
Guarding Problems
and

Geometric Split Trees

James Alexander King

A thesis submitted to McGill University

in partial fulfillment of the requirements of the

degree of Doctor of Philosophy

c©James King 2010.

Abstract

Many geometric problems are intrinsically linked to the issue of splitting or

classifying points. We investigate two such families of problems in two separate

branches of research.

Guarding problems are motivated by the issue of guarding a region with se-

curity cameras or illuminating it with lights. Such problems have been studied

for decades, but there are two significant guarding problems whose complexity

is not completely understood. First, we investigate the problem of guarding

simple polygons; this problem is known to be NP-complete but its approx-

imability is not known. Second, we investigate the complexity of guarding

monotone chains, also known as 1.5-dimensional terrains. Understanding the

interaction of ‘visibility polygons’ and how they separate point sets is crucial

for the investigation of such problems. We resolve a significant open problem

by proving strong NP-completeness for terrain guarding. We also present an

approximation algorithm for guarding simple polygons with perimeter guards;

this new algorithm improves the state of the art.

A geometric split tree is a data structure for storing point sets that recur-

sively splits the space, and in turn the data, in some random way. Understand-

ing the distribution of such a tree’s structure is a matter of understanding the

distribution of the splits. We investigate the distributions associated with sev-

eral natural splitting methods. We make new connections between an impor-

tant problem in discrete geometry and natural probability distributions. With

the goal of analyzing geometric split trees based on their splits, we introduce

a random tree model that is general while still allowing powerful comparisons

with random trees from more restricted models.

iii

Résumé

Beaucoup de problèmes géométriques sont intrinsèquement liés à la question

de la division ou classification des points. Nous étudions deux familles de

problèmes dans deux branches distinctes de recherche.

Les problèmes de surveillance sont motivés par la question de la surveil-

lance d’une région avec des caméras de sécurité ou d’éclairage avec des feux.

Ces problèmes ont été étudiés depuis des décennies, mais il y a deux prob-

lèmes importants dont la complexité n’est pas complètement élucidée. Tout

d’abord, nous étudions le problème de surveiller des polygones simples. Ce

problème est connu pour être NP-complet, mais son approximabilité n’est

pas connue. Deuxièmement, nous étudions la complexité de surveiller des

châınes monotones, aussi connues comme terrains en dimension 1,5. Com-

prendre l’interaction des polygones de visibilité et la façon dont ils divisent les

ensembles de points est crucial pour l’étude de ces problèmes. Nous résoudrons

un problème important ouvert en prouvant que surveiller les terrains est forte-

ment NP-complet. Nous présentons également un algorithme d’approximation

pour la surveillance des polygones simples avec des gardes sur le périmètre. Ce

nouvel algorithme améliore l’état de l’art.

Un arbre de division géométrique est une structure de données pour stocker

des ensembles de points qui divise de manière récursive l’espace, et aussi les

données, d’une certaine manière aléatoire. Le compréhension de la réparti-

tion de la structure d’un tel arbre est une question de compréhension des

répartitions des divisions. Nous étudions les répartitions associées à plusieurs

méthodes de division naturelles. Nous faisons de nouvelles connexions entre

un problème important en géométrie discrète et des distributions de proba-

bilité naturelles. Dans le but d’analyser les arbres de division géométriques

en fonction de leurs divisions, nous introduisons un modèle d’arbre aléatoire

qui est général tout en permettant des comparaisons puissants avec les arbres

aléatoires dans des modèles plus restreints.

v

Acknowledgements

First and foremost I would like to thank my supervisor Luc Devroye, who has

taught me so much, supported me in every way, and without whom I could not

imagine my time at McGill. I would also like to thank David Kirkpatrick, Erik

Krohn, and Colin McDiarmid, all of whom were coauthors on papers related

to this thesis. Collaborating with them has been a pleasure as much as it has

been a learning experience.

I would like to thank Bill Steiger for his helpful comments and more gen-

erally for his service as the external examiner of this thesis. Similarly, I owe

a debt of gratitude to the other members of my committee, particularly Odile

Marcotte, Mohit Singh, and Adrian Vetta, all of whom prepared for my defence

on short notice during a busy time of year.

The last five years have been spent in the company of office mates and

colleagues — grad students, postdocs, and profs — who have made this place

feel like home. The coffee breaks, intramural sports, and tropical workshops

have been unforgettable.

Outside of McGill, my life in Montreal has been filled with amazing friends.

It is hard to believe that I knew so few of them five years ago, and I hope that

my life brings me back to Montreal before long.

Finally, I would like to thank my family. My parents have given me nothing

but love and support, and it has been a blessing to live near my brother again

after living for so many years on opposite sides of the continent.

vii

Contents

Abstract iii

Résumé v

Acknowledgements vii

Contents ix

1 Introduction 1

1.1 Guarding Problems . 1

1.2 Geometric Split Trees . 3

1.3 Thesis Contributions . 5

1.4 Future Directions . 6

I Guarding Problems 9

2 Range Spaces and Approximation 11

2.1 Introducing Range Spaces 12

Approximating Set Cover . 13

Geometric Hitting Set . 15

2.2 Approximation from ε-Nets 15

An Introduction to ε-Nets . 15

Iterative Reweighting . 16

Considering the LP . 18

2.3 VC-Dimension . 18

Origins and Definition . 18

Small ε-Nets via Random Sampling 22

Lower Bounds for ε-Nets . 23

ix

x CONTENTS

Parameterized Complexity . 24

2.4 Notes . 26

3 Guarding Terrains 29

3.1 Terrain Guarding Preliminaries 30

3.2 Range Spaces and Approximation 31

Discretization . 31

VC-Dimension of Terrain Guarding 33

Approximation Algorithms . 38

3.3 NP-Completeness . 40

Planar 3SAT and Path Representations 42

Propagating a Truth Assignment 47

Evaluating clauses . 62

3.4 Notes . 72

4 Guarding Polygons 73

4.1 Polygon Guarding Preliminaries 74

Range Spaces . 75

Discretization . 76

4.2 Improved Approximation for Perimeter Guards 80

Building Quadratic ε-Nets . 81

Smaller ε-Nets via Hierarchical Fragmentation 86

4.3 Notes . 92

II Geometric Split Trees 95

5 Probabilistic Groundwork 97

5.1 Basic Distributions and Concepts 98

Definitions . 98

Notable Univariate Distributions 100

Domination and Coupling . 101

Vector Domination . 103

5.2 Betas and Dirichlets . 105

xi

Beta Distributions . 105

Dirichlet Distributions . 110

5.3 Notes . 115

6 Random Split Trees 117

6.1 Random Binary Search Trees 118

Depth Analysis . 119

Height Analysis . 120

Coupling With Random k-d Trees 122

Random b-ary Search Trees . 124

6.2 A General Model . 125

Uniform Split Vectors . 126

Limit Laws . 127

Geometric Examples . 128

6.3 Bounding With Reference Trees 130

Depth Domination . 132

6.4 Notes . 134

7 Random Hyperplane Splits 135

7.1 Competing with Uniform Splits 136

7.2 Connections with k-Facets 139

Dual and Spherical Interpretations 141

7.3 Upper Bounds for (≤ k)-Facets 142

The Moment Curve . 142

Generalized Upper Bound Conjectures 147

7.4 Lower Bounds for (≤ k)-Facets 148

Upper Bounds for Halving Facets 149

Lower Bounds for (≤ k)-Facets 149

An Inductive Formulation of Hyperplane Splits 150

An Extended Lower Bound for (≤ k)-Facets 153

7.5 Notes . 155

xii CONTENTS

8 Hyperplane Search Trees 157

8.1 Hyperplane Search Trees . 158

Related Structures . 160

Membership in Random Tree Models 161

Consequences . 163

8.2 Arrangement Trees . 165

Membership in Random Tree Models 166

8.3 Notes . 170

9 Conclusion and Summary 173

9.1 Thesis Contributions . 173

9.2 Future Directions . 174

Bibliography 174

Chapter 1

Introduction

This thesis investigates problems from two areas of computational geometry

and is therefore written in two parts. In the first part we investigate guarding

problems — combinatorial optimization problems concerning lines of sight.

In the second part we investigate random geometric split trees. These are

random space partition trees whose analysis is closely related to problems in

combinatorial geometry.

1.1 Guarding Problems

Given a number of objects it is natural to ask how to guard them with the

minimum number of security cameras or how to illuminate them with the

minimum number of lights. We may want to guard the interior of a building

or we may want to illuminate a highway. These problems concern lines of

sight and in the field of computational geometry they are known as guarding

problems.

Most of the interesting problems take place in R2. Problems in R are

usually too easy to be interesting and problems in R3 are usually too hard

to be interesting. In R2 our ‘guards’ (i.e., cameras or lights) are typically

modeled as points and obstacles are typically modeled as line segments. The

objects to be guarded are typically modeled as the finite union of points, line

segments, and/or polygons. We say that one point sees another if the line

segment between them does not pass through an obstacle. A guarding set is a

1

1. Introduction

set of guards that sees all the objects that need to be guarded.

The study of guarding problems began in 1973 with a question raised by

Victor Klee (83). He asked the following:

For a simple polygon P with n vertices, what is the maximum

number of vertex guards needed to guard the interior of P?

The answer, given as Chvátal’s Art Gallery Theorem (21), is bn/3c. Many

variations of this problem have been studied; for a survey of these problems

and results we refer the reader to O’Rourke’s book (83).

This problem and others like it are existential in nature. The problem can

be stated as, “What is the maximum over all simple n-gons P of the size of

the minimum guarding set for P?” It is perhaps more interesting to ask, “For

a given simple n-gon P , what is the size of the minimum guarding set for P?”

The problem then becomes an optimization problem of algorithmic interest.

Range Spaces and Approximation

In the first chapter on guarding problems, we discuss range spaces. Also known

as set systems or hypergraphs, range spaces represent systems of constraints.

The constraints involved in guarding problems are naturally modeled as range

spaces.

We focus on the hitting set problem on range spaces under certain re-

strictions. Many general techniques developed for this problem, especially

approximation algorithms, are applicable to guarding problems. We introduce

ε-nets and discuss the general framework for turning an algorithm that finds

small ε-nets into an approximation algorithm for hitting set. We then discuss

the concept of a range space’s VC-dimension, particularly as it applies to the

construction of small ε-nets.

Guarding Terrains

The first guarding problem we investigate is the terrain guarding problem. In

this case a terrain is modeled as a monotone polygonal chain; as such, a terrain

is a natural way to model a topologically linear area of interest that has varying

2

Geometric Split Trees

altitude over a linear range. We determine the maximum VC-dimension of the

range spaces associated with terrain guarding problems. We then discuss the

state of the art regarding approximation algorithms. Finally, we give a proof

that the terrain guarding problem is NP-complete, resolving a long-standing

open problem.

Guarding Polygons

After our treatment of the terrain guarding problem, we turn our attention to

the problem of guarding polygons. This is the optimization version of the art

gallery problem — in this context the input polygons are often referred to as

galleries. We introduce the problem and define the associated range spaces.

With the goal of applying general results for finite range spaces, we discuss

issue of discretization. Discretization is far more complicated for polygons than

for terrains. We then present an approximation algorithm for certain variants

of the problem (specifically, guarding simple polygons with perimeter guards)

that improves upon the state of the art.

1.2 Geometric Split Trees

Binary search trees are based on the idea of recursively splitting a data set.

Informally, if the internal nodes in the tree split the data evenly, the height of

the tree and the average depth of a node in the tree will be smaller. These

properties of a tree are of particular interest because they correspond to the

worst-case search time and the average-case search time respectively.

We begin our discussion of random tree data structures with a simple exam-

ple, the random binary search tree. Given a fully ordered set S = {x1, . . . , xn}
of n distinct elements, this random tree model can be defined several different

ways. Perhaps the most natural and intuitive is to consider constructing a

binary search tree from scratch by inserting the n elements one at a time in

random order. This description also motivates the model since real-world data

often behave similarly to random data.

3

1. Introduction

Random Split Trees

Random binary search trees are a canonical but extremely restricted model

of random tree data structures. Many generalizations have been studied and

analyzed; perhaps the most notable model being the random split tree model.

For trees in this model, asymptotically tight bounds can be obtained for the

height of a tree and the average depth of a node in a tree (31).

The key to the asymptotic behaviour of a random split tree is the distribu-

tion with which a node divides the elements in its subtree among the subtrees

rooted at its children. An unfortunate restriction of the random split tree

model is that, for every node in the tree, the random split must be identically

distributed. We present a model that avoids this restriction, yet allows the

structural distribution of a tree to be bounded using a tree from the random

split tree model.

Splitting with Random Hyperplanes

Random binary search trees store elements with one-dimensional keys which,

in geometric terms, we can consider to be points in R. There are natural ways

to generalize this one-dimensional splitting to higher dimensional data sets,

e.g., points in Rd for d ≥ 2. Arguably the most natural generalization is to

sample d points at random to define a hyperplane, then split the remaining

points based on membership in the two associated halfspaces.

Before discussing data structures based on such a splitting strategy, we

focus on the analysis of such random hyperplane splits. As it turns out, an-

alyzing random hyperplane splits is equivalent to a well-studied problem in

combinatorial geometry — the problem of counting k-facets. A k-facet of a

set of n points is essentially a subset of d points that define a hyperplane that

splits the remaining points into subsets of size k and n − d − k. In Chapter

7 we discuss bounds involving k-facets that imply bounds on the distributions

of random hyperplane splits.

4

Thesis Contributions

Search Trees from Random Hyperplanes

In Chapter 8 we analyze two random search tree data structures that are

based on splitting with random hyperplanes. These are both space partition

trees. The first data structure, the random hyperplane search tree, is a binary

space partition tree. It acts by storing d randomly chosen points in the root

node, partitioning the remaining points based on the hyperplane defined by

the points in the root, and continuing recursively in the two subtrees. The sec-

ond data structure, the random hyperplane arrangement search tree, or simply

random arrangement tree, generalizes the random hyperplane search tree. A

set of k ≥ d points defines an arrangement of
(

k
d

)
hyperplanes. Each internal

tree node stores k randomly chosen points and splits the remaining points in

its subtree according to the corresponding arrangement of hyperplanes.

Our analysis of these random trees brings together our work from previous

chapters. We use results from Chapter 7 to bound the distribution of a split

at a particular node. Results from Chapter 6 then allow us to bound the

structural distribution of an entire tree.

1.3 Thesis Contributions

At the end of each chapter we summarize the novel contributions. Here we

mention the most significant progress put forward in this thesis.

Part I Our research on guarding problems has resulted in two significant

contributions: one for terrains and one for polygons. For guarding terrains,

in joint work with Erik Krohn we have proved that the decision problem is

strongly NP-complete. This resolves a problem of significant interest that

was open for the past 15 years. This result is given in Section 3.3. For the

problem of guarding polygons, in joint work with David Kirkpatrick we have

developed a new polynomial-time approximation algorithm for guarding sim-

ple polygons with guards on the perimeter. The approximation guarantee

is O(log log opt). This is the first algorithm for guarding polygons to beat

5

1. Introduction

the O(log opt) guarantee obtained from general methods for range spaces of

bounded VC-dimension. Our algorithm is given in Section 4.2.

Part II Our research on random hyperplane splits and random geometric

trees has led to new bounds for the structural distributions of several ran-

dom trees. These new bounds, obtained for random hyperplane search trees

and random arrangement trees in joint work with Luc Devroye and Colin Mc-

Diarmid, are given in Chapter 8. Most of these bounds are a consequence of

domination results comparing the depths of average elements in a range of ran-

dom trees. In addition to these bounds, Part II describes a useful connection

between random hyperplane splits, or equivalently the problem of counting k-

facets, and well-known distributions generated from uniform random variables.

For example, random hyperplane splits for a certain family of d-dimensional

point sets (the vertices of cyclic polytopes) are distributed like splits based on

the median of d uniforms. This sheds new light on the problem of counting k-

facets and may help resolve a major conjecture that these splits are as uneven

as random hyperplane splits can get.

Some of the results herein have already been published or submitted for

publication. These include VC-dimension bounds for terrain guarding (sole

author, 2008 (61)), NP-hardness of terrain guarding (with Erik Krohn, 2010

(63)), an improved approximation algorithm for guarding polygons from the

perimeter (with David Kirkpatrick, 2010 (62)), and analysis of random hyper-

plane search trees (with Luc Devroye and Colin McDiarmid, 2009 (35)).

With the exception of Figure 8.1, all figures are original and were created

independently by the author. Figure 8.1 was created by Luc Devroye.

1.4 Future Directions

Along with the novel contributions, we note open problems and future research

directions at the end of each chapter. For guarding polygons, approximation

algorithms still do not match inapproximability bounds. This is perhaps the

6

Future Directions

clearest direction for future work on guarding problems. Our work connecting

k-facets and natural probability distributions leaves unresolved issues that are

more exciting. The distributions of random hyperplane splits become more

tightly concentrated around perfect splits as d increases. This blessing of

dimensionality is somewhat surprising. With Luc Devroye we are currently

giving the issue the rigorous treatment that did not make its way into this

thesis. Lower bounds for (≤ k)-facets are another area that we are working to

improve.

7

Part I

Guarding Problems

Chapter 2

Range Spaces and

Approximation

In this chapter we introduce range spaces. This is general material relevant to the

subsequent chapters on guarding problems. We discuss approximation of hitting

set and set cover for general range spaces. We then introduce the powerful frame-

work of Brönnimann and Goodrich for obtaining approximation algorithms using

ε-nets. We follow this with the definition of VC-dimension and its implications on

the problem of finding small ε-nets.

Contents

2.1 Introducing Range Spaces 12

Approximating Set Cover 13

Geometric Hitting Set . 15

2.2 Approximation from ε-Nets 15

An Introduction to ε-Nets 15

Iterative Reweighting . 16

Considering the LP . 18

2.3 VC-Dimension . 18

Origins and Definition . 18

Small ε-Nets via Random Sampling 22

Lower Bounds for ε-Nets 23

Parameterized Complexity 24

2.4 Notes . 26

11

2. Range Spaces and Approximation

2.1 Introducing Range Spaces

Range spaces concern subsets of a universe U of elements.

Definition 2.1 (Range Space). A range space S = (X,R) is a ground set

X ⊆ U of elements along with a collection R of subsets of X.

Thus R is a subset of the power set 2X of X. The elements of U and

X are sometimes called points. Each subset R ∈ R is called a range. Out-

side of computational geometry range spaces are often called set systems or

hypergraphs.

We say the range space is finite if X is finite (this implies that R is finite).

For a finite range space we use n to denote |X| and m to denote |R|, so that

X = {x1, x2, . . . , xn} and R = {R1, R2, . . . , Rm}. It is sometimes useful to

consider a finite range space as represented by an incidence matrix, defined as

the n×m 0/1 matrix A = (aij) where aij = 1 if and only if xi ∈ Rj. Incidence

matrices facilitate the following definition.

Definition 2.2. For a range space S, the dual range space, denoted Ŝ, is the

unique range space satisfying the following. If S is finite then the respective

incidence matrices of S and Ŝ are transposes of each other. Generalizing this

for a possibly infinite range space S = (X,R), we have Ŝ = (R, {r(x) : x ∈
X}) where r(x) = {R : R ∈ R, x ∈ R}.

We now define set covers and hitting sets for range spaces.

Definition 2.3 (Set Cover). A set cover for a given range space S = (X,R)

is a subset C ⊆ R of ranges that covers X, i.e.

∀x∈X ∃R∈C : x ∈ R .

For a given cost function c : R→ Q, a minimum set cover C is a set cover that

minimizes c(C) =
∑

R∈C c(R).

If a cost function is not given we assume it is uniform. The decision version

of the minimum set cover problem asks, given a range space S and cost k,

12

Introducing Range Spaces

whether S has a set cover of cost at most k. This problem is NP-complete

(59).

Definition 2.4 (Hitting Set). A hitting set for a given range space S =

(X,R) is a subset H ⊆ X of points that hits every range R ∈ R, i.e.

∀R∈R ∃x∈H : x ∈ R .

For a given cost function c : U → Q, a minimum hitting set H is a hitting set

that minimizes c(H) =
∑

x∈H c(x).

Hitting set and set cover are dual problems, not in the sense of LP duality

but in the sense of dual range spaces. A hitting set for S corresponds to a set

cover for Ŝ and vice versa. This is clear if we consider incidence matrices. A

set cover is a set of columns that hits every row (i.e., in each row, at least one

of the columns has a 1) and a hitting set is a set of rows that hits every column.

So there is a linear-time reduction from minimum set cover to minimum hitting

set. Minimum set cover and minimum hitting set are, in fact, two of Karp’s

original 21 NP-complete problems (59).

Approximating Set Cover

Inapproximability

The optimization version of the problem is not only hard to solve exactly, but

is also hard to approximate in general. For some constant c, unless P = NP no

polynomial time approximation algorithm can have a guaranted approximation

factor as good as c lnn (88; 8). Under the stronger assumption that NP is not

contained in DTIME(nlog log n), the lower bound on approximability is improved

to (1−o(1)) lnn (46). We now present two simple and classical approximation

algorithms for set cover. See, e.g., Vazirani’s book (99, pp. 16–19) for more

details including approximation analysis.

13

2. Range Spaces and Approximation

The Greedy Algorithm

There is a classical approximation algorithm for set cover with a guaranteed

approximation factor of Hn ≤ lnn + 1. Consider the following greedy algo-

rithm. Start with an empty cover C. While there are elements not covered by

C, choose a range R that covers the most uncovered elements and add R to C.

Lemma 2.1 (Johnson (57), Lovász (72), Chvátal (21)). The greedy set cover

algorithm is an Hn-approximation.

Proof. To bound the approximation factor, consider the per-element cost to

add a set to a partial cover. This is defined as the cost of the set, divided

by the number of uncovered elements it would cover. Index the elements in

the order in which they are covered by the greedy algorithm. Let ci be the

per-element cost of the set that first covers the ith element. Note that the total

cost of the set cover is
∑

i ci.

Just before the greedy algorithm covers the ith element there must be at

least n− i+ 1 uncovered elements. Since all of these elements can be covered

by sets of total cost opt, there must be a set with a per-element cost of at

most opt/(n − i + 1). The greedy algorithm always picks the set with the

lowest per-element cost. We therefore have ci ≤ opt/(n− i+ 1) and the total

cost of the cover is
∑

i ci ≤ opt ·Hn.

Low Frequency Systems

The frequency of an element is the number of ranges containing it. If every

element has frequency at most k, there is a simple k-approximation algorithm.

Start with an empty cover C. While there are elements not covered by C, choose

an uncovered element x and add every range containing x to C. At each step we

add at most k ranges to C, at least one of which must be in any optimal cover.

In the next section we discuss more sophisticated approximation methods for

the hitting set problem that can be used in special cases.

14

Approximation from ε-Nets

Geometric Hitting Set

Many problems in computational geometry have natural interpretations as

instances of hitting set and/or set cover. We introduce an example here that

we revisit later.

Example 2.1 (Unit disk cover). Let X and Y be subsets of R2. Consider

the problem of covering all points in X with the minimum set of unit disks

whose centres belong to Y . This problem can be formulated as set cover for

a range space S = (X,R), where the ranges in R are given by {x : (x, y) ∈
X × Y, d(x, y) ≤ 1}.

We use this somewhat clumsy formulation to point out a special property

that this family of range spaces has — it is closed under duality. For a range

space defined by point sets (X, Y), the dual range space is defined by (Y,X).

This is a consequence of the symmetry of Euclidean distance used to define

the ranges.

2.2 Approximation from ε-Nets

An Introduction to ε-Nets

Informally, if we wish to relax the hitting set problem, we can ask for a subset

of X that hits all large ranges in R. This is the idea behind ε-nets. The

general definition requires a non-negative weight function w : X → Q≥0 on the

elements of X with w(R) =
∑

x∈R w(x).

Definition 2.5 (ε-Net). Given a range space S = (X,R), a weight function

w : X → Q≥0, and a parameter ε ∈ [0, 1], an ε-net is a subset of X that hits

every range R ∈ R having w(R) ≥ εw(X).

An ε-net is a kind of approximate hitting set. When ε = 1, any non-empty

set is an ε-net. When ε is close to 1, minimum ε-nets are small. When ε is

close to 0, ε-nets closely approximate hitting sets. When ε = 0, every ε-net is

a hitting set. The task of finding small ε-nets for a given range space, weight

function, and ε is a crucial one, but we reserve its discussion for Section 2.3.

15

2. Range Spaces and Approximation

Haussler and Welzl (54) introduced ε-nets and originally used them for

the purpose of halfspace range queries. However, ε-nets have since risen to

prominence because of their use in approximation algorithms for restricted

instances of hitting set, particularly those that arise in geometric settings.

Brönnimann and Goodrich (17) were the first to exploit ε-nets for this

purpose. They developed a general approximation algorithm for hitting set

that requires two oracles: a net finder and a verifier. The net finder takes as

input a range space S = (X,R), a weight function w, and a parameter ε > 0;

as output it returns an ε-net. The verifier is for checking if an ε-net is a hitting

set; it either states correctly that it is, or returns a range R ∈ R that is not

hit by the ε-net.

Iterative Reweighting

The algorithm of Brönnimann and Goodrich is primarily concerned with find-

ing the right parameters for the net finder. More precisely, it learns a weight

function and an ε that ensure the net finder returns a small hitting set. This

is done using iterative reweighting.

The algorithm starts with a uniform weight function and a constant c′ which

the algorithm guesses to be close to opt. The net finder is used to find an ε-net

for ε = 1/2c′. If there is a range in R not hit by the ε-net, the algorithm picks

such a range and doubles the weight of every element in it. It then repeats,

finding a new ε-net given the new weight function. This continues until the

algorithm finds an ε-net that is a hitting set. The approximation factor of the

algorithm depends on the size of the ε-nets returned by the net finder. If the

net finder constructs ε-nets of size f(1/ε), their main algorithm finds a hitting

set of size f(4 · opt).

Example 2.2 (Unit disks revisited). Matoušek et al. (77) developed a net

finder for range spaces obtained from points and unit disks as in Example 2.1.

The net finder builds ε-nets of size O(1/ε). The technique of Brönnimann and

Goodrich therefore yields a constant-factor approximation algorithm for the

problem of covering points with unit disks.

16

Approximation from ε-Nets

Bounding the number of iterations.

For now assume we know the value of opt and we set ε = 1
2·opt

. We give an

upper bound for the number of doubling iterations the algorithm can perform.

Each iteration increases the total weight w(X) by no more than a multiplicative

factor of (1 + ε) (since the range whose weight we double has at most an ε

proportion of the total weight). Therefore, if each element in X starts with

weight 1, after k iterations the weight has increased to at most

|X| · (1 + ε)k ≤ |X| · exp

(
k

2 · opt

)
≤ |X| · 2(3k

4·opt) .

Let H ⊆ G be an optimal hitting set of size opt. For an element h ∈ H define

zh as the number of times the weight of h has been doubled. Since H is a

hitting set, in each iteration some element in H has its weight doubled, so we

have ∑
h∈H

zh ≥ k

and

w(H) =
∑
h∈H

2zh

≥ opt · 2(k
opt) (since 2x is a convex function).

We now have

opt · 2(k
opt) ≤ w(H) ≤ w(X) ≤ |X| · 2(3k

4·opt) ,

which gives us

k ≤ 4 · opt · log

(
|X|
opt

)
.

This bound also tells us that the total weight w(X) never exceeds |X|4
opt3 .

We must now address the fact that the value of opt is unknown. We

maintain a variable c′ which is our guess at the value of opt, starting with

c′ = 1. If the algorithm runs for more than 4 · c′ · log
(
|X|
c′

)
iterations without

17

2. Range Spaces and Approximation

obtaining a hitting set, this implies that there is no hitting set of size c′ so

we double our guess. When our algorithm eventually obtains a hitting set, we

have opt ≤ c′ ≤ 2 · opt. The hitting set obtained is a
(

1
2c′

)
-net built by our

net finder.

Considering the LP

Let S = (X,R) be a fixed finite range space. For any non-negative weight

function w there is some maximum εmax = εmax(w) ≥ 0 for which every εmax-

net is a hitting set. To get a small hitting set from a net finder we must find

a weight function w with a large εmax. Even et al. (45) observed that this has

a very natural LP formulation:

Maximize ε

subject to w(R) ≥ ε ∀R ∈ R
w(X) = 1

w(x) ≥ 0 ∀x ∈ X .

(2.1)

Note that we have normalized the weight function. Even et al. solve the LP ap-

proximately, then make a single call to the net finder. Using, e.g., the oblivious

rounding technique of Young (104), solving the LP can be avoided altogether

and this method becomes faster than that of Brönnimann and Goodrich, es-

pecially when the net finder or verifier is slow.

2.3 VC-Dimension

Origins and Definition

VC-dimension is named after Vapnik and Chervonenkis, who originally defined

and used it (98). Consider a range space S = (X,R) and a subset Y ⊆ X.

We have R ∩ Y ⊆ 2Y , i.e., the intersection R ∩ Y = {R ∩ Y : R ∈ R} is a

collection of subsets of Y contained in the power set 2Y .

18

VC-Dimension

Definition 2.6 (Shattered set). We say that Y ⊆ X is shattered by R if

R∩ Y = 2Y . In other words, every possible subset of Y can be obtained from

the intersection of Y and some R ∈ R.

Definition 2.7 (VC-dimension). For a range space S = (X,R), let Y be

a maximum cardinality subset of X that is shattered by R. Then the VC-

dimension of S, or simply the dimension of S, is equal to |Y |.

We illustrate this with a classical geometric example.

Example 2.3. Consider a range space S = (X,R) where X is a set of points

in Rd and R is a collection of closed half-spaces. The VC-dimension of this

range space is at most d+ 1.

Proof. We prove this by induction on d. In R1, a set of 3 points cannot be

shattered since no half-line can contain the median without containing another

point. In general d, assume for the sake of contradiction that there is a subset

Y ⊆ X of d + 2 points that can be shattered. If Y is not in general position

then there is a (d − 1)-flat containing d + 1 points of Y , so by induction Y

cannot be shattered. If Y contains a point strictly in the interior of its convex

hull, any half-space containing that point must also contain a point on the

convex hull. If all d+ 2 points are on the convex hull, then the convex hull is

not a simplex. In this case there must be two vertices that are non-adjacent

on the convex hull; no half-space can separate these two points from the other

d points.

Claim 2.1. If S = (X,R) is a range space of dimension d, then for X ′ ⊆ X

and R′ ⊆ R, the range space S ′ = (X ′,R′) has dimension d′ ≤ d.

Proof. Any subset of X ′ shattered by R′ is also shattered by R, so d′ ≤ d.

Claim 2.2. If S = (X,R) is a range space of dimension d, the dimension d̂

of the dual range space Ŝ of S is bounded by blog2 dc ≤ d̂ ≤ 2d+1 − 1.

Proof. We prove the lower bound for d̂, with the upper bound following from

the dual lower bound blog2 d̂c ≤ d. Let d′ = 2blog2 dc be the greatest power of 2

that does not exceed d. Let Y ⊆ X be a set of d′ points shattered by R and let

19

2. Range Spaces and Approximation

RY ⊆ R be a set of 2d′ ranges that shatters Y . The incidence matrix induced

by Y and RY has d′ rows and its columns are exactly the binary strings of

length d′. It is not hard to see that we can choose log2 d
′ of these columns to

form a matrix whose d′ rows are exactly the binary strings of length log2 d
′;

further, these log2 d
′ columns correspond to a shattered point set in Ŝ.

One of the key points to take away from Example 2.3 is that the definition

holds even for infinite sets. Loosely speaking, VC-dimension measures how

different the ranges in a range space can be from each other. Before discussing

the origin and significance of VC-theory we give a bound for the number of

ranges in a finite range space with VC-dimension d.

Definition 2.8. The function Φd(n) is defined as

Φd(n) =


∑d

i=0

(
n
i

)
, n ≥ d

2n , n ≤ d .

The following was proved independently by Sauer (92) and Vapnik and

Chervonenkis (97).

Lemma 2.2. In a finite range space (X,R) with VC-dimension d, |R| ≤
Φd(|X|).

Proof. The proof of this lemma depends heavily on the recurrence

Φd(n) = Φd(n− 1) + Φd−1(n− 1) (2.2)

and its natural interpretation. Given n items, Φd(n) is the number of ways

you can choose up to d of them. Let us consider the recurrence with the nth

item in mind. Either we choose it, in which case we choose up to d− 1 of the

n − 1 other items, or we don’t choose it, in which case we choose up to d of

the n− 1 other items.

The lemma holds trivially for n ≤ d. For higher values of n we prove it by

induction. We show that

|R| =
∣∣R(1)

∣∣+ ∣∣R(2)
∣∣ , (2.3)

20

VC-Dimension

where (X \{xn},R(1)) and (X \{xn},R(2)) are range spaces on n−1 elements

of maximum VC-dimension d and d− 1, respectively. The lemma then follows

from (2.2) by induction.

Consider a range R on X \ {xn} and the two possible ‘augmented ranges’

on X, namely R and R ∪ {xn}. R is in R(1) if at least one augmented range

is in R. R is in R(2) if both augmented ranges are in R. It is not hard to see

that these definitions satisfy (2.3).

The range space (X \ {xn},R(1)) must have VC-dimension at most d. The

range space (X \ {xn},R(2)) must have VC-dimension at most d − 1. To see

this, consider a set Y ⊆ X \ {xn} that is shattered by R(2). Y ∪ {xn} must

be shattered by R, so Y must have size at most d − 1. This concludes the

proof.

Vapnik and Chervonenkis used VC-dimension in their work in learning

theory (98). The law of large numbers tells us that we can learn the probability

of an event from a long enough sequence of independent Bernoulli trials — the

sample average for the event converges almost surely to the probability of the

event. Vapnik and Chervonenkis sought to extend this from a single event to

a class of events.

Consider a range space (X,R) along with a probability measure µ on X.

Let S ∈ Xk be a series of k independent trials drawn according to µ. We

use R(k) to denote the sample average of a range R, i.e., R(k) = |R ∩ S| /k.
The VC-theorem (98) essentially tells us that we can learn all probabilities

{µ(R) : R ∈ R} from S if k is large enough. We present their main theorem

in the context of range spaces and with implicit application of Lemma 2.2.

Theorem 2.1 (VC-theorem). Let (X,R) be a range space having VC-

dimension at most d and let S ∈ Xk be a series of k independent trials

drawn according to µ. Then for any ‘error’ threshold t > 0 we have

P
{

sup
R∈R

∣∣µ(R)−R(k)

∣∣ ≥ t

}
≤ Φd(2k) · 4 · exp

(
−kt2

8

)
= O

(
exp

(
d ln 2k − kt2

8

))
.

21

2. Range Spaces and Approximation

Another version of the inequality due to Devroye (25) states that

P
{

sup
R∈R

∣∣µ(R)−R(k)

∣∣ ≥ t

}
≤ Φd(k

2) · 4e4t+4t2 · exp
(
−2kt2

)
= O

(
exp

(
2d ln k − 2kt2

))
.

It is difficult to overstate the significance of this theorem. It bounds the ‘er-

ror’, i.e., the difference between the estimated probability and the true proba-

bility, for all ranges simultaneously, even when the number of ranges is infinite.

It is not the number of ranges that affects this probability bound, but rather

the complexity of their interaction as quantified by VC-dimension.

Small ε-Nets via Random Sampling

The VC-theorem can be used to show that, for range spaces having small VC-

dimension, small ε-nets can be obtained via random sampling. The following

is a straightforward consequence of the VC-theorem.

Corollary 2.1. For a range space (X,R) of dimension d and a constant failure

probability δ > 0, a random sample of k elements from X is an ε-net with

probability at least 1− δ for some k = O
(

d
ε2 log d

ε

)
.

In their paper introducing ε-nets, Haussler and Welzl (54) proved a signif-

icantly stronger result.

Theorem 2.2. For a range space (X,R) of dimension d and a constant failure

probability δ > 0, a random sample of k elements from X is an ε-net with

probability at least 1− δ for

k ≥ max

(
4

ε
ln

2

δ
,

8d

ε
ln

8d

ε

)
.

In particular, this means that random sampling can be used to obtain ε-nets of

size O
(

d
ε
log d

ε

)
in O

(
d
ε
log d

ε

)
expected time.

22

VC-Dimension

However, this bound of O
(

d
ε
log d

ε

)
is not quite tight. An improved upper

bound of O
(

d
ε
log 1

ε

)
was given by Blumer et al. (15). The proof is essentially

the same but uses the following tighter bound on the function Φd(n):

Proposition 2.1.

Φd(n) = O
(
nd

d!

)
= O

((en
d

)d
)
.

Proof sketch. The first inequality is proved combinatorially by induction. The

second inequality is a consequence of Stirling’s approximation. A complete

proof appears in (15, pp. 957–958).

Lower Bounds for ε-Nets

Though the analysis used to bound the size of ε-nets obtained via random

sampling is quite involved, the sampling method itself is trivial. It is therefore

natural to ask if another method can do better. Komlós et al. (66) proved that

in general this is not possible.

Lemma 2.3. For any d ≥ 2 there exists a range space of dimension d such

that, for any sufficiently small ε, any ε-net must contain at least Ω
(

d
ε
log 1

ε

)
points.

The proof of this lemma involves a randomly constructed range space S =

(X,R), whereX contains Θ
(

1
ε
log 1

ε

)
points and each of the 2|X| possible ranges

is added toR independently with probability p. For an appropriate choice of p,

they are able to prove that if ε is sufficiently small, then with high probability

S has VC-dimension at most d and S does not admit an ε-net of size t for

some t = Θ
(

d
ε
log 1

ε

)
.

One drawback of the random construction of Komlós et al. is that it has

no natural geometric interpretation. For many years it was an open problem

whether range spaces with natural geometric interpretations exist that do not

admit ε-nets of size O
(

1
ε

)
. This was recently answered in the affirmative by

Alon (9).

23

2. Range Spaces and Approximation

Lemma 2.4. Let S(X) = (X,R) be a range space defined by a set X of points

in R2 where R contains all intersections of lines with X. Then for every

positive constant c there exists a set X and some ε > 0 such that any ε-net for

S(X) is larger than c/ε.

Alon’s lower bound only grows like Θ
(

1
ε
· w
(

1
ε

))
, where w is a version of

the inverse Ackermann function. It is therefore still unknown whether natural

geometric range spaces can match the lower bound of Θ
(

d
ε
log 1

ε

)
.

Parameterized Complexity

Fixed-parameter tractability concerns NP-complete problems that have poly-

nomial time algorithms under certain restrictions. The theory of fixed-

parameter tractability, and more generally the theory of parameterized com-

plexity, arose in the 1990s and was solidified by the work of Downey and Fellows

(38).

Definition 2.9 (Fixed-parameter tractable). A problem is fixed-parameter

tractable for a specified parameter if it can be solved in time

f(k) · nO(1) ,

where n is the length of the input, k is the value of the parameter, and f is a

function depending only on k (in particular f(k) has no dependence on n).

Optimization problems are often parameterized by opt, the size of the optimal

solution. It may be desirable to have multiple parameters; in this case we can

adhere to the above definition by using the sum of parameters as a single

parameter. The following example generalizes vertex cover.

Example 2.4. Consider a range space S = (X,R) such that every range

contains at most k elements. Hitting set is fixed-parameter tractable when

parameterized by (opt + k).

Proof sketch. This problem admits a simple algorithm that uses the bounded

search tree method frequently seen in parameterized algorithms. Consider an

24

VC-Dimension

algorithm that starts with H = ∅ and augments H at each step by choosing

the lowest-indexed range Ri that is not hit by H, then adding an element from

Ri to H. An optimum hitting set is built by such an algorithm as long as the

right element from Ri is chosen at each step.

Since each range has at most k elements, the algorithm has at most k

options at each step. Since there is some hitting set of size opt, a breadth-

first search of the algorithm’s decision tree finds an optimal hitting set at

level opt of the tree. Exhaustive breadth-first search of the decision tree can

therefore find an optimum hitting set in O(kopt) time, along with overhead

that is polynomial in the input size.

The complexity class FPT contains all fixed-parameter tractable problems.

The W hierarchy is a collection of complexity classes that contain FPT but

are not believed to be contained in FPT, where

FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ . . . ⊆ W[P] .

FPT and W[P] are parameterized analogues of P and NP respectively, and

FPT 6= W[P] if and only if P 6= NP.

The more interesting classes are at the bottom of the hierarchy. It is

known that FPT 6= W[1] unless NP ⊆ DTIME(2o(n)). Therefore proving W[1]-

hardness suggests that a problem is unlikely to be fixed-parameter tractable.

When parameterized by opt, the independent set and hitting set problems

are complete for W[1] and W[2] respectively. The W hierarchy is discussed in

detail by Downey and Fellows (38).

We are interested in the fixed-parameter tractability of problems restricted

to range spaces of bounded VC-dimension. In particular we are interested

in the hitting set problem parameterized by opt. The existence of a general

parameterized algorithm for hitting set in bounded VC-dimension would imply

that a multitude of geometric hitting problems are in FPT. The following

observation is discouraging for range spaces of dimension ≥ 4.

Observation 2.1. The hitting set problem is W[1]-hard when parameterized by

opt, even when restricted to range spaces of VC-dimension d ≥ 4.

25

2. Range Spaces and Approximation

Proof. This lemma is a simple consequence of a related hardness result. Dom et

al. (37) recently proved that the problem of stabbing axis-parallel rectangles in

R2 with axis-parallel lines (both vertical and horizontal) is W[1]-complete when

parameterized by opt. This problem is an instance of hitting set in a range

space S = (X,R), where each x ∈ X contains a line and each R ∈ R represents

a rectangle. To prove the lemma we must show that the VC-dimension of S is

at most 4. We consider a set of 5 lines and prove that they cannot be shattered.

Assume without loss of generality 3 or more of the lines are vertical; otherwise

3 or more are horizontal and the proof is the same. A set of 3 vertical lines,

call them `1, `2, `3 from left to right, cannot be shattered since any rectangle

hitting `1 and `3 must also hit `2.

Unfortunately the above lemma does not tell us whether hitting set is

actually in W[1] when the VC-dimension is restricted to 4; neither does it tell

us whether hitting set is in FPT when restricted to some lower dimension.

Observation 2.2. The hitting set problem is in P when restricted to range

spaces of VC-dimension 1.

Proof. Let S be a range space of dimension 1. If the incidence matrix of S is

totally balanced (see, e.g., (55)) then a minimum hitting set can be found in

polynomial time.

If the matrix is not totally balanced, the rows and columns can be permuted

so that the submatrix [1 1 0
1 0 1] appears. This submatrix is induced by 2 points

{xi, xj} and 3 ranges. If some range contains neither xi nor xj then {xi, xj}
is shattered. But this is impossible since S has dimension 1, so {xi, xj} must

hit every range. Therefore a minimum hitting set can be found in polynomial

time by checking all sets of size 1 and 2.

2.4 Notes

Contributions

This chapter does not contain any significant contributions. Observations 2.1

and 2.2 are possibly new but are easy. The rectangle stabbing problem in

26

Notes

the proof of Observation 2.1 was suggested by Michael Fellows (47) as having

constant VC-dimension while being W[1]-hard. The VC-dimension in Example

2.3 is often mentioned but seems to be folklore. Our proof was developed

independently but is completely straightforward and probably very similar to

previous proofs.

27

Chapter 3

Guarding Terrains

This chapter deals entirely with the terrain guarding problem. We first discuss

the range spaces associated with terrain guarding and give a tight bound on the

maximum VC-dimension of such range spaces. We then give an overview of ap-

proximation algorithms for the problem. Finally, we resolve a long-standing open

problem by proving that terrain guarding is NP-complete.

Contents

3.1 Terrain Guarding Preliminaries 30

3.2 Range Spaces and Approximation 31

Discretization . 31

VC-Dimension of Terrain Guarding 33

Approximation Algorithms 38

3.3 NP-Completeness . 40

Planar 3SAT and Path Representations 42

Propagating a Truth Assignment 47

Evaluating clauses . 62

3.4 Notes . 72

29

3. Guarding Terrains

3.1 Terrain Guarding Preliminaries

An instance of the terrain guarding problem consists of a terrain T that is

an x-monotone polygonal chain. An x-monotone chain in R2 is a chain that

intersects any vertical line at most once. The terrain is given by its set of

vertices V = {v1, v2, ..., vn}, where vi = (xi, yi). The vertices are ordered

such that xi < xi+1. There is an edge connecting each (vi, vi+1) pair where

i = 1, 2, ..., n− 1. We say a point p on the terrain sees another point q on the

terrain if no point on the line segment pq lies strictly below the terrain T . We

denote this by p ∼ q.

These terrains are sometimes called 1.5-dimensional terrains since they ex-

ist in R2 but do not have full 2-dimensional freedom like unrestricted polygonal

chains. The analogous structures in R3 are called 2.5-dimensional terrains, or

polyhedral terrains. These are polyhedral terrains of genus 0 (i.e., having no

holes) that intersect any vertical line at most once. All terrains we deal with

in this chapter are 1.5-dimensional unless clearly stated otherwise.

A set G of points on a terrain is called a guarding set if every point on the

terrain is seen by some point in G. The optimization version of the terrain

guarding problem is the problem of finding a minimum guarding set for a given

terrain.

Motivation for guarding terrains comes from scenarios that include covering

a road with street lights or security cameras. Other applications include finding

a configuration for line-of-sight transmission networks for radio broadcasting,

cellular telephony and other communication technologies (12). A terrain is a

natural model for an approximately linear border whose altitude varies, for

example the large portion of the Canada/U.S. border that follows the 49th

parallel.

For points a, b on a terrain, we say that a < b if a is strictly to the left of b.

One of the most important structural restrictions of terrains is stated by the

order claim, first noted by Ben-Moshe et al. (12).

Claim 3.1 (Order Claim). Let a, b, c, d be four points on the terrain such

that a < b < c < d. If a sees c and b sees d, then a sees d.

30

Range Spaces and Approximation

Proof. Line segments ac and bd cross and must intersect at some point p. No

point of the triangle 4apd can be below the terrain; since this triangle includes

the line segment ad, a must see d.

3.2 Range Spaces and

Approximation

Let X be the set of points on the terrain that must be guarded and let G

be the set of potential guard locations. For a guard g ∈ G, define the range

R(g) ⊆ T as {x ∈ X : g ∼ t}. Guarding the points in X with guards from G

is equivalent to set cover on the range space (X, {R(g) : g ∈ G}), or equivalent

to hitting set on the dual range space. This range space can also be defined

by the visibility matrix for X and G in which there is a row for each x ∈ X,

a column for each g ∈ G, and the cell for the pair (x, g) contains a 1 if x ∼ g

and a 0 otherwise.

We are particularly interested in the case whereX is a finite set andX = G;

in this case we say that the range space is induced by the set X of points

on the terrain. Such a range space is self-dual since its incidence matrix is

self-transpose, or symmetric, by symmetry of visibility. This case is most

interesting when X contains a minimum guarding set for T and any set guard-

ing X also guards T . In this case we say that X constitutes a parsimonious

discretization since optimization algorithms can use X instead of T without

adverse effects.

Discretization

There are two standard versions of the terrain guarding problem: a vertex

version and a continuous version. The vertex version allows us to place guards

only at the vertices of the terrain. The continuous version, which we have

defined above, allows guards to be placed anywhere on the terrain. In other

versions a subset of points on the terrain to guard is given with the input.

31

3. Guarding Terrains

Before proceeding, we define notation for ray shooting. For a vertex v and

arbitrary points p, q on the terrain, consider the ray emanating from p and

passing through v. If p sees v and q is the first point in T hit by the ray

after v, then we say that the ray shot from p through v hits the terrain at

q. We denote this p v = q and note that this defines a partial map from

T × V to T . For sets X ⊆ T and Y ⊆ V , we use X Y to denote the set

{x y : x ∈ X, y ∈ Y }. Clearly |X Y | ≤ |X| · |Y |. Note that p v = q

implies that either p < v < q or q < v < p, where p < q means that p is to the

left of q.

Ben-Moshe et al. (12, §6) provide a fairly simple discretization technique.

Discretization is performed as follows. Let U ′ = V ∪ (V V). U ′ partitions

T into O(n2) intervals such that all points in an interval are seen by the same

subset of V ; let U ′′ contain one representative point from each of these intervals.

Any set of vertices guarding U = U ′ ∪ U ′′ must guard the entire terrain. The

authors then note that any guard on an edge (vi, vi+1) is dominated by the

endpoints {vi, vi+1}, so if the minimum guarding set has size opt there is a

guarding set of size 2 · opt contained in V .

This factor of 2 is prohibitive for some applications of discretization. We

eliminate this problem with the following lemma.

Lemma 3.1. W = V ∪ (V V) ∪ ((V V) V) is a set of O(n3) points

that contains an optimum guarding set for T .

Proof. It is clear that |W | = O(n3). We say that a guarding set for T is

forced right if no non-vertex guard can slide to the right. That is, no guard

in the relative interior of an edge can be replaced by another guard on the

same edge that is further to the right. There exists an optimum guarding set

that is forced right, and we show that any guarding set that is forced right is

contained in W .

Let G be a guarding set for T that is forced right. Assume for the sake of

contradiction that G \W is non-empty and let g be the rightmost guard in

G \W . If g is not a vertex and cannot be moved to the right then there must

be a vertex v and a point p ∈ T \ U such that g v = p and g < v < p. g

sees the half edge (p, vi+1) and some other guard to the right of p must see the

32

Range Spaces and Approximation

other half edge (vi, p). Let g′ be the rightmost guard that sees p. There is a

vertex v′ such that p v′ = g′ and p < v′ < g′.

We know that g′ cannot be a vertex; otherwise g would be in W . Since we

cannot slide g′ to the right, there must be a vertex v′′ such that g′ v′′ = p′

and g′ < v′′ < p′. Some guard g′′ is responsible for the left half-edge ending

at p′. But now we have a contradiction. We know that neither p′ nor g′ is a

vertex. Therefore the quadrilateral (p, g′, p′, g′′) is either a line or is convex. We

know that the lower hull of the quadrilateral does not pass below the terrain

since p ∼ g′ ∼ p′ ∼ g′′. Therefore p ∼ g′′, but g′ is defined as the rightmost

guard that sees p. Having arrived at a contradiction it must be the case that

G ⊆ W .

The technique of Ben-Moshe et al., starting from W instead of V , can now

be used to create a complete parsimonious discretization using O(n4) points.

The resulting set, call it Z, is such that any set of points that guards Z guards

the terrain, and Z contains an optimum guarding set for T .

The closely related yet more troublesome issue of discretizing polygons is

discussed in Section 4.1.

VC-Dimension of Terrain Guarding

Here we prove the following lemma, a result of independent research (61).

Lemma 3.2. The VC-dimension of a range space induced by points on a ter-

rain is at most 4 and this bound is tight.

Proof. To prove that a monotone chain can have VC-dimension 4, we simply

provide an example of a terrain with 4 points that are shattered by 16 guards.

Such a terrain is shown in Figure 3.1.

We use the order claim to argue that no set P of 5 points on a terrain can

be shattered by a set G of 32 guards. This gives us the upper bound of 4 for

the VC-dimension.

Let P = {a, b, c, d, e} and let, for example, g(b, d) denote the guard in G

that sees b and d but not a, c, or e. Note that neither P nor G can contain

duplicate points, and that if g = p for some g ∈ G, p ∈ P , then g ∼ p. Assume

33

3. Guarding Terrains

b c

{b ,c }

{b ,d } {a , c }

{b } { c }

{a ,d }

{a }

{ }

{ a , c ,d }

a

{c ,d }

{b , c ,d } {d }

{a ,b ,d }

d

{a ,b }

{a ,b , c }

Figure 3.1: A monotone chain with 4 points, a, b, c, d, that are shattered by 16
guards. The guard seeing {a, b, c, d} is not pictured, but a very high vertex on
the left end of the terrain would see all other vertices. Each of the other 15
guards is labeled with the subset of {a, b, c, d} that it sees.

without loss of generality that a < b < c < d < e. We can see (Figure 3.2 may

help) that g(a, c, e) and g(b, d) contradict the order claim unless either

• g(b, d) < c < d < g(a, c, e) , or

• g(a, c, e) < b < c < g(b, d).

Noting that these two cases are symmetric, we assume the former without loss

of generality. Now consider g(b, c, e). There are four potential ranges that we

consider placing g(b, c, e) in:

• left of g(b, d)

• between g(b, d) and d

• between d and g(a, c, e)

• right of g(a, c, e).

It is not difficult to verify that placing g(b, c, e) in any of these four ranges

would contradict the order claim (see Figure 3.2 for an example). Therefore 5

points on a monotone chain cannot be shattered and no monotone chain can

have VC-dimension greater than 4.

34

Range Spaces and Approximation

a b c d e

g (b , d) g (a , c , e)

(a) In this configuration the Order Claim is contra-
dicted by g(b, d), g(a, c, e), d, and e.

a b c d e

g (b , d) g (a , c , e)

(b) In this configuration the Order Claim is not contra-
dicted.

a b c d e

g (b , d) g (a , c , e)g (b , c , e)

(c) The Order Claim is now contradicted by the addi-
tion of g(b, c, e), regardless of its position. In this con-
figuration the Order Claim is contradicted by g(b, c, e),
g(b, d), c, and d.

Figure 3.2: Examples of configurations of G and P for the proof that no 5
points on a 1.5D terrain can be shattered. Solid lines indicate clear lines of
sight. Dashed lines indicate blocked lines of sight.

35

3. Guarding Terrains

A Note on Polyhedral Terrains

We now give a simple reduction proving that polyhedral (i.e., 2.5-dimensional)

terrains have unbounded VC-dimension. This was first observed by Efrat and

Har-Peled (41).

Lemma 3.3. The VC-dimension of range spaces associated with polyhedral

terrains is unbounded.

Proof. Set cover can be reduced to the problem of guarding the perimeter of

a polygon with holes using guards on the perimeter (see Eidenbenz et al. (43,

§4)). As a direct consequence, for any finite range space (X1,R1), there exists a

polygon with holes whose associated range space is (X2,R2) such thatX1 ⊆ X2

andR1 ⊆ R2. This implies that a polygon with holes can have arbitrarily large

VC-dimension.

For any polygon A with holes we show how to construct a polygonal terrain

of equal or greater VC-dimension. The idea behind building T is simple. Lines

of sight between points on A are blocked by the exterior of A. On our terrain

T we build corresponding mountains to block lines of sight.

We start with T as a horizontal rectangle at altitude 0 that acts as a

bounding box for A. We then trace the perimeter of A on this rectangle and

call it AT . AT partitions T into two open sets, T− which corresponds to the

interior of A and T+ which corresponds to the exterior of A, including the

holes.

In terms of vertical projections, AT , T− and T+ remain fixed as we change

T . However, T− is lowered and T+ is raised. There are many ways to perform

this raising and lowering, but perhaps the most elegant is the method of raising

roofs from straight skeletons (Aichholzer and Aurenhammer (4), in particular

§4). We raise T+ based on its straight skeleton and lower T− based on its

straight skeleton. The result is that every point in T+ has positive altitude

and every point in T− has negative altitude. Only AT and the rectangular

perimeter of T are at altitude 0. See Figure 3.3 for an example.

We can now verify that two points p, q on AT see each other if and only

if the corresponding points p′, q′ on A see each other. Since p and q are both

36

Range Spaces and Approximation

(a) The polygon A with holes indicated in black.

(b) A simplified top view of the associated terrain T . Black
lines indicate AT and the terrain’s perimeter, both at altitude
0. T− (white) has negative altitude while T+ (shaded) has
positive altitude.

Figure 3.3: A polygon A and a top view of the associated terrain T .

37

3. Guarding Terrains

at altitude 0, all of (p, q) is at altitude 0. If p sees q then the open line

segment (p, q) contains no point below T so no point on (p, q) can be the

vertical projection of a point in T+. The corresponding open line segment

(p′, q′) therefore cannot intersect the exterior of A, so p′ and q′ must see each

other. Therefore p sees q if and only if p′ sees q′, and the converse can be

proved similarly.

From any polygon with holes, we have shown how to construct a 2.5-

dimensional terrain with equal or greater VC-dimension, so 2.5-dimensional

terrains have unbounded VC-dimension.

Approximation Algorithms

Approximation of terrain guarding has been an open problem of interest since

1995, when an NP-completeness proof was proposed but never completed by

Chen et al. (20). With the problem’s hardness strongly suspected but not

known, a series of approximation algorithms have been developed over the last

decade. In this section we give an overview of these algorithms.

Generic Approximation via Hitting Set

The terrain guarding problem can be formulated as an instance of hitting set.

Let X be the set of potential guard locations and let R contain the subsets of

X that are seen by points on the terrain. The terrain guarding problem is now

equivalent to hitting set for S = (X,R). Lemma 3.2 tells us that S has VC-

dimension at most 4. Generic approximation techniques for range spaces of

bounded dimension can then be used to obtain an O(log opt)-approximation

algorithm.

Constant Factor Approximations

The first constant factor approximation for the terrain guarding problem was

given by Ben-Moshe et al. (12). Their primary strategy was divide and con-

quer. They worked towards recursively breaking the terrain into subterrains

that could be handled independently. When it is known that two disjoint

38

Range Spaces and Approximation

subterrains both require internal guards (i.e., the relative interiors of both

subterrains must contain guards), a constant number of guards can be used to

‘separate’ them, i.e., ensure that future work towards guarding one of them can

safely ignore the other. They did not explicitly bound the approximation fac-

tor of their algorithm. A guaranteed approximation factor of 5 was attained by

King (60); the algorithm repeatedly searches for a particular unguarded point

x, then places a set of 5 guards that are guaranteed to dominate any guard

that sees x.

Considering the LP

Elbassioni et al. (44) considered several LPs associated with terrain guard-

ing. In particular, they considered the restricted problem in which guards

can only look left. Chen et al. (20) proved that an optimal solution for this

problem can be found by a simple greedy algorithm. Elbassioni et al. revisit

this problem, considering the ‘visibility looking left’ incidence matrix for a set

X of potential guard locations and a set Y of points to guard. They prove

that if X and Y are disjoint, the matrix is totally balanced. Balanced ma-

trices, introduced by Berge (14), generalize edge-vertex incidence matrices of

bipartite graphs while totally balanced matrices, a subclass, generalize those

of acyclic graphs. Linear programs with totally balanced constraint matrices

can be solved combinatorially in polynomial time (55).

The general terrain guarding problem can be approximated using left-

looking guards and right-looking guards, but only if we know which points

should be guarded from the left and which should be guarded from the right.

Elbassioni et al. used linear programming to determine this. After finding

an optimum fractional guarding set, they partition points into those guarded

mostly from the right and those guarded mostly from the left. For each set

they then find an optimum one-sided guarding set. Putting the pieces of their

algorithm together they achieve an approximation factor of 4 for most cases;

they also handle non-uniform cost functions on the guards as well as budgeted

variants of the terrain guarding problem.

39

3. Guarding Terrains

A PTAS via Local Search

Recently a PTAS for the terrain guarding problem was given by Gibson et

al. (53). In fact, the algorithm is a trivial local search algorithm that starts

with any valid guarding set and, while possible, improves the guarding set by

removing up to b guards and replacing them with a smaller number of guards.

The running time is bounded by nO(b).

The interesting part is not the algorithm but rather the analysis. This

follows the paradigm recently introduced by Chan and Har-Peled (18) and

Mustafa and Ray (82). For an appropriately chosen b = O(1/ε2) the algorithm

is a (1 + ε)-approximation. The proof of this fact relies on the existence of a

planar graph relating the current guarding set X and an optimum guarding

set Y . Let X ′ = X \ Y and Y ′ = Y \X. Consider the bipartite graph whose

vertex set is X ′ ∪Y ′ and in which x ∈ X ′ is adjacent to y ∈ Y ′ if and only if x

and y see a common point that is not guarded by X ∩Y . Gibson et al. proved

that this graph is planar.

This graph can then be considered in the light of separator theorems for

planar graphs (e.g., the original by Lipton and Tarjan (71) or the more useful

generalization of Frederickson (49)). The conclusion is that, if no local im-

provement exists, then X ′ is not much bigger than Y ′ and therefore X is not

much bigger than Y . It is worth emphasizing that the graph is never con-

structed; its existence is enough to guarantee the approximation factor of the

näıve search algorithm.

3.3 NP-Completeness

In this section we present the NP-completeness result developed in joint work

with Erik Krohn (63).

In order to prove NP-completeness of terrain guarding we develop a sophis-

ticated reduction from planar 3SAT that overcomes the obstacle presented by

the order claim. Therefore an exact polynomial time algorithm is not possi-

ble unless P = NP. We actually prove that terrain guarding is strongly NP-

complete, which means in particular that, while there might be a PTAS for the

40

NP-Completeness

problem (and in this case there is), there cannot be an FPTAS unless P = NP

(50).

The order claim is crucially exploited by all approximation algorithms for

the problem. In this section we develop a construction that overcomes the

order claim obstacle and shows that the terrain guarding problem is NP-hard.

Therefore, an exact polynomial time algorithm is not possible unless P = NP.

The NP-hardness result is shown for the standard discrete and continuous

variants of the problem. Here we state the result and sketch the proof; the

rest of the section is dedicated to the full proof.

Theorem 3.1. Minimum terrain guarding is strongly NP-hard.

Proof. Let Φ = (X,C) be a Boolean formula in 3-CNF with |X| = n and

|C| = m. Specifically, we require that Φ is a planar 3-CNF formula (see

Definition 3.1). In our reduction we construct in polynomial time a terrain TΦ

that can be guarded by f(Φ) guards if and only if Φ is satisfiable. Here f is

a function mapping planar 3-CNF formulae to the natural numbers, such that

f(Φ) is polynomial in n and is computable in time polynomial in n.

TΦ is built in several steps. First, we build a path representation of Φ,

denoted PΦ, in which each node stores a list of variables. The relationship

between variable lists in adjacent nodes is strictly defined. Some nodes are

specially marked as clause nodes or deletion nodes. This path representation,

along with the PLANAR 3-SAT problem, is discussed shortly.

From the path representation PΦ we then construct TΦ. As this is an

intricate process we separate the construction into two parts. First we explain

how to construct a terrain for n variables such that any minimum guarding

set corresponds to a consistent truth assignment of the variables. Secondly we

explain how additional gadgets are incorporated into such a terrain to construct

TΦ such that any guarding set of size f(Φ) corresponds to a consistent truth

assignment satisfying Φ. Our reduction has polynomial time complexity, and

Lemmas 3.4 and 3.5 tell us that TΦ can be embedded on a grid of polynomial

size.

41

3. Guarding Terrains

Planar 3SAT and Path Representations

In this subsection we introduce the PLANAR 3-SAT problem. We then de-

scribe how to express an instance of this problem in a format that lends itself

naturally to embedding in a terrain using our truth assignment propagation

framework. The clause and inversion gadgets used for the embedding process

are described last.

Defining PLANAR 3-SAT

Many variants of 3-SAT are NP-hard; reductions from restricted variants are

sometimes far simpler than reductions from general 3-SAT. In particular, PLA-

NAR 3-SAT is often used to prove NP-hardness of geometric problems (see,

e.g., (81)). We adapt the following definition from Mulzer and Rote (81).

Definition 3.1 (PLANAR 3-SAT). Let Φ be a Boolean formula in 3-CNF.

The formula graph of Φ, G(Φ), has one variable-vertex vx for each variable

x and one clause-vertex vC for each clause C. The variable-vertices vx are

connected by edges to form a variable cycle, and for each clause-vertex vC an

edge (vC , vx) is added if C contains either literal x or x. We say Φ is planar

iff G(Φ) is planar. The PLANAR 3-SAT problem is equivalent to the 3-SAT

problem restricted to planar formulae.

Theorem 3.2 (Lichtenstein (68)). PLANAR 3-SAT is NP-complete.

The variable cycle divides the plane into two regions, the interior and ex-

terior of the cycle. Let C− (resp. C+) be the set of clauses on the interior

(resp. exterior) of the variable cycle. Let n be the number of variables. The

most convenient way for us to now visualize Φ is that given by Knuth and

Raghunathan1 (65) in which the variables x1, . . . , xn are laid out from top to

bottom on a vertical line with three-legged clauses laid out to the left and right

of this line. The edges are rectilinear, the clauses from C− all lie to the left of

the variables, and the clauses from C+ all lie to the right of the variables (see

Figure 3.4).

1The layout described by Knuth and Raghunathan actually has the variables on a hori-
zontal line, but having them on a vertical line is more convenient for our explanation.

42

NP-Completeness

x4

x3

x5

x1

x2

C1

C2

C3

C4

C5

Figure 3.4: An instance Φ with three-legged clauses laid out to the left and
right of the variables. Crosses on the lines indicate negations. For example,
C1 = (x1 ∨ x3 ∨ x5) and C4 = (x2 ∨ x3 ∨ x4).

Motivation for using PLANAR 3-SAT

The only way we have been able to propagate a truth assignment around

a terrain is in a linear ‘highway’, with each variable living in a ‘lane’ of the

highway. We have been unable to reorder the variables in this highway, and we

have only developed very restricted clause gadgets. Because of this, difficulties

arose because each 3-CNF clause gadget would act like a ‘roadblock’ for the

middle of the three variables involved, after which we could not continue to

propagate that variable’s truth assignment. Our solution is to arrange the

variables and clauses in a way that ensures that each variable is the middle

variable in at most two clauses, and that the variable is only used in the length

of the highway that is between these two clauses.

If, for some i ∈ [2, n − 1], xi does not appear as the middle variable in a

43

3. Guarding Terrains

clause in C−, we add a deletion node to G(Φ) that is adjacent only to vxi
and

lies on the left side of the variable line. We do the same for C+ on the right

side of the variable line. An example can be seen in Figure 3.5. This deletion

node is used in the following description of a removal ordering.

A removal ordering for Φ

Considering Φ as laid out in Figure 3.4, it is not difficult to see that the clauses

can be removed in an order such that a clause being removed has nothing

‘between its legs’. We call such an ordering a removal ordering and order the

sets C− and C+ separately. Without loss of generality we can assume that x1

and xn are used in two common clauses, one in C− and one in C+. If this is

not the case, we can replace Φ with a new formula Φ′ by adding a variable

xn+1, a clause (x1 ∨ xn ∨ xn+1) in C−, and a clause (x1 ∨ xn ∨ xn+1) in C+. An

assignment of true to xn+1 satisfies both new clauses without affecting any

other clauses, so Φ′ ⇔ Φ and the size of Φ′ is linear in the size of Φ. Therefore

it is safe to assume that x1 and xn are used in two common clauses and this

additional clause is unnecessary.

We describe the removal ordering for C−. There is an associated list of

variables from which one variable is removed at each step. At the beginning of

the process the variable list contains all variables. At each step we can remove:

• a clause with nothing between its legs, along with the clause’s middle

variable,

• a deletion node whose associated variable is not used in any remaining

clauses in C−, along with its associated variable.

To avoid ambiguity, we always perform the action that removes the variable

with the lowest index. At the end of the process the variable list contains only

x1 and xn, and no clauses remain.

The key property of such a removal ordering is that, whenever a clause

is removed, it involves three consecutive variables from the variable list. This

allows our reduction to work even with our extremely restricted clause gadgets.

44

NP-Completeness

x4

x3

x5

x1

x2

C1

C2

C3

C4

C5

D1

Figure 3.5: The same layout as in Figure 3.4 with an additional deletion node.
The respective removal orderings are (C2, C3, C1) and (C4, D1, C5). Each vari-
able is only used in between the two clauses that use it as the middle variable,
so the issue of clauses acting as ‘roadblocks’ for middle variables is not a prob-
lem.

Building a path from a removal ordering

We construct two sequences α and β of variable lists corresponding to removal

orderings of C− and C+ respectively. For 0 ≤ i ≤ n− 2, the list αi contains the

variables remaining after the first i removals in the removal ordering for C−.

In particular, this means that α0 = (x1, x2, . . . , xn) and αn−2 = (x1, xn). β is

built similarly from the removal ordering for C+.

We construct the path PΦ based on the variable lists in the order

αn−2, . . . , α1, α0, β0, β1, . . . , βn−2. Such a path is shown in Figure 3.6. This

path is a basic representation of how Φ can be turned into a linear ‘high-

way’ so it can be embedded in TΦ. The deletion nodes ensure that, for each

variable other than x1 and xn, the variable’s lane is actually bounded by two

45

3. Guarding Terrains

α0α1α2α3 β0 β1 β2 β3

x1
x2
x3
x4
x5 b

ot
to

m

to
p

b
ot

to
m

to
p C1

C3

C2

C4

D1

C5

x1
x2
x3
x4
x5

Figure 3.6: A horizontal layout of Φ (above) that illustrates its treatment
as a variable highway. The path representation PΦ (below). The variables
x1, . . . , x5 are shown as the lines from top to bottom, with dashed lines repre-
senting variables being deleted. Crosses on the lines indicate negations. Note
in the α sequence that x1 is negated because the negative literal x1 appears in
C2, and x1 is later negated again because the positive literal x1 appears in C1.

‘roadblocks’.

Running time

A planar embedding of a planar graph can be found in linear time (56; 79).

The other tasks involved in constructing TΦ from Φ can be performed trivially

in polynomial time.

Truth assignment propagation with clause evaluation

We can think of the variable assignment as starting in the middle of PΦ and

being propagated out to the left and right. Our technique for propagating

a consistent truth assignment in a variable highway is discussed next. This

includes standard variable gadgets used for propagation, as well as deletion

gadgets used as endpoints for variable lanes. For a reduction from SAT we need

to determine if there is a consistent truth assignment that satisfies the clauses

of Φ. Two of the main types of gadgets we need are for evaluating α-clauses

while a truth assignment is propagated upwards and for evaluating β-clauses

while a truth assignment is propagated downwards. These gadget types, along

with the inversion gadget that inverts a variable (swaps the positions of guards

representing true and false), are discussed last. The locations of the gadgets

is determined by PΦ.

46

NP-Completeness

Variable lanes and general layout

To propagate a variable assignment around the terrain, our reduction ‘reflects’

the assignment back and forth over a main valley. Each reflector has n slots –

one for each variable lane. The slots in a reflector are stacked with the slot for

x1 being the highest and the slot for xn being the lowest. Most reflectors do

not transmit information about all n variables since most variable lists in PΦ

do not contain all variables. When a reflector does not transmit information

about a variable xi, the slot for xi is empty, i.e. it is a straight line segment

(see, e.g., Figure 3.9). Thus empty slots act as space holders, and the positions

of variable slots do not depend on which (or how many) slots are active in a

given reflector.

Generally, multiple reflectors (though always a constant number) may be

required to implement each step in the path PΦ. Each reflector takes up

the same amount of space, i.e. has the same size rectilinear bounding box.

Interacting gadgets near the bottom of the terrain are closer to each other

than interacting gadgets at the top of the terrain. To ensure that slopes of

important lines of sight are of the same order of magnitude, we can ‘pad’ the

lower part of the main valley so that all of the reflectors are in the top half of

the terrain. In this way, gadgets that interact with each other are always the

same horizontal distance apart up to a constant multiplicative factor. We can

also add padding to the walls between reflectors so that gadgets that interact

with each other are always the same vertical distance apart up to a constant

multiplicative factor. Both types of padding increase the size of the terrain by

at most a constant factor; neither type is shown in our figures.

Propagating a Truth Assignment

When studying the computational complexity of a problem it is often useful to

consider the problem’s locality. If a local change in a terrain can have a global

effect on the optimal solution we may be able to exploit this nonlocal behavior

to transmit information in a reduction. Specifically, we may be able to use it

to transmit a truth assignment to different clauses. With this in mind, our first

goal is simply to propagate a truth assignment around a terrain. Our greatest

47

3. Guarding Terrains

d

v1(x)
v0(x)

Figure 3.7: A variable gadget. Any point that sees the distinguished point d
is dominated by at least one of v0(x) and v1(x).

concern is ensuring that the truth assigment is consistent, i.e. that variables

have the same value wherever they are represented in the terrain.

In this section we deal with two types of terrains that introduce some of the

important principles used in our full reduction terrains. First we consider truth

assignment propagation terrains. In these terrains, we have a variable highway

for n variables, and every variable slot is active in every reflector. Our main

conclusion for these terrains is given as Observation 3.1. We then introduce

deletion gadgets so that variable lanes can have endpoints other than the top

and bottom reflectors. Our main conclusion for these terrains with deletion

gadgets is given as Observation 3.2.

Encoding a truth assignment

We start out as simply as possible, encoding a single Boolean variable without

any propagation. An example is shown in Figure 3.8. The variable gadget (see

Figure 3.7) has a distinguished point, d, that can be seen from only two other

vertices. These two vertices, call them v0(x1) and v1(x1), respectively represent

an assignment of false and true to the variable x1. Any point that sees d is

dominated by either v0(x1) or v1(x1). Therefore, for any minimum guarding

48

NP-Completeness

v1(x)

d

v0(x)

vtop

Figure 3.8: The simplest ‘truth assignment propagation terrain’ with one vari-
ble and no propagation.

set there exists a corresponding guarding set of the same size that contains

either v0(x1) or v1(x1). We can assume without loss of generality that any

minimum guarding set for the terrain contains a guard on at least one of these

points. Similarly, any point that sees the rightmost vertex is dominated by

vtop so we can assume that any minimum guarding set contains vtop. We make

these assumptions in order to discuss minimum guarding sets more cleanly;

later on we make similar assumptions without mention.

To encode an arbitrary number of variables, still without propagation, we

simply stack variable gadgets on top of each other to create a basic reflector

called an assignment gadget. An example is shown in Figure 3.10. A minimum

guarding set for that terrain contains vtop as well as one guard for each of the

three variable gadgets, corresponding to any truth assignment we want. This

can be generalized to a truth assignment for any number of variables.

Distinguished points and internal guards

The distinguished point d in a variable gadget cannot be seen from outside

the gadget. This ensures that any guarding set contains at least one point in

each variable gadget. This is essential for proving correctness of our reduction.

49

3. Guarding Terrains

x1

x2

x3

x4

x5

Figure 3.9: An assignment gadget. The slots corresponding to lanes for x2 and
x3 are empty.

Certain gadgets require internal guards, between 0 and 2 depending on the

gadget type. If all internal guards in the terrain interact in the right way, i.e. if

they correspond to a consistent truth assignment satisfying the clauses of Φ,

then they are sufficient to guard the entire terrain. If Φ is not satisfiable, we

require the same number of internal guards to guard the distinguished points,

but at least one additional guard is required to guard the rest of the terrain.

Thus f(Φ) is simply the number of internal guards required, and is trivially

computable from the numbers of gadgets of each type. In this accounting we

consider the guards required at vtop and vbottom to be internal guards.

Propagating a truth assignment

Now that we can encode an arbitrary truth assignment, we want to be able

to propagate it consistently around the terrain. We do this by reflecting the

assignment back and forth across a central valley. Each assignment gadget

interacts with two assignment gadgets on the opposite side of the valley, taking

input from the one above and giving output to the one below. The assignment

gadgets on the right side of the valley are mirror images of those on the left side,

though the positions of guards representing true and false are swapped. An

50

NP-Completeness

x1

x2

x3

vtop

Figure 3.10: Another ‘truth assignment propagation terrain’, now with three
variables, still no propagation.

example of the reflecting behavior is shown in Figure 3.11, a variable interaction

is shown in Figure 3.12, and the details of the variable interaction are shown in

Figure 3.13. The way a variable’s assignment is propagated down the terrain

holds the key to understanding the complexity of terrains, and is based on the

relationship between what on the opposite side of the valley can be seen by

guards at v0(x) or v1(x). It is possible for v0(x) to see things v1(x) cannot

because v1(x) is ‘too low’. Similarly, it is possible for v1(x) to see things v0(x)

cannot because v0(x) is ‘too far to the left’. We explain the details in Figure

3.13 shortly.

It is important to point out that the direction in which a truth assignment

is propagated is simply a matter of perspective. We can think of the truth

assignment as starting at the top and being propagated downwards, as starting

at the bottom and being propagated upwards, or as starting in the middle and

being propagated both upwards and downwards.

Variable gadget interaction

A variable gadget only interacts with other gadgets representing the same vari-

able. This interaction is shown coarsely in Figure 3.11. The necessary guard

51

3. Guarding Terrains

vtop

vbottom

Figure 3.11: An assignment of three variables being propagated using four
reflectors. Note that in an actual terrain used in our reduction, the top and
bottom assignment gadgets have every variable slot empty except for x1 and
xn.

at vtop sees enough of the first (i.e. top left) assignment gadget that the first

assignment gadget can be optimally guarded by n guards corresponding to any

truth assignment for the n variables. This is the output of the first assignment

gadget. After that, zig-zagging down the terrain, the interactions of the vari-

able gadgets are designed to ensure that an assignment gadget can be guarded

by n guards if and only if it encodes a truth assignment (its output) that

matches the truth assignment encoded in the assignment gadget above (its in-

put). Finally, a guard at vbottom is necessary and sufficient to guard everything

below the final assignment gadgets. Thus a ‘truth assignment propagation

terrain’ (see, e.g., Figure 3.11) with k assignment gadgets propagating n vari-

ables can be guarded with nk + 2 guards if and only if the truth assignment

52

NP-Completeness

Figure 3.12: A variable interaction. The inset detail is exaggerated to show
how specific lines of sight interact. For more detail see Figure 3.13.

is consistent; furthermore, this works for any of the 2n possible truth assign-

ments. This count of nk+2 only works for these truth assignment propagation

terrains because every assignment gadget has a slot for each of the n variables

so there are nk total variable gadgets; this need not be true in general.

In the detail in Figure 3.13 the four points {d, d′, p, q} are of particular

interest. To guard d and d′ we need at least one of {v0(x), v1(x)} and at least

one of {u0(x), u1(x)} in our guarding set. The gadgets are configured such

that, of these four potential guards, only v0(x) and u1(x) see q, and only v1(x)

and u0(x) see p. Therefore the only pairs of guards that see {d, d′, p, q} are

{v0(x), u0(x)} and {v1(x), u1(x)}. These pairs correspond to the variable x

being set to false or true respectively.

Special care is taken to ensure that guards in a guarding set of size nk + 2

do not interfere with the wrong gadgets. For each of the nk variable gadgets

we have points of type p and q (see Figure 3.13). vtop can see all such points

in the first assignment gadget, but none from any other assignment gadget.

vbottom cannot see any at all. The v0(x) and v1(x) type guards can only see

the appropriate points in their own variable gadget and in the variable gadget

below that their variable gadget interacts with. The ‘lip’ on the gadget ensures

v0(x) and v1(x) cannot see any variable gadgets further down, and they cannot

53

3. Guarding Terrains

u0(x)

u1(x)

d′

p

q

lip

v1(x)

v0(x)

d

lip

Figure 3.13: Interaction of variable gadgets. v0(x) cannot see p because the
line of sight is blocked by v1(x). v1(x) cannot see q because the line of sight is
blocked by u1(x). One internal guard is required for each gadget.

see any higher points of type p and q because those points sit in ‘dimples’ that

are appropriately steep.

Managing lines of sight

For each pair of variable gadgets that interact, two tweaking phases need to

be performed to ensure that important lines of sight either exist or do not

exist, as required; tweaking is done by moving certain vertices vertically by

small amounts. The first phase is done for each gadget, starting at the bottom

of the terrain and proceeding upwards. Then the second phase is done for

54

NP-Completeness

each gadget, starting at the top of the terrain and proceeding downwards. We

describe these phases in reference to the interaction shown in Figure 3.13.

In the first phase, the two vertices to be adjusted vertically are v1(x) and

the lip vertex to the right of v1(x). First v1(x) is adjusted so that the line of

sight from v0(x) through v1(x) hits the terrain on the opposite side between

u0(x) and p. After that, the lip vertex to the right of v1(x) is adjusted so that

the line of sight from v1(x) passing through this lip vertex hits the terrain on

the opposite side below the opposite lip vertex but above any variable gadget

below.

In the second phase, the vertices to be adjusted vertically are p and q. p

is adjusted so that the line of sight from p through the adjacent lip vertex

hits the terrain on the opposite side near the bottom of the relevant variable

gadget. q is adjusted more precisely so the line of sight from q through u1(x)

hits the terrain on the opposite side on the line segment (d, v0(x)). The line

of sight passes just over v1(x) and hits just below v0(x).

If the tweaking is done in this order, the tweaking process does not disturb

variable gadgets that have already been tweaked. The other gadget types can

be tweaked similarly. The tweaking process is discussed in more detail later.

We reiterate our main point regarding these truth assignment propaga-

tion terrains. Again, this only holds for these demonstrative truth assignment

propagation terrains.

Observation 3.1. A truth assignment propagation terrain with k assignment

gadgets propagating n variables can be guarded using nk + 2 guards corre-

sponding to any consistent truth assignment. Any guarding set that does not

correspond to a consistent truth assignment requires more guards.

Deletion gadgets

In the truth assignment propagation terrains shown thus far, each variable has

a lane in the variable highway that spans every assignment gadget, from the

top to the bottom. However, for our reduction we need to be able to place

‘roadblocks’ to manage the endpoints of each variable’s lane. To end a lane,

we use deletion gadgets. We need a downward deletion gadget for the bottom

55

3. Guarding Terrains

endpoint of a lane and an upward deletion gadget for the top endpoint of a

lane.

Both downward and upward deletion gadgets are essentially simplified vari-

able gadgets. A downward deletion gadget is actually just a flat region where

a variable gadget would be; in a sense it is a variable gadget that has been sim-

plified to a straight line (see Figure 3.14). An upward deletion gadget is only

slightly more complicated; it requires a single guard that functions similarly

to vtop but only for a single lane (see Figure 3.15).

v1(x)

v0(x)

d

lip

Figure 3.14: The bottom variable gadget in a variable lane (left) interacts with
a downward deletion gadget (right). The downward deletion gadget is simply
a flattened region. v1(x) and the lip vertex are positioned so that neither
v0(x) nor v1(x) can see gadgets lower down the terrain. One internal guard is
required on the left side, no internal guard is required on the right.

56

NP-Completeness

u0(x)

u1(x)

d′

p

q

lip

vdel(x)

d

lip

Figure 3.15: An upward deletion gadget (left) interacts with the top variable
gadget in a variable lane (right). The upward deletion gadget is a simplified
variable gadget. vdel(x) can see both p and q and is used to guard the distin-
guished point d. The lip vertex near vdel ensures that vdel cannot interact with
variable gadgets lower down the terrain. One internal guard is required on the
left side and one is required on the right.

Observation 3.2. A truth assignment propagation terrain with deletion gadgets

with kv total variable gadgets and kdel upward deletion gadgets can be guarded

using kv + kdel + 2 guards corresponding to any consistent truth assignment.

Any guarding set that does not correspond to a consistent truth assignment

requires more guards.

57

3. Guarding Terrains

Preliminary embedding on a grid

At this point we should begin to address the issue of the precision required by

our reduction. To prove that terrain guarding is strongly NP-hard we must

show that any terrain generated by our reduction can be represented by a

unary string of polynomial length. This means, in particular, that we must be

able to represent the location of a vertex with a unary string of polynomial

length. The standard way to do this in a geometric NP-hardness proof is to

ensure that all vertices can be placed on a grid of polynomial size.

We begin explaining the grid embedding now, before things get more com-

plicated. The following lemma handles the general ideas and we handle ad-

ditional details (i.e. the clause and inversion gadgets that have not yet been

discussed) after they are presented.

Lemma 3.4. A truth assignment propagation terrain with deletion gadgets,

propagating an assigment of n variables using O(n) reflectors, can be embedded

in a grid of size O(n6)×O(n6).

Proof. We argue that the vertices can be placed on a grid of polynomial size

using a hierarchical grid structure. Our level 1 grid has polynomial size, each

level 1 grid square contains a level 2 grid of polynomial size, each level 2 grid

square contains a level 3 grid of polynomial size, and each level 3 grid square

contains a level 4 grid of polynomial size. Our primary concern is the precision

required when aiming key lines of sight between interacting gadgets.

In level 1 of the grid, each square is sized such that an assignment gadget

spans a rectangle, made up of 2 grid squares stacked vertically, from corner to

opposite corner (this is illustrated in Figure 3.16).

For the sake of simplicity we ensure that important lines of sight between

interacting gadgets all have similar slopes (specifically, slopes of ±Θ(1/n)).

We can guarantee this with some simple padding that increases the size of the

terrain by only a constant factor. This padding is not shown in Figure 3.16.

Firstly, we ensure that, vertically speaking, interacting reflectors are separated

by one level 1 grid square. Thus in any two interacting gadgets, any point

from one gadget is separated vertically from any point in the other gadget by

58

NP-Completeness

Θ(1) level 1 grid squares. The second type of padding we do is padding the

bottom of the terrain so that no reflectors are placed below the level at which

there are n level 1 grid squares between the two sides of the main valley. This

guarantees that any two reflectors are separated horizontally by Θ(n) level

1 squares. These two padding processes ensure that lines of sight between

interacting gadgets always have slopes of ±Θ(1/n).

The size of our level 1 grid is Θ(n)×Θ(n). At the cost of only a constant

multiplicative factor to the grid’s size, the minor gadgets containing vtop and

vbottom can also be implemented in the level 1 grid.

Figure 3.16: Level 1 of the grid structure. The padding used to ensure lines of
sight between interacting gadgets have slope ±Θ(1/n) is not shown.

Level 2 of the grid is sized such that the space for each slot in an assignment

59

3. Guarding Terrains

gadget spans a rectangle, made up of a constant number of grid squares, from

corner to opposite corner. Thus we fill a level 1 grid square with a level 2 grid

of size Θ(n)×Θ(n). Each variable gadget or deletion gadget, by itself, can be

embedded in a grid of constant size if it does not need to be tweaked. So, at

the cost of a constant multiplicative factor to the size of each level 2 grid, we

can embed the untweaked gadgets in the first two grid levels.

Before the variable gadgets and the deletion gadgets are tweaked, all ver-

tices except lip vertices are in the correct horizontal locations but not neces-

sarily in the correct vertical positions. Thus the tweaking only moves vertices

vertically, except for lip vertices that slide along the line of slope ±2. These

configurations each use a constant size grid per slot gadget. An untweaked

variable gadget is shown in Figure 3.17.

d

v1(x1)
v0(x1)

p, lip

Figure 3.17: An untweaked variable gadget with level 2 grid lines shown.

60

NP-Completeness

The tweaking is then done in two stages, as previously discussed, where

each stage uses a new grid level. In the first tweaking phase, taking place in

level 3 of the grid structure, we move three vertices in each variable gadget –

those of type v1, p, and the lip vertex. These vertices can be lowered but not

raised. We do the tweaking from the bottom up, so that, as a variable gadget

is being tweaked, the variable gadget to which it sends output has already been

tweaked.

We first lower v1 until the ray emanating from v0 and passing through

v1 hits the output variable gadget below u0 but above p. This ray might be

occluded within the gadget being tweaked but we ignore that for now as the

occlusion is removed in the next step. Now we move p and the lip vertex

downwards in unison so that they remain horizontally level, but diverge as p

moves straight downwards and the lip vertex slides down along the guideline

of slope ±2. We lower p and the lip vertex until the ray emanating from v1

and passing through the lip vertex hits the output variable gadget just below

its lip vertex.

To determine the required size of each level 3 grid we must determine

the precision required by the two key line segments. Each spans Θ(n2) level

2 squares horizontally and Θ(n) level 2 squares vertically. We can consider

the tweaking process to ’aim’ the lines of sight, where the targets are in the

output variable gadget and have size Θ(1) level 2 squares. Since, for either line

of sight, the distance between the two ’aiming’ vertices is Θ(1) level 2 squares,

and each line of sight has length Θ(n2) level 2 grid squares, the amount of

precision required in the tweaking of the aiming vertices is Θ(n−2) level 2

squares. Thus it suffices for each level 2 square to contain a level 3 grid of size

Θ(n2)×Θ(n2).

In the second tweaking step, corresponding to the level 4 grids, we move the

vertices of type p and q. In this stage we start at the highest variable gadget

and proceed downwards. The main point of this tweaking stage is to aim the

lines of sight of interest emanating from p and q in the variable gadgets. First

we address the line of sight emanating from the q vertex and passing through

the adjacent u1 vertex. We are doing the tweaking in the output variable

gadget now, aiming a line of sight at the input variable gadget above. The line

61

3. Guarding Terrains

of sight needs to pass above the v1 vertex and hit the input gadget just below

the v0 vertex. For this purpose, it needs to pass just above v1, but within O(1)

level 3 squares, so the target has size Θ(1) level 3 squares. Again, the line of

sight has length Θ(n2) level 2 squares, or Θ(n4) level 3 squares. The distance

between the two vertices responsible for the aiming is Θ(n2) level 3 squares.

Therefore the amount of precision required is Θ(n−2) level 3 squares. The line

of sight emanating from p has a larger target; in fact it only needs to hit the

relevant variable gadget on the line segment below the lip vertex so the target

is Θ(1) level 2 squares, so even less precision is required. So it suffices for each

level 3 square to contain a level 4 grid of size Θ(n2)×Θ(n2).

This completes the tweaking of gadgets, and thus completes the embed-

ding of the terrain on a grid. The total size of the grid used is polynomial,

specifically Θ(n6)×Θ(n6).

Evaluating clauses

Our basic truth assignment propagation process can be thought of as behaving

in the following way. A truth assignment for the variables is set in one of the

assignment gadgets (it does not matter which). Call this reflector the starting

gadget. The way the assignment gadgets interact ensures that, in a minimum

guarding set, this truth assignment is propagated consistently both upwards

and downwards from the starting gadget.

With the starting gadget fixed, we can consider each assignment gadget

to have an input truth assignment and an output truth assignment (though

the starting gadget has no input and the topmost and bottommost assignment

gadgets have no output). Each assignment gadget above the starting gadget

takes input from below and sends its output upwards. Each assignment gadget

below the starting gadget takes input from above and sends its output down-

wards. An assignment gadget can be thought of as an identity gadget since,

in a minimum guarding set, its output is the same as its input.

When building TΦ we also have a starting gadget, and other gadgets still

have input and output. However, we need more than just an identity gadget.

In this section we describe the types of gadgets required to propagate a truth

62

NP-Completeness

assignment that satisfies Φ. The three gadget types in this section are:

1. Inversion gadget – in the variable lane for a variable xi, this gadget

switches the position of the guards representing true and false assign-

ments.

2. Upward clause gadget – for three variables xi, xj, xk, with i < j < k

and with xj the only non-empty lane between xi and xk, asserts that the

clause (xi ∨ xj ∨ xk) is satisfied, otherwise at least one extra guard is

required. The xj lane must be empty above this gadget.

3. Downward clause gadget – for three variables xi, xj, xk, with i < j <

k and with xj the only non-empty lane between xi and xk, asserts that

the clause (xi ∨ xj ∨ xk) is satisfied, otherwise at least one extra guard is

required. The xj lane must be empty below this gadget.

These gadgets are sufficient to complete our reduction from PLANAR 3-

SAT.

Gadget input and output

Our reduction ensures that in a guarding set of size f(Φ), guards can only be

on certain special types of internal vertices2:

1. vtop and vbottom

2. vertices of type vdel(x) in upward deletion gadgets

3. vertices of type v0(x), v1(x), u0(x), and u1(x)
3 in standard and modified4

variable gadgets

4. vertices of type u0(x), u1(x), w0(x) and w1(x) in inversion gadgets.

2More precisely, in a guarding set of size f(Φ), any guard not on one of these point types
can be replaced by a guard on one of these point types with no loss in visibility.

3In variable gadgets, vertices of type u0(x) and u1(x) are actually also vertices of type
v0(x) and v1(x).

4Modified variable gadgets are used in clause gadgets.

63

3. Guarding Terrains

The output of a gadget only has to be valid in a guarding of size f(Φ), otherwise

it is not necessarily valid and all assumptions are allowed to fall apart since a

minimum guarding set must correspond to a truth assignment satisfying Φ if

and only if it has size f(Φ). f(Φ) internal guards are still necessary, but they

do not necessarily correspond to a consistent and satisfying truth assignment

if there are additional guards.

Inversion gadget

For a single variable, an inversion gadget swaps the positions of guards rep-

resenting the true and false truth assignments. By default, in a variable

gadget the vertex v0(x) (representing false) is above the vertex v1(x) (rep-

resenting true). However, if in the lane for x there are an odd number of

inversion gadgets between the variable gadget in question and the start gad-

get, v1(x) is above v0(x). An inversion gadget replaces a single variable gadget

in the lane corresponding to the variable being inverted.

A standard variable gadget has two possible minimum guarding sets:

{v0(x)} and {v1(x)} (see Figure 3.7). The special variable slot in an inver-

sion gadget also has two possible minimum guarding sets, though each has two

guards instead of just one. From each minimum guarding set, however, only

one guard affects the output of the gadget.

An inversion gadget is shown in Figure 3.18, with a larger view shown in

Figure 3.19. A detailed description to accompany Figure 3.18 is as follows.

Input is shown above and output is shown below, with the same inversion gad-

get on the top right and bottom right. There are only two minimum guarding

sets that include exactly one of the input guards v0(x) and v1(x). These sets

are {v0(x), u0(x), w0(x), v
′
0(x)} and {v1(x), u1(x), w1(x), v

′
1(x)}. Two internal

guards are required in the inversion gadget (i.e. in the range [u1(x), u0(x)]),

since r is not seen by anything outside the range [u1(x), w0(x)] and s is not

seen by anything outside the range [w1(x), u0(x)]. t is not seen by anything

outside the range [w0(x), w1(x)]. Though it is difficult to see, p is seen by v1(x)

and w0(x) but not by u1(x). q is seen by v0(x) and w1(x) but not by w0(x).

r is seen by u1(x) and w0(x). The two potential output guards are u0(x) and

64

NP-Completeness

u1(x). w0(x) and w1(x) are useless outside this gadget.

Upward clause gadget

An upward clause gadget takes as input (from below) a variable assignment

and outputs a variable assignment with one variable removed. These gadgets

are used to implement clauses in the α sequence of PΦ. For three variables

xi, xj, xk that are adjacent5 in the input highway (i < j < k), the gadget

deletes the middle variable xj. The gadget can be guarded with a minimum

number of internal guards if and only if the following two conditions hold:

1. Each variable in the input (except xj) must have the same value in the

output.

2. The clause (xi ∨ xj ∨ xk) is satisfied by the input.

Another way of saying that the clause (xi ∨ xj ∨ xk) is satisfied by the input is

to say that the input can include xj only if (xi ∨ xk) evaluates to true in the

input and output.

In an upward clause gadget involving the variables xi, xj, xk, the variable

xj is deleted from the assignment. This takes place in a single reflector, in

which all active variable slots except xj contain variable gadgets. Assuming

the clause being evaluated is (xi∨xj ∨xk), we explain what is put in the place

of a variable gadget for xj. The key is the special point qj. Of the ‘output’

points v0(xi), v1(xi), v0(xk) and v1(xk), only v1(xi) and v0(xk) can see qj. Of

the 6 ‘input’ points, only u1(xj) can see qj. Since the variables xi and xk have

the same output as input, xj can be in the input if and only if xi or xk is in

the input. Thus a minimum guarding of the gadget ensures that the clause

(xi ∨ xj ∨ xk) is satisfied.

Downward clause gadget

A downward clause gadget takes as input (from above) a variable assignment

and outputs a variable assignment with one variable removed. These gadgets

5By adjacent we mean that there are no active lanes in the input between xi and xj or
between xj and xk.

65

3. Guarding Terrains

v1(x)

v0(x)

d

lip

u0(x)

u1(x)

p q

w1(x)

w0(x)

r s
t

v1(x)

v0(x)

d

lip

u0(x)

u1(x)

p′

q′

Figure 3.18: Inversion gadget interaction. For more detail of the inversion
gadget see Figure 3.19, particularly the inset.

66

NP-Completeness

u0(x)u1(x)

p q

w1(x)w0(x)

r st

w1(x)w0(x)

p q

Figure 3.19: Detail of inversion gadget. See Figure 3.18 for details of its interac-
tion with variable gadgets above and below it. The inset shows a magnification
of the shaded region.

67

3. Guarding Terrains

v0(xi)

v1(xi)

u1(xi)

u0(xi)

u1(xj)

u0(xj)

qj

v0(xk)

v1(xk)

u1(xk)

u0(xk)

Figure 3.20: Upward clause gadget interaction. In every reflector above this
gadget the xj slot is empty. Each of the 6 slots shown, except the middle
left, requires one internal guard. No extra guards are required iff the clause
(xi ∨ xj ∨ xk) is satisfied, since the only internal guards that see qj are v1(xi),
u1(xj), and v0(xk). Note that, in the top left slot, the lip vertex has been
lowered so that v1(xi) can see qj. Also, qj has been adjusted so that v0(xk)
can see it. The two lines of sight relevant to these adjustments are shown.

are used to implement clauses in the β sequence of PΦ. For three variables xi,

xj, xk that are adjacent in the input highway, the gadget deletes the middle

variable xj. The gadget can be guarded with a minimum number of internal

guards if and only if the following two conditions hold:

1. Each variable in the input (except xj) must have the same value in the

output.

68

NP-Completeness

v0(xi)

v1(xi)

u1(xi)

u0(xi)

qj

v0(xj)

v1(xj)

u1(xk)

u0(xk)

v0(xk)

v1(xk)

Figure 3.21: Downward clause gadget interaction. In every reflector below
this gadget the xj slot is empty. Each of the 6 slots shown, except the middle
right, requires one internal guard. No extra guards are required iff the clause
(xi ∨ xj ∨ xk) is satisfied, since the only internal guards that see qj are v1(xi),
v0(xj), and v0(xk). Note that, in the top left slot, the lip vertex has been
lowered so that v1(xi) can see qj. Also, qj has been adjusted so that v0(xk)
can see it. The two lines of sight relevant to these adjustments are shown.

69

3. Guarding Terrains

2. The clause (xi ∨ xj ∨ xk) is satisfied by the input.

Another way of saying that the clause (xi ∨ xj ∨ xk) is satisfied by the input is

to say that the input can include xj only if (xi ∨ xk) evaluates to true in the

input and output.

In a downward clause gadget involving the variables xi, xj, xk, the variable

xj is deleted from the assignment. This takes place in a single reflector, in

which all active variable slots except xj contain variable gadgets. Assuming

the clause being evaluated is (xi∨xj ∨xk), we explain what is put in the place

of the variable gadget for xj. The key is the special point qj. Of the ‘input’

points v0(xi), v1(xi), v0(xj), v1(xj), v0(xk) and v1(xk), only v1(xi), v0(xj) and

v0(xk) can see qj. Thus a minimum guarding of the gadget ensures that the

clause (xi ∨ xj ∨ xk) is satisfied. All variables except xj have the same output

as input.

Final embedding on a grid

We previously introduced Lemma 3.4 that states that a truth assignment prop-

agation terrain can be embedded in a grid of polynomial size. Here we extend

that lemma to show that any terrain generated by our reduction from PLA-

NAR 3-SAT can be embedded in a grid of polynomial size.

Lemma 3.5. For any instance Φ of PLANAR 3-SAT, TΦ can be embedded in

a grid of polynomial size.

Proof. In the proof of Lemma 3.4 we dealt with truth assignment propagation

terrains that do not contain inversion gadgets or clause gadgets. Here we

handle the embedding of inversion gadgets and clause gadgets. The reader

should read the proof of Lemma 3.4 before proceeding. Note that the number

of reflectors in TΦ is Θ(n).

As well as extending the embedding method from Lemma 3.4 we refine it

slightly. Whereas before we had a level 3 grid of size Θ(n2) × Θ(n2) in each

level 2 grid square, we now have a level 3 grid of size Θ(n3)×Θ(n3) in each level

2 grid square. This is because the lines of sight tweaked in the first tweaking

70

NP-Completeness

phase need to be aimed more precisely. The size of the targets they need to

hit, in terms of level 2 squares, is now Θ(1/n) rather than Θ(1).

For the clause gadgets, the lines of sight are aimed the same way as in the

variable gadgets; the only real difference is that the lines of sight have different

targets.

For the inversion gadgets, the same is essentially true though the process

is more complicated. In the first tweaking phase, we first lower u1, w0, and

w1 in unison to aim the line of sight emanating from u0 and passing through

u1. We then lower the lip vertex adjacent to u1 to ensure that u1 can see the

output variable gadget but nothing lower.

In the second phase we must place the points p and q. p must be dug out

just below w0 towards the middle of the valley and q must be dug out just

below w1 towards the middle of the valley. Recall from the proof of Lemma

3.4 the key lines of sight between the inversion gadget and the input gadget

above have slope ±Θ(1/n). Since u1, w0, and w1 are separated by a horizontal

distance of Θ(1) level 2 grid squares, we can have p and q placed Θ(1/n) level

2 grid squares below u1, w0, and w1. Now, when p and q are placed, we also

place a lip vertex next to each to aim lines of sight to and from p and q.

These lip vertices can be respectively placed Θ(1/n) level 2 grid squares away

from p and q. When p and q are being ‘aimed’, they must hit targets of size

Ω(1) level 3 squares, and these are Θ(n) level 1 squares away, or Θ(n2) level

2 squares away, or Θ(n5) level 3 squares away. Thus the error allowed in the

slope is Θ(n−5). When adjusting p and q, along with their adjacent lip vertices,

precision of Θ(n−6) level 2 squares, or Θ(n−3) level 3 squares, is sufficient. This

corresponds to a level 4 grid of size Θ(n3)×Θ(n3) in each level 3 grid square.

Thus the additional precision required by the inversion gadgets can be

handled by increasing our overall grid size from Θ(n6) × Θ(n6) to Θ(n8) ×
Θ(n8).

71

3. Guarding Terrains

3.4 Notes

Contributions

The parsimonious discretization method (Lemma 3.1) and the VC-dimension

bound (Lemma 3.2) were proved independently by the author. The VC-

dimension bound has been published (61).

The major contribution of this chapter is the NP-completeness result (The-

orem 3.1). The truth assignment propagation technique was developed inde-

pendently by the author, then conveyed to Erik Krohn who completed the

proof of weak NP-hardness. We subsequently strengthened the proof in order

to prove strong NP-hardness. The weak NP-hardness result has been published

(63) and the strong NP-hardness result has been submitted.

Future Directions

We have shown that terrain guarding is NP-hard. With the PTAS for terrain

guarding given by Gibson et al. (53), this essentially resolves the approximabil-

ity of the problem. The biggest remaining question regarding the complexity

of terrain guarding is whether or not it is fixed-parameter tractable. With

the size of the minimum guarding set as a fixed parameter, the parameterized

version of the problem asks, “For a given input terrain T with n vertices and

parameter k, does T have a guarding set of size at most k?” Determining the

parameterized complexity would essentially resolve the complexity of terrain

guarding.

We do not know if the discretization method in Lemma 3.1 can be improved

upon in terms of the number of points generated. Our method can require

Θ(n3) points. Smaller point sets might be sufficient — perhaps there exists a

better parsimonious discretization method that generate sets of size O(n2).

72

Chapter 4

Guarding Polygons

We now move our attention to guarding problems involving polygons, commonly

known as art gallery problems. Our emphasis is on optimization problems, i.e., find-

ing minimum guarding sets for specific input polygons. We discuss the range spaces

associated with these problems, paying special attention to the issue of discretiza-

tion. We then give an approximation algorithm for guarding simple polygons with

perimeter guards; this algorithm improves the state of the art.

Contents

4.1 Polygon Guarding Preliminaries 74

Range Spaces . 75

Discretization . 76

4.2 Improved Approximation for Perimeter Guards . 80

Building Quadratic ε-Nets 81

Smaller ε-Nets via Hierarchical Fragmentation 86

4.3 Notes . 92

73

4. Guarding Polygons

4.1 Polygon Guarding

Preliminaries

In computational geometry, art gallery problems, i.e., polygon guarding prob-

lems, are motivated by the question, “How many security cameras are required

to guard an art gallery?” The art gallery is modeled as a connected polygon

P . A camera, which we henceforth call a guard, is modeled as a point in the

polygon, and we say that a guard g sees a point q in the polygon if the line

segment gq is contained in P . The visibility polygon of a point p, denoted

Vis(p), contains all points in P that see p. We call a set G of points a guarding

set if every point in P is seen by some g ∈ G. Let V (P) denote the vertex set

of P and let ∂P denote the boundary of P . We assume that P is closed and

non-degenerate so that V (P) ⊂ ∂P ⊂ P .

We consider the minimization problem that asks, given an input polygon

P with n vertices, for a minimum guarding set for P . Variants of this problem

typically differ based on what points in P must be guarded and where guards

can be placed, as well as whether P is simple or contains holes. Typically we

want to guard either P or ∂P , and our set of potential guards is typically V (P)

(vertex guards), ∂P (perimeter guards), or P (point guards). For results on

art gallery problems not related to minimization problems we direct the reader

to O’Rourke’s book (83), which is available for free online.

The problem was proved to be NP-complete first for polygons with holes by

O’Rourke and Supowit (84). For guarding simple polygons it was proved to be

NP-complete for vertex guards by Lee and Lin (67); their proof was generalized

to work for point guards by Aggarwal (3). This raises the question of approx-

imability. There are two major hardness results. First, for guarding simple

polygons, Eidenbenz (42) proved that the problem is APX-complete, mean-

ing that we cannot do better than a constant-factor approximation algorithm

unless P = NP. Subsequently, for guarding polygons with holes, Eidenbenz

et al. (43) proved that the minimization problem is as hard to approximate

as set cover in general if there is no restriction on the number of holes. It

therefore follows from results about the inapproximability of set cover (see

74

Polygon Guarding Preliminaries

Section 2.1) that, for polygons with holes, it is NP-hard to find a guarding

set of size o(log n). These hardness results hold whether we are dealing with

vertex guards, perimeter guards, or point guards.

Range Spaces

Guarding problems can naturally be expressed as instances of set cover or

hitting set. We wish to model an instance of a guarding problem as an instance

of hitting set. The desired range space S = (SG,R) is constructed as follows.

SG contains the potential guard locations. For each point p that needs to be

guarded, Rp is the set of potential guards that see p. Now R = {Rp : p ∈ ST},
where ST is the set of points that must be guarded.

It is known that range spaces associated with the guarding of simple poly-

gons with point guards have constant VC-dimension. This was first proved by

Kalai and Matoušek, who were able to apply a Ramsey-type result after using,

among other arguments, the following order claim for simple polygons:

Claim 4.1 (Polygon Order Claim). Consider points a, b, c, d, e, f in clock-

wise order on the perimeter of a simple polygon P . If a ∼ c, b ∼ d, e ∼ a,

and f ∼ d, then a ∼ d. The same also holds for the corresponding points in a

polygon P ′ that contains P .

Proof. This claim is essentially two copies of the order claim for terrains (Claim

3.1), glued together along the line segment ad. Line segments ac and bd inter-

sect at a point p and line segments ea and fd intersect at a point q. Now the

points {a, p, d, q} form a convex quadrilateral containing the line segment ad;

the interior of the quadrilateral is disjoint from ∂P so a ∼ d.

Bounds on the maximum VC-dimension were improved by Valtr (96), who

showed that it is at least 6 and at most 23. The lower bound is given by example

and the upper bound is given by a combinatorial argument. A sketch of the

upper bound argument for the maximum dimension d is as follows. Consider

a set Y of d points that are shattered by a set Z of 2d points. Decompose

the plane by cutting along O(d2) lines defined in some way by the points in

Y . The decomposition ensures that points inside a single region see ‘similar’

75

4. Guarding Polygons

subsets of Y ; this means no region can contain too many points from Z. Since

the decomposition has only O(d4) regions, Valtr is able to prove that Z cannot

fit in the decomposition for any d ≥ 24.

The upper bound of 23 applies a fortiori to range spaces for perime-

ter guards and vertex guards. Thus when guarding simple polygons we can

construct ε-nets of size O
(

1
ε
log 1

ε

)
using general techniques. In a polygon

with h holes the VC-dimension is O(log h) (96) and therefore ε-nets of size

O
(

1
ε
log 1

ε
log h

)
can be constructed using general techniques.

Discretization

If either SG or ST is infinite, some discretization may be necessary to find a

hitting set for S, or even to construct S in the first place. Discretization is the

task of building an appropriate finite range space S ′ defined by finite subsets

S ′G ⊆ SG and S ′T ⊆ ST . The goal is for S ′ to approximate S; we clarify this

shortly. Once we have constructed a range space S ′ that satisfies these criteria,

we can find an approximately minimum hitting set H for S ′, for example using

general techniques (see Section 2.1). Let opt and opt′ be the sizes of optimum

hitting sets for S and S ′ respectively, and assume our approximation algorithm

run on S ′ guarantees a hitting set of size f(opt′).

The first criterion for S ′ is that opt′ must not be much larger than opt.

Ideally opt′ = opt, but in many cases opt′ = O(opt) is also acceptable.

This criterion ensures that our discretization does not ruin the guaranteed

approximation factor. The second criterion is that any hitting set for S ′ must

also be a hitting set for S. In other words, any subset of S ′G that guards S ′T
must also guard ST . This criterion ensures that our discretization does not

break correctness.

The process of constructing S ′ and finding an approximate hitting set H

for S ′ is now an approximation algorithm for hitting set on S, and the approx-

imation factor is
f(opt′)

opt
.

The technique of Brönniman and Goodrich (see Section 2.2) does not ac-

tually require ST to be finite, so long as the net finder and verifier run in

76

Polygon Guarding Preliminaries

polynomial time. For the problem of guarding polygons this polynomial be-

haviour is easy to achieve. Unfortunately SG must be finite regardless to ensure

that the algorithm stops after a finite number of iterations.

Equivalence Cells For a Finite Set

Consider the case where SG is finite; we assume SG guards the entire polygon.

For points p, q ∈ ST , we say that p and q are equivalent if and only if Rp = Rq.

In a decomposition of a polygon into cells, we say that a cell is an equivalence

cell if all points are equivalent. A natural discretization strategy is to partition

ST into a finite number of sets that are closed under equivalence, and then to

build a subset S ′T by taking one representative point from each set. A subset

of SG guards ST if and only if it guards S ′T .

Ghosh (51) did this for the vertex guarding problem in which SG = V

and ST = P . His algorithm decomposes the input polygon into a polynomial

number of cells such that each point in a given cell is seen by the same set of

vertices. For p ∈ SG and vertex v that see each other, consider the ray shot

from p through v. The set of all such rays decomposes the polygon into a

polynomial number of cells. We call this the ray shooting decomposition and

denote it DR(P, SG).

It is not hard to see that each cell is closed under equivalence. If two points

p and q are not equivalent there is a vertex v that sees one but not the other;

assume without loss of generality that v sees p. Consider the geodesic from p to

q. Of all the points on this geodesic seen by v, let p′ be the closest to q. Then

p′ must lie on a ray shot from v through another vertex; this ray separates p

from q so p and q cannot be in the same cell. We can also consider the visibility

polygon for v. Any point on the boundary of v’s visibility polygon must either

be on the polygon’s perimeter or on a ray shot from v through another vertex.

Therefore a point moving around P cannot enter or leave v’s visibility polygon

without crossing one of the rays used to decompose the polygon.

Ghosh originally used his discretization technique, along with the greedy

set cover approximation algorithm (see Section 2.1), to provide a O(log n)-

approximation algorithm; the approximation factor improves to O(log opt) if

77

4. Guarding Polygons

more recent methods are applied, or O(log h log opt) for vertex guarding a

polygon with h holes.

A ray shooting decomposition can be generalized to work for any finite set

SG — simply shoot a ray from every point p ∈ SG through every vertex seen

by p. In each resulting cell any two points see the same subset of SG.

Using a simple inequality for general line arrangements it can be seen that

the number of cells in DR(P, SG) is O(n2|SG|2). Bose et al. (16) introduced a

minimal decomposition with fewer cells. Let the visibility decomposition, de-

noted DV (P, SG), be the minimum decomposition of a polygon into equivalence

cells with regard to SG. It is minimum in that the union of cell boundaries

in this decomposition is exactly equal to
⋃

p∈SG
∂(Vis(p)). The decomposition

can be constructed as follows. For a point p ∈ SG that sees a vertex v, instead

of cutting along the entire ray shot from p through v, we leave the line segment

pv and cut only from v until we hit ∂P . Bose et al. call such a cut a window

of point p; it is not difficult to see that the boundary of Vis(p) consists only

of windows of p and parts of ∂P . Considering simple polygons, they proved

the following upper bound for the number of cells and provided an example

showing the bound is tight (16, Figure 10). A straightforward modification to

their proof extends the upper bound to polygons with holes.

Lemma 4.1. For a polygon P with h holes and a finite set SG, DV (P, SG)

contains O((h+ 1)n|SG|2) cells.

Proof. The key to bounding the number of cells in DV (P, SG) is counting the

number of points at which windows cross each other. For a fixed window w

and a fixed point p ∈ SG, if P is simple then at most 2 windows of p can cross

w; more generally, for a polygon with h holes, this bound is 2(h + 1). To see

this, recall that crossing a window of p toggles visibility from p. Thus if more

than 2(h + 1) windows of p cross w, the points on w seen by p must form at

least h + 2 disconnected intervals. Between any two of these intervals there

must be a hole blocking visibility from p. Since the polygon has fewer than

h+ 1 holes, w must be crossed by at most 2(h+ 1) windows from p.

Each window is crossed by at most 2(h+ 1)|SG| other windows. The total

number of windows is O(n|SG|), so the number of points at which windows

78

Polygon Guarding Preliminaries

cross is O((h+ 1)n|SG|2). The lemma follows by applying Euler’s formula for

planar graphs.

Discretizing Guard Locations

Discretization is more complicated when neither ST nor SG is a finite set. One

cannot simply determine equivalence cells when the number of equivalence

classes is infinite. The problems in which (SG, ST) ∈ {P, ∂P}2 are very natural,

yet no fully polynomial discretization has yet been achieved.

Pseudopolynomial Discretization

Pseudopolynomial discretization was achieved by Deshpande et al. (24). Given

a triangulated decomposition we say that a triangle is ‘good’ if any set of guards

in the triangle is dominated by three guards at the triangle’s vertices. Their

algorithm starts with a triangulation of the visibility decomposition DV (P, V).

They then perform additional decomposition steps until all triangles are good.

The decomposition algorithm returns the triangle vertices as SG. The number

of decomposition steps and the size of SG are pseudopolynomial in that they

may be linear in the polygon’s spread, i.e., the ratio between the longest and

shortest distances between two vertices. This ratio can be exponential in the

input size. The decomposition is such that opt′ ≤ 3 · opt; any subset of SG

that guards ST can be replaced by at most three times as many guards in S ′G.

Considering a Grid

Efrat and Har-Peled (41) developed a discretization technique that defines

SG as the points of a very fine grid. They then use standard approximation

techniques based on ε-nets to find a guarding set of size (opt′) log(opt′). This

is a heuristic — the authors do not bound opt′ as a function of opt.

For a k × k grid, the algorithm’s dependence on k is only O
(
log2 k

)
. This

is achieved through careful implicit representation of the grid points and their

weights. It is likely that, for some k that is linear in the polygon’s spread,

there must exist a triangulated decomposition based on the grid points that

contains only good triangles. This would imply that opt′ ≤ 3 · opt. Thus,

79

4. Guarding Polygons

while the discretization bound would be pseudopolynomial, the approximation

algorithm would actually run in fully polynomial time.

4.2 Improved Approximation for

Perimeter Guards

When guarding simple polygons we can construct ε-nets of size O
(

1
ε
log 1

ε

)
using general techniques for range spaces of constant VC-dimension. Using

techniques specific to vertex guarding or perimeter guarding a simple polygon,

it is possible to break through the general Θ
(

d
ε
log 1

ε

)
lower bound to build

smaller ε-nets. The following theorem is the result of joint work with David

Kirkpatrick (62).

Theorem 4.1. For the problem of guarding a simple polygon with vertex guards

or perimeter guards, there exist polynomial-time algorithms to construct ε-nets

of size O
(

1
ε
log log 1

ε

)
, and we describe such an algorithm explicitly.

Proof outline. In the first part of the proof we introduce the basic ideas that

allow the construction of ε-nets of size O(1/ε2). In the second part we give a

more complicated, hierarchical technique that lets us construct ε-nets of size

O
(

1
ε
log log 1

ε

)
.

Using standard techniques such as those given in Section 2.2, the algo-

rithm we provide in the proof of Theorem 4.1 becomes a O(log log opt)-

approximation algorithm whose running time is polynomial in n and the num-

ber of potential guard locations. This is the best approximation factor obtained

for vertex guards and perimeter guards. If no finite set of guard locations is

given, we use the discretization technique of Deshpande et al. and our algo-

rithm is polynomial in n and ∆, where ∆ is the ratio between the longest and

shortest distances between vertices.

A similar result for a different problem was recently obtained by Aronov

et al. (11), who proved the existence of ε-nets of size O
(

1
ε
log log 1

ε

)
when S is

either a set of axis-parallel rectangles in R2 or axis-parallel boxes in R3.

80

Improved Approximation for Perimeter Guards

Building Quadratic ε-Nets

Here we show how to build an ε-net using O(1/ε2) guards. This result is not

directly useful to us but we use this as an opportunity to perform the geometric

leg work, and hopefully provide some intuition, without worrying about the

hierarchical decomposition to be described later. It should be clear that these

ε-nets can be constructed in polynomial time.

Subdividing the Perimeter.

For the construction both of the ε-nets here and those later on we subdivide

the perimeter into a number of fragments. Fragment endpoints always lie on

vertices, but the weight of a guard location may be split between multiple

fragments and a fragment may consist of a single vertex. The key difference

between the construction of the ε-nets here and those later is the method of

fragmentation. Here, the perimeter is simply divided into m = 4/ε fragments

each having weight ε
4
w(G). For our purposes, 1/ε is always an integer so m is

always an integer.

Placing Extremal Guards.

For two fragments Ai and Aj we place guards at extreme points of visibility.

Those are the first and last points on Ai seen from Aj and the first and last

points on Aj seen from Ai. For a contiguous fragment we define the first (resp.

last) point of the segment according to the natural clockwise ordering on the

perimeter. We use G(Ai, Aj) to denote the set of up to 4 extremal guards

placed between Ai and Aj.

These extreme points of visibility might not lie on vertices. In fact, it is

entirely possible that two fragments Ai and Aj see each other even if no vertex

of Ai sees Aj and vice versa. If an extreme point of visibility is not a potential

guard location, we simply ignore it. Our proofs, in particular the proof of

Lemma 4.3, only require guards on extreme points of visibility that either lie

on vertices or on fragment endpoints.

81

4. Guarding Polygons

All Pairs Extremal Guarding.

Our current aim is to build an ε-net by placing extremal guards for every pair

(Ai, Aj) of fragments. We denote this set of guards with

SAP =
⋃
i6=j

G(Ai, Aj) .

Note that |SAP | ≤ 4
(

m
2

)
= O(1/ε2). Also note that every fragment endpoint

is included in SAP .

Lemma 4.2. Any point not guarded by SAP sees at most 4 fragments.

Corollary 4.1. SAP is an ε-net of size O(1/ε2).

For the proof of Lemma 4.2 we need to present additional properties of the

fragments that can be seen by a point. For a point x, the fragments seen by

x are ordered clockwise in the order they appear on the boundary of P . We

need to consider lines of sight from x, and what happens when a transition is

made from seeing one fragment Ai to seeing the next fragment Aj. There are

three possibilities:

1. j = i+ 1 and x sees the guard at the common endpoint of Ai and Aj

2. Aj occludes Ai, in which case we say that x has a left tangent to Aj (see

Figure 4.1)

3. Ai was occluding Aj, in which case we say that x has a right tangent to

Ai (see Figure 4.1).

We say a fragment A owns a point x if x sees A in a sector of size at least

π. We assume any point x is owned by at most one fragment; if x is a fragment

endpoint it is itself a guard, and otherwise if x is owned by two fragments then

only those two fragments can see it.

Lemma 4.3. Let Ai, Aj, Ak be fragments that are seen by x consecutively in

clockwise order. If x has a left tangent to Aj, and the combined angle of Aj and

Ak at x is no more than π, then x sees a guard in G(Aj, Ak). Symmetrically,

if x has a right tangent to Aj, and the combined angle of Ai and Aj at x is no

more than π, then x sees a guard in G(Ai, Aj).

82

Improved Approximation for Perimeter Guards

x

Ai

Aj

Figure 4.1: The point x has a left tan-
gent to Aj.

x

Aj

Ai

Figure 4.1: The point x has a right
tangent to Ai.

x

Ai

Aj

Ak

A`

Figure 4.2: The point x has no tangent to Ai, a left tangent to Aj, both a left
and right tangent to Ak, and a right tangent to A`. Aj owns x.

83

4. Guarding Polygons

x

Ai

Aj

Ak

pL pR

Figure 4.3: Case 1 in the proof of
Lemma 4.3. The point x has a left
tangent and a right tangent to Aj.

x

Ai

Aj

Ak

pL

pR

Figure 4.3: Case 2 in the proof of
Lemma 4.3. The point x has left tan-
gents to both Aj and Ak.

Proof. We can assume w.l.o.g. that x has a left tangent to Aj since the proof

of the other case is symmetric. There are now two cases we have to deal with,

depending on whether x has a right tangent to Aj (case 1) or a left tangent to

Ak (case 2). Define pL and pR respectively as the first and last points on Aj

seen by x. Observe that x must see every vertex on the geodesic between pL

and pR. Let q be the first point on Aj seen from Ak. In both cases 1 and 2

(see Figures 4.3 and 4.3), q must be a vertex of the geodesic between pL and

pR. This can be shown by contradiction; if q lies between consecutive vertices

of this geodesic then those two consecutive vertices must also be seen from Ak,

and one of them comes before q.

The restriction that the combined angle of Aj and Ak at x is no more than

π is necessary to ensure that the geodesic of interest from Ak to Aj does not

‘pass behind’ x to see a point on Aj before pL.

It should be emphasized that, since there is a left tangent to Aj, pL is

always a vertex. Also, if pR is not a vertex it cannot be the first point on Aj

seen from Ak.

84

Improved Approximation for Perimeter Guards

The proof of Lemma 4.2 is now fairly straightforward.

Proof of Lemma 4.2. Let x be a point that sees at least 5 fragments. Assume

x is not a fragment endpoint, otherwise it is itself a guard in SAP . If we have

a directed graph whose underlying undirected graph is a cycle, then either

we have a directed cycle or we have a vertex with in-degree 2. By the same

principle, either some fragment seen by x has no tangent from x, or every

fragment seen by x has a left tangent from x (or every one has a right tangent,

which can be handled symmetrically).

If a fragment seen by x has no tangent from x, call such a fragment A0

and let A−2, A−1, A0, A1, A2 be fragments seen by x in clockwise order. If

the combined angle at x of A−2 and A−1 is more than π, the combined angle

of A1 and A2 is less than π. So we can apply Lemma 4.3 with one of the two

pairs of fragments to show that x is seen by a guard.

If every fragment seen by x has a left tangent from x, then we can apply

Lemma 4.3 using two consecutive fragments with a combined angle at x of less

than π.

Before we move on we prove one more helpful lemma.

Lemma 4.4. The number of fragments seen by an unguarded point x that do

not have a tangent from x is at most 1.

Proof. Assume the contrary and let A0 and Ai be two such fragments. If one

such fragment owns x, assume it is A0 and call the next two fragments seen

by x in the clockwise direction A1 and A2 respectively. By Lemma 4.3, x is

seen by a guard in G(A1, A2) so we reach a contradiction. If no such fragment

owns x then assume w.l.o.g. that, over the fragments seen by x between A0

and Ai going clockwise, the combined angle at x is less than π (if this is not

true it must be true going counterclockwise). Again, x is seen by a guard in

G(A1, A2) so we reach a contradiction.

85

4. Guarding Polygons

Smaller ε-Nets via Hierarchical Fragmentation

Previously we showed how a quadratic number of guards (i.e., O(1/ε2)) could

be placed to ensure that any unguarded point sees at most 4 fragments. Now

we discuss how hierarchical fragmentation can be used to reduce the number

of guards required to O
(

1
ε
log log 1

ε

)
. We use SHF to denote the guarding set

constructed here. It should be clear that these ε-nets can be constructed in

polynomial time.

We can consider the hierarchy as represented by a tree. At the root there

is a single fragment representing the entire perimeter of the polygon. This

root fragment is broken up into a certain number of child fragments. Frag-

mentation continues recursively until a specified depth t is reached. We set

t =
⌈
log log 1

ε

⌉
. The fragmentation factor (equivalently, the branching factor

of the corresponding tree) is not constant, but rather depends on both t and

the level in the hierarchy. The fragmentation factor generally decreases as the

level of the tree increases. Specifically, if bi is the fragmentation factor at the

ith step, we have

bi =

{
22t−1+1 · 4t · 21−t · α , i = 1

22t−i+1 , 1 < i ≤ t ,

where α ≤ 1 is a term introduced only to deal with an issue arising from

ceilings and double exponentials, namely the fact that 22dlog log 1/εe
is not in

O(1/ε). We specify α shortly (see (4.3)).

If fi is the total number of fragments after the ith fragmentation step, this

gives us

fi =


1 , i = 0

4t · 22t−2t−i−t+i+1 · α , 0 < i ≤ t

4t · 22t · α , i = t ,

86

Improved Approximation for Perimeter Guards

since

fi =
i∏

j=1

bj

= 4t · 21−t · α ·
i∏

j=1

22t−j+1

= 4t · 21−t+
Pi

j=1(2t−j+1) · α

= 4t · 22t−2t−i−t+i+1 · α .

Our algorithm places guards for all pairs of sibling fragments, i.e., fragments

having the same parent fragment. For the purposes of this guard placement,

the complement of the parent fragment, i.e., the subset of G outside the parent

fragment, is considered a dummy child fragment. That is, it is considered a

child fragment when placing guards, but not when counting the number of

child fragments seen from some point x as in the statement of Corollary 4.2 or

in the proof of Lemma 4.5. To denote the complement of a fragment A we use

A. Considering A to be a child of A when placing guards allows us to consider

the children of A as if they were fragments with guards placed for all pairs.

For example, we can obtain the following corollary from Lemmas 4.2 and 4.4.

Corollary 4.2. For an unguarded point x and a fragment A, the number of

child fragments of A seen by x is at most 3, and at most one of these child

fragments does not have a tangent from x.

The total number of guards placed is

|SHF | ≤ 4
t∑

i=1

(
bi + 1

2

)
fi−1 ≤ 4

t∑
i=1

b2i fi−1 .

87

4. Guarding Polygons

If t ≥ 6 we have bi ≤ 22t−i+1 for all values of i. This gives us

|SHF | ≤ 4α
t∑

i=1

22(2t−i+1) · 4t · 22t−2t−i+1−t+i

= 16tα
t∑

i=1

22t−t+i+2

= 16tα · 22t−t+3(2t − 1)

< 16tα · 22t+3

= 128tα · 22t

.

Recall that t =
⌈
log log 1

ε

⌉
. We need to define α in a way that ensures b1 is

an integer and also ensures the following two equations hold:

|SHF | = O
(

1

ε
log log

1

ε

)
(4.1)

ft

4t
≥ 1

ε
. (4.2)

To satisfy these three criteria, it suffices to set

α =

⌈
22t−1+1 · 4t · 2−t · 2log(1/ε)−2t

⌉
22t−1+1 · 4t · 2−t

=

⌈
4t · 2log(1/ε)+1−t−2t−1

⌉
4t · 22t−1+1−t

. (4.3)

We must now provide a generalization of Lemma 4.2 that works with our

hierarchical fragmentation.

Lemma 4.5. Any point that is not guarded by SHF sees at most 4i fragments

at level i.

Applying this with i = t and using (4.1) and (4.2), we get

Corollary 4.3. SHF is an ε-net of size O
(

1
ε
log log 1

ε

)
.

Proof of Lemma 4.5. Let x be a point that does not see any guard in SHF .

From the tree associated with the hierarchical fragmentation, we consider the

subtree of fragments that see x. We define a branching fragment as a fragment

with multiple children seen by x and we claim that at any level there are at

88

Improved Approximation for Perimeter Guards

most 2 branching fragments. Corollary 4.2 tells us that any fragment has at

most 3 children seen by x. At level 1 there are at most 4 fragments seen by x,

so it follows that the number of fragments seen by x at level i is at most 4i.

We must now prove our claim that there are at most 2 branching fragments

at any level.

First we note that a branching fragment either has no tangent from x or

owns x. To see this, consider a fragment A that has a tangent from x and does

not own x. Assume w.l.o.g. that x has a left tangent to A and call the point

of tangency pL. x must then also have a left tangent to the child fragment A0

of A that contains pL. A0 must be the leftmost child fragment of A seen by x.

If x sees another child fragment A1 of A to the right of A0, then by Lemma

4.3 it is seen by a guard in G(A0, A1).

Consider now the following possibilities for a given fragment A.

1. A is not seen by x. Clearly x cannot see any child fragments of A.

2. A does not own x, and x has a tangent to A. A then has exactly one

child fragment that sees x, and this fragment is of type (2).

3. A does not own x, and x does not have a tangent to A. By Corollary 4.2,

x can see at most 3 child fragments of A. At most one of these children

is of type (3) and all others must be of type (1) or (2).

4. A owns x and has no tangents from x, i.e. A has two tangents from x.

If a child of A owns x it must be the only child of A that sees x, and

this child is also of type (4). Otherwise, A would have a child fragment

Ai that is seen by x, does not own x, and is adjacent to A. x would then

be seen by a guard in G(Ai, AP). Thus A has at most one child that is

not of type (1) or (2).

5. A owns x and has two tangents from x. Because A is, in a sense, a

‘dummy’ child of type (3), A cannot have a real child of type (3) by the

proof of Lemma 4.4. Further, if A has a child A0 that owns x, this child

must also be of type (5). Otherwise assume w.l.o.g. that A1, immediately

clockwise from A0, has a left tangent from x. Then, using A2 to denote

the fragment clockwise from A1 (A2 might be AP), x is seen byG(A1, A2).

89

4. Guarding Polygons

x

A1

A0

A−1

A

Figure 4.4: The only way a fragment of type (5) can have three children seen
by x.

6. A owns x and has exactly one tangent from x (see Figure 4.5). We

consider how A can have multiple children seen by x. Assume w.l.o.g.

that A has a right tangent. If A−1 is the child of A seen by x immediately

counterclockwise from A then A−1 must own x, otherwise x is seen by

G(A−1, A). If A1 is the child of A seen by x immediately clockwise from

A then A1 cannot have a tangent from x otherwise x would be seen by

G(A,A1). If x can see A2, a child of A between A1 and A−1, then x must

have two tangents to A−1 otherwise it would be seen by G(A1, A2).

Therefore if A has more than one child seen by x, there must one of type

(3) and one of type (5), plus (possibly) a child of type (2).

We call a non-root fragment fruitful if it or one of its descendants is a

branching fragment. Only fragments of type (3-6) can be fruitful. Only frag-

ments of type (6) can have more than one fruitful child, and they can have at

most two fruitful children. No non-root fragment can have a child fragment of

type (6). Also, if the root has a child fragment of type (6), the root cannot

have a child of type (3). Therefore any level has at most 2 fruitful fragments.

90

Improved Approximation for Perimeter Guards

x

A1

A−1

A

A2

Figure 4.5: The only way a fragment of type (6) can have three children seen
by x.

We can now state the following:

• Level 1 has at most 4 child fragments that see x, at most 2 of which are

fruitful.

• A fruitful fragment has at most 3 child fragments that see x, at most 1

of which is fruitful.

• A non-fruitful fragment has at most 1 child fragment that sees x.

Therefore any level has at most 2 fruitful fragments and the number of

fragments at level i that see x is at most 4i.

91

4. Guarding Polygons

4.3 Notes

Contributions

Lemma 4.1 and its proof are due to Bose, Lubiw, and Munro (16). However,

they considered only simple polygons. We made a small modification to their

proof that generalizes the result to polygons with holes.

Section 4.2 is the result of joint work with David Kirkpatrick, who inde-

pendently obtained and published a preliminary version of the results in 2000

(64). These results did not include any connections to ε-nets or approximation

algorithms. The significance of the results was pointed out by the thesis au-

thor, who suggested that they be given a more thorough treatment. The task

of adding generalizations and more rigorous analysis was undertaken jointly,

with the majority of additional proofs and writing done by the thesis author.

Future Directions

We have obtained a o(log opt)-approximation factor for vertex guards and

perimeter guards, so it is natural to ask if we can do the same for point

guards. Different techniques would be required since points guards do not have

a natural cyclic ordering like perimeter guards. We would also like to do better

than O(log log opt) for perimeter guards. In particular, is there a constant

factor approximation algorithm to match the hardness of approximation result

of Eidenbenz (42)? And can the lower bounds be improved? It seems likely

that Alon’s lower bound (see Lemma 2.4) could imply a lower bound for point

guards. Is this the case, and would this imply an improved inapproximability

result for point guards?

There are certain natural variants of the problem of guarding polygons that

should be explored. One variant is when redundancy is required, i.e., when

points must be guarded by more than one guard. Another variant is when

guards have a restricted angle of visibility or finite range.

For simple polygons, the range spaces associated with point guards have

maximum VC-dimension at least 6 and at most 23 (96); it is believed that the

true value is closer to the lower end of this range, perhaps even 6 (58). The

92

Notes

upper bound of 23 holds a fortiori for range spaces associated with perimeter

guards but the lower bound of 6 does not. A lower bound of 4 follows from a

trivial modification to an example for monotone chains (61); we can increase

this bound to 5 without too much difficulty (see Figure 4.6). Can range spaces

associated with perimeter guards actually have VC-dimension as high as 6?

And can the upper bound of 23 be improved? It seems that improving the

upper bound would be easier for perimeter guards than for point guards. It

is also possible that Valtr’s bound of 23 could be improved by using a better

decomposition. His proof uses an upper bound for the number of cells that

comes from general line arrangements; replacing this with the decomposition

and analysis of Bose et al. (16) might yield a better upper bound on d.

Ghosh (52) used the visibility decomposition of Bose et al. (16) to find

approximately optimal sets of vertex guards. After discretization he treats

the problem as set cover and greedily obtains a O(log n)-approximation. The

algorithm runs in O(n4) time for simple polygons and O(n5) time for polygons

with holes. It seems likely that the algorithm could be improved in two signif-

icant ways. Firstly, an approximation factor of O(log opt) can be obtained,

possibly without a significant increase in the running time. Secondly, Bose

et al. actually proved that there are only O(|SG|2) cells in the decomposition

DV (P, SG) that have minimal visibility. If the vertices are in general position,

the sets of guards associated with any two neighbouring cells are such that one

is a subset of the other. To guard the entire polygon it should be sufficient to

guard all cells with minimal visibility; this fact could potentially be exploited

to improve the running time.

93

4. Guarding Polygons

1

2

34

5

135

345

2345

245

234

1234
134123

1235

235

125

1245

124

145
1345

Figure 4.6: A polygon with a set S of 5 points on the perimeter. The points
in S = {1, 2, 3, 4, 5} are marked with circles and labeled with large numbers.
Each point in S sees all of S, and each guard seeing a subset of S of size 3
or 4 is marked with a cross and labeled with small numbers indicating which
points in S it sees. Guards seeing the 16 subsets of S of size 0, 1, or 2 are not
shown. Adding these is a simple matter of adding nooks with very small angles
of visibility, thus we can construct a polygon with 5 points on the perimeter
shattered by 25 perimeter guards. Such a polygon can also be obtained via a
fairly straightforward modification of the example of Kalai and Matoušek for
point guards (58).

94

Part II

Geometric Split Trees

Chapter 5

Probabilistic Groundwork

In this chapter we present some rudimentary material related to random variables

and probability distributions. We also define discrete (i.e., quantized) versions of

beta distributions and Dirichlet distributions that are closely related to our subse-

quent analysis of random hyperplane splits.

Contents

5.1 Basic Distributions and Concepts 98

Definitions . 98

Notable Univariate Distributions 100

Domination and Coupling 101

Vector Domination . 103

5.2 Betas and Dirichlets 105

Beta Distributions . 105

Dirichlet Distributions . 110

5.3 Notes . 115

97

5. Probabilistic Groundwork

Concept Definition

uniformly
at random
(u.a.r.)

Given a set S, we say that a subset X ⊆ S of k elements
is generated by sampling u.a.r. without replacement from S
iff X is distributed uniformly over all k-element subsets of S.
We say that a k-tuple X ∈ Sk is generated by sampling u.a.r.
with replacement from S iff X is distributed uniformly over
all k-tuples in Sk.

i.i.d. The abbreviation i.i.d. stands for independent and identically
distributed. We say random variables X1, X2, . . . are gener-
ated i.i.d. iff each Xi is sampled independently from the same
distribution.

order statistic
(e.g., X(k))

Given a sample of n real-valued random variables X1, . . . , Xn,
the kth order statistic is the kth smallest of the n values. We
typically denote order statistics using bracketed subscripts,
e.g., X(k).

convergence
in law
(e.g., Xn

L→X)

Let X be a random variable and let X1, X2, . . . be a sequence
of random variables where the distribution of Xi may depend
on i. We say that Xn converges in law to X (denoted Xn

L→X)
as n→∞ if, for all x, limn→∞ FXn(x) = FX(x).

Table 5.1: Definitions relevant to probability distributions and the sampling
of random variables.

5.1 Basic Distributions and

Concepts

Definitions

In Table 5.1 we define some concepts related to probability distributions and

sampling. In Table 5.2 we define some properties of distributions.

98

Basic Distributions and Concepts

Property Notation Definition

cumulative
distribution
function
(c.d.f.)

FX(x)
F (x)

The c.d.f. (cumulative distribution function) of X, de-
noted FX(x) or simply F (x), is defined as FX(x) =
P{X ≤ x}.

probability
density
function
(p.d.f.)

fX(x)
f(x)

If X is absolutely continuous, then there exists a func-
tion f ≥ 0, the density (or p.d.f.) of X, such that
P{X ∈ A} =

∫
A
f(x) dx for all Borel sets A. In partic-

ular, P{X ∈ [a, b]} = F (b)− F (a), and f(x) = F ′(x) at
almost all x.

probability
mass
function
(p.m.f.)

fX(x)
f(x)

If X is discrete, the p.m.f. (probability mass function) of
X, denoted fX(x) or simply f(x), is defined by fX(x) =
P{X = x}. The p.m.f. gives us P{x1 < X ≤ x2} =∑

x1<x≤x2
fX(x) = FX(x2)− FX(x1).

mean µX

µ
E{X}

The mean of X, denoted µX or simply µ, is also called
the expected value of X, denoted E{X}. If X is a dis-
crete random variable then E{X} =

∑
x xfX(x) if the

sum is finite. If X is a continuous random variable then
E{X} =

∫∞
−∞ xfX(x) dx if the integral is finite.

variance Var{X}
σ2

σ2
X

The variance of X, denoted Var{X}, σ2
X , or simply σ2,

is equal to E{(X − µX)2}, the expected squared differ-
ence between X and its mean, assuming E{X2} is finite.

standard
deviation

stdev{X}
σ
σX

The standard deviation of X, denoted stdev{X}, σX , or
simply σ, is the square root of Var{X}.

support supp(X) The support of X is the set of values taken by X with
positive probability, i.e., supp(X) = {x ∈ R : f(x) >
0}.

quantile
function

F−1
X (p) The quantile function of X, denoted F−1

X (p), is the in-
verse function of FX(x) if FX is strictly increasing and
continuous. Otherwise it is defined as F−1

X (p) = inf{x ∈
R : FX(x) ≥ p}.

Table 5.2: Basic distribution properties of a real-valued random variable X.

99

5. Probabilistic Groundwork

Notable Univariate Distributions

Here we define some notable real-valued univariate distributions. The discrete

distributions are summarized in Table 5.3 and the continuous distributions are

summarized in Table 5.4.

Discrete Uniform Distribution Let S = {x1, . . . , xn} be a finite set of n

reals. We use Uniform(S) to denote the discrete uniform distribution on S.

The p.m.f. is given by

f(k) =

{
1/|S| , k ∈ S

0 otherwise .

One example of a discrete uniform random variable is the value of a fair k-sided

die, which is distributed like Uniform({1, . . . , k}).

Bernoulli Distribution We use Bernoulli(p) to denote the Bernoulli distri-

bution with probability p. This discrete distribution models a biased coin flip.

A Bernoulli(p) random variable takes value 1 with probability p and value 0

with probability 1 − p. The p.m.f. can be written as a single function that is

valid for the distribution’s support, i.e., the values 0 and 1:

f(x) = (1− p)

(
p

1− p

)x

.

Binomial Distribution

Continuous Uniform Distribution We use U(a, b) to denote the contin-

uous uniform distribution on the range [a, b]. The p.d.f. f(x) is given by

f(x) =

{
1

b−a
, x ∈ [a, b]

0 otherwise .

The most common continuous uniform distribution we use is U(0, 1). Because

U(0, 1)-distributed random variables are so ubiquitous we sometimes simply

100

Basic Distributions and Concepts

Uniform
(Discrete)

Bernoulli Binomial

Notation Uniform(S) Bernoulli(p) Bin(n, p)

Support S {0, 1} {0, . . . , n}

f(x)
(p.m.f.)

1

|S| (1− p)

(
p

1− p

)x (
n

x

)
(p)x(1− p)n−x

Table 5.3: Notable discrete univariate distributions. For the discrete uniform
distribution the set S must be a finite subset of R.

call them uniform random variables without specifying the parameters or the

fact that it is continuous.

Normal Distribution We use N (µ, σ2) to denote the normal distribution

(also known as the Gaussian distribution) with mean µ and variance σ2. The

p.d.f. is given by

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Beta Distribution We use beta(a, b) to denote the beta distribution with

positive parameters a and b. The p.d.f. is given by

f(x) =

{
1

B(a,b)
xa−1(1− x)b−1 , x ∈ [0, 1]

0 otherwise ,

where B(a, b) =
∫ 1

0
ua−1(u−1)b−1 du, known as the Euler beta function, acts as

a normalizing constant. We discuss beta distributions and their multivariate

generalizations (i.e., Dirichlet distributions) in Section 5.2.

Domination and Coupling

For real-valued random variables X and Y , it is possible that all values taken

by X are greater than or equal to all values taken by Y . In this case, we can

say that X ≥ Y regardless of any correlation between X and Y . If this is not

101

5. Probabilistic Groundwork

Uniform
(Continuous)

Normal
(a.k.a. Gaussian)

Beta

Notation U(a, b) N (µ, σ2) beta(a, b)

Support [a, b] R [0, 1]

f(x)
(p.d.f.)

1

b− a

exp
(
− (x−µ)2

2σ2

)
√

2πσ2

xa−1(1− x)b−1

B(a, b)

Table 5.4: Notable continuous univariate distributions. The Euler beta func-
tion B(a, b) is a normalizing integral.

the case, it is still possible to compare X and Y with a meaningful relation.

Stochastic domination is a common way to do this.

Definition 5.1 (Stochastic Domination). For real-valued random variables

X and Y , we say X (stochastically) dominates Y , denoted X ≥s Y , iff

P{X ≥ t} ≥ P{Y ≥ t} for all t ∈ R.

Coupling. Closely related to stochastic domination is the concept of cou-

pling. Coupling is the introduction of an artificial dependency between two

random variables for the purpose of analysis. Coupling two random variables

X and Y often involves generating both simultaneously (or generating an or-

dered pair (X, Y)) in a way that preserves a desired relation. The marginal

probabilities of X and Y must be distributed correctly, but subject to these

constraints we are free to manipulate the conditional probabilities X|Y and

Y |X.

Proposition 5.1. For real-valued random variables X and Y , we have X ≥s Y

if and only if there exists a coupling of X and Y such that X ≥ Y determin-

istically.

Proof. If the coupling exists then stochastic domination is obvious. If we have

X ≥s Y then we can couple X and Y using the probability integral transform

from a single uniform [0, 1] random variable. Define the map ψ with

102

Basic Distributions and Concepts

ψ : [0, 1] → supp(X)× supp(Y)

ψ(u) =
(
F−1

X (u) , F−1
Y (u)

)
.

The relation X ≥s Y implies that F−1
X (u) ≥ F−1

Y (u) for all u ∈ [0, 1]. If

U ∼ U(0, 1) then ψ(U) = (X, Y) is a coupling with the desired properties.

Example 5.1 (Coupled Dice). In this example we wish to relate a 6-sided

die and a 12-sided die; we represent the outcomes of the dice with random

variables D6 ∼ Uniform({1, . . . , 6}) and D12 ∼ Uniform({1, . . . , 12}) respec-

tively. We can couple the dice so that D12 ≥ D6 deterministically. Define

X ∼ Uniform({1, . . . , 6}) and Y ∼ Bernoulli(1/2). It is easy to verify that the

coupling (D6, D12) = (X, 2X−Y) generates the desired marginal distributions

for bothD12 andD6, and the coupling ensures thatD12 ≥ D6 deterministically.

Vector Domination

Marshall and Olkin (75) investigated inequalities involving the application of

a convex function to components of a vector. The key lies in the comparison

of the sum of the largest elements of each vector.

Definition 5.2 (Vector Domination). For vectors a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn), let a(i) and b(i) denote, respectively, the ith smallest

components of a and b. We say a dominates b, denoted a � b, iff the

following inequalities are satisfied:

n∑
i=j

a(i) ≥
n∑

i=j

b(i) ∀ j ∈ {1, . . . , n} .

Proposition 5.2 (Marshall and Olkin (75)). For vectors a = (a1, a2, . . . , an)

103

5. Probabilistic Groundwork

and b = (b1, b2, . . . , bn) and a function ψ, consider the inequality

n∑
i=1

ψ(ai) ≥
n∑

i=1

ψ(bi) .

The inequality is satisfied for every function ψ that is non-negative, non-

decreasing, and non-concave if and only if a � b.

Vector domination is a binary relation. It is reflexive (i.e. a � a) and

transitive (i.e. (a � b) ∧ (b � c) =⇒ (a � c)). However, it is not a total

relation — given two vectors one does not always dominate the other. For

example, given the vectors (0.5, 0.25, 0.25) and (0.4, 0.4, 0.2), neither dominates

the other.

In the next chapter we use vector domination for analysis involving random

vectors. To this end, we now extend the definition to a stochastic setting.

Definition 5.3 (Vector Domination in Expectation). For random

vectors A and B, we say A dominates B in expectation, denoted A �E B,

if and only if, for any function ψ that is non-negative, non-decreasing, and

non-concave, we have

E

{∑
i

ψ(Ai)

}
≥ E

{∑
i

ψ(Bi)

}
.

This stochastic definition is of great use in the comparison of random trees

in the next chapter.

Observation 5.1. For random vectors A and B taking values in Rn, if A and

B can be coupled so that A � B deterministically, then A �E B. This is

particularly useful in the following situations:

1. For n = 2, when max(A1, A2) ≥s max(B1, B2) and the sum of compo-

nents is fixed for each vector withA1+A2 ≥ B1+B2. This arises naturally

when dealing with random split trees that are binary (see Model 6.2).

104

Betas and Dirichlets

2. When A and B can be coupled so that, for each i, Ai ≥ Bi determin-

istically. For example, this is the case in the next section in which we

compare discrete and continuous Dirichlet distributions (see Proposition

5.4).

3. When A and B can be coupled naturally so that B is obtained by

splitting the components of A. This can arise when partial splits are

introduced for the sake of comparison (see, e.g., Section 8.2).

5.2 Betas and Dirichlets

In this section we discuss beta distributions in more depth and discuss Dirich-

let distributions for the first time. We also introduce and analyze discrete

analogues for both families of distributions (subject to a restriction on the

parameters).

Beta Distributions

Standard Beta Distributions

Let a > 0 and b > 0 be fixed constants. Using f(x; a, b) to denote the proba-

bility density function of beta(a, b), let us recall that

f(x; a, b) =
xa−1(1− x)b−1

B(a, b)
=

xa−1(1− x)b−1∫ 1

0
ta−1(1− t)b−1 dt

.

Since a and b are fixed, the denominator B(a, b) is constant. It is therefore

easy to see that a beta(1, 1) is distributed like U(0, 1).

For any positive values of a and b, the density function is unimodal. If a > 1

and b > 1 then the density function is strictly concave with the maximum (i.e.,

the distribution’s mode) at a−1
(a−1)+(b−1)

.

Betas and Uniforms When a and b are integers, beta(a, b) has a very

natural relationship with uniform variables. Imagine we have a sequence of

a + b − 1 random variables {Ui : i = 1 . . . a + b − 1} distributed i.i.d. like

105

5. Probabilistic Groundwork

U(0, 1). We use U(k) to denote the kth order statistic, i.e., the variable in

the sequence taking the kth smallest value. It is well-known (see, e.g., (26, p.

431)) that the ath order statistic U(a) is distributed like beta(a, b). This is a

generalization of the fact that beta(1, 1) ∼ U(0, 1). Perhaps the next simplest

example is when a = b = 2. In this case, we have that the median of three

uniforms is distributed like beta(2, 2).

Observation 5.2. For integer d ≥ 1, consider the median of d uniforms. To

avoid ambiguity, if d is even we define the unique median as chosen u.a.r. from

the two medians. With this random but unambiguous definition, the median

is distributed like

beta

(⌊
d+ 1

2

⌋
,

⌊
d+ 1

2

⌋)
.

Proof. For odd d, this is well-known, so we consider the case where d = 2k

for some integer k. In this case we define the median to be either U(k) or

U(k+1), chosen with a fair coin flip. We now have the median distributed like

beta(k, k + 1) with probability 1/2 and like beta(k + 1, k) otherwise. It can be

proven analytically that this distribution is equal to the beta(k, k) distribution,

but we use a simple coupling argument that may be more intuitive.

We note that U(k) is distributed like UI , where I ∼ Uniform({1, . . . , 2k})
depends on the ordering of U1, . . . , U2k but is independent of the actual values.

We couple the coin flip such that U(k) is chosen as the median iff I ≥ k + 1,

i.e., iff U2k is strictly greater than U(k). This happens with probability 1/2 and

is independent of the values of U(1), . . . , U(2k) so the coupling is valid. With

this coupling, the median we choose for {U1, . . . , U2k} is equal to the median

of {U1, . . . , U2k−1}. Thus our coupling shows that the median of 2k uniforms,

breaking the tie with a fair coin flip, is distributed like beta(k, k).

Let us now examine another distribution involving 2k − 1 uniforms. Our

variables {U1, . . . , U2k−1} = {U(1), . . . , U(2k−1)} split the open interval (0, 1)

into 2k open intervals which can be naturally indexed from 1 to 2k. Each of

these intervals is identically distributed. A consequence of this is that the sum

of the first k intervals is distributed like the sum of the odd intervals. Each of

these sums is distributed like beta(k, k).

106

Betas and Dirichlets

Cumulative Distribution Functions of Beta Distributions The cumu-

lative distribution function for a beta(a, b) distribution is given by the regular-

ized incomplete beta function, denoted Ix(a, b). We are particularly interested

in distributions of the type beta(a, b) for integers a and b. In this case, for

X ∼ beta(a, b) we have

FX(x) = Ix(a, b) =
a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j . (5.1)

This looks like the c.d.f. of a binomial distribution for a reason. Recall that

beta(a, b) is distributed like the ath order statistic of a+ b− 1 uniforms. This

means that P{X ≤ x} is equal to the probability that at least a out of a+b−1

independent uniforms fall at or below x. The number falling at or below x is

binomially distributed like Bin(a+ b− 1, x).

Discrete Beta Distributions

Our major motivation for the discussion of beta distributions is the analysis of

random splits of finite point sets. A split of n points cannot take a continuous

distribution for finite n; rather it is quantized with steps of size 1/n. We

define discrete variants of beta distributions that correspond exactly to certain

random splits. For integers a, b the beta(a, b) distribution can be generated

based on splitting the interval (0, 1) by a + b − 1 cuts at uniform random

points in the interval. Now imagine that the (0, 1) interval is split into n

chunks of size 1/n.

For fixed positive integers a, b, and n ≥ a + b − 1, we define the discrete

beta distribution betan(a, b) by giving a generation method. We first choose

a+ b− 1 integers u.a.r. without replacement from {1, . . . , n}. Call the chosen

integers, sorted in ascending order, X(1), . . . , X(a+b−1); for homogeneity we also

define X(0) = 0 and X(a+b) = n + 1. The integers X(i) partition the set

{1, . . . , n}\{X(1), . . . , X(a+b−1)} into a+b (possibly empty) sets corresponding

to intervals of the form (X(i), X(i+1)). We define betan(a, b) as the distribution

of the number of integers in the first a sets, divided by n.

We now give several useful properties of discrete beta distributions.

107

5. Probabilistic Groundwork

Proposition 5.3. For fixed positive integers a and b, we have the following:

1. betan(a, b) ∼ n− (a+ b− 1)

n
− betan(b, a) .

2. betan(a, b) ≤s beta(a, b) .

3. betan(a, b) L→ beta(a, b) as n→∞ .

4. X ∼ betan(a, b) and Y ∼ beta(a, b) can be coupled so that, determinis-

tically, we have
(
X , n−(a+b−1)

n
−X

)
� (Y , 1− Y) and, even stronger,

X ≤ Y and n−(a+b−1)
n

−X ≤ 1− Y simultaneously.

5. betan(a, b) ∼ 1

n
Bin
(
n− (a+ b− 1) , beta(a, b)

)
.

Proof. Property (1) follows from the distribution’s definition. Property (5)

comes from an argument about the ranks of i.i.d. uniform random variables

U1, . . . , Un. Let I be the index such that UI has rank a among {U1, . . . , Ua+b−1}.
UI is distributed as beta(a, b) and the number of the variables Ua+b, . . . , Un

falling in the range (0, UI) is distributed like Bin
(
n−(a+b−1) , UI

)
. By its def-

inition, betan(a, b) is distributed identically since the ranks of {U1, . . . , Ua+b−1}
among {U1, . . . , Un} are distributed like a+b−1 integers sampled u.a.r. without

replacement from {1, . . . , n}.
We prove properties (2), (3), and (4) with a coupling argument. A random

variable X ∼ betan(a, b) is most naturally generated with a set of a + b −
1 indices sampled u.a.r. without replacement from {1, . . . , n}. In terms of

analysis, however, we prefer to sample with replacement so we can deal with

independent variables. Fortunately we can generate X using a+ b− 1 integers

Zi, i ∈ {1, . . . , a + b − 1}, chosen i.i.d. and u.a.r. (with replacement) from

{0, . . . , n − (a + b − 1)}. The ith order statistic, denoted Z(i), corresponds to

the number of the n−(a+b−1) unchosen indices that fall in the first i intervals.

Thus the Zi’s give us a corresponding set
{
Z(i) + i : i ∈ {1, . . . , a + b − 1}

}
of unique indices from {1, . . . , n} distributed as if we sampled u.a.r. without

replacement.

We can express P{X ≤ x} as the probability that a or more of the Zi’s

fall at or below xn. We generate Y ∼ beta(a, b) from i.i.d. [0, 1] uniforms

108

Betas and Dirichlets

U1, . . . , Ua+b−1 in the usual way so that P{Y ≤ k} is the probability that a or

more of the Ui’s fall at or below k/n.

When generating X and Y from the desired distributions, we couple the

Zi’s with the Ui’s so that Zi = b(n− (a+ b− 1) + 1)Uic. For every i, this

gives us

0 ≤ Ui −
Zi

n
= Ui −

b(n− (a+ b− 1) + 1)Uic
n

≤ 1 + nUi − (n− (a+ b− 1) + 1)Ui

n

=
1 + (a+ b− 2)Ui

n

≤ a+ b− 1

n
.

There is some i such that X = Z(a)/n = Zi/n and Y = U(a) = Ui. Our

coupling therefore gives us 0 ≤ Y −X ≤ (a+ b− 1)/n which implies property

(4). It also implies, for any x ∈ R,

P{Y ≤ x} ≤ P{X ≤ x} ≤ P
{
Y ≤ x+

a+ b− 1

n

}
.

This proves property (2), which is equivalent to the left inequality. To see

that the upper and lower bounds converge in the limit as n → ∞, we note

that, for fixed a and b, the density function of Y is bounded by some constant

c = c(a, b). This gives us

P{Y ≤ x} − lim
n→∞

P{X ≤ x} ≤ lim
n→∞

P
{
x ≤ Y ≤ x+

a+ b− 1

n

}
≤ lim

n→∞

c(a+ b− 1)

n
= 0 ,

completing the proof of property (3).

We now resume our discussion of the a + b sets created by our generation

method for the betan(a, b) distribution.

109

5. Probabilistic Groundwork

Observation 5.3. For positive integers n ≥ d, let X(1), . . . , X(d) be d indices

chosen u.a.r. without replacement from {1, . . . , n} and sorted in ascending

order. Let I0, . . . , Id be the intervals of integers with I0 = (0, X(1)), Id =

(X(d), n + 1), and Ii = (X(i), X(i+1)) for 1 ≤ i ≤ d − 1. Consider a set of

intervals indexed by a subset A of the indices {0, . . . , d}. Of the n−d unchosen

integers, the number falling in the intervals indexed by A is distributed like∑
i∈A

|Ii| ∼ n · betan

(
|A|, d+ 1− |A|

)
.

Alternating intervals are of particular interest to us in subsequent chapters,

particularly in the proof of Lemma 7.2.

Observation 5.4. Let A contain the intervals of a random parity, i.e., A is the

set of odd indices with probability 1/2 and is the set of even indices other-

wise. In this case, Observation 5.2, along with the connection with binomial

distributions given by Proposition 5.3, implies that∑
i∈A

∣∣Ii∣∣ ∼ Bin
(
n− d , beta

(
dd/2e , dd/2e

))
.

Dirichlet Distributions

Before jumping into the Dirichlet family of distributions we define two closely

related distributions.

Categorical Distribution Let p = (p1, . . . , pK) be a probability vector with

K ≥ 2 components. We use Categorical(p) to denote the categorical distribu-

tion on the integers {1, . . . , K}. This discrete univariate distribution models

the outcome of a biased K-sided die, generalizing Bernoulli distributions and

discrete uniform distributions. The p.m.f. is given by

f(x) =

{
px , x ∈ {1, . . . , K}
0 otherwise .

110

Betas and Dirichlets

Multinomial Distribution Let p = (p1, . . . , pK) be a probability vector

with K ≥ 2 components. We use Mult(n,p) to denote the multinomial distri-

bution with n trials on the probability vector p. This discrete distribution on

{0, . . . , n}K is a multivariate generalization of the binomial distribution. Let

X1, . . . , Xn be i.i.d. Categorical(p) trials and, for 1 ≤ i ≤ K, let Zi be the fre-

quency of outcome i in the sample, i.e., Zi =
∣∣{j : Xj = i}

∣∣. Then the joint dis-

tribution of the frequencies is multinomial with (Z1, Z2, . . . , ZK) ∼ Mult(n,p).

For x = (x1, . . . , xK) ∈ {0, . . . , n}K , the p.m.f. is given by

f(x) =

 n!
∏K

i=1 (pxi
i /xi!) ,

∑K
i=1 xi = n

0 otherwise .

Dirichlet Distribution Let a = (a1, . . . , aK) be a vector of K ≥ 2 posi-

tive real parameters. We use Dir(a) to denote the Dirichlet distribution with

parameter vector a. The Dirichlet family of distributions are a multivariate

generalization of the beta family of distributions. The distribution is over a

subset of RK , specifically the standard K − 1 simplex

4K−1 =
{

(x1, . . . , xK) ∈ RK :
∑K

i=1xi = 1, xi ≥ 0 ∀ i
}
.

The last component xK is redundant since xK = 1 −
∑K−1

i=1 xi. Though it is

sometimes omitted from the definition, we choose to include it for notational

convenience and homogeneity. For x = (x1, . . . , xK) ∈ RK , the p.m.f. is given

by

f(x) =

{
1

B(a)

∏K
i=1 x

ai−1
i , x ∈ 4K−1

0 otherwise ,

where B(a), the multivariate beta function, acts as a normalizing constant.

If a is a vector of positive integers, the connection between betas and

uniforms and the definition of discrete beta distributions generalize naturally

to the Dirichlet family. Let αi =
∑i

j=1 aj and consider i.i.d. uniforms {Ui :

111

5. Probabilistic Groundwork

1 ≤ i ≤ αK − 1}. Using U[i] to denote U(αi),
1 we have

(
U[1] , U[2] − U[1] , . . . , U[K] − U[K−1]

)
∼ Dir(a) .

In other words, the uniforms Ui cut the interval [0, 1] into αK intervals;

the first component is distributed as the sum of the first a1 intervals, the

second component is distributed as is the sum of the next a2 intervals, and

so on. For the discrete version of the distribution, which we denote Dirn(a),

consider discrete random variables {Zi : 1 ≤ i ≤ αK − 1} drawn u.a.r. without

replacement from {1, . . . , n}. Using Z[i] to denote Z(αi), we have

1

n

(
Z[1] − a1 , Z[2] − Z[1] − a2 , . . . , Z[K] − Z[K−1] − aK

)
∼ Dirn(a) .

Proposition 5.4. For a vector a of fixed positive integers, random vectors

X ∼ Dirn(a) and Y ∼ Dir(a) satisfy the following:

1. The first components are distributed like X1 ∼ betan(a1, αK − a1) and

Y1 ∼ beta(a1, αK − a1). If K > 2 the vectors X ′ and Y ′ containing the

remaining K − 1 components are distributed like

X ′ ∼ n−nX1−a1

n
Dirn−nX1−a1((a2, . . . , aK)) and

Y ′ ∼ (1− Y1)Dir((a2, . . . , aK)).

2. There exists a coupling of X and Y such that, deterministically, X � Y

and, even stronger, Xi ≤ Yi for every i simultaneously.

3. Dirn(a) L→ Dir(a) as n→∞ .

4. Dirn(a) ∼ 1

n
Mult

(
n− (αK − 1) , Dir(a)

)
.

Proof. By induction on K, property (1) follows from definitions and property

(4) follows from (1) due to the specific binomial distribution of a multinomial’s

first component. The proof of the other properties is an extension of the proof

of Proposition 5.3. This proof requires slightly more careful coupling.

For 1 ≤ i ≤ αK − 1 we generate coupled random variables U(i) and Z(i),

where both sequences are non-decreasing in i. We again use U[i] and Z[i] to

1We use this notation largely to avoid the use of subsubscripts.

112

Betas and Dirichlets

denote U(αi) and Z(αi) respectively. We use dummy variables so the sequences

start with U(0) = Z(0) = 0 and end with U[K] = n and Z[K] = n − αK + 1.

For indices i = 1, . . . , αK − 1, we use independently generated βi variables to

define U(i) and Z(i). We have

βi ∼ beta(1, αK − i)

(U(i)|U(i−1), βi) = U(i−1) + βi · (n− U(i−1))

(Z(i)|Z(i−1), βi) = Z(i−1) +
⌊
βi · (n− αK + 2− Z(i−1))

⌋

We can make the following observations for 1 ≤ i ≤ αK − 1:

U(i) ∼ n · beta(i, αK − i) (5.2)

Z(i) ∼ n · betan(i, αK − i) (5.3)

U(i) ≤ Z(i) + αK − 1 ≤ U(i) + αK − 1 (5.4)

Here (5.2) and (5.3) follow from inductive definitions of continuous and

discrete beta distributions. We postpone proof of (5.4) until the end of the

larger proof.

The coupling idea is that we use the Z(i)’s to define the discrete Dirichlet

and the U(i)’s to define the continuous Dirichlet. The discrete Dirichlet X

has components Xj = 1
n
(Z[j] − Z[j−1]) and the continuous Dirichlet Y has

components Yj = 1
n
(U[j] − U[j−1]).

We wish to show that Xj ≤ Yj for all 1 ≤ j ≤ K simultaneously. It

follows from (5.4) that Z(i) − Z(i−1) ≤ U(i) − U(i−1) for i < αK . This tells

us that Xj ≤ Yj for all j < K. For the special case of j = K we have

XK = 1
n
(n − αK + 1 − Z[K−1]) and YK = 1

n
(n − U[K−1]), so XK ≤ YK also

follows from (5.4). Thus our coupling satisfies property (2).

We show convergence in law just as we did for beta distributions. We have

Xj ≤ Yj ≤ Xj + αK−1
n

for any component. Recall that Dir(a) is a distribution

on RK−1. For any continuity set A, define the fat boundary A∗ = {x ∈ RK−1 :

||x− y||∞ ≤ αK−1
n

,y ∈ ∂A} containing all points that are within αK−1
n

of ∂A

113

5. Probabilistic Groundwork

in every component. Unless Y ∈ A∗, X and Y must either both be in A or

both be outside of A. Finally we note that the density function for Dir(a) is

bounded by a constant c = c(a). We have

P{Y ∈ A} − lim
n→∞

P{X ∈ A} ≤ lim
n→∞

P{Y ∈ A∗}

≤ µ(∂A) + lim
n→∞

c ·
(
αK − 1

n

)K−1

= 0 ,

completing the proof of property (3).

We now prove (5.4) as promised. It follows from the stronger inequality

Z(i) ≤ U(i) ≤
(

n

n− αK + 2

)(
Z(i) + i

)
. (5.5)

We use induction to prove (5.5), with the base case of i = 1 satisfied since

Z(1) =
⌊
U(1)

⌋
. For general i ≥ 2, assume (5.5) holds for i − 1. The left

inequality Z(i) ≤ U(i) follows from the recursive definitions of Z(i) and U(i)

since Z(i−1) ≤ U(i−1) and

n− U(i−1) ≥ n− (Z(i−1) + i− 1) ≥ n− αK + 2− Z(i−1) .

For the right inequality our induction hypothesis gives us

U(i) = (U(i−1))(1−βi)+βi·n ≤
(

n

n− αK + 2

)(
Z(i−1) + i− 1

)
(1−βi)+βi·n .

114

Notes

From here the right inequality of (5.5) follows by rearranging terms:

U(i) ≤
(

n

n− αK + 2

)(
(Z(i−1) + i− 1)(1− βi) + βi · (n− αK + 2)

)
≤

(
n

n− αK + 2

)(
Z(i−1) + i− 1 + βi · (n− αK + 2− Z(i−1))

)
≤

(
n

n− αK + 2

)(
i+ Z(i−1) +

⌊
βi · (n− αK + 2− Z(i−1))

⌋)
=

(
n

n− αK + 2

)
(Z(i) + i) .

5.3 Notes

Contributions

The majority of material in this chapter is rudimentary and/or well-known.

Propositions 5.3 and 5.4 were proved independently but are not novel (see, e.g.,

Devroye (34, Lemma 2)). We are not aware of the discrete beta and Dirichlet

distributions existing in the literature under these names — where we have

seen them they are defined in terms of uniform random variables.

115

Chapter 6

Random Split Trees

In this chapter we discuss models of random tree data structures. The central model

of interest is the well-studied random split tree model. We start with a discussion of

the highly restricted random binary search tree model. We then generalize this to

the random split tree model, then generalize further to a bounded model that lets

us bound the structural distribution of a random tree with that of a random split

tree.

Contents

6.1 Random Binary Search Trees 118

Depth Analysis . 119

Height Analysis . 120

Coupling With Random k-d Trees 122

Random b-ary Search Trees 124

6.2 A General Model . 125

Uniform Split Vectors . 126

Limit Laws . 127

Geometric Examples . 128

6.3 Bounding With Reference Trees 130

Depth Domination . 132

6.4 Notes . 134

117

6. Random Split Trees

6.1 Random Binary Search Trees

We begin the discussion of split trees with a simple example, the random binary

search tree.

Model 6.1 (Random Binary Search Tree). Given a fully ordered set S

of n distinct elements, consider the set T of all possible binary search trees

storing S. Only the rank of an element in S is relevant to the structure of

a BST so we assume w.l.o.g. that S = {1, . . . , n}. A random binary search

tree is simply a tree drawn from a particular probability distribution on T .

Rather than specifying the distribution explicity we describe the generation

process. Two of the most natural descriptions are as follows:

1. Let X1, . . . , Xn be a random permutation of the integers 1, . . . , n

distributed uniformly over the n! members of the symmetric group Sn.

Starting with an empty binary search tree, build a tree by inserting

the elements in the order given by X1, . . . , Xn.

2. Choose an element u.a.r. to be the root element, i.e., let I be the rank

of the root element where I is uniform on the indices 1, . . . , n. Let

S1 (respectively, S2) be the subset of S containing the elements with

index less than (respectively, greater than) I. Recursively, construct

the subtrees of I from the sets S1 and S2.

The two descriptions of the generation process are equivalent. The first

is perhaps more useful for motivating the model, since on-line construction

of a binary search tree is very natural and, in practice, data oftens appears

in random order. The second definition provides a natural segue into our

discussion of a more general model.

These random binary search trees are well studied. In analyzing the struc-

ture of such a tree storing n elements we are interested in the height of the

tree and the average node depth; these are random variables which we denote

Hn and Dn respectively. Interest in these variables is easy to motivate — Hn

118

Random Binary Search Trees

and Dn correspond respectively to the worst-case and average-case query time

in the tree.

It turns out that both Hn and Dn have expected values that grow loga-

rithmically with n. The height and average depth in a binary search tree are

minimized when the tree is perfectly balanced, and in this case both values are

equal to log2 n modulo a lower order term. Therefore, assuming the following

limits exist, we have

lim
n→∞

E{Hn}
lnn

≥ lim
n→∞

E{Dn}
lnn

≥ log2 n

lnn
≈ 1.44270

Depth Analysis

For the average depth, analysis has been via the depth of the last element

inserted into a tree storing n elements; we denote this D∗
n. The following was

proved first by Mahmoud and Pittel (74).

Theorem 6.1.

lim
n→∞

E{D∗
n}

lnn
= lim

n→∞

Var{D∗
n}

lnn
= 2 .

Devroye (29) gave a more elegant proof of this using the theory of records

in random sequences. His proof is based on the following lemma which defines

D∗
n as a sum of independent Bernoulli random variables.

Lemma 6.1. Let B2, B3, . . . , Bn be independent random variables with Bi dis-

tributed as Bernoulli(2/i). Then we have

D∗
n

def
=

n∑
i=2

Bi .

Proof. The binary search tree is constructed by starting with an empty tree,

then inserting the elements 1, . . . , n in the order determined by a random

permutation X1, . . . , Xn. Thus D∗
n is the depth of element Xn.

To consider the depth of Xn it is useful for us to consider the tree as con-

structed by a different but equivalent process. We build the tree by inserting

119

6. Random Split Trees

the elements in the order given by Xn, X1, X2, . . . , Xn−1, after each insertion

performing a single rotation (if necessary) to ensure that Xn is a leaf. After

inserting Xi, a rotation is necessary if and only if Xi is a child of Xn; this

happens if and only if the ranks of Xn and Xi in the set {Xn, X1, X2, . . . , Xi}
differ by 1. Since each rotation increases the depth of Xn by 1, D∗

n is simply

the number of rotations performed.

Let Ri be the rank of Xn in the set {Xn, X1, X2, . . . , Xi−1} and let R′
i be

the rank of Xi in the set {Xn, X1, X2, . . . , Xi}. A rotation is performed if and

only if R′
i ∈ {Ri, Ri + 1}. As a property of uniformly random permutations,

we have that R′
i is uniform on {1, . . . , i+ 1} and all R′

i are independent.

With {Bi} defined as in the statement of the lemma, we can now define

D∗
n as a sum of indicator variables.

D∗
n

def
=

n−1∑
i=1

1l{inserting Xi forces a rotation}
def
=

n−1∑
i=1

1l{R′
i∈{Ri,Ri+1}}

def
=

n∑
i=2

Bi .

Height Analysis

For the height, Robson (90) proved that the limit of E{Hn}/lnn does exist

and gave an upper bound. Devroye (27) proved a matching lower bound. Let

η(c) = 1 − c ln 2e
c
. There are two solutions to η(c) = 0; one solution is less

than 2 and one is greater than 2. Let α = 4.31107 . . . be the unique solution

greater than 2 to η(c) = 0. With convergence in probability we have

lim
n→∞

Hn

lnn
= α .

We prove the upper bound for the limit, also obtaining exponential upper tail

bounds.

Theorem 6.2. Let c > α. Then η(c) > 0 and

P{Hn ≥ c lnn} ≤ n−η(c).

120

Random Binary Search Trees

Proof. Let t ≥ 0. By a union bound, P{Hn ≥ t} ≤ nP{D∗
n ≥ t}, where D∗

n is

the depth of the last node inserted in a random binary search tree on n nodes.

By Lemma 6.1, D∗
n is distributed as

∑n
i=2Bi, where Bi is Bernoulli(2/i) and

the Bi are independent. Thus, for s > 0, by the Chernoff bound,

P{D∗
n ≥ t} ≤ e−st

n∏
i=2

E
{
esBi

}
= e−st

n∏
i=2

(1 + 2(es − 1)/i)

≤ e−st

n∏
i=2

exp(2(es − 1)/i)

≤ exp(2(es − 1) lnn− st)

and upon taking s such that 2es lnn = t, we get the bound

P{Hn ≥ t} ≤ n · exp

(
t− 2 lnn− t ln

(
t

2 lnn

))
.

Letting t = c lnn for constant c, the upper bound becomes

exp
(
lnn

(
c− c ln

(c
2

)
− 1
))

= nc−c ln(c
2)−1 = n−η(c).

To see that η(c) is positive and increasing for c > α, we note that η(α) = 0

and observe that η′(c) = ln c
2
, which is strictly positive for c > 2.

Analysis of Hn was subsequently tightened by Reed (89), who determined

the second order term of the expectation and proved constant variance:

Theorem 6.3 (Reed (89)). Let α ≈ 4.31107 . . . be the unique solution greater

than 2 of the equation α ln 2e
α

= 1. Let β = 3
2 ln (α/2)

≈ 1.95303. Then

E{Hn} = α lnn− β ln lnn+O(1)

and Var{Hn} = O(1) .

121

6. Random Split Trees

Coupling With Random k-d Trees

Random binary search trees are useful randomized data structures for storing

one dimensional keys which, in geometric terms, we can consider to be points

in R. But how can they be generalized in a natural way to store a set S of n

points in Rd for d > 1?

Perhaps the most obvious approach is to ignore all dimensions except the

first. This projects our point set onto a line, after which we can build a binary

search tree based on the projected point set1. More generally we can consider

any line ` such that the projection of S onto ` contains n unique points. If

we build a random BST based on the projected points, the height and average

depth are distributed as before. What we have done is partition Rd using

hyperplanes perpendicular to `.

Another approach is that taken by k-d trees2, first described by Bentley

(13). A BST splits at each node based on a single dimension; a k-d tree does

the same but considers different dimensions at different levels of the tree. In

R2 a k-d tree alternates between using vertical and horizontal lines to partition

the space (see, e.g., Figure 6.1). More generally, at a node v in d dimensions,

a k-d tree splits based on dimension 1+ (depth(v) mod d), using a hyperplane

perpendicular to that axis.

One advantage of k-d trees over binary search trees is the efficiency of

orthogonal range searching. An orthogonal range query can be performed in

O
(
n(d−1)/d + k

)
time with a balanced k-d tree whereas a linear scan may be

necessary if the data set is stored in a lower dimensional BST. The improvement

comes from the fact that any hyperplane (or bounding facet of an orthogonal

range polytope) can intersect only O
(
n(d−1)/d

)
of the cuts made by a k-d tree.

See, e.g., de Berg et al. (23) for details. The expected cost of an orthogonal

range query for a k-d tree storing points uniformly distributed in a hypercube

was analyzed by Chanzy et al. (19); this expected cost is worse than the cost

for a perfectly balanced k-d tree.

1For simplicity we assume all points have unique coordinates in the first dimension.
2Though ‘k-d tree’ is short for ‘k-dimensional tree’, for the sake of continuity we avoid

using k to denote the dimension.

122

Random Binary Search Trees

Figure 6.1: A k-d tree storing 8 points in R2. Tree edges are indicated by blue
arrows directed from parent to child.

Now we use a simple coupling argument (see, e.g., Lindvall (69)) to show

that the structure of a random k-d tree is distributed identically to that of

a random BST. By ‘structure’ we mean the underlying rooted acyclic graph

obtained by ignoring any differentiation between left and right children. The

definition of a random k-d tree is analogous to that of a random BST; such a

tree is generated by inserting the elements according to a random permutation.

Proposition 6.1. A random BST and a random k-d tree, each storing n

elements, have identically distributed structure.

Proof Sketch. The argument uses recursive coupling to generate a random BST

and a random k-d tree that have identical structure. The two random trees

are completely dependent, but each is drawn from the correct distribution.

The key observation is that the subtree sizes of the two roots are identically

distributed. The rank of the root (in a k-d tree this is w.r.t. the splitting

dimension) is uniformly distributed on {1, . . . , n} for each tree. We simply

123

6. Random Split Trees

couple these random variables so that the roots split their data sets in the same

proportions. The argument continues recursively in non-empty subtrees.

Random b-ary Search Trees

It is natural to generalize the random binary search tree model to trees with

branching factor b ≥ 2. In a random b-ary search tree storing n ≥ k − 1

elements, the root stores b − 1 elements sampled u.a.r. without replacement.

The remaining n − (b − 1) elements are sent to the subtrees of the root; an

element is sent to the ith subtree if it is greater than exactly i − 1 of the

elements in the root. A leaf node stores between 0 and b− 2 elements.

For such a tree we are most interested in the height and average element

depth, which we denote Hn,b and Dn,b respectively. As in the binary case,

E{Hn,b} and E{Dn,b} are both logarithmic in n. For fixed b, let cb be the

positive constant such that 1/cb =
∑b

i=2 1/i. The following theorems generalize

limits for random BSTs.

Theorem 6.4 (Mahmoud and Pittel (74)).

lim
n→∞

E{Dn,b}
lnn

= cb .

Theorem 6.5 (Devroye (34)).

lim
n→∞

E{Hn,b}
lnn

= γ(b) ,

where γ(b) is defined as

γ(b) = inf

{
c > cb : t+ c ln(b!)− c

b−1∑
i=1

ln(t+ i) ≤ 0

}
,

and t = t(c) > 0 is the unique solution of the equation
1

c
=

b−1∑
i=1

1

t+ i
.

124

A General Model

6.2 A General Model

The random BST model, while easily motivated and well understood, is very

specific. Devroye (31) proposed and analyzed the far more general random

split tree model.

Model 6.2 (Random Split Tree). A random split tree is a random tree

storing a data set of n elements. The distribution is determined by the

following parameters which must be specified:

1. V – the random split vector prototype.

2. b – the branching factor.

3. s0 – the number of elements in each internal node.

4. s1 – the minimum number of elements in each leaf node.

5. s – the maximum number of elements in each leaf node.

The prototype split vector V = (V1, V2, . . . , Vb) is the most interesting pa-

rameter (noting that it also specifies b). Each tree node is given a split

vector that is drawn from the distribution specified by V . We emphasize

that all split vectors in the tree are identically distributed. When generat-

ing a random split tree, a node’s split vector is generated when the node

is created. Devroye considers an equivalent definition that uses an infinite

skeleton tree (31, p. 409).

Elements are inserted into the split tree one at a time. Insertion starts

at the root, recursively proceeding downward until a leaf node is reached.

Each recursive step chooses a subtree randomly according to the current

node’s split vector – the ith subtree is chosen with probability Vi. Thus a

node’s split vector defines a probability distribution on its subtrees and we

must have
∑

i Vi = 1 and Vi ≥ 0.

When an insertion path reaches a leaf, if the leaf is under capacity (i.e.

contains fewer than s elements) the element lives in the leaf. If the leaf

is already at capacity it splits, becoming an internal node and spawning

b children. Of the s + 1 elements, s0 (chosen u.a.r.) stay in the node, s1

(chosen u.a.r.) are sent to each child, and each of the s + 1 − s0 − bs1

125

6. Random Split Trees

remaining elements is sent to a random child according to the split vector

(s+ 1− s0 − bs1 must therefore be nonnegative).

Let T be a random split tree on n elements defined by parameters V , b, s0, s1, s.

If n ≤ s0, T consists of a single root node. Otherwise, let Λi denote the number

of elements in the ith subtree of T ’s root and let Λ(T) denote the vector

Λ(T) =
(
Λ1 − s1,Λ2 − s1, . . . ,Λb − s1

)
.

Observation 6.1. Λ(T) ∼ Mult(n− s0 − bs1,V) .

Uniform Split Vectors

Here we define uniform splits in terms of split vectors defined by Dirichlet

distributions (see Section 5.2). We then show that the random split tree model

includes random b-ary search trees.

Definition 6.1 (Uniform Split Vector). A uniform b-ary split vector is a

random probability vector distributed like Dir(1), where 1 denotes the ones

vector of length b. The components of such a vector are jointly distributed

like the interval lengths obtained by cutting the [0, 1] interval at b − 1 points

distributed i.i.d. like U(0, 1).

Proposition 6.2. Let V be a uniform b-ary split vector. A random b-ary

search tree storing n elements is distributed like the random split tree, also

storing n elements, with prototype split vector V and parameters (b, s0, s1, s) =

(b, b− 1, 0, b− 1).

Proof. Using Tb and Tsplit to denote the two trees we wish to show that Tb and

Tsplit are identically distributed. For n ≤ k − 1 the proposition is true since

each tree is a single node. We proceed from this base case by induction on n.

We want to show that Λ(Tb) and Λ(Tsplit) are identically distributed3. From

the definition of discrete Dirichlet distributions in Section 5.2 it can be seen
3Here the meaning of Λ(Tb) should be clear despite the fact that we have not proven Tb

to be a random split tree.

126

A General Model

that Λ(Tb) ∼ Dirn(1). By Observation 6.1, Λ(Tsplit) is distributed like Mult(V).

Since V ∼ Dir(1), Proposition 5.4 tells us that Dirn(1) and Mult(V) have

the same distribution, so Λ(Tb) and Λ(Tsplit) are identically distributed. The

proposition now follows from a recursive coupling argument as in the proof of

Proposition 6.1.

The random BST is a nice example of a random split tree because it is

so simple. Unfortunately there is an important issue that is easy to miss.

Consider the following statements:

1. Each split vector is distributed like (V1, V2, . . . , Vb).

2. The ith subtree of the root contains s1 +(n−s0−bs1)Vi±O(1) elements.

For a random BST both statements are true. However, it is not the case that

both statements are true for all random split trees. The number of elements in

the root’s ith subtree is distributed like s1 + Bin(n− s0 − bs1, Vi). The reason

both statements are true for a random BST is that, for U ∼ U(0, 1), we have

Bin(n− 1, U) ∼ bnUc. Consider, on the other hand, a random split tree de-

fined by V =
(

1
2
, 1

2

)
. The number of elements in each subtree is distributed like

Bin
(
n− 1, 1

2

)
. Thus perfectly balanced split vectors do not generate perfectly

balanced trees; in fact perfectly balanced trees do not belong to the random

split tree model.

Limit Laws

In Section 6.1 we analyzed Hn and Dn, the height and average depth of a

random binary search tree. Ideally the same could be done for the more general

model of random split trees. Let Tn be a random split tree storing n elements

and let H(Tn) and D(Tn) respectively denote be the maximum and average

element depth in Tn. It is important to emphasize that we are dealing with

depths of elements, not tree nodes. This was a non-issue for a random BST

since each node contains exactly one element.

Devroye (31) proved limit laws for both height and depth in a random split

tree that are valid under reasonable assumptions. Let V be a component of

127

6. Random Split Trees

V chosen u.a.r., i.e. V ∼ VI where i is uniform on {1, . . . , b}. Devroye’s limit

laws depend only on b and the distribution of V .

Theorem 6.6. Let Tn be a random split tree storing n elements whose

parameters satisfy the following reasonable assumptions:

1. The parameters b, s0, s1, and s are fixed constants.

2. V is well-behaved — µ > 0, σ > 0, and P{V = 1} = 0.

Let µ and σ respectively denote the mean and standard deviation of

V ln(1/V). Let γ be another constant depending only on V and b. With

convergence in probability,

lim
n→∞

H(Tn)

lnn
= γ and lim

n→∞

D∗(Tn)

lnn
=

1

µ
.

Furthermore, D∗(Tn) exhibits convergence in distribution, with

D∗(Tn)− (lnn)/µ

σ
√

(lnn)/µ3

L→ N (0, 1) .

Theorem 6.6 is powerful. For a reasonably behaved random split tree we

need only provide the prototype split vector and the theorem tells us the most

important properties of the tree’s limiting structure. The value of γ can be

expressed explicity (though not as cleanly as µ and σ) as a function of V and

b (31, pp. 411–412).

Geometric Examples

We are particularly interested in random split trees that arise in geometric

settings. Such a tree T typically has the following properties:

• The tree stores a set S of n points in Rd.

• The root node partitions Rd into convex regions according to a geometric

split.

128

A General Model

And for an internal node v in the tree where T (v) is the subtree rooted at v,

• T (v) corresponds to a convex region R(v) of Rd.

• T (v) contains the points in S ∩R(v).

• v partitions T (v) according to a geometric split.

Thus a geometric split tree corresponds to a recursive decomposition of Rd.

A random BST is one such example. We can consider it as storing a set of

points on the real line R and recursively decomposing R into convex regions

(in this case, line segments and rays) using hyperplanes (in this case, points).

A random k-d tree is a generalization of this to higher dimensional point sets.

From Propositions 6.1 and 6.2 we know that random k-d trees are random

split trees as per Model 6.2.

Devroye considered several other geometric examples belonging to the ran-

dom split tree model; we give several examples along with splitter distributions

(for a table see (31, p. 414)). For arbitrary point sets in an interval of R, two

examples (that both generalize a random BST) are:

• b-ary search tree: select b− 1 points u.a.r. and partition into the b sub-

intervals defined by these points. V ∼ beta(1, b− 1).

• Median of (2k + 1) search tree: select 2k + 1 points u.a.r. and partition

into the 2 sub-intervals defined by the median of these 2k + 1 points.

V ∼ beta(k + 1, k + 1).

For point sets uniformly distributed in some bounding polytope in Rd, two

examples (that also both generalize a random BST) are:

• Simplex tree: for points in a simplex in Rd, sample one point p u.a.r. and

partition into d + 1 sub-simplices, each defined as the convex hull of p

and a facet of the original simplex. V ∼ beta(1, d).

• Quadtree: for points in a box4 in Rd, sample one point p u.a.r. and

partition into 2d sub-rectangles by cutting along the d axis-parallel hy-

perplanes passing through p. For i.i.d. uniforms Ui we have V ∼
∏d

i=1 Ui.

4A d-dimensional rectangular prism which we can assume w.l.o.g. to be axis-parallel.

129

6. Random Split Trees

For a uniformly distributed point set in a bounding region R, the proba-

bility of a newly sampled point falling in T (v) is proportional to the volume of

R(v); specifically it is vol(R(v))/vol(R). Thus V is distributed like the relative

volume of a child region chosen u.a.r. For simplex trees and quadtrees, these

relative volumes are distributed identically at every node; this is a necessary

condition for membership in the random split tree model.

One may ask why b-ary search trees and median of (2k+1) search trees fit

the model even when S is a deterministic point set. The reason is that every

set of n distinct points in R has the same combinatorial structure with regard

to the splits we use. Consider, for example, the range space S = (S,R) where

S is a set of n distinct points in Rd and R contains intersections of S with

open half-spaces. For d = 1 the range space is identical (modulo relabeling)

for any set S, but the same cannot be said for d > 1. Thus in R the point set

doesn’t matter and, for example, can be assumed to be a set of n uniformly

distributed points in the interval [0, 1].

6.3 Bounding With Reference

Trees

An important property of random split trees is that all split vectors are i.i.d.

like the prototype split vector V . Random geometric trees do not necessarily

fit this requirement of the random split tree model. In this case our approach

is to analyze a geometric split tree using bounds on the distributions of split

vectors.

Model 6.3 (Relaxed Random Split Tree). A random split tree in

the relaxed model is a random tree storing a data set of n elements. The

relaxed model differs from the standard random split tree model (see Model

6.2) only in the distribution of split vectors. In the standard model, V =

(V1, . . . , Vb) is a fixed multivariate distribution and each split vector is i.i.d.

like V . In the relaxed model, V is replaced by a family of distributions

130

Bounding With Reference Trees

V̂ . Each split vector in the tree is distributed independently (but not

necessarily identically) like some distribution in V̂ . Thus the parameters

specify a family of random trees since degrees of freedom remain with

regard to the assignment of distributions from V̂ to tree nodes.

This relaxed model is not all-inclusive. However, even if a random tree Tn

storing n elements does not fit the relaxed model, the theory of random split

trees can be used to bound the distributions of Tn’s structural properties. To

this end, we introduce another generalization of the random split tree model.

Model 6.4 (Split-Bounded Random Tree). A random tree in the split-

bounded model is a random tree storing a data set of n elements. This

model, like Model 6.2, is defined with parameters V , b, s0, s1, s. A tree T

in this model satisfies the following five criteria:

1. Every internal node has branching factor b.

2. Every internal node contains s0 elements.

3. Every leaf node contains at least s1 elements.

4. Every leaf node contains at most s elements.

We define additional notation before stating the final criterion. For a node

v in T , let X(v) denote the number of elements in v’s subtree. For an

internal node v with children c1, . . . , cb, let Λ(v) be the b-ary vector whose

ith component is X(ci)− s1. The last criterion is:

5. For every internal node v, the distribution of Λ(v) is such that(
Λ(v)

X(v)− s0 − bs1

∣∣∣∣∣ X(v)

)
�E Mult(V) .

Observation 6.2. Let T (n) be a split-bounded random tree on n elements from

Model 6.4 with parameters V , b, s0, s1, s. Let T (+)(n) be the random split

tree on n elements from Model 6.2, also with parameters V , b, s0, s1, s. If the

131

6. Random Split Trees

children of the root of T (n) have subtree sizes N1, . . . , Nb and the children of

the root of T (+)(n) have subtree sizes N
(+)
1 , . . . , N

(+)
b , then (N1, . . . , Nb) �E

(N
(+)
1 , . . . , N

(+)
b).

Depth Domination

We consider the average depth in a random tree T from the split-bounded

model. We bound the depth distribution D(T) using a reference tree from the

standard random split tree model.

For given parameters V , b, s0, s1, s, let T be the set of all split-bounded

random trees from Model 6.4 with parameters V , b, s0, s1, s. Let T (n) be

the set of trees in T containing n elements. Let the reference tree T (+)(n)

be the random split tree containing n elements defined by Model 6.2 with

parameters V , b, s0, s1, s.

Lemma 6.2 (Depth Domination Lemma). For any tree T ∈ T (n) we

have domination of average element depth given by

D(T) ≤s D(T (+)(n)) .

Proof. For any T ∈ T (n), n ≥ 0, and t ≤ 0 we have

P{D(T) ≥ t} = P
{
D(T (+)(n)) ≥ t

}
= 1 .

We now need to prove that, for all t ≥ 0,

sup
T∈T (n)

P{D(T) ≥ t+ 1} ≤ P
{
D(T (+)(n)) ≥ t+ 1

}
.

We do this by induction on n. Consider the split at the root of T , keeping in

132

Bounding With Reference Trees

mind that each subtree belongs to the family T . For t ≥ 0, n ≥ 1,

sup
T∈T (n)

P{D(T) ≥ t+ 1}

≤ E

{
b∑

i=1

(
Ni

n

)(
sup

Ti∈T (Ni)

P{D(Ti) ≥ t}

)∣∣∣∣∣N1, . . . , Nb

}
(6.1)

where the expectation is over N1, . . . , Nb, the numbers of elements sent to the

subtrees of T ’s root.

We argue by induction on n that for all t ≥ 0,

sup
T∈T (n)

P{D(T) ≥ t+ 1} ≤ P
{
D(T (+)(n)) ≥ t+ 1

}
.

For n ≤ 0, this is obvious, as P{D(T (n)) ≥ t+ 1} = 0. For n ≥ 1, we can see

from (6.1) and the induction hypothesis that

sup
T∈T (n)

P{D(T) ≥ t+ 1}

≤ E

{
b∑

i=1

(
Ni

n

)(
P
{
D(T (+)(Ni)) ≥ t

})∣∣∣∣∣N1, . . . , Nb

}
.

We argue that the right hand side is bounded from above by

E

{
b∑

i=1

P
{
D(T (+)(N

(+)
i)) ≥ t

} N (+)
i

n

}
, (6.2)

where now, N
(+)
1 , . . . , N

(+)
b are the sizes of the subtrees of the root of T (+)(n).

If this bound is true, then we are done, because (6.2) is P
{
D(T (+)(n)) ≥ t

}
.

Consider first the function

ψ(n) = nP
{
D(T (+)(n)) ≥ t

}
= n

1

n

n∑
i=1

P{D∗
i ≥ t} =

n∑
i=1

P{D∗
i ≥ t} ,

where D∗
i is the depth of the last element inserted in a split tree, drawn from

the same distribution as T (+), on i elements. Clearly ψ is non-negative and

133

6. Random Split Trees

non-decreasing. Further, ψ(n + 1) − ψ(n) = P
{
D∗

n+1 ≥ t
}
, which is trivially

non-decreasing in n for fixed t, implying that ψ is also non-concave.

We now apply Observation 6.2, which tells us that

(N1, . . . , Nb) �E (N
(+)
1 , . . . , N

(+)
b). Since ψ is non-negative, non-decreasing,

and non-concave, this suffices to conclude (see Definition 5.3) that

E

{∑
i

ψ(Ni)

}
≤ E

{∑
i

ψ
(
N

(+)
i

)}
.

This proves the bound in (6.2), completing the proof.

6.4 Notes

Contributions

The novel contributions in this chapter include the relaxed and split-bounded

models (Models 6.3 and 6.4), and the depth domination lemma (Lemma 6.2).

The depth domination lemma generalizes a theorem from a paper cowritten

with Luc Devroye and Colin McDiarmid (35, Theorem 1.1). The proof of the

original theorem was developed jointly with Luc Devroye. The statement of

Lemma 6.2 and the generalization of the original theorem’s proof are indepen-

dent contributions of the thesis author.

Future Directions

The most pressing open problem arising from this chapter is whether or not the

depth domination lemma can be complemented by an analogous height domi-

nation lemma. That is, do the conditions of Lemma 6.2 imply domination of

height as well as depth? To prove height bounds we currently use depth dom-

ination to piggyback onto existing proofs. This is possible for height bounds,

such as the bound given by Theorem 6.2, derived solely from depth bounds.

This strategy is inelegant and does not always work. A height domination

lemma would give us a clean and reliable way to prove height bounds.

134

Chapter 7

Random Hyperplane Splits

In this chapter we discuss random hyperplane splits and the closely related issue of

counting k-facets. We show that random hyperplane splits are no worse than (i.e.,

stochastically at least as balanced as) uniformly distributed splits. We then show

that, for certain point sets, random hyperplane splits are distributed according to

discrete beta distributions, and this is conjectured to be the worst case. Finally

we give lower bounds on the number of (≤ k)-sets; this bounds random hyperplane

splits away from perfectly even splits in a non-trivial way.

Contents

7.1 Competing with Uniform Splits 136

7.2 Connections with k-Facets 139

Dual and Spherical Interpretations 141

7.3 Upper Bounds for (≤ k)-Facets 142

The Moment Curve . 142

Generalized Upper Bound Conjectures 147

7.4 Lower Bounds for (≤ k)-Facets 148

Upper Bounds for Halving Facets 149

Lower Bounds for (≤ k)-Facets 149

An Inductive Formulation of Hyperplane Splits 150

An Extended Lower Bound for (≤ k)-Facets 153

7.5 Notes . 155

135

7. Random Hyperplane Splits

In this chapter we consider random hyperplane splits as a way of partition-

ing a set of points in Rd.

Definition 7.1 (Random Hyperplane Split). A random hyperplane

split of a set S of n points in general position in Rd, n ≥ d, is defined as

follows. Choose d points u.a.r. from S and let H be the unique hyperplane

passing through these points. Orient H randomly with a fair coin flip. H

defines two open half-spaces H+ and H−. The random hyperplane split is

the partition of S \H into S ∩H+ and S ∩H−.

We consider a point set to be in general position if its combinatorial struc-

ture is robust with regard to infinitessimal perturbations. We state the exact

definition that we use in this chapter, and more generally in the context of

hyperplane splits.

Definition 7.2 (General Linear Position). We say a set S of n points in

Rd is in general linear position, or simply general position, if and only if, for

any i ∈ {0, . . . , d− 1}, no i-flat contains i+ 2 or more points from S.

This general position criterion is equivalent, for n ≥ d + 1, to the require-

ment that any hyperplane contains at most d points. It is sufficient (but not

necessary) to ensure that d points from S define a unique hyperplane.

7.1 Competing with Uniform Splits

In this section we compare a random hyperplane split in Rd with a uniform

binary split (see Model 6.1). We show that hyperplane splits are at least as

even as uniform splits. In particular, this implies domination in expectation

for the corresponding split vectors (see Definition 5.3).

We consider a random hyperplane split on a set S of n points in general

position in Rd. Let N1 and N2 be the number of points on either side of the

random hyperplane split. Let N∗
1 and N∗

2 be the number of points on either

136

Competing with Uniform Splits

side of a uniform split on n points. We know thatN∗
1 ∼ Uniform({0, . . . n− 1})

and N∗
2 = n− 1−N∗

1 .

Lemma 7.1. max(N1, N2) ≤s max(N∗
1 , N

∗
2).

And from Observation 5.1 we obtain the following:

Corollary 7.1. (N1, N2) �E (N∗
1 , N

∗
2).

Proof of Lemma 7.1. Let A be the set containing the first d− 1 points chosen

for the random hyperplane. Imagine a hyperplane H rotating around the axis

defined by A. Let H+ and H− be the open half-spaces defined by H, where

H+ and H− rotate along with H. As H rotates in a fixed direction it intersects

the points in S \A one after another in a rotational order. In this order label

these points p1, . . . , pn−d+1. Use H(i) to denote the hyperplane passing through

A ∪ {pi} and use H+
(i) (resp. H−

(i)) to denote the intersection of S \ A and H+

(resp. H−), when H = H(i). Our definitions are rotational and can therefore

be cyclic, so if we extend our definitions of H+
(i) and H−

(i) to allow indices greater

than n− d+ 1, we have H+
(i) = H−

(n−d+1+i).

Consider the difference between H+
(i) and H+

(i+1). When H rotates from H(i)

to H(i+1), pi is added to one side of H (because H no longer passes through

it) while pi+1 is removed from one side of H (because H now passes through

it). We can now see that, over the values of i from 1 to 2(n − d + 1), |H+
(i)|

does a walk taking only steps of +1, 0, or −1. It starts, by convention, at its

minimum value with i = 1, goes up to its maximum value at i = n−d+1, and

returns to at most 1 plus its minimum value at i = 2(n−d+1). Note that this

means |H+
(i)| hits each value strictly between its minimum and its maximum

at least twice. See Figures 7.1 and 7.2 for an example of a point set and the

corresponding walk.

GivenA, we haveN1 distributed like |H+
(I)|, where I is uniform on 1, . . . , 2(n−

d+ 1). Therefore, for integer k with mini |H+
(i)| ≤ k ≤ maxi |H+

(i)|, we have

P{N1 = k} ≥ 1

n− d+ 1
.

137

7. Random Hyperplane Splits

A

H+
11

H+
12

p1

H+
1

H+
2

H+
3

H+
4

H+
6

p6

H+
7

H+
8

H+
5

p3

H+
9

H+
10

p4

p2

p5

Figure 7.1: A line indicates each H(i). Each H+
(i) is indicated by an arrow and

a label. A contains only the central labeled point.

|H+
(i)|

5

4

3

4

3

2

1

0

5

2

1

0
43 5 6 7 8 9 10 11 12 12i = 1

|H−
(i)|

Figure 7.2: The walk done by |H+
(i)| is indicated with a solid line. The cor-

responding walk done by |H−
(i)| is shown with a dashed line. Values for i are

given along the bottom axis and values for the two walks |H+
(i)| and |H−

(i)|
appear along the side axes.

For k > n−d
2

, it is impossible that N1 = N2 = k, so we have

P{max(N1, N2) = k} = P{N1 = k}+ P{N2 = k}.

P{max(N1, N2) = k} ≥


1

n−d+1
, k = n−d

2

2
n−d+1

, n−d
2
< k < maxi |H+

(i)| .
(7.1)

For a uniform split on n points, let N∗
1 and N∗

2 be the number of points on

either side of the split. N∗
1 and N∗

2 are both uniform on the integers 0, . . . , n−1,

with the additional constraint that N∗
1 + N∗

2 = n − 1. Therefore, again for

138

Connections with k-Facets

integer k, we have

P{max(N∗
1 , N

∗
2) = k} =

 1/n , k = n−1
2

2/n , n−1
2
< k ≤ n− 1 .

(7.2)

Note that (7.1) and (7.2) are valid regardless of the parities of n−d and n−1.

The rest of the proof follows trivially.

Consider the case where S is a set of n points in convex position in R2,

e.g., a set of n distinct points on a parabola. It is not difficult to see that

N1 ∼ Uniform({0, . . . , n− 2}). The conditional distribution N1|A, i.e., the

distribution of N1 given the first point chosen to form the hyperplane split, is

Uniform({0, . . . , n− 2}), regardless of A. This is the most uneven distribution

possible in R2. In the next section we elaborate on this special (and well-

known) case and generalize it to higher dimensions.

7.2 Connections with k-Facets

In this section we focus on the problem of counting k-facets and how this

problem is intimately related to the analysis of random hyperplane splits.

Consider a set of S points in general position in Rd. Any d points from S

define a unique hyperplane that partitions the remaining n− d points. Infor-

mally, the d points form a k-facet if one of the open halfspaces contains exactly

k points.

Here we define the closely related notions of k-facets and k-sets.

Definition 7.3 (k-Facet). Let S be a set of n ≥ d points in general posi-

tion in Rd. Let σ be an oriented (d− 1)-simplex spanned by d points from

S. The affine hull of σ is a hyperplane that defines two open halfspaces,

and the orientation of σ designates one of these halfspaces, call it σ+, as

139

7. Random Hyperplane Splits

positive. We say that σ is a k-facet iff |S ∩ σ+| = k. We say that σ is a

(≤ k)-facet iff σ is a j-facet for some j ≤ k.

Definition 7.4 (k-Set). Let S be a set of n ≥ d points in Rd (we do not

require S to be in general position). Let S ′ be a subset of S. We say that

S ′ is a k-set iff |S ′| = k and there exists a hyperplane separating S ′ from

S \ S ′. We say that S ′ is a (≤ k)-set iff S ′ is a j-set for some j ≤ k.

A set of d points defines two oriented hyperplanes; thus in a set S of n

points, any subset of d points defines a k-facet for exactly one value of k

between 0 and b(n− d)/2c.
Let ek(S) denote the number of k-facets in the point set S. We use

e≤k(S) =
∑k

i=0 ek(S) to denote the number of (≤ k)-facets. For points in gen-

eral position, the total number of oriented d-tuples from S is e≤n−d(S) = 2
(

n
d

)
.

The set S is sometimes implicit in the notation. We follow the vector notation

of Welzl (102), with (ei)i = (e0, e1, . . . , en−d) and (e≤i)i = (e0, e≤1, . . . , e≤n−d).

Note that (ei)i determines (e≤i)i and vice versa.

The connection between k-facets and random hyperplane splits is fairly

clear. Using K to denote the number of points on one side of a random

oriented hyperplane split and X to denote the proportion of points on one side

of a random oriented hyperplane split, we can define the p.m.f. and c.d.f. of

X, denoted f(x) and F (x) respectively, using

f(x) = P{X = x} = P{K = xn = k} =
ek(S)

2
(

n
d

)
and

F (x) = P{X ≤ x} = P{K ≤ xn = k} =
e≤k(S)

2
(

n
d

) .

Thus determining the distribution of a random hyperplane split is equivalent

to counting k-facets, i.e., determining the vectors (ei)i and (e≤i)i.

To show that a random hyperplane split is ‘good’, i.e., that it splits the set S

evenly, we want to give an upper bound for the values e≤k(S) for k < (n−d)/2.

140

Connections with k-Facets

In R1, all sets of n distinct points are combinatorially equivalent and we have

ek = 2 and e≤k = 2(k + 1). In R2, for any set S in general convex position we

have ek(S) = n and e≤k(S) = n(k+1). In the previous section we showed that

points in convex position yield the most unbalanced random hyperplane splits;

this is equivalent to the statement that for any set S of n points in general

position in R2, e≤k(S) ≤ n(k + 1).

Dual and Spherical Interpretations

Here we briefly mention spherical point sets, arrangements of halfspaces and

hemispheres, and polar duality. For a more in-depth treatment we direct the

reader to Wagner’s survey (101), particularly §1.2 and §2.

Spherical Point Sets Thus far we have defined and discussed k-facets in

an affine setting, i.e., with regard to affine halfspaces defined by points in

Rd. Natural analogues exist in spherical settings. Let Sd denote the standard

d-dimensional unit sphere in Rd+1, given by Sd = {U ∈ Rd+1 : ||u|| = 1}.
Hemispheres in Sd are analogous to halfspaces in Rd.

We say that a set S of n points in Sd is in general (spherical) position if

and only if S ∪ {0} is in general linear position in Rd+1. For such a point set,

any set of d points from S defines a unique great (d− 1)-sphere that contains

them. Thus a set of d points from S, along with an orientation, defines a

unique hemisphere. If the interior of this hemisphere contains exactly k points

from S, we say the oriented set of d points is a spherical k-facet.

Levels in Arrangements Let AA be an arrangement of n closed affine

halfspaces in Rd. We consider only simple arrangements, in which a point

x ∈ Rd belongs to the boundary of at most d halfspaces of AA. The level of a

point x ∈ Rd is the number of halfspaces of AA that do not include x. The `-

level of AA is the boundary of the set of points having level ≤ `. The definition

of `-levels carries over naturally to arrangements of hemispheres in Sd. We say

an arrangement of halfspaces in Rd (respectively, hemispheres in Sd) is feasible

if the halfspaces (respectively, hemispheres) have non-empty intersection.

141

7. Random Hyperplane Splits

Polar Duality Let S be a set of n points in Rd. Polar point-hemisphere

duality is a bijection that maps the set S to a feasible arrangement of n hemi-

spheres in Sd. If the point set S also comes with a specified origin 0, polar

point-halfspace duality is a bijection that maps S to a feasible arrangement of

n halfspaces in Rd such that 0 is contained in the feasible region. These two

duality transforms are well-known; the treatment given by Wagner (101, §1.2)

is particularly relevant to the study of k-facets.

For a point set S in Rd with a given origin, let S∗S denote the dual feasible

hemisphere arrangment in Sd and let S∗A denote the dual affine halfspace ar-

rangment in Rd. A set of d points in S corresponds to a vertex vA in S∗A and a

pair of antipodal vertices v+
S and v−S in S∗S. If the d points in S define a k-facet

and a n − d − k-facet, the corresponding antipodal vertices in S∗S have levels

k and n− d− k. The level of vA is either k or n− d− k; only one orientation

is preserved. Let v≤`(S
∗
A) denote the number of vertices in the (≤ `)-levels

in S∗A. We have v≤k(S
∗
A) ≤ e≤k(S). We also have e≤k(S) ≤ 2 · v≤k(ÂA(k)),

where ÂA(k) is an arrangement of n halfspaces maximizing v≤k(ÂA(k)). For

justification of these claims see, e.g., Wagner (100; 101).

7.3 Upper Bounds for (≤ k)-Facets

The Moment Curve

In a search for point sets yielding uneven hyperplane cuts in dimension d > 2,

the most natural step is to generalize sets in convex position in R2. For this

we introduce a simple curve in Rd that generalizes a parabola in R2. We make

frequent use of sets of distinct points on this curve.

Definition 7.5 (Moment Curve). The moment curve in Rd is the parametric

curve γ = {γ(t) : t ∈ R} where γ(t) is the column vector (t, t2, . . . , td)T .

Definition 7.6 (Moment Curve Point Set). We use C(n, d) to denote a

set of n distinct points on the moment curve in Rd. All such point sets are

combinatorially equivalent (and in general position), but for concreteness we

specify C(n, d) = {γ(i) : i = 1, . . . , n}.

142

Upper Bounds for (≤ k)-Facets

Definition 7.7 (Cyclic Polytope). A cyclic polytope with n vertices in Rd

is a polytope that is combinatorially equivalent to the convex hull of C(n, d).

A neighbourly polytope in Rd (see, e.g., (105)) is a polytope such that any

set of bd/2c vertices form a face. Cyclic polytopes are neighbourly polytopes

that are particularly amenable to analysis.

Lemma 7.2. For a set S of n points in Rd, let K = K(S) be the random

variable representing the number of points on one side of a random hyperplane

cut in S. For any n ≥ d ≥ 1 there exist point sets (of which the moment curve

point set is a canonical example) such that

K = K
(
C(n, d)

)
∼

 betan

(⌈
d+1
2

⌉
,
⌊

d+1
2

⌋)
w.p. 1/2

betan

(⌊
d+1
2

⌋
,
⌈

d+1
2

⌉)
w.p. 1/2 .

Proof. Let S = C(n, d) and let H be the random hyperplane defining the

random cut. H can be expressed as H =
{
x ∈ Rd : aT x = b

}
where a =

(a1, . . . , ad)
T is a column vector and b is a scalar. H defines positive and nega-

tive (open) halfspaces H+ =
{
x ∈ Rd : aT x > b

}
and

H− =
{
x ∈ Rd : aT x < b

}
. The orientation of H is chosen randomly, so we

have

K =


∣∣C(n, d) ∩H+

∣∣ w.p. 1/2∣∣C(n, d) ∩H−
∣∣ w.p. 1/2 .

We wish to consider how γ and H interact. If x = γ(t) ∈ |γ∩H| is a point

of intersection then t ∈ R satisfies

aT x = aT γ(t) = aT · (t, t2, . . . , td)T =
d∑

i=1

ait
i = b .

More generally, for arbitrary t ∈ R, consider the difference polynomial

fH(t) = − b+
d∑

i=1

ait
i .

Note that fH(t) is a polynomial of degree no more than d and therefore has at

143

7. Random Hyperplane Splits

Figure 7.3: A conceptual sketch of a hyperplaneH interacting with the moment
curve in R7. Even intervals of the curve lie below H and are dotted while odd
intervals lie above H and are solid.

most d roots. The sign of fH(t) is most important. We have

γ(t) ∈


H+ if fH(t) > 0

H if fH(t) = 0

H− if fH(t) < 0 .

Since H is a hyperplane cut for C(n, d) it must touch γ at d distinct points

γ(t1),γ(t2), . . . ,γ(td), for some t1 < t2 < . . . < td. Therefore fH(t) has roots

t1, . . . , td. This tells us several things. Firstly, fH(t) cannot have any roots

other than t1, . . . , td. So in each of the d + 1 open intervals (−∞, t1), (t1, t2),

. . . , (td,∞), fH(t) is either strictly positive or strictly negative. For future

reference we refer to these intervals as I0, . . . , Id respectively. Secondly, if

fH(t) is positive in Ii for some i ∈ {0, . . . , d− 1} then it is negative in Ii+1 and

vice versa. Otherwise γ would have to ‘kiss’ H at a point without crossing H,

so fH(t) would have a critical point at one of its roots. However, fH(t) cannot

have more than d− 1 critical points (since f ′H(t) is a degree d− 1 polynomial)

and it must have a critical point strictly between any two of its d distinct roots.

In a sense, fH(t) has no spare critical point that can exist at a root.

We now turn our attention to the analysis of a random hyperplane cut

in C(n, d). Let us choose d of these points to define our splitting hyperplane

144

Upper Bounds for (≤ k)-Facets

H, and let us abuse notation by calling these points γ(t1), . . . ,γ(td) with

t1 < t2 < . . . < td. Here the values ti are actually random variables taking

integer values from 1 to n. As before, the points γ(ti) cut the curve γ into d+1

intervals I0, . . . , Id. Of the other n−d points in C(n, d), the cutting hyperplane

H separates the points in the even intervals from those in the odd intervals.

Since H is oriented randomly the lemma now follows from Observation 5.3.

For moment curve point sets, exact values for ek are easily obtained. These

values are well-known (see, e.g., Andrzejak and Welzl (10)).

Proposition 7.1. Let q = b(d+ 1)/2c. The numbers of k-facets in a moment

curve point set are given by

ek(C(n, d)) = 2

(
k + q − 1

q − 1

)(
n− q − k

q − 1

)
·
(
n+ 1

2

)d+1−2q

= Θ

((
n− k + 1

bd/2c

)(
k + 1

d(d− 2)/2e

))
= O

(
nbd/2c(k + 1)d(d−2)/2e) ,

where the constants do not depend on d, k, or n.

Proof. We continue with the concepts and terminology from the proof of

Lemma 7.2. For a k-facet σ, instead of considering intervals as being even

or odd we now consider intervals as being positive or negative based on mem-

bership in σ+ or σ−. We focus on the lengths of intervals as given by an ordered

pair of sequences: a ‘positive sequence’ for the positive interval lengths and a

‘negative sequence’ for the negative interval lengths. We call such an ordered

pair a length sequence.

Consider a sequence of q non-negative integers whose sum is k, and let

L(k, q) denote the set of all such sequences. Let A denote the set of length

sequences of k-facets in odd dimension d = 2q − 1. A length sequence is in A

if and only if its positive sequence is in L(k, q) and its negative sequence is in

L(n− d− k, q). Thus we can define A as the Cartesian product of these sets,

i.e., A = L(k, q)× L(n− d− k, q). Similarly, let B denote the set of length

sequences of k-facets in even dimension d = 2q. In this case we can either have

145

7. Random Hyperplane Splits

q+1 positive intervals and q negative intervals, or q positive intervals and q+1

negative intervals. Thus we have

B =
(
L(k, q + 1)× L(n− d− k, q)

)
∪
(
L(k, q)× L(n− d− k, q + 1)

)
.

In even dimension, the respective lengths of the positive sequence and the

negative sequence differ by 1, and the longer of the two sequences determines

the sign of the first interval. A k-facet is therefore uniquely determined by

its length sequence. In odd dimension, a length sequence defines two k-facets:

one starting with a positive interval and one starting with a negative interval.

Therefore ek(C(n, 2q − 1)) = 2|A| and ek(C(n, 2q)) = |B|.
There is a natural bijection mapping elements of |L(k, q)| to binary strings

containing k zeros and q−1 ones. The q intervals of zeros (some of which may

be empty) have a combined length of k and are delimited by the q − 1 ones.

The number of such strings is |L(k, q)| =
(

k+q−1
q−1

)
. Working out the sizes of A

and B gives us the values as stated by Andrzejak and Welzl (10):

ek(C(n, 2q − 1)) = 2|A| = 2
(

k+q−1
q−1

)(
n−q−k

q−1

)
ek(C(n, 2q)) = |B| =

(
k+q

q

)(
n−q−k

q−1

)
+
(

k+q−1
q−1

)(
n−q−k+1

q

)
.

We can express ek(C(n, 2q)) more cleanly, at the same time highlighting a

connection between k-facets in dimensions 2q and 2q − 1. We have

ek(C(n, 2q)) = (n+ 1)
(

k+q−1
q−1

)(
n−q−k

q−1

)
=

(
n+1

2

)
ek(C(n, 2q − 1)) .

To be concrete as we explain this identity, we consider k-facets with labeled

intervals. For d = 2q − 1 each k-facet has (2d)! possible labelings. For d = 2q

we always give the first and last interval the same label, so again each k-facet

has (2d)! possible labelings.

Consider a pair of length sequences, each of length q, along with the (2q)!

possible labelings. The pair maps to two labeled k-facets in C(n, 2q−1) — one

that starts with the positive sequence and one that starts with the negative

146

Upper Bounds for (≤ k)-Facets

sequence. We can modify the pair of length sequences for use in C(n, 2q) by

splitting one of the 2q intervals. There are n+ 1 possible ways to insert a new

split — k+q ways in the positive list and n−2q−k+1 ways in the negative list.

After one of these splits one sequence is longer and this determines the sign of

the first interval. The pair of sequences therefore maps to n+1 labeled k-facets

in C(n, 2q), which gives us 2(2d)!ek(C(n, 2q)) = (n+1)(2d)!ek(C(n, 2q−1)).

Generalized Upper Bound Conjectures

It is widely believed that moment curve point sets, and more generally ver-

tex sets of neighbourly polytopes, yield the most uneven random hyperplane

splits. We state two closely related conjectures. These conjectures are called

the spherical- and affine- generalized upper bound conjectures, abbreviated

SGUBC and AGUBC respectively. The SGUBC was made independently by

Eckhoff (39), Linhart (70), and Welzl (102); the AGUBC was made by Linhart.

Let C∗(n, d) denote an arrangement of hemispheres that is the polar

dual of a spherical neighbourly polytope with n vertices in Sd.

Conjecture 7.1 (SGUBC). Let AS be an arrangement of n closed hemi-

spheres in Sd. For all 0 ≤ ` < (n− d)/2,

v≤`(AS) ≤ v≤`(C∗(n, d)) .

Moreover, equality is attained whenever AS is the polar dual of a spherical

neighbourly polytope.

Conjecture 7.2 (AGUBC). Let AA be an arrangement of n halfspaces

in Rd. For all 0 ≤ ` ≤ n− d, we have

v≤`(AA) ≤ v≤`(C∗(n, d)) .

Moreover, equality is attained whenever S is the vertex set of a neighbourly

polytope.

147

7. Random Hyperplane Splits

Partial results are known for these conjectures. The SGUBC was proved

for d = 2 by Peck (86) and Alon and Győry (7). Welzl proved the following

theorem, which is equivalent to the SGUBC for feasible arrangements in S3.

Theorem 7.1 (Welzl (102)). Let S be a set of n points in R3. For all 0 ≤
k < (n− 3)/2, we have

e≤k(S) ≤ e≤k(C(n, d)) .

Linhart (70) proved the AGUBC for d ≤ 4. Wagner (100) proved the

following relaxation for all d:

Theorem 7.2 (Wagner (100)). Let AA be an arrangement of n halfspaces in

Rd. For all 0 ≤ ` ≤ n− d, we have

v≤`(AA) ≤ 2 · v≤`(C∗(n, d)) .

Corollary 7.2. Let S be a set of n points in Rd. For all 0 ≤ k < (n − d)/2,

we have

e≤k(S) ≤ 4 · e≤k(C(n, d)) .

Proof. It is known that e≤k(S) ≤ 2 ·v≤k(ÂA(k)), where ÂA(k) is the arrange-

ment of n halfspaces that maximizes v≤k(ÂA(k)). It is also known (see, e.g.,

Linhart (70)) that values for vk(C∗(n, d)) are equal to the corresponding values

for ek(C(n, d)) as given in Proposition 7.1. The corollary then follows from the

above theorem.

7.4 Lower Bounds for (≤ k)-Facets

In this section we discuss lower bounds for numbers of (≤ k)-facets. We wish

to show that if d is a fixed constant, a set of n points in general position in Rd

cannot yield a random hyperplane split that is perfectly balanced.

148

Lower Bounds for (≤ k)-Facets

Upper Bounds for Halving Facets

A halving facet is defined as a k-facet where k ∈
{
b(n− d)/2c , d(n− d)/2e

}
.

Let e1/2(S) denote the number of halving facets in a set S. The best known

upper bounds for e1/2 are given for d = 2 by Dey (36), for d = 3 by Sharir et

al. (94), for d = 4 by Matoušek et al. (76), and for d ≥ 5 by Alon et al. (6).

An upper bound for e1/2(S) simply provides a lower bound for the proba-

bility that a random hyperplane split is not perfectly balanced. Unfortunately

such a bound is not particularly meaningful — we would prefer upper bounds

for ek(S) for all k close to (n − d)/2. Agarwal et al. (2) show that an upper

bound on the number of halving facets implies an upper bound for ek that is

sensitive to k. Using their method along with the various upper bounds for

halving facets, we obtain the following:

Theorem 7.3 ((2; 36; 94; 76; 6)). For any set S of n points in general position

in Rd we have

ek(S) =


O
(
n(k + 1)1/3

)
, d = 2

O
(
n(k + 1)3/2

)
, d = 3

O
(
n2(k + 1)88/45

)
, d = 4

O
(
nbd/2c(k + 1)dd/2e−(4d−3)−d

)
, d ≥ 5 ,

where the constant in the general d ≥ 5 case depends on d.

Lower Bounds for (≤ k)-Facets

The upper bounds for ek(S) given in Theorem 7.3 are not strong enough to

bound random hyperplane splits away from perfect splits as n → ∞. Even

when d = 2, for which the bounds are strongest, the split distribution could

obey these bounds while the proportion of points on the larger side of a split

is (1/2) +O
(
n−1/3

)
with high probability.

In contrast, the following result, proved by Ábrego and Fernández-Merchant

(1) and Lovász et al. (73) is meaningful in this regard:

149

7. Random Hyperplane Splits

Lemma 7.3. For any set S of n points in general position in R2 and any

k < (n− 2)/2,

e≤k ≥ 3

(
k + 2

2

)
,

and this is tight for k ≤ n/3.

This result was extended to higher dimensions by Aichholzer et al. (5), but

only for certain values of k.

Lemma 7.4. For any set S of n points in general position in Rd, d ≥ 1, and

any k < (n− d)/(d+ 1),

e≤k ≥ (d+ 1)

(
k + d

d

)
,

and this is tight for k < (n− d)/(d+ 1).

In the remainder of this section we extend this result to any k < (n− d)/2.

An Inductive Formulation of Hyperplane Splits

Here we introduce an inductive formulation of random hyperplane splits. In the

statement and proof of Lemma 7.2, along with our discussion of discrete beta

distributions in Section 5.2, we analyzed random hyperplane splits of moment

curve point sets using a formulation that changes naturally as the dimension

increases. We wish to formulate random hyperplane splits of general point sets

similarly.

Let aff(SP) and span(SV) denote, respectively, the affine hull of a set SP

of points and the linear span of a set SV of vectors. For 1 ≤ i ≤ d, let ei

denote the unit vector in Rd with a 1 in the ith coordinate and a 0 in every

other coordinate. Consider a set P = {P1, . . . , Pd} of d points sampled u.a.r.

without replacement from S. For 2 ≤ i ≤ d we use P i to denote the vector
−−−−→
Pi−1Pi.

For this formulation we assume our point set S = {p1, p2, . . . , pn} satisfies

a definition of general position that is stronger than general linear position

(see Definition 7.2). S is in general linear position if and only if any d of the

150

Lower Bounds for (≤ k)-Facets

vectors {−−→pipj : 1 ≤ i ≤ j ≤ n} are linearly independent. Here we assume that

S satisfies the stronger requirement that any d of the vectors in
(
{−−→pipj : 1 ≤

i ≤ j ≤ n} ∪ {ei : 1 ≤ i ≤ d}
)

are linearly independent.

Since S satisfies our strengthened definition of general position, any d of

the 2d − 1 vectors in
(
{P j : 2 ≤ j ≤ i} ∪ {ej : i + 1 ≤ j ≤ d}

)
must be

linearly independent. In particular this means that, for any 1 ≤ i ≤ d, the

affine subspace

Hi =
{
p+ q : p ∈ aff

(
{P1, . . . , Pi}

)
, q ∈ span

(
{ej : i+ 1 ≤ j ≤ d}

) }
= P1 + span

(
{P j : 2 ≤ j ≤ i} ∪ {ej : i+ 1 ≤ j ≤ d}

)
(7.3)

is a hyperplane in Rd sinceHi−P1 is the linear span of d−1 linearly independent

vectors. Hi is the hyperplane containing every point that can be obtained from

a point in aff({P1, . . . , Pi}) by changing the last d − i coordinates. Each Hi

is given a random orientation according to a fair coin flip; this specifies the

open halfspaces H+
i and H−

i . Our final random hyperplane split is defined by

Hd = H.

We define a partition of Rd into three sets related to the symmetric dif-

ference1 (denoted with 4) of H+
i−1 and H+

i . Using t to denote the disjoint

union2 of sets, we have Rd =
(
Wi tW+

i tW−
i

)
. The closed set Wi and the

open sets W+
i and W−

i are defined as

Wi = Hi−1 ∪Hi

W+
i = (H+

i−1 ∩H+
i) ∪ (H−

i−1 ∩H−
i) = (S \Wi) ∩ (H+

i−14H−
i)

W−
i = (H+

i−1 ∩H−
i) ∪ (H+

i−1 ∩H−
i) = (S \Wi) ∩ (H+

i−14H+
i) .

The above definition is only for indices 2 ≤ i ≤ d; for i = 1 we define W1 = H1,

W+
1 = H+

1 , and W−
1 = H−

1 . Note that our strengthened assumption of general

position guarantees that (S ∩Wi) = {P1, . . . , Pi}.

These d partitions define a map from points to sign vectors, i.e., a map

1The symmetric difference of sets A and B is A4B = (A ∪B) \ (A ∩B).
2Here disjoint union simply means the union of sets that are disjoint.

151

7. Random Hyperplane Splits

ψ : Rd → {−1, 0, 1}d with

ψ(p) =
(
ψ1(p), ψ2(p), . . . , ψd(p)

)
: ψi(p) =


1 , p ∈ W+

i

0 , p ∈ Wi

−1 , p ∈ W−
i .

It is not difficult to verify by induction on i that, for a point p ∈ S,

i∏
j=1

ψj(p) =


1 , p ∈ H+

i

0 , p ∈ Hi

−1 , p ∈ H−
i .

In other words, p ∈ (S \ {P1, . . . , Pi}) is in H−
i if and only if p is in an odd

number of the sets {W−
j : 1 ≤ j ≤ i }. This implies the following fact which

we use later in this section:

Observation 7.1.

min
(
|S ∩H−| , |S ∩H+|

)
≤

d∑
i=1

min
(
|S ∩W−

i | , |S ∩W+
i |
)
.

To exploit this fact we must analyze the distribution of |S ∩W−
i |.

Proposition 7.2. |S ∩W−
i | ∼ Uniform({0, . . . , n− i}) .

Proof. This proof is very similar to the analysis of Section 7.1. The definition

of Hi in (7.3) implies that the intersection of Hi−1 and Hi does not depend on

Pi. Rather it is fully specified by P1, . . . , Pi−1 as the (d− 2)-flat given by

Hi−1 ∩Hi = P1 + span
(
{P j : 2 ≤ j ≤ i− 1} ∪ {ej : i+ 1 ≤ j ≤ d}

)
.

On the other hand, Hi certainly does depend on Pi. Given P1, . . . , Pi−1, Hi

must pass through the (d − 2)-dimensional flat Hi−1 ∩Hi but has one degree

of rotational freedom around it. With this degree of freedom we can imagine

Hi rotating repeatedly around its axis, hitting the points in S \ {P1, . . . , Pi−1}
in a fixed cyclic order. In each rotational period, Hi contains a point from

S \ {P1, . . . , Pi−1} at exactly 2(n − (i − 1)) positions. The position of Hi,

152

Lower Bounds for (≤ k)-Facets

determined when Pi is sampled, is distributed uniformly among these 2(n −
(i− 1)) positions.

As Hi rotates while Hi−1 is fixed, S ∩ W−
i changes. The points in S \

{P1, . . . , Pi−1} are added to W−
i in some order, then removed in the same

order. This means that, for each j ∈ {0, . . . , n − i}, exactly 2 of the 2(n −
(i− 1)) positions have |S ∩W−

i | = j. |S ∩W−
i | is therefore distributed like a

Uniform({0, . . . , n− i}) random variable.

An Extended Lower Bound for (≤ k)-Facets

We now use our inductive formulation to generalize the lower bound of Lemma

7.4 to all k ≤
⌊

n−d
2

⌋
. Let Ri denote |S ∩W−

i |. The sequence R = (R1, . . . , Rd)

can be any sequence of natural numbers for which Ri ∈ {0, . . . , n− i}. Let R
be the set of all such sequences and note that there is a bijection ψ mapping a

sequence R ∈ R to an ordered set of d unique indices from {1, . . . , n}. Under

ψ, Ri is mapped to the Ri’th element in {1, . . . , n} \ {R1 + 1, . . . , Ri−1 + 1}.
Note that R bijectively defines a set P = P (R) of d points from S, along

with an ordering on the points in P . Each set of d points, and therefore each

k-facet for 0 ≤ k ≤
⌊

n−d
2

⌋
, corresponds to exactly d! sequences in R that

give the d! different orderings of the points. Define K(R) as the unique value

k ≤ b(n− d)/2c for which the points P (R) define a k-facet. Define M(R) as

M(R) =
d∑

i=1

min
(
Ri , n− d−Ri

)
≥ K(R) ,

where the inequality M(R) ≥ K(R) follows from Observation 7.1.

Theorem 7.4. For a set S of n points in general position in Rd, for any

0 ≤ k ≤
⌊

n−d
2

⌋
we have

e≤k(S) ≥ (d+ 1)

(
k + d

d

)
.

By Aichholzer et al. (5), this is tight for k ≤
⌊

n−d
d+1

⌋
.

153

7. Random Hyperplane Splits

Proof. Define R(k) = {R ∈ R : M(R) = k}. Each R ∈ R(k) corresponds

to a (≤ k)-facet (specifically, a K(R)-facet). Since at most d! sequences can

correspond to the same k-facet, we have

e≤k(S) ≥ 1

d!

∣∣∣∣∣ ⋃
j≤k

R(j)

∣∣∣∣∣ =
1

d!

k∑
j=0

∣∣∣R(j)
∣∣∣ .

To complete the proof it is sufficient to show that |R(k)| = (d + 1)!
(

k+d−1
d−1

)
,

since
1

d!

k∑
j=0

(d+ 1)!

(
j + d− 1

d− 1

)
= (d+ 1)

(
k + d

d

)
.

Each R ∈ R corresponds bijectively to an ordered set of d unique indices

from {1, . . . , n}. These d indices (regardless of their ordering) split the re-

maining n − d indices into d + 1 intervals. The sequence of interval lengths

is a sequence of natural numbers whose sum is n − d. For 0 ≤ k ≤
⌊

n−d
2

⌋
,

R is in R(k) if and only if one of the intervals has length n − d − k and the

other d intervals have a combined length of k. Let L∗(k, d) denote the set of

all such sequences. A length sequence from L∗(k, d), along with a permutation

of length d, corresponds bijectively to a sequence in R(k).

As in the proof of Proposition 7.1, we define L(k, d) as the set of all se-

quences of d natural numbers whose sum is k, noting that |L(k, d)| =
(

k+d−1
d−1

)
.

We can consider a sequence in L∗(k, d) as defined by the position of the large

element (of value n − d − k), along with a sequence from L(k, d) to fill the

remaining d positions. This is a bijection, so we have

∣∣R(k)
∣∣ = d!

∣∣L∗(k, d)∣∣ = d!(d+ 1)
∣∣L(k, d)

∣∣ = (d+ 1)!

(
k + d− 1

d− 1

)
,

completing the proof.

154

Notes

7.5 Notes

Contributions

For the most part, Section 7.1 is from a paper cowritten with Luc Devroye

and Colin McDiarmid (31). The author of this thesis was involved in the

fine-tuning of the proof of Lemma 7.1 but had little to do with the lemma’s

conceptual development. The lemma, equivalent to the SGUBC for d = 2, has

actually been known since it was proved independently by Peck (86) and Alon

and Győry (7) in the 1980s. This was not known to us until after publication.

More generally, k-facets and the problem of counting them were not known

to the author of this thesis until fairly recently. Lemma 7.2, which relates

discrete beta distributions and random hyperplane splits in moment curve

point sets, was obtained by the thesis author before this k-facet revelation.

Luc Devroye and Colin McDiarmid provided guidance. We did not calculate

the actual values given by Proposition 7.1 independently.

Theorem 7.4, which extends the bound given by Aichholzer et al. (5) to

all (meaningful) values of k, is a new result that was obtained independently.

The inductive formulation of hyperplane splits is another novel contribution,

developed by the author of this thesis as a byproduct of attempts to prove the

general upper bound conjectures.

From a wider point of view, a significant contribution of this chapter is that

it sheds new light on old results. For example, the values given by Proposition

7.1 have little intuitive meaning compared to the statement of Lemma 7.2,

which draws the connection between a random hyperplane split and the median

of d uniform random variables. Thus, though the specific values implied by

Lemma 7.2 were already known, the lemma offers a novel interpretation of

them.

Future Directions

The generalized upper bound conjectures (Conjectures 7.1 and 7.2) remain

open problems of great interest. Improving lower bounds for the number of

(≤ k)-facets is another open problem. The lower bounds have not garnered as

155

7. Random Hyperplane Splits

much interest, but improvements seem more accessible. We would also like to

put known lower bounds through the analytical machinery of Devroye (31) to

determine what the bounds would imply for the random trees to be introduced

in the final chapter.

156

Chapter 8

Hyperplane Search Trees

We now apply the analysis of the previous three chapters to two data structures:

random hyperplane search trees and random arrangement trees. Both data struc-

tures are space partition trees that recursively split a data set based on random

hyperplanes. We give new bounds involving the structural distributions of these

trees.

Contents

8.1 Hyperplane Search Trees 158

Related Structures . 160

Membership in Random Tree Models 161

Consequences . 163

8.2 Arrangement Trees . 165

Membership in Random Tree Models 166

8.3 Notes . 170

157

8. Hyperplane Search Trees

8.1 Hyperplane Search Trees

A hyperplane search tree is a binary tree used to store a set S of n d-dimensional

data points. In a random hyperplane search tree for S, the root represents a

hyperplane defined by d data points drawn uniformly at random from S. The

remaining data points are split by the hyperplane, and the definition is used

recursively on each subset. We assume that the data are points in general

position in Rd. We show that uniformly over all such data sets S, the expected

height of the hyperplane tree is not worse than that of the ordinary one-

dimensional random binary search tree (see Model 6.1).

Hyperplane Search Trees A hyperplane search tree is defined as follows.

Given is a set S = {x1, . . . , xn} of points in general position1 in Rd. The root

node is formed by X1, . . . , Xd, obtained by uniform random sampling without

replacement from x1, . . . , xn. The hyperplane through these points is denoted

by H = H(X1, . . . , Xd). It partitions Rd\H into two sets H+ and H−, with

some rule to choose which is which. The n− d remaining data points are split

according to membership in H+ and H−. The subtrees are defined recursively

from there, and are randomly labeled as the left and right subtrees of the

root. A set of cardinality less than d is not split: it occupies a leaf in the tree.

Leaves correspond thus to collections of cardinality between 0 and d− 1. For

d = 1, therefore, all points in S lie in internal nodes and all leaves are empty.

Figure 8.1 shows a hyperplane tree in R2 and the partition of the plane into

disjoint polygons defined by it.

For d ≥ 1 and n ≥ d, define

Sn,d =
{
S : S ⊆ Rd , |S| = n , S is in general position

}
.

For d ≥ 2 and a given set S ∈ Sn,d, let T (S) denote the random hyperplane

search tree based on S. For d = 1, the hyperplane tree depends only on |S|, not

on the elements of S. Thus, it makes sense to drop the set, and simply write

1We assume general linear position according to Definition 7.2.

158

Hyperplane Search Trees

1

2

3

4

5

6

7

9

8
11

10

12

13 16

15

14

17

18

1,2

3,4 5,6

10,12 17 8,11 7,9

18 13,16 14 15

Figure 8.1: (Devroye) The figure shows the partition of the plane induced by
the hyperplane tree. Internal nodes of the tree store two data points each.

T|S| or Tn. With this definition, the structure2 of the usual random binary

search tree on n distinct random keys is the same as that of Tn.

2The structure ignores any labeling of a node’s children, e.g., no distinction is made
between a left child and a right child in a binary tree.

159

8. Hyperplane Search Trees

Related Structures

Application areas of multidimensional search trees include graphics, compu-

tational geometry, pattern recognition, and tree classification. The k-d tree

(Bentley (13)), obtained by letting data points define splits that are perpen-

dicular to one of the axes, creates a structure that is exactly distributed like the

ordinary one-dimensional binary search tree if split points are picked randomly

from the data (see Section 6.1). The properties are independent of the under-

lying distribution. Quadtrees (Samet (91)) are also based on the premise that

one data point defines a split. However, the tree is 2d-ary, as each quadrant

defined by the data point corresponds to a subset of the tree. The properties

of these trees depend heavily on the distribution. For the uniform density on

the unit hypercube, it is known that the height Hn satisfies

Hn

lnn
→ α

d

almost surely, where α = 4.311 . . . is as for the one-dimensional binary search

tree (Devroye (28)). For additional analysis, see Flajolet, Gonnet, Puech and

Robson (48) or Devroye and Laforest (33). Hyperplane search trees have a

formidable property: their shapes are invariant under rotations and indeed

under linear transformations in general. Rotations do alter the form of k-d

trees or quadtrees, for example. This may be important in statistical appli-

cations where often one applies an appropriate linear transformation to the

data to make them more manageable. Furthermore, queries such as point lo-

cation (see Mehlhorn (78), for definitions) can be performed in O(log n) time

on the average. Unfortunately, while insertion is rather simple, and deletion

in O(log n) expected amortized time is achievable via lazy delete (see Cormen,

Leiserson and Rivest (22) for definitions), ordinary deletion in O(log n) ex-

pected time may take some extra care. Nevertheless, this too can be handled

in logarithmic expected time per operation. If a constraint check (to see on

which side of a hyperplane a point falls) is performed in one unit of time, then

Theorem 8.1 and Corollary 8.2 show that hyperplane trees are more interest-

ing than ordinary k-d trees. This would no longer be true if constraint checks

160

Hyperplane Search Trees

would cost d time units. Under a suitable vector calculus model, hyperplane

trees may thus lead to improved search times, as both the quadtree and the

k-d tree are based on coordinate-wise comparisons.

Trees that recursively decompose a space using hyperplanes are common

in computer science. Tree classifiers based on hyperplane splitting have been

widely used and analyzed because of their importance in pattern recognition.

Closely related are BSP trees (binary space partition trees) used in graphics

applications. See §20 of Devroye et al. (32) for a partial survey.

In computational geometry such trees are ubiquitous. See for example the

survey of Edelsbrunner and Van Leeuwen (40), or the work of Haussler and

Welzl (54) on half-space and simplex range queries. One may also consult

Overmars and Van Leeuwen (85), Willard (103) or Mulmuley (80).

The partition trees obtained by Haussler and Welzl (54) generalize hyper-

plane trees very nicely. Instead of taking d points at random to partition a

convex set into two parts, one selects k > d points at random and considers the

partition defined by all
(

k
d

)
hyperplanes defined by subsets of size d from the k

points. The sets in the partition are further partitioned in the same manner.

The expected height and average depth of such trees appears not to have been

studied to date; in Section 8.2 we perform analysis that relates these trees to

random b-ary search trees (see Section 6.1).

Membership in Random Tree Models

In order to best apply the analysis of Chapter 7, we must determine how

random hyperplane search trees fit into the random tree models from Chapter

6.

Proposition 8.1. For a set S of n distinct points on the moment curve in

Rd, the random hyperplane search tree T (S) belongs to the standard random

split tree model (Model 6.2) with parameters (b, s0, s1, s) = (2, d, 0, d − 1) and

prototype split vector V = (X, 1−X) with X ∼ beta
(⌊

d+1
2

⌋
,
⌊

d+1
2

⌋)
.

Proof. We focus on the distribution of the number of points falling on one side

of a random hyperplane split, from which the proposition can be verified in

161

8. Hyperplane Search Trees

a straightforward manner. All sets of n points on the moment curve in Rd

are combinatorially equivalent with regard to random arrangement splits. We

therefore only concern ourselves with the ranks of the points in S as sorted by

first coordinate3. The distribution of V follows from Lemma 7.2 our analysis

of discrete beta distributions in Section 5.2. Specifically, Lemma 7.2 and Ob-

servation 5.4 together tell us that the number of points in one open halfspace

of a random splitting hyperplane H in S (the halfspace is chosen with a fair

coin flip) is distributed like

Bin
(
n− d , beta

(⌊
d+1
2

⌋
,
⌊

d+1
2

⌋))
,

as required.

Proposition 8.2. For each set S ∈ Sn,d, the random hyperplane search tree

T (S) belongs to the split-bounded tree model (Model 6.4) with parameters

(b, s0, s1, s) = (2, d, 0, d − 1) and bounding split vector V = (U, 1 − U) with

U ∼ U(0, 1).

Proof. The split vector V = (U, 1 − U) defines a uniform binary split. By

Corollary 7.1 we know that such a split dominates any random hyperplane

split. The rest of the proof is straightforward.

Proposition 8.3. For S ∈ Sn,d, d ≤ 3, the random hyperplane search tree

T (S) belongs to the split-bounded tree model (Model 6.4) with parameters

(b, s0, s1, s) = (2, d, 0, d − 1) and bounding split vector V = (X, 1 − X) with

X ∼ beta
(⌊

d+1
2

⌋
,
⌊

d+1
2

⌋)
.

Proof. For d ≤ 2 this is implied by the previous proposition, so we consider the

case d = 3. The split vector V = (X, 1 −X) with X ∼ beta
(⌊

d+1
2

⌋
,
⌊

d+1
2

⌋)
defines a random hyperplane split for the set C(n, d). Theorem 7.1 implies

that a random hyperplane split in S is stochastically dominated by a random

hyperplane split in C(n, d). The rest of the proof is straightforward.

The SGUBC would imply that the above proposition also holds for d ≥ 4.

We can use Wagner’s relaxation to bound the behaviour of random hyperplane

3The first coordinate of a point γ(x) is simply x.

162

Hyperplane Search Trees

search trees. We define an appropriate split vector V = (W, 1 − W) with

W ∗ = min{W, 1−W} distributed on [0, 1/2] according to its c.d.f.

P{W ∗ ≤ x} = min
{
1, 4 · P

{
1
2
−
∣∣1
2
− beta

(⌊
d+1
2

⌋
,
⌊

d+1
2

⌋)∣∣ ≤ x
}}

= min
{
1, 8 · P

{
beta

(⌊
d+1
2

⌋
,
⌊

d+1
2

⌋)
≤ x

}}
= min

{
1, 8 · Ix

(⌊
d+1
2

⌋
,
⌊

d+1
2

⌋)}
,

where Ix is the regularized incomplete beta function. As Ix(
⌊

d+1
2

⌋
,
⌊

d+1
2

⌋
)

becomes more tightly concentrated around 1/2 as d→∞, so too does W .

Proposition 8.4. For S ∈ Sn,d, d ≥ 4, the random hyperplane search tree

T (S) belongs to the split-bounded tree model (Model 6.4) with parameters

(b, s0, s1, s) = (2, d, 0, d− 1) and bounding split vector V = (W, 1−W), where

W is as defined above.

Proof. This follows from Corollary 7.2 and the definition of W .

Consequences

For a point set S ∈ Sn,d, our results compare the trees T (S) and Tn, where

T (S) denotes the random hyperplane search tree on S. The respective heights

of the trees are denoted H(S) and Hn. The depth of an element (not a node)

sampled u.a.r. from T (S) (respectively Tn) is denoted D(S) (respectively Dn).

Theorem 8.1. For each set S ∈ Sn,d, we have D(S) ≤s Dn.

Proof. This follows from Lemma 6.2 and Proposition 8.2.

There are similar results for other measures to compare the trees T (S) and

Tn that follow trivially from this result. For one example, we consider the ipl

(internal path length) of a tree, defined as the sum of the depths of all points

(not nodes) stored in the tree.

Corollary 8.1. supS∈Sn,d
E{ipl(T (S))} ≤ E{ipl(Tn)} .

We also have an ordering on the moments:

163

8. Hyperplane Search Trees

Corollary 8.2. For all r > 0,

sup
S∈Sn,d

E{(D(S))r} ≤ E{(Dn)r} ,

and

sup
S∈Sn,d

E
{
erD(S)

}
≤ E

{
erDn

}
.

For c ≥ 2 let η(c) = 1− c ln 2e
c
. Let α = 4.31107 . . . be the unique solution

at least 2 to η(c) = 0.

Corollary 8.3. Let c > α. Then η(c) > 0 and for each set S ∈ Sn,d, d ≥ 2

and n ≥ d, we have

sup
S∈Sn,d

P{H(S) ≥ c lnn} ≤ n−η(c).

Proof. The proof of Theorem 6.2, which gives the analogous result for Hn, uses

a union bound involving Dn. The bound on H(S) follows by replacing Dn with

D(S) in that proof.

The next theorem involves random median-of-3 trees. These are split trees,

storing a fully ordered set of elements, that generalize random binary search

trees. A split in a random median-of-3 tree chooses 3 elements u.a.r. and

splits the remaining points based on the median of the 3 selected points. The

prototype split vector is V = (X, 1 − X) with X ∼ beta(2, 2). Analytical

results and historical context are given by Devroye (31).

Theorem 8.2. Let Dn,3 denote the depth of an element sampled u.a.r. from

a random median-of-3 tree storing n elements. For each set S of n points in

general position in R3, we have D(S) ≤s Dn,3 .

Proof. This follows from Lemma 6.2 and Proposition 8.3.

Poblete and Munro (87) showed that limn→∞Dn,3/ lnn = 12/7, and Devroye

(30) showed that limn→∞Hn,3/ lnn ≈ 3.192570

164

Arrangement Trees

8.2 Arrangement Trees

We have investigated the properties of random hyperplane search trees, in

which a point set in Rd is split into two subsets by a single hyperplane defined

by d of the points chosen uniformly at random. One way to generalize this

splitting process is to choose k points at random from the set for some k ≥ d.

Each d-tuple of these points defines a hyperplane, so the k points generate an

arrangement of
(

k
d

)
hyperplanes. Though we mention some basic facts about

hyperplane arrangements, we direct the interested reader to Stanley’s in-depth

treatment (95).

An arrangement A of hyperplanes defines a number of regions, i.e., con-

nected components of Rd−
⋃

H∈AH. We want a simple bound on the number

of regions, denoted r(A). We restate the definition of Φd(m), first introduced

in Definition 2.8 in the context of range spaces.

Φd(m) =


∑d

i=0

(
m
i

)
, m ≥ d

2m , m ≤ d .

It is a classical result of Schläfli (93) that an arrangement of m hyperplanes

splits the space into no more than Φd(m) regions; this upper bound is tight

if and only if the hyperplanes are in general position. For our purposes, the

hyperplanes are in general position if and only if k = d or k = d+1. However,

the upper bound of Φd

((
k
d

))
always holds.

A random arrangement tree is a random tree that defines a recursive decom-

position of Rd. At each node, the splitting is done according to the hyperplane

arrangement defined by k ≥ d points sampled u.a.r. without replacement. The

k points are stored in the tree node and the remaining points are sent to the

appropriate subtrees corresponding to the new regions of the decomposition.

When k = d this is the same as a random hyperplane search tree.

Random arrangement trees are not new. To our knowledge they were first

described by Haussler and Welzl (54), who used them to perform efficient

halfspace queries.

165

8. Hyperplane Search Trees

Membership in Random Tree Models

We prove two results for random arrangement trees. Here we let T (S) denote

the random arrangement tree with parameter k ≥ d+ 1 for a point set S. For

consistency with the random split tree model we define T ′(S) to be a pruned

version of T (S) obtained by removing empty leaf nodes so that each internal

node has at least k children, and no internal node with more than k children

has an empty leaf as a child.

Proposition 8.5. For a set S of n distinct points on the moment curve in Rd,

the random arrangement tree T ′(S) belongs to the standard random split tree

model (Model 6.2) with parameters (b, s0, s1, s) = (k∗, k, 0, k−1) and prototype

split vector V which is a uniform k∗-ary split vector. Here k∗ is equal to k if d

is even and k + 1 if d is odd. V ∼ Dir(1), where 1 is the ones vector of length

k∗.

Proof. A random arrangement split is generated by k points X1, . . . , Xk chosen

u.a.r. from S. The remaining points are partitioned according to the regions

defined by the arrangement

A =
{
HA = aff(A) : A ⊂ {X1, . . . , Xk} , |A| = d

}
.

All sets of n points on the moment curve in Rd are combinatorially equivalent

with regard to random arrangement splits. We can therefore assume w.l.o.g.

that S = {γ(Ui) : 1 ≤ i ≤ n} for i.i.d. (0, 1) uniforms U1, . . . , Un. We can also

assume w.l.o.g. that, for 1 ≤ i ≤ k, Xi = γ(Ui).

We extend our analysis from the proof of Lemma 7.2. The values U1, . . . , Uk

cut the interval (0, 1) into k + 1 subintervals I0, . . . , Ik; the moment curve γ

is cut into corresponding intervals γi = {γ(x) : x ∈ Ii}. No hyperplane in

A can separate two points in the same interval of γ. A hyperplane HA ∈ A
separates intervals γi and γj if and only if A contains an odd number of points

between them. For γ0 and γk, all d points from A must fall between them, so

they are separated by HA if and only if d is odd. For any other pair γi and

γj, i < j < i + d, some HA ∈ A separates γi and γj. This follows from the

existence of an odd integer a such that a ≤ j − i and d− a ≤ k − (j − i).

166

Arrangement Trees

Thus, if d is odd, each of the intervals is contained in a different region of

Rd−A. If d is even, the same is true except for γ0 and γk which are contained

in the same region. We define subsets J0, . . . , Jk∗−1 of (0, 1), where J0 = I0∩Ik
if d is even, and Ji = Ii if i ≥ 1 or d is odd. There are k∗ regions of Rd−A that

can potentially contain points. We use R0, . . . , Rk∗−1 to denote the potentially

non-empty regions of Rd −A, where

Ri ∩ {γ(x) : x ∈ (0, 1)} = {γ(x) : x ∈ Ji} .

Let J denote the random vector
(
|J1|, . . . , |Jk∗−1|

)
. When d is odd it is

plain to see that J ∼ Dir(1) since J is generated by cutting the (0, 1) interval

at points given by i.i.d. uniforms U1, . . . , Uk. We also have J ∼ Dir(1) when

d is even. To see this we consider the unit circle instead of the line segment

(0, 1). If we cut this circle at k points chosen u.a.r. and i.i.d., we get k∗ = k

intervals whose lengths are jointly distributed like Dir(1). But J is distributed

identically since the points at which we cut the circle map naturally4 to i.i.d.

uniforms U1, . . . , Uk.

To complete the proof we need only point out that J acts as a split vec-

tor; the n − k remaining points fall in R0, . . . , Rk∗−1 with frequencies jointly

distributed like Mult(J).

The feasible case of the SGUBC (Conjecture 7.1) would imply that, for

d ≥ 1, vertex sets of neighbourly polytopes yield random hyperplane splits

that, stochastically speaking, are the most imbalanced. This extends naturally

to random arrangement splits.

Conjecture 8.1. For S ∈ Sn,d, d ≥ 2, the random arrangement tree T (S)

belongs to the split-bounded model (Model 6.4) with parameters (b, s0, s1, s) =

(Φd

((
k
d

))
, k, 0, k − 1) and prototype split vector V which is a uniform k∗-ary

split vector. Here k∗ is equal to k if d is even and k + 1 if d is odd.

We prove a variation that is equivalent for d = 2 but strictly weaker for d ≥ 3.

If the above conjecture is true, our analysis essentially wastes d − 2 splitting

points.

4Simply map a point (sin θ, cos θ) 6= (1, 0) on the circle to the point θ
2π −

⌊
θ
2π

⌋
in (0, 1).

167

8. Hyperplane Search Trees

Proposition 8.6. For S ∈ Sn,d, d ≥ 2, the random arrangement tree T (S)

belongs to the split-bounded model (Model 6.4) with parameters (b, s0, s1, s) =

(Φd

((
k
d

))
, k, 0, k−1) and prototype split vector V which is a uniform (k−d+2)-

ary split vector.

Proof. This proposition is true if a split at the root of a random (k − d + 2)-

ary tree dominates a random arrangement split; this domination follows from

Lemma 8.1.

Fan Splits We define a random fan split of a point set S ⊂ Rd as fol-

lows. Let X1, . . . , Xk be k points chosen u.a.r. from S. We first split Rd

with the hyperplane aff({X1, . . . , Xd}). Then, for i = d + 1 . . . k, we split the

region containing Xi (and only that region) with the hyperplane defined by

aff({X1, . . . , Xi}). Thus we split Rd into k−d+2 regions using one hyperplane

and k − d half-hyperplanes.

We prove that a random fan split is dominated by a random (k − d + 2)-

ary split. This implies that a random arrangement split of is dominated by a

random (k − d + 2)-ary split since a random arrangment split is obtained by

subdividing regions created by a fan split.

Lemma 8.1. For any S ∈ Sn,d a random fan split of S based on k points is

dominated by a random (k − d+ 2)-ary split of n elements.

Proof. Consider the sizes of the subsets defined by the two random splits.

Let {NF
i : 1 ≤ i ≤ k − d + 2} be the subset sizes for the fan split and let

{Ni : 1 ≤ i ≤ k − d + 2} be the subset sizes for the (k − d + 2)-ary split. To

prove the lemma we must show that, for any function ψ that is non-negative,

non-decreasing, and non-concave,

E

{
k−d+2∑

i=1

ψ(NF
i)

}
≤ E

{
k−d+2∑

i=1

ψ(Ni)

}
. (8.1)

Let N̂∗
1 and N̂∗

2 be the respective numbers of points on either side of the

hyperplane aff({X1, . . . , Xd}) from the fan split. Let N̂1 and N̂2 be the subset

sizes obtained from a uniform split, i.e., uniform on the integers 0 . . . n − 1

168

Arrangement Trees

with the additional constraint that N̂1 + N̂2 = n− 1. By Corollary 7.1 and the

definition of vector domination, we know that

E
{
f(N̂∗

1) + f(N̂∗
2)
}
≤ E

{
f(N̂1) + f(N̂2)

}
for any function f that is non-negative, non-decreasing, and non-concave. We

define a function that exploits this fact.

At this point we note that in a fan split the uniform cuts are independent

of the point set — only the hyperplane cut depends on the point set. It is

therefore reasonable to aim to express E
{∑k−d+2

i=1 ψ(Ni)
}

as a function of N̂1

and N̂2 and express E
{∑k−d+2

i=1 ψ(N∗
i)
}

as a function of N̂∗
1 and N̂∗

2 . For i ≥ 0

and integers m ≥ x ≥ 0 we define f(i)(m,x) with the goal that it satisfies the

following identities:

E

{
k−d+2∑

i=1

ψ(Ni)

}
= E

{
f(k−d)(n− 1, N̂1) + f(k−d)(n− 1, N̂2)

}
and

E

{
k−d+2∑

i=1

ψ(N∗
i)

}
= E

{
f(k−d)(n− d+ 1, N̂∗

1) + f(k−d)(n− d+ 1, N̂∗
2)
}
.

If we define f(i)(m,x) = 0 for m < x it can be verified by induction on k that

these identities are satisfied by the following inductive definition of f(i)(m,x):

f(0)(m,x) = ψ(x) ,

f(i+1)(m,x) =

(
m− x

m− 1

)
f(i)(m− 1, x) +

(
2

m− 1

) x−1∑
j=0

f(i)(m− 1, j) .

(8.2)

Thus (8.1) holds if f(k−2)(m,x) is non-negative, non-decreasing, and non-

concave in x for fixed m. This is clearly the case for f(0)(m,x) = ψ(x). It

remains to extend this to f(i)(m,x) for i ≥ 1.

Though f(i)(m,x) is bivariate and is only defined for integers m and x,

we abuse notation by defining f ′(i)(m,x) = f(i)(m,x + 1) − f(i)(m,x) and

f ′′(i)(m,x) = f ′(i)(m,x + 1) − f ′(i)(m,x). We prove that f(i)(m,x), f
′
(i)(m,x),

and f ′′(i)(m,x) are all non-negative for m ≥ x and i ≥ 0. We assume this is

169

8. Hyperplane Search Trees

true for all indices up to and including i and prove it for i+ 1.

We have

f ′(i+1)(m,x) =
(

m−x−1
m−1

)
f(i)(m− 1, x+ 1)−

(
m−x
m−1

)
f(i)(m− 1, x)

+
(

2
m−1

)∑x
j=0 f(i)(m− 1, j)−

(
2

m−1

)∑x−1
j=0 f(i)(m− 1, j)

=
(

m−x−1
m−1

)
f ′(i)(m− 1, x) +

(
1

m−1

)
f(i)(m− 1, x) ,

which is non-negative by our induction hypothesis.

f ′′(i+1)(m,x) =
(

m−x−2
m−1

)
f ′(i)(m− 1, x+ 1)−

(
m−x−1

m−1

)
f ′(i)(m− 1, x)

+
(

f(i)(m−1,x+1)

m−1

)
−
(

f(i)(m−1,x)

m−1

)
=

(
m−x−2

m−1

)
f ′′(i)(m− 1, x) ,

which is non-negative by our induction hypothesis. This completes the proof.

8.3 Notes

Contributions

Random hyperplane search trees were the starting point for the branch of

research upon which the second part of this thesis is based. The joint paper

with Luc Devroye and Colin McDiarmid (31) did not consider membership in

random tree models, but did include Theorem 8.1 and its corollaries. Theorem

8.2 is a novel contribution obtained with guidance from Luc Devroye. The

generalization of random hyperplane search trees to random arrangement trees

was undertaken independently. All results from Proposition 8.5 onwards are

novel results.

Future Directions

As d → ∞, random hyperplane splits converge in law to perfectly balanced

splits. We have made this statement here informally and without proof, but it

170

Notes

is an important point that deserves more rigorous treatment, including analysis

of the rate of convergence. This is the subject of a joint paper with Luc

Devroye, currently in preparation.

A problem of less importance is finding a tight upper bound for the branch-

ing factor in an arrangement tree. This is a function of k and d; Φd(
(

k
d

)
) is

an upper bound, but it is only tight for k ≤ d+ 1. For higher values of k the

arrangement of hyperplanes is not in general position. Thus far, we have not

found an expression for r(A) that is even remotely elegant, and we have not

found any expression that works for general k and d.

171

Chapter 9

Conclusion and Summary

9.1 Thesis Contributions

At the end of each chapter we have summarized the novel contributions. Here

we reiterate the most significant progress put forward in this thesis.

Part I Our research on guarding problems has resulted in two significant

contributions: one for terrains and one for polygons. For guarding terrains,

in joint work with Erik Krohn we have proved that the decision problem is

strongly NP-complete. This resolves a problem of significant interest that

was open for the past 15 years. This result is given in Section 3.3. For the

problem of guarding polygons, in joint work with David Kirkpatrick we have

developed a new polynomial-time approximation algorithm for guarding sim-

ple polygons with guards on the perimeter. The approximation guarantee

is O(log log opt). This is the first algorithm for guarding polygons to beat

the O(log opt) guarantee obtained from general methods for range spaces of

bounded VC-dimension. Our algorithm is given in Section 4.2.

Part II Our research on random hyperplane splits and random geometric

trees has led to new bounds for the structural distributions of several ran-

dom trees. These new bounds, obtained for random hyperplane search trees

and random arrangement trees in joint work with Luc Devroye and Colin Mc-

Diarmid, are given in Chapter 8. Most of these bounds are a consequence of

domination results comparing the depths of average elements in a range of ran-

dom trees. In addition to these bounds, Part II describes a useful connection

between random hyperplane splits, or equivalently the problem of counting k-

facets, and well-known distributions generated from uniform random variables.

173

9. Conclusion and Summary

For example, random hyperplane splits for a certain family of d-dimensional

point sets (the vertices of cyclic polytopes) are distributed like splits based on

the median of d uniforms. This sheds new light on the problem of counting k-

facets and may help resolve a major conjecture that these splits are as uneven

as random hyperplane splits can get.

Some of the results herein have already been published or submitted for

publication. These include VC-dimension bounds for terrain guarding (sole

author, 2008 (61)), NP-hardness of terrain guarding (with Erik Krohn, 2010

(63)), an improved approximation algorithm for guarding polygons from the

perimeter (with David Kirkpatrick, 2010 (62)), and analysis of random hyper-

plane search trees (with Luc Devroye and Colin McDiarmid, 2009 (35)).

With the exception of Figure 8.1, all figures are original and were created

independently by the author. Figure 8.1 was created by Luc Devroye.

9.2 Future Directions

Along with the novel contributions, we note open problems and future research

directions at the end of each chapter. For guarding polygons, approximation

algorithms still do not match inapproximability bounds. This is perhaps the

clearest direction for future work on guarding problems. Our work connecting

k-facets and natural probability distributions leaves unresolved issues that are

more exciting. The distributions of random hyperplane splits become more

tightly concentrated around perfect splits as d increases. This blessing of

dimensionality is somewhat surprising. With Luc Devroye we are currently

giving the issue the rigorous treatment that did not make its way into this

thesis. Lower bounds for (≤ k)-facets are another area that we are working to

improve.

174

Bibliography

[1] B. Ábrego and S. Fernández-Merchant. A lower bound for the rectilinear

crossing number. Graphs and Combinatorics, 21(3):293–300, 2005.

[2] P. Agarwal, B. Aronov, T. Chan, and M. Sharir. On Levels in Arrangements

of Lines, Segments, Planes, and Triangles. Discrete and Computational Ge-

ometry, 19(3):315–331, 1998.

[3] A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and

Algorithmic Aspects. PhD thesis, The Johns Hopkins University, 1984.

[4] O. Aichholzer and F. Aurenhammer. Straight skeletons for general polygonal

figures in the plane. In Computing and Combinatorics, pages 117–126, 1996.

[5] O. Aichholzer, J. Garćıa, D. Orden, and P. Ramos. New results on lower

bounds for the number of (≤ k)-facets. European Journal of Combinatorics,

30(7):1568–1574, 2009.

[6] N. Alon, I. Bárány, Z. Füredi, and D. Kleitman. Point selections and weak

ε-nets for convex hulls. Combinatorics, Probability and Computing, 1(03):189–

200, 1992.

[7] N. Alon and E. Győri. The number of small semispaces of a finite set of points

in the plane. Journal of Combinatorial Theory, Series A, 41(1):154–157, 1986.

[8] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for

k-restrictions. ACM Transactions on Algorithms (TALG), 2(2):177, 2006.

[9] N. Alon. A non-linear lower bound for planar epsilon-nets. In Proceedings

of the 51st Annual IEEE Symposium on Foundations of Computer Science.

IEEE Computer Society, 2010. To Appear.

[10] A. Andrzejak and E. Welzl. In between k-sets, j-facets, and i-faces: (i, j)-

partitions. Discrete and Computational geometry, 29(1):105–131, 2003.

175

Bibliography

[11] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles

and boxes. In Proceedings of the 41st annual ACM Symposium on Theory of

Computing, pages 639–648. ACM, 2009.

[12] B. Ben-Moshe, M. Katz, and J. Mitchell. A constant-factor approximation

algorithm for optimal 1.5D terrain guarding. SIAM Journal on Computing,

36(6):1631–1647, 2007.

[13] J. L. Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18:509–517, 1975.

[14] C. Berge. Balanced matrices. Mathematical Programming, 2(1):19–31, 1972.

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability

and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965,

1989.

[16] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple

polygons. Computational Geometry: Theory and Applications, 23(3):313–335,

2002.

[17] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-

dimension. Discrete and Computational Geometry, 14(1):463–479, 1995.

[18] T. Chan and S. Har-Peled. Approximation algorithms for maximum indepen-

dent set of pseudo-disks. In Proceedings of the 25th annual Symposium on

Computational Geometry, pages 333–340. ACM, 2009.

[19] P. Chanzy, L. Devroye, and C. Zamora-Cura. Analysis of range search for

random k-d trees. Acta Informatica, 37(4):355–383, 2001.

[20] D. Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal guarding of polygons

and monotone chains. In Proceedings of the 17th Canadian Conference on

Computational Geometry, pages 133–138, 1995.

[21] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of

Operations Research, 4(3):233–235, 1979.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, Boston, MA., 1990.

176

[23] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag New York Inc, 2008.

[24] A. Deshpande, T. Kim, E. Demaine, and S. Sarma. A pseudopolynomial time

O(log n)-approximation algorithm for art gallery problems. Lecture Notes in

Computer Science, 4619:163–174, 2007.

[25] L. Devroye. Bounds for the uniform deviation of empirical measures. Journal

of Multivariate Analysis, 12(1):72–79, 1982.

[26] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New

York, 1986.

[27] L. Devroye. A note on the height of binary search trees. Journal of the ACM,

33:489–498, 1986.

[28] L. Devroye. Branching processes in the analysis of the heights of trees. Acta

Informatica, 24:277–298, 1987.

[29] L. Devroye. Applications of the theory of records in the study of random trees.

Acta Informatica, 26:123–130, 1988.

[30] L. Devroye. On the expected height of fringe-balanced trees. Acta Informatica,

30(5):459–466, 1993.

[31] L. Devroye. Universal limit laws for depths in random trees. SIAM Journal

on Computing, 28:409–432, 1999.

[32] L. Devroye, L. Györi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-

nition. Springer Verlag, New York, 1996.

[33] L. Devroye and L. Laforest. An analysis of random d-dimensional quadtrees.

SIAM Journal on Computing, 19:821–832, 1990.

[34] L. Devroye. On the height of random m-ary search trees. Random Struct.

Algorithms, 1(2):191–204, 1990.

[35] L. Devroye, J. King, and C. McDiarmid. Random hyperplane search trees.

SIAM Journal on Computing, 38(6):2411–2425, 2009.

177

Bibliography

[36] T. Dey. Improved bounds for planar k-sets and related problems. Discrete

and Computational Geometry, 19(3):373–382, 1998.

[37] M. Dom, M. Fellows, and F. Rosamond. Parameterized complexity of stabbing

rectangles and squares in the plane. In Proceedings of the 3rd International

Workshop on Algorithms and Computation, pages 298–309. Springer-Verlag,

2009.

[38] R. Downey and M. Fellows. Parameterized Complexity. Springer New York,

1999.

[39] J. Eckhoff. Helly, Radon, and Carathéodory type theorems. Handbook of

Convex Geometry, pages 389–448, 1993.

[40] H. Edelsbrunner and J. van Leeuwen. Multidimensional data structures and

algorithms: a bibliography. Technical report, Technische Universität Graz,

1983.

[41] A. Efrat and S. Har-Peled. Guarding galleries and terrains. Information

Processing Letters, 100(6):238–245, 2006.

[42] S. Eidenbenz. Inapproximability results for guarding polygons without holes.

Lecture Notes in Computer Science, 1533:427–436, 1998.

[43] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for

guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[44] K. Elbassioni, E. Krohn, D. Matijević, J. Mestre, and D. Ševerdija. Improved

approximations for guarding 1.5-dimensional terrains. Algorithmica, pages 1–

13, 2009. 10.1007/s00453-009-9358-4.

[45] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is

small. Information Processing Letters, 95(2):358–362, 2005.

[46] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,

45(4):634–652, 1998.

[47] M. R. Fellows. Personal communication, 2010.

178

[48] P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson. The analysis of mul-

tidimensional searching in quad-trees. In Proceedings of the Second Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 100–109, Philadelphia,

1991.

[49] G. Frederickson. Fast algorithms for shortest paths in planar graphs, with

applications. SIAM Journal on Computing, 16(6):1004–1022, 1987.

[50] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., New York, 1979.

[51] S. Ghosh. Approximation algorithms for art gallery problems. In Proceedings of

the Canadian Information Processing Society Congress, pages 429–434, 1987.

[52] S. K. Ghosh. Approximation algorithms for art gallery problems in polygons.

Discrete Applied Mathematics, 158(6):718 – 722, 2010.

[53] M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan. An Approximation

Scheme for Terrain Guarding. In Proceedings of the 12th International Work-

shop and 13th International Workshop on Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques, pages 140–148.

Springer, 2009.

[54] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete and

Computational Geometry, 2:127–151, 1987.

[55] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch. Totally-balanced and

greedy matrices. SIAM Journal on Algebraic and Discrete Methods, 6:721,

1985.

[56] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM,

21(4):549–568, 1974.

[57] D. Johnson. Approximation algorithms for combinatorial problems. Journal

of Computer and System Sciences, 9(3):256–278, 1974.

[58] G. Kalai and J. Matoušek. Guarding galleries where every point sees a large

area. Israel Journal of Math, 101(1):125–139, 1997.

179

Bibliography

[59] R. Karp. Reducibility among combinatorial problems. Complexity of Com-

puter Computations: Proceedings, page 85, 1972.

[60] J. King. A 4-approximation algorithm for guarding 1.5-dimensional terrains.

Lecture Notes in Computer Science, 3887:629–640, 2006.

[61] J. King. VC-dimension of visibility on terrains. In Proceedings of the 20th

Canadian Conference on Computational Geometry, pages 27–30, 2008.

[62] J. King and D. Kirkpatrick. Improved approximation for guarding simple

galleries from the perimeter. Submitted.

[63] J. King and E. Krohn. Terrain guarding is NP-hard. In Proceedings of

the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1580–1593, 2010.

[64] D. Kirkpatrick. Guarding galleries with no nooks. In Proceedings of the 12th

Canadian Conference on Computational Geometry, pages 43–46, 2000.

[65] D. E. Knuth and A. Raghunathan. The problem of compatible representatives.

SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

[66] J. Komlós, J. Pach, and G. Woeginger. Almost tight bounds for ε-Nets. Dis-

crete and Computational Geometry, 7(1):163–173, 1992.

[67] D. Lee and A. Lin. Computational complexity of art gallery problems. IEEE

Transactions on Information Theory, 32(2):276–282, 1986.

[68] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,

11(2):329–343, 1982.

[69] T. Lindvall. Lectures on the Coupling Method. Dover Publications, New York,

2002.

[70] J. Linhart. The Upper Bound Conjecture for arrangements of halfspaces.

Contributions to Algebra and Geometry, 35(1):29–35, 1994.

[71] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177–189, 1979.

180

[72] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete

Mathematics, 13(4):383–390, 1975.

[73] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl. Convex Quadrilaterals

and k-Sets. Towards a Theory of Geometric Graphs, 342:139, 2004.

[74] H. Mahmoud and B. Pittel. On the most probable shape of a search tree

grown from a random permutation. SIAM Journal on Algebraic and Discrete

Methods, 5(1):69–81, 1984.

[75] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its

Applications. Academic Press, New York, 1979.

[76] J. Matoušek, M. Sharir, S. Smorodinsky, and U. Wagner. On k-sets in four

dimensions. Discrete and Computational Geometry, 35(2):177–191, 2006.

[77] J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: Small

ε-nets for disks and halfspaces. In Proceedings of the 6th Annual Symposium

on Computational Geometry, pages 16–22. ACM, 1990.

[78] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching

and Computational Geometry. Springer-Verlag, Berlin, 1984.

[79] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and

Tarjan planarity testing algorithm. Algorithmica, 16(2):233–242, 1996.

[80] K. Mulmuley. Randomized multidimensional search trees: dynamic sampling.

In Proceedings of the 7th Annual Symposium on Computational Geometry,

pages 121–131, North Conway, 1991.

[81] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. Journal

of the ACM, 55(2):1–29, 2008.

[82] N. Mustafa and S. Ray. PTAS for geometric hitting set problems via local

search. In Proceedings of the 25th Annual Symposium on Computational Ge-

ometry, pages 17–22. ACM, 2009.

[83] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,

1987. http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/

art.html.

181

http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/art.html
http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/art.html

Bibliography

[84] J. O’Rourke and K. J. Supowit. Some NP-hard polygon decomposition prob-

lems. IEEE Transactions on Information Theory, 29(2):181–189, 1983.

[85] M. H. Overmars and J. van Leeuwen. Dynamic multidimensional data struc-

tures based on quad- and k-d trees. Acta Informatica, 17:265–287, 1982.

[86] G. Peck. On k-sets in the plane. Discrete Mathematics, 56(1):73–74, 1985.

[87] P. Poblete and J. Munro. The analysis of a fringe heuristic for binary search

trees. Journal of Algorithms, 6(3):336–350, 1985.

[88] R. Raz and S. Safra. A sub-constant error-probability low-degree-test and a

sub-constant error-probability PCP characterization of NP. In Proceedings of

the 29th ACM Symposium on Theory of Computing, pages 475–484, 1997.

[89] B. Reed. The height of a random binary search tree. Journal of the ACM,

50:306–332, 2003.

[90] J. M. Robson. The height of binary search trees. The Australian Computer

Journal, 11:151–153, 1979.

[91] H. Samet. The quadtree and related hierarchical data structures. Computing

Surveys, 16:187–260, 1984.

[92] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory,

Series A, 13(1):145–147, 1972.

[93] L. Schläfli. Theorie der vielfachen Kontinuität. Denkschriften der Schweiz-

erischen naturforschenden Gesellschaft, 38:1–237, 1901.

[94] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets

in three dimensions. Discrete and Computational Geometry, 26(2):195–204,

2001.

[95] R. P. Stanley. An introduction to hyperplane arrangements. In Geometric

Combinatorics, pages 389–496. American Mathematical Society, 2007.

[96] P. Valtr. Guarding galleries where no point sees a small area. Israel Journal

of Mathematics, 104(1):1–16, 1998.

182

[97] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka,

Moscow, 1974.

[98] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. In Theory of Probability and its Ap-

plications, volume 16, pages 264–280, 1971.

[99] V. Vazirani. Approximation Algorithms. Springer Verlag, New York, 2001.

[100] U. Wagner. On a geometric generalization of the upper bound theorem. In

Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer

Science, pages 635–645, 2006.

[101] U. Wagner. k-sets and k-facets. Contemporary Mathematics, 453:443, 2008.

[102] E. Welzl. Entering and leaving j-facets. Discrete and Computational Geome-

try, 25(3):351–364, 2001.

[103] D. E. Willard. Polygon retrieval. SIAM Journal on Computing, 11:149–165,

1982.

[104] N. Young. Randomized rounding without solving the linear program. In

Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 170–178, 1995.

[105] G. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer,

New York, 1995.

183

	Abstract
	Résumé
	Acknowledgements
	Contents
	Introduction
	Guarding Problems
	Geometric Split Trees
	Thesis Contributions
	Future Directions

	Guarding Problems
	Range Spaces and Approximation
	Introducing Range Spaces
	Approximating Set Cover
	Geometric Hitting Set

	Approximation from -Nets
	An Introduction to -Nets
	Iterative Reweighting
	Considering the LP

	VC-Dimension
	Origins and Definition
	Small -Nets via Random Sampling
	Lower Bounds for -Nets
	Parameterized Complexity

	Notes

	Guarding Terrains
	Terrain Guarding Preliminaries
	Range Spaces and Approximation
	Discretization
	VC-Dimension of Terrain Guarding
	Approximation Algorithms

	NP-Completeness
	Planar 3SAT and Path Representations
	Propagating a Truth Assignment
	Evaluating clauses

	Notes

	Guarding Polygons
	Polygon Guarding Preliminaries
	Range Spaces
	Discretization

	Improved Approximation for Perimeter Guards
	Building Quadratic -Nets
	Smaller -Nets via Hierarchical Fragmentation

	Notes

	Geometric Split Trees
	Probabilistic Groundwork
	Basic Distributions and Concepts
	Definitions
	Notable Univariate Distributions
	Domination and Coupling
	Vector Domination

	Betas and Dirichlets
	Beta Distributions
	Dirichlet Distributions

	Notes

	Random Split Trees
	Random Binary Search Trees
	Depth Analysis
	Height Analysis
	Coupling With Random k-d Trees
	Random b-ary Search Trees

	A General Model
	Uniform Split Vectors
	Limit Laws
	Geometric Examples

	Bounding With Reference Trees
	Depth Domination

	Notes

	Random Hyperplane Splits
	Competing with Uniform Splits
	Connections with k-Facets
	Dual and Spherical Interpretations

	Upper Bounds for (k)-Facets
	The Moment Curve
	Generalized Upper Bound Conjectures

	Lower Bounds for (k)-Facets
	Upper Bounds for Halving Facets
	Lower Bounds for (k)-Facets
	An Inductive Formulation of Hyperplane Splits
	An Extended Lower Bound for (k)-Facets

	Notes

	Hyperplane Search Trees
	Hyperplane Search Trees
	Related Structures
	Membership in Random Tree Models
	Consequences

	Arrangement Trees
	Membership in Random Tree Models

	Notes

	Conclusion and Summary
	Thesis Contributions
	Future Directions

	Bibliography

