
IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010 3057

Multicore Acceleration of CG Algorithms Using
Blocked-Pipeline-Matching Techniques

David M. Fernández, Dennis Giannacopoulos, and Warren J. Gross

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada

To realize the acceleration potential of multicore computing environments computational electromagnetics researchers must address
parallel programming paradigms early in application development. We present a new blocked-pipeline-matched sparse representation
and show speedup results for the conjugate gradient method by parallelizing the sparse matrix-vector multiplication kernel on multicore
systems for a set of finite element matrices to demonstrate the potential of this approach. Performance of up to 8.2 GFLOPS was obtained
for the proposed vectorized format using four Intel-cores, 17 more than the nonvectorized version.

Index Terms—Acceleration, blocked formats, conjugate gradient, multicore, sparse matrices, vector processor.

I. INTRODUCTION

M ULTICORE processors represent one of the newest
mainstream computing trends for enhancing the perfor-

mance of scientific kernels, bringing about new opportunities
and challenges to electromagnetic (EM) practitioners. Parallel
programming challenges must now be confronted earlier in ap-
plication development in order to exploit this new trend. Some
EM computations are highly parallelizable, offering different
opportunities for multicore acceleration (e.g., parallel mesh
builders, parallel iterative solvers, etc.). Of particular interest to
this work is the solution of the large-sparse linear systems that
arise when solving EM problems.

This work focuses on accelerating the conjugate gradient
(CG) solver by parallelizing its dominant computing kernel, the
sparse matrix-vector multiplication (SMVM) where a sparse
matrix multiplies a dense vector . A new block-partitioned
sparse format is presented to accelerate the SMVM kernel
using both high-level parallelism, e.g., scheduling tasks across
cores in multicore or clustered processors, and low-level par-
allelism within processor cores, such as vectorization, loop
transformations, and time skewing. First, we identify the key
challenges confronted in parallelizing general sparse kernels
and then describe the new sparse format and the algorithmic
approach, showing performance results to validate it.

II. PREVIOUS WORK

Parallelizing and optimizing dense linear algebra kernels is
a well understood task that has given rise to a variety of Basic
Linear Algebra Subprograms (BLAS) libraries (e.g., LAPACK,
ScaLAPAC) [1], [2]. Sparse kernels, on the other hand, rep-
resent a greater challenge. They enable larger problems, using
less memory resources and computing on nonzero matrix entries
only; however, drawbacks such as increased instructions over-
head and irregular and indirect access to data significantly limit
the use of hardware optimization techniques and BLAS oper-

Manuscript received December 18, 2009; accepted February 13, 2010. Cur-
rent version published July 21, 2010. Corresponding author: D. M. Fernández
(e-mail: david.fernandezbecerra@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2010.2044023

ations. Support for parallel sparse kernels on clustered systems
is available in some newer packages (e.g., SPARSEKIT, NIST’s
Sparse BLAS, and PETSc) which operate on general sparse for-
mats (e.g., compressed sparse row-CSR [3]), but are generally
only optimized for dense kernels. Efficient multicore implemen-
tations and low-level parallelism on sparse kernels have yet to
be thoroughly addressed.

Specialized formats have been used as means to regularize
the computations and data layout of general sparse formats at
the expense of processing some extra zeros, unveiling better op-
portunities for high- and low-level parallelism. The Block-CSR
(BCSR), Ellpack-ITpack and Jagged-diagonals formats are the
three classic formats used for this purpose, however, they each
demand certain matrix properties to be efficient [3]. Recent
work on specialized sparse matrix formats [4]–[6] has shown
that further performance improvements are possible without
such restrictions. In [6], we report up to 14 times speedup
(SU) compared to a single core CSR SMVM implementation
obtained by designing a specialized sparse format (called
pipeline-matched sparse format-PMS).

III. NEW SPARSE FORMAT FOR PARALLEL PROCESSING

Based on the experience gained in [6], we introduce a blocked
adaptation of PMS, that exploits both locality and vector units
in modern processors, as opposed to other blocked formats that
only aim at exploiting locality. PMS offers a fast SMVM but it
requires to integrate the multiplying vector into the format in a
vector-spreading operation. Vector-spreading is embarrassingly
parallel and can be overlapped with other instructions in general.
However, in some iterative solvers (such as CG) this overlap
cannot be efficiently implemented.

A. Blocked Pipeline-Matched Sparse (BPMS) Representation

The new format called blocked pipeline-matched sparse
(BPMS) representation defines clear data boundaries for parti-
tions as PMS [6], nonetheless it also offers better opportunities
to exploit fine grained parallelism and it does not require the
vector-spreading operation. In BPMS, the matrix is stored in
small dense matrix-blocks, which are enforced to be a multiple
of the vector-registers size (128 bit register that can store four
single precision floating point values or two double precision
in modern Intel Core2 CPUs) on the target architecture as in
PMS; thus allowing to easily exploit vector or single-instruc-
tion multiple-data (SIMD) parallelism in multicore processors.

0018-9464/$26.00 © 2010 IEEE

3058 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010

Fig. 1. Sparse matrix represented in BPMS format using 2-by-2 blocks.

Furthermore, when the size is a multiple greater than one,
loop transformations can be implemented to enhance perfor-
mance (not possible on PMS). BPMS stores the matrix data
in four linear arrays, as shown in Fig. 1, in the following
way: (i) stores the nonzero elements of the matrix in
dense square/rectangular blocks by rows (elements in blocks
are stored row-wise), with zero padding to match the pipeline
width of the target processor (as in PMS); (ii) contains the
column indices of the first element in each block (as in BCSR);
(iii) has the index of the first matrix element that starts a
new row-block (as in BCSR); and (iv) BLOCKS per row-block
the number of dense blocks preceding the block pointed to
by each of the row indices. The row indices can be used to
determine high-level boundaries for data-partitions to spread
across processing cores. The newly introduced fourth vector
aids in load balancing by providing information on the amount
of data to compute on for each coarse data-partition defined.

The main advantage of BPMS over other blocked for-
mats such as BCSR, is that it exploits the vector units in
modern processors. The pipeline-matching in BPMS blocks
creates vector-data sets aligned to natural vector boundaries in
memory, which ease implementing vector operations. Tradi-
tional blocked formats only exploit data-locality by creating
small blocks that match the size of the register file or the
cache lines (also achieved by BPMS), but do not align data to
vector boundaries nor do they assure data sizes to fit within
vector-registers. In addition to this, BPMS includes a fourth
vector that provides important information to load balance the
matrix data when partitioning it across processors and provides
useful information for low level loop optimizations. To further
enhance locality and efficiently support building dense blocks
minimizing padded-zeros, we apply a reordering technique
(reverse Cuthill-McKee [7]-RCMK) that reduces the matrix
bandwidth before creating the BPMS representation. The
insight provided by the reordering process can also be used to
define coarse data-partition boundaries within the matrix (see
Section IV-C).

IV. CONJUGATE GRADIENT (CG) IMPLEMENTATION,
VECTORIZATION AND MATRIX PARTITIONING

This section explains the Conjugate Gradient (CG) alg orithm
implemented, the vectorization to accelerate the SMVM opera-
tions in CG and the matrix partitioning scheme used for parallel
processing.

A. CG Implementation

A parallel nonprecondition CG algorithm was implemented
adapted from the sequential version in [8], which is a well

known and efficient versions of CG. The algorithm in [8]
requires one matrix-vector multiplication per iteration since
it approximates the residual using the Krylov subspace, as
opposed to the traditional algorithm which requires a second
SMVM. Four different CG versions where implemented for the
Intel multicore processor, one for each sparse matrix format
used (CSR, PMS, BCSR and BPMS). In each case, the SMVM
operations were parallelized creating and synchronizing the
desired number of POSIX Threads; this allowed to compute
the SMVM operation on different number of CPU-cores, thus
exploiting high-level parallelism. In the PMS-CG implemen-
tation both the SMVM and the vector-spread operation were
parallelized.

B. SMVM Vectorization and Other Optimizations

Several low-level algorithmic optimizations were imple-
mented in the SMVM kernels for the PMS, BPMS, and BCSR
formats. The standard CSR format does not allow for any of
the proposed optimizations thus none were done. The data
structures for PMS, BCSR and BPMS were configured to gen-
erate similar zero padding for a fair comparison, and to reduce
their memory footprint. The PMS format was configured to
generate four-vectors of single precision floating point (SPFP)
elements while the blocks in the BPMS and BCSR formats
were configured to hold 2-by-2 SPFP to match the 4-SPFP
vector pipeline in the Intel CPU targeted. The RCMK algorithm
explained in Section III-A was used to further reduce the zero
padding. Since RCMK aims at reducing the matrix bandwidth,
it increases data locality, reducing cache misses and hiding
better memory latency for all sparse formats including the CSR
format which requires no zero padding.

In addition, the innermost for-loop in the SMVM kernel was
unrolled by four, which is the number of SPFP elements used to
configure the PMS, BPMS, and BCSR formats. This reduces the
number of iterations and enables vectorization. The BPMS and
PMS SMVM kernels were vectorized using SIMD intrinsics for
the Intel CPU. A thread pool was used to further enhance the
compute time for BPMS, the best performing format. In addi-
tion we implement a function to align matrix data within natural
vector boundaries in memory as they are created. This simple
memory layout reduces memory access time since it assures the
minimum number of memory reads when data is accessed in
vector-sets.

C. Matrix Partitioning and Load Balancing

Multicore (high-level) parallelism was implemented in this
work as described in this section. Matrix data is statically parti-
tioned assigning consecutive matrix rows or row-blocks to each
of the processing cores. Each core then computes the SMVM
kernel on their partition and results are synchronized/gathered.
The number of rows grouped into such row-block sets may vary
to statically balance the nonzeros assigned to each core. In par-
ticular, for BPMS the third vector (row-index vector) was used
to point to the first nonzero element of a row-block partition,
while the fourth vector (number of blocks per rows) was used to
balance the load. The fourth vector was also useful in the inner
loop of the SMVM unrolled kernel for BPMS, since it allowed
to efficiently know the number of blocks to process for each
row block in BPMS. Although partitioning and load balancing

FERNÁNDEZ et al.: MULTICORE ACCELERATION OF CG ALGORITHMS USING BLOCKED-PIPELINE-MATCHING TECHNIQUES 3059

TABLE I
VECTORIZED VERSUS NONVECTORIZED SMVM SPEEDUP

Note: 1C and 4C refers to the number of Intel-cores, and (M)illion.

BPMS matrix data is a fast operation of
complexity (where is the number of matrix rows and

is the number of rows in each small dense block defined
in the matrix), an even cheaper approach to obtain a similar
row-block partitioning is to use the set-vector generated during
the RCMK reordering. This vector contains row indices which
define bounds for the matrix data clustered along the main diag-
onal. Such bounds can be directly used as the partition indices.
Nonetheless, the success of such an approach depends on the
compression of the matrix bandwidth (BW). If the BW is not
evenly compressed, the load will be unbalanced and a more so-
phisticated load balancing approach must be used. In this work,
we only use the first approach explained.

V. RESULTS

This section describes the hardware used to test the algo-
rithms developed, the compiler-based optimizations and finally
the discussion of the results. Matrices (1) through (4) were taken
from a set of FEM matrices found in [10] and additional ma-
trices were generated to explore bigger problem sizes.

A. Testbed Description

The SMVM and CG kernels were implemented for all the
sparse matrix formats in an Intel Core2 Quad 2.40 GHz CPU,
with 4 CPU cores, 4 MB of L2 cache per core-pair, 4 GB of
global DDR2 DRAM, and running a 64-bit Fedora Core 7 Linux
operating system (OS). This Intel CPU contains a vector unit
capable of processing four-SPFP values or two double precision
values at the same time. For this work, the data structures where
configured to exploit the four-SPFP pipeline configuration.

B. Testbed Compilation

Compilation for the Intel processor was done using GCC
4.1.2 with different optimization flags (e.g., -O2, -O3) reporting
the best results only. Vectorization results were obtained for the
Intel processor using the Intel Compiler Collection (ICC) 11.0,
which gave us access to low level SIMD intrinsics also called
SSE instructions.

C. Results Discussion

SU results for the SMVM kernel using the PMS, BCSR, and
the new BPMS formats with respect to the CSR format are
shown in Fig. 2 for increasing matrix sizes on a single Intel
core. CSR provides the base computing time since it contains
no zero padding, whereas the other formats have extra com-
putational overhead. The SU curves increase as the matrices

Fig. 2. SMVM SU of PMS, BPMS, and BCSR versus CSR for one-Intel-core.

grow and stabilize around 2.5 for BCSR, 2.9 for PMS, and
4.4 for BPMS using the optimized kernels, as described in
Section IV-B. These SU results clearly show that BPMS outper-
forms the other formats, a trend that stabilizes for the bigger ma-
trices as the cache misses become regular. BPMS also demon-
strates good scaling for increasing matrix sizes, requiring less
padded-zeros (see Table I). This is true, in general, but zero
padding may slightly increase for very irregularly structured
matrices or regularly structured matrices with numerous cavi-
ties between its entries, e.g., the three matrices in the valley of
Fig. 2.

A high-level parallelized version of the SMVM kernel was
implemented across different numbers of cores using PThreads
for all matrix formats with and without optimizations. Table I
shows SU results obtained for the optimized/vectorized SMVM
kernels (BCSR, PMS, and BPMS) with respect to the nonopti-
mized versions for one and four cores. These results show that
the optimizations increase considerably the performance for all
specialized formats, in particular, the BPMS format with up to
17.14 performance for matrix # (1). The high SU obtained for
matrix # (1) is mainly due to the fact that it fits in the Intel-CPU
cache. On the other hand, for the larger matrices that do not fit in
the cache the performance increased with the optimizations and
the number of cores but was limited by the achievable memory
BW for each test matrix. This table also shows, that in general,
as the nonzero entries of the matrix grow the added zeros due
to padding drop, demonstrating the good scalability behavior
of the new format. Table II shows performance results for the
vectorized kernels in terms of GFLOPS for four Intel-cores.
Overall, a sustained performance of up to 8.24 GFLOPS was
observed for the Intel CPU with an average of 3.4 GFLOPS.

The nonvectorized parallel SMVM kernel was used in a par-
allel CG algorithm for the new BPMS format as proof-of-con-

3060 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010

TABLE II
VECTORIZED SMVM PERFORMANCE FOR FOUR-INTEL CORES

Fig. 3. SU scaling for CG-BPMS using one to four cores.

Fig. 4. CG performance results for four Intel-cores.

TABLE III
SPEEDUP OF THE BPMS-CG OVER THE PMS-CG AND BCSR-CG

cept. The scaling performance with respect to one-core
BPMS-CG is shown in Fig. 3 for four of the biggest test
matrices. Near three-times increase in performance (measured
in GFLOPS) was obtained when running the nonvectorized
BPMS-CG from one to four cores confirming good scaling
performance expected from the BPMS accelerated CG. We
then used the optimized parallel SMVM kernels to accelerate
the CG solver for the three optimized formats. Fig. 4 shows
performance results using four Intel-cores for the matrices
described in Table I. The average GFLOPS performances are
as follows: 2.4 for BCSR, 1.1 for PMS, and 3.7 for BPMS,
verifying that BPMS has the best performance. As mentioned
in Section I, PMS is not the best suited format for CG given that
there are insufficient instructions to hide the vector-spreading
computation time. The CG SU of the BPMS format versus the
BCSR and PMS kernels are presented in Table III for one and
four Intel-cores. BPMS achieves 2.1 and 4.2 average SU
over BCSR and PMS formats respectively using four cores, and

the vectorized kernels. Overall, the low-level optimizations for
the BPMS-CG kernel had an average performance SU of up to
4.3 .

VI. CONCLUSION

This work presents a new sparse matrix format called BPMS
and its performance advantages with respect to three special and
standard sparse formats in modern multicore computing plat-
forms. It demonstrates that by using special sparse formats one
can regularize these kernels and significantly increase their per-
formance even when considerable zeros are padded. In addi-
tion, we clearly define the key optimizations required to realize
the speedups presented and efficiently exploit high/low paral-
lelism in these new multicore systems. As an added benefit, the
regularization process provides insight into the coarse partition
boundaries that can be used for distributing data among pro-
cessing cores. The vector results show an important speedup
in performance of up to 4.3 over the non-vectorized BPMS
kernel which exhibited the best performance results for both the
SMVM and CG operations. Using BMPS the CG results show a
maximum SU of 12.5 over CSR, 8.1 over PMS and 2 over
BCSR, showing a clear advantage of the new BPMS over the
other formats. BPMS is better suited for use in iterative solvers
than our previous PMS format, since it does not require to copy
the vector elements within the format. Nevertheless, the PMS
format can be used in other applications where sufficient instruc-
tions exist to hide the cost of the vector-spreading operations.
This work represents an important step to exploit the new trend
in computer architecture represented by modern multicore pro-
cessors. We demonstrate how an important computing kernel
in electromagnetics computations (CG algorithm) can be ac-
celerated by exploiting both high-level parallelism (using many
cores) and low-level parallelism (using vectorization which of-
fered the best performance improvement), efficiently exploiting
the available computing resources.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] C. L. Lawson et al., “Basic linear algebra subprograms for fortran
usage,” ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308–323, 1979.

[2] J. J. Dongarra et al., “A set of level 3 basic linear algebra subprograms,”
ACM Trans. Math. Softw., vol. 16, no. 1, pp. 1–17, 1990.

[3] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994.

[4] Y. El-Kurdi et al., “Hardware acceleration for finite element electro-
magnetics: Efficient sparse matrix floating-point computations with
FPGAs,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1525–1528, Apr.
2007.

[5] P. T. Stathis, “Sparse matrix vector processing formats,” Ph.D. disser-
tation, Delft Univ. Technol., Delft, The Netherlands, Nov. 2004.

[6] D. M. Fernandez, D. Giannacopoulos, and W. J. Gross, “Efficient mul-
ticore sparse matrix-vector multiplication for FE electromagnetics,”
IEEE Trans. Magn., vol. 45, no. 3, pp. 1392–1395, Mar. 2009.

[7] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proc. 1969 24th Nat. Conf. ACM, 1969, pp. 157–172.

[8] S. J. Richard, “An introduction to the conjugate gradient method
without the agonizing pain,” School of Computer Science, Carnegie
Mellon Univ. Pittsburgh, PA, Aug. 1994, p. 58, Edition 1 1/4.

[9] “Cell Broadband Engine Programming Handbook,” ver. 1.1, IBM,
New York, Apr. 2007, p. 877.

[10] Matrix Market Nov. 2009. [Online]. Available: http://math.nist.gov/
MatrixMarket/

