
Of bones and noise

Marc D. Ryser

Doctor of Philosophy

Department of Mathematics and Statistics

McGill University
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0.2 Essay
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year at McGill. I knocked at Nilima’s office door to hand in my first assignment.
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pressure. Should I ever be a supervisor myself, I know I will be a better supervisor
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out to Vancouver – despite my original aversion to this (voluntary) deportation, it

turned out to be an incredibly enriching experience in many ways. To both of them,

my deepest gratitude and respect.
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ABSTRACT

This dissertation reports on two independent studies in the fields of determinis-

tic and stochastic partial differential equations.

In the first part, we introduce a novel spatio-temporal model of the bone remod-

elling process. Bone remodelling is crucial for the removal of fatigue damage and the

renewal of old bone tissue in the vertebrate skeleton. Responsible for remodelling are

the bone multicellular units (BMUs), complex entities consisting of several interact-

ing cell types. We develop a nonlinear mixed PDE model capturing the dynamics of

a single BMU in trabecular bone. Several pathological remodelling events are studied

numerically, and new insights into the RANKL/RANK/OPG pathway are presented.

Finally, the model is adapted to study the role of OPG in bone metastases. In sil-

ico experiments demonstrate that depending on the expression rate, tumour-derived

OPG can increase or decrease osteolysis and tumour growth. In particular, this

mechanism is able to explain a set of seemingly contradictory experimental studies.

In the second part, we study the well-posedness of the two-dimensional Allen-

Cahn equation with additive space-time white noise. We first introduce a high fre-

quency cut-off in the noise field and then study the corresponding regularized prob-

lems in the limit where the cut-off goes to infinity. Based on numerical experiments

and heuristic arguments, we conjecture that the approximations converge to the zero-

distribution. A rigorous proof of the conjecture is provided. The result demonstrates

that a series of published numerical studies are problematic: shrinking the mesh size

in these simulations does not lead to the recovery of a physically meaningful limit.
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ABRÉGÉ

Au sein de cette thèse nous présentons deux études indépendantes dans le con-

texte général des équations aux dérivées partielles (EDP), déterministes ainsi que

stochastiques.

Lors de la première partie nous développons un nouveau modèle spatio-temporel

du processus de remodelage osseux. Le remodelage osseux est essentiel pour la

réparation de fissures microscopiques ainsi que le renouvellement périodique du tissu

osseux à travers le squelette vertébré. Le remodelage est effectué par les unités

fonctionelles de remodelage (UFR): des entiteś complexes constituées de plusieurs

types de cellules interagissantes. Nous développons un modèle mixte d’EDP non-

linéaires pour décrire l’évolution d’une UFR à travers le tissu trabéculaire. A l’aide

de simulations numériques, nous étudions plusieurs régimes pathologiques de re-

modelage, et nous présentons de nouvelles perspectives concernant la voie biochim-

ique RANKL/RANK/OPG. Enfin, le modèle est adapté pour étudier le rôle d’OPG

dans les métastases osseuses. Les expériences numériques démontrent que, selon le

taux d’expression, OPG exprimée par le tumeur peut soit augmenter soit diminuer

l’ostéolyse et ainsi la croissance tumorale. En particulier, ce mécanisme est capable

d’expliquer un ensemble d’études expérimentales apparemment contradictoires.

Lors de la deuxième partie, nous investigons l’équation d’Allen-Cahn soujette à

un bruit blanc additif, et cela en deux dimensions spatiales. Après avoir regularisé le

bruit par une coupure à hautes fréquences, nous étudions la suite de problèmes regu-

larisés ainsi obtenue. A l’aide d’expérience numériques et d’arguments heuristiques,
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nous faisons la conjécture que ces approximations convergent vers la distribution

nulle dans la limite du bruit blanc. Une preuve rigoureuse de cette conjécture est

fournie. Le résultat démontre que toute une série de travaux numériques publiés

dans la litérature sont problématiques: en effet, lorsque la taille de la grille tend vers

zéro, on obtient une limite sans signification physique.

xv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

0.1 Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
0.2 Essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
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CHAPTER 1
Introduction

Und in immer größere Finsternis hinein allein, denn der Denkende gehe

immer nur allein in immer größere Finsternis.

He walks into an intensifying darkness, alone, because the thinking man

always moves alone into an intensifying darkness.

Thomas Bernhard

The two topics treated in the framework of this thesis fall under the broad

umbrella of partial differential equations (PDEs). But apart from this general clas-

sification they are unrelated – and thus we dedicate to each of them a separate

introduction. In view of Part I of this thesis (Mathematics of Bone Remodelling),

we present an overview of bone biology in Section 1.1. In Section 1.2 we introduce

space-time processes with additive noise and motivate the work presented in Part

II (2D Stochastic Allen-Cahn Equation). We make some general comments on the

employed numerical techniques in Section 1.3, and provide a reader’s guide to this
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thesis in Section 1.4. Finally, we give an overview of the written and oral dissemi-

nation of our work in Section 1.5, and specify the author’s contributions in Section

1.6.

1.1 Bone biology

Bone biology is an active field of research and brings together scientists from

various disciplines, including medicine, biology, biomedical engineering and medical

imaging. Due to its multifaceted nature, a thorough state of the art survey of the

field is beyond the scope of this thesis. Instead, we provide a top-down introduction

to the vertebrate skeleton in Section 1.1.1, and motivate the mathematical modelling

of bone multicellular units (BMUs) in Section 1.1.2. Finally, we prepare the reader

for Chapter 4 by outlining the basic connections between remodelling and bone

metastases in Section 1.1.3.

1.1.1 From bone to BMU: a top-down perspective

Most of the facts and results stated in this section are generally accepted in the

field. Details can be found in the following textbooks and review articles: [138, 124,

35, 117].

The vertebrate skeleton has four major functions: it protects inner organs, it

provides structural support, it stores minerals such as calcium and phosphorus, and

it hosts the bone marrow, which is responsible for the production of blood cells.

The human adult skeleton consists of over 200 bones and we distinguish between

long bones and short/irregular bones. Long bones, such as the femur and the tibia,

consist of cortical (compact) bone tissue in the outer shell, and trabecular (spongy)

tissue in the interior. The cross-section of a generic long bone is found in Figure 1–1.
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Figure 1–1: Long bone section. A schematic, not-to-scale representation of a long
bone cross-section. The bone is radially symmetric with two main regions: cortical
(compact) bone in the outer shell and trabecular (spongy) bone in the interior. Image
source: [4], public domain.

In contrast to long bones, short/irregular bones only have a thin layer of cor-

tical bone in the outer shell and consist mainly of trabecular tissue. Examples for

short/irregular bones are the skull and hip bones. Cortical bone is fairly dense with a

porosity of 5-30%. It is penetrated by longitudinal cavities (Haversian canals), which

contain blood vessels necessary for the distribution of nutrients (see Figure 1–1). On

the other hand, trabecular bone consists of an irregular network of trabeculae, small

rods and beams as depicted in Figure 1–2. It has a high porosity of 30-90%, and

hosts the bone marrow. Despite the difference in morphology, the molecular struc-

tures of cortical and trabecular tissue are very similar. Both are mainly made of bone

matrix, which itself has two principal constituents: the inorganic part is carbonated

hydroxyapatite, a brittle mineral which contributes to the rigidity of the tissue. The
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Figure 1–2: Trabecular bone. 3D µ-CT image of human trabecular bone (extracted
from femoral head). Image provided courtesy of D.M.L. Cooper.

organic part consists of multiple extracellular matrix proteins, the most abundant

of which is type I collagen. In addition to the molecular structure, a multitude of

architects and gatekeepers – the bone cells – are present in the bone tissue. Old and

damaged bone matrix is resorbed by active osteoclasts, and subsequently replaced

by active osteoblasts. The latter either die by apoptosis (programmed cell death) or

differentiate into osteocytes. As osteocytes, they become buried in the bone matrix
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and play an important role in the detection of local strains and microfractures. Fi-

nally, the bone surfaces are covered by inactive cells of the osteoblastic lineage, the

so-called bone lining cells.

Bone tissue is a highly dynamic tissue, with its constituent cells continuously

resorbing old matrix and producing new one. Depending on the overall mass bal-

ance, the corresponding cellular process is called bone modelling or bone remodelling.

Bone modelling is primarily responsible for mechanical adaptation: in response to

changing loading patterns, tissue needs to be removed in one location and deposited

in another. During this process, bone resorbing osteoclasts and bone producing os-

teoblasts operate independently, and this lack of coordination usually leads to a net

change in local bone mass and alterations in the tissue morphology. In addition to

mechanical adaptation, bone modelling is important for bone growth and fracture

healing. While the modelling process accounts for alterations in the architecture,

bone remodelling takes care of the renovations: old, degenerated tissue has to be

replaced, and local micro-fractures have to be removed, as their accumulation could

otherwise lead to macroscopic fractures. In the remodelling process, osteoclasts and

osteoblasts operate in spatially well-defined entities, the so-called bone multicellular

units (BMUs). These BMUs travel across the tissue at a constant speed of 20-40

µm/day for up to 6 months. At any given passage point of the BMU, a well-defined

sequence takes place: first, 10-20 osteoclasts remove old and damaged tissue, and

then 1,000-2,000 osteoblasts produce osteoid (the organic part of the matrix), which

eventually mineralizes to become new bone matrix, see Figure 1–3. In the physi-

ological regime, or homeostatic equilibrium, the net mass balance of each BMU is
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neutral, and the remodelling takes place continuously and asynchronously across the

entire skeleton.

Leading front 

Formation ~ 2-3 months 

Time 

Resorption  ~ 2-3 weeks 

Osteoclasts 
Osteoblasts 

Figure 1–3: Trabecular BMU. Schematic not-to-scale representation of a BMU
moving across a trabecular surface. First, 10-20 osteoclasts resorb old or damaged
tissue; then they recruit 1,000-2,000 osteoblasts which produce new bone matrix.
The BMU moves at a speed of 20-40 µm/day and survives for up to 6 months.

Osteoclasts and osteoblasts are spatially separated and rely on a variety of bio-

chemical pathways for communication and regulation. In particular, the RANKL/

RANK/OPG pathway is known to play a crucial role. The receptor activator of

nuclear factor κB ligand (RANKL) stimulates osteoclast differentiation and activ-

ity by binding to RANK receptors on osteoclast precursors and mature osteoclasts,

respectively. Osteoprotegerin (OPG) is a soluble decoy receptor of RANKL, and

hence a negative osteoclast regulator. Both cytokines are produced by cells of the

osteoblastic lineage, including mature osteoblasts and their precursors, osteocytes,

bone lining cells and stromal cells. In addition to RANKL/RANK/OPG, there is

a variety of other messenger molecules that contribute to the regulation of BMUs,
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e.g. TGF-β, IGFs and M-CSF. See Figure 2–2 for a summary of the most relevant

pathways.

The remodelling mechanisms in cortical and trabecular bone are essentially iden-

tical, only differing in their geometric appearance. In cortical bone, BMUs dig a

Figure 1–4: BMU resorption spaces. µ-CT image of BMU resorption spaces in
human bone (mid femur). Image provided courtesy of D.M.L. Cooper

cylindrical tunnel through the compact tissue (Figure 1–4), while in trabecular bone
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they move across the surface of individual trabeculae and dig a half-cylindrical trench

(see Figure 1–3 for side view and Figure 2–1 for top view). Pathological imbalances

in the osteoclast-osteoblast regulation are the main cause for a multitude of diseases

such as osteoporosis, osteoarthritis and Paget’s disease.

The research presented in Part I of this thesis is concerned with the cellular

and biochemical dynamics of individual BMUs. A more detailed introduction to the

biological processes and pathways of bone remodelling is found in Sections 2.3 and

3.2.

1.1.2 Exploring the physiology of BMUs

Experimental research on BMU morphology has been conducted since the late

1950s, and most studies are based on 2D histological sections from human and canine

bone samples (see [32] for a thorough review of the imaging literature). Histologies

capture a 2D cross-section of the BMU geometry, and the various cell and tissue

types are rendered visible through appropriate staining. The disadvantage of this

technique is the dimensional disparity between the 2D section and the 3D geometry

of the remodelling process: it can be difficult or even impossible to determine the

orientation and stage of the observed BMUs.

In the the late 1990s, several groups started to use high-resolution micro-computed

tomography (µ-CT) to investigate the architecture of BMU-related resorption spaces

in bone samples. These imaging techniques allow for 3D rendering of the sample and

hence provide a better insight into the spatial evolution of BMUs, see Figure 1–4 as

well as the work of Cooper et al. [32, 33, 31] and Arhatari et al. [3]. Even though

µ-CT is a non-invasive technique, it is currently impossible to achieve a resolution at
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the BMU level in vivo: the required radiation dosage is generally too high for living

subjects [30].

Altogether, histological sections and µ-CT have contributed substantially to

our understanding of the spatial characteristics of BMUs. But since experiments

can only be performed on dead tissue, there is only one time frame available, and

temporal information has to be inferred. For this reason, mathematical modelling

provides an attractive investigative tool. Komarova et al. [91, 90] and Lemaire et

al. [103] were the first to model the remodelling dynamics in silico. Both groups

introduced ordinary differential equation (ODE) models to account for the evolution

of the bone cell populations as well as the autocrine and paracrine communication

pathways among the cells. The respective models are able to capture a whole range

of physiological and pathological phenomena, but they naturally lack the capacity

to account for spatial phenomena, e.g. the spatial separation of osteoclasts and

osteoblasts (as depicted in Figure 1–3). We developed a novel spatio-temporal PDE

model for the evolution of a single BMU, as presented in Chapters 2 and 3.

1.1.3 Bone metastases

In Chapter 4 we investigate controversial experimental findings regarding the

growth of metastasizing tumours in the bone environment. To make this chapter

more accessible, we provide here a short introduction to the relevant biology.

Most known cancer types have a tendency to spread from their original site

(primary tumour) to remote, non-adjacent organs and parts. Thereby, the primary

cancer cells enter the bloodstream and travel to remote sites. The resulting secondary

tumour is referred to as a metastasis. Together with lungs, brain and liver, bones
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are the most common metastatic site for solid tumours [78, 28]. Once a tumour

metastasizes in the bone tissue, it commonly leads to severe pain and high morbidity

[27].

A developing bone metastasis is naturally confined by the presence of inelastic

bone tissue. Tumour cells are not able to resorb bone tissue themselves, and instead

they trigger resorption by osteoclasts [13]. The interplay of cancer and bone cells

leads to the following vicious cycle (see also Figure 1–5, blue fields):

Tumor 
Cells 

PTHrP 

RANKL 

Osteoclasts 

OPG 

 SPACE  (+) 

DECOY (-) 

(+) 

(+) 

(+) 

(+) 

Figure 1–5: Vicious cycle. The vicious cycle in bone metastases (blue): tumour
cells trigger osteoclastic activity through the PTHrP-RANKL pathway. Conse-
quently, increased resorption creates more space for the expanding tumour. OPG
(red) can intercept the cycle by inhibiting RANKL.

1. The metastasizing tumour cells express the soluble parathyroid hormone related

protein (PTHrP).
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2. PTHrP induces the expression of RANKL on osteoblastic cells (osteblasts,

osteocytes and bone lining cells).

3. RANKL is a potent stimulator of osteoclastic activity: it binds to RANK

receptors on osteoclast precursors and induces the differentiation into active,

bone resorbing osteoclasts.

4. Osteoclastic resorption activity creates more space for the growing metastasis.

5. The expanding metastasis produces more PTHrP, which brings us back to step

1 above.

As in the case of physiological bone remodelling, osteoclasts still recruit osteoblasts

– however, most bone metastases directly alter the osteoclast-osteoblast coupling.

Certain metastases (such as breast and myeloma) tend to inhibit osteoblastic activity,

leading to predominantly osteolytic lesions. Other metastases (such as prostate)

up-regulate osteoblastic activity, causing predominantly osteoblastic lesions. The

historic division into osteolytic and osteoblastic metastases turns out to be insufficient

as most patients have both osteolytic and osteoblastic lesions [118].

One possibility to intercept the vicious cycle of cancer-osteoclast interactions

is the application of OPG, a potent decoy receptor for the osteoclast-stimulating

cytokine RANKL. More precisely, it is expected that the systemic application of OPG

(e.g. by injection) would down-regulate osteolysis, and hence prevent the expansion

of the metastatic tumour, see Figure 1–5. This hypothesis has been confirmed in

the literature [114]. However, if OPG is produced locally by tumour cells, there

is experimental evidence for both decreased [34] and increased [50] tumour growth.

This controversy provides the starting point for the work in Chapter 4.
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1.2 Space-time models with additive noise

The generic deterministic evolution equation

du

dt
= f(u, t), u(0) = u0, (1.1)

plays a central role in applied mathematics. Depending on the solution space and the

nature of the function f , it can represent an ordinary differential equation, a delay

differential equation or a partial differential equation – and hence it can be used

to model a whole variety of physical, biological and synthetic phenomena. Despite

the ubiquity of noise in the real world, the deterministic approach (1.1) is quite

often sufficient: after some averaging, a whole variety of pertinent questions can be

answered to a satisfactory extent in the framework of deterministic models. However,

there are instances of stochastic phenomena where the neglect of fluctuations leads

to an insufficient mathematical description: consider e.g. volatile stock markets or

wiggly pollen grains. In view of such phenomena, the modeller does not have a choice

but to incorporate the noise in the equation.

1.2.1 Stochastic differential equations

The simplest way to render the generic model (1.1) stochastic is to add a time-

dependent noise ξ(t), accounting for the random perturbations of the system:

du

dt
= f(u, t) + ξ, u(0) = u0. (1.2)

Let’s consider first the case where (1.1) is an ODE and (1.2) a stochastic differ-

ential equation (SDE). In absence of a precise understanding of the noise and its

correlation structure, we choose it to be Gaussian with uncorrelated fluctuations:
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roughly speaking, ξ(t) is a Gaussian stochastic process such that Eξ(t) = 0 and

Eξ(t)ξ(s) ∼ δ(s − t). This is an informal description of what we call white noise in

time. To solve the corresponding SDE (1.2), we formally integrate both sides over

time and look for solutions to the integral equation

u(t) = u0 +

∫ t

0

f(u(s), s)ds+

∫ t

0

ξ(ds). (1.3)

By now we have reached page 2 of the generic SDE textbook, where, without much

further ado, the last term on the right-hand side of (1.3) is transformed into an

integral with respect to Brownian motion (Itô integral),

u(t) = u0 +

∫ t

0

f(u(s), s)ds+

∫ t

0

dW (s). (1.4)

The switch from (1.2) to (1.3) is usually justified by means of the statement ‘white

noise is the derivative of Brownian motion W , ξ ∼ dW
dt

’; the rest of the textbook is

then dedicated to the study of Itô integrals and SDEs, without any further mention

of white noise.

Our goal in this section is to take a step back and explore the relationship be-

tween white noise and Brownian motion – and thereby convince the reader that (1.4)

is indeed an appropriate reformulation of (1.3). In particular, these developments

will be very useful in the next section, where we will generalize the white noise model

to space-time processes. The following reasonings are loosely based on discussions

in [174, 85, 137].

We start off with a proper definition of white noise.
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Definition 1.2.1 (Space-time white noise). Let T > 0 and consider the measure

space ([0, T ]×D,B, λ), where D ⊂ Rd is a bounded domain, B is the Borel σ-algebra

of [0, T ]×D, and λ is the Lebesgue measure. Let (Ω,F ,P) be a probability space. A

space-time white noise on [0, T ]×D is a mapping ξ : B → L2(Ω) such that

(i) for all B ∈ B, ξ(B) is centred Gaussian with

E (ξ(B))2 = λ(B).

(ii) if B1 ∩ . . . ∩Bn = ∅, then the {ξ(Bi)}ni=1 are independent and

ξ (∪ni=1Bi) =
n∑
i=1

ξ(Bi).

In the current section we neglect the spatial part: we set d = 0 and consider the

measure space ([0, T ],B([0, T ]), λ), where B([0, T ]) is the Borel σ-algebra on [0, T ].

Define now the mapping

W : {1B : B ∈ B} → L2(Ω),

W : 1B 7→ ξ(B).

Since simple functions (finite linear combinations of elementary functions of the type

1B) are dense in L2([0, T ]), and since W is an isometry, standard procedures from

the theory of integration allow us to extend this mapping to W : L2([0, T ])→ L2(Ω)

[85, Ch.5]. Like this we can make sense of the notion of an integral with respect to

white noise:

W : h 7→ Wh ≡
∫ T

0

h(t)ξ(dt), (1.5)
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The above integral is called the Wiener integral and it is straightforward to show

that {W(h) : h ∈ L2(0, T )} is in fact an isonormal process [85, Ch.5]:

Definition 1.2.2 (Isonormal process). Let H be a Hilbert space with inner product

(·, ·). An H-isonormal process on Ω is a mapping W : H → L2(Ω) such that

(i) For all h ∈ H, the random variable Wh is a centred Gaussian.

(ii) For all h1, h2 ∈ H, we have E (Wh1 · Wh2) = (h1, h2).

The isonormal process W constructed above enables us now to prove the exis-

tence of Brownian motion.

Theorem 1.2.3. [174, Ch.6] If W is an isonormal process on L2([0, T ]), then

W (t) :=W1[0,t] is a Brownian motion on [0, T |.

In particular, this result provides an explicit representation of Brownian motion

W by means of the Wiener integral: from Theorem 1.2.3 and (1.5) it follows that

W (t) =

∫ t

0

ξ(ds). (1.6)

In other words, we have demystified the folklore of ‘ ξ ∼ dW
dt

’. And rewriting (1.6) in

differential form dW = ξ(dt), we have a solid motivation for the following definition

of the integral of an L2-function with respect to Brownian motion,∫ T

0

h(s)dW (s) :=

∫ T

0

h(s)ξ(ds), ∀h ∈ L2([0, T ]). (1.7)

At the end of the day, (1.6) and (1.7) should have illuminated the mysterious leap of

faith from (1.3) to (1.4). And once we are happy with (1.4) and its differential form,

du(t) = f(u(t), t)dt+ dW (t), (1.8)
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we are indeed in a safe harbour: SDEs of this type are well-posed, see e.g. [109].

Remark 1.2.4 (Important). It follows from basic results of the Itô theory that∫ T
0
h(s)dW (s), also called Itô integral, is indeed equivalent to the Wiener integral∫ T

0
h(s)ξ(ds) for h ∈ L2([0, T ]). This shows that (1.7) is more than just pure nota-

tion, and hence provides the ultimate justification for the formulation (1.4). Note

however that the Wiener integral as constructed above only allows for determinis-

tic integrands in L2([0, T ]); to integrate functions which are themselves stochastic,

f = f(t, ω), we have to resort to the Itô integral.

Remark 1.2.5. Some authors callW a white noise rather than an isonormal process.

To avoid confusion with space-time white noise as introduced below, we stick here to

isonormal process.

Equipped with the characterization of Brownian motion in Theorem 1.2.3, we

are ready to generalize the 1D case and tackle parabolic partial differential equations

driven by additive space-time white noise.

1.2.2 SPDEs with white noise

Let us go back to the general model in (1.1), this time assuming that u = u(x, t)

(x ∈ Rd) is a space-time field, and that f depends not only on u and t, but also on

various spatial derivatives of u. To make things more concrete, let us consider the

situation where (1.1) corresponds to a nonlinear parabolic PDE with

f(u,∆u, t) := ∆u+ g(u, t),

where g : R2 → R2 is a sufficiently regular function. We would like to repeat the

program of the previous section and account for space-time fluctuations by adding
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an appropriate noise term ξ = ξ(x, t),

du

dt
= ∆u+ g(u, t) + ξ, u(0) = u0. (1.9)

Again, the simplest model is space-time white noise: a stationary Gaussian process

ξ(x, t) such that E ξ(x, t) = 0 and E ξ(x, t)ξ(x′, t′) ∼ δ(t − t′)δ(x − x′). As in the

previous section, we want to transform the phenomenological white noise model (1.9)

into a mathematically sound stochastic partial differential equation (SPDE) of the

form

du = [∆u+ g(u, t)] dt+ dW, u(0) = u0,

where W is the infinite-dimensional analogue of one dimensional Brownian motion.

We shall proceed in analogy to the construction in the one-dimensional case. First,

we recall from Definition 1.2.2 the notion of space-time white noise ξ on the domain

[0, T ]×D, where D ⊂ Rd. By means of ξ, we define the mapping

W :
{
1[t1,t2] ⊗ 1B : [t1, t2]×B ∈ B

}
→ L2(Ω)

(
1[t1,t2] ⊗ 1B

)
7→ ξ ([t1, t2]×B) .

Using the fact that simple functions of the form
∑N

j=1 cj 1[t1,j ,t2,j ] ⊗ 1Bj are dense in

L2([0, T ];L2(D)), and that W is an isometry, we extend the mapping W to

W : L2([0, T ];L2(D))→ L2(Ω).

As in the previous section, one can then show thatW is in fact an L2([0, T ];L2(D))-

isonormal process as defined in Definition 1.2.2. At this point we recall the main
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result of the previous section: the L2([0, T ];R)-isonormal process derived from white

noise in time – we called it W , too – allowed us to construct 1D Brownian motion

W by setting W (t) = W1[0,t], see Theorem 1.2.3. Inspired by this result, we define

now the notion of an infinite dimensional Brownian motion on L2(D) by setting

WL2(D)(t)h :=W
(
1[0,t] ⊗ h

)
, ∀t ∈ [0, T ], h ∈ L2(D).

The process
{
WL2(D)(t)

}
t∈[0,T ]

is called a cylindrical Wiener process on L2(D) and

it satisfies

WL2(D)(t)1B = ξ([0, t]×B) =

∫ t

0

ξ(ds×B), ∀ ([0, t]×B) ∈ B. (1.10)

The second equality above illustrates how the time derivative of the cylindrical

Wiener process is related to space-time white noise. And similarly to the 1D case of

the previous section, this relationship motivates the conversion of the phenomeno-

logical white noise model (1.9) into the mathematically meaningful formulation

du = [∆u+ g(u, t)] dt+ dWL2(D), u(0) = u0.

Well-posedness of this equation is of course another story and depends on the nature

of the function g. We shall return to this question in Section 1.2.5.

Next, we generalize the concept of a cylindrical Wiener process to arbitrary

Hilbert spaces.
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Definition 1.2.6 (Cylindrical Wiener process). Let H be a Hilbert space. If WH is

an L2([0, T ];H)-isonormal process, we define

WH(t)h :=WH

(
1[0,t] ⊗ h

)
, ∀h ∈ H, ∀t ∈ [0, T ].

The process {WH(t)}t∈[0,T ] is called a cylindrical Wiener process on H.

Remark 1.2.7. Cylindrical Wiener processes on Hilbert spaces (and Banach spaces

in general) are well-studied and a powerful theory of integration is already in place:

given a suitable integrand Φ, one can construct Wiener and Itô integrals,∫ t

0

Φ(s)dWH(ds).

For details on these constructions, we refer to e.g. [137, 174, 129].

Remark 1.2.8. Now that we have introduced cylindrical Wiener processes on ar-

bitrary Hilbert spaces H, it is important to reiterate that space-time white noise

corresponds to the special case H = L2(D), see (1.10).

The following representation result for cylindrical Wiener processes will be very

useful later on.

Theorem 1.2.9. [137, p203] Consider a separable Hilbert space H with complete

orthonormal basis {ek}∞k=1. If {WH(t)}t∈[0,T ] is a cylindrical Wiener process on H,

it admits the representation

WH(t)h =
∞∑
k=1

(ek, h) βk(t) in L2(Ω), ∀h ∈ H, (1.11)

where {βk}∞k=1 are i.i.d. real-valued Brownian motions.
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Finally, we introduce the notion of the covariance operator of a stochastic pro-

cess.

Definition 1.2.10 (Covariance operator). Let H be a Hilbert space and {X(t)}t∈[0,T ]

an H-valued stochastic process. If there exists Q ∈ L(H) such that

(Qf, g) = E [X(1)f ·X(1)g] , ∀f, g ∈ H, (1.12)

we call Q the covariance operator of X.

In the case of a cylindrical Wiener process on H, it follows from (1.11) that

Q = Id. This means that the covariance operator of a cylindrical Wiener process is

by construction the identity operator Id : H → H. This realization provides some

insight into why WH is called cylindrical. In fact, since the identity operator is not

trace-class, the distribution of WH(t) at a given time t does not define a measure on

H. It merely defines a finitely additive set function, known as cylindrical measure.

In other words, WH(t) is not measurable on the Borel sets of H, but only on the

cylinder sets of H. An excellent discussion of this issue is found in [137].

1.2.3 SPDEs with coloured noise

In the previous section, we have seen how the cylindrical Wiener process WL2(D)

is related to space-time white noise, and how a general cylindrical Wiener process

WH can be represented in terms of an orthonormal basis of the underlying Hilbert

space H, see Theorem 1.2.9. But what if we want to model a noise other than

space-time white noise? For the sake of simplicity, we shall assume that the noise

of interest, η(x, t), is still stationary and centred Gaussian, but that the spatial

covariance structure is no longer white in space. In other words, the fluctuations of
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η are given by

E η(t, x)η(t′, x′) ∼ δ(t− t′) q(x− x′), (1.13)

where q(x) is a symmetric, nonnegative covariance function. Given such a function

q(x), we are going to construct the corresponding Wiener process in two steps. The

first step consists in finding the covariance operator Q, defined in (1.12). If q is

regular enough, one can show that Q : L2(D) → L2(D) is in fact the convolution

operator with kernel q,

Qf(x) =

∫
D

q(x− x′)f(x′)dx′, f ∈ L2(D). (1.14)

In the second step, we use Q to construct the corresponding space-time Wiener

process. If q ∈ C(D̄ × D̄), it follows from Mercer’s theorem [135, p96] that Q is a

trace-class, symmetric and nonnegative operator whose eigenfunctions span L2(D).

Recall the following result for such operators.

Proposition 1.2.11. [129, p25] If Q ∈ L(H) is nonnegative and symmetric, then

there exists exactly one element Q
1
2 ∈ L(H), also nonnegative and symmetric, such

that Q
1
2 ◦Q 1

2 .

Using this decomposition, we define now the process

WQ
H (t)h := WH(t)(Q

1
2h), ∀h ∈ H, t ∈ [0, T ], (1.15)

and we see that WQ
H has indeed covariance Q:

E
[
WQ
H (1)f ·WQ

H (1)g
]

= (Qf, g) , f, g ∈ H.

21



We make the following definition.

Definition 1.2.12. If Q 6= Id, the process WQ
H (t) is called a coloured Wiener process

on H. If Q = Id, we stick to the previous notation for cylindrical Wiener processes,

WH ≡ W Id
H .

To obtain a representation formula for coloured Wiener processes on H, we

combine (1.15), (1.11) and the symmetry of Q
1
2 to get the following result.

Theorem 1.2.13. Consider a coloured Wiener process WQ
H on H such that Q is a

symmetric, nonnegative trace-class operator. Then

WQ
H (t)h =

∞∑
k=1

√
λk (fk, h) βk(t) in L2(Ω), ∀h ∈ H, (1.16)

where {βk}∞k=1 are i.i.d. real-valued Brownian motions, {fk} are the eigenfunctions

of Q, and λk ≥ 0 the corresponding eigenvalues.

Remark 1.2.14. We made the principal distinction between cylindrical (Q = Id)

and coloured (Q 6= Id) Wiener processes, which correspond to white and coloured

noise, respectively. While this classification makes sense from the modelling perspec-

tive, the deciding factor from a technical point of view is the trace of Q. In fact,

since

E
∥∥∥WQ

H (t)
∥∥∥2

H
= t T r Q,

the process WQ
H is H-valued only if TrQ <∞. If TrQ =∞, then Q does not define

the covariance operator of a Gaussian measure on H – it only defines a cylindri-

cal Gaussian measure (see also the discussion at the end of Section 1.2.2). This

observation will play an important role in Section 1.2.5.

22



1.2.4 White or coloured? The modeler’s perspective

Consider the following parabolic PDE model in D ⊂ Rd,

du

dt
= ∆u+ g(u, t), u(0) = u0,

and assume we would like to add an additive noise term η(x, t) to model fluctuations

in the systems. Depending on the system, these fluctuations can be caused by a

variety of phenomena such as thermal or quantum fluctuations in a physical system,

random sinks and sources in a chemical or biochemical system, or measurement errors

in filtering. When modelling a space-time noise, the first question to answer is the

following: can we idealize the situation and model η as a white noise, or do we have

to work with a coloured noise? And once we know η, we have to work out how

it relates to the (cylindrical or coloured) Wiener process WQ
L2(D), appearing in the

standard formulation

du = [∆u+ g(u, t)] dt+ dWQ
L2(D), u(0) = u0. (1.17)

Let us start with white noise. If we model a stochastic phenomenon for which

we have little insight regarding the exact nature of the noise structure, the most

straightforward approach is to use space-time white noise. In fact, since the latter

is scale invariant, no additional parameters (length scales etc) have to be added to

the model. A good example for the use of white noise is found in the framework of

dynamic critical phenomena. Consider a physical system with order parameter µ(x),

and assume that the spatial equilibrium configuration of µ(x) is determined by the
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functional derivative of the free energy F ,

δF

δµ
= 0.

If the system is perturbed away from the global minimum of the free energy, its

relaxation can be modelled by means of a generalized Langevin equation, i.e. a

parabolic SPDE of the type

∂µ

∂t
= −α δF

δµ
+ ξ,

where ξ = ξ(x, t) is space-time white noise. The noise accounts for the thermal

fluctuations in the system, and it prevents the system from getting stuck in a local

minimum, i.e. a metastable state. Thus the fluctuations ensure that the relaxation

leads back to the global minimum of the free energy. For a more detailed discussion

of this model, please refer to [56, Ch.8.3] as well as [69, 22].

In practice, white noise models have considerable advantages for the applied

scientist. Since the covariance structure is given by the ‘δ-function’, q(x − x′) ∼

δ(x−x′), analytic calculations are usually more tractable than in the case of coloured

noise. And should analytic considerations still be too hard, white noise is easily

implemented on a computer. For example, consider space-time white noise on Td,

where Td is the d-dimensional torus. Recalling Theorem 1.2.9 and the fact that the

Fourier polynomials
{

(2π)−
d
2 eikx

}
k∈Zd

constitute a complete orthonormal basis in

L2(Td), the corresponding cylindrical Wiener process can be represented as

WL2(t, x) = (2π)−
d
2

∞∑
k=1

βk(t)e
ikx. (1.18)
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Truncating the series provides then an ideal starting point for spectral methods. But

as convenient as it is in practice, white noise remains an idealization. Consider for

example thermal fluctuations in a fluid: they should not take place on length scales

smaller than the size of the constituent atoms, and hence the power spectrum of

the noise field should decay for large wave numbers. Since each Fourier mode in

(1.18) has equal amplitude, the use of white noise needs to be justified carefully.

For a second example of the deficiency of the white noise, consider the stochastic

expression of cytokines in a cell population. Assume that the cytokine in question

is coupled to an autocrine pathway: if one cell expresses the cytokine, its immediate

neighbour cells become more likely to do so, too. If we model such a phenomenon,

we cannot assume that every point in space is decoupled: the spatial correlations in

the cytokine source field should have a length scale of the order of the cell radius.

Failure to implement this in the correlation structure of the noise field might lead to

an unsuitable model. In a situation like this, we have to implement a coloured noise

field – let’s see how.

If possible, a coloured noise field is described as a stationary, centred Gaussian

process – in this case, the only unknown is the symmetric, nonnegative covariance

kernel q(x) as defined in (1.13). Popular choices for q(x) are e.g. the exponen-

tial covariance q(x) = e−|x|/a and the Gaussian covariance q(x) = e−|x|
2/a2

. More

examples can be found in [135, Ch.4]. Of course, these covariance functions render

analytic considerations more involved than in the case of the ‘delta-function’ of white

noise, and to perform computations, we first have to determine the representation

of the corresponding Wiener process according to Theorem 1.2.13. To make things
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more concrete, assume for instance that we are interested in coloured noise on the

torus Td. Similarly to the white noise case, we are going to construct the corre-

sponding Wiener process on L2(Td). Recall from (1.14) that the covariance operator

Q : L2(Td)→ L2(Td) is the convolution operator with respect to the covariance ker-

nel q. To compute the eigenfunctions {fk} and positive eigenvalues {λk} of Q, we can

employ the fact that every translation-invariant operator is diagonal with respect to

the Fourier basis [52], and thus we only have to determine the eigenvalues. For more

general domains however, the quest for {fk, λk} can entail expensive computations.

At the end of the day, white noise seems to be - if justifiable – the modeller’s

first choice: it does not introduce new model parameters such as length scales and

covariance structure, it simplifies analytic considerations and renders computer sim-

ulations straightforward. This observation is confirmed by a substantial amount of

white noise models found in the literature (see also Section 5.2). However, from the

point of view of mathematical analysis, the world order seems reversed. Let’s see

why.

1.2.5 White or coloured? The analyst’s perspective

In this section, we summarize some regularity results for the semilinear parabolic

SPDE on Td,

du = [∆u+ g(u)] dt+ dWQ
L2(Td)

, u(0) = u0. (1.19)

where g : R→ R is locally Lipschitz, and WQ
L2(Td)

is a cylindrical or coloured Wiener

process on L2(Td). For comments on the respective proofs, please refer to Section
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6.2. The nature of the results depends on the spatial dimension d, and we shall

distinguish the two cases d = 1 and d ≥ 2.

d=1. In this case, problem (1.19) is well-posed: there exists almost surely a

unique solution in u ∈ C([0, T ], C(T1)), independent of whether Q is trace-class or

not (as long as its spectrum is e.g. bounded). In other words, the Laplacian is strong

enough to keep noise and nonlinearity in check, even if TrQ =∞.

d≥2. Assume that TrQ < ∞. In this case, almost sure existence of a unique

solution u ∈ C([0, T ], C(Td)) still holds true, similarly to the one dimensional case.

In other words, if we work with a spatial covariance q(x) giving rise to a coloured

noise and a coloured Wiener process with trace-class covariance operator Q (see

(1.14)), the solution to (1.19) is well-defined. However, in the white noise case (with

corresponding cylindrical Wiener process W Id
L2 ), things don’t work out that well. For

instance, the solution to the linear version of (1.19)

du = [∆u− u] dt+ dW Id
L2 , u(0) = u0,

is not function-valued, but merely distribution-valued [180]. This fact, together with

the impossibility of the multiplication of distributions [149], suggests that space-

time white noise-driven models of type (1.19) in dimensions d ≥ 2 might be ill-

posed. For this reason, most results in the mathematical literature are stated under

the assumption that TrQ < ∞. To our knowledge, nobody has investigated the

anticipated pathologies beyond speculation.
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Comparing the above results to the modeller’s perspective in Section 1.2.4, we

make the following observation: while there is a general consensus among mathe-

maticians that nonlinear parabolic SPDEs with additive white noise are ill-posed in

dimensions d ≥ 2, the same equations continue to flourish as models for real-world

problems in the applied sciences. This discrepancy constitutes the main motivation

for the work presented in Part II of this thesis.

1.3 Numerics

A general comment about the role of numerical strategies throughout this the-

sis is in order. Even though limited expository emphasis is put on the employed tech-

niques, it is important to point out that the numerical simulations in both projects

posed nontrivial challenges themselves. Nonlinearities, multiple timescales, a mix-

ture of parabolic and hyperbolic contributions (Part I), as well as the combination

of nonlinearity and stochastic forcing (Part II) required careful investigations. To

tackle the respective challenges, we had to explore and implement strategies such as

fractional multi-step methods and implicit-explicit schemes in combination with a

mixture of finite difference and pseudospectral differentiations.

1.4 Rationale and structure: reader’s guide

Part I: Mathematics of Bone Remodelling

In the first half of this thesis, we study the spatio-temporal dynamics of bone remod-

elling (Chapters 2 and 3), and its connection to the growth of cancer metastases in

the bone environment (Chapter 4).

The motivation for developing a spatio-temporal model of bone remodelling

is threefold: 1) in vivo experiments on bone remodelling are difficult, lengthy and
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expensive 2) it is generally impossible to track the evolution of a single bone multi-

cellular unit over time 3) previous ODE models have not been able to capture certain

features of bone remodelling.

In Chapter 2, we develop a nonlinear PDE model of a single bone multicellular

unit in trabecular bone. We provide a detailed justification of the mathematical

rationale behind the model, perform a sensitivity analysis and present simulations in

one and two space dimensions. In Chapter 3, we revisit the model from from the bi-

ologist’s perspective and investigate several biologically relevant remodelling regimes.

We provide new insights into the RANKL/RANK/OPG pathway and demonstrate

that the spatial distribution of the cytokine fields plays an important role in BMU

regulation.

In Chapter 4, we use the previously developed model to study the dynamics

of cancer metastases in bone. In particular, we investigate the role of OPG in the

interaction between cancer and bone cells. This work is motivated by seemingly con-

tradictory experimental findings in the literature: OPG expressed by cancer cells can

both increase and decrease tumour growth. We propose a unifying mechanism which

is able to explain these differential outcomes, and we positively test our hypothesis

by means of model simulations.

Part II: 2D Stochastic Allen-Cahn Equation

In the second half of this thesis, we study the well-posedness of the two-dimensional

Allen-Cahn equation with additive space-time white noise. While this equation is

frequently used to model physical systems in the applied science literature, it is
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generally suspected to be ill-posed in the mathematics literature. The general lack

of a rigorous proof of these suspicions provides the motivation for our investigation.

In Chapter 5, we study a sequence of regularized versions of the equation,

obtained by means of a high frequency cut-off in the noise field. Based on numerical

evidence and heuristic arguments, we conjecture that this sequence of approximations

converges to the zero distribution. In Chapter 6, we combine elements of stochastic

quantization with the theory of Besov spaces to prove the conjecture. The result

shows that a series of published studies in the applied sciences literature is indeed

problematic.

1.5 Dissemination

1.5.1 Publications

This thesis is mostly manuscript-based. Except for Chapter 6 (in preparation

for publication), the main chapters consist of published and submitted articles.
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Model. M.D. Ryser, S.V. Komarova and N. Nigam. Reproduced from SIAM

Journal on Applied Mathematics, 70:1899–1921 (2010), with permission of the

Society for Industrial and Applied Mathematics.

[143] (Chapter 3) Mathematical Modeling of Spatio-Temporal Dynamics of a Single

Bone Multicellular Unit. M.D. Ryser, N. Nigam, S.V. Komarova. Reproduced

from Journal of Bone and Mineral Research, 24(5):860–870 (2009), with per-

mission of the American Society for Bone and Mineral Research
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I dedicate this part of the thesis to Steve Turner.

May he rest in peace.
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CHAPTER 2
The Cellular Dynamics of Bone Remodelling:

a Mathematical Model

2.1 Abstract

In this chapter, we develop a novel nonlinear PDE model with time delays to

capture the spatio-temporal dynamics of a single bone multicellular unit. The model

describes the osteoblast and osteoclast populations together with the dynamics of the

key messenger molecule RANKL and its decoy receptor OPG. Scaling theory is used

to address parameter sensitivity and predict the emergence of pathological remod-

elling regimes. The model is studied numerically in one and two space dimensions

using finite difference schemes in space and explicit delay equation solvers in time.

The computational results are in agreement with in vivo observations and provide

new insights into the role of the RANKL/OPG pathway in the spatial regulation of

bone remodelling. This work appeared in SIAM Journal on Applied Mathematics,

70:1899 (2010), [142].

2.2 Introduction

The vertebrate skeleton plays a crucial role in providing mechanical support as

well as a ready source of calcium and other important minerals. Physical loading of

the skeleton causes stresses which can lead to local micro-damage in the bone tissue.

Similarly, if the calcium level in the blood drops below a certain threshold, systemic
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regulators such as hormones transmit the command to release calcium through re-

moval (resorption) of bone tissue. In both cases, the resorbed spaces have to be filled

with sound tissue in order to restore the structural integrity. This joint process of

bone destruction and re-growth is referred to as bone remodelling, and is realized by

complex multicellular entities, the so-called bone multicellular units (BMU). Each

BMU consists of several interacting cell types and a whole variety of biochemical

signalling factors. The importance of remodelling becomes apparent when consider-

ing the implications of its malfunctioning. Deficient or even absent remodelling of

micro-damage can lead to macroscopic bone fractures, and pathologies in the BMU

functioning are largely responsible for diseases such as osteoporosis and rheumatoid

arthritis [92].

The various physiological and pathological aspects of BMUs have been studied

by both experimentalists and clinicians for well over 40 years [124]. However, due to

a general lack of conclusive in vivo experiments – so far mainly consisting of histolog-

ical sections of dead bone tissue – several phenomena remain poorly understood. The

difficulty and costs for in vivo experiments suggest that there is great potential for

mathematical modelling in this field. So far, several research groups have modelled

the local strain fields in bones [156, 187] as well as the temporal sequence of local

bone destruction and re-growth at the cellular level [90, 91, 103]. In essence, the

latter models successfully capture the local bone cell dynamics in physiological set-

tings and are even able to describe certain pathologies. However, the functioning of a

remodelling unit strongly depends on its spatial organization and therefore, a purely

temporal model cannot provide a complete description of the BMU. To address this,
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we develop here a novel spatio-temporal model of a single remodelling unit, describ-

ing the dynamics of both the involved bone cell populations as well as the relevant

signalling pathways. The model consists of five nonlinear partial differential equa-

tions (PDE) and is based on a continuum assumption for the cell populations.

In Section 2.3, we first give an outline of the relevant biology, thereby focusing

on the three types of bone cells (osteoclasts, osteoblasts, osteocytes) and the most

important biochemical factors (the RANK/RANKL/OPG pathway). Once these

concepts are established, we begin the model development in Section 2.4 by introduc-

ing a previous temporal model by Komarova et al. [90, 91]. Given the complexity of

the underlying biological system – involving endocrine signalling, cell motion, fluid

diffusion etc. – some simplifying assumptions are necessary in order to develop a

compact and closed spatio-temporal model. The model is developed in an abstract

setting independent of the spatial dimension, but can be applied to one (1D), two

(2D) or three (3D) dimensions. In Section 2.5 we present the 1D case, use scaling

theory to gain insight into parameter sensitivity, and present experiments focusing

on the different pathological regimes. The biologically more relevant 2D case is then

discussed in Section 2.6 and a selection of two physiological remodelling experiments

is presented. The results of the 2D experiments provide a model validation as well

as new insights into the role of the RANK/RANKL/OPG pathway in the spatial

regulation of bone remodelling.

2.3 The biology of bone remodelling

Bone remodelling refers to the combination of bone destruction and subsequent

re-growth. It is a coordinated process of three different cell types that interact
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by means of several biochemical factors. Furthermore, mechanical strains play an

important role in the stimulation and steering of remodelling units. The following

outline is focused on the model-relevant mechanisms and we refer to [124, 138] for

detailed reviews.

2.3.1 The bone cells

Three different cell types are involved in remodelling.

• Osteoclasts [130, 14] are cells which resorb mineralized bone tissue while moving

along the bone surface. They are formed by cell differentiation from stem cells in

the bone marrow and have a life span of roughly 10 days. A key stimulator for

osteoclast differentiation and activation is a molecule called RANKL (the receptor

activator of nuclear factor κB).

• Osteoblasts [65] are cells which fill the previously resorbed trench with osteoid,

the organic part of the bone tissue. Later on, osteoid mineralizes and the remod-

elling process is complete. Osteoblasts differentiate from stem cells in the bone

marrow, they do not move along the bone surface, and they express the messenger

molecule RANKL and its decoy receptor OPG (osteoprotegerin). After approx-

imately two weeks, osteoblasts either die or differentiate into osteocytes and get

buried alive in the new bone tissue.

• Osteocytes [51, 11] differentiate from active osteoblasts and are connected with

each other to form a large network of active cells within the bone tissue. This

network is believed to propagate information, to localize damage sites and micro-

strains, and to play an important role in the process of mechanotransduction.
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The three cell types communicate by means of autocrine signalling (communication

among cells of the same type) and paracrine signalling (communication among cells

of different types). Generally, the bone cells and their messengers operate locally in

well-confined remodelling units, the BMUs. These units operate for up to 12 months

in a row, thereby by far exceeding the individual cell’s life spans. The progression of

a BMU across the bone can be summarized as follows:

Step 1) Initially, 10 − 20 osteoclasts are recruited to the initiation site and resorb

the old bone tissue. Once the tissue is removed, the osteoclasts move on and

keep on resorbing while traveling at a speed of 20− 40µm per day [77, 124].

During the whole remodelling process, they stay together in a spatially well-

confined aggregation (cutting cone). Dead cells are continually replaced by

new ones so that the population size remains approximately constant.

Step 2) Once the osteoclasts have resorbed the bone tissue, they recruit 1000-2000

osteoblasts that fill the previously resorbed trench with new bone matrix

(closing cone). Osteoblasts are much less efficient than osteoclasts and the

bone formation takes roughly 10 times longer than the resorption.

Step 3) Finally, the new bone matrix mineralizes and osteoblasts either die or dif-

ferentiate into osteocytes.

There are two kinds of bone tissues. Cortical tissue is dense and compact and forms

the outer surface of bones. Trabecular tissue fills the inner cavity with a honeycomb-

like structure, consisting of irregularly shaped spicules (trabeculae) endowed in bone

marrow. Remodelling takes place in both cortical and trabecular bone and the

difference in the respective BMU progressions is geometrical rather than biological
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Figure 2–1: BMU cartoon. A schematic, not-to-scale representation of a BMU
moving along a micro-fracture on a piece of trabecular bone. Osteoclasts resorb the
bone in form of a cutting cone and osteoblasts subsequently fill the resorbed space
with new bone matrix. Bone cells interact by means of cytokines and growth factors
and osteoblasts differentiate into osteocytes.

in nature: whereas the BMU has to dig a complete tunnel to penetrate the compact

cortical tissue, it can move along the surface of the trabeculae, thereby only digging

a half-trench. Figure 2–1 illustrates the temporal sequence of the remodelling steps

on a trabecula.

2.3.2 The biochemical factors involved in remodelling

The coordination of osteoclasts, osteoblasts and osteocytes within a BMU is

realized through a sophisticated communication system, which consists of various

autocrine and paracrine signalling pathways involving numerous coupled effectors.

However, the multiple actions attributed to some of these effectors make it hard to

identify the actual key players and to predict the cumulative dynamics of the cou-

pling. Figure 2–2 summarizes the major control pathways in the remodelling process
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and identifies the respective messenger molecules. Among the multiple messengers

involved, RANKL and OPG have been shown to play critical roles in both physio-

logical bone remodelling and in the development of diseases [92, 17, 83]. RANKL

is a cytokine produced in either memebrane-bound or soluble form by cells of the

osteoblast lineage, prominently by osteocytes and osteoblasts. Several studies have

shown that RANKL is up-regulated in situations associated with increased bone

remodelling, such as PTH treatment [73], mechanical stimulation [80], as well as

fractures [75]. RANKL binds to RANK receptors on the surface of osteoclastic cells

and has a stimulatory impact on the differentiation of osteoclast precursors and the

subsequent activation of mature osteoclasts into active, resorbing cells. On the other

hand, the molecule OPG, produced by mature osteoblasts [57], acts as a decoy recep-

tor of RANKL, i.e. it inhibits RANKL by forming RANKL-OPG complexes. Since

the presence of OPG means less RANKL-RANK binding and hence less osteoclast

stimulation, a high RANKL/OPG ratio favours bone resorption whereas a low ra-

tio down-regulates osteoclastic activity. The RANK/RANKL/OPG pathway is also

known to be employed by systemic regulators such as parathyroid hormone (PTH)

and vitamin D to regulate the resorption activity. Note finally that the spatial sep-

aration of the different RANKL and OPG sources indicates that in addition to the

local ratio of the chemicals, their spatial distribution plays an important role, too.

2.3.3 The mechanical effects: microscopic strains and fractures

There are two different remodelling modes, targeted and random remodelling.

Whereas the former mode aims at damage removal by means of local micro-fracture
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Figure 2–2: Remodelling Pathways. Cells and biochemical factors known to
play a role in the remodelling process of bone. The cells are osteoclasts (OC), os-
teoblasts (OB), osteocytes (OCY), and their respective precursor cells. Solid lines
stand for positively balanced processes (cell differentiation and production of chemi-
cals/tissue) and dotted lines for positively balanced regulations (autocrine/paracrine
stimulation). The (-) next to an arrow indicates a negatively balanced process or
regulation.
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reparation, the latter serves the purpose of damage prevention: old – but not neces-

sarily damaged – tissue is continually renewed across the skeleton to prevent fatigue

damage. Both remodelling types rely on steering mechanisms that ensure that BMUs

are guided towards damage sites and move in a way that minimizes structural in-

stability due to ongoing bone erosion. The concept of targeted steering is based on

established evidence that the presence of micro-fractures leads to creation of new

BMUs and attraction of already existing BMUs [20, 19]. On the other hand, it has

been suggested that strain-derived canalicular fluid flow is responsible for osteoclast

activity and motility in the cutting cone of the BMU [18], leading to strain-derived

steering. In particular, this steering mechanism ensures that BMUs move along the

principal strain axis of the bone and hence optimize its robustness at anytime of the

remodelling process. Both steering mechanisms rely on mechanical features that need

to be translated into cell signals to attract BMUs. Recent investigations show that

there is a unifying mechanism of mechanotransduction for both damage and strain,

mediated by osteocytes. In fact, both mechanically damaged osteocytes and osteo-

cytes exposed to fluid shear stress have been shown to express RANKL [6, 96, 188].

Since RANKL is a potent osteoclast stimulator, this allows mechanically stimulated

osteocytes to attract BMUs and hence guide them towards damage sites and along

the principal stress directions.

2.4 The mathematical model

In this section, we develop a mathematical model describing the spatio-temporal

evolution of a single BMU at cellular level. The overall goals of this model are the

following:
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• To describe the distinctive spatial and temporal features of the cutting cone

and the BMU movement.

• To link the key biochemical factors RANKL and OPG with the known popu-

lation dynamics of bone cells.

• To test the model on experimental findings and suggest new experimental stud-

ies.

Since we develop a model that can be considered in one, two and three space dimen-

sions, we do not specify its dimension explicitly and denote it simply by n, where

n = 1, 2, 3. The 1D and 2D versions of the model presented in this article are partic-

ularly suited for the description of trabecular remodelling, and the restrictions of their

applicability to cortical bone will be discussed in Section 2.7. The major modelling

assumptions can be summarized as follows:

• We focus on trabecular remodelling, more precisely on the dynamics of a BMU

moving across a single trabecula.

• The trabecula is locally flat enough so that we can neglect curvature.

• We make a continuum assumption for the cell population densities, i.e., we

shall be modelling cell densities rather than individual cells.

• The BMU evolves along the surface of the trabecula and the depth of the

resorbed trench (∼ 10µm) is small in comparison to its width (∼ 500µm).

• Of the several cell types involved in remodelling – osteoblasts, osteoclasts,

osteocytes and their respective precursors – we only consider osteoblasts and

osteoclasts as state-variables.
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• The trabecula is endowed in bone marrow which can be considered as a reservoir

of precursor cells.

• Among the multitude of biochemical factors, only RANKL and OPG are mod-

elled explicitly, the rest of the factors – such as TGF-β, IGF, M-CSF and nitric

oxide – are captured in nonlinear interactions.

• The canopy of bone lining cells separating the BMU from the bone marrow

[66] ensures that the loss of chemicals by vertical diffusion is negligible.

• We model the elimination of OPG and RANKL through their mutual interac-

tion only and do not include their natural decay rates.

• The mechanical factors responsible for the BMU steering – microscopic strains

and damages – are modelled implicitly in form of an appropriate RANKL

distribution in the initial field. For the sake of simplicity, we will from now

on refer to these distributions as micro-fractures, even though they might be

caused by local micro-strains, see Section 2.3.3.

Due to the complexity of the model, we proceed in three steps, starting off with

a brief review of the temporal model introduced by [90, 91]. In a second step, we

introduce the spatial extension of the model as well as the RANKL and OPG fields.

In a third step, we complete the model by adding appropriate initial and boundary

conditions.

2.4.1 Prior work: temporal model

The model suggested by Komarova et al. [90, 91] is a temporal model describing

the population dynamics of bone cells at a single point within the BMU. Denoting

the number of osteoclasts and osteoblasts by u1 and u2 respectively, the cell dynamics
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are modelled as  ∂tu1 = α1u
g11

1 ug21

2 − β1u1,

∂tu2 = α2u
g12

1 ug22

2 − β2u2,
(2.1)

where αi and βi are activities of cell production and death and all have units [day−1].

The four dimensionless parameters gij represent the effectiveness of the autocrine and

paracrine interactions between the constituent cells. Let us now briefly discuss the

various signalling factors gij, thereby making some restrictions appropriate to the

spatio-temporal model we are finally aiming for. The factor g11 represents the ef-

fectiveness of the autocrine interactions between osteoclasts and has been shown to

control the overall remodelling dynamics [91]. Osteoclast-derived paracrine regula-

tion of osteoblasts (g12) is the crucial link in the BMU coupling and its inhibition

leads to negatively balanced remodelling [90]. Regarding the autocrine stimulation

of osteoblasts (g22), it is known that the latter express auto-stimulatory factors such

as insulin-like growth factors IGF [21]. However, these factors do not influence the

dynamical behaviour of the BMU [91] and we assume here that they are negligible

in comparison to the impact of g12, i.e we set g22 = 0. Finally, osteoblast-derived

paracrine regulation of osteoclasts is dominated by the RANK/RANKL/OPG path-

way [186, 86] and therefore the factor g21 plays an important role in the temporal

model. However, since we will eventually develop a model that includes the RANKL

and OPG fields explicitly as state-variables, we can set g21 = 0. After these simpli-

fications, the system (2.1) reduces to ∂tu1 = α1u
g11

1 − β1u1,

∂tu2 = α2u
g12

1 − β2u2.
(2.2)
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For g11 < 1, the unique non-trivial fixed point (u1,ss, u2,ss) > (0, 0) of equation (2.2)

is a stable node. It is assumed that cells below the steady-state values ui,ss are

precursor cells which are less differentiated. In other words, they are not actively

involved in the resorption and production of bone matrix, but participate in autocrine

and paracrine signalling. Increases in ui above ui,ss are regarded as proliferation and

differentiation of precursors into mature osteoclasts and osteoblasts that participate

actively in the remodelling process. In this sense, the initiation of remodelling can

be induced manually by increasing the number of osteoclasts above the equilibrium

value, i.e. by choosing initial conditions u1(t0) > u1,ss. Note that u2(t0) = u2,ss is

sufficient because it is assured that osteoblasts are recruited by active osteoclasts. For

all the subsequent numerical experiments we will choose the parameter g11 < 1 such

that (u1,ss, u2,ss) corresponds to a stable steady-state solution of (2.2). Together with

the initiation procedure explained above, this implies that (u1, u2) ≥ (u1,ss, u2,ss) for

all t ≥ t0 and hence we can ensure that the populations of active cells, denoted

hereinafter by yi ≡ ui − ui,ss, remain non-negative. Using the decomposition ui ≡

ui,ss + yi, we can see that the system (2.2) actually describes the evolution of the

active cell populations coupled to the constant precursor populations ∂ty1 = α1(u1,ss + y1)g11 − β1(u1,ss + y1),

∂ty2 = α2(u1,ss + y1)g12 − β2(u2,ss + y2).
(2.3)

Even though our main interest is the evolution of the active cells in (2.3), we will

henceforth use the equivalent version (2.2) for its more compact notation. The active

cell populations are then easily recovered by subtracting the corresponding precursor

populations ui,ss from the solutions ui of (2.2).
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2.4.2 The spatial extension

We use now the temporal model (2.1) as the basis for the spatial extension. The

model developments in this section are independent of the spatial dimension and we

avoid a specific choice by denoting all differential operators by their multidimensional

symbols such as ∇ and ∆. Later on we will discuss the 1D case in Section 2.5 and

the 2D case in Section 2.6. The units of the parameters introduced below can all be

found in the Appendices 2.B and 2.C.

First, we switch to space-dependent state variables ui(t) 7→ ui(x, t), where x ∈

Ω ⊂ Rn and the domain Ω is chosen large enough to avoid interactions with the

boundaries (n = 1, 2, 3 is the spatial dimension). Note in particular that the ui have

now the units of a density [mm−n]. At the same time we introduce the RANKL

and OPG fields as new state variables. They are denoted by φR(x, t) and φO(x, t)

and have the units of a concentration [mol mm−n]. To build up the final model we

proceed now in two steps. First, we assume that the RANKL and OPG fields are

known and analyze their impact on osteoclasts and osteoblasts. In a second step we

introduce then the equations governing the spatio-temporal evolution of the RANKL

and OPG fields themselves. Finally, we would like to emphasize that throughout the

spatial extension the quantities ui,ss refer to the steady-state densities of the temporal

equation (2.2) and not to the steady-state solutions of the spatial equations.

The impact of RANKL and OPG on osteoclasts and osteoblasts

RANKL is known to have an important impact on osteclasts: it promotes

their differentiation and activation and contributes together with other signalling

molecules to the navigation (chemotaxis) of active cells [14, 77]. On the other hand,
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the only impact of OPG on osteoclasts is indirect by means of RANKL inhibition.

Accordingly, the osteoclast equation in (2.1) has to be augmented by two contribu-

tions only:

∂tu1 = α1u
g11

1 − β1u1 − ζ∇ · (y1∇φR)︸ ︷︷ ︸
C1

+ k1
φR

λ+ φR
θ(y1) u1︸ ︷︷ ︸

C2

. (2.4)

The term C1 describes the motion of active osteoclasts along the gradient of the

RANKL field and ζ indicates the effectiveness of migration. The second term C2 rep-

resents the stimulating action of RANKL on osteoclasts via RANK-RANKL binding

(k1 is the corresponding reaction rate). This comprises both the differentiation of pre-

cursor cells into active osteoclasts as well as the steadily occurring renewal of nuclei in

already resorbing cells [124]. We assume that the RANK receptors have a saturation

threshold, hence the sigmoid function with λ as the concentration of half-saturation.

The Heaviside function θ(y1), defined as {θ(x) = 0 if x ≤ 0, θ(x) = 1 if x > 0 },

ensures that stimulation takes place only in presence of active osteoclasts (y1), i.e.

only osteoclasts (u1) in the cutting cone area are stimulated by RANKL. It is easy to

verify that if u1(t0) ≥ u1,ss, then u1 ≥ u1,ss for all t ≥ t0, i.e. the population of active

osteoclasts stays non-negative. Therefore, the same comments as in Section 2.4.1

apply and equation (2.4) can, similarly to equations (2.2) and (2.3), be rewritten as

an evolution equation for y1.

Regarding osteoblasts, we assume that they are recruited by osteoclasts and do

not move by themselves. Since RANKL and OPG have no significant impact on their

dynamics, the u2 equation in (2.1) remains unaltered.
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Dynamics of RANKL and OPG fields

The evolution of the RANKL concentration φR is governed by production, dif-

fusion and reaction. More precisely, RANKL is expressed by active osteoblasts, it

spreads across the trabecula through diffusion and it binds to OPG as well as RANK

receptors on osteoclasts. In mathematical terms, the rate of change in time reads

∂tφR = aR y2,tR︸ ︷︷ ︸
C3

+κR∆(φεRR )︸ ︷︷ ︸
C4

− k2
φR

λ+ φR
θ(y1) u1︸ ︷︷ ︸

C5

− k3φRφO︸ ︷︷ ︸
C6

. (2.5)

The RANKL source by active osteoblasts C3 is justified as follows: after the dif-

ferentiation of precursors into mature osteoblasts, it takes a certain time tR until

the cells start to produce RANKL [57, 163, 7]. The number of active osteoblasts

at time t that are of age tR > t or older is e−β2tRy2(x, t − tR) and after absorbing

the constant prefactor into the proportionality constant aR we obtain C3, where

y2,tR ≡ y2(x, t− tR). The second contribution C4 takes care of the porous diffusion

which can vary between very low for membrane-bound RANKL and high for solu-

ble RANKL. κR is the diffusion constant and the dimensionless exponent εR ≥ 1

reflects the porosity of the medium surrounding the BMU. Note that if εR > 1, then

an initially compactly supported RANKL field will stay compactly supported over

time; this is not the case for the regular diffusion equation which is known to have

infinite propagation speed. Since the BMU environment is very irregular and since

the spreading cytokines are in steady interaction with the various constituents of the

bone matrix as well as adjacent bone cells, the porous version with εR > 1 seems

to provide a more plausible model for the RANKL field than the regular version

with εR = 1. For a more detailed discussion of porous medium equations we refer
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to [47, 44]. The contribution C5 is due to the receptor-ligand binding of RANK and

RANKL and is almost identical to C2 in equation (2.4), except for the different rate

constant k2. Note that k2 contains information about several factors such as receptor

density on osteoclasts and reversibility of the RANK-RANKL binding. Finally, the

reaction term C6 models the RANKL-OPG binding with rate constant k3.

Similarly to φR, the rate of change in the OPG field φO is also governed by the

contributions of source, diffusion and reaction:

∂tφO = aO y2,tO︸ ︷︷ ︸
C7

+κO∆(φεOO )︸ ︷︷ ︸
C8

− k3φRφO︸ ︷︷ ︸
C9

. (2.6)

Similarly to C3 in equation (2.5), OPG is produced by mature osteoblasts with

a time delay tO such that tO > tR [57, 163, 7]. The contribution C8 for porous

diffusion (εO ≥ 1) is analog to C4 and the OPG-RANKL binding C9 is identical to

C6. Note that the diffusion parameters of RANKL (κR, εR) and OPG (κO, εO) are

not necessarily equal. In a physiological setting, RANKL is mainly membrane bound

whereas OPG is soluble.

2.4.3 The complete model

Together with the evolution of the bone density z(x, t) – diminished by active

osteoclasts and augmented by active osteoblasts – equations (2.1), (2.4), (2.5) and
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(2.6) yield the following nonlinear, time-delayed partial differential equation

∂tu1 = α1u
g11

1 − β1u1 − ζ∇ · (y1∇φR) + k1
φR

λ+φR
θ(y1) u1

∂tu2 = α2u
g12

1 − β2u2

∂tφR = aR y2,tR + κR∆(φεRR )− k2
φR

λ+φR
θ(y1) u1 − k3φRφO

∂tφO = aO y2,tO + κO∆(φεOO )− k3φRφO

∂tz = −f1 y1 + f2 y2.

(2.7)

Recall that yi ≡ ui − ui,ss are the active cells and y2,tω ≡ y2(x, t− tω).

The mechanisms behind BMU initiation are still not fully understood and we

do not attempt to model them explicitly. Instead, we initiate the BMU manually by

perturbing the following fixed point of (2.7)

u1(x, t) = u1,ss

u2(x, t) = u2,ss

φR(x, t) = 0

φO(x, t) = 0

z(x, t) = 100.

(2.8)

To initiate the BMU we proceed now as follows. We leave the osteoclast field at

steady-state u1,ss everywhere except for a confined region U where we add a few

active cells u1,pert(x) > 0 for x ∈ U . We assume that there are initially no active

osteoblasts, so that the total osteoblast density equals u2,ss everywhere. This is

consistent with the assumption of the bone marrow being a precursor reservoir. The

initial RANKL field is of great importance for the model because it is responsible

for both targeted and strain-derived steering of the BMU. In fact, since neither the
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Table 2–1: Model parameters for (2.7).

Parameter Description
α1 Production rate of osteoclasts
g11 Autocrine stimulation of osteoclasts
β1 Apoptosis rate of osteoclasts
ζ Chemotactic motility of osteoclasts
k1 RANK-RANKL stimulation rate
λ Half-saturation of RANK-RANKL binding
α2 Production rate of osteoblasts
g12 Osteoclast-induced paracrine stimulation of osteoblasts
β2 Apoptosis rate of osteoblasts (includes differentiation

into osteocytes)
aR Production rate of RANKL by osteoblasts
tR Minimum age for active osteoblasts to produce RANKL
κR RANKL diffusivity
εR Porous diffusion coefficient of RANKL
k2 RANK-RANKL binding rate
k3 RANKL-OPG binding rate
aO Production rate of RANKL by osteoblasts
tO Minimum age for active osteoblasts to produce OPG
κO OPG diffusivity
εO Porous diffusion coefficient of OPG
f1 Resorption rate of bone by active osteoclasts
f2 Production rate of new bone by active osteoblasts
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strain fields nor the osteocytes (which are responsible for the mechanotransduction

by means of RANKL expression) are modelled explicitly as state-variables, possible

damage sites and the principal stress directions have to be included in form of local

perturbations of φR,pert(x). Finally, we assume that there is no OPG present in

the initial system and that the bone density is at 100% . In summary, the initial

conditions are given by:

u1(x, t = 0) = u1,ss + u1,pert(x)

u2(x, t = 0) = u2,ss

φR(x, t = 0) = φR,pert(x)

φO(x, t = 0) = 0

z(x, t = 0) = 100

x ∈ Ω. (2.9)

Since bone remodelling is a local process, we choose the domain large enough to

avoid interactions of the BMU with the boundary. Note that for the BMU life spans

considered hereinafter, large enough means at least one order of magnitude longer

than the cutting cone. The corresponding Dirichlet boundary conditions for (2.7) are

given in (2.8) with x ∈ ∂Ω.

Three comments regarding equations (2.7) - (2.9) are in order. First, we draw

attention to the fact that the osteoblast and the bone density equations are ordi-

nary differential equations and can be integrated explicitly. In particular, for the u2

equation we get

u2(x, t) = u2,sse
−β2t + α2

∫ t

0

eβ2(s−t)ug12

1 (x, s)ds. (2.10)
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Second, the Heaviside function introduces a discontinuity into the equations, rais-

ing questions about the well-posedness of the PDE. It can be seen that the point

(u1,ss, u2,ss, 0, 0) is not a stable fixed point of the system. In the situations of interest,

however, y1 cannot be zero unless φR is as well, since the active osteoclasts are only

present in the cutting cone. Hence, we do not encounter issues of non-uniqueness.

The questions of uniqueness and stability of the PDE system for the general situation

are of interest, and are the subject of current work.

Third, we expect the osteoclast field u1 and the RANKL field φR to inherit

the singular behaviour of the Heaviside function in (2.7). In addition, the RANKL

field also suffers from porous diffusion effects, which themselves are known to exhibit

singular behaviour. If the initial RANKL field is compactly supported in a region

with a smooth boundary, this free surface may develop local corners and cusps in the

course of the simulation [44]. Indeed, if we allow φR to become negative (dropping

below some threshold), very little can be said about the regularity of the ensuing

PDE. This is an interesting question in its own right and will affect how computations

may be performed. However, at this present juncture, we restrict ourselves to non-

negative RANKL fields.

2.5 The 1D model

Due to the complexity of the model and the multitude of unknown parameters,

we look at the 1D version of (2.7) - (2.9) before proceeding to the computationally

more expensive 2D case. Note that in one dimension (n = 1), the differential oper-

ators simplify as ∇ 7→ ∂x and ∆ 7→ ∂xx. Before solving the system numerically, we
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first use some ideas of scaling theory to get a better understanding of physiological

and pathological remodelling regimes as well as the corresponding parameter sets.

2.5.1 Parameter estimation and sensitivity analysis

The primary goal after having established the model (2.7) - (2.9) is to identify

a – not necessarily unique – set of parameters that corresponds to a physiological

remodelling regime. Once this is achieved, various combinations of parameters can

then be modified to study the emergence of pathologies. Ideally, the physiological

parameter set could be estimated on the basis of experimental data. However, since

almost none of our 23 parameters can be matched with experimental findings, we are

forced to adopt a different strategy. First, we consider the purely temporal model

(2.2) and follow the reasoning in [91] to obtain meaningful values. In particular, the

values for βi can be estimated from experimental findings about the corresponding

life spans of bone cells. Also, it is shown that the value of g12 leads to unstable

results outside of the interval [0.1, 4] and that g11 determines the overall dynamics of

the cell populations. These facts, together with an estimation of the time delays (tR,

tO) [7, 163, 57] and the aim of having a ratio of u2,ss/u1,ss ≈ 100 [124], lead to the

choice of αi, βi, gij, tR and tO found in (2.17). The remaining parameters cannot be

matched with experimental data and we determine their physiological values a poste-

riori. More precisely, we fix the parameters in (2.17), run simulations (as described

in Section 2.5.2) and vary the remaining unknown parameters until the following

two criteria are matched: first, the numerical solution has to coincide spatially and

temporally with the global dynamics of in vivo observations and second, the cutting

cone has to stay compact and move at a fairly constant speed. The outcome of this
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approach leads to the values summarized in (2.18).

Now that the physiological set is determined, we can investigate the sensitiv-

ity of the model to parameter changes. To alleviate this task, we decide to focus on

pathologies in the RANK/RANKL/ OPG pathway only. In other words, we consider

the (2.17) parameters from now on as fixed parameters and merely consider varia-

tions in the remaining free parameters of (2.18). However, a systematic sensitivity

analysis of the 13 free parameters is still a rather unrealistic undertaking. Instead,

we employ a scaling approach to analyze which parameters are able to destabilize

the physiological regime and lead to the emergence of pathologies. The essence of

scaling theory is to non-dimensionalize the equations by finding well-chosen scales

for all the state-variables as well as the time and space variables. This leads to scaled

equations where each term decomposes into the product of a dimensional coefficient

representing the term’s magnitude and a dimensionless factor of order of unity. Once

this is achieved, it is possible to rewrite the equation in a dimensionless form where

all the non-dimensional factors are now preceded by so-called dimensionless groups

that contain all the information about the terms’ magnitudes. The dimensionless 1D

version of (2.7) reads

∂t̃ũ1 = G1ũ
g11

1 −G2ũ1 −G3a(ỹ1∂x̃x̃φ̃R)−G3b(∂x̃ũ1∂x̃φ̃R) +G4
φ̃R

λ̃+φ̃R
θ(ỹ1)ũ1

∂t̃ũ2 = G5ũ
g12

1 −G6ũ2

∂t̃φ̃R = G7 ỹ2,t̃R
+G8∂x̃x̃(φ̃

εR
R )−G9

φ̃R
λ̃+φ̃R

θ(ỹ1) ũ1 −G10φ̃Rφ̃O

∂t̃φ̃O = G11 ỹ2,t̃O
+G12∂x̃x̃(φ̃

εO
O )−G13φ̃Rφ̃O

∂t̃z̃ = −G14ỹ1 +G15 ỹ2.

(2.11)
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The dimensionless groups Gi and the corresponding scales can be found in Appendix

2.A. Note that all the state variables ũi, φ̃ω, z̃ as well as x̃ and t̃ are now dimen-

sionless and we can directly compare the various terms to determine their relative

importance. In other words, we are now able to look for the dimensionless groups

and parameters whose perturbations have a big impact on the model’s regime.

From a biological point of view, the most significant quantity is the bone mass

density z̃(x̃, t̃). It contains the key information about the outcome of the remodelling

process, i.e. it determines whether we have excessive, normal or insufficient remod-

elling of the bone tissue. Since the outcome of the bone mass balance is determined

by the activities of osteoclasts and osteoblasts respectively, we have to focus primar-

ily on the dynamics of ũ1 and ũ2. However, bearing in mind that ũ2 only depends

on ũ1 and that the fixed parameters are kept at physiological values, we are assured

that the osteoclasts will recruit enough osteoblasts to replace the resorbed tissue. In

other words, the key players in the remodelling process are the osteoclasts and at this

point, we do not have to worry about the osteoblasts. The only restriction to bear

in mind is that the number of cells admissible per area is limited due to the cells’

finite sizes; we ensure this by only considering parameter ranges that respect the

spatial limitation. Osteoclasts are governed by the competition of G3 (magnitude of

migration) and G4
ΦR

λ+ΦR
(magnitude of stimulation by RANKL) and we define their

ratio as (refer to Appendix 2.A for the scales)

Γ1 : =
G3

G4

(
1 +

λ

ΦR

)
≈ ζY1∆ΦR

k1U1L2
1

(
1 +

λ

ΦR

)
=

ζY1

k1U1L2
1

min

{
ΦR, L1

√
k2U1

ζ(1 + λ
ΦR

)

}(
1 +

λ

ΦR

)
. (2.12)
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Physiological remodelling only occurs if the two terms are well-balanced, Γ1 ≈ 1. A

first pathological scenario corresponds to Γ1 � 1, i.e. the BMU moves much faster

than it can nourish its population and dies out. On the other hand, if Γ1 � 1,

we have too many osteoclasts produced in the cutting cone and hence too many

osteoblasts recruited in the back of the BMU. Depending on the RANKL and OPG

production rates, this can lead to an excessive production of RANKL which in turn

creates more osteoclasts etc. This positive feedback loop in the closing zone can be

investigated by means of the φR equation. A poor balance of RANKL production

and its inhibition by OPG can lead to the described dysfunction in the closing cone

zone of the BMU. More precisely, we are interested in the ratio of the production of

RANKL by osteoblasts (G7) and its inhibition by OPG binding (G10):

Γ2 :=
G7

G10

≈ aRY2

k3Φ̃RΦO

=
aRβ2

aOk3Φ̃R

. (2.13)

A high ratio Γ2 � 1 leads eventually to a singular behaviour of the model (blow-up

of the cell populations). Yet another pathological mechanism involves the OPG field

in the closing zone and can lead to an early termination of the BMU. More precisely,

if we have high production of OPG (G11) in combination with low RANKL inhibition

(G13), i.e. if

Γ3 =
G11

G13

≈ aOY2

k3ΦOΦ̃R

=
β2

k3Φ̃R

is very big, Γ3 � 1, then the OPG field can possibly outrun the cutting cone and

inhibit the RANKL field ahead of the BMU. The resulting lack of stimulation for the

osteoclasts of the cutting cone can then lead to the extinction of the BMU. Obviously,

this phenomenon only occurs if the diffusion is high relatively to the BMU speed.
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2.5.2 Numerical experiments in 1D

Following the outline in Section 2.5.1, a physiological parameter set (2.17) and

(2.18) is determined. The equation (2.7) is then solved numerically on an interval of

10 mm length over a time span of 250 days. We use a second order finite difference

scheme in space and the Matlab built-in delay equation solver dde23 to integrate in

time. The initial fields as well as snapshots after 100 and 200 days are presented in

Figure 2–3.

Note that the cutting cone of resorbing osteoclasts stays well-confined during

the whole remodelling process and the BMU remodels a length of approximately 5

mm in 6.5 months. Therefore, the simulation satisfies our criteria for a physiological

regime and validates the choice of parameters. Calculating the ratios defined in Sec-

tion 2.5.1, we get Γ1 = 0.83, Γ2 = 1.1 · 10−3 and Γ3 = 2.7 · 10−3. This is consistent

with the previous discussion of parameter sensitivity. Indeed, Γ1 ≈ 1 corresponds to

a well regulated resorption activity, Γ2 � 1 indicates a well-balanced RANKL distri-

bution in the closing zone which is necessary for a confined cutting cone, and Γ3 � 1

confirms that there is no risk of early termination due to excessive OPG production

and diffusion. Finally, we point out that the scale estimations in Appendix 2.A are

in agreement with the simulation in Figure 2–3.

Using the same set of physiological parameters, we investigate now the situation

where a BMU starts off in the middle of two zones of high RANKL concentration

(this corresponds e.g. to the situation of two adjacent micro-fractures). Figure 2–4

illustrates how the cutting cone splits into two parts and remodels each zone sep-

arately. In particular, the BMU remodelling the higher peak is more active as can
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Figure 2–3: Physiological remodeling I. Snapshots of the fields after 0, 100 and
200 days. OC=osteoclasts, OB=osteoblasts, Z=bone mass. The length of the domain
is 10 mm and the OB scale is to be multiplied by 104. The cutting cone (OC density
exceeding the steady-state level u1,ss = 225) stays compact and enough OB are
recruited for bone regeneration in Z. The ratios are Γ1 = 0.83, Γ2 = 1.1 · 10−3, and
Γ3 = 2.7 · 10−3. The parameter set is given in (2.17) and (2.18). Note that the kinks
in the OB and Z fields after 100 days are due to the manual BMU initiation: until
a transient regime is attained there is a slight excess in RANKL and osteoclasts,
leading to intensified resorption in Z and more osteoblasts in OB.
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Figure 2–4: Physiological remodelling II. OC=osteoclasts, OB=osteoblasts,
Z=bone mass. The length of the domain is 15 mm and the OB scale is to be
multiplied by 104. Note that the remodelling mechanism is adaptive: the higher
RANKL peak at t = 0 leads to more remodelling, see Z at t = 200. Parameter set
and corresponding Γi as in Figure 2–3 .
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Figure 2–5: Excessive remodelling. OC=osteoclasts; length of the domain is 10
mm. A Increased osteoclast recruitment and lower RANK-RANKL binding satura-
tion lead to a larger but compact cutting cone in a stable regime. The ratios are
Γ1 = 2.6 · 10−2, Γ2 = 1.3 · 10−3 and Γ3 = 3.2 · 10−3. The parameter set is given
in (2.17) and (2.18) except for λ = 2 and k1 = 9 · 10−2. B Very low OPG produc-
tion by osteoblasts in the closing zone lead to a slow and unconfined cutting cone.
Positive feedback leads to instability in the closing zone. The ratios are Γ1 = 52.2,
Γ2 = 1.3 · 10−3 and Γ3 = 1.7 · 10−3. The parameter set is given in (2.17) and (2.18)
except for aO = 2 · 10−8 after t = 60 days (aO is kept high in the beginning to avoid
numerical instabilities in the initiation zone).

be seen in the bone density evolution. In other words, the remodelling is adaptive:

the bigger the damage and hence the RANKL expression, the higher the turnover in

bone tissue.

The remainder of this section is dedicated to pathologies. A first type of BMU

malfunctioning is excessive bone remodelling and can be induced by two different

imbalances. If we decrease the ratio of osteoclast migration versus stimulation, i.e.
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if we choose the free parameters such that Γ1 � 1, then more osteoclasts and hence

osteoblasts are recruited and therefore the amount of old bone tissue that gets remod-

elled is expected to be much higher. If we simultaneously ensure that the feedback

loop parameter is small, Γ2 � 1, we can avoid instabilities in the closing zone and

expect an overall stable regime. These predictions are confirmed in the experiment

illustrated in Figure 2–5-A. Note in particular that the cutting cone, even though

much longer, stays confined and no instabilities occur. However, instabilities can no

longer be avoided if excessive remodelling is caused by unbalanced RANKL/OPG

production in the closing zone. In order to illustrate this, we pick a parameter set

such that Γ1 ≈ 1 but Γ2 � 1. As shown in Figure 2–5-B, the cutting cone is normal,

but the excessive RANKL production in the closing zone leads to recruitment of a

new generation of osteoclasts behind the cutting cone. These osteoclasts attract in

turn more osteoblasts which produce more RANKL, and the resulting positive feed-

back loop leads to well-visible instabilities.

Yet another pathological scenario is the early termination of the remodelling

process, i.e. the extinction of the BMU before its mission is accomplished. Here

too, we distinguish two different causes. If we choose Γ1 � 1, then according to

our discussion in Section 2.5.1 the osteoclast population will die out due to deficient

stimulation. Consequently, the whole BMU slowly disappears, see Figure 2–6-A.

But early termination is also possible if osteoclasts respond well to RANKL stimu-

lation: if the OPG production by osteoblasts largely exceeds the RANKL expression

(Γ3 � 1) and if the OPG diffusion is very high, then the excess of fast spreading

OPG reaches the RANKL ahead of the cutting cone and annihilates the osteoclast
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Figure 2–6: Insufficient remodelling. OC=osteoclasts; length of the domain is 5
mm. A Decreased osteoclast recruitment and higher RANK-RANKL binding satu-
ration lead to a vanishing cutting cone. The ratios are Γ1 = 10.5, Γ2 = 7.2 ·10−4 and
Γ3 = 1.8 · 10−3. The parameter set is given in (2.17) and (2.18) except for λ = 20
and k1 = 3 · 10−4. B High production and diffusion of OPG leads to annihilation
of the RANKL ahead of the BMU and lack of stimulation leads to BMU extinction.
The ratios are Γ1 = 0.58, Γ2 = 1.1 · 10−4 and Γ3 = 10.5. The parameter set is given
in (2.17) and (2.18) except for aO = 1 · 10−2, k3 = 1.5 · 10−2 and aR = 10−7.
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stimulation. Figure 2–6-B illustrates how the resulting lack in BMU stimulation can

lead to early termination of the remodelling process.

2.6 The 2D model

We extend the model now to two space dimensions to gain a better insight into

the dynamics of trabecular remodelling. Let Ω ∈ R2 denote a rectangular domain

representing the surface of a flat trabecula. The local cell densities of osteoclasts

u1 and osteoblasts u2 are denoted by ui(x, t), where x = (x, y) ∈ Ω, i = 1, 2. The

RANKL field is denoted by φR(x, t) and the OPG field by φO(x, t). The governing

equations are still given by (2.7) - (2.9) and ∇ and ∆ are now the Divergence and

Laplace operators in 2D. Since the width of a trabecula is small in comparison to its

length [116], and since the bone tissue is separated from the bone marrow through

a canopy of bone lining cells [66], vertical losses of RANKL and OPG are negligible

(see also Section 2.4). This then justifies the use of a two dimensional diffusion

equation to model the spread of chemicals across the surface of the trabecula. Note

that we use the nonlinear, porous version of diffusion because the trabecular surface

is very irregular and diffusing chemicals constantly interact with the components of

the bone matrix as well as adjacent bone cells. In the remainder of this section,

we present two numerical experiments on trabecular remodelling in a physiological

regime. The first experiment is a regular micro-fracture remodelling and the second

one illustrates that OPG plays an important role as the counter-player of RANKL

and hence as a regulator for BMU-internal cell dynamics. More 2D-experiments in

both physiological and pathological regimes together with a more detailed biological

analysis of the results can be found in the accompanying article [143]. Note finally
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that even though the scaling approach adopted for the 1D case in Section 2.5.1 looses

its general validity in 2D, it can still be used to narrow down the plausible parameter

ranges.

2.6.1 Numerical experiments in 2D

The following experiments are based on the model (2.7) - (2.9), only the time

delay terms in the RANKL and OPG equations are replaced by

aω y2,tω 7→ aω y2(x, t) Ξ(x, t, tω),

where

Ξ(x, t, tω) =

 1 if y2(x, δ) > 0 for some δ ∈ [0, t− tω] and t > tω

0 otherwise.
(2.14)

This means that if at a certain location there exists an active osteoblast older than tω,

then all the active osteoblasts at the same location produce the respective chemical,

independent of their age. This particular source term is practically useful because

it does not require the use of delay differential equation solvers and hence improves

both the computational cost and the stability of the algorithm. Furthermore, it is a

reasonable approximation to the original version of the delay term y2,tω as shown in

Figure 2–7. In fact, considering the passage time of the cutting cone in the case of a

physiological 1D experiment shows that the latter is very short relatively to the time

scale of the osteoblast dynamics. In other words, it is reasonable to assume that all

the active osteoblasts at a specific location are of roughly the same age. In addition,

the delay times tω are such that e−β2tω ≈ 1, and we conclude that y2(x, t) Ξ(x, t, tω)

is indeed a reasonable approximation for y2,tω . All the simulations are performed in
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Figure 2–7: Time scales. Normalized population dynamics of active osteoclasts
(dashed line) and active osteoblasts (solid line) at x = 3.7mm in the experiment
Physiological Remodelling I (see Figure 2–3). We see that the passage time of the
cutting cone is very short relatively to the time scale of the osteoblast dynamics.
Therefore, one can assume that all the active osteoblasts are of approximatively the
same age.
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Figure 2–8: RANKL field simulating micro-fracture in trabecular bone.
Prior to the simulation, damaged osteocytes along the fracture express membrane-
bound RANKL leading to the initial field at t=0 days (white indicates high concen-
tration). At time t=160 days, the RANKL field has almost entirely disappeared after
having bound to both OPG and RANK receptors on osteoclasts. Since RANKL is
membrane-bound, the diffusion is very low. Length of domain is 3 mm.

Matlab by means of a second order finite difference scheme in space and the built-in

solver ode45 in time.

First, we demonstrate the effect of RANKL on BMU steering along a micro-

fracture. The mechanically damaged osteocytes adjacent to the fracture create a

path of membrane-bound RANKL as depicted in Figure 2–8 at time t = 0. In the

course of the simulation, the RANKL-guided BMU remodels the fracture and the

RANKL disappears due to RANK-RANKL binding, leading to the final snapshot

after t = 160 days. We initiate the BMU by introducing a confined aggregation

of active osteoclasts at the bottom of the micro-fracture at time t = 0. The first
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panel in Figure 2–9 shows the subsequent motion of the cutting cone: the bright

area represents the region of active osteoclasts which move towards the top of the

fracture. The osteoblast dynamics are depicted in the second panel: osteoblasts

Figure 2–9: Steering of BMU along micro-fracture. OC : aggregation of osteo-
clasts (cutting cone) moving from the bottom of the domain to the top along the
RANKL gradient. OB : osteoblasts, rebuilding the bone in the wake of the cutting
cone. OPG : diffusing OPG field. Z : evolution of the bone mass density. Outline of
initial RANKL field (micro-fracture) is highlighted for reference; length of domain is
3 mm; black corresponds to low, white to high concentrations.

are recruited by active osteoclasts and produce new bone matrix in the areas where
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the cutting cone has already resorbed the bone. The third panel shows the OPG

field: it is produced by mature osteoblasts and hence lags the cutting cone. In

particular, OPG is not membrane-bound and diffuses across the trabecula at a fairly

high speed. The last panel depicts the evolution of the bone density. Note finally

that the cutting cone stays well-confined and the BMU moves at constant speed over

2 mm in 5 months. This is in agreement with experimental observations [124] and

thus provides a validation of the chosen physiological parameter set.

The second experiment is an extension of the 1D experiment on the possibility

of BMU branching in the case of multiple micro-fractures (see Figure 2–4) . More

precisely, we want to find out if a BMU can split into two separate BMUs and if it

can, then we want to investigate the existence of preferential branching directions.

We start off with the initial RANKL field from the previous experiment and add a

secondary branch which deviates by 45◦ from the primary branch as shown in the

snapshot RANKL fwd at t = 15 in Figure 2–10. Again, an initial aggregation of

osteoclasts is placed at the bottom of the micro-fracture and as time progresses, this

cutting cone moves towards the top of the fracture. Similarly to the 1D experiment,

the BMU splits into two individual parts which remodel both branches separately.

Interestingly, if one repeats this experiment with the secondary branch deviating at

135◦ rather than 45◦ (see RANKL bwd), the BMU remodels the primary but not the

secondary branch. In fact, the RANKL in the secondary branch is annihilated by

OPG-RANKL binding before the cutting cone reaches the branching location, and in

this way – due to the resulting lack of RANKL stimulation – the osteoclasts do not

deviate from the primary branch (see OC bwd). In summary, the OPG production
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Figure 2–10: Forward versus backward branching. In addition to the primary
micro-fracture, secondary fractures branching at 45◦ and 135◦ are added (see RANKL
fwd and RANKL bwd at t = 15). OC fwd : Remodelling in the forward direction is
successful, the BMU splits into two parts and remodels each branch separately. OC
bwd : Remodelling in the backward direction is unsuccessful, the BMU only remodels
the primary branch. The reason for this is annihilation of RANKL by OPG along the
secondary branch before the cutting cone reaches the branching area (see RANKL
bwd and OPG bwd). The resulting lack of osteoclast stimulation prevents the BMU
from branching and the backward branch remains unremodelled. Length of domain
is 3 mm.
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in the back of the BMU prevents the BMU from turning around and remodelling the

previously remodelled tissue. This is in good agreement with experimental results

obtained by means of micro-computed tomography imaging by [32]. For a more

detailed discussion of this branching phenomenon we refer to [143].

2.7 Conclusion and outlook

We have established a novel mathematical model of bone remodelling at cellular

level. Based on a previous temporal model by Komarova et al. we developed step by

step a spatio-temporal model describing both the osteoblast and osteoclast popula-

tions as well as the dynamics of the RANKL and OPG fields. The complete model

has been shown to successfully recapitulate the overall dynamics of a single BMU

as well as the distinct features of the cutting cone. Scaling was used to investigate

the importance of the various model parameters and to motivate experiments on

pathological remodelling.

A strong feature of our model is the possibility to investigate the role of the

spatial RANKL and OPG distributions in the osteoblast-derived paracrine control

of osteoclasts. Even though there is a strong consensus in the experimental literature

about the importance of the RANKL/OPG ratio, the following apparent inconsis-

tency has to our knowledge not yet been addressed. In fact, the cutting and closing

cones are spatially disconnected and hence osteoblasts appear when osteoclasts are al-

ready gone. So how can osteoblasts possibly play a key role in the osteoclast control ?

Our results show that the spatially distinct distributions of the RANKL and OPG

fields provide the missing link: by expressing the diffusing RANKL-inhibitor OPG,

osteoblasts have an indirect means of control over the activity of osteoclasts and
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hence the extent of remodelling and the direction of movement of the whole BMU.

The 2D version of the model is particularly suited to describe trabecular remod-

elling in the case where the local curvature of the trabeculae is negligible. Regarding

cortical remodelling, it is likely that the 2D model provides a good qualitative ap-

proximation in the case when the BMU moves within the same plane of the cortical

tissue. Nevertheless, in order to draw quantitative conclusions, a full 3D formulation

together with a few modifications of the model assumptions become necessary.

For future investigations, the model presented in this article provides a promis-

ing starting point. Besides an improvement of the numerical scheme and an extension

to three dimensions for cortical remodelling, we also plan to improve our results by

adding the natural decay rates as well as appropriate stochastic terms to the RANKL

and OPG equations. In fact, since the production of messenger molecules by cells

are subject to fluctuations, the use of noisy RANKL and OPG sources is expected

to improve the model predictions in view of the often very irregular BMU evolutions

observed in vivo. Further model improvements might be achieved by describing

precursor cells as independent state variables and by including other important reg-

ulating factors such as Sclerostin, TGF-β and PTH as state variables. However, the

resulting increase in complexity would further compromise the balance between re-

liability and realism: the parameter-fitting for the current model already presents a

substantial challenge and the addition of more unknown parameters would certainly

not improve the model’s quantitative reliability. Regarding the mechanical factors,

model improvements can be achieved by taking into account the local curvature
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and by coupling the model to existing finite element models describing the elastic

properties of the tissue.
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2.A Appendix: Dimensionless groups and scale estimations

Due to the multiple time and length scales in the system (2.7) as well as the

occurrence of two different zones (the cutting zone and the closing zone), we have

to abandon the idea of finding a consistent non-dimensional version of the original

equation with a single set of scales. However, we can still transform (2.7) into a di-

mensionless equation where the dimensionless factors preceded by the dimensionless

groups are all of the order of unity - all we have to do is to use different scales for

different terms. Furthermore, the structure of the resulting equations (2.11) with

respect to the time derivative implies that even if we cannot identify a single time

scale for each equation separately, we can still compare the terms on the right hand

side because the ratios of the form Gi/Gj are independent of the time scale. The

dimensionless groups in (2.11) are defined as

G1 = T
(
α1U

g11−1
1

)
G2 = T β2 G3a = T

(
ζY1∆ΦR
U1L2

R

)
G3b = T

(
ζY1∆ΦR
U1LRL1

)
G4 = T k1 G5 = T

(
α2U

g12
1

U2

)
G6 = T β2 G7 = T

(
aRY2

Φ̃R

)
G8 = T

(
κR(∆ΦR)εR

L2
RΦ̃R

)
G9 = T k2U1

Φ̃R
G10 = T k3ΦO G11 = T aOY2

ΦO

G12 = T

(
κOΦ

εO−1

O

L2
O

)
G13 = T k3Φ̃R G14 = T Y1f1

Z
G15 = T Y2f2

Z

(2.15)

Except for i ∈ {8, 12, 15, 16}, most of the terms Gi play a significant role in only

one of the two remodelling domains: i ∈ {1, 2, 3, 4, 5, 6, 9} in the cutting cone and

i ∈ {7, 10, 11, 13} in the closing cone. This has to be kept in mind when looking for

the correct scales. The capital letters Ui, Yi, ΦR, ΦO and Z are the scales of the

corresponding state variables. L1, LR, LO are the length scales of the osteoclast,

the RANKL and the OPG fields respectively. ΦR and Φ̃R scale the RANKL field
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at the tip of the cutting and in the back of the closing zone respectively. ∆ΦR is

the difference of the RANKL concentration between the front and the back of the

cutting zone.

In the remainder of this section, the various scales are now briefly justified. Since

we assume physiological remodelling conditions, the length of the cutting cone and

the number of its constituent active cells are supposed to be preserved. Therefore,

the length scale L1 equals the initial length of the cutting cone and Y1 ≈ u1,pert with

u1,pert the initial perturbation added to the steady-state pool of passive cells at time

t = 0. Consequently, U1 ≈ u1,ss + u1,pert. For the RANKL field we note first that

the biggest change in concentration occurs in the cutting zone and hence the corre-

sponding length scale is LR ≈ L1. Since physiological remodelling excludes excessive

RANKL production by osteoblasts, the scale is dictated by the initial conditions,

ΦR ≈ maxx∈Ω|φR(x, t = 0)|. Next we estimate the passage time Tp it takes the

cutting cone to move across its own span: L1 is divided by the velocity of the osteo-

clasts to get Tp =
L2

1

ζ∆ΦR
. This expression allows us to eliminate Tp in the estimation

for ∆ΦR ≈ Tpk2U1
ΦR

λ+ΦR
and we obtain, respecting the positivity requirement of the

field,

∆ΦR ≈ min

{
ΦR, L1

√
k2U1

ζ(1 + λ
ΦR

)

}
. (2.16)

The remaining RANKL scale Φ̃R is given by Φ̃R ≈ ΦR−∆ΦR+aR(tO− tR)Y2. Using

the time Tp we get then for active osteoblasts Y2 ≈ Tpα2Y1 =
α2L2

1

ζ∆ΦR
Y1 and hence

U2 ≈ u2,ss +
α2L2

1

ζ∆ΦR
Y1. Since the OPG field is generated by active osteoblasts with a

life span of 1/β2, we get the estimates ΦO ≈ aOY2/β2 and LO ≈ ζ∆ΦR
L1β2

. Finally, the

bone mass is scaled with respect to Z ≈ 100.
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2.B Appendix: Parameter values for 1D experiments

As discussed in Section 2.5.1, we distinguish between fixed and free parameters.

The former are unchanged throughout all the experiments and their numerical values

are summarized in the following table.

α1 = 9.49 day−1mm−0.5 α2 = 4 day−1 β1 = 0.2 day−1 β2 = 0.02 day−1

g11 = 0.5 g12 = 1 tR = 4 day tO = 8 day

(2.17)

The free parameters are changed from experiment to experiment. For the physiolog-

ical experiments we use the following set.

ζ = 7 · 10−4
mm3 mol−1 day−1 k1 = 3 · 10−3

day−1 λ = 5 mol mm−1

aR = 6 · 10−5
mol day−1 aO = 1.5 · 10−4

mol day−1 κR = 3.16 · 10−5
mmεR+1 mol1−εR day−1

εR = 2.5 εO = 1 k2 = 1 · 10−3
mol day−1 k3 = 1.2 mm mol−1 day−1

κO = 10−3
mmεO+1 mol1−εO day−1 f1 = 0.3 g day−1 f2 = 1.6 · 10−3

g day−1

(2.18)

2.C Appendix: Parameter values for 2D experiments

α1 = 30 day−1mm−1 α2 = 4 day−1 β1 = 0.1 day−1

β2 = 0.02 day−1 g11 = 0.5 g12 = 1

tR = 5 day tO = 15 day ζ = 10−5
mm4 mol−1 day−1

k1 = 2.8 · 10−3
day−1 λ = 50 mol mm−2 aR = 10−6

mol day−1aO=3·10−4 mol day−1

κR = 10−9
mm2εR mol1−εR day−1 εR = 3 εO = 1 k2 = 4.6 · 10−4

mol day−1

k3 = 5 10−3
mm2 mol−1 day−1 κO = 10−3

mm2εO mol1−εO day−1 f1 = 0.24 g day−1

f2 = 1.7 · 10−3
g day−1

(2.19)
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CHAPTER 3
Mathematical Modelling of Spatio-Temporal

Dynamics of a Single Bone Multicellular Unit

3.1 Abstract

We revisit the bone remodelling model from Chapter 2 – but this time with an

emphasis on the biology. A multitude of physiological and pathological remodelling

regimes are investigated: forward and backward branching, excessive OPG produc-

tion as well as the expression of soluble RANKL by osteoblasts. We demonstrate

that the spatial distribution of the RANKL and OPG fields plays an important role

in regulation of bone remodelling. This work appeared in the Journal of Bone and

Mineral Research, 24(5):860–870 (2009), [143].

3.2 Introduction

Repairing structural micro-defects during bone remodelling is critical for main-

taining mechanical properties of bone. Bone remodelling proceeds asynchronously

at multiple sites of the skeleton in the form of organized bone multicellular units

(BMUs), which are spatially and temporally controlled teams of bone-resorbing os-

teoclasts and bone-forming osteoblasts [53, 124, 138]. Osteoclasts are the first cells

recruited to the sites of mechanically unsound bone (e.g., to a micro-fracture), where

they start resorbing bone as a team of 10-20 cells. The exact molecular mediators

of osteoclast recruitment are not known; however, osteocytes and bone-lining cells

play critical roles in this process [11]. The life span of an individual osteoclast is
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9-10 days, after which it dies, primarily by apoptosis [136]. Osteoblasts follow as a

team of 1000-2000 cells and fill the resorbed space with osteoid, which subsequently

mineralizes. The life span of an individual osteoblast is 14-16 days, after which it dies

by apoptosis or differentiates into an osteocyte enclosed in the bone matrix or into a

bone-lining cell covering the surface of the bone tissue [65]. As time progresses, os-

teoclasts continue to move in form of a cutting cone along the damage lines, or, after

the damage is repaired, along the strain field in the bone tissue. Osteoblasts follow

the osteoclasts replacing the resorbed bone tissue. As an entity, a BMU exists for

100-300 days and reaches a length of 2-7 mm [32]. In cortical bone, BMUs are lengthy

units digging tunnels across the bone matrix, aligning themselves with the main axis

of the bone [124, 32]. In trabecular bone, the BMUs move across the surfaces of tra-

beculae in the form of half-trenches [124]. Thus, a BMU exhibits a complex spatial

organization, which exists on a temporal scale considerably exceeding the lifespan of

individual cells (Figure 3–1).

To coordinate their actions, osteoclasts and osteoblasts communicate by means

of autocrine and paracrine factors. Among numerous messengers involved in these

communications, RANKL and its counterpart osteoprotegerin (OPG) have been

shown to play critical roles in both physiological bone remodelling [92, 17] and in

diseases associated with abnormal bone remodelling such as osteoporosis, rheuma-

toid arthritis, and periodontitis [92, 162, 70, 126]. RANKL and OPG are produced

by cells of osteoblastic origin, including mature osteoblasts and their precursors, os-

teocytes, bone lining cells, and stromal cells [108, 97, 185, 192]. RANKL stimulates

osteoclast formation and activity and prevents osteoclast death by acting through its
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Figure 3–1: BMU cartoon. A schematic, not-to-scale representation of the move-
ment of a BMU, which remodels the micro-fracture. A micro-fracture in the bone
tissue (A, black line) leads to initiation of bone remodelling process. First, osteo-
clasts are recruited to resorb unsound bone (B). Later, osteoclasts continue to resorb
the bone in form of a cutting cone and osteoblasts are recruited to fill the resorbed
space with new bone matrix (C). This process continues for 6− 12 months while the
micro-fracture is being gradually remodelled (D).
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receptor RANK, which is expressed on osteoclast precursors and mature osteoclasts

[76]. RANKL an d macrophage colony-stimulating factor (M-CSF), also produced

by cells of the osteoblastic lineage, are necessary and sufficient for osteoclast dif-

ferentiation [185]. OPG is a soluble decoy receptor that binds to RANKL, thus

preventing its interaction with RANK and effectively acting as a negative osteoclast

regulator. Different systemic modulators of bone remodelling, such as PTH, estro-

gen, and calcitriol, have been shown to regulate the expression of RANKL and OPG

and their abundance relative to each other [72, 120, 157, 112, 154]. The expression of

RANKL and OPG dynamically changes during bone remodelling. RANKL produc-

tion by osteocytes [192, 159, 96] is likely to contribute to initiation and progression

of osteoclastic bone resorption. It has also been shown that, whereas immature

osteoblasts produce mainly RANKL, in mature osteoblasts, production of OPG pre-

vails [57, 163, 7]. Thus, the structure of the BMU implies that RANKL and OPG

change in distinct temporal and spatial patterns, with RANKL produced early by

osteocytes that guide the cutting cone, and OPG generated at later times in the back

of the remodelling space. In this study, we investigated the functional consequences

of taking into account these differences in temporal and spatial profiles of RANKL

and OPG.

The use of mathematical modelling in the field of bone biology is becoming

more and more widespread. Models describing osteoclast/osteoblast interactions

in BMUs based on nonlinear ordinary differential equations have been developed

by several authors [95, 103, 91, 90, 128]. On the opposite side of the spectrum,

finite element methods are used to analyze strain fields induced by external loading
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[187]. However, to our knowledge, there are currently no mathematical models that

capture the complete spatio-temporal dynamics of a single BMU. In this study, we

introduce a spatial extension of the temporal model suggested by Komarova et al.

[91], resulting in a novel nonlinear model comprising of a system of partial differential

equations, which describe the role of RANK/RANKL/OPG pathway in attracting

and promoting the BMU, as well as the autocrine and paracrine interactions between

osteoclasts and osteoblasts, the main constituents of the unit. The model consists of

five state variables: densities of osteoclasts and osteoblasts, concentrations of OPG

and RANKL, and the local bone mass. The goal of the study was to create a model

that captures experimentally observed BMU dynamics and to assess how taking into

account different temporal and spatial dynamics of RANKL and OPG affects the

progression of BMUs.

3.3 Materials and methods

3.3.1 Model assumptions

We developed a mathematical model describing the spatio-temporal evolution

of a single BMU with the following goals: (1) to describe the dynamics (as a set of

driving forces as well as consequent changes) of the key biochemical factors RANKL

and OPG together with the population dynamics of osteoclasts and osteoblasts and

(2) to describe the distinctive spatial and temporal features of the cutting cone

and the BMU movement across the bone surface. The model is 2D in space and

particularly suited for the description of trabecular remodelling, or it may also be

interpreted as a model for the cross-section of a cortical BMU. We assume that

remodelling occurs in the domain of 2.4 × 1.6mm (denoted by Ω), representing a
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flat section of bone. We assume that the depth of the resorbed trench (∼ 10µm)

is small in comparison with its length (∼ 100 − 1000µm), that the BMU evolves

along the surface of the trabecula, and that local curvature effects are unimportant.

We only consider the dynamics of two cell types, osteoclasts and osteoblasts, and

assume that the vasculature established during bone remodelling acts as a reservoir

for precursors. We only explicitly describe the dynamics of RANKL and OPG.

However, the function of many other factors such as TGF-β, IGFs, and M-CSF, is

also captured by the parameters describing the combined effectiveness of autocrine

and paracrine interactions. We will start with a brief review of the temporal model

[90, 91] and then will introduce the spatial extension of the model and the RANKL

and OPG fields, and finally will complete the model by adding appropriate initial

and boundary conditions.

3.3.2 Adaptation of a previously constructed temporal model

The model suggested by Komarova et al. [91, 90] is a local and purely temporal

model describing the population dynamics of bone cells at a single site within the

BMU. Denoting the number of osteoclasts and osteoblasts by u1 and u2, the cell

dynamics are given by the system of ordinary differential equations:
∂tu1 = α1u

g11

1 ug21

2 − β1u1

∂tu2 = α2u
g12

1 ug22

2 − β2u2.

(3.1)

where αi and βi are activities of cell production and death and the four parameters

gij represent the effectiveness of the autocrine and paracrine interactions between
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the constituent cells, as described below. Also see Table 3.5 for the parameter val-

ues and units. Equation (3.1) has well-defined steady-state solutions, denoted by ū1

and ū2, respectively. It is assumed that cells below the steady-state conditions are

precursors, which are less differentiated and therefore not actively involved in the

processes of resorption and production of bone matrix but involved in the paracrine

and autocrine signalling. Increases in u1 and u2 above steady-state values are re-

garded as proliferation and differentiation of precursors into mature osteoclasts and

osteoblasts that participate actively in the remodelling process. This model does

not describe the initiation of bone remodelling, which is manually induced by choos-

ing initial values u1(t0) > ū1. We now denote the number of active osteoclasts and

osteoblasts by y1 and y2, respectively, where, for i = 1, 2:

yi =


ui − ūi if ui > ūi

0 if ui ≤ ūi.

(3.2)

Let us now briefly discuss the various autocrine and paracrine mediators included in

equation (3.1), thereby making some restrictions appropriate to the spatio-temporal

model we are developing. The factor g11 represents the effectiveness of the osteoclast-

derived autocrine factors (combined action of factors such as TGF-β, Interferon β,

Annexin II, etc. [140]). The analysis of the temporal model showed that this inter-

action plays a critical role in controlling the dynamic behaviour of remodelling when

acting as a positive feedback [91]. Moreover, we have recently shown that positive

autocrine regulation of osteoclasts is necessary to describe the complex behaviour ob-

served in osteoclast cultures in vitro [1]. Therefore, g11 is assumed to be positive and
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equal to 0.5 in this paper. The factor g12 represents an osteoclast-derived paracrine

regulation of osteoblasts. Although the exact nature of osteoclast-osteoblast cou-

pling mediators is not known yet, the analysis of the temporal model showed that

g12 has to be strictly positive [91] and that it is crucial for the coupling of osteoclasts

and osteoblasts [90]. To achieve functional coupling we assume g12 = 1. The factor

g22 represents an osteoblast-derived autocrine feedback. However, this factor did not

influence the dynamical behaviour of the temporal model [91]; therefore, we assumed

here that g22 = 0. Finally, osteoblast-derived paracrine regulation of osteoclasts is

dominated by the RANKL/OPG pathway [76, 86]; therefore, in this study, we set

g21 = 0 and explicitly described RANKL and OPG dynamics.

3.3.3 Construction of a spatio-temporal model

Using temporal equation (3.1) as the basis for the spatial extension, we now

switch to space-dependent state variables: ui(t) → ui(~x, t), where ~x = (x, y) ∈ Ω,

and ui have the units of a surface density (cells/mm2). At the same time, we intro-

duced two new state variables: the RANKL field φR(~x, t) and the OPG field φO(~x, t),

which have the dimensions of a surface concentration (mol/mm2). We assumed that

osteoclast movement is proportional to the RANKL gradient and is described in the

following form: ζ∇· (y1∇φR). Here, ζ indicates the effectiveness of migration, which

has units (mm6/day/mol) and ∇ is the differential operator ∇ = (∂x, ∂y)
T . In ad-

dition, osteoclast formation is governed by the amount of RANKL bound to RANK

receptors. We describe this effect in the following form: k1
φR

φR+λ
θ(y1)u1, the reaction

rate k1 has units (day−1), RANK receptors have a saturation threshold, resulting in

the sigmoid function with λ denoting the concentration of half-saturation, and θ(y1)
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is the Heaviside-function defined as {u(x) = 0 if x ≤ 0, u(x) = 1 if x > 0}. Finally,

the resulting changes in osteoclast numbers are described by osteoclast formation

(which depends on the concentration of RANKL and autocrine signals released by

osteoclasts), osteoclast death (proportional to the number of osteoclasts), and move-

ment of osteoclasts (in response to the RANKL field):

∂tu1 = α1u
g11

1 − β1u1 − ζ∇ · (y1∇φR) + k1
φR

φR + λ
θ(y1)u1. (3.3)

Next, we describe the evolution of osteoblasts. We assume that osteoblasts are

recruited by active osteoclasts and do not move by themselves and therefore are

governed by the equation from model (3.1). The explicit solution formula for the

osteoblast equation can be given in the following form:

u2(~x, t) = u2(~x, t0)e−β2(t−t0) + α2

∫ t

t0

eβ2(s−t)ug12

1 (~x, s)ds. (3.4)

We next describe the spatio-temporal evolution of RANKL and OPG fields. The rate

of change of both RANKL and OPG is governed by three contributions: a source

term, describing production of these factors by osteoblasts and osteocytes, a diffusion

term, describing the movement of soluble forms of these factors, and a reaction term,

describing interaction of RANKL with OPG and RANK. RANKL is produced by

osteocytes and by active osteoblasts, it spreads across the bone by porous diffusion,

and it binds to OPG and to RANK receptors on osteoclasts. We assume that RANKL

production by osteocytes takes places before the initiation of the BMU (and as such is

described in initial conditions). During the BMU evolution, new RANKL is produced

only by osteoblasts as described in the following term: aR y2,tR(~x, t), where aR is the
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corresponding rate constant and has units (mol/cell/day) and

y2,tR = e−β2tRy2(~x, t− tR). (3.5)

Equation (3.5) incorporates the idea that it takes a certain time tR before the pre-

cursor cells differentiating into osteoblasts start to produce RANKL. The porous

diffusion can vary between very low for membrane bound RANKL and high for sol-

uble RANKL and is described as κR∆φεR, where diffusion constant κR has units

(mm2(1+ε)/mol1−ε/day), and ∆ = ∂2
x +∂2

y is the Laplace operator in two dimensions.

The dimensionless exponent ε reflects the porosity of the medium for RANKL; in

particular ε = 1 yields the usual diffusion equation. The diffusion of RANKL would

technically happen in all directions, allowing RANKL to diffuse into the bone mar-

row and into the bone matrix of the trabecula. However, at this time, we made

an assumption that the trabecula is very thin relatively to its length and that the

permeability of the canopy of bone-lining cells for RANKL is low, and therefore we

neglect the vertical diffusion loss, thus restricting the model to a two dimensional

diffusion along the surface of the trabecula. The receptor-ligand binding of RANKL

to RANK receptors is described as k2
φR

φR+λ
θ(y1)u1. It is almost identical to the term

used in equation (3.2) to describe the effect of RANKL of osteoclasts with the dif-

ference that now we have k2 with units (mol/day) instead of k1. Note that these

rate constants are independent because we have to allow for partial reversibility of

RANKL-RANK binding (i.e., RANKL molecule bound to RANK on an osteoclast

contributes to the stimulation of the osteoclast and subsequently can detach with a

certain probability). Finally, the reaction term for the binding of RANKL and OPG
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is described as k3φRφO, where k3 is the rate constant having units (mm2/mol/day).

Thus, the changes in RANKL are described by the following equation

∂tφR = aR y2,tR(~x, t) + κR∆(φεR)− k2
φR

φR + λ
θ(y1)u1 − k3φRφO. (3.6)

OPG production by mature osteoblasts is described as aO y2,tO(~x, t) where aO is

the corresponding rate constant with units (mol/cell/day), and y2,tO(~x, t) is given

by equation (3.5), except the time delay to is strictly greater than tR, reflecting

the idea that immature osteoblasts produce primarily RANKL, whereas osteoblasts

maturation leads to increase in OPG production [57, 163, 7]. The porous diffusion

of OPG is described similarly to RANKL as kO∆(φδO), where κO is the diffusion

constant with units (mm2(1+δ)/mol1−δ/d), ∆ = ∂2
x + ∂2

y is the Laplace operator

in two dimensions, and the dimensionless exponent d reflects the porosity of the

medium for OPG. The equation describing RANKL-OPG binding is equivalent to the

corresponding term in equation (3.6). The resulting changes in OPG are described

by the following equation:

∂tφO = aO y2,tO(~x, t) + κO∆(φδO)− k3φRφO. (3.7)

Finally, the interplay of the various parameters in equations (3.3)-(3.7) determines

the final bone mass of the remodelled osteon. To keep track of the bone mass

evolution, we add a fifth state variable, z(~x, t), 0 ≤ z ≤ 100, describing the local

bone mass varying from 0% to 100%. We assume that only active cells, yi, are able

to resorb and produce bone matrix. Therefore, the rate of change of bone mass is
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governed by the following equation:

∂tz = −f1y1 + f2y2. (3.8)

Equations (3.3)-(3.8) constitute the nonlinear partial differential equation model de-

scribing the evolution of the BMU, which can be reduced to a system of four integro-

differential equations and one dependent equation (describing changes in bone mass).

∂tu1 = α1u
g11

1 − β1u1 − ζ∇ · (y1∇φR) + k1
φR

φR+λ
θ(y1)u1

u2(~x, t) = u2(~x, t0)e−β2(t−t0) + α2

∫ t
t0
eβ2(s−t)ug12

1 (~x, s)ds

∂tφR = aR y2,tR(~x, t) + κR∆(φεR)− k2
φR

φR+λ
θ(y1)u1 − k3φRφO

∂tφO = aO y2,tO(~x, t) + κO∆(φδO)− k3φRφO

∂tz = −f1y1 + f2y2.

(3.9)

3.3.4 Initial and boundary conditions

For mathematical completeness of the model, we have to add initial and bound-

ary conditions to the system (equation (3.9)). In the general case, the initial condi-

tions were stated as follows: 

u1(~x, t0) = u0
1(~x)

u2(~x, t0) = ū2

φR(~x, t0) = φ0
R(~x)

φO(~x, t0) = 0

z(~x, t0) = 100

(3.10)
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Let us comment on these conditions. Initial conditions for osteoclasts, u1(~x, t0),

reflect the fact that our model does not describe the process of initiation of bone

remodelling. We initiate remodelling manually by choosing the function u0
1 to equal

ū1 everywhere except for a confined region U , on the side of the micro-fracture path,

where we place a few active cells: u0
1(~x) > ū1, for x ∈ U . Initial conditions for os-

teoblasts, u2(~x, t0) are based on the assumption that no active osteoblasts are present

initially and that the osteoblast density equals its steady-state value everywhere.

The initial condition for the RANKL field, φR(~x, t0), represents the assumption that

RANKL is expressed by osteocytes along the micro-fracture. Because physiologi-

cal RANKL is mainly membrane bound, we design the initial RANKL field φ0
R to

be zero everywhere except for the near proximity of the micro-fracture path. The

initial condition for the OPG field is zero, based on the assumption that no active

osteoblasts are present initially. The initial value for the bone mass is set to 100%.

Because bone remodelling is a local process, we choose the domain large enough

to avoid interactions of the BMU with the boundary. This allows us to choose

Dirichlet conditions (equation (3.11)) for all the fields in equation (3.9), setting the

boundary conditions for ~x on the boundary of Ω as follows

u1(~x, t) = ū1,

u2(~x, t) = ū2,

φR(~x, t) = 0,

φO(~x, t) = 0,

z(~x, t) = 100.

(3.11)
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3.3.5 Numerical simulations

Computationally, this system is quite challenging to simulate. Ongoing work

is currently focused on developing schemes that are both accurate and stable for

this problem. In this paper, we implemented a fixed time step, fourth order Runge-

Kutta scheme with a second order centred differencing in space. We first introduced

an initial perturbation – a localized increase in osteoclast numbers and allowed the

simulation to run for several simulation-days until the cutting cone reached stable

regime. For generation of figures, at this point, we defined the time to be t0 = 0;

therefore, we only show the evolution of the BMU and not the initiation phase.

3.3.6 Parameter estimations

Our model has 21 parameters for which we had to find appropriate values. We

proceeded as follows: first, we considered the purely temporal system (equation (3.1))

and followed the reasoning in Reference [91] to obtain meaningful values. In particu-

lar, the values for βi can be deduced from experimental findings of the corresponding

life spans of bone cells. In addition, we aimed for a ratio of u2/u1 ∼ 100, as observed

experimentally [53, 124, 138]. The time delays tR and tO were estimated according to

the literature that indicates that in immature osteoblast RANKL production domi-

nates, whereas mature osteoblasts produce mainly OPG [57, 163, 7]. The remaining

parameters could not be matched explicitly with experimental findings, and we chose

them in such a way that the simulations coincide spatially and temporally with in

vivo observations. The values of all parameters used in the model are given in Table

3.5.
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3.4 Results

3.4.1 Numerical simulation of micro fracture remodelling

We have first considered the situation where a BMU is recruited to remodel a

micro-fracture represented by a red line on Figure 3–2. We assumed that damaged

and apoptotic osteocytes surrounding the micro-fracture produce mainly membrane-

bound RANKL, resulting in an initial RANKL distribution in the form of a path

surrounding a micro-fracture (Figure 3–2; RANKL at t = 0). remodelling process

is initiated at the left end of the path. Initially, there are no active osteoblasts or

OPG, and the bone mass is at 100%.

The spatio-temporal evolution of the model is shown in the snapshots at 0, 90,

and 160 days (Figure 3–2). The RANKL field gradually becomes annihilated as a

result of binding to RANK expressed on osteoclasts, which move along the RANKL

path in the form of a well-confined cutting cone. Note that the kink in the micro-

fracture is easily negotiated by the osteoclasts in the model. Osteoblasts, constantly

recruited by active osteoclasts, build up a closing cone, gradually replacing resorbed

bone. OPG is produced by mature osteoblasts in the closing cone, and it diffuses

through the substrate. The bone mass reaches its minimum just behind the cutting

cone, gradually increasing toward the very left of the initial path. At 160 days,

once the BMU has almost reached the end of the RANKL path, the bone mass

on the first segment has completely recovered. We note that the numbers of both

osteoclasts and osteoblasts decrease over time. This is because the RANKL on

the micro-fracture path has very low but nonzero porous diffusion and therefore

slowly spreads in time. Reduced concentration of RANKL on the path leads to a
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Figure 3–2: Micro-fracture remodelling. Model simulation of the remodelling
of bone micro-fracture. We assumed that a micro-fracture of the bone tissue (red
line) leads to the production of RANKL by cells resident in quiescent bone, such as
osteocytes and bone lining cells, resulting in the initial distribution of the RANKL
field at t = 0. The three snapshots at times t = 0, 90 and 160 days show the spatial
evolution of the BMU, which includes osteoclasts (OCs) moving in response to the
RANKL field and osteoblasts (OB), recruited by osteoclasts. OPG is produced
by mature osteoblasts and diffuses through the bone tissue. Bone mass changes
result from bone resorption by osteoclasts and bone formation by osteoblasts. Scaled
densities of each variable are represented by shades of gray. The computational
domain is 2.4× 1.6 mm. The parameter values are given in Table 3.5.
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slight decrease in the number of recruited osteoclasts, which in turn results in a

decrease in the number of osteoblasts, because their recruitment is proportional to

the current number of osteoclasts. Note that the spatio-temporal scales involved in

this simulation correspond very well with experimental findings [53, 124, 138].

3.4.2 Role of OPG in controlling BMU branching and progression

We next considered the ability of BMUs to branch in different directions. We

designed situations in which an additional micro-fracture deviates from the original

RANKL path both at an angle of < 90◦ (forward branching; Figure 3–3, red line) and

at an angle of > 90◦ (backward branching; Figure 3–4, red line). The remodelling is

initiated at the left end of the path; there are initially no osteoblasts or OPG. The

spatio-temporal evolution of the model is shown in the snapshots at 90 and 160 days.

We found that when the micro-fracture branches in the forward direction, the BMU

divides and successfully remodels both branches (Figure 3–3). In contrast, when the

micro-fracture branches in the backward direction, the BMU only remodels a very

short section of the secondary branch, and the cutting cone dies out (Figure 3–4).

The reason for the BMU to abandon the backward facing branch is that the OPG

field produced by mature osteoblasts in the back of the closing cone has diffused

sidewise as well as forward, and by the time t = 90 days, OPG has already bound

and removed RANKL on the secondary branch. Deprived of RANKL stimulation,

osteoclasts of the secondary cutting cone disappear, and the damaged site is not

remodeled. Thus, the OPG field has prevented the BMU from branching backward.

These branching dynamics are in good agreement with experimental results obtained

using 3D µ- CT [32], which strongly suggest that BMUs only branch at acute angles.
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Figure 3–3: Forward branching. The models allows for the successful remodelling
of forward branches. In addition to the original micro-fracture shown in Figure
3–2, we introduced a micro-fracture branching at an acute angle (red line). The
three snapshots at times t = 30, 90 and 160 days show the spatial evolution of
RANKL (white outline on the top panels), OPG (white field on the top panels),
OC (osteoclasts), and OB (osteoblasts). Scaled densities of OPG, osteoclasts, and
osteoblasts are represented by shades of grey. The parameter values are given in
Table 3.5.
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Figure 3–4: Backward branching. OPG produced by active osteoblasts prevents
backward branching of bone remodelling. In addition to the original micro-fracture
shown on Figure 3–2, we introduced a micro-fracture branching at an obtuse an-
gle (backward branch, red line). The three snapshots at times t = 30, 90 and 160
days show the spatial evolution of RANKL (white outline on the top panels), OPG
(white field on the top panels), OC (osteoclasts), and OB (osteoblasts). OPG pro-
duced by active osteoblasts diffuses, binds, and inactivates RANKL associated with
the backward branch, resulting in the termination of osteoclast movement along the
backward branch. Scaled densities of OPG, osteoclasts, and osteoblasts are repre-
sented by shades of grey. The parameter values are given in Table 3.5.
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Figure 3–5: Early termination. Excessive OPG production by mature osteoblasts
results in premature termination of micro-fracture remodelling. The three snapshots
at time t = 25, 75 and 155 days show the spatial evolution of RANKL, OPG, and
osteoclasts (OCs). OPG excessively produced by osteoblasts diffuses ahead of the
cutting cone, binds, and inactivates RANKL. Without RANKL support, osteoclasts
disappear before completing the remodelling of the micro-fracture (red line). Scaled
densities of each variable are represented by shades of grey. The parameter values
are given in Table 3.5 except for a0 = 6 · 10−3mol/cell/day.

To assess the effect of OPG on BMU progression, we repeated the simulation

presented in Figure 3–2, but increased OPG production by mature osteoblasts (Fig-

ure 3–5). We found that, in this situation, OPG eventually diffuses ahead of the

cutting cone, where it binds and eliminates RANKL associated with the micro-

fracture, thus depriving osteoclasts of stimulation. As a result, the cutting cone

disappeared in the third snapshot at t = 155, leading to premature termination of

micro-fracture remodelling (Figure 3–5). Thus, we found that excessive OPG pro-

duction by mature osteoblasts does not drastically affect the numbers of osteoclasts
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and osteoblasts involved in the remodelling process, but has an ability to terminate

the BMU progression through the bone.

3.4.3 Effect of soluble RANKL on BMU progression

Thus far, we only considered situations where RANKL was membrane bound

and therefore had very low diffusion. This seems to be an adequate assumption in the

case of physiological remodelling [87]. However, there are pathological settings where

the soluble form of RANKL predominates [139, 184]. Therefore, we performed an

experiment where we applied a point source of soluble RANKL with a high diffusion

rate compared to the previous experiments. The corresponding RANKL field is

depicted in Figure 3–6 at time t = 0, with the red star representing the point source

of RANKL. In this situation, we zoom in on the zone of interest, because close

to the boundaries, the field loses radial symmetry because of the chosen boundary

conditions. The remodelling is initiated at the left end of the field. As evident in

the subsequent snapshots, the cutting cone, although still confined, now develops as

a progressively opening semicircle, and therefore the BMU remodels a larger area of

the bone (Figure 3–6-A; t = 75 and 145). The osteoblasts (data not shown) follow

the osteoclasts and produce OPG. The spreading of the cutting cone forward and

sidewise but not backward is because of the fact that the RANKL field behind the

cone is essentially zero because of RANKL binding to OPG and RANK.

We next repeated the same experiment but switched off the production of OPG

by mature osteoblasts. In this case, the RANKL field persists much longer dur-

ing the BMU evolution and is eliminated only by binding to RANK at the sites of

osteoclast activation. The combination of continuous production and diffusion of
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Figure 3–6: Soluble RANKL. Role of OPG in BMU progression in response to
soluble RANKL. (A) We assumed that RANKL can diffuse freely from the point
source (red star). Three snapshots at time t = 5, 75 and 145 days show the spatial
evolution of RANKL diffusing from the source, OPG, produced by mature osteoblasts
and osteoclasts (OCs). Note the spread of the cutting cone compared with previous
figures. (B) In the absence of OPG, the cutting cone spreads both in the direction of
movement and sideways. The three snapshots at time t = 5, 75 and 145 days show
the spatial evolution of RANKL and osteoclasts (OCs). The green line represents the
position of the cutting cone obtained under the same conditions but in the presence of
OPG (same as OC at t = 145 in A). Scaled densities of each variable are represented
by shades of grey. The parameter values are given in Table 3.5, except for ε = 1 in
A and B and a0 = 0 in B.
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RANKL with its now limited removal results in the appearance of a radial gradient

evident in Figure 3–6-B at time t = 145 days. This RANKL gradient causes the

cutting cone of resorbing osteoclasts to start spreading in all directions. Because of

the effective coupling assumed in the model, the number of recruited osteoblasts is

proportional to the number of active osteoclasts. Therefore, this wider and likely

deeper resorption space is completely filled with new bone matrix. However, in sit-

uations when osteoprogenitors are limited in the adjacent bone marrow, excessive

resorption could lead to an overall negative bone mass balance. Interestingly, com-

paring the progression of the cutting cone in the absence of OPG to that observed in

the previous experiment in the presence of OPG (depicted by the green semicircle in

Figure 3–6-B), we observed that the absence of OPG results in a significant decrease

in the rate of BMU progression. As evident from the RANKL field, the diffusion of

OPG maintains a sharper gradient of RANKL and thus results in faster movement

of the BMU as observed in Figure 3–6-A. Thus, in situations of excessive produc-

tion of soluble RANKL, the presence of OPG maintains a more physiological spatial

organization of the traveling BMU and, somewhat counterintuitively, also results in

faster progression of the BMU.

3.5 Discussion

In this study, we present a mathematical model describing the spatio-temporal

evolution of a single BMU. The model is based on the following three conceptual

cornerstones. First, RANKL produced by osteocytes plays a critical role in steering

the BMU. Second, strong autocrine and paracrine interactions among bone cells,

particularly the coupling of osteoblasts to osteoclasts and the autocrine stimulation
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of osteoclasts, are responsible for the appearance of a well-confined and coordinated

BMU entity. Third, location and timing, not only the magnitude of expression,

are critical for the ability of RANKL and OPG to control the BMU progression.

Combined, these three principles led us to develop a system of nonlinear partial dif-

ferential equations that describes the spatio-temporal evolution of the BMU. The

model was able to capture salient physiological features of remodelling, including the

confinement of the cutting cone to a compact region as it moves across the bone,

and the ability of the RANKL field to influence the direction of BMU steering. Most

interestingly, taking into account the spatial distribution of the RANKL and OPG

production, we found that their interplay is more complex than would be anticipated

simply considering their ratio. In our model, the formation and movement of osteo-

clasts is most strongly affected by RANKL produced by cells resident to quiescent

bone, such as lining cells and osteocytes. In contrast, osteoblasts, which emerge

subsequent to osteoclasts, act mainly as a source of diffusible inhibitor of RANKL,

OPG. Together, this results in RANKL appearing early and in front of the BMU

and OPG coming into play later and in the back of the remodelling path. Such

spatial and temporal differences in the RANKL and OPG fields lead to formation of

RANKL/OPG gradients, which strongly affect both the rate and the direction of the

BMU progression. In particular, we showed the emergence of nonobvious phenomena

such as inhibition of backward branching and increase of BMU speed in the presence

of OPG.

At this stage, we believe that our model is applicable to both cortical and trabec-

ular bone remodelling for the following reasons. Histomorphometric studies indicate
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similar appearance, composition, and progression of osteonal and hemiosteonal re-

modelling [124]. Even though hemiosteonal remodelling seems to be more accessible

for interactions with bone marrow, the fact that this does not result in significant dif-

ference in the progression of remodelling in cortical and trabecular bone suggests that

either the effects of these interactions are minor or that bone marrow is sufficiently

compartmentalized to minimize these interactions during normal bone remodelling.

The latter situation appears more likely in light of the current concepts of specific

niches existing in bone marrow [152] as well as direct evidence presented in a study

that showed that hemiosteonal remodelling occurs under a canopy of bone-lining

cells [66]. Thus, histomorphometric and biological evidence suggests that these two

types of remodelling progress similarly. The model we have presented is 2D and

thus particularly suited for the description of trabecular remodelling; however, it

may also be interpreted as a model for the cross-section of a cortical BMU. One of

the limitations of a 2D model is that questions related to bone volume and geometry

cannot be addressed with this model. In applied mathematics, it is a well-established

methodology to study lower-dimensional versions of the model in question, because

geometric complexity, difficulty of analysis, and computational costs make the study

of higher-dimensional models much more involved. 1D or 2D simplifications not

only render the problem more tractable but also yield reasonable approximations to

the original problem and help in an eventual study of the higher-dimensional case.

Future development of a 3D model will allow to directly study potential differences

in the progression of hemiosteonal and osteonal remodelling and to address ques-

tions related to bone geometry and architecture. In addition, the model could be
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reformulated to account for the highly irregular surfaces that make up trabecular

bone.

Another important direction for future model development is the explicit incor-

poration of the effects of mechanical strains and stresses into the model. An even-

tual coupling of our equations to a model describing the strains to external loading

would yield a fruitful tool in the investigation of responses to loading in physiologi-

cal and pathological conditions. In this regard, the branching dynamics observed in

our model can be interpreted in terms of different mechanisms of BMU navigation

through the bone matrix. There are two major mechanisms of BMU steering pro-

posed in the literature, namely strain-derived steering and targeted steering. The

former mechanism has been proposed by Burger et al. [18] and states that strain-

derived canalicular fluid flow is responsible for osteoclast activity and motility of the

cutting cone of the BMU. On the other hand, there is an established evidence that

microdamage leads to activation of BMUs close to the damage site [20, 19] resulting

in the targeted steering of BMU toward micro-fracture. The relative contribution of

strainderived and targeted steering to the BMU progression is not known; however,

a recent study showed that there is more damage removal than could be expected

from BMUs that are navigated exclusively by strain fields [82]. Osteocytes are known

to be affected both by the mechanical loading of bone [122] and by the appearance

of micro-fractures [179], suggesting a unification of the two mechanisms at the level

of mechanotransduction. From this prospective, our branching experiments can be

interpreted as micro-fracture (branch) deviating from the principal stress direction
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(original path), thus confirming that already existing BMUs are affected in their evo-

lution by the presence of micro-fractures and also showing that the ability of BMU

to deviate at large angles is limited.

The focus of this model was on the RANK/RANKL/ OPG pathway, which is

well established as a critical regulator of osteoclast activation [12]. Multiple other

factors are known to play important roles in regulation of osteoclasts, osteoblasts,

and osteocytes [41]. To name just a few, TGF-β, IGF1/2 [113], Wnt ligands [127]

and sclerostin, which was recently identified as an important regulator of bone re-

modelling produced by osteocytes [161] without doubt play critical roles in regulat-

ing BMU initiation and progression. Of these factors, our model indirectly incor-

porated the actions of paracrine factors produced or activated by osteoclasts that

have stimulatory effect on osteoblasts, such as TGF-β released and activated dur-

ing bone resorption [171] or putative soluble factors produced by osteoclasts [82],

as well as autocrine stimulatory factors produced by osteoclasts, such as Annexin-II

[140, 111, 111], and Adam8 [26, 133]. Nevertheless, explicit modelling of actions of

these factors and incorporation of other factors known to be critical in bone physiol-

ogy, such as Sclerostin, will be an important future direction for model development.

In summary, the model presented in this study shows the necessity of taking

into account spatial and temporal information about RANKL and OPG expression

and not only the ratio of these cytokines. Our model represents a significant advance

compared with previous temporal models; however, in future studies, several limita-

tions still need to be addressed, including (1) the lack of description of other cells

types in addition to osteoclasts and osteoblasts, (2) the lack of explicit formulation
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for the actions of coupling factors and osteoclast autocrine factors, and (3) the 2D

nature of the model. However, even in the current form, our model provides a new

tool for the in silico analysis of regulation of bone remodelling and, in the future, it

may contribute to the evaluation of the impact of other cytokines, growth factors,

potential therapies, and biomaterials on the process of bone remodelling.
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Table 3–1: Parameter values and units for Figures 3–2, 3–3 and 3–4.

Parameter Value Unit
Ω 2.4× 1.6 mm2

α1 30 cell0.5/mm/day
α2 4 day−1

β1 0.1 day−1

β2 0.02 day−1

aR 10−6 mol/cell/day
aO 3 · 10−6 mol/cell/day
k1 2.8 · 10−3 day−1

k2 4.6 · 10−4 mol/cell/day
k3 5 · 10−3 mm2/mod/day
κR 10−9 mm8/mol2/day
κO 8 · 10−4 mm4/day
ε 3 −
δ 1 −
g11 0.5 −
g21 1 −
g12 0 −
g22 0 −
ζ 10−5 mm6/mol/day
λ 50 mol/mm2

f1 0.24 g/cell/day
f2 1.7 · 10−3 g/cell/day
tR 5 day
tO 15 day
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CHAPTER 4
OPG in Bone Metastases:

Mathematical Solution to the Puzzle

4.1 Abstract

Bone is a common site of cancer metastasis. To create space for their own

growth, cancer cells stimulate bone resorbing osteoclasts. In this chapter we modify

the bone remodelling model from Chapters 2 and 3 to account for the interaction

between metastasizing tumour cells and the bone environment. We demonstrate that

at lower expression rates, tumour-derived OPG enhances the chemotactic RANKL

gradient and osteolysis, whereas at higher expression rates OPG broadly inhibits

RANKL and decreases osteolysis and tumour burden. Based on these observations,

we propose a mechanism which is able to explain seemingly contradictory experimen-

tal studies. The work presented in this chapter has been submitted for publication

in PLoS Computational Biology, [145].

4.2 Introduction

Primary cancers develop metastatic tumours in distant sites and tissues of the

body and, frequently, a fatal outcome is due to those secondary rather than the

primary tumours [118]. Bone is a common site for metastases [78] and up to 70%

of breast and prostate cancer patients develop secondary tumours in the bone en-

vironment [28]. While bone metastases are often classified as either osteolytic or

osteoblastic, most metastases exhibit both components [118].
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Once a secondary tumour starts growing in the bone environment, its expansion

is geometrically constrained by the presence of inelastic bone tissue. Since cancer

cells are unable to resorb bone, the only way for the tumour to expand is to em-

ploy osteoclasts, cells specialized in bone destruction [13]. tumour cells produce

factors such as the parathyroid hormone-related protein (PTHrP), which induce the

production of osteoclast-stimulating receptor activator of nuclear factor kappa-B lig-

and (RANKL) by osteoblasts and stromal cells [118]. RANKL binds to its receptor

RANK, expressed on osteoclasts and their precursors, thus inducing osteoclast differ-

entiation and stimulating resorptive activity. The resulting osteolysis provides more

space for the tumour growing in the bone environment. Osteoprotegerin (OPG) is a

decoy receptor of RANKL [83], which prevents RANKL from binding to RANK and

hence from inducing osteoclast formation and activity.

4.2.1 Controversial results

Based on the model described above, the role of OPG in bone metastases should

be to reduce bone destruction and tumour growth. In agreement with this predic-

tion, the systemic application of OPG leads to a decrease in tumour burden [114]

and Corey et al. [34] demonstrated that OPG produced locally by tumour cells

has a similar anti-metastatic effect. However, several lines of experimental evidence

contradict the present model. First, it was repeatedly demonstrated that high circu-

lating levels of OPG in prostate cancer patients predict more bone metastases and

more osteolysis [16, 24]. Even more interestingly, Fisher et al. [50] reported that

local over-expression of OPG by MCF-7 breast carcinoma cells expressing PTHrP

leads to increased osteolytic bone destruction and tumour growth in vivo – a result
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that appears to be in direct contradiction with the study of Corey et al. [34]. It

has been suggested that the tumour-inducing effect of OPG is due to its inhibition

of another receptor, TNF-related apoptosis-inducing ligand (TRAIL) [50]. However,

even if OPG-TRAIL interactions explain the OPG-induced increase in tumour mass,

they cannot account for enhanced osteolysis observed in these experiments.

Altogether, these results indicate that OPG plays a controversial role in bone

metastases: while a large set of experimental data supports its osteoclast- and hence

tumour-inhibiting role, in certain situations OPG is documented to stimulate oste-

olysis and tumour growth.

4.2.2 Hypothesis

We have recently demonstrated a potential role of OPG in enhancing RANKL

gradients, which in turn are responsible for chemotactic movement of osteoclasts

[143]. Based on these observations, we propose the following hypothesis regarding

the action of OPG in bone metastases: 1) When OPG is applied globally (i.e. system-

ically), it uniformly reduces RANKL levels, thus acting as an inhibitor of osteoclast

formation and tumour growth. 2) When OPG is produced locally by tumour cells, the

outcome is determined by the rate of OPG expression. At low expression rates, OPG

enhances the chemotactic RANKL gradient responsible for osteoclast movement, thus

stimulating osteolysis and tumour growth. At high expression rates, the RANKL-

inhibiting effect of OPG becomes predominant and results in an overall decrease in

osteolysis and tumour burden. The distinction of the two regimes for tumour-derived

OPG provides a consistent explanation of the differential experimental outcomes in

[34] and [50].
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To test this hypothesis we adapted a previously developed nonlinear partial

differential equations (PDE) model of bone remodelling [143, 142] to include the

spatio-temporal evolution of tumour cell density and tumour-induced cytokine pro-

duction.

4.3 Model assumptions

For a detailed discussion of the model assumptions and numerical simulations

please refer to Appendix 4.A.

4.3.1 Geometry

We model a single trabecula exposed to bone marrow and pre-existing tumour

cells. Hemi-osteonal (trench-like) remodelling of trabecular bone [124] reduces the

geometry of the problem from three to two spatial dimensions and assuming that

the trabecula is locally flat, the model domain becomes a bounded subset of R2. For

purposes of this study, we assume unidirectional movement of the cutting cone, which

reduces the model to one spatial dimension along the principal axis of movement.

4.3.2 Bone homeostasis

Metastasizing tumour cells cannot resorb bone tissue themselves and hence the

outcome of the metastasis depends on the tumour’s ability to stimulate osteoclasts.

Even in the case of metastases which promote osteoblastic activity, bone resorption

precedes formation [84]. Therefore, we focus on the interaction of tumour cells with

osteoclasts and neglect bone formation by osteoblasts. Our description of osteoclasts

and the RANK/RANKL/OPG pathway is based on previous work [143, 142], see

Appendix 4.A.
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4.3.3 Cancer cells

We assume that as soon as new space becomes available through bone resorption,

proliferating tumour cells migrate into the cavities and replace the resorbed bone

tissue. Neglecting delays due to finite migration speed as well as the finite size

of individual tumour cells, the scaled tumour density ρT is described by a linear

function of the scaled bone density ρB: ρT (t, x) = 1 − ρB(t, x). Note that both

densities vary between 0 (no bone or tumour present) and 1 (space fully occupied by

bone or tumour).

4.3.4 Osteoclast initiation

We do not model osteoclast initiation explicitly, instead a profile of active os-

teoclasts is placed in the middle of the domain at time t = 0.

4.4 Methods

The results presented in Figures 4–1 – 4–5 are based on numerical solutions of

the systems (4.3), (4.4), (4.5) and (4.6), together with periodic boundary conditions

and initial conditions as specified in the respective figure captions. The time stepping

is performed with a fractional step method as described in [173]. Thereby, adaptive

Runge-Kutta solvers are used for for the advection and reaction parts and a TR-

BDF2 solver for the diffusion parts. Spatial discretisations are performed by means

of finite differences (chemotactic term) and spectral collocation (diffusion terms).

See Appendix 4.A for details.
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4.5 Results and discussion

4.5.1 Scenario 1: Host tissue RANKL

Model

We first assess how different levels of RANKL in the host tissue, φ0
R, impact

tumour growth. It is important to note that the parameter φ0
R denotes the con-

centration of active RANKL, i.e. the total concentration of tissue-derived RANKL

minus the concentration of RANKL which is bound to OPG. The state-variables are

osteoclast population density (u), RANKL concentration (φR), bone density (ρB)

and tumour density (ρT ). The osteoclast dynamics involve osteoclast formation and

death and are modelled as described in [91, 90], ∂tu = αug − βu, where α and β are

formation and apoptosis rates respectively and the exponent g represents autocrine

interactions among osteoclasts. Physiological parameters are such that the equation

admits a stable fixed point uss > 0, and we split the total osteoclast population u

into uss and a residual y := u − uss. As elucidated in [143, 142], y ≥ 0, and we

regard cells below uss to be inactive precursors and consider an increase of u above

uss as differentiation of precursors into active, resorbing osteoclasts y. After adding

the stimulation of osteoclast formation and chemotaxis by RANKL, we obtain the

following evolution equation for the osteoclast population density [143, 142]

∂tu = αug − βu− ζ∂x(y ∂xφR) + k1
φR

λ+ φR
y, (4.1)

where ζ represents the chemotactic sensitivity of active osteoclasts to the RANKL

gradient, k1 is the rate of osteoclast stimulation by RANKL, and the sigmoid function

in the last term describes the half-saturation λ of the binding of RANKL to RANK
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receptors on osteoclasts. In general, k1 depends on the local bone density, as live

osteoclasts have to attach to the bone surface [160]. We can usually relax this

dependence due to the fact that the cutting cone is moving away from resorbed

areas and hence no active osteoclasts are present in areas that contain no bone.

Therefore, unless stated otherwise, k1 = const.

The dynamics of the RANKL field φR are governed by diffusion (diffusion rate

σR), degradation (rate kR) and binding to RANK receptors on active osteoclasts

(rate k2, half-saturation λ):

∂tφR = σR∂xxφR − kRφR − k2
φR

λ+ φR
y. (4.2)

We assume that the concentration of membrane-bound RANKL is kept constant on

osteoblastic cells and hence we neglect its decay rate, i.e. we set kR = 0.

The bone density, initially at 1, is degraded by resorbing osteoclasts (rate kB) as

∂tρB = −kBy and the tumour density is given by ρT = 1− ρB. The resulting system

of PDEs (4.3) is supplemented by initial and boundary conditions as described in

Appendix 4.A 

∂tu = αug − βu− ζ∂x(y ∂xφR) + k1
φR

λ+φR
y

∂tφR = σR∂xxφR − k2
φR

λ+φR
y

∂tρB = −kB y

ρT = 1− ρB.

(4.3)
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Figure 4–1: Host tissue RANKL. At t=0, an initial profile of active osteoclasts
is placed in the middle of the domain (shown in black on OC at t=30), host tissue
RANKL is constant φ0

R (1, 2 and 3), bone density is 1 and tumour is 0. At t=30, the
osteoclasts split into two cutting cones which start remodelling in either direction;
the cutting cones can reach a quasi steady-state (φ0

R = 2, 3) or die out (φ0
R = 1).

Length of domain: 15 mm; at t=60 and t=90 only the right halves of the symmetric
fields are shown.

Results

In agreement with the known action of RANKL as a potent stimulator of os-

teoclast differentiation [76], we observe a positive correlation between RANKL levels

and tumour growth (Figure 4–1).

At first, the initial osteoclast profile (Figure 4–1: shown in black on OC panel

at t=30) splits up symmetrically into two individual cutting cones at t=30, which
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reach a quasi steady-state in form of a traveling wave in the case of sufficiently high

RANKL levels (φ0
R = 2, 3), or die out due to insufficient stimulation by RANKL

(φ0
R = 1). This suggests the existence of a threshold concentration of RANKL nec-

essary for a sustainable resorption event. These simulations are relevant for two

aspects of osteolytic bone metastases. 1) Tissue RANKL level is known to positively

correlate with bone metastases [88], and tumours preferentially metastasize to ac-

tively remodelled skeletal sites, likely containing higher RANKL levels [79, 148]. 2)

Systemic application of OPG, which binds to RANKL in the bone tissue, lowering

its levels, is known to inhibit osteolysis associated with cancer metastases to bone

[114].

4.5.2 Scenario 2: OPG production by tumour

Model

In order to reconcile the known osteolysis-inhibiting effects of systemically ad-

ministered OPG [114] and osteolysis-inducing effects of OPG locally produced by

metastasizing cancer cells [50], we extend the model (4.3) to account for OPG (φO)

produced by tumour cells. The evolution equation for φO includes expression by tu-

mour cells (rate τO), diffusion (rate σO), degradation (rate kO) as well as binding to

RANKL (rate k3). The term describing binding of RANKL and OPG is also added

to the RANKL equation. In summary, this yields the following system of PDEs for
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Scenario 2, 

∂tu = αug − βu− ζ∂x(y ∂xφR) + k1
φR

λ+φR
y

∂tφR = σR∂xxφR − k2
φR

λ+φR
y − k3φRφO

∂tφO = τOρT + σO∂xxφO − kOφO − k3φRφO

∂tρB = −kB y

ρT = 1− ρB.

(4.4)

Results

The numerical solution of system (4.4) for different levels of OPG production

(τO) is presented in Figure 4–2-A.

In comparison to the control case with no OPG expression (τO = 0), higher

levels of OPG production by tumour cells (τO = 2; τO = 5) lead to an increase in

osteoclast advance (see OC at t = 90) and hence a bigger resorption area. A closer

look at the RANKL field at t = 90 (Figure 4–2-B) reveals that tumour-produced

OPG removes residual RANKL left behind the cutting cone resulting in formation

of steeper RANKL gradients (Figure 4–2-C), and hence increased speed of osteoclast

migration. A systematic study of the effect of OPG production by tumour cells on

the number of active osteoclasts, osteoclast migration and tumour mass (Figures

4–2-D – 4–2-F) demonstrates that the interplay of two main factors is important in

determining the overall outcome of OPG action. First, the OPG-induced increase

in RANKL gradient, osteoclast speed and resorption area is accompanied by a de-

crease in the number of active osteoclasts. This results in a bell-shaped dependence
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Figure 4–2: OPG production by tumour. A At t=0, an initial profile of active osteoclasts
is placed in the middle of the domain (shown in black on OC at t=30), RANKL and OPG fields
are set to φ0R = 2 and φ0O = 0, respectively, and tumour is 0. For t > 0, the growing tumour
produces OPG at different levels (τO = 0, 2, 5). Length of domain: 15 mm, only the right halves
of the symmetric fields are shown. B Zoom in on RANKL at t=90 in panel A. OPG production
by growing tumour leads to depletion of residual RANKL and a sharpening of the gradient in the
vicinity of the cutting cone. C RANKL gradients, obtained by taking the spatial derivative of the
fields in panel B. D-F The simulation described in panel A is repeated for different initial RANKL
levels φ0R and different levels of OPG production by tumour cells τO. Shown are at t=90: distance
(D), amount of active osteoclasts (E) and tumour mass (F).
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of the tumour mass on the rate of OPG production by tumour cells. While low

and intermediate expression of OPG by tumour cells correlates with an increase in

osteolysis and hence tumour burden, at high OPG expression, the cutting cone is too

small to completely resorb all bone tissue, leading to an overall decrease in tumour

mass. Second, the effect of tumour-produced OPG strongly depends on the levels of

RANKL in the bone tissue: at low RANKL levels, OPG is predominantly inhibitory,

while at high RANKL levels, tumour-produced OPG becomes more effective in in-

ducing osteolysis (Figures 4–2-D – 4–2-F: compare φ0
R = 1.5 and φ0

R = 2.5). Thus,

the model predicts the existence of two different regimes for the impact of tumour-

produced OPG, which correspond well to experimental findings demonstrating both

OPG-induced inhibition of osteolysis [34] and OPG-induced stimulation of osteolysis

[50].

4.5.3 Scenario 3: Direct RANKL production by tumour

Model

Since high levels of RANKL in the tissue are important for the osteolysis-

enhancing effects of OPG, we next assess if tumour cells could promote osteolysis by

producing RANKL themselves. We model this situation by adding a tumour-derived

RANKL source (τR ρT ) to the second equation in (4.3). Note that for this scenario

it is necessary to model the osteoclast-stimulation rate k1 to be dependent on the

bone density, see Appendix 4.A.

Results

We find that the tumour-derived production of RANKL leads to a reversal of

the RANKL gradient (Figure 4–3).
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is 15 mm, only the right halves of the symmetric fields are shown.

As a result, rather than moving away from the tumour and resorbing more bone

to provide new space for proliferating cancer cells, osteoclasts move towards the tu-

mour. Consequently, no traveling cutting cone is formed, osteolysis is disrupted and

tumour growth decreases with increase in RANKL production rate τR. Thus the

direct production of RANKL by cancer cells is disadvantageous for tumour growth.

Although the RANK-RANKL dynamics play an important role in bone metastases

[88, 77], there is uncertainty regarding the actual source of RANKL. RANKL was

shown to be expressed by metastasizing squamuous cell carcinoma and prostate can-

cer cells [119, 191]. Other studies suggest that there is no direct production of

RANKL by cancer cells [25, 164] and breast cancer cells cease to express RANKL
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upon embedding into the bone environment [10]. Our simulations suggest that ex-

pression of RANKL does not provide tumour cells with an advantage in the bone

microenvironment.

4.5.4 Scenario 4: Indirect RANKL production via PTHrP

Model

It is well-established that tumour cells metastasizing to bone commonly pro-

duce a mediator, such as PTHrP, which in turn promotes RANKL production by

osteoblastic and stromal cells [118, 61, 60]. To model this scenario, we introduce

the PTHrP concentration φP as a new state-variable: once produced by tumour

cells (rate τP ), PTHrP diffuses across the tissue (rate σP ) and is degraded by pro-

teases (rate kP ). While diffusing across the tissue, PTHrP induces the expression

of RANKL by osteoblastic cells in the bone tissue and we describe this by adding a

source term, proportional to φP ρB, to the RANKL equation. The complete system

for Scenario 4 is 

∂tu = αug − βu− ζ∂x(y ∂xφR) + k1
φR

λ+φR
y

∂tφR = τR φP ρB + σR∂xxφR − k2
φR

λ+φR
y

∂tφP = τP ρT + σP∂xxφP − kPφP

∂tρB = −kB y

ρT = 1− ρB.

(4.5)
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Results

If the initial tissue level of RANKL is sufficient for the formation of a traveling

wave front of osteoclasts in the absence of PTHrP production (Figure 4–4-A, τP = 0),

switching on the PTHrP production leads to faster and bigger cutting cones and

hence a further increase in tumour mass after 90 days (Figure 4–4-A, τP = 1, 2).

Moreover, if the initial RANKL level is insufficient to sustain a traveling cutting

cone (Figure 4–4-B, τP = 0), the expression of PTHrP by tumour cells is able to

induce a traveling wave of active osteoclasts and hence an increase in tumour mass

(Figure 4–4-B, τP = 1, 2). Thus, in good agreement with experimental data [118, 50],

the tumour is able to efficiently promote its own growth by producing PTHrP.

4.5.5 Scenario 5: OPG and PTHrP production by tumour

Model

Finally, we assess if simultaneous production of OPG and PTHrP by tumour

cells can increase osteolysis and tumour growth. The combination of systems (4.4)

and (4.5) yields the most comprehensive model in this study,

∂tu = αug − βu− ζ∂x(y ∂xφR) + k1
φR

λ+φR
y

∂tφR = τRφPρB + σR∂xxφR − k2
φR

λ+φR
y − k3φRφO

∂tφO = τOρT + σO∂xxφO − kOφO − k3φRφO

∂tφP = τPρT + σP∂xxφP − kPφP

∂tρB = −kB y

ρT = 1− ρB.

(4.6)
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Figure 4–5: PTHrP and OPG production by tumour. A At t=0, initial profile
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Results

First, we study osteolysis and tumour growth for varying tumour-derived OPG

production rates τO at a fixed level of PTHrP production τP (Figure 4–5-A). The

overall dynamics of the system (4.6) closely resembles the dynamics of system (4.4)

in Figure 4–2-A. Again, an increase in OPG production τO leads to an enhanced

RANKL gradient, and the resulting increase in the speed of the cutting cone is ac-

companied by an increase of the resorbed area and a decrease in the number of active

osteoclasts. A systematic study of the impact of varying OPG and PTHrP produc-

tion rates on the tumour mass (Figure 4–5-B) reveals the following observations.
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Low to intermediate OPG expression rates by tumour cells, τO, increase the overall

tumour burden after 90 days for all levels of PTHrP production τP . On the other

hand, high levels of OPG expression (τO > 2.5) lead to a decrease in the tumour

burden, which drops eventually below the value for τO = 0. The stimulatory effect

of OPG is most pronounced at high expression rates of PTHrP.

4.5.6 Meta-Analysis of OPG, PTHrP and RANKL gene expression

Next, we examined the expression of OPG, RANKL, and PTHrP in patient

samples from normal prostate tissue, prostate carcinoma, and metastatic prostate

carcinoma tissues, as reported in the studies [99, 100, 107, 131, 132, 167, 176, 177,

190]. We used the publicly available gene expression data analysis engine Oncomine

Research Edition (www.oncomine.org), see Appendix 4.D for details. We found

that expression of OPG significantly increased in samples from metastatic prostate

cancer compared to normal prostate (p < 0.05 ), as well as prostate carcinoma

(p < 0.01) (Figure 4–6-A). In contrast, expression of RANKL and PTHrP did not

exhibit significant changes (Figure 4–6-B and 4–6-C).

Since our simulations suggest that most effective in promoting bone metastases

is the combination of OPG and PTHrP, we further assessed the correlation between

the expression of OPG, PTHrP and RANKL in samples from metastatic prostate

carcinoma only. We found that OPG exhibited significant positive correlation with

PTHrP, R2 = 0.32 (Figure 4–6-D), while no correlation was found between OPG

and RANKL, R2 = 0.003 (Figure 4–6-E) or PTHrP and RANKL, R2 = 0.05 (Figure

4–6-F) expression by metastatic prostate cancer cells.
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Figure 4–6: OPG, RANKL and PTHrP expression in prostate cancer. Data
from nine gene expression data sets [99, 100, 107, 131, 132, 167, 176, 177, 190] were
combined and analyzed. A-C Expression of OPG (A), RANKL (B) and PTHrP
(C) are shown in the box-plots where the lower whisker indicates the 1st percentile,
the limits of the box indicate the 25th and 75th percentiles, and the upper whisker
indicates the 99th percentile. Statistical significance is indicated by *p < 0.05, **p
< 0.01, calculated using one-way ANOVA. D-F Data for the metastatic prostate
samples were analyzed for the correlation in the expression of OPG and PTHrP (D),
OPG and RANKL (E), and RANKL and PTHrP (F).
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4.6 Conclusions

The goal of this study was to propose and test a novel hypothesis explaining

the differential and seemingly contradictory experimental results regarding the role

of OPG in bone metastases. Whereas systemic application of OPG is known to de-

crease osteolysis and tumour growth [114], two similar experiments have shown that

OPG produced locally by metastatic cancer cells in the bone environment can lead

to a decrease [34] or an increase [50] in osteolysis and tumour growth. Given the

well-established role of OPG as an osteoclast inhibitor [12], the outcome of systemic

OPG application does not bear any surprises, but the osteolysis promoting effects in

[50] as well as the increased osteolysis in metastatic cancer patients with high levels

of circulating OPG [16, 24] appears to be contradictory. To resolve this apparent con-

tradiction, we proposed that the spatial configuration of the tumour-bone interface

in conjunction with the magnitude of tumour-derived OPG expression determines

the resulting tumour burden. We hypothesized the existence of two distinct dynam-

ical regimes for locally produced OPG: 1) at low expression rates, tumour-produced

OPG primarily enhances the chemotactic RANKL gradient oriented towards the

unresorbed bone tissue, thus stimulating osteoclast movement and resulting in an

increase in osteolysis and hence tumour mass. 2) At high expression rates of tumour-

derived OPG, the RANKL-inhibiting effect of OPG becomes predominant and results

in an overall decrease in tumour burden. Based on a previously developed mathe-

matical model of bone remodelling [143, 142], we designed a nonlinear PDE model

describing the interactions between metastatic cancer cells and the bone environ-

ment. In good agreement with our hypothesis, the model predicts the existence of
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two distinct dynamic regimes where tumour growth is either accelerated or slowed

down by cancer-derived OPG. These observations are further substantiated by the

meta-analysis of gene expression which shows that OPG expression in metastatic

prostate tissue is increased.

The model simulations point out another interesting aspect related to the spa-

tial configuration of the tumour-bone interface. Our model predicts that the direct

expression of osteoclastogenic cytokine RANKL by cancer cells may result in a re-

versal of the chemotactic gradient, thus slowing down osteolysis and tumour growth.

The model suggests that it is crucial for tumour cells to express a mediator (PTHrP)

that diffuses across the tissue before triggering the expression of RANKL on os-

teoblastic cells. The involvement of such mediator assures that the RANKL gradient

is correctly orientated to induce osteoclast movement away from the tumour into

unresorbed bone tissue. In accordance, the meta-analysis of gene expression reveals

that OPG expression in metastatic prostate tissue is positively correlated with the

expression of PTHrP, but not RANKL.

Due to the large number of a priori unknown parameters in the model, our results

are predominantly of qualitative nature and further experimental investigation is

indispensable for a full validation of our hypothesis. However, the emergence of

two distinct regimes is observed across a large span of parameter values and is in

particular independent of the production rate of PTHrP by tumour cells.

The proposed mechanism emphasizes the importance of the spatial configuration

of molecular densities and thus may be relevant to other systems where distinct spa-

tial patterns are imperative. An interesting example is the regulation of immune cell
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migration by chemokines. It has recently been shown that in addition to signalling

receptors, there exist several decoy receptors that bind to the chemokines, but do

not induce any cellular changes [29]. Our hypothesis suggests that a potential role

for these decoy receptors is the creation and enhancement of chemokine gradients.

Another example is the difference in action of tumour-produced and host tissue-

produced angiogenic factors, such as nitric oxide [93], which is in agreement with the

importance of spatial coordination of tumour vascularization for tumour growth at

the metastatic site. In summary, our study demonstrates that taking into account

the spatial distribution of regulators, receptors and decoy receptors can reveal novel

mechanisms inaccessible to conventional models based on global regulator-recepter

ratios.

4.A Appendix: Model development

Previous Work. The modelling part of this work is based on a previously

developed model of bone homeostasis introduced in [143, 142]. This model describes

the spatio-temporal evolution of osteoclasts, osteoblasts as well as their interactions

through the RANK/RANKL/OPG pathway and can be summarized as follows:

∂tu1 = α1u
g11

1 − β1u1 − ζ∇ · (y1∇φR) + k1
φR

λ+φR
θ(y1) u1

∂tu2 = α2u
g12

1 − β2u2

∂tφR = aR y2,tR + κR∆(φεRR )− k2
φR

λ+φR
θ(y1) u1 − k3φRφO

∂tφO = aO y2,tO + κO∆(φεOO )− k3φRφO

∂tz = −f1 y1 + f2 y2.

(4.7)

Featured in (4.7) are the following state variables: osteoclasts u1, osteoblasts u2, the

RANKL field φR, the OPG field φO and the bone mass z (ρB in the current model).
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The fields yi are the active cell populations and differ from the total cell populations

ui by an additive constant. Note that θ is the Heaviside function (θ(x) = 1 for x > 0

and θ(x) = 0 otherwise) and y2,τ is a delay term defined by

y2,τ = e−β2τy2(t− τ). (4.8)

Among the various pathways involved in the remodelling process, only the RANKL/OPG

pathway is modelled explicitly, the other pathways are captured by the nonlinearities

in the ui equations. Next, we discuss the improvements and modifications of (4.7)

that lead to the models used in Scenarios 1-5 in this study.

Osteoclast stimulation by RANKL. RANKL activates and stimulates osteo-

clasts by binding to RANK receptors on their surface. In (4.7), this ligand-receptor

interaction is captured in the last term of the osteoclast equation as well as the third

term in the RANKL equation,

± ki
φR

λ+ φR
θ(y1) u1. (4.9)

Note that we have two different reaction rates k1, k2 to account for the reversibility

of the RANK-RANKL binding: since a ligand can contribute to the stimulation of a

cell without getting permanently bound to the receptor, we generally have k2 < k1

instead of equality. The dependence on θ(y1)u1 in (4.9) ensures that only osteoclasts

in the vicinity of the cutting cone of active cells are stimulated by RANK-RANKL

interactions. Even though this choice lead to satisfying results in previous studies,

we chose to replace it as θ(y1)u1 7→ y1. The reason for this choice is twofold: first, the

dependence on θ(y1)u1 implied that precursor cells responded to RANKL when close
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to the cutting cone, but not when further away from it. In absence of experimental

evidence for such a functional distinction, the choice y1 seems more meaningful. Sec-

ond, from a mathematical point of view the use of the Heaviside function is expected

to decrease the regularity of the solutions and hence by replacing it with a linear

dependence as ∼ y1, the regularity of the solution is increased and in particular the

problem becomes more tractable from a numerical perspective.

Another issue with the RANK-RANKL term (4.9) is the proportionality con-

stant k1: in fact, active osteoclasts are at all times attached to the bone surface and

this implies that the activation of osteoclastic activity should vanish as the local bone

density ρB goes to zero. Despite these observations, the choice of keeping k1 con-

stant throughout this study (except for Scenario 3) can be justified a posteriori by

observing that the RANKL gradients are consistently guiding the active osteoclasts

away from previously resorbed spots (see e.g. Figure 4–5). In Scenario 3 however,

the RANKL gradient is reversed and guides osteoclast towards the already resorbed

centre of the domain (see Figure 4–3). Therefore, we modelled the linear dependence

k1 ∼ ρB explicitly to avoid physiologically unfeasible situations as discussed in [142].

Porous Diffusion. In the homeostasis model (4.7) we assumed φR and φO to

obey porous diffusion dynamics, i.e. we allowed for exponents εR > 1. The main

difference between regular diffusion (ε = 1) and porous diffusion (ε > 1) becomes

apparent when considering the model equation on R,

∂tφ(t, x) = ∂xxφ
ε(t, x). (4.10)
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The dynamics of (4.10) with ε = 1 have infinite propagation speed, i.e. for any

t > 0 the solution φ will have infinite support, even if the initial field was compactly

supported. On the other hand, solving (4.10) with ε > 1, compactly supported initial

conditions will remain so for all t > 0, see [47]. Even though the latter choice of

porous diffusion seems more meaningful for a mainly membrane bound cytokine such

as RANKL, when we repeated all the simulations in this study for εR = 1.5, 2, 2.5,

we observed no qualitative differences to the case ε = 1. This observation, combined

with the numerical advantage of working with a linear diffusion term, lead us to set

εR = 1 in this study.

Finite Osteoclast Speed. As observed in Figure 4–2, tumour-derived OPG

leads to an increase in osteoclast migration speed: the distance traveled by the cut-

ting cone after 90 days monotonically increases with increasing OPG production τO.

The present model does not account for an upper limit as to how fast osteoclasts can

move across the trabecula. Therefore, simulations where the traveled distance after

90 days is more than 6 mm (compared to 1.8-3.6 mm for physiological remodelling

events [124]) are outside the range of applicability of the model. Note that all the

numerical experiments reported in this study are within the range of physiological

remodelling rates.

4.B Appendix: Numerics

Boundary Conditions. Previously, the simulations were performed on nu-

merical domains that were large enough to avoid interactions between the bone

remodelling unit and the domain boundaries. Thereby, Dirichlet boundary condi-

tions in conjunction with spatial finite difference discretizations yielded good results
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[143, 142]. However, for the current implementation of the model we used periodic

boundary conditions. This choice facilitated the use of spectral collocation methods

for the discretization of the Laplacian. In order to make sure that the size of the

domain did not affect the simulations, we first solved the equations on the origi-

nal domain, then doubled the domain size while keeping the mesh size constant,

and eventually verified that the relative difference between the two solutions was

negligible.

Fractional Step Method. The model equations of Scenarios 1-5 share a

common feature: they all involve multiple time scales and hence suffer from stiffness,

see e.g. [104]. In fact, the reaction and decay rates for the cytokines are of the order

of an hour, whereas the chemotactic motion of the cutting cone has a time scale of

about a week. If one were to perform a combined time-stepping for all state variables,

the stiffness would strongly suggest the use of an implicit method. However, since

most terms in the equations are non-linear, an implicit time-stepping would be very

expensive. Furthermore the chemotactic term, essentially hyperbolic in nature, is

best tackled with an explicit method. These considerations lead us to solve the model

equations with a fractional step method as proposed in [173]. Given an evolution

equation with advective (A), diffusive (D) and reactive (R) contributions,

∂tq = A(q) +D(q) +R(q),

the fractional step method consists of a sequence of iterative integrations. More

precisely, given the value qn := q(tn), the method integrates the solution over ∆t in

three steps:
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1. Advection. Solve ∂tq = A(q) with initial datum qn over ∆t to obtain q∗

2. Diffusion. Solve ∂tq = D(q) with initial datum q∗ over ∆t to obtain q∗∗

3. Reaction. Solve ∂tq = R(q) with initial datum q∗∗ over ∆t to obtain qn+1.

The main advantage of this approach is that for each contribution one can choose

the best suited numerical method. For the advection step we used a second order

centred difference scheme to discretize the spatial derivatives of the chemotactic term

in the osteoclast equation. The time stepping between t and t+∆t was performed by

means of the Matlab built-in adaptive Runge-Kutta 45 solver ode45. Regarding the

diffusion step we followed [173] and implemented TR-BDF2, an implicit Runge-

Kutta method of second order. As for the spatial discretization of the Laplacian, we

implemented a standard spectral collocation method, see e.g. [169]. Finally, the re-

action step was integrated with ode45, similarly to the advection step. Even though

the reaction part is mildly stiff for some Scenarios, ode45 performed well. To ensure

that the employed numerical schemes were convergent, we performed convergence

studies.

4.C Appendix: Parameter estimation

Similarly to the approach described in Section 2.5.1, we distinguish two sets of

parameters: fixed and free parameters. Fixed parameters are estimated based on

experimental findings whereas the remaining - a priori unknown - free parameters

are determined according to the following tuning strategy. While keeping the fixed

parameters unchanged, the free ones are tuned within a reasonable numerical range

until the solution matches the following in vivo observations: the cutting cone of

active osteoclasts stays spatially well-confined and moves across the trabecula at
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roughly constant speed of 20 − 40 µm/day. In the remainder of this section, we

implement this strategy and discuss individual parameters. Except for τO, τR and τP

whose values vary from scenario to scenario, the values of fixed and free parameters

are summarized in (4.11) and (4.12), respectively.

In a first step we consider the osteoclast (u), RANKL (φR) and bone (ρB)

system of Scenario 1, see equation (4.3). The parameters α, β and g corresponding

to the internal dynamics of the osteoclast population have already been determined

in [142] and are considered fixed. Since RANKL is assumed to be membrane bound

throughout the study, we fix the diffusion rate σR at a value one order of magnitude

lower than the diffusion rates of soluble OPG and PTHrP which can be estimated

experimentally as explained below. The remaining (free) parameters in Scenario 1,

namely k1, k2, λ, ζ and kB could not be matched to any experimental data and hence

we employed the tuning strategy outlined above.

For the additional fields appearing in Scenarios 2–5, namely OPG and PTHrP,

as well as their interactions with the RANKL and bone fields, we have the following

fixed parameters. First, the diffusion rates of OPG and PTHrP can be estimated

from related experimental findings: in [193], effective diffusion rates for Verteporfin

in subcutaneous and orthotopic tumours were measured to be 0.88 and 1.59µms−1

respectively. Since the diffusion rate σ of a molecule of mass M scales as σ ∼M−1/3,

see [189], we can use these rates together with the molecular weights of OPG as a

dimer (∼ 120 kDa [172]), PTHrP (∼ 18 kDa, [115]) and Verteporfin (∼ 0.7 kDa,

www.drugbank.ca) to determine the effective diffusion rates of OPG and PTHrP in

tumour tissue. For OPG we obtain a range of σO ∼ 1.4 − 2.5 · 10−2mm2day−1 and
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for PTHrP σP ∼ 2.6 − 4.7 · 10−2mm2day−1. For the present study, we fix σO = 1.6

and σP = 3. Regarding the half-life of OPG, experimental data range between 10

minutes in rats [168] and 4 days in monkeys [94]. Converted into reaction rates this

gives us a ballpark of kO ∈ [0.6, 110] day−1 . We decided to settle for an intermediate

order of magnitude by choosing kO = 10 day−1. Even though the half-life of PTHrP

is expected to be of the same order of magnitude as the one of OPG, we could not

find any corresponding experimental studies. Therefore, we treated kP together with

the remaining parameters τO, τR, τP and k3 as free parameters and used the tuning

strategy. The parameter sets are (we abbreviate day by d)

α = 9.49mm−1/2d−1 β = 0.2 d−1 g = 0.5 σR = 0.5 · 10−2mm2d−1

σO = 1.6 · 10−2mm2d−1 σP = 3 · 10−2mm2d−1 kO = 10 d−1

(4.11)

k1 = 0.3 d−1 k2 = 0.05mol d−1 λ = 13molmm−1 ζ = 1.3 · 10−3mm3mol−1d−1

kB = 3 d−1 k3 = 0.1mmdmol−1 kP = 4 d−1

(4.12)

4.D Appendix: Meta-analysis for OPG, RANKL and PTHrP gene ex-
pression

4.D.1 OPG

Nine studies were included in the analysis to assess the mRNA expression level

of OPG (gene name: TNFRSF11B) (Table 4.D.1).

According to the tissue type the data were separated into 3 groups, normal

prostate, prostate carcinoma and metastatic prostate carcinoma. Normal prostate
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Table 4–1: Meta-analysis studies.Studies used in the meta-analysis.

Oncomine Iden-
tifier

Reporter ID Platform Reference

Lapointe Prostate OPG: IMAGE:
665356

cDNA [99]

LaTulippe Prostate OPG: 37611 at
PTHRP: 37989 at
RANKL: 37611 at

Human Genome
U95A-Av2 Array

[100]

Magee Prostate OPG: U94332 at
PTHRP: M17183 s at

HumanGeneFL Array [107]

Ramaswamy Multi-
cancer 2

OPG: U94332 at
PTHRP: J03580 s at

OPG: HumanGeneFL
Array; PTHRP:
Hu35KsubA Array

[131]

Ramaswamy Multi-
cancer

OPG: U94332 at
PTHRP: J03580 s at

OPG: HumanGeneFL
Array; PTHRP:
Hu35KsubA Array

[132]

Tomlins Prostate OPG:
IMAGE: 825287;
PTHRP:
IMAGE: 1404774;
RANKL:
IMAGE: 825287

20,000 element-
spotted cDNA mi-
croarray

[167]

Vanaja Prostate OPG: 204932 at
PTHRP: 206300 s at
RANKL: 204932 at

Human Genome
U133A Array

[176]

Varambally
Prostate

OPG: 204932 at
PTHRP: 206300 s at
RANKL: 204932 at

Human Genome U133
Plus 2.0 Array

[177]

Yu Prostate OPG: 35107 at
PTHRP: 37989 at
RANKL: 35107 at

Human Genome
U95A-Av2 Array

[190]
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category included data originally labeled as Prostate Gland, Normal Prostate, Nor-

mal Adjacent Prostate, Benign Prostate and Normal Adult Prostate. Prostate car-

cinoma category included data originally labeled as Prostate Carcinoma Primary

Site, Prostate Adenocarcinoma Primary Site. Metastatic prostate carcinoma cat-

egory comprised all types of metastatic carcinoma; including data originally la-

beled as Metastatic Prostate Cancer, Hormone-Refractory Metastatic Prostate Car-

cinoma, Metastatic Prostate Carcinoma, Lymph Node, Lymph Node Metastasis, Dis-

tant Metastasis - Soft Tissue, Distant Metastasis - Bone, Metastasis, Distant Metas-

tasis, Distant Metastasis - Liver, Distant Metastasis - Adrenal Gland, Distant Metas-

tasis - Kidney, Distant Metastasis - Lung.

First, means and standard deviations for all studies were calculated and the

outlier values for each category in each study were identified as being outside the

range of mean ±2 standard deviations. As a result 5 of 109 values were removed

from Lapointe prostate, 2 of 15 from Magee Prostate, 1 of 40 from Vanaja prostate,

and 2 of 112 from Yu prostate. The resulting study means are given in Table 4.D.1.

First, 2-way ANOVA was performed using Matlab function anovan(·) [110] on

these studies using the study as the first category and prostate tissue type as a

second category. The 2-way ANOVA demonstrated that both study (p = 0) and

cancer types (p = 0.0012) are significantly different. To assess which study may

represent an outlier, we performed a Q-test for different studies, however none of

them passed the test. Therefore, we next normalized the data a) by dividing each

value on the study mean, or b) by subtracting the study mean from each value. The

resulting averages and standard deviations presented in Table 4.D.1.
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Table 4–2: Meta-analysis - OPG. Average OPG expression in different studies.
Data are means ± SD, with the number of the samples in each category given in the
parenthesis. To calculate Study average all the data in the study were combined. To
calculate Category total, all data in the category were combined.

OPG Normal Carcinoma Metastatic Study Aver-
age

Lapointe −2.53 ± 0.51
(n = 39)

−2.52 ± 0.54
(n = 56)

−2.12 ± 0.89
(n = 9)

−2.49 ± 0.57
(n = 104)

LaTulippe −3.1 ± 1.6
(n = 3)

−4.2 ± 1.8
(n = 23)

−3.4 ± 1.8
(n = 9)

−3.9 ± 1.8
(n = 35)

Magee −2.8 ± 1.2
(n = 4)

−2.54 ± 0.66
(n = 7)

−2.18 ± 0.30
(n = 2)

−2.55 ± 0.79
(n = 13)

Tomlins 0.012 ± 0.73
(n = 3)

−0.036± 0.50
(n = 8)

0.23 ± 0.86
(n = 5)

0.06 ± 0.63
(n = 16)

Vanaja −2.53 ± 0.06
(n = 8)

−2.52 ± 0.04
(n = 26)

−2.47 ± 0.16
(n = 5)

−2.52 ± 0.07
(n = 39)

Varambally −1.51 ± 0.58
(n = 6)

−1.02 ± 0.57
(n = 7)

−0.73 ± 0.92
(n = 6)

−1.08 ± 0.74
(n = 19)

Ramaswamy - −3.2 ± 2.9
(n = 10)

−0.20 ± 0.70
(n = 4)

−2.3 ± 2.8
(n = 14)

Ramaswamy 2 - −3.2 ± 2.9
(n = 10)

−0.28 ± 0.72
(n = 3)

−2.5 ± 2.9
(n = 13)

Yu −2.47 ± 0.12
(n = 22)

−2.44 ± 0.24
(n = 65)

−2.45 ± 0.17
(n = 23)

−2.45 ± 0.21
(n = 110)

Category total −2.38 ± 0.75
(n = 85)

−2.60 ± 1.35
(n = 212)

−1.94 ± 1.38
(n = 66)

-
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Table 4–3: Average OPG expression. Average OPG expression levels with stan-
dard deviations in different studies following normalization by division (NbD) or
subtraction (NbS).

Study Average
NbD

Std NbD Average
NbS

Std NbS

Lapointe
Prostate

-1 0.23 0 0.57

LaTulippe
Prostate

-1 0.46 0 1.81

Magee Prostate -1 0.31 0 0.79
Ramaswamy
Multi-cancer 2

-1 1.14 0 2.87

Ramaswamy
Multi-cancer

-1 1.21 0 2.84

Tomlins
Prostate

1 10.70 0 0.64

Vanaja Prostate -1 0.028 0 0.07
Varambally
Prostate

-1 0.67 0 0.74

Yu Prostate -1 0.084 0 0.21
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As clear from the Table 4.D.1, normalization by division affects the distribution

widths. This effect is the largest for Tomlins prostate study, due to its low mean

value (0.05), therefore we excluded this study for the subsequent analysis of data

normalized by division. Two-way ANOVA for the 8 studies normalized by division

demonstrated that following normalization by division, the studies are not different

(p = 0.999), but the OPG expression in different tissue types is different (p = 0.0024).

We next performed 2-way ANOVA for the 9 studies normalized by subtraction. Fol-

lowing normalization by subtraction, the studies are not different (p = 0.999), but

the OPG expression in different tissue types is significantly different (p = 0.006).

We next performed meta-analysis by combining the values for different tissue

types for all studies a) in the form given by Oncomine, or normalized by b) divi-

sion or c) subtraction. For all data sets, the OPG expression demonstrated signif-

icant increase in the samples from metastatic carcinoma, compared to normal or

carcinoma samples as assessed by one-way ANOVA using online statistics resource

Vassar Statistics [178]. For the original data set, the OPG expression was found

to be significantly different in different tissue types (p = 0.001), with Tukey post-test

demonstrating that OPG expression is significantly increased in metastatic prostate

carcinoma compared to normal prostate tissue (p< 0.05) or prostate carcinoma tis-

sue (p<0.01). For the data set normalized by division, one-way ANOVA gives the

significantly difference for OPG expression in different tissue types (p = 0.0006),

with Tukey post-test demonstrating that OPG expression is significantly increased

in metastatic prostate carcinoma compared to normal prostate tissue (p < 0.01) or
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prostate carcinoma tissue (p<0.01). For the data set normalized by subtraction, one-

way ANOVA gives the significantly difference for OPG expression in different tissue

types (p = 0.006), with Tukey post-test demonstrating that OPG expression is sig-

nificantly increased in metastatic prostate carcinoma compared to normal prostate

tissue (p<0.05) or prostate carcinoma tissue (p<0.01).

A graph of box plot was created using Matlab function boxplot(·) [110]. The

‘whisker’ parameter of the boxplot function w was set at 1.5, which means approx-

imately 99.3% of the value is covered if the data are normally distributed.

4.D.2 RANKL

Five studies were included in the analysis to assessed the mRNA expression

level of RANKL (Gene name: TNFRSF11): LaTulippe Prostate, Tomlins Prostate,

Vanaja Prostate, Varambally Prostate and Yu Prostate (Table 4.D.1). Average

RANKL expression levels in different studies are given in Table 4.D.2.

First, 2-way ANOVA was performed on these studies using the study as the

first category and prostate tissue type as a second category. The 2-way ANOVA

demonstrated that the studies are significantly different (p = 0) but the cancer types

are not (p = 0.837). We performed a Q-test for different studies, however none of

them was identified as an outlier. We next normalized the data a) by dividing each

value on the study mean, or b) by subtracting the study mean from each value. The

resulting averages and standard deviations presented in Table 4.D.2.

Normalization by division affects the distribution widths, affecting especially

strongly Tomlins prostate study, due to its low mean value (-0.004), therefore we
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Table 4–4: Meta-analysis - RANKL. Average RANKL expression in different
studies. Data are means ± SD, with the number of the samples in each category
given in the parenthesis. To calculate Study average all the data in the study were
combined. To calculate Category total, all data in the category were combined

RANKL Normal Carcinoma Metastatic Study Aver-
age

LaTulippe −3.42 ± 0.44
(n = 3)

−2.69 ± 0.72
(n = 23)

−1.74 ± 1.31
(n = 9)

−2.5 ± 1.0
(n = 35)

Tomlins 0.46 ± 0.57
(n = 8)

0.76 (n = 1) −1.44 ± 0.84
(n = 4)

−0.004± 0.96
(n = 13)

Vanaja −2.32 ± 0.05
(n = 7)

−2.32 ± 0.06
(n = 26)

−2.27 ± 0.11
(n = 5)

−2.32 ± 0.06
(n = 38)

Varambally −2.8 ± 1.1
(n = 6)

−2.9 ± 1.6
(n = 7)

−3.1 ± 2.1
(n = 6)

−2.9 ± 1.6
(n = 19)

Yu −1.54 ± 0.16
(n = 23)

−1.51 ± 0.20
(n = 63)

−1.56 ± 0.20
(n = 24)

−1.52 ± 0.19
(n = 110)

Category total −1.6 ± 1.2
(n = 47)

−1.97 ± 0.77
(n = 120)

−1.9 ± 1.1
(n = 48)

-

Table 4–5: Average RANKL expression. Average RANKL expression levels with
standard deviations in different studies following normalization by division (NbD) or
subtraction (NbS).

Study Average
NbD

Std NbD Average
NbS

Std NbS

LaTulippe
Prostate

-1 0.39 0 1.0

Varambally
Prostate

-1 0.53 0 1.56

Vanaja Prostate -1 0.028 0 0.06
Tomlins
Prostate

-1 249.5 0 0.96

Yu Prostate -1 0.12 0 0.19
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excluded this study for the subsequent analysis of data normalized by division. Two-

way ANOVA for the 4 studies normalized by division demonstrated that following

normalization by division, the studies are not different (p = 0.998), and the RANKL

expression in different tissue types is not different (p = 0.353). We next performed

2-way ANOVA for the 5 studies normalized by subtraction. Following normalization

by subtraction, the studies are not different (p = 0.981), and the RANKL expression

in different tissue types is not significantly different (p = 0.837).

4.D.3 PTHrP

Seven studies were included in the analysis to assess the mRNA expression level

of PTHRP (Gene name: PTHLH): LaTulippe Prostate, Magee, Tomlins Prostate,

Vanaja Prostate, Varambally Prostate, Yu Prostate, Ramaswamy Multi-cancer 2

(Table 4.D.1). The average PTHrP expression levels in different studies are given by

Table 4.D.3.

First, 2-way ANOVA was performed on these studies using the study as the

first category and prostate tissue type as a second category. The 2-way ANOVA

demonstrated that both the studies (p = 0) and the cancer types (p = 0.0014) are

significantly different. We performed a Q-test for different studies, however none of

them was identified as an outlier. We next normalized the data a) by dividing each

value on the study mean, or b) by subtracting the study mean from each value. The

resulting averages and standard deviations presented in Table 4.D.3.

Normalization by division affects the distribution widths, affecting especially

strongly Tomlins prostate study, due to its low mean value (0.02), therefore we
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Table 4–6: Meta-analysis - PTHrP Average PTHrP expression in different stud-
ies. Data are means ± SD, with the number of the samples in each category given in
the parenthesis. To calculate Study average all the data in the study were combined.
To calculate Category total, all data in the category were combined

PTHrP Normal Carcinoma Metastatic Study Aver-
age

LaTulippe −3.3 ± 1.5
(n = 3)

−2.8 ± 1.3
(n = 22)

−4.0 ± 2.0
(n = 9)

−3.2 ± 1.6
(n = 34)

Magee −5.4 ± 2.8
(n = 4)

−2.3 ± 1.1
(n = 7)

−7.4 ± 3.1
(n = 3)

−4.2 ± 2.9
(n = 11)

Ramaswamy 2 - −0.3 ± 1.2
(n = 10)

−0.94 ± 0.92
(n = 4)

−0.5 ± 0.51
(n = 13)

Tomlins 0.21 ± 0.61
(n = 14)

−0.07 ± 0.91
(n = 20)

−0.02 ± 0.57
(n = 14)

0.02 ± 0.73
(n = 48)

Vanaja −2.23 ± 0.12
(n = 8)

−2.24 ± 0.07
(n = 27)

−2.26 ± 0.09
(n = 5)

−2.24 ± 0.08
(n = 40)

Varambally −1.9 ± 1.6
(n = 6)

−1.18 ± 0.87
(n = 7)

−1.32 ± 0.37
(n = 6)

−1.44 ±
1.05(n = 19)

Yu −2.60 ± 0.14
(n = 22)

−2.52 ± 0.16
(n = 64)

−2.60 ± 0.11
(n = 23)

−2.55 ± 0.15
(n = 109)

Category total −2.0 ± 1.8
(n = 57)

−2.0 ±
1.2(n = 157)

−2.2 ± 1.9
(n = 64)

-
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Table 4–7: Average PTHrP expression. . Average PTHrP expression levels with
standard deviations in different studies following normalization by division (NbD) or
subtraction (NbS).

Study Avergae
NbD

Std NbD Average
NbS

Std NbS

LaTulippe
Prostate

-1 0.51 0 1.6

Magee Prostate -1 0.69 0 2.9
Ramaswamy
Multi-cancer

-1 2.17 0 1.1

Tomlins
Prostate

1 28.4 0 0.73

Vanaja Prostate -1 0.036 0 0.08
Varambally
Prostate

-1 0.73 0 1.05

Yu Prostate -1 0.061 0 0.15

excluded this study for the subsequent analysis of data normalized by division. Two-

way ANOVA for the 6 studies normalized by division demonstrated that following

normalization by division, the studies are not different (p = 0.988), but the PTHrP

expression in different tissue types is different (p = 0.025). We next performed 2-

way ANOVA for the 7 studies normalized by subtraction. Following normalization

by subtraction, the studies are not different (p = 0.998), and the PTHrP expression

in different tissue types is significantly different (p = 0.002).

We next performed meta-analysis by combining the values for different tissue

types for all studies a) in the form given by Oncomine, or normalized by b) division

or c) subtraction using one-way ANOVA. For the original data set, the PTHrP

expression was not found to be significantly different in different tissue types (p =

0.0.58). For the data set normalized by division, one-way ANOVA gave the significant
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difference for PTHrP expression in different tissue types (p = 0.024), but Tukey post-

test failed to identify significantly different samples. For the data set normalized by

subtraction, one-way ANOVA gives the significantly difference for PTHrP expression

in different tissue types (p = 0.003), with Tukey post-test demonstrating that PTHrP

expression is significantly decreased in metastatic prostate carcinoma compared to

prostate carcinoma tissue (p < 0.01). Based on these analysis, we concluded that

we cannot reliably demonstrate the changed in PTHrP expression depending in the

tissue type.

4.D.4 Correlation studies

The correlation test for the metastatic data of OPG, PTHrP and RANKL was

done in Excel for n = 56 samples in which both OPG and PTHrP was measured, n

= 44 samples in which both OPG and RANKL was measured, and n = 44 samples

in which both RANKL and PTHrP was measured. Significance of correlation was

assessed using online statistics resource Vassar Statistics [178] and found to be

p < 0.01 for correlation between OPG and PTHrP, p = 0.49 for OPG and RANKL

correlation and p = 0.37 for RANKL and PTHrP correlation.
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Part II

2D Stochastic Allen-Cahn

Equation
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‘Tis much better to do a little with certainty, and leave the rest for

others that come after you, than to explain all things by conjecture

without making sure of any thing.

Isaac Newton
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CHAPTER 5
On the Well-posedness of the Stochastic
Allen-Cahn Equation in two Dimensions

5.1 Abstract

White noise-driven nonlinear stochastic partial differential equations (SPDEs)

of parabolic type are frequently used to model physical systems in space dimensions

d = 1, 2, 3. Whereas existence and uniqueness of weak solutions to these equations

are well established in one dimension, the situation is different for d ≥ 2. Despite

their popularity in the applied sciences, higher dimensional versions of these SPDE

models are generally assumed to be ill-posed by the mathematics community. We

study this discrepancy on the specific example of the two dimensional Allen-Cahn

equation driven by additive white noise. Since it is unclear how to define the notion

of a weak solution to this equation, we regularize the noise and introduce a family

of approximations. Based on heuristic arguments and numerical experiments, we

conjecture that these approximations exhibit divergent behaviour in the continuum

limit. The results strongly suggest that a series of published numerical studies are

problematic: shrinking the mesh size in these simulations does not lead to the recov-

ery of a physically meaningful limit. The work in this chapter has been submitted

for publication in the Journal of Computational Physics, [144].
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5.2 Introduction

Stochastic equations of the type

∂tu = Au+ f(u) + ξ, (5.1)

where A is a linear elliptic differential operator, f is a nonlinear function and ξ is

space-time white noise, play a central role in the modelling of a whole variety of

phenomena in the physical sciences. Prominent examples are the Swift-Hohenberg

equation in the study of thermal convection [158] or the Kardar-Parisi-Zhang (KPZ)

and Lai-Das Sarma-Villain equations in surface growth [81, 98]. Another important

domain of application for nonlinear parabolic SPDEs driven by additive white noise

is the theory of the dynamics of critical phenomena [56, 22, 69]. Hohenberg and

Halperin [69] introduced a nowadays widely used classification of the various models

of dynamic critical phenomena. Their classification includes among others: Model A

for non-conserved quantities, e.g. the stochastic time-dependent Ginzburg-Landau

and Allen-Cahn equations; Model B for conserved quantities, e.g. the stochastic

Cahn-Hilliard equation; Model C which couples conserved and non-conserved fields,

e.g. phase-field models of eutectic growth.

Over the past decade, a lot of attention has been paid to the two- and three-

dimensional versions of these models. In addition to analytic work, see e.g. [183]

for the KPZ equation, emphasis has been put on numerical investigations: stan-

dard finite difference and pseudospectral methods for spatial discretization have been
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combined with Euler-Maryama or stochastic Runge-Kutta schemes to find numeri-

cal approximations to these SPDEs. For specific examples of such work we refer to

[106, 55] for the KPZ equation, to [74, 123, 134] for Models A and B, and to [45, 43]

for Model C.

But while these space-time white noise-driven SPDE models are extensively studied

by applied scientists in space dimensions d = 1, 2, 3, the mathematical community

focuses almost exclusively on the case d = 1. In fact, in one space dimension,

the theory of nonlinear parabolic SPDEs of generic type (5.1) is well-established in

the literature, see e.g. [40, 180]. In addition, convergence properties of standard

numerical approximation techniques for such equations in R1 have been thoroughly

studied, see [63, 62, 105, 150] for finite difference and [181] for finite element methods,

respectively. On the other hand, little analytic work has been done on the higher-

dimensional cases of these white noise driven models. With the exception of a few

specific cases such as the stochastic Cahn-Hilliard equation (whose well-posedness is

established in [36]), most studies claim upfront that additive white noise leads to ill-

posed equations. Typically, authors then resort to one of the following regularization

procedures: they either restrict the analysis to the case of coloured noise with a finite

spatial correlation length [89, 46], or they render the equation well-posed by means

of the so-called stochastic quantization procedure involving Wick products [38, 23].

But independently of the adopted regularization approach, the claim of ill-posedness

for the original equation is consistently made without rigorous proof.
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Assembling the above observations, we end up with the following discrepancy: whereas

higher-dimensional versions of these SPDE models are commonly used by applied sci-

entists, they are assumed to be ill-posed by the mathematical community. The goal

of this study is to gain a better understanding of what goes wrong in a class of Model

A equations, and we do so by focusing on the specific example of the stochastic

Allen-Cahn equation on a bounded domain in R2,

∂tu = ∆u+ u− u3 + ξ, (5.2)

where ξ is space-time white noise. As discussed in Section 5.4.1 below, it is unclear

how to define a weak solution for this equation. Therefore we take a different ap-

proach: we consider a sequence of regularized versions of (5.2) with corresponding

solutions uN , and study the limit as limN→∞ uN . In particular, the regularization

procedure is such that the sequence {uN(t)}∞N=1 is L2-valued for all t ≥ 0. As il-

lustrated in Figure 5–1-A-B-C-D, the sequence of regularizations (shown at time

t = 1) does not seem to converge to a meaningful limit as N → ∞: the underlying

deterministic evolution (Figure 5–1-E) of the field gets washed out as N increases

and the field becomes highly oscillatory (Figure 5–1-C-D). Furthermore, the integral

of uN(t) over an arbitrary subset of the spatial domain decays with increasing N

(Figure 5–1-F). This motivates the following conjecture.

Conjecture 5.2.1. For sufficiently regular initial condition, the regularizations uN

of the two-dimensional stochastic Allen-Cahn equation (5.2) converge in probability

153



Figure 5–1: 2D stochastic Allen-Cahn equation I. A-D: Equation (5.60) is
solved over time interval [0, 1] using scheme (5.61) for increasing number of grid
points: N = 8 (A), N = 32 (B), N = 128 (C), N = 512 (D). The final fields
uN(x, y) are shown from side and top angles; values outside of [−5,+5] are set to −5
and +5 respectively. Initial condition u0(x, y) = sin(2x); parameters: α = 6.4 · 10−3,
g = 0.5, σ = 2−3 π, M = 103. E: The deterministic Allen-Cahn equation is solved
using scheme (5.61). Initial condition and parameters as above, except σ = 0,
N = 256. F: [−π,+π] is divided into four subintervals Ik = [π

2
(k − 1), π

2
k] for

k = −1, . . . , 2. Simulations A-D are repeated for 120 realizations of the noise and
means of the piecewise constant functions ũN(z ∈ Ik) :=

∫
Ik

∫ 2π

0
uN(x, y) dy dx are

plotted. For each Ik, the largest errorbar is shown.

to the zero-distribution, i.e. ∀t > 0 and all smooth test functions φ:

lim
N→∞

(uN(t), φ)→ 0 in probability, (5.3)
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where (·, ·) denotes the L2-duality pairing.

A simple model of this form of convergence consists of the sequence of functions

{sin(Nx)}∞N=1 with x ∈ [0, 2π]. All elements of this sequence are smooth functions,

but they become highly oscillatory for large N , similarly to Figure 5–1-D. It is easy

to show that for all periodic and smooth test functions φ,

lim
N→∞

(sin(N · ), φ) = 0, (5.4)

which means that sin(Nx) weakly converges to zero.

The main goal of this study is to provide sound numerical evidence for Conjecture

5.2.1 and to give a heuristic explanation as to why the limit limN→∞ uN is not

meaningful. After a brief review of the deterministic Allen-Cahn equation and the

properties of its stochastic version for d = 1 in Section 5.3, we proceed to two sim-

plified versions of the equation in general dimension d ≥ 1. in Section 5.4 we revisit

the well-studied stochastic heat equation and in Section 5.5 we consider the decou-

pled stochastic Allen-Cahn equation - a field of independent, noise-driven particles

in double-well potentials. Studying these simplifications provides us with a better

understanding of the respective roles played by the nonlinearity and the diffusion in

the full stochastic Allen-Cahn equation in two space dimensions. The latter is the

subject of Section 5.6 where we provide heuristic arguments and numerical evidence

for Conjecture 5.2.1. In Section 5.7 we present the numerical solution strategies em-

ployed in Sections 5.4-5.6. Finally, implications of our work for published numerical

studies as well as a presentation of future directions are the subject of Section 5.8.
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5.3 Preliminaries

The Allen-Cahn equation on a domain Ω ⊂ Rn,

∂tu = ∆u+
1

ε2
(
u− u3

)
, (5.5)

was first introduced by Allen and Cahn to describe a non-conserved order field during

anti-phase domain coarsening [2]. The equation describes the gradient flow of the

energy functional

E[u] =

∫
Ω

1

2
|∇u|2 +

1

ε2
V (u)dx (5.6)

with the particular choice of a double-well potential V (u) = 1
4
u4 − 1

2
u2. The Allen-

Cahn equation has been extensively studied in the literature and exhibits a variety of

interesting phenomena such as interface motion by mean curvature flow in the limit

as ε→ 0, see [48]. We are not concerned with such limits and shall hereafter set ε = 1.

To take into account thermal effects in the gradient flow of (5.6), a natural approach

is to complement the flow with a random forcing term in form of additive space-time

white noise ξ,

∂tu = ∆u+ u− u3 + σξ, (5.7)

where σ > 0 is a constant and ξ is a space-time Gaussian random process with mean

zero and correlation function E [ξ(x, t)ξ(x′, t′)] = δ(x−x′) δ(t−t′) [151]. Note that in

the framework of Hohenberg and Halperin’s classification [69], the stochastic Allen-

Cahn equation (5.7) belongs to Model A: systems without conservation laws. In the

156



current study, we consider (5.7) on Td, the d-dimensional hypercube [−π,+π]d sub-

ject to periodic boundary conditions. This yields the following initial value problem

on Td:  ∂tu = ∆u+ (u− u3) + σξ, t > 0

u = u0, t = 0.
(5.8)

For the sake of simplicity we assume that u0 is a deterministic function. Recall now

that white noise is, formally speaking, the time derivative of the infinite dimensional

cylindrical Wiener process W , and hence we can rewrite the problem (5.8) as du = [∆u+ u− u3] dt+ σdW, t > 0

u = u0, t = 0.
(5.9)

This notation will be convenient for our analysis because W admits the spectral

decomposition [36]

W (t) =
∑
k∈Zn

βk(t)ek, (5.10)

where {βk}k∈Zd are i.i.d. Brownian motions and {ek}k∈Zd is an orthonormal basis of

L2(Td) with respect to the inner product 〈h, g〉 =
∫

[−π,+π]d
hḡdx,

ek(x) = (2π)−d/2 eikx. (5.11)

Before attempting to solve (5.8), we have to define the notion of a solution. In fact,

white noise is too rough to make sense of the equation pointwise, and we proceed

formally by integrating (5.9) against a smooth test function to obtain the following

weak formulation [40].
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Definition 5.3.1. Let H be a Hilbert space. An H-valued process u(t), t ∈ [0, T ],

is called a weak solution to problem (5.8) if (i)
∫ T

0
‖u(t)‖ dt < +∞ for almost all

trajectories, and (ii) it satisfies the weak formulation

(u(t), φ) = (u0, φ) +

∫ t

0

[
(u(s),∆φ) +

(
u(s)− u3(s), φ

)]
ds+ (W (t), φ) , P-a.s.

(5.12)

for all t ∈ [0, T ] and for all φ ∈ C∞(Td). Here, (·, ·) denotes the inner product on

H.

For the case d = 1, existence and uniqueness of the weak solution (6.16) have been

established for H = L2(T) [49, 15] (in fact, the solution is almost surely continuous).

Therefore, the initial value problem (5.8) provides a mathematically sound model in

one space dimension. However, in higher dimensions (d ≥ 2) the situation is quite

different: the weak solution to the linearized version is only a distribution-valued

process, and hence it is unclear whether there is a Hilbert space H such that a unique

weak solution to the nonlinear equation exists. To gain a better understanding of

these issues, it is instructive to have a closer look at the stochastic heat equation, a

linear version of the full Allen-Cahn model.
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5.4 Simplified version I: stochastic heat equation

5.4.1 Analytic considerations

In this section we focus on the well-studied stochastic heat equation on Td [180],

subject to homogenous initial conditions, du = [∆u− u] dt+ σdW, t > 0

u ≡ 0, t = 0.
(5.13)

Using the spectral decomposition of the noise (5.10), the projection of (5.13) onto

the Fourier modes (5.11) yields the following set of stochastic differential equations

for k ∈ Zd  dûk = −µkûkdt+ σdβk t > 0

ûk = 0 t = 0.
(5.14)

where µk = 1 + |k|2 and |k|2 =
∑d

j=1 k
2
j . In other words, the solution to (5.13) is

represented by a collection of i.i.d. Ornstein-Uhlenbeck processes [54, p.106] whose

solutions are given by

ûk(t) = σ

∫ t

0

e−µk(t−s)dβk(s). (5.15)

These are mean zero Gaussian processes with covariance (s > 0)

E ûk(t)ûk(t+ s) =
σ2

2µk
e−µks

[
1− e−2µkt

]
. (5.16)
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With this we are now able to calculate the expected value of the L2(Td)-norm (de-

noted by ‖·‖0) of the solution to (5.13),

E ‖u(t)‖2
0 = E

∑
k∈Zd
|ûk(t)|2 =

∑
k∈Zd

σ2

2µk

[
1− e−2µkt

]
. (5.17)

The convergence of the series depends on the summability of µ−1
k = (1+|k|2)−1 and it

is easy to see that E ‖u(t)‖2 < +∞ for d = 1, whereas E ‖u(t)‖2 = +∞ for d ≥ 2. In

other words, the solution of the one dimensional stochastic heat equation (5.13) takes

values in L2(T1) almost surely – a result that does not hold true in higher dimensions.

Let us now have a closer look at the case d ≥ 2, and more precisely at the rate of

divergence of the sum in (5.17). For fixed t > 0,

E ‖u(t)‖2
0 ∼

∑
|k|≤N

1

1 + |k|2
∼
∫ N

0

rd−1

1 + r2
dr, (5.18)

where we use the following definition: fN ∼ gN if there exist two constants c, C > 0

such that c ≤ fN/gN ≤ C for N sufficiently large. (5.18) implies that the divergence

is logarithmic for d = 2 and polynomial for d ≥ 3. But even though it is not

L2(Td)-valued, u(t) might be well-defined in a larger space. In this sense, a natural

enlargement of L2(Td) is given by the negative Sobolev spaces Hs(Td) for s < 0, e.g.

[42, p.96].

Definition 5.4.1 (Sobolev Spaces). Let s ∈ R. Then the Sobolev space Hs(Td) is

defined by means of a weighted norm as

Hs(Td) :=

{
f : Td → R : ‖f‖2

s =
∑
k∈Zd

(
1 + |k|2

)s ∣∣∣f̂k∣∣∣2 < +∞

}
, (5.19)
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where f̂k are the generalized Fourier coefficients. In particular, L2(Td) = H0(Td).

Revisiting the calculation (5.18) in Hs(Td) yields

E ‖u(t)‖2
s ∼

∫ N

0

rd−1

(1 + r2)1−sdr < +∞, ∀s < 1− d/2, (5.20)

i.e. the solution to the d-dimensional version of (5.13) takes values in Hs(Td) almost

surely, for all s < 1−d/2. We summarize these estimates in the following result [180]

Theorem 5.4.2. Let d ≥ 1. For all s < 1− d/2, the solution to the d-dimensional

stochastic heat equation takes values in Hs(Td) almost surely. In particular, d = 2

is the borderline case: the L2-divergence in (5.18) is logarithmic, and for all t > 0

we find that u(t) ∈ Hs(Td) P-a.s. for all s < 0.

Theorem 5.4.2 illustrates the smoothing properties of the heat kernel: whereas space-

time white noise only takes values in Hs(Td) for s < −d/2, the action of the heat

semigroup improves the regularity such that u(t) ∈ Hs(Td) for s < −d/2 + 1. In

view of the nonlinear stochastic Allen-Cahn equation (5.8) in dimensions d ≥ 2,

the relevance of Proposition 5.4.2 is the following: for negative s, Hs(Td) is a space

of distributions, and it is in general not possible to multiply two distributions in a

meaningful way [149]. In consequence, taking the cube of the linear solution does not

make sense and we anticipate the nonlinear equation to be ill-posed. This observa-

tion provides a heuristic argument as to why white noise-driven nonlinear parabolic

SPDEs in higher dimensions are generally suspected to be ill-posed. However, this

is not a rigorous proof and the question remains as to whether it is possible to find

a space in which there exists a weak solution to the stochastic Allen-Cahn equation

in higher dimensions.
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5.4.2 Simulations

To illustrate the results of the previous section, and to facilitate comparisons

with subsequent results, we present now a numerical experiment on the two-dimensional

stochastic heat equation (5.13). We discretize the periodic domain T2 using N2 grid

points {xj = 2π
N
j : j = (j1, j2), ji = −N/2, . . . , N/2 − 1} and denote by uN(xj, t)

the numerical approximation at grid-point xj and time t. Since we are mostly inter-

ested in the spatial regularity of the solution, we fix T > 0, integrate the equation

numerically over [0, T ] in M steps, and denote uN(xj) ≡ uN(xj, T ). To estimate

the regularity of the approximation uN , we first need to define the finite-dimensional

analogue of the Sobolev norm (5.19). To do this, we introduce the discrete Fourier

transform of uN as

ûN(k) =
1

N

N/2−1∑
ji=−N/2

uN(xj) exp

(
2πi

N
k · j

)
, (5.21)

and the discrete inverse Fourier transform as

uN(xj) =
1

N

N/2−1∑
ki=−N/2

ûN(k) exp

(
−2πi

N
k · j

)
, (5.22)

where {k = (k1, k2) : ki = −N/2, . . . , N/2− 1} are the wave vectors. We can now

define the Hs(Td)-norm for discrete functions defined on the N2 grid points.

Definition 5.4.3 (Discrete Sobolev Norm). Let N ≥ 2 be an even integer. Let uN

be a discrete function defined on the N2 grid points of T2. The discrete Hs(T2)-norm
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of uN is defined as

|||uN |||2s := ρ−1

N/2−1∑
ki=−N/2

(
1 + |k|2

)s |ûN(k)|2 , (5.23)

where ρ−1/2 := 2π/N is the grid spacing.

Remark 5.4.4. To see that ρ−1 is the correct scaling in (5.23), consider the case

s = 0. Using Parseval’s equality we find

|||uN |||20 = ρ−1

N/2−1∑
ki=−N/2

|ûN(k)|2 = ρ−1

N/2−1∑
xj=−N/2

|uN(xj)|2

N→∞−−−→
∫

[0,2π]2
|u|2 dx = ‖u‖2

0 . (5.24)

The following notion of the radial energy density will be useful for the graphic illus-

tration of the numerics.

Definition 5.4.5 (Radial Energy Density in Fourier Space). Let N ≥ 2 be an even

integer and let uN be a discrete function defined on the N2 grid points of T2. The

radial energy density in Fourier space, EN , is defined as

EN(κ) :=
ρ−1

|Aκ|
∑
k∈Aκ

|ûN(k)|2 , κ = 1, . . . , N/2− 1, (5.25)

where Aκ = {x ∈ R2 : (κ− 1)2 ≤ x2 ≤ κ2} is the κ-th annulus in R2 and |Aκ| is the

cardinality of Z2 ∩ Aκ.

Using the energy density (5.25), we can replace the Hs(T2)-norm (5.23) with an

equivalent discrete norm defined as

|||uN |||2s =

N/2−1∑
κ=1

EN(κ)κ (1 + κ2)s. (5.26)
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From this we conclude that in the continuum limit as N →∞, the regularity of uN is

determined by the decay of the radial energy density EN . In Figure 5–2, the density

EN for the corresponding numerical solution uN of the stochastic heat equation is

plotted for increasing values of N : we observe convergence within the errorbars, and

in particular the EN(κ) decay like 1/κ2 for κ large enough. By (5.26), this suggests

that limN→∞ ‖uN‖2
0 = +∞, whereas limN→∞ uN ∈ Hs(T2), P-a.s., ∀s < 0. Note

that these limits are in perfect agreement with Theorem 5.4.2. A detailed discussion

of the employed numerical scheme is presented in Section 5.7.1.

5.5 Simplified version II: decoupled stochastic Allen-Cahn equation

5.5.1 Analytic considerations

In this section we study a second simplification of the stochastic Allen-Cahn

equation in Rd. This time, we keep the nonlinearity but neglect the diffusion term,

i.e. we consider

du =
[
u− u3

]
dt+ σdW, (5.27)

on the domain Td and subject to homogenous initial conditions. Even though this

equation does not provide a meaningful physical model, it is instructive in view of the

discussion of the full stochastic Allen-Cahn equation in Section 5.6. In fact, we will

see that approximations to the stochastic Allen-Cahn equation and its decoupled

version (5.27) share similar characteristics. However, the latter is more tractable

due to the spatial decoupling: at each point in space there is a particle, driven by a

Brownian motion and confined by a double-well potential. Note that the particles are

i.i.d. because the collection of driving Brownian motions arises from space-time white
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Figure 5–2: 2D stochastic heat equation. Equation (5.55) is solved using scheme
(6.42). Parameters: g = 1, α = 0.5, σ = π/50, T = 1, M = 2 · 103. For each
N = 2n (n = 5, . . . , 11), the average of EN(κ) over 40 simulations is plotted for
κ = 1, . . . , N/2. Largest error bar is shown for each N , and we observe convergence
within errorbars. Dotted line is of slope 1/κ2.

noise. It is not clear if there exists a solution space which allows for the definition

of a weak solution to (5.27). We circumvent this difficulty by first discretizing the

equation in real space and then passing to the continuum limit. We choose an even

integer N , introduce an equidistant mesh of size ρ−1/2 := ∆x = 2π/N along each
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dimension of Td, and consider the finite-dimensional approximation uN , which is

defined on the Nd grid points {xj}. At each grid point, the evolution equation is

duN(xj) = −V ′ (uN(xj)) dt+ σρd/4dβj, (5.28)

where V (x) := 1
4
x4 − 1

2
x2 is a double-well potential, {βj} is a collection of i.i.d.

standard Brownian motions, and the scaling ρd/4 is due to the spatial discretization

of white noise. As the number of grid points increases, the deterministic term in

(5.28) remains unaltered while the noise intensity increases. Therefore the variance

of the solution uN(t) is unbounded in the limit as N → ∞. Unless the potential V

is quadratic, it is not possible to write down the dynamic solution to (5.28) in closed

form; instead we focus on the stationary solution (as t → ∞) whose probability

distribution function is given by

pN(y) =
1

N
exp

{
−2V (y)

σ2ρd/2

}
, (5.29)

with N the normalization constant [54]. We prove now the following result.

Theorem 5.5.1. Let d ≥ 1, σ 6= 0 and V (x) = 1
4
x4 − 1

2
x2. For sufficiently regular

initial condition, the stationary solution uN of the regularized problem (5.28) admits

the following limits

lim
N→∞

E |||uN |||2s =


0 if s < −d/4

K < +∞ if s = −d/4

+∞ if s > −d/4,

(5.30)

where |||·|||s is the discrete Sobolev norm of Definition 5.4.3, generalized to d dimen-

sions (5.35).
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Proof. The main part of the proof is established in Lemma 5.A in the Appendix.

We first generalize the discrete Fourier transform (5.21) and its inverse (5.22) to d

dimensions:

ûN(k) =
1

Nd/2

N/2−1∑
ji=−N/2

uN(xj) exp

(
2πi

N
k · j

)
, (5.31)

and the inverse transform

uN(xj) =
1

Nd/2

N/2−1∑
ki=−N/2

ûN(k) exp

(
−2πi

N
k · j

)
. (5.32)

Using (5.31) together with point (ii) of Lemma 5.A, we find that the stationary

solution uN of (5.28) satisfies the following properties:

E ûN(k) = 0, ∀k = −N/2, . . . , N/2− 1, ∀N ≥ 2 (5.33)

E|ûN(k)|2 ∼ σNd/2, ∀k = −N/2, . . . , N/2− 1, ∀N ≥ 2. (5.34)

From this we see that as we refine the grid, limN→∞ E|ûN(k)|2 =∞ for all k and d ≥

1. Generalizing the discrete version of the Hs(Td)-norm (5.23) to general dimension

d ≥ 1, and using the growth rate (5.34), we find

E |||uN |||2s = ρ−d/2
N/2−1∑
ki=−N/2

(
1 + |k|2

)s |ûN(k)|2

∼ ρ−d/4
∫ N

0

(
1 + r2

)s
rd−1dr ∼ N2s+d/2. (5.35)

The limits in (5.30) follow now easily.

In particular, (5.30) implies that the continuum limit of uN does not take values in

Hs(Td) for any s > −d/4, and in particular not in L2(Td). Furthermore, recalling

167



that the dual of Hs(Td) is H−s(Td), and that C∞(Td) ⊂ Hs(Td) ∀s ∈ R, it follows

immediately that

Corollary 5.5.2. Let d ≥ 1, σ 6= 0 and V (x) = 1
4
x4 − 1

2
x2. For sufficiently regular

initial condition, the stationary solution uN of the regularized problem (5.28) con-

verges in probability to the zero-distribution in the sense of the definition given in

Conjecture 5.2.1.

5.5.2 Simulations

Similarly to the case of the stochastic heat equation in Section 5.4.2, we compare

our results now to numerical experiments. According to (5.34) the mean of the radial

energy density EN (5.25) decays like

EEN(κ) ∼ 1

N
, κ = 1, . . . , N/2− 1, (5.36)

independently of the spectral radius κ. This is illustrated by the simulations in

Figure 5–3, where the energy density is plotted for various values of N . Taking into

account the loglog-scale of the plot, the regular spacing of the EN for increasing N

(N = 2j for j = 5, . . . , 11) illustrates the decay in (5.36). A detailed discussion of

the employed numerical scheme is presented in Section 5.7.2.

5.6 2D Stochastic Allen-Cahn equation

5.6.1 Heuristic considerations

We turn our attention to full the stochastic Allen-Cahn equation in two dimen-

sions, i.e. we consider

du =
[
∆u+ u− u3

]
dt+ σdW (5.37)
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Figure 5–3: 2D decoupled stochastic Allen-Cahn equation . Equation (5.58) is
solved using scheme (5.59). Parameter values: g = 0.1, σ = π/5, T = 2, M = 4 · 103.
For each N = 2n (n = 5, . . . , 11), the average of EN(κ) over 40 simulations is plotted
for κ = 1, . . . , N/2. Largest error bar is shown for each N .

on T2, subject to homogenous initial conditions. As outlined at the end of Section 5.4,

it is unclear how to make sense of this equation: in fact, we suspect the continuum

version of (5.37) to be ill-posed with respect to any reasonable definition of a weak

solution. Therefore, we take a different approach and tackle the problem from the
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perspective of numerical analysis. By cutting off high frequency modes in the noise,

dWN =
∑
|k|≤N

βk(t)ek, (5.38)

we obtain the following family of regularized problems

duN =
[
∆uN + uN − u3

N

]
dt+ σdWN . (5.39)

For fixed N , the solution to (5.39) exists and is unique, but what can we say about

the limit of uN as N → ∞ ? In the remainder of this section, we discuss this limit

and provide evidence for Conjecture 5.2.1, the main subject of this study. The argu-

ments hereafter will invoke elements of the theory of stochastic quantization and we

refer the reader to [39] for a rigorous introduction to the formalism.

At the end of Section 5.4 we explained that the term u3
N in (5.39) was expected to

be undefined in the limit N →∞. To circumvent this issue, we introduce a constant

CN > 1, depending only on N , and rewrite equation (5.39) as

duN =
[
∆uN − (CN − 1)uN − uN

(
u2
N − CN

)]
dt+ σdWN . (5.40)

The key idea is to choose the constant CN wisely, so that the term uN (u2
N − CN) ap-

proaches a well defined limit.1 More precisely, we choose CN such that uN (u2
N − CN)

converges to : u3 :, the renormalized cube of u, which we briefly explain here. Given

1 This idea was conceived by Martin Hairer.
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the stationary measure µN of the underlying linear equation

dvN = [∆vN − (CN − 1) vN ] dt+ σdWN , (5.41)

x 7→: xn : denotes the n-th Wick power with respect to the limit measure limN→∞ µN .

In contrast to limN→∞ u
3
N , the renormalized cube limN→∞ uN (u2

N − CN) =: u3 :

is well-behaved in the sense that its generalized Fourier coefficients 〈: u3 :, ek〉 are

uniformly L2(P)-bounded in the probabilistic sense. But what is the correct choice

for CN? In fact, its job is to subtract the diverging parts that cause the unmodified

cube to be ill-posed, and it is given by

CN = 3EµN |uN |
2 , (5.42)

where EµN denotes the expected value with respect to µN . To determine the measure

µN , we project (5.41) onto the Fourier basis to obtain a collection of i.i.d. Ornstein-

Uhlenbeck processes. From this it easily follows that µN is a mean zero Gaussian

measure and according to (5.16) its covariance operator is given by

ĈNek =


σ2

2(CN−1+|k|2)
ek if |k| ≤ N,

0 if |k| > N.
(5.43)

Combining (5.42) and (5.43) yields the following equation for CN

CN =
3

8π2

∑
|k|≤N

σ2

CN − 1 + |k|2
. (5.44)
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For all N ≥ 2, equation (5.44) admits a unique positive fixed point, CN → ∞ as

N →∞, and the rate of divergence is logarithmic

CN =
3σ2

4π
logN + o(1). (5.45)

To show (5.45), rewrite the sum in (5.44) as a Riemann sum, estimate the latter by

an integral approximation (for large N), and evaluate the integral to get

CN ∼
3σ2

8π
log

(
N2

CN

)
=

3σ2

4π

[
logN − 1

2
logCN

]
. (5.46)

Making now the Ansatz CN = ΛN logN and plugging it into (5.46) yields the estimate

(5.45). With this choice of CN , we go back to the original equation (5.40) and project

it onto the Fourier basis to obtain

dûN(k) = −
(
CN − 1 + |k|2

)
ûN(k)dt−

〈
uN(u2

N − CN), ek
〉
dt+ σN(k)dβk(t),

(5.47)

where σN(k) := σ if |k| ≤ N and σN(k) := 0 if |k| > N . Recalling that CN → ∞

and 〈uN(u2
N − CN), ek〉 → 〈: u3 :, ek〉 (which are uniformly L2(P)-bounded), the first

term in (5.47) dominates the second term as N becomes large. Hence

dûN(k) ∼ −
(
CN − 1 + |k|2

)
ûN(k)dt+ σN(k)dβk(t). (5.48)

The solution to (5.48) is an Ornstein-Uhlenbeck process for |k| ≤ N and a decaying

exponential for |k| > N , and we conclude that for large times

E |ûN(k)|2 ∼ σ2
N(k)

2
(
CN − 1 + |k|2

) , t→∞. (5.49)
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From this we deduce two important facts: first, for a fixed cut-off N , the energy in

Fourier space essentially decays as

E |ûN(k)|2 ∼ 1

|k|2
, N � 1 fixed, |k| ≤ N. (5.50)

Second, for a given mode k, the decay as N →∞ goes as

E |ûN(k)|2 ∼ 1

logN
, fixed k. (5.51)

Furthermore, given the joint dependence on k and N in (5.49), we can estimate the

continuum limit of the Hs(T2)-norm of uN . For s = 0 we get the L2(T2)-norm

E ‖uN‖2
0 =

σ2

2

∑
|k|≤N

E |ûN(k)|2 ∼ σ2π

2
log

(
1 +

N√
CN

)
→∞ as N →∞, (5.52)

because (5.45) implies that N−1
√
CN → 0 as N →∞. On the other hand, if s < 0,

we can use Lebesgue’s dominated convergence theorem to get

E ‖uN‖2
s =

σ2

2

∑
|k|≤N

(
1 + |k|2

)s E |ûN(k)|2

∼ σ2π

∫ ∞
0

1[0,N ]
x1+2s

x2 + CN
dx→ 0 as N →∞, ∀s < 0. (5.53)

Note that the results (5.52) and (5.53) have been derived under the assumption that

the field has reached the steady-state distribution (t→∞). However, since the decay

rate (CN − 1 + |k|2) in (5.48) tends to infinity in the continuum limit, the damping

occurs infinitely fast as N → ∞, and we anticipate the limits (5.52) and (5.53) to

hold for any finite time t > 0. In other words we propose the following conjecture.
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Conjecture 5.6.1. Let t > 0 and σ 6= 0. For sufficiently regular initial condition,

the solution uN to the regularized problem (5.39) admits the following limit:

lim
N→∞

E ‖uN(t)‖2
s =

 +∞ if s ≥ 0,

0 if s < 0.
(5.54)

An immediate corollary to Conjecture 5.6.1 is Conjecture 5.2.1: uN converges in

probability to the zero-distribution. Even though these two conjectures do not tell

us anything about the nature of the continuum solution of the stochastic Allen-Cahn

equation (5.37), they suggest that the approximation sequence (5.39) does not admit

a meaningful limit: even though the limit takes values in the distributional spaces

Hs(T2) a.s. for all s < 0, it is a trivial limit as it projects every test function onto 0.

To gain a better understanding of the nature of this pathology, it is instructive

to have a closer look at the roles played by the three main ingredients of the reg-

ularized stochastic Allen-Cahn equation (5.39): diffusion, nonlinearity, and noise.

Considering only the noise, the solution to the corresponding equation, duN = dWN ,

converges to the cylindrical Wiener process W as N → ∞. The latter takes values

in Hs(T2) P-a.s. for all s < −1. Adding the nonlinearity to the noise, we obtain

the decoupled equation duN = [uN − u3
N ] dt + dWN of Section 5.5. In this case,

the uN converge in probability to a distribution uc which is more regular than W :

uc ∈ Hs(Td) P-a.s. for all s ≤ −1/2; however, uc is the zero-distribution. Finally,

when adding the Laplacian to obtain the regularized stochastic Allen-Cahn equa-

tion, duN = [∆uN + uN − u3
N ] dt + dWN , the regularity of the limit as N → ∞ is
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conjectured to improve: (5.54) implies that uN converges in probability to a distri-

bution uc with values in Hs(T2) P-a.s. for all s < 0. At the same time, the presence

of the Laplacian is not sufficient to render the limit meaningful: uc is again the

zero-distribution.

5.6.2 Simulations

The results of the previous section are based on heuristic arguments in absence

of rigorous proofs. To put them on more solid ground, we performed a series of nu-

merical experiments. Similarly to the numerical analysis for the simplified equations

in Sections 5.4.2 and 5.5.2, we integrated the stochastic Allen-Cahn equation over

the time interval [0, 1] and computed the radial energy density EN at t = 1, see Fig-

ure 5–4. A first observation concerns the decay of EN(κ) for fixed N : Figure 5–4-A

shows that this decay is proportional to ∼ 1/κ2 for large κ, which is in agreement

with the estimate (5.50). A second observation concerns the decay of EN(κ) for

fixed κ. In Figure 5–4-B we zoom into the interval κ ≤ 16 of Figure 5–4-A: rather

than converging to a finite value, the energy density slowly decays with increasing

N . In agreement with estimate (5.51) this decay is logarithmically slow, and hence

the expected convergence to zero is not visible within the range of computationally

tractable N . A detailed discussion of the employed numerical scheme is presented in

Section 5.7.3.

A comparison between the three figures – Figure 5–2 for the stochastic heat equation,

Figure 5–3 for the decoupled stochastic Allen-Cahn equation and Figure 5–4 for the

stochastic Allen-Cahn equation – suggests that the latter inherits and combines the
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Figure 5–4: 2D stochastic Allen-Cahn equation II. The stochastic Allen-Cahn
equation (5.60) is solved in two space dimensions using scheme (5.61). Parameter
values: α = 6.4 · 10−3, g = 0.5, σ = 2π/5, T = 1, M = 2 · 103. A. For each
N = 2n (n = 5, . . . , 11), the average of EN(κ) over 40 simulations is plotted for
κ = 1, . . . , N/2. Largest error bar is shown for each N . B. For each N = 2n

(n = 5, . . . , 11), the average of EN(κ) over 40 simulations is plotted for κ = 1, . . . , 16.
Largest error bar is shown for each N .

main features of the two simplified versions: the∼ 1/κ2 decay of the Fourier spectrum

as dictated by the Laplacian, and the decay (to zero) of individual Fourier modes as

dictated by the nonlinearity.
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5.7 Numerics

To perform the two-dimensional numerical experiments presented in Sections

5.4.2, 5.5.2 and 5.6.2, the periodic domain [−π,+π]2 was discretized into a regular

grid of N2 points (N even), and the interval of integration [0, T ] was divided into

M subintervals of length ∆t = T/M . Depending on the nature of the equation,

the time-stepping was performed in either direct space for the decoupled Allen-Cahn

equation (5.27), in discrete Fourier space for the heat equation (5.13), or using both

spaces for the Allen-Cahn equation (5.37). Note that for all presented experiments

we had verified convergence in time by direct comparison of the solutions obtained

with time steps 2∆t and ∆t, respectively. Before presenting the numerical schemes,

a comment about diffusion and reaction rates is in order. Note that equations (5.13),

(5.27) and (5.37) are free of constants, except for the noise intensity σ. In fact, we

had eliminated all other constants by rescaling time and space in the corresponding

evolution equations. For numerical purposes however, it is convenient to use the

same space and time scales throughout the experiments, and hence we re-introduced

diffusion and reaction rates (as specified below) in the previously rescaled terms.

5.7.1 Stochastic heat equation

Introducing a diffusion constant α > 0 and a decay rate g > 0, the stochastic

heat equation (5.13) becomes

du = [α∆u− gu] dt+ σdW. (5.55)
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Linearity of the equation allows us to project it onto the N2 modes in discrete Fourier

space as

dûN(k) = −(g + α |k|2)ûN(k)dt+ σdŴN(k), (5.56)

where WN is defined in (5.38) and k = (k1, k2). An implicit-explicit scheme was

used for the time-stepping, combining the explicit Euler-Maryama scheme [67] for

the noise with the implicit trapezoidal scheme for the reaction and diffusion terms.

With the notations ûmN(k) := ûN(k, tm) and ∆x := 2π/N , the scheme reads

ûm+1
N (k) = ûmN(k)− ∆t

2
(g + α |k|2)

[
ûm+1
N (k) + ûmN(k)

]
+ σ

√
∆t

∆x
ξmk , (5.57)

where ξmk = 1√
2

(ηmk + i ζmk ), and {ηmk } and {ζmk } are real i.i.d. N (0, 1) random vari-

ables. This representation of white noise on the grid is dictated by the choice of

complex eigenfunctions {ek} and the fact that the Wiener process W is real.

5.7.2 Decoupled stochastic Allen-Cahn equation

The spatially decoupled stochastic Allen-Cahn equation (5.27) is conveniently

discretized in direct space. Introducing the double-well intensity g > 0 and the

notation xj = 2π
N
j, where j = (j1, j2) and ji = −N/2, . . . , N/2 − 1, we obtain the

discretized version

duN(xi) = g
[
uN(xj)− u3

N(xj)
]
dt+ σdWN(xj). (5.58)

Again, an implicit-explicit time stepping scheme was employed for (5.58), combin-

ing the explicit Euler-Maryama step for nonlinearity and noise with the trapezoidal
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scheme for the linear contribution

um+1
N (xj) = umN(xj) + g

∆t

2

[
um+1
N (xj) + umN(xj)

]
− g∆t [umN(xj)]

3 + σ

√
∆t

∆x
ξmj ,

(5.59)

where {ξmj } are real i.i.d. N (0, 1) random variables.

5.7.3 Stochastic Allen-Cahn equation

Since the stochastic Allen-Cahn equation

du =
[
α∆u+ g

(
u− u3

)]
dt+ σdW (5.60)

involves the characteristic features of both prior models, the diffusion term as well

as the nonlinearity, there is no natural choice between direct and Fourier space.

Instead, we formulate the scheme in Fourier space, go to direct space using the

inverse fast Fourier transform (IFFT), process the nonlinearity uN 7→ u3
N , and go

back to Fourier space using the fast Fourier transform (FFT). More precisely, the

discretization scheme for (5.60) reads

ûm+1
N (k) = ûmN(k) + (g − α |k|2)

∆t

2

[
ûm+1
N (k) + ûmN(k)

]
− g∆t

〈
(umN)3 , ek

〉
N

+ σ

√
∆t

∆x
ξmk ,

(5.61)

where ξmk = 1√
2

(ηmk + i ζmk ) with {ηmk } and {ζmk } real i.i.d. N (0, 1) random variables.

In (5.61) we have used the notation

〈
x3, ek

〉
N

:=
[
FFT

[
(IFFT [x])3]]

k
, (5.62)

for x ∈ span {ek : k1,2 = −N/2, . . . , N/2− 1}. Straight-forward implementation of

the procedure (5.62) gives raise to an aliasing error, and we employed the so-called
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Two-Thirds Rule [125] to correct for this error. We refer to Appendix A in [55] for

a detailed discussion of aliasing issues and the Two-Thirds Rule.

5.8 Conclusions and outlook

Let us now discuss the implications of our work with respect to the discrepancy

of frequent use (applied sciences) and virtual neglect (mathematical community) of

the white noise-driven Allen-Cahn equation in two dimensions. Whereas the well-

posedness of the equation per se remains an open question, Conjecture 5.6.1 suggests

that various published numerical studies, e.g. [8, 155, 121, 59, 58], are indeed prob-

lematic: if the mesh size in these simulations was shrunk, the numerical solutions

would converge to the zero-distribution. As illustrated in Figure 5–1 there is no

pattern formation in the continuum limit – the zero-distribution is a trivial solution.

Therefore, even if one were able to make sense of the continuum equation, the em-

ployed numerical schemes could not be used to approximate it. In addition to the

pseudospectral method described in Section 5.7.3, we positively tested our conjecture

for a finite difference method. Since the pathologies do not seem to be caused by

subtle deficiencies in the numerical schemes, but rather by the roughness of white

noise itself, we expect Conjecture 5.6.1 to hold for all standard numerical schemes.

One possibility for an a posteriori rectification of the problematic numerical studies

is to introduce a finite correlation length λ in the noise field of the underlying model.

Not only does this render the model equations well-posed, but it can also provide

a justification of the numerical experiments: in fact, if λ � ∆x, where ∆x is the

smallest mesh size used in the simulations, the noise is indeed uncorrelated on the
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grid, and the white noise simulations are reasonable. However, such a correction is

not unproblematic as λ is dictated by the physics of the problem: it might be difficult

to determine the correct correlation length, or the latter might be too big (λ > ∆x),

in which case the white noise simulations are indeed invalid.

For future endeavours, our work leads to the following questions. First, Conjecture

5.6.1 poses the challenge for a rigorous proof, and we will address this issue in a

forthcoming publication. Second, since the irregularity of white noise increases with

the spatial dimension, we expect equations in three and more dimensions to be ill-

posed, too. But a generalization of Conjecture 5.6.1 for d ≥ 3 is yet to be established.

Finally, the stochastic Allen-Cahn equation is only one specific example of the class

of white noise-driven nonlinear SPDEs that are used to model physical phenomena in

two and three space dimensions. It remains to be established whether other models

(see Introduction for a detailed list) suffer from similar pathologies.

5.A Appendix: Proof of Theorem 5.5.1

To prove Theorem 5.5.1 we need the following lemma.

Lemma 5.A.1. Let V (x) = 1
4
x4− 1

2
x2 be the double-well potential, d ≥ 1 and σ 6= 0.

Then the stationary solution uN of the regularized problem (5.28) has the following

properties:

(i) EuN(xj) = 0, ∀j1,2 = −N/2, . . . , N/2− 1, ∀N ≥ 2.

(ii) E |uN(xj)|2 ∼ σNd/2, ∀j1,2 = −N/2, . . . , N/2− 1, ∀N ≥ 2.
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Proof. (i) follows from the symmetry of the potential V . For (ii), we recall that the

stationary solution of (5.28) has a distribution at every grid point given by

pN(x) =
1

N
exp

{
−2V (x)

σ2ρd/2

}
=

1

N
exp

{
−(x4/2− x2)

σ2ρd/2

}
, ρ =

N2

4π2
. (5.63)

To simplify calculations, we denote

c :=
1

2σ2ρd/2
=

(2π)d

2σ2
N−d. (5.64)

Then

pN(x) =
1

N
ec exp

{
−c(x2 − 1)2

}

E|uN(xi)|2 =

∫
R x

2pN(x) dx∫
R pN(x) dx

=

∫∞
0
x2pN(x) dx∫∞

0
pN(x) dx

=

∫∞
0
x2 exp {−c(x2 − 1)2} dx∫∞

0
exp {−c(x2 − 1)2} dx

=: R(c),

(5.65)

since the integrands are even. With the change of variables z =
√
cx2 we get

R(c) =

∫∞
0

√
z√
c

exp{−(z −
√
c)2} 1

2c1/4
dz∫∞

0
exp{−(z −

√
c)2} 1

2
√
zc1/4

dz
. (5.66)

Now we define

P (c) :=

∫∞
0
z1/2 exp{−(z −

√
c)2} dz∫∞

0
z−1/2 exp{−(z −

√
c)2}dz

(5.67)

and use (5.64) and (5.66) to see that

R(c) =
√

2σρd/4P (c). (5.68)
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Next we establish that P (c) is bounded on c ≤ (2π)2

2σ
⇐⇒ N ≥ 1. We recall the

integral representation of the modified Bessel function Kν(z) ([182], p183)

Kν(z) =
1

2
(
z

2
)ν
∫ ∞

0

1

tν+1
exp

(
−t− z2

4t

)
dt,

and use it together with the software Maple to get

P (c) =

√
c

2K1/4( c
2
)

(
K3/4(

c

2
)−K1/4(

c

2
)
)
. (5.69)

Exploiting recursive differentiation formulae for Bessel functions [182], one can de-

duce from (5.69) that P (c) is bounded and decreasing on intervals [0,M ], for all

M > 0. Recalling (5.64) we conclude that P as a function of N is increasing and

uniformly bounded for N ≥ 1. Together with (5.68) this yields (ii).
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CHAPTER 6
2D Stochastic Allen-Cahn:

Convergence to the Zero-Distribution

6.1 Abstract

The subject of this chapter is a rigorous proof of the result conjectured in Chap-

ter 5. After some introductory comments in Section 6.2, we state the main theorem

in Section 6.3. In Section 6.4, we motivate and introduce the Wiener chaos expan-

sion and the notion of renormalized powers. The complete proof of the theorem is

presented in Section 6.5, and some remarks on the choice of function spaces are given

in Section 6.6. The work of this chapter is currently in preparation for publication,

[146].

6.2 Preliminaries

Before we discuss the white noise equation in two dimensions, we would like to

make some comments on the following d-dimensional Allen-Cahn equation on Td,
du = [∆u+ u− u3] dt+ dWQ

u(0) = u0,

(6.1)

where WQ ≡ WQ
L2(Td)

is either a cylindrical (Q = Id) or a coloured Wiener process

(Q 6= Id). Assume for instance that the covariance operator Q is diagonal with
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respect to the Fourier basis {ek}k∈Zd of L2(Td),

Qek = λkek, λk ≥ 0. (6.2)

It follows then that WQ can be represented as (see Theorem 1.2.13 for details)

WQ(t) =
∑
k∈Zd

√
λkekβk(t), t ≥ 0. (6.3)

Note that diagonality of Q with respect to the Fourier basis is ensured if WQ corre-

sponds to a stationary space-time noise field, see also the discussion in Section 1.2.3.

We can now state the following result.

Theorem 6.2.1. Let u0 ∈ C(Td) and assume that WQ is given by (6.3), where Q is

diagonal as in (6.2). If there exists γ ∈ (0, 1) such that

∑
k∈Zd

λk
(1 + k2)γ

<∞, (6.4)

then, for all T > 0, there exists P-a.s. a unique solution u ∈ C([0, T ];C(Td)).

Proof. Rewrite equation (6.1) as

du = Ludt+ f(u)dt+ dWQ,

where L = ∆− Id and f(u) = 2u− u3. Since L is self-adjoint and (−L) is a positive

operator, we can apply Theorem 5.20 in [40] to obtain that the stochastic convolution∫ t

0

eL(t−s)dWQ(s)
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has a C(T2)-valued version with continuous sample paths. Now we can apply Theo-

rem 6.B.1 in Appendix 6.B to ensure the existence of a unique global solution with

continuous sample paths.

Let us first consider the case d = 1. If the spectrum of Q is bounded, then

we can pick any γ ∈ (1/2, 1) and condition (6.1) is satisfied. In particular, there

exists a continuous C(T)-valued global solution to the space-time white noise-driven

equation.

Consider now the case d = 2. Condition (6.4) is still extremely weak: it is

satisfied as long as the λk decay as ∼ k−ε for some ε > 0; in particular, it holds

if TrQ < ∞. However, and in contrary to the case d = 1, where well-posedness

is guaranteed for virtually every physically meaningful noise, the theorem no longer

holds for noise spectra that decay slower than any power law, or that do not decay

at all. Most importantly – and this is the starting point of this chapter – space-time

white noise is not covered by Theorem 6.2.1.

6.3 The main result

The equation of interest is the two-dimensional Allen-Cahn equation, driven by

additive space-time white noise. More precisely, we consider the following evolution

equation on the torus T2,
du = [∆u+ u− u3] dt+ dW

u(0) = u0,

(Φ)

where W is a cylindrical Wiener process with covariance matrix Q = Id, and u0 is a

suitably regular initial condition. Since the solution to the linear counterpart of this
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problem is distribution-valued [180], and since products of distributions are generally

ill-posed [149], there is no straightforward way to make sense of the solution. In view

of these issues, we first regularize the noise by truncating the orthonormal expansion

of the Wiener process,

Wε(t) =
∑
|k|≤1/ε

ekβk(t),

where
{
ek(x) = 1

2π
eikx
}
k∈Z2 constitutes the Fourier basis the T2 and the {βk}k∈Z2 are

complex-valued Brownian motions; they can be represented as

βk =
1√
2

(
β1
k + iβ2

k

)
, βk = β−k,

where {β1
k , β

2
k}k∈Z2 are real-valued i.i.d. Brownian motions. (Note that the βk are

complex-valued because of the complex Fourier basis.) Using the regularized version

of the noise Wε, we define now the following family of regularized problems
duε = [∆uε + uε − u3

ε] dt+ dWε

uε(0) = u0.

(Φε)

The goal of the current chapter is to study problem (Φε) in the limit as ε→ 0. Before

stating the main results, we revisit the conjecture from the previous chapter. First,

recall that the periodic Bessel-potential spaces are defined as the closure of C∞(T2)

under the norm

‖u‖Hs
p(T2) =

∥∥∥∥∥∑
k∈Zd

(
1 + k2

)s/2
ukek

∥∥∥∥∥
Lp(Td)

,
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see also Definition 6.A.3. Combining heuristic considerations and numerical experi-

ments, we hypothesized the following limit in Conjecture 5.6.1.

Conjecture 6.3.1. The solutions uε to the regularized problem (Φε) with homogenous

initial conditions (u0 = 0) admits the following limit: for all t > 0,

lim
ε→0

E ‖uε(t)‖2
Hs =

 +∞ if s ≥ 0,

0 if s < 0,

where Hs = Hs
2 .

As we will see in Section 6.6, the spaces Hs(T2) are not suitable for the proof

techniques employed below, and instead we will work with the periodic Besov spaces

Bsp,r(T2). Given p, r ≥ 1 and s ∈ R, these spaces are defined as the closure of C∞(T2)

under the norm

‖u‖Bsp,r(T2) :=

(
∞∑
q=0

2qrs ‖∆qu‖rLp(T2)

)1/r

where ∆q are the projection operators in Fourier space: ∆0u = û0 and

∆qu =
∑

2q−1≤|k|<2q

ûkek, q ≥ 1.

For a more detailed discussion of periodic Besov spaces, please refer to Appendix

6.A and references therein. To state the main results, we need the Banach space

ET := C([0, T ];Bsp,r) ∩ Lp([0, T ];Bαp,r),
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equipped with the usual maximum norm

‖x‖ET := max
(
‖x‖C([0,T ];Bsp,r) , ‖x‖Lp([0,T ];Bαp,r)

)
. (6.5)

Regarding the parameters appearing in ET , we shall frequently use the following

restriction.

Notation. We denote by (H) the following hypothesis:

(p, r, s, α) ∈ R4 are such that


p > 3, r ≥ 1, s < 0,

α = 2s+ 2
p
,

0 < |s| < min
{

2
7p
, 1

2

(
1− 3

p

)}
.

(H)

Theorem 6.3.2 (Continuous initial conditions). Assume (H) and consider problem

(Φε) with u0 ∈ C(T2). Then for all T > 0 and ε > 0, there exists P-a.s. a unique

global solution uε ∈ ET . Furthermore, for all r, p ≥ 1 and s < 0 we have the following

limits.

(i) For all δ ∈ (0, T ),

‖uε‖C([δ,T ];Bsp,r)
P−→ 0 as ε→ 0.

(ii) If u0 = 0, then the above holds for δ = 0:

‖uε‖C([0,T ];Bsp,r)
P−→ 0 as ε→ 0.

Remark 6.3.3. Note that for finite ε > 0, the noise is actually smooth in space; so

of course, unique solutions exist in more regular spaces. For example, we shall show

in Theorem 6.5.10 that unique solutions exist P-a.s. in C([0, T ];C(T2)).
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Remark 6.3.4. Notice that in (i) and (ii), the solutions uε are measured in the

C([0, T ];Bsp,r)-norm, and not the ET -norm. We will revisit this observation in Remark

6.5.15.

Theorem 6.3.2 applies to continuous initial conditions only, but the result can

be extended to rougher initial conditions, too. For example, step functions are not

covered by Theorem 6.3.2, but they are covered by Theorem 6.3.5.

Theorem 6.3.5 (General initial conditions). Assume (H) and consider problem

(Φε). Then for all initial conditions u0 ∈ Bsp,r and T > 0, the solutions uε to (Φε)

converge to zero in the following sense: for all δ ∈ (0, T ) and K > 0,

lim
ε→0

P
(
∃! solution uε ∈ ET and ‖uε‖C([δ,T ];Bsp,r)

≤ K
)

= 1.

Regarding Conjecture 6.3.1, we can prove a slightly weaker version (convergence in

probability rather than in L1(P)).

Corollary 6.3.6. For homogenous initial condition u0 = 0, the solutions uε in

Theorem 6.3.2 admit the following limit: for all s < 0 and all t > 0

‖uε(t)‖Hs

P−→ 0 as ε→ 0.

Proof. Combining the continuous embedding Bsp,1 ↪→ Hs
p (see Proposition 6.A.5) with

Theorem 6.3.2 for r = 1, we obtain

‖uε‖C([0,T ];Hs
p)

P−→ 0 as ε→ 0.
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The claim follows then from the well-known embeddings [147, p164]

Hs
p1
↪→ Hs

p0
, ∀p0 ≤ p1

and

Hs+ε
p ↪→ Hs

p , ∀ε > 0.

Remark 6.3.7. At this point, we are naturally lead to ask the following question:

why exactly is it that we want to prove the main result in terms of the Besov spaces

Bsp,r rather than the classical Sobolev spaces Hs? In fact, Corollary 6.3.6 shows that

the main result holds equally well in Hs – so why make things more complicated than

seemingly necessary? It will be easier to answer this question in Section 6.6 – once

all the technical details will have been worked out.

Since the proof of Theorem 6.3.2 is based on elements of the theory of stochas-

tic quantization, we dedicate the next section to an overview of the Wiener chaos

expansion and the notion of renormalized Wick powers.

6.4 Stochastic quantization

The following introduction to stochastic quantization follows mostly [39]. Since

the authors in [39] provide detailed proofs for all the results stated in this section,

we restrict ourselves to a more superficial presentation of the subject. In particular,

we omit most proofs and focus instead on a clear presentation of the results that will

be of use for the proofs in Section 6.5.
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6.4.1 Notation

We work on the two-dimensional torus T2 which can be represented by the cube

[0, 2π]2, where opposite points are identified (see also Appendix 6.A). We introduce

the Hilbert space

HC := L2(T2) =
{
f : T2 → C : ‖f‖L2 = (f, f) < +∞

}
with inner product

(f, g) :=

∫
T2

f ḡ dx

and orthonormal basis {ek}k∈Z2 , where

ek(ξ) =
eikξ

2π
, ξ ∈ T2.

Introducing the notation xk := (x, ek) for elements x ∈ HC, we use the mapping

x 7→ {xk}k∈Z2

to define an isomorphism between HC and l2(Z2). Throughout the remainder of this

section, the invariant measure of the following linear SPDE will play an important

role,

du = [∆u− u] dt+ dW. (6.6)

By projecting (6.6) onto the Fourier basis, the solution can be described as a col-

lection of independent Ornstein-Uhlenbeck processes [180]. In consequence, the in-

variant measure of the stationary solution to (6.6) is a centred Gaussian measure
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characterized by its covariance operator C,

Cek =
1

1 + k2
ek, ∀k ∈ Z2,

where k2 = k2
1 + k2

2. It is easy to see that C : HC → HC is not a trace-class operator,

and in consequence the stationary solution to (6.6) does not take values in HC: it is

a well-known fact that if µ is a Gaussian measure on a Hilbert space with covariance

operator Q, then TrQ <∞ [40]. In consequence, we need a larger space to define the

invariant measure of (6.6). Following [38], we introduce the vector space HC defined

as the product space

HC = ×
k∈Z2

Ck, Ck = C.

Note that in contrary to HC, the elements of the vector space HC are not required to

decay at any rate with increasing ‘wave number’ k. We equip HC with a Gaussian

measure µ defined as the product measure

µ = ×
k∈Z2
N (0,

(
1 + |k|2

)−1
),

whereN (0, (1 + |k|2)
−1

) is the one-dimensional, complex Gaussian measure with zero

mean and variance (1 + |k|2)
−1

. Note that we will only work with real fields, and

hence we restrict our attention hereafter to the following real subspaces of HC and

HC, respectively:

H :=
{
x ∈ HC : x̄k = x−k, ∀k ∈ Z2

}
,

H :=
{
φ ∈ HC : φ̄k = φ−k, ∀k ∈ Z2

}
.
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Remark 6.4.1. Recalling the definition of the fractional Sobolev spaces in Definition

6.A.3, it is easy to see that the covariance operator C defines a Gaussian measure

on Hs, ∀s < 0. We could therefore develop our formalism on a specific space such

as H−1, but we prefer here to take the approach adopted in [38].

With these notations in mind we turn our attention now to the central concept

of the Wiener chaos expansion of L2(H, µ).

6.4.2 Wiener chaos expansion

First, we introduce two additional tools, white noise on H and Hermite polyno-

mials. Recall the following general definition of white noise.

Definition 6.4.2 (White Noise). [40] Any linear transformation X from a Hilbert

space H into L2(Ω,F ,P), with values being Gaussian random variables such that

E [X(h)X(g)] = (h, g) , ∀h, g ∈ H,

is called white noise.

In our case, we seek a linear transformation from H into L2(H, µ). To this end,

we first introduce the subspace H0 ⊂ H as the linear, but not closed span of {ek}k∈Z2 ,

and define a duality pairing between H and H0 as

〈φ, x〉 :=
∑
k

φkxk, φ ∈ H, x ∈ H0.

Note that this sum is real-valued and finite. For z ∈ H0, we define now the mapping

Wz : H → R as

Wz(φ) :=
〈
φ,C−

1
2 z
〉

=
∑
k

√
1 + k2 φkz̄k, ∀φ ∈ H.
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Again, the sum is finite and hence Wz ∈ L2 (H, µ) is a real-valued Gaussian random

variable of mean zero. In fact, we have∫
H
Wz(φ)Wz′(φ)µ(dφ) =

∫
H
Wz(φ)Wz′(φ)µ(dφ)

=

∫
H

∑
k,m

√
1 + k2

√
1 +m2 zk z

′
mφk φmµ(dφ)

=
∑
k,m

√
1 + k2

√
1 +m2 zkz

′
m

δkm
1 + k2

=
∑
k

z′kzk = (z′, z) .

Therefore, the mapping z 7→ Wz defines an isometry from H0 → L2 (H, µ), and by

density of H0 in H it follows now easily that Wz, z ∈ H, is indeed a white noise.

Proposition 6.4.3. The mapping W : H → L2(H, µ), defined by z 7→ Wz, is a

white noise. In other words, for all z ∈ H, Wz is a real Gaussian random variable

with mean zero and covariance

E [Wz Wz′ ] = (z, z′) , z, z′ ∈ H.

Remark 6.4.4. Note that the noise Wz is indeed white as it is standard Gaussian

on each mode, and all the modes are independent:
∫
HWekµ(dφ) = 0 and∫

H
Wek (φ)Wem (φ)µ(dφ) = δkm.

Recall now that the set of Hermite polynomials Hn, n ∈ {0} ∪ N, is defined

through the expansion

F (t, λ) = e−t
2/2+tλ =

∞∑
n=0

tn√
n!
Hn(λ), t ≥ 0, λ ∈ R.
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It is straightforward to show that the Hn can be generated as

Hn(ξ) =
(−1)n√
n!

eξ
2/2Dn

ξ

(
e−ξ

2/2
)
.

From this expression, it is then straightforward to derive the first four polynomials,

H0(ξ) = 1

H1(ξ) = ξ

H2(ξ) =
1√
2

(
ξ2 − 1

)
(6.7)

H3(ξ) =
1√
6

(
ξ3 − 3ξ

)
H4(ξ) =

1

2
√

6

(
ξ4 − 6ξ2 + 3

)
.

We shall repeatedly use the following well-known result for Hermite polynomials of

white noise.

Lemma 6.4.5. Let h, g ∈ H such that |h| = |g| = 1, and let n,m ∈ {0} ∪ N. Then∫
H
Hn(Wh)Hm(Wg)dµ = δnm [(h, g)]n .

By now, we have established all the tools required for the Wiener Chaos expan-

sion. For all n ∈ {0} ∪ N, we define the nth Wiener chaos space L2
n(H, µ) as the

closed subspace of L2(H, µ) spanned by

{Hn(Wf ) : f ∈ H, |f | = 1} .

Thanks to Lemma 6.4.5, it is easy to see that these subspaces are indeed orthogonal.

Furthermore, it can be shown that the Wiener chaos spaces span L2(H, µ) as a direct
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sum,

L2(H, µ) =
∞⊕
n=0

L2
n(H, µ).

We close this subsection with a useful projection property for powers of white noise.

Proposition 6.4.6. Let n ∈ N and denote by Πn the projection operator from

L2(H, µ) onto the nth Wiener chaos space L2
n(H, µ). Then for all f ∈ H such that

|f | = 1,

Πn(W n
f ) =

√
n!Hn(Wf ). (6.8)

6.4.3 Renormalized powers

To motivate the need for renormalized powers, we start with an observation.

Let φ ∈ H be such that L(φ) = µ and define

φ(ξ) :=
∑
k∈Z2

〈φ, ek〉 ek(ξ) =
∑
k∈Z2

φk ek(ξ), ξ ∈ T2.

It is straightforward to verify that∫
H
‖φ‖2

Hs µ(dφ) =

∫
H

∑
k

(
1 + k2

)s |φk|2 µ(dφ)

=
∑
k

(
1 + k2

)s 1

1 + k2
<∞, ∀s < 0.

We conclude that φ ∈ L2(H, µ;Hs) P-a.s. if and only if s < 0. And since φ is almost

surely distribution-valued, it is meaningless to write φn for n ≥ 2:

φn /∈ L2(H, µ;Hs), ∀s ∈ R.
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However, we can make sense of the so-called renormalized powers, orWick powers of

the field φ. To construct these powers, we introduce a regularized version of φ(ξ).

Let ε > 0 and define the smooth function

φε(ξ) :=
∑
|k|≤1/ε

〈φ, ek〉 ek(ξ) =
∑
|k|≤1/ε

φk ek(ξ), ξ ∈ T2.

The Wick powers of φε are defined as projections of the regular powers of φε onto

the Wiener chaos spaces,

: φnε : (ξ) = Πn (φnε (ξ)) , (6.9)

where the operator Πn : L2(H, µ) → L2
n(H, µ) has been introduced in Proposition

6.4.6. Recalling the projection property of the powers of white noise in (6.8), a

promising approach seems to consist in a reformulation of φnε in terms of white noise.

To this end, we introduce the function

ηε(ξ) :=
1

ρε

∑
|k|≤1/ε

ek(ξ)√
1 + k2

ek,

where

ρε :=
1

2π

 ∑
|k|≤1/ε

1

1 + k2

 1
2

. (6.10)

It follows then easily that

φε(ξ) =
∑
|k|≤1/ε

〈
φ, ek(ξ)ek

〉
=

〈
φ,C−1/2

∑
|k|≤1/ε

ek(ξ)√
1 + |k|2

ek

〉
= ρεWηε(ξ)(φ),
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end hence the Wick powers : φnε : (ξ) are given by

: φnε : (ξ) =
√
n!ρnε Hn(Wηε(ξ) φ) =

√
n!ρnε Hn

(
φε(ξ)

ρε

)
. (6.11)

Recalling the explicit versions of the first few Hermite polynomials in (6.7), we obtain

: φ1
ε : (ξ) = φε(ξ)

: φ2
ε : (ξ) = φ2

ε(ξ)− ρ2
ε

: φ3
ε : (ξ) = φ3

ε(ξ)− 3 ρ2
ε φε(ξ)

: φ4
ε : (ξ) = φ4

ε(ξ)− 6 ρ2
ε φ

2
ε(ξ) + 3ρ4

ε.

(6.12)

Remark 6.4.7 (Important). The construction of the Wick powers depends on the

constant ρε defined in (6.10), which in turn is linked to the invariant measure µ via

the expression

ρ2
ε =

(
1

2π

)2 ∫
H
‖φε‖2

L2 µ(dφ). (6.13)

This connection will play an important role when working with invariant measures

other than µ.

So far, we have only renormalized φnε , the powers of the regularized version φε

of the full field φ. But of course, we are mostly interested in the renormalization of

φ itself, and this is achieved by taking the limit of ε→ 0.

Theorem 6.4.8. Let n ∈ N. Then for any sequence {εm}m∈N such that εm → 0, the

sequence

φ 7→: φnεm :
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is Cauchy in L2(H, µ;Hs) for all s < 0. In particular, the following limit exists

lim
ε→0

: φnε :=: φn : ∈ L2(H, µ;Hs), ∀s < 0.

Finally, we state the famous ultracontractivity estimate by Nelson, see also [153].

This result will play a crucial role in the proof of Theorem 6.3.2.

Theorem 6.4.9. Let m,n ∈ N and u ∈ L2
n(H, µ). Then we can estimate higher

moments as follows(∫
H
|u(φ)|2m µ(dφ)

) 1
2m

≤ (2m− 1)
n
2

(∫
H
|u(φ)|2 µ(dφ)

) 1
2

. (6.14)

6.5 The proof of Theorem 6.3.2

The proof of Theorems 6.3.2 and 6.3.5 is rather lengthy and we proceed in several

steps.

Step 1 We introduce a constant Cε > 1 depending only on ε and rewrite the regularized

Allen-Cahn equation (Φε) as

duε =
[
∆uε − (Cε − 1)uε − uε(u2

ε − Cε)
]
dt+ dWε, (6.15)

The goal is to choose Cε such that the nonlinear term uε (u2
ε − Cε) becomes the

Wick product : u3
ε : with respect to the stationary measure of the linear part

of (6.15). (Note that this measure depends itself on ε due to the presence of

Cε in the linear part of (6.15).) We show that the right choice for Cε grows as

∼ log(1/ε).

Step 2 Inspired by the approach taken in [38] (see also [37]), we split uε into two parts,

uε = zε+vε, where zε is the stationary stochastic convolution of the regularized
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Wiener process

zε(t) :=

∫ t

−∞
e(t−s)[∆−(Cε−1)]dWε(s),

and vε is solution to
dvε
dt

= ∆vε − (Cε − 1)vε + v3
ε + 3v2

εzε + 3vε : z2
ε : + : z3

ε :

vε(0) = u0 − zε(0).

(Φaux
ε )

This allows us to treat both parts independently.

Step 3 We show that zε → 0 in the sense of Theorems 6.3.2 and 6.3.5.

Step 4 We show the existence of a unique local solution to (Φaux
ε ).

Step 5 We show the existence of a unique global solution to (Φaux
ε ).

Step 6 We show that vε → 0 in the sense of Theorems 6.3.2 and 6.3.5.

Step 7 We conclude the proof.

Note that in Steps 2, 3, and 4 we follow the strategy of da Prato and Debussche

in [38]. Most of the technical results in Steps 3 and 4 are modifications of results

proved in [38].

6.5.1 Step 1: The renormalization constant

Let Cε > 1 be a constant depending only on ε and rewrite the regularized

stochastic Allen-Cahn equation (Φε) as
duε = [∆uε − (Cε − 1)uε − uε(u2

ε − Cε)] dt+ dWε

uε(0) = u0.

(6.16)
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Introduce now the linear operator Aε,

Aεφ := ∆φ− (Cε − 1)φ,

and rewrite the evolution equation in (6.16) as

duε =
[
Aεuε − uε(u2

ε − Cε)
]
dt+ dWε. (6.17)

The idea is to choose the constant Cε such that the nonlinear term uε(u
2
ε − Cε)

converges to the Wick product : u3 : as ε → 0. Recall that the Wick product is

defined with respect to the stationary measure of the underlying linear equation, in

this case

duε = Aεuεdt+ dWε. (6.18)

The invariant Gaussian measure of (6.18), let’s call it µε, is determined by the co-

variance operator Ĉε which in turn is defined by its action on the orthonormal basis

as

Ĉεek :=

 −
1
2
A−1
ε ek if |k| ≤ 1/ε,

0 if |k| > 1/ε.
(6.19)

From (6.12) and Remark 6.4.7 it follows that the renormalization constant in (6.17)

is given by Cε = 3ρ2
ε. Since (6.13) depends on the invariant measure µε, which itself

depends on ε, the constant Cε is implicitly given by

Cε =
3

8π2

∑
|k|≤1/ε

1

Cε − 1 + k2
. (6.20)

202



To continue, we need to solve (6.20). The following notation will be useful: Aε ∼ Bε

if and only if there exist k1, k2 > 0 such that k1 ≤ Aε/Bε ≤ k2 for ε small enough.

Lemma 6.5.1. For all ε > 0, equation (6.20) has a unique solution. Furthermore,

lim
ε→0

Cε = +∞,

and the rate of divergence scales as

Cε ∼
3

4π
log

1

ε
. (6.21)

Proof. Step 1. For fixed ε > 0 there exists a unique solution Cε ∈ (1,∞) to

(6.20). In fact, both sides vary continuously with respect to Cε: the left-hand side

is strictly increasing from 1 to +∞ while at the same time the right-hand side is

strictly decreasing from +∞ to 0.

Step 2. We show now that limε→0Cε = +∞. (i) Cε is unbounded. Assume it is

bounded, i.e. ∃ M > 0 3 Cε < M , ∀ε > 0. Then the right-hand side of (6.20)

goes to +∞ as ε → 0 while the left-hand side stays bounded; we conclude that Cε

is unbounded. (ii) Cε as a function of ε is non-increasing. Assume the contrary, i.e.

∃ε1 < ε2 3 Cε1 < Cε2 . Since Cε > 1 (by definition), this implies

∑
|k|≤1/ε1

1

Cε1 − 1 + k2
>

∑
|k|≤1/ε2

1

Cε2 − 1 + k2
,

and hence Cε1 > Cε2 , which is a contradiction. Together, (i) and (ii) prove that

limε→0Cε = +∞.

Step 3. Before we determine the growth rate of Cε, we establish that limε→0Cεε
2 = 0.

Assume the contrary, i.e. there exists a δ > 0 and a sequence εn → 0 such that
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Cεnε
2
n ≥ δ, ∀n. Multiplying both sides in (6.20) by ε2

n yields (with γ = 3
8π2 )

Cεnε
2
n = γε2

n

∑
|k|≤1/εn

1

Cεn − 1 + k2
. (6.22)

The left-hand side is bounded from below by δ > 0, and since

∑
|k|≤1/εn

1

Cεn − 1 + k2
≤

∑
|k|≤1/εn

1
δ
ε2n
− 1 + k2

=
∑
|k̂|≤1

ε2
n

δ − ε2
n + k̂2

∼
∫ 1

0

x

δ + x2
dx ≤ K <∞,

for some constant K > 0, the right-hand side of (6.22) vanishes. Contradiction.

Step 4. Determine now the growth rate. Let k̂ = k√
Cε

and rewrite (6.20) as

Cε = γ
∑

ˆ|k|≤ 1√
Cεε

1

Cε

1

1− 1
Cε

+ ˆ|k|
2 .

Since Cε,
1√
Cεε
→∞ (Steps 2 and 3) we can estimate the sum by an integral to get

Cε ∼ γ 2π

∫ 1√
Cεε

0

r

1− 1
Cε

+ r2
dr ∼ γπ log

(
1− 1

C ε
+

1

ε2Cε

)
∼ γπ log

(
1

ε2Cε

)
.

(6.23)

Plugging the Ansatz Cε = Λε log 1
ε

into (6.23) yields

Λε ∼
3

4π

[
1−

log log 1
ε

2 log 1
ε

− log Λε

2 log 1
ε

]
. (6.24)

It is easy to see that for all ε < 1, (6.24) has a unique solution in (0,∞). The second

term in the bracket obviously goes to zero as ε → 0. We show now that the third

204



term is o(1), too. Assume the contrary, i.e.

lim
ε→0

log Λε

log 1
ε

6= 0.

Since Λε ∈ (0,∞), it either grows arbitrarily large or goes arbitrarily close to 0. If Λε

is unbounded from above then there exists a sequence εn → 0 such that Λεn > K > 1,

for all n. But together with (6.24), this implies Λεn <
3

4π
< 1 for all n ∈ N, hence

contradiction. On the other hand, if there is no (positive) lower bound, then there

exists εn → 0 such that Λεn <
3

8π
for all n. But by (6.24) this implies Λεn >

3
8π

,

which is again a contradiction. Therefore,

Λε ∼
3

4π
,

which finally proves the rate (6.21).

6.5.2 Step 2: Solution splitting

We return now to the equation of interest,
duε = [Aεuε − uε(u2

ε − Cε)] dt+ dWε

uε(0) = u0,

(Φε)

and start off by recalling the notion of a mild solution to (Φε).

Definition 6.5.2 (Mild Solution). Let B be a Banach space. A B-valued process

{uε(t)}t∈[0,T ] is called a mild solution to problem (Φε) if for all t ∈ [0, T ],

uε(t) = etAεu0 −
∫ t

0

e(t−s)Aεuε(s)
(
u2
ε(s)− Cε

)
ds+

∫ t

0

e(t−s)AεdWε(s), P− a.s.

(6.25)
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Introduce now the stochastic convolution

zε(t) :=

∫ t

−∞
e(t−s)AεdWε(s), (6.26)

and rewrite the last term in (6.25) as∫ t

0

e(t−s)AεdWε(s) = zε(t)− etAεzε(0).

Inserting this back into the mild formulation (6.25) yields

uε(t)− zε(t) = etAε (u0 − zε(0))−
∫ t

0

e(t−s)Aεuε(s)
(
u2
ε(s)− Cε

)
ds, (6.27)

and after the change of variables vε(t) := uε(t)− zε(t) we get

vε(t) =etAε (u0 − zε(0))−
∫ t

0

e(t−s)Aε
[
v3
ε(s) + 3v2

ε(s)zε(s)

+3vε(s)

(
z2
ε(s)−

1

3
Cε

)
+ zε(s)(z

2
ε(s)− Cε)

]
ds. (6.28)

In other words, we can state an alternative definition of the mild solution to (Φε).

Definition 6.5.3 (Mild Solution – alternative formulation). Let B be a Banach

space. A B-valued process {uε(t)}t∈[0,T ] is a mild solution to (Φε) if uε = vε + zε,

where

• zε is the stochastic convolution (6.26) and takes values in B,

• {vε(t) t ∈ [0, T ]} is a B-valued mild solution to the following auxiliary problem
dvε
dt

= Aεvε + v3
ε + 3v2

εzε + 3vε : z2
ε : + : z3

ε :

vε(0) = u0 − zε(0).

(Φaux
ε )

This definition allows us now to split the original problem into two parts:
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(i) In Step 3 below we show that the stochastic convolution satisfies the limit

‖zε‖C([δ,T ];Bsp,r)
P−→ 0 as ε→ 0.

(ii) In Step 4 below we show that for all ε > 0, there exists a unique local solution

to the auxiliary problem (Φaux
ε ), and that

‖vε‖C([δ,T ];Bsp,r)
P−→ 0 as ε→ 0.

6.5.3 Step 3: The stochastic convolution

In this section we establish two important results for the stochastic convolution

zε, and we start with a result on its renormalized powers. Recall that the Gaussian

measure µε is the invariant measure of the linear equation (6.18), and that the

renormalized powers : znε : with respect to µε are defined in (6.12) – see also Remark

6.4.7.

Lemma 6.5.4. Let r, k, p ≥ 1, σ < 0. Then for all n ∈ N we have

lim
ε→0

E ‖: znε :‖kBσp,r = lim
ε→0

∫
H
‖: znε :‖kBσp,r µε(dz) = 0. (6.29)

Proof. Up to modifications that yield convergence to zero in (6.29), this proof is

identical to the proof of Lemma 3.2 in [38]. We proceed in several steps.

Step 1. Recall from Section 6.3 the definition of the Besov-norm in terms of the

annulus projection operators ∆q,

‖: znε :‖Bσp,r =

(
∞∑
q=0

2sqr ‖∆q : znε :‖rLp

)1/r

. (6.30)
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We consider one block at a time, i.e. we fix q ∈ N and use Fubini to swap the

integrals as

∫
H
‖∆q : znε :‖pLp µε(dz) =

∫
H

∫
T2

∣∣∣∣∣∣
∑

2q−1≤|h|<2q

(: znε :, eh) eh(ξ)

∣∣∣∣∣∣
p

dξ µε(dz)

=

∫
T2

∫
H

∣∣∣∣∣∣
∑

2q−1≤|h|<2q

(: znε :, eh) eh(ξ)

∣∣∣∣∣∣
p

µε(dz) dξ. (6.31)

By definition, : znε : is the projection of znε onto the n-th Wiener chaos space

L2
n(H, µε), and we can use Nelson’s estimate in Theorem 6.4.9 to get

∫
H
‖∆q : znε :‖pLp µε(dz) ≤ (p− 1)pn/2

∫
T2

∫
H

∣∣∣∣∣∣
∑

2q−1≤|h|<2q

(: znε :, eh) eh(ξ)

∣∣∣∣∣∣
2

µε(dz)

p/2 dξ.
(6.32)

Step 2. Before we integrate over ξ, we note that the square bracket in (6.32) can be

conveniently rewritten as (see [38] for details)

∫
H

∣∣∣∣∣∣
∑

2q−1≤|h|<2q

(: znε :, eh) eh(ξ)

∣∣∣∣∣∣
2

µε(dz) =
∑

2q−1≤|h|<2q

n!αnh(ε), (6.33)

where αnh(ε) are the Fourier coefficients of γnε ,

γnε (ξ) :=

 ∑
|h|≤1/ε

1

Cε − 1 + h2
eh(ξ)

n

=
∑
h∈Z2

αnh(ε)eh(ξ). (6.34)
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Step 3. Plugging (6.33) into (6.32) and using Hölder’s inequality we get

∫
H
‖∆q : znε :‖pLp µε(dz) ≤ (2π)2(p− 1)np/2(n!)p/2

 ∑
2q−1≤|h|<2q

αnh(ε)

p/2

≤ c(p, n) 2pq/2

 ∑
2q−1≤|h|<2q

(αnh(ε))2

p/4

. (6.35)

Let now s̃ < 0 and rewrite (6.35) as

∫
H
‖∆q : znε :‖pLp µε(dz) ≤ c(p, n) 2pq/2

 ∑
2q−1≤|h|<2q

(αnh(ε))2 |h|2(1+s̃)

|h|2(1+s̃)

p/4

≤ c(p, n) 2−p(q−1)s̃/2 ‖γnε ‖
p/2

H1+s̃ . (6.36)

Step 4. Next, we claim that

‖γnε ‖H1+s̃ ≤ c(n, s̃) ‖γε‖nHβn ≤ c(ε, n, s̃), ∀n ≥ 1, (6.37)

where

βn := 1 +
s̃

2n−1
< 1,

and most importantly, the upper bound in (6.37) satisifes

lim
ε→0

c(ε, n, s̃) = 0. (6.38)
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The first inequality in (6.37) follows from an induction argument and Proposition

6.A.7 (note that Hs = Bs2,2, ∀s ∈ R). Regarding the second bound we have

‖γε‖2
Hβn =

∑
|h|≤1/ε

(
1 + h2

)βn ( 1

Cε − 1 + h2

)2

≤
∑
h∈Z2

(
1 + h2

)βn ( 1

Cε − 1 + h2

)2

= c(ε, n, s̃) <∞ (6.39)

Thanks to Lebesgue’s monotone convergence theorem this yields the limit (6.38).

Step 5. Let now s < 0 and set s̃ = 2s/p. Use (6.37) in (6.36) to get the final estimate

on the qth annulus, ∫
H
‖∆q : znε :‖pLp µε(dz) ≤ C̃(ε, p, n, s) 2−qs, (6.40)

where

lim
ε→0

C̃(ε, p, n, s) = 0.

Note that in the preceding calculations we had assumed that q ≥ 1. However, the

special case q = 0 can be treated in the exact same way by simply replacing the sums

over 2q−1 ≤ |h| < 2q with the single term for h = 0.

Step 6. Using the result for the q-th annulus (6.40) we revisit the overall estimate in

(6.30). By means of Jensen’s and Hölder’s inequalities we obtain

∫
H
‖: znε :‖kBσp,r µε(dz) ≤ c(r, k, σ)

(
∞∑
q=0

2qrkσ/2
∫
H
‖∆q : znε :‖rkLp µε(dz)

)1/r

. (6.41)
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Next we use (6.40) in (6.41) and distinguish two cases: if rk < p we use Jensen’s

inequality to get

∫
H
‖: znε :‖kBσp,r µε(dz) ≤ c(r, k, σ)

(
∞∑
q=0

2qrkσ/2
(∫
H
‖∆q : znε :‖pLp

)rk/p
µε(dz)

)1/r

≤ c(ε, p, n, s, r, k)

(
∞∑
q=0

2qrkσ/2 2−qsrk/p

)1/r

.

So if we choose s = σp
4

, we get∫
H
‖: znε :‖kBσr,p µε(dz) ≤ C(ε, p, n, σ, r, k), (6.42)

where

lim
ε→0

C(ε, p, n, σ, r, k) = 0.

If rk ≥ p we pick s = rkσ/4 and use the continuous embedding Lrk ↪→ Lp to arrive

at the same conclusion.

Lemma 6.5.5. Let s < 0. Then

: znε : ∈ Lp([0, T ];Bsp,r) P− a.s., ∀ε > 0, ∀n ≥ 1. (6.43)

In particular,

lim
ε→0

E ‖: znε :‖Lp(0,T ;Bsp,r)
= 0. (6.44)

Proof. This follows from the stationarity of zε, Fubini’s theorem and Lemma 6.5.4.
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Proposition 6.5.6. Consider the stochastic convolution zε defined in (6.26) and

let p, r ≥ 1, s < 0 and T > 0. Then for all ε > 0, zε ∈ C
(
[0, T ],Bsp,r

)
P-a.s.

Furthermore, we have the following limit as ε→ 0

‖zε‖C([0,T ],Bsp,r)
P−→ 0. (6.45)

Proof. We begin by decomposing the stochastic convolution into two parts,

zε(t) =

∫ t

−∞
e(t−s)AεdWε(s) = etAεzε(0) +

∫ t

0

e(t−s)AεdWε(s).

Concerning the first term, the limit (6.45) follows immediately from Lemma 6.5.4 and

the fact that the operator norm of etAε allows for a uniform bound (see Proposition

6.A.12)

∥∥etAε∥∥Bsp,r ≤ K <∞, ∀t > 0, ε > 0. (6.46)

Let us now show the desired result for the second term, denoted hereafter as

z̄ε(t) :=

∫ t

0

e(t−s)Aε dWε(s). (6.47)

We use the so-called factorization method [40], see [64] for a more detailed presenta-

tion. Recall the following identity∫ t

σ

(t− s)α−1 (s− σ)−α ds =
π

sin πα
, σ ≤ s ≤ t, 0 < α < 1.

Fix now α ∈ (0, 1
2
) and use the stochastic Fubini theorem [40] to rewrite

z̄ε(t) =
sin πα

π

∫ t

0

e(t−s)Aε Yε(s) (t− s)α−1ds, (6.48)
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where

Yε(s) :=

∫ s

0

(s− σ)−α e(s−σ)AεdWε(σ).

We introduce now the mapping Γε : y 7→ Γεy defined by

Γεy(t) =
sin πα

π

∫ t

0

e(t−s)Aε y(s) (t− s)α−1ds,

and proceed in three steps. First, we show that Γε : Lk([0, T ];Bsp,r)→ C([0, T ];Bsp,r)

is a bounded mapping for some k ≥ 1. Then we establish that Yε ∈ Lk([0, T ];Bsp,r)

P-a.s., and deduce that z̄ε ∈ C([0, T ];Bsp,r) P-a.s. In a third step we prove the limit

(6.45) for z̄ε.

Step 1. It is a straightforward consequence of the strong continuity of etAε and

(6.46) that Γε y ∈ C([0, T ];Bsp,r) for all y ∈ C([0, T ];Bsp,r) such that y(0) = 0 (see

[64], Theorem 5.10). Next, observe that s 7→ (t − s)α−1 is in Lq([0, t]) for all q ∈

[1, (1−α)−1), and hence we can use Hölder’s inequality to deduce that for all k > 1
α

,

sup
t∈[0,T ]

‖Γεy (t)‖Bsp,r ≤ C(T, k) ‖y‖Lk([0,T ];Bsp,r)
. (6.49)

Note that the constant C(T, k) does not depend on ε thanks to (6.46). Let us now

use a density argument to conclude that for y ∈ Lk([0, T ];Bsp,r), Γε y is a continuous

function in Bsp,r. In other words, we want to show that given t0 ∈ (0, T ) and ε > 0,

there exists δ > 0 such that ‖Γεy(t0)− Γεy(t)‖Bsp,r < δ for all |t− t0| < ε (similar

one-sided arguments apply to t0 = 0 and t0 = T ). By density, there exists ỹ ∈
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C([0, T ];Bsp,r) such that

‖y − ỹ‖Lk([0,T ];Bsp,r)
<

δ

4C(T, k)
. (6.50)

But we know that ỹ is continuous in Bsp,r, and hence (see above) there exists ε > 0

such that

‖Γεỹ(t0)− Γεỹ(t)‖Bsp,r <
δ

2
, ∀ |t− t0| < ε. (6.51)

It follows now from (6.49), (6.50) and (6.51) that for all y ∈ Lk([0, T ];Bsp,r) with

k > 1/α we have

‖Γεy(t0)− Γεy(t)‖Bsp,r < δ, ∀ |t− t0| < ε.

Summa summarum we have now established that Γε : Lk([0, T ];Bsp,r)→ C([0, T ],Bsp,r)

is a continuous mapping for k > 1/α. Therefore, if we can show that Yε ∈ Lk([0, T ];Bsp,r)

P-a.s., then it follows that z̄ε ∈ C([0, T ];Bsp,r) P-a.s., too.

Step 2. To establish that Yε ∈ Lk([0, T ];Bsp,r) P-a.s., it suffices to show

E ‖Yε(t)‖Bsp,r ≤ C(ε), ∀t > 0. (6.52)

In fact, if (6.52) holds then

E ‖Yε‖Lk([0,T ];Bsp,r)
≤
(
T E ‖Yε‖kBsp,r

)1/k

≤ C(T, ε), (6.53)

where the first inequality is due to Jensen’s inequality and Fubini, and the second

inequality follows from (6.52) in conjunction with Fernique’s theorem (e.g. [64],
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Theorem 3.11). To establish (6.52), we apply Jensen’s inequality once more to get

E ‖Yε(t)‖Bsp,r = E

(
∞∑
q=0

2qrs ‖∆qYε(t)‖rLp(G)

)1/r

≤

(
∞∑
q=0

2qrs E ‖∆qYε(t)‖rLp(G)

)1/r

. (6.54)

Fix now q ∈ N. Apply Fubini and use Nelson’s estimate as in the proof of Lemma

6.5.4 to get

E ‖∆qYε(t)‖pLp = E
∫
T2

∣∣∣∣∣∣
∑

2q−1≤|k|<2q

(Yε(t), ek) ek(ξ)

∣∣∣∣∣∣
p

dξ

≤ K(p)

∫
T2

E

∣∣∣∣∣∣
∑

2q−1≤|k|<2q

(Yε(t), ek) ek(ξ)

∣∣∣∣∣∣
2p/2

dξ

= K(p)

∫
T2

 ∑
2q−1≤|k|<2q

E |(Yε(t), ek)|2
p/2

dξ. (6.55)

Itô’s isometry allows us to estimate

E |(Yε(t), ek)|2 =

∫ t

0

e−2τ(Cε−1+k2)τ−2αdτ

≤
[
2
(
Cε − 1 + k2

)]2α−1
∫ ∞

0

e−ττ−2αdτ

≤ K̃
(
Cε − 1 + k2

)2α−1
, (6.56)

215



where the last inequality is due to 2α < 1. Inserting (6.56) back into (6.55) we obtain

E ‖∆qYε(t)‖pLp ≤ K(p)

 ∑
2q−1≤|k|<2q

(
1

Cε − 1 + k2

)1−2α
p/2

≤ K(p)

22qσ
∑

2q−1≤|k|<2q

1

k2σ

(
1

Cε − 1 + k2

)(1−2α)k1
(

1

Cε − 1 + k2

)(1−2α)k2

p/2

,

for all σ > 0 and k1, k2 > 0 such that k1 + k2 = 1. It follows (assume Cε > 2)

E ‖∆qYε(t)‖pLp ≤ K(p)

(
1

Cε

) (1−2α)k1p
2

2qσp

 ∑
2q−1≤|k|<2q

1

k2σ

(
1

1 + k2

)(1−2α)k2

p/2

≤ K(p, ε, α, k1) 2qσp

(∑
k∈Z2

1

k2σ

(
1

1 + k2

)(1−2α)k2
)p/2

,

where K(p, ε, α, k1) → 0 as ε → 0, independent of the other parameters. Note that

for the case q = 0, the estimate is simply

E ‖∆qYε(t)‖pLp ≤ K(p, ε, α),

where limε→0K(p, ε, α) = 0. Let us now return to (6.54) and consider first the case

r ≤ p. By Jensen’s inequality we get

(
E ‖Yε(t)‖Bsp,r

)r
≤

∞∑
q=0

2qrs
(
E ‖∆qYε(t)‖pLp

)r/p
(6.57)

≤ K(p, ε, α, k1)
∞∑
q=0

2qr(s+σ)

(∑
k∈Z2

1

k2σ

(
1

1 + k2

)(1−2α)k2
)r/2

.
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Choose now 0 < σ < |s|, k2 such that k2 − 1 + σ > 0, and 0 < α < k2−1+σ
2k2

. With

these choices, the right-hand side of (6.57) is finite and we conclude

E ‖Yε(t)‖Bsp,r ≤ C(ε), ∀t > 0, (6.58)

where

lim
ε→0

C(ε) = 0.

In the case r > p, we use Hölder’s inequality to obtain

(
E ‖Yε(t)‖Bsp,r

)r
≤ C

∞∑
q=0

2qrs
(
E ‖∆qYε(t)‖rLr

)
, (6.59)

and from here the same choices of σ, k2 and α as above lead to (6.58). This concludes

the proof of claim (6.52) and hence we have shown that z̄ε ∈ C([0, T ],Bsp,r) P-a.s.

Step 3. It remains to establish the limit (6.45). Recalling that z̄ε = ΓεYε, we can

take the expectation of (6.49) to get

E sup
t∈[0,T ]

‖z̄ε(t)‖Bsp,r ≤ C(T, k)E ‖Yε‖Lk([0,T ];Bsp,r)
. (6.60)

But it easily seen from (6.52) that C(T, ε) in (6.53) vanishes as ε→ 0, and therefore,

it follows from (6.60) and (6.53) that

E sup
t∈[0,T ]

‖z̄ε(t)‖Bsp,r ≤ C(ε, k, T )

with limε→0C(ε, k, T ) = 0.

Remark 6.5.7. Note that the continuity of zε can also be proved by means of Kol-

mogorov’s continuity theorem for Banach spaces, [64]. However, this approach does
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not directly give access to the limit (6.45), and therefore we used the factorization

method instead.

6.5.4 Step 4: Local solutions

We solve the auxiliary Problem (Φaux
ε ) on the space ET := C([0, T ];Bsp,r) ∩

Lp([0, T ],Bαp,r) where the indices p, r ≥ 1 and s, α ∈ α are to be determined.

Equipped with the maximum norm 6.5, ET is again a Banach space [9]. We shall

need the following technical lemma.

Lemma 6.5.8. Let f ∈ Lp/n([0, T ];B(2n−1)s
p,r ) with p > n ≥ 1, s < 0 and α = 2/p+2s

such that

(n− 1)s+ 1− n

p
> 0. (6.61)

Then ∫ t

0

e(t−τ)Aεf(τ) dτ ∈ ET

and ∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
ET
≤ K(ε)T δ ‖f‖

Lp/n([0,T ];B(2n−1)s
p,r )

,

where δ > 0 and

lim
ε→0

K(ε) = 0.

Proof. Up to modifications that yield the convergence K(ε) → 0, this proof is

identical to the proof of Lemma 3.6 in [38].

Step 1. Recall from (6.5) that we have to find two estimates - let’s begin with the

one in C([0, T ];Bsp,r). The key inequality for this proof is the following heat kernel
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estimate in Besov spaces (see Proposition 6.A.12),

∥∥et∆f∥∥Bsp,r ≤ c t(n−1)s ‖f‖B(2n−1)s
p,r

, ∀f ∈ B(2n−1)s
p,r .

Recalling that for all γ < 0 there exists a constant C > 0 such that e−x ≤ Cxγ,

∀x ≥ 0, we get that for all w > 0

∥∥etAεf∥∥Bsp,r ≤ c (Cε − 1)ws t(n−1+w)s ‖f‖B(2n−1)s
p,r

, ∀f ∈ B(2n−1)s
p,r .

Together with Hölder’s inequality this yields∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
C([0,T ];Bsp,r)

≤ c(Cε − 1)ws
∫ T

0

τ (n−1+w)s ‖f(T − τ)‖B(2n−1)s
p,r

dτ

≤ c(Cε − 1)ws
(∫ T

0

τ (n−1+w)sγdτ

) 1
γ
(∫ T

0

‖f(T − τ)‖
p
n

B(2n−1)s
p,r

dτ

)n
p

= c (Cε − 1)ws T (n−1+w)s+ 1
γ ‖f‖

Lp/n([0,T ];B(2n−1)s
p,r )

= c (Cε − 1)ws T (n−1+w)s+1−n
p ‖f‖

Lp/n([0,T ];B(2n−1)s
p,r )

,

where the last inequality is due to 1
γ

+ p
n

= 1. By assumption, (n− 1)s+ 1− n
p
> 0,

hence we can pick w(s, p, n) > 0 such that δ1 := (n− 1 + w)s+ 1− n
p

is positive. It

follows ∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
C([0,T ];Bsp,r)

≤ K1(ε)T δ1 ‖f‖
Lp/n([0,T ];B(2n−1)s

p,r )
, (6.62)

where δ1 > 0 and

lim
ε→0

K1(ε) = lim
ε→0

c(Cε − 1)ws = 0.
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Step 2. We are left with the second part of the proof: the Lp([0, T ];Bαp,r) estimate.

According to Proposition (6.A.12) we have

∥∥et∆f∥∥Bαp,r ≤ c t[(2n−1)s−α]/2 ‖f‖B(2n−1)s
p,r

, ∀f ∈ B(2n−1)s
p,r

and hence for all w < 0

∥∥etAεf∥∥Bαp,r ≤ c (Cε − 1)w t[(2n−1)s−α]/2+w ‖f‖B(2n−1)s
p,r

, ∀f ∈ B(2n−1)s
p,r .

In consequence,∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
Lp([0,T ];Bαp,r)

=

(∫ T

0

∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥p
Bαp,r

) 1
p

≤
(∫ T

0

(∫ t

0

c (Cε − 1)w (t− τ)[(2n−1)s−α]/2+w ‖f(τ)‖B(2n−1)s
p,r

dτ

)p) 1
p

≤ c (Cε − 1)w
∥∥∥(·)[(2n−1)s−α]/2+w ∗ ‖f(·)‖B(2n−1)s

p,r

∥∥∥
Lp([0,T ])

,

where the convolution ∗ is defined as

f ∗ g(x) =

∫ T

0

f(x− y)g(y)dy, x ∈ [0, T ],

for functions f, g ∈ L1([0, T ]), and with f being periodically extended to [−T, 0].

With this definition we can use Young’s inequality for circular convolutions on [0, T ]

220



(see Proposition 6.A.2), and we find with 1
γ

+ n
p

= 1 + 1
p
,∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
Lp([0,T ];Bαp,r)

≤ c (Cε − 1)w
(∫ T

0

t[(2n−1)s−α]γ/2+wγdt

) 1
γ

‖f‖
Lp/n([0,T ];B(2n−1)s

p,r )

= c (Cε − 1)w T (2n−3)s/2−1/p+w+1/γ ‖f‖
Lp/n([0,T ];B(2n−1)s

p,r )

= c (Cε − 1)w T (2n−3)s/2+1−n/p+w ‖f‖
Lp/n([0,T ];B(2n−1)s

p,r )
.

Thanks to assumption (6.61) there exists w = w(s, n, p) < 0 such that the exponent

δ2 := s(n− 1) + 1− n/p− 1/2s+ w is positive. It follows that∥∥∥∥∫ t

0

e(t−τ)Aεf(τ)dτ

∥∥∥∥
Lp([0,T ];Bαp,r)

≤ K2(ε)T δ2 ‖f‖
Lp/n([0,T ];B(2n−1)s

p,r )
, (6.63)

where

lim
ε→0

K2(ε) = lim
ε→0

c (Cε − 1)w = 0.

Combining (6.62) and (6.63) concludes the proof.

Equipped with this result, we can now tackle a pathwise local existence result

for the auxiliary problem (Φaux
ε ). The latter can be cast in more concise form as

dvε
dt

= Aεvε +
∑3

l=0 al v
l
ε : z3−l

ε :

vε(0) = u0 − zε(0),

(Φaux
ε )

where the coefficients are a0 = a3 = 1, a1 = a2 = 3.

Theorem 6.5.9 (Pathwise Local Solutions). Fix ε > 0 and assume H. Then for

all u0 ∈ Bsp,r(G) and P-a.a. ω ∈ Ω, there exists T̃ (u0, ω) > 0 and a unique solution

vε ∈ ET̃ to problem (Φaux
ε ).
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Proof. We show pathwise local existence by means of a fixed point argument on

the space ET . That is, we define the mapping Kε on ET as

(Kεy) (t) := et Aε (u0 − zε(0)) +

∫ t

0

e(t−τ)Aε

3∑
l=0

al y
l(τ) : z3−l

ε (τ) : dτ, (6.64)

and split the proof into three parts. In Step 1 we show that Kε : ET → ET , P-a.s.,

and that there exists T ∗(ε, u0, ω) > 0 and a Kε-invariant ball in ET ∗ . In Step 2

we prove that Kε is a strict contraction on the invariant ball of the first part. We

conclude the proof in Step 3.

Step 1. The first term on the right-hand side of (6.64) can be bounded using Propo-

sition 6.A.13:

∥∥etAε (u0 − zε(0))
∥∥
ET
≤
(
1 + C1(ε)T δ1

)
‖u0 − zε(0)‖Bsp,r , (6.65)

where δ1 > 0 and C1(ε) > 0 is such that limε→0C1(ε) = 0. Note in particular that for

each ε > 0, this bound is P-a.s. finite provided that u0 ∈ Bsp,r (see Remark 6.5.5). We

show now that the integral term in (6.64), as a function of y, is P-a.s. ET -invariant.

To this end, split the integral into two terms as Ω1
ε + Ω2

ε, where

Ω1
ε(t, y) :=

∫ t

0

e(t−τ)Aε

2∑
l=0

al : z3−l
ε (τ) : yl(τ) dτ,

Ω2
ε(t, y) :=

∫ t

0

e(t−τ)Aε y3(τ) dτ.

We start with an estimate for Ω1
ε. Since ((l + 1) − 1)s + 1 − 2/p > 0 for l = 0, 1, 2,

we can employ Lemma 6.5.8 to find that for l = 0, 1, 2 there exist δ(l) > 0 and
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C(l, ε)→ 0 such that∥∥∥∥∫ t

0

e(t−τ)Aε : z3−l
ε (τ) : yl(τ)dτ

∥∥∥∥
ET
≤ C(l, ε)T δ(l)

∥∥: z3−l
ε : yl

∥∥
Lp/(l+1)([0,T ];B(2l+1)s

p,r )
.

Using Corollary 6.A.9 and adding up the respective contributions yields that there

exist δ > 0 and C(ε) > 0 such that

∥∥Ω1
ε(·, y)

∥∥
ET
≤ C(ε)T δ

2∑
l=0

∥∥: z3−l
ε :

∥∥
Lp([0,T ];Bsp,r)

‖y‖lLp([0,T ];Bαp,r)
, (6.66)

where limε→0 C(ε) = 0. Combining this with Remark 6.5.5 implies then that for a.a.

ω ∈ Ω there exists C(ε, ω) > 0 such that

∥∥Ω1
ε(·, y)

∥∥
ET
≤ C(ε, ω)T δ

2∑
l=0

‖y‖lET , (6.67)

where limε→0 C(ε, ω) = 0. Regarding Ω2
ε we show that there exist δ̃ > 0 and C̃(ε) > 0

such that limε→0 C̃(ε) = 0 and

∥∥Ω2
ε(·, y)

∥∥
ET
≤ C̃(ε)T δ̃ ‖y‖3

ET . (6.68)

In fact, since y ∈ ET and s < α, the embedding Bαp,r ↪→ Bsp,r implies that y ∈

Lp([0, T ];Bsp,r); from Lemma 6.5.8 with n = 3 and Corollary 6.A.9 with l = 2 it

follows that there exist δ̃ > 0 and C̃(ε)→ 0 such that∥∥∥∥∫ t

0

e(t−τ)Aεy3(τ)dτ

∥∥∥∥
ET
≤ C(ε)T δ̃

∥∥y y2
∥∥
Lp/3([0,T ];B5s

p,r)
≤ C̃(ε)T δ̃ ‖y‖3

Lp([0,T ];Bαp,r)
,

(6.69)

and hence (6.68) is established. Compiling the results from (6.65), (6.67) and (6.68)

we conclude that there exist positive constants δ1, δ2 and C1(ε) such that: for a.a.
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ω ∈ Ω there exists C2(ε, ω) > 0 we have

‖Kεy‖ET ≤
(
1 + C1(ε)T δ1

)
‖u0 − zε(0)‖Bsp,r + C2(ε, ω)T δ2

(
1 + ‖y‖3

ET

)
, (6.70)

and C1(ε) and C2(ε, ω) vanish as ε → 0. From (6.70) it is easy to see that there

exists T ∗(u0, ε, ω) > 0 and a ball of radius M∗(u0, ε, ω) > 1 in ET ∗ such that Kε

maps the ball onto itself:

‖Kεy‖ET∗ ≤M∗, ∀y ∈ ET ∗ 3 ‖y‖ET∗ ≤M∗

This completes the first part of the proof.

Step 2. We are left with the proof of the strict contraction property of Kε.

Thanks to Lemma 6.5.8 we can assure the existence of γj > 0 and Cj(ε) → 0,

j = 1, 2, 3, such that

‖Kεy −Kεȳ‖ET =

∥∥∥∥∥
∫ t

0

e(t−τ)Aε

3∑
l=1

al
(
yl(τ)− ȳl(τ)

)
: z3−l

ε (τ) : dτ

∥∥∥∥∥
≤ C1(ε)T γ1

∥∥(y − ȳ) : z2
ε :
∥∥
Lp/2([0,T ];B3s

p,r)

+ C2(ε)T γ2
∥∥(y2 − ȳ2

)
zε
∥∥
Lp/3([0,T ];B5s

p,r)

+ C3(ε)T γ3
∥∥y3 − ȳ3

∥∥
Lp/3([0,T ];B5s

p,r)
.

To bound the first term in the previous expression, we can directly apply Corollary

6.A.9; for the remaining two terms, we use the identity

um − vm = (u− v)
m−1∑
j=0

uj vm−1−j,
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and then apply a straightforward generalization of Corollary 6.A.9 (for products

g1 · . . . · gl instead of gl). In consequence there exist δ3 > 0 and C(ε)→ 0 such that

‖Kεy −Kεȳ‖ET ≤ C(ε)T δ3 ‖y − ȳ‖ET

[ ∥∥: z2
ε :
∥∥
Lp([0,T ];Bsp,r)

+ . . .

. . .+ ‖zε‖Lp([0,T ];Bsp,r)
(
‖y‖ET + ‖ȳ‖ET

)
+

2∑
j=0

‖y‖jET ‖y‖
2−j
ET

]
.

(6.71)

Together with Remark 6.5.5 this yields now the following estimate. for a.a. ω ∈ Ω

there exist δ3 > 0 and C3(ε, ω)→ 0 such that

‖Kε y −Kεȳ‖ET ≤ C3(ε, ω)T δ3(M∗)2 ‖y − ȳ‖ET , (6.72)

for all y, ȳ ∈ ET such that ‖y‖ET , ‖ȳ‖ET ≤ M∗, where M∗ > 1 has been defined

in Step 1. Finally, choose T ∗∗ such that C3(ε, ω) (T ∗∗)δ3 (M∗)2 < 1, and the strict

contraction property on the ball of radius M∗ in ET ∗∗ follows: there exists θ < 1 such

that

‖Kεy −Kεȳ‖ET∗∗ ≤ θ ‖y − ȳ‖ET∗∗ ,

for all y, ȳ ∈ ET ∗∗ such that ‖y‖ET∗∗ , ‖ȳ‖ET∗∗ ≤M∗.

Step 3. To finish the proof, set T̃ (u0, ω) = min (T ∗, T ∗∗) and conclude that for a.a.

ω ∈ Ω there exists T̃ > 0, θ < 1 and a ball of radius M∗ in ET̃ such that

(i) ‖Kεy‖E
T̃
≤M∗, ∀y ∈ ET̃ such that ‖y‖E

T̃
≤M∗,

(ii) ‖Kεy −Kεȳ‖ET̃ ≤ θ ‖y − ȳ‖ET̃ , ∀ y, ȳ ∈ ET̃ such that ‖y‖ET̃ , ‖ȳ‖ET̃ ≤M∗.

Now we can use Banach’s fixed point theorem, see e.g. [47], to conclude that for all

u0 ∈ Bsp,r and a.a. ω ∈ Ω there exists T̃ (u0, ω) and a unique solution vε ∈ ET̃ .
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6.5.5 Step 5: Global solutions

Existence and uniqueness

Equipped with the results of the previous two sections, we turn our attention

now to the existence of global solutions to (Φε). Following [38], we can establish an a

priori estimate of uε with respect to the stationary measure of (Φε), i.e. the invariant

Gibbs measure

νε(dφ) =
e−

1
4(:φ4:,1)+ 1

2(:φ2:,1)µε(dφ)∫
H e
− 1

4
(:φ4:,1)+ 1

2
(:φ2:,1)µε(dφ)

.

Note that this measure is well-defined; in fact, µε(C(T2)) = 1, and due to the finite

frequency cut-off in µε,
1
4

: φ4 : − 1
2

: φ2 : is a polynomial bounded from below.

Writing uε(t, u0, ω) to emphasize the dependence on the initial condition u0 and the

noise realization ω ∈ Ω, we follow [38] to find∫
H
E

(
sup
t∈[0,T ]

‖uε(t, u0, ω)‖Bsp,r

)
νε(du0) <∞.

From this it follows that for νε-a.a. initial conditions u0, there exists P-a.s. a global

solution to (Φε). The issue with this result is that for a specific, non-random initial

condition, it does not provide any information about the existence of solutions. In

particular, this result is of little help for the proof of Theorems 6.3.2 and 6.3.5 as the

latter involve non-random initial conditions.

In absence of a suitable a priori estimate for arbitrary initial conditions, we

are forced to adopt a different strategy. Notice that the regularized noise Wε (with

cut-off ε > 0) is actually smooth in space: it should therefore be straightforward
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to establish uniqueness and existence of global solutions in a ‘nicer’ space than ET .

Combining these unique global solutions in the ‘nice’ space with local uniqueness in

ET (Theorem 6.5.9), we should then be able to carry over global uniqueness into ET .

But first, we need a suitably ‘nice’ space – and C ([0, T ], C(T2)) seems to be an

ideal candidate:

Theorem 6.5.10. Let ε, T > 0 and u0 ∈ C(T2). Then for P-a.a. ω ∈ Ω there exists

a unique solution uε ∈ C([0, T ];C(T2)) to (Φε).

Proof. From Theorem 6.2.1, it follows that

z̄ε ∈ C([0, T ];C(T2)), P− a.s.

The rest of the proof is then taken care of by Theorem 6.B.1 in Appendix 6.B.

We show now that Theorem 6.5.10 implies the existence of global solutions in ET .

Corollary 6.5.11. Assume (H), let ε, T > 0 and u0 ∈ C(T2). Then for P-a.a.

ω ∈ Ω there exists a (not necessarily unique) solution uε ∈ ET to Φε.

Proof. From Theorem 6.5.10 we know that there exists Ω0 ⊂ Ω with P(Ω0) = 1 such

that for all ω ∈ Ω0 there exists a unique solution uε(ω) ∈ C([0, T ];C(T2)) to (Φε).

To prove our claim, it suffices then to show that this uε(ω) is an ET -solution to (Φε),

too.
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First, we establish the following sequence of continuous embeddings (where s <

0):

C ↪→ L∞ ↪→ H0
p ↪→ Hs+ε

p ↪→ Bs+εp,∞ ↪→ Bsp,r, 0 < ε < |s| . (6.73)

The first embedding is trivial, the second one follows from L∞ ↪→ Lp and H0
p ≡ Lp

(see Definition 6.A.3); the third embedding follows from the norm-equivalence of the

Bessel spaces Hs
p and the Triebel-Lizorkin spaces F sp,2 [141, p14], together with the

corresponding embedding property [170, p47]

F s+εp,r ↪→ F sp,r, ∀ε > 0.

The fourth embedding is found in Proposition 6.A.7 and the last embedding follows

from [141, pp29-30]. The sequence in (6.73) implies now that there exists a constant

K > 0 such that

‖u‖Bsp,r ≤ K ‖u‖C(T2) , ∀u ∈ C(T2).

Therefore, uε(ω) ∈ C([0, T ];C(T2)) implies uε(ω) ∈ C([0, T ];Bsp,r), and it remains to

show that uε(ω) ∈ Lp([0, T ];Bαp,r), too. Recall that for all ω ∈ Ω0, uε(ω) solves the

fixed point equation

uε(t) = etAεu0 +

∫ t

0

e(t−τ)Aεu3
ε(τ)dτ + z̄ε(t), ∀t ∈ [0, T ], (6.74)

where the convolution z̄ε has been defined in (6.47). Estimating each term on the

right-hand side of (6.74) separately, we find

‖uε‖Lp([0,T ];Bαp,r)
≤ K1 ‖u0‖Bsp,r +K2

∥∥u3
ε

∥∥
Lp([0,T ];Bsp,r)

+ ‖z̄ε‖Lp([0,T ];Bαp,r)
.
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We used Corollary 6.A.13 and Lemma 6.5.8 to estimate the first two terms. Since

we have already established that uε(ω) ∈ C([0, T ];C(T2)), the first two terms are

finite by (6.73), and we are left with the third term, ‖z̄ε‖Lp([0,T ];Bαp,r)
. By means

of Kolmogorov’s continuity theorem (e.g. [64, p14]) or the factorisation method

as employed in the proof of Proposition 6.5.6, we find that for all ε > 0, z̄ε ∈

C([0, T ];Bαp,r) almost surely. Therefore, z̄ε ∈ Lp([0, T ];Bαp,r) almost surely.

Summa summarum, we have established that for all P-a.a. ω ∈ Ω, the unique

global solution uε(ω) ∈ C([0, T ];C(T2)) also constitutes a global solution in ET .

It remains now to show that the solution from Corollary 6.5.11 is in fact unique.

Theorem 6.5.12. Assume (H), let ε, T > 0 and u0 ∈ C(T2). Then for P-a.a. ω ∈ Ω

there exists a unique solution uε ∈ ET to (Φε).

Proof. Thanks to the decomposition uε = vε + zε, it suffices to prove the claim for

the auxiliary problem (Φaux
ε ) (see p.206) instead of (Φε). Let now u0 ∈ C(T2). To

construct pathwise unique solutions, we shall use the following two results:

(i) By Theorem 6.5.9, there exists Ω1 ⊂ Ω such that P(Ω1) = 1, and such that for

all ω ∈ Ω1 there exists T1(ω) > 0 and a unique local solution v̄ε(ω) ∈ ET to

(Φaux
ε ), for all T ≤ T1(ω).

(ii) By Theorem 6.5.10, there exists Ω2 ⊂ Ω such that P(Ω2) = 1, and such that for

all ω ∈ Ω2, there exists a (not necessarily unique) global solution vε(ω) ∈ ET to

problem (Φaux
ε ). By construction, vε(ω) ∈ C([0, T ];C(T2)).

Define now Ω̂ := Ω1 ∩ Ω2. From (i) and (ii) we deduce that for all ω ∈ Ω̂ there is

a unique solution on [0, T1(ω)]: vε(ω) ≡ v̄ε(ω) ∈ ET1(ω). The idea is now to iterate

this procedure: given that there is a unique solution vε on [0, Tj(ω)], we use (i) to
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establish the existence of a time step ∆Tj(ω) > 0 such that there exists a unique

local solution on the time interval [Tj(ω), Tj+1(ω)], where Tj+1(ω) = Tj(ω)+∆Tj(ω).

As above, we conclude that the global solution from (ii) must coincide with the local

solution on the new interval; hence there is a unique solution vε on [0, Tj+1(ω)], for

all ω ∈ Ω̂. Since the goal is to cover the full interval [0, T ] by iterating the above

procedure, we have to make sure that the admissible time steps ∆Tj(ω) do not vanish

in such a way that the sequence {Tj(ω)} remains bounded away from the final time

T . To show that this is impossible, we establish the existence of a pathwise lower

bound for the time steps ∆Tj. We recall from (6.70) and (6.71) that, given the initial

condition vε(Tj(ω)), we have the following bounds to determine an admissible time

step ∆Tj(ω) (note that the mapping Kε was defined in (6.64)),

‖Kεy‖E∆Tj(ω)
≤
(
1 + C1(ε)∆T δ1j (ω)

)
‖vε(Tj(ω))‖Bsp,r . . .

. . .+ C2(ε, ω)∆T δ2j (ω)
(

1 + ‖y‖3
E∆Tj(ω)

)
and

‖Kεy −Kεȳ‖E∆Tj(ω)
≤ C3(ε, ω)∆T δ3j (ω)C4(‖y‖E∆Tj(ω)

, ‖ȳ‖E∆Tj(ω)
) ‖y − ȳ‖E∆Tj(ω)

.

The ω-dependence of C2(ε, ω) and C3(ε, ω) stems from bounds on the Lp(Tj(ω), Tj+1(ω);Bsp,r)

-norm of : zkε (ω) : for k = 1, 2, 3, see also (6.71). Note however that we have the

following pathwise bounds for all 0 ≤ t1 ≤ t2 ≤ T and for all ω ∈ Ω̂

∥∥: zkε (ω) :
∥∥
Lp(t1,t2;Bsp,r)

≤
∥∥: zkε (ω) :

∥∥
Lp([0,T ];Bsp,r)

≤M(k, ε, ω) <∞.
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Hence the same bounds C2(ε, ω) and C3(ε, ω) are applicable for all the iterations

along a given path ω. On the other hand, we have a pathwise bound on the initial

conditions for the successive Picard iterations,

‖vε(Tj(ω))‖Bsp,r ≤ ‖vε(ω)‖ET <∞,

for all j such that Tj(ω) ≤ T and for all ω ∈ Ω̂. Altogether, the above considerations

imply the existence of a pathwise lower bound on the time steps,

∆Tj(ω) ≥ c(ω) > 0.

We conclude that for all ω ∈ Ω̂ it only takes a finite number of iterations to ensure

that there exists a unique solution vε(ω) over the whole time interval [0, T ]. Since

P(Ω̂) = 1, the proof is complete.

An open problem

It seems plausible that Theorem 6.5.12 can be generalized to distribution-valued

initial conditions u0 ∈ Bsp,r. In this section, we briefly outline a possible strategy to

prove this claim. First, we exploit density of continuous functions in Bsp,r [147, p163]

and pick a sequence of initial conditions {un} ⊂ C(T2) such that un → u0 in Bsp,r.

Denote then by vn = vε(un) the unique global solution in ET starting at un. Assume

for now that the sequence {vn} is Cauchy in ET , and hence by completeness of ET

there exists Ω0 ⊂ Ω, P(Ω0) = 1, such that limn→∞ vn = v̄ ∈ ET , ∀ω ∈ Ω0. From here,

we show that for all ω ∈ Ω0, v̄ is a mild solution to (Φaux
ε ) for the initial condition
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u0. In fact, by definition the vn satisfy

vn(t) = etAεun +

∫ t

0

e(t−τ)Aε

3∑
l=0

al v
l
n(τ) : z3−l

ε (τ) : dτ,

and we consider now the limit as n→∞. The left-hand side converges to v̄ in ET by

definition of v̄. The first term on the right-hand side can be seen to converge etAεu0

in ET by Corollary 6.A.13. Regarding the integral term we have to show that

y 7→
∫ t

0

e(t−τ)Aε

3∑
l=0

al y
l(τ) : z3−l

ε (τ) : dτ

is continuous as a mapping from ET → ET . In fact, this follows easily from the

contraction property of Kε in (6.71). Now that we know that v̄ ∈ ET is a solution

to (Φε) for all ω ∈ Ω̂0, we apply Theorem 6.5.9 in conjunction with the iteration

procedure explained in the proof of Theorem 6.5.12 to conclude that v̄ is in fact

unique.

It remains to prove that vn is indeed Cauchy in ET . But while it is possible to

show that {vn} is Cauchy in Bsp,r (by means of a Gronwall-type inequality), it is less

obvious how to show that {vn} is Cauchy in Lp([0, T ];Bαp,r). This remains an open

issue.

6.5.6 Step 6: The limit ε→ 0

Now that we know that unique solutions uε in ET exist almost surely for each

fixed ε > 0, we proceed to taking the limit ε→ 0. Since the limit for zε has already

been analyzed in Proposition 6.5.6, we focus now on the solutions vε to the auxiliary

problems (Φaux
ε ) – and we show that they converge to zero.
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Before we state the main result of this section, we introduce the space

EδT := C([δ, T ],Bsp,r) ∩ Lp([0, T ];Bαp,r), δ ∈ [0, T ).

EδT is the intersection of two Banach spaces and hence itself a Banach space. Fur-

thermore, we replace the maximum norm defined in (6.5) by the equivalent norm

‖x‖EδT := ‖x‖C([δ,T ],Bsp,r)
+ ‖x‖Lp([0,T ];Bαp,r)

, ∀x ∈ EδT .

Note in particular that E0
T = ET .

Theorem 6.5.13. Assume (H) and consider the sequence of regularized problems

(Φaux
ε ) with fixed initial condition u0 ∈ C(T2). For all T > 0, the global solutions

vε ∈ ET from Theorem 6.5.12 converge to zero in the following sense

(i) For all δ ∈ (0, T )

‖vε‖EδT
P−→ 0 as ε→ 0.

(ii) If u0 = 0, then the above is true for δ = 0:

‖vε‖ET
P−→ 0 as ε→ 0.

Proof. We proceed in several steps.

Step 1. For arbitrary K > 0, introduce the stopping time τ δε (K) as

τ δε (K,ω) := inf

{
t ≥ δ : ‖vε‖Eδt = sup

s∈[δ,t]

‖vε(s)‖Bsp,r +

[∫ t

0

‖vε(s)‖pBαp,r

]1/p

≥ K

}
.

(6.75)
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By construction

‖vε‖Eδ
T∧τδε (K)

≤ K, P− a.s. ∀K > 0, (6.76)

and since the mapping t 7→ ‖vε‖Eδt is continuous,

‖vε‖Eδ
τδε (K)

= K on
{
τ δε (K) <∞

}
.

From this it is easy to see that{
‖vε‖Eδ

T∧τδε (K)

< K

}
=
{
τ δε (K) > T

}
, ∀K > 0. (6.77)

Step 2. Next, we establish the limit

lim
ε→0

E ‖vε‖Eδ
T∧τε(K)

= 0, ∀K > 0. (6.78)

Recalling that vε solves the fixed point equation

vε(t) = et Aε (u0 − zε(0)) +

∫ t

0

e(t−τ)Aε

3∑
l=0

al v
l
ε(τ) : z3−l

ε (τ) : dτ, (6.79)

we can use the estimates (6.65), (6.66) and (6.69) together with

sup
t∈[δ,T ]

∥∥etAε (u0 − zε(0))
∥∥
Bsp,r
≤ e−δ Cε ‖(u0 − zε(0))‖Bsp,r (6.80)
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and (6.21), to show that there exist constants γj > 0 and Cj(ε)→ 0 (j = 1, 2) such

that

‖vε‖Eδ
T∧τδε (K)

≤ C1(ε)
(
1 +

[
T ∧ τ δε (K)

]γ1
)
‖u0 − zε(0)‖Bsp,r + . . .

. . .+ C2(ε)
[
T ∧ τ δε (K)

]γ2

3∑
l=0

‖vε‖lEδ
T∧τδε (K)

∥∥: z3−l
ε :

∥∥
Lp([0,T ];Bsp,r)

.

Taking the expectation on both sides and recalling (6.76) we find

E ‖vε‖Eδ
T∧τδε (K)

≤ C1(ε) (1 + T γ1)E ‖u0 − zε(0)‖Bsp,r + . . .

. . .+ C2(ε)T γ2

3∑
l=0

K lE
∥∥: z3−l

ε :
∥∥
Lp(0,T ;Bsp,r)

.

By Lemma 6.5.4 and (6.44), the right-hand side vanishes as ε → 0, and (6.78) fol-

lows.

Step 3. By Markov’s inequality, (6.78) implies convergence in probability; in partic-

ular,

lim
ε→0

P(‖vε‖Eδ
T∧τδε (K)

< K) = 1, ∀K > 0, (6.81)

and hence from (6.77)

lim
ε→0

P(‖vε‖EδT < K) = 1, ∀K > 0. (6.82)

This concludes the proof of part (i) of the theorem. For part (ii) the estimate (6.80)

does not yield the vanishing prefactor e−δCε , but since E ‖zε(0)‖Bsp,r → 0, the limit

(6.78) still holds.
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In Section 6.5.5 we pointed out that Theorem 6.5.12 does not provide global

uniqueness for distribution-valued initial conditions. However, observing that the

proof of Theorem 6.5.13 merely relies on the fact that the solution goes to zero

before hitting any ball of finite radius, the argument can be used to establish a

similar result for more general initial conditions.

Theorem 6.5.14. Assume (H) and consider the sequence of regularized problems

(Φaux
ε ) for fixed initial condition u0 ∈ Bsp,r. For all T > 0, the solutions vε converge

to zero in the following sense: for all δ ∈ (0, T ) and all K > 0,

lim
ε→0

P
(
∃! solution vε ∈ ET and ‖vε‖EδT ≤ K

)
= 1.

Proof. The only difference to the proof of Theorem 6.5.13 is that we cannot ensure

P-a.s. global existence for finite ε > 0 (see also Section 6.5.5). However, we know

that for all ε > 0 there exists Ω0
ε ⊂ Ω, P(Ω0

ε) = 1, such that: for all ω ∈ Ω0
ε there

exists T ∗(ε, ω) > 0 and a local solution vε(ω) ∈ ET , for all T ≤ T ∗(ε, ω). From

this, and following the reasoning in the proof of Theorem 6.5.12, it is easy to see

that for all ω ∈ Ω0
ε there exists a unique vε ∈ EδT∧τδε (K)

which satisfies (6.79) for all

t ∈ [0, T ∧ τ δε (K)]. With this in mind, the rest of the proof of Theorem 6.5.13 is

easily adapted to the current setting.

6.5.7 Step 7: Synthesis

With Theorem 6.5.13 we have prepared the last piece of the puzzle, and we can

now prove the two main results of this paper.
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Proof of Theorem 6.3.2. Assume (H). Almost sure existence of the unique global

solution uε ∈ ET has been established in Theorem 6.5.12. Regarding the limits (i) and

(ii), we recall the equivalent formulation of a mild solution to the regularized problem

(Φε) from Definition 6.5.3, and use the decomposition uε = vε + zε. Regarding the

solution vε to (Φaux
ε ), we know from Theorem 6.5.12 that vε ∈ ET , and from Theorem

6.5.13 (i) that

‖vε‖C([δ,T ],Bsp,r)
P−→ 0 as ε→ 0, ∀δ ∈ (0, T ).

Using the elementary embeddings

Bs+εp,r ↪→ Bsp,r, ∀ε > 0

and

Bsp1,r
↪→ Bsp0,r

, ∀1 ≤ p0 ≤ p1,

we conclude that for all p, r ≥ 1, s < 0 and δ ∈ (0, T ),

‖vε‖C([δ,T ],Bsp,r)
P−→ 0 as ε→ 0. (6.83)

Regarding the stochastic convolution zε, we have by Proposition 6.5.6 that for all

p, r ≥ 1 and s < 0,

‖zε‖C([0,T ];Bsp,r)
P−→ 0 as ε→ 0. (6.84)

Together with (6.84) this concludes the proof of (i). To prove (ii) for u0 = 0, notice

that by Theorem 6.5.13 (ii), the above limit holds for δ = 0.
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Proof of Theorem 6.3.5. Recalling the equivalent formulation of a mild solution to

the regularized problem (Φε) in Definition 6.5.3, the claim follows from the decompo-

sition uε = vε + zε. Regarding the stochastic convolution zε we have by Proposition

6.5.6 that for all p, r ≥ 1 and s < 0,

‖zε‖C([0,T ],Bsp,r)
P−→ 0 as ε→ 0.

For the solution vε to (Φaux
ε ), we need to introduce the restriction (H) on the param-

eters. By Theorem 6.5.14 we have for all δ ∈ (0, T ) and K > 0

lim
ε→0

P
(
∃! solution vε ∈ ET and ‖vε‖C([δ,T ],Bsp,r)

≤ K
)

= 1,

which concludes the proof.

Remark 6.5.15. Note that the limit (6.83) is formulated in terms of the space

C
(
[δ, T ],Bsp,r

)
– and not C

(
[δ, T ],Bsp,r

)
∩Lp([0, T ];Bαp,r). This is due to the roughness

of the noise. In fact, by Fubini’s theorem and stationarity of zε,

E ‖zε‖pLp([0,T ],Bαp,r)
=

∫ T

0

E ‖zε(t)‖pBαp,r dt = T E ‖zε‖pBαp,r . (6.85)

It is easy to see that E ‖zε(t)‖L2 →∞ and hence E ‖zε(t)‖Lp →∞ for all p ≥ 2. It

follows then from Proposition 6.A.5 (ii) and (6.85) that

lim
ε→0

E ‖zε‖pLp([0,T ],Bαp,r)
=∞, ∀p ≥ 2, r ≥ 1, α > 0,

and thus the limit (6.83) cannot hold in C
(
[δ, T ],Bsp,r

)
∩ Lp([0, T ];Bαp,r).
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6.6 Epilogue

In Remark 6.3.7 we had questioned the necessity of working with Besov spaces.

In comparison to classical Sobolev spaces, the latter are rather sophisticated and

their analysis is based on heavy machinery involving the Paley-Littlewood theory

and Bony’s paradifferential calculus. Furthermore, Corollary 6.3.6 suggests that the

main result of this paper might also be achievable by working in the Sobolev spaces

Hs. In view of these considerations, the purpose of the current section is to revisit

the key steps of the proof and simultaneously justify the use of Besov spaces.

We start off by recalling the equation of interest,
duε = [∆uε + uε − u3

ε] dt+ dWε

uε(0) = u0.

(Φε)

Prior to any analysis, we had explained in Section 6.3 why the solution to (Φε) was

expected to be distribution-valued in the limit as ε → 0, provided that this limit

existed in the first place. But looking for solutions in a strictly negative space, such

as Hs for s < 0, is doomed to fail due to the impossibility of the multiplication of

distributions. More precisely, we expect that ‖u3
ε‖Hs → ∞, and hence the right-

hand side of (Φε) becomes ill-posed as ε→ 0. This issue is dealt with by adding and

subtracting Cε uε dt to the right-hand side of (Φε),
duε = [∆uε − (Cε − 1)− : u3

ε :] dt+ dWε

uε(0) = u0,

(Φε)
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where we introduced the notation : u3
ε := uε(u

2
ε−Cε). With the correct choice of Cε –

and unlike u3
ε – the limit of : u3

ε : can be made sense of in negative spaces. This limit,

we shall denote it by : u3 :, is referred to as the third Wick power, or renormalized

cube of u. Unfortunately though, we haven’t reached a happy end quite yet: in the

limit as ε→ 0, the resulting mapping u 7→: u3 : is no longer continuous with respect

to its argument – and this renders the proof of well-posedness problematic. So it is

time for a second trick: we split the solution into two parts as

uε = zε + vε,

where zε is the stationary stochastic convolution

zε(t) =

∫ t

−∞
e(t−s)AεdWε(s),

and vε is solution to the auxiliary problem (Φaux
ε ), a random PDE involving zε and

its renormalized powers,
dvε
dt

= ∆vε − (Cε − 1)vε + v3
ε + 3v2

εzε + 3vε : z2
ε : + : z3

ε :

vε(0) = u0 − zε(0).

(Φaux
ε )

The stochastic convolution zε does not require the use of Besov spaces: the main

convergence results in Lemma 6.5.4 and Proposition 6.5.6 hold equally well in the

Bessel spaces Hs
p , as can be seen from the embedding Bsp,1 ↪→ Hs

p (Prop. 6.A.5).

Note however that the proof techniques of Lemma 6.5.4 and Proposition 6.5.6 are

heavily based on the dyadic decomposition of the Fourier space; in consequence, it
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is unclear how the proof could be carried out directly in Hs
p , i.e. without using the

above embedding.

Next, we turn our attention now to the auxiliary problem (Φaux
ε ). First of all,

notice that the Wick product acts now on zε rather than the unknown field vε – and

indeed, we have transformed (Φε) into a more tractable problem. But despite the

improved regularity, we still have to ensure that the solution space for (Φaux
ε ) allows

for multiplications of the type vkε : z3−k
ε : as ε → 0. For this reason, we intersect

the negative space Bsp,r (s < 0) with a positive space Bαp,r (α > 0) and seek to solve

(Φaux
ε ) in the intersection

C([0, T ];Bsp,r) ∩ Lp([0, T ];Bαp,r).

This choice is primarily motivated by the multiplicative embedding

Bsp,r · Bαp,r ↪→ Bs+α−2/p
p,r , (6.86)

as well as its immediate consequences in Lemma 6.A.8 and Corollary 6.A.9. So, is

(6.86) the main reason for working with Bsp,r instead of a simpler space? Or in other

words, is there no Sobolev space where the same inequality holds? Note first that the

spaces Hs are of little use here as they are spaces with fixed p = 2: we need spaces

with p > 3 as is required by e.g. Theorem 6.3.5. But what about the extension of

Hs to the Bessel spaces Hs
p for general p? To explore this possibility, we first recall
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the definition of the periodic Triebel-Lizorkin spaces [147, p167]

F sp,r(T2) :=

u ∈ D′(G) : ‖u‖Fsp,r(T2) =

∥∥∥∥∥∥
(
∞∑
q=0

2qrs |∆qu|q
)1/q

∥∥∥∥∥∥
Lp(T2)

<∞

 .

It turns out that the periodic Bessel spaces Hs
p(T2) are norm-equivalent to F sp,2(T2),

for all s ∈ R and 1 < p < ∞ [147, pp166-169], and since the embedding (6.86) also

holds for the Triebel-Lizorkin spaces [141, pp190-191], we conclude that the Bessel

spaces are perfectly fit for our purposes:

Hs
p ·Hα

p ↪→ Hs+α−2/p
p (6.87)

holds for the same restrictions on s, p and α as in (6.86), see Proposition 6.A.7. Of

course, the proof of (6.87) via the Triebel-Lizorkin spaces does not come for free:

similarly to the proof of (6.86) [141, pp190-191], it involves the Paley-Littlewood

decomposition and results from paradifferential calculus [141, pp190-191].

To this point, neither zε nor the multiplicative embedding make the use of Besov

spaces mandatory: the corresponding results could equally well be stated in terms of

Bessel spaces. But what about the regularity estimate of the heat semigroup

(Proposition 6.A.12),

∥∥et∆f∥∥Bsp,r ≤ Ct(n−1)s ‖f‖B(2n−1)s
p,r

∀f ∈ B(2n−1)s
p,r . (6.88)

The key ingredient of this estimate’s proof is Lemma 6.A.11: if the Fourier transform

of a distribution f is compactly supported on an annulus of outer radius λ, then we
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can estimate the action of the heat semigroup in the Lp-norm as

∥∥et∆f∥∥
Lp
≤ C e−ctλ

2 ‖f‖Lp .

This inequality, together with the dyadic decomposition (which is intrinsic to the

Besov structure), allows us to establish (6.88) quite easily. But can we show (6.88)

in Hs
p? Let’s try first the indirect way: using Bsp,1 ↪→ Hs

p (Proposition 6.A.5), Lemma

6.A.11 and

F sp,q(T2) ↪→ Bsp,q(T2),

see [147, p164], we find the following sequence

∥∥et∆x∥∥
Hs
p
≤ C

∥∥et∆x∥∥Bsp,1 ≤ C t(n−1)s ‖x‖B(2n−1)s
p,1

≤ Ct(n−1)s ‖x‖F(2n−1)s
p,1

.

However, from here it is impossible to go back to H
(2n−1)s
p = F (2n−1)s

p,2 . In fact,

recall that the spaces F s0p0,r0
and F s1p1,r1

are different for different triplets (p0, r0, s0)

and (p1, r1, s1) [147, p164]; but F sp,1 ↪→ F sp,2 [147, p164], and hence an embedding

F sp,2 ↪→ F sp,1 is impossible. We suspect that (6.88) can be shown via results of the

theory of interpolation spaces, but we have to leave this open for now.

Summa summarum, even if (6.88) holds true in Hs
p , there is not much to be

gained. We could correctly state the main theorems in terms of Hs
p rather than

Bsp,r, but the corresponding proofs are – in particular for results on the stochastic

convolution – easier to carry out in Besov spaces.
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6.A Appendix: Periodic Sobolev and Besov spaces

In this section, we summarize basic definitions and results on periodic Sobolev

and Besov spaces. We shall only prove results which cannot be readily found in the

literature and refer to [141, 147, 170, 5] for more detailed expositions of the subject.

Let us start with the definition of the d-dimensional torus which is represented

in Rd by the cube

Td =
{
x = (x1, . . . , xd) ∈ Rd : |xj| ≤ π, ∀j = 1, . . . , d

}
,

where opposite points are identified: if x, y ∈ Td, then x = y if and only if x −

y = 2πk for some k ∈ Zd. Define D(Td) to be the space of all complex-valued,

infinitely differentiable functions on Td. The dual space D′(Td) is then the space

of all continuous linear functionals on D(Td), and we equip D′(Td) with the weak

topology, i.e.

g = lim
n→∞

gn ⇔ lim
n→∞

gn(f) = g(f), ∀f ∈ D(Td).

Note that the spaces D(Td) and D′(Td) can be viewed as the torus-analogues of

the Schwartz space of rapidly decaying functions S(Rd), and the space of tempered

distributions S ′(Rd), respectively. Most of the results in this paper are proved by

means of the Fourier representation of periodic distributions. Recall the following

fundamental result on Fourier series of distributions on Td, see e.g. [147, p143].

Theorem 6.A.1 (Fourier Series of Distributions). Let u ∈ D′(Td) and define

ek(x) := (2π)−d/2 eikx, x ∈ Td,
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uk := 〈u, ek〉 ,

where 〈·, ·〉 denotes the duality pairing between D′(Td) and D(T2). Then u can be

represented as

u =
∑
k∈Zd

ukek,

with convergence in the weak topology of D′(Td). This representation is called the

Fourier series of u.

Before we introduce the main function spaces, we define the circular convolution for

periodic functions as

g ∗ f(x) =

∫
Td
g(x− y)f(y)dy, f, g ∈ L1(Td),

and recall Young’s inequality for circular convolutions.

Proposition 6.A.2 (Young’s Inequality). [5, p5] Suppose 1 ≤ p ≤ q ≤ ∞ and

1

q
=

1

r
+

1

p
− 1.

Then, for any f ∈ Lp(Td) and g ∈ Lr(Td), f ∗ g belongs to Lq(Td) and

‖f ∗ q‖Lq(Td) ≤ ‖f‖Lp(Td) ‖g‖Lr(Td) .

Recall now the definition of the periodic Sobolev spaces of fractional order, also called

Bessel-potential spaces or Bessel spaces.
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Definition 6.A.3 (Bessel Spaces ). [147, p168] Let s ∈ R and 1 < p < ∞ . We

define the periodic Bessel-potential spaces Hs
p(Td) as

Hs
p(T2) =

u ∈ D′(Td) : ‖u‖Hs
p(T2) =

∥∥∥∥∥∑
k∈Zd

(
1 + k2

)s/2
ukek

∥∥∥∥∥
Lp(Td)

 .

In particular, we use the standard notation Hs := Hs
2 .

The most important function spaces in this paper are the periodic Besov spaces. We

recall their Lizorkin representation.

Definition 6.A.4 (Besov Spaces). [147, p167] Let s ∈ R, 1 ≤ r < ∞ and 1 ≤ p <

∞. We define the periodic Besov spaces Bsp,r(Td) as

Bsp,r(T2) =

u ∈ D′(G) : ‖u‖Bsp,r(T2) =

(
∞∑
q=0

2qrs ‖∆qu‖rLp(T2)

)1/r

<∞

 ,

where ∆q are the projection operators in Fourier space: ∆0u = û0 and

∆qu =
∑

2q−1≤|k|<2q

ûkek, q ≥ 1.

In the remainder of this section, we summarize some basic properties of these function

spaces. We use the standard notation “↪→” for a continuous embedding: if X, Y are

two normed spaces, then X ↪→ Y if and only if there exists a constant C > 0 such

that ‖x‖Y ≤ C ‖x‖X , for all x ∈ X.

Proposition 6.A.5. [147] Let p, r ≥ 1. Then

(i) If s > 0, then Bsp,r ↪→ Lp.

(ii) For all s ∈ R, we have Bsp,1 ↪→ Hs
p ↪→ Bsp,∞.
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Next, we need a result on the multiplication of distributions and functions. Let us

first define the notion of a multiplication in D′(T2).

Definition 6.A.6 (Multiplication in D′(T2)). Let φ, ψ ∈ D′(T2). If the limit

lim
n→∞

(
n∑
q=0

∆qφ

)(
n∑
q=0

∆qψ

)

exists and is an element of D′(T2), then we call it the product of φ and ψ and denote

it simply as φψ ∈ D′(T2). Furthermore, if Φ,Ψ,Ξ ⊂ D′(T2) are distribution spaces

such that

φ · ψ ∈ Ξ, ∀φ ∈ Φ, ∀ψ ∈ Ψ,

then we denote

Φ ·Ψ ↪→ Ξ.

We have the following crucial result.

Proposition 6.A.7. [38] Let p, r ≥ 1 and s1 ≤ s2 such that

s1 + s2 > 0

and

s2 <
d

p
.

Then

Bs1p,r · Bs2p,r ↪→ B
s1+s2− dp
p,r

Lemma 6.A.8. [38]. Let n, p, r ≥ 1, s < 0 and α = 2/p+ 2s such that |s| < 2
p(2n+1)

.

Assume that g ∈ Bαp,r and h ∈ Bsp,r. Then for l = 0, . . . , n− 1, there exists a constant
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C > 0 such that

∥∥h gl∥∥B(2l+1)s
p,r

≤ C ‖h‖Bsp,r ‖g‖
l
Bαp,r

.

Corollary 6.A.9. [38]. Let n, p, r ≥ 1, s < 0, α = 2/p+ 2s such that |s| < 2
p(2n+1)

.

Assume that g ∈ Lp([0, T ];Bαp,r) and h ∈ Lp([0, T ];Bsp,r). Then for all l = 0, . . . , n−1,

there exists a constant C > 0 such that

∥∥h gl∥∥
Lp/(l+1)([0,T ];B(2l+1)s

p,r )
≤ C ‖h‖Lp([0,T ];Bsp,r)

‖g‖lLp([0,T ];Bαp,r)
. (6.89)

Remark 6.A.10. Note that the results of Lemma 6.A.8 and Corollary 6.A.9 are

easily generalized to products of functions g1 · . . . · gn. For example, (6.89) becomes∥∥∥∥∥h
l∏

i=1

gi

∥∥∥∥∥
Lp/(l+1)([0,T ];B(2l+1)s

p,r )

≤ C ‖h‖Lp([0,T ];Bsp,r)

l∏
i=1

‖gi‖Lp([0,T ];Bαp,r)
.

To prove the crucial regularity estimate for the heat semigroup in Besov spaces in

Proposition 6.A.12, we need the following Lemma.

Lemma 6.A.11. [5, p55] Let C be an annulus. There exist two positive constants c

and C such that for all p ∈ [0,∞] and any couple (t, λ) of positive real numbers, we

have

Supp û ⊂ λC ⇒
∥∥et∆u∥∥

Lp
≤ C e−ctλ

2 ‖u‖Lp .

Proposition 6.A.12. Let p, r ≥ 1, s < 0 and α ∈ R. Then for all n ∈ {0}∪N there

exists a constant C > 0 such that

∥∥et∆x∥∥Bαp,r ≤ Ct((2n−1)s−α)/2 ‖x‖B(2n−1)s
p,r

∀x ∈ B(2n−1)s
p,r .
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In particular, for α = s we get

∥∥et∆x∥∥Bsp,r ≤ Ct(n−1)s ‖x‖B(2n−1)s
p,r

∀x ∈ B(2n−1)s
p,r .

Proof. By definition of the Besov norm and Lemma 6.A.11 we get for any w < 0

∥∥et∆x∥∥rBαp,r =
∞∑
q=0

2qrα
∥∥et∆∆qx

∥∥r
Lp

≤
∞∑
q=0

2qrαCr
(
e−ct2

2q
)r
‖∆qx‖rLp

≤ Crcwr
∞∑
q=0

2qr(α+2w)trw ‖∆qx‖rLp

We choose now w = ((2n− 1)s− α) /2 < 0 to get

∥∥et∆x∥∥Bαp,r ≤ C t((2n−1)s−α)/2

(
∞∑
q=0

2qr(2n−1)s ‖∆qx‖rLp

)1/r

= C t((2n−1)s−α)/2 ‖x‖B(2n−1)s
p,r

Corollary 6.A.13. Let s < 0, r, p ≥ 1, and α = 2s + 2
p
. Define the operator

Aεφ := [∆− (Cε − 1)]φ and recall the ET -norm as defined in (6.5). Then there

exists λ > 0 such that for all ε > 0

∥∥etAεx∥∥ET ≤ (1 + C(ε)T λ
)
‖x‖Bsp,r , ∀x ∈ Bsp,r,

where limε→0C(ε) = 0.
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Proof. Since

∥∥etAεx∥∥
C([0,T ];Bsp,r)

≤
∥∥et∆x∥∥

C([0,T ];Bsp,r)
≤ ‖x‖Bsp,r , x ∈ Bsp,r,

we are left with the Lp-part. Using Proposition 6.A.12 we find for arbitrary γ > 0

∥∥etAεx∥∥
Lp([0,T ];Bsp,r)

≤ K

(Cε − 1)γ/p

(∫ T

0

1

tγ
∥∥et∆x∥∥Bsp,r dt

)1/p

≤ K

(Cε − 1)γ/p
‖x‖Bsp,r

(∫ T

0

tp(s−α)/2−γdt

)1/p

≤ K

(Cε − 1)γ/p
‖x‖Bsp,r T

|s|/2−γ/p.

Choose now γ < p
2
|s| and the claim follows.

6.B Appendix: Reaction-diffusion equations with coloured noise

We provide a global uniqueness result for a class of reaction-diffusion equations

with additive noise on the torus Td, d ≥ 1. More precisely, consider the equation
du = ∆u dt+ f(u) dt+ dWQ

u(0) = u0,

(6.90)

where ∆ is the Laplacian on L2(Td), equipped with periodic boundary conditions.

WQ is a coloured Wiener process on L2(Td), with covariance operator Q (not neces-

sarily of trace-class). Furthermore, f : R → R, and if u is a function on Td, f(u) is

defined pointwise as the corresponding Nemitskij operator:

f(u)(ξ) := (f ◦ u(ξ)), ξ ∈ Td. (6.91)
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Recall that ∆ generates a strongly continuous semigroup, et∆, on C(Td) [64, p71].

Using the following notation for the stochastic convolution,

WQ
∆ (t) :=

∫ t

0

e(t−s)∆ dWQ(s),

we state the global existence result (recall the notion of a mild solution in Definition

6.5.2).

Theorem 6.B.1 (Global existence). Let u0 ∈ C(Td) and assume that WQ
∆ has con-

tinuous sample paths in C(Td). Assume furthermore that f : R → R is an odd

polynomial with negative leading coefficient. Then for every T > 0, (6.90) has a

unique mild solution u ∈ C([0, T ];Td).

Proof. The proof is essentially given in [64]. It is straightforward to verify that if

f : R → R is locally Lipschitz, then the corresponding Nemitskij operator (6.91) is

locally Lipschitz as a mapping from C(Td) into itself. We can then apply Theorem

6.4 in [64, p64] to ensure the existence of a local mild solution on [0, τ), where τ is

a stopping time such that P(τ > 0) = 1. In addition, the solution has continuous

sample paths in C(Td).

For this local solution, we still have the possibility of a finite time blow-up.

Therefore, we need to show that P(τ =∞) = 0. Define the function V : R→ R+ as

V (x) = x2. Since the leading coefficient of the odd polynomial f is negative, we see

that for all R > 0, there exists C > 0 such that

xf(x+ y) ≤ Cx2,
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for all x ∈ R and all |y| ≤ R. We can then apply Proposition 6.23 in [64, p72] to

obtain an a priori bound on the solution, i.e. P(τ =∞) = 0.
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CHAPTER 7
Conclusion

But man, proud man,

Drest in a little brief authority,

Most ignorant of what he’s most assured,

His glassy essence, like an angry ape,

Plays such fantastic tricks before high heaven

As make the angels weep.

William Shakespeare

7.1 Part I: Mathematics of Bone remodelling

Over the past decades, extensive in vitro experimentation on bone cells and their

communication pathways has drastically improved our general understanding of bone

remodelling. However, a good working knowledge of the constituent cell types can

only partly illuminate how they collaborate in the form of complex multicellular

units that BMUs are. There is a substantial body of in vivo experimentation on

BMU dynamics, too – but the in vivo approach is lengthy, expensive and generally

unable to capture the trajectory of a single unit over time. Motivated by these
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experimental limitations, we developed a novel spatio-temporal model with the

goal to capture the physiological remodelling process in silico, and to provide a tool

for the investigation of pathological remodelling scenarios. Let us briefly summarize

the main achievements of the work presented in Chapter 2 (published in the SIAM

Journal on Applied Mathematics [142]).

• We developed a nonlinear mixed PDE model capturing the spatio-temporal

dynamics of a single BMU in trabecular bone.

• We successfully combined internal BMU dynamics with the chemotactic osteo-

clast movement, as well as the RANKL/RANK/OPG pathway.

• We nondimensionalized the model equations and determined several dimen-

sionless parameter groups that characterize the different remodelling regimes

(physiological vs pathological).

• We showed that simulations of physiological micro-fracture remodelling are in

good agreement with in vivo observations. In particular, the cutting cone of

osteoclasts stays compactly supported and travels at constant speed.

In the biological literature, there is a strong consensus on the importance of the

overall RANKL/OPG ratio for the regulation of bone remodelling. We re-visited this

concept with emphasis on the spatial distributions rather than the overall ratios. Let

us summarize the main achievements of the work presented in Chapter 3 (published

in the Journal of Bone and Mineral Research [143]).

• Our model demonstrates that – in addition to the cytokine ratio – the spa-

tial distribution of the fields is likely to play an important role in the BMU

regulation.
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• Osteoblasts are believed to play an important role in the regulation of osteo-

clasts, but this seems to be inconsistent with the fact that the two cell pop-

ulations are spatially disjoint. Our model suggests the following explanation:

by altering the RANKL gradient, diffusing OPG expressed by osteoblasts can

alter the size, speed and direction of movement of the osteoclast population.

• We propose that the presence of OPG in the rear of the BMU is responsible

for the apparent dominance of acute angles (� 90◦) in branching BMUs.

We remark that the movement of osteoclasts is governed by chemotaxis, and conse-

quently our model can be be broadly classified as a chemotaxis model. There is a vast

body of mathematical literature on this class of models, see e.g. [68, 71, 166, 165]

for detailed reviews.

The apparent impact of osteoblast-derived OPG on osteoclast dynamics mo-

tivated a first application of the model to bone metastases. In fact, previous

experimental studies regarding the effect of OPG on osteolysis and tumour expan-

sion have lead to differential outcomes: while systemic application of OPG is known

to decrease the expansion of the tumour by intercepting the vicious cycle of osteol-

ysis and tumour growth (see Figure 1–5), the impact of local, tumour-derived OPG

is ambiguous and has lead to some controversy in the literature. Let us summarize

our contribution with respect to this issue as presented in Chapter 4 (submitted to

PLoS Computational Biology [145]).

• We expanded our BMU model to account for tumour and PTHrP dynamics.
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• The model predicts different tumour growth regimes depending on the intensity

of tumour-derived OPG expression.

– At low to intermediate expression rates, OPG enhances the chemotactic

RANKL gradient so that osteoclasts move faster, resorb more tissue, and

hence provide more space for the tumour to expand.

– At higher expression rates however, OPG starts to globally deplete the

concentration of RANKL, and hence has an overall negative impact on

osteolysis and tumour growth.

• In particular, our modelling results provide a plausible explanation for the

seemingly contradictory experimental findings in the literature: the local ex-

pression of OPG can indeed lead to differential tumour outcomes.

• We further substantiated our conjecture with a meta-analysis of gene expression

which shows that OPG expression in metastatic prostate tissue is increased.

• The proposed mechanism naturally generalizes to other chemotactic systems

that involve chemoattractants with decoy receptors.

To conclude this section, let us briefly outline two different branches of pro-

posed future work.

• Traveling waves. The evolution of the oteoclast and RANKL fronts, see e.g.

Figure 2–3, suggests the emergence of traveling wave solutions. We performed

a preliminary study by isolating the one-dimensional osteoclast-RANKL dy-

namics as found in (4.3). More precisely, we made the traveling wave Ansatz

ũ(x−Λt) := u(x, t) and φ̃R(x−Λt) := φ(x, t), where Λ is the wave speed, and

plugged it back into the equations to obtain the ODE system (omitting the
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Figure 7–1: Traveling waves: osteoclasts Left: Traveling wave system (7.1) is
solved with Λ estimated from corresponding numerical PDE solution. Only osteoclast
field u is shown. Right: Solution to corresponding PDE after 200 days, see osteoclast
and RANKL equations in (4.3).

tilde and setting γ := x− Λt)
−Λ ∂γu = αug − βu− ξ∂γ(y∂γφR) + k1

φR
φR+λ

y

−Λ ∂γφR = κ ∂γγφR − k2
φR

φR+λ
y.

(7.1)

We estimated Λ from the corresponding PDE dynamics, solved the above ODE

system numerically (using a Newton solver) for u(γ) and φR(γ), and compared

this to the steady-state solution of the PDE. As can be seen in Figure 7–1,

the ODE and steady-state PDE solutions are very similar in shape. For future

purposes, these preliminary results motivate a thorough traveling wave analysis.

A good starting point for such an analysis, albeit for a slightly different set of

equations, is found in [101, 102].
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• Mechanotransduction. In the current implementation of the model, BMU steer-

ing is modelled implicitly. The presence of micro-fractures or local strain fields

is modelled by means of initial conditions and/or source terms in the RANKL

field. The natural next step consists therefore in an expansion of the model to

account for the mechanical features of the surrounding tissue. Such a unifying

mechano-biological approach would be able to capture the feedback between

BMU and tissue. In fact, the remodelling activity changes the local geome-

try and hence the strain fields, and the change in strain fields in turn affects

the remodelling activity. Over the past decade, several groups have explored

the relationship between osteocytes, strain fields and BMU steering, see e.g.

[156, 175] and references therein. However, these studies focus primarily on

the mechanotransduction pathway; in particular, the constituent BMU cells

are modelled as cellular automata with no osteoclast-osteoblast coupling, and

the RANKL/RANK/OPG pathway is not incorporated. In consequence, an

improved unified model could be achieved by coupling our PDE model to an

existing finite element code that accounts for the mechanical features of the

tissue.

7.2 Part II: 2D Stochastic Allen-Cahn Equation

The main motivation for this project was the discrepancy between the following

two observations.

• Higher dimensional nonlinear parabolic SPDEs with additive noise are fre-

quently used by applied scientists to model physical systems. A literature
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survey (see Section 5.2) shows that the most prominent choice for the stochas-

tic forcing is space-time white noise. Indeed, the latter has certain advantages

over coloured noise: it is scale invariant, easy to implement in silico, and it

does not introduce additional parameters (length scale, covariance structure)

to the system.

• The same type of higher-dimensional, white noise-driven equations is gener-

ally assumed to be ill-posed in the mathematics community. The suspected

pathologies are consistently stated without proof, and analytic results are es-

tablished for a class of regularized noise forcings only (usually corresponding

to trace-class covariance operators).

We focused our attention on the specific case of the white noise-driven Allen-Cahn

equation in two space dimensions. We started off by introducing a high frequency

cut-off in the noise – a regularization which lends itself to numerical investigations in

a natural way. We then studied this family of regularizations in the limit as the full

noise spectrum was recovered, i.e. by letting the noise cut-off tend to infinity. Let

us summarize the main achievements of the work presented in Chapters 5 and 6.

• We developed a robust numerical solver for the regularized equations.

• We performed numerical experiments leading to the following conjecture: as

the noise cut-off tends to infinity, the limiting solution is distribution-valued;

more precisely, it is the zero-distribution.

• We proved the above conjecture in Theorem 6.3.2. The proof technique is

based on the theory of stochastic quantization and relies on the use of periodic

Besov spaces.
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Our work shows that various published numerical studies are indeed problematic: if

the mesh size in these simulations was shrunk, the numerical solutions would con-

verge to the trivial zero-distribution. In particular, there is no pattern formation

(see Figure 5–1), and the corresponding models are uninteresting from the modelling

perspective. The numerical experiments and the conjecture (Chapter 5) have been

submitted for publication to the Journal of Computational Physics [144], and the

proof (Chapter 6) is in preparation for publication [146].

For future purposes, we point out the following possible directions.

• Even though it is now established that the sequence of solutions to the regu-

larized equations converges to the trivial zero-distribution, the well-posedness

of the unregularised equation per se remains an open problem.

• The studied two-dimensional case is borderline in the sense that the limiting

solution is in any negative space Hs, s < 0, but not in L2. Since the irregularity

of white noise increases with the spatial dimension d, the divergent behaviour

is expected to be accentuated for d ≥ 3.

• Other nonlinear SPDE models driven by space-time white noise are likely to

suffer from similar pathologies.

Once upon a time, my brother Christoph ‘Pipo’ Ryser challenged me to write a

book entitled Die Frage des Warums, which translates into English as The Question

of the Why. I took on his challenge and finished the first chapter about five years

ago: Electromagnetic Fluctuations in Charged Fluids Coupled to the Radiation Field.
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Even though my dear brother has so far failed to read the first chapter, I am happy

to announce that the second chapter – in your hands it is – will soon go into print.

To be continued.
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