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Abstract

Based on the barycentric vector and direct path approaches, the kinematics of a multiple
arm space robotic system is developed, and the differences between the two formulations
are discussed. Applying the general Lagrangian formulation, a concise explicit model of the
system dynamics is derived, and the specific characteristics of space robotic systems as
compared to fixed-base manipulators are discussed.

Coordination between a spacecraft and its multiple end-effectors, based on planned
trajectories, is investigated in capturing a moving space object. Two model-based control
algorithms, based on an Euler angle and an Euler parameter description of the orientation,
are proposed as well as a transpose Jacobian controller. Simulation results are presented
to evaluate the developed controllers and the planning strategy, in both planar and three-
dimensional maneuvers.

To control coordinated motions of space robotic systems, a new Modified Transpose
Jacobian (MTYJ) controller is presented which yields an improved performance over the
standard algorithm. Simulation results show that the performance of the MTJ law is
comparable to that of model-based algorithms, even though it requires a reduced
computational effort.

To manipulate a captured object by multiple manipulators, a new Multiple Impedance
Control (MIC) algorithm is develeped which enforces an identical controlled impedance on
each participating manipu'ator, on the manipulated object, and (in space) on the free-flying
spacecraft. The similarities and differences between the developed MIC law and other

force/impedance controllers are investigated, and simulation results are presented.



Résumeé

En utilisant les approches de vecteurs baricentres et de trajectoires directes, la cinématique
d'un systéme robotique spatial A plusieurs bras est développé, et une discussion sur la
différence entre ces deux formulations est présentée. De plus, en recourant i Ia formulation
générale de Lagrange, un modéle dynamique explicite ct concis du systéme est présenté, de
méme que ses caractéristiques spéeifiques qui sont comparées i celles de robots 2 base fixe.

La coordination entre le satellite et ses organes terminaux, pour des trajectoires
planifiées, est étudiée lors de la capture d'un objet en mouvement. Deux systémes
d'asservissement utilisant un modeéle de référence ont été développés, I'un utilisant une
description de I'orientation par les angles d'Euler et I'autre par les paramétres d'Euler. Un
systeéme de commande du type de la matrice Jacobienne transposée fut aussi développé.
Des résultats de simulation sont présentés afin d'évaluer ces trois sysiémes
d'asservissement lors de maneuvres planaires et tri-dimensionnelles.

Afin de permettre des mouvements coordonnnés d'un systéme robotique spatial, un
nouveau modele d'asservissement utilisant une matrice Jacobienne Transposée Modifiée
(JTM) est présenté et résulte en des gains de performance par rapport 4 un algorithme
standard. Des résultats de simulation démontrent que les performances de la loi JTM sont
comparables 2 celles des algorithmes utilisant des modeles de référence , méme si le
nombre de calculs est réduit.

Pour manipuler un objet 2 'aide de plusicurs manipulateurs, un nouvel algorithme de
Commande a Impédance Multiple est développé. Celui-ci s'appuie sur unc commande 2
impédance sur chaque manipulateur concerné, sur I'objet manipulé et (dans l'espace) sur le
satellite servant de base. Une étude comparative entre cette loi et d'autres systémes

d'asservissement Force/Impédance est présentée, de méme que des résultats de simulation.
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A set of Euler angles which describes an acquired object attitude.

A time step.

Logarithmic decrement.

The Kronecker delta.

Three first components of the Euler parameters; € = ksin(8,/2).
Sensitivity thresholds, in the MT]J algorithm,

Damping ratio in a second-order differential equation.

The fourth component of the Euler parameters; n= cos®,/2).

An N, x1 column vector which contains the joint angles of the m-th
manipulator, where 8, refers to its i-th component (joint).

A Kx! column vector which contains all joint angle vectors,
T T T\T
(0‘” 8T ... g ) .

A rotation angle about the spacecraft axis of rotation which is used for
the spacecraft Euler parameter determinations, also determines the
spacecraft attitude in planar motion,

A set of Euler parameters which describes the spacecraft orientation;
x=(e",n)".

A Lagrange multiplier for a single constraint, where A, is for the k-th
one.

The i-th eigenvalue of a matrix.
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Ratio of outboard mass (after the i-th joint of the m-th manipulator)
with respect to the total mass.

Vector of generalized speeds.

Position vector of the spacecraft CM, with respect to the system CM.
Position vector of C,, with respect to the system CM.

Position vector of point P, with respect to the system CM.

Angular velocity derivatives with respect to generalized coordinates,
and their rates.

Vector of joint forces/torques.

A matrix which relates the time derivative of generalized coordinates
vector to the vector of generalized speeds; q =®v.

A matrix which relates the vector of generalized speeds to the time
derivative of generalized coordinates vector; v = ¥ q

: 0 —70 0 0 T
Spacecraff a.ngular velocity, and "@=("®, , "@,,, ©p,) when
expressed in its own body-fixed frame.

Angular velocity of the k-th body of the m-th manipulator.

Angular velocity of the m-th end-effector expressed in its own body-
fixed frame.

An acquired object angular velocity, and acceleration.
Frequency of a trajectory.
Frequency of a low-pass filter.
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Chapter 1

Introduction

1.1 Motivation

As space commercialization materializes, space structures and satellites will proliferate.
Extending the life of such systems, and therefore reducing the associated costs, will require
extensive inspection, assembly, capture, repair and maintenance capabilities in orbit.
Astronaut Extra Vehicular Activities (EVA) can be valuable in meeting these requirements.
However, the cost of human life support facilities, the limited time available for the
maneuver, and the high risks involved due to various hazards, are some serious restrictions
for EVA. Therefore, it is expected that robotic devices will play an important role in future
missions.

To increase the mobility of such robotic systems, Space Free-Flying Robots (SFFRs)
in which manipulators are mounted on a thruster-equipped spacecraft, have been proposed
(Bronez et al (1986), Reuter et al. (1988)), see Figure 1.1, Unlike fixed-based robots, the
base body of SFFR is allowed to respond freely to dynamic reaction forces due to the arms
motion. Hence, in order to control such a system, it is essential to consider the dynamic
coupling between the arms and the base. Also it should be noted that the joint control

torques are limited due to actuator weight constraints in space.



Figure 1.1: Concept of SFFRs, (a) The Orbital Servicing
Vehicle, (b) The Extra Vehiculﬁr Astronaut Retriever.
Although dynamics modelling of SFFR is still an ongoing subject of research, control
of these free-flying manipulators to perform precise tasks in space, has already received
some attention. Control techniques for space manipulators can be classified in three
different categories. In the first, both the position and attitude of the base are actively
controlied (free-flying mode). In the second category neither of them is controlled (free-
floating mode) and finally, in the third, only the base attitude is controlled. Clearly, a
combination of these three modes can be employed during different phases of a mission. In
this research work, the focus is on the free-flying mode, and more precisely on the
coordination and control of the spacecraft and its multiple arms in capturing and

manipulating space objects.
1.2 Background

Control of mechanical manipulators is a challenging task, because of the strong
nonlinearities in the equations of motion. Different algorithms have been suggested to
control the end-effector position, orientation, or force, since the early research in robotics.

In this section, first a brief review of popular algorithms to control fixed-base

* manipulators is introduced. Next, a set of studies on the dynamics and control of space

JSree-flying robots will be briefly reviewed.
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1.2.1 Manipulator Control

Position Control. In this category, it is assumed that there is no force interaction
between the end-effector and the environment while its position and orientation have to be
controlled. Classic PID controllers at each joint of the manipulator are widely employed in
industrial geared robots. Although these feedback controllers are designed on the basis of
neglecting the dynamic coupling between the links, they can effectively control the system,
(Arimoto and Miyazaki (1984), (Kawamura et al. (1988)). High gecar ratios reduce the
relative importance of the manipulator dynamics, but do not eliminate the requirement for
an accurate system modelling, Leahy and Saridis (1989). The Computed Torque Method
employs such a model to compensate for the nonlinearities, and result in a linearized error
behavior!l. Khosla and Kanade (1989), and An et al. (1989) presented two sets of
experimental studies which compare the performance of the independent joint control
schemes (e.g. classic PID) to the computed torque method, implemented on direct drive
manipulators. These studies conclude the importance of compensating for the nonlinear
Coriolis and centrifugal forces, even at low speeds of operation.

The application of Model-Referenced Adaptive Control to robotic manipulators is
based on an adaptation algorithm which changes the controller gains so that the real output
follows the referenced model output within an accuracy bound (Dubowsky and Des Forges
(1979), Slotine and Li (1987)). Youcef-Toumi and Ito (1987) suggested Time Delay
Control which is a model-referenced algorithm for systems with unknown dynamics. The
basic function of the controller is to use observations of the system response to directly
modify the control actions rather than adjusting the controller gains. Arimoto and Miyazaki
(1984) proposed the betterment process which is based on a learning control approach

and improves operation of a robot in the next cycle so that the motion trajectory converges

1- According to Craig (1989), the idea was first proposed by Paul (1972), and named as the Computed Torque
Method by Markiewicz (1973) and Bejczy (1974).



cventually to the desired one. Therefore this algorithm can be applied when repetitive
operations are to be performed.

The Transpose Jacobian (TJ) control is a computationally simple algorithm, which has
been arrived at intuitively (Craig (1989)). The task error vector and its rate, both multiplied
by relatively high gains, and by the Jacobian transpose matrix, result in commands that
push the end-effector in a direction which tends to reduce the tracking error. In the case of
using an approximate Jacobian, it has been shown that the damping matrix and the position
gain matrix of this controller play an important role in determining the stability margin
(Miyazaki et al. (1988)). The TJ algorithm does not fail when a singularity occurs
(Chiaverini et al. (1990)), and can be applied to redundant manipulators (Asari et al.
{1993)). An extended TJ control algorithm has been developed to improve the performance
of mobile maripulator systems (Hootsmans and Dubowsky (1991)), and also to coordinate
motion control of spacecraft/manipulator systems (Papadopoulos and Dubowsky (1991b)).

Force/Impedance Control. Position or motion control algorithms are not sufficient
to control an end-effector's interaction with its environment. To control the interaction
forces or the dynamic behavior of the manipulator during tasks involving contact, force and
impedance control laws have been proposed. Raibert and Craig (1981) suggested the
Hybrid Position/Force Algorithm to control end-effector position in some directions, and
its contact forces in the remaining directions. Using wrist force sensors, and defining a
compliance selection matrix to determine position or force priorities in orthogonal
directions, a hybrid control architecture is implemented for tasks which require contact with
the environment. Hayati (1986) extended this approach to a system of multiple
manipulators. Khatib (1987) presented the Operational Space Formulation for motion and
force control of robotic manipulators. Defining generalized task specification matrices for
motion and contact forces, and employing a nonlinear dynamic decoupling approach, he

presents a control architecture with slow computation of dynamics, and a fast servo level to



compute the control command. Whitney (1987) compared different strategics in robot force
control, and discussed some unsolved problems.

Nakamura et al. (1987) discussed the mechanics of coordinative manipulation by
multiple robotic mechanisms, taking the dynamics of the object being moved into
consideration. Assuming a frictional grasp, they propose a computational procedure to
attain optimal internal forces. Tarn et al. (1987) presented a closed chain formulation for the
dynamic contro! of two cooperative manipulators with equal degrees of freedom. Hayward
and Hayati (1988) discussed various issues in the design of a multi-manipulator control
system, and developed an environment for the programming and control of cooperative
manipulators.

For a single manipulator in dynamic interaction with its environment, Hogan (1985)
proposed the Impedance Control that regulates the relationship between end-effector
position and force. Starting frem basic concepts, a method is suggested for choosing an
appropriate manipulator impedance. Goldenberg (1988) proposed an implementation of a
combined impedance and force control, to exert a desired force on the environment, and at
the same time, generate a desired relationship between this force and the relative location of
the point of interaction {contact) with respect to the commanded manipulator location.
Using an exact model of the manipulator, the algorithm is developed based on feedback and
feedforward control methods. Seraji and Colbaugh (1993) presented two adaptive schemes
to make impedance control capable of tracking a desired contact force, which has been
described as the main shortcoming of impedance control in an unknown environment. The
first scheme is based on an an-line reference position generating procedure, as a futi:iion of
force tracking errors. The second one is developed based on an on-line parameter
estimation procedure to obtain the environmental unknowns, and compule the proper
reference positicn for tracking a desired contact force.

As an extension of Hogan's impedance control concept, Schneider and Cannon (1992)

developed the Object Impedance Control (OIC) for multiple robotic arms manipulating a



common object. A combination of feedforward and feedback control is employed to make
the object behave like a reference impedance. Meer and Rock (1995) tried to extend OIC to
a class of flexible objects. They-realized that attempting to apply this controller when a
flexible object interacts with its environment may lead to instability. Based on the analysis
of a representative system, they suggest that in order to solve the instability problem, one
should cither increase the desired mass parameters or filter and lower the frequency content

of the estimated contact force.
1.2.2 Space Robotics

Dynamics and control of SFFRs, unlike those for long reach space manipulators, are
usually investigated under the assumption of rigid elements. This assumption characterizes
the following research studies on SFFRs.

Kinematics and Dynamics. Vafa and Dubowsky (1987) described the kinematics
and dynamics of a free-floating space manipulator system, using the Virtual Manipulator
Approach. No external forces act on the system, and so the system center of mass is fixed
in inertial space, enabling them to represent a free-floating system by one with a virtual
fixed base. Papadopoulos and Dubowsky (1991a) employed a barycentric vector
approach, to study kinematics and dynamics of a single arm SFFR in free-floating mode.
Taking the center of mass of the whole system as a representative point for the translational
motion, and using barycentric vectors which reflect both geometric configuration and mass
distribution of the system, results in a decoupling of the total linear and angular motion
from the rest of the equations. Umetani and Yoshida (1987) presented a Generalized
Jacobian Matrix for a free-floating system. Assuming that no external forces are applied
on a rigid robotic system with revolute joints, they derive a generalized Jacobian matrix
which reflects both momentum conservation laws and kinematic relations. The proposed
generalized Jacobian matrix converges to the conventional Jacobian, when the base body is

relatively massive.



Trajectory/Path Planning. Ullman and Cannon (1989) discussed important issues
associated with catching a free-floating object that is initially out of reach of the robot.
Trajectory requirements for catching a moving object are described, and a duai-arm two-
link planar space manipulator is simulated using a computed torque algorithm. Dubowsky
and Torres (1991) employed the Virtual Manipulator Approach in path planning of space
manipulators to minimize spacecraft attitude disturbances. Xu (1993) presented a measure
of dynamic coupling in free-floating space robotic systems, based on momentum
conservation laws. The dynamic coupling factor is defined based on the matrix which
relates the end-effector motion and the base body motion, and can be employed in planning
robot motions. Nakamura and Mukherjee (1993) presented a trajectory planning scheme
that exploits the nonholonomic redundancy of SFFR to avoid joint limits and obstacles.
The scheme was developed for a 6-DOF SFFR, and simulation results were included.
Yamada et al. (1995) presented a path planning scheme for the single arm of a frce-floating
satellite which is equipped with momentum wheels. The method utilizes the angular
momentum of the base, yet avoids nutation which occurs unless the final satellite attitude is
the same as the initial one. Nagamatsu et al. (1996) developed a capture strategy to retrieve
a tumbling free-flying object. A simplified dynamics model of the object attitude motion
was used to approximate a complex nutation motion by a superposition of rotational
motions with constant angular velocities, and the capture planning was introduced based on
the proposed model. The transpose Jacobian controller was used for the manipulator
control, in both simulation and experimental studies.

Control. Umetani and Yoshida (1989) employing the generalized Jacobian matrix
approach, described the differential kinematics of space manipulators. The inverse
kinematics problem is solved analytically, and a resolved motion rate control is developed
to compensate for spacecraft motion. Yoshida et al. (1991) applied this method to the
control of a multiple arm system. Alexander and Cannon (1990) developed an algorithm,

called the extended operational-space method to control the motion of a SFFR, and
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presented both simulation and experimental results. In this algorithm, the actuator torque
vector for the manipulator is calculated based on a reference model, where the spacecraft
position and attitude actuators are assumed to be “off” or else to be given and known to the
manipulator controller. Fujii et al. (1990} studied dynamics and control of a SFFR with a
two-link manipulator in planar motion. The control is performed to make the position and
velocity of the end-effector coincide with those of a moving object, in free-floating mode.
Papadopoulos and Dubowsky (1991b) suggested that nearly any control algorithm which
can be used for fixed-based manipulators can also be employed in the control of free-
floating svstems provided that the unique dynamical problems of these systems are
considered. They have also proposed a model-based algorithm to control the motion of a
single arm manipulator in free-flying mode. Yokokohji et al. (1993) studied efficient
algorithms for computing the generalized Jacobian matrix, and presented the resolved
acceleration contro! for multiple arm space robots. In this algorithm, based on a modified
Newton-Euler recursive method, all computations start from the end-effector, so as not to
compute the actual acceleration of the spacecraft, also parallel computations of multiple
arms becomes possible. Dubowsky and Papadopoulos (1993) focused on the dynamics
and control problems unique in rigid space robotic systems, and discussed some of the
efforts being done in this field.

Mukherjee and Chen (1993) studied control strategies for changing the configuration of
all joints of an underactuated space manipulator. The conditions for controlling only the
actuated joints, and all of the system joints, are studied separately. A planar three-link
underactuated space manipulator was simulated to demonstrate the application of ‘the
obtained results. Agrawal and Desmier (1993) developed mathematical models for different
motion primitives in space. Propulsion, collision, catching, and assembly operations were
discussed, and some simulation resuits for a dual-arm space robot in planar motion are
presented, Wee and Walker (1993) studied the dynamics of contact between space robots,

and proposed an algorithm to achieve both trajectory tracking and impulse minimization.



Yoshida and Nenchev (1995) studied the problem of estimating and minimizing the
impulsive reaction force both at the end-effector and at the base. Based on the null-space of
the system inertia matrix, they try to find out proper manipulator configurations, to achieve
a safe capture and minimize the impact.

Experimental Studies. Carusone et al. (1993) developed a control algorithm to
provide accurate end-effector tracking for structurally flexible space manipulators. Instead
of linearizing the system equations about the desired trajectory which would result in a
time-varying system, a series of steady-state time-invariant models are utilized to reduce
computational requirements, and make it easier to handle various trajectories. The algorithm
is implemented on a two-link planar manipulator, with the aim of tracking circular and
square paths, and the obtained experimental results are compared to those of independent
joint PID control implementations. Ejiri et al. (1994) developed a testbed for space robot
technologies, and presented some experimental results for a satellite berthing mancuver
with a two-armed space robot. Yoshida (1995) presented a summary of theoretical and
experimental space robotic research activities, using the Experimental Free-FlOating RoboT
Satellite (EFFORTS-I and -II) simulators. The testbed can mechanically simulate the planar
floating dynamics of a single or double arm system. Dickson and Cannon (1995)
developed The Decentralized Object Impedance Control, and presented some experimental
results for the capture, transportation, and docking of an object by two freé-ﬂying robots in
planar motion. The algorithm is an extension of the Object Impedance Control, as

discussed in the previous section, to maneuvers with multiple participating robots.

1.3 Structure of the Work

1.3.1 Objectives

Most of the reported studies have focused on the motion control of a single arm

manipulator in free-floating mode, i.e. an end-effector moves toward a target in the inertial



or spacecraft body-fixed frame with no significant force interactions between the
environment and any part of the system. A payload can be considered as a known
disturbance added to the last link at the time of capture (Jaar et al. (1992)), while
coordination and control of the hase and its multiple arms to capture and manipulate space
objects has not received much attention. To achieve the goal of capturing and manipulating
space objects (which may be passive or include some internal momentum source), this
rescarch work focuses on the following issues:
O Kinematics and dynamics modelling of multiple arm SFFR,
O Study and development of control strategies applicable in space;
O Motion control of the end-effectors coordinated with the base to chase a moving
object according to planned trajectories;
O Trajectory tracking control following object capture, where it may be in contact with
its environment;
O Development of a 3-dimensional simulation code for SFFR, in both computational

and graphical environments.
1.3.2 Research Tools

Most of the analytical derivations are executed in a symbolic computation environment
(MAPLE), without which most of the simulations would not have been possible, The
dynamics modelling code has been run for some simple examples, and the results are
verified by comparing them with those of hand-calculations, However, since some
complicated terms may vanish in the dynamics equations of simple systems, the final model
has to be verified in a general problem. This is done by developing an alternative code at a
very fundamental level, and comparing the numerical results of both.

Simple cases are simulated in MATLAB, while the simulation code for general SFFR

model is in FORTRAN. The veracity of the simulation results have been investigated by
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comparing the solution for a few simplified examples with solutions available in previous
studies, Dubowsky and Papadopoulos (1991a, b). Physica! intuition, and investigation of
limiting cases were also employed to verify the simulation results. The code has been also
used to eliminate programming oversights in the software developed by an independent
research group in Japan (Masutani, Y., Osaka University). Using Graphics Library
commands, a graphical simulation code for SFFR mancuvers has been developed in C,
which demonstrates the results of computational sirmulations. Running the code on an SGI

Indigo 2, with a 4400 processor, yields a smooth animated picture of the maneuver,

1.3.3 Thesis QOutline

Two basic approaches for modelling the kinematics of a multi-body space robotic system
are developed in Chapter 2. The barycentric vector approach is defined based on taking
the system center of mass as a representative point for the translational motion, and using a
set of the body-fixed vectors which reflect both mass properties and geometric parameters.
On the other hand, taking a point on the spacecraft as that representative point for the
translational motion (preferably its CM), defines the so-called direct path approach which
results in more compact equations of motion. In Chapter 3, based on both kinematics
approaches, the dynamics modelling of space robotic systems is discussed, The emphasis
will be on the direct path approach, to develop a concise explicit dynamics model of multi-
manipulator space robots in free-flying mode.

In Chapter 4, appropriate trajectories for the spacecraft and its manipulators motion are
planned which lead to capture of moving objects in space. Ensuring smooth operation and
reduced disturbances on both the spacecraft and the object just before grasping, these
trajectories take into account the target relative motion, and thruster or actuator saturation
{imits. Then, two model-based control algorithms, based on an Euler angle and an Euler
parameter description of the orientation, and a transpose Jacobian (TJ) control algorithm are

developed. These algorithms permit control of both the spacecraft and its appendages in
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their task space. Euler angle model-based control algorithm (MBI} presents the
inconvenience of representational singularities, while Euler parameter model-based control
algorithm (MB2) overcomes these non-physical singularities. The developed control laws
are evaluated using three manipulator or appendages free-flyer examples, in both planar and
spatial maneuvers. Comparing the performance of the TJ algorithm to those of different
model-based algorithms, illustrates the eligibility of this simple algorithm in controlling
highly nonlinear and complex systems, with many Degrees of Freedom (DOF). This result
motivates further work on this algorithm, aiming at overcoming the lack of information
about the dynamics of the system, a problem which appears more clearly in tracking fast
trajectories.

Next, the Modified Transpose Jacobian (MTJ) algorithm is presented in Chapter 5.
This new algorithm yields an improved performance over the standard one, by employing
stored data of the previous time step control command. The MTJ algorithm is based on an
approximation of feedback linearization methods, and does not require a priori knowledge
of the plant dynamics terms. Its performance is comparable to that of model-based
algorithms, but with a reduced computational burden. Simulation results are presented
which compare the performance of the MT] to that of the TJ and Model-Based algorithms,

To control the system after grasping the object, the new Multiple Impedance Control
(MIC) is developed in Chapter 6. This algorithm enforces a controlled impedance of all the
manipulator end-points, and of the manipulated object. This guarantees an accordant
motion of different parts of the system for performing the task. To reveal the merits of this
new algorithm, a simple linear system is considered to present a thorough comparative
analysis between the MIC and Object Impedance Control (OIC). Then, application of the
MIC law in a system of two cooperating two-link manipulators with an RCC attached to the
second end-effector, is simulated. Next, the MIC algorithm is applied in space robotic

systems to manipulate space objects. The error analysis shows that under the MIC law, all

12



participating manipulators, the free-flyer base, and the manipulated object exhibit the same

impedance behavior.

Chapter 7 reviews the results obtained in this research, conclusions, and some remarks

on future work.
1.4 Contributions

Major contributions of this research work are:

Q Extension of the Barycentric Vector Approach in space robotics to include multiple
arm dynamics, Papadopoulos and Moosavian {1994a);

Q Comparison between alternative kinematics/dynamics approaches in space robotics,
Papadopoulos and Moosavian (1994b);

Q Development of the Modified Transpose Jacobian (MT)) algorithm, Papadopoulos
and Moosavian (1994c¢);

Q Coordination and motion control of multi-manipulator space robots, based on
appropriate planned trajectories, resulting in symmetric motion of the manipulators
during capture (to minimize spacecraft disturbances), Papadopoulos and Moosavian
(1995);

O Development of the Multiple Impedance Control (MIC) and its implementation in
space robotic systems;

Q Development of a symbolic code based on a concise explicit dynamics model of

multi-manipulator space free-flyers, and a 3-dimensional simulation code for SFFR

(in both computational and graphical environments).
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Chapter 2

Kinematics of Space Free-Flyers with Multiple

Manipulators

2.1 Introduction

This chapter studies the kinematics of a multiple manipulator Space Free-Flying Robot,
(SFFR). Two basic approaches for kinematics modelling of a rigid multi-body space
robotic system are developed. Taking the center of mass of the whole system as a
representative point for the system’s translational motion, and using a set of body-fixed
vectors which reflect both geometric configuration and mass distribution of the system,
characterizes the so-called barycentric vector approach. This approach results in
decoupling the total linear and angular motion from the rest of the equations, when no
external forces/torques are applied on the system. On the other hand, taking a point on the
base body as the representative point for the system’s translational motion, (preferably the
center of mass of the base), characterizes the so-called direct path method. This approach,
eventually, results in a larger number of dynamics equations with simpler terms which have
clearer physical meaning. Using the direct path approach seems reasonable when dealing

with multiple arm systems, and especially in the presence of external forces/torques.
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In Section 2.2, free-flyer kinematics is developed using a minimum set of body-fixed
barycentric vectors. Position analysis based on the definition of these vectors, and
velocity analysis leads to derivation of a system's Jacobian matrix. In Section 2.3, free-
flyer kinematics is developed based on the direct path approach, using a set of body-fixed

vectors, Discussions of the developed approaches, will be presented in Section 2.4,
2.2 The Barycentric Vector Approach

2.2.1 Frame Assignment and Position Analysis

In this section, using a minimum set of body-fixed barycentric vectors, the kinematics of a
rigid multiple arm free-flying space robotic system is developed. The motion of the system
center of mass (CM) is used to describe system translation with respect to an inertial frame
of reference, XYZ. The body 0 in Figure 2.1, represents the spacecraft of the free-flyer,
which is connected to n manipulators or appendages, each with Ny, links. Manipulator
joints are revolute and have a single DOF.

The joint angles and rates are represented by Kx1 column vectors
0=(0",0%7,-...0")", and 6=(6"7,6%7 ... 67}, where 8 is an N,xI
column vector which contains the joint angles of the m-th manipulator, and K= i N, .
The total degrees-of-freedom (DOF) of the system are N=K+6. "

The inertial position of an arbitrary point P, R,, can be written as

R, =Rey +Ps 2.1)

and

Pr =Pg, + T, (2.2)

where p, is the position vector of P with respect to the system CM, R, is the inertial
position of the system CM, C, is the CM of the i-th body, P, is its position vector with

respect to the system CM, and r, ., is the position vector of P with respect to C,. Next,
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Pc, can be computed and expressed in terms of barycentric vectors. Note that, for
simplicity, extra subscripts and superscripts are not added in the above equations. When
more precise specification is required, subscript “0” is used for the basc, and a right
superscript corresponding to a specific manipulator, and a subscript referring to a specific

body of that manipulator, will be added.

Manipul
anipulator n End-Effector m

l.(m) Link N

(m) Link 2
2

( ‘(/‘. m Manipulator m

1™ Body br Link

Spacecraft
{(body 0)

o Denotes body
center of mass

Figure 2.1: A free-flying space robotic system with n manipulators.

2.2,2 Definition of Barycentric Vectors

Vectors p. in Eq. (2.2), are the position vectors of the CM of the i-th body with respect to

the system CM, so they can be computed using

n Na
mope, + 3, >, m"pi =0 (2.3)

ms] jz=)

and the following geometrical relationships
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I _ o) o (1) ) _

[Pc, =Pc., =N~ i=1 N
(m) Y = (m) _

<pcj" —-pe =6 =™ i=1-, N, (2.4)
(n) (n) _ (R) {n) v

(P, —Pc, =Tin -1 i=1--, N,

‘l ”

where the superscript “m” corresponds to the m-th manipulator, the subscript “i” refers to

the i-th body of that manipulator. The system of Eqs. (2.3) and (2.4), represents a system

of K+1 vector equations with K+1 unknowns (p,, ), and can be solved to yield

n Na
Pe, =8+, O L” (2.52)

m=] k=1

(m) _ gmd W = (m) m=l,ee, n
per = +ZZ| +Z _ (2.5b)
' XY

=1 k=] k=1

jem

where (®) denotes body-fixed barycentric vectors defined as

B = e k<

. - C[m=L- n
Vol =18 = el k=i { ; 1’ ’ N (2.6)
Tim) _qtm) _ m) p b
" =1""—e, k>i
where referring to Figure 2.1, vectors I and 1™ are constant body-fixed vectors which

describe the position of joints i and i+1 with respect to C,, respectively, and e, and e(™

are computed as
Z oy ) (2.72)
n=l
m) _l(m)(l H(M))'F (m)“::II) (2.7b)

The quantity u{™ describes the ratio of the outboard mass after the i-th joint of the m-th
manipulator with respect to the total mass, and is given by

(m}

pm = 2”‘* =1,-+,N, and p§, =0 (2.7¢)
i M
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M is the total mass of the system, and m{™ is the mass of the k-th body of the m-th
manipulator. Considering Egs. (2.6) and (2.7), it can be seen that barycentric vectors are
physically meaningful. For the i-th link of the m-th manipulator, if an augmented body is
formed by concentrating the inboard and outboard masses at the corresponding joint of
both ends, then €™ describes the CM position of this augmented body with respect to the
real CM of the link. Taking the CM of the augmented body as a reference point, vectors
e™, 1™, and £’ describe the CM position of the link, position of joints i and i+1 with
respect to that poiit, respectively.

Substitution of Eqgs. (2.5a) and (2.5b), for Pc,» into Eq. (2.2), and the result into Eq.

(2.1) completes the position analysis

Pe Base: R) =R, + &+ (LR (2.8a)
m=hk=|
n ”‘ Nn
o zim) m) __ =(m) yo) =(m)
Pe Link™ : R" =R, + " + ;Zlk + VT e (2.8b)
=1 k=1 k=1
jnm

Note that the above and the following results are in terms of invariant body-fixed vectors.
To obtain scalar equations, appropriate transformation matrices for each term must be
employed. It should be mentioned that, based on the spacecraft attitude and corresponding

joint angles, orientation of any link of the system can also be obtained.

2.2.3 Velocity Analysis

To obtain the inertial velocity of point P, R,,. Egs. (2.1) and (2.2) are differentiated

with respect to time, which results in

R, =Ry +p, + @ xT,,¢ (2.9)

where R, is velocity of the system center of mass, and Pc, can be obtained by
differentiation of Egs. (2.5a) and (2.5b) which describe p,, in terms of barycentric vectors.

Note that the barycentric vectors, according to the definition, are body-fixed vectors with
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. constant length (as long as system mass distribution does not change). Therefore,

differentiation of Eqgs. (2.5a) and (2.5b) yields

n N,
Pe, = @ XE+ Y, Y af™ x| (2.10a)
m=1 k=|
" NI - N, ms= 1, ity n
P =@y xEM+Y Y o XTI+ Y o x ¥ { (2.10b)
J=l k=l k=l i=1-, N,
Jm

where @'s are angular velocities of individual bodies.

Substitution of Egs. (2.10a) and (2.10b), for f)q , into Eq. (2.9) completes the velocity

analysis
3 - n Nu -~
Pe Base: RO =R, + @y xE+ Y, Y o X[ +@yxr,,  (2.11a)
m=1 k=]
. . n N} - Nul
Pe Link!™: R =Rg +@,xH"+Y > 0f xT+ Y o x¥{” +af” xr .,
=l k=1 k=1 !
. Jam

(2.11b)

It should be emphasized that in order to perform the foregoing vector sums, all vectors
must be expressed in the same coordinate frame.

For single DOF joints, the angular velocity of an individual body can be obtained as

isl k=1 N

m

£ m=l-, n
@ =, + Y, 6"z (2.12)

where z™’ is a unit vector along the axis of rotation of the i-th joint of the m-th

manipulator, and éﬁ"” is the corresponding joint angle rate.
2.2.4 Jacobian Matrix Associated with some Point and Link

Choosing a set of coordinates as system generalized coordinates, the linear velocity of an
arbitrary point P, and the angular velocity of the corresponding body, can be related to the

. time derivative of generalized coordinates (i.e. generalized speeds) through a Jacobian

20



matrix, For instance, if point P belongs to the i-th body of the m-th manipulator, it can be

written

R” (m
o r=dy (2.13)
;

where J|,) represents a Jacobian matrix, and v is the vector of gencralized speeds, which

can be defined as

v=(RL,. @, ,07) (2.13b)

Then, based on Egs. (2.11b), and (2.12), J{,’ can be obtained as

n J(M) J(M)
I = [“ b (2.14)
[T,

m)
03x3 13x3 J(s
where

X

n M
ng) = To 0~ém) + Z ZT:I) kl J)+ZT(M) *vi;ﬂ:’ (2.1551)
FELIN T k=l
Jum
19 =-3 S aerep - er""’ Vil E (2.15b)
I=l k=t
Jem
Jm = g™ (2.15¢c)

T, and T}’" are rotation matrices between body-fixed frames and the inertial frame, while

[¢]" is the cross product aperator, and

= (k) = (k)
Vip =V + 8T, cm (2.15d)

E;“ =[03xb Tml RS Tu” m 0]3xk’ (2.15¢)

where 8, is Kronecker delta, b= Y N,, and ’z{" =(0,0,1)" is a unit vector along the
=1

axis of rotation of the j-th joint of the k-th manipulator expressed in its own body-fixed
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frame. Note that a left superscript refers to the frame in which the corresponding vector is
expressed, and it disappears for the inertial frame.

Similarly, based on Egs. (2.11a), and (2.12), J;,, can be obtained for a point P on the

spacecraft as
13x3 J(O} J(D)
Jo, = - (2.16)
03x3 13x3 0 ExN
where
n N . *
J© =—[T,,( %1, )+ Y, 2T "l,f‘"’] (2.17a)
m=] k=]
n N -
IPN=-3 YT PTE” (2.17b)
m=]l k=1

Taking the whole system CM as a representative point for the system’s translation, and
using a set of body-fixed barycentric vectors, the kinematics of a rigid multiple arm SFFR
was developed. Next, the spacecraft CM is taken as the representative point for the
system's translational motion, and the kinematics of a SFFR is developed in terms of body-

fixed vectors.
2.3 The Direct Path Method

2.3.1 Frame Assignment and Position Analysis

In this section, using a set of body-fixed geometric vectors, the kinematics of a rigid
multiple arm free-flying space robotic system is developed. The motion of the spacecraft
center of mass (CM) is used to describe the system global translation with respect to an
inertial frame of reference, XYZ. The rest of the definitions described in Section 2.2.1, are
applicable here to the same extent as before.

Considering Figure 2.2, the inertial position of an arbitrary point P, R, can be written

R,=R +1, (2.18)
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(¥ #

2 BN w
¥ Manipulator m
Spacecraft i '

(body 0)

Manipulator/Appendage 1

Figure 2.2: A free-flying space robotic systemm with n manipulators.

and
L =T, + T, (2.19)

where R is the inertial position of the spacecraft CM, r, is the position vector of point P
with respect to the spacecraft CM, and r,, is the CM position vector of the i-th body with
respect to the spacecraft CM. Referring to Figure 2.2, r., can be expressed as follows

ro =0 (2.20a)

i=1
i =+ e - 1) -1 { (2.20b)

k=1

where, as before, vectors 1 and r’ are body-fixed vectors which describe the position
of joints i and i+1 with respect to C;, see Figure 2.2.

Substitution of Eqgs. (2.20a) and (2.20b) for r;,, into Eq. (2.19), and the result into
Eq. (2.18) completes the position analysis and yields

Pe Base: Rf,” =R¢, + ¥, (2.21a)
i=1
PelLink™: R =Rg +1"+ 26" = 1)=1" +r, 000 (2.21b)

k=1
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2.3.2 Velocity Analysis

To obtain the inertial velocity of point P, Eq. (2.18) is differentiated, after substituting Eq.

(2.19), to yield
R, =R +i. +0 X1, (2.22)

where Rc,, is velocity of the spacecraft CM. Differentiation of Egs. (2.20) yields
. =0 (2.23a)

m=}l--n
(m) = @, X rom) + Zm m) (! ™ lim)) - 0)gm) % l:m) { N (2.23b)
kal i= l; Tt

m

where 's are angular velocities of individual bodies.
Substitution of Egs. (2.23a) and (2.23b), for r., into Eq. (2.22) completes the

velocity analysis

Pe Base: R} =R +o,xr,¢ (2.24a)
[}

Pe Link™ : Ri” =R, + o, x5 + Y o x (" ~ ™) - 0" x (" -, )
k=1

(2.24b)

It should be noted that the angular velocity of any individual body, for single DOF joints,
can be obtained as defined in Eq. (2.12).

2.3.3 Jacobian Matrix Associated with some Point and Link

The linear velocity of an arbitrary point P on the i-th body of the m-th manipulator, and

angular velocity of the corresponding body. can be expressed as
RJ’
=Jv (2.25a)

where J{7’ represents a Jacobian matrix, and v is the vector of generalized speeds, which

is defined as
v=(R7,, 0,07 (2.25b)
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Note that the generalized speeds include ch instead of R, see Eq. (2.13b). Then,
based on Egs. (2.12) and (2.24b), J™’ can be computed as

Lp

133(3 ng) J(zm)
I = { . (2.26)
050 1ys J3" Jn

where

i-1 A
ng) = —[:To Drém) + Z[T‘(m)(krt(m) - klim)) ] —'I}(M)(‘IEM) _ fr,,fc“""):l (2.27a)
k=|

i=] x X
J(z'") = _Z[T:m)(krém) - kl:m)) ] Eim) + [T,(M)(‘Ifm) _ Ir,,,cc‘cm)] E:m) (227b)

k=l

LY =E" (2.27¢)

and the definitions given for different terms in Egs. (2.15), are applicable here, too.
Similar to the above, [, , can be obtained for the one corresponding to point P on the

spacecraft, based on Egs. (2.12), and (2.24a)

13)‘3 ':"0) 0
Ju‘p = (2.28)
03"3 13"‘3 0 6x i

X0 =-[1, °r,.0) (2.29)

where

2.4 Discussion and Conclusions

In this section the two approaches developed for kinematics analysis of SFFR with rigid
multiple manipulators, are compared. As revealed by the above formulations, the
barycentric vector approach is developed based on

O Taking the center of mass of the whole system as a representative point for the

system’s translational motion;

O Using a set of body-fixed barycentric vectors which reflect both the geometric

configuration and the mass distribution of the system.
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On the other hand, the direct path approach is developed based on
(Q Taking a point on the base body (preferably its CM) as the representative point for
the system’s transglation;

O Using a set of body-fixed geometric vectors.

Comparing the obtained results for position analysis, Eqs. (2.8) compared to Egs.
(2.21), it can be seen that the direct path approach results in single summations and yields
more compact relationships. Note that presence of double summations in Egs. (2.8) means
that all system links are contributing in defining the position of any arbitrary point P. This
is due to the fact that by taking the center of mass of the whole system as a representative
point for the system’s translation, the mass distribution over the entire system (represented
in Eq. (2.3)) has to be taken into account in writing position relationships.

The difference between the two approaches is more considerable for the velocities, Eqgs.
(2.11) compared to Eqgs. (2.24), because each vector has to be multiplied with the angular
velocity of the corresponding body. This leads to a big difference between the resulting
Jacobian matrices, Eqs. (2.15) compared to Egs. (2.27) or Egs. (2.16, 17) compared to
Egs. (2.28, 29). Note that the complexity of the Jacobian matrix is important because many
control algorithms require its computation; these algorithms can be implemented more
easily using the direct path approach.

It should be mentioned that the barycentric vector approach is an approach which
considers the next step of using kinematics equations in dynamics. In fact, it results in
decoupling the total linear and angular motion from the rest of the equations, when no
external forces and torques are applied on the system. But, according to the above
discussion, the direct path approach results in more compact equations in kinematics and
consequently in dynamics. Therefore, using this approach seems reasonable when dealing
with multiple arm systems, especially in tiie presence of external forces and torques. This is

to be investigated in the next chapter.
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Chapter 3

Dynamics of Space Free-Flyers with Multiple

Manipulators

3.1 Introduction

This chapter studies the dynamics of a multiple manipulator Space Free-Flying Robot
(SFFR) with rigid links. To apply the general Lagrangian formulation, first the system
kinetic energy is derived based on the two alternative kinematics approaches developed in
Chapter 2. The obtained results are compared, and it is shown that the direct path
approach yields more compact expressions. Next, the derivation of the equations of motion
is pursued on the basis of using this approach. Explicit derivations of a system's mass
matrix, and of the vectors of nonlinear velocity terms, and generalized forces are
introduced. The results are summarized in an explicit dynamics model of muitiple
manipulator SFFR, which can be implemented either numerically or symbolically. Here,
the latter approach is followed, and the developed symbolic code for dynamics modelling,
and its verification procedure are described.

In Section 3.3, issues of dynamics relevant to the development of control algorithms,
are briefly discussed. First, a quasi-coordinate formulation for system dynamics is

presented which is useful in developing control algorithms. In this formulation the angular
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velocity of the spacecraft, instead of the corresponding Euler rates, is chosen and included
in the vector of generalized speeds. The system dynamics is also formulated on the basis of
choosing Euler parameters for orientition representation. This selection introduces
algebraic constraints to the system, and the Natural Orthogonal Complement Method is
applied to obtain independent system of equations of motion. Some specific characteristics
of space robotic systems compared to fixed-base manipulators are pointed out at the end of
this section. Section 3.4 describes the developed symbolic code for dynamics modelling,

and the verification procedure.
3.2 General Lagrangian Formulation

Since a typical maneuver of SFFR is of relatively short length and duration, microgravity
and dynamical effects due to orbital mechanics are negligible, compared to control forces.
Therefore, the motion of the systern is considered with respect to an in-orbit inertial frame
of reference (XYZ), and the system potential energy is taken equal to zero. So, the general

Lagrangian formulation for such system can be written as

d(ar) _(ar)_ — .
(@ e e

where T is the system kinetic energy, N is the system degrees-of-freedom, g,, ¢, and G,
are the i-th element of the vector of generalized coordinates. generalized speeds, and
generalized forces, respectively. To apply Eq. (3.1), and obtain dynamics equations, first

the system kinetic energy, T, has to be derived.
3.2.1 Kinetic Energy Calculations

The system Kinetic energy can be written as

. l . .
1 =;_[MR,,- R, dM (3.2)
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where M defines the system's distributed mass, and R, is velocity of an arbitrary point P.
The above expression is now evaluated based on the two different kinematics approaches

for multiple manipulator SFFR with rigid elements, developed in the previous chapter.
3.2.1.1 Analysis Based on Barycentric Vector Kinematics
Substitution of Eq. (2.9) for R p into Eg. (3.2) yields

1 . . . .
T= 3 M(RCM +Pe, +@; XT,,0 ) (Rey +P,, +@, X1, ) dM (3.3

Vectors p,, are written with respect to the system center of mass, therefore
I, (SocJawr =0 o

Using Eqgs. (3.4), and further simplifications of Eq. (3.3) lead to
T= TO -+ TI (35")

where

L= M(Rc.u' RCM) (3.5b)

1

2
1 n Na

T =E{mu Pe, - B, + @ Iy @+, D (m™p™ - o+ ™ I -mﬁ”")}
mal i=l

(3.5¢)

m, and I, are the mass and inertia dyad of the base with respect to its CM, respectively,
and m™’ and I’ are those of the i-th body of the m-th manipulator with respect to its
CM. To obtain a detailed expression for 7', vectors 9. and p}_{"’ have to be substituted

into these equations from Egs. (2.10) (repeated here)

n N,
Pe, = Wy XEp+ Y, X O x ™ (2.10a)
m=l k)

J=l k=l k=)
jem

a M _ N m= l,...' n
P = @ X7+ Y, Y o x K7+ Y o x ¥ (2.10b)
i v N
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The vector of generalized coordinates is chosen as

q=(RL,. 8,87) (3.6)

where 8, is a set of Euler angles that describe the orientation of the spacecraft. The

spacecraft angular velocity can be expressed in terms of the Euler rates as

@, =S,(8,)5, (3.7)

where S,(8,) is a 33 matrix, see Meirovitch (1970). The vector °@, is the spacecraft
angular velocity expressed in its frame of reference. Therefore, the system kinetic energy

can be obtained as
| )
=2 I'H®,,0)4 (3.8)

where H is an NxN positive definite mass matrix of the system. Note that H is a function

of the spacecraft attitude and joint angles (§,, 9), and is independent from the CM position

(Rey):
3.2.1.2 Analysis Based on Direct Path Kinematics
Substitution of Eq. (2.22) for R, into Eq. (3.2) yields

e oo S
T= EL,(R% +i, + 0, Xr,c) (R, +ic +@,Xr,,.}dM (3.9)

which can be simplified, to obtain
T=T,+T,+T, (3.10a)
where

T=—M(R- R) (3.10b)

o | —

1 S, mam
T, =—{mo- -+, D (m™ i i+ o™ L™ . mf"")} (3.10c)

2 m=] i=l

m=l f=l]

an N,
T, =R, -(2 > m™ f‘c'j’] (3.10d)
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and r("" can be substituted from Eq. (2.23b) (repeated here for convenience)

m=l,n
(m) = @, X I,um) + 2 (m) (m) l(m)) m) w I(m) (2.23b)
i=1+ N,
The vector of generalized coordinates is chosen here as
q=(R[,8;,07)" (3.11)

and the system kinetic energy can be written as expressed in Eg. (3.8). Note that in both
formulations, expressions for T are in terms of invariant body-fixed vectors. To do the
required differentiations in Eq. (3.1), appropriate transformation matrices for each term
must be employed.

Next, the obtained expressions for the system kinetic energy, based on the two

kinematics approaches, are compared and discussed.
3.2.1.3 Comparison Between the Obtained Results

Considering Eq. (3.1), it can be seen that substitution of Egs. (3.5), i.e. the system kinetic
energy based on barycentric vector kinematics, results in decoupling of the first three
equations from the rest of the dynamics equations if no extarnal forces are applied on the

system. In fact, the first three equations of motion will be obtained as

MRCM =0 (312)

where R, is the system CM acceleration. However, substitution of the system kinetic
energy obtained based on the direct path kinematics, i.e. Egs. (3.10), into Eq. (3.1) does
not yield such a decoupling in dynamics equations. This is due to the presence of an
additional term, T;,, in the system kinetic energy ¢xpression. In fact, differentiation of 7,

with respect to R yields

(m) (m) (3_]3)

mal izl
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where :"g"' ? is a function of the m-th manipulator joint rates and spacecraft Euler rates, as
Eq. (2.23b) shows. Therefore, 97T,/ aRco is a function of all joint rates and spacecraft
Euler rates, and its differentiation with respect to time yields a coupled system of dynamics
equations. Obviously, this difference can be observed in the first three rows of mass matrix
H for each case. Similar comments apply to the next three rows, corresponding to the
spacecraft Euler rates, The difference in subsequent block which corresponds to the joint
rates is investigated, next.

As £gs. (2.10) and (2.12) reveal, vectors g and [')é:’" are functions of all joint rates
and spacecraft Euler rates. Therefore, differentiation of the terms (bc . ﬁco) and
(f)(‘::"’ . ﬁg”’) in Eq. (3.5c) with respect to any joint rate results in a lengthy expression
which is a function of all joint rates and spacecraft Euler rates. Subsequent differentiation
of the obtained expression with respect to time, as required in the calculation of
d(aT / 94,)/ dt, yields a lengthy expression, function of second rate of all joint angles and
spacecraft Euler angles. This means that the block of the mass matrix H which corresponds
to tie joint rates, if developed based on barycentric vector kinematics, is fully occupied by
elements with many terms. On the other hand, considering the direct path approach, vectors
i‘é’:" are functions of just a subset of joint rates (those of the m-th manipulator) and
spacecraft Euler rates, see Eq. (2.23b). Therefore, differentiation of (i‘é.:"’- i'é.':") with
respect to any joint rate out of the corresponding subset is zero. Consequently, if developed
based on direct path kinematics, the block of mass matrix H whicl -orresponds to the joint
rates is occupied by elements with fewer ierms. It should be noted that for a multiple
manipulator SFFR, this block is most likely the main part of mass matrix.

So far, the main concern was the first term in Eq. (3.1), d(37'/94,)/ dt, and the
difference between the obtained mass matrices as a consequence of dealing with this term.
The other term in this equation, 97 / dg,, which results in the vector of nonlinear velocity
terms, should also be taken into consideration. Following a similar discussion, it can be

shown that a significant difference will appear between the two approaches in calculating

32



dT / dg,. and the direct path kinematics results in a vector of nonlinear velocity with more
concise terms.

Based on the above discussion, it can be concluded that barycentric vector kinematics
may result in lengthy dynamics equations specially for multiple manipulator SFFR, while
direct path kinematics results in relatively compact dynamics equations. This is a vital
difference which is of particular importance in the execution time of simulation routines.
Furthermore, the main advantage of the barycentric approach, i.e. being able to decouple
the total linear and angular motion from the rest of the equations (if no exiernal
forces/torques are applied on the system), is not a substantial concern for this research
work2, Therefore, in the next section the focus is ca the direct path kinematics to develop

an explicit dynamics model of a multiple manipulator SFFR.
3.2.2 Equations of Motion via the Direct Path Approach

Applying the general Lagrangian formulation, Eq. (3.1), where the system kinetic energy is

substituted from Eq. (3.10), the equations of motion can be obtained as

H(3,,0)i + C(3,,85,,6,8)=0Q(5,.6) (3.14)

where the vector of generalized coordinates q has been already defined in Eg. (3.11), C is
an Nx1 vector which contains all the nonlinear velocity terms (in a microgravity
environment), and Q is the Nx1 vector of generalized forces given by

0., iy n N.
Q={ ) }*ZJo-vTFo.»’fZ 2 2 I TE (3.15)

‘thl p=l mzl {=] p=l

in which Fy,, is the p-th external force/moment applied on the spacecraft, F,"’;," is the p-th

external force/moment applied on the i-th body of the m-th manipulator, i, is the number

2- It should be noted that to develop model-based algoi.whms for controlling a free-floating system, the dynamics
model obtained based on the direct path kinematics, has to be reduced by mathematical techniques such as
Orihogonal Complement Method, However, the dynamics mode] obtained in terms of barycentric vectors, can be
directly reduced and employed for such a purpose.
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(m)

ip 18 a Jacobian matrix

of applied forces/moments on the corresponding body, and J
corresponding to the point of force/moment application. Note that Eq. (3.15) can be
obtained based on the definition of generalized forces. This equation can be rearranged, so
that actuator forces/torques are displayed explicitly. For instance, if all external forces
cxcept the ones applied on the spacecraft are zero, Q can be written as

of

)

Q=1J,1 °n, (3.16)
Ty
where "f, and °n3 are the net force and moment applied on the spacecraft, and J, is an
NxN Jacobian matrix. For a well designed system, J, remains nonsingular, i.c. any
required Q can be produced by the system’s actuators.
Next, to obtain an explicit dynamics model of multiple manipulator SFFR,
mathematical analyses are presented to help in calculating the mass matrix, the vector of

nonlinear velocity terms, and the generalized forces.
3.2,2.1 Preliminary Derivations

The system kinetic energy (as expressed in Eq. (3.10)) regardless of body specifications, is

composed of three typical terms
a, =%m rr (3.17a)
1
a,=-£m-l-m (3.17b)
a;=Re, - Y ,m,k, (3.17c)
k

So, to differentiate the system kinetic energy according to Eq. (3.1), such terms have to be
differentiated. Therefore, preliminary calculations in differentiation of these terms are
presented in this section, resulting in three formats which describe the contribution of each
term to the equations of motion. These formats, obtained in Appendix A, will be used in

deriving the system dynamics model in the following sections.
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Considering the first term, Eq. (3.17a), it is obtained that
1[8_)6_[ a ko i]m
dt\dq, ] dg, a% dg, a‘h dqy
N 5 v g (3.18)
r r .|l
M. om—
[ dg, (z aq,aq, J dg, (Zﬂ dq,9qy ‘l,]]q

which describes format-1, defined as contribution of the first typical term to the equations

of motion. Note that r has to be differentiated in the inertial frame (see Appendix A).

Considering the second term, Eq. (3.17b), it can be obtained that

%[aa,) da, _ [am .90 iul.l._ag](.i_'_

o4 0 94, 9a, o4 0

a‘b a‘]; ', 2 d q, an . ) (3.19)
) w o‘w Jo W o |. o

— - I-—+wI- It I — ~o I —

[Bq. dq, 94,94, 3, dqy aqlaq,v]q dg,

which describes format-iI. Note that @ is differentiated in the body frame (sec Appendix
A). This will be emphasized by using a left superscript on partial derivatives of @ i the

following formulations, consistent with the notations used by Kane and Levinson (1985).

Finally, considering Eq. (3.17c), it is obtained that

o gm - G Tm Bl

i%';m*[gaq?;;, é’J ach Z [Z’aqnaq, H

(. 205 J;mg_;. (.:;:zq ];m*%]q
(3.20)

which describes format-III. Note that both R, and 1, have to be differentiated in the

inertial frame.
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Next, to obtain the system dynamics model, the original terms in the system kinetic
energy as obtained in Eq. (3.10), are substituted into the corresponding format. Then,
following the structure of the dynamics model presented in Eq. (3.14), appropriate terms

are collecled to yield the different elements of the model.
3.2.2.2 Mass Matrix

To obtain the mass matrix H, according to Eq. (3.14), the acceleration terms in each of the

three formats have to collected. Therefore, H;, is computed by

O Substituting each term of the system kinetic energy, as expressed in Eq. (3.10),
into an appropriate format;

O Finding the coefficients of ¢ in the corresponding format;

(0 Adding the results, obtained from formats I, II, and III, for each term.

O Adding the results, obtained for all of the teims.

Leaving aside the details, this procedure eventually yields
oR. JR. Damn 1, °% @,

H=M 2. +
=", oq, 4, dg,
orm or™ kam(m] k5 o (M)
mi™ " P> SRR et Y (2 SO TS P (3.21)
MZBIE( ¢ dg, o4, ) a‘b
(Zi - l‘é’."’J,aR [22 m 91 | OR¢,
m=) k=l g, a‘h m=1 kal Q’j aq,

where r ’ can be substituted from Eq. (2.20), and @{™ from Eq. (2.12). Note that
consistent with Kane and Levinson (1985) a left superscript on partial derivatives refers to
the frame in which the differentiation has to be taken, where for the inertial frame it is left

as blank. This is followed in the formulations which are developed next.
3.2.2.3 Vector of Nonlinear Terms

The vector of nonlinear velocity terms in Eq. (3.14), can be computed by dropping the

acceleration terms, in each of the obtained formats. So, C, is computed following the same
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procedure as described for computation of £, by considering the coefficients of q and
any other term (except those which correspond to q) in each format. Following such a

procedure, it can be obtained that

C(3,, 5,.0,0)=C (8, &.0.8) 4 +C,(8,, 5,,6.0) (3.220)

where § = (R, , 57,67)", and

Yo T o o v J
C, = 0.1, - ¢ b+, 1 - °+ m™
. 9 ° a‘f; ¢ aq a‘b G mz}g{ * :Zl‘a a‘h
n Na ar(m) N azrtm) a (m) kam(m) kaz (m)
m(m) C Cy ‘-L}_*_ . I(M)' k +m(m),1(m)
mzﬂé[ ¢ a‘h (:z-; aqaa% aQJ * aq1 * * a‘ha‘?,‘
(3.22b)
'3, ‘o™
(coo S +ZZ . — J (3.22¢)
m=1k=1 aq,

1Jote that using the relationship between the angular velocity (° @, ) and Euler rates (50).
given by Eq. (3.7) for the spacecraft, vector C; can be combined with the first term of Eq.

(3.22a). Then, the vector of nonlinear velocity terms can be written as

C(8,, 5,,0.6) = C(5,, 5,,0,0) ¢ (3.23)

This is a representation of nonlinear velocity terms which is preferred in the development of

adaptive control algorithms.
3.2.2.4 Vector of Generalized Forces

As described in Eq. (3.15), if all external forces except the ones applied on the spacecraft

are zero, the vector of generalized forces Q is written as

0
¥

oaxl Or,
Q=Jp{%, t={ 7 t+37] (3.24)
Txxi n,

Tixi

Assuming that °f, and °n, are applied at the spacecraft center of mass, J, is defined as
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ORC., -
=J,q (3.25a)
Then, similar to thke Jacobian matrix given in Eq. (2.28), J, can be obtained as

T,” 0,, O,
1, =l: 0 3 V3 x] (3.25b)

0,, S 0
w3 Do 3k dg o

Therefore, J , is obtained as
TO 03::3 OJXK
Jg=| 044 S,” 0, (3.26)

oxxs Oxx:i lx:x NXN

which can be substituted into Eq. (3.24) to obtain Q. This completes the derivation of the
dynamics model for a multiple arm SFFR with rigid links. Note that the computation of the
obtained dynamics equations, can be done either by numerical or symbolical programming
tools. Symbolical derivation, i.e. obtaining the system response using analytical
expressions for the dynamics, has been followed in this research work, and will be

discussed in Section 3.4.
3.3 Supplementary Issues

In this section, in view of future utilization of the dynamics model in the development of
control algorithms, some supplementary issues are discussed. Quasi-coordinate
Sformulation of the system dynamics, and the outline of a formulation employing Euler
parameters for orientation representation are briefly presented. Finally, some unique

dynamics characteristics pertaining to space robotic systems are discussed.
3.3.1 Quasi-Coordinate Formulation

3.3.1.1 Problem Statement

The form of equations in (3.1) which results in the dynamics model of Eq. (3.14), is useful

in designing an Euler angle based control algorithm, as will be discussed in more details in
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Section 4.3. In this case, the vector of generalized coordinates was chosen as
q=(RE,, 8;,07)". For control reasons, it is also beneficial to obtain the equations of
motion using as the vector of generalized speeds v = (R, , °wj. 87)", where *a, is the
angular velocity of the spacecraft expressed in its own body frame. As it is seen, v is not
equal to ¢ anymore, and the equations of motion have to be modified for this set of
variables, resulting in a quasi-coordinate formulation. This may be of interest in obtaining

a dynamics model for model-based control algorithms, developed based on angular velocity

of the spacecraft rather than corresponding Euler angles and rates.
3.3.1.2 Equations of Motion in terms of Quasi-Coordinates

The vector of generalized coordinates, q = (Rg,, 85,07)", can be arranged as

q =(q(0)’ ’qu)’ ’.._‘q(n)r )T (3.27a)

where
q° = (RTu oY (3.27b)
q" =0 = (8™, 6", .., 6" (3.27¢)

and n is the number of manipulators or appendages to the spacecraft. Then, the system
kinetic energy is differentiated with respect to 80 to yield

oT _ i 9T 9°w,,
aq.li(m k=l a omﬂk aq-:m

i=4,5,6 (3.28a)

where ®@,=("w,, , *0,, , "0, ). Based on Eq. (3.7), this results in

oT _§7 oT
3, ° 9%,

(3.28b)

Therefore, the second three equations of the dynamics model which correspond to the

spacecraft orientation, can be obtained as

A 9T ). 1o 1" 0T o1 9T _crmm
dt(a“mo)+[ e e O P .29)
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where QF’ is a 3x1 vector which contains the second three elements of the vector of

generalized forces in the previously obtained dynamics model, i.e. corresponding to the

spacecraft orientation. Note that from Eqgs. (3.24) and (3.26) it is obtained that

Q' =S; °n, (3.30a)
or

Sy QY ='n, (3.30b)

Eq. (3.30b) can be substituted into Eq. (3.29) to yield

d{ oT x oT 7 oT
o S g = 30

which leads to the quasi-coordinate formulation for the dynamics of multiple arm SFFR.
This is obtained if the second three equations of the dynamics model described in Eq.
(3.14) are substituted by Eq. (3.31). As mentioned before, the result is useful for model-
based control algorithms which are developed based on angular velocity of the spacecraft
rather than correspording Euler angles. The main purpose of developing such algorithms is
overcoming the non-physical singularities, due to an Euler angle representation of attitude,
that correspond to a singular S;. Therefore, the new model is appropriate, if the system
kinetic energy is expressed independently of the spacecraft Euler angles, i.e. 3T/ 38,=0,
and Eq. (3.31) can be simplified to

d aT o X aT 0
—} =+ 0| =——="n 3.32
a‘r(a"moJ [* ] %w, ° (3.32)
which has the form of the Euler equation for a single rigid body.

A more reasonable approach to obtain a suitable dynamics model for such control

algorithms, is formulating the system dynamics on the basis of choosing Euler parameters

for orientation representation, which is discussed next.
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3.3.2 Using Euler Parameters as Orientational Coordinates

Choosing Euler parametors for orientation representation introduces algebraic constraints
to the system dynamics. This is due to the fact that these four parameters are not
independent, and obey an algebraic constraint. An independent system of equations of
motion can be obtained using the Natural Orthogonal Complement Method, which is

briefly described next.
3.3.2.1 Basic Definitions

Using Euler parameters to describe the spacecraft rotation results in the following vector of

generalized coordinates
q=(Rg,,x",07) (3.33a)
where x is the vector of Euler parameters describing the spacecraft attitude, andis defined as
x=(e"n) (3.33b)
where € and 1 are defined as
£= ksin(%"—) & m= cos(%") (3.33c)

where k =T k defines a 3x1 unit vector along the spacecraft axis of rotation, and 6,
describes a simple rotation about this axis, Hughes (1986). It can be seen that the four

components of x are not independent, and obey the following constraint

K'K=] (3.34)

The vector of generalized speeds is selected as v = (R7, , @], 87)". It can be shown

that (see Angeles (1988))
o, =Ex (3.35a)

and

K= %E’" @, (3.35b)
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where
E=2[E —e]m (3.35¢)

E=7n1+[g* (3.35d)

1 is a 3x3 identity matrix. The spacecraft rotation matrix with respect to the inertial frame,

T, . can be written in terms of Euler parameters as

T, = (2n* = 1)1+ 2&€” +2n [e] (3.36)

Based on Egs. (3.35), it can be written that
q=>v (3.37a)
where

13x3 03x3 OSxK

O=(0,,, ME" 0,, (3.37b)
0Kx3 OKXJ leK (N +1)xN

which is used in reducing the dynamics equations, as will be discussed later. Conversely

v=¥q (3.382)
where
13:4:3 03::4 oaxx -l
=0, E;,, 0, (3.38b)
0’&')(3 0}.’14 IKXK NX(N+1)
So
DY =1y ey & ¥O=1,,, (3.39)

The constraint defined by Eq. (.*.34) can be differentiated to yield
x'x=0 (3.40a)

or
T

a q =0 (3.40b)

where a=(03,,7, x’, ka,T)T is an (N+1)x1 vector. Next, the general Lagrangian

formulation is modified to yield the system dynamics under the described constraint.
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3.3.2.2 Constrained Equations of Motion

The general Lagrangian formulation, Eq. (3.1}, for the described constrained system can be

dar) (oT)_ ,
i) (Ga)-ere oA

where Q is the vector of applied forces/torques, and Q, is recognized as the vector of

modified as

constraint forces/torques which can be written as

Q,=Aa (3.41b)

A is a scalar, the so-called Lagrange multiplier, and a describes the single constraint as
defined in Eq. (3.40). It should be mentioned that for a system with more than one

constraints, Q, can be obtained as

A
Q= zAkak (3.42)

k=1

where i, is the number of constraints, Meirovitch (1970).
Eqg. (3.41) describes the system dynamics in terms of a set of N+ constrained
coordinates. To obtain an independent system of N equations, this equation has to be

modified, which is discussed next.
3.3.2.3 Independent System of Equations
Substituting Eq. (3.37) into Eq. (3.40), yields
a’®=(®"a) =0 (3.43)

This means &’ is an orthogonal complement of a, and leads to the concept of Natural
Orthogonal Complement Method in obtaining an independent system of equations from a
constrained system (Saha and Angeles (1991), Cyril et. al. (1991)). Clearly, multiplying

Eq. (3.41) by @7 makes the vector of constraint forces vanish, and yields
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rd{dTl r( 9T r 3.44
P dr(aq) (b(an D Q (3.44)

which represents a system of N independent equations.

To write Eq. (3.44) in terms of generalized speeds v, dT/dq can be substituted by

oT oT
9 _p9l 3.45
% = (3.45a)
where -
[ 3y, | 9y
94, o4,
p=| : 5 (3.45b)
_aékol aqﬂ-l SN+ N

Considering Eq. (3.38), it can be seen that

P=v" (3.46)
Therefore
BT ;0T
347
En =¥ w (347)

which can be differentiated with respect to time, to yield

oT aT d{aT
Pro_ T 348
dt[aq) Yy (al’) (349
Substituting Eq. (3.48) into E2.(3.44), and using Eq. (3.39), results in
aT T aT T aT T
o) —-0 34
(av) (‘P ) ov [aq] Q (.49

which is a set of N independent equations, and represents the system dynamics in terms
generalized speeds selected as v = (R, , "}, 87)", and the generalized coordinates as
defined in Eq. (3.33).

Next, in view of future utilization of the dynamics model in development of contrul
algorithms, some specific characteristics of space robotic systems compared tc fixed-base

manipulators are pointed out.



3.3.3 Dynamics Characteristics of SFFR

In space robotic systems, unlike fixed-base manipulators, any motion of a singie link
creates a reactional motion of the whole system. In free-floating mode, where no external
force is applied on the system, the motion is dynamically constrained, i.c. total linear and
angular momentum of the system is conserved. Also, the Jacobian matrix as obtained in
Eq. (2.14) becomes mass dependent. In other words, the inertial linear velocity of an
arbitrary point P, and the angular velocity of the corresponding body, is affected by mass
distribution over the entire system. Surprisingly, this coupling between arms and the free
base also affects the dynamics of the relative motion of the end-effector with respect to the
base. This is due to the fact that joint angles and rates are dynamically coupled, even
though the relative motion can be expressed in terms of a fixed-base type Jacobian.

To observe specific characteristics of space robotic systems vigorously, elerents of the
dynamics model for a fixed-base manipulator are next compared to thosc of a space robotic
system. As shown in Asada and Slotine {1986), for a fixed-base serial manipulator, the

mass matrix H and the vector of nonlinear velocity terms C can be obtained as

N
H= Y (m, 30 39 + 307 01 30) (3.502)
f=1
N N
C = z;,;muk‘jt g, (3.50b)
]: =
where
Jg)=[([oz:]x oPéM,) ([oz’] UP::M.) 01x| 03x|]3m (3.51a)
3=z, - o0, o 0], (3.51b)
oH, 10H,
=———— 3.5lc
"k a‘h 2 a‘h ( )
and
°PLy, ="T,('PL,) (3.514)



m, is the i-th link mass, “I’ is its inertia matrix with respect to the center of mass
expressed in the fixed frame, %, is a unit vector along the i-th joint axis expressed in the
fixed frame, 'PZ,, is the position vector of the i-th center of mass with respect to the origin
the of j-th frame as seen in that frame, and ° T, is the rotation matrix between the j-th frame
and the fixed one. It can be proven that the obtained H, and C, for a fixed-base

manipulator, are functions of specific set of mass parameters as

Hy = hy(my, . 1hy) h(0.) k = max(i, j) (3.52a)
C, = [y, Fity) £10.,6.) (3.52b)

where hy, hy, £, and f are functions of the given arguments, 77, denotes the i-th link
mass properties (both mass and moment of inertia), and 0. is a subset of joint angles
vector (0). As it is seen mass properties have a backward propagation effect on the
dynamics model. In other words, mass properties of link “i” do not appesr in the H
elements which comrespond to posterior joint variables, i.e. i+1,...,, N. For instance, mass
properties ~f the first link only appear in H,, and C,. On the contrary, for space
manipulators in the free-floating mode, this is no longer true, and every element of the
dynamics model is affected by mass properties of all links. This can be justified by
considering the mass matrix H, and the vector of nonlinear velocity terms C, when
obtained based on barycentric vector kinematics. To complete this discussion, the mass
matrix H for a space manipulator, is now presenied in terms of barycentric vectors.

Based on Egs. (3.5) for the system kinetic energy expressed in terms of barycentric

vectors, following the same procedure explained in Section 3.2.2.2, it can be obtained

aRCM . aRc.u +m apc,. .apcn + °a ®, . Io . 03 @, +

H =M

"7 9 9, "o 9 04 94, 553
00 [ LA AL R L '
mal k=l ' dq, a‘h 94, * a‘h
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where p. and pc” can be substituted from Eq. (2.5), and angular velocities from Eq.

(2.12), premultiplying each term by appropriate transformation matrix.

Note that p; and pé':" are written in terms of barycentric vectors, which according to
the definition consist of the vectors on every single link of the system. So, p., and pé'."’ are
functions of all joint variables and spacecraft Euler angles, so that 9p,, /9g, or dpg" /9g,
results in a non-zero value (for i>3). This means every element of the mass matrix H for
the space manipulator itself, decoupled from the first six equations which describe the
system’s translation and spacecraft rotation, is affected by the mass properties of all links.
The same conclusion can be made by considering the vector of nonlinear velocity terms C.
As a consequence of this complexity, namely dependency of every element of the dynamics
model and Jacobian matrix on mass properties of all links, any error in the estimation of
mass parameters has a more drastic effect on the performance of model-based control
algorithms in space.

In free-flying mode, where external forces (thrusters, etc.) are applied on the system,
the motion is no longer dynamically constrained. Therefore, the end-effector can be moved
either by joints motion or the spacecraft motion, resulting in a redundant system. However,
manipulators dynamics are coupled through the connected spacecraft, so they are affected
by the mass properties of all links. This makes coordinated control of the spacecraft and the

attached manipulators an interesting problem.
3.4 Generation of Symbolic Code for Dynamics

3.4.1 Symbolical vs. Numerical Code Generation

As mentioned before, computation of the obtained dynamics equations can be done either
numerically or symbolically. The latter is chosen in this research work, and is described
here. However, to compare the two programming approaches, the required steps in the

numerical computation of the obtained dynamics, is first reviewed. To this end, preparation
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of few sample terms, i.e. *9@{"'/dg, and ‘0@{™/dq, for numerical computer
programming is discussed. In a similar way, other terms in H,, C,, and J, can be
obtained, and programmed in the corresponding environmeat.

First, preliminary calculations for numerical computer programming of “d@{™'/dq, and
*2wi™ 194, is presented. Following the arrangement of Egs, (3.27) for the vecior of
generalized coordinates, the angular velocity of the k-th link of the m-th manipuiator
expressed in its own body-fixed frame, *@{™, can be obtained by substituting Eq. (3.7)
into Eq. (2.12) and expressing the result in the corresponding frame. This yields

mi'") k- IT:m’ t-zT:Tl)’_,_oTl(m)"So §o +
i(k-lchm)' k-2, -’T(ﬂ’rqﬁ"" . (m))+q£mb kgim) (3.54)

s}

where S, has been already defined in Eq. (3.7), ‘"""’ is a rotation matrix between the i-
th body-fixed frame and the previous one, and ' ("" =(0,0,1)" is a unit vector along the
axis of rotation of the i-th joint of the m-th manipulator expressed in its own body-fixed

frame. Therefore, it can be obtained

rc| if p=0

- D if (p20 & p#m)

@, . ;

aq(,*, dlf_gz U“ (p=m & l<k) (3'55)
8 if (pem & i>k)
O, if (p=m & i=k)

where
o=t |T(m}' -zr-nfm)r oT(m)’ a5, & (3.56a)

a A0

a - IT(m)r

o k=lpim)’ | irpim)”
g, = Tk ' Tl+l 9™
g

} 2-1‘(m)r oTl(m)’SO 50 +
] (3.56b)

i1 i=lmpim)’
k=1epy(m)T im{mi7 a Ti i=2 (l'n}lr S (m) :(m} s (m)
Z( Tk II:H] ( g™ Ti-l ) T+| q,

s=l q!

48



T
k IT(m) foa

r L -
o, = T TS, o

aq(m)
L IT(m)" (3.56¢)
Z'[ aq(m] k- 2T(MJ 'T‘d—l q:m) :z(m))
Similarly, it can be obtained
(o7 if =0
43 0™ 0 i (p#0 & p#rm)
a“(’p, =ia, if (p=m & i<k) (3.57)
% 0 if (p=m & i>k)
o7 if (p=m & i=k)
where
r_k-tepim) k=2mstm)T | O ep(m)” ad, ’
o= Tk T TI SD'—a—m (35851)
.r = k- lT(m)r k- 2T(m) . ‘T::;’”Zf,"') (358b)
o; = *z{" (3.58¢c)

Note that S, is a function of 8,, and ""T/"’ is just a function of ¢™'. Thercfo:e,
3N'T™ fag™, 38,/3¢™, and 38,/34 can be calculated analytically, and
substituied into Egs. (3.56) and (3.58). Other terms in H,, C,, and J, can also be
calculated, in a similar way. The obtained results can then be programmed in a numerical
environment, to quantify the system dynamics.

Although numerical derivation seems a cumbersome procedure, it would be the only
choice if symbolical programming tools were not available3. However, by means of
symbolical tools, each term can be analytically calculated in a coniputer program. For

instance, Eq. (3.54) can be directly computerized to represent *@{™. Then, 9 *a{™ /g,

3- Note that for the numerical development of the dynamic propertics of mechanical manipulators, the proposed
recursive algorithms can be followed. These algorithms ulilize the iterative routines for inverse dynamics, and
joint forces and torques measurements, (o solve direct dynamics. For furtiier details, one can see a comparison of
different methods for developing the dynamics of rigid-body systems presented by Ju and Mansour (1989). Here,
the focus is on the computation r[ the explicit dynamics model obtained based on Lagrange formulation,
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and 3 *@," /34, will be analytically calculated in a single step, rather than going through
different options in Egs. (3.55) and (3.57). Furthermore, using various mathematical
identities and factorization techniques, the result can be simplified to shrink the obtained
analytical expressions, Therefore, as mentioned earlier, the symbolical derivation of
dynamics model is pursued in this rescarch work, and the developed code is introduced in

the next scction.
3.4.2 Description of the Code

The derivation of the dynamics equations of motion has been programmed in a symbolic
environment (MAPLE), for a multiple manipulator SFFR with rigid elements in a general
configuration, The output of the code includes the mass matrix H, the vector of nonlinear
velocity terms C, the Jacobian matrix J, to describe the vector of generalized forces,
Jacobian matrix J_ which describes the task space (employed in control) and its time
derivative J_, each one as an analytical function of generalized coordinates/speeds.

The program is initiated by determining the system general configuration, i.e. number
of manipulators/appendages, number of links for each one, and degrees-of-frcedom for the
spacecraft (i.e. th-e2 for planar motion, or six for spatial motion). Then, mass properties
and geometric parameters for each element of the system have to be specified. These
parameters can be substituted by numerical magnitudes or left as parameters. The latter
results in long expressions, while the first one yields more concise results particularly
when some components of geometric vectors or inertia matrices are zero. In fact, in most
studies the dynamics has to be modelled for a specific system and then employed in
simulation and control investigations. Usually, for these investigations, the simulation
routine has to be run tens of times. Therefore, it is preferable to substitute numerical
magnitudes for the system parameters in the dynamics model at the very beginning and
make it more concise. The cost is just running the symbolic code, once some desired

changes in the system parameters have to be made.
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The CM relative position/velocity of each particular body (ry"’, &') are computed
based on Eqs. (2.20), (2.23). The angular velocity of each particular body expressed in its
own body-fixed frame, * @™, is computed based on Eq. (3.54). Then, the mass matrix H,
and the vector of nonlinear velocity terms C, are computed on the basis of Egs. (3.21) and
(3.22). To obtain concise results, first each vector in these equations (c.g. aré":]I a4,
d*w{™/dq, and 3™ /d4q,, etc.) is computed, and only its non-zero components arc
named and saved as intermediate variables. Then, H; and C,; are computed and expressed
in terms of these intermediate variables, rather than substituting the obtained analytical
expression for each one. Jacobian matrices J, and J, and the time derivative of the one
used in control, J,, are computed similarly.

To simplify the obtained analytical expressions, at each intermediate step, mathematical
tools and factorization techniques available in MAPLE, are used. The result of this fairly
refined code is a compact analyticul dynamics model of the given multiple manipulator
SFFR with rigid elements, in terms of generalized coordinates/speeds, Before using this

mode! in simulation and control investigations, it has to be verified as discussed next.
3.4.3 Verification Proczdure

The model derivation code, has been run for fixed-base systems which represent limiting
cases of space robotic systems, for instance letting the spacecraft mass go to infinity. The
output results are verified by comparisons to those calculated by hand. However, since in
these limiting cases most of the terms in the dynamics equations vanish, the model has to
be also verified in a general case, i.e. for 8 multiple manipulator space robotic system. This
is done by developing another simpler code at a very fundamental level, and comparing the
numerical results of the two.

The simpler code, is based on computing the system kinetic energy, using Eq. (3.10),
and on its direct substitution into the equations of mation, Eq. (3.1). Obviously, such code
yields non-compact equations of motion, compared to those of the code developed and

described earlier. However, the simplicity of this code makes it fairly reliable, so that it can
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be employed as a yardstick for the verification of the developed code which is used in
control and simulation. In fact, this was a very helpful approach in finding minor mistakes
at various levels, and verifying the developed code at the end.

Table 2.1 shows the difference between typical results obtained from the two codes, for
a 14-DOF space robotic system including three manipulators and appendages as described
in Section 4.4.3. As it is seen, the difference between obtained vectors of nonlinear
velocity terms (AC), and a few sample columns of two mass matrices (AH) are either
exactly or approximately (due to truncations) zero. Although these results correspond to a
single random sel of generalized coordinates/speeds (with non-zero entries), the differences
are in the same order of magnitude for several other trials. Therefore, it can be concluded
that the developed dynamics modelling code is free of errors, yielding a system of compact

equations of motion in terms of system variables. To conclude this chapter, a review of the

discussed issues and obtained resulits is presented next.

Table 3.1: The result of verification procedure.

_AH
Row AC 1-St. 2-nd 3-rd 4-th 14-th
column Column Column column column
1 -0.13E-14 0.0 0.0 0.0 0.11E-13 0.0
2 0.18E-14 0.0 0.0 0.0 0.71E-14 0.0
3 -0.47E-14 0.0 0.0 0.0 0.0 0.0
4 -0.27E-14] O0.11E-13] 0.71E-14 0.0 0.14E-13| 0.56E-16
5 -0.27E-14| 0.18E-14 0.0 -0.14E-13| 0.18E-14! 0.28E-16
6 0.18E-14| 0.10E-14| -0.18E-14 0.0 -0.36E-14 0.0
7 0.0 0.0 -0.78E-15 0.0 -0.18E-14 0.0
! 8 -0.44E-15] -0.83E-15| 0.36E-14| -0.67E-15| 0.36E-14 0.0
9 0.0 -0.67E-15| 0.44E-15] -0.22E-15 0.0 0.0
10 | -0.13E-14] O.11E-14| 0.89E-15| -0.89E-15| 0.18E-14 0.0
i 11 0.17E-15 0.0 -0.18E-14| -0.44E-15} -0.38E-14 0.0
12 0.39E-15 0.0 -0.39E-15] O0.11E-15]| -0.78E-15 0.0
[ 13 0.28E-16 0.0 0.0 0.0 -0.28E-16] -0.69E-17
|L14_ -0.35E-16] 0.0 0.0 0.0 0.56E-16| 0.28E-16
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3.5 Summary

To obtain the dynamics model of a multiple manipulator SFFR with rigid elements, the
general Lagrangian formulation was applied. The system kinetic energy was computed
based on the two different kinematics approaches developed in the previous chapler.
Comparing the obtained results, the direct path method was chosen to develop an explicit
dynamics model of the system. Mathematical unalyses were implemented for typical terms
of the system kinetic energy, and three formats were identified and used to differentiate
expressions. Next, separate derivations for the mass matrix, vector of nonlinear velocity
terms, and generalized forces were presented, and the obtained results were assembled to
develop the dynamics model.

In view of future utilization of the dynamics model in development of control
algorithms, some supplementary issues were discussed next. The main concern was
obtaining an appropriate dynainics model for developing model-based control algorithms
which aim at overcoming the non-physical singularities due to Euler angle rcpresentation of
attitude. To this end, the Quasi-coordinate formulation of the system dynamics, also
using Euler parameters for orientation representation were discussed. The latter introduces
algebraic constraints to the system dynamics, and therefore, to obtain independent system
of equations of motion, the Natural Orthogonal Complement Method was used and
briefly described. Next, investigating specific characteristics of space robotic systems, it
was shown that any error in the estimation of mass parameters has a more drastic effect on
the performance of model-based control algorithms in space.

Computation of the obtained dynamics can be done either by numerical or symbolical
programming tools. It was shown that preparation of each term for numerical programming
requires cumbersome calculations, while by means of the symbolical tools, each term can
be analytically calculated. Also, using various mathematical identities and factorization

techniques, the result can be simplified to reduce the obtained analytical expressions.
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Therefore, derivation of thc dynamics equations has been programmed in a symbolic
environment (MAPLE), for a general multiple manipulator space robotic system with rigid
elements. The developed code was verified in a general case, by developing another

simpler code, and comparing the numerical results of the two.

54



Chapter 4

Coordinated Motion Control of Multi-Arm Space

Free-Flyers

4.1 Introduction

The problem of controlling mechanical manipulators is challenging because of the strong
aonlinearities and couplings in the equations of motion. As discussed in Section 3.3.3, in
contrast to fixed-base manipulators, in space every element of the mass and Jacobian
matrices depend on the mass properties of all the links (free-floating mode), or redundancy
is added due to spacecraft degrees-of-freedom (free-flying mode). These characteristics of
space manipulators make coordinated control of a spacecraft and its attached manipulators
more challenging, compared to fixed-base robotic systems. In this chapter, coerdination
between a spacecraft and its several end-effectors, is investigated under different control
laws during a capture maneuvc; of moving objects in space.

To ensure smooth operation, and to reduce disturbances on the spacecraft and on the
object just before grasping, appropriate trajectories for the spacecraft and its manipulators
are planned, Section 4.2. 1wo model-based control algorithms, based on an Euler angle
and an Eulcr parameter description of the orientation, and a transpose Jacobian control

algorithm are developed in Section 4.3. These algorithms permit control of both the
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spacecraft and its appendages in their task space. The Euler angle model-based control
algorithm, called for brevity MB1, presents the inconvenience of representational
singularities, while the Euler parameter model-based control algorithm (MB2) overcomes
these non-physical singularities.

Next, the performance of the model-based algorithms is compared by simulation, to
that of a transpose Jacobian algorithm. First, the verification procedure of the simulation
code is discussed. Then, employing a planar example, the importance of a symmetric vs. a
non-symmetric grasp, and the ratio of spacecraft maximum acceleration/ deceleration is
investigated by simulation. The performance of the MB and TJ algorithms is discussed
during two and three-dimensional maneuvers. Results show that due to the complexity of
space robotic systems, a drastic deterioration in the p-2rformance of model-based algorithms
results in the presence of model uncertainties. In such cases, a simple transpose Jacobian
algorithm yields comparable results with reduced computational burden, an issue which is
very important in space. A summary of the discussed issues and obtained results, in

Section 4.5, will conclude this chapter.
4.2 Trajectory Planning

In this section, appropriate trajectories for the spacecraft and its manipulators are planned to
result in capturing moving space objects, assumed to he passive. These trajectories ensure
smooth operation, and reduce disturbances on the spacecraft and on the object just before
grasping. For the spacecraft motion, in both translation and rotation, parabolic trajectories
are planned. The manipulators remain in their home configuration as long as the final
position of the object is not in their fixed-base reachable workspace. When the object enters

the reachable workspace of an end-effector?, a quintic trajectory is planned in the task space

4- The planned trajectory for the spacecralt rotation aims to provide a symmetric grasp of the object, by two
panticipating manipulators, Therefore, the object enters the fixed-base workspace of both end-effectors, almost at
the same time.
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to capture the object. All of these trajectories which are discussed next, take into account

the relative target motion, and thruster or actuator saturation limits,
4.2.1 Spacecraft Position and Orientation Trajectories

For the spacecraft motion, in both translation and rotation, parabolic trajectories made of
constant acceleration, constant velocity, and constant deceleration segments are planned.
Since the object detecting sensors are usually on board, and thruster capabilities can be
directly converted to the spacecraft maximum acceleration and deceleration magnitudes in
the body frame, the desired trajectories are first planned in the spacecraft frame at initial
time. These trajectories are subsequenily transformed to the inertial space.

For instance, considering translational motion, °x,(f) =[°x,y,.%2,]" denotes the
desired trajectory for the spacecraft CM position expressed in the body-fixed frame at initial
time. To plan the desired trajectories, a motion final time, I, is first selected. During
capture, it is desired to have the object stationery in the spacecraft frame. Therefore, the

desired spacecraft velocity at final time, °v s+ 18 chosen as
D"_r = Uvgw(o)'*'ovo(o) 4.1)

and the desired final position of the spacecraft CM, °x s+ I8 given by

x, = "x0, (0)+"v, 1, +°r (4.2)

where °v,(0) is the ‘nitial /elocity of the spacecraft, °x},, (0) and °v,, (0) are the position
and velocity of the object as measured with respect to the spacecraft CM at initial time and
expressed in the body frame, and °r defines the relative position of the spacecraft CM and
a point of interest on the object at time 1,. The direction of °r is calculated along the line
connecting the spacecraft CM at initial time with the object location at ¢,, and its magnitude
is such that the manipulators can dexterously reach the object.

Next, parabolic trajectories made of constant acceleration, constant velocity, and

constant deceleration segments, are planned io yield a final position equal to °x,, and a
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final velocity equal to °v s» See Figure 4.1. Given the maximum acceleration a,, and
maximum deceleration a,, using the above expressions, the desired trajectory for the
spacecraft CM position, is obtained as
2,0 .
05a,, 1"+ v, (O} if t<y,
0 2,0 0 .
Xo,(N=105a, 1, + vo,(O)r,,+(a“t,,+ vof(o))(r-t“) if y,<t<p,

\ .
05a,,r,,’+°vo,(0)r,,+(a“t,,+°v0‘(0))(:—t,,}—05a2,(r—th) if n,<t<y

4.3)
ab mya
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Figure 4.1: Typical profiles of the planned parabolic trajectory.

where subscript “#”" describes a relevant component of the corresponding vector. Time ¢, at

which the acceleration segment ends, and time ¢, at which the deceleration segment starts,

are obtained as
—b, /b ~4ac
h, = : 2; (] (4.4a)
0,0
v, (B—a,t
ty = ""’f(a) Ll (4.4b;
2
where
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2 0,0
a v, (0)a
q, =0.5(a“+_“ bI :—a”('r e

2 az:

(4.40)
ovgb]‘(o)z

0.0 0,0 0
;= Koy (0)+7v, (0) £, =71, + 0.5 "
2¢

Note that the off/on times, f, and ¢,, are not necessarily equal for all threc axes, (i =
1,2,3), corresponding to three components of spacecraft’s CM position. Also, in the case
of having two positive solutions for ¢, the smaller one is chosen to minimize energy
consumption. Estimates for a, and a, can be obtained using thruster force/torque
capabilities and the mass properties of the system.

After computing the desired trajectory in the spacecraft frame at initial time, °x, (1), the

trajectory in inertial space is computed by

Xo(1) =%, (0)+ T,(0) *x,(1) (4.5)
where T;(0) is the rotation matrix between the spacecraft frame (at initial time) and the
inertial frame, x,(0) is the inertial position of the spacecraft CM at initial time, and x,(#) is
the inertial trajectory. In practice, the object would be under observation during the chasc
phase. Should its trajectory change significantly, a new spacecraft chase trajectory would
be replanned following the same procedure.

The desired trajectory for the orientation of the spacecraft, is similarly planned. The
final orientation is chosen so as to provide an approximately symmetric inotion of the
manipulators during capture, since this strategy can minimize spacecraft disturbances. To
ensure this symmetric motion, the final time for orientational motion is chosen to be smaller
than the final time used for the translational motion. Then the desired rotation matrix at final
time is assembled such that an axis of symmetry for the spacecraft is aligned with the
direction of the object motion. To position the end-effectors, this constraint yields an
infinite number of solutions. Therefore another constraint should be added, e.g. keeping
the spacecraft roll angle (if the attitude is described by Euler angles) constant during the

maneuver rhen, the corresponding parameters for the spacecraft final attitude are extracted
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from the desired rotation matrix. Having these values, the desired trajectory for the

orientation of the spacecraft can be similarly planned.
4.2.2 Manipulaior Motion Trajectories

The manipulators remain in their home configuration as long as the final position of the
object is not in their fixed-base reachable workspace. During that period, a joint-space
controller acting as a brake, is used. When the object enters the reachable workspace of an
end-effector, ¢=¢ , a quintic trajectory is planned in the task space for that end-effector,
and accordingly a task-space control algorithm is applied. For instance, to plan the desired
trajectory for end-effector position, six coefficients have to be determined for each
component. First, the end-effector position, linear velocity, and acceleration at starting time
(¢=1t ) are computed based on the current spacecraft position/orientation, and its linear and
angular velocity and acceleration. The final values are also computed based on final
position and velocity of the object. Then, the six coefficients of the desired quintic
trajectory can be computed based on end-effector position, linear velocity, and acceleration
at initial and final time, Craig (1989). The result provides continuity of end-effector
position, linear velocity, and acceleration, throughout the motion. The desired trajectory for
end-effector orientation, can be similarly planned. For some appendages, e.g. the
communications antenna, a constant attitude in the inertial frame is commanded throughout

the maneuver.
4.3 Control Algorithms Design

Controlling a dynamic system requires definition of the controlled outputs, and design of a
control law which can guarantee that these outputs will track desired trajectories
asymptotically. For a robotic system, there are various options for the controlled outputs,
e.g. jeint space variables, Cartesian (task) space variables, and others. The various

orientation representations further increase the available options. To control a space free-
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flying robot (SFFR), different combinations of these options can be chosen. In this
research work, the focus is in controlling the Cartesian position and orientation of the
spacecraft and the end-effectors of its manipulators.

Coordination between the spacecraft motion and several end-effectors in capturing
moving objects in space, is investigated in this section. To this end, two model-based
control algorithms, based on an Euler angle and on an Euler parameter description of the
orientation, and a transpose Jacobian control algorithm are developed. Euler angle model-
based control algorithm (MB 1) presents the inconvenience of representational singularitics,
i.e. the inversion of the relation between angular velocity and Euler rates, Eq. (3.7), is not
possible at some orientations. Such an inversion is required in calculating actuator
forces/torques based on the control command which yields the vector of generalized
forces Q. In other words, the inversion of Eq. (3.16) is required to find actuator
forces/torques, and this is not possible at some orientations. Considering Eq. (3.26), this
happens when S, becomes singular. So, the orientational error grows as the system
approaches these singularities, and if it goes through these points, the control system fails,
Therefore, at such points, a different set of Euler angles must be used. It is expected that
such singularities will occur whenever a three-parameter description of the oricntation is
employed. However, a great improvement can occur if a singularity appears at some
attitude error and not at some attitude. An Euler parameter model-based control algorithm
that achieves this condition has been presented for the attitude control of a single rigid
body, Paielli and Bach (1993). This algorithm is adapted here as part of a coordination
scheme to control a multiple arm free-flyer robot, and is presented as the second model-
based control algorithm (MB2). Implementation of the model-based control algorithms
requires knowledge of the system dynamics, and a considerable computational power. On
the other hand, the simpler transpose Jacobian (TJ) controller, as an approximation of

MBI, does not require knowledge of the system dynamics and can be cmployed with less
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computational burden. In the following, these three algorithms, i.e. two model-based

control and the transpose Jacobian control algorithm, are developed and analyzed.
4.3.1 Model-Based Control Design

As discussed in Chapter 3, the dynamics equations for a multiple manipulator SFFR can be

obtained as

H(q)y + C(q,v)= Q(q) (4.6)

To develop model-based algorithms, on the basis of a feedback linearization approach,
a model of system dynamics such as Eq. {4.6) should be employed. Next, assuming that
the system geometric and mass properues are known exactly, two model-based control
algorithms, based on an Euler angle and on an Euler parameter description of the

orienlation, are developed.
4.3.1.1 Using Euler Angles (MB1)

Development of the control algorithm is described in three steps. First, the dynamics model
is obtained in terms of controlling variabies. Then, the control law is introduced, and in the
third step, computation of the control command and error behavior are discussed.

Step 1. Assuming that q=(R,,87,8")" has been chosen as vector of generalized
coordinates, the dynamics model described in Eq. (4.6) can be obtained based on
Eq.(3.14). However, the variables to be controlied differ from g, since they include end-
cffector positions and orientations in Cartesian space. These controlled variables are

denoted by q as
=R, 8, X0, B0, ., 07, BT @

where x§ and 8" correspond to the m-th end-effector position and orientation.
To develop a model-based algorithm, the dynamics has to be written in terms of q. If

all manipulators have six DOF, then a space robotic system of # manipulators will have
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6n+6 DOF, and q will be a 6n+6 vector. The output speeds q arc obtained from the

generalized speeds v = q, using a square Jacobian J_,
a=1J,,(8,.0)q (4.8)

The Jacobian J,, is not singular, except when a manipulator is at a singular configuration,
or at a (non-physical) representation singularity due to the use of Euler angles. The latier
can be avoided by switching to a different set of Euler angles. The equations of motion in
terms of the output variables, can be obtained as

0, q+C; =Q, (4.9)
where ﬁa , 65 and Q, arc given by

H;=J H] (4.10a)
G, =1 C-HJ, q (4.10b)
Q=IQ (4.10¢)

~

The new inertia matrix, H , is positive definite if J. is nonsingular.

Step 2. The following model-based control law is used

~

Q; =H, u+ G, (4.11)

where it is assumed that the system geometric and mass properties are known, and
u=[ug alu w7 T w7 s an auxiliary control signal which will be
determined in Step 3. Substituting Eq. (4.11) into Eq. (4.9), reveals that this control law
linearizes and decouples the system equations to a set of sccond order differential equations

G=u (4.12)
Step 3. The auxiliary control signal u can be computed as

u=K, e+K,e+q,, (4.13)

where K, and K, are chosen as positive definite matrices, to result in a guaranteed

stable error behavior, and e is the tracking error defined as
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e=q,, —q (4.14)
Substituting Eq. (4.13) into Eq. (4.12), the control law given by Eq. (4.11) yields

é+K,e+K, e=0 (4.15)

which guarantees asymptotic convergence of the tracking error e to zero. Note that K,

and K, can be chosen as diagonal matrices, to obtain

g+K,e+K, e =0 4.16)

which decouples the error equations to a set of separated second order differential equations
for every single output variable.

The desired trajectory, 4, , is provided by a trajectory planner, see Section 4.2, while
q can be obtained from inertial measurements of the position and orientation of the
spacecraft and of the end-effectors’. If no such measureinents are available, the error e can
be estimated by integrating the equations cf metion in real time, but then errors due to
model uncertainties will be introduced. A mixed strategy can also be employed, e.g. inertial

feedback may be available durirg a critical or terminal phase of a maneuver.
4.3.1.2 Using Euler parameters (MB2)

Similar to the development of MB1, the MB2 control algorithm is described following the
three introduced steps.

Step 1. Assuming that q=(R7,x",0")" defined by Eq. (3.33), has been chosen as
vector of generalized coordinates, and v = (RY, , w],07) as vector of generalized speeds,
the dynamics model described in Eq. (4.6) can be obtained based on Eq. (3.49). Then, it is

rewritten in terms of the output speeds v selected as

) T 0. T DT 1 0T o {n)T T
=R, "o, X2, e T, kP, 0T (4.17)

5- The end-effector position and orientation can also be computed, based on joint measurements, usino
manipulator direct kinematics and spacecraft feedback.
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where %" and "o{"" are the m-th end-effector lincar and angular inertial velocitics,
expressed in the inertial and m-th end-effector body frame, respectively. If all manipulators
have six DOF, then a systetn of n manipulators will have 6n+6 DOF, and ¥ will be a 6n+6
vector. The output speeds ¥ are obtained from the gencralized speeds v by a Jacobian J

f’=Jq(lc,9)v (4.18)

The equations of motion can be obtained as

I:I;_é"i' é;, = Q"', (4.19)
where H;, C; and Q, are given by
H,=J"HJ (4.200)
;=37 C-H, 14 (4.200)
=17 Q (4.20c)

Step 2. The following model-based control law, under the assumption of knowledge of

the system’s properties, is used

-~

Q,=H,u+ (4.21)

where u is an auxiliary control input which is determined in Step 3. Applying this law to
the equations of motion (4.19), results in the following decoupled system

P=u (4.22)
Note that Eq. (4.22) is expressed in terms of linear and angular velocities, and not in
terms of positions and Euler angles as is the case in Eq. (4.12).

Step 3. The auxiliary control signal u is partitioned as

T T (IlT (l)T ()7 (T 47
u=(u, u, u;’ u, ety ] (4.23)

where the partition follows that of ¥. The acceleration terms in Eq. (4.22) that correspond

to linear motions are controlled siinilai to Eq. (4.13). For example, u is given by
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u, =K, pep + Ky + R, 4, (4.24a)
where

er = RCu.dr.t _RC“ (424b)

which according to previous discussion results in

b+ Konba+ K, ey =0 (4.24c)

Howevecr, to obtain similar asymptotic convergence of attitude error expressed in terms
of Euler parameters, the terms that correspond to angular velocities are controlled using
u, =T &, +[o]e, ~K, e, —2(K,, —ele,/d)e. /e, (4.25)

les

u,, is expressed in the corresponding body frame. The matrix T, relates the error between
the desired and current attitude in terms of rotation marices. In fact, it is a rotation matrix
which maps the body frame with desired orientation to the actual body frame, and is

defined as

T= Te Tdﬂ (4'26)
or

T. =TT, (4.27)

The matrix T is a rotation matrix which: corresponds to the current body orientation with
respect to the inertial frame, and T,,, is the one which corresponds to the desired
orientation. The vector e, is the error in angular velocity, expressed in the actual body-
fixed frame

er.u = - Te mdn (428)

where @ is the current angular velocity of the corresponding body expressed in its own
body fixed frame, and @, is the desired angular velocity, expressed in the desired
orientation frame. So, the term T, ®,,, represents the desired angular velocity resolved in
the actual body frame, and the subtraction in Eq. (4.28) is in terms of consistent
coordinates. Finally, e, and e, which correspond to the error in attitude as expressed by

Euler parameters, are defined as
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e,=El e-g,1 (4.29)

en = ezrse + nmn (4.30)

where E has been already defined in Eq. (3.35d), repeated here

E=n1+g]" (3.35¢)

where 1 is a 3x3 identity matrix, and € and m are the current Euler parameters.
Considering Eqs. (4.29, 30), for perfect tracking it can be obtained
(e=e,, & mM=1,)=(e.=0 & ¢ =1) (4.31)

It should be noted that assuming the same axis of rotation (for the desired and actual
orientations), the above definitions given for e, and €, result in ||ec||=sin(en“ f2} and
e, = cos(e, /2) where 9, describes a simple rotation about axis of rotation®, and ¢, is
error in 8. Therefore, these definitions are geometrically meaningful, rather than (E‘,ﬂ - e)
and (11‘,'_,I —n) which do not have any physical interpretation. Also note that due to the form
of Eq. (4.25), singularities occur only when e, is zero, that is when the attitude error
angle is 7 rad about the eigen axis, i.e. e, = cos(ean /2)=cos(n/2)=0.

Applying the control law given by Eq. (4.25), the attitude crror is governed by a
homogeneous linear second order differential equation, which guarantees that the error will

converge asymptotically to zero

é+K,,e.+K, e=0 {4.32)

In fact, Eq. (4.25) is obtained based on Eq. (4.32), the definitions given for e, and T
and the relationship between angular velocity and Euler parameters as presented in Eq.
(3.33), see also Paielli and Bach (1993).

Therefore, considering Eqs. (4.24) and (4.32), it can be concluded that applying the
control law giver by Eq. (4.21) guarantees asymptotic convergence for the position errors,

iy attituae error expressed in terms of Euler parameters.

6- As explaincd below Eq. (3.33).
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4.3.2 Transpose Jacebian Algorithm

Considering Eq. (4.11) which describes the model-based algorithm developed as MBI, if
high enough gains are used, the simpler transpose Jacobian controller (TJ) can be

employed, Craig (1989), as
Q=J, {K,e+K,é} (4.33)

This algorithm is quite simple to use with no significant computational burden, and without
requiring a priori knowledge of plant dynamics. However, the Jacobian introduced in Eq.
(4.8) which includes system geometric parameters must be used, so that the error is
properly resolved. Note that, in fact, this algorithm is an approximation of MB1. Its action
can be understood by imagining generalized springs and dampers connected between the
bodies under control and the desired trajectories; the stiffer the gains are, the better the
tracking should be. If a physical singularity is encountered, the controller given by Eq.
(4.33) will result in errors but will not fail computationally.

Next, using Eqs. (4.10-13) and (4.33), the efficiency of the TJ algorithm is compared
to the model-based algorithms, in terms of the required computational operations, i.e.
multiplication and summations required to follow the algorithm (for an N DOF system).
This comparison between the algorithms, in terms of the required computational
operations, is depicted in Table 4.1. The model-based algorithm MBI, has been chosen to
represent model-based algorithms, although it requires less computational effort compared
to MB2. Also, it is assumed that the inverse of the Jacobian matrix and its time derivative,
which are required for implementing MB algorithms, are available symbolically. Hence,
computations required for inversion of the Jacobian matrix and its time differentiaion are
not counted. It can be seen that even with these assumptions in favor of the model-based
algorithm, implementation of TI control significantly reduces the amount of required
computations, an issue which is very important in space. Stability analysis, based on

Lyapunov's theorems, shows that TJ algorithm is asymptotically stable, Section 5.3. As
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discussed in Section 4.4, the performance of the TJ algorithm is acceptable but deteriorates
in tracking fast trajectories. In Chapter 5, further work on this algorithm focuses on
reducing this problem.

Note that all the above algorithms employ PD action; however, integral action can be
easily incorporated if needed. Also note that the above control approaches allow one to
compute a set of generalized forces that will diminish the tracking error. The reaction jet
forces and torques and the joint torques can be found by inverting an equation relating
generalized forces to actuator forces, i.e. Eq. (3.16).

Having a mathematical model of the system dynamics, developed control laws, and
desired trajectories for every output variable, the system performance can now be

simulated. This is to be discussed next.

Table 4.1: Comparison of the required computational operations.

I Algorithm Multiplication Additions "

| TJ 3 N2 3N2-2N
MB1 IN3+TN2 | 2N3+5N2-4N

4.4 Simulation Results

In this section, the performance of the developed modei-based algorithms in controlling a
multiple manipulator SFFR, is compared to that of the transpose Jacobian algorithm
discussed in Section 4.3. The verification procedure of the simulation code is first
discussed. Then, the importance of a symmetric vs. a non-symmetric grasp, and the ratio
of spacecraft maximum acceleration/deceleration is investigated using a planar example.
Next, comparisons between the performance of alternative algorithms during two and three
dimensional maneuvers is discussed. It is shown that a simple transpose Jacobian
algorithm can yield an acceptable performance, comparable to that of model-based

algorithms, with reduced computational burden, which is an important issue in space.

69



44.1 Code implementation and Verification

The system dynamics model of 2 multiple manipulator SFFR, which is a central element in
the simulation code, has been already verified in a reliable way as explained in Section
3.4.3. The dynamics model in a symbolic (analytical) format is imported to the general
simulation routine in FORTRAN, where equations of motion and the developed control
laws are integrated, using the Gear algorithm. As expected, applying the MB algorithms
under the assumption of exact knowledge of system model and parameters, results in either
zero or Lruncation tracking errors (due to limitations of computational procedures). This is a
typical amended result which partly validates the simulation process. Note that in the
simulations that follow, effects of model uncertainties are included in the MB laws, by
perturbing the mass properties of the model used in the control algorithm with respect to the
“true” parameters.

The veracity of the simulation results, has been also investigated by comparing the
results for some simple examples to those available in the literature, e.g. motion control of
a single arm two-link planar space manipulator in free-flying mode, Papadopoulos and
Dubowsky (i 91b). The code has been also employed to help an independent research
group in Japan (Masutani, Y., Osaka University), eliminating programming oversights of a
developed software. Identical results ensures accuracy of the general simulation code for

motion control of a multiple manipulator SFFR.
4.4.2 Example 1: Planar Motion

In this section, a planar free-flyer chasing a moving point target, is used to compare and
evaluate the contro! algerithms developed in Section 4.3. The free-flyer includes three open
chain appendages, two of which are two-link manipulators, while the third one is a

communications antenna, see Figure 4.2,
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Figure 4.2: A plunar three manipulator and appendage free-flyer, Ex. 1.

The spacecraft is equipped with reaction jets which provide the required control forces
and torques up to some limited values. The system geometric parameters and mass
properties, and the maximum available actuator forces/torques are displayed in Table 4.2,
The origin of the inertial frame coincides with the initial position of the system CM, and the
vector of generalized coordinates for this 8-DOF system is chosen as

Q= [XeyrVon00.0,.8,.0,2 '92t2) 8.7 (4.34a)
while the vector of output variables ‘o be controlled is

El = [xn -)’n !90 'xEu }.)’E'”'xgu). y;”.agm T (4.34b)

Table 4.2-a: Spacecraft parameters and actuator limits, Ex. 1.

r,"” (m)|r,? (m){r,® (m)|m, (kg )| I, (kg m?) ||F‘| (N;]IFyI(N) It,| (N-m) "

10.0

Table 4.2-b: Manipulator parameters and joint actuator limits, Ex. 1.
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where x.,, and y.,, are the inertial coordinates of the system CM, x, and ¥, are the inertial
coordinates of the spacecraft CM, 8, is the spacecraft attitude, 0,'’ is the i-th joint angle
of the j-th manipulator, and x,'”, ¥, and 8, are the inertial coordinates and attitude of
the i-th end-effector.

It is assumed that the target is in the vicinity of the robotic system, that it is a passive
object, i.e. drifting at some constant speed, and that its trajectory is measured by such
feedback devices as on-board cameras. Hence, the position and velocity of the target is
available in the spacecraft frame.

For the simulation results that follow, the initial values are taken as

q(0) = [0,0,-3000,4500,900, | 3500,-900<,3000] T

’x0,;(0) = [3.04.0]T (m)

°v3,,(0) = [0.05,0.1]T (m/s)

[x,(0),y,(0),8,(0)]" = [-0.0485m, -0.0659m, -1/6 rad] T

[°,(0), °5,(0),8,(0)]" = (0.01m/s, 0.01mvs, 0.001 rad/s]"

The final time for the linear motion, ¢,, is chosen as 15.0 sec. The planned trajectory for
the spacecraft rotation aims to provide a symmetric grasp of the object, by two participating
manipulators, to result in minimum disturbances on the spacecraft. Therefore, the final time
for the rotational motion is chosen equal to 0.7¢,, to ensure that the object enters the fixed-
base workspace of both end-effectors, approximately at the same time. Taking into account
the mass properties of the system and the available thruster forces/torques, the maximum
acceleration and deceleration are set to a, =[0.2,0.2)"m/s*, a, =0.2a, for the lincar
motion, and a; = 0.05 radlsz. a,= O.Sa] for the rotational motion. The importance of
symmetric grasp, and of acceleration/deceleration ratio is investigated later on.

Figure 4.3 depicts typical manipulator joint trajectories, and an animated view of the
corresponding system maneuver. Note that according to the planned trajectories, the joint

angles for the two-link manipulators remain constant during the chase phase (in home
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configuration), and that they change smoothly during the capture phase (object in
mhmpulator fixed-base workspace). The joint angle for the third appendage (the antenna}

changes smoothly so that a fixed inertial orientation is maintained during the maneuver.

150 — . . ‘ |
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] —— 811} ;!
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< —e— B2(1) b
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[ " 1
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K=
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-100 - ] .
150 l 1
5 2 1 n 1 H D 4 1 a ] '
© Time(szc) 10 1 X-Fmuon (m)
(a) (b)

Figure 4.3: (a) Joint angle histories for the two manipulators and

the antenna, (b) Animated view of the maneuver.

To include the effects of model uncertainties in the MB laws, the mass properties of the
model used in the control circuit were perturbed with respect to the “true” parameters by up
to 10%. The gains used for the model-based controllers are

K, = diag(70,70,100,100,100,100,100,70)

K, = diag(15,15,15,15,15,15,15,15)
while for the TJ controller these are

K, = diag(100,100,80,80,80,80,80,80)

K, = diag(150,150,100,100,100,100,100,100)
The gain selection for the model-based control was based on error equation settling time
and damping criteria, while for the TJ control a heuristic approach was used.

Before going through comparisons between the model-based and TJ algorithms, the
importance of symmetric grasp, and the ratio of acceleration/deceleration is investigated by

simulation. To this end, the MB1 algorithm as described above is used.
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4.4.2.1 Symmetric vs. Non-Symmetric Grasp

Figure 4.4, shows the profile of applied external torque on the spacecraft for different
grasp strategies, i.e. (a) symmetric and, (b) non-symmetric grasps. In Figure 4.4(a), i.c.
symmetric grasp, the final orientation is chosen so that the axis of symmetry for the
spacecraft is aligned with the direction of the object motion, while in Figure 4.4(b) a

misalignment of 5.0° between these directions is allowed.
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J e L\ /\ L\ /\
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(a) (b)
Figure 4.4: Applied torque on the spacecraft, (a) Symmetric grasp,
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(b) Non-symmetric grasp.
As it is seen, during the capture phase, 11.0 <t < 15.0, the torque peak for symmetric
grasp is almost half of the one for non-symmetric grasp. Therefore, it can be concluded that

a symmetric grasp reduces disturbances on the spacecraft.
4.4.2.2 Maximum Desired Acceleration and Deceleration of the Spacecraft

As discussed earlier, there are two main reasons for choosing the maximum deceleration to
be less than the maximum acceleration for a given mancuver duration and on-off thrusting.
First, a longer deceleration period results in less thrusting before a grasp, and in less
vibration in flexible components like solar panels, and therefore disturbances to the object
are reduced. Second, longer deceleration period increases the time available to manipulator
motion which results in smoother operation.

Figure 4.5, demonstrates some consequences of the above choice, by comparing a case

where a, =0.2a, to one where a, =a,. As shown in part (a), the former results in Jower
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thruster forces before the grasp, and therefore results in a smaller object disturbance. A'se,

when a, =0.2a,, lower torque on the spacecraft is required to track the desired trajectory,

see Figure 4.5(h). In addition, since a, =0.2a, provides a longer duration for

manipulators to caich the object, tracking errors are reduced almost 50% with respect to the

ones of a, =a,, Figure 4.5(c).

Errorim)

Figure 4.5:

Force (M)

Torque(N.m)
[~
1

15

Time(sec)

(a)

0.0004
0.0003

0.0002 |-

0.0001

-0.0001
-0.0002
-0.0002

~0.0004

Time{sec)

(b)

T

Errot{m)

Timetxec)

(c)

Force(N)

Torgue(N.m}

0.0004
0.0003

0.0002
0.0001

-0.0001
-0.0002
+0.0003
-0.0004

Time(sec)

] 1

aleo.z 3

5 10 15

Timelsec)

Time(sec)

The effect of acceleration/deceleration ratio, (a)

Spacecraft thruster forces, (b) Applied torque on the

spacecraft, (c) First end-effector positioning error.

75



Next, performance comparisons between the MB and TJ algorithms are presented.
4.4.2.3 Application of Alternative Control Algorithms

For a planar system, the two model-based control algorithms (MB1, MB2), yicld almost
identical results, and so only the obtained results corresponding to the first control Liw are
presented here. The comparison between these two in a 3-dimensional mancuver is
discussed in Section 4.4.3.

Figure 4.6 can be used to compare and evaluate the performince of model-based and
transpose Jacobian algorithms. Figure 4.6(a) displays the tracking crror for the first
manipulator end-effector in the task space. During the chase phase (O< t <11}, this crror is
almost zero for MBI, as the manipulators are kept fixed at their home positions (joint-space
control phase). When the object enters the manipulator workspace, the manipulators start
moving, and tracking errors appear due to dynamic coupling and to transition to the task-
space control phase. Note that in the absence of parameler uncertainties, i.c. for perfect
model-based control, feedback linearization results in zero tracking crrors, as discussed
before. However, as it is seen, the performance deteriorates if model uncertainties exist.
These errors decrease with time and eventually vanish, in both MB and TJ algorithms.

Comparison of the maximum values of the tracking errors for the two algorithms
shows that the errors occurring with TJ are about forty times larger than the errors with
MBI, Figure 4.6(a). However, their absolute magnitude may be considered small enough
for many space tasks. Comparison of the spacecraft thruster forces, shows that the required
forces are about the same for both algorithms, Figure 4.6(b). However, in most parts of
the maneuver, the profile for the MB algorithm is staircase, while TJ docs not result in such
a profile. This is because the TJ algorithm does not use any knowledge of the dynamical
behavior of the system. The required joint torques are lower in MBI, see Figure 4.6(c).
The variation of the applied joint torques follows the variation of the spacecraft’s attitude

and tracking errors, which are due to the same reasons, as above.
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Figure 4.6: TJ compared to MB Control. (a) Tracking position
errors for the first end-effector, (b) Thruster forces on

the spacecraft, (¢) Joint torques for the first arm.

As shown by simulation, raodel-based algorithms result in smaller errors and lower
required torques, as long as model uncertainties are limited. Since torques are lower,
supplying less amount of energy would be required, resulting in reduced system weight or
longer operation life, important issues in space. However, implementing a model-based

control requires increased computational burden, which may not be available. On the other
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hand, TJ control yields acceptable results (in terms of smail errors and reasonable required
forces/torques) for executing many tasks in space without requiring knowledge of system
dynamics. Therefore, it can be suggested as a good control algorithm candidate, especially
when lower computational effort is desired. To support these conclusions further, the
developed control algorithms are compared and cvaluated by simulating the system

performance in a general spatial maneuver. This is to be discussed next.
4.4.3 Example 2: Three-Dimensional Maneuver

In this section, the developed control algorithms are compared and evaluated by simulating
the performance of a 3-D free-flyer robot, chasing a moving point target in 3-dimensional
space. The total DOF for the simulated system is 14. Thec spacecraft includes threc open
chain appendages, two of which are three-DOF manipulators, while the third is a two-DOF
communication antenna. The system is equipped with reaction jets on the base, which
provide the required control forces and torques up to some limited values. Figure 4.7

shows the system general configuration.

Figure 4,7: A three manipulator and appendage free-flyer, Ex. 2.

78



4.4.3.1 System Description

The system geometric parameters (according to the nomenclature depicled in Figure 2.2)
and mass properiies, and also the maximum available actuator forces/torques are displayed
in Table 4.3. It should be mentioned that in these tables, all components are given in the
corresponding body-fixed frame xyz;. Each frame is parallel to the principal axes of the
corresponding body, uand the angle between the z-axis of a frame and the one of the
previous frame, according to the D-H convention, is also given in Table 4.3. The origin of
the inertial frame coincides with the initial position of the spacecraft CM, which is also
defined as the origin of spacecraft body-fixed frame.

The vector of generalized coordinates for this 14-DOF system is selected as follows

a =%y Yor 250 %o Bor Yoo 8,7, 6,", 6,1, 8,4, 8,%,8,,0,%,8,'T (4.35)

while the vector of variables to be controlled is

{H [13] (2) 2) (2) (3 (47
AL R A SN N A (4.36)

()

é = [xov yov ZD' ct‘t:}n BO' Yn- xE 4 yE

Table 4.3-a: Spacecraft parameters and actuator limits, Ex. 2.

r.(m) ] (m) m.(m) I‘(ﬂ‘I) IT-(m)Im
(m) @ | k0| kemd | Nm)
0.0,0.0,0.15 | 0.0,0.0,-0.15| 8.0 |} 0.07,0.07,0.02 10.0
0.35,0.0,0.0 | -0.35,0.0,0.0 | 12.0] 0.03,0.51,0.51 7.0 ’
0.25,0.0,0.0 | -0.25,0.0,0.0 1 10.0] 0.03,0.22,0.22 5.0
11 180.01 0.0,0.0,-0.15 ) 0.0,0.0,0.15 ; 8.0 } 0.07,0.07,0.02 10.0
90.0 | 0.35,0.0,0.0 | -0.35,0.0,0.0} 12.01 0.03,0.51,0.51 1.0

2
3 0.0 | 0.25,0.0,0.0 | -0.25,0.0,0.0 | 10.0| 0.03,0.22,0.22 3.0 |
1

0.0,0.0,0.15 | 0.0,0.0,-0.15 | 3.0 | 0.03,0.03,0.01 3.0
0.20,0.0,0.0 | -0.20,0.0,0.0

0.08,0.08,0.08
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where (x;.y,.2,) denotes the inertial position of the spacecraft CM, (&, .B,.Y,) is an
Euler angle description for the spacccraft attitude, 8, is tne i-th joint angle of the j-th
manipulator, (x,",y,"’.2,"") are the inertial coordinates of the i-th end-effector, and
(o' ,BY,¥.") is an Euler angle description for the i-th end-effector inertial attitude, To
implement the third control algorithm, MB2, & vector of generalized speeds similar to q is
defined, in which the rate of (t,,B,.,Y, ) is substituted by °w,.

Note that since the third end-effector is an axisymmetric antenna, only two of the
corresponding Euler angles are controlled. These angles and their rates, have to be
computed in terms of generalized coordinates and velocities. To this end, the inertial
rotation matrix, which relates the end-effector frame to the inertial one, is written in lerras
of spacecraft attitude parameters and corresponding joint angles, and on the other hand in
terms of Euler angles. Setting the two rotation matrices equal and using inverse kinematic
relationships yields antenna’s Euler angles in terms of the generalized coordinates. Then,
expressing the angular velocity of this end-effector in terms of the spacecraft angular
velocity and the corresponding joint rates, and also in terms of Euler rates, the relationship
between these rates and the vector of generalized speeds can also be obtained.

As discussed earlier, Euler angle model-based control algorithm (MB1} presents the
inconvenience of representational singularities. In other words, the inversion of the relation
between angular velocity and Euler rates, which is required to find actuator forces/torques
based on the control command, is not possible at some orientations where S, becomes
singular, see Section 4.3. Figure 4.8 shows the errors in spacecraft orientation described
by Euler angles, where the system encounters such a non-physical singularity aiong the
planned trajectory, if controlled under MB1 law. To be able to compare the performance of
MBI to that of MB2, tracking the same desired trajectory, the occurrence of such
singularities is avoided in the following simulation. This is cone by appropriate selection of

initial and final values.
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Figure 4.8: Errors in spacecraft orientation encountering a non-

physical singularity at time = 4.75 sec.

For the simulation results that follow, the object initial positior and relative velocity is
tuken as 0Jltf:,.,f(O) = [5.0,-6.0,3.0]"m, and l)vf,’,,j([)) = [0.05,-0.1,0.05]" mv/s, respectively.
The initial position of the spacecraft in the inertial frame is [x,(0), yo(O),zo(O)]T =
[0.0,0.0,0.07"m, and its orientation [aU(O).BO(O).YU(O)]T = [0.0,n/3,/6] rad. The
spacecraf? initial linear velocity is [x,(0), y,( 0),20(0)]T = [0.01,0.01, 0.01]"m/s, and its
angular velocity is zero. Taking into account the mass properties of the system and the
available thruster forces/torques, the maximum acceleration and deceleration are set to
a, = [0.05.0.05,0.05]% m/s?, and a, =04a, for the linear motion, and a,, = [0.02,
6.02,0.02]" rad /s, and a,, . =05a,, for the rotational motion. Finally, the vector of
generalized coordinates at initial time is q(0) = [0,0,0,000,6000,3000,-9000,0c0,-90c0,-9000, 180eo, -
900s,3000,6000]T, Figure 4.9 shows the desired path for the spacecraft center of mass and
manipulators end-effectors.

To include the effects of model uncertainties in the MB laws. the mass properties of the
model used in the control circuit were perturbed with respect to the “true” parameters by up
to 30%. The gains used for the MB controllers are K =diag(80,...,80,50,50), and
K j=diag(150.,...,150,100,100), while for the TJ controller the gains are Kp=diag(300,
300,300,200,...,200,100,100), and K ;=diag(600,600,600,400,...,400,200, 200). The
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gain selection for the model-based control was based on error equation settling time and
damping criteria, while for the TJ control on heuristics. Next, comparisons between MBI,

MB2, and TJ algorithms, based on obtairied simulation results ar> discussed.

04 Spacecralt CM
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Z (m)

Y (m} 0

X {m)

Figure 4.9: The desired path for the spacecraft center of mass and

the two end-effectors.
4.4.3.2 Comparison and Discussion

Figures 4.10 to 4.12 can be used to compare and evaluate performance of MBI, MB2, and
TJ algorithms. Tracking error for the position of the first manipulator end-effector is shown
in Figure 4.10. Other tracking errors (e.g. spacecraft CM position, second manipulator
end-effector, etc.) behave similarly. So, Figure 4.10 represents typical error characteristics
of the implemented algorithms.

During the chase phase (0< t <58), the error for MB algorithms is almost zero, as the
manipulators are kept fixed at their home configurations and the whole system moves like a
single rigid body. However, for the TJ algorithm, the error is considerable at the beginning

of this phase, where the system is accelerating (i.e. O< t <7 sec). This is due to the fact that
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the TJ algoritl.m is unaware of the dynamical coupling of the system, as it does not include
dynamics terms in its structure. When the object enters the manipulator workspace, the
manipulators start moving, and some tracking errors appear due to the dynamic coupling
and also transition from joint-space to task-space control phase. In all three algorithms,

given enough time, theseerrors decrease and eventually vanish. Comparison of themaximum
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Figure 4.10: Tracking position errors for the first end-effector, (a)
Model-Based Control, MB1. (b) Model-Based Control,
MB2. (¢) Transpose Jacobian Control.
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maximum tracking errors for these algorithms shows that the errors occurring with the T)
are about two-five times higher than the errors with the MB algorithms?, although their
absolute magnitude may be considered small enough for performing a wide range of tasks.

Figure 4.11 shows the applied control forces on the spacecraft. Comparison of the
spacecraft thruster forces, shows that the required forces are about the sume for all three
algorithms. However, for most mancuver segments, the profile is staircase for the MB
algorithms (which is easier to follow, in practical implementations), but not for the T
control. Again, this is because the TJ algorithm does not take into account the dynamical
behavior of the system.

Note that due to dynamic coupling, the rotational deceleration requires an additional
application of thruster forces, so that the translational motion continues to track. This
occurs near the end of the attitude maneuver at the 45-th sec of the motion, and can be
recognized in all three plots (Figure 4.11), circled in part (c).

Figures 4.12 displays applied torques to control the spacecraft attitude and motion of
the first manipulator, near the end of the maneuver (53.0< t <60.0). In general, variation of
the applied torques follows the variation of tracking errors, and is due to the same reasons,
as above. As it is seen, the required torques are almost the same for all three algorithms,
though MB2 is less demanding. Note that the profile of a component of applied torques on
the spacecraft only touches the saturation limit (10 N-m) for MB2, while for the others it
remains at that limit for a relatively long time. Also, it should be noled that the joint torques
for the TJ algorithm are about 20-60% off compared to those of the MB] and MB2,
Finally, comparing part (a) with part (c) of Figures 4.11 and 4.12, it is interesting to note
that profile of (c) is a smooth approximation of the profile of (a). Clearly, this is because

the TJ algorithm is an approximation of MB1 and so are the control forces/torques.

7- Note that to include the effects of model uncertaintics in the MB laws, the mass properties of the model used in
the control law were perturbed with respect to the “irue” parameters by up to 10% in Ex. 1, and by up to 30% in
Ex. 2. As expected and shown by simulation, the larger these uncertainties are the worse tracking is.
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Figure 4.11: Thruster forces on the spacecraft, (a) MB1, (b) MB2,
(c) TJ, algorithm.

As this general 3-dimensional maneuver reveals, consistent to the previous example in
planar motion, the MB algorithms result in a better tracking and smaller errors, even in the
presence of model uncertainties. The MB2 controller is preferred because as shown in the
development of this algorithm (see Section 4.3.1.2), it overcomes the non-physical
singularity problem. However, implementing a model-based control requires increased
computational burden. The TJ control, with relatively high gains, yields acceptable results
and can be considered as a good control algorithm candidate, especially when low
computational costs are required. However, due to the presence of noise and unmodelled
dynamics, the use of very high gains will be limited in practice. These results motivate
further work on the TJ algorithm, aiming at overcoming the requirement of larger gains and
consequently sensitivity to noise, and the lack of information about the dynamics of the

system, a problem which appears more clearly in tracking fast trajectories.
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Figure 4.12: Applied torques on the spacecraft (left) and joint
torques for the first end-effector (right), (a) MBI, (b)

MB2, (e¢) TJ Algorithm.

4.5 Summary and Conclusions

In this chapter, coordination between a spacecraft motion and its several end-effectors
to capture a moving space object, was investigated. Taking into account the object motion
relative to the spacecraft, as well as thruster and actuator saturation limits, appropriate
trajectories for the spacecraft and its manipulators motion were planned. Two model-based

algorithms, and a transpose Jacobian control algorithm were developed. The Euler angle
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model-based control algorithm (MB1) presents the inconvenience of representational
singularities at some orientations. To overcome this problem, an Euler parameter model-
hased control algorithm was proposed as the second model-based control algorithm (MB2).

As shown by simulation, a symmetric grasp reduces disturbances on the spacecraft.
Also, choosing the maximum deceleration to be less than the maximum acceleration for a
given maneuver duration resulis in a smoother operation. It was shown that the model-
based algorithms result in smaller errors, as long as model uncertainties are limited.
Hov.ever, due to the complexity of space robotic systems, the performance of these
algorithms deteriorates if higher levels of model uncertainties exist. Also, implementing a
model-based control requires increased computational burden, which may not be available.
On the other hand, the TJ algorithm with relatively high gains, yields acceptable results (in
terms of small errors and reasonable required forces/torques) for executing many tasks in
space, without requiring knowledge of system dynamics. Therefore, this simpler algorithm
controller as an approximation of the MBI, can be considered as a good candidate
especially when lower computational power is available.

Note that the use of very high gains for the TJ algorithm will be limited due to the
presence of noise and unmodelled dynamics in practice. Also, the lack of information about
the system dynamics, causes poor performance of the algorithm in tracking fast trajectories.
Therefore, further work on the TJ algorithm, to improve its characteristics, is required.

This is discussed in the next chapter.
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Chapter 5

Modified Transpose Jacobian Control and its

Application to Space Robotics

5.1 Introduction

Transpose Jacobian (TJ) control is one of the simplest algorithms used to control robotic
manipulators. As shown previously, the TJ algorithm with relatively high gains, results in
acceptable tracking performance of space free-flyers, without requiring knowledge of
system dynamics. Therefore, it is a good control algorithm candidate, especially when
lower computational efforts are required. However, since it is not dynamics-based, poor
performance may result in tracking of fast trajectories. Use of high gains can deteriorate
performance seriously in the presence of feedback measurement noise. Another drawback
is that there is no formal method of selecting its control gains.

In this chapter, a new Modified Transpose Jacobian (MTJ) algorithm is presented
which employs stored data of the control command in the previous time step, to yield an
improved performance. In fact, the MTJ algorithm as developed in Section 5.2, is based on
an approXimation of feedback linearization methods, without requiring a priori knowledge

of plant dynamics. The gains of this new algorithm can be selected more systematically,
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and do not need to be large, hence the noise rejection characteristics of the algorithm are
improved.

In Section 5.3, simulation results are presented which compare tracking performance of
the MT]J algorithm to that of the TJ and Model-Based (MB) algorithms. To focus on
algorithmic aspects, a simple two link planar manipulator is first simulated. Then, the new
MT]J algorithm is applied to the coordinated motion control of a 14-DOF space free-flying
robotic system. Results show that tracking performance of this new algorithm is
comparable to that of Model-Based algorithms, without requiring a priori knowledge of
plant dynamics, and with reduced computational burden. Therefore, this new MTIJ
algorithm is a good candidate for controlling multi-DOF space robots, especially where

computational power is limited.
5.2 MTJ Control Law

5.2.1 Motivation

As discussed before, using the expressions for the kinetic and potential energy, and

applying Lagrange’s equations for a robotic system, the dynamics model can be obtained as

H(q)q + C(q.4)=Q(q) (5.1)

where all gravity and nonlinear velocity terms are contained in vector C. Gravity terms arc
practically zero in microgravity environments, and therefore can be neglected in the design
of control laws for space robots. In terrestrial applications, these terms may cause static
positioning errors in control, and in such case, they must be compensated separately.
Therefore, it is assumed that the vector C contains only nonlinear velocity terms.

The output speeds, {, associated with the output variables to be controlled, §, are

obtained from the generalized speeds q using a Jacobian matrix, J, as

qd=Jc(q) q (5.2)
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Assuming that this Jacobian matrix is square and non-singular, Eq. (5.1) can be written in

terms of the output variables as follows
Hq)q + C(q.9) =Q(a) (5.3)

where H, €, and § can be obtained according to Egs. (4.10).

To control such a system, a Model-Based (Computed Torque) control law such as

Q=J£{ﬁ[er+K,,é+ﬁd”]+C} (54)

can be applied. This law linearizes and decouples the system equations to a set of second

order differential equations

é+K,6+K,e=0 (5.5)

where K, and K, are positive definite gain matrices, and e is the tracking error defined as

e=q,, —q (5.6)

Under the usual assumption of known system dynamics structure, and known geometric

and mass properties, the control law given by Eq. (5.4) guarantees asymptotic convergence

of the tracking error to zero. However, if these assumptions are violated, the error may

never converge. In addition, this control law requires a significant computational effort®
which may not be available on a space system.

As discussed in the previous chapter®, if high enough gains are used, the control law of

Eq. (5.4) can be approximated by the simple Transpose Jacobian (TJ) controller as

Q=J.(K,e+K,é) (5.7)

8- To apply a Model-Based (Computed Torque) control law, H ond € have to be computed, Considering Egs.
(4.5), it can be scen that computation of Hand C requires inversion of the Jacobian matrix and calculation of its
lime derivative which depending on the system degrees-of-freedom may be quite cumbersome, The number of
matrix multiplications in obtaining these expressions, is also considerable. The required computational
operations can be scen in Table 4.1, though the assumptions made in preparation of this table exciude the
operations for inverting the Jacobian matrix and calculating its time derivative.

9. See Scction 4.2.2,
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which does not require a priori knowledge of the system dynamics. Besides simplicity, an
advantage of this algorithm is that if a physical singularity is encountered, the controller
given by Eq. (5.7) may result in errors but will not fail computationally. The action of this
controller can be understood by imagining gencralized springs and dampers, along the
variables under control, connected between the corresponding body and the desired
trajectories; the stiffer the gains are, the better the tracking should be. However, due to the
presence of noise and unmodelled dynamics, the use of very high gains is limited in
practice. Note that computation of Q based on Egs. (5.7) and (4.5), does not result in the
error dynamics given by Eq. (5.6), anymore.

The advantages of using the TJ controller motivate further work on this algorithm,

aiming at improving its performance and limiting its drawbacks.
5.2.2 Derivation of MTJ Control Law

To achieve both precision and simplicity, the TJ control law defined by Eq. (5.7) is now

modified, to approximate a feedback linearization solution, as

Q=J¢(K,é+K e+h()) (5.8)

where h(t) is a term to be determined, K, and K, are positive definite gain matrices, and e
is the tracking error defined in Eq. (5.6). Substitution of Eq. (5.8) into Eq. (5.3), yiclds
K,e+K,e=Hq+C-h@) (5.9)
which is equivalent to
K,é+K,e =Q-h(r) (5.10)
It can be seen that if the right hand side (RHS) of Eq. (5.9), becomes equal to zero, then
the tracking error converges to zero, and the algorithm works like a Modecl-Based

algorithm, albeit with a simpler implementation. Note that inclusion of the second

derivative of the error, €, in Eq. (5.8) results in
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Q=J/{é+K,é+K, e+h(n) (5.11)

and then

é+K,e+K, e=Hq+C-h) (5.12)

which results in an error dynamics similar to that of the MB algorithms, if the RHS of Egq.
(5.12) becomes equal to zero. However, inclusion of this signal requires acceleration
measurements or an estimator, and may be difficult to obtatn in practice.

To make the THS of Eq. (5.9) or (5.12) be close to zero, Eq. (5.10) suggests that a
good approximation can be obtained by taking h(t) equal to Q at a previous small time
step, QL o - However, inclusion of this term may result in high joint torque requirements,
when relatively high e or € are imposed due to disturbances. To tackle these disturbances,

the standard TJ algorithm can be instantly applied. Therefore, the following form is adapted

h(t)=k Q|,_,, (5.13)

where the regulating factor, k, is defined as

0 whenle|2eor|é[2 é
k= (5.14)

1 whenle|<e & |é|< £

where € and € represent sensitivity thresholds. Note that factor % is initially taken equal to
zero, resulting in a TJ control law at the first time step. To simplify the on-off switch for

factor &, the following continuous expression can be used

JLI+JLI)) (5.15a)

max emax

k = exp(~(

where ¢,,,, and ¢,,, are positive real numbers which correspond to another representation
of the sensitivity threshold. Note that relatively low values for sensitivity thresholds, would
make the algorithm work like the standard TJ control law. In practice, K, and K, can be
chosen as diagonal matrices, and so can be selected the regulating factor. Then, factor % in

Eq. (5.13) should be replaced by a diagonal matrix K, where its elements can be defined as
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k.= exp(—(-ele—‘l- + _—!e—"l—)) (5.15h)

max, nu,

Including the second term in Eq. (5.15), based on the error first rate, introduces a sense of
anticipation, without compromising the smoothness of response. Similarly, one can include
another term based on the second rate of error, if available. However, this makes the

algoriiam more sensitive, and therefore sharp variations of actuator forces/torques may

result.

Application of the MTJ algorithm

Q=JL(K,é+K, e+kQ|_,) (5.16)

with proper selection of the sensitivity thresholds (so that the modifying term is rcasonably

activated) and small time steps, results in the following error equation

k& +k, e =0 (5.17)

where diagonal gain matrices, K, and K, have been used. Therefore, using Eq. (5.17),
the control gains can be selected in a more systematic manner, as their ratio determines
error time constant, and their magnitude determines the magnitude of the control command
which should be adjusted based on actuator capabilities,

Considering Eq. (5.16), it can be deduced that the MTJ requires IN2+N+2
multiplications, and 3N¥2-N+ ] additions. Comparing to the depicted results in Table 4.1,
these are almost the sarne as those for the TJ algorithm, and still significantly less compared
to the ones needed for implementing the MB algorithms. Note that it is assumed that the
inverse of the Jacobian matrix and its time derivative, which are required for implementing
the MB algorithms, are available symbolically, and hence computations involving these are
not counted in Table 4.1.

The above analysis reveals the simplicity {concerning a priori knowledge requirement

of system dynamics) and efficiency (in terms of the required computational effort) of both
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the standard TJ and the new MTJ law compared to the MB algorithms. In addition, the
MTJ vyields approximately linearized error dynamics, and therefore an improved
performance over the standard TJ algorithm. Next, based on Lyapunov's theorems,

stability analysis of the developed MTJ algorithm is studied.
5.3 Simulations and Comparisons

In this section the performance of the new MTJ control, as given by Eq. (5.16), is
evaluated by simulation, and compared to the standard TJ, Eq. (5.7), and model-based
(MB) algorithms, Eq. (5.4). First, to focus on algorithmic aspects, a simple two link planar
manipuiator is simulated. Performing low-speed vs. high-speed tracking task, selection of
larger gain for the TJ, and noise rejection characteristics of the considered algorithms are
investigated in this Example. Then, the new MTJ algorithm is applied on coordinated
motion control of a 14-DOF space free-flying robotic system, and simulation results are

compared to those of the other algorithms.
5.3.1 Example 1: Two-Link Fixed-based Manipulator

The simulated system is a simple 2-link planar manipulator on a horizontal plane, see

Figure 5.1 (aj. The task is tracking a trajectory defined by
Xy = A1+ cos(@t +m/4)+0.1sin(5w¢)

(5.18)
Yaer = A2+ sin(@t+m/4)+0.1sin(Swr)

This trajectory corresponds to a perturbed circular path, as shown in Figure 5.1 (b). The
motion speed along the path can be selected by setting the cyclical frequency .

The mass properties of the system are m, =40kg, I, =0333 kgm®, m, =30kg, and
1, =030kgm’®, and the link lengths are !, =1m and f, =1 m. The initial conditions for

joint angles and derivatives are

(9.000,4,(0),4,(0).6:(0)) =(003,m/2,1.5,~1.0)  (rad, rad /sec)
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which correspond to some initial position and velocity errors.

The sensitivity thresholds for the MTJ algorithm, ¢, and ¢ ,. in Eq. (5.154) are taken
equal to 1 m and 10 m/sec, respectively. These large values for ¢, and €. yield k=10
throughout the whole duration of the simulation after the first time step {which is zero,
according to the definition). The time step As, is held constant, and equal to 10.0 msec. To
establish a fair comparison, the gains for the algorithms under comparison are selected such
that the peaks of the required joint torques are approximately cqual. The Gear method for

solving differential equations, is used in all simulations.

1.5 2 1 L 1 L 1 L
1+ -
0.5 -
E
0.5
1 b ..
1.5 T T T T T T
2 15 4 05 0 05 1 15 2
% (m)
(a) (b)

Figure 5.1: (a) A two-link planar manipulator, (b) Desired tracking

path.

Low-Speed vs. High-Speed Tracking Task. The performance of the TJ and
MT]J algorithms, in terms of the end-point error in a low-speed tracking task (w=0.05
rad/s), is compared in Figure 5.2. For the MT] algorithm K, = diag(30, 30), K,= diag(60,
60), while for the TJ algorithm the gains are twice these values. It can be seen that both
algorithms result in a fairly similar response. However, errors for the TJ algorithm may

increase initially to higher values, before they converge to zero, see for example e(y) in

Figure 5.2 (a).
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Figure 5.2: Tracking errors for low-speed task, (a) TJ algorithm,
(b) MTJ algorithm.
Figure 5.3 shows the end-point tracking error in a high-speed tracking (w=2.0 rad/s).
As shown in this figure, the MTJ algorithm results in smaller tracking errors, and therefore
is preferred. This poor performance of the TJ algorithm, is due to the fact that it is not
dynamics-based. However, one would expect that by selecting very high gains, its

performance can be improved.
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Figure 5.3: Tracking errors for high-speed task, (a) TJ algorithm,
(b) MTJ algorithm.

To investigate this possibility, the previous gain values for the MTJ are used, while for
the TJ fairly high gains are selected, see Table 5.1. Besides, the task speed is reduced to
w=1.0 rad/s. Here, in addition to the TJ and MTJ algorithms, two cases of model-based
(MB) algorithms are also considered. In the first case, it is assumed that the mass

properties are completely known, while in the second one, the mass properties of the
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dynamics model in the controller are perturbed by 10% with respect to the rrue values. For
the perfect MB, the chosen gains are fairly low which correspond to a settling time of 2.0
sec, and a damping ratio of 0.7. For the second MB case. these low gains result in

relatively large tracking errors, therefore they are selected equal 10 the ones for the MTI.

Table 5.1: Selected gains for alternative algorithms, Ex. 1.

Algorithm |k, | ok,

TJ diag(150, 150) diag(300, 300)

MTJ diag(30, 30) ding(60.60) |
MB, case 1 | diag(8, 8) disgd, 4) |
MB, case 2 diag(30, 30) diag(60, 60)

As Figure 5.4 shows, due to properly adjusted gains, the peaks of joint torques for all
four algorithms are about the same, which as mentioned before, establishes a fair
comparison. Nevertheless, it can be seen that, even with relatively very high gains for the
TJ, the resulting tracking errors of the MTJ are still about five times smaller than the ones
of the standard TJ, and even better than the ones of the perturbed MB (case 2) algorithm. In
other words, the advantage of MB laws is lost if the pararneters are not known exactly.

It should be wecntioned that the total energy consumption of cach algorithm for
performing this task, given by the time integral of i |r.4,). is almost the same, i. e. in
correspondence to Figure 5.4, (a) 153, (b) 156, (c) ;=5|3. and (d) 154 Joule.

Noise Rejection Characteristics. In practice, noise corrupts any available
feedback. Therefore, one should examine the noise rejection capabilities of would be
implemented algorithms, especially of those that rely on high gains. The previous
simulation is repeated now, assuming that measurements of joint angles and their rates are
corrupted by white noise whose amplitude is 2% of the output’s magnitude. Although the

erformance in terms of the average tracking errors is almost the same as before, the

variation in the required torques is larger. As shown in Figure 5.5, the required torques for
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Figure 5.4: Joint torques and tracking errors, (a) TJ with high
gains, (b) MTJ, (c) MB, case 1, (d) MB, case 2.
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the MTJ algorithm are almost as smooth as those for a perfect MB control, while the noise
rejection characteristics for the TJ algorithm are poorer, due to the high gains employed.
Note that for the MB algorithms, having a noisy feedback affects the elements of controller
dynamics, which in the presence of uncertainties (the second MB case) as requires larger

gains, results in a poor noise rejection characteristics, see Figure 5.5 (d).
10
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Figure 5.5: Joint torques in the presence of noisy feedback, (a) TJ,
high gains, (b) MTJ, (¢} MB, case 1, (d) MB, case 2,

It can be concluded that for better tracking, larger gains are required for the TJ
algorithm, and these lead to poor noise rejection characteristics. Also, high frequency
inputs can excite flexible system modes, and consequently decrease the accuracy, and the
useful life of a system. Hence, using high gains is not a viable option. On the other hand,
the new MT]J algorithm, by being an approximation of a feedback linearization algorithm,
does not require high gains, or a high computational power, while its performance is

comparable to that of the Model-Based algorithms,
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Next, the new MTJ algorithm is applied to the coordinated motion control of a space
free-flying robotic system, and the results are compared to those of the standard TJ and

model-based (MB) algorithms.
5.3.2 Example 2: Multiple Arm Space Free-Flying Robotic System

In this section the 14-DOF space free-flyer, described in Section 4.4.3, is simulated in
capturing a moving object. The generalized coordinates and the output variables are those
already defined in Egs. (4.35-36). Also, all of the initial values and the required parameters
for planning the desired trajectory, are those given in Section 4.4.3.1. Here, the simulated
algorithms are

- The MB algorithm, based on Eq. (5.4);

- The standard TJ controller, Eq. (3.7);

-~ The MTJ algorithm as given in Eq. (5.16), MTJ1;

- The MT]J controller using a second derivative of the error, Eq. (5.11), MTJ2.

To include the effects of model uncertainties in the MB law, the mass properties of the
mode! used in the control algorithm are perturbed with respect to the true parameters by up
to 5%. Table 5.2 shows the gains used for alternative controllers. The size of the time step,
At, for the MTJ implementation, is held constant and equal to 10.0 msec. The sensitivity
thresholds for the MTJ controllers, to be substituted into Eq. (5.15b), are e, = (le-2,le-2
Jde-2,1e-2,1e-2,1e-2,1e-1,...,1e-1)T, and é_ = (le-1,le-1,le-1,le-1,1e-1,le-1,1.0,...,

1.0)T. The Gear method for solving differential equations, is used in all simulations.

Table 5.2: Selected gains for alternative algorithms, Ex. 2.

Algorithm

K
]
diag(300, 300,300, diag(600,600,600,

200,...,200, 100,100} 400,...,400, 200,200)

" MB, MTJ1, MTJ2 | diag(150,...,150, 50,50} diag(300,...,300, 100,100)
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Figure 5.6 shows typical tracking position errors for an end-effector. For the TJ
algorithm, these errors are much higher (almost 50 times higher than those of the MT)),
especially when the system is accelerating. As discussed before, this is because the T)
algorithm is unaware of the dynamical behavior of the system. However, it is seen that the

error for the MTJ algorithm (both MTJ1 and MTJ2) remains very small, throughout the

maneuver. Note that here, the MTJ1 and MTJ2, result in similar tracking errors.
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Figure 5.6: Tracking position errors for the first end-effector, (a)

TJ, (b) MB, (c) MTJ1, (d) MTJ2.

Unlike the MB algorithm, the MTJ does not require any priori knowledge about system
dynamics, and so it is not affected by inaccuracies in mass parameters. This becomes
important when the object enters the manipulator fixed-base workspace, and the
manipulators start moving ( t = 58 sec). Tracking errors, which appear due to the dynamic
coupling and also due to the transition phase from joint-space to task-space control, are
almost five times higher for the MB, compared to those of the MT]J algorithms, see Figure

5.6. This is due to the fact that the mass properties of the control model are perturbed with
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respect to the true parameters by up to 5%. Note that, given enough time, tracking errors
decrease and eventually vanish in all four algorithms.

Figure 5.7 shows the applied control forcesftorques on the spacecraft. Comparison of
the spacecraft thruster forces, shows that the peak of the required forces is about the same
for the TJ and MB algorithms, while in the case of MTJ1 and MTJ2, it reaches the actuator
saturation limits. The profiles of thruster forces, in most parts of the maneuver, is staircase
for the MB while for the TJ algorithm, it is a smooth approximation of those profiles. For
the MTI algorithms, the profile is similar to the one of the TJ, at the beginning, and to that
of the MB, at the end. This means that the value of the regulating factor which corresponds
to the position error of spacecraft center of mass, is close to zero at the beginning, and
almost equal to one at the end. Near the 45-th sec of the maneuver (labeled as “end of
rotation maneuver” in Figure 5.7 (a)), the final desired spacecraft orientation is reached,
and dynamic coupling results in small thruster forces.

As shown in Figure 5.7, in all algorithms the applied torques on the spacecraft, result
in reaching actuator saturation limits of the first torque component, in attempting to
compensate for the disturbances caused by manipulator motions (starting at t= 58 sec).
Note that the variation of the applied torques for the MTJ algorithm is faster. Also,
comparing MTJ1 to MTJ2, it can be seen that the latter results in a slightly smoother
profile, which is due to more awareness of the system dynamics. However, the difference
is so negligible that one may hardly decide to use MTJ2 (rather than MTJ1), considering its
difficult implementation in practice as discussed before.

Figure 5.8 displays the joint torques for the first manipulator, near the end of the
maneuver (53< t <60 sec). As shown in the figure, the applied torques are approximately

the same for the MB and MTJ algorithms, while about 20-60% lower for the TJ algorithm.
54 Summary and Conclusions

This chapter presented the new Modified Transpose Jacobian (MTJ) control which, using

stored data ofthe control command in the previous time step, yields a better performance (in
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Figure 5.8: Joint torques for the first manipulator, (a) TJ, (b) MB,
(c) MTJ1, (d) MTJ2.

terms of tracking errors, with the same requirements of actuator forces/torques) compared
to the standard Transpose Jacobian (TJ) algorithm. The MTJ controller approximates a
feedback linearization solution, with no need to a priori knowledge of the plant dynamics.
Therefore, unlike a model-based algorithm, it is not affected by inaccuracies in mass
properties. It was shown by simulation that the performance of the MTJ controller is
comparable to that of a perfect Model-Based algorithm, with the advantage that less
computational power is needed.

Unlike the standard TJ, the new MT]J algorithm works well in high speed tracking
tasks. Based on presented analysis, the controller gains can be selected in a more
systematic manner, and the use of high gains is avoided. In the presence of noise, it was
shown by simulation that the performance of the MTJ controller is also comparable to that

of a perfect MB algorithm. The substantially reduced computational requirements compared
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to the MB, and the good tracking and noise rejection performance characteristics in
comparison with the TJ, suggest that the MTJ algorithm is a promising alternative. In
particular, in those applications where model-based controllers can not be used due to
computational limitations or modelling inaccuracies and uncertainties, the MTJ algorithm
can be employed, with an overall performance close to that of a perfect model-based
controller.

In the next chapter, manipulation of an acquired object, which can be passive or may
include some internal angular momentum sources, is discussed. To this end, a new control
algorithm is developed to move the captured object in accordance with a pre-determined

plan which may include impacts due to contact with the environment.
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Chapter 6

Multiple Impedance Control and its Application to
Space Robotics

6.1 Introduction

Impedance Control was originally formulated to control dynamic interaction between a
manipulator and the environment. Employing impedance control, both free motions and
contact tasks can be performed without switching to different control modes. When
multiple manipulators participate in a cooperative task this strategy has been formulated at
the level of manipulated object, Object Impedance Control (OIC), to enforce a controlled
impedance not of an individual arm end-point, but of the manipulated object itself, Here, a
new algorithm named as Multiple Impedance Control (MIC) is developed, which enforces
a controlled impedance of both manipulator end-points, and of a manipulated object.
Physically speaking, this means that both manipulator end-effectors and the object are
controlled to behave like a desired impedance in reaction to any disturbing external force on
the object, and an accordant motion of different parts of the system is achieved. To
manipulate space objects, the new MIC algorithm can be applied so that all participating
manipulators, the free-flyer base, and the manipulated object exhibit the same impedance

behavior,
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First, a conceptual comparative analysis, between different control strategies, is
presented. In Section 6.3, the general formulation for the MIC algorithm is derived, and
based on that the tracking errors are analyzed. In addition, an estimation procedure is given
for contact force determination. Then, a simple model of a robotic arm manipulating an
object is considered in a thorough comparative analysis between the MIC and OIC. Then,
the general MIC formulation is applied to perform a cooperative manipulation task with two
fixed-base planar manipulators. The simulation results are discussed in each of these cases.

Application of the new MIC algorithm in space robotic systems is formulated in Section
0.4. As discussed before, unlike fixed-based manipulators, the base body of space robots
is dynamically coupled to the arms motion. Hence, in order to control such a system, it is
essential to consider this coupling between the arms and the base. For the manipulated
object, inclusion of an internal source of angular momentum, is admiited. It is shown that
by applying the new MIC algorithm, all participating end-effectors, the free-flyer
spacecraft, and the manipulated object exhibit a similar impedance behavior. Some

concluding remarks, in Section 6.5, end this chapter.
6.2 Basic Concepts

6.2.1 Problem Statement and Task Definition

Using a simple spring, Figure 6.1, the differences between various control strategies (i.c.
Position, Force, and Impedance Control) are first discussed. Imposing a force F at the
free end of spring, A, will determine a displacement x; upon the value of k, and vice versa
(i.e. imposing a displacement x; at A will determine the required force F)). As this simple
example reveals, in a mechanical system it is impossible to control both force and position
along the same direction. However, using closed-loop control, we could artificially impose
a desired behavior on any physical system. In other words, a desired relationship between
force and motion at specific point(s) of a system can be enforced, and this is the aim of
Impedance Control Laws. In our spring example, this can be achieved by setting the spring

constant k.
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Figure 6.1: A simple spring, to visualize notion of impedance behavior.

Some definitions that are used in what follows are given here. A manipulation task
can be defined as moving an object according to predefined trajectories which may pass
through an obstacle. To compare alternative control strategies in a manipulation task, let's
consider the problem in a simple form. Figure 6.2 depicts a simplified model of performing
a manipulation task by a single manipulator. In case of cooperative operation, this
simplified model can be completed by introducing a cooperation strategy to the control

algorithm, and incorporating multiple manipulators.
6.2.2 Application of Alternative Control Strategies

Considering Figure 6.2, the task is defined as moving the object m, according to a given
trajectory, x,, ., by applying an appropriate force Fy without damaging any part of the
system. The manipulator is represented by m,, connected through some spring-damper to
m,, which represents the end-effector. In this section, a conceptual comparative analysis
between alternative control strategies is presented. To this end, the use of alternative control

strategies in performing the defined task is briefly described and discussed.

7777

ManipulaWd-Effechject Obstacle
Manipulator Flexibility Object/RCC
and Force Sensor Flexibility

Figure 6.2: A model of performing a manipulation task by a single robot.
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O Position Control, where the goal is to obtain a good tracking of either the end-
effector position, X3, (to achieve a good tracking of the object position x3) or the object
position itself, x3. Since there is no awareness of contact between the object and an
obstacle, applied forces may cause serious damage to some parts of the system,

O Force (Regulation) Controel, was originally developed for performing those
tasks which require direct interaction between the end-effector and its environment by
regulating the end-effector force, e.g. cleaning a window. However, it may be used in
object manipulation tasks by computing and applying a proper end-effector force F,. This
force is computed based on the desired object trajectory, known mass properties, and under
the assumption that the object is rigid. Nevertheless, since x; is not regulated when

controlling Fe, some tracking errors in X3 are expected. To aralyze this point, note that

Fo=by(% = i)+ k(o — x3) 6.1)

where b, and k, are the object damping and stiffness coefficients, respectively. In case of
using a Remote Centre Compliance (RCC), Craig (1989), these coefficients reflect both the
object and RCC flexibility, Note that assuming negligible inertia forces for the end-effector,
F, is equal to the measured force at wrist. According to Eq. (6.1), controlling the end-
effector force F, does not yield good tracking of xs, since F; is also a function of x,. For
further investigation, the error in end-effector force is next computed in terms of system
variables. It is shown that having this error converge to zero does not necessarily result in
zero tracking error for the object position which is the original goal. To this end, the

equation of motion for the object can be written as

myky = F (%3, X))+ F, + F, (6.2)

where m; is the object mass, F, includes all potential, frictional, and similar effects, and F,
is the external (contact) force applied on the object. Then, as described before, the desired

end-effector force can be computed as
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_ s . -
Ffdc.s - "llx:‘m F:'(x:‘dﬂ’ decs) (6'3)

Therefore, the corresponding error in Fy, ¢, is obtained as

el = nl3('i;3du - EJ) - F:r(x:idﬂ' thﬂ) + F:J(xl' xl) + F;‘ (6'4)

A well-designed force controller can make e, go to zero. However, as Eq. (6.4)

reveals, this does not necessarily yield zero tracking error for the object position, e,
l?

e,=0 = e=x, -~x,=0 (6.5)
In free motion where no contact with the obstacle occurs, i.e. F; =0, if e = O it can be
concluded that ¥, is close to %, under the assumption of F,(x,,, %) = F,(x;, X%,), see
Eq. (6.4). Even so, any small deviation in acceleration will result in an integrated tracking
error with time. At the time of hitting an obstacle, the contact force F; appears with a sharp
jump from zero, and a sudden change occurs in ¢, which demands applying large actuator
forces. If this does not result in any damage, a stable force controller results in a stop of the
object at the obstacle, shortly thereafter.

0 Standard Impedance Control, although formulated for performing tasks which
require direct interaction between the end-effector and its environment, still it can be applied
for object manipulation tasks. In so doing, enforcing a relationship between x» (or x,) and
F. is aimed, though the objective is good tracking of x3. However, implementing
impedance law at this level does not provide compensation for the object’s inertia forces.
This yields unacceptable results when the object is massive or it experiences large
accelerations. It should be noted that for the standard impedance control, there is no
provision for computation of the external (contact) forces applied on the object, F,. Instead,
the measured force at the wrist (which is equal to F,, under the assumption of negligible
inertia forces for the end-effector) is adapted in the impedance law. However, considering

the object motion, Eq. (6.2) yields

F =mi, - F(x,, %)~ F, (6.6)
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which shows the difference between the measured force, F,, and the real contact force, F..
Therefore, implementing impedance law at the manipulator level ignores the possibly
significant inertial effects of the object. Furthermore, even for a negligible object inertia, a
relaionship between x; and F, is enforced (with no feedback from the object motion)
which according to the previous discussion, this does not result in a good tracking of xj.

O Object Impedance Control (OIC) is a well-formulated version of the Standard
Impedance Control for object manipulation tasks. In this strategy, an impedance
relationship at the object level, x1, is enforced through feed-forward manipulator control.
The novel idea here is inclusion of object inertia effects in the Impedance Control strategy.
However, formulating the impedance law at the object level, with no feedback of end-
effector's motion, does not yield a good tracking for flexible objects, for the same reason
discussed earlier in force control and the standard impedance law. The more flexible the
object is, the worse the performance of OIC will bel0.

Next, the new Multiple Impedance Control law is described and derived.
6.3 Multiple Impedance Control Law

As mentioned earlier, the basic idea in impedance control is to enforce a relationship
between force and motion (position, velocity, etc.) at specific point(s) of the system. The
strategy in Multiple Impedance Control, MIC, introduced for the first time in this chapter,
is to enforce an equivalent impedance relationship at the manipulator end-effector level, and
at the manipulated object level. Therefore, an object inertia effects are compensated for in
the impedance law, and at the same time, the end-effector(s) tracking errors are controlled.
Physically speaking, this means both the manipulator end-effector(s) and the manipulated

object are controlled to respond as a designated impedance in reaction to any disturbing

10- As mentioned in Section 1.2,1, Meer and Rock (1995) have tried to solve this problem by managing different

parameters in implementing the algorithm.
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external force on the object, and different parts of the system are led to an accordant
motion. For mobile manipulators, e.g. space free-flyers, the new MIC algorithm is applied
so that all participating manipulators, the moving platform (base), and the manipulated
object exhibit the same impedance behavior, as implied by "multiple” in the MIC.,

While OIC enforces an impedance law on the object motion, MIC enforces an
impedance law on both the manipulator end-effector(s), and the manipulated object. This
major difference between the MIC and OIC allows for proper trajectory planning of the
end-effector(s), based on the desired trajectory for the object and the grasp condition. Note
that for the case of a redundant system, the end-effector(s) trajectory can be planned so as
to optimize the performance. Other differences between the MIC and OIC include allowing
for a difference between the contact force and other external forces which are applied on
the object, as well as improved contact force estimation.

In this section, the general formulation of the new MIC algzrithm is derived for fixed-
base cooperative manipulators. An estimation procedure for the contact force determination
is discussed, and tracking errors are analyzed. Considering a simple model for
manipulating an object with a single robotic arm, as discussed in the previous section, a
comparative analysis between the MIC and OIC is presented. Root locus analyses, and
simulation results are given in each case. Then, the application of the MIC algorithm to
perform a cooperative manipulation task with two fixed-base planar manipulators is

discussed, and simulated.
6.3.1 General Formulation

Performing a cooperative manipulation task, as defined in the previous section, requires
coordination between participating robotic arms, Figure 6.3. To this end, the dynamics

equations of each participating manipulator can be written as

HU)(q“))(.i(”‘i‘Cm(q(”,q“)):Q(‘) (6.7)
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Figure 6.3: Two robotic arms performing a cooperative manipulation
task.
where the superscript “i” corresponds to the i-th manipulator, and the vector of joint angles
and displacements is chosen as generalized coordinates q’. Note that C*’ contains all the
gravity and nonlinear velocity terms, where in a microgravity environment the gravity terms
are practically zero. Assuming that each manipulator has six DOF, and using a square

Jacobian J, the output speeds (%) are computed in terms of the generalized ones (q) us

=) _ gty o ()
x"=Jq (6.8)

{xg,}
i(!) = (6 Sb)
50

x¥ describes the i-th end-effector position, ar.d 8% is a set of Euler angles which

where

describes the i-th end-effector orientation. The equations of motion, Eq. (6.7), can then be

written in terms of the output coordinates x"’, as
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ﬂ”)(q{”)fu)‘f'C(”(qt”,(]“))=QU) (6.93)

where

qv =J2}"T H(ngr‘ ol ___J(Cn-TC(n —g® Jg) q" Q® =Jg’-TQ(” (6.9b)

The vector of generalized forces in the task space, Q"’, can be written as

QV =Q® +QY_ (6.10a)

opp

where Q) is the reaction load on the end-effector, and Q

-Ted sl

(i)

anp 18 the applied controlling

force which is divided into two parts, motion-concerned and force-concerned as

A0 =Q::')+Qf:1 (6.10b)

app

where QY is the applied control force concerning the motion of the end-effector, while
QY’ is the required force to be applied on the manipulated object by the end-effector. To
obtain proper expressions for these terms, let's first consider the equations of motion for
the manipulated object.
The equations of motion for the object can be written as
My Xo=f +f, + if,‘”

=t (6.11)

" n
: — (0 5, f 0 W
Icm,,;.;'*‘ @, xIg co,,,,j-n,+n,,+2r, xf, +2n,
i=l i=)

where m,,, is the object mass, n is the number of participating manipulators in the
manipulation task, X is its moment of inertia about center of mass, X is acceleration of
center Gi mass, @, is the object angular velocity, ®,,, is the object angular acceleration,
f. is the force applied on the object due to contact with the environment, f,m is the i-th
end-effector force exerted on the object, f, is the vector of other external forces applied on
the object (including gravity forces), n, is the contact torque applied on the object about its
center of mass (including the moment of f.), r,(” is the position vector of the i-th end-

effector with respect to the object center of mass, n," is the i-th end-effector torque
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exerted on the object about its center of mass, and n,, is the vector of other external torque
applied on the object (including the moment of f, ) about its center of mass. Similar to Eq.
(3.7), choosing a set of Euler angles that describes the orientation of the object, 8, the

object angular velocity can be expressed in terms of Euler rates as

w,, = thj 50;:1 (6.12)

which can be substituted into Eq. (6.11), to obtain the equations of motion for the object as

Mx+F, =F_+F, +GE (6.132)
where
{xa } [mohjllx'.'. 0,,; :| 0.
i = 9 M - Fm = » N .
sobj 0,3 SI.-;; 1; S, Srm([m.mj] I; o4 +158,, suhj)
F(I )
N el
F; - :-bj n, F:, - :bj n, Ft - ; ’ F' - ng(” 6xl (6‘l3b) .
¢ 6nxl
c L, 0, L 0]
|87, [r 05, ST, SHE W T

The matrix M will be referred to as the mass matrix, and the matrix G as the grasp matrix.
A desired impedance relationship for the object motion is chosen as

M, é+ké+ke=-F, (6.14)

where M, is the object desired mass matrix, e=(x,,,.,—x) is the object position/
orientation error vector, and k , and k,, are gain matrices (which are usually selected as
diagonal matrices). Comparing Eq. (6.14) to Eq. (6.13), it can be seen that the desired

impedance behavior can be obtained if
GE =NM;:J(M,,,,§:‘,,,+ ké+k e+ Fc)-!- F, -(Fc + Fﬂ) (6.15)

provided that S, is not singular which is a matter of Euler angles definition. In other

words, applying the required end-effector forces/torques, F, , on the object results in the
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targeted impedance relationsh’p as described in Eq. (6.14). Now, Eq. (6.15) can be solved
to obtain a minimum norm solution. Therefore, the required end-effector forces are

obtained as

F,, =G {MM; (M, %, +ké+k,e+E)+F,~(E+F,)} @160

Crry des™des

where G' is the pseudoinverse of the grasp matrix G, a full-rank matrix (provided that
S, is not singular), defined as

G'=W'G'(GW'GT) (6.16b)

weighted by a task weighting matrix W, so that linear and angular motions or their
components can have different weights. Assuming that F, and the object mass and
geometric properties are known, computation of F, requires knowing the value of the
contact force, F.. Since, in general it is not possible to measure this force, it has to be

estimated, see Section 6.3.3. Therefore, Eq. (6.16a) can be written as

E, =G" MM, (M, %, +keé+ke+F)+F, - (F +F)] (6.17)

L4

where E, is the estimated value of the contact force F,. Note that based on the grasp
condition, it may be required to apply additional internal forces and moments on the object,
Fint. Then, Eq. (6.16) can be modified to
E,, =6 {MM;.(M, &, + ké+k,e+ B )+ B, ~(E +F, )} +(1-G'G)E,
(6.18)

where 1 is a 6nx6n identity matrix. Note that F;,, does not affect the object motion, since
the added term is in the null space of the grasp matrix G.

Now, based on the definition of Fe, Eq. (6.13b), the force which has to be supplied by
the i-th end-effector, F; , is directly obtained from F, . This yields the force-concerned

part of the applied controlling force, according to the definition given in Eq. (6.10), as

QY =F; (6.19)

Creq
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Note that Q' is virtually canceled by the reaction load on cach end-cffector. On the other
hand, the reaction load is obtained as

Qi =—F," (6.20a)
where

F,=G'[Mi+F, - (F, +F,)]+(1-G"G)F,, (6.20b)

Next, we have to obtain a proper expression for the motion-concerned part of the applied
M)

m"*

controlling force Q
As discussed earlier, in the MIC algorithm the same impedance law is imposcd on the
behavior of both the end-effector(s) and the manipulated object. Therefore, similar to Eq.

(6.14), the impedance law for the i-th end-effector can be written as
M, & +k,&" +k 8" =-F, (6.21)

i - - . . . . .
where 8" = ) — %' is the i-th end-effector position/orientation error vector, and the rest

has been already defined. Then, Q¥ can be obtained similar to the above derivation of
= )
Y, as

Q:’ =ﬁ“’(q‘”)M;1,[M,,,,w‘2§,’,’,+ kd-ém + k,,'é(” + Fc]-i- C‘”(q‘”,(]”’) (6.224)

or (substituting the estimated value for the contact force)

Qg} = ﬁ“’(q(")M;:,[Md,,?tf,',’,+ kd'ém +k P-é(n + Fc]+ o ’(q”’ ,t'l(”) (6.22b)

Note that the desired trajectory for the i-th end-effector motion, X\., can be defined

des?

based on the desired trajectory for the object motion, the object geometry, and the grasp

condition. In other words, based on the grasp constraints defined as

g (x,,,. %5, )=0 i=1p,n (6.23)

and the object desired trajectory, x,,, the desired end-effectors trajectorics can be

determined. Substituting Egs. (6.22), and (6.19) into Eq. (6.10b), the applied controlling
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. force can be computed. The block diagram of the MIC algorithm is demonstrated in Figure

6.4.
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Figure 6.4: The block diagram of the MIC algorithm.
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6.3.2 Error Analysis

Substituting Egs. (6.22), (6.20), and (6.19) into Eq. (6.10), and then the result into Eq.
(6.9), yields
H"’(q‘”){ d,,(Md,,Xf},’, KR4k E+ R )_;c'm} +

(6.24a)
G"M{ d,‘(Md”xd,,+ ké+k,e+F, ) }=0

where it is assumed that mass and geometric properties for the manipulated object and

manipulator are known. Also, it is assumed that the contact force estimation procedure

yields an exact value for this force. Since Eq. (6.24a) must hold for any M and H", it can

be concluded that

I-:l(”(q(”){ du(Mdrri::r).! +k e + k

F) x! } 0 i=1.---.n(6.24b)
0

E +
G 'M{M; (M, %, + kg +k e+ F )%} =

Then, since G " is of full-rank, this results in

H!i)(q("){ .;,,(Mmig,),-!-kdem +k e(” + ) :-ru)} 0 Pmloe
6.25
M{MEL(Ma.ﬁ.;.d' ké+k e+ ﬁ‘c)_g} - (6.25)

Finally, noting the fact that M and H" are positive definite mass matrices, Eq. (6.25)

results in
Md"'é‘”+k e+ k é‘”+F =0 i=l,,n

M, é+ke+k e+F =0

des

(6.26)

which means all participating manipulators and the manipulated object exhibit the same
designated impedance behavior. Note that the MIC approach permits choosing different
impedance parameters for the object dynamical behavior and the end-effectors (by selecting
Mues, ka, and k;, in Eq. (6.21) different from those of Eq. (6.14)). However, physical
intuition as well as simulation analyses indicate that the best results are achieved by
choosing equivalent parameters. This is due to the fact that enforcing the same pre-set

impedance on different parts of the system results in accordant motion throughout the
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system while executing a manipulation task. Harmonic motion of the end-effectors and

manipulated object is ensured via same error dynamics as obtained above.
6.3.3 Contact Force Estimation

As mentioned in the previous section, computation of F, requires knowing the value of
the contact force, F.. In general, this has to be estimated, and this is the focus of this
section.

To compute the contact force, Eq. (6.13) can be rewritten as
F =Mxi+F,-F, ~GE (6.27)

It is assumed that F

ot

and also the object mass and geometric properties are known.
Assuming that end-effectors are equipped with force sensors, F, can be measured and
substituted into this equation. Also, based on measurements of object motion, F, can be
computed as given in Eq. (6.13b), and substituted into Eq. (6.27). However, to evaluate
the contact force, the object acceleration must be also known. Since this is not usually
measured, it can be approximated through a numerical procedure. In OIC implementation,

either the desired acceleration, or the last commanded acceleration which is defined as

% o= MM, X, + K 6+Kk e+ F) (6.28)

are used. Schneider and Cannon (1992) describe that both of these two approximations
yield acceptable experimental results, though they have emphasized that a more
sophisticated procedure would improve the performance. In fact, since there may be a
considerable difference between X and X ,,, partic::larly after contact, using X, , does not
yield reliable results. On the other hand, using Eq. (6.28) may result in a poor
approximation because of sudden variations in contact force (at each contact).

Here, the suggestion is a direct usage of finite difference approximation as
*: - ir-m
At

%= (6.29a)

or
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X, —2X,_,, + b P
(Ar)?

X= (6.29b)
where At is the time step used in the estimation procedure. Note that because of practical
reasons (i.e. time requirement for measurements and corresponding calculations), Ar can
not be infinitesimally close to zero. At sufficiently high sampling rates, this does not
introduce a significant error, even during contact. Substituting Eq. (6.29) for acceleration,

the contact force can be estimated based on Eq. (6.27) as

i =Mx+F, -F, -GE (6.30)

Next, the system depicted in Figure 6.2 is considered for a comparative analysis

between the MIC and OIC algorithms.
6.3.4 Case Study: A Comparative Analysis (Single Manipulator)

The single robotic arm manipulating an object discussed in Section 6.2, is used here to
compare the nature and performance of the MIC and OIC algorithms. First, the system
dynamics model is derived, and then the controllability of the system is investigated. The
MIC and OIC laws are implemented, and compared through root locus analyses. The

system is then simulated under both control laws, and the simulation results arc compared.
6.3.4.1 Dynamics Model

For the 3-DOF system depicted in Figure 6.2, the equations of motion are
m &) + b\(%) =% }+ k(x —x, + [lf,,,) =F
my X, + bi(X, =)+ by(%, ~ %)+ k(% —x, =Lt -+, =0 (6.31)
'nj'f3 + bz("ea —'tl )+ kl(xl —x'z _IZJrn) =-fﬂ + .fc

where [, . and [, are the free lengths of springs k,, and k,, respectively, f, is the
contact force, and £, is the resultant of other external forces applied on the object. Gravity

effects are neglected, and all mass and stiffness properties are assumed to be known.
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State-space representation of Eq. (6.31) can be written as

X=Ax+bu+w 6
y=cx+du (6.32)

.. T
where x = (x,, X;, X3, %, X,, X;)', u=F, and

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

k, . —(k, + ki%lz % %2 —(b,b+ b%lz j’;/nz

) (6.33a)
b=(0,0,0, 1, 0. o)r (6.33b)
e (0' 0.0, ~ihre [ G e -kzlzf,,,)mz' U+ £+ hk,"% )T (6.330)
and the output vector, y, for each algorithm can be chosen accordingly.
6.3.4.2 Controllability of the system
The controllability matrix of the system is defined as!!
C=[b Ab A’® A’D A'D A®b] {6.34)
The determinant of C is calculated as
d- k2l (ke rmymy + (kyb? = kb, )Yomy + my)) 635)

m°my’my’
In general, Iél is not zero which implies that C is a full-rank matrix. This means that the

system is controllable, and that the actuator is able to take the system states to any desired

11- See Takahashi, Y. (1970).
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configuration in a finite time, provided that a proper input function, u«(r), is selected. This
observation motivates further study in controlling both the manipulator and object, using
the MIC algorithm. In the following, both OIC and MIC algorithms are applied, to provide

the input function, u(t), and control this system.

6.3.4.3 Root locus analysis

To investigate the stability and performance of the MIC compared to OIC law, for the
system depicted in Figure 6.2, a root locus analysis is presented in this section. To this
end, a root locus parameter has to be selected. Then, the poles of the corresponding
transfer functions, G,,-(s) and G,,{s), i.e. roots of the characteristic equation in each
case, are calculated for a set of values for the chosen parameter. Here, the object stiffness
coefficient k, is selected as variable parameter, where G,,.(s) and G,(s), and the
corresponding characteristic equations are presented in Appendix C.

For a rigid system, i.e. k,,k, — ¢, consideiing Egs. (C.2-7) it is obtained

G()=-22= lim Gue(s)= lim Gye(s)
X des, by ky e by ky e

. .. ) (6.36)
(my, s +ks+k)m +m, +m,)

(g™ + K, Yy + 1y + 1)+ Chgs + K Y, + fiy + 17t,)

which means that for a rigid system, both algorithms yield the same closed-loop transfer
function. If the given mass parameters for control purposes are the same as true ones, i.c.
m,= m,, then G(s)=1.0 in free motion (k, = 0); there is a perfect tracking.

Given that the true and given mass parameters are all positive, and applying the Routh-
Hurwitz criterion, all of the zeros and poles of Eg. (6.36) lie in the left half of the s-plane if
and only if

m,>0 & k,>0 & k>0 (6.37)

and upon this condition, both algorithms are stable for a rigid system.
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. Note that considering Eqs. (C.4b) and (C.7b), the sum of the roots of characteristic
equation (s,) for the MIC and OIC can be written as
O For the MIC:

8= (6.38)
M, M,

i ~(hy gk, + my, (m, + myImyby + my, (m, + my)mb,)
i=1

3 For the QIC:

i-‘] _ —((my + my)myb, + (my + my)mb,) (6.39)

P Iy,
As revealed by Eq. (6.39), the sum of the roots for the OIC algorithm is a function of
system parameters only, and is mostly affected by the damping characteristics of the
system; the controller parameters do not affect the sum of the roots. However, it is seen
that for the MIC, this sum is also a function of ky and my,,, and this permits easier pole
. adjustment.

As shown in Appendix D, the root loci for the MIC and OIC algorithms, as a function
of the object stiffness (k,) for various damping factors (b,), reveal that for a relatively
well-damped object both algorithms are stable, whether or not the object is in contact with
the obstacle. However, for an object with light damping, the OIC algorithm becomes
unstable if there is no contact. Note that a contact between the object and an obstacle, adds
a feedback effect to the system, and so its dynamic behavior changes. Considering this
unstable case, the effect of different controller parameters on the stability of the OIC
algorithm is investigated in Appendix D. It is shown that choosing larger gains, solely,
does not result in a stable system. However, a larger desired mass value has a positive
effect on the stability of the OIC algorithm, though larger inertia of the desired object
impedance results in slower performance, as will be shown by simulation. For an
undamped object, i.e. b, =0, it is shown that the MIC algorithm is stable (whether or not

. the object is in contact with the obstacle), while the QIC becomes unstable. In this case,
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choosing a larger value for the desired mass or a larger damping gain does not yield a stable
system. Based on this analysis, it can be concluded that with respect to system stability, the
MIC algorithm is always preferred, compared to the OIC.

Next, the performance of the two algorithms is simulated and compared, in the case
where the system parameters are chosen so that stability is ensured in both no contact and

in contact phases.
6.3.4.4 Simulation Results

The system depicted in Figure 6.2, is now simulated under the MIC and OIC laws. To
focus on the structural behavior of these algorithms, it is assumed that the exact value of the
contact force, f., is available to the controllers. There are thus three basic assumptions in
the following simulations for both algorithms:

(a) all mass properties are known,

(b) object and manipulator measurements, i.¢. x,, X,. X,, and their rates are available,

(c) the exact value of the contact force, f,, is available.
Note that the first two assumptions are generally made in implementing most proposed
algorithms in their original forms, and can be abandoned when an adaptation or parameter
estimation procedure is employed. As mentioned earlier, the third assumption simplifics

this comparison by eliminating the effect of a difference between contact force estimation

procedures.

The system and controller parameters are

m, =100kg, m, =200kg, m,=100kg, k, =26x10° Nim, k,=20x10' N/m

b, =325kg/sec, b, =1000kg/sec, m,,,=1000, k, =1000, k,= 3000

The initial conditions are

(%) Xy Xy oy g %) =(=02,-0.1,001,00,00,00) (m,m/s)
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and it is assumed that each spaing is initially free of tension or compression. The desired

trajectory for the object is
Xides = 1- e-'

The obstacle is at x,, = 0.7 m, and the contact force is computed as

i x>x, fi=k(,-x) (6.40)
else £=00 '

where k, =1¢5 N/m. To approximate actuator dynamics, the input force F is filtered by

a second-order Butterworth low-pass filter, as

2

F

} ptvernt = ©,
FE s +\205+0,

(6.41)

where @y, is chosen equal to 30 rad/sec.

Figures 6.5 and 6.6 compare the simulated performance of the MIC and OIC
algorithms. As it is seen, the system never rests under the OIC law (even in 100 sec), while
the MIC algorithm results in a good response. Applying the OIC law, an oscillatory error
demands an oscillating input force, and consequently, the contact force oscillates, see
Figure 6.6. Note that the object hits the obstacle at 7= 2.0 sec. It should be mentioned that
the root locus analysis shows that both OIC and MIC are stable for both “no contact” and
“in contact” phases.

One may suggest that choosing larger gains or a larger desired mass parameter, can
solve the problem and result in a better performance for the OIC, The simulation resuits of
further investigations of these issues, are presented in Appendix E. It is shown that by
choosing larger damping gains, kg, the resulting oscillations for the OIC do not disappear,
though the amplitudes may decrease. By choosing larger ky's, the oscillations get worse
(the amplitudes increase), while the MIC still yields a good response. Note that in this case,
the root locus analysis shows that both OIC and MIC are stable in both phases, although

the simulation indicates that the OIC becomes unstable. It is interesting to note that an on-
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off type nonlinear system may become unstable or experience a limit cycle, while it is

switching between two linear stable modes. Longer simulation runs show that, like in

previous cases, the OIC results in a limit cycle. The effect of actuator saturation limits on

the performance of both algorithms was also studied.
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6.3.4.5 Conclusions and Discussion of the Comparative analysis

Using the linear model for a single manipulator performing an object manipulation task, it
was shown with a root locus analysis that for a rigid system, both the MIC and OIC
algorithms yield the same closed-loop transfer function. Also, for a rigid system in free
motion (no contact with the environment) and for known values of mass properties, both
algorithms yield a perfect closed-loop transfer function (i.e. G(s)=1.0). For the flexible
system model, it was shown that for the OIC law, controller parameters can not affect the
sum of the roots. On the contrary, the sum of the roots for the MIC algorithm is a function
of controller parameters ky and my,,, and this permits effective pole adjustment. The effect
of choosing larger gains and larger desired mass on the stability of the OIC algorithm was
investigated. It was shown that choosing larger values for the desired mass and selecting
larger ky's, can improve the stability characteristics of the OIC algorithm (see Figure D.S,
Appendix D). In general, it was shown that concerning the system stability, the MIC is
always preferable compared to the OIC.

Next, the performance of both algorithms was simulated and compared. To include the
frequency demand of each algorithm, the input force was filtered by a second-order
Butterworth low-pass filter. Also, the possibility of reaching actuator saturation limits (to
exert the input force), and its effect on the performance of these algorithms was
investigaied (see Figures E.3-4, Appendix E). It was shown that in almost all cases, the
system never rests under the OIC law, while the MIC always yields a smooth stop of the
object at the obstacle. This is due to the fact that the OIC is focused on enforcing impedance
law oni the objcct motion, while the MIC is enforcing the same impedance law on both
object and manipulator motions. Applying the OIC law, an oscillatory error demands an
oscillating input force, and consequently, the contact force oscillates. Comparing the
presented simulation results for various cases, it is concluded that the new MIC algorithm

yields improved performance over the OIC.
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An example application of the MIC algorithm to perform a cooperative manipulation

task with two fixed-base manipulators is next presented.
6.3.5 Example: Cooperative Object Manipulation

6.3.5.1 Task Definition and Dynamics Modelling

Figure 6.7 shows a simple system of two robotic arms in planar motion, performing a
cooperative manipulation task, i.e. moving an object with two manipulators according to
predefined trajectories which may pass through an obstacle. The system includes two
planar two-link manipulators each with SCARA configuration, one of which is equipped
with a Remote Centre Compliance (RCC). The task is to move an object based on a given
trajectory which passes through an obstacle, and the motion has to stop smoothly at the
obstacle. The object has been grabbed at initial time, with @ pivoted grasp condition, i.c. its
orientation can change with respect to the end-effectors and no torque can be exerted on the
object by any of the two end-effectors. Therefore, using the redundancy of the system,
both the translational and rotational motions of the object are controlled by the end-cffector

Sforces.

Figure 6.7: Two robotic arms, performing a cooperative manipulation

task in planar motion.
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Based on Egs. (6.9) and (6.11), the system dynamics model can be represented as

H? §M +C» = QW =J(é’r(_ n __fm)

app ¢

£

{2) 2(2} ) . = T [AD _eD
H q +C7 = Q _JC (Qupp f, ) (642)
mnbj *G = fc + fu + fe(” + feu)

: — () ) ) (2)
I;@, =n+n,+r5"7 Xf" +r'" xf,

where all terms have been already defined, see section 6.3.1. Note that the first two
equations of (6.42) describe manipulator motions, and can be derived using Lagrangian
approach, while the last two describe the object equations of motion. In planar motion
@, =0 k, where 8 describes the object orientation with respect to xy-axis. So, the last

equation can be written along z-axis, fc. as

I6=n,+n,+(r, "x£ ") k+{r, Pxf,?) - k (6.43)

where n,=n_k,and n_=nk.
The kinematic constraint can be written as

xG = x' - l'" (6.44)

where x,"’ describes the first end-effector position.

To simulate the system motion, end-effector forces have to be either eliminated (e.g.
using the Orthogonal Complement Method) or computed in terms of system variables. To
compute these forces, first X; can be calculated in terms of i,(” (or "), based on the

kinenatic constraint. Then, substituting the result into the object equations of motion yields

_ () .
£= Bf{m‘,w(jg)ti(”-i- 106" 4 %'("c +n,)s, ~r8%s, J+ B, £ -f —f, J
G
(6.45a)
where
L+ m,y, (r ") sin?@)1;  —m,,(r")? sin(@)cos(8)/I,
B,= e o (6.45b)
—m,(r ) sin(@)cos(@)l; 1+ m,,(r,")? cos*(8)/I,

131



=L+ mr r P sin? OV, —m,,r r 2 sin(@)cos(B)/1
B, = a2y . o @ (6.45¢)
~m i r sin(@)cos(@)l; =1+ m,,.r"'r ¥ cos?@)/1,;
cos(0) cos(0) —sin(0) cos(0)
rt(l):_r'(l){ } ]:-(2)=r¢-(2){ } s, ={ } s, ={ (6.45d)
sin(0) s5in{@) cos(B) sin(8)
and
fe(z) = ke(xe(h -(x+ rr(z)) - IRCC) + bf(*ru) —(x+ i.r(z')) (6.46)

where I describes the RCC's free-length in different directions. Note that det(B,) =1+
m,, (r"Y} /1, # 0, therefore this matrix is always invertible and end-effector forces can be

calculated as above.

The applied actuator forces, Qf,, and Q. are computed based on the MIC law as

described in Egs. (6.10, 19, 20, 23)

QY =HY m;‘ls[mm;-;g‘)x +kE0 4k 5O '*'E-] +EW 4
1 . R i=1,2 (6.47a)
5 m‘wm"":’ (m“'"*“"-' + kdé + k!’e + F") + F"’ - (Fc + Fra) £ Fadd

where F,,, (with opposite sign for the two manipulators) is an additional force to create a
couple (torque) by two end-effectors for controlling the object orientation in pivoted grasp

condition, and

- -
xd'c.r - xG,m r,

m
(6.47b)

(2) _
xd s T de" + re

e

@~ lncc

Next, specifying different parameters in the above equations, the sysiem is simulated.

6.3.5.2 Simulation Resunlts and Discussions

For the system depicted in Fig 6.7, the geometric parameters, mass properties, and the
maximum available actuator torques are displayed in Table 6.1. The origin of the inertial
frame is considered to be located at the fixed joint of the first manipulator. The second

manipulator fixed joint is at (1.2, 0.0)T. The object and controller parameters are

132



Table 6.1: Parameters for the system depicted in Figure 6.7.

Mani-| i-th | ip(m | g (m} fppm} ym | - (m)

ulator| body (lm) (lm) (llcg) (k|gm2) (P}-m)
1 |0,0.50]0-0.50]100] 1.50 | 100.0

| 1 ] 2 |oos0/o-0.50] 6.0 0.80 100.04{
I

2 0,0.50 | 0,-0.50 ] 10.0| 1.50 | 100.0
2 2 |0,0.50|0,-050( 8.0 | 0.80 lO0.0'

M,y =3.0kg, I; =05kgm®, °’r” =(-0.3,0.0)m, °r!¥ =(0.3,0.0)m

¥ L4

M,,, =diag(10,10), k , = diag(100, 100), k, = diag(300, 300)
The initial conditions are
@, ", d".880, 4 a2, 6, 87.0,0) =
(2.7,—2.7,0,0.1.0.25,0.0,0,0)T (rad,rad / s)

and it is assumed that the RCC is initially free of tension or compression. The stiffness and

damping properties for the RCC unit are chosen as, (see De Fazio, et al. (1984))

k =

¢

2.0x10* 0 \
kgisec®, b,

5.0%10? 0
0 2.0x10* |

kg/sec
0 5.0% 10

The desired trajectory for the object center of mass, expressed in the inertial frame, is

— i -' — —
XGues = I—e m, Youes = 0.5 n, edes = eo

where 6, describes the object initial orientation. The obstacle is at x,=1.2m, so it is
expected that the object will come in contact at its right side, i.. at x; +r?’. It is assumed
that no torque is developed at the contact surface (i.e. a point contact occurs), therefore n,
is equal to the moment of f,. Also, there is no other external force applied on the object,
i.e. £, =0,n,=0. Based on these, and considering Eq. (6.43). F_, in Eq. (6.47a) is
taken equal to 1/2 I‘:‘c to compensate for the moment due to contact. The contact force is

estimated based on Eqs. (6.29a, 30), where the real stiffness of the obstacle is
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k,=1e5 N/m. The time step which is used in the estimation procedure, Ar in Eq.
(6.29a), is equal to 10 msec. Given the above information, the system is now simulated,

and the obtained results are presented in Figure 6.8.
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Figure 6.8: Application of the MIC in cooperative manipulation,
(a) Error in object CM position and object orientation, (b) Velocity
errors, (c) First manipulator joint torques, (d) Second manipulator
joint torques, (e) Real value of the contact force, () Difference

between the real value of contact force and estimated one.
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As it is seen in Figures 6.8a,b the y-component of the error in the object position,
starting from some initial value, converges to zere smoothly. This is due to the fact that
contact occurs along the x-direction, and so the contact force does not affect the object’s
motion in the y-direction. The x-component of error, starting from some initial value,
decrecases at some rate until contact occurs at =10 sec. This rate changes after contact,
because the tracking error dynamics depend on the dynamics of the environment, according
to the impedance law. Then, this error smoothly converges to the distance between the final
desired x-position and the obstacle x-position.

The object orientation error, starting from zero, grows to some amount and then
smoothly converges to zero, Figure 6.8a. The initial growth is due to the fact that the first
end-effector (i.e. without RCC) responds faster than the second one which is equipped
with RCC. Therefore, according to Eq. (6.43), the difference between the two end-effector
forces produces some moments which results in an undesirable rotation of the object.
However, after a short transient period the difference vanishes and so does the object
orientation error.

Actuator saturation limits are reached at start-up, because of large initial errors and
error-rates, and at the time of hitting the obstacle, due to the contact force, Figures 6.8c,d.
Joint torques for the first manipulator converge to a steady state soon after contact (about
half of a second), while this takes longer for those of the second manipulator, This is due
to the same reason discussed above, namely the existence of the RCC.

The contact with the obstacle occurs along the x-direction when the second end of the
object passes beyond x,,. Therefore, f remains equal to zero before and after contact,
while f_ appears whenever the object is in contact with the obstacle, Figure 6.8e. As the
impact energy is dissipated, f, converges to a constant value. According to the imposed
impedance law, Eq. (6.14), for diagonal gain matrices this constant force has to be equal to
~k,e,=-100(0.1)= —-10 N, which is verified from simulation results. Figure 6.8f shows

the difference between real value of the contact force, and the estimated one used by the
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controller. As can be seen the difference is almost zero, except during a short period after
impact (less than half a second). Even then, the difference is quite small (about 10% of the
real value). After this period, the acceleration profiles become smoother and the difference
between the real and estimated values of the contact force becomes zero. Note that before
the contact, the slight difference between the two is due to the approximation of object
acceleration, based on calculation of Eq. (6.29a).

Thus, simulation results show that performance of the MIC algorithm applied to a
cooperative manipulation task is excellent, even in the presence of flexibility, and subject to
the effects of impact with an obstacle. As described previously, different impedance
parameters can be chosen for the various elemerts of the dynamic system when applying
the MIC algorithm. However, simulation analyses (not shown here) support the physical
intuition that the best results are obtained when all corresponding impedance parameters are
chosen to be identical. Enforcing the same desired impedance on different parts of the
system results in a harmonic accordant motion throughout the system, to achieve a good

performance. Next, application of the MIC law to space robotic systems is discussed.
6.4 Application of the MIC to Space Robotics

6.4.1 Basic Formulation

The Multiple Impedance Control, as applied to a cooperative manipulation task by fixed-
base manipulators, was presented in the previous section. Since for a SFFR the
cooperating robotic arms are connected through a frec-flying base, the implementation of
the MIC algorithm has to be adapted. Here, the MIC law is formulated so as the free-flyer
spacecraft exhibits the same enforced impedance as the manipulators, and the manipulated
object. In fact, this is the main reason which makes the word multiple app..ar in the name
of algorithm; MIC. This strategy allows compensation for an acquired object’s inertia

effects in the impedance law, and coordinated control of the SFFR for performing a
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manipulation task. It is shown that error dynamics for the spacecraft, each end-effector,
and the manipulated object are following the same equation; all parts of the system are
coordinately controlled based on a designated impedance law.

The vector of generalized coordinates (q) for a multiple arm free-flyer system was

defined in Eq. (3.11). The system dynamics is expressed by Eq. (3.14), repeated here as

H(5,,0)4 + C(3,, 5,,9,8)=Q(5,.0) (3.14)

The vector of controlling variables are defined similar to Eq. (4.7), as

% =(R,. 80, x5, 807, x, 87T (6.48)

and it is assumed that all manipulators have six DOF12, and that they all participate in
manipulating the object. The vector of output speeds % are obtained from the generalized
speeds, using a square Jacobian J .

x=J.q (6.49)

The equations of motion can now be written in the task space, i.e. in terms of the
output controlled coordinates X, as
H(q)x+C(q.4)=Q (6.502)
where
H=J7HJ] E=J7Cc-HJj.q Q=J7Q (6.50b)
The vector of generalized forces in the task space, Q, can be written similar to Eq. (6.10)

for the i-th manipulator, as

0=Q,,+0...=Q,+Q,+Q..... (6.51)

where the different terms have been already defined, and will be detailed after describing

the object dynamics.

12- Note that due to high safety requircments in space, a solid grasp of the object is preferred, i.e. its orientation
can not change with respect Lo the end-effeciors. So, each manipulator has to have 6 DOF,
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The equations of motion for the object remain the same as those obtained in the
previous section, except for the case in which the object includes an internal angular
momentum source, Figure 6.9. Since this case may be of some interest for space
applications, the effect of such a momentum source in the object dynamics model is
discussed here.

The linear momentum of the source, p,, can be written as

p,=my, =m(X;+ W, X7,) (6.52)

where m, is the mass of the angular momentum source which is not included in the object
mass m,,,, T, is position vector of the source center of mass with respect to the object CM,
and v, is the inertial linear velocity of the source center of mass. The required force for
moving the internal angular momentum source along with the object motion, Fg, can be

written as

F;=p, = %m,V, (6.53)

Therefore, differentiation of Eq. (6.52) and substitution of the result into Eq. (6.53), yields

F = m, (kg + @, XT, + 0, X (@, XT,)) (6.54)

n-th Manipulator 1-st Manipulator

Figure 6.9: An object with an internal angular momentum source,

manipulated by a multiple arm SFFR.
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which has to be included in the force equilibriumn equation for linear motion, Eq. (€.11), as

m
v ¥ " — )] =
mﬂbj xG + ms(xG + mab)' X l} + mﬂb] X (mobj x r:)) - fc + fo + ch (6-35)
i=l

For the object angular motion, based on the transiation theorem for angular
momentum (Meirovitch (1970)), it can be written

L;,=L,+r, Xp, (6.56)

where L, is the angular momentum of the internal source about its center of mass, and L
is the angular momentum of the internal socurce about the object center of mass. Therefore,
the reguired moment, Mg, for moving the internal angular momentum source along with
the object motion can be written about the object center of mass as

M;=L;+%;xp, (6.57)
which, based on Eqs. (6.52, 56) and assuming that L has a constant magnitude, results in

M, = @, XL, +%(r, Cp,)+ kg X1, (Xg + 0,y XT,) (6.58)

Calculating the different terms of Eq. (6.58), and substituting the results back into the

equation, yields

M, = @, XL, +m,r, x (kg + @, X1, + @, X (®,, XT,)) (6.59)

which has to be included in Eq. (6.11) for angular motion, as

Lo, + ®, X1 0, + 0, XL, +mr, X (¥ +@,, X1, + 0, X (0, X))

m m (6.60)
=n +n,+ Zr‘(f) X f'u) + Z n‘“’
= fal

Similar to the general case, and following the same procedure, the object equations of
motion (Egs. (6.55, 60)) can be assembled and written in the matrix form of Eq. (6.13a),

repeated here for convenience
Mx+F, =F.+F,+GEFE (6.13a)
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where we now have
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Note that the mass inertia matrix M is no longer block diagonal. Now, a desired
impedance law for the object motion can be chosen as defined in Eq. (6.14)

M,.eé+keét+k e+F =0 (6.14)

des

Then, following the same procednre as described for the general formulation, the required

end-effector forces can be obtained as

F, =G u{MM;:,(Md,,s&d,,+ ké+k,e+E)+F, - (F+ F,,)} (6.62)

or (substituting the estimated contact force for the actval one)

F,, =G {MM; (M, %, tki+ket E)+E,-(E+F,)} (663

Crag

where G"is the pseudoinverse of the grasp matrix G, a full-rank matrix defined by Eq.
(6.16b). Note that in space operations it is preferred to grab a targeted object with a special
tool or grippers. Therefore, there is no requirement to produce internal forces and moments
in the object and, compared to Eq. (6.18), F;,, is chosen to be zero. Then, considering Eq.

(6.51), the controlled force required to be applied on the manipulated object by the end-

effectors is
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- 06)(1
Q=g (6.64)

and, similar to the general case, the reaction load on the system is

-~ oﬁxl
erucf = (6.653)
_F'
where
F.=G'[Mi+F,—(F.+F,)]| (6.65b)

Next, to complete the computation of the controlling force, as described in Eq. (6.51), a
proper expression for Qm must be obtained.
To impose the same impedance law on the spacecraft motion, manipulators, and the

manipulated object, the impedance law for the space free-flyer can be written as

M,e+ke+k,e+U.F =0, (6.66a)

where €é=X,,  -X is the tracking error in the SFFR controlled variables (note that e
describes the tracking error in the object position and orientation), U, = [lm lm]r

is an N x 6 matrix, and

k, 0 0] k, 0 0]
_ |0k, : |0 K,
k = k =
’ 0 0 ‘ 0 0
0 0 kP-NxN .0 0 kd-NxN
_ ~ (6.66b)
M, 0 0
o~ 0 Mde:
Mdes= N
0 .0
0 e 0 Mdu—nm

and N = 6n+6 is the SFFR total DOF. Note that the desired trajectory for the system

controlled variables, X,,,, can be defined based on the desired trajectory for the object
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motion, X,,,, and the grasp condition, as discussed in the general formulation. Then,

similar to the above derivation for Q 1 Qm can be obtained as
Q. = KM, [M, X, +kE+K,6+U F |+ Cq.4) (6.67a)
or, substituting the estimated value for the contact force
Q, = )V [M,, %, + kS +K,8+U, F]+ Cq.d) (6.67b)

where M. can be computed as

M., 0 - 0]
a 0 M;:.: ‘
M= , (6.67c)
: 0 S |
L0 .. 0 M

des-INuN

Next, it is shown that the error dynamics for the spacecraft, each end-effector, and the

manipulated object are expressed by the same equation.

6.4.2 Error Analysis

Substituting Egs. {6.67b), (6.65a), and (6.64) into Eq. (6.51), and the result into Eq.
(6.50a) yields
R(Q) M, (M, &, + B 6+ K 8+ U, F.)- &)+

O (6.68)
{G *M(ME:,(M.,.,!?,,,, +ke+k e+ Fc)"" x)}= 0

where it is assumed that the exact value of the coutact force is available, also mass and
geometric properties for the manipulated object, 2nd spacecraft/manipulating sysiem arc
given. Since Eq. (6.68) must hold for any M and any £, it can be concluded that

B(Q) (M3, (M,, £, + K6+ K,8+ U F.)-%)=0

(6.69)
G'M (M;:,(M
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and, since G is of full-rank, this results in
-(‘I) (ME::(Mdﬂﬁdﬂ + Edé + E pé + Uf,Fc)— i)= 0
(6.70)
M (M:ILJ(Mdesxdu + kdé + k Pe + Ft.) - X) = 0
Finally, based on the fact that M and H are positive definite inertia matrices, Eq. (6.70)

results in
M, é+ke+ke+U F =0

(6.71)
M, é+ke+ke+F, =0

Considering the definitions for M,,,, k,, k,, and U, as described in Eq. (6.66b),
Eq. (6.71) means that all participating manipulators, the.frec-flyer-base, and the
manipulated object exhibit the same impedance behavior. This guarantees an accordant

motion of different parts of the system for performing manipulation tasks.
6.5 Concluding Remarks

In this chapter, a new algorithm, called Multiple Impedance Control (MIC), was developed.
The MIC enforces a controlled impedance on cooperating manipulators and on the
manipulated object, which results in a harmony between different parts of the system.
Similar to the standard impedance control, one of the benefits of this algorithm is the ability
to perform both free motions and contact tasks without switching the control modes. In
addition, an object's inertia effects are compensated in the impedance law, and at the same
time, the end-effector(s) tracking errors are controlled.

To reveal the merits of this new algorithm, a conceptual comparative analysis between
different control strategies was first presented. Then, a geiieral formulation for the MIC
algorithm was derived, and it was shown by error analysis that under the MIC law all
participating manipulators, and the manipulated object exhibit the same controlled
impedance behavior. An estimation procedure for contact force determination was given

which results in a good approximation, even during contact.
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A linear model of an object manipulation task by a single manipulator was considered to
present a thorough comparative analysis between the MIC and Object Impedance Control
(OIC). A root locus analysis was used to investigate the stability of both algorithms. It was
shown that for a rigid system, both algorithms yield the same closed-loop transfer function.
However, in the presence of flexibility, it was shown that the MIC algorithm has superior
stability propertics. A simulation was used to demonstrate that the system may never rest
under the OIC law, while the MIC algorithm results in a good performance. Application of
the MIC law to a system of two cooperating two-link manipulators was also simulated. As
simulation results revealed, even in the presence of flexibility and impact forces due to
hitting an obstacle, the performance of the MIC algorithm is reasonably smooth and highly
acceptable,

Finally, application of the MIC law to space robotic systems was formulated. In space,
participating robotic arms are connected through a free-flying base, and the general
formulation was adapted to consider the dynamic coupling between the arms and the base.
For the manipulated object, inclusion of an internal source of angular momentum was
admitted. By error analysis it was shown that, under the MIC law, all participating
manipulators the free-flyer base, and the manip::lated object exhibit the same designated
impedance behavior; resulting in an accordant mution throughout the system for performing

the task.
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Chapter 7

Conclusions and Suggestions

7.1 Conclusions

This thesis deals with dynamics and coordinated control of multiple manipulator SFFR for
the capture and manipulation of space objects. Two basic approaches for kinematics
modelling of such systems were developed in Chapter 2. The barycentric vector approach
was developed based on taking the system CM as a representative point for the system’s
translational motion, and on using a set of body-fixed barycentric vectors which reflect
both geometric configuration and mass dist*ibution of the system. This approach results in
decoupling the total linear and angular motion from the rest of the equations, when no
external forces/torques are applied on the system. On ihe other hand, the direct path
approach was developed based on taking a point on the spacecraft (preferably its CM) as a
representative point for the system’s translation, and on using a sei of body-fixed geometric
vectors. Comparing the results, it wal ceen that the direct patin approach yields
considerably more compact relationships. This seems a more appropriate approach when
dealing with multiple arm systems, especially when there are some external forces and
torques acting on the system.

In Chapter 3, based on the developed kinematics approaches, the general Lagrangian

formulation was applied to obtain the dynamics model of a space robotic system. Based on
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the preliminary results, the direct path approach was chosen to develop a concise explicit
dynamics model of multiple manipulator SFFR in free-flying mode. Note that to develop
model-based algorithms for controlling a free-floating system, the obtained dynamics
model has to be reduced by mathematical techniques such as the Orthogonal Complement
Method. However, if the barycentric vector approach is used, the equations can be directly
reduced and employed for such a purpose. Next, a quasi-coordinate formulation of the
system dynamics, and a formulation using Euler parameters for orisntation representation
were presented. Also, specific characteristics of space robotic systems, compared to fixed-
base manipulators, were discussed. It was shown that any deviation in the estimated values
of mass parameters has a drastic effect on the performance of model-based controllers in
space. Finally, the symbolic programming of the dynamics equations was compared to a
numerical routine, and the generation of the dynamics code was described.

The coordination between a spacecraft motion and its several end-etfectors to capture a
moving space object was investigated in Chapter 4. Appropriate trajectories for the
spacecraft and its manipulators were planned to result in a smooth capture of moving
objects in space. To perform the task, two model-based control algorithms, based on an
Euler angle (MB1) and on an Euler parameter description of the orientation (MB2), and a
transpose Jacobian control algorithm (TJ) were developed. The MBI presents the
inconvenience of representational singularities due to Euler angle description of the
orientation, while the MB2 overcomes these non-physical singularities. Multiple arm free-
flying systems were simulated, in both planar and 3-dimensicnal maneuvers, to investigate
various aspects of the trajectory planning strategy, and to compare the performance of the
developed algorithms. It was shown that a symmetric grasp results in reduced disturbances
on the spacecraft. Also, for a given maneuver duration, by choosing the maximum
deceleration smaller than the maximum acceleration, a smoother operation can be obtained.
It was shown that if dynamic properties are accurately known, model-based controllers

provide gocd tracking, but are computationally expensive. However, due to the complexity
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of the dynamics of space robotic systems, the performance of these algorithms deteriorates
in the presence of higher levels of model uncertainties. On the other hand, the simple
transpose Jacobian algorithm, when used with high gains, provides an acceptable and
computationally inexpensive controller. However, in practice the use of very high gains are
limited due to the presence of noise and unmodelled dynamics. Therefore, further work on
the TJ algorithm was motivated, aiming at improving its characteristics as a good candidate
for space applications.

The Modified Transpose Jacobian (MTJ) algorithm was presented in Chapter 5.
Employing stored data of the previous time step control command, this algorithm yields an
improved performance in terms of tracking errors, over the standard one. This new
algorithm approximates a feedback linearization solution, with no need to a priori
knowledge of the plant dynamics. Therefore, unlike a model-based algorithm, it is not
aff.cted by modelling inaccuracies and uncertainties. It was shown by simulation that its
performance is comparable to that of model-based algorithms, and has the advantage that it
requires reduced computational effort. Unlike the standard TJ, this algorithm works well in
high speed tracking tasks. In addition, controller gains can be selected in a more systematic
manner rather than in a heuristic way, and the noise rejection characterisiics of the
algorithm are improved. The new MTJ algorithm is recommended for all applications,
particularly for motion control of space robotic systems, where computational power is
limited yet relatively high precession is demanded.

To manipulate a captured object by multiple manipulators, both end-effector motions
and forces have to be considered. To this end, the new Multiple Impedance Control (MIC)
was developed in Chapter 6. The presented algorithm enforces a controlled impedance on
cach participating manipulator, and on the manipulated object. This algorithm can be
employed for both free motions and contact tasks without switching the control modes,
After a conceptual comparative analysis between different control strategies, the general

formulation of the MIC algorithm was developed. It was shown that under the MIC law, all
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participating manipulators and the manipulated object exhibit the same pre-set impedance
behavior. Therefore, a harmonic accordant motion of different parts of the system is
obtained which leads to a good system performance. Discussing the similarities and
differences between the MIC and the Object Impedance Control (OIC), a simple model of
performing object manipulation task by a single manipulator was considered to compare the
two algorithms. It was shown that in the presence of flexibility, the system does not rest
under the OIC law (either becomes unstable or enters a limit cycle), while the MIC
algorithm results in a well damped response and smooth stop of the object at the obstacle.
Next, a system of two cooperating two-link manipulators was simulated, where a Remote
Centre Compliance was attached to the second end-effector. As shown by simulation, even
with flexible elements and an impact due to hitting an obstacle, the performance of the MIC
algorithm was reasonably good and reliable. Finally, the MIC law was applied to a multiple
arm space robotic system, where the dynamic coupling between the arms and the base, and
an internal angular momentum source for the object were taken into account, It was shown
that under the MIC law, the participating manipulators, the free-flying spacecraft, and the
manipulated object exhibit the same controlled impedance behavior. This strategy permits
coordinated control of a multiple manipulator SFFR in performing a manipulation task, as

well as compensation for an acquired object's inertia effects in the impedance law.
7.2 Suggestions for Future Research

In this research work, the dynamics and control of multiple arm space robotic systems was
studied. To extend the obtained results, and develop new contributions to this fust growing
field of science, some suggestions for further research are presented in the following.
Non-square Jacobians. In developing the control algorithms, presented in this
study, it was assumed that the system is sufficiently actuated. In other words, the vector of
actuator forces/toques was assumed to be related to the vector of generalized forces by an

NxN square Jacobian matrix, where N is the system DOF. Formulating the developed
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algorithms for non-square Jacobians, inspired by the objectives of controlling over-actuated
or under-actuated systems, would be interesting for further research.

On-off thrusters. Controliing space manipulators, in free-flying mode, requires
applying spacecraft thruster forces/torques. Application of the developed control algorithms
in simulated systems was based on the assumption that actuator forces/torques, including
those exerted by thrusters, are continuous. However, current space technology uses
compressed-gas on-off thrusters, to avoid valve clogging from freezing. Although space
technology is developing fast, and this may not be a problem in near future, considering
on-off thrusters will yield more realistic results.

An MIC algorithm for several free-flying robots. The new MIC law, for
space applications, was developed for a multiple arm free-flyer system, assuming that each
manipulator has six DOF and all participate in manipulating the object. The fact that some
appendages may not participate in performing the task, can be easily included in this
formulation. Also, admitting extra DOF for activated manipulators can be helpful for
implementation of the algorithm in redundant systems. Development of the MIC law for a
centralized control of several free-flying robots in manipulating an object, can be pursued
based on the same structure as implemented in cooperation of several manipulators. This is
another interesting subject for further research.

An MIC law with no requirement of manipulator dynamics knowledge.
As shown in this study the performance of model-based algorithms, in space, is more
affected by the accuracy in the estimation of mass parameters. Similar to model-based
algorithms, the MIC law requires knowledge of the system dynamics concerning the
manipulators motion (in computation of Q,,,). Therefore, it is an interesting subject for
future research to substitute the motion-concerned part of the MIC law, with the developed
MTJ algorithm whici: does not require any priori knowledge of the system dynamics.

Design aspects. The dynamics generation and simulation codes were used to

evaluate the performance of alternative developed’ control algorithms. These codes can be
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used in the design procedure of space free-flying robotic systems in both architecture, and
functionality. Further research can be dore in this area, to develop some useful design
guidelines.

Experimental studies. In this research work, simulation routines were very helpful
to improve the new algorithms, and evaluate them, where a graphical simulation code was
used to obtain an animated picture of the whole maneuver. However, experimental studies
can show the merits of the developed theories in a real implementation, and may bring up

some hidden points to improve the presented algorithms.
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Appendix A

Three Formats Used in Dynamics Modelling

As discussed in Section 3.2.2.1, the system kinetic energy is composed of three typical
terms which have to be differentiated according to Eq. (3.1). Differentiation of these terms,
is presented in this appendix, to obtain three formats as used in deriving the system
dynamics model.

Considering the first typical term, as given in Eq. (3.17a) and repeated here

a =%m r-r (3.17a)

its differentiation with respect to ¢, as an arbitrary generalized speed is obtained as

da, mai'_.

= =m= (A.1)
a‘h a"h

Note that for the implementation of the following formuiation, r has to be differentiated in

the inertial frame!3. Then, r = dr/d! can be calculated as

13- If r is not differentiated in the inertial frame, then

i="F+@, xr (A.1.a)
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1=1 q.t
which yields
Jr or
=5 (A.3)
a‘h aQi

Substitution of Eq. (A.3) into Eq. (A.1) yields

oa _ .90 ;. (A4)
a4 dg,
which can be differentiated with respect to time, to obtain
i(a—‘f'-]=mi°i+m—a-r—'i‘ (A.5)
dt\ aq, 9g, oq,

Also, a, can be differentiated with respect to g, as an arbitrary generalized coordinate

—t=p—-r (A.6)
a‘h a‘h

Therefore, based on Egs. (A.5) and (A.6), it can be written

d aa,] da, Jr ..
—|—=|-—=m—"T (A7)
dt(a‘h dq, a‘h

where I can be obtained as

where I is time differentiation of r when expressed in a frame B which has an angular velocity of @, with
respect to the inertial frame, and can be computed as

¥ for "2
=Y — (A.1by
04, o

Note that a left superscript on partial derivatives denotes the frame in which the differentiation has to be taken.
Therefore, unless "@r/df =0, it can be scen that

"or  "or
—_ = (Ale)
9, dg,

which necessitates the condition of differentiating r in the inertial frame, for writing Eq. (A.2-3).
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x=] 1=]

Yl 9 (& or ar
F=)<¢—| ) —4q, |4 +—4d, A8
’ 2{34,(234, # Jq dg, q} A8
Substitution of Eq. (A.8) into Eq. (A.7), and further simplifications, yield

i(gﬂ.)_%-—[mﬂ--ai asa mﬂl.‘_._aL]q.*.
dt\dg, ] dg, dg, dq, dg, dgqy

or (& 9 . ] ar ( ¥ v . H
m——- o om—— :
[ dq, (gl‘ 94,94, e 9, ;aqsaqh’ %)

which describes format-1, given as Eq. (3.18), where r has to be differentiated in the

(A.9)

inertial frame.

Next, considering the second term, as given in Eq. (3.17b)

a2=%(o-l-(o (3.17b)

its differentiation with respect to g, as an arbitrary generalized coordinate, is

0, o
b= ] — (AIO)
a‘h dg;

where @ is differentiated in the body frame. Also, differentiation of a, with respect to g,
as an arbitrary generalized speed, is obtained as!4

oa, ow
_=m-l-—.- A.ll
a4, o4, ( )

which can be differentiated with respect to time, to obtain

d(0a)_ 0. 1.99, ,.1.4[00
dt(aqf)—ml —+ @1 (J (A.12)

Then, ® can be computed as

14- Considering Eq. (A.l.a), since X @ = 0, the time derivative of a body's angular velocity in both inertial and
corresponding body frame is the same. Therefore, it is preferable to implement all differcntiations related to g, in
an appropriate body frame, Hence, the angular velocity of an individual body () is differcntiated in the
corresponding body frame, where 1 is a constant.
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N
®= Z{—-q, ¥ q,} (A.13)
1

Also

I do . do } Y 9w
—— 4.+ 354 ' (A.14)
dt(aqf) ,Z.‘{aq‘aq, 94,04, ‘g‘aq;a ¢
Note that the angular velocity of an individual body is a linear function of gencralized

speeds, see Egs. (2.12) and (3.7), therefore 9°w/dg,d¢, =0 in Eq. (A.14).
Substitution of Eqgs. (A.13) and (A.14) into Eq. (A.12), and subtract Eq. (A.10) from

the result, after further simplifications yield

i[a_az_J da, _ [am e e, del
dt| d¢ a 94 a a4 a4
aqr a‘fﬂ q, 2 4, , q, an . ; (A.15)
[ o d'® o ® W ®
—Ir—+teol— - —I-—+m1 j—~® 1 —
[aqf aQI aélaql a4, dg N aéfa%ﬁ' ] aqf

which describes formar-iI, given as Eq. (3.19), and can be considered as contribution of
the second term to the equations of motion. Note that @ is differentiated in a body frame in
which I is considered as a constant dyad.

Finally, considering the third typical term of the system kinetic encrgy, as defined in

Eq. (3.17¢)

a, = ch . ka I, (3.17¢)
k

its differentiation with respect to g, is

%ﬂl =0 Re, (ka rkj-i- R, (ka 9 J (A.16)
g,

a‘h

and its differentiation with respect to g, can be obtained as

%JR_%-(Z@ .'-*]m [Zm, a"*] (A.17)
k

a% o, dq,
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where all derivatives arc computed in the inertial frame. Then, Eq. (A.17) can be

differcntiated with respect to time, which yields

d { da, aR

— == m, 1, +——

dr(aqn) 2" 2 ¢
.. r, . or
Re | dYm=—L|+R. | ¥m —"]

[5nn o
Therefore, subtracting Eq. (A.16) from Eq. (A.18) yields

d(0a,) da, ORg
Z(-—]—E-q—:- & (karkJ+“C [kaa J (A.19)

aq,f qf

(A.18)

where 1, and ﬁc,, can be written in terms of generalized coordinates and their rates as
given in Eg. (A.8). Substitution ol these vectors by appropriate exptessions, and {urther

simplifications, leads to

d amJ da, [aR i, ar,]
— == |-—== m
dr(aq, dg, | 9g g * aq. aq; :

aRCn or, o,
R an 2 ]
raR — N oR, (& 9%,
—.. ] 1+
i %’ (Z’ J o, g‘m"@' 9q,99, q’J ?
N 9'R ar\’
(l"l aqlaq.r J a (g aQNaq.\' ‘LJ ;m" aq!_‘q
(A.20)

which describes format-111, given as Eq. (3.20), where R; and 1 have to be

differentiated in the inertial frame.
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Appendix B

Case Study: Transfer Functions

Considering the simple model depicted in Figure 6.2, the corresponding transfer functions
for the MIC and OIC algorithms are presented here. The open-loop block diagram for this
system, based on the Laplace transformation of Egs. (6.31), is shown in Figure B.1. Next,
the MIC and OIC laws as applied to the considered system, are derived.

Considering Egs. (6.19) and (6.22), the MIC algorithm yields the following control

force as applied to this system

RE=f,+f (B.1)
where
S =t Ty 5 k6 bR, e+ [ b =)+ k(g —x, +,)
iy Xy, d k6 ke + £)F by (= &)+ by (X, — ) (B.2a)

+ kl (-\'1 -x = !lf"") + kz (I-z —X + ]2frrr)

ff = ’"’3 ”ldf.t_l ('”dc.l".r-ld-.r-'.kd é3 +kp eJ +j;' )+ b'.’ (xj - x.2 )+k‘2 (x1 - .1‘2 - lzfrrr)_ (-f;l +ft' )
(B.2b)

assuming that the exact value of the contact force, f,, is available as

L=k, (x,—x) (B.2¢c)
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Figure B.1: Block diagram for the open-loop system.

where k,, is stiffness coefficient of the obstacle located at x,,. Note that the desired

trajectories for m,, and m, can be defined based on the desired trajectory for the object

(my), as

i

Ifree” '2free

Substituting Eq. (B.1) into (6.31), and summing the result, yiclds

m(m, & +ksé +k,e +f)+m, (m, é,+k,é +k,, e+ f.)+

m, (my, é+k, é + k,, e+ )=0

Since Eq. (B.4) must hold for any sex of m,, m,, and my, it can be concluded that

my, 6 +k,é + kp e+f =0
my, &, +ke,+ J'c,,e2 +f =0
m, 6, +ké + k,,e3 +f =0

which reveals that all tracking errors are governed by the same targel impedance.

The O)C as applied to the considered system, yields the following control force!3

F; =frmp + f;md

15- For details, see Schneider and Cannon (1992).
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where
Somp =ty Xyt bG8y = )+ ki (X — 0y + llf,,,)

oy Xyt by (X, =X )+ by (% — %)+ K (x ~ x, "llfm)"' ky (% =%, + lZ_{rn)

(B.7a)
Soma S Xy + by, Gy — %))+ ke (X = xy =, V= (f, + ) (B.7b)

and
xcmd = ’ndr.r_l ("ldc.cj':!d:.v + kdéii + kpeii + f;) (B.?C)

To obtain the transfer function between the output, i.e. object position, and the given
desired position, corresponding block diagrams for the two algorithm are simplified,
Figures B.2 and B.3. Note that to obtain a deeper insight of the nature of these algorithms,
mass properties in the controller circuit are considered different from the corresponding true
parameters. Therefore, m, represents true mass value which appears in G, while 7, is the
given value for control purposes. For root locus analysis, the object stiffness coefficient &,
was selected as a variable parameter. So, the characteristic equation for the corresponding
transfer functions, G,,.(s} and G,,(s), can be wrilten as

N(s) _
D(s)

+k, 0 (B.8)

In the following, G,,(s) and G, (s) are presented in a proper format to yield the

corresponding characteristic equaiion in the given form.

O For the MIC:
X, _ Num,

G, =—2~= B,
MIC %us,  Den, (B.9)
where
Num = (m‘,"s2 +kys+k, YOy =+ 1y + 0, )b s+ k, (b,s+ k) (B.10a)
Den = D\(8)+k, N,(s) (B.10b)
where
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N($)=m, (m, +m)ms* +(:i‘il(m2 + o k4o, (g )b,)s" +
(O, + 7, +10)b Ky + my, Oy + ey + m )k, +my, k) s* +
((n"z, + iy + 10 )bk, (i ol + i Yk Ky +(my g )b K+ r?u,k“,kd).v+
(g + 1y + m Yok 4 rigk KL+ (my + g+ mK K (B.112)
D,(s)=m,m ,mzm_‘sﬁ + (:?1 Mkt my, (m o+ my Ynnb +my, (my +m ,)m,bz)s" +
(my g+ my)maky + my (e + my + m)by by +iiynb k+ it (b, (b + by DK+
mymymak, +m,, mon, k,)s* (i (g +m )by k, + myGit, + i )(bok, + kK )+
(1) + fi, +00,)b bk my, (m +my +m)k by +m, o (b + by )k +
(1 ye,by + ik, Y, ) 8" +{(h, + iy + 1y )b, (bk, +kk)+mi(m, + i kK, +
i+ A )bk &, + g, (my + myYk e, + @y + my+ mo)bbyk, +10 (byk + mok k) s* +

((ri‘!l + i, + 1 )bk ok, + (R + i)k K K, (D By KK+ (0 g +my)kbo k-
mak bk Ys+ (i + iy Yk kK,

(B.11b)
O For the OIC:
X Num
G, ()= —2t-=—-2 B.12
0":( ’ ) ‘,:dt.r, De"?. ( )
where
Num, = (m, s* +ks+ k, i, + ity + oy )by s+ k) )(bys+ k) (B.13a)
Den, = D,{(8)+k, N, (s) (B.13b)
where

N,(5)= m, (m, +m)ms* +my, (m +m, +m)b,s" +
((r?t, + 0y, + iy )bk iy, () + my + m )k +m

les

mlkw)sz+
. o oa (B.14a}
((’": + iy + 1) bk, + (i + 1y + 10y Yk + (my 4+ my + m_‘)b,kw).s'+

(it + iy + m)kk, +(my+my + )Rk,

Dy(s)= my,mmnys® + (g, (m + m)dmp, +m, (my+m)mb,)s* +
(Mg (m +my)Imk + oy, (my + my +m b by +my nimyk,)s'+

(( my + iy + 1 )b by kgt ny, (my+ my +m)k b + mg.m{ b, +b,)k, +m,, bm, k,,).s'"+
((ﬁ:, + ity + 17 )by (b k, + kiR )+t + my + my)b by K, + my, (i, + m, )k,k,)s’ +

((1?1, + iy +1,)b,k K, +(my+ my+ ma)k,bzkw)s
(B.14b)

166



z(Ew g Iuy=ty dAy+sPyp) -Pu=ly Ty+50q =TV I+slg=ly

1011,

Ty+starystw O Iy+s(la+Iqpgstw Topsiqrzsim
—— mU = NU ——— —D
l I I
Iw
4
- £n < Ty J o Iy .l_....l Eue
£x . X
.¢ +
(ye— ly
e g
()]
Ly Ny : \'_@:AmEKEtEI_. G
2 2
3=

lementat

imp

for the MIC

iagram

Block di

-
+

Figure B.2

167



891

‘uonvudwaidunl HFO Yy J0j weaderp yoorg gy Ind1g

-1+ (mj+my+m3) mdcs'l o — kw (e

X3 e X ¥ X

des + 3 ] + + 3

» Hj Gt — A (O G2 A2 G3 »

g + £y + X2
1 1 '
GI —— GZ = G3 =
ms2+bys+K] mas2+(b) +bo)s+E | +K> m3s2+bs+K
H ]=(ml+m2+m3)mdes'l(de+Kp) Hy=(my+my+m3)s2 A1=b)s+Ky Az=bps+K2



Appendix C

Case Study: Root Locus Analysis

Considering the system depicled in Figure 6.2, a root locus analysis for the MIC and OIC
algorithms, is presented in this appendix. To this end, the loci are plotted as a function of
the object stiffness ( &, } for various damping factors ( b,).

The system mass paramcters are chosen as m, =100kg, m, =200kg, and
m,=100kg. Assuming a fundamental frequency of 20 Hz for the manipulator {which is

relatively high, according to Rivin (1988)), &, is computed as

k (my +m,)
mm,

=2nf= =k =2.6x10° N/m

Also, considering a logarithmic decrement (8) of 0.2 for the manipulator (which is again a

relatively large structural damping, according to Rivin, 1988), b, is computed as
{= -2% =C.03 = b, = 2L fk,m, =325 kg/sec
Unless otherwise stated, the controller parameters are m, =1000, &, =1000,
k,= 3000, m,=110kg, m, =18kg, and iy =11kg. The variable parameter k,, is

changing between 0 and 10:%. For the obstacle, see Figure 6.2, k,, is equal to 103 if contact

occurs, otherwise it is zero.
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Figure C.2: Root locus for the
OIC law, b, =100, (a) In contact

(b) No contact.

Figures C.1,2 compare the root loci of the MIC and OIC, for b, = 100.0kg/sec. As it

is seen, both algorithms are stable, no matter whether the object is in contact with the

obstacle or not. Figures C.3, and C.4 compare these root loci, for b, = 100kg/sec. Here,

it can be seen that both algorithms are stable if the object is in contact with the obstacle, but

the OIC becomes unstable if there is no contact. Note that contact between the object and

obstacle, adds a kind of feedback to the system, and so results in different behavior. Next,

we sec the effect of different controller parameters on the stability of the OIC algorithm.

The effect of choosing larger gains and the desired mass parameter on the stability of

OIC algorithm, for b, = 10.0kg/sec with no contact, is shown in Figure C.5. In part (a),
m,,.=1000, &, =10000, and k,= 3000, while in part (b), m,,,=1000, k, =1000,
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and &,=10000. As it is seen, choosing larger gains does not result in a stable system. In

part (c}, m,,, =5000, k,=1000. and k,= 3000, while in part (d), m,, =5000,

k,=1000, and k,=10000. A larger value of the desired mass has a positive effect on the

stability of this algorithm, as can be scen in Figure C.5c. However, it is expected (and will

be shown by simulation) that selecting a higher inertia for the desired object impedance

results in a sluggish perfonnance. Choosing a larger ky besides larger value for the desired

mass results in a more stable root locus, Figure C.5d.
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