (2.2.67)

__ ft x. __ __ À2 --

which yjelds ,\ = E -!. Note that E(À) = À and Var(À) = -. The properties of À for the
i n n

exponential model are known. Sinha (1986) shows that ~ is the uniformly minimum variance

unbiased estimator (UMVUE) of À.

Example 13 (Exponential Model: With Censoring). In this example, assume that we

have right independent censoring. The failure time data consists of (Yl, Y2, •.. ,Yn) along with

the indicators «()1' ()2' ••• ,()n)' Further, let the fallure times he independent and identically

distrihuted under the exponential model. The log-likelihood function is given by

(2.2.68)
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(2.2.69)• The maximum likelihood estimator under these assumptions is given by solving

d ~tSi ~Yi
d,\ l('\) = - LJ ,\ + LJ ,\2 = O.

i=L i=L

Tbe solution to (2.2.69) is À= (* Yi) / (*6i). Note tbat tbis solution makes sense if

there is at least one fallure in our sample; that is there is at least one i sucb that di = 1.

Now an estimate for the variance of Â is given by looking at the second derivative of the

log-likelihood function (2.2.68) with respect to '\.

(
n )Edo

_ d
2

LI = i=~ 1

d,\2 X ,\2

-
so tbat s.e.(À) "" ( À ) , wbere s.e. is the standard error.

JEtS;

Functions of the MLE

(2.2.70)

Let ~ he the calculated maximum likelihood estimator for ~ in a given model. A quantity of

interest May he a function of fl... For instance, we may have

t/J = m(m , (2.2.71)

where m is a one-to-one function. From the theory of maximum likelihood estimators, the

maximum Iikelihood estimator of t/J is simply

;; = m(~) . (2.2.72)

For example, researcbers in reliability and survival analysis are often interested in estimating

a quantile, q(P) say, of a particular life testing model. Here, q(P) is the quantity sncb that

•
(2.2.73)
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• where 0 < p < 1 is specified before hand. The maximum likelihood estimator of the pth

quantile is given by solving (j(p) in

(2.2.74)

The sample information matrix i (~) is the estimated covariance matrix of the maximum

likelihood estimator~. Hence, if

(2.2.75)

where i = 1, ... ,k and j = l, . " ,k, then J (qi') is an estimate of the standard error of the

parameter Ôï sucb that ~ = (il" .. ,~).

The standard error of the maximum likelihood estimator ~ is needed to make any in-

ference about 4> = m(ft). Crowder, Kimber, Smith, and Sweeting (1991) give a standard

procedure for estimating the variance of 4>. It is called the delta method and it gives the

standard error as

s.e. (if;) ~ {tt [~im(~ :ejm(~] (Ti
j}1/2 , (2.2.76)

where the partial derivatives are evaluated at~. H we have k = 1 then ~ is a scalar, 9 say,

then s.e.(if;) ~ l~mll9=iv'(Tll. A derivation ofthe delta method is given in appendix C.

Example 14 (Weibull Model: With Censoring). Assume that a liCe testing sample

(Yb Y2, ... ,Yn) along with indicators (aL, 52, ... ,dn ) arises from a Weibull modeL The log-

likelihood is
n n n 1 n

I(À, (3) = L di log (,8) - L di log (À) + (,8 - 1) L d,log(Yi) - ALU:' (2.2.77)
i=l i=l i=L i=L

With the transformation Zi = log (Yi), it is equivalent to consider the log-likelihood from an

extreme value model (see section (2.2.5». The log-likelihood of the extreme value model is

~ ~ JJ (1 - (1)~ ~ (Zi - JJ)
• l(p., (1) = - tt di log (u) - ~ di u + u ~ diZï - ~ exp u . (2.2.78)

42



• The partial derivatives of l(J.', 0') are

(2.2.79)

ri ri ra

8 E~i E~iZi IJ E~i
i=L i=L i=L

8O"(J.l.,O') - ---- +
0' 0'2 0'2

~(z; - JL) exp (z;; JL)
+ (2.2.80)

0'2

(2.2.81)

(jl
81J2'(J,J,O') -

~
8O'2l (J,J,O') -

(2.2.84)

(2.2.85)

•

The maximum likelihood estimators of (p, 0') are given by solving

~ -ÛIog(t(t~r)) ~d
t ~iZi t ZiexP (~)

O - i=L - _ i=L (j
- ri +0' ri Zï'

t; ~i t; exp (û )
Renee, solving for (Ji, û) simultaneously reduees to solving for (j in (2.2.85) by numerical

methods and then substituting back into (2.2.84) to find p..

To obtain the sample information matrix at (Ji, a), one needs only to evaluate the second

order partial derivatives (2.2.81), (2.2.82) and (2.2.83) at Cil, û). This simplifies the equations
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• somewhat:

:21(IJ,U)1
l' (p,û)

(2.2.86)

(2.2.88)

n [2Zi exp (z;; il) (Z; - jtj2exp (z;; il)]
~ â3 + â4 (2.2.87)

cP 1 _ n [(Z; - il) exp ( Zi Û il)]
a aql(p.,q) __ - E t73 .

1J (""cT) i= l

These equalities are used in constructing the sample information matrix i(l1, û) given by

(2.2.61). Given that the parameters of the extreme value and Weibull models are related

by p. = 1/,8 log (À) and CT = 1/,8, one can use the delta method to find estimates for the

standard errors of:\ and 13, the maximum likelihood estimators of ,\ and {3. The method

gives

Var(,B) ::::; ~ Var(û) and

( 211) -2 (211 )exp -;;:- 1J exp -;;:-
Var(::\) ~ -2q Var(J1) + -4 q Var(û)

CT q

2ilexp C~)
-3 CT Cuv(l1, (1) .
CT

(2.2.89)

(2.2.90)

•

An estimate for the covariance matrix of (11, (1) is obtained by examining the inverse of the

sample information matrix i(il, (1).

Example 15 (Gamma Model). For the complete sample case, resuIts for point estimation

for the gamma and generalized gamma models have been discussed thoroughly in Lawless

(1982) and Hager and Bain (1970). As in the example above for the Weibull model, we give
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• the general fonn for the log-likelihood under type l, type II and random censoring for the

gamma mode!.

We begin with the life testing sample (YI, Y2, .•• 1Yn) along with the indicators (611 621 ••• , dn ).

Define fi and y as

(2.2.91)

(2.2.92)

These correspond to the analogous definitions of the arithmetic and geometric means in the

complete sample case. We use fi and y to write the log-likelihood function as

n n n

l(a, À) = - E ,sia log (À) - E,si log (r(a» + (a - 1) E,si log (y) (2.2.93)
i:=l i:=l i:=l

n _ n

E 6i X+ E (1 - ,si) log (1 - -Y(Yi, a, A» .
i=l i=l

The incomplete gamma function used in (2.2.93) is defined in (2.2.10). The partial derivatives

(2.2.95)

(2.2.94)

8
8A l(a, À) =

of (2.2.93) are

8
8a l(a, À)

~r(a)
where tf;(a) = d~(a) is the digamma function. Properties of the digamma function can he

found in Mathai (1993». Equating these partial derivatives to zero and solving for a and À

• gives the maximum likelihood estimators for the gamma mode!. The equations (2.2.94) and
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• (2.2.95) involve terms which can be written in terms of incomplete gamma integrals. One

can show that with a simple transformation of variables, the incomplete gamma function

I(Yi, a, A) can he rewritten as

(2.2.96)

Thus
Yi

1 r-
- - r(a) Jo .,\ uQ-llog (u) exp (-u)du

and (2.2.97)

â 1 (Yi)Q (Yi)
â.,\ [1 -1(Yi, ct, À») = r(a)À À exp -I . (2.2.98)

•

Note that to find the maximum likelihood estimators for the parameters using the Newton-

Raphson method, the second partial derivatives of the log-likelihood are required. This can

he accomplished with the aid of advanced mathematical software. Lawless (1982) states that

a good approach to solving the maximum likelihood estimators is ta solve (2.2.95) for fixed

cr and then narrow down to the estimator for À using graphical or numerical methods.

2.4.2 Non-Parametric Estimation

Methods of estimation which are said ta he non-parametric or distribution-free do not require

any assumption on the underlying fallure time model. Non-parametric estimates of the

survival and hazard functions are often useful to summarize and explain failure time data.

Full Sample

Let us assume that we have a complete sample of fallure time data, Xb X2,··· ,Xn • Here,

the fallure times for all subjects have heen observed. In sucb a situation, one uses standard
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• elementary statistical methods to describe and analyze the data. The empirical survival

function is as follows:

S ( )
_ (Number of failures > x) .

"x - ,n
x >0. (2.2.99)

S,,(x) is a step fonction and a non-parametric estimator of the survival function S(x) in

the sense that no assumption about the underlying model is necessary. When dealing with

censored observations, sorne modification to (2.2.99) is necessary. A natural estimate of the

integrated hazard when considering the fonn found in (1.1.5) is

(2.2.100)

Using sample moments, one can estimate the mean value and variance by the sample mean

and sample variance. These are
n

fi. - L Xi and
i=l n

(2.2.101)

(2.2.102)

Confidence intervals on S,,(x) can be computed by using results from the binomial dis-

tribution. The standard error of Sn (x) is
1

s.e. (Sn(X» = Cn(X) (1: Sn (X» )2
so that a 100(1 - 0)% confidence interval for Sn(x) is

(2.2.103)

(2.2.104)

•

where ZQ/2 is the upper 100(1 - 0/2) percentage point of a standard normal distribution.

Censoring

The non-parametric maximum likelihood estimator of the survival function S(x) in the

presence ofcensored data is called the product-Iimit estimator or the Kaplan-Meier estimator
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• (see Kaplan and Meier (1958» .

To begin, we examine the likelihood of the fallure time data ((Y1, dil, ... , (Yn, dn». First,

we assume that there are m failures at the times ab a2,·· - ,am- By convention, we let ao = 0

and am+1 = 00. We also suppose that the failure time X is concentrated on tbese failure

times and we allow for more tban one individual to fail or be censored at a given time. Now,

let dj be the number of subjects who fail (but are not censored) at time aj and Tj the number

of subjects at risk just before aj, which is the number of subjects still alive and uncensored

just before aj.

For the discrete case, the survival function given by (1.1.13) is

S(x) = fi (1 - h(ai»
l1i<Z

and 50 a non-parametric estimator of S(x) is

(2.2.105)

(2.2.106)S(x) = fi (1 - h(ai»)
a; <x

where h(ai) is the maximum likelihood estimator of h(~), for i = 1,2,··· ,m. If a subject

fails at aj then its contribution to the likelihood is I(aj); if a subject is censored at a time

c then its contribution is

•

P(X>c)= S(c+) = E/(aj).
aj>c

In tenns of (1.1.13), we have

S(c+) - fi (1 - h(aj» and
a·<c1-

I(aj) - h(aj)S(eli).

Cox and Oakes (1984) give the likelihood for the data as

m

L = fi [h(aj)]dj [(1 - h(aj)rj
-

dj
•

j=1
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We now use the logarithm of the likelihood to 6nd estimates for h(aj), i = 1, 2, ... ,m.

o =

• m

1 = log (L) = E di log (h(aj» + (Tj - dj) log (1 - h(aj»
j=l

The maximum likelihood estimator for h(aj) is then the solution to

8
ah(aj) log (L)

m Ô 8
- ~ di 8h(aj) log (h(a;» + (rj - di) 8h(ai) log (1 - h(a;»

dj Tj - dj

- h(aj) - 1 - h(ai) .

Bence h(aj) = dj

Ti

Substituting this resu1t in (2.2.106), one obtains the product-Iimit estimator

s(x) = fi (1 - ~j) .
Qj<Z 1

(2.2.111)

(2.2.112)

(2.2.113)

(2.2.114)

•

H there is no censoring, the product-limit estimator is the same as the empiricaJ survival

function gjven by (2.2.99). If the failure times for all subjects are observed then Ti = di+Ti+l,

i = 1,2, ... , m = n. On expanding the product in (2.2.114), we see that

S(x) - fi (1- d
j

) (2.2.115)
Qj<Z Tj

T2 T3 T.t+l
- -- ... -

Tl T2 Ts

Ts+I-
Tl

Ts+l- n

where as < x <as+l' From the recursive relation Ti = di + Tj+LJ we see that Tl = n =

Ts+l + dl + d2 + ..• + d". Bence, n - (#/ailuTes < x) = n - dl + d2 + •.. + d" = T"+lJ 50

that S(x) = Sn(x).

Also, if the largest observation in the failure time data is y. and y. is cen50red then S(x)

is undefined for x > y.. If y. is an uncensored time, then S(x) = 0 for x > y•.
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• Confidence Intervals for S(x)

It can he shown that under certain conditions, the product-limit estimator, B(x), converges

to the survival function, S(x), as n ~ 00, where n is the number of observations. Also, we

conclude that

S(x) - S(x)

y'Var (S(x»
(2.2.116)

(2.2.117)

converges to a standard nonnal random variable in distribution. Using Greenwood's formula,

the variance of S(x) is estimated to he

v;; (S(x) = [S(x)f L d
j

•
Gj<Z rj(rj - di)

For a derivation of Greenwood's formula, refer to appendix D. This is particularly useful

hecause it allows us ta make approximate 100(1 - a)% confidence intervals for S(x) using

S(x) ± Za/2VV;; (S(x» , (2.2.118)

•

where ZQ/2 is the upper 100(1 - 0./2) percentage point of a standard normal distribution.

The symmetric confidence interval given by (2.2.118) produce pointwise confidence intervals

for each fixed fallure time x .
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Chapter 3

Additive Gamma Type Inputs

3.1 Introduction

In this chapter, we define inputs to be the survival times of the individual components that

belong to a complex modeL For example, if we have a mixture mode! (see section 2.3.1),

then the lifetimes corresponding to each sulrpopulation are considered to he inputs for the

whole mixtures model. A gamma type input is one that follows the generalized gamma model

discussed in section 2.2.4. An exponential input is one that comes from an exponential model

and a gamma input is from a gamma model. These inputs are both of gamma type. As

stated before, the generalized gamma model is weIl suited for explaining life data, however

because of its numerical complexity, it is seldom used. These gamma type inputs oirer wider

variety and more flexibiIity to researchers and analysts compared to exponential type inputs,

say. Thus, we now tum our discussion towards linear functions of gamma type inputs.

There exist a multitude of real-life situations in which one might consider the distribu­

tionaI properties of a linear function of gamma type inputs, Xl, X 2 , ••• ,Xl:. In survival
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•

analysis, one is interested in the survival function or hazard function over the total waiting

time of a process. In the case of a rapidly evolving disease sncb as AIDS or cancer, the

individual inputs Xl, X 2 , ••• ,X/c May represent the waiting times of each progressive stage

of the disease. In AIDS for instance, Xl might be the length of time in the first stage where

the test results show that a patient is HIV negative after receiving a contaminated blood

transfusion; X 2 is the waiting time in the second stage where the patient is HIV positive;

X3 is when the patient shows pre-AIDS symptoms; X 4 is the duration of full-blown AIDS,

and so forth.

On the other hand, our problem May involve k vehicles waiting to be serviced at a

garage, where each automobile is serviced one at a time. The first vehicle May need an oil

change, the second new tires, the third new brakes and so on. Thus the k individual inputs

XL, X 2 , ••• ,Xie are independently distrihuted waiting times and they need not he identically

distrihuted.

Analogously, we can have a spare parts problem as discussed in section 2.3.4. An impor­

tant component of the system May rail occasionally and thus it is replaced with an identical

spare part; the spares are independent of one another, however, they are identically dis­

tributed.

Another popular scenario might he the study of a system failure in the case of a parallel

port with k components. Here, Xi denotes the fallure time for the ",-th stage, i = l, ... ,k. In

eacb of these examples, the quantity of interest is X = Xl + X 2 + ... + X/c. For simplicity of

calculations, these inputs are sometimes assumed to be exponentially distributed with the

same or different means ta obtain tractability. In reality however, it makes sense to consider

these as being independent gamma type inputs with general parameters.
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Researchers are now considering linear functions of gamma type inputs in their studies

and are using traditional approximation techniques to ohtain distributional properties of

their functions. For example, Huzurbazar and Huzurhazar (1999) examine the survival

function associated with AlOS with the help of data from the San Francisco Men's Health

Study. A two stage situation is considered in their paper, X = XL +X2 , where Xl is from an

exponential model whereas X 2 is from a gamma mode!. The inputs Xl and X2 are assumed

to he independent. Saddlepoint approximations are used to attempt the problem. In this

fascinating paper, it is shown that the saddlepoint approximation is simple to apply and

produces results close to the simulations arising from the exact distributions.

The saddIepoint approximation technique, widely used in physics, was introduced in

statistics by Daniels (1954) for approximating a probability density function (pdf). Lugan­

nani and Rice (1980) used the same technique to approximate cumulative probability density

functions (edf). Application of this technique to various problems May be seen, for example,

from Barndorff-Nielsen and Cox (1979), Cox and Oakes (1984), Blresild and Jensen (1985),

Daniels (1987), Reid (1988), Butler, Huzurbazar, and Booth (1992a,b), Jensen (1995) and

Butler and Huzurbazar (1997).

This chapter focuses mainlyon X = aLX1 + a2X2 + ... + atXt, where the inputs Xi are

mutually independent and ai > 0 for j = 1,... ,k. Since weighted gamma type inputs with

positive weights are again gamma type inputs, then without Joss of generality, one needs to

consider only a sum of independent gamma type inputs, sucb as X = XL + X2 + ... + Xt.

We present severa! techniques for computing the exact pdf of X, f(x), and exact cdf of X,

F(x), so that the exact forms for the survival function, S(x), and hazard function, h(x), can

be eomputed. In order to discuss the properties of S(x) and h(x), it is necessary to study
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• exact forms of J(x) and F(x). We then compare the exact forms to the usual approximation

results. Our aim is to compute Sex) and h(x) for general cases and then apply the resuIts

to specific problems. We begin with gamma inputs.

3.2 Gamma Inputs: Exact Forms

The exact density of X when the inputs are gamma can be written in terms of confluent

hypergeometric functions. Before giving an explicit fonn for J(x), we will consider a special

case of the moment generating function of the gamma model. When the shape parameters

of the model are integers, the pdf of X, J(x), has a fioite expression and can be handled

easily.

The moment generating function of the gamma input Xi with parameters (a, À) (see

section 2.2.2) is denoted by

kIXj (t) = (1 - Àit) -Qj (3.3.1)

and since the components of X = XL + X2 + ... + XA; are assumed to be independently

distributed, the moment generating function of X is simply given by

le

J'yIx(t) = II (1 - À;t)-Qj .
j=L

3.2.1 Integer Shape Parameters

(3.3.2)

•
Assume that the shape parameters of the gamma inputs are of the Conn Oj = mi, where

mj = 1,2, ... for j = 1,2, ... ,k. This means that all the a/s are positive integers. In this

case the moment generating function found in (3.3.2) can be written as an explicit finite sum
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(3.3.3)
t t mi11 (1 - Àjt)-m; = ~~ (1 ~jljt)j

where the uii'S are free of t. Thus, inversion of the moment generating function given by

by using partial fraction techniques. That is,•
(3.3.3) produces the pdf

t m-
1 {xi-Le-Z/Aj }

f(x) = ~~aii Ài.(i-1)!
J=L I=L J

for x> 0 (3.3.4)

and 0 elsewhere. The cdf F(x) is thus available from (3.3.4) using term-by-term integration.

The coefficients, aii, are given by the following:

aii -

bii -

A<'.f) -1

li: (1 1)-m,.
6.i = fi - --

r=l Ài Àr
r:;:'j

For a complete derivation of the coefficients aii refer to Mathai (1982).

Example 16. Consider a two stage process X = Xl + X2 where the inputs are assumed to

he independent and the parameters are (O:17.Bd = (2,2) and (0:27.82) = (3,2.5). The shape

parameters are integers and we use the previous results to write the moment generating

function of X as:

•
klx(t) - (1 - 2t)-2(1 - 2.5t)-3

-960 -64 1200 -200 25-:----:- + + + + -------=-
(1 - 2t) (1 - 2t)2 (1 - 2.5t) (1 - 2.5t)2 (1 - 2.5t)3 '

55



• Which gives the following pdf for X:

J(x) = -960 e-;/2) -64 (xe;/2) + 1200 e-;::oS)
(

xe-X
/
2

.
S

) (x2e-X
/
2

.
S

)
-200 2 ~2 + 25 2 ~3 2.a .a

The case considered in this section is Dot an isolated situation in statistics and other

related fields. Problems of this type, usually arise in engineering and communication theory,

Here Xjl and JYj2 are real with XII and XI2 independently distributed chisquares with the

sarne degrees of freedom lIj' 80, if IXi l
2

""J X~Jlj then Qj = 2l1j, where lIj = ;z., nj = 1,2, ...

and thereby all Qj 's are positive integers. Sorne prohlems of this type cao he seen from Biyari

and Lindsey (1993), and Divsalar, Simon, and Shabshahani (1990). Another example arises

in testing of statistical hypotheses on the pararneters of complex Gaussian distributions. The

nuIl distributions of the likelihood ratio test statistics, in Many cases, cao be written as that

of a linear function of chisquares with even degrees of freedom, therehy making the Qj'S in

(3.3.2) positive integers.

3.2.2 General Shape Parameters

For general parameters, the density I(x) arising from the moment generating function (3.3.2)

can he written as a convex combination of gamma densities. We hegin by stating the result.

Without loss of generality, let Al < ..\2 < ... < Àk • The pdf of X thus looks like

•
J(x) =

o
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(3.3.7)

•

•

The normalizing constant C and the weights 5,. are gÏven by

where 0 = 01 + 02 + ... + Ole, (r2"" ,TIe) is a partitioning of T, r = T2 + ... + rlc and for

example (a)m = a(a + 1) ... (a + m - 1), (a)o = l, a i= O. Properties of (a)m are discussed

in Mathai (1993). A recursive method of finding the weights 5,. is also discussed in the

derivation below. The distribution function F(x) is thus availahle from (3.3.6) using tenn-

by-tenn integration. Justification for this can he found in Moschopoulos (1985). Each tenn of

the integrated expression will involve the incomplete gamma function. Considering the power

of computers at present time, these methods cao easily he implemented using a statistical

software package to obtain a1mast immediate results. We now discuss the derivation of this

result.

Derivation 1

We fol1ow the derivation gjven by Mathai (1982). Consider the moment generating function

of X in (3.3.2). The j'th term of the moment generating function can be rewritten as

(1 - Ait) -Qj = (~) Qi (1 _ At) -Qi [1 _ 1 - À/Ai] -Qi

Ai 1 - Àt

~i (1 _ '\t)-Qi [1 _ 1 - 'Yi] -Qj

- 'YJ 1 - Àt

where À is arhitrary sucb that IÀtl < l, 'Yi = A
À
.• Application of (3.3.7) to the mgf of X in

]

(3.3.2) gjves us

II (1 - Àjt)-Oj - lI) 7;i] (1- Àt)-(OI+02+···_·tI) [1 - ~ =r~rOi]
(3.3.8)
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• or

(3.3.9)

n" Q'where C = j=l "'fj' and a = Ql +a2+ ...+a". From here, there are Many ways to proceed

to obtain the desired density j(x).

One method involves expanding each factor in the product of (3.3.9) through binomial

expansions. To do this, we require that 1~=l~l < 1. Without 10ss of generality, let "'1 < "'2 <

... < "'''i for convenience take '" = "'1' As seen in (3.3.10), this choice for À eliminates sorne

of the cornplexity involved in the computable form of J(x) by removing a summation terme

The binomial expansions for each factor gives the following for the mgf of X.

Mx(t) = C (1 _ "'lf) -0~ •••~ (a2)r~ ... (a")rll ( 1 - "'f2 ) r2 ••• ( 1 - "'ft ) rlr

LJ ~ T2! T,,! 1 - "'lt 1 - "'lt
r2=O rlr=O

eX)

- C (1 - "'lt)-O E c5r (1- "'lt)-r (3.3.10)
r=O

where (T2t'" ,Tt) is a partitioning of T, T = T2 + ... + Tt,

(3.3.11)

and, as seen before, (a)m = a(a + 1) ... (a + m - 1), (a)o = 1, a # O. The density of

x = XL + X2 + ... + X" is then given by inverting the mg{ of X in (3.3.10). This gives

J(x) =

o elsewhere.

(3.3.12)

•

It is easy to show that the weights ~r are positive for all T = 0,1,2,,·, and from the pdf in
eX)

(3.3.12) it cao he observed that CE 6r = 1. Thus, the pdf J(x) in (3.3.12) is a convex
r=O

combination of gamma densities.
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• Derivation 2

Altematively we ean consider the recursive method found in MoschopouJos (1985). Taking

logarithms in (3.3.9), one obtains

00

log Mx(t) = loge(1 - À1t)-a + E O"i(1 - À1t)-i
i=l

(3.3.13)

where O"i = E;=l O:j (1-;; )i. Note that the expansion of the logarithm in (3.3.13) is valid for

IIl~jtl < 1. Henee, taking exponentials in (3.3.13) and expanding, one gets

Mx(t) =

Pi+l =

00

C(1 - À1t)-aE Pi(1 - À1t)-i where
i=O

1 i+l
-.-1L nO"nPi+l-n for i > l ,Po = 1 .
Z + n=l

(3.3.14)

(3.3.15)

The density of X = Xl + X 2 + ... + X t from (3.3.14) can be expressed as

J(x) =

o elsewhere.

(3.3.16)

•

Note that the fonn of J(x) in (3.3.16) is the same as the one found in (3.3.12) and 50 by

eomparison, 6r = Ps for s = r = 0,1,2, .... Hence (3.3.11) and (3.3.15) give us two ways to

compute the weights used in eaJcuJating the pdf J(x).

3.3 Gamma Inputs: Gamma Approximation

In the previous su~section we saw that the density of X is given as a convex eombination of

gamma densities. We now use the expected value E(X) and variance Var(..,Y) to approximate

the density of X, J(x), by a gamma density.

Since the inputs Xj are independent with parameters (0:;, f3j) for j = 1,2,··· ,k, we know
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• that

k

E(X) - EO:;/3; (3.3.17)
j=l

and

k

Var(X) - EO:j,BJ (3.3.18)
i=l

We approximate the pdf of X by using a gamma density with parameters (ci, P):

_ {r(l_)P-O
X

O
_

I exp (-xlp)
I(x) = 0:

o eIsewhere.

The parameters ci and Pare obtained by soIving the foIIowing system of equations:

k k

E(X) = àp = EOi,Bi Var(X) = cia2 =EO:j/3J
;=1 ;=1

We obtain

(3.3.19)

(Êetit1i )

2

1=1
a=---~-

(Êeti /3/)
1=1

and (3.3.20)

•

3.4 Gamma Type Inputs: Exact Forms

We now consider exact density of X when the inputs Xi are gamma type inputs. These

include exponential and gamma inputs arising from the exponential and gamma modeIs,

respectiveJy. Theyalso include Weibull inputs.

We begin by cODsidering two independent gamma type inputs Xl and X2 with parameters

then use the result to generalize the solution for X = Xl +X2 + .. ·+Xk • Let the pdfs of Xl

and X 2 be denoted by CI/l(X) and C2/ 2(X) respectively, where Cl and C2 are normalizing
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• constants. Using the assumption of independence between Xl and X 2 and making a change

of variables, the pdf of X is given by

fx(x) - CIC21" t"1-I(X - t)O.-1 exp {-OIt81 - 02(X - t).8'}dt

li sOI-I(l - S)O.-I exp {-OIx.8'a.81 - o2x.8'(1- s)P'}ds (3.3.21)

for x > 0 and zero elsewhere. Upon making a change of variables, expanding the exponentials

and integrating, we obtain

lx (x) = CX01+02-L X

~~ (-6LX~1 YI (-d'2X.82)r2 r (aL + ,8LTd r (a2 + (32T2)

L-, L-, TI~ T2~ r (aL + a2 + {3ITI + !32T2)
rl=O r2=O

where

(3.3.22)

{31!32(d'L)01/fh (62 ) 02/.82

C = r (~:) r (;:) .
We shaH see in section 3.8 that the representation of Ix(x) in (3.3.22) is not practical for

large x. In such situations, we can still make use of numerical integration techniques to

approximate the integral in (3.3.21) and easily obtain accurate values for /x(x).

Next, we generalize the result for X = Xl + X 2 + ... + XA;, where each gamma type

input has parameters (ai, f3i, 5i), by following the same steps for (3.3.22). Sînce the inputs

are assumed to be independent, we cau fonn the joint density of (Xt, X 2 :·· • : Xt). Upon

•

making two changes of variables, we obtain the following for the pdf of X
L 1 l

fx(x) = Cx..- I JJ...J{zt~o.-I)(l - zk_tl°.- I

o 0 0

(o-Ql:-O~-l-L)(l )OL_l-l Ol-L(l )Q2- 1
Zk-2 - ZA;-2 ~ ••• ZI - ZI

exp ( -61(ZL ••• Zt_1X)~1 - 62 (Z2'" Zk_1X).82(1 - Zd.82 - ...

-6kxt'~(1 - Zk- d.8~) } dz,.-1 ., . dz1 for x > 0
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• and 0 elsewhere, where Q = Ql + a2 + ...+ Qk and C is the normalizing constant. Expanding

the exponentials in (3.3.23) and integrating produces a representation for /x(x) in terms of

infinite series:
CXl

fx(x) - Cxo - l~ (_I)r ~ M( )~ L..J Xi Tl, T2, ••• , Tic ,

r=O rl+r2+···+r~=r

(3.3.24)

Term-by-term integration of (3.3.24) gives the cdf of X, which is

CXl

Fx(x) = CxO E(-lr E M'(X;Tb T2,··· ,Tic)

r=O rI +r2+···+r~=r

where

(3.3.27)

XL~=l B,r, IIk r(ai + l3iT,)6{i
M'(x; Tb T2,··· , Tic) = ( ) ,. (3.3.28)

r a + L~=ll3iTi + 1 i=l Ti'

These forms for the pdf and cdf of X have already been derived by Stacy (1962) where, by

similar methods as those seen above, the moment generating function of each input X; is

a1so gjven. This is

CXl

MXj(t) = E
i=O

(3.3.29)

for j = 1,2,··· , k. The mgf in (3.3.29) is defined for t < c, 0 < C < 00. If 13; = 1 then

c = 6;. However, if P; < 1, then t < C = 0 and if {3; > 1 then c = 00. Given that the inputs

•
are independent, the mgf of X is

Ic

Mx(t) = IIMXj (t) .
;=l
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• For certain values of {3;, (3.3.29) is numerically unstable. Direct numerical integration is

required to eva1uate the mg! of X in such cases. Similarly with the case where X = Xl + X 2 ,

the fonn of /x(x) in (3.3.24) is often impractical for large x. We will show in section 3.8

that using a Dumerical estimate for (3.3.23) gives more precise results for /x(x).

3.5 Saddlepoint Approximations

Originally used by physicists and introduced to statistics by Daniels (1954), this popular

method can be utilized to solve a wide variety of problems. It is applied successfully by

Huzurbazar (Aparna), her associates and research collaborators in a wide variety of proh­

lems in survival analysis. Daniels (1954, 1987) exploit the method to approximate densities,

Lugannani and Rice (1980) used it to approximate distribution functions. Conditional dis­

tributions are examined by Reid (1988) and Jensen (1995). These approximations can be

given in tenns of a standard normal base or with other distributions sucb as gamma and

inverse Gaussian as the base. Distributions which readily admit saddlepoint approximations

include exponential, gamma, Raleigh, Weibull and inverse Gaussian, which are, as already

discussed in chapter 2, commonly used to model survival data. In order to apply saddle­

point approximations, one needs to consider the moment generating function (mgf) of the

random variable. If this random variable is denoted by X, its mgf by Alx(t) = kI(t) and its

cumulant generating function (cgf) hy Kx(t) = K(t), then K(t) = lnkI(t). Daniels (1954)

explains that the largest interval (Cl, C2) in which the mgf converges needs to he known. In

other words, we need to find positive numbers Cl and C2 where -Cl < t < C2, 0 < CL < 00,

• 0 < C2 :5 00 but CL + C2 > 0, so that CL or C2 can he zero, but not both.
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• 3.5.1 Gamma Inputs

Assume that we have X = Xl + .. ·+Xt , where the inputs X;, j = 1,2" .. ,k are independent

gamma inputs with parameters (a, A). Then from (3.3.2), we have

k

M(t) = Il (1- À;t)-Oj ,1- A;t > 0, j = l,'" ,k and
;=1

k

K(t) = E -a; ln (1 - À;t) .
;=1

(3.3.31)

(3.3.32)

The saddlepoint approximation also requîres computation of the first three derivatives of

K(t) with respect to t and the solution of the equatîon

K'(t) = x (3.3.33)

where K'(t) denotes the first derivative of K(t) with respect to t. For the cgf in (3.3.32),

the above equation becomes

(3.3.34)

It is evident that if the À;'s are different then it is somewhat difficult to solve (3.3.34), even

for moderately large values of k. For instance, when k = 2, À l #= À2 , one must solve a

quadratic equation. Once (3.3.34) is solved (usually by numerical methods), let the solution

he denoted by t. The saddlepoint approximations of the pdf [(x) and cdf F(x) of X, denoted

by Î(x) and F(x) respectively, are gjven by the following

(3.3.35)

(3.3.36)

Î(x)

F(x)

eK(i)-:ti

- C A and
[21['K" (t ))1/2

- ~(r) +q1(r)n-n
where s = i[K"(t)]l/2, r = sgn(s) {2(ix - K(i»} 1/2 and C is the nonnalizing constant,

• determined numerically, ,p(.) is the standard normal density, and ct(·) is the standard nonnal
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distribution function. Formula (3.3.36) is valid for ail x except at the point x = E(x), where• r = 0 and s = O. At x = E(x) the fonnula in (3.3.36) is replaced by

- 1 K'''(i)
F(x) = 2 + 6(21r)L/2[K"(i)]3/2 . (3.3.37)

Another approximation for the distribution function is obtained by numerical integration of

(3.3.35). In section 3.8, we demonstrate this procedure and compare results with those using

the methods introduced in section 3.2. For a more thorough introduction to saddlepoint

approximations, refer to Daniels (1954).

3.5.2 Gamma Type Inputs

Applying the saddlepoint approximation to the case when the inputs Xj, j = 1,2,'" ,k

are gamma type inputs is somewhat more difficult. To do this, we use the fonnulas for the

saddlepoint approximation discussed in the previous section, but with the moment generating

function of X replaced by (3.3.30). The cumulant generating function is now

k

K(t) = L K Xj (t)
j=L

(3.3.38)

where K Xj (t) = log (Mxj (t)) and M Xj (t), the mgf of the j'th input, is given by (3.3.29).

The derivatives of K(t) are found by using the following technique. The first derivative of

the cgf of X is

•
where

d k d
-dK(t) = L d-Kxj (t)t . t

}=L
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•

•

To find the derivative of the mgf of Xj, we use the fact that

{J. 5·
Qi

/
Pi l''' (MXj (t) J J Qj-L j- r (~;) 0 xj exp -5j X: +tXj)dxj

( yt o· + i
5;/Pi r ( J{Jj )oc

E (3.3.41)- .,
r (~;)i=O

l.

Hence,

d {J. 5·
Q
;/P; l''' (P )

dtMxj(t) - ~ (~J 0 xj; exp -5j x;' +tXj dxj

(_tJr(Qj+l+i)oc 8~/1J1 /3.
E 1 J (3.3.42)- .,

r (Qj{J; 1)Î=O
1..

The second and third derivatives are calcuJated in similar ways. If for sorne (3i we have

o< Pi < 1, then the sumrnation formulas for the mgf and cgf of Xi are nurnerically unstable.

In this case it is hetter to evaluate klxj(t) and Kxj(t) by numerical integration methods. It

is apparent that computation of the saddlepoint approximation of X when the inputs are of

gamma type cao he quite intense and even impractical in certain cases.

3.6 Edgeworth Series

The Edgeworth series provides a fast way to approximate the density and distribution of a

sum of independent and identically distributed input variables, X = }(L + X 2 + ... + X k

say. Barndorff-Nielsen and Cox (1989) give the Edgeworth expansion of X = xE~j when

the inputs Xi are independent but not identically distributed. We use their resu1ts applied

to our general problem of obtaining distributional properties of X. Let /Ji, oJ represent the
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• mean and variance of X;, respectiveJy. If we let the ith moment of X be denoted by mi,

then using independence we have:

t t

E(X) = LE(Xi ) = Il and Var(X) = LVar(Xj ) = u'2.
j=l j=l

where 1J =ml and q2 =1'n2 - m~. Putting Pr = fflr / Gr we have the following approximations

from Barndorff-NieJsen and Cox (1989):

Î(x)

F(x)

(3.3.43)

(3.3.44)

for the density and distribution of X, where Hr(x) is the Hermite polynomial of degree r

(see Mathai (1993», tP(·) is the standard Donnal density function and c)(.) is the standard

normal distribution function. The first few Hermite polynomials are

Ho(x) 1,

Hs(x) = 32xs - 160x3 + 120x, and H6 (x) = 64x6
- 480x" + 720x2

- 120 .

If, for example, all the X/s, j = 1,2,,'· ,k are gamma inputs with parameters (Q;, Ai) then

k

ml = LQiA; = Il
j=l

k

m3 = L(Qi + 2)(Q; + I)QiA~
j=1

k

ffl2 = L(aj + l)aiA~
;=1

k

m4 = L(ai + 3)(Qi + 2)(a; + 1)aiA1.
;=1

If the inputs are of gamma type with parameters (ai,/i"eSi ), then

•
k (r (aj +n) )

m,. = L ~. 6; -n/Pj

;=L r (p;)
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• 3.7 Numerical Inversion of the Laplace Transform

In this section we discuss methods to determine the pdf of X, f(x), as accurately as possible

given values of its Laplace transfonn L,(s), s > O. The Laplace transform is related to the

moment generating function of X by

(3.3.45)

H X = XL + X 2 + ... + X k where the inputs Xi' j = 1,2,··· ,k are independent, then the

moment generating function of X can he written as

le

Mx(t) = IIMxj(t) ,
i=l

(3.3.46)

where M Xj (t) is the moment generating function of Xi' In terms of the Laplace transform,

we have

k

L,(s) = II L'j (s) ,
i=l

(3.3.47)

•

where fi is the pdf of the jth input. If the inputs are of gamma type, then one can use

numerical integration or equation (3.3.30) to calculate values for either (3.3.46) or (3.3.47).

As described in Hellman, Kalaba, and Lockett (1966), there is no specifie method for

inverting the Laplace transfonn and hence of the mgf which will work weil in all cases. A

reason for this is that arbitrarily small changes in the Laplace transfonn May produce large

changes in the value of f (x). This is often referred to in the literature as the ill-posedness of

the inverse Laplace transfonn problem. We examine three methods of numerically inverting

the Laplace transform to obtain approximations for f (x) .
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(3.3.48)

(3.3.49)

• 3.7.1 Method Based on Gaussian Quadrature

In tms section we follow the results for approximating the inverse Laplace transfonn found

in Bellman, Kalaba, and Lockett (1966). The Laplace transform of f(x), denoted by LI(s),

is defined as
00

L,(s) = / exp (-sx)f(x)dx .
o

First, we make a change of variables by putting y = exp (-x). In doing this, we obtain a

finite interval of integration for the integral in (3.3.48). This becomes
1

L,(s) = / y.-Ig(y)dy .

o

where g(y) = I(-log (y». From numerical analysis, one can obtain an approximation to

(3.3.49) by using the Gaussian quadrature fonnula (see Abramowitz and Stegun (1992),

Bellman, Kalaba, and Lockett (1966) and Whittaker and Robinson (1967». With this

method we can obtain an extremely accurate approximation to the Laplace transform in

(3.3.49) given by

N

LI(s) ~ E WiYis-lg(Yi) .
i=::l

(3.3.50)

This fonnula consists of finding a good numerical estimate of an iDtegral by picking optimal

abscissas Yi in [O,IJ and weights Wi for i = 1,2"" ,N. The N abscissas are the zeroes of

the shifted Legendre polynomials of order N

(3.3.51)

•
where PN(X) is the Legendre polynomial of order N (see Mathai (1993». The weights Wi

are called the Christoffel weights for the interval (-1,1). If Ti = 2Xi - 1 and 11i = 2Wi for

i = 1,2,'" ,N, then the Ti'S are the N roots of the Legendre polynomial of degree lV. The
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• new weights tJi are given by
l

n~ = J PN(r) dT
""'1 ( ) () i = 1,2, ... ,N .

T - Ti P'N Ti
-1

A proof of this cau be found in Bellman, Kalaba, and Lockett (1966).

(3.3.52)

The following is the method of of inverting the Laplace transform based on the Gaussian

quadrature fonnula. fi we evaluate LI(s) at N different values, we obtain a system of N

equations in N unknowns. Hence by solving

N

LI(j) = L WiYii-1g(Yi) j = 1,'" ,N
i=L

(3.3.53)

we can obtain approximations for g(Yi) or equivalently for f(Xi) by Xi = -log (Yi)' The

approximations are

N

f(Xi) ~ L at;LI(j) i = 1,2,," ,N
;=1

(3.3.54)

where the coefficients are determined by solving the system in (3.3.53). Given these

solutions, we can then 6t an interpolating polynomial for f(x) through the points Xi,

i = 1,2"" ,N. For exampIe the Lagrange interpolating polynomial is given by

~ 1r(x)
q,(x) = t;r (x - Xi)1r'(Xi) f(Xi) ,

where 1r(x) and 'Ir' (x) are defined as

N

1r(x) - II(x - Xi) and
i=l

(3.3.55)

(3.3.56)

(3.3.57)

•

d 1 N,r(Xi) = dx .... (x) ='" = il(Xi - Xi) .

;#

One can show that the roots of PN(x) are uniformly distributed over [0,1] as lV increases.

The values of Xi = - log (Yi) however do not follow the same behavior. Because of this

behavior, the method 50 far is not good for large values of x. Ta remedy this, we start by
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• noting that the Laplace transfonn of f(ax) is Ll(~/a). Renee, (3.3.53) becomes

L,(i/a) ~ .J"-l/( 1 (» .
~~....;.. = ~WiYI -a og Yi J = 1,···,N.

a . l
1=

(3.3.58)

This allows us to obtain approximations for I(x) near the values Xi = -a log (Yi) from

f(Xi) ~ Éa;//U/a) i = 1,2,""" ,N
" l a1=

where the ~j, for i, i = 1, ... ,N, are the same as before.

(3.3.59)

One must be aware that the solutions I(xi), i = 1,'" ,N, are UDstable functions of

L,(j), i = 1, ... ,N. The accuracy worsens as N ïncreases. A way to see this is to start at

N = 3 and then increase N until precision decreases.

3.7.2 Method of Papoulis

PapouJis (1957) gives a method of detennining I(x) in terms of an infinite sequence of

equidistant points

Si = (2i + l)p i = 1,2,3, ... (3.3.60)

in the region of existence of L,(s). The parameter p is an arbitrary positive real number.

The function of interest, I(x), is given as a series of Legendre polynomiaIs

oc

I(x) = LCi P2i(exp(-px» ,
i=l

(3.3.61)

where the coefficients Ci, i = 1,2",· ,k,"', are determined by solving the following system:

pL, (p) - Co

pL, (3p)
Co 2Ct- 3+ 15

•
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(3.3.62)+ (2k + 1)(2k + 3)··· (4k + 1)

Co 2kC1

- 2k + 1 + (2k + 1)(2k + 3) + ...
2k(2k - 2) ... (2)Ck

pL, «2k + l)p)•
An approximation to j(x) is thus given by

N

j(x) ~ E Ci P2i (exp (-px» .
i=l

(3.3.63)

Papoulis (1957) explains that the parameter p is chosen depending on the interval in which

j(x) is to be described.

3.7.3 Method of Miller and Guy

Another method for approximating the pdf j(x) by numerically inverting its Laplace trans-

fonn is described in Miller and Guy (1966). Just as in the method of PapouJis, it detennines

functional values of j(x) based on values of L,(s) at discrete points of s in the domain of

existence. Evaluation of L, (s) at the points Si = ({3 + 1 + i)O', i = 1, 2, ... , where {3 > -1

and 0' > 0 detennine the coefficients in an infinite series expansion of j(x) in tenns of Jacobi

polynomials, p~al~)(x) (see Mathai (1993». The theory for this method requires that

Hm J(x) and Hm j(x)
z-..o z-..oc

he finite, which is the case for our general problem. The series solution to j(x) is

oc

j(x) = ECnP!O,~) (2 exp (-O'x) -1),
'1=0

(3.3.64)

•
where the solution of

0"L, «{3 + 1)0') -
Co

({3 + 1)
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• t7LI «{3 + 2)0')
Co 2C1

- P+ 2 + (P + 2)(,8 + 3)

~ k(k - 1) ... (k - (m - 1» Cm ..
t7LI «P+k+l)O') - ~(k+P+l)(k+P+2) ... (k+{3+1+m) (3.3.6a)

gives the coefficients Ci for i = 1,2,3,···. The pdf J(x) can then he approximated using

N

J(x) ~ L Cnp~Oltf} (2 exp (-O'x) - 1) .
n=O

(3.3.66)

The accuracy of the approximation (3.3.66) to J(x) may he improved by picking appropriate

parameters p and t7. The general guideline given by Miller and Guy (1966) is ta select p

and 0' sucb that

-0.5 < p < 5.0 and 0.05 $ 0' :5 2.0 .

3.8 Examples and Comparisons

(3.3.67)

•

We now illustrate the methods developed in sections 3.2, 3.4, 3.5 and 3.7. AlI computations

are made using Maple VI and the R (version 1.0.0) statistics package. Most calculations are

straightforward and the algorithms used may be found in any standard numerical analysis

book, such as Conte and de Boor (1980). To implement the task ofsumming over partitions

of an integer as needed in sections 3.2 and 3.4, we refer the reader to Nijenhuis and Wilf

(1978).

In the following sections, we refer to the method found in section 3.2.1 as the Integer

Method and the one in section 3.2.2 is called the Exact Method. The method in section

3.3 is called the Gamma Method. Results ohtained using equations (3.3.24) and (3.3.23) in
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• section 3.4 are called the Raw Method and Convolution Method, respectively. For sections

3.5 and 3.7.1, they are the Saddlepoint and Gaussian Quadrature Methods, respectively.

3.8.1 Gamma Inputs

Here we consider the case where the inputs Xi, i = 1,·· . ,k are gamma inputs. We begin

with the case where the shape parameters are integers, following with an example for general

shape parameters.

Integer Shape Parameters

Consider a 6 stage process where X = Xl + X2 + ... + X 6 , and the independent gamma

(1,1.2,4.3,2.5,3.7,4.9) as shape and scale parameters. The Integer Method gives the coeffi-

cients for equation (3.3.4) as:

au = -8.494665 al2 = -0.64293 al3 = -0.03641015 a14 = -0.001163430

a21 = 11.36933 a22 = -0.8478953 a23 = 0.1482047

a31 = -441483062 a32 = -17846569

a41 = -563.4837

aS1 = -11111622 aS2 = -373560.4

a61 = 517801841 a62 = -51141923 a63 = 4451650 a64 = -309331.9 ~ = 13140.54 .

The resulting density is

• f(x) =

o
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(3.3.69)

•

•

The survival function, S(x) is obtained through direct numerical integration of !(x). These
6 mj

two are plotted in figure 3.1. Note that E E aji = 1.
j=1 i=l

.........r-- ......""'-

1J . ~ {".-..--~}
• 1[-'- EE... ~(, _.'1

:
~ 1 ,.,_. .

: ! 1
';'

:j
';' ;jJI ., .

! i
~ l Il j• 1

1

• 1

1i
c Il III '" tG ..

Figure 3.1: Survival and Density Functions: Integer Method

General Shape Parameters

We can apply the Exact Method to the previous example. Using the result in (3.3.68)

obtained through the Integer Method, we compare it with results obtained through the

Exact Method. The Exact Method gives the pdf in equation (3.3.6). We then approximate

the density of X by summing up to a large enough integer, n say, 50 that

n xQ+r-le-x/~1

J(x) ::l:: C~ 5r Af+rI'(a +r) for x> 0,

and 0 elsewhere. To obtain a "good" approximation, we find an iDteger n sncb that
n

CE rSr ~ 1. For our example, the Exact Method approximated through the fonnula
r=0

40 65

(3.3.69) for n = 40 yields CE rSr = 0.7403136 and for n = 65 we obtain CE rSr =
r=O r=O

0.9863663. The weights rSr are easily computed by using the recursion identity in (3.3.15).

An approximation for the cdf of X cao he obtained from direct integration of (3.3.69). The

cdf allows us to ohtain an approximation for the survival function S(x) = 1- F(x). For the
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• saddIepoint approximation of the distribution function of X, we solve the equation (3.3.34)

to obtain i. For our example, we use the more stable bisection method rather than the

Newton-Raphson method to solve (3.3.34) numerically.

bl"'-~.. _

. .. 1
" p. : 4

i
i 1

1 1ï ....\ :1

:It.-..._~····_·~....--.:..=.":'--_····....'..~':_:1:1---_~~~%_
Figure 3.2: Survival Functions: Solid: Integer Method, dashed: Exact Method and dotted: Sad-

dlepoint Method

Figure 3.2 shows the plots for the survival function of X obtained from the three methods.

The solid curve shows the Integer Method, the dotted is for the Saddlepoint Method, and

the dashed curve gives the Exact Method. The first plot (a) gives the Exact method for

n = 40 and plot (h) is for n = 65. The Saddlepoint Method perfonns better than the Exact

Method for n =40. For n = 65 the Exact Method outperfonns the Saddlepoint Method.

We can aIso use the Gaussian Quadrature Method ta obtain an approximation for the

density I(x) for the failure time X. Putting N = Il and a = 40 in equation (3.3.58)

gives fairly good values for the density. For instance, at x' = 40.28929229502032 we get

.026471344924404 for the approximation to I(r). The real value for 1er) is 0.02615254.

•
Using spline interpolation we obtain an approximation for I(x). The result is plotted in

figure 3.3. The dotted curve gives the exact density of X obtained from the Integer Method

and the solid curve gives the interpolated function for 1(x) at the estimated points found
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(3.3.70)

Figure 3.3: Density functions: dotted: Integer Method and solid: Gaussian Quadrature Method

using the Gaussian Quadrature Method. In general, the Gaussian Quadrature ~fethod is

extremely useful for making very fast approximations when Xl, ... ,X/c are aIl gamma inputs.

When they are gamma type inputs, this method is not very stable.

Another method which yields fast resuIts is the Gamma Method ofsection 3.3. It approxi-

mates the density of X by a gammadensity with parameters Q = 12.86742 and ~ = 3.932411:

j(x) = r~)'B-àxà-l exp (-x/p)

and 0 elsewhere. Figure 3.4 gives the results of the Integer and Gamma Methods. The solid

curve represents the Integer Method and the dotted one is for the Gamma method.

3.8.2 Gamma Type Inputs

Most methods for calculating the pdf of X = Xl +X2 +...+ X/c when the inputs are gamma

•
type inputs are impractical. The SaddIepoint method requires the solution to

K'(t) = x
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Figure 3.4: Density and Survival fonctions: Salid: Integer Method and dash-dotted: Gamma

Method

where K(t) is the cumulant generating function and the Raw Method requires the calcuJation

of partitions of an integer, both of which can be quite long and exhaustive. The Raw Method

(3.3.72)

utilizes the following approximation to (3.3.24)
N

/x(x) ~ Cxo
-

l E (-Ir E M(x; Tb T2,··· ,Tt)
r=O rl +r2+··-+r.=r

Of course, the larger N is the better the approximation. However, this means that one needs

to calculate partitions for large integers, which can take sorne time. Also, for fixed N, the

Raw Method yields poor results for the tail of the density of X. The best way to find fast

and precise approximations for the pdf of X is to use the Convolution Method. We show its

effectiveness by looking at two examples.

First, let X = Xl + X2 where the parameters of the inputs are (aL,.8t, 5t} = (1,1,0.5)

and (Q2, 132,(2 ) = (2,2,2). This means that Xl is a gamma input with parameters (1,2) and

X2 is a Weibull input with parameters (2, 1/2). Using the "integrate" package in R (version

•
1.0.0), we obtain values for the pdf of X. Figure 3.5 plots the results using both methods.

The solid line represents the plot of the pdf using the Raw Method and the dashed line

is for the Convolution Method. The abruptness in the solid curve is due to the numerical
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o 2 4 6 8 10

•

Figure 3.5: Density functions: Solid: Raw Method and dashed: Convolution Method

instability of the Raw Method.

Now let X = Xl + X 2 + X3 + X 4 , where the parameters of the gamma type inputs are

(3.2,2, 0.7). The Convolution Method produces accurate plots for the density and survival

function of X. These are shown in figure 3.6. The method depends on the numerical

integration method chosen. For instance, R (version 1.0.0) uses the A. C. Genz's fortran

ADAPT subroutine ta do the calculations. For more on numerical evaluation of multiple

integrals refer ta Genz (1986) and Bemtsen, Espelid, and Genz (1991).

3.9 Conclusion

We have seen various methods of computing the distribution functions of X = Xl+X2+···+

X t where the inputs Xi are assumed to he independent gamma type inputs with parameters
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Figure 3.6: Density and Survival functions: Convolution Method

(Qj, 13;, 'Yi)· For the special case where f3i = 1 for ail i, the inputs are gamma inputs. Here,

we have shown that the Integer and Exact Methods yield better results than the Saddlepoint

Method. Also for this special case, the Gamma and Gaussian Quadrature Methods can yield

faster results and are quite useful for making preliminary approximations. For the general

case, it seems that the only method worth considering is the Convolution Method. It is

relatively fast and gives accurate results. For the examples given in the previous section,

results were obtained in about 10 to 15 minutes 00 a Pentium 450MHz with 64 megabytes

of rarn memory. The Convolution Method involves no matrix inversion or the numerical

solution to a function, as in the case with the Saddlepoint Method. In the end, the choice

of method is highly variant on the problem being coosidered.

•
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Appendix A

Independent Censoring

The independent censoring assumption bas been discussed by many to encompass a wide

variety of censoring mechanisms which include type 1 and type II censoring. ResuJts can

be found in Kalbfleisch and Prentice (1980), Fleming and Harrington (1991) and Lawless

(1982). We shaH fol1ow the reasoning of Lawless (1982).

Suppose that we have data from n subjects and assume that we have independent censor­

ing. Our life testing sample consists of the waiting times (Yl, Y2, .•. ,Yn) along with indicators

(6b 62 , ••• ,6n ) that come from a model with survival function S(x). The survival function

has unknown parameters ~ = (BL,··· ,9,). We will show that the likelihood for this data

under non-informative censoring is the same as the one given in (2.2.56). First, let us as­

sume that our data lies in the interval [0, Tl. To obtain the result, we discretize the problem

and then take limîts. Let the fallure time axis he partitioned into intervals Ii = [ai-h aj),

j = 1,2,··· ,k where ao = 0, aA; = T and aA;+l = 00. Let R; = the risk set for lj, Di =

the set of individuais who die in Ii and Ci = the set of individuals who are censored in Ii

with ni = IRil, di = IDil and Ci = ICil. Also, let ~i = ai - Qj-l for j = 1,2,··· ,k. The
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•

data DOW cODsists of the sets Dt, D2 ,··· ,D" and Cl, C2,··· ,C". The probability distribu-

tion of the D/s and Cï's denoted by P (DL, CL, ... ,D", Ct) cao be written as a product of

conditional probabilities

P (Dl, C[, ... ,D", C,,) - P (Dl) P (CtlD 1) X

ft [P(Di IDi>D2 , ••• , Di-bCi - l ) x

P (CiIDi> D2 ,··· , Ci-i> Di) ]

"- P (Dd Ql II P (DiiDit D2 , ••• ,Di - b Ci-d Qi (A-l)
i=2

where Qt = P (CtiDd and Qi = P (CiIDt, D2 , ••• ,Ci - b Di) for j = 2,3,··· ,k. Let us

examine the tenn P (DilDb D2,··· ,Di-t, Ci - t) in (A-l). The assumption of independent

censoring can be sub-divided into smaller assumptions.

Assumption 1. The mechanisms of failure and censoring for different subjects act inde-

pendentIy in Ii'

Assumption 2. For each subject in R.;, we have

If we have covariate information for each subject, assumption 2 should change to the

following assumption

Assumption 3. For each subject in Ri and conditional on the covariates, we have

P (Dying in IiIDl, Ct, ... ,Di - b Ci - t) = P (DYing in IilSurvival beyond Ii - t). (A-3)

Given these assumptions, we have the following:
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• where Si(Z) is the survival function of subject i. Given that the survival function is the same

for ail subjects, Si(X) = S(x) for i = 1,2, ... ,n, (A-4) becomes

We can now write (A-l) in tenns of (A-5):

k ( S() )tI. ( S( ) )n.-tl.II 1 _ aj 1 aj J 1 Q
j=1 S(aj-t) S(aj_l)

(A-5)

(A-6)

k
where Q = n Qj. Noting that nj+t = nj - dj - Cj and S(ao) = 1, we can expand the

j=l

product in (A-6) and rearrange tenns to get

11:

II (S(aj-d - S(aj»tI; (S(aj»e; Q .
j=1

(A-7)

Under the assumption of non-infonnative censoring, we can ignore the term Q in the product

d
above. In chapter 1 we saw that f(x) = - dx S(x), 50 by the Mean Value Theorem there

exists Tlj E I j sucb that S(aj-l) - S(aj) = f(Tlj)Âj for j = 1,2,' .. ,k. We get the likelihood

•

of the life testing sample by taking the limit of
len (f(Tlj)Âj)dj (S(aj)ti

;=1
11:nÂj

;=1

as k ~ 00 with m~(Âj) ~ 0 and T -+ 00. This gives
1

ft

L(~) = II [f(Yi)]cfi [S(Yi)]l-cfi
•

i=1
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(8-3)

•

•

Appendix B

Newton-Raphson Method

There are many methods for optimizing a general system of n equations in n unknowns

subject to constraints. One must be aware of the fact that there is no one particular method

that works for ail cases. However, the most widely used techniques are the Newton-Raphson

method and method of scoring. These two rely on quadratic approximations to the function

that is to he optimized. Often in statistics, we wish to optimize the Iikelihood or, equivalently,

the log-likelihood function.

We begin by taking a first order Taylor expansion of the log-likelihood, log (L(~)), about

a point~:

The right-hand side of (8-1) is maximized by equating its gradient to zero:

(~ lOg(L((l»I~=t) + [(~) (~) t lOg(L(~(.~] (fl-~) = 0 (8-2)

-1
Let the solution for ~ in (B-2) be denoted by ft . This is given by

t = ~+ [_ (~) (~) t log(L(~)I~J -1 ~ log(L(®)I(=~ .
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(8-4)•

•

This gives the following iteration scheme:

tH = t + [- (~) (~ylog(L(m>lt=~rl~ log (LCm>!t=l .

There are a few problems of which one must he aware when using the Newton-Raphson

Method. Besides heing computationally expensive, it is not an ascent method. In other

words we may not have L (t+ l) > L (~). The iteration scheme can he made into an

ascent method by replacing the sampie information matrix in (B-4) hy a positive definite

matrix A'. These methods are called quasi-Newton methods and further discussion may he

found in Conte and de Boor (1980) and Lange (1999).
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Appendix C

The Delta Method

Suppose tbat a random variable Y = (Yl , 1'2," . ,Yt ) bas mean !:!:. = (/Jl, /J2, ••• ,Jl.k) and a

non-singular covariance matrix W = «(fi;), where i = 1,2,'" ,k and j = 1,2,' .. ,k. Let 9

be sorne function of Y that admits a Taylor's series expansion about ~

9 (Y) = gel!) + ( a~g (Y) LJ·(Y - ~

+~(Y-~·((~)(a~)'g(y)ly=J(y-~+··· (C-l)

Assuming that (~g (Y) ly=J # 0 and ignoring higher tenns, one gets estimates for the

mean and variance of 9 in tenns of ~ and W. These are

E (g (Y)) ~ 9~ and

Var(g(Y» ~ l'V'= (y_~tW(Y_~

(C-2)

(C-3)

•
H furthermore Y is asymptotically normal with mean p and covariance matrix W, then

g (Y) is asymptotically nonnal with mean 9~ and covariance matrix W' given in (C-3). If

Y = y a one dimensional random variable, then p = p and IV = <il. Thus, E (g (Y)) ~ 9 (p)

and Var (g (Y)) ~ (f2 (g'(p»2.
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Appendix D

Greenwood's Formula

We now give a derivation of Greenwood's method for estimating the variance of the product-

limit estimator, a1so known as the Kaplan-Meier estimator. We follow the derivation found

in Lawless (1982).

The product-limit estimator for the survival function S(x) given the failure time data

S(x) = Il (1- ~) .
Gi<% •

(0-1)

where ab a2,'" ,am are the m uncensored failure times of the sample. Further, we define

ao = 0 and am +1 =00. di is the number of subjects who fail at time ~ and Ti is the number

of subjects at risk just before ai. If Ok < x < ak+1 then the product-limit estimator can be

rewritten as

k ( do)S(x) - Il 1 - T~ (0-2)
i=1 •

k

- IlPi (D-3)
i=l

• where Pi = Ti - li; , i = 1, 2, ... ,m. Now, Pi is the maximum Iilœlihood estimator of Pi, the
Ti
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• probability that a subject survives past the time ai- H there are Ti subjects at risk before ai

then the number of subjects that survive past C!ï is Ti - di- Thus ri - clï is a binomial random

variable with parameters (Ti,Pi)- Tbus the variance of Ti - ~ is

(0-4)

Th . f - Ti - di -e vanance 0 Pi = IS
Ti

Var (Pi) _ Var (ri -di)
Ti

Pi(! - Pi)- (0-5)

A reasonable estimate for (D-5) is obtained by substituting Pi for Pi- That is

t,. f:::) Pi(l - Pï)
y aT\pi ~ .

Ti

Taking the logarithm of the product-limit estimator in (D-1), we have
A:

log (S(x») - ElogCPi) and
i=L

le

VaT (log (S(x))) - E VaT (log (Pi»
i=L

Using the delta method (see appendix C) we have an estimate for Var (log <Pi»

(0-6)

(D-7)

(D-8)

VaT (log <Pi» ~

Var(jjj)
..... 2
Pi

11- Pi- .....
Ti Pi
di 1

(0-9)-
Ti (Ti - di) -

Applying the delta method once more, we have

•
(0-10)
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