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Abstract

Based on the barycentric vector and direct patlz approaches, the kinematics of a multiple

ann space robotic system is developed, and the differences between the two fonnulations

are discussed. Applying the gcneral Lagrangian fonnulation, a concise explicit model of the

system dynamics is derived, and the specific characteristics of space robotic systems as

compared tu fixed-base manipulators are discussed.

Coordination between a spacecraft and its multiple end-effectors, based on planned

trajectories, is investigated in capturing a moving space object. Two model-based control

algoritlzm~, based on an Euler angle and an Euler parameter description of the orientation,

arc proposed as weil as a transpose Jacobian control/el'. Simulation results ne presented

to evaluate the developed controllers and the planning straleg)', in both planar and three­

dimensional maneuvers.

To control coordinated motions of space robotic systems, a new Modified Transpose

Jac(lbian (MTJ) controller is presented which yields an improved performance over the

standard algorithm. Simulation resuits show that the performance of the MTJ law is

comparable to that of model-based algorithms, even though it requires a reduced

computational effort.

To manipulate a captured object by multiple manipulators, a new Multiple Impedance

Control (MIe) algorithm is developed which enforces an identical controlled impedance on

each participating manipu';ator, on the manipulated object, and (in space) on the free-flying

spacecraft. The similarities and differences between the developed MIC law and other

forcelimpedance controllers are investigated, and simulation results are presented.
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Résumé

En utilisant les approches de vecteurs baricentres et de trajectoires directes. la cinématique

d'un système robotique spatial à plusieurs bras est développé. et une discussion sur la

différence entre ces deux fonnulations est présentée. De plus. en recourant à la fomlUlation

générale de Lagrange. un modèle dynamique explicite et concis du système est présenté. de

même que ses caractéristiques spécifiques qui sont comparées à celles de robots à base fixe.

La coordination entre le satellite et ses organes terminaux. pour des trajectoires

planifiées. est étudiée lors de la capture d'un objet en mouvement. Deux systèmes

d'asservissement utilisant un modèle de référence ont été déve:oppés. l'un utilisant unr.

description de l'orientation par les angles d'Euler et l'autre par les paramètres d'Euler. Un

système de commande du type de la matrice Jacobienne transposée fut aussi développé.

Des résultats de simulation sont présentés afin d'évaluer ces trois systèmes

d'asservissement lors de maneuvres planaires et tri-dimensionnelles.

Afin de permettre des mouvements coordonnnés d'un système robotique spatial. un

nouveau modèle d'asservissement utilisant une matrice Jacobienne Transposée Modifiée

(JTM) est présenté et résulte en des gains de performance par rapport à un algorithme

standard. Des résultats de simulation démontrent que les perfonnances de la loi JTM sont

comparables à celles des algorithmes utilisant des modèles de référence. même si le

nombre de calculs est réduit.

Pour manipuler un objet à l'aide de plusieurs manipulateurs, un nouvel algorithme de

Commande à Impédance Multiple est développé. Celui-ci s'appuie sur une commande à

impédance sur chaque manipulateur concerné. sur l'objet manipulé et (dans l'espace) sur le

satellite servant de base. Une étude comparative entre celte loi et d'autres systèmes

d'asservissement ForeelImpédance est présentée, de même que des résultats de simulation.

ü
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(m) (m) (ml)
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E

E, È

ç
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U

•

le

A

An angle between the z-axis of the i-th frame and the one of the
previous frame, according to D-H convention.

A set of Euler angles which describes the spacecraft attitude; 1)0 =
(lXo'~o ,Yo)·
A set of Euler angles which describes the rn-th end-effector
orientation; I)~m) = (lX~m) ,~~ml,y~m», and becomes a single angle
aElm) in planar motion.

A set of Euler angles which describes an acquired object attitude.

A time step.

Logarithmic decrement.

The Kronecker delta.

Three tirst components of the Euler parameters; E= ksin(Oo 12).

Sensitivity thresholds, in the MT] algorithm.

Damping ratio in a second-order differential equation.

The fourth component of the Euler parameters; 11= cos(Elo 12).

An Nmxl column vector which contains the joint angles of the rn-th
manipulator, where 0, (m) refers to its i-th component (joint).

A Kx 1 column vector which contains ail joint angle vectors,
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A Lagrange multiplier for a single constraint, where At is for the k-th
one.
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with respectto the total mass.
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Position vector of the spacecraft CM, with respectto the system CM.

Position vector of CI' with respect to the system CM.

Position vector of point P, with respectto the system CM.

Angular velocity derivatives with respectto generalized coordinates,
and their rates.

Vector of joint forces/torques.

A matrix which relates the time derivative of generalized coordinates
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Chapter 1

Introduction

1.1 Motivation

As space commercialization materializes. space structures and satellites will proliferalc.

• Extending the life of such systems. and therefore reducing Ihe associaled costs. will require

extensive inspection. asscmbly. capture, repair and maintenance capabilities in orbi!.

Astronaut Extra Vehicular Activities (EVA) can be valuable in meeting these requirements.

However. the cost of human life support facilities. tht: limited time available for the

maneuver. and the high risks involved due to various hazards, are sorne serious restrictions

for EVA. Therefore. it is expected that robotic devices will play an important role in fulure

missions.

To increase the mobility of such robotic systems, Space Free-Flying Robots (SFFRs)

in which manipulators are mounted on a thruster-equipped sp~ceenlft, have been proposed

(Bronez et al (1986). Reuter et al. (1988». see Figure 1.1. Unlike lixed-based robots. the

base body of SFFR is a1lowed to respond freely to dynamic reaetion forees due to the arms

motion. Hence, in order to control such a system, it is essential to consider the dynamic

coupling between the arms and the base. Also it should be noted that the joint control

• torques are limited due to actuator weight constraints in space.
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(Il) (b)

Figure 1.1: Concept of SFFRs, (a) The Orbital Servicing

Vehicle, (b) The Extra Vehicular Astronaut Retriever.

Although dynamics modelling of SFFR is still an ongoing subject of research, control

of these free-flying manipulators to perform precise tasks in space, has already received

sorne attention. Control techniques for space manipulators can be classified in three

different categories. Jn the first, both the position and attitude of the base are actively

controlled ifree-flying mode). In the second category neither of them is controlled ifree­

floating mode) and finally, in the third, only the base attitude is controlled. Clearly, a

combination of these three modes can be employed during different phases of a mission. In

this research work, the focus is on the free-flying mode, and more precisely on the

coordination and control of the spacecraft and its multiple arms in capturing and

manipulating space abjects.

1.2 Background

Control of mechanical manipulators is a challenging task, because of the strong

nonlinearities in the equations of motion. Different algorithms have been suggested to

control the end-effector position, orientation, or force, since the early research in robotics.

In this section, first a brief review of popular algorithms to control fixed-base

manipulators is introduced. Next, a set of studies on the dynamics and control of space

free-flying robots will he briefly reviewed.
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• 1.2.1 Manipulator Control
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•

Position Control. In this category, it is assumed that there is no force interaction

between the end-effector and the environment while its position and orientation have to be

controlled. Classic PID controllers at each joint of the manipulator are widely employed in

industrial geared robots. Although these feedback controllers are designed on the basis of

neglecting the dynamic coupling between the links, they <.:an effectively control the system,

(Arimoto and Miyazaki (1984), (Kawamura et al. (1988». High gear ratios reduce the

relative importance of the manipulator dynamics, but do not eliminate the requirement for

an accurate system modelling, Leahy and Saridis (1989). The Computed Torque Metlrod

employs such a model to compensate for the nonlinearities, and result in a Iinearized error

behavior l . Khosla and Kanade (1989), and An et al. (1989) presented two sets of

experimental studies which compare the performance of the independent joint control

schemes (e.g. classic PlO) to the computed torque method, implemented on direct drive

manipulators. These studies conclude the importance of compensating for the nonlinear

Coriolis and centrifugai forces, even at low speeds of operation.

The application of Model-Referellced Adaptive Control to robotic manipulators is

based on an adaptation a1gorithm which changes the controller gains so that the real output

foUows the referenced model output within an accuracy bound (Dubowsky and Des Forges

(1979), Siotine and Li (1987». Youcef-Toumi and Ito (1987) suggested Time Delay

Control which is a model-referenced a1gorithm for systems with unknown dynamics. The

basic function of the controller is to use observations of the system response to directly

modify the control actions rather than adjusting the controller gains. Arimoto and Miyazaki

(1984) proposed the betterment process which is based on a learning control approach

and improves operation of a robot in the next cycle so that the motion trajectory converges

1- Aeeording to Craig (1989), the idea was first proposcd by Paul (1972). and namcd as the Computcd Torque

Melhod by Markiewicz (1973) and Bejezy (1974).
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• eventually to the desired one. Therefore this algorithm can be applied when repetitive

opemtions are to be performed.

The Transpose Jacobian (Tl) control is a computationally simple algorithm, which has

been arrived at intuitively (Craig (1989». The task error vector and ils rate, both multiplied

by relatively high gains, and by the Jacobian transpose matrix, result in commands that

push the end-effector in a direction which tends to reduce the tracking error. In the case of

using an approximate Jacobian, it has been shown that the damping matrix and the position

gain matrix of this controller play an important role in determining the stability margin

(Miyazaki et al. (1988)). The TJ algorithm does not fail when a singularity occurs

(Chiav~rini et al. (1990», and can be appIied to redundant ma'lipulators (Asari et al.

(1993». An extended Tl control algorithm has been developed to improve the performance

of mobile manipulator systems (Hootsmans and Dubowsky (1991)), and also to coordinate

motion control of spacecraftlmanipulator systems (Papadopoulos and Dubowsky (1991b)).

• ForcelImpedance Control. Position or motion control algorithms are not sufficient

to control an end·effector's interaction with its environment. To control the interaction

forces or the dynamic behavior of the manipulator during tasks involving contact, force and

impedance control laws have been proposed. Raibert and Craig (1981) suggested the

Hybrid Position/Force Algorithm to control end-effector position in some directions, and

its contact forces in the remaining directions. Using wrist force sensors, and defining a

compIiance selection matrix to determine position or force priorities in orthogonal

directions, a hybrid control architecture is implemented for tasks which require contact with

the environment. Hayati (1986) extended this approach to a system of multiple

manipulators. Khatib (1987) presented the Operational Space Formulation for motion and

force control of robotic manipulators. Defining generalized task specification matrices for

motion and contact forces, and employing a nonlinear dynamic decoupling approach, he

presents a control architecture \Vith slow computation ofdynamics, and a fast servo level to•
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compute the control commando Whitney (1987) comparcd different strategies in robot force

control, and discussed sorne unsolved problems.

Nakamura et al. (1987) discussed tl.e mechanics of coordinative manipulation by

multiple robotic mechanisms, taking the dynamics of the object being moved into

consideration. Assuming a frictional grasp, they propose a computational procedure to

allain optimal internai forces. Tarn et al. (1987) presented a c10sed chain formulation for the

dynamic control of two cooperative manipulators with equal degrees of freedom. Hayward

and Hayati (1988) discussed various issues in the design of a multi-manipulator control

system, and developed an environment for the programming and control of cooperative

manipulators.

For a single manipulator in dynamic interaction with its environment, Hogan (1985)

proposed the Impedance Control that regulates the relationship between end-effector

position and force. Starting frem basic concepts, a method is suggested for choosing an

appropriate manipulator impedance. Goldenberg (1988) proposed an implementation of a

combined Impedance and force control, to exert a desired force on the environment, and at

the sume time, generate a desired relationship between this force and the relative location of

the point of interaction (contact) with respect to the commanded manipulator location.

Using an exact model of the manipulator, the algorithm is developed based on feedback and

feedforward control methods. Seraji and Colbaugh (1993) presented two adaptive schemes

to make Impedance control capable of traeking a desired contact force, which has been

described as the main shortcoming of impedance control in an unknown environment. The

tirst scheme is based on an on-line reference position generating procedure, as a fUIi,;lion of

force tracking errors. The second one is developed based on an on-line parameter

estimation procedure to obtain the environmental unknowns, and compute the proper

reference position for tracking a desired contact force.

As an extension of Hogan's impedance control concept, Schneider and Cannon (1992)

developed the Object Impedance Control (OIC) for multiple robotic arms manipulating a
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• common object. A combination of feedforward and feedback control is employed to make

the object behave Iike a reference impedance. Meer and Rock (1995) tried to extend Ole to

a c1ass of flexible objects. They realized that altempting to apply this controller when a

flexible object interacls with ils environment may lead to instability. Based on the analysis

of a representative system, they suggestthat in order to solve the instability problem, one

should either increase the desired mass parameters or filter and lower the frequency content

of the estimated contact force.

1.2.2 Space Robotics

Dynamics and control of SFFRs, unlike those for long reach space manipulators, are

usually investigated under the assumption of rigid elements. This assumption characterizes

the following research studies on SFFRs.

Kinematics and Dynamics. Vafa and Dubowsky (1987) described the kinematics

• and dynamics of a free-floating space manipulator system, using the Virtual Manipulator

Approacll. No extemal forces act on the system, and so the system center of mass is fixed

in inertial space, enabling them to represent a free-floating system by one with a virtual

fixed base. Papadopoulos and Dubowsky (l99Ia) employed a barycentric vector

approacll, to study kinematics and dynamics of a single arm SFFR in free-floating mode.

Taking the center of mass of the whole system as a representative point for the translational

motion, and using barycentric vectors which reflect both geometric configuration and mass

distribution of the system, results in a decoupling of the total linear and angular motion

from the rest of the equations. Umetani and Yoshida (1987) presented a Generalized

Jacobian Malrix for a free-floating system. Assuming that no external forces are applied

on a rigid robotic system with revolute joints, they derive a generalized Jacobian rnatrix

which reflects both momentum conservation laws and kinematic relations. The proposed

generalized Jaeobian matrix converges to the conventional Jacobian, when the base body is

• relatively massive.

6



•

•

•

TrajectorylPath Planning. Ullman and Cannon (1989) discussed imponant issues

associated with catching a free-floating object that is initially out of reach of the robot.

Trajectory requirements for catching a moving object are descrihed, and a dual-arm two­

Iink planar space manipulator is simulated using a computed torque a1gorithm. Dubowsky

and Torres (1991) employed the Vinual Manipulator Approach in path planning of space

manipulators to minimizc spacecraft attitude disturbances. Xu (1993) presentcd a mcasurc

of dynamic coupling in free-floating space robotic systems, based on momentum

conservation laws. The dynamic coupling factor is defined based on the matrix which

relates the end-effector motion and the base body motion, and can he employed in planning

robot motions. Nakamura and Mukherjee (1993) presented a trajectory planning scheme

that exploits the nonholonomic redundancy of SFFR to avoid joint Iimits and obstacles.

The scheme was developed for a 6-DOF SFFR, and simulation results were included.

Yamada et al. (1995) presented a path planning scheme for the single arm of a free-floating

satellite which is equipped with momentum wheels. The method utilizes the angular

momentum of the base, yet avoids nutation which occurs unless the final satellite attitude is

the same as the initial one. Nagamatsu et al. (1996) developed a capture strategy to retrieve

a tumbling free-flying object. A simplified dynamics model of the object attitude motion

was used to approximate a complex nutation motion by a superposition of rotational

motions with constant angular velocities, and the capture planning was introduced based on

the proposed mode!. The transpose Jacobian controller was used for the manipulator

control, in both simulation and experimental studies.

Control. Umetani and Yoshida (1989) employing the generalized Jacobian matrix

approach, described the differential kinematics of space manipulators. The inverse

kinematics problem is solved analytically, and a resolved motion rate control is developed

to compensate for spacecraft motion. Yoshida et al. (1991) applied this method to the

control of a multiple arm system. Alexander and Cannon (1990) developed an algorithm,

called the extended operational-space method to control the motion of a SFFR, and
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presented both simulation and expcrimental results. In this a1gorithm, the actuator torque

vector for the manipulator is calculated based on a reference model, where the spacecraft

position and attitude actuators arc assumed to be "off' or else to be given and known to the

manipulator controller. Fujii et al. (1990) studied dynamics and control of a SFFR with a

two-link manipulator in planar motion. The control is pcrformed to make the position and

velocity of the end-effector coincide with those of a moving object, in free-floating mode.

Papadopoulos and Dubowsky (1991 b) suggested that nearly any control a1gorithm which

can be used for fixed-based manipulators can also be employed in the control of free­

f10afing systems provided that the unique dynamical problems of these systems are

considered. They have also proposed a model-based algorithm to control the motion of a

single arm manipulator in free-flying mode. Yokokohji et al. (1993) studied efficient

algorithms for computing the generalized Jacobian matrix, and presented the resolved

acceleration coll1rol for multiple arm space robots. In this algorithm, based on a modified

Newton-Euler recursive method, ail computations star! from the end-effector, so as not to

compute the actual acceleration of the spacecraft, also parallel computations of multiple

arms becomes possihle. Dubowsky and Papadopoulos (1993) focused on the dynamics

and control problems unique in rigid space robotic systems, and discussed sorne of the

efforts being done in this field.

Mukherjee and Chen (1993) studied control strategies for changing the configuration of

ail joints of an underactuated space manipulator. The conditions for controlling only the

actuated joints, and ail of the system joints, are studied separately. A planar threc-link

underactuated space manipulator was simulated to demonstrate the application of the

obtained results. Agrawal and Desmier (1993) developcd mathematical models for different

motion primitives in space. Propulsion, collision, catching, and assembly operations were

discussed, and sorne simulation results for a dual-arm space robot in planar motion are

presented. Wee and Walker (1993) studied the dynamics of contact between space robots,

and proposed an a1gorithm to achieve both trajectory tracking and impulse minimization.
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• Yoshida and Nenchev (1995) studied the problem of estimating and minimizing the

impulsive reaction force both at the end-effector and atthe base. Based on the null-space of

the system inertia matrix, they try to find out proper manipulator configurations, to achieve

a safe capture and minimize the impact.

Experimental Studies. Carusone et al. (1993) developed a control algorithm to

provide accurate end-effector tracking for structurally flexible space manipulators. Instead

of linearizing the system eqllations about the desired trajectory which would result in a

time-varying system, a series of steady-state time-invariant models are lItilized to rcdllce

computational requirements, and make it easier to handle various trajectories. The algorithm

is implemented on a two-link planar manipulator, with the aim of tracking circular and

square paths, and the obtained experimental results are compared to those of independent

joint PID control implementations. Ejiri et al. (1994) developed a testbed for space robot

technologies, and presented some experimental results for a satellite berthing maneuver

• with a two-armed space robot. Yoshida (1995) presented a summary of theoretical and

experimental space robotie research activities, using the Experimental Free-FIOating RoboT

Satellite (EFFORTS-I and -II) simulators. The testbed can mechanically simulate the planar

floating dynamies of a single or double arm system. Diekson and Cannon (1995)

developed The Decentralized Object Impedance Control, and presented some cxIX'Î'JDllal

results for the capture, transportation, and docking of an object by two free-flying robots in

plana r motion. The algorithm is an extension of the Object Impedance Control, as

discussed in the previous section, to maneuvers with multiple participating robots.

1.3 Structure of the Work

1.3.1 Objectives

Most of the reported studies have focused on the motion control of a single arm

manipulator in free-floating mode, Le. an end-effector moves toward a target in the inertial•
9



• or spacecraft body-fixed frame with no significant force interactions between the

environment and any part of the system. A payload can be considered as a known

disturbance added to the last link at the time of capture (Jaar et al. (1992)), while

coordination and control of the hase and its multiple arms to capture and manipulate space

objects ha~ not received much attention. To achieve the goal of capturing and manipulating

space objects (which may be passive or include sorne internaI momentum source), this

research work focuses on the following issues:

•

•

o Kinematics and dynamics modelling of multiple ami SFFR;

o Study and development of control strategies applicable in space;

o Motion control of the end-effectors coordinated with the base to chase a moving

object according to planned trajectories;

o Trajectory tracking control following object capture, where it may he in contact with

ils environment;

o Development of a 3-dimensional simulation code for SFFR, in both computational

and graphical environments.

1,3.2 Research Tools

Most of the analytical derivations are executed in a symbolic computation environment

(MAPLE), without which most of the simulations would not have been possible. The

dynamics modelling code has been run for sorne simple examples, and the results are

verified by comparing them with those of hand-calculations. However, since sorne

complicated terms may vanish in the dynamics equations of simple systems, the final model

has to he verified in a general problem. This is done by developing an alternative code at a

very fundamentallevel, and comparing the numerical results of both.

Simple cases are simulated in MATLAB, while the simulation code for general SFFR

model is in FORTRAN. The veracity of the simulation results have been investigated by

JO



• ~omparing the solution for a few simplified examples with solutions available in previous

studies, Dubowsky and Papadopoulos (1991a, b). Physical intuition, and investigation of

Iimiting cases were also employed to verify the simulation resulls. The code has been also

used to eliminate programming oversights in the software developed by an independent

research group in Japan (Masutani, Y., Osaka University). Using Graphics Library

commands, a graphical simulation code for SFFR maneuvers has been developed in C,

which demonstrates the results of computational simulations. Running the code on an SGI

Indigo 2, with a 4400 processor, yields a smooth animated picture of the maneuver.

1.3.3 Thesis Outline

Two basic approaches for modelling the kinematics of a multi-body space robotic system

are developed in Chapter 2. The barycentric vector approacll is defined based on taking

the system center of mass as a representative point for the translational motion, and using a

• set of the body-fixed vectors which reflect both mass properties and geometric parameters.

On the other hand, taking a point on the spacecmft as that representative point for the

translational motion (prefe..ably its CM), defines the so-ealled direct pllt/z approacll which

results in more compact equations of motion. In Chapter 3, based on both kinematics

approaches, the dynamics modelling of space robotie systems is discussed. The emphasis

will be on the direct path approach, 10 develop a concise explicit dynamics model of multi­

manipulator space robots in free-flying mode.

In Chapter 4, appropriate trajectories for the spacecraft and its manipulators motion are

planned whieh lead to capture of moving objects in space. Ensuring smooth operation and

reduced disturbances on both the spacecraft and the object just before grasping, these

trajectories take into account the tdl'get relative motion, and thruster or actuator saturation

Iimits. Then. two model-based control algorithms. based on an Euler angle and an Euler

parameter description of the orientation. and a transpose Jacobian (TJ) control a1gorithm arc

• developed. These a1gorithms permit control of both the spacecraft and ilS appendages in

Il



• their task space. Euler angle model-based control algorithm (MB 1) presents the

inconvenience of representational singularities, while Euler parameter model-based control

algorithm (MB2) overcomes these non-physical singularities. The developed controllaws

are evaluated using three manipulator or appendages free-flyer examples, in both planar and

spatial maneuvers. Comparing the performance of the TJ algorithm to those of different

model-based algorithms, iIlustrates the eligibility of this simple algorithm in controlling

highly nonlinear and complex systems, with many Degrees of Freedom (DOF). This result

motivates further work on this algorithm, aiming at overcoming the lack of information

about the dynamics of the system, a problem which appears more clearly in tracking fast

trajectories.

Next, the Modified Transpose Jacobian (MTJ) algorithm is presented in Chapter 5.

This new algorithm yields an improved performance over the standard one, by employing

stored data of the !!revious time step control commando The MTJ algorithm is based on an

• approximation of feedback Iinearization methods, and does not require a priori knowledge

of the plant dynamics terms. Its performance is comparable to that of model-based

algorithms, but with a reduced computational burden. Simulation results are presented

which compare the performance of the MTJ to that of the TJ and Model-Based algorithms.

To control the system after grasping the object, the new Multiple Impeda.I'lCe Control

(MIC) is developed in Chapter 6. This algorithm enforces a controlled impedance of ail the

manipulator end-points, and of the manipulated object. This guarantees an accordant

motion of different parts of the system for performing the task. To reveal the merits of this

new algorithm, a simple Iinear system is considered to present a thorough comparative

analysis between the MIC and Object Impedance Control (OIC). Then, application of the

MIC law in a system of IWO cooperating two-Iink manipulators with an RCC attached to the

second end-effector, is simulated. Next, the MIC algorithm is applied in space robotic

systems to manipulate space objects. The error analysis shows that under the MIC law, ail•
12



• participating manipulators. the free-flyer base. and the manipulated object exhibit the samc

impedance behavior.

Chapter 7 reviews the results obtained in this research. conclusions. and sorne rcmarks

on future work.

1.4 Contributions

•

•

Ml\ior contributions of this research work are:

Cl Extension of the Barycentric Vector Approach in space robotics to include multiple

arm dynamics. Papadopoulos and Moosavian (1994a);

Cl Comparison between alternative kinematicsldynamics approaches in space robotics.

Papadopoulos and Moosavian (1994b);

Cl Development of the Modified Transpose Jacobian (MTJ) a1gorithm. Papadopoulos

and Moosavian (1994c);

Cl Coordination and motion control of muIti-manipulator space robots, based on

appropriate planned trl\iectories. resulting in symmetric motion of the manipulators

during capture (to minimize spacecraft disturbances), Papadopoulos and Moosavian

(1995);

Cl Development of the Multiple Impedance Control (MIC) and its implementation in

space robotic systems;

Cl Development of a symbolic code based on a concise explicit dynamics rnodel of

multi-manipulator space free-flyers. and a 3-dimensional simulation code for SFFR

(in bath computational and graphical environments).

13
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•

•
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•

•

•

Chapter 2

Kinematics of Space Free-Flyers with Multiple

Manipulators

2.1 Introduction

This chapter studies the kinematics of a multiple manipulator Space Free-Flying Robot,

(SFFR). Two basic approaches for kinematics modelling of a rigid multi-body space

robotic system are developed. Taking the center of mass of the whole system as a

representative point for the system's translational motion, and using a set of body-fixcd

vectors which reflect both geometric configuration and mass distribution of the system,

characterizes the so-called barycentric vector approach. This approach results in

decoupling the total Iinear and angular motion from the rest of the equations, when no

external forces/torques are applied on the system. On the other hand, taking a point on the

ba.>e body as the representative point for the system' s tmnslational motion, (preferably the

center of mass of the base), characterizes the so-called direct path method. This approach,

eventually, results in a larger number of dynamics equations with simpler terms which have

c1earer physical meaning. Using the direct path approach seems reasonable when dealing

with multiple arm systems, and especially in the presence of external forees/torques.

15



• ln Section 2.2. free-f1yer kinematics is developed using a minimum set of body-fixed

barycen/ric vec/ors. Position analysis based on the definition of these vectors, and

velocity analysis leads to derivation of a system's Jacobian matrix. In Section 2.3, free­

f1yer kinematics is developed based on the direct path approach. using a set of body-fixed

vectors. Discussions of the developed approaches. will be presented in Section 2.4.

2.2 The Barycentric Vector Approach

2.2.1 Frame Assignment and Position Analysis

In this section, using a minimum set of body-fixed barycen/ric vec/ors. the kinematics of a

rigid multiple arm free-f1ying space robotic system is developed. The motion of the system

center of mass (CM) is used to describe system translation with respect to an inertial frame

of reference. XYZ. The body 0 in Figure 2.1, represents the spacecraft of the free-f1yer,

which is connected to n manipulators or appendages, each with Nm links. Manipulator

• joints are revolute and have a single DOF.

The joint angles and rates are represented by Kx 1 column vectors

9 = (9(ilT,9(2)T• .... 9(ft>Tr, and 0= (O(l)T. O(2)T..... O<ft>Tr, where o(m) is an Nmx 1
ft

column vector which contains the joint angles of the rn-th manipulator, and K= LNm.
m=1

The total degrees-of-freedom (DOF) of the system are N = K+ 6.

The inertial position of an arbitrary point P, R p , can be written as

Rp =RCM+pp

and

(2.1)

(2.2)

•
where pp is the position vector of P with respect to the system CM, RCM is the inertial

position of the system CM, C, is the CM of the i-th body. Pc, is its position vector with

respect to the system CM, and rp IC, is the position vector of P with respect to C" Next,

16



• Pc, can be computed and expressed in lerms of barycentric vectors. Note thai, for

simplicity, extra subscripls and superscripts arc not added in the above equalions. When

more precise specification is required, subscript "0" is used for the base, and a righl

superscript corresponding to a specifie manipulator, and a subscript referring to a specifie

body of that manipulator, will he added.

Manipulator n

•

z
y

Spacecraft
(body 0)

End-Effector m
r(m) Link N

NI (m)

r~m) Link k

1(m)
k

Manipulator m

~ Denotes body
center of mass

Manipulalor/Appendage 1

Figure 2.1: A free·nying space roboUc system with n manipulators.

2.2.2 Definition of Barycentric Vectors

Vectors Pc, in Eq. (2.2), are the position veclors of the CM of the i-th body wilh respect to

the system CM, so they can be computed using

•
" N.

m P +"" "" m(m)p(m) = 0o Co ~.LJ' Cl
Mal lei

and the following geometrical rclationships

17
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• P(l) - p(1) = r(l) -1(1)
c. C", 1-1 1

PIn) - pIn) =r(n) _I(n)
c, C._l /-1 i

i=I,"', NI

i=I'" N, • m

i= 1 .. · N• , n

(2.4)

where the superscript "m" corresponds to the rn-th manipulator. the subscript "i" refers to

the i-th body of that manipulator. The system of Eqs. (2.3) and (2.4). represents a system

of K+I vector equations with K+I unknowns (Pc,). and can be solved to yield

n N.
- ~~-Ilm)

Pc, =eo+"""" k
m=II:=1

(2.5a)

where (i) denOleS body-fixed barycentric vectors defined as

k<i

{
m=I'" n

k · ,.
=1

i= 1 .. · Nk>i "nt

•

n NI H..

Plm) _ ~lm) +~ ~ j(j) +~ l'lm)
CI - 0 k~ k k li

1""1 k=1 h:l

}.m

j
-rlm ) _ r lm ) _elm )

k - k k

V
-Cm) _ e-(m} __e(m)

kl - k - k
-I lm ) _I lm ) _e(m)

k - k k

{

m=I...., n

i=I· .. N• • m

(2.5b)

(2.6)

where referring to Figure 2.1. vectors I~m) and r,lm) are constant body-fixed vectors which

describe the ilosition of joints i and i+1 with respect to Ci' respectively, and eo and elm)

are computed as

n

eo = LrJm)ll~m)
m·1

elm) _1(m)(I_,,(m)) + rlm),,(m)
1 - 1 ,...., 1 "'/+1

(2.7a)

(2.7b)

The quantity Il~m) describes the ratio of the outboard mass after the i-th joint of the rn-th

manipulator with respect to the total rnass, and is given by

• N. (m)
,,(ml _ ~ mk
"'1 -",,-­

hi M
i=I .. · N and ,,(ml -0, , m r-N.. +I -

18

(2.7c)



• M is the total mass of the system, and mlm) is the mass of the k-th body of the m-th

manipulator. Considering Eqs. (2.6) and (2.7), it ean be seen that barycentrie vectors arc

physically meaningful. For the i-th link of the rn-th manipulator, if an augmented body is

formed by concentrating the inboard and outboard masses at the corresponding joint of

both ends, then e~m) describes the CM position of this augmented body with respect to the

real CM of the link. Taking the CM of the augmented body as a referencc point, vectors

ë:"'), ï\m), and ï;"") describe the CM position of the link, position of joints i and i+1 with

respectto that point, respectively.

Substitution of Eqs. (2.5a) and (2.5b), for PC' into Eq. (2.2), and the rcsult into Eq.,
(2.1) completes the position analysis

•
Pe Base:

o N.

R (O) R - """"-Ilm )
p = CM + eo + kk 1 + f p /Co

m=I.I:=1

n NJ N",

R lm ) R -(ml """"-lU) ""-(m)
p, = CM+ f O + kk 1 + kV11 +fp / C:·'

J=I 1=1 1=1
Jom

(2.8a)

(2.8b)

Note that the above and the following results are in terms of invariant body-fixed vectors.

To obtain scalar equations, appropriate transformation matrices for each term must be

employed. It should be mentioned that, based on the spacecraft altitude and corresponding

joint angles, orientation of any link of the system can also be obtained.

2.2.3 Veloeity Analysis

To obtain the inertial velocity of point P, Rp , Eqs. (2.1) and (2.2) are differentiated

with respect to time, which results in

(2.9)

where RCM is velocity of the system center of mass, and Pc, can be obtained by

differentiation of Eqs. (2.5a) and (2.5b) which describe Pc, in terms of barycentric vectors.

• Note that the barycentric vectors, according to the definition, are body-fixed vectors with

19



• constant length (as long as system mass distribution does not change). Therefore,

differentiation of Eqs. (2.5a) and (2.Sb) yields
ft N.

P· - m x ë +~ ~ ml") x il")co-a okkA: A:

m=1 l=1

{

m=I'"'' Il

i=I,''', N..

(2.lOa)

(2. lOb)

where (D's are angular velocities of individual bodies.

Substitution of Eqs. (2.lOa) and (2. lOb), for Pc" into Eq. (2.9) completes the velocity

analysis

Pe Base: (2. lIa)

•
Pe Link)") :

ft NJ N",

RI") = R + m x r.l") +~ ~ m() x il)) +~ ml") x VI") + (Dlm) Xr
Pj CM 0 0 k k k k k k li 1 p/C

J
hll )

Jcl 1=1 hl

jo..

(2. lIb)

Il should be emphasized that in order to perform the foregoing vector sums, ail vectors

must he expressed in the same coordinate frame.

For single DOF joints, the angular velocity of an individual body can be obtained as

{

m=I,'''' Il

k=I .. · N, , m

(2.12)

•

where z:") is a unit vector along the axis of rotation of the i-th joint of the rn-th

manipulator, and 13:") is the correspondingjoint angle rate.

2.2.4 Jacoblan Matrlx Assoclated wlth sorne Point and Link

Choosing a set of coordinates as system generalized coordillates, the !inear velocity of an

arbitrary point P, and the angular velocity of the corresponding body. can be related to the

time derivative of generalized coordinates (Le. generalized speeds) through a Jacobiall

20



• matrix. For instance, if point P belongs to the i-th body of the rn-th manipulator, it can he

written

(2.13a)

where J~) represents a Jacobian matrix, and v is the vector of gencraIizcd speeds, which

can he defined as

•

(R' T T O'T)Tv= CM' COD t

Then. based on Eqs. (2.1 lb), and (2.12). J:~) can heobtained as

where

[ ]

x

n NJ NIII

J l ") - - 1: 0r.l..) + "" "" Tl)) kil) +"" Tl") kVl")
1 - 0 0 kJ ~ k k LJ k ll,p

}=I kal 1=1

) ...
ft NJ HM

J I") - - "" ""[Tl)) ki())]X El)) - ""[Tl " l 'v(m) lX El")
2 - .l.J ~ A: J; A: k l A/,p k

/=1 k=1 k=1

) ...
J l ..) - El..)

l - /

(2.13b)

(2.14)

(2.15a)

(2.15b)

(2.15c)

To and Tt are rotation matrices between body-fixed frames and the inertial frame. while

[.r is the cross product operator. and

(2.15d)

(2.15e)

•
k-I

where 6)/ is Kronecker delta, b= LN,. and IZY) 5(O,O.I)T is a unit vector along the
'=1

axis of rotation of the j-th joint of the k-th manipulator expressed in its own body-fixed
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• frame. Note that a left supcrscript refers to the frame in which the corresponding vector is

expressed, and it disappcars for the inertial frame.

Similarly, based on Eqs. (2.1 la), and (2.12), Jo,. can be obtained for a point P on the

spacecraft as

where

[ . ~ J"J(O)=_ T.( °ë +r )+ ~ ~T(m)kj(m)
1 0 0 pIco k LJ k 1.

m=1 k=1

• N,

J(O) - ~ ~[T.(m) kj(m)]" E(m)
2--~~k l k

mal k=1

(2.16)

(2.17a)

(2.17b)

•

•

Taking the whole system CM as a representative point for the system's translation, and

using a set of body-fixed barycentric vectors, the kinematics of a rigid multiple arm SFFR

was developed. Next, the spacecraft CM is taken as the representative point for the

system's translational motion, and the kinematics of a SFFR is developcd in terms of body­

fixed vectors.

2.3 The Direct Path Method

2.3.1 Frame Assignment and Position Analysis

In this section, using a set of body-fixed geometric vectors, the kinematics of a rigid

multiple arm free-flying space robotic system is developed. The motion of the spacecraft

center of mass (CM) is used to describe the system global translation with respectto an

inertial frame of reference, XYZ. The rest of the definitions described in Section 2.2.1, are

applicable here to the same extent as before.

Considering Figure 2.2, the inertial position of an arbitrary point P, Rp , can be wrillen

as

(2.18)
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• z

Manipula!or n

y

~N..,

•
Figure 2.2: A free-Dying space robotic system with n manipulators.

and
(2.19)

where R cois the inertial position of the spacecraft CM, r p is the position vector of point P

with respect to the spacecraft CM, and rc, is the CM position vector of the i-th body with

respect to the spacecraft CM. Referring to Figure 2.2,

rco =0
rc, can be expressed as follows

(2.20a)

I-l

r~7) =r~m) + L,(rt)-
bl

{~ =1.· .. , n

1 =1 .. · N• • m
(2.20b)

where, as before. vectors Ijm) and r,1m) are body-fixed vectors which describe the position

ofjoints i and i+1 with respect to Ch see Figure 2.2.

Substitution of Eqs. (2.20a) and (2.20b) for rc,. into Eq. (2.19), and the result into

Eq. (2.18) completes the position analysis and yields

R (O) -R
p - Co + rplCo

•
Pe Base:

Pe Link/(m):
/-1

R Im ) =R + r(m) + ~(r(m)_
PI Co 0 ~ k

101

23

I(m» I(m)
A: - 1 + r IC''')p ,

(2.2Ia)

(2.21b)



• 2.3.2 Velocity Analysis

To obtain the inertial velocity of point p. Eq. (2.18) is differentiated. aCter substituting Eq.

(2.19). to yieId

R, = Re. +re,+ 00/ xr,le, (2.22)

where Re. is velocity of the spacecraft CM. Differentiation of Eqs. (2.20) yields

re = 0 (2.23a)
•

{
m = 1. n (2.23b)

i= 1 Nm

where m's are angular velocities of individual bodies.

Substitution of Eqs. (2.23a) and (2.23b), for re,' into Eq. (2.22) completes the

velocity analysis

•
Pe Base: (2.24a)

1-1
Rlm) = R + 00 x r.(m) +~ Olim) X (rlm) _I<m» - m<m) X (I(m) - r )

P, Co 0 0 L.i k .t .t 1 1 piC,''''
hl

(2.24b)

Il should be noted that the angular velocity of any individuaI body, for single DOF joints,

can be obtained as defined in Eq. (2.12).

2.3.3 Jacobian Matrix Assoclated with sorne Point and Link

The !inear velocity of an arbitrary point P on the i-th body of the rn-th manipulator. and

angular velocity of the corresponding body. can be expressed as

{R, }=J<ml v
(m) I,p

m,
(2.25a)

•
where Jr;.) represents a Jacobian matrix, and v is the vector of generalized speeds, which

is defined as

(2.25b)
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• Note that the generalized speeds include Rc, instead of RcM ' see Eq. (2.13b). Then,

based on Eqs. (2.12) and (2.24b), J:~) can he computed as

where

[
Il ]'J 1ml = _ 1: 0r.1m)+ ~[Tlm)(tr.lm) _ tllm» ]_Tlml('llml -'r )

1 0 0 ~.l 1 A: i ( plcl",)
1=1 •

(2.26)

(2.27a)

1-1
J~m) = _ L[T:ml(tr:m)_

h'

(2.27b)

J 1m) _ E1m)
3 - 1 (2.27c)

•
and the definitions given for different terms in Eqs. (2.15), are applicable here, too.

Similar to the above, ,!o.• can he obtained for the one corresponding to point P on the

spacecraft, based on Eqs. (2.12), and (2.24a)

(2.28)

where

(2.29)

•

2.4 Discussion and Conclusions

In this section the two approaches developed for kinematics analysis of SFFR with rigid

multiple manipulators, are compared. As revealed by the above formulations, the

barycentric vector approach is developed based on

LJ Taking the center of mass of the whole system as a representative point for the

system's translational motion;

LJ Using a set of body-fixed barycentric vectors which reflect both the geometric

configuration and the mass distribution of the system.
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• On the other hand, the direct path approach is developed based on

o Taking a point on the base body (preferably its CM) as the representative point for

the system's translation;

o Using a set of body-fixed geometric vectors.

•

•

Comparing the obtained results for position analysis, Eqs. (2.8) compared to Eqs.

(2.21), it can be seen that the direct path approach results in single summations and yields

more compact relationships. Note that presence of double summations in Eqs. (2.8) means

that all system links are contributing in defining the position of any arbitrary point P. This

is due to the fact that by taking the center of mass of the whole system as a representative

point for the system's translation, the mass distribution over the entire system (represented

in Eq. (2.3» has to be taken into account in wriûng position relationships.

The difference between the two approaches is more considerable for the velocities, Eqs.

(2.11) compared to Eqs. (2.24), because each vector has to be multiplied with the angular

velocity of the corresponding body. This leads to a big difference between the resulting

Jacobian matrices, Eqs. (2.15) compared to Eqs. (2.27) or Eqs. (2.16, 17) compared to

Eqs. (2.28, 29). Note that the complexity of the Jacobian matrix is important because many

control algorithms require its computation; these algorithms can be implemented more

easily using the direct path approach.

Il should be mentioned that the barycentric vector approach is an approach which

considers the next step of using kinematics equations in dynamics. In fact, it results in

decoupling the total Iinear and angular motion from the rest of the equations, when no

external forces and torques are applied on the system. But, according to the above

discussion, the direct path approach results in more compact equations in kinematics and

consequently in dynamics. Therefort:" using this approach seems reasonable when dealing

with multiple arm systems, especially in Ille presence of external forces and torques. This is

to be investigated in the next chapter.
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•
Chapter 3

Dynamics of Space Free-Flyers with Multiple

Manipulators

3.1 Introduction

• This chapter studies the dynamics of a multiple manipulator Space Free-Flying Robot

(SFFR) with rigid links. To apply the general Lagrangian formulation, first the system

kinetic energy is derived based on the two alternative kinematics approaches developed in

Chapter 2. The obtained results are compared, and it is shown that the direct pat"

approacJz yields more compact expressions. Next, the derivalion of the cquations of motion

is pursued on the basis of using this approach. Explicit derivations of a systcm's mass

matrix, and of the vcctors of nonlinear vclocity tcrms, and gencralized forces arc

introduced. The results are summarized in an explicit dynamics model of multiple

manipulator SFFR, which can be implemented either numerically or symbolical/y. Herc,

the latter approach is followed, and the developed symbolic code for dynamics modelling,

and ils verification procedure are described.

In Section 3.3, issues of dynamics relevant to the development of control algorithms,

are briefly discussed. First, a quasi-coordinate formulation for system dynamics is

• presented which is useful in developing control algorithms. In this formulation the angular
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• velocity of the spacecraft. instead of the corresponding Euler rates. is chosen and included

in the vector of generalized speeds. The system dynamics is also formulated on the basis of

choosing Euler parameters for orient1tion representation. This selection introduces

algebraic constraints to the system. and the Natural Orthogonal Complement Method is

applied to obtain independent system of equations of motion. Sorne specific characteristics

of space robotic systems compared to fixed-base manipulators are pointed out at the end of

this section. Section 3.4 describes the developed symbolic code for dynamics modelling.

and the verification procedure.

3.2 General Lagrangian Formulation

Since a typical maneuver of SFFR is of relatively short length and duration. microgravity

and dynamical effects due to orbital mechanics are negligible, compared to control forces.

Therefore, the motion of the system is considered with respect to an in-orbit inertial frame

• of reference (XYZ). and the system potential energy is taken equal to zero. So, the general

Lagrangian formulation for such system can he written as

;=1.. ··• N (3. i)

where T is the system kinetic energy. N is the system degrees-of-freedom, q" q/. and Q,

are the i-th element of the vector of generalized coordinates. generalized speeds, and

generalized forces. respectively. To apply Eq. (3.1). and obtain dynamicr. equations. first

the system kinetic energy. T, has to be derived.

3,2.1 Kinetic Energy Calculations

The system kinetic energy can he written as

•
1'=.!.r R . R dM

2 JM P P

28
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• where M defines the system's distributed mass. and Rp is velocity of an arbitl"'"1' point P.

The above expression is now evaluated based on the two differcnt kinematics approachcs

for multiple manipulator SFFR with rigid clements, developed in the prcvious chapler.

3.2.1.1 Analysis Based on Barycentric Vector Kinematics

Substitution of Eq. (2.9) for Rp into Eq. (3.2) yields

•

1J . .T = - (RcM +Pc + roi x rplC ). (ReM +Pr +:iI, x r IC ) dM2 AI 1 4 ., P •

Vectors Pc are written with respect to the system center of mass, thereforc,

f., (I,pc, )dM =0

Using Eqs. (3.4). and further simplifications of Eq. (3.3) lead to

T=To + T,

where

(3.3)

(3.4)

(3.Sa)

(3.Sb)

T. 1{ . .,='2 lIloPc,' Pc,+
• N.

ro . 1 . c.\_ +'" '" (/Il(m) p(m,. p'(m, +o 0 -0 L.J.t.J 1 c, C.
mal ;=1

ro(m). 1(00). ro(m»}
l , 1

(3.Sc)

lIlo and la are the mass and inertia dyad of the base with respect to its CM. respectively,

and /Ill"") and Ijm) are those of the i-th body of the rn-th manipulator with respect 10 its

CM. To obtain a detailed expression for T. vectors Pc. and P::~) have to be substituted

into these equations from Eqs. (2.10) (repeated here)

•

• N.

P· - l,. Xë +'" '" ro,m) x jlm)
Co -Vlo 0 LJ.t.J Jo: A:

mal 1:"'1

Il NJ N...

P· lm) - ro x rolm)+ '" '" roll) Xjl}) +'" rolm) X V,m)
C. - 0 0 .t.J~.t .t ~ A: A:I

Jal ,t=1 1.1

)om
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• The vector of generalized coordinates is chosen as

(3.6)

where 60 is a set of Euler angles that describe the orientation of the spacecraft. The

spacecraft angular velocity can be expressed in terms of the Euler rates as

(3.7)

where 80 (60 ) is a 3x3 matrix, see Meirovitch (1970). The vector omo is the spacecraft

angular velocity expressed in its frame of reference. Therefore, the system kinetic energy

can be obtained as

r-.!.. 'TH(" a)'- 2 quo' q (3.8)

where H is an NxN positive definite mass matrix of the system. Note that H is a function

of the spacecraft attitude and joint angles (60 , a), and is independent from the CM position

• (R c..,)·

3.2.1.2 Analysis Based on Direct Path Kinematics

Substitution of Eq. (2.22) for Rp into Eq. (3.2) yields

(3.9)

which can be simplified, to obtain

•

where
1 . .

Ta =-M(Rc . R~)2 0·0

1{ ft N. }T. = - 00 • 1 . ftl_ +~ ~(mlm) f 1m) • f 1m) +m1m) •Ilm) •m1m))
1 2 0 0-0 LiLi 1 c, C, 1 1 1

mal /=1

(

ft N. )r. =R . ~ ~ m(m) i-lm )
2 Co ~ ~ / C,

m=1 lai

30

(3.lOa)

(3.l0b)

(3.l0c)

(3.l0d)



• and r~~ l can he substituted from Eq. (2.23b) (repeated here for convenience)

l-i
jo1ml = W X ~lml +~ W1ml X (r1ml _ I(m» _ W1ml X I(m)
Cj 0 0 .L.J 1: A: 1:: i i

hl

The vector of generaIized coordinates is chosen here as

q _ (RT s:T 8T)T- cD,uo,

{

/II = 1..... Il (2.23b)

;=1,"', Nm

(3.11 )

•

and the system kinetic energy can be written as expressed in Eq. (3.8). Note that in both

formulations, expressions for T are in terms of invariant body-fixed vectors. To do the

required differentiations in Eq. (3.1), appropriate transformation matrices for eaeh term

must he employed.

Next, the obtained expressions for the system kinetic energy. based on the two

kinematics approaehes. are compared and discussed.

3.2.1.3 Comparison 8etween the Obtained ResuUs

Considering Eq. (3.1). it ean be seen that substitution of Eqs. (3.5), Le. the system kinetic

energy based on barycentrie vector kinematics, results in deeoupling of the first three

equations from the rest of the dynamies equations if no external forces are applied on the

system. In fact, the first three equations of motion will he obtained as

(3.12)

•

where RCM is the system CM acceleration. However, substitution of the system kinetic

energy obtained based on the direct path kinematics, Le. Eqs. (3.10), into Eq. (3.1) does

not yield such a deeoupling in dynamics equations. This is due to the presence of an

additionaI term, 7; , in the system kinetic ~nergy (xpression. In fact, differentiation of T2

with respect to Re yields
o

(3.13)
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• where ri;';) is a function of the rn-th manipulator joint rates and spacecraft Euler rates, as

Eq. (2.23b) shows. Therefore, aT2 /aR c• is a function of ail joint rates and spacecraft

Euler rates, and its differentiation with respect to time yields a coupled system of dynamics

equations. Obviously, this difference can be observed in the firsl three rows of mass matrix

H for each case. Similar comments apply to the next three rows, corresponding to the

spacecraft Euler rates. The difference in subsequent block which corresponds to the joint

•

•

rates is investigated, next.

As tlqs. (2.10) and (2.12) reveal, vectors Pc and pc(m) are functions of ail joint rates
• 1

and spacecraft Euler rates. Then:fore, differentiation of the terms (Pc.' Pc.) and

(P:;~)' p~~») in Eq. (3.Sc) with respect to any joint rate resuIts in a lengthy expression

which is a function of ail joint rates and spacecraft Euler rates. Subsequent differentiation

of the obtained expression with respect to time, as required in the calculation of

d(aT1aq/)1dt, yields a lengthy expression, function of second rate of ail joint angles and

spqcecraft Euler angles. This means that the block of the mass matrix H which corresponds

to the joint rates, if developed based on barycentric vector kinematics, is fully occupied by

elements with many terms. On the other hand, considering the direct path approach, vectors

ri;';) are functions of just a subset of joint rates (those of the rn-th manipulator) and

spacecraft Euler rates, see Eq. (2.23b). Therefore, differentiation of (r~~)' r~~») with

respect to any joint rate out of the corresponding subset is zero. Consequently, if developed

based on direct path kinematics, the block of mass matrix H whicl'. 7orresponds to the joint

rates is occupied by elements with fewer Il:rms. It should be noted that for a multiple

manipulator SFFR, this block is mostlikely the main part of mass matrix.

So far, the main concern was the firstterm in Eq. (3.1), d(aTlaq/)ldt, and the

difference between the obtained mass matrices as a consequence of dealing with this term.

The other term in this equation, aT1aq/, which results in the vector of nonlinear velocity

terms, should also be taken into consideration. Following a similar discussion, it can be

shown that a significant difference will appear between the two approaches in calculating
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•

•

aT/aq/. and the direct path kinematics results in a vector of nonlinear velocity with more

concise terms.

Based on the above discussion, it can be concluded that barycentric vector kinematics

may result in lengthy dynarnics equations specially for multiple manipulator SFFR, whilc

direct path kinematics results in relatively compact dynamics equations. This is a vital

difference which is of particular importance in the execution time of simulation routines.

Furthermore, the main advantage of the barycentric approach, i.e. being able to dccouplc

the total Iinear and angular motion from the rest of the equations (if no elC.ternal

forces/torques are applied on the system), is not a substantial concern for this research

work2• Therefore, in the next section the focus is en the direct path kinematics to develop

an explicit dynarnics model of a multiple manipulator SFFR.

3.2.2 Equations of Motion via the Direct Path Approach

Applying the general Lagrangian formulation, Bq. (3.1), where the system kinetic energy is

substituted from Bq. (3.10), the equations of motion can be obtained as

(3.14)

(3.15)

•

where the vector of generalized coordinates q has been already defined in Eq. (3.11), C is

an Nxl vector which contains ail the nonlinear velocity terms (in a microgravity

environment), and Q is the Nxl vector of generalized forces given by

{
o } /, n N. /,

Q= 6xl +~ J TE + ~ ~ ~ J(mITF(ml
't L. O.P O.P L. L. L. /.P /.P

Kxl p .. 1 mal lai pal

in which Fo.p is the p-th extemal force/moment applied on the spacecraft, FL;1 is the p-th

extemal force/moment applied on the i-th body of the rn-th manipulator, i, is the numbcr

2· It should he noted thatlo deyelop model·based algo, ..hms for eontrolling afr..·flootlog syslem. the dynamies

model obtained based on the direct path kinematies, has la be redueed by mathematieal technique. sueh a.

Orthogooal Complement Method. Howeyer, the dynamles model obtaincd in terms of baryeentrie yecton, ean he

directiy reduecd and employcd for sueh a purpo.e.
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• of applied forces/moments on the corresponding body, and J:;l is a Jacobian matrix

corresponding to the point of force/moment application. Note that Eq. (3.15) can be

obtained based on the definition of generalized forces. This equation can he rearranged, so

that actuator forces/torques are displayed explicitly. For instance, if ail external forces

except the ones applied on the spacecraft are zero, Qcan he written as

of,
On,

't Kx )

(3.16)

•

where °f, and °n, are the net force and mQment applied on the spacecraft, and J Q is an

NxN Jacobian matrix. For a weil designed system, JQ remains nonsingular, i.e. any

required Qcan he produced by the system's actuators.

Next, to obtain an explicit dynamics model of multiple manipulator SFFR,

mathematical analyses are presented to help in calculating the mass matrix, the vector of

nonlinear velocity terms, and the generalized forces.

3.2.2.1 Prellmlnary Derivations

The system kinetic energy (as expressed in Eq. (3.10» regardless of body specifications, is

composed of three typical terrns
1 .,

a =-mr·r
1 2

a =.!.m·I.m
2 2

a3 = Re•. Lmkrk
k

(3.17a)

(3.17b)

(3.17c)

•

So, to differentiate the system kinetic energy according to Eq. (3.1), such terms have to he

differentiated. Therefore, preliminary calculations in differentiation of these terms are

presented in this section, resulting in threeformats which descrihe the contribution of each

term to the equations of motion. These formats, obtained in Appendix A, will be used in

deriving the system dynamics model in the following sections.
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• Considering the first tenn, Eq. (3.17a), it is obtained that

(3.18)

which describes famlat-l, defined as contribution of the first typical tenn to the equations

of motion. Note that r has to he differentiated in the inertial frame (see Appendix A).

Considering the second tenn, Eq. (3.17b), it can he obtained that

aro 1 aro ] ..... -' .- q+
a' a'q, qN (3.19)

~ ~ ~ro]. ~-·I·-+ro·I· q-ro'I'-
aq, aqN aq,aqN aq,

which describesfarmat-ll. Note that ro is differentiated in the body frame (sec Appendix

• A). This will be emphasized by using a left superscript on partial derivatives of ro i.' the

following fonnulations, consistent with the notations used by Kane and Levinson (1985).

Finally, considering Eq. (3.17c), it is obtained that

•
which describes fonnat-Ill. Note that both Re, and .. have to be differentiated in the

inertial frame.
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• Next, to obtain the system dynamics modeI, the original terms in the system kinetic

energy as obtained in Eq. (3.1 0), are substituted into the corresponding format. Then,

following the structure of the dynamics model presented in Eq. (3.14), appropriate terms

are collecled to yield the different elements of the mode!.

3.2.2.2 Mass Matrix

To obtain the mass matrix H, according to Eq. (3.14), the acceleration terms in each of the

three formats have to collecled. Therefore, H Ij is computed by

o Substituting each term of the system kinetic energy, as expressed in Eq. (3.I0),

•

into an appropriale format;

o Finding the coefficients of ij in the corresponding format;

o Adding the results, obtained from formats J, II, and m, for each term.

o Adding the results, obtained for ail of the telffiS.

Leaving aside the details, this procedure eventually yieIds

aRc aRc °aCllo °amoH =M--' ._-'+--·1 ._-+
U aql agj aih ° aqj

ft N. ( ar(m) ar(m) *am(m) *am(m) )LL m(m) -.S...- . -.S...- + *. l'm) • * +
m_1 *-1 * ag, aqj aq, * aqj

(~~ () ar~m») aRc (~~ () art») aRc4J~mm -'- .__n + k~mm _._ .__'
m_1 *_1 * agi agj m=1 hl * aqj ag,

(3.21)

where r~~) can be substituted from Eq. (2.20), and m~m) from Eq. (2.12). Note that

consist~nt with Kane and Levinson (1985) a left superscript on partial derivatives refers to

the frame in which the differentiation has to be taken, where for the inertial frame it is left

as blank. This is followed in the formulations which are developed nexl.

3.2.2.3 Vector of Nonlinear Terms

The vector of nonlinear velocity terms in Eq. (3.14), can he computed by dropping the

• acceleration terms, in each of the obtained formats. So, C, is computed following the same
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• procedure as described for computation of II ij' by considering the coefficients of li and

any other term (except those which correspond to ij) in each format. Following such a

procedure. it can be obtained that

(3.22a)

i~ote that using the relationship between the angular velocity (0 000 ) and Euler rates (~o),

given by Eq. (3.7) for the spacecraft, vector C2 can be combined with the firstterm of Eq.

(3.22a). Then. the vector of nonlinear velocity terms can be wrillen as
•

(
0aoo" N. ~a (ml)C - - f., .1 •__0 +"" "" oo(m) •I(m) . oo~

2' - -0 0 a ""'''"' ~ ~ aq, m=lhl q/
(3.22c)

(3.23)

This is a representation of nonlinear velocity terms which is preferred in the development of

adaptive control a1gorithms.

3.2.2.4 Vector of Geoeralized Forces

As described in Eq. (3.15). :f ail external forces except the ones applied on the spacecraft

are zero. the vector of generalized forces Q is written as
of

1

0 0 1

'tKxl

(3.24)

• Assuming that 0 f, and 0 0, are applied at the spacecraft center of mass, Jo is defined as
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•
Then, similar to the Jacobian matrix given in Eq. (2.28), Jo can he obtained as

[
T/ 03X3

Jo =
03x3 So

(3.25a)

(3.25b)

Therefore, J Q is obtained as

(3.26)

which can he substitutcd into Eq. (3.24) to obtain Q. This completes the derivation of the

dynamics model for a multiple arm SFFR with rigid links. Note that the computation of the

obtained dynamics equations, can he done either by numerical or symbolical programming

tools. Symbolical derivation, Le. obtaining the system response using analytical

• expressions for the dynamics, has been followed in this research work, and will be

discussed in Section 3.4.

3.3 Supplementary I3sues

ln this section, in view of future utilization of the dynamics model in the development of

control algorithms, sorne supplementary issues are discussed. Quasi-coordinate

formulation of the system dynamics, and the outline of a fonnulation employing Euler

parameters for orientation representation are briefly presented. Finally, sorne unique

dynamics characteristics pertaining to space robotic systems are discussed.

3.3.1 Quasi-Coordinate Formulation

3.3.1.1 Problem Statement

The fonn ofequations in (3.1) which results in the dynamics model ofEq. (3.14), is useful

• in designing an Euler angle based control aIgorithm, as will he discussed in more details in
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• Section 4.3. In this case, the vector of generalized coordinates was chosen as

q = (R~, ' l)~, aTl. For control reasons, it is also beneficial to obtain the equations of

motion using as the vector of generalized speeds v = (RTe ,ooo~, èT)T, where °000 is the
"

angular velocity of the spacecraft expressed in its own body frame. As it is seen, v is nol

equal to ci anymore, and the equations of motion have to be modified for this set of

variables, resulting in a qllasi-coordinate fomllliation. This May he of interest in obtaining

a dynamics model for model-based control algorithms, developed based on angular velocity

of the spacecr.üt mther than corresponding Euler angles and rates.

3.3.1.2 Equations of Motion in terms of Quasi·Coordinates

The vector of generalized coordinates, q =(R~" l)~, aT)T, can be arranged as

where

•
(3.27a)

(3.27b)

(3.27c)

(3.28a)

and n is the number of manipulators or appendages to the spacecraft. Then, the system

kinetic energy is differentiated with respect to ilo to yield

aT _~ aT a°roo•
aq'(Ol - Li a Oro aq'(Ol i=4,5,6

/ .t ..1 04 1

(3.28b)

•
Therefore, the second three equations of the dynamics mod..l which correspond to the

spacecmt orientation, can he obtained as

(3.29)
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• where Q~I is a 3x 1 vector which contains the second three elements of the vector of

generalized forces in the previously obtained dynamics model, Le. corresponding to the

spacecraft orientation. Note that from Eqs. (3.24) and (3.26) it is obtained that

or

S'T Q'OI _ 0
o & - DI

Eq. (3.30b) can be substituted into Eq. (3.29) to yield

d ( aT ) [0 ]x aT
dt a°CDo + W

o a°CDo
S-T~_O
o aIl - n,

o

(3.30a)

(3.30b)

(3.31 )

which leads to the quasj-coordinate formulation for the dynarnics of multiple arm SFFR.

This is obtained if the second three equations of the dynarnics model described in Eq.

(3.14) are substituted by Eq. (3.31). As mentioned before, the result is useful for model·

• based control a1gorithms which are developed based on angular velocity of the spacecraft

rather than corresponding Euler angles. The main purpose of developing such a1gorithms is

overcoming the non-physical singularities, due to an Euler angle representation of attitude,

that correspond to a singular SO' Therefore, the new model is appropriate, if the system

kinetic energy is expressed independently of the spacecraft Euler angles, Le. aT / allo= 0,

and Eq. (3.31) can be simplified to

d ( aT ) [0 ]x
dt a0Wo + Wo

aT 0
:l 0 = n,
a Wo

(3.32)

which has the form of the Euler equation for a single rigid body.

A more reasonable approach to obtain a suitable dynamics model for such control

a1gorithms, is forrnulating the system dynamics on the basis of choosing Euler parameters

for orientation representation, which is discussed next.

•
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• 3.3.2 Using Euler Parameters as Orientational Coordinates

Choosing Euler parameti!rs for orientation representation introduces algebraic conslrainls

10 the system dynamics. This is due to the fact that these four parameters are not

independent, and obey an algebraic constraint. An independent system of equations of

motion can be obtained using the Natural Orthogollal Complemellt Method, which is

briefly described next.

3.3.2.1 Basic Definitions

Using Euler parameters to describe the spacecraft rolation results in the following veclor of

generaliz~dcoordinates

(3.33a)

•
wlrre K is the vector of Euler parameters describing the spacecraft attilude, lIIld is defincd as

(3.33b)

where E and Tl are defined as

E=ksin(90
) & Tl =COS(90

)
2 2

(3.33c)

where k = To k defines a 3x 1 unit vector along the spacecraft axis of rotalion, and 90

describes a simple rolation about this axis. Hughes (1986). Il can be seen thal the four

components of K are not independent, and obey lhe following constraint

(3.34)

The vector of generalized speeds is selected as v = (R~" oCJ)~, èT)T. Il can be shown

•

that (see Angeles (1988»

and

roo=Et

41
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• whcre

E=2[Ë -el
3x4

Ë=1l1 +[e]"

(3.35c)

(3.35d)

1 is a 3x3 idcntity matrix. The spacecraft rotation matrix with respectto the inertial frame,

T•• can he wrillen in terms of Euler parameters as

Based on Eqs. (3.35), it can be wrillen that

q=«I»v
where

13x3 03X3 03xK

«1»= 04X3 JI,iET 04xK

(3.36)

(3.37a)

(3.37b)

which is used in reducing the dynamics equations. as will he discussed later. Conversely• v='l'q

where

13X3 °3x4 03XK l
'l'= °3x3 E3x4 0", j

°KX3 °KX4 l K>cK Nx(N+I)

So

The constraint defined by Eq. (.'.34) can he differentiated to yield

KTx:=O

or
T· 0a q=

(3.38a)

(3.38b)

(3.39)

(3.40a)

(3.40b)

where a = (03XI
T

, KT, OKxtt is an (N+l)xl vector. Next, the general Lagrangian

• formulation is modified to yield the system dynamics under the descrihed constraint.

42



• 3.3.2.2 Constrained Equations of Motion

The general Lagrangian formulation, Eq. (3.1), for the described constrained system can be

modified as

!!...(à~)_(àT)= Q+Q
dt àq àq'

(3.4 la)

where Q is the vector of applied forces/torques, and Q, is recognized as the vector of

constraint forces/torques which can be written as

A is a scalar, the so-called Lagrallge multiplier, and a describes the single constraint as

defined in Eq. (3.40). It should be mentioned that for a system with more than one

constraints, Q, can be obtained as

where i, is the number of constraints, Meirovitch (1970).

Eq. (3.41) describes the system dynamics in terms of a set of N+ 1 constrained

coordinates. To obtain an independent system of N equations, this equation has to be

modified, which is discussed next.

•

Q, =Aa

"Q, = LA,a,,=,

3.3.2.3 Independent System of Equations

Substituting Eq. (3.37) into Eq. (3.40), yields

aTcl»=(cl»Taf =0

(3.4lb)

(3.42)

(3.43)

•

This means cl»T is an orthogonal complement of a, and leads to the concept of Natural

Orthogollal Complemem Method in obtaining an independent system of equations from a

constrained system (Saba and Angeles (1991). Cyril et. al. (1991». Clearly. multiplying

Eq. (3.41) by cl»T makes the vector of constraint forces vanish. and yields
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• (3.44)

whieh represents a system of N independent equations.

To write Eq. (3.44) in terms ofgeneralized speeds v, aTlaq ean he substituted by

(3.45a)

where

•

~ ... aVN

aqN., aqN" (N+I)xN

Considering Eq. (3.38), it can be seen that

P = 'PT

Therefore

whieh can he differenliated with respect to lime, to yield

!!..(aT) =.pT aT + 'PT !!..(aT)
dt aq av dt av

Substituting Eq. (3.48) into E::.(3.44), and using Eq. (3.39), re~ults in

(3.45b)

(3.46)

(3.47)

(3.48)

(3.49)

•

whieh is a set of N independent equations, and represents the system dynamies in terms

generalized speeds seleeted as v =(R~" 0~, ëT)T, and the generalized coordinates as

defined in Eq. (3.33).

Next, in view of future utilization of the dynamies model in development of contrul

a1gorithms, sorne specifie charaeteristies of spaee robolic systems eompared te fixed-base

manipulators are pointed out.
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• 3.3.3 Dynamics Characteristics of SFFR

•

In spaee robotie systems, unlike fixed-base manipulators. any motion of a single Iink

ereates a reaetional motion of the whole system. In free-floating mode, where no extemal

force is applied on the system, the motion is dYllamica/ly cOllstrailled. Le. totallinear and

angular momentum of the system is eonserved. Also, the Jaeobian matrix as obtained in

Eq. (2.14) beeomes mass dependent. In other words, the inertial Iinear velocity of an

arbitrary point P, and the 8:.gular veloeity of the eorresponding body, is affeeted by muss

distribution over the entire system. Surprisingly, this eoupling between arms und the free

base also affects the dynamies of the relative motion of the end-effeetor with respect to the

base. This is due to the faet that joint angles and rates are dynamieully eoupled, even

though the relative motion ean he expressed in terms of a fixed-base type Jueobiun.

To observe specifie eharaeteristies of spaee robotie systems vigorously, clements of the

dynamies model for a fixed-base manipulator are next eompared to those of a space robotic

system. As shown in Asada and Siotine (1986), for a fixed-base seriai munipulator, the

mass matrix H and the veetor of nonlinear velocity terms C ean be obtained as

where

N

H= L(lIl,J~)'J~) +J~)' °I~A/, J~»)
1=1

N N

C, = LLIII/I,4, ~
Jell=1

(3.50a)

(3.50b)

(3.51 a)

·z 01 :;XI (3.) 1b)

•
and
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• ml is the i-th Iink mass, °I~M, is ils inertia matrix with respect to the center of mass

expressed in the fixed frame, °Z, is a unit vector along the i-th joint axis expressed in the

fixed frame, I~M, is the position vector of the i-th center of mass with respectto the origin

the of j-th frame as seen in that frame, and 01J is the rotation matrix between the j-th frame

and the fixed one. Il can be proven that the obtained Hu and C, for a fixed-base

manipulator, are functions of specifie set of mass parameters as

k = max(i,j) (3.52a)

(3.52b)

(3.53)

where hu' h~, J;, and J;' are functions of the given arguments, ml denotes t~e i-th link

mass properties (both mass and moment of inertia), and 9. is a subset of joint angles

vector (9). As it is seen mass properties have a backward propagation effect on the

dynamics mode!. In other words, mass properties of link "i" do not appear in the H

• elements which correspond to posterior joint variables, Le. i+1,..., N. For instance, mass

properties nf the first link only appear in H Il and Ct. On the contrary, for space

manipulators in the free-floating mode, this is no longer true, and every element of the

dynamics model is affected by mass properties of ail links. This can be justified by

considering the mass matrix H, and the vector of nonlinear velocity terms C, when

obtained based on barycentric vector kinematics. To complete this discussion, the mass

matrix H for a space rnanipulator, is now presented in tcrms of barycentric vectors.

Based on Eqs. (3.5) for the system kinetic energy expressed in terms of barycentric

vectors, following the same procedure explained in Section 3.2.2.2, it can be obtained

H = M àRcM . àRcM +m àpc• .àpc. + °àmo. 1 . °àmo+
u àg, àgl 0 àgl àg) àih 0 àil)

ft N. ( àp(m) àplm) kàm(m) kàOlIm) JLL m(m) --EL. . --EL.+ k. I(m) • k

m.1 hl k àg, àgl àtj, k ail)

•
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• where Pc, and p~~) can be substituted from Eq. (2.5), and angular velocities from Eq.

(2.12), premultiplying each term by appropriate transformation matrix.

Note that PC
n

and p~~) are written in terms of barycentric vectors, which according 10

the definition consist of the veclors on every single link of the system. So, PC
n

and p~~) are

functions of aH joint variables and spacecraft Euler angles, so that ilPcn1ilq, or ilp~~) 1ilq,

results in a non-zero value (for i>3). This means every clement of the mass malrix H for

the space manipulator itself, decoupled from the first six equations which describe the

system's translation and spacecraft rotation, is affecled by the mass properties of ail links.

The same conclusion can be made by considering the veclor of nonlinear velocity terms C.

As a consequence of this complexity, namely dependency ofevery element of the dynamics

model and Jacobian matrix on mass properties of aH links, any error in the estimation of

mass parameters has a more drastic effect on the performance of model-based control

algorithms in space.

• Infree-flying mode, where external forces (thrusters, etc.) are applied on the syslem,

the motion is no longer dynamically constrained. Therefore, the end-effector can be moved

either by joints motion or the spacecraft motion, resulting in a redundant system. However,

manipulators dynamics are coupled through the connected spacecraft, so they are affected

by the mass propelties of alilinks. This makes coordinated control of the spacecraft and the

attached manipulatols an interesting problem.

3.4 Generation of Symotllic Code for Dynamics

3.4.1 Symbolical vs. Numerical Code Generation

As mentioned before, computation of the obtained dynamics equations can be done either

numericaHy or symbolically. The latter is chosen in this research work, and is described

here. However, to compare the two programming approaches, the required steps in the

numerical computation of the obtained dynamics, is first reviewed. To this end, preparation•
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• of few sample terms, Le. '(J(J)~'.) l(Jq, and '(J(J)~m) l(Jil, , for numerical computer

programming is discussed. In :; similar way, other terms in H,), C" and JQ can be

obtained, and programmed in the corresponding environmeilt.

First, prcliminary calculatio.1s for numerical computer prograrnming of • (J (J)~m) 1(Jq, and

• (J (J)~m) 1(Jil, is presented. Following the arrangement of Eqs. (3.27) for the veclor of

generalized coordinates, the angular velocity of the k-th Iink of the rn-th manipulator

expressed in its own body-fixed frame, • (J)~m), can be obtained by substituting Eq. (3.7)

into Eq. (2.12) and expressing the result in the corrcsponding frame. This yields

• ,.,lm) _ '-'Tlm)' '-2'[lm)' ...o'[lm)'s ;, +
"liA: -.t .1:_1 1 0 uo..,

~('-I'[lm)' '-2'[lm)' ".'Tlm)'q'lm) "zlm)) +q'lml 'zlm)
.4J A: J:-I J+I.J .r l k
.,-/

(3.54)

•
where So has been alrcady defined in Eq. (3.7), '-l'l,lm) is a rotation rnatrix between the i­

th body-fixed frame and the previous one, and 'z:m) '" (O,O,lf is a unit vector along the

axis of rotation of the i-th joint of the rn-th manipulator expressed in its own body-fixed

frame. Thercfore, it can he obtained

wherc

p=O

(p*O & p*m)

(p=m & i<k)

(p'-m & i>k)

(p=m & i=k)

(3.55)

~ _'-ITlm)'
VI- k (3.56a)

•
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•
Similarly, it ean be obtained

(3.56e)

where

(J',

(J'
3

if p-=O

if (p;tO & p;tm)

if (p=m & i<k)

if (p=m & i>k)

if (p = III & i = k)

(3.57)

Note that Sa is a funetion of ao' and '-'T,lm> is just a funetion of qt '.Therefo!<l,

a I-IT,lm IT laq:m>, aso laq)o>, and aao1ail)OI can be ealeulated analytieally, and

substhuied into Eqs. (3.56) and (3.58). Other terms in Hi!' Ci' and .J Q ean also be

ealeulated, in a similar way. The obtained results ean then be programmed in a numerieal

environment, to quantify the system dynarnics.

Although numerical derivation seems a cumbersome procedure, it wouId be the only

choice if symbolical programming tools were not available3. However, by means of

symbolical tools, each term can be analyticaily calculated in a cOl"puter program. For

instance, Eq. (3.54) can be direetly computerized to represent l m~m). Then, alm~m)1aqi

•
~, _ HTlmlT 1-2TlmIT•.• iTlmlT iZ<ml
'"'2 - l A:-I 1+1 1

_, _ lZlml
"3 - l

(3.58a)

(3.58b)

(3.58e)

•
3- Note that for the numerieol development of the dynamie properties of meehanleal manipulators. the proposed

recursivc algorilhms con be followed. Thcsc algorithms ulilize the itcrutivc routines for inverse dynamics, and

joint (orccs and torques measurcmenls. to solve direct dynamics. For furth!.:r details, one can sec 0 comporisa" of

diffeccnt methods for developing the dynamies of rigid-body systems presented by Ju and Mansour (1989). Ifere•

the focus is on the eomrulation r: the explieit dynamies model obtained bascd on Lagrange formulation.
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• and êl 'wim
) / êlq, will be analytically calculated in a single step, rather than going through

different options in Eqs. (3.55) and (3.57). Furthermore, using various mathematical

identities and factorization techniques, the resu1t can be simplified to shrink the obtained

analytical expressions. Therefore, as mentioned earlier, the symbolical derivation of

dynamics model is pursued in this research work, and the developed code is introduced in

the next section.

3.4.2 Description of the Code

The derivation of the dynamics equations of motion has been programmed in a symbolic

environment (MAPLE), for a multiple manipulator SFFR with rigid elements in a general

configuration. The output of the code includes the mass matrix H, the vector of nonlinear

velocity terms C, the Jacobian matrix JQ to describe the vector of generalized forces,

Jacobian matrix Je which describes the task space (employed in control) and its time

• derivative je' each one as an analytical function of generalized coordinateslspeeds.

The program is initiated by determining the system general configuration, Le. number

of manipulators/appendages, number of links for each one, and degrees-of-frcedom for the

spacecraft (Le. th:::~ for planar motion, or six for spatial motion). Then, mass properties

and geometric parameters for each element of the ~ystem have to be specified. These

parameters can be substituted by numerical magnitudes or left as parameters. The latter

results in long expressions, while the first one yields more concise results particularly

when sorne components of geometric vectors or inertia matricc:s are zero. ln fact, in most

studics the dynamics has to be modelied for a specific system anù then employed in

simulation and control investigations. Usually, for these investigations, the simulation

routine has to be run tens of times. Therefore, it is preferable to substitute numerical

magnitudes for the system parameters in the dynamics model at the very beginning and

make it more concise. The cost is just running the symbolic code, once sorne desired

• changes in the system parameters have to be made.
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•

•

The CM relative positionlvelocity of each particular body (rt), rt) arc computed
• •

based on Eqs. (2.20), (2.23). The angular velocity of each particular body exprcssed in its

own body-fixed frame, 4 fbt), is computed based on Eq. (3.54). Then, the ma~s matrix H,

and the vector of nonlinear velocity terms C, arc computed on the basis of Eqs. (3.21) and

(3.22). To obtain concise results, first each vector in thesc equations (e.g. art) laC/"
•

a4 roim>/ aC/, and a4roim) / aq" etc.) is computed, and only its non-zero eomponents arc

named and saved as intermediate variables. Then, H Il and C, arc computcd and expressed

in terms of these intermediate variables, rather than substituting the obtained analytical

expression for each one. Jacobian matrices J Q and J c' and the time dcrivative of the one

used in control, j c' are computed similarly.

To simplify the obtained analytical expressions, at each intermediate step, mathematical

tools and factorization techniques available in MAPLE, are used. The result of this fairly

refined code is a compact analytÎCl:l dynamics model of the given multiple manipulator

SFFR with rigid elements, in terms of generalized coordinates/speeds. Before using this

model in simulation and control investigations, it has to he verified as discussed nexl.

3.4.3 Verification Procedure

The model derivation code, has been run for fixed-base systems which representlimiting

cases of space robotic systems, for instance leUing the spacecraft mass go to infinity. The

output results are verified by comparisons to those calculated by hand. However, since in

these limiting cases most of the terms in the dynamics equations vanish, the model has to

be also verified in a general case, i.e. for a multiple manipulator spacc robotic system. This

is done by developing liIIother simpler code at a very fundamenlallevel, and comparing the

numerical results of the two.

The simpler code, is based on computing the system kinetic energy, using Eq. (3.10),

and on its direct substitution into the equations of motion, Eq. (3.1). Obviously, such code

yields non-compact equations of motion, compared to those of the code developed and

• described earlier. However, the simplicity of this code makes it fairly reliable, so that it can
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• be employed as a yardstick for the verification of the developed code which is used in

control and simulation. In fact, this was a very helpful approach in finding minor mistakes

at various levels, and verifying the developed code atthe end.

Table 2.1 shows the difference between typical results obtained from the two codes, for

a 14-DOF space robotic system inc1uding thrce manipulators and appendages as described

in Section 4.4.3. As it is seen, the difference between obtained vectors of nonlinear

velocity terms (t.C), and a few sample columns of two mass matrices (MI) are either

exactly or approximately (due to truncations) zero. Although these results correspond to a

single random set of generalized coordinates/speeds (with non-zero entries), the differcnces

arc in the sarne order of magnitude for several other trials. Thereforc, it can be conc1uded

thatthe developcd dynamics modelling code is free of errors, yielding a system of compact

equations of motion in terrns of system variables. To conc1ude this chapter, a review of the

discussed issues and obtained results is presented next.

•

•

Table 3.1: The result of verification procedure.

MI
Row t.C I-St. 2-nd 3-rd 4-th 14-th

column Column Column column column

1 -0.13E-14 0.0 0.0 0.0 0.lIE-13 0.0

2 0.18E-14 0.0 0.0 0.0 0.71E-14 0.0

3 -0.47E-14 0.0 0.0 0.0 0.0 0.0

4 -0.27E-14 O.l1E-13 0.7IE-14 0.0 0.14E-13 0.56E-16

5 -0.27E-14 O.l8E-14 0.0 -O.l4E-13 0.18E-14 0.28E-16

6 0.18E-14 0.IOE-14 -O.l8E-14 0.0 -0.36E-14 0.0

7 0.0 0.0 -0.78E-15 0.0 -O.l8E-14 0.0

8 -0.44E-15 -0.83E-15 0.36E-14 ·0.67E-15 0.36E-14 0.0

9 0.0 -0.67E-15 0.44E-15 -0.22E-15 0.0 0.0

10 -0.13E-14 0.lIE-14 0.89E-15 -0.89E-15 0.18E-14 0.0

II 0.17E-15 0.0 -0.18E-14 -0.44E-15 -0.38E-14 0.0

12 0.39E-15 0.0 -0.39E-15 0.11E-15 -0.78E-15 0.0

13 0.28E-16 0.0 0.0 0.0 -0.28E-16 -0.69E·17

14 -0.35E-16 0.0 0.0 0.0 0.56E-16 0.28E-16

.::.~.. -
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•

•

3.5 Summary

To obtain the dynarnics model of a multiple manipulator SFFR with rigid clements. the

general Lagrangian formulation was applied. The system kinetic energy was computcd

based on the two different kinematics approaches developed in thc previous chapter.

Comparing the obtained resuIts, the direct path method was chosen to develop an explicit

dynamics model of the system. Mathematical analyses were implemented for typicaltcrms

of the system kinetic energy, and three formats were identified und used to differentiate

expressions. Next, separate derivations for the mass matrix, vector of nonlineur vclocily

terms, und generalized forces were presented, und the obtuined resu1ts were ussembled to

develop the dynamics model.

In view of future utilization of the dy.lamics model in development of control

algorithms, sorne supplementary issues were discussed nex!. The muin concern was

obtaining an appropriate dynamics model for developing model-based control algorithms

which aim at overcoming the non-physical singularities due to Euler angle rcprescntation of

attitude. To this end, the Quasi-coordinate formulation of the system dynamics, ulso

using Euler parameters for orientation representation were discussed. The lattcr inlroduces

algebraic constraints to the system dynamics, und therefore, to obtain independent system

of equations of motion, the Natural Orthogonal Complement Method was used and

briefly described. Next, investigating specifie characteristics of space robotic systems, it

was shown that uny error in the estimation of mass parameters has a more drastic effect on

the performance of model-based control algorithms in space.

Computation of the obtained dynamics can be done either by numerical or symbolical

programming tools. It was shown that preparation ofeach term for numerical programming

requires cumbersome calculations, while by means of the symbolicaltools, each term can

be unalytically calculated. Also, using various mathematical identities and factorization

techniques, the result can be simplified to reduce the obtained analytical expressions.
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8' Therefore, derivalion of the dynamics equations has been programmed in a symbolic

environment (MAPLE), for a general multiple manipulator space robotic system with rigid

elements. The developed code was verified in a general case, by developing another

simpler code, and comparing the numerical results of the two.

•

•
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Chapter 4

Coordiüatêd Motion Control of Multi-Arm Space

Free-Flyers

4.1 Introduction

• The problem of controlling mechanical manipulators is challenging because of the strong

aOl.!inearities and couplings in the equations of motion. As discussed in Section 3.3.3, in

contrast to fixed-base manipulators, in space every element of the mass and Jacobian

matrices depend on the mass properties of ail the links (free-floaling mode), or redundancy

is added due to spacecraft degrees-of-freedom (free-flying mode). These characteristics of

space manipulators make coordinated control of a spacecraft and its attached manipulators

more challenging, compared to fixed-base robotic systems. In this chapter, coordination

between a spacecraft and its several end-effectors, is investigated under different control

laws during a capture maneuv,,; of moving objects in space.

To ('osure smooth operation, and to reduce disturbances on the spacecraft and on the

object just before grasping, appropriate trajectories for the spacecraft and its manipulators

are planned, Section 4.2. 1wo model-based control algoritljms, based on an Euler angle

and an Eulcr parameter description of the orientation, and a transpose Jacobian control

• algori'chm are developed in Section 4.3. These algor1thms permit control of both the
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• spacecraft and its appendages in their task space. The Euler angle model-based control

algorithm, called for brevity MB l, presents the inconvenience of representational

singularities, while the Euler parameter model-based control algorithm (MB2) overcomes

these non-physical singularities.

Next, the performance of the model-based algorithms is compared by simulation, to

that of a transpose Jacobian algorithm. Pirst, the verification procedure of the simulation

code is discussed. Then, employing a planar example, the importance of a symmetric vs. a

non-symmetric grasp, and the ratio of spacecraft maximum acceleration/ deceleration is

investigated by simulation. The performance of the MB and TJ algorithms is discussed

during two and three-dimensional maneuvers. Results show that due to the complexity of

space robotic systems, a drastic deterioration in the l ·.~rformance of model-based algorithms

results in the presence of model uncertainties. In such cases, a simple transpose Jacobian

algorithm yields comparable results with reduced computational burden, an issue which is

• very important in space. A summary of the discussed issues and obtained resuIts, in

Section 4.5, will conclude tbis chapter.

4.2 Trajectory Planning

In this section, appropriate trajectories for the spacecraft and ils manipulators are planned to

result in capturing moving space objects, assumed to he passive. These trajectories ensure

smooth operation, and reduce disturbances on the spacecraft and on the object just before

grasping. For the spacecraft motion, in both translation and rotation, parabolic trajectories

are planned. The manipulators remain in their home configuration as long as the final

position of the object is not in their fixed-base reachable workspace. When the object enters

the reachable workspace of an end-effector4, a quintic trajectory is planned in the task space

•
4· The planncd trnjoctory for Ihe spacccrnfi rolation aims la provide a symmclric grnsp nf the objeci. by Iwo

panicipaling manipulalors. Therefore. Ihe abject enters the lixed·basc workspace of balh cnd·effcclors. almosl at

Ihe same lime.
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• to capture the object. Ali of these trajectories which are discussed next, take into aCCOU:lt

the relative target motion, and thruster or actuator saturation limits.

4.2.1 Spacecraft Position and Orientation Trajectories

For the spacecraft motion, in both translation and rotation, parabolic trajcctories made of

constant acceleration, constant velocity, and constant deceleration segments arc planned.

Since the object detecting sensors are usually on board, and thruster capabilities can be

directly converted to the spacecraft maximum acceleration and deceleration magnitudes in

the body frame, the desired trajectories are first planned in the spacecruft frame at initial

time. These trajectories are subsequently transformed to the inertial spuce.

For instance, considering translational motion, °xo(t) =[0Xo~Yo' 0 Zo t denotes the

desired trajectory for the spacecraft CM position expressed in the body-fixed frdllle at initial

time. To plan the desired trajectories, a motion finul lime, l" is first selected. During

• capture, it is desired to have the object stationery in the spucecruft frame. Therefore, the

desired spacecraft velocity at final time, 0 v" is chosen as

and the desired final position of the spucecraft CM, °x" is given by

o 0 0 (0) 0 0x,= X"b} +v,I,+r

(4.1 )

(4.2)

•

where °Vo(O) is the ',nitial'ielocity of the spacecr~It, °X~b/O) and °V~b}(O) arc the p(l~i!ion

and velocity of the object as measured wilh respecllo the spacecraft CM at initial time and

expressed in the body frame, and 0 r defines the relative position of the spacecraft CM and

a point of interest on the C'bject altime l,. The direction of 0 r is calculated a10ng the line

connecting the spacecraft CM at initial lime with the objectlocation at l" and its magnitude

is such that the manipulators can dexterously reach the object.

Next, parabolic trajectories made of constant acceleration, constant velocity, and

constant deceleration segments, are planned (0 yield a final position equal to 0 x,, and a
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• final velocity equal to Il Vf' see Figure 4. J. Given the maximum acceleration al' and

maximum deceleration a 2, using the above expressions, the desired trajectory for the

spacecraft CM position, is obtained as

05a,/12 +OVo/(O)1

°Xo/(I) = 05a l /ll / +oVo/(O)I,/ + (a,/II/+oVo/(O)XI-I,/)

05a" 11/ + °Vo/(O)I" + (a,/II/+oVo,(O)XI-I,/) -05a2,(1-12/t

"

if 1< II/

if 11/<1<12 /

if 12/ < 1< If

(4.3)

• lime(sec)
•

°x ------..

1

1

1 lime(sec)
x0""":...-':----':-'---",.--_"

t 1 12 1r

Figure 4.1: Typical profiles of the planned parabolic trajectory.

where subscript ut' describes a relevant component of the corresponding vector. Time Il at

which the acceleration segment ends, and time 12 at which the deceleration segment starts,

are obtained as

• where
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• (4.4c)

Note thatthe off/on times, l, and 12 , are not necessarily equal for ail three axes, ( i =
1,2,3), corresponding to three components of spaeecraft's CM position. Also, in the case

of having two positive solutions for l" the smaller one is ehosen to minimize energy

eonsumption. Estimates for 8, and 8 2 can be obtained using thruster force/torque

capabilities and the mass properties of the system.

Aftercomputing the desired trajectory in the spaeecraft frame at initialtime, °xo(t), the

trajectory in inertial space is computed by

(4.5)

where To(O) is the rotation matrix between the spacecraft frame (at initial time) and the

• inertial frame, xo(0) is the inertial position of the spaceeraft CM at initialtime, and xo(1) is

the inertialtrajectory. In practice, the object wouId be under observation during the chase

phase. Should its trajectory change significantly, a new spacecraft chase trajectory would

he replanned following the same procedure.

The desired trajectory for the orientation of the spacecraft, is similarly planned. The

final orientation is chosen so as to provide an approximately symmetric motion of the

manipulators during capture, since this strategy can minimize spacecraft disturbances. To

ensure this symmetric motion, the final time for orientational motion is chosen to he smaller

than the final time used for the translational motion. Then the desired rotation matrix at final

time is assembled such that an axis of symmetry for the spacecraft is aligned with the

direction of the object motion. To position the end-effectors, this constraint yields an

infinite number of solutions. Therefore another constraint should he adcled, e.g. keeping

the spacecraft roll angle (if the attitude is described by Euler angles) constant during the

• maneuverl'hen, the corresponding parameters for the spacecraft final attitude are extracted
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• from the desired rotation matrix. Having these values, the desired trajectory for the

orientation of the spacecraft can he similarly planned.

4.2.2 ManipulaL3r Motion Trajectories

The manipulators rcmain in their homc configuration as long as the final position of the

object is not in their fixed-base reachable workspace. During that pt:riod, a joint-space

controller acting as a brake, is used. When the object enters the reachable workspace of an

end-effector, t = t" a quintic trajectory is planned in the task space for that end-effector,

and accordingly a task-space control algorithm is applied. For instance, to plan the desired

trajectory for end-effector position, six coefficients have to be determined for each

componen\. Fifst, the end-effector position, !inear velocity, and acceleration at starting time

( t =t, ) are computed based on the current spacecraft position/orientation, and its !inear and

angular velocity and acceleration. The final values are also computed based on final

• position and velocity of the objec\. Then, the six coefficients of the desired quintic

trajectory can he computed based on end-effector position, !inear velocity, and acceleration

at initial and final time, Craig (1989). The result provides continuity of end-effector

position, !inear velocity, and acceleration, throughout the motion. The desired trajectory for

end-effector orientation, can be similarly planned. For sorne appendages, e.g. the

communications antenna, a constant attitude in the inertial frame is commanded throughout

the maneuver.

4.3 Control Algorithms Design

Controlling a dynamic system requires definition of the controlled outputs, and design of a

control law which can guarantee that these outputs will track desired trajectories

asymptotically. For a robotic system, there are various options for the controlled outputs,

e.g. joint space variables, Cartesian (task) space variables, and others. The various

• orientation representations further increase the available options. To control a space free-
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• flying robot (SFFR), different combinations of these options can be chosen. In this

research work, the focus is in controlling the Cartesian position and orientation of the

spacecraft and the end-effectors of its manipulators.

Coordination between the spacecraft motion and several end-effectors in capturing

moving objects in space, is investigated in this section. To this end, two model-based

control algorithms, based on an Euler allgle and on an Euler parameter description of the

orientation, and a transpose Jacobian control algorithm are developed. Euler angle model­

based control algorithm (MB 1) presents the inconvenience of representational singularities,

Le. the inversion of the relation between angular velocity and Euler rates, Eq. (3.7), is not

possible at sorne orientations. Sueh an inversion is required in ealculating actuator

forces/torques based on the control command which yields the vector of generalized

forces Q. In other words, the inversion of Eq. (3.16) is required to find actuator

forces/torques, and this is not possible at sorne orientations. Considering Eq. (3.26), this

• happens when So becomes singular. So, the orientational error grows as the system

approaches these singularities, and if it goes through these points, the control system fails.

Therefore, at sueh points, a different set of Euler angles must be used. Il is expected that

such singularities will occur whenever a three-parameter description of the orientation is

employed. However, a great improvement can occur if a singularily appears at sorne

attitude errar and not at sorne attitude. An Euler parameter model-based control algorithm

that achieves this condition has been presented for the attitude control of a single rigid

body, PaieIli and Bach (1993). This algorithm is adapted here as part of a coordination

scheme to control a multiple arm free-flyer robot, and is presented as the second 1TI0del­

based control algorithm (MB2). Implementation of the model-based control algorithms

requires knowledge of the system dynamics, and a considerable computational power. On

the other hand, the simpler transpose Jacobian (TJ) controlIer, as an approximation of

MB l, does not require knowledge of the system dynamics and can he employed with less

•
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• computational burden. In the following, these three algorithms, Le. two modeI-based

control and the transpose Jacobian control algorithm, are developed and analyzed.

4.3.1 Model·Base<l Control Design

As discussed in Chapter 3, the dynamics equations for a multiple manipulator SFFR can be

obtained a~

H(q),; + C(q,v) = Q(q) (4.6)

To develop model-based algorithms, on the basis of a feedback Iinearization approach,

a model of system dynamics such as Eq. (4.6) should be employed. Next, assuming that

the system geometric and mass properlles are known exactly, two model-based control

algorithms, based on an Euler angle and on an Euler parameter description of the

orientation, are developed.

• 4.3.1.1 Using Euler Angles (MBI)

Development of the control algorithm is described in three steps. First, the dynamics model

is obtained in terms of controlling variables. Then, the controllaw is introduced. and in the

third step. computation of the control command and error behavior are discussed.

SteD I. Assuming that q = (R~.,li~. QT)T has been chosen as vector of generalized

coordinates, the dynamics model described in Eq. (4.6) can be obtained based on

Eq.(3.14). However, the variables to be controlled differ from q, since they incIude end­

effector positions and or;.entations in Cartesian space. These controlled variables are

denoted by q as

q- = [RT "T X(llT ,,(l)T ." X<,IT "<'lT]T
co,UOt E 'UE 1 , E 'UE (4.7)

where x~"') and li~",l correspond to the rn-th end-effector position and orientation.

To develop a model-based algorithm, the dynamics has to be written in terms of q. If

• aIl manipulators have six DOF, then a space robotic system of n manipulators will h!lve
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• 6n+6 DOF, and q will be a 61l+6 vector. The output speeds q arc obtained from the

generalized speeds v = q, using a square Jacobian J'i

(4.8)

The Jacobian J'i is not singular, except when a manipulator is at a singular configuration,

or at a (non-physical) representation singularity duc to the use of Euler angles. The laller

ean be avoided by switching to a different set of Euler angles. The equations of motion in

terms of the output variables, can be obtained as

•

Hô fi + êô =Qô

where Hô' êôand Qô an; given by

The new inertia matrix, Hô ' is positive definite if J Ci is nonsingular.

Step 2. The following model-based controllaw is lIsed

Qô =Hô u + êô

(4.9)

(4.IOa)

(4. lOb)

(4.lOe)

(4.11 )

where it is assumed that the system geometrîc and mass properties arc known, and

u = [u~ ,ur'u ~I)T ,u ~I)T , ... , U~")T ,u~d 1 is an auxiliary control signal which will be
CI>

dt:tt:rmined in Step 3. Substituting Eq. (4.11) into Eq. (4.9), reveals thatthis control1aw

linearizes and decouples the system equations to a set of second order differentiaJ equations

q=u

Step 3. The auxiliary control signal u can be eomputed as

(4.12)

(4.13)

where K p , and K d are chosen as positive definite matrices, to result in a guaranteed

• stable error behavior, and e is the traeking error defined as
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• (4.14)

Substituting Eq. (4.13) into Eq. (4.12), the controllaw given by Eq. (4.11) yields

(4.15)

which /:lIarantees asymptotic convergence of the tracking error e to zero. Note that K p'

and K J can be chosen as diagonal matrices, to obtain

(4.16)

which decouples the error equations to a set of separated second order differential equations

for every single output variable.

The desired trajectory, iL", is provided by a trajectory planner, see Section 4.2, while

q can be obtained from inertial measurements of the position and orientation of the

spacecraft and of the end· effectors5. If no such measurelnents are available, the error e can

be estimated by integrating the equations cf mction in real time, but then errors due to

• model uncertainties will be introducf'd. A mixed strategy can also be employed, e.g. inenial

feedback may be available durir.g a critical or terminal phase of a maneuver.

4,3.1.2 Using Euler parameters (MB2)

Similar to the development ofMBI, the MB2 control algorithm is described following the

three introduced steps.

SteD 1. Assuming that q = (R~o, KT, QT)T defined by Eq. (3.33), has been chosen as

vector of generalized c.oordinates, and v = (R~o' °ro~ ,OT)T as vector of generalized speeds,

the dynamics model describeù in Eq. (4.6) can be obtained based on Eq. (3.49). Then, it is

rewritten in terrns of the output speeds vselected as

v= [RT °roT x'(I)T 'ro"'T ... X·(nIT nro(nlTjT
Co' 0' E 1 E' , E' E (4.17)

• s- The cnd·crrcctor position and orientation can nlso he computcd. bnscd on joint measurerncnts, usin~

mnnipulntor direct kincmatics and spncecmft fccdback.
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• where x~ml and m(jj~m)T are the rn-th end-effector Iinear and angular inertial velocitics,

expressed in the inertial and rn-th end-effector body frame, respectivcly. If aIl manipulators

have six OOF, then a system of 11 manipulators will have 611+6 OOF, and vwill be a 611+6

vector. The output speeds vare obtained l'rom the gencralized specds v by a Jacobian .J ,",

(4.18)

The equations of motion can he obtained as

(4.19)

where H;, ê; and Q; are given by

Q-. =rTQ, c,

(4.20a)

(4.20b)

(4.20c)

• Steo 2. The following model-based control law, under the assumption of knowlcdgc of

the system's properties, is used

Q- . = H. u+ ê., , , (4.21)

where u is an auxiliary control input which is determined in Step 3. Applying this law to

the equations of motion (4.19), results in the following decoupled system

v=u (4.22)

Note that Eq. (4.22) is expressed in terms of /illear alld allgular velocilies, and not in

terms of posiliolls alld Euler allgles as is the case in Eq. (4.12).

Step 3. The auxiliary control signal u is partitioned as

=[ T UT umT U(l)T UCnlT UCnIT]T
U U Ho t wo' X t co ,. •• , l'Il) (4.23)

•
where the partition follows that of il. The acceleration terms in Eq. (4.22) that correspond

to linear motions are controlled shnihu to Eq. (4.13). Forexample, uk" is given by
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• (4.24a)

wherc

(4.24b)

which according to previous discussion results in

(4.24c)

However, to obtain similar asymptotic convergence of attitude error expressed in terrns

of Euler parameters, the terrns that correspond to anguIar velocities are controlled using

(4.25)

u.. is expressed in the corresponding body frame. The matrix T, relates the error between

the desired and cUlrent attitude in terms of rotation m?'.fÎces. In fact, it is a rotation matrix

which maps the body frame with desired orientation to the actuaI body frame, and is

delined as

• or

T=T, T d•., (4.26)

(4.27)

The matrix T is a rotation matrix whid: corresponds to the current body orientation with

respect to the inertiaI frame, and Td , .• is the one which corresponds to the desired

orientation. The vector e.. is the error in angular veIocity, expressed in the actual body­

lixed frame

(4.28)

where 00 is the current angular veIocity of the corresponding body expressed in ils own

body lixed frame, and OOd" is the desired anguIar veIocity, expressed in the desired

orientation frame. So, the term T,OOd'.• represents the desired angular velocity resoIved in

the actual body frame, and the subtraction in Eq. (4.2g) is in terms of consistent

coordinates. FinaIly, e, and e~, which correspond to the error in attitude as expressed by

• Euler paramt"(Crs, are delined as
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•
where E has been a1ready defined in Eq. (3.35d), repeated here

E=11 1 +[E)"

(4.29)

(4.30)

(3.35d)

(4.31 )

where 1 is a 3x3 identity matrix, and E and 11 are the eurrent Euler parameters.

Considering Eqs. (4.29, 30), for perfecttracking it can be obtained

(E= EJ", & 11 = 11,{",) => (CE = 0 & e~ = 1)

It should be noted that assuming the same axis of rotation (for the desired and actual

orientations), the above definitions given for c, and e~ result in Ilc,11 = sin(eo" 12) and

en = cos(eo 12) where 60 describes a simple rotation about axis of rotation6 , and eo is
'1 0 U

error in 60 , Therefore, these definitions are geometrically meaningful, rather than (EdO - E)

and (11J" -11) which do not have any physical interpretation. Aiso note thal due to the form

• of Eq. (4.25), singularities occur only when e~ is zero, that is when the al/ill/de error

angle is lt rad about the eigen axis, i.e.e~ = cos(eo" 12)= cos(lt/2) =0.

Applying the control law given by Eq. (4.25), the altitude error is governed by a

homogeneous linear second order differential equation, which gu:uantees thatthe error will

converge asymptotically to zero

(4.32)

In fact, Eq. (4.25) is obtained based on Eq. (4.32), the definitions given for c, and e~,

and th,~ relationship between angular velocity and Euler parameters as presented in Eq.

(3.35), see a1so Paielli and Bach (1993).

Therefore, considering Eqs. (4.24) and (4.32), it can be concluded that applying the

controllaw giver. by Eq. (4.21) guarantees asymptotic convergence for the position errors,

UlIÙ <:t:::üctc error expressed in terms of Euler parameters.

•
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• 4.3.2 Transpose Jacobian Aigorithm

Considering Eq. (4.11) which describes the model-based a1gorithm developed as MBI, if

high enough gains are used, the simplr,r transpose Jacobian controller (TJ) can be

employed, Craig (1989), as

(4.33)

•

•

This algorithm is quile simple to use with no significant computational burden, and without

requiring a priori knowledge of plant dynamics. However, the Jacobian introduced in EG'

(4.8) which includes system geometric parameters must be used, so that the erraI' is

properly resolved. Note that, in fact, this algorithm is an approximation of MB 1. Ils action

can be understood by imagining generalized springs and dampers connected between the

bodies under control and the desired trajectories; the stiffer the gains are, the better the

tracking should be. If a physical singularity is encountered, the controller given by Eq.

(4.33) will result in eITors but will not fail computationally.

Next, using Eqs. (4.10-13) and (4.33), the efficiency of the TJ a1gorithm is compared

to the model-based algorithms, in terms of the required computational operations, Le.

multiplication and summations required to follow the algorithm (for an N DOF system).

This comparison between the algorithms, in terms of the required computational

operations, is depicted in Table 4.1. The model-based a1gorithm MB l, has been chosen to

represent model-hased algorithms, although it requires less computational effort compared

to MB2. AIso, il is assumed that the inverse of the Jacobian matrix and its time derivative,

which are required for implementing MB a1gorithms, are available symbolically. Hence,

computations required for inversion of the Jacobian matrix and its time differentialion are

not counted. It can be seen that even with these assumptions in favor of the model-based

algorithm, implementation of TJ control significantly reduces the amount of required

computations, an issue which is very important in space. Stability analysis, based on

Lyapunov's theorems, shows that Tl a1gorithm is asymptotically stable, Section 5.3. As
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• discussed in Section 4.4, the performance of the TJ algorithm is acceptable but deteriorates

in tracking fast trajectories. In Chapter 5, further work on this algorithm focuses on

reducing this problem.

Note that all the above algorithms employ PD action; however, integral action can be

easily incorporated if needed. Aiso note that the above control approaches allow one to

compute a set of generalized forces that will diminish the tracking error. The reaction jet

forces and torques and the joint torques can be found by inverting an equation relating

generalized forces to actuator forces, i.e. Eq. (3.16).

Having a mathematical model of the system dynamics, developed control laws, and

desired trajectories for every output variable, the system performance can now be

simulated. This is to be discussed next.

Table 4.1: Comparison of the required computational operations.

• All!orithm Multiplication Additions

TJ 3 N2 3NL 2N

MBI 2 N3+7 N2 2 N3+5 NL 4N

4.4 Simulation ResuUs

In this section, the performance of the developed model-based algorithms in controlling a

multiple manipulator SFFR, is compared to that of the transpose Jacobiun algorithm

discussed in Section 4.3. The verification procedure of the simulation code is first

discussed. Then, the importance of a symmetric vs. a non-symmetric grasp, and the ratio

of spacecraft maximum accelerationldeceleration is investigated using a planar example.

Next, cornparisons bctween the performance of alternative algorithms during two and thrce

dirnensional maneuvers is discussed. Il is shown that a simple transpose Jacobian

algorithrn can yield an acceptable performance, comparable to that of model-based

• algorithms, with rcduced cornputational burden, which is an important issue in space.
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•

• 4.4.1 Code .mplementation and Verification

The system dynamics model of a multiple manipulator SFFR, which is a central element in

the simulation code, has been already verified in a reliable way as explained in Section

3.4.3. The dynamics model in a symbolic (analytical) format is imported to the general

simulation routine in FORTRAN, where equations of motion and the developed control

laws are integrated. using the Oear algorithm. As expected, applying the MB algorithms

under the assumption of exact knowledge of system model and parameters, results in either

zero or truncation tracking eITors (due to limitations of computational procedures). This is a

typical amended result which partly valiàates the simulation process. Note that in the

simulations that follow, effects of model ullcertainties are included in the MB laws, by

perturbing the mass properties of the model used in the control algorithm with respect to the

"true" parameters.

The veracity of the simulation results, has been also investigated by comparing the

results for sorne simple examples to those available in the literature, e.g. motion control of

a single arm two-link planar space manipulator in free-flying mode, Papadopoulos and

Dubowsky (; QI b). The code has been also employed to help an independent research

group in Japan (Masutani, Y., Osaka University), eliminating programming oversights of a

developed software. Identical results ensures accuracy of the general simulation code for

motion control of a multiple manipulator SFFR.

4.4.2 Example 1: Planar Motion

In this section, a planar free-flyer chasillg a moving point target, is used to compare and

evaluate the control algorithms developed in Section 4.3. The free-flyer includes three open

chain appendages, two of which are two-link manipulators, while the third one is a

communieations antenna, see Figure 4.2.

•
70



•

•

Spacecraft

Anlenna

Figure 4.2: A p!.mar three manipulator and appendage Cree-nyer, Ex. L

The spacecraft is equipped with reaction jets which provide the rcquired control forces

and torques up to sorne limited values. The system geometric parameters and mass

properties, and the maximum available actuator forces/torques are displayed in Table 4.2.

The origin of the inertial frame coincides with the initial position of the system CM, and the

vector of generalized coordinates for this 8-00F system is chosen as

[ e e III e III e (21 e (2) e (3»)Tq = X CM ,yCM' 0 t 1 • 2 ' 1 • 2 1 1

while the vector of output variables '.0 he controlled is

• [ e III (1) (2) (2) ~ (3)]T
q= XoSrJ' a'XE 'YE ,XE 'YE tUE

(4.34a)

(4.34b)

•

Tabll! 4.2·a: Spaceeraft parameters and actuator Iimits, Ex. 1.

ro(l) (m) ro(2) (m) roI) (m) mo(kg) 10 (kg m2) IF 1(N IF,I (N) Itol (N-m),

0.5 0.5 0.5 50.0 10.0 20.0 20.0 10.0

Table 4.2-b: Manipulator parameters and joint actuator Iimits, Ex. 1.

Appendage i-th bod) r lml (m) I.lm) (m) mimI (kg) I/m) (kgm2) It/m)I(N-m)
1 1

1 1 0.50 0.50 4.0 0.50 7.0
1 2 0.50 0.50 3.0 0.25 5.0
2 1 0.50 0.50 4.0 0.50 7.0
2 2 0.50 0.50 3.0 0.25 5.Ô-
3 1 0.25 0.25 5.0 2.00 7.0
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• where XC" and YOI are the inertial coordinates of the system CM. XO and .1'0 arc thc illerti:ù

coordinates of the spacecraft CM. ao is the spacecraft altitude. ai'" is the i-th joint angle

of the j-th manipulator. and xi". y/il. and Ô/" are the inertial coordinates and :ltlitude of

the i-th end-effector.

It is assumed that the target is in the vicinity of the robotic systcm. th:lt it is :1 p:ls~:ivc

•

•

object. Le. drifting al sorne constant speed. :lnd th:lt its tr:tjectory is me:lsured by such

feedback devices as on-board c:lmeras. Hence. the position :lnd velocity of the t:lrgel is

:lvailable in the sp:lcecrnft fmme.

For the simulation results that follow. the initial values are t:!ken as

q(O) = [0.0.-3000,4500.9000.13500.-9000.3000]T

°X~hj(O) =[3.0,4.0]T (m)

°V~hj(O) =[0.05.0.I]T (mis)

[xo(O).Yo(O),ao(O)t = [-0.0485m, -0.0659m, -rrJ6 md]T

[oxo(O),OYo(O),éo(O)t = (0.0 1mis, 0.0 1mis, 0.001 md/s]T

The finaltime for the Iinear motion, If' is chosen as 15.0 sec. The planned trajectory for

the spacecraft rotation aims to provide a symmetric grasp of the object, by two p:lrticipating

manipulators, to result in minimum disturbances on the spacecmft. Therefore, the finaltime

for the rotational motion is chosen equalto O.7If' to ensure thatthe object enters the fixed­

base workspace of both end-effectors, approximately atthe same time. T:!king into account

the mass properties of the system and the availab!e thruster forces/torques, the maximum

acceleration and deceleration are set to 81 =[0.2,O.2]T m/ S2, 82 =0.281 for thc linear

motion, and a( = 0.05 rad/s2, ~= 0.5a( for the rotational motion. The importance of

symmetric grasp, and of accelerntionldecelemtion rntio is investigated later on.

Figure 4.3 depicts typical manipulator joint trajectories, and an animated vicw of the

corresponding system maneuver. Note that according to the planned trajectories, the joint

angles for the two-link manipulators remain constant during the chase phase (in home
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• configuration), and that they change smoothly during the capture phase (objcct in

mampulalor fixed-hase workspace). The joint angle for the third appendage (the amenna)

changes smoothly so that a fixed inenial orientation is maintained during the maneuver.
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•
Figure 4.3: (a) Joint angle histories for the two manipulators and

the antenna, (b) Animated view of the maneuver.

To include the effeets of model uncenainties in the MB laws, the mass propenies of the

model used in the control circuit were penurbed with respect to the "true" ::>arameters by up

to 10%. The gains used for the model-based controllers are

Kr = diag(70,70, 100,100, 100, 100. 100.70)

K J =diag(l5,15,15,15.15.15,15,15)

while for the Tl controller these are

Kr =diag(lOO,lOO,80,80,80.80,80,80)

KJ = diag(l50, 150,100,\00,100,100,100,100)

•

The gain selection for the model-based control was based on errer equation selllïng time

and damping criteria, while for the Tl control a heuristic approach was used.

Before going through comparisons between the model-based and Tl algorithms, the

imponance of symmetric grasp. and the ratio of accelerationldeceleration is investigated by

simulation. To this end, the MB 1 a1gorithm as described above is used.
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• 4.4.2.1 Symmetric vs. Non-Symmetric Grasp

Figure 4.4. shows the profile of applied external torque on the spacecrafl for different

grasp strategies, Le. (a) symmetric and, (b) non-symmetric gnsps. ln Figure 4..1(a), Le.

symmetric grasp, the final orientation is chosen so that the axis of symmetry for the

spac-ecrafl is aligned with the direction of the object motion. while in Figure 4..1(h) a

misalignment of 5.0' between these directions is allowed.
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Figure 4.4: Applied torque on the spacecraft, (a) Symmetric grasp,

(b) Non.symmetric grasp.

As it is seen, during the capture phase, Il.0 < t < 15.0, the torque peak for symmetric

grasp is almost half of the one for non-symmetric grasp. Thereforc, it can be concluded thal

•
(a) (b)

a symmetric grasp rcduces disturbances on the spaceerafl.

4.4.2.2 Maximum Desired Acceleration and Deceleration of tlte Spacecraft

As discussed earlier, there are two main reasons for choosing the maximum deceleration to

•

be less than the maximum acceleration for a given maneuver duration and on-off thrusting.

First, a longer deceleration period results in less lhrusting before a grasp, and in less

vibration in flexible components Iike solar panels. and therefore disturbances to the object

are reduced. Second, longer deceleration period increases the time available to manipulator

motion which results in smoother operation.

Figure 4.5, demonstrates some consequences of the abave choice. by comparing a case

where 82 = 0.28, to one where 8 2 = 8,. As shown in part (a), the former results in lower
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• thruster forces before the grasp. and therefare results in a smaller abject disturbancc. Al" .•

when a, = 0.2a,. lawer torque on the spacecraft is required ta track the desired trajectary.

see Figure 4.5(h). In addition. since a, =0.2a, provides a longer duratian for

manipulatars ta catch the abject. tracking errars are rcduccd almast 50% with respect ta the

ones of a, = al' Figure 4.5(c).
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Figure 4.5: The effect of acceleratlon/deceleratlon ratio, (a)

Spacecraft thruster forces, (b) Applled torque on the

• spacecraft, (c) Flrst end·effector posltioning error.
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• N~xt. performance comparisons bctween the MB and Tl algorithms arc prcscnlcd.

4.4.2.3 Application of Alternative Control Aigorititms

For a planai system. the two model-based control algorithms (ME 1. MB2). yicld alll10sl

identieal results. and so only Ihe obtained results corrcsponding to the firsl control hlw arc

presented here. The comparison between these two in a 3-dimensional mancuvcr is

diseussed in Sectiop 4.4.3.

Figure 4.6 can be used to compule and evaluate the performance of model·hascd and

transpose Jacobian algorithms. Figure 4.6(a) displays the tracking error for the firsl

manipulator end-effector in the task space. During the chase phase (0< t <Il). Ihis error is

almost zero for MB 1. as the manipulators are kept fixed at their home positions (joint-spac.:

control phase). When the object enters the manipulator workspace. the manipulators s...rt

moving. and tracking errors appear duc to dynamic coupling and to transilion 10 the task-

• space control phase. Note that in the absence of parameter uncertainties. i.e. for perfect

model·based control, feedback Iinearization results in zero tracking errors. as discus:;cd

before. However, as it is seen, the performance deteriorates if model uneertainties e~isl.

These errors deerease with lime and eventually vanish, in both MB and Tl a1gorithms.

Comparison of the maximum values of the traeking errors for the two algorithms

shows that the errors oecurring with Tl are about forty times larger than the errors with

MB 1. Figure 4.6(a). However. their absolute magnitude may be considered smail enough

for many spaee tasks. Comparison of the spacecraft thruster forces, shows thatthe required

forces are about the same for both algorithms, Figure 4.6(b). However, in most parts of

the maneuver, the profile for the MB algorithm is staircase, while Tl docs not result in such

a profile. This is because the Tl algoritl!m does not use any knowledge of the dynamical

behavior of the system. The required joint torques arc lower in MB l, sec Figure 4.6(c).

The variation of the applied joint torques follows the variation of the spacecraft' s altitude

• and tracking errors, which are due to the same reasons, as above.
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Figure 4.6: TJ compared ta MB Control. (a) Tracking position

errors for the first end-effector, (b) Thruster forces on

the spacecraft, (c) Joint torques for the first arm.

•

As shawn by simulation. r.lodel-based algorithms result in smaller errors and lower

required torques. as long as model uncertainties are limited, Since torques are lower,

supplying less amount of energy wouh': he required, resulting in reduced system weight or

longer operation lire. important issues in space, However, implementing a model-based

control requires increased computational burden, which may not he available. On the other
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• hand. Tl control yields acceptable results (in lerms of small errors and rcasonahle rcquired

forces/torques) fur executing many tasks in sp'lce without requiring knowledge of system

dynamics. Thercfore. it can be suggested as a good control algorithm candidate. espccially

when lower computational effort is desired. To support these conclusions further. the

developed control algorithms arc compared and evaluated by ~imulating the system

performance in a general spatial maneuver. This is to bc discussed nex!.

4.4.3 Example 2: Three-Dimensional Maneuver

In this section, the developed control algorithms arc comparcd and evaluated by simulating

the performance of a 3-0 free-f1yer robot. chasing a moving pointtarget in 3-dimensional

space. The total OOF for the simulated system is 14. The spacecraft includes three open

chain appendages, two of which are three-OOF manipulators, while the thirl! is a two-OOF

communication antenna. The system is equipped with reaclion jets on the base, which

• provide the required control forces and torques up to sorne limited values. Figure 4.7

shows the system general configuration.

• Figure 4.7: A three manipuIator and appendage free-nyer, Ex. 2.
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• 4.4.3.1 System Description

The system geometric parameters (according to the nomenclature depicled jll Figure 2.2)

and mass properties. and also the maximum available actuator forces/torques arc displayed

in Table 4.3. Il should he menlioned that in these tables. ail components arc given in the

correspanding body-fixed frame xYZj. Each frame is parallelto the principal axes of the

corresponding body. \lnd the angle between the z-axis of a frame and the one of the

prcvious frdme. according to the D-H convention. is a1so given in Table 4.3. The origin of

the inertial frame coincides with the initial position of the spacecraft CM. which is also

defined as the origin of spacecraft body-fixed frame.

The vector of generalized coordir.ates for this 14-DOF system is selected as follows

•
q = lx y 7. N R Y a(Il a (1) a (1) a (2) a (2) a (2) a (3) a (3)]T

0' 0' "'0' ""'0' tJo. 0' l ' 2 ' J ' l ' 2 ' 3 'it 2

while the vector of variables to he controlled is

q= [.l'o. YO' lot Clo• Po' Yo- xE(I), YE(I), ZEm , XE(2), YE(21, ZE(2), cxE(3), f3E(3)f

Table 4.3·a: Spacecraft parameters and actuator Iimits, Ex. 2.

(4.35)

(4.36)

•

r l1l r(2) r (31 ma 1 lOf, lm.. IOn, lm..o .x.yy,no -',)'.t o .,)'.l. o x,y.z (kg) (kg m2)(ml (m) (m) (N) (N-m)

0.3,-0.2,0.5 -0.3,-0.2,0.5 0,0.3,-0.4 300.0 8.5,10.25,6.25 25,25,25 10,10.10

Table 4,3·b: Manipulator parameters and the joint actuator Iimits, Ex. 2.

lm i
(l.(m) r.'m) l.(ml m.(m) L'ml It/mllm.,1 1 ".)',01: 1 ll,y.t 1 1 U"yy.1Z

(deg) (m) (m) (kg) (kl! m2) (N-m)

1 1 0.0 0.0.0.0,0.15 0.0,0.0,-0.15 8.0 0.07,0.07,0.02 10.0

1 2 90.0 0.35,0.0,0.0 -0.35,0.0,0.0 12.0 0.03,0.51,0.51 7.0

1 3 0.0 0.25,0.0.0.0 -0.25,0.0,0.0 10.0 0.03,0.22,0.22 5.0

2 1 180.0 0.0.0.0,-0.15 0.0,0.0,0.15 8.0 0.07,0.07,0.02 10.0

2 2 90.0 0.35,0.0,0.0 -0.35,0.0,0.0 12.0 0.03,0.51,0.51 7.0

2 3 0.0 0.25,0.0,0.0 -0.25,0.0,0.0 10.0 0.03,0.22,0.22 5.0
3 1 -90.0 0.0,0.0,0.15 0.0,0.0,-0.15 3.0 0.03,0.03,0.01 3.0

3 2 90.0 0.20,0.0,0.0 -0.20,0.0,0.0 2.0 0.08,0.08,0.08 3.0
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• where (xo'Yo'~") denotes the inertial pusition of the spacecraft CM, (a" ,p" .y,,) is an

Euler angle description for the spacecraft altitude, S,Vl is !ne i-th joint angle of the j-th

manipulator, (XE'il ,yiil,~/l) are the inertial coordinates of the i-th end-effector.•md

(a~',p~',y~') is an Euler angle description for the i-th end-effec:or inertial dltitude. To

implement the third centrol algorithm, MB2, a ve<:tor of generalized spceds similar to il is

defined. in which the rate of (cx o ,Po' Yo ) is substituted by "ro".

Note that since the third end-effectur is an axisymmetric antenna, only IWO of the

corresponding Euler angles are controlled. These angles and their rates. have to be

computed in terms of generalized coordinates an:! velocities. To this end, the inertial

rotation matrix. which relates the end-effector frame to the inertial one, is wrilten in terms

of spacecraft altitude parameters and corresponding joint angles, and on the other hand in

terms of Euler angles. Setting the two rotation matrices equal and using inverse l(jncmatic

relationships yields antenna's Euler angles in terms of the generalized coordinates. 'l'hen,

• expressing the angular velocity of this end-effeetor in terms of the spacecraft angular

velocity and the corresponding joint rates. and also in terms of Euler rates, the relationship

between these rates and the vector of generalized speeds can also be obtained.

As discussed earlier, Euler angle model-based control algorilhm (MB 1) presents the

ineonvenience of representational singularities. In other words. the inversion of the relation

between angular veloCÎty and Euler rates, which is required to find acluator forces/lorques

based on the control command, is not possible at sorne orientations where S" becornes

singular. see Section 4.3. Figure 4.8 shows the errors in spacecraft orientation described

by Euler angles, where the system encounlers sueh a non-physical singularity niong the

planned trajectory, if controlled under MB llaw. To be able to compare the performance of

MB 1 to that of MB2, traeking the same desired trajectory. the occurrence of such

singularities is avoided in the following simulation. This is clone by appropriate selection of

initial and final values.

•
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Figure 4.8: Errors in spacecraft orientation encountering a non-

physical singularity at lime = 4.75 sec.

For the simulation results that follow. the objeet initial position and relative velocity is

taken as °X~.I(Ol = [S.0,-6.0.3.0]1'III, and °V~.I(Ol = [O.OS,-O.I.O.os]'r III/S. respectively.

The initial position of the spacecraft in the inertial frame is [xo(Ol.yo(Ol.zo(Olt =

• [O.O.O.O,O.OlTIII , and its orientation [txo(Ol'~o(Ol,'Yo(Olt = [0.0,1tI3,1tI6]1' rad. The

spacecraft initiallinearvelocity is [xo(O),yo(IJ),zo(Olt = [0.01.0.01, O.OI]1'III/ S, and its

angular velocity is zero. Taking into account the mass properties of the system and the

available thruster forces/torques, the maximum acceleration and deceleration are set to

a, = [O.OS,O.OS,O.OS]1' m/s'. and a, = 0.4a, for the Iinear motion. and a, = [0.02,
~ ~ ~ ..,

G.02,0.02]T rad /s', and 8, .., = 05 a" .. for the rotationa! motion. Finally. the vector of

generalized coordinates at initial time is q(Ol = [0,0,0.000.6000,3000.-9000,000,-9000,-9000,18000,­

9000,3000,6000]T. Figure 4.9 shows the desired path for the spacecraft center of mass and

manipulators eml-effectors.

1'0 include the effects of model uncertainties in the MB laws. the mass properties of the

model used in the control circuit were perturbed with respect to the "true" parameters by up

to 30%. The gains used for the MB controllers are K p=diag(80, ... ,80,SO,SO), and

Kd=diag(lSO, ,ISO,IOO,IOO), white for the TJ controller the gains are K p=diag(300,

• 300,300,200, ,200,100,100), anrt Kd=diag(600,600,600,400,... ,400,200, 200). The
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• gain selection for the model-based control was based on error equalion setlling time ,mû

damping criteria. while for the TJ control on heuristics. Next, eomparisons between MB 1.

MB2. and TJ a1gorilhms. based on oblair.ed simulation resliits ar~ disellssed.

0.5
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Figure 4.9: The desired path for the spacecraft center of mass and

the two end-effectors.

4.4.3.2 Comparison and Discussion

Figures 4.10 to 4.12 can be u~ed to compare and evaluate performance of MB l, MB2. and

TJ aIgorithms. Tracking error for the position of the first manipulalor end-effector is shown

in Figun: 4.10. Other tracking errors (e.g. spacecraft CM position. second manipulalor

end-effector, etc.) behave similarly. So, Figure 4.10 represents typical error characterislics

of the implemented a1gorithms.

During the chase phase (0< t <58), the error for MB algorithms is almost zero. a~ the

manipulators are kept fixed attheir home configurations and the whole system moves like a

single rigid body. However. for the Tl algorithm. the error is considerable al the beginning

• of this phase. where the system is accelerating (Le. 0< t <7 sec). This is due 10 the factthat
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• the Tl algoritl.m is unawarc nf the dynamical coupling of the system, as it does not include

dYl1amics terms in its stru~ture. When the object enters the manipulator workspace, the

manipulators start moving, and some tracking errors appcar due to the dynamic coupling

and aIso transition from joint·space to task-space control phase. In ail three algorithms,

given enough time, t!l:scerrors decrease and eventually vanish. Comparison oflh.:maximum
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Figure 4.10: Tracking position errors for the first end·effector, (a)

Model·Based Control, MBI. (b) Model·Based Control,

MB2. (c) Transpose Jacobian Control.
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• maximum tracking errors for these a1gorithms shows that the errors occurring with the TJ

are about two-live times higher than the errors with the MB algorithms7• although their

absolute magnitude muy be considercd small enough for perfOlming a wide range of tasks.

Fig~re 4.11 shows the applied control forces on the spacecraft. Comparison of lh.'

spacecraft thruster forces. shuws that the requircd forces arc about the same for ail three

algorithms. However, for most maneuver segments. the profile is staircase for the MB

algorithms (which is easier to follow. in practical implementations). but not for the TJ

control. Again. this is because the TJ algorithm docs not take into account the dynamical

behavior of the system.

Note that due to dynamic coupling, the rotational deceleration requires an additional

•

•

application of thruster forces, so that the translational motion continues to track. This

occurs near the end of the attitude maneuver at the 45-th sec of the motion. and can be

recognized in ail three plots (Figure 4.11), circled in part (c).

Figures 4.12 displays applied torques 10 control the spacecraft attitude and motion of

the lirst manipulator, near the end of the maneuver (53.0< t <60.0). In geneml, variation of

the applied torques follows the variation of tracking errors, and is due to the same reasons,

as above. As it is seen, the required torques are almost the same for ail three algorithms,

though MB2 is less demanding. Note that the profile of a component of applied torques on

the spacecraft only touches the saturation limit (10 N-m) for MB2, while for the others it

remains at that limit for a relatively long time. Also, it should be noted that the joint torques

for the TJ aJgorithm are about 20-60% off compared to those of the MB 1 and MB2.

FinaJly, comparing part (a) with part (c) of Figures 4.11 and 4.12, it is interesting to note

that profile of (c) is a smooth approximation of the profile of (a). Clearly, this is because

the TJ aJgorithm is an approximation of MB 1 and so are the control forces/torques.

7· Note lhat to includc the cfrcets of model unccnaintics in the MD laws. the man propcnics of Ihe model used in

the canlrOllaw wcre pcnurbed wilh respeclla lhe "t",o" paramelers by up la 10% in Ex. 1. and by up 10 30% in

Ex. 2. As expcctcd and shown by simulation. the larger thcsc uncenainties are the worse tracking 15.
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Figure 4.11: Thruster forces on the spacecraft, (a) MBl, (b) MB2,

(c) TJ, algoritlIm.

As this general 3-dimensional maneuver reveals, consistent to the previous example in

planar motion. the MB a1gorithms result in a better tracking and smaller errors, even in the

presence of model uncertainties. The MB2 controller is preferred because as shown in the

development of this algorithm (see Section 4.3.1.2), it overcomes the non-physical

singularity problem. However, implementing a model-based control requires increased

computational burden. The TJ control, with relatively high gains, yields acceptable results

and can be considered as a good control algorithm candidate, especially when low

computational costs are required. However, due to the. presence of noise and unmodelled

dynamics, the use of very high gains will be limited in practice. These results motivate

further work on the TJ a1gorithm, aiming at overcoming the requirement of larger gains and

consequently sensitivity to noise, and the lack of information about the dynamics of the

system, a problem which appears more clearly in tracking fast trajectories.
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Figure 4.12: Applied torques on the spacecraft (Ieft) and joint

torques for the first end·effector (right), (a) MBl, (b)

MB2, (c) TJ Algorithm.

4.5 Summary and Conclusions

•

In this chapter. coordination between a spacecraft motion and its several end-effectors

to capture a moving space object, was investigated. Taking into account the object motion

relative to the spacecraft. as weil as thruster and actuator saturation Iimits, appropriate

trajectories for the spacecraft and ils manipulators motion were planned. Two modeI-based

algorithms, and a transpose Jacobian control algorithm were developed. The Euler angle
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• model-based control aIgorithm (MB 1) presents the inconvenience of representational

singuIarities at sorne orientations. To overcome this problem, an Euler parameter model­

hased control a1gorithm was proposed as the second model-based control a1gorithm (MB2).

As shown by simulation, a symmetric grasp reduces disturbances on the spacecraft.

AIso, choosing the maximum deceIeration to be less than the maximum acceIeration for a

given maneuver duration resulls in a smoother operation. It was shown that the modeI·

based algorithms result in smaller errors, as long as model uncertainties are Iimited.

Hov.ever, due to the complexity of space robotic systems, the performance of these

algorithms deteriorates if higher levels of model uncertainties exist. AIso, implementing a

model-based control requires increased computational burden, which may not be availabIe.

On the other hand, the TJ a1gorithm with reIatively high gains, yields acceptable results (in

terms of small errors and reasonable required forces/torques) for executing many tasks in

space, without requiring knowledge of system dynamics. Therefore, this simpler a1gorithm

• controller as an approximation of the MB l, can be considered as a good candidate

especially when lower computational power is available.

Note that the use of very high gains for the TJ a1gorithm will be limited due to the

presence of noise and unmodelled dynamics in practice. AIso, the lack of information about

the system dynamics, causes poor performance of the a1gorithm in tracking fast trajectories.

Therefore, further work on the TJ algorithm, to improve its characteristics, is required.

This is discussed in the next chapter.

•
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Chapter 5

Modified Transpose Jacobian Control and its

Application to Space Robotics

5.1 Introduction

Transpose Jacobian (TJ) control is one of the simplest algorithms used to control robotic

manipulators. As shown previously, the TJ algorithm with relatively high gains, results in

acceptable tracking performance of space free-flyers, without requiring knowledge of

system dynamics. Therefore, it is a good control algorithm candidate, especially when

lower computational efforts are required. However, since it is not dynamics-based, poor

performance may result in tracking of fast trajectories. Use of high gains can deteriorate

performance seriously in the presence of feedback measurement noise. Another drawback

is that there is no formai method of selecting ils control gains.

In this chapter, a new Modified Transpose Jacobian (MTJ) algorithm is presented

which employs stored data of the control command in the previous time step, to yield an

improved performance. In fact, the MTJ algorithm as developed in Section 5.2, is based on

an approximation of feedback linearization methods, without requiring a priori knowledge

of plant dynamics. The gains of this new algorithm can he selected more systematically,
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• and do not need to be large, hence the noise rejection charactcristics of the algorithm arc

improved.

In Section 5.3, simulation results are presented which compare tracking perfommnce of

the MTJ algorithm to that of the TJ and Model-Based (MB) algorithms. To focus on

algorithmic aspects, a simple two Iink planar manipulator is first simulated. Then, the new

MTJ algorithm is applied to the coordinated motion control of a 14-00F space frce-nying

robotic system. Results show that tracking performance of this new algorithm is

comparable to that of Model-Based algorithms, without requiring a priori knowledge of

plant dynamies, and with reduced computational burden. Therefore, this new MTJ

algorithm is a good candidate for controlling multi-OOF space robots, especially where

computational power is Iimited.

5.2 MTJ Control Law

• 5.2.1 Motivation

As discussed before, using the expressions for the kinetic and potential energy, and

applying Lagrange's equations for a robotic system, the dynamics mode1 can he obtained as

H(q)ij + C(q,q)= Q(q) (5.1 )

where ail gravity and nonlinear velocity terms are contained in vector C. Gravity terms are

practically zero in microgravity environments, and therefore can be neglected in the design

of control laws for space robots. In terrestrial applications, these terms may cause static

positioning errors in control, and in such case, they must be compensated separately.

Therefore, it is assumed that the vector C contains only nonlinear velocity terms.

The output speeds, q, associated with the output variables to be controlled, il, are

obtained from the generalized speeds ci using a Jacobian matrix, JC' as

(5.2)

•
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• Assuming thatthis Jacobian matrix is square and non-singular, Eq. (5.1) can be wrillen in

lerms of the output variables as follows

ÎJ(q)q + ê(q,q) =Q(q)

where il, ê, and Qcan he obtained according to Eqs. (4.10).

To control such a system, a Model-Based (Computed Torque) control Jaw such as

Q=J~{IÎ[Kpe+Kdë +qd"j+ ê}

(5.3)

(5.4)

can be applied. This law linearizes and decouples the system equations to a set of second

order differential equations

Under the usual assumption of known system dynamics structure, and known geometric

where K p' and K d are positive definite gain matrices, and e is the tracking error defined as

•
e= iL" - il

(5.5)

(5.6)

(5.7)

•

and mass properties, the controllaw given by Eq. (5.4) guarantees asymptotic convergence

of the tracking error to zero. However, if these assumptions are violated, the error may

never converge. In addition, this controllaw requires a significant computational effort8

which may not he available on a space system.

As discussed in the previous chapter9, if high enough gains are used, the controllaw of

Eq. (5.4) can he approximated by the simple Transpose Jacobian (TJ) controller as

Q= J~ (Kpe + Kdë)

8· To upply u Modei-Bused (Computed Torque) control law, IÎ and ê have 10 be computed. Considering Eqs.

(4.5), il can he secn Ihat computation of li and ê requires inversion of the Jacobinn matrix and calculation of its

lime denvalive which depending on the system degrees-of-frcedom may be quite cumbcrsome. The number of

mntrix multiplications in obtnining these expressions. is olsa considerable. The rcquired computotional

operations can be secn in Table 4.1. though the assumptions made in preparation of this table cxcludc the

operations for invcning the Jacobinn matrix and cnlculnting ilS lime derlvative.

9· Sec Seclion 4.2.2.
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• which does not require a priori knowledge of the system dynamics. Besides simplicity. an

advantage of this algorithm is that if a physical singularity is encountercd. the controller

given by Eq. (5.7) may result in errors but will not fail computationally. The action of this

controller can be understood by imagining generalized springs and dampers. along the

variables under control. connected between the corresponding body and the desired

trajectories; the stiffer the gains are. the beller the tracking should be. However, due to the

presence of noise and unmodelled dynamics. the use of very high gains is Iimited in

practice. Note that computation of li based on Eqs. (5.7) and (4.5), does not result in the

error dynamics given by Eq. (5.6), anymore.

The advantages of using the Tl controller motivate further work on this algorithm,

aiming at improving ils performance and Iimiting ils drawbacks.

5.2,2 Derivation of MTJ Control Law

• To achieve both precision and simplicity, the Tl eontrollaw defined by Eq. (5.7) is now

modified, to approximale a feedback Iinearization solution, as

(5.8)

where h(t) is a term to he determined, K p and K J arc positive definite gain matrices, and e

is the tracking error defined in Eq. (5.6). Substitution of Eq. (5.8) into Eq. (5.3), yields

KJÏ!+Kpe =füi+ê-h(t) (5.9)

which is equivaient to

(5.10)

It can be seen that if the right hand side (RHS) of Eq. (5.9), becomes equal to zero, then

the tracking error converges to zero, and the algorithm works Iike a Model-Based

algorithm, albeit with a simpler implementation. Note that inclusion of the second

derivative of the error, ë, in Eq. (5.8) rcsults in

•
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• and then

Q =J~ {ë +Kde +Kpe+h(t)} (S. 11)

(S.12)

which results in an error dynamics similar to that of the MB a1gorithms, if the RHS of Eq.

(S.12) becomes equal to zero. However, inclusion of this signal requires acceleration

measurements or an estimator, and may he difficultto obtain in practice.

To make the ':'HS of Eq. (S.9) or (S.12) be close to zero, Eq. (S. 10) suggests that a

good approximation can be obtained by taking h(t) equalto Q at a previous small time

step, 61,.",. However, inclusion of this term may result in high joint torque requirements,

when relatively high e or eare imposed due to disturbances. To taclde these disturbances,

the standard TJ a1gorithm can be instantly applied. Therefore, the following form is adapted

h(t) = k 61,_",
• where the regulatingfactor, k, is defined as

(S.13)

k={~
wlzen lei ~ e or lei ~ ê

wlzen lei < e & lei < ê
(S.14)

where E and È represent sensitivity thresholds. Note that factor k is initially taken equal to

zero, resulting in a Tl control law at the first time step. To simplify the on-off switch for

factor k, the following continuous expression can he used

(S.ISa)

where Ib... ' and ~.. are positive real numhers which correspond to another representation

of the sensitivity threshold. Note that relatively low values for sensitivity thresholds, would

make the a1gorithm work like the standard Tl controllaw. In practice, K p and K d can be

chosen as diagonal matrices, and so can he selected the regulating factor. Then, factor k in

• Eq. (S.l3) should he replaced by a diagonal matrix K, where its elements can he defined as
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• (5.15b)

Including the second term in Eq. (5.15), based on the error first rate, introduccs a sensc of

anticipation, without compromising the smoothness of rcsponsc. Similarly, onc can includc

another term based on the second rate of error. if availablc. Howcver, this makcs thc

algori;hm more sensitive. and therefore sharp variations of actuator forces/torques may

result.

Application of the MTJ algorithm

Q= J~ (Kdë+ Kp e + kôl,_",1 (5.16)

•

•

with proper selection of the sensitivity thrcsholds (so that the modifying term is rcasonably

activated) and small time steps, results in the following error equation

(5.1 7)

where diagonal gain matrices. Kp and K d, have been used. Therefore. using Eq. (5.17),

the control gains can he selected in a more systematic manner, as their ratio detcrmines

eITOr time constant. and their magnitude determines the magnitude of the control command

which should he adjusted based on actuator capabilities.

Considering Eq. (5.16), it can be deduced that the MTJ requires 3N2+N+2

multiplications, and 3N2-N+1 additions. Comparing to the depicted results in Table 4.1,

these are almost the same as those for the TJ algorithm, and still significantly less compared

to the ones needed for implementing the MB algorithms. Note that it is assumed that the

inverse of the Jacobian matrix and its time derivative, which are requircd for implementing

the MO algorithms, are available symbolically, and hence computations involving these are

not counted in Table 4. I.

The above analysis reveals the simplicity (conceming a priori knowledge requirement

of system dynamics) and efficiency (in terms of the required computational effort) of both
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• the standard Tl and the new MTJ law compared to the MB algorithms. In addition, the

MTl yields approx imately linearized error dynamics, and therefore an improved

performance over the standard Tl algorithm. Next, baseè on Lyapunov's theorems,

stability analysis of the developed MTJ algorithm is studied.

5.3 Simulations and Comparisons

In this section the performance of the new MTl control, as given by Eq. (5.16), is

evaluated by simulation, and compared to the standard Tl, Eq. (5.7), and model-based

(MB) algorithms, Eq. (5.4). First, to facus on algorithmic aspects, a simple two link planar

manipulator is simulated. Performing low-speed vs. high-speed tracking task, selection of

larger gain for the TJ, and noise rejection characteristics of the considered algorithms are

investigated in this Example. Then, the new MTJ algorithm is applied on coordinated

motion control of a l4-00F space free-flying robotic system, and simulation results are

• compared to those of the other algorithms.

5.3.1 Example 1: Two-Link Fixed-based Manipulator

The simulated system is a simple 2-link planar manipulator on a horizontal plane, see

Figure 5.1 (al. The ta~k is tracking a trajeclory defined by

xJ" = ~112 +/i cos(rot +11'/4) +0.1 sin(5rot)

YJ" =~112 +/i sin(rot+I1'/4)+0.1 sin(5rot)
(5.1 8)

This trajectory corresponds to a perturbed circular path, as shown in Figure 5.1 (b). The

motion speed along the path can be selected by setting the cyclical frequency co.

The mass properties of the system are ml = 4.0 kg, II = 0.333 kg.m2
, rnz = 3.0 kg, and

Il = 030kg.m
2

, and the Iink lengths are II = 1m and 12 = 1m. The initial conditions for

joint angles and derivatives are

(rad, rad /sec)

•
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• which correspond to sorne initial position and veJocity errcrs.

The sensitivity thresholds for the MTJ algorithm. em.. and em.. in Eq. (5.l5a) are taken

equalto 1 m and JO rn/sec. respectively. These large values for em.. and em... yield k = 1.0

throughout the whole duration of the simulation after the first time slep (which is zero.

according to the definition). The time step !JJ, is held constant. and equulto 10.0 msec. To

establish a fair comparison. the gains for the algori':hms under .;...mparison are selected such

that the peaks of the required joint torques are approximately equul. The Gear method for

solving differential equations. is used in ail simulations.

•

•
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Figure 5.1: (a) A two·link planar manipuIator, (b) Desired tracking

path.

Low·Speed vs. High·Speed Tracking Task. The performance of the TJ and

MTJ aIgorithms. in terms of the end-point error in a low-speed tracking task (ro=O.05

radis). is compared in Figure 5.2. For the MTJ algorithm Kp = diag(30, 30), Kd = diag(60,

60), while for the Tl algorithm the gains are twice these values. It can be seen that both

aIgorithms resuIt in a fairIy simiIar response. However, errors for the TJ aIgorithm may

increase initially to higher values, before they converge to zero, see for example e(y) in

Figure 5.2 (a).
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Figure 5.2: Tracking errors for low-speed task, (a) TJ algorithm,

(b) MTJ algorithm.

Figure 5.3 shows the end-pointtracking error in a high-speed tracking (C1l=2.0 radis).

As shown in this figure. the MTl a1gorithm results in smaller tracking errors. and therefore

is preferred. This poor performance of the Tl algorithm. is due to the fact that it is nct

dynamics-based. However. one would expect that by selecting very high gains. its

performance can he improved.
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Figure 5.3: Tracking errors for high-speed task, (a) TJ algorithm,

(b) MTJ algorithm.

•

To investigate this possibility, the previous gain values for the MTl are used. while for

the Tl fairly high gains are selecled. see Table 5.1. Besides. the task speed is reduced to

C1l=1.O radis. Here, in addition to the Tl and MTl a1gorithms, two cases of model-based

(MB) algorithms are al50 considered. In the first case, it is assumed that the mass

properties are completely known. while in the second one, the mass properties of the
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• dynamics model in the controller are perturbed by 10% with respect 10 the Ir/It' values. For

the perfecl MB. the chosen gains are fairly low which correspond 10 a senling time of 2.0

sec. and a damping ralio of 0.7. For Ihe second MB case. these low gains result in

relatively large lr'acking errors, therefore Ihey are sc1ected equal to the ones for the MTJ.

Table 5.1: Selected gains for alternative algorithms. Ex. 1.

Algorithm Kn K,/

TJ diag(150. ISO) diag(300. 300)

MTJ diag(30. 30) diag(60, 60)

MD. case 1 diag(8. 8) diag(4, 4)

MD. case 2 diag(30. 30) diag(60.60)

As Figure 5.4 shows. due to properly adjusted gains. the peaks of joint torques for ail

four algorithms are about the same. which as mentioned before. establishes a fair

comparison. Nevertheless. it can bc seen that, even with relatively very high gains for the

• Tl. the resulting tracking errors of the MTJ are still about five times smaller than lhe ones

of the standard TJ, and even bctter than the ones of the perturbcd MB (case 2) algorithm. In

other words. the advantage of MS laws is lost if the parameters are not known exactly.

Il should be 11Icntioned that the total energy consumption of each algorithm for
2

performing this task. given by the time integral of LIT, ci,l. is almost the same, i. e. in
;=1

correspondence to Figure 5.4, (a) 153, (b) 156. (c) 153. and (d) 154 Joule.

Noise Rejection Characteristics. In practice. noise corrupts any available

•

feedback. Therefore. one should examine the noise rejection capabilities of would be

implemented algorithms. espeeially of those that rely on high gains. The previous

simulation is repeated now. assuming that measurements of joint angles and their rates arc

corrupted by white noise whose amplitude is 2% of the output's magnitude. Although the

performance in terms of the average traeking errors is almost the same as before. the

variation in the required torques is larger. As shown in Figure 5.5. the required torques for
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Figure 5.4: Joint torques and tracking errors, (a) TJ with high

• gains, (b) MTJ, (c) MD, case 1, (d) MD, case 2.
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• the MTJ algorithm are almost as smooth as those for a perfect MB control. while the noise

rejection characteristics for the TI algorithm are poorer. due to the high gains employed.

Note that for the MB algorithms. having a noisy fe"dback affects the elements of controller

dynamics. which in the presence of uncertainties (the second MB ease) as requires larger

gains. results in a poor noise rejection characteristics. see Figure 5.5 (d).
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Figure 5.5: Joint torques in the presence of noisy feedback, (a) TJ,

•

high gains, (b) MTJ, (c) MD, case 1, (d) MD, case 2.

n can be concluded that for better tracking, larger gains are required for the TJ

algorithm, and these lead to poor noise rejection characteristics. Also, high frequency

inputs can excite flexible system modes. and consequently decrease the accuracy, and the

usefullife of a system. Hence, using high gains is not a viable option. On the other hand,

the new MTJ algorithm, by being an approximation of a feedback Iinearization algorithm,

does not require high gains, or a high computational power, while its performance is

comparable to that of the Model-Based algorithrns.
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•

•

Next. the new MTJ algorithm is applied to the coordinated motion control of a space

free-flying robotic system. and the results arc compared to those of the standard TJ and

model-based (MB) algorithms.

5.3.2 Example 2: Multiple Arm Space Free-Flying Robotic System

In this section the 14-00F space free-flyer, described in Section 4.4.3, is simulated in

capturing a moving object. The generalized coordinates and the output variables are those

already defined in Eqs. (4.3S-36). Aiso. ail of the initial values and the required parameters

for planning the desired trajectory, are those given in Section 4.4.3.1. Here, the simulat...d

algorithms are

- The MB algorithm. based on Eq. (S.4);

- The standard TJ controller, Eq. (S.7);

• The MTJ algorithm as given in Eq. (S.l6). MTJ1;

- The MTJ controller using a second derivative of the error, Eq. (S.ll), MTJZ.

To include the effects of model uncertainties in the MB law. the mass properties of the

model used in the control algorithm are perturbed with respectto the true parameters by up

to S%. Table S.Z shows the gains used for alternative controllers. The size of the time step,

!:>J. for the MTJ implementation, is held constant and equalto 10.0 msec. The sensitivity

thresholds for the MTJ controllers. to be substituted into Eq. (S.lSb), are em.. =(le-Z,le-Z

.Ie-Z, le-2.le-Z, le-Z.le-l ,..., le-l )T, and em.. =(le-l, le-l, le-l, le-l, le-l, le-l, 1.0,... ,

I.O)T. The Gear method for solving differential equations. is used in ail simulations.

Table 5.2: Selected gains for alternative algorithms, Ex. 2.

Aleorithm Kn Kd

TJ diag(300. 300,300, diag(6oo,600,600,

ZOO,....ZOO, 100,100) 400,...,400, ZOO,ZOO)

MB, MTJI, MTJ2 diag(lSO.... ,lSO, SO,SO) diag(300.... ,300, 100.100)
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• Figure 5.6 shows typical tracking position errors for an end-effector. For the TJ

algorithm, these errors are much higher (almost 50 times higher than those of the MTJ),

especially when the system is accelerating. As discussed before, this is because the TJ

algorithm is unaware of the dynamical behavior of the system. However, it is seen thut the

error for the MTJ algorithm (both MTJ 1 and MTJ2) remains very small, throughout the

maneuver. Note thut here, the MTJ 1 and MTJ2, result in similur trucking errors.
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Figure 5.6: Tracking position errors for the first end·effector, (a)

TJ, (b) MB, (c) MTJl, (d) MTJ2.

•

Unlike the MB algorithm, the MTJ does not require any priori knowledge about system

dynarnics, and so it is not affected by inaccuracies in mass parumeters. This becomes

important when the object enters the manipulator fixed-buse workspace, and the

manipulators star! moving ( t '" 58 sec). Tracking errors, which appear due to the dynamic

coupling and also due to the transition phase from joint-space to task-space control, are

almost five limes higher for the MB, compared to those of the MTJ algorithms, sec Figure

5.6. This is due to the faet that the mass properties of the control model are perturbcd with
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•

respect to the truc parameters by up to 5%. Note that, given enough time, tracking errors

decrease and eventually vanish in aIl four a1gorithms.

Figure 5.7 shows the applied control forces/torques on the spacecrafl. Comparison of

the spacecraft thruster forces, shows that the peak of the required forces is about the sarne

for the TJ and MB a1gorithms, while in the case of MTJ 1and MTJ2, it reaches the actuator

saturation limits. The profiles of thruster forces, in most parts of the maneuver, is staircase

for the MB while for the TJ algorithm, it is a smooth approximation of those profiles. For

the MTJ algorithms, the profile is similar to the one of the TJ, atthe beginning, and to that

of the MB, atthe end. This means that the value of the regulaling factor which corresponds

to the position error of spacecraft center of mass, is close to zero at the beginning, and

almost equal to one at the end. Near the 4S-th sec of the maneuver (Iabeled as "end of

rotation maneuver" in Figure 5.7 (a», the final desired spacecraft orientation is reached,

and dynamic coupling results in small thruster forces.

As shown in Figure 5.7, in aIl a1gorithms the applied torques on the spacecraft, result

in reaching actuator saturation limits of the first torque component, in attempting to

compensate for the disturbances caused by manipulator .1lotions (starting at t'" 58 sec).

Note that the variation of the applied torques for the Ml'J aigorithm is faster. AIso,

comparing MTJ 1 to MTJ2, it can be seen that the latter results in a slightly smoother

profile, which is due to more awareness of the system dynamics. However, the difference

is so negligible that one may hardly decide to use MTJ2 (rather than MTJl), considering ils

difficult implementalion in practice as discussed before.

Figure 5.8 displays the joint torques for the first manipulator, near the end of the

maneuver (53< t <60 sec). As shown in the figure, the applied torques are approximately

the same for the MB and MTJ aigorithms, while about 20-60% lower for the TJ aigorithm.

5.4 Summary and Conclusions

This chapter presented the new Modified Transpose Jacobian (MTJ) control which. using

stored data ofthe control command in the previous lime step, yields a better performance (in
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•

terms of tracking errors, with the same requirements of actuator forces/torques) compared

to the standard Transpose Jacobian (TJ) algorithm. The MTJ controller approximates a

feedback Iinearization solution. with no need to a priori knowledge of the plant dynamics.

Therefore, unlike a model-based algorithm, it is not affected by inaccuracies in mass

properties. Il was shown by simulation that the performance of the MTJ controller is

comparable to that of a perfect Model-Based algorithm, with the advantage that less

computational power is needed.

Unlike the standard TJ, the new MTJ algorithm works weil in high speed tracking

tasks. Based on presented analysis, the controller gains can be selected in a more

systematic manner, and the use of high gains is avoided. In the presence of noise, it was

shown by simulation that the performance of the MTJ controller is also comparable to that

of a perfect MB algorithm. The substantially reduced computational requirements compared

lOS



• to the MB, and the good tracking and noise rejection performancc charactcristics in

comparison with the TJ, suggest that the MTJ algorithm is a promising altcrnative. In

particuIar, in those applications where model-based controllers can nol be used due to

computationallimitations or modelling inaccuracies and uncertainlies, the MTJ algorithm

can be employed, with an overall performance close to that of a perfect model-based

controller.

In the next chapter, manipulation of an acquired object, which can be passive or may

include sorne internai anguIar momentum sources, is discussed. To this cnd, a ncw control

algorithm is developed to move the captured object in accordance with a pre-determined

plan which may include impacts due to contact with the environment.

•

•
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•
Chapter 6

Multiple Impedance Control and its Application to

Space Robotics

6.1 Introduction

• Impedance Control was originally formulated to control dynamic interaction between a

manipulator and the environment. Employing impedance control, both free motions and

contact tasks can be performed without switching to different control modes. When

multiple manipulators participate in a cooperative task this strategy has been formulated at

the level of manipulated object, Object Impedance Control (Ole), to enforce a controlled

Impedance not of an individual arm end-point, but of the manipulated object itself. Here, a

new algorithm named as Multiple Impedance Control (MIe) is developed, which enforces

a controlled Impedance of both manipulator end-points, and of a manipulated object.

Physically speaking, this means that both manipulator end-effectors and the object are

controlled to behave Iike a desired impedance in reaction to any disturbing extemal force on

the object, and an accordant motion of different parts of the system is achieved. To

manipulate space objects, the new MIC algorithm can be applied so that ail participating

manipulators, the free-f1yer base. and the manipulated object exhibit the same impedance

• behavior.
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First, a conceptual comparative analysis, between different control strategies, is

presented. In Section 6.3, the general formulation for the MIC algorithm is derived, and

based on that the tracking errors are analyzed. In addition, an estimation procedure is given

for contact force determination. Then, a simple model of a robotÎc arm manipulating an

objee; is considered in a thorough comparative analysis between the MIC and OIC. Then,

the general MIC formulation is applied to perform a cooperative manipulation task with two

fixed-base planar manipulators. The simulation results are discussed in each of these cases.

Application of the new MIC algorithm in space robotic systems is formulated in Section

6.4. As discussed hefore, unlike fixed-based manipulators, the base body of space robots

is dynamically coupled to the arms motion. Hence, in order to control such a system, it is

essential to consider this I.oupling between the arms and the base. For the manipulated

object, inclusion of an internai source of angular momentum, is adrnitted. It is shown that

by applying the new MIC algorithm, ail participating end-effectors, the free-flyer

spacecraft, and the manipulated object exhibit a similar impedance behavior. Sorne

concluding remarks, in Section 6.5, end this chapter.

6.2 Basic Concepts

6.2,1 Problem Statement and Task Definition

Using a simple spring, Figure 6.1, the differences between various control strategies (Le.

Position, Force, and Impedance Control) are first discussed. Imposing a force Flat the

free end of spring, A, will determine a displacement XI upon the value of k, and vice versa

(Le. imposing a displacement XI at A will determine the required force FI). As this simple

example reveals, in a mechanical system it is impossible to control both force and position

along the same direction. However, using closed-loop control, we could artificially impose

a desired hehavior on any physical system. In other words, a desired relationship hetween

force and motion at specifie point(s) of a system can he enforced, and this is the aim of

Impedance Control Laws. In our spring example, tbis can he achieved by setting the spring

constant k.
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• 1+
X,

A

Figure 6.1: A simple spring, ta visualize notion of impedance behavior.

Some definitions that arc used in what follows are given here. A manipulation task

can be defined as moving an object according to predefined trajectories which may pass

through an obstacle. To compare alternative control strategies in a manipulation task,let's

consider the problem in a simple forro. Figure 6.2 depicts a simplified model of perforrning

a manipulation task by a single manipulator. In case of cooperative operation, this

simplified model can be completed by introducing a cooperation strategy to the control

algorithm, and incorporating multiple manipulators.

•
6.2.2 Application of Alternative Control Strategies

Considering Figure 6.2, the task is defined as moving the object III:J according to a given

trajectory• .\id'" bi' applying an appropriate force FI without damaging any part of the

system. The manipulator is represented by m" connected through sorne spring-damper to

m2 • which represents the end-effector. In this section, a conceptual comparative analysis

between alternati.....e control strategies is presented. To this end. the use of alternative control

strategies in perforroing the defined task is briel1y described and discussed.

x.

Obstacle

k,
X,

_F'+I;~b, ~.3.1 m1 1Il1'.t--;n--t

ManiPUla~d'EffeC~bject

Manipulator Flexibility Object/RCC
and Force Sensor Flexibility

Figure 6.2: A model of performing a manipulation task by a single robot.•
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• 0 Position Control, where the goal is to obtain a good tracking of either the end-

effector position, X2, (to achieve a good tracking of the object position X3) or the object

position itself, X3. Since there is no awareness of contact between the object and a:l

obstacle, applied forces may cause serious damage to sorne parts of the system.

o Force (Regulation) Control, was originally developed for performing those

tasks which require direct interaction between the end-effector and its environment by

regulating the end-effector force, e.g. cleaning a window. However, it may be used in

object manipulation tasks by computing and applying a propcr end-effector force Fe. This

force is computed based on the desired object trajectory, known mass propcrties, and under

the assumption that the object is rigid. Nevertheless, since X2 is not regulated when

controlling Fe, sorne tracking errors in x3 are expccted. To ar,alyze this point, note that

•

•

(6.1)

where b2 and k2 are the object damping and stiffness coefficients, respectively. In case of

using a Remote Centre Compliance (RCC), Craig (1989), these coefficients reflect both the

object and RCC f1exibility. Note that assuming negligible inertia forces for the end-effector,

Fe is equal to the measured force at wrist. According to Eq. (6.1), controlling the end­

effector force Fe does not yield good tracking of X3, since Fe is also a function of X2. For

further investigation, the error in end-effector force is next computed in terms of system

variables. It is shown that having this error converge to zero does not necessarily result in

zero tracking error for the object position which is the original goal. To this end, the

equation of motion for the object can be wrillen as

I1l:lxl =F;.(Xl , Xl) + F; + F; (6.2)

where m3 is the object mass, Fa includes all potential, frictional, and similar effects, and Fe

is the extemal (contact) force applied on the object. Then, as described before, the desired

end-effector force can be computed as
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• (6.3)

Therefore, the corresponding error in Fe, e" is obtained as

(6.4)

(6.5)

•

•

A well-designed force controller can make e, go to zero. However, as Eq. (6.4)

reveals, this does not necessarily yield zero tracking error for the object position, e3

?
e,=O ==> e,=x, -x3 =0

• 01"

ln free motion where no contact with the obstacle occurs, Le. Fe =0, if e, =0 it can be

concluded that X, is close to x"" under the assumption of F"(X3d,,. xJd,,) = F,,(x,. x3), see

Eq. (6.4). Even so, any smail deviation in acceleration will result in an integrated tracking

error with time. At the time of hitting an obstacle. the contact force Fe appears with a sharp

jump from zero. and a sudden change occurs in e, which demands applying large actuator

forces. If this does not result in any damage, a stable force controller results in a stop of the

object at the obstacle. shortly thereafter.

Cl Standard Impedance Control. a1though formulated fer performing tasks which

require direct interaction between the end-effector and ils environment. still it can be applied

for object manipulation tasks. In so doing. enforcing a relationship between x2 (or x2 ) and

Fe is aimed. though the objective is good tracking of x3. However. implementing

impedance law at this level does not provide compensation for the object's inertia forces.

This yields unacceptable resu1ts when the object is massive or it experiences large

accelerations. Il should be noted that for the standard impedance control, there is no

provision for computation of the externai (contact) forces applied on the abject, Fe. Instead.

the measured force at the wrist (which is equai ta Fe, under the assumption of negligible

inertia forces for the end-effector) is adapted in the impedance law. However, considering

the abject motion. Eq. (6.2) yields

(6.6)
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• which shows the difference between the measured force. Fe. and the real contact force. F<.

Therefore. implementing impedance law at the manipulator level ignores the possibly

significant inertial effects of the object. Furthemlore. even for a negligible object inertia. a

relalionship between X2 and Fe is enforced (with no feedback from the object motion)

which according to the previous discussion. this docs not result in a good tracking of li).

CJ Object Impedance Control (OIC) is a well-formulated version of the Standard

Impedance Control for object manipulation tasks. In this strategy. an impedancc

relationship at the object level. X3. is enforced through feed-forward manipulator control.

The novel idea here is inclusion of object incrtia effects in the Impedance Control strategy.

However. formulating the impedance law at the object level. with no feedback of end­

effector's motion. does not yield a good tracking for flexible objects. for the same reason

discussed earHer in force control and the standard impedance law. The more flexible the

object is. the worse the performance of OIC will he 10.

• Next. the new Multiple Impedance Controllaw is described and derived.

6.3 Multiple Impedance Control Law

As mentioned earlier, the basic idea in impedance control is to enforce a relationship

between force and motion (position, velocity, etc.) at specific point(s) of the system. The

strategy in Multiple Impedance Control, MIC, introduced for the first time in this chapter,

is to enforce an equivaient impedance relationship at the manipulator end-effector level, alld

at the manipulated object level. Therefore, an object inertia effects are compcnsated for in

the impedance law, and at the sarne time, the end-effector(s) tracking errors are controllcd.

Physicaily speaking, this means both the manipulator end-effector(s) and the manipulatcd

object are controUed to respond as a designated impedance in rcaclion to any disturbing

• 10- As menlioned in Seetion 1.2.1, Meer and Roek (1995) have lried 10 solve Ihls problem by managing dirferenl

paramelers in implemenling the a1gorilhm.
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• external forc;c on the object, and different parts of the system are led to an accordant

motion. For mobile manipulators, e.g. space free-f1yers, the new MIC a1gorithm is applied

so that aIl participating manipulators, the moving platform (base), and the manipulated

object exhibitthe same impedance bchavior, as implied by "multiple" in the MIe.

While OIC enforces an impedance law on the object motion, MIC enforces an

impedance law on both the manipulatol' end-effector(s), and the manipulated object. This

major difference between the MIC and OIC a1lows for proper trajectory planning of the

end-effector(s), based on the desircd trajectory for the object and the grasp condition. Note

that for the case of a redundant system, the end-effector(s) trajectory can be planned so as

to optimize the performance. Other differences between the MIC and OIC include a1lowing

for a difference between the contact force and other external forces which are applied on

the object, as weIl as improved contact force estimation.

In this section, the general formulation of the new MIC algorithm is derived for fixed-

• base cooperative manipulators. An estimation procedure for the contact force determination

is discussed, and tracking errors are analyzed. Considering a simple model for

manipulating an object with a single robotic arm, as discussed in the previous section, a

comparative analysis bctween the MIC and OIC is presented. Root locus analyses, and

simulation results arc given in each case. Then, the application of the MIC a1gorithm to

perform a cooperative manipulation task with two fixed-base planar manipulators is

discussed, and simulated.

6.3.1 General Formulation

Performing a cooperative manipulation task, as defined in the previous section, requires

coordination bctween participating robolic arms, Figure 6.3. To this end, the dynamics

equations of each participating manipulator can bc written as

B Ul( q (I)q (/) +C(I)( q (1) ,ci (1) = Q(I) (6.7)

•
II:;



•

• Figure 6.3: Two robotic arms performing a cooperative manipulation

task.

where the superscript "in corresponds to the i-th manipulator, and the vector of joint angles

and displacements is chosen as generalized coordinates q (1) • Note that CU) contains ail the

gravity and nonlinear velocity terms, where in a microgravity environment the gravity terms

are practically zero. Assuming that each manipulator has six OOF, and using a square

Jacobian J~), the output speeds (x) are computed in terms of the generalized ones ( ci) as

where

{
X(I)}

Xli) = E

1)(1)
E

(6.8a)

(6.8b)

•
X~) describes the i-th end-effector position, ar,d I)~) is a set of Euler angles which

describes the i-th end-effector orientation. The equations of motion, Eq. (6.7), can then he

written in terms of the output coordinates XU
), as
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• (6.9a)

where

(6.9b)

The vector of generalized forces in the task space, {t), can be wrillen as

Q- (1) = Q-(1) +Q-(1)
"PP ttact (6.lOa)

where O~~" is the reaction Ioad on the end-effector, and Q~;p is the applied controlling

force which is divided into two parts, motion-concemed andforce-concemed as

Q- (1) = Q- (1) + Q-(1)
"PP m f (6. lOb)

•

where Q~) is the applied control force concerning the motion of the end-effector, while

Qj) is the required force ta be applied on the manipulated abject by the end-effector. Ta

obtain proper expressions for these terms, let's first consider the equations of motion for

the manipulated abject.

The equations of motion for the abject can he wrillen as

n

.. -f f ""f(1)mnbJ xG - c + ,,+~ t

'=1 (6.11)

•

where m"hl is the abject mass, n is the number of participating manipulators in the

manipulation task, la is its moment of inertia about center of mass, xa is acceleration of

center of mass, Q)"hl is the abject angular velocity, cil"hl is the abject angular acceleration,

fc is the force applied on the abject due ta contact with the environment, f,<1) is the i-th

end-effector foree exerted on the abject, r" is the vector of other external forces applied on

the abject (including gravity forces), Oc is the contact torque applied on the abject about ils

center of mass (including the moment of fc), r,<1) is the position vector of the i-th end­

effeetor with respect ta the abject center of mass, 0/') is the i-th end-effector torque
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(6.12)

• exerted on the object about its center of mass, and n" is thc vector of other external torque

applied on the object (including the moment of r,. ) about its center of mass. Similar to Eq.

(3.7), choosing a set of Euler angles that describes the orientation of the object, ô,'''}, the

object angular velocity can he expressed in terms of Euler rates as

OO"h} = S,,,,} li"h}

which can he substituted into Eq. (6.11). to obtain the equations of motion for the object as

(6.13a)

where

x= {:n:J

J 13"3

G -LST [ (1)1"
ob) r" hl

F(I)={f//J} (6.13b), n (1)

'" 6)(1
F(n)

t 6n xl

F =,{ f" }F:J = T
Snb} D"

{
f, }F = T

C S,Jbj De

•
The matrix M will he referred to as the mass matrix. and the matrix G as the grasp matrix.

A desired impedance relationship for the object motion is chosen as

(6.14)

(6.15)

where M J" is the object desired mass matrix. e= (xJ". - x) is the object position/

orientation error vector. and k p and kJ are gain matrices (which are usually selected as

diagonal matrices). Comparing Eq. (6.14) to Eq. (6.13), it can be seen that the desired

impeda'lce hehavior can he obtained if

GF;". =MM~:,(MJ"xJ" + kJê + k pe+ F,)+ FOl -(F, +F,,)

provided that Snb} is not singular which is a matter of Euler angles definition. In other

• words, applying the required end·effector forces/torques, F,,,., on the object results in the
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• largeted impcdance relationsh'p as described in Eq. (6.14). Now. Eq. (6.15) can be solved

to obtain a minimum norm solution. Therefore. the required end-effector forces are

obtained as

(6.16a)

wherc G' is the pseudoinverse of the grasp matrix G, a full-rank matrix (provided that

S"h) is not singular), defined as
-1

G'= W-1GT(GW-1GT) (6.16b)

(6.17)•

•

weighted by a lask weighting matrix W, so that linear and angular motions or their

components can have different weights. Assuming that F" and the object mass and

geometric properties are known, computation of F,,,. requires knowing the value of the

contact force, F,. Since, in general it is not possible ta measure this force, it has ta be

estimated. see Section 6.3.3. Therefore, Eq. (6.1 6a) can be written as

F,., = G' {MM;:. (Md"Xd" +kde +kpe+ F,) +F" - (F, +F,,)}

where F, is the estimated value of the contact force F,. Note that based on the grasp

condition, it may he required ta apply additional internai forces and moments on the abject,

FinI' Then, Eq. (6.16) can be modified ta

F" .. =G ,{MM~:.•(Md,.•Xd" +kde+ kpe+ F,)+ F" -(F, +F,,)} + (l-G 'G)!';..
(6.18)

where 1 is a 6nx6n identity matrix. Note that FinI does not affect the abject motion, since

the added term is in the null space of the grasp matrix G.

Now, based on the definition of Fe. Eq. (6.13b), the force which has ta be supplied by

the i-th end-effector, F:I) , is directly obtained from F, . This yields the force-concerned
"" 'ff

part of the applied controlling force, according ta the definition given in Eq. (6.10), as

(6.19)
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• Note that ci;> is virtually canceled by the reaction load on each end-effeetor. On the oiller

hand, the reaction load is obtained as

where

Q- Iii = _Flil
rrart r

Ft = G'[MX + F" -(Ft + F..l]+(l-G·G) F,,,

(6.20a)

(6.20b)

Next, we have to obtain a proper expression for the motion-concemed part of the applied

controlling force Q~).

As discussed earlier, in the MIe a1gorithm the same impedance law is imposed on the

behavior of both the end-effector(s) and the manipulated object. Therefore, similar 10 Eq.

(6.14), the impedance law for the i-th end-effector can be wrilten as

M ~ll) +k ~(/) + k ë(/) =-F
diS d p c (6.21 )

•
where ë(1) = x~:,-X(I) is the i-th end-effector position/orientation error vector, and Ihe rest

has been already defined. Then, Q~) can he obtained similar to the above derivation of

Q~), as

Q- (1) =H(I)(q(/)M-1[M ;x"(/) + k e(1) + k ë(1) + F]+ ëll)(q(1) q. (1) (6.22a)
m drJ de du J pc'

or (substituting the estimated value for the contact force)

Q- (1)=H(I)(q(/)M-1 [M XlI) +k eil)+k ë(I)+F j+ë(l)(q(l' q.(I) (6.22b)
m des do du d pc'

Note that the desired trajectory for the i-th end-effector motion, x~;" can be defined

based on the desired trajectory for the object motion, the object geometry, and the grasp

condition. In other words, based on the grasp constraints defined as

i=I"",n (6.23)

•
and the object desired trajectory, xdts' the desired end-effectors trajectories can be

deterrnined. Substituting Eqs. (6.22), and (6.19) into Eq. (6. lOb), the applied controlling

118



• force can he computed. The black diagram of the MIC a1gorithm is demonstrated in Figure

6.4.
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Figure 6.4: The block diagram of the MIC algorithm•
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(6.24a)

• 6.3.2 Error Analysis

Substituting Eqs. (6.22), (6.20), and (6.19) into Eq. (6.10), and then the result into Eq.

(6.9), yields

HII)(q(I)){M-1 (M ;X"li) + k e(1) + k ë,i) + F)_X(ll} +
JrJ dl' drJ d p c-

G 'M{ M~;.,(Md"Xd,. + ki+ kpe+ F,. )-x} = 0

where it is assumed that mass and geometric properties for the manipulated object and

manipulator are known. Also, it is assumed that the contact force estimation procedure

yields an exact value for this force. Since Eq. (6.24a) must hold for any M and H lIl
, it can

be concluded that

•

H(/)(qll){M-1 (M x(1) + k ell) + k ëll) + F)-x(l)} = 0
du du Jrs d p c

G 'M{M~;.(Md,,xd"+ kdé+ kpe+ FJ-x} = 0

Then, since G' is of full-rank, this results in

H(I)(ql/»{M-1 (M ;X"(/) + k eU) + k ë(1) + F)_Xl/l} = 0
du dt. du d p c

M{M~:.(Md,,xd" +ki+ kpe+ FJ-x} = 0

;=1,", "
(6.24b)

;=1,", Il

(6.25)

Finally, noting the factthat M and H(I) are positive definite mass matrices, Eq. (6.25)

results in
M éll)+k ê(/l+k ë(ll+F =0

Jrs J p c

Md"ë+ kdé+ kpe+ Fe =0

;=1,"',,,
(6.26)

which means ail participating manipulators and the manipulated object exhibit the same

designated impedance behavior. Note thatthe MIe approach permits choosing different

impedance pararneters for the object dynamical behavior and the end-effectors (by sclecting

Mdcs' kd, and kp in Eq. (6.21) different from those of Eq. (6.14)). However, physical

intuition as weil as simulation analyses indicate that the best results are achieved by

choosing equivalent parameters. This is due to the fact that enforcing the same pre-set

• impedance on different parts of the system results in accordant motion throughout the
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• system while executing a manipulation task. Harmonie motion of the end-effectors and

manipulated object is ensured via same error dynamics as obtained above.

6.3.3 Contact Force Estimation

As mentioned in the previous section, computation of F,,,. requires knowing the value of

the contact force, Fe' In general, this has to be estimated, and this is the focus of this

section.

To compute the contact force, Eq. (6.13) can he rewritten as

Fe =MX + F.. -F. -GF, (6.27)

It is assumed that F", and a1so the object mass and geometric properties are known.

Assuming that end-effectors are equipped with force sensors, F, can be measured and

substituted into this equation. AIso, based on measurements of object motion, F.. can be

computed as given in Eq. (6.13b), and substituted into Eq. (6.27). However, to evaluate

• the contact force, the object acceleration must be also known. Since this is not usually

measured, it can he approximated through a numerical procedure. In OIC implementation,

either the desired acceleration, or the last commanded acceleration which is defined as

(6.28)

are used. Schneider and Cannon (1992) describe that both of these two approximations

yield acceptable experimental results, though they have emphasized that a more

sophisticated procedure would improve the performance. In fact, since there may be a

considerable difference hetween x and xd,"" partic".:larly after contact, using Xd" does not

yield reHable results. On the other hand, using Eq. (6.28) may result in a poor

approximation hecause of sudden variations in contact force (at each contact).

Here, the suggestion is a direct usage of finite difference approximation as

• or

" _X-,-t_-_X",t;:,."'!!.x=
t.t
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• i = X, - 2x,_At + x'_:!o\r
(Llt)l

(6.29b)

where Llt is the time step used in the estimation procedure. Note that beeause of praclical

reasons (Le. time requirement for measurements and corresponding calculations), Llt can

not be infinitesimally close to zero. At sufficiently high sampling rates, this does not

introduee a significant error, even during contact. Substituting Eq. (6.29) for acceleration,

the contact force can be estimated based on Eq. (6.27) as

(6.30)

Next. the system depicted in Figure 6.2 is considered for a comparative analysis

between the MIC and OIC algorithms.

6.3.4 Case Study: A Comparative Analysis (Single Manipulator)

The single robotic arm manipulating an object discussed in Section 6.2, is used here to

• compare the nature and performance of the MIC and OIC algorithms. First. the system

dynamics model is derived. and then the controllability of the system is investigated. The

MIC and OIC laws are implemented, and compared through root locus analyses. The

system is then simulated under both controllaws, and the simulation results are compared.

6.3.4.1 Dynamics Model

For the 3-00F system depicted in Figure 6.2, the equations of motion arc

mlxl + bl(XI -Ai)+ kl(XI -~ + /1/') =F1

I1lzX2+bl(X2-xl )+b2(.i2 -~)+kl(~ -XI-/I/,,)+~(X2 -~+/2/"')=0 (6.31)

"'Jx) +b2(X)-.i2)+~(x)-~ -/2/m) =j" + J;

•
where /1/"" and /2/'" are the free lengths of springs k ,• and ~. respectively. J; is the

contact force. and f. is the resultant of other extemal forces applied on the object. Gravity

effects are neglected. and ail mass and stiffness properties are assumed to be known.
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• State-space representation ofEq. (6.31) can he wrilten as

(6.32)

o
o

o

~
-~

(6.33a)

b = (0,0,0, XzI' 0, or (6.33b)

w=(o 0 0 -klllf,,,1 (kll'f",-Is~f",)1 (f.,+fc+ls~f",)j)T (6.33c)
, 1 1 lm,' I~' /"'-3

x=Ax+bu+w

y=cx+du

where x=(XI.X2.X3,XI'X2.X3l. u=f;, and

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0
A=

-~ ~ -~ ~ml ml
0

ml ml

~
-(k,+% ~ X -(bl+b~

0 ~ -~ 0 ~

•
and the output vector. y. for each a1gorithm can he chosen accordingly.

6.3.4.2 Controllability of the system

The controllability matrix of the system is defined as II

ê=[b Ab A2 b A3b A4b ASb] ,6.34)

The determinant of C is calculated as

lêl= k,21s2(k,2~~ +(lsbl
2
-klblb2)(~ +~))

mI6~S~3
(6.35)

•
In general. lêl is not zero which implies that ê is a full-rank matrix. This means that the

system is controllable. and that the actuator is able to take the system states to any desired

11- Scc Takahashl. Y. (1970).
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• configuration in a finite time, provided that a proper input function, Il(t), is selected. This

observation motivates further study in contl'Olling both the manipulator and object, using

the MIC algorithm. In the following, both OIC and MIC algorithms are applied, to provide

the input function, u(t), and control this system.

6.3.4.3 Root locus analysis

•

To investigate the stability and performance of the MIC compared to OIC law, for the

system depicted in Figure 6.2, a root locus analysis is presented in this section. To this

end, a root locus parameter has to be selected. Then, the poles of the corresponding

transfer functions, GM/C(s) and GO/c(s), Le. roots of the characteristic equation in each

case, are calculated for a set of values for the chosen parameter. Here, the object stiffllcss

coefficient le" is selected as variable parameter, where G,"C(S) and GO/C<s), ann the

corresponding characteristic equations are presented in Appendix C.

For a rigid system, Le. kt, le" -+ .. , considcring Eqs. (C.2-7) it is obtained

(6.36)

•

which means that for a rigid system, both algorithms yield the same closed-Ioop transfer

function. If the given mass parameters for control purposes are the same as true ones, Le.

m, = m" then O(s)=I.O in free motion (kw = 0); there is a perfect tracking.

Given that the true and given mass parameters are ail positive, and applying the Routh­

Hurwitz criterion, ail of the zeros and poles of Eq. (6.36) lie in the left half of the s-plane if

and only if

(6.37)

and upon Ibis condition, both algorithms are stable for a rigid system.
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• Note that considering Eqs. (CAb) and (C.7b), the sum of the roots of characteristic

equation (s,) for the MIC and OIC can he wrillen as

o For the MIC:

Î,s,= -(IÎ"m,11I)k" +111",,(111, + 11I,)11IA +111",,(111, +m)11I,b,)
1::1 mJ~/llJn~m3

o For the OIC:

Î,s, = -(m, + 11I,)11'Jb, +(m, +1!'J)11I,b,)
/=, 111,111,111)

(6.38)

(6.39)

•

As revealed by Eq. (6.39), the sum of the roots for the OIC algorithm is a function of

system parameters only, and is mostly affected by the damping characteristics of the

system; the controller parameters do not affect the sum of the roots. However, il is seen

that for the MIC, this sum is also a function of k,t and ll\Ies' and this permits easier pole

adjustment.

As shown in Appendix D, the rootloci for the MIC and OIC algorithms, as a function

of the object stiffness (l'J.) for various damping factors (b,), reveal that for a relatively

well-damped object bath algorithms are stable, whether or not the object is in contact with

the obstacle. However, for an abject with light damping, the OIC algorithm becomes

unstable if there is no contact. Note that a contact between the abject and an obstacle, adds

a feedback effect to the system, and so ils dynamic behavior changes. Considering this

unstable case, the effect of different controller parameters on the stability of the OIC

algorithm is investigated in Appendix D. It is shawn that choosing larger gains, solely,

docs not result in a stable system. However, a larger desired mass value has a positive

effect on the stability of the OIC algorithm, though larger inertia of the desired abject

impedance results in slower performance, as will be shawn by simulation. For an

undamped abject, Le. b, =0, it is shawn thatthe MIC algorithm is stable (whether or not

• the abject is in contact with the obstacle), while the OIC becomes unstable. In this case,
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• choosing a larger value for the desired mass or a larger damping gain docs not yield a stable

system. Based on this analysis. it can be concluded that with respeet to system stability. the

MIC a1gorithm is a1ways preferred. compared to the OIC.

Next. the performance of the two algorithms is simulated and comparcd. in the case

where the system parameters are chosen so that stability is ensurcd in both 1/0 col/IC/CI and

;1/ colllacl phases.

6.3.4.4 Simulation ResuUs

The system depicted in Figure 6.2. is now simulated under the MIC and OlC laws. To

focus on the structural behavior of these a1gorithms. it is assumed that the exact value of the

contact force, h, is available to the controllers. There are thus three basic assumptions in

the following simulations for both a1gorithms:

(a) ail mass properties are known,

• (b) object and manipulator measurements, i.e. x,, ~. x)' and their mtes arc available.

(c) the exact value of the contact force. h, is available.

Note that the first two assumptions are generally made in implementing most proposed

a1gorithms in their original forms, and can be abandoned when an adaptation or parameter

estimation procedure is employed. As mentioned earlier, the third assumption simplifies

this comparison by eliminating the effect of a difference between contact force estimation

procedures.

The system and controller parameters are

1111 = lOOkg, ~ = 20.0 kg , II,:! = 10.Okg, k, = 2.6x105 N 1111, k, = 2.0 xlO' N 1111

b l =325kglsec, b2 =100.Okglsec, 11Id,,=100.O, kp=IOO.O, kd = 300.0

The initial conditions are

(X1,X2,~,XI ,i,. ,;S{ =(-02,- 0.1 ,0.0 I,O.O,O.O,O.O{ (111,1111.1')

•
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• and it is assumed that each sfllÎng is initially free ("If tension or compression. The desired

trajectory for the object is
1

-,
X3d~J= - e

The obstacle is at Xw =0.7 ln, and the contact force is computed as

iJ x3>XW J, =kw(xw- X:J)

else J; = 0.0
(6.40)

where kw = leS NI ln. To approximate actuator dynamics, the input force Fr is filtered by

a second-order Butterworth low-pass filler, as

(6.41)

•
where <00 is chosen equal to 30 rad/sec.

Figures 6.5 and 6.6 compare the simulated performance of the MIC and OIC

algorithms. As it is seen, the system never rests under the OIC law (even in 100 sec), while

the MIC algorithm results in a good response. Applying the OIC law, an oscillatory error

demands an oscillating input force, and consequently, the contact force oscillates, see

Figure 6.6. Note that the object hits the obstacle at 1'" 2.0 sec. It should be mentioned that

the root locus analysis shows that both OIC and MIC are stable for both "no contact" and

"in contact" phases.

One may suggest that choosing larger gains or a larger desired mass parameter, can

solve the problem and result in a better performance for the OIC. The simulation results of

further investigations of these issues, are presented in Appendix E. Il is shown that by

choosing larger damping gains, kd, the resulting oscillations for the OIC do not disappear,

though the amplitudes may decrease. By choosing larger kp's, the oscillations get worse

(the amplitudes increase), while the MIC still yields a good response. Note that in this case,

the root locus analysis shows that both OIC and MIC are stable in both phases, although

• the simulation indicates that the OIC becomes unstable. Il is interesting to note that an on-
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• off type nonlinear system may become unstable or experience a limit cycle, while it is

switching between two Iinear stable modes. Longer simulation runs show that. Iike in

previous cases, the ore results in a Iimit cycle. The effect of ac(u;lIOr saluration limits on

the performance of both algorithms was also studied.
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Figure 6.5: Performance of the

MIe, (a) Object tracking error, (b)

The applied controlling force, (c)

The contact force.

Figure (1.6: Performance of the

Ole, (a) Object tracking error, (b)

The applied controlling force, (c)

The contact force.
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• 6.3.4.5 Conclusions and Discussion of the Comparative analysis

Using the linear model for a single manipulator performing an object manipulation task, it

was shown with a root locus analysis that for a rigid system, both the MIC atld OIC

algorithms yield the same closed-Ioop transfer function. AIso, for a rigid system in free

motion (no contact with the environment) and for known values of mass properties, both

algorithms yield a perfect cIosed-loop transfer function (i.e. G(s)=I.O). For the flexible

system model, it was shown that for the OIC law, controller parameters can not affect tl]e

sum of the roots. On the contrary, the sum of the roots for the MIC algorithm is a function

of controller parameters kd and mdes' and this permits effective pole adjustment. The effect

of choosing larger gains and larger desired mass on the stability of the OIC algorithm was

investigated. Il was shown that choosing larger values for the desired mass and selecting

larger kd's, can improve the stability charaeteristics of the OIC algorithm (see Figure D.S,

• Appendix D). In general, it was shown that concerning the system stability, the MIC is

always preferable compared to the Ole.

Next, the performance of both algorithms was simulated and compared. To include the

frequency demand of each algorithm, the input force was filtered by a second-order

Butterworth low-pass filter. Also, the possibility of reaching actuator saturation limits (to

exert thl! input force), and its effect on the performance of these algorithms was

investig;:ted (see Figures E.3-4, Appendix E). It '.Vas shown that in almost ail cases, the

system never rests under the OIC law, while the MIC always yields a smooth stop of the

object al the obstacle. This is due to the fact that the OIC is focused on enforcing Impedance

law Oh the objcct motion, while the MIC is enforcing the same Impedance law on both

object and manipulator motions. Applying the OIC law, an oscillatory error demands an

o~eillating input force, and consequently, the contact force oscillates. Comparing the

prese1lled simulation results for various cases, it is concluded that the new MIC algorithm

• yields improved performance over the OIC.
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• An example appliculion of the MIC algorithm to perform a cooperative manipulation

task with two fixed-base manipulators is next presented.

6.3.5 Example: Cooperative Object Manipulation

6.3.5.1 Task Definition and Dynamics Modeiling

Figure 6.7 shows a simple system of two robotic arms in planar motion. performing li

cooperative manipulation task, Le. moving an object with two manipulators according to

predefined trajectories which May pass through an obstacle. The system includes two

planar two-Iink manipulators each with SCARA configuration, one of which is equipped

with a Remote Centre Compliance (RCC). The task is to MOye an object based on a given

trajectory which passes through an obstacle, and the motion has to stop smoothly atthe

obstacle. The object has been grabbed at initialtime. with a pivoted grasp condition, i.e. its

orientation l'an change with respect to the end-effectors and no torque l'an be exerted on the

• object by any of the two end-effectors. Therefore, using the redundancy of the system,

both the translational and rotational motions of the object are controlled by the end-effector

forces.

•
Figure 6.7: Two robotic arms, performing a cooperative manipulation

task in planar motion.
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• Based on Eqs. (6.9) and (6.11), the system dynamics model can be represented as

H(I) ij(l) + C(I) = Q(I) = J~)' (Q~)p - r,(I))

H(2) ij(2) +C(2)=Q(2) =J~)' (Q~;~ _r,(2»)

.. - r r r (1) r (2)
mf/hl Xo - C + Il + r + r

1 ci> =n +n +r (1) x r (1) +r (2) x r (2)
Gt/bjclle' r r r

(6.42)

where ail terms have been already defined, see section 6.3.1. Note that the first two

equations of (6.42) describe manipulator motions, and can be derived using Lagrangian

approach, while the last two describe the object equations of motion. In planar motion

O)"/>I =il k, where 0 describes the object orientation with respect to xy-axis. So, the last

equation can he written a10ng z-axis, k, as

•
.. ((1) II»)" (12) (2l)"laO=ne+n,,+ r, Xr, ·k+ r, Xr, ·k

where ne = lIek, and n" =n"k .

The kinematic constraint can he written as

(1) (1)
Xa=X,. -r t

(6.43)

(6.44)

where x,(1) describes the first end-effector position.

To simulate the system motion, end-effector forces have 10 be either eliminated (e.g.

using the Orthogonal Complement Method) or computed in terms of system variables. To

compute these forces. first xa can he calculated in terms of x,(I) (or q(l»), based on the

kim:matic constraint. Then, substituting the result into the object equations of motion yields

r(I)=B-I(m (j(l)cj(l) +J(I)q(l) + r,cl)(n +n )5 -r(llè2 5 )+B r (2)_r -r)
r 1 .,b) CCI col t 2 2t co

a
(6.45a)

where

•
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1+ m.bl (r,II»2 cos2(O)lla
(6.45b)



• [1 (1) (2) • 2(6)11- + n'objT;. rr sm G

B2 = (1) (2) •
-m"bjr; r, sm(6)cos(6)IlG

(6.45c)

{
COS(6)}

r(l)=_r(l)

, 'sin(6)

and

{
COS(6)}

r(2) =r (2)

, 'sin(6)
_ {-sin(6)}

s, -
cos(6) {

COS(6)}
S2 = (6.45d)

sin(6)

f (2) = k (x (2) - (x + r (2» _1 )+ b (x (2) _ (x +r (21»)
t tl! t RCC ft t (6.46)

where IRCC describes the RCC's free-Iength in different directions. Note thal det(B,) = 1+

m"bj(r;(l)21IG i: 0, therefore this matrix is a1ways invertible and end-effeclor forces can be

calculated as above.

The applied aetuator forces, Q~)p and Q~)p' are computed based on the MIC law as

described in Eqs. (6.10, 19, 20, 23)

•
Q- (1) = DY) m-I [m i(l) + k ~(I) +k ë(1) +F]+ ë(1) +

upp du dts dt! d p c

~mobjm~1,(md)'d'., +kdé +kpe +Fe) +F.. - (Fe +F,,) ± F.dd

i =1,2 (6.47a)

where F.dd (with opposite sign for the two manipulators) is an additional force 10 create a

couple (torque) by two end-effectors for controlling the object orientation in pivoted grasp

condition, and

x(l) =x _r(l)
dt., Gd,s t

(2) _ (2) 1
XJt.J - X Gdts + ft' - RCC

(6.47b)

•

Next, specifying different parameters in the above equations, ~he sys'.em is simulaled.

6.3.5.2 Simulation Results and Discussions

For the system depicted in Fig 6.7, the geometric parameters, mass properties, and Ihe

maximum available actuator torques are displayed in Table 6.1. The origin of the inertial

frame is considered to be locateà at the fixed joint of the first manipulator. The second

manipulator fixedjoint is at (1.2, O.O)T. The object and controller parameters are
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•

•

Table 6.1: Parameters for the system depicted in Figure 6.7.

Mani- i-th ir.(m) il. lm) m.lm) I.(m) ".(m)
pulator body 1 1 1 1 1

(m) (m) (kg) (kgm2) (N-m)

1 1 0,0.50 0,-0.50 10.0 1.50 100.0

1 2 0,0.50 0,-0.50 6.0 0.80 100.0

2 1 0,0.50 0,-0.50 10.0 1.50 100.0

2 2 0,0.50 0,-0.50 8.0 0.80 100.0

m",) =3.0 kg,lG =0.5 kgm2
, or:!) =(-<l.3, O.O)m, Or?) =(0.3, O.O)m

Md" =diag(IO,l 0), k p =diag(loo, 100) ,kd =diag(3oo, 300)

The initial conditions are

(q
(l) q(l) q'(l) q'(l) q(2) q(2) q'(2) q'(2) 8 é)T =
1'2'1'2'1 '2'1'2"

(2.7,- 2.7,0,0,1.0,25,0,0, O,O)T (rad, rad / s)

and it is assumed that the RCC is initially free of tension or compression. The stiffness and

damping propcrties for the RCC unit are chosen as, (see De Fazio, et al. (1984»

[

2.0 x 10'
k =,

o [

5,0 x 102
b =• o

o ] kg/sec
5.0x 102

The desired trl\Ïectory for the o~iect center of mass, expressed in the inertial frame, is

where 80 describes the object initial orientation. The obstacle is at Xw = 12 m, so it is

expected that the object will come in contact at its right side, i.e. at xG + r,a). Il is assumed

that no torque is developed at the contact surface (i.e. a point contacl occurs), therefore De

is cqualto the moment of fe • Also, there is no other external force applied on the object,

i.e. f" = 0, D" = O. Based on these, and considering Eq. (6.43). Fould in Eq. (6.47a) is

taken equalto 112 Fe to compensate for the moment due to contact. The contact force is

• estimated based on Eqs. (6.29a, 30), where the real stiffness of the obstacle is
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• k" = leS N lm. The time step which is used in the estimation procedure. 6J in Eq.

(6.29a). is equal to 10 msec. Given the above information. the system is now simulated.

and the obtained results are presented in Figure 6,8.
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Figure 6.8: Appliclltion of the MIC in cooperative manipulation,

(a) Error in objeet CM position and objeet orientation, (b) Velocity

errors, (c) First manipulator joint torques, (d) Second manipulator

joint torques, (e) Real value of the contact force, (f) Difference

between the real value of contact force and estimated one.
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• As it is seen in Figures 6.8a,b the y-component of the error in the object position,

starting from sorne initial value, converges to zero smoothly. This is due to the fact that

contact occurs a10ng the x-direction, and so the contact force does not affect the object's

motion in the y-direction. The x-component of error, starting from sorne initial value,

decreases at sorne rate until contact occurs at t == 1D sec. This rate changes after contact,

because the tracking error dynamics depend on the dynamics of the environment, according

to the impedance law. Then, this error smootWy converges to the distance between the final

desired x-position and the obstacle x-position.

The object orientation error, starting from zero, grows to sorne amount and then

smoothly converges to zero, Figure 6.8a. The initial growth is due to the fact that the first

end-effector (Le. without RCC) responds faster than the second one which is equipped

with RCC. Therefore, according to Eq. (6.43), the difference between the two end-effector

forces produces sorne moments which results in an undesirable rotation of the object.

• However, after a short transient period the difference vanishes and so does the object

orientation error.

•

Actuator saturation limits are reached at start-up, because of large initial errors and

error-rates, and at the time of hitting the obstacle, due to the contact force, Figures 6.8c,d.

Joint torques for the first manipulator converge to a steady state soon after contact (about

half of a second), while this takes longer for those of the second manipulator. This is due

to the same reason discussed above, namely the existence of the RCC.

The contact with the obstacle occurs a10ng the x-direction when the second end of the

object passes beyond xw' Therefore,!c remains equal to zero before and after contact,,

while !c. appears whenever the object is in contact with the obstacle, Figure 6.8e. As the

impact energy is dissipated, !C. converges to a constant value. According to the imposed

impedance law. Eq. (6.14), for diagonal gain matrices this constant force has to be equal to

-kpe.= -1O<XO.l)= -10 N , which is verified from simulation results. Figure 6.8f shows

the difference between real value of the contact force, and the estimated one used by the
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• controller. As can be seen the difference is almost zero, exccpt during a short period aCtcr

impact (Jess than half a second). Even then, the difference is quite small (about 10% of the

real value). ACter this period, the acceleration profiles become smoother and the difference

between the real and estimated values of the contact force becomes zero. Note that before

the contact, the slight difference between the two is due to the approximation of object

acceleration, based on calculation of Eq. (6.29a).

Thus, simulati')n resuIts show that performance of the MIC algorithm applied to a

cooperative manipulation task is excellent, even in the presence of f1exibility, and subjectto

the effects of impact with an obstacle. As described previously, different impedance

parnmeters can be chosen for the various elemerts of the dynamic system when applying

the MIC algorithm. However, simulation analyses (not shown here) support the physical

intuition that the best results are obtained when ail corresponding impedance parameters are

chosen to be identicaI. Enforcing the same desired impedance on different parts of the

• system resuIts in a harmonic accordant motion throughoutthe system, to achieve a good

performance. Next, application of the MIe law to space robotic systems is discussed.

6.4 Application of the MIe to Space Robotics

6,4.1 Basic Formulation

The Multiple Impedance Control, as applied to a cooperative manipulation task by fixed­

base manipulators, was presented in the previous section. Since for a SFFR the

cooperating robotic arms are connected through a free-f1ying base, the implementation of

the MIC a1gorithm has to be adapted. Here, the MIC law is formulated so as the free-f1yer

spacecraft exhibits the snme enforced impedance as the manipulators, and the manipulated

object. In fact, this is the main reason which makes the word multiple app'Jr in the name

of a1gorithm; MIC. This strategy allows compensation for an acquired object's inertia

effects in the impedance law, and coordinated control of the SFFR for performillg a•
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• manipulation task. It is shown that error dynamics for the spacecraft, each end-effector,

and the manipulated object are following the same equation; ail parts of the system are

coordinately controlled based on a designated impedance law.

The vector of generalized coordinates (q) for a multiple arm free-flyer system was

defined in Eq. (3.1 1). The system dynamics is expressed by Eq. (3.14), repeated here as

The vector ofcontrolling variables are defined similar to Eq. (4.7), as

X- - [R T ",T X(1)T ",(I)T ••• x(nlT a(nlT]T
- Co 1 Uo, E ,uE' 1 E 1 E

(3.14)

(6.48)

•

and it is assumed that ail manipulators have six DOFI2, and that they ail participate in

manipulating the object. The vector of output speeds xare obtained from the generalized

speeds. using a square Jacobian Je

(6.49)

The equations of motion can now be written in the task space, i.e. in terms of the

output controlled coordinates x, as

where

Q=J~Q

(6.50a)

(6.50b)

The vector of generalized forces in the task space. Q. can be written similar to Eq. (6.10)

for the i-th manipulator, as

(6.51)

•
where the differ.::nt terms have been already defined, and will he detailed after describing

the object dynamics.

12· Nole IhRl duc la high sarely requiremellls ill space, a so!id grasp or lhe abject is prererrcd, i.e. ils orlenlation

cali nol challge with respect ta Ihe end-errecl.ors. Sa, each manipulalor has la have 6 OOF.
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• The equations of motion for the object remain the same as those obtained in the

previous section, except for the case in which the object includes an internai angular

momentum source, Figure 6.9. Since this case may be of sorne interest for space

applications, the effect of such a momentum source in the object dynamics model is

discussed here.

The Hnear momentum of the source. P" can be wrillen as

P.• = m,v., = m,(xa + 00.>1» x r,) (6.52)

where m, is the mass of the angular momentum source which is not included in the object

mass rn.bl • r, is position vector of the source center of mass with respect to the object CM,

and v, is the inertiallinear velocity of the source center of mass. The required force for

moving the internai angular momentum source along with the object motion, FG. can be

•
weillen as

F:
. d

G =Ps =-msvsdt
(6.53)

Therefore, differentiation of Eq. (6.52) and substitution of the result into Eq. (6.53), yields

(6.54)

Figure 6.9: An abject with an internai angular momentum source,

manipulated by a multiple arm SFFR.•
n·th Manlpulator '·st Manlpulator
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• which has to be included in the force equilibrium equation for linear motion, Eq. (6.11), as

(6.55)

For the object angular motion, based on the translation theorem for angular

momentum (Meirovitch (1970», it can be wrilten

La=L,+r,xp, (6.56)

where L, is the angular momentum of the internai source about ils center of mass, and La

is the angular momentum of the internai source about the object ;:enter of mass. Therefore,

the req••ired moment, Ma, for moving the internai angular momentum source a10ng with

the object motion can be wrilten about the object center of mass as

(6.57)

(6.58)•
which, based on Eqs. (6.52, 56) and assuming that L, has a constant magnitude, resulls in

Ma = (1)ob} X L, + :r (r, :< p,)+ xa X m,(xa + (1)ob} X r,)

Calculating the different terms of Eq. (6.58), and substituting :.'te results back into the

equation, yields

(6.59)

•

which has to be included in Eq. (6.11) for angular motion, as

laCoob} + (1),>/>} X la (1)ob} + (1)ob} X L, + m,r, X (xa + Coob) X r, + (1)ob} X (fI)ob) X r,»)
m m (6.60)

= n + n +~ r (1) X r (1) +~ n (/)
c 0 ~t t ~ t

1..1 /_1

Similar to the general case, and following the same procedure, the object equations of

motion (Eqs. (6.55, 60» can he assembled and wrillen in the matrix form of Eq. (6.13a),

repeated here for convenience

(6.13a)
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where we now have

-'J, 'J., ,
r$·, + rJ~

-'so 'Jr

•

F(I)
•

[ 13•
3 03• 3 1

o ])><) 3><3
F= G= T (1)'•

S~b} ST [ ln»)" ST

F(n)
SOb}[r. l,., ob} rr hl lib) 6><61&

• 6nxl

(6.61)

•
Note that the mass inertia matrix M is no longer block diagonal. Now, a desired

impedance law for the object motion can be chosen as defined in Eq. (6.14)

(6.14)

Then, following the same procedlJre as described for the general formulation, the required

end-effector forces can be obtained as

(6.62)

or (substituting the estimated contact force for the actual one)

F.... =G·{MM~:,(Md..Xd" + kde+ kpe+ Fe)+ FOl -(Fe + F,,)} (6.63)

where G' is the pseudoinverse of the grasp matrix G, a full-rank matrix defined by Eq.

(6.16b). Note that in space operations it is preferred to grab a targeted object with a special

tool or grippers. Therefore, there is no requirement to produce internai forces and moments

in the object and, compared to Eq. (6.18), FinI is chosen to he zero. Then, considering Eq.

(6.51), the controlled force required to be applied on the manipulated object by the end·

• effectors is
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• __ {O.,,}
Q/- F

r".

and, simi!ar to the general case, the reaction load on the system is

where

(6.64)

(6.65a)

(6.65b)

•

Next, to complete the computation of the controlling force, as described in Eq. (6.51), a

proper expression for Qm must he obtained.

To impose the same impedance law on the spacecraft motion, manipulators, and the

manipulated object, the impedance law for the space free-flyer can he written as

(6.66a)

where ë = xdu • x is the tracking error in the SFFR controlled variables (note that e

descrihes the tracking error in the object position and orientation), Ul, =[1... ... 1•••r
is an N x 6 matrix, and

k p 0 0 k d 0

0 k p 0 k d

k = kd =p
0 0 0

0 0 k p 0
N><N

Md" 0 0

0 Md"
Md,,=

0 0

0 0 Md" N><N

o

o

(6.66b)

•
and N =6n+6 is the SFFR total DOF. Note that the desired trajectory for the system

controlled variables, xd,,' can he defined based on the desired trajectory for the object
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• motion. xJ ". and ~he grasp condition. as discussed in the general formulation. Then.

similar to the above derivation for Qf' Qm can he obtained as

(6.67a)

or. substituting the estimated value for the contact force

- -1where M J" can he computed as

(6.67b)

M -1
do

o

o

o
M -1

du

o

o

o
(6.67c)

(6.68)

Next. it is shown that the error dynamics for the spacecraft, each end-effector. and the

• manipulated object are expressed by the same equation.

6.4.2 Error Analysis

Substituting Eqs. (6.67b), (6.65a), and (6.64) into Eq. (6.51), and the result into Eq.

(6.50a) yields

R(q)(JÇf;j:,(JÇfJ"~J" + f(J~ + f( pé + Uf, Fe)- i) +

{

°6XI }

G 'M(M~:,(MJe,xJ"+ kJe+ kpe+ Fe)-X) = 0

where it is assump.d thal. the eX3.N value of the cO'ltact force is available. also mass and

(6.69)•

geometric properties for the. manipulated object. and spacecraftlmanipulating sy~:em art:

given. Since Eq. (6.68) must hold for any M and any fI. it can he concluded that

f1(q) (JÇf;j:,(JÇfJe)J" + f(J~ + f( pé + Uf, Fe)-i) = 0

G"M(M;j:,( MJ"ië J" + kJé + k pe + Fe)- il) =0
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• and, since G' is of full-rank, this results in

P.(q) (10:i:,(10J'~J" +I()+ 1( pH U/, Fe )- i)= 0

M(M:i:,(MJ"ltJ,,+ ki+ k pe+ FJ-:Il) =0
(6.70)

Finally, based on the factthat M and ÏI are positive definite inertia matrices, Eq. (6.70)

results in

MJJ+kJ~+ki+ U/,Fe =0

MJ"ë+kJè+k/,e+Fc =0
(6.71)

•

•

Considering the definitions for MJ", kJ , kp' and U/, as described in Eq. (6.66b),

Eq. (6.71) means that ail participating manipulators, the..free-flyer-base, and the

manipulated object exhibit the same impedance behavior. This guarantees an accordant

motion of different parts of the system for performing manipulation tasks.

6.5 Concludlng Remarks

In this chapter, a new algorithlT. called Multiple Impedance Control (MIC), was developed.

The MIC enforces a controlled impedance on cooperating manipulators and on the

manipulated object, which results in a harmony between different parts of the system.

Similar to the standard impedance control, one of the benefits of this algorithm is the ability

to perform both free motions and contact tasks without switching the control modes. In

addition, an object's inertia effects are compensated in the impedance Iaw, and at the same

time, the end-effector(s) tracking errors are controlled.

To reveal the merits of this new algorithm, a coaceptual comparative analysis between

different control strategies was first presented. Then, a gelieraI formulation for the MIC

algorithm was derived, and it was shown by error analysis that under the MIe law ail

participating manipulators, and the manipulated object exhibit the same controlled

impedance behavior. An estimation procedure for contact force determinNion was given

which results in a good approximation, even during contact.
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• A linear model of an objeet manipulation task by a single manipulator was considered to

present a thorough comparative analysis between the MIC and Object Impedance Control

(OIC). A root locus analysis was used to investigate the stability of both algorithms. 1t was

shown that for a rigid system, both algorithms yield the same c1osed-loop transfer function.

However, in the presence of flexibility, it was shown that the MIC algorithm has superior

stability properties. A simulation was used to demonstrate that the system may never rest

under the OIC law, while the MIC algorithm results in a good performance. Application of

the MIC law to a system of two eooperating two-link manipulators was also simulated. As

simulation results revealed, even in the presence of flexibility and impact forces due to

hitting an obstacle, the performance of the MIC algorithm is reasonably smooth and highly

acceptable.

Finally, application of the MIC law to space robotic systems was formulated. In space,

participating robotic arms are connected through a free-flying base, and the generaI

• formulation was adapted to consider the dynamic cC'upling between the arms and the base.

For the manipulated object, inclusion of an internai source of angular momentum was

admitted. By error analysis it was shown that, under the MIC law, ail participating

manipulators the free-flyer base, and the manip::!ated object exhibit the same designated

impedance behavior; resulting in an accordant mution throughout the system for performing

the task.

•
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Chapter 7

Conclusions and Suggestions

7.1 Conclusions

This thesis deals with dynamics and coordinated control of multiple manipulator SFFR for

the capture and manipulation of space objects. Two basic approaches for kinematics

modelIing of such systems were developed in Chapter 2. The barycentric vector approach

was developed based on taking the system CM a~ a representative point for the system's

translational motion, and on using a set of body-fixed barycentric vectors which reflect

both geometric configuration and mass dist- ibution of the system. This approach results in

decoupling the total linear and angular motion from the rest of the equations, when no

er.cernal forces/torques are applied on the system. On ~he other hand, the direct path

approach was developed based on taking a point on the spacecraft (prcf\lr..bly its CM) as a

representative point for the system's translation. and on using a ~el of body-fixed geometric

vectors. Comparing the results, it wa~ œen that the direct patil approach yields

considerably more compact relationships. This seems a more appropriate approach when

dealing with multiple arm systems, especially when there are sorne external forces and

torques acting on the system.

In Chapter 3, based on the developed kinematics approaches, the general Lagrangian

formulation was applied tQ obtain the dynamics model of a space robotic system. Based on
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the preliminary results, the direct path approach was chosen to develr.p a concise explicit

dynamics model of multiple manipulator SFFR in free-flying mode. Note that to develop

model-based algorithms for controlling a free-floating system, the obtained dynamics

model has tri be reduced by mathematical techniques such as the Orthogonal Complement

Method. However, if the barycentric vector approach is used, the equations can be direclly

reduced and employed for such a purpose. Next, a quasi-coordinate formulation of the

system dynamics, and a formulation using Euler parameters for 'xientation representation

were presented. Also, specific characteristics of space robolic systems, compared to fixed­

base manipulators, were discussed. It was shown that any deviation in the estimated values

of mass parameters has a drastic effeet on the performance of model-based controllers in

~pace. Finally, the symbolic programmiug of the dynamics equations was compared to a

numerical routine, and the generation of the dynamics code was described.

The coordination between a spacecraft motion and its several end-effectors to capture a

moving space object was investigated in Chapter 4. Appropriate lrajectories for the

spacecraft and its manipulators were planned to result in a smooth capture of moving

objects in space. To perform the task, two model-based control algorithms, based on an

Euler angle (MB 1) and on an Euler parameter description of the orientation (MB2), and a

transpose Jacobian control algorithm (TJ) were developed. The MB 1 presents the

inconvenience of representational singularities due to Euler angle description of the

orientation, while the MB2 overcomes lhese non-physical singularities. Multiple arm free­

flying systems were simulated, in both planar and 3-dimensic'lal maneuvers, to investigate

various aspects of the trajectory planning strategy, and to compare the performance of the

developed algorithms. It was shown that a symmetrie grasp results in reduced disturbances

on the spacecraft. Also, for a given maneuver duration, by choosing the maximum

deceleration smaller than the maximum acceleration, a smoother operation can he obtained.

It was shown that if dynamie properties are accurately known, model-based eontrollers

provide gocd tracking. but are computl'tionally expensive. However, due to the eomplexity
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• of the dynamics of space robotic systems, the performance of these algorithms deteriorates

in the presence of higher levels of model uncertainties. On the other hand, the simple

transpose Jacobian algorithm, when used with high gains, provides an acceptable and

computationally inexpensive controller. However, in practice the use of very high gains are

limited due to the presence of noise and unmodelled dynamics. Therefore, further work on

the TJ algorithm was motivated, aiming at improving ils characteristics as a good candidate

for space applications.

The Modified Transpose Jacobian (MTJ) algorithm was presented in Chapter 5.

Employing stored data of the previous time step control command, this algorithm yields an

improved performance in terms of tracking errors, over the standard one. This new

algorithm approximates a feedback Iinearization solution. with no need to a priori

knowledge of the plant dynamics. Therefore, unlike a model-based algorithm, it is not

aff.:.:;ted by modelling inaccuracies and uncertainties. It was shown by simulation that its

• performance is comparable to that of model-based algorithms, and has the advantage that it

requires reduced computational effort. Unlike the standard TJ, this algorithm works weil in

high gpeed tracking tasks. In addition, controller gains can be selected in a more systematic

manner .-ather than in a heuristic way, and the noise rejection characteri~,jc. of the

al~orithm are improved. The new MTJ algorithm is recommended for all applications,

particularly for motion control of space robotic systems, where computational power is

Iimited yet relatively high precession is demanded.

To manipulale a captured object by multiple manipulators, both end-effector motions

and forces have to be considered. To this end, the new Multiple Impedance Control (MIC)

was developed in Chapler 6. The presented algorithm enforces a controlled impedance on

each participating manipulator, and on the manipulated object. This algorithm can be

employed for both free motions and contact tasks without switching the control modes.

ACter a conceptual comparative analysis between different control strategies, the general

• formulation of the MIC algorithm was developed. It was shown that under the MIC law, ail
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• participating manipulators and the manipulated object exhibit the same pre-set impedance

behavior. Therefore, a harmonic accordant motion of different parts of the system is

obtained which leads to a good system performance. Discussing the similarities and

differences between the MIC and the abject Impedance Control (OIC), a simple model 'Jf

performing objeet manipulation task by a single manipulator was considered to compare the

two algorithms. Il was shown that in the presence of flexibility, the system does not rest

under the OIC law (either becornes unstable or enters a Iimit cycle), while the MIC

algorithm results in a well damped response and smooth stop of the object at thc obstacle.

Next, a system of two cooperating two-Iink manipulators was simulated, where a Remote

Centre Compliance was allached to the second end-effector. As shown by simulation, even

with flexible elements and an impact due to hilling an obstacle, the performance of the MIC

algorithm was reasonably good and reliable. Finally, the MIC law was applied to a multiple

arm space robotic system, where the dynamic coupling between the arms and the base, and

• an internai angular rnomentum source for the object were taken into accounl. Il was shown

that under the MIC law, the participating manipulators, the free-flying spacecraft, and the

manipulated objeet exhibitthe same comrolled impedance behavior. This strategy permits

coordinated control of a multiple manipulator SFFR in performing a manipulation task, as

well as compensation for an acquired object's inertia effects in the impedance law.

7.2 Suggestions for Future Research

In this research work, the dynamics and control of multiple arrn space robotic systems was

studied. To extend the obtained results, and develop new contributions to this fast growing

field of science, sorne suggestions for further researeh are presented in the following.

Non-square Jacobians. In developing the control algorithrns, presented in this

study, it was assumed thatthe system is sufficiently actuated. In other words, the vector of

actuator forces/toques was assumed to be related to the vector of generalizcd forces by an

• NxN square Jacobian matrix, where N is the system DOF. Formulating the developed
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• algorithms for non-square Jacobians, inspired by the objectives ofcontrolling over-actuated

or under-actuated systems, would he interesting for further research.

On·off thrusters. Controlling space manipulators, in free-flying mode, requires

applying spacecraft thruster forces/torques. Application of the developed control algorithrns

in simulated systems was based on the assumption that actuator forces/torques, including

those exerted by thrusters, are continuous. However, current space technology uses

compressed-gas on-off thrusters, to avoid valve c10gging from freezing. Although space

technology is developing fast, and this may not be a problem in near future, considering

on·off thrusters will yield more realistic results.

An MIC algorithm for several free.flying robots. The new MIC law, for

space applications, was developed for a multiple arm free-flyer system, assuming that each

manipulator has six DOF and ail participate in manipulating the object. The fact that sorne

appendages may not participate in performing the task, can be easily included in this

• formulation. Also, admitting extra DOF for activated manipulators can be helpful fol'

implementation of the algorithm in redundant systems. Development of the MIC law for a

centralized control of several free-flying robots in manipulating an object, can be pursued

based on the same structure as implemented in cooperation of several manipu\ators. This is

another interesting subject for further research.

An MIC law wlth no requirement of manipulator dynamics knowledge.

As shown in this study the performance of model-based algorithms, in space, is more

affected by the accuracy in the estimation of mass parametcrs. Similar to model-based

algorithms, the MIC law requires knowledge of the system dynamics concerning the

manipt.lators motion (in computation of Qm)' Therefore, it is an interesting subject for

future research to substitute the motion-concerned part of the MIC law, with the developed

MTJ algorithm whic;; does not require any J'riori knowledge of the system dynamics.

Design aspects. The dynamics generation and simulation codes were used to

• evalüate the performance of alternative developec' control algorithrns. These codes can be
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• used in the design procedure of space fn:e-f1ying robotic systems in both architecture. and

functionality. Further research can be dOl'~ in this area. to develop sorne useful design

guidelines.

Experimental studles. In this research work. simulation routines were very helpful

to improve the new algorithms. and evaluate them. where a graphical simulation code was

used to obtain an animated picture of the whole maneuver. However. experimental studies

can show the merits of the developed theories in a real implementation. and may bring up

sorne hidden points to improve the presented algorithms.

•

•
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Appendix A

Three Formats Used in Dynamics Modelling

As discussed in Section 3.2.2.1, the system kinetic energy is composed of three typical

terms which have to be differcntiated according to Eq. (3.1). Differentiation of these terms,

• is presented in this appendix, to obtain three formats as used in deriving the system

dynamics model.

Considering the first typical term, as given in Eq. (3.17a) and rcpeated here

1 ..
a,=-mr·r

2

its diffcrentiation with respect to lI, as an arbitrary generalized speed is obtained as

aa, ai".
-=m-'raq, aq,

(3.17a)

(A.I)

Note that for the implementation of the following formulation, r has to be differentiated in

the inertial frame l3. Then. i" =dr1dt can he calculated as

•
13· If r i. nol diffcrcntialcd in the incrtia' frame. lhen

r="r+«Jllxr
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• . far.
r= L.-q.,=, aq, .. (A.2)

which yields

(A.3)

Substitution of Eq. (A.3) into Eq. (A.l) yields

all, ar.
-=/II-'raq, aq,

which can be differenlialed with respect to time, to obtain

(A.4)

d (all' ) ai'. ar ..- -- =/Il-'r+/Il-'r
dl aq, aq, aq, (A.5)

(A.7)

(A.6)

Also, a, can be differentialed with respect 10 q, as an arbilrary gencralized coordinatc

all, ai'.
-=/Il-'raq, aq,

Therefore, based on Eqs. (A.5) and (A.6), it can be writtcn

!!...(aa,)_ aa, =/Il ar .r
dl aq, aq, aq,

•
where r can be obtained as

whcrc "r is lime diffcrcntiation of r whcn cxprcsscd in a frame B which has an angullir vclocity of 0)" wilh

respect to the inenial frame. and can he compulcd as

,.. N BêJr. "ëJr
r= L--'l +­

,., a'l,' al (A. Lb)

Note Ihat a lefl supcrscript on partial dcrivntivcs dcnotcs the frame in which the diffcrcnlial.ion has ln he lakcn.

Tberefore. unJess 'a rial = O. il eun be seen thal

•
'a. 'ar-,.-
ail, a'l,

which ncccssitatcs the condition of diffcrentiating r in the incrtinl frame. for writing Eq. (A.2-3).

(A. I.e)
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• .. f{ a (f ar . ). ar .. }r= k - k.i- q q +-q
.,., aq, '=1 aq,' , aq, '

Substitution of Eq. (A.8) into Eq. (A.7), and further simplifications, yield

(A8)

(A9)

which describes format-l, given as Eq. (3.18), where r has to be differentiated in the

inertial frame.

Next, considering the second lerm, as given il' Eq. (3.I7b)

•
1

a2 =-CD·I·CD
2

ils differentialion with respect to q/ as an arbitrary generalized coordinate, is

(3.17b)

(A. JO)

where CD is differentiated in the body frame. Also, differentiation of a2 wilh respect to lI,

as an arbitrary generalized speed, is obtained as 14

aa2 =CD·!·aCD
aq, ail,

which can he differenliated with respect to lime, to obtain

Then, ID can he computed as

(AIl)

(AI2)

•
14· Con.idering Eq. (A.I.al. sinee (Il x (Il = O. lhe time derivalive of a body's angular veloeity in bolh inertial and

corresponding body frame is Ihe same. Therefore. it is preferable 10 implemenl ail differenlialions relaled la a, in

an approprialo body frame. Hence. lhe angular velocity of an individua! body (m) is differenlialed in lhe

eorre.ponding body frame. where 1 is a conslanl.
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A1so

. f{aoo. aoo .. }
00= "" -q, +-.q,

'=1 aq, a'i..
(A.13)

(A.14)

Note that the angular velocity of an individual body is a linear function of generalized

speeds, see Eqs. (2.12) and (3.7), therefore a2oo/ ail/ail, = 0 in Eq. (A. 14).

Substitution of Eqs. (A.l3) and (A.14) into Eq. (A. 12), and subtract Eq. (A. ID) from

the result, after further simplifications yield

• which describes format-Il, given as Eq. (3.19), and can be considered as contribution of

the second term to the equations of motion. Note that 00 is differentiated in a body frame in

which 1 is considered as a constant dyad.

Finally, considermg the third typicalterm of the system kinetic energy, as defined in

Eq. (3.l7c)

•

ils differentiation with respect to q, is

aa aRc (~ .) . (~ ar)a'" =-a•. L.i nl, r, + Re.' L.im,~
q, q" ,q,

and its differentiation with respect to fI" can be obtained as

16D

(3.17c)

(A.16)

(A.17)



• where ail derivatives are computed in the inertial frame. Then, Eq. (A.17) can be

differentiated with respect to time, which yields

d (au) aRc ("" ) aRc ("" )- ....' =a' "",m,r, +a' """m,r, +
dl aq, q" q"

.. ("" ar,) . ("" ar, )Rc•· 7" /Il, aq, + Rc•· 7" /Il, aq,

Therefore, subtracting Eq. (A.16) from Eq. (AI8) yields

(A.18)

(AI9)

•

where r, and Rc• can be wrilten in terms of generalized coordinates and their rates as

given in Eq. (A.8). Substitution oi these vectors by appropriate expressions, and further

simplifications, leads to

which describes formaI-Ill, given as Eq. (3.20), where R c• and r, have to be

differentiated in the inertial fnune.

•
161



•

•

•
162



•

•

Appendix B

Case Study: Transfer Functions

Considering the simple model depicted in Figure 6.2, the corresponding transfer functions

for the MIC and OIC algorithms are presented here. The open-Ioop block diagram for this

system, based on the Laplace transformation of Eqs. (6.31), is shown in Figure B. I. Next,

the MIC and OIC laws as applied to the considered system, are derived.

Considering Eqs. (6.19) and (6.22), the MIC ~Igorithm yields the following control

force as applied to this system

(B.I)

where

1", = 11I, III J,.,-' (III J,.,X,Ju + kJ e, + kp e, + l,) + b,(x, -.:S )+ k, (x, - X 2 + 1'/"')

+ "'cl III J ,.,-1 (III J ,,·'i:2Ju + kJ e2 + k,. e2 + /,)+ b, (.:S - x,) + b2 (.:S -x3 ) (B.2a)

+ k, (x2 - x, -1'1"') +~ (~ - X3 + 121",)

(B.2b)

•
assllming !hat the exact v;lllle of the contact force, J;, is available as

J; =kw (x". - x3 )
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•
1

°2 =
n12s2+{bl +b2ls+K1+K2

0) = _-:-__
m3s1+h2S+K2

Figure B.I: B10ck diagram for the open·loop system.

where kw is stiffness coefficient of the obstacle located at XII" Note that the desired

trajeetories for ml' and ,,~ can be defined based on the desired trajectory for the object

•

•

("'J), as
r_ -r_ -/
·-lJtJ - ·-Jdu 2/rre

X =x -/ -/Idt.( 3Ju I/ru 2/rn

Substituting Eq. (B. 1) into (6.31), and summing the result, yields

Ill, (mJ",ë, +kJel + kpe, +J,) + m, (mJ"ë, +kJe, + k,. e, +1.,) +

Ill, (IIlJ". ë, +kJe, + k,. e, + f.,) = 0

Since Eq. (BA) must hold for any sel of 1Il1' ,,~, and "':1, it can be concluded that

IIlJ,A + kJe, + k,. el +J. =0

IIlJ",ë2+ ki2 + kpe2+J. = 0

IIlJ,,ë, + kJe, + kpe, +J. = 0

w.hic!: reveals that all tracking error:, are govemed by the same target impcdance.

The Ole as applied to th~ considered system, yields the following control force lS

IS- For delails. see Schn.iùer and Cannon (1992).
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• where

/'.mp =m,i'md+b,(XI-X2)+kl(x,-~ +llf"')

+ ln, X,md+ h, (X2 -XI )+ b2(~ -X,)+ kl (~ -XI -llf"') + Js (~ -X:J + 12f"')
(B.7a)

(B.7b)

and
(B.7c)

•

To obtain the transfer function between the output, Le. object position, and the given

desired position. corresponding block diagrams for the two algorithm are simplified,

Figures B.2 and B.3. Note thatto obtain a deeper insight of the nature of these algorithms,

mass properties in the controller circuit are considered different from the corresponding truc

parameters. Therefore, Ill; represents truc mass value which appears in 0i' while lill is the

given value for control purposes. For root locus analysis, the object stiffness coefficient Js

was selected as a variable parameter. So, the characteristic equation for the corresponding

transfer functions, G,"C(S) and 0OlC(S). can be wrillen as

1+Js N(s) =0
D(s)

(B.8)

ln the following, G.IIC(s) anJ GOlC(s) are presented in a proper format to yield the

corresponding characteristic eqllaiion in the given forrn.

o For the MIe:

(B.9)

where

•
where

DellI =D,(s)+JsNI(s)
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• NI(s) = Ill J,,(Ill, + m, )Illls· +( IÎI,(lI~ + Ill, )kJ+ /IIJ',,( Ill, + 1I~ + 1I'J )b,)s' +

((lÎI I +IÎ~ + IÎ'J)blkJ +IllJ",(1ll1+ Ill, +lI'J)k, +IllJ,/ll lk.,)S2 +

(Iii l +IÎ~ +In.)b,kp + (Iiil + 'ii: +lii,)klkJ+(/II, +1I'z )b,k,., + lii lk..kJ).1'+

(IÎI, +IÎI: +IÎ'J)k,kp +IÎllk.. kp +(Ill, +/11: +lI'J)k,.,k,
(B.llu)

•

D 1(.1') = IllJ,/IlIIll,lI~S· + (IÎI,Ill,lI~kJ+ IIIJ,,(Ill, + Ill, )Ill,b, + III J,,(Ill, + Ill) )1ll 1bJs' +

(IllJ,,(1ll 1+ Ill, )lIli-i + /IIJ",(1ll 1+ 1I~ + "'.,)b lb2+ IÎ~ lll,b,kJ+ IÎI I(1Il 2b2 + III P', + b2))kJ+

IÎI,lI~Ill,kl' + IllJ",II~Ill,k.. )s· +(IÎ~(1Il2 +Ill,)b2kl, + 1ll,(IÎI, + IÎI:)(b,kl,+ k,kJ)+

(IÎI I+ IiI: +IÎI,)b,b2kJ+ IllJ,,(Ill, + Ill, + 1I~)klb2 + IllJ",lI~(bl + b,)k.. +

(Ill J"b, + IÎ~ k" )Ill,k.. )s' +((IÎII + IÎ~ + IÎ'J)b, (blk" + k ,A;,)+ 1ll,(IÎl I + IÎ~ )k ,kl,+

(IÎI I+ IÎ~ )blk).. +IllJ",(lI~ + III 2)kl'.. + (/II, + Ill, + Ill,)b lb,k., +IÎI, (b,kJ+ 1Il2kl,)k.,)S2 +

(Iii, + IÎ~ +IÎ'J )b,klkp + (IÎI, + 'ii:)k,k)., + IÎI I(b , + b, )kl,k., + (Ill 1+ II~ + 1Il., )k,b, k., +

IÎl:kl,b l k.,)s+ (IÎII+ IÎ~ )k,~,k..
(B.llb)

o For the Ole:
(B.12)

where

where
N,( .l') = IIIJ",(/II, + 1I'J )11I1.1'. + IIIJ",( 1111+ /II, + 1I'J )bls' +

(ml +IÎ~ + IIl,)b,kJ+ IllJ",(1II1+11I, +lI'J)k, +Ill",lll,k.. ).\·' +

(Iii, +IÎ~ +In.)b,kp + (Iiil +IÎI: +IÎI,)k,kJ+(Ill, +111: +lI'J)b lk,.)s+

(IÎI, + ihz + IIl,)klkp +(Ill, + Ill, +lI'J)k,.k,

(B.13u)

(B.13b)

(B.14u)

•

D,(s) = IllJ"Ill IIll:/Il,s· + (lIlJ,,(m, + Ill, )1ll:PI + IllJ",( Ill, + Ill, )1I~b, ).1" +

(IIl J",(Ill, + Ill, )lIl,k, + IllJ,,(lIl l + 1I~ + Ill,)b,b, + 111 J,I" ,111: k.. )s· +

( IÎI I + IÎ" + IÎl, )b,b, kJ+ lI~",( III 1+ Ill, + Ill,)k lb, + IllJ",lIll b l + b, )k.. + III ,', ,b ,Ill, k..)i+

((nll + IiI: +Iii,)b,(blkp +k lkJ)+(Ill, + 1I~ + 1Il,)blb, k.. + IllJ,,(1Il 1+ 1I~ )k ,k. ).1" +

(1Îl1+ ihz +lÎ'J )b,klk" + (Ill 1+ Ill,+ lIl,)k,b,k.}r

(B.14b)
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Appendix C

Case Study: Root Locus Analysis

Considering the system depicled in Figure 6.2, a root locus analysis for the MIC and OIC

algorithms, is presented in this appendix. To this end, the loci arc plolled as a function of

the object stiffness ( 's ) for various dumping factors ( h,).

The system mass paramelers arc chosen as m, = 100 kg, m., = 20.0 kil, and

1/t, = 10.0 kg. Assuming a fundamenlal frequency of 20 Hz for the manipulalor (which is

relatively high, according to Rivin (1988», k, is computed as

(j) = 2re! =
k,(m, +m,)

m,m,
~k, =2.6xI0' Nlm

•

AIso, considering a logarilhmic decrement (ô) of 0.2 for the manipulator (which is again a

relatively large structural damping, according to Rivin, 1988), h, is computed a~

Ô
Ç=-=C.03~h, =2Ç~k,m, =325kglsec

2re

Unless otherwise stated, the controller parameters arc md, .• = 100.0, kp = 100.0,

kd = 300.0, ln, = 110 kg, ln, = 18 kg, and nt, = Il kg. The variable parameter 's, is

changing between 0 and 1010. For the obstacle, see Figure 6.2, kw is equal to 105 if contact

occurs, otherwise it is zero.
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Figure C.2: Root locus for the

OIC law, b l =100, (a) In contact

(b) No contact.
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Figure C.I: Root locus for the

MIC law, b, = 100, (a) In contact

(b) No contact.

•
Figures C.I,2 compare the root loci of the MIC and OIC, for b2 = 100.0kg/sec. As it

is seen, both algorithms are stable, no matter whether the object is in contact with the

obstacle or not. Figures C.3, and CA corapare these root loci, for b2 = 10.Okg/sec. Here,

it can bc seen that both algorithms are stable if the object is in contact with the obstacle, but

the OIC bccomes unstable if there is no contact. Note that contact bctween the object and

obstacle, adds a kind of feedback to the system, and so results in different bchavior. Next,

we see the effect of different controller parameters on the stability of the OIC algorithm.

The effect of choosing larger gains and the desircd mass parameter on the stability of

OIC algorithm, for b2 =10.Okg/sec with no contact, is shown in Figure C.s. In part (a),

• mJ ,,=100.o, k, =1000.0, and kd = 300.0, while in part (b), md ,,=100.0, k, =100.0,
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• and kJ = 1000.0. As it is seen, choosing larger gains does not result in a stahle syslem. In

part (c), IIlJ ,. = SOO.O, kp = 100.0, and k,.= 300.0, white in p:trt (d), IIlJ " = 500.0,

kp = 100.0, and kJ = 1000.0. A larger value of the desircd mass has a positive effect on the

s!ability of this algorilhm, as cali he seen in Figure C.Sc. However, il is expccled (:tnd will

be shown by simulation) that selecling a higher inertia for the desired ohject impcd:tnce

rcsults in a sluggish pcrfonnance. Choosing a larger kd hesides larger value for the desircd

mass results in a more stable root locus, Figure C.Sd.
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Figure e.3: Root locus for the

MIe law, b, = 10, (a) In contact

(b) No !:ontact.

Figure e.4: Root locus for the

ole law, b, =10, (a) ln contact

(b) No contact.

•
Figures C.6 and C.7 compare the root locus of the MIC and OIC algorithms, for

b2 = 0,0, As it is seen, the MIC algorithm is stable no matter whether the abject is in
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• contact with l~.e obstacle or nol. 'In the contr.lry. the OIC algarithm is unstable and. for this

case. choosing a larger desired mass parameter or a larger kd docs nol rcsult in a stable root

locus.
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Figure e.s: Root locus for the ole law. b2 =10, and no contact, (a)

Larger Kp• (b) Larger Kd • (c) Larger mdes' (d) Larger

Kd and mdes'

As shown in this appendix. the MIC algorithm has superior stability properties

comparcd to OlC.
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Appendix D

Case Study: Simulation Results

Considering the system depicted in Figure 6.2, and the set of controller parameters given in

Section 6.3.4.4, il was shown by simulation thatthe system never rests under the OIC law,

while the MIC algorithm yields a smooth stop of the object at the obstacle. Further

investigations on the effect of choosing lal'ger gain~ or the desired mass parameter, are

presented in this appendix.

Choosing a larger damping gain J6, kd=700, the obtained results are depicted in Figures

0.1 and 0.2. As it is seen, the resulting oscillations in applying the OlC law do not

disappear, while the MIC algorithm yields a well-damped smoother response. Comparing

these results to the previous ones (depicted in Figures 6.4,5), tracking errors in free motion

(before the contact at t"" 2.0 sec) are reduced as expected, and the peak of the input force

increases for both a1gorithms. However,the contact force (partieularly for the tirst impact)

has an increase of ab(lut 30% for the OIC, whilc the MIC docs not result in a substantial

increase. Note that the root locus analysis shows that both the OIC and MIC are stable for

both the "no contact" and "in contact" phases. However, choosing larger kd' s than this will

make the system under the OIC IdW unstable.

16· The conlroller paramelers were rormerly chosen as mdes=IOO. kp=IOO, and kd=300. scc Seclion 6.3.4.4.
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Figure D.2: Performance of the

ole. kd =700, (a) Object tracking

error, (b) The applied controlling

force, (c) The contact force.

•

To see the effect of actuator saturation limits on the performance of the two 'ligorithms.

the previous simulation with Jc.J=700, is repeated for -SO:5 F; :5 SO, Figures D.3 and D.4.

Initially, both algorithms demand an input force which is beyond the saturation limil.

Thcrcforc. tracking errors grow. and both algorithms yield almost the same result.

Howcver. likc previous cases, a big difference between the performance of the two

algorithms appears when the demand is below the actuator saturation limit, particularly after
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• the contact (at t = 2.0 sec). The MIC algorithm resulls in a smcoth stop of Ihe ohject allhe

obstacle. Figure 0.3. while the system enters a limit r.ycle under the OIC l"'v. Figure 0..1.
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Figure D.3: Performance of the Figure D.4: Performance of the

MIC with actuator saturation limit. OIC with actuator saturation limit.

IFactuatorl < 80, (a) Object tracking

error, (b) The applied controIIing

force, (c) The contact force.

IFactuatorl < 80, (a) Object tracking

error, (b) The applied controlling

force, (c) The contact force.

Figures 0.5 and 0.6 compare the result of ehoosing kp=1000. As it is seen, the

amplitude of the oscillations increase. when applying the OIC law. while the MIC

• a1gorithm yields a Iower damped response (compared to kp=IOO) which is expected. Note
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• that root locus analysis shows that both OIC and MI( :e stable in both phases. but it

seems so that OIC bccomes unstable. In gencral, an on-off type of nonlinear system may

bccome unstahle or expcriencc a limit cycle while it is switching beiween two Iinear stable

systems. Longer simulation time.' show that the OIC is just experiencing a Iimit cycle. Iike

previous cases.
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Figure D.5: Performance of the

MIC, kp =1000, (a) Object tracking

error, (b) The applied controlling

force, (c) The contact force•
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Figure D.6: Performance of the

OIC, kp =1000, (a) Object tracking

error, (b) The applied controlling

force, (c) The contact force.
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•

Figures D.7 and D.8 compare the simulated performance of the MIC and OIC for a

relatively lowerdamped object, Le. b2 = 10.Okg/sec. The rcst of the system parameters arc

the same as before, and so arc the controller parameters, Le. nlJ ,,= 100.0. kr =100.0. and

kJ = 300.0. Il can be seen that the performance of both algorithms docs not show any

considerable deterioration. It is interesting to note thatthe rootlocus analysis shows that for
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• the given parameters. the system under the OIC law becomes unstable in the "no contact"

phase.

As discussed before. choosing larger values for the desired mass besides larger I<.J. can

result in a stable system. see Appendix D. In this case (for b2 = 1O.0kg/ sec), mdes =500.

ancl kd =1000 guarantees the stability of the OIC in both phases. Figure D.9 shows the

effect of thesc choices on the performance of the Ole. As it is seen. choosing larger values

for 'he desired mass makes the system sluggish. where large kd's can reasonably damp the

oscillations.

Based on the investigations presenled in this appendix. it can be concluded that the MIC

algorithm yiclds a preferable performance. compared to the Ole.
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Figure 0.9: Performance of the Ole, for b2 =10, mdes =500,

kd=lOOO, (a) Object tracking error, (b) The applied

controlling force, (c) The contact force•
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