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ABSTRACT 
Unmanned manufacturing systems have recently gained great interest due to the 

ever-increasing requirements of optimized machining for the realization of the fourth 

industrial revolution in manufacturing, ‘Industry 4.0’. A survey conducted by a major 

tool manufacturer has demonstrated that only 40% of tools are used to their full tool-

life in order to avoid late replacement of defective tools. Therefore, tool condition 

monitoring (TCM) systems are essential to achieve the desired competitive advantage 

in terms of reducing cost, increasing productivity, improving quality, and preventing 

damage to the machined part. Tool condition cannot be predicted analytically due to 

the high dynamics of the process in an industrial environment. Hence, research work 

has focused on indirect TCM systems, where feedback signals are analyzed to define the 

tool condition. Critical review of the literature has indicated the inability of available 

TCM systems: (a) to predict sudden tool failure, (b) to work in an adaptive control 

environment, where the cutting feed is changing continuously during the cutting 

process, and (c) to extract generalized key features of the tool condition. Additionally, 

these systems need high learning effort and long processing time to identify the tool 

condition in a highly dynamic process. Hence, it is essential to develop a generalized 

non-intrusive TCM system that can isolate the tool failure features in real-time and take 

corrective action with a high level of accuracy and decision certainty.  

To overcome the limitations of the existing TCM systems, experimental 

investigation has been carried out to characterize and discriminate tool prefailure, 

failure and post-failure phases, using various sensors and processing techniques. A new 

intelligent TCM system has been developed for accurate detection of tool wear failure 

as well as prediction of sudden tool chipping/breakage before damaging the machined 

part. The system analyzes process-born features gathered from multi-sensor feedback 

signals using advanced signal processing and machine learning methods to detect the 

tool condition during cutting processes.  

For tool wear detection, robust, real-time signal processing and decision-making 

algorithms were developed using feedback signals from the spindle drive motor. The 

system extracts descriptive generalized features in the time and frequency domains, 
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determines the tool condition, and then, communicates a decision to the machine 

controller in the adaptive control environment. The proposed approach accentuates the 

tool condition effect on the extracted features while masking the effects of the cutting 

parameters, namely, cutting speed, feed and depth of cut, tool path, and cutting tool 

geometry. Such capability has never been achieved before. Extracted features were 

filtered and ranked based on their sensitivity to the tool condition using analysis of 

variance (ANOVA) tests. Furthermore, top-ranked features were optimized using a 

Sequential Feature Selection method, and then, employed to enhance the tool condition 

detection approach using a Linear Discrimination Analysis (LDA) model. The selection 

of the LDA model was based on benchmarking of the pattern recognition methods to 

optimize the learning effort, classification accuracy and calculation time. The results 

indicated the capability of the processing technique to minimize system learning effort 

by at least 75% and to detect tool wear above the threshold level with an accuracy 

above 95% with a confidence level above 90%. 

For sudden failure prediction, a novel signal processing approach for online 

prediction and prevention of tool chipping/breakage during intermittent machining 

was developed. The approach analyzes the Acoustic Emission (AE) waves associated 

with the generation of new surfaces during unstable crack propagation, which precede 

tool fracture, in the time-frequency domain using the Hilbert-Huang transformation 

method. The features of the prefailure phase were identified using the Teager-Kaiser 

Energy Operator and the Bartlett window function, which can discriminate high energy 

events in the prefailure phase while depressing any other low energy signal variation. 

Extensive experimental results, supported by high-speed imaging of the cutting 

operation and tool failure, demonstrated the accuracy of the developed system to 

consistently predict tool failure by four to six tool/workpiece engagements before tool 

fracture. The system output has also been shown to be independent of the cutting 

parameters and workpiece material. A correlation between the chipping size and the 

prefailure features was developed for decision making. An ultra-high-speed processor 

was integrated into the TCM system for real-time decision making within a noticeably 

short time span (in the order of 10 ms) for high speed machining processes. 

Communication between the developed system and a CNC machine controller has been 
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implemented. The time required for signal processing, decision making and 

communication with the machine controller allows stopping the operation before part 

damage. Experimental results confirmed the accuracy and robustness of the proposed 

TCM system. No such system previously existed.
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RÉSUMÉ 
Les systèmes de fabrication sans pilote ont récemment gagné beaucoup d’intérêt en 

raison des exigences croissantes d’usinage optimisé pour la réalisation de la quatrième 

révolution industrielle dans la fabrication de « Industrie 4.0 ». Un sondage réalisé par 

un fabricant d’outil majeur a démontré que seulement 40 % des outils sont utilisés à 

leur capacité maximale de leur durée de vie, pour éviter le remplacement tardif d’outils 

défectueux. Par conséquent, les systèmes de surveillance de l’état d’outil (TCM) sont 

essentiels pour réaliser l’avantage concurrentiel industriel souhaité, en termes de 

réduction des coûts, augmentation de la productivité, amélioration de la qualité et 

éviter d’endommager la pièce usinée. La condition de l’outil ne peut être prédite 

analytiquement en raison de la nature dynamique du processus dans un 

environnement industriel. Par conséquent, cette recherche a mis l’accent sur les 

systèmes indirects de TCM, où les signaux du processus sont analysés pour définir l’état 

de l’outil. Un examen critique de la littérature a indiqué l’incapacité des systèmes TCM 

disponibles à : (a) prévoir la défaillance soudaine de l’outil, (b) travailler dans un 

environnement a contrôle adaptative AC, où la vitesse d’avance de coupe change 

continuellement pendant le processus, et (c) extraire les caractéristiques principales de 

l’état de l’outil. De plus, ces systèmes nécessitent un effort d'apprentissage important 

et un long temps de traitement pour identifier l'état de l'outil dans un processus 

hautement dynamique. Il est donc essentiel de développer un système TCM non intrusif 

généralisé capable d'isoler les caractéristiques de défaillance de l'outil en temps réel et 

de prendre des mesures correctives avec un niveau élevé de précision et de certitude 

de décision. 

Pour surmonter les limites des systèmes de TCM existants, des études 

expérimentales ont été menées pour caractériser et discriminer les phases de pré-

défaillance, défaillance et de post-défaillance des outils, en utilisant divers capteurs et 

techniques de traitement. Un nouveau système TCM intelligent a été mis au point pour 

détecter avec précision les défaillances d’usure des outils, ainsi que la prédiction de 

brisure d’outils soudains avant d’endommager la pièce usinée. Le système analyse les 

caractéristiques du processus recueillies à partir de signaux des multi-capteurs en 
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utilisant des méthodes avancées de traitement du signal et d'apprentissage 

automatique pour détecter l’état de l'outil dans les processus de coupe intermittents. 

Pour la détection de l'usure des outils, des algorithmes de traitement du signal et de 

prise de décision robustes et en temps réel ont été développés à l'aide de signaux de 

retour provenant du moteur d'entraînement de la broche. Le système extrait des 

caractéristiques générales descriptives, dans les domaines temporel et fréquentiel, 

détermine la condition de l'outil, puis communique une décision au contrôleur de la 

machine en présence de système de contrôle adaptif. L'approche proposée souligne 

l'effet de l'état de l'outil sur les caractéristiques extraites, tout en masquant les effets 

des paramètres de coupe tels que la vitesse de coupe, la vitesse d’avance, la profondeur 

de coupe, et la trajectoire et la géométrie de l'outil. Une telle capacité n'a jamais été 

atteinte auparavant. Les caractéristiques extraites ont été filtrées et classées en 

fonction de leur sensibilité à l’état de l'outil en utilisant l'analyse des tests de variance 

ANOVA. En outre, les caractéristiques du classement le plus élevé ont été optimisées à 

l'aide de la méthode de sélection des caractéristiques séquentielles, puis utilisées pour 

améliorer l'approche de détection des conditions des outils à l'aide du modèle d’Analyse 

de Discrimination Linéaire LDA. La sélection du modèle LDA était basée sur l'analyse 

comparative des méthodes de reconnaissance des formes afin d'optimiser l'effort 

d'apprentissage, la précision de la classification et le temps de calcul. Les résultats ont 

indiqué la capacité de la technique de traitement à minimiser l'effort d'apprentissage 

du système d'au moins 75% et à détecter l'usure des outils au-dessus du seuil avec une 

précision supérieure à 95% et un niveau de confiance supérieur à 90%. 

Pour la prévision de défaillance soudaine, une nouvelle approche de traitement du 

signal a été développée pour la prédiction en ligne et la prévention de la brisure des 

outils lors de l'usinage intermittent. L'approche analyse les ondes d'émission 

acoustique associées à la génération de nouvelles surfaces lors de la propagation 

instable des fissures, qui précèdent la fracture de l'outil, dans le domaine temps-

fréquence en utilisant la méthode de transformation de Hilbert-Huang. Les 

caractéristiques de la phase de pré-défaillance ont été identifiées à l'aide de la fonction 

de Teager-Kaiser Opérateur Énergétique et de la fonction de fenêtre Bartlett, qui 

distinguent les événements à haute énergie de la phase de pré-défaillance tout en 
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abaissant toute autre variation de signal à basse énergie. Des résultats expérimentaux 

étendus, appuyés par une imagerie à grande vitesse des opérations de coupe et des 

brisures d’outils, ont démontré la précision du système développé pour prédire de 

manière cohérente la défaillance de l’outil de quatre à six engagements d’outils / pièces 

avant la brisure de l’outil. La sortie du système s'est également avérée indépendante 

des paramètres de coupe et du matériau de la pièce. Une corrélation entre la grandeur 

de fissure et les caractéristiques de pré-défaillance a été développée pour la prise de 

décision. Un processeur ultrarapide a été intégré au système TCM pour une prise de 

décision en temps réel dans un laps de temps très court (de l'ordre de 10 ms) pour les 

processus d'usinage à grande vitesse. Une communication du système développé avec 

le contrôleur de machine CNC a été mise en place. Le temps nécessaire au traitement du 

signal, à la prise de décision et à la communication avec le contrôleur de la machine 

permet d'arrêter le processus avant d'endommager une partie. Les résultats 

expérimentaux de la validation ont confirmé l'exactitude et la robustesse du système 

de MTC proposé. Aucun système similaire n'existe. 
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CLAIMS OF ORIGINALITY 

1. A novel, generalized, real-time tool prefailure detection and sudden failure 

prevention system for intermittent cutting operations has been developed and 

optimized. The system predicts tool chipping and/or breakage in real-time and 

controls the machine tool with corrective actions to safeguard the machined part. 

The developed system is insensitive to the cutting conditions, workpiece material, 

tool diameter and tool path. The system can accurately capture small chipping sizes 

down to 0.25 mm2. Such a system did not previously exist. 

2. A new, real-time sensor-fusion tool wear detection system was developed for 

milling applications in adaptive control environment. The system is based on a 

linear discriminant analysis model that fused generalized features extracted from 

the spindle power, current and voltage. The system is insensitive to the cutting 

speed, feed rate, axial and radial depth of cut, as well as the tool diameter, number 

of flutes and corner radius. The system also accounts for the dynamic tool-

workpiece interaction during milling. The developed system reduced the learning 

effort by 75% compared to available systems and could capture a predefined tool 

wear level with an accuracy ranging from 91% to 100%. 

3. A unique method was devised to induce cracks on the tool cutting edge and monitor 

the cutting forces, vibrations, acoustic emission and power generated during the 

unstable crack propagation phase. This allowed performing an experimental 

characterization of the effect of the tool prefailure phase, the onset of fracture and 

the post-failure phase on the indirect means of sensing that was not investigated 

before. The features of each phase were identified. This study led to discover the 

capability of AE sensors to capture tool prefailure. 

4. A novel time-frequency signal processing approach has been developed to 

accentuate the features of the tool prefailure phase. The approach deals with the 

nonlinear and non-stationary nature of the acoustic emission signals, which are 

developed during unstable crack propagation that precedes sudden tool failure as 
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well as signal contamination due to the high dynamics of the intermittent cutting 

processes. 

5. A quantitative relationship has been generated for the first time between the 

processed AE signals and the chipped/broken area. Such a relationship provides a 

thresholding measure that defines acceptable chipping sizes, which is useful for 

industrial applications where chipping can be tolerated to a certain limit.  

6. A novel signal processing approach has been developed to mask the effect of cutting 

conditions on acquired spindle feedback signals for tool wear detection 

applications. The approach masks the effect of the cutting conditions on the 

acquired signals. Such an approach accentuates the sensitivity of the extracted 

features to the tool condition. 

7. A comparative study of widely-used pattern recognition methods was carried out 

based on a non-determined problem dataset. The study provided a clear benchmark 

of the feasibility of applying these methods in TCM systems with respect to their 

accuracy, conservation characteristics as well as calibration and computational 

effort. 
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CHAPTER 1 
RESEARCH MOTIVATION, OBJECTIVES AND OUTLINE  

1.  

1.1. Introduction 

Over recent decades, manufacturers have realized the benefits of advances in digital 

technologies along with the development of the Industrial Internet of Things (IIoT), 

where a multitude of devices connected by communication technologies monitors, 

analyzes, and delivers valuable new insights. The IIoT has expanded at a rapid rate due 

to the development of smart sensors and data storage capacities that has led to an 

‘Industry 4.0’ revolution where advanced manufacturing techniques are combined with 

IIoT systems to drive further intelligent action back in the physical world, motiving 

unmanned manufacturing. This drives industrial competitive advantage in terms of 

reducing cost, increasing productivity, improving quality, and preventing damage to 

machined parts during processing. Advanced investigations using Tool Condition 

Monitoring (TCM) systems and adaptive control systems are required to achieve such 

automated machining systems. Therefore, there are tremendous efforts exerted 

towards developing new methods and implementing innovative technologies to 

improve the performance of TCM systems and to introduce novel approaches that can 

provide solutions to the challenges facing manufacturers. 

1.2. Research Motivation 

With more than 700 companies in the aerospace industrial field, Canada has been 

ranked third globally in terms of global civil aircraft production, especially for 

aerostructures, providing more than $25 billion of direct revenue annually [1]. Hence, 

it is clear that improvement and optimization of metal cutting processes are essential 

for continuous improvement in this sector. In high speed cutting processes, late 

replacement of defective tools may lead to machine breakdowns as well as severely 

affect product quality, which subsequently leads to scrapped parts and high process 

costs. To avoid such losses, manufacturers tend to replace cutting tools before they are 
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fully utilized. A recent survey conducted by a major tool manufacturer has 

demonstrated that only 40% of tools are used to their full tool-life. Therefore, accurate 

tool condition detection is essential to achieve a high level of competitiveness via 

increasing process productivity and standardizing the quality of produced parts. 

Therefore, TCM systems have been widely emphasized as an important way to achieve 

these industrial demands.  

As shown later in the literature review in Chapter 2, several studies for tool 

condition monitoring systems have been carried out to capture tool failure using 

predictive and sensor-based models. However, these studies have failed to provide a 

generalized, robust and reliable TCM system, which can accurately detect the state of a 

tool under different cutting conditions and which can be easily integrated into 

adaptively controlled industrial processes. In addition, available TCM systems need 

high learning effort to be able to detect the state of a tool within a defined range of 

cutting conditions. Such a limitation would suppress the implementation of these 

systems in industrial facilities. Moreover, present systems do not have the ability to 

control a CNC machine and take corrective action to safeguard the machined part. An 

extensive investigation of the available literature shows that the extraction of key 

features that can describe the state of a tool under different cutting parameters in highly 

dynamic cutting processes is not available. Furthermore, a significant drawback with 

present TCM systems is that they focus on detecting the post-failure phase (i.e., after 

the onset of catastrophic failure). In addition, they suffer from a long processing time 

(up to 1 second), after which, in a high speed milling process, the workpiece surface 

integrity may be impaired. The fact that there is no available system that can predict 

sudden tool failure in real-time, regardless of the cutting conditions or the part material, 

represents a remarkable gap, which needs to be addressed. 

1.3. Research Objectives 

The terminal objective of this work is to develop a non-intrusive real-time sensor-

based TCM model that can detect and prevent sudden and progressive tool failure to 
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safeguard the surface integrity of the machined part. The proposed system must 

incorporate the following features: 

• Detects the prefailure phase of sudden tool failures, which is defined as the 

phase from damage evolution to failure occurrence, and accentuates tool failure 

features.  

• Isolates and takes into account the effects of the cutting parameters, the high 

dynamics of the intermittent cutting processes (e.g., milling and intermittent 

turning), and the effect of adaptive control systems. 

• Requires minimum effort in term of experimental calibration. 

• Takes corrective action based on the identified tool condition and controls 

the machine tool to safeguard the machined part. 

• Minimizes the detection and action time to be useful for high speed 

machining processes and real-time applications. 

• Uses non-intrusive hardware to be applicable for all industrial applications. 

Such aspects were not considered in the available literature. Hence, based on the 

aforementioned discussion as well as the review and gap analysis of the literature 

presented in Chapter 2, the specific objectives of this work to overcome the limitations 

of existing TCM systems are the following. 

First, characterize the tool prefailure, failure and post-failure phases due to 

catastrophic wear, brittle fracture and/or breakage during intermittent cutting 

processes. This objective aims at selecting the appropriate means for sensing, 

monitoring and defining tool conditions under the main, independent cutting 

parameters (speed, feed rate, axial and radial depth of cuts, tool geometries and path, 

and tool and workpiece material). A method is devised to induce separate tool failure 

phenomena to study their effect on acquired feedback signals. Experimental tests and 

statistical analyses are carried out to find the appropriate key features that can be 

extracted from the feedback of different sensors to describe the tool condition 

regardless of the dynamics of the cutting process. 

Second, develop a non-intrusive, sensor-based TCM system that can accurately 

detect tool wear failure as well as the prefailure phase of sudden tool 
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chipping/breakage in order to take corrective action before there is damage to the 

machined part. To achieve this objective, it is required to develop robust and real-time 

signal processing and decision-making approaches that can process the feedback 

signals from multiple sensors, accentuate and detect tool failure features as well as 

communicate a decision to the machine controller in an adaptive control environment 

with a high level of accuracy and decision certainty. Extracted features are generalized 

to be applicable for a wide range of cutting conditions requiring minimum learning 

effort. The outcome of these algorithms should be unaffected by the range of cutting 

parameters, namely, cutting speed, feed rate, radial and axial depth of cut, workpiece 

material and cutting tool diameter, corner radius and number of flutes. 

1.4. Research Scope 

In general, this work targets the development of a generalized TCM system for tool 

failure detection and prevention during intermittent cutting operations regardless of 

the cutting parameters or workpiece material. However, the main focus is the high 

speed milling process, which is categorized as one of the most complex processes 

among intermittent cutting operations for aerospace applications. This work 

concentrates on milling processes for large aerostructure parts (approx. 1 m3) made of 

high strength aluminum alloys. The work targets commonly used uncoated carbide end 

mill families with the same geometrical parameters, but different diameters, number of 

flutes and corner radii. It considers tool failure due to wear and prefailure due to 

unstable crack propagation leading to chipping and/or breakage. The capabilities to be 

developed in this research should be insensitive to cutting parameters and adaptive 

control working environments, which adjust the feed rate continuously to maintain a 

fixed power level. According to ISO standards [2], tool flank wear (VB) is the 

phenomenon of tool life deterioration. It has maximum acceptable uniform and 

localized values of 0.3 and 0.5 mm, respectively. In this work, uniform tool wear is 

divided into two ranges, namely, fresh (0 ≤ VB < 0.07) and worn tools (0.25≤ VB <0.3). 

Chipping is treated as localized VB wear with an acceptable range of up to 0.5 mm. Tool 

breakage is defined by the absence of a major tooth cutting edge such that there is no 
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tooth/workpiece engagement. Cutting conditions that induce chatter or a built-up edge 

are avoided.  

1.5. Thesis Outline 

The first three chapters are aimed at describing the research question and 

objectives, literature review and background as well as experimental setups. 

Afterwards, the thesis is divided into two equally important sections. The first section 

includes Chapters 4 and 5, which describes the TCM system generated for tool 

prefailure detection and prevention of sudden tool failure during intermittent cutting 

processes. The second section describes the developed tool wear detection system, 

represented in Chapters 6 and 7. Finally, Chapter 8 presents the research conclusion 

and future work. A detailed description of the contents of the thesis outline is as follows. 

1. Chapter 1 presented an orientation on the relevance of the research question 

and the motivation behind this work. In addition, it provides a brief introduction 

of the scope and the outline of the proposed approach for dealing with the 

research problem. 

2. Chapter 2 discusses the research work that has been reported in the available 

literature on real-time tool failure detection with a high focus on sensor-based 

TCM systems and their signal processing approaches. Furthermore, the chapter 

discusses the research work done in the literature on artificial intelligence based 

TCM systems and machine learning for sensor-fusing and TCM system accuracy. 

A background of the processing techniques is discussed as well. This discussion 

encompasses the full picture of the problem and leads to defining the missing 

links that need to be addressed in this research work.  

3. Chapter 3 provides a description of experimental setups in terms of the selected 

machine tools as well as sensor selection and usage. It also describes the cutting 

tools and the workpiece materials employed in this research as well as the 

hardware used for real-time implementation of the developed TCM system. 

4. Chapter 4 shows the potential of different sensors and the proposed signal 

processing approach to capture tool prefailure. This includes experimental 
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investigation and characterization of the tested sensors as well as testing the 

developed approach using artificial signals. 

5. Chapter 5 discusses the experimental results of the prefailure detection system 

in milling and intermittent turning applications. It also presents the online 

implementation of the system and the real-time control of the CNC machine to 

protect the machined part. 

6. Chapter 6 describes the development of a real-time tool wear detection system 

based on motor feedback signals. It presents the signal processing and decision-

making algorithm to provide a generalized TCM system. This includes feature 

extraction, generalization and selection. It also includes benchmarking of the 

commonly used machine learning algorithms that can identify the tool condition 

with high accuracy. 

7. Chapter 7 shows the experimental validation of the tool wear monitoring model 

in highly complex milling applications. It shows the system capability to capture 

the tool condition under different cutting parameters including the adaptive 

control environment. Then, the capability of the validated model being 

implemented in real-time applications is presented. 

8. In Chapter 8, the main conclusions of the entire research are presented as well 

as the recommendations for future research work. 
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CHAPTER 2 
BACKGROUND AND LITERATURE REVIEW  

2.  

2.1. Introduction 

Manufacturing of large aerostructures requires hours of complex metal removing 

processes. Evaluation of these processes through inspecting the resultant workpiece at 

the end of the manufacturing cycle is insufficient since any shortfall cannot be corrected 

and the product may be considered scrap. In addition, 7–20% of total tool machine 

downtime is caused by tool failure, and the cost of tools and tool changes accounts for 

3–12% of the total processing cost [3]. Therefore, proper and reliable manufacturing of 

aerostructures requires accurate prediction of the condition of the cutting tool and 

continuous control of the variations of the cutting process. Advanced investigation of 

tool condition monitoring and adaptive control systems is required to achieve the 

industrial demand for automated machining systems. These demands include 

increasing process productivity, standardizing the quality of produced parts, and 

reducing process cost. This is achieved through minimizing in-process human decisions 

and interventions, which do not follow a defined standard. Over recent decades, the 

broad range of manufacturing processes and the rich physical variability associated 

with them have continued to drive the evolution of technologies for TCM and process 

adaptive control. Tremendous effort has been exerted towards developing TCM 

systems for discrete manufacturing to achieve a high level of competitiveness via 

increasing process productivity and standardizing the quality of produced parts. In the 

following sections of this chapter, the contributions and findings of research effort that 

is reported in the open literature, with focus on applications for intermittent cutting 

processes (e.g., milling), are discussed. In addition, research gaps are highlighted as well 

as the background of different signal processing and decision-making algorithms, 

which were employed in TCM systems, are analyzed. 
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2.2. Tool Deterioration and Adaptive Control Environment 

Tool failure is a complex phenomenon that manifests itself in different and diverse 

ways. It is generally shaped by accumulation of tool damage over time and it is mainly 

caused by one or more of the following: 

1. Wear: change in the shape of the cutting edge resulting from progressive loss of tool 

material [2], 

2. Brittle fracture (chipping): crack occurrence in the cutting portion of a tool followed 

by the loss of small fragments of tool material [2], 

3. Breakage: loss of a major portion of the tool wedge, which terminates tool cutting 

ability [4]. 

Each of these tool failure causes has different mechanisms, types and consequences 

depending on the tool load and the process influence. For example, high mechanical or 

thermal tool loads can cause different mechanisms of tool wear such as adhesion, 

abrasion or plastic deformation. The development of these wear mechanisms is also 

affected by the cutting conditions and the tool and workpiece material. Sequentially, 

this leads to different tool wear profiles that can be quantified by geometry metrics, 

typically flank and crater wear. As a result, different consequences affect the process 

and machined part quality, such as high cutting forces and temperatures as well as 

deviation in the dimensional accuracy and surface roughness of the machined part. 

According to ISO standards [2], tool flank wear (VB) is the phenomenon of tool life 

deterioration. It has maximum acceptable uniform and localized values of 0.3 and 0.5 

mm, respectively. Tool chipping is usually treated as localized VB wear with an 

acceptable range of up to 0.5 mm.  

Tool wear is a progressive deterioration phenomenon. Depending on process 

influences, tool wear can take from seconds to hours to take place. On the other hand, 

tool chipping and breakage are defined as sudden tool failures because they are 

stochastic phenomena that occur in milliseconds. Tool prefailure can be defined as the 

phase from damage evolution to failure occurrence [5]. For tool wear, the prefailure 

phase can be established according to the application itself by defining the maximum 

allowable flank wear. Usually the manufacturer defines the acceptable tool wear level 
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and the prefailure threshold at which the tool should be changed. On the other hand, 

during the cutting process, sudden tool failures such as chipping are preceded by crack 

initiation and propagation. A process can continue with the existence of tool cracks 

without tool failure. However, at certain conditions (i.e., high cutting forces), these 

cracks start to propagate unstably causing tool failure. The unstable crack propagation 

stage is considered the prefailure phase for sudden tool failure. 

An adaptive control system is a digital controller that adapts itself to the time 

varying parameters of cutting process dynamics at each control interval [6]. Different 

approaches have been implemented in adaptive control systems, including model-

based, robust and AI approaches, to maintain a fixed cutting force at the tool edge. 

Available adaptive control systems can be categorized into three categories depending 

on the process control method: 

1. Adaptive control with constraints (ACC), which maintains a certain variable 

(i.e., forces or power) at a predefined value. In this method, no physical 

understanding of the process is required, and sensor feedback is employed, 

2. Adaptive control for optimization, which aims at minimizing or maximizing 

a performance index such as cutting time or effort,  

3. Geometrical adaptive control, which seeks to maintain specified part quality 

despite structural deflections and tool wear to maximize the quality of the 

finishing operations.  

Cutting forces can change significantly during the course of cutting operations. 

Consequently, the bulk of the available research work as well as commercial systems 

have concentrated on adaptive control with constraint type systems, which use real–

time feedback to maintain a fixed force/power level. The cutting feed is typically 

selected as a regulation parameter due to its influential effect on process forces, as 

shown in the following equation [7]. 

𝐹 = 𝐾𝑑𝛽𝑉𝛾𝑓𝛼  2.1 

where F is the cutting force, K is the specific cutting force coefficient, d is the depth of 

cut, V is the cutting speed, f is the feed, and β, γ and α are coefficients describing the 

nonlinear relationships between the force and the process variables. Usually, the depth-
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of-cut is constrained by the part geometry and material, and the force–speed 

relationship is weak (i.e., γ≈0); therefore, these variables are not actively adjusted for 

force control. However, changes in the feed rate vary the stress distributions at the tool 

cutting edge. In an adaptive control with constraints environment, if the feed rate is 

increased until the principal tensile stresses in the tool reach the fracture limit, cracks 

are initiated, leading to tool failure [4]. 

2.3. What is TCM? 

Currently, most manufacturers use uniform time periods as a conventional tool 

replacement strategy depending on operator experience. However, such strategies 

usually result in either early replacement of workable tools or late replacement of worn 

tools. This either increases tool cost and downtime or results in defective machined 

parts. Therefore, TCM systems are used to deal with the uncertainty of tool life 

prediction by estimating the tool condition based on analytical or sensor-based models. 

The evolution of tool failure and the associated alteration of tool geometry are affected 

by many parameters due to the complexity of the machining process. Therefore, 

empirical models such as Taylor’s tool life equation may not be accurate enough to 

predict tool life [8]. Further, due to the complexities involved and multiple 

microstructural wear mechanisms seen in machining, there is no unique solution for 

describing the complete milling process [9]. An effective real-time sensor-based TCM, 

therefore, can put a cutting tool under surveillance to safeguard the workpiece from 

damage by dealing with the uncertainty of analytical tool life prediction. 

Sensor-based TCM systems can be divided into direct and indirect methods. Direct 

TCM methods rely on direct measurements, such as machine vision, to capture actual 

geometric changes due to tool wear. During the cutting process, the interfacial region 

where tool failure takes place is not readily accessible either physically or from a 

process monitoring standpoint due to the interaction between the tool and workpiece. 

Also, the harsh environment of machining processes affects the accuracy of vision 

sensing methods. Hence, direct TCM methods are very difficult to implement online 

[10]. On the other hand, indirect methods, which use the existing relationships between 
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process parameters to monitor the tool condition using indirect signals such as forces, 

vibrations, acoustic emission (AE) or power, can be measured online. However, they 

are less accurate and are very much dependent on the type of machining process and 

its process parameters [11]. Additionally, there is a need to develop a reliable model to 

predict how the acquired signals are related to tool deterioration. Thus, advanced signal 

processing approaches are required to extract key features from acquired signals to 

accurately describe the tool condition. Due to the difficulty of implementing direct 

methods in online TCM, more interest has been given to indirect methods [10, 11]. 

Sensor selection, multi-sensor fusion, signal processing, feature extraction and 

selection, and prediction models are the major research topics in indirect TCM systems. 

Despite the tremendous effort exerted on these topics, there is still no clear 

methodology for developing TCM systems to accurately detect the tool condition in 

real-time. Moreover, the literature has witnessed numerous, contradictory research 

studies. For example, Bassiuny and Li [12] mentioned that in interrupted cutting 

operations, where shock pulse loading occurs during the entry and exit of each 

individual tooth to the workpiece, the magnitude of these shock pulses might equal 

those generated during tooth fractures. This prevents detecting tool failure events 

and/or increases false alarms [13]. In contrast, Vallejo et al. [14] concluded that an AE 

sensor had higher reliability to detect the tool condition when compared to an 

accelerometer or dynamometer. Furthermore, the contradiction was even extended to 

the sensor mounting position and orientation. Vallejo et al. [14] concluded that there 

was higher reliability of the AE sensor when mounted on the tool holder rather than on 

the workpiece. In contrast, Haber et al. [15] indicated the inability of AE sensors, either 

mounted on the work piece or tool holder, to distinguish between the new and worn 

phase of the tool condition compared to accelerometer and dynamometer signals. 

These contradictions can be related to the dependency of indirect TCM systems on the 

type of machining process and its process parameters. The research conclusions are 

also affected by the acquired and analyzed datasets, which are gathered from 

determined-problem experimental results. Therefore, the performance, accuracy and 

efficiency of these TCM systems cannot be generalized or standardized. 
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Table 2-1 Comparison of different research efforts in cutting tool condition 
monitoring 

Operation Monitoring 
states 

Ref. Signals Tool failure 

Forces AE Vibrations Spindle 
feedback 

others Predict Detect 

Turning Tool wear [16] 
    

✓ 
 

✓ 
[17] 

    
✓ ✓ 

 

[18] 
 

✓ 
    

✓ 
[19] ✓ 

     
✓ 

[20] 
 

✓ 
    

✓ 

Surface finish [21] 
 

✓ 
    

✓ 

Milling Tool wear [22] ✓ ✓ ✓ 
   

✓ 
[11] ✓ ✓ 

    
✓ 

[15] ✓ ✓ ✓ 
   

✓ 
[10] 

   
✓ 

 
✓ 

 

[23] ✓ 
     

✓ 
[24] 

 
✓ ✓ 

   
✓ 

[25] 
   

✓ 
 

✓ 
 

Tool chipping/ 
breakage 

[26] 
  

✓ 
   

✓ 
[27] 

   
✓ 

  
✓ 

[28] ✓ 
     

✓ 
[12] 

   
✓ 

  
✓ 

[29] 
 

✓ 
    

✓ 
[30] 

  
✓ 

   
✓ 

Surface finish [31] ✓ ✓ ✓ 
  

✓ 
 

[32]     ✓  ✓ 

Drilling Tool prefailure [33] ✓ ✓  ✓   ✓ 

2.4. Application of TCM Systems 

Several TCM models have been developed in the literature to detect and predict the 

tool condition as well as the machined part surface finish, using different indirect 

sensors in different machining processes such as turning and milling. In this section, the 

effort toward capturing the tool wear, fracture and prefailure is addressed and 

concluded. Table 2-1 summaries the main efforts done in recent literature in the TCM 

field, including the machining process, monitoring states and applied sensor signals. 

Table 2-1 also shows the capabilities of the developed TCM models to predict or detect 

the tool condition in real-time applications. As shown in this table, different means of 

sensing have been applied or fused to detect the tool condition and surface finish in the 

milling and turning processes. However, no work was able to predict the tool wear 

condition in real-time industrial applications, and tool breakage prediction was not 
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discussed. The significance of the measured signals to capture the tool condition and 

the efforts presented in this table are discussed in the following subsections. 

2.4.1. Tool Wear Monitoring 

The evolution of tool wear is affected by many parameters due to the complexity of 

the machining process [8]. Tool geometry changes as wear increases, represented by 

the flank wear level, and impacts the cutting forces. As a result, the spindle feedback 

signals (i.e., drive motor power, current and voltage) also increase by increasing the 

required cutting forces. Additionally, abrupt redistribution of internal stresses occurs 

and propagates stress waves through the tool/workpiece material [34]. These waves 

can be captured using AE sensors. Furthermore, tool wear can cause high vibrations 

which can be measured and calibrated to monitor the tool condition, especially for 

single point cutting processes. However, this approach is difficult to generalize towards 

milling processes due to the high dynamics of the process. All these indirect signals can 

be acquired in real-time and calibrated to the tool condition. 

Cutting forces are known to be the best indicator to describe the cutting process and 

the tool edge [35]. Nouri et al. [23] have used cutting forces to detect the tool wear 

condition. Their TCM method was based on tracking a new coefficient which depends 

on four cutting force model coefficients during the cutting process. The behavior of 

these coefficients has been shown to be nearly independent from the cutting condition 

and has a high correlatation with the condition of the cutting tool. However, such 

systems cannot be applied in industrial applictions due to their dependendcy on force 

signal measurements.  

Many attempts have been made to correlate the AE signals to tool wear. Chung and 

Geddam [11] studied the variation of the cutting forces, torque and the root mean 

square of the generated AE signals (AErms) during an endmilling operation. For the 

signal variation with cutting conditions, they showed that the AErms had increased when 

increasing speed while force and tourque decreased; whereas, the forces, torque and 

AErms increased by increasing the feed rate, radial and axial depth of cut as these 

parameters tend to increase the metal removal rate. They concluded that the frequency 
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peaks of the cutting torque and the AErms to flank wear were highly sensitive to predict 

tool wear. Haber et al. [15] investigated tool wear monitoring for milling in high speed 

machining (HSM) processes by assessing the deviation in representative variables in 

the time and frequency domains using force, vibration and AE signals. They concluded 

that the cutting forces and vibration signals were highly sensitive to indicate the tool 

wear condition in the time and frequency domain. They showed that the second 

harmonic of the tooth-path excitation frequency in the vibration signals is the best 

indicator for tool wear monitoring. On the other hand, they found that the AE signals 

did not indicate clearly the tool condition and that the AE effeciency depended on the 

transmission path. In contrast, Vallejo et al. [22] concluded that AE signals were 

sensitive to the tool condition during milling in HSM processes. They employed features 

that were extracted from the AE signals in different machine learning models and 

proved their high accuracy in detecting the tool wear condition. However, it was 

concluded that AE signals were not a suitable tool wear indicator [36]. 

Kalvoda and Hwang [26] studied the effect of tool wear on vibration signals in the 

frequency domain during end milling processes. They found that the indicator of cutter 

tool wear or tool fault was the increase in power together with a slight shift of the main 

peak to a lower frequency in the power density spectrum. The peak shift was more 

recognizable in a Hilbert Huang Tranform (HHT) than a Fast Fourier Transform (FFT). 

However, they concluded that an accelerometer was not a good indicator for high speed 

operations as the higher the speed, the lower the worn and fault peaks, and that peak 

shifting was lower. 

Shao  et al. [25] presented a mathmatical model relating the mean instantaneous 

cutting power to flank wear in face milling processes. The model first generated a 

simulated power depending on the measured one, and then, used it to define the tool 

condition. However, the model was not able to simulate the power in the transient 

stages (e.g., tool entrance and exit), which limited the developed system capability for 

application in complex machining processes. Additionally, high learning effort was 

needed to find the constants of the developed model for each tool and workpiece 

material combination. For tool life prediction due to tool wear, Zhang [10] provided a 

modified Taylor tool life prediction equation with time-variant parameters in which the 



15 
 

drive motor current was used to adaptively calculate these parameters. The model was 

based on the relevance vector machine technique, which is “a machine learning 

technique that uses Bayesian inference to obtain parsimonious solutions for regression 

and probabilistic classification” [37]. However, results depended on the accuracy of the 

relevance vector machine model, which could result in a local minimum during its 

optimization technique [38, 39]. Additionally, the difference between the predicted tool 

life with and without adaptation did not follow the actual tool life in the failure region.  

Despite the efforts exerted in developing tool wear monitoring systems, present 

systems suffer from the lack of generalization to be able to cover a wide range of cutting 

conditions, and regardless of the sensor or processing technique, they suffer from 

requiring high learning effort to calibrate their models.  

2.4.2. Tool Chipping/Breakage Monitoring 

To detect tool chipping/breakage in milling processes, the extracted features from 

sensor feedback signals need to fulfill the following requirements: (a) must reflect tool 

breakage under variable cutting conditions and different workpiece and tool materials, 

and (b) must be uniquely distinguishable to avoid interference with other process 

irregularities (e.g., tool/workpiece interactions, material inclusions or complex 

geometry machining). An abrupt tool geometry change due to brittle fracture or 

breakage can alter the characterization of the acquired signals. It can usually be 

detected by a high sudden burst in the acquired forces, power or vibrations due to a 

sudden change in the cutting edge, and subsequently, the interaction between the tool 

and the workpiece. In addition, the generation of new surfaces associated with the 

separation of major fragments of the tool material at fracture releases high elastic 

waves. These waves can be observed in the AE signals as a high abnormal burst.  

Liu et al. [35] studied the geometry features of the breakage section and the 

variation of cutting force for end mills after brittle breakage. They concluded that the 

forces were sensitive to tool chipping and/or breakage regardless of the chipping size. 

Hsueh and Yang [28] processed the cutting force signal and employed a pattern 

recognition technique named support vector machine (SVM) to diagnose tool breakage 
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during milling. In addition to using the force signals, the developed system needed to 

be calibrated by 70% of the collected data in order to be able to detect tool breakage 

under different cutting conditions. 

Acoustic emission (AE) has been reported as a good indicator for tool breakage [36]. 

Many attempts have been made to automate a TCM system based on AE signals. Cao et 

al. [29] proposed a method which relies on feature extraction by AE signals that was 

unique to healthy tools and broken tools using a lifting scheme and Hilbert transform. 

Subsequently, they used Mahalanobis distance, which is a measure of the distance 

between a point and a distribution, as a criterion to estimate tool state (threshold). The 

TCM system was then simplified as an operation just comparing the current 

Mahalanobis distance value with pre-learned thresholds. A main drawback of this 

system is that it needs to collect a segment of data during three rotating periods of the 

spindle to indicate the cutting edge fracture by which time the machined part surface 

integrity is already defective. Moreover, a model reference datum needs to be 

regenerated for each combination of cutting conditions. 

Wang et al. [30] have developed an on-line diagnosis method with the use of FFTs 

and an algorithm for short time signal variation analysis in order to analyze the 

vibration signals to detect tool breakage. A 2-way communication module was 

established between the CNC controller and the developed system to automatically 

extract the machining parameters and send control commands in real-time to stop the 

machine for cutter replacement. Although no complex computation was involved, the 

system was able to detect tool breakage after one second and stop the process within 

three seconds. However, such time spans are not acceptable in aerospace applications 

where HSM processes take place, and damage to machined parts can easily occur within 

such time spans. Additionally, as the developed system depends on accelerometers 

fixed on the machine vice, it would not be able to clearly detect the signals when 

processing large aerostructures. 

Prickett and Grosvenor [27] developed a hybrid approach for tool monitoring based 

on the spindle load and speed. To detect the onset of tool breakage, they employed a 

sweeping filters technique to determine the frequency components of the acquired 

signals as well as a tooth rotation energy estimation technique. Consequently, the 
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outputs of the techniques were used to verify each other’s results before making a final 

decision about the health of the tool. However, the developed system was only validated 

for low rotational speeds (i.e., 500 rpm) and a chipping of a minimum of 0.5 mm. Such 

chipping cannot be tolerated in aerospace machining applications. Bassiuny and Li [12] 

detected end mill flute breakage using the root mean square (rms) of feed-motor 

current signals based on the Hilbert-Huang Transformation (HHT). They extracted the 

critical characteristics from the measured signals, after removing the unnecessary 

signal components, and then, applied wavelet de-noising to the remaining signals. The 

developed algorithm was able to indicate successfully the variations of the current 

signal due to small edge fractures. However, the algorithm constants needed human 

inference and judgement to be calibrated using trial and error methods, depending on 

the cutting process parameters. Hence, they were not able to automate the detection 

algorithm for a real-time application. 

Within the large body of research done to develop and automate a tool chipping 

and/or breakage system, none of them were able to predict sudden tool failure before 

it happens. Additionally, the systems were not sensitive to small chipping sizes, which 

might not be tolerated in the finishing operations of aerospace machining applications. 

In addition, the bulk of the research work focused on detecting the changes in acquired 

signals after tool breakage. A significant drawback with these TCM systems is that they 

detect tool breakage within the order of one second [30] by which time, in high speed 

milling processes, the workpiece surface integrity may be impaired. Hence, developing 

a TCM system that can predict sudden tool failure by detecting the tool prefailure phase 

is crucial to protect the machined part, which has not been done up to now. 

2.4.3. Tool Prefailure Monitoring 

For tool prefailure detection, the research work conducted by Kondo and Shimana 

[33] discussed tool prefailure from the tool wear perspective only, and did not consider 

other causes of tool failure. It concluded that spindle current and cutting forces were 

effective to detect the prefailure phase and reported the lack of efficacy of AE sensors. 

No assessment of vibration signals was reported. Satpute et al. investigated cracked 
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rotating cylindrical tools which were fixed at one end to introduce local flexibility [40] 

and concluded that the non-continuous nature of the milling operation can greatly mask 

the effect of tool flexibility on vibration signals and cause misunderstanding of the 

outcome signal. In general, detection of the prefailure phase was discussed from the 

tool wear perspective only, as it is a lengthy and gradual mechanism.  

In contrast, prefailure due to abrupt causes, namely, chipping and breakage, has 

never been addressed during intermittent cutting. Hence, in-depth characterization of 

the capability of indirect signals to capture information during the prefailure phase is 

required. This is a building block in the development of a TCM system that can predict 

sudden tool failure, which has been done in this thesis. 

2.5. Sensor Selection for TCM Systems 

The cutting process can be characterized by a variety of physical quantities, which 

can be transformed into electrical signals using appropriate sensors. As mentioned 

earlier, the open literature for TCM systems has witnessed several contradictions in 

selecting the appropriate sensor to detect the tool condition. This section analyzes the 

usage of these sensors in TCM applications. 

2.5.1. Acoustic Emission (AE) Sensors 

Acoustic emissions derived from material deflection, chip breakdown and pulse 

shock loading are produced during milling operations. The cutting state can be reflected 

by both continuous and transient AE signals [29]. Continuous AE signals are made up 

of overlapping transient signals and are associated with shearing in the primary zone. 

Transient impacted AE signals are generated when a pulse shock loading occurs, such 

as chip breakage and entry/exit of each individual tooth to the workpiece. A transient 

AE wave is typically a nonlinear and non-stationary signal which exhibits a shape that 

reflects impacting and exponential decay properties.  

AE sensors can capture abnormalities during the milling process, and have the 

flexibility to be mounted on the tool/workpiece without major disturbances to various 

machining activities [41]. In addition, the frequency level of the AE signals produced 
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from cutting processes has been found to be separable from audible noise [42]. In 

general, for TCM, an AE sensor mounted on a spindle showed higher reliability than 

when mounted on the workpiece [14, 15, 31]. However, the physical meaning and 

interpretation of many of the AE signal features are not fully understood. Therefore, 

data and conclusions reported in the open literature on TCM using AE sensors are 

contradictory. Additionally, most of the efforts in modeling acoustic emission in 

manufacturing processes are built on the same model [43, 44]. This model is based on 

the dependency of AE energy on material properties, such as flow stress, volume of 

material undergoing deformation and the strain rate. However, the influence of feed 

and depth of cut variations are not accurately predicted. Additionally, AE signals are 

sensitive to the sensor location with respect to the signal source and the transmission 

path. Therefore, available TCM systems described in the open literature based on AE 

signals need to be calibrated for each set of cutting conditions. Moreover, it was found, 

in practice, that AE signals were corrupted with white noise generated from sources 

like electron movements during signal transmission [29]. Hence, more attention is 

required towards conditioning AE signals. 

2.5.2. Current and Power Sensors 

Current and power transducers have high potential to be used in industrial 

applications. This is because they can give a practical indication of the tool condition as 

they are causally related to the cutting forces. In addition, the non-intrusive nature, low 

cost and high flexibility of these sensors give them an advantage over other sensors.  

Early investigations of the performance of these sensors revealed their limited 

sensing bandwidth due to the inertia of the motor rotor, which acts as a low pass filter 

during TCM [45]. If the motor frequency is less than the passing frequency of the cutting 

tool, the acquired signal may lose some information. However, 400 Hz 2-pole induction 

motors are popular now in CNC machines, which extend the frequency limits up to 

24,000 rpm.  



20 
 

2.5.3. Dynamometers 

Cutting forces are considered to be the best variables to describe the cutting process 

due to the completeness of the cutting process information and the sensitivity of the 

cutting force to tool geometry changes [46]. The feed and radial forces were found to 

be more sensitive to tool wear than the cutting force [46]. According to reported 

findings in [11, 23, 28], piezoelectric dynamometers can provide accurate cutting force 

measurements that can be applied to detect tool wear and tool breakage. On the other 

hand, the limited workspace of multi-axis dynamometers in addition to their intrusive 

nature in production environments as well as their cost have limited their usage for 

TCM in industrial applications [15, 17, 27]. 

2.5.4. Accelerometers 

Worn and broken tools can cause high vibrations during milling operations; these 

vibrations can be detected using accelerometers. The rms of a vibration signal is 

proportional to its energy (or power). Therefore, an increase in the cutting energy 

generated due to flank wear should generate a proportional increase in vibration 

magnitude [47]. Moreover, monitoring systems based on accelerometers have the 

advantages of simplicity and low cost. Such systems have demonstrated the ability of 

detecting serious tool faults, e.g., breakage and built up edges [30]. On the other hand, 

the non-continuous cutting nature of some machining processes, as in milling, and the 

dependency of the sensor signals on the tool path represent the main challenges for 

using accelerometers for TCM applications. Moreover, accelerometers have been 

shown to be less sensitive to tool conditions in HSM operations [26]. Additionally, 

vibration signals are highly affected by surrounding noise in the cutting processes such 

as noise coming from the coolant system, chip collection and disposal system, or nearby 

machines. 

2.5.5. Other Sensors 

Other sensors have been used to detect the tool condition in machining processes. 

However, these sensors did not show the feasibility to be applied in industrial 
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applications. For example, temperature sensors have been used to monitor the cutting 

zone as the temperature can be a good indicator of the tool condition. This is because 

the temperature varies as the tool wears due to changes in the tool geometry [45]. 

Different temperature sensors such as thermocouples, thermal resistant elements, 

semiconductors elements, thermopiles and other types of thermal elements can be used 

to monitor the tool/workpiece engagement zone temperature [45]. However, the 

accurate monitoring of cutting temperature is complicated because temperature is 

usually monitored as an average of the temperatures in the vicinity of the cutting tool 

[7]. Moreover, cutting temperature measurements are rarely utilized in industrial 

applications. 

Ultrasonic sensors have been applied to provide a surface profile measurement 

which can be related to the tool condition [32, 48]. The calibrated surface roughness 

measured using an ultrasonic sensor showed a good agreement with stylus 

profilometer measurements in a narrow range (up to VB = 0.3) [32]. However, in 

addition to its sensitivity to a harsh machining environment, it has limitations when 

used for predicting tool wear in a wide range of tool wear situations.  

2.6. Signal Processing Techniques for TCM Systems 

The dynamic status of a system or a process can be monitored through analyzing its 

operation signals. Signals collected from operations can be divided into two categories: 

steady signals and transient, dynamic signals. Steady signals usually represent a stable 

operation, or an operation that has been running for an extended period. On the other 

hand, transient, dynamic signals reflect the variation of a system encountering changes 

in operating conditions, external impacts, or abnormalities. Since both types of signals 

display distinctive characteristics, they should be processed by using different, 

appropriate techniques. 

The signal processing methods used in TCM cover the majority of conventional 

processing techniques, including time domain analysis [25, 49, 50], frequency domain 

analysis [11, 26, 30, 41], time–frequency analysis techniques [15, 29, 32, 48] and 

artificial intelligence techniques [14, 22, 31, 51]. The techniques that are applicable to 
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TCM can be mainly divided into two main types, namely, trend analysis and pattern 

recognition.  

2.6.1. Trend Analysis Techniques 

In these techniques, the main goal is to detect the abnormal events in the signal 

trend compared to the signal history, e.g., analysis of sensor signal changes in the time 

or frequency domain. Trend analysis techniques have been applied in time, frequency 

and time-frequency domains in TCM applications. A time domain analysis may include 

feature extraction such as peak value, root mean square and mean value. A simple 

example of these techniques in the time domain is the detection of tool breakage in the 

force signals, where a high burst can be clearly distinguished at the onset of breakage 

compared to the normal cutting signals. These time-domain, trend analysis techniques 

have shown to be inadequate for complex process monitoring due to the high 

dependency of the acquired signals on cutting parameters. Hence, the implementation 

of these methods results in high learning effort. Typically, such techniques need to be 

trained for each tool, workpiece material and G-code combination. The change of any of 

these parameters affects the developed model and relearning is required.  

FFTs and wavelet analysis were widely used in order to represent cutter tool wear 

or tool fault in the frequency domain. FFTs have been used to detect tool faults in the 

frequency domain [26]. In addition, wavelet analysis has proven its efficiency to 

determine tool breakage during drilling [12]. However, these techniques have 

drawbacks [26].  The transient, dynamic stages during intermittent cutting processes 

generate nonlinear and non-stationary signals. The FFT is a powerful tool, but it cannot 

process signals with a nonlinear or a non-stationary nature. Although wavelet analysis 

can deal with signal nonlinearity, it cannot accurately process non-stationary signals. 

In contrast, the Hilbert–Huang transform (HHT) is a new empirical method for 

analyzing nonlinear and non-stationary signals in the time–frequency space [12]. The 

HHT method has many advantages over other methods, including wavelets and other 

extensions of Fourier analysis [12]. It provides a more precise definition of particular 

events in time–frequency space than wavelet analysis and offers a more physically 
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meaningful interpretation of the underlying dynamic processes. Hence, such a 

technique can provide explanations of the transient signals during the prefailure phase 

of machining. 

2.6.2. Pattern Recognition Techniques 

Pattern recognition (PR) can be defined as a branch of machine learning that 

employs a variety of statistical, probabilistic and optimization tools to learn from past 

examples, and then, to use that prior training to classify new data and identify new 

patterns [52]. Currently, PR methodologies have surpassed human ability to learn from 

data at an efficient speed [53]. Typically, to apply PR methodologies on industrial data, 

the acquired signal is divided into small segments to extract repetitive patterns. 

Features extracted from these segment patterns are compared to preprocessed ones 

extracted from a healthy tool through a supervised pattern recognition technique to 

define the tool condition. However, when machine data is targeted, selecting the 

appropriate PR methodology for industrial applications is crucial. For example, most of 

the modern applications of aerospace machining are dependent on high-speed 

machining technologies, and hence, they are time sensitive. Therefore, time sensitivity 

must be considered in the development of PR classifiers. 

The general scheme for applying a pattern recognition technique consists of five 

steps, namely, signal conditioning, segmentation, features extraction, features selection 

and supervised classification training. In the first step, signals are treated for any 

continuous bias and then filtered. This is to reduce the noise in the acquired signals and 

to keep only the signal frequencies that best describe the cutting process and the 

monitored states. The conditioned signals are then segmented in the second step to 

provide a signal that represents the actual tool/work piece engagement. The segments 

should be for a repetitive pattern of the actual cutting process such as full tool rotation 

during milling applications. However, for continuous turning processes, fixed-time-

based segments can also be applied. Moreover, it should be noted that the selection of 

the segment size and the relative time sampling used for collecting these segments 

affects the ability to process the resulting signals for feature extraction in the third step 
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[45]. For example, small segments with a limited number of sampling points cannot be 

analyzed in the frequency and/or time-frequency domains. This is because the available 

techniques cannot accurately represent frequency content composed of such small 

segments. Hence, features to be extracted from these small segments are limited to time 

domain analysis only, such as segment peak value, mean, variance or root mean square.  

The output of step three is a considerable number of potential features that can be 

used to describe tool status. However, which subset of features should be used for the 

accurate detection of the tool condition is the main focus of step four. The usage of 

numerous features that can be extracted in the time and frequency domain to develop 

a PR classifier does not always assure success. The use of too many features, which is 

usually referred to as the ‘curse of dimensionality’, generates an overfitted PR classifier 

which delivers low prediction accuracy. Additionally, optimizing the number of features 

reduces the measurement and computational cost. Hence, in step four, only features 

with high sensitivity to the tool condition must be selected. This simplifies the classifier 

complexity and improves the classification accuracy. In TCM applications, numerous 

time and frequency domain features have been integrated into PR methods to detect 

the tool condition [18, 31, 45, 54]. However, the literature does not provide key features 

that can describe the tool condition under different cutting parameters, and selection 

of the best subset of features is not fully addressed.  

There are several methods and criteria to select the optimum feature subset 

including exhaustive, heuristics and sequential feature selection methods. Sequential 

search-based approximation schemes have been widely proposed for supervised 

pattern recognition methods [55]. In particular, sequential feature selection (SFS) is 

one of the most widely used methods to optimize the feature selection process [56]. It 

selects a subset of features by sequentially adding (forward search) or removing 

(backward search) features until a termination criterion is met [57]. This criterion is 

usually the classification error rate within the training data, which makes the feature 

selection process not only dependent on the TCM application, but also on the selected 

PR method. 

In this last step, supervised PR methods are trained using ‘labeled’ training data. 

Features extracted from each segment are assigned to one of the classes (e.g., healthy 



25 
 

or worn tool). Labeled data are generated from the extracted features, and then, fed to 

the PR classifier as training data. Several PR methods have been integrated in TCM 

applications to monitor the tool condition and to allow automated decision making. The 

main PR methods applied for TCM applications are Support Vector Machine (SVM) [58-

61], Linear Discriminant Analysis (LDA) [62-65], k-Nearest Neighbor (kNN) [66 , 67, 

68], Artificial Neural Network (ANN) [23, 69-71], Naïve Bayes (NB) [72-74] and 

Decision Trees (DT) [75-77]. Although these techniques have been shown to be 

effective approaches for TCM, their main drawback is due to their dependence on 

probabilistic and optimization techniques and not physically meaningful models. This 

may not guarantee their resulting performance [78]; however, high accuracy can be 

achieved if the PR method is built using a learning experiment that is properly designed 

and has high sensitive features for the tool condition, and if the results are robustly 

validated. Hence, it is essential to carry out a systematic study of the feasibility of the 

PR methods for industrial TCM applications based on a set of generalized features. 

2.6.3. Multi-Signal Processing TCM Systems 

Pattern recognition techniques have been combined with trend analysis routines to 

gather more information from collected signals [27, 41, 50] to increase the level of 

certainty and information. Such an action can increase the level of certainty and signal 

information, but it also increases the processing time. However, none of the available 

TCM systems in the literature, which use trend analysis, PR or a combination of both, 

were successful to mask the effect of cutting parameters on the acquired signals and 

accentuate the tool condition effect only. Hence, a novel signal processing approach is 

required to identify the tool condition (i.e., tool prefailure, wear, chipping and 

breakage) under different cutting parameters in highly dynamic cutting processes. 

2.6.4. Descriptive Features 

In general, this section discusses the features reported in the literature of TCM as 

well as condition monitoring and diagnosis of rotary machineries. In the time domain, 

the most indicative features are the root mean square, maximum peak value, standard 
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deviation, variance, average, harmonic and trimmed mean value, mean absolute 

deviation, skewness and kurtosis, and the ratios between these features. The mean and 

median frequency, band power and the statistical features of the wavelet, empirical 

mode decommission as well as Welch and Periodogram power spectra have also been 

reported as sensitive features to the tool condition in the frequency domain. These 

time-and-frequency-domain features were reported for the forces [15, 79-83], motor 

feedback signals [84-86], vibrations [30, 87-90] and AE signals [20, 24, 29, 60]. 

Additionally, these features showed sensitivity when extracted from each signal 

component (e.g., forces in x, y and z directions) or from the resultant signals. 

Several physical and statistical features have been reported as sensitive features to 

the tool condition. However, the reported sensitivity of these features cannot be 

generalized as they were extracted from problem-dependent data. The level of 

sensitivity was much dependent on the machining process, cutting parameters, 

acquired signal, and signal conditioning and processing. Hence, it is crucial to carry out 

a systematic study to test and rank the sensitivity of these features after masking the 

effect of the cutting parameters on the acquired signals, which is done in this work. 

2.7. Multi-Sensor TCM Systems 

From the literature, it can be concluded that a reliable online TCM system must have 

the following features: 

• Be sensitive to changes in tool conditions [7], 

• Be insensitive to other process variations and dynamics [7], 

• Provide signal information reflecting the tool condition type [30], 

• Provide a high level of decision certainty, i.e., minimum error percentage [14], 

• Perform signal processing and decision making in an adequate time span [30]. 

Many TCM systems for milling applications suffer from a lack of certainty, key 

feature extraction, standardization and generalization [14, 46]. This is mainly due to 

the absence of a stand-alone sensor capable of reflecting tool conditions under diverse 

cutting conditions, due to the high dynamics of the milling process, which limits 

extracting and generalizing a descriptive feature of the tool condition, and due to the 
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lack of a highly informative signal processing technique. In order to overcome these 

problems, recent systems have enhanced their performance by using multi-sensor 

fusion techniques to enrich system certainty and information. These systems depend 

on more than one sensor to achieve multiple tool condition detection capability. Many 

systems [14, 22, 31, 47, 49] employ artificial intelligence techniques to integrate 

information, extract features and make more reliable decisions. This can increase the 

system sensitivity and level of certainty. However, there is a need for more hardware 

(i.e., sensors, cables and separate signal conditioner/amplifiers) which can interfere 

with the available working space for machining. In addition, if AI processing is not 

correctly fused, it may increase the response time and may lead to unnecessary alarms. 

2.8. Summary 

From the above-mentioned literature review, the following conclusions can be 

drawn. 

• Tool prefailure detection of chipping and breakage in milling operations has 

never been discussed before.  

• Available real-time post-failure detection systems have a high response time.  

• None of the available TCM systems have considered working in an adaptive 

control with constraints environment. 

• Available TCM systems are not effective due to the lack of robust standalone 

sensors and processing techniques that meet the requirements of real-life 

applications. 

• Vibrations are less correlated with tool monitoring in milling operations due to 

the non-continuous cutting nature of the process and low sensitivity to tool 

conditions in HSM processes 

• The excessive cost of multi-axis dynamometers, their intrusive nature in 

production environments, their lack of overload protection in case of collision, 

and their limited frequency response make it exceedingly difficult to apply them 

in industry. 
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• Despite their challenges to be implemented for TCM, spindle feedback sensors 

associated with AE sensors are the best sensors to be applied in industrial 

applications.  

• Spindle feedback sensors have a non-intrusive nature and are independent of 

sensor position, orientation or signal path. 

• AE signals are sensitive to the generation of new surfaces during tool chipping 

and/or breakage. Additionally, the AE signals generated by the machining 

process are not contaminated by process noise. However, they are not fully 

understood. 

• Acoustic emission sensors mounted on the spindle show higher reliability than 

when mounted on the workpiece. 

• Time domain trend analysis techniques are not applicable for reliable TCM 

systems and need enormous learning effort. 

• The HHT method has many advantages over other frequency or time-frequency 

domain methods. 

• There are no key features available that can describe the tool condition under 

different cutting conditions in highly dynamic processes.  

• No systematic study is available to benchmark the available pattern recognition 

techniques according to their accuracy and applicability in TCM applications. 

• Developing a reliable TCM system requires combining multi-sensor fusion with 

multiple signal processing types, namely, trend analysis and pattern recognition. 

Multi-sensor fusion guarantees a high level of decision certainty, whereas using 

two signal-processing types for each signal helps gather an adequate amount of 

signal information. None of the available TCM systems combines both 

components to achieve a desirable performance. 
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CHAPTER 3 
EXPERIMENTAL SETUP AND DESIGN OF EXPERIMENTS  

3.  

3.1. Introduction 

This chapter provides a description of the machine tool, cutters, workpiece 

materials and experimental setups used for all the tests conducted in this research 

work. In addition, selection of sensors and the position and orientation of each sensor 

are discussed in this chapter. In this research work, milling and intermittent turning 

experiments were conducted to develop and validate tool wear and tool prefailure 

detection systems. Different setups were prepared for each cutting process to agree 

with the system needs. For the tool prefailure detection system, intermittent turning 

operations were conducted to investigate the capabilities of different sensors to 

capture tool prefailure and to validate the proposed signal processing technique in 

order to capture tool prefailure and the onset of tool failure due to chipping. Afterwards, 

two setups were prepared for milling and intermittent cutting operations to test and 

validate the results. For the tool wear detection system, milling operations were 

conducted for developing and validating sensor-based models to detect tool conditions 

due to progressive failure. They were also employed to provide reference data for the 

sake of feature analysis and classification method comparison, as is shown later in 

Chapters 5 and 6. The following subsections illustrate the machine tools, cutters, tools, 

workpiece materials, sensor selection, experimental setups and cutting conditions with 

which all the research tests were performed. It also describes the hardware used for 

implementing the TCM systems in real-time. 

3.2. Machine Tool   

All the milling tests were performed on a 5-axis DMU-100P duoBlock machining 

center, shown in Figure 3-1 (a). This machining center is featured with 28 kW spindle 

power, three linear and two rotary axes, a maximum spindle speed of 18,000 rpm and 

a maximum feed rate of 60 m/min. The working envelope of this machining center is 
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1000 mm x 1000 mm x 1000 mm which can accommodate large workpieces for 

aerospace applications. Turning operations were carried out on a 6-axis Boehringer-

NG200 CNC turning center, shown in Figure 3-1 (b). This machine tool has a maximum 

spindle power and rotational speed of 36 kW and 4,000 rpm, respectively. It has a 

maximum turning length, swing diameter over bed and turning diameter with external 

tools of 850 mm, 600 mm and 300 mm, respectively. Both CNC centers have a Siemens  

 

 

Figure 3-1 (a) DMU-100P duoBlock CNC machining center used for milling tests 

 

 

Figure 3-1 (b) Boehringer-NG200 CNC turning center used for turning tests 
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SINUMERIK 840D controller which accepts limited third-party communication and 

overwriting. This capability is utilized for process control to avoid tool fracture and 

safeguard the machined part as is shown later. 

3.3. Cutting Tool   

A wide range of tungsten carbide (WC) turning and endmill cutters with different 

geometries were used during the development and validation of this research work. 

The tool geometrical parameters are shown in the schematic drawing in Figure 3-2. 

Table 3-1 shows the geometrical and structural data of the used tools. Collet and shrink-

fit tool holders were used interchangeably between endmills. These tool holders 

provided different configurations to provide a variety of cutting tool geometries using 

similar cutting inserts. On the other hand, for turning applications, a Sandvik PD JNL 

2020K 11 tool holder was used with the different turning inserts as reported in Table 

3-1. In total, 14 milling tools were used during the course of this work to develop and 

validate the TCM systems. Selected endmills consisted of 2, 3 and 4 flutes and diameters 

varying from 10 to 50 mm. They had flat and rounded cutting edges with corner radii 

varying from 0 to 4 mm. The turning inserts were diamond shaped with an angle of 55° 

and a cutting-edge length of 9.56 mm. However, they had different coatings and nose 

radii. 

 

  

Figure 3-2 Schematic drawing of (a) an endmill (b) a turning insert 
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Table 3-1 Geometrical and structural data of the used tools 

Tool Application 
Structural 

Type 

Diameter 

(mm) 

Number 

of flutes 

Corner 

radius 

(mm) 

Coating 

T10F2R00 Milling Solid 10 2 Flat - 

T12F2R00 Milling Solid 12 2 Flat - 

T16F2R00 Milling Solid 16 2 Flat - 

T16F2R04 Milling Insert 16 2 04 - 

T16F2R33 Milling Insert 16 2 33  

T20F2R04 Milling Insert 20 2 04 - 

T20F2R33 Milling Insert 20 2 33 - 

T20F2R40 Milling Insert 20 2 40 - 

T25F2R04 Milling Insert 25 2 04  

T25F2R40 Milling Insert 25 2 40 - 

T25F3R04 Milling Insert 25 3 04 - 

T25F3R33 Milling Insert 25 3 33 - 

T50F4R04 Milling Insert 50 4 04 - 

T50F4R40 Milling Insert 50 4 40 - 

DCMT11T304 Turning Insert - - 0.4 
CVD (TiCN / 

AI2O3 / TiN) 

DCMT11T308 Turning Insert - - 0.8 
PVD (Ti, Al) N / 

TiN) 

3.4. Workpiece Material 

As this thesis focuses on the application of TCM for aerospace manufacturing 

applications, the high and low strength aluminum alloys, AL7075T6 and AL6061T6 

respectively, were selected for testing and validating the tool wear detection method. 

However, to speed up the tool failure process, severe, controlled cutting conditions 

were applied. Hence, two grades of steel plates were used during the course of this 

research: a high-yield-strength quenched and tempered steel alloy ASTM A514-B and a 

hot-rolled low carbon steel AISI1018. Table 3-2 and Table 3-3 show the main 
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mechanical properties and chemical components respectively of the workpiece 

materials used in the cutting tests during this research. 

Table 3-2 Mechanical properties of the used workpiece materials 

Material ASTMA514-B AISI1018 AL6061-T6 AL7075-T6 

Yield strength (@0.2%) MPA 690 370 276 503 

Tensile strength MPA 760 to 895 440 310 527 

Brinell hardness 293 126 95 150 

Modulus of elasticity GPA 210 205 68.9 71.7 

 
Table 3-3 Chemical components of the used workpiece materials 

Element Content (%) 
AISIA514B AISI 1018 AL 6061-T6 AL 7075-T6 

Al   95.8 - 98.6 87.1 - 91.4 

Iron, Fe 98 98.9 0.7 0.5 

Manganese, Mn 0.85 0.6 0.15 0.3 

Chromium, Cr 0.48  0.04-0.35 0.18 - 0.28 

Silicon, Si 0.28  0.4 - 0.8 0.4 

Molybdenum, Mo 0.2    

Titanium, Ti 0.02  0.15 0.2 

Carbon, C 0.12 - 0.210 0.14   

Vanadium, V 0.05    

Boron, B 0.003    

Phosphorous, P  0.04   

Sulfur, S  0.05   

Cu   0.15 - 0.4 1.2 - 2 

Mg   0.8 - 1.2 2.1 - 2.9 

Zn   0.25 5.1 - 6.1 

3.5. Sensor Selection 

Sensors were used to measure the cutting forces, vibrations, acoustic emissions and 

drive motor power during the course of this work. For the milling applications, the three 

orthogonal components of the cutting forces were measured using a quartz 3-

component KISTLER dynamometer type 9255B. This dynamometer has a measuring 

range of ±20kN in the x and y directions and from -10kN to 40kN in the z direction with 

a crosstalk of less than ±2%. The acquired force signals were amplified using a 5070A 
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KISTLER charge amplifier. For the turning applications, the cutting forces were 

measured using a three component KISTLER dynamometer type 9121 with a 

measurement error of ±3% and amplified using a KISTLER 5010 amplifier. These 

dynamometers cover the cutting force range generated during high speed processes 

with high accuracy. It should be noted that the measurement of the cutting forces is 

essential for the development phase only. Therefore, the dynamometer sizes and 

limitations on the machine workspace were not considered for optimization for 

industrial application.  

The measurement of the vibration signals during cutting processes, especially for 

milling, requires accelerometers with high sensitivity, high resolution and high 

bandwidth. Additionally, minimum intervention with the machine workspace should 

be guaranteed for industrial applications. Although microelectromechanical (MEMS) 

accelerometers have the advantage of small size to be integrated into intelligent 

modules, they still suffer from high noise and low bandwidth [89]. Hence, a miniature 

triaxial PCB accelerometer type 356A71 was used to acquire the vibrations during the 

cutting processes. It has a sensitivity and a frequency range of 1.02 pC/(m/s2) and 4 

kHz, respectively. Acquired signals were conditioned and amplified using a PCB signal 

conditioner model 480C02. 

A KISTLER Piezotron AE sensor type 8152B was used to capture the process AE 

generated signals. The machining AE generated signals typically fall into the range of 

100-600 kHz, whereas the tool chipping or fracture causes high powered oscillations in 

the frequency range from 300 kHz to 1.0 MHz [42]. Hence, a KISTLER AE coupler model 

5125C1 was used to filter out the high-frequency emission signals only and to capture 

the analogue root mean square of the AE signals. In this coupler, the analogue AE signals 

were filtered using a 50 kHz high-pass filter and a 1 MHz low-pass filter. This filtering 

range selection represents the typical range of AE signals generated from tool chipping 

and fracture while eliminating those coming from mechanical vibrations and audible 

noise. Subsequently, a root mean square converter with an integration time constant of 

1.2 ms was used. This helps to reduce the required sampling rate and to minimize the 

data storage for the AE signals.  
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The spindle motor of the CNC machines used in this work is powered by a pulse 

width modulation (PWM) module which converts a 600 V DC input to a three-phase AC 

output of 400 V. The output rated, base load and maximum current of this module is 60 

A, 51 A and 113 A, respectively. It has a rated pulse frequency of 4 kHz and an output 

frequency up to 650 Hz depending on the voltage/frequency controlling mode. 

Therefore, to measure the drive motor power on the Boehringer-NG200 CNC turning 

center, a POWERTEK universal power cell model UPC-LB was used. This power cell uses 

balanced Hall effect sensors, which provide high sensitivity and low noise when applied 

for variable-frequency power measurements. The cell has a capacity, frequency range 

and response time of 100 kW, 1kHz and 50 ms, respectively. This sensor was suitable 

for the turning machining center due to the low rotational speed and single point 

cutters used in this application. 

As for the DMU-100P duoBlock CNC machining center used for milling tests, it has a 

maximum speed of 18,000 rpm. In addition, during the course of this work, two, three 

and four fluted endmills are tested. Therefore, a sensor with higher response time is 

required. This is because the passing frequency of a rotating endmill is equal to the 

rotational speed (rpm) divided by 60 and multiplied by the number of flutes. Hence, 

assuming a 4 fluted endmill rotating at 18,000 rpm, the passing frequency is equal to 

1,200 Hz. Hence, according to the Nyquist rate, the sampling rate should be at least 

2,400 Hz. This is equivalent to 0.4 ms. Such response time is not available for 

commercial power sensors. However, commercial voltage and current transducers can 

provide such a response time. Therefore, for the milling tests, the instantaneous voltage 

and current were measured, and the instantaneous power was calculated digitally by 

the dot product of the acquired signals. The spindle drive motor current and voltage 

signals were measured at each phase of the drive module using LEM transducers type 

LF 310-S and DVL 1000, respectively. These transducers can measure AC, DC and pulsed 

current signals with measuring range, reaction time and frequency bandwidth of ±500 

A, 0.5 μs and 100 kHz, respectively, for the current transducers, and ±1500 A, 30 μs and 

14 kHz, respectively, for the voltage transducers.  
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3.6. Assessment of the Cutting Tool Condition 

Tool wear, which is a change in the shape of the cutting edge of a tool due to 

progressive loss of tool material during cutting, can be expressed in several terms. 

These terms, as shown in Figure 3-3, include flank wear (VB), which is a loss of material 

from the tool flank. The VB can be defined using three measures [14]: 

1. Uniform flank wear (VB1): Wear land which is normally of constant width and 

extends over the tool flank of the active cutting edge, 

2. Non-uniform wear (VB2): Wear land which has an irregular width and the 

original flank varies at each position of measurement, 

3. Localized flank wear (VB3): Exaggerated and localized form of flank wear, which 

develops at a specific part of the flank. 

Usually in practical industrial machining applications, tool life is ended when the tool is 

no longer providing the desired dimensions or surface integrity. However, as a general 

practice, uniform flank wear VB1 is used as a tool-life criterion. According to ISO 

standards, a predetermined value of 0.3 mm, averaged over all teeth, is used as an 

indicator for a worn tool [2]. In addition, localized flank wear VB3 is another 

deterioration phenomenon that must be respected per tooth. A predetermined VB3 

value of 0.5 mm should not be exceeded on any individual tooth. In a normal cutting 

process, the tool must be changed after reaching these values of wear. 

 

Figure 3-3 Tool wear land and different terms in the flank wear for an end mill 
cutter [2]. 
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Tool chipping is another tool deterioration phenomenon which is monitored during 

the course of this work. It can be defined by the loss of small fragments of tool material 

due to crack occurrence in the cutting part of a tool [2]. Chipping occurs due to an 

overload of the tensile stresses on the cutting edge, which can be from numerous 

sources such as high feed or depth of cut, vibrations or hard inclusions in the workpiece 

material.  

In multi-point cutting tool applications, such as milling, chipping may not totally 

prevent the cutting ability of the cutters. Usually the uncut part of the workpiece due 

the chipping of one cutting edge is removed by the subsequent cutting edges. However, 

such an action increases the cutting forces and stresses during the cutting operation. 

Depending on the cutting conditions and the chipping size, the chipping may affect the 

surface integrity of the machined part by inducing residual tensile stresses and altering 

the surface finishing and roughness. This cannot be tolerated in aerostructure 

machining processes. Additionally, undetected chipping may lead to tool breakage, and 

hence, must be prevented. On the other hand, for single point cutters, such as in turning 

tools, chipping cannot be tolerated because it directly affects the surface integrity of the 

machined part. The chipping usually occurs at the cutter nose, as shown in Figure 3-4. 

 

 

Figure 3-4 Single point cutting tool insert 

According to ISO standards, for endmill cutters, chipping is usually assessed on the 

flank face and treated as localized tool wear, which should not exceed 0.5 mm. However, 

this value changes, depending on manufacturer standards and required surface finish. 
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In this work, tool chipping in endmill cutters is assessed following ISO standards, as 

shown in Figure 3-3, and different ranges of chipping are generated from 0.05 mm up 

to 2 mm on the flank face. For turning processes, the chipping area Ac is assessed by the 

new surface area occurring on the tool faces due to this event, as shown in the schematic 

drawing in Figure 3-4.  

3.6.1. Offline Tool Condition Assessment  

Flank wear and chipping were measured in this work in accordance with the ISO 

3685-1993 method. Uniform and maximum flank wear, VB1 and VB3 respectively, were 

measured using a Winslow Engineering tool analyzer Model 560. It permits precise 

inspection of the tool geometry characteristics with 12X optical magnification and a 

resolution of 0.0001 mm. Tools were assessed after each predefined machining interval 

for both milling and turning applications to evaluate the wear and chipping geometries 

and features.  

3.6.2. Real-Time Tool Condition Assessment 

During the development of the tool prefailure detection system, real-time 

evaluation of the tool condition during the cutting process is required. Therefore, a 

FASTCAM high speed camera (HSC) type UX100-800K-M was used to record the 

chipping events in real-time during cutting. This HSC provides 1280 x 1024 pixels 

resolution with a selectable region of interest. It has a maximum frame sampling rate of 

800 kfps and can be triggered to start recording using selectable +/- TTL 5V and switch 

closure with a response time of 0.1 μs. These characteristics provided the ability of 

evaluating the tool condition in synchronization with the acquired signals for analysis 

purposes. The synchronized imaging of this HSC was used to detect and measure the 

chipping events during the cutting processes and relate it to the acquired signals.  

3.7. Experimental Setup 

During the development of the tool prefailure detection system, the focus was 

placed on testing the ability of various signals to capture the unstable crack propagation 
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phase that precedes the chipping and/or breakage event as an indicator of tool 

prefailure. The research mainly focused on cracks due to mechanical loads only while 

avoiding the occurrence of tool wear and heat build-up. Therefore, a method was 

devised to induce a cyclic impact load on the cutting tool tip in an intermittent turning 

operation. This represented the loading conditions in milling as well. This type of test 

allowed characterizing the features of the signals collected by various sensors (forces, 

vibrations, AE and drive motor power) due to unstable crack propagation and tool edge 

chipping, while ensuring minimal tool wear. The workpiece fixture is shown in Figure 

3-5. To induce a cyclic impact load on the tool tip, different steel workpieces, reported 

in Table 3-2 were used in the shape of plates. The plate thickness to width ratio was 

selected to reduce the cutting time and to allow air cooling during 85% of the cutting 

revolution. This minimized the thermal effect on the tool tip and provided failure due 

to mechanical loads only. The plate holding seats, shown in Figure 3-5, were designed 

to guarantee workpiece balance during the cutting operations. This test was designed 

to ensure tool failure due to unstable crack propagation while minimizing the 

occurrence of tool wear. 

 

Figure 3-5 Workpiece fixture for intermittent cutting operations 

Figure 3-6 shows the devised experimental setup to induce a cyclic load on the 

cutting tool tip. Dry turning operations were carried out using a Sandvik PD JNL 2020K 

11 tool holder (1) and different carbide inserts, reported in Table 3-1, on the 6-axis 

Boehringer NG 200, CNC turning center. Workpieces were pre-shaped as seen in this 

figure to minimize the transient stage of tool entry. The cutting path was conducted as 

follows: 

Workpiece

Holding seats
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• The tool is first moved downward in air normal to the workpiece axis until it 

reaches the desired cutting depth of cut. 

•  A linear cutting operation is conducted parallel to the workpiece axis. 

• The tool is vertically retracted at the end of the cutting process.  

The HSC (4) was mounted on the machine turret (3) to avoid any relative motion 

between the point of focus and the tool tip. The tool holder was mounted on the 

dynamometer (5) to measure the cutting forces, which were amplified using a KISTLER 

5010 amplifier. The KISTLER piezotron AE sensor (7) was mounted on the back of the 

tool shank to be as close as possible to the cutting zone while the tri-axial ICP 

accelerometer (6) was mounted on the side of the tool holder. The power sensor was 

mounted to measure the motor drive module output to the spindle motor over the three 

motor phases. The sensor position and orientation were selected to guarantee high 

signal resolution and not to interfere with the cutting workspace. Acquired forces, 

vibrations, AE and power signals were digitalized and stored on a personal computer 

using a National Instrument data acquisition system NI PCI-4474. 

 

Figure 3-6 Experimental setup for intermittent turning (1) cutting insert, (2) 
workpiece, (3) turret, (4) HSC, (5) dynamometer, (6) accelerometer and (7) AE sensor 
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Figure 3-7 Experimental setup for milling (1) cutting insert, (2) tool holder, (3) 
workpiece, (4) HSC, (5) dynamometer, (6) accelerometer and (7) AE sensor 
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Figure 3-7 shows the experimental setup employed to develop and validate the 

prefailure and tool wear detection systems during milling operations. Milling 

experiments with different tool paths were carried out using endmill cutters, reported 

in Table 3-1, on the 5-axis DMU 100P duoBlock machining center. Aluminum and steel 

workpieces (3), reported in Table 3-2, were mounted on the dynamometer (5) to 

measure the three components of the cutting forces. A fixture was designed and built to 

mount the HSC (4) on the spindle head to follow the tool path. This fixture maintained 

rigid support for the HSC while providing 3 degrees of freedom consisting of sliding 

movement along its axial and two rotational movements. The accelerometer and AE 

sensor were mounted on the spindle around the tool holder and covered for protection 

against chip strikes. The current and voltage transducers were mounted to measure the 

drive motor output to the spindle motor over the three phases, as shown in Figure 3-8. 

The instantaneous spindle power was digitally calculated from the acquired voltage and 

current signals. A National Instrument data acquisition card type NI 4472 Series was 

used to digitalize and store the acquired signals. The cutting forces, vibrations and AE 

signals were acquired during the tests in synchronization with the HSC.  

3.8. Real-Time Implementation of TCM Systems 

Different hardware configurations are available for online data acquisition and 

monitoring systems. They are mainly dependent on Application Specific Integrated 

Circuits (ASICs) or a Field Programmable Gate Array (FPGA). The main advantages of 

an FPGA over an ASIC are its reconfigurable and reprogrammable ability. This provides 

more flexibility and scalability to implement and optimize new algorithms. Therefore, 

a National Instrument real-time embedded industrial compact controller chassis cRIO 

with a field-programmable gate array and a real-time processor was used as the TCM 

system hardware. It is a data acquisition and control system that can concurrently 

perform multiple data acquisition and signal processing tasks. In addition, it can 

simultaneously acquire signals from multiple channels at different sampling rates. 

Pairing the developed signal processing approaches for tool wear and prefailure 



43 
 

detection with the FPGA and real-time controller of the cRIO system enhanced the 

computational capability of the developed system.  

 

 

Figure 3-9 System configuration for online implementation 

Figure 3-9 shows the system hardware configuration for online implementation of 

the TCM systems. Three channel 102.4 kS/s input modules were used for signal 

acquisition. Signal segmentation and conditioning were programmed on the FPGA 

while data processing and decision making were programmed on the real-time 

processor. The LabView programming language was used to build the real-time TCM 

system software. The integration of the LabView language helped to reduce the signal 

processing time by ~50%, thanks to its parallel programming environment. A 

PROFIBUS Interface Module was used for data transfer between the controller and the 

CNC machine. The CNC milling center was equipped with a 2-way communication 
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interface for real-time control of the process parameters. This is an interface between 

the cRIO system and the CNC SINUMERIK 840D system using PROFIBUS DP 

(Decentralized Peripherals) protocol, which allowed a high communication speed rate, 

based on the Remote Procedure Call communication mechanism. It allowed reading, 

writing and overriding of the machine control parameters during the machining 

process with a speed rate of 1.5 Mb/sec. 

3.9. Summary 

This chapter described the machine tools, cutters and workpiece materials used in 

this research. Powerful machine tools with the capability of high speed machining were 

used. A variety of milling and turning tools were employed in this work to test the effect 

of the tool geometry on the developed TCM system. In addition, four different types of 

workpiece materials were used for TCM system testing and validating as well as for 

accelerated generation of tool failure. The machine tools, cutters and workpiece 

material properties were listed and described. 

The selection process of the means of sensing cutting forces, vibrations, acoustic 

emissions and motor feedback signals were demonstrated. During this process, the 

applicability, practicality, measuring range, sensitivity and response time of these 

sensing systems were considered. The specification of these systems as well as the 

position and orientation of mounting were shown.  

The tool deterioration criteria and limits for tool wear and chipping were defined. 

A tool analyzer was used to analyze and measure tool failure offline at the end of each 

test. Additionally, the tool condition was assessed in real-time during the cutting 

processes using a high-speed camera. The imaging of this camera was used to assess 

the TCM system performance as described in this chapter and shown in Chapter 5.  

The hardware and software used to implement the developed TCM system in real-

time were demonstrated. An ultra-high-speed controller and a 2-way communication 

system were integrated to control high speed cutting processes in real-time.  
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CHAPTER 4 
TOOL PREFAILURE CHARACTERIZATION AND DETECTION 

DURING INTERMITTENT MACHINING PROCESSES 
4.  

4.1. Introduction 

The objective of this work is to develop an integrated TCM system approach to 

reliably detect tool prefailure and to stop the intermittent turning operation in real-

time before tool chipping and part damage occur. No such system is presently available. 

Therefore, a novel, multi-sensor signal processing approach for online prediction and 

prevention of tool chipping during intermittent cutting is presented. It identifies the 

unstable crack propagation features of the prefailure phase using feedback signals, 

independent of the cutting parameters and workpiece material. In this chapter, the 

ability of using the process monitoring signals to detect tool prefailure and failure by 

chipping and/or breakage during intermittent cutting operations is investigated. The 

processing approach is introduced, and then tested using artificial signals. 

4.2. Experimental Investigation of the Monitoring Signals Ability to 
Detect Tool Prefailure and Onset of Failure 

This section focuses on testing the ability of signals acquired by various types of 

sensors to capture the unstable crack propagation phase, which precedes the chipping 

and/or breakage event, as an indicator of tool prefailure. The research mainly focuses 

on cracks due to mechanical loads only, while avoiding the occurrence of tool wear. 

Therefore, a method was devised to induce a cyclic impact load on the cutting tool tip 

during an intermittent turning operation. This simulated the loading conditions during 

milling as well. A full description of this intermittent turning method and its experimental 

setup can be found in Section 3.7. This type of test allowed characterizing the features of 

the signals collected by various sensors (forces, vibrations, AE and drive motor power) 

due to unstable crack propagation and tool edge chipping, while ensuring minimal tool 

wear. 
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The cutting speed, feed and depth of cut were 70 m/min, 0.14 mm/rev and 2 mm, 

respectively. The turning operation was performed in 100 mm passes. After each pass, 

the insert was periodically removed from the tool holder and inspected for any sign of 

chipping or wear on the flank and rake faces using a Winslow cutting tool inspection 

system model 560. 

4.2.1. Experimental Results 

An edge chipping of 0.1 mm width was observed after the fourth turning pass, as 

shown in Figure 4-1 (a), while no sign of significant wear was observed. The 

corresponding resultant cutting force was processed and analyzed to detect any peak 

corresponding to tool failure, as shown in Figure 4-1 (b). The figure shows that a peak 

of the normalized force occurred after a total cutting length of 315.5 mm. This event can 

be causally related to tool failure by observing chipping as the trend of the resultant 

forces increased after its occurrence. 

Figure 4-2 shows the normalized feedback signals of the (a) resultant force Fr, (b) 

vibrations in the feed direction Vf, (c) spindle motor power P, (d) acoustic emission raw 

signal AE and (e) acoustic emission root means square (AErms) for the prefailure, failure 

and post-failure stages. Figure 4-2 (a) and (b) show a burst in the resultant force and 

vibration signals, respectively, which coincide with the tool failure evidence shown in 

Figure 4-1. The cutting power (Figure 4-2 (c)) has increased slightly as well at the 

chipping event. The sensitivity of the cutting forces to the breakage event is due to their 

sensitivity to tool geometry changes [36]. While the high vibrations generated due to 

the tool chipping caused an instant high burst in the acquired vibration signals, 

regardless of the vibrations coming from the tool/workpiece engagements. This shows 

the cutting force and vibration signal capabilities to capture tool chipping as small as 

0.1mm. However, these raw signals did not show any changes during the prefailure 

phase (i.e., during unstable crack propagation). 

On the other hand, no corresponding bursts were observed in the AE and the AErms 

signals at the onset of chipping (Figure 4-2 (d) and (e)). However, high bursts in the AE 

and the AErms were captured earlier by three sequential engagements between tool and 
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workpiece, as shown in Figure 4-2 (d) and (e). This event can be related to the tool 

prefailure stage, which is characterized by crack propagation. This peak was not 

observed in the other measured signals.  

The forces, vibrations, AE and power signals were generated during the cutting 

process due to the tool/workpiece engagement. The variation in these signals due to 

chipping is uncertain. For example, the cutting forces depend on the force coefficients 

of the cutting tool and the material removal rate MRR. Such a relation may alter the 

resultant forces generated during tool chipping or breakage. Based on the chipping size, 

position and shape, the cutting forces may increase, decrease or stay unchanged. 

Assuming one tool/workpiece engagement per revolution, if the chipped part of the 

cutting tool edge is higher than the cutting feed rate per tooth fz, the tool is no longer 

engaged in cutting, which reduces the MRR to zero. On the other hand, if the chipped 

edge segment is smaller than fz, the tool cuts the workpiece with the chipped edge, 

where its force coefficients are greater than those of a normal edge. Hence, the 

integrated results between the MRR and the force coefficients of the chipped part 

control the value of the cutting force at the onset of fracture. Because of the high 

uncertainty of the chipping characteristics (e.g., size, position and shape), both 

increasing and decreasing the acquired signals are possible after chipping.  

 

 

Figure 4-1 (a) Edge chipping after the fourth pass (b) Normalized resultant force 
through all turning passes 
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Figure 4-2 Normalized signals of (a) resultant force ‘Fr’ (b) vibrations in feed 
direction ‘Vf’ (c) drive motor power ‘P’ (d) acoustic emission AE and (e) acoustic 

emission rms ‘AErms’ 

However, there are other sources of AE signals during the cutting process. One of 

them is attributed to the elastic stress waves produced by the release of strain energy 

because of the new surface generation during the course of crack propagation. Such 

sensitivity explains the first burst in the AE and AErms signals observed before chipping 

as an indicator of new surface generation on the tool edge and as an indicator to 

unstable crack evolution, as seen in Figure 4-2 (d) and (e). In addition, they showed 

sensitivity to changes in tool geometries after chipping. This sensitivity can be seen in 

the high burst in the AE signals and the high energy in the peak of the AErms signal after 

chipping, as seen in Figure 4-2 (d) and (e). These characteristics and the response of 

the AE and AErms signals recommends using them for real-time tool prefailure detection 
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2- Their sensitivity to changes in cutting-edge geometry due to chipping/breakage,  

3- Allowing a sufficient time window (e.g., three tool/workpiece engagements) during 

intermittent cutting operations to take the appropriate corrective action.  

Such characteristics can be employed to prevent any damage to the workpiece and the 

machine tool as a result of tool sudden failure.  

It should be noted that the peak value of the spindle motor power signal (Figure 4-2 

(c)) did not show a significant increase at the chipping event compared to the normal 

cutting peak value, which disagrees with reported findings in the literature [27, 50, 91]. 

This can be linked to the small chipping size (0.1 mm) and the limited sensing 

bandwidth due to the inertia of the drive motor rotor, which acts as a low pass filter at 

the same motor frequency [45], whereas abrupt failure is a high frequency event. 

4.3. AE Signal Characteristics in the Prefailure Phase 

The findings in Section 4.2 show that the AE waves associated with the generation 

of new surfaces during unstable crack propagation have high potential to be used as a 

tool prefailure indicator. It is clear that the AErms signals have the same time-domain 

sensitivity to the prefailure phase as the raw AE signals, as shown in Figure 4-2 (d) and 

(e). However, the AErms signals have the advantage of reducing the required sampling 

rate, which minimizes data storage. As a result, the AErms signals were investigated 

further to be implemented in the tool prefailure detection system. 

An FFT was calculated for the AErms signal to study its characteristics in the 

frequency domain. The signal was segmented per each tool/workpiece engagement 

before, during and after the prefailure phase, as shown in Figure 4-3 (a). In total, 13 

segments were analyzed to determine their FFT power and mean frequency fmean, as 

shown in Figure 4-3 (b). Additionally, the mean frequency of all the peaks, as one 

segment, was calculated and referred to as ftmean. As seen in Figure 4-3, the AErms signal 

showed the highest FFT power at the unstable crack indicator (peak No. 6). This was 

followed by peak No. 10, which indicated the first engagement between the tool and the 

workpiece after chipping. Additionally, the highest fmean values were found during the 

prefailure phase; the fmean of individual peaks only exceeded the ftmean at the prefailure 
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stage (i.e., peak No. 6, 7 and 10). Such findings show that the prefailure phase induces 

high relative frequency and density in the frequency domain in addition to their high 

relative peak values in the time domain of the AErms signal, expressly at the unstable 

crack indicator. 

 

 

Figure 4-3 AErms before, during and after prefailure in (a) time domain and (b) 
frequency domain 

During intermittent complex cutting processes, identifying the prefailure phase is 

challenging due to the bursts coming from other process sources. These sources can be 

classified into two groups [92]: steady-state operation AE waves such as formation and 

collisions of chips and rubbing between cutting tool, workpiece and formed chips, and 

abnormal AE waves that can be generated due to cutting tool vibrations and damage. 

The indeterminateness of some of these events in addition to the stochastic nature of 

the unstable crack propagation and its generated AE waves cause a non-stationary 

nature to the AErms signals.  

To describe the generated AErms signals during cutting, a quantitative model of the 

AErms peak voltage in machining using carbide inserts was successfully developed [93]. 

This model was developed in order to understand the AE signal response to the fracture 

of carbide inserts during intermittent cutting. The model describes the AErms voltage as 

a function of the cutting tool material properties, wave propagation properties, crack 

propagation and cutting forces as follows: 
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𝐴𝐸𝑟𝑚𝑠 = 𝐾1√
𝐸

(1 + 𝑣)2. (1 − 𝑣2)
√

𝜔2. 𝛿2

(𝑘2 + 𝜔2)
𝐹𝑟√𝛼𝑎𝛽 . ∆𝑎. ∆𝐴𝑐

2 
4.1 

where K1 is a constant, E and 𝑣 are the modulus of elasticity and Poisson ratio of the 

tool material, respectively. 𝑘, ω and δ are the crack AE wave decay constant, frequency 

of decaying and stress propagation factor, respectively. Fr is the resultant cutting force 

at tool fracture, α and β are constants related to tool geometry, and a and Ac are the 

crack length and area, respectively. This equation can be simplified, for the same tool 

material, after assuming ∆𝐴𝑐 is a linear function of ∆𝑎 as follows: 

𝐴𝐸𝑟𝑚𝑠 ≈ 𝐶𝐹𝑟(∆𝐴𝑐)1.5 4.2 
where C is a material and geometry dependent constant. Equations 4.1 and 4.2 show 

the nonlinear relationship between the AErms signal and cutting forces. The AErms signal 

variation through the course of the intermittent cutting operation for the same insert 

depends mainly on the resultant force variation and new generated crack surfaces. 

Furthermore, as the AErms depends on the instantaneous Fr, it is highly expected that 

the crack propagation bursts could be contaminated by the bursts coming from the 

force variation during intermittent cutting. 

4.4. AE Signal Processing Approach for Real-Time Prefailure 
Detection 

The prefailure phase induces high frequency/amplitude bursts in the AErms signals. 

However, the main challenges of detecting the unstable crack propagation phase, 

preceding tool chipping, using the AErms raw signal are: (i) the nonlinear relationship 

between the AErms response and the change in the crack area ∆Ac, as shown in Equation 

4.2, (ii) the non-stationary nature of the AE signal and the stochastic nature of the 

unstable crack propagation process, (iii) the contamination of the crack propagation 

bursts in the AErms signal by the bursts coming from the force variation during 

intermittent cutting, and (iv) the infinitesimal time spans of the high frequency bursts 

inherent in unstable crack propagation. This leaves a relatively short time (on the 

millisecond-scale) for taking corrective action after detection. As the AErms raw signal 

is insufficient, by itself, to be an indicator for tool prefailure detection, a special signal 
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processing approach is required to accentuate the high frequency/amplitude events in 

the signal to ensure a reliable and robust tool prefailure indicator. 

4.4.1. Signal Processing Approach 

To emphasize the crack propagation effect on the AErms signal and to depress the 

steady state cutting effect, a two-stage novel approach was developed to detect the 

prefailure evolution phase. It can deal with the aforementioned challenges of using the 

AErms raw signal for tool prefailure detection. Challenges (i) and (ii) are overcome by 

the first stage of the proposed approach, which is based on direct extraction of the 

energy associated with the intrinsic time scales in the signal by applying the HHT [94]. 

In the second stage, the Teager–Kaiser Energy Operator (TKEO) [95] is applied to 

highlight the prefailure phase and to suppress the bursts coming from the force 

variation and signal noise in the cutting process, thus overcoming challenge (iii). This 

provides an outcome proportional to the multiplication of the instantaneous frequency 

and the peak value of the AErms signal. Hence, physical events with a relatively high 

frequency and high energy nature are accentuated, whereas events with high energy 

only or high frequency only are depressed. 

The HHT is a non-linear and non-stationary empirically based signal processing 

method that can recognize abnormal signal changes and can indicate the instantaneous 

frequency changes within one oscillation cycle. It can represent the data in a physically 

meaningful way by analyzing the signal in the time-frequency domain, in which, a peak 

means that a wave of the corresponding frequency has appeared at that particular time 

interval. In addition, the TKEO gives the estimated energy content in the processed 

signals and accentuates the high-frequency content [95]. The adopted approach can be 

mapped out in four steps: 

1. Signal sifting to decompose the signal into a superposition of natural modes termed 

the ‘intrinsic mode functions’ (IMFs), using the ‘mode decomposition’ method [94]. This 

is a direct and adaptive method with posteriori defined basis used to define the linear 

and nonlinear harmonics of the processed signal. Each mode represents a frequency 

range, varying from signal noise to the main signal trend. To find the IMFs, first the local 
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maxima and minima in the time domain AErms signal are located. Then, two cubic splines 

are used to define the upper and lower envelopes by linking the signals local minima 

and maxima respectively, as shown in Figure 4-4 (a) for an arbitrary signal x(t). These 

two envelopes must contain all the signal data in between. The first component of the 

sifting process h1 is the difference between the input signal x(t) and the mean of these 

two envelopes m1, shown in Figure 4-4 (b). The sifting process is repeated k-times using 

the extracted component h1(k-1) as the input signal until the sifted signal is reduced to 

the first IMF component as follows: 

𝐼𝑀𝐹1 = ℎ1(𝑘−1) − 𝑚1𝑘  4.3 

where m1k is the mean of the two envelopes after k-times. The sifting stoppage criterion 

can be found in [94]. IMF1 is subtracted from the original signal x(t) and the output is 

treated as a new input signal for the sifting process. Hence, the original signal can be 

represented as: 

𝑆(𝑡) = ∑ 𝐼𝑀𝐹𝑗(𝑡) + 𝑟(𝑡)𝑛
𝑗=1   4.4 

where r is a residue. Each of these IMFs can be analyzed for their instantaneous 

frequencies. 

 

Figure 4-4 (a) Input signal x(t), upper and lower envelopes and their mean value m1 

(b) Input signal and first sifting component h1 
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2. Application of the Hilbert transform 𝑦𝑗(𝑡) to the IMF(s) [94]. The instantaneous 

frequency is calculated for each IMF, in the time domain, using the HHT to identify the 

intra-frequencies of the prefailure phase. 

𝑦𝑗(𝑡) =
1

𝜋
∫

𝐼𝑀𝐹𝑗(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
  4.5  

with a definition of the complex function of the analytic signal as: 

𝑆𝑗(𝑡) = 𝐼𝑀𝐹𝑗(𝑡) + 𝑖𝑦𝑗(𝑡) = 𝑎𝑗(𝑡)𝑒𝑖𝜃𝑗(𝑡)  4.6 

where 𝑎𝑗(𝑡) =  √𝐼𝑀𝐹𝑗
2(𝑡) +  𝑦𝑗

2(𝑡) is the processed signal instantaneous amplitude and  

𝜃𝑗(𝑡) = tan−1 (
𝑦𝑗(𝑡)

𝐼𝑀𝐹𝑗(𝑡)⁄ ) is the phase function for each IMF. 

The HHT spectrum, generated by the summation of the IMFs’ transforms, is a function 

of the IMFs instantaneous amplitude, frequency and the phase between them. The 

original signal can now be represented as: 

𝑆(𝑡) = 𝑅𝑒[∑ 𝑎𝑖(𝑡)𝑒𝑖 ∫ 𝜔𝑗(𝑡)𝑑𝑡𝑛
𝑖=1 ]  4.7 

where 𝜔𝑗(𝑡) =
𝑑𝜃𝑗(𝑡)

𝑑𝑡
 is the instantaneous frequency. This identifies the instantaneous 

signal energy and frequency in the time domain. Hence, a peak in the Hilbert spectrum 

represents the abnormal events in the considered time interval. 

3. Application of TKEO to the transformed signals [95]. This emphasizes the relatively 

high frequency/amplitude events of crack propagation and suppresses the effect of the 

impact cutting forces on the AErms. The TKEO is applied for discrete signal of n points as 

follows: 

𝜳(𝑆(𝑛)) = 𝑆2(𝑛) − 𝑆(𝑛 + 1) × 𝑆(𝑛 − 1)  4.8 

This operator has high sensitivity to instantaneous changes in frequency dependent 

energy, as its output is proportional to the product of the instantaneous amplitude and 

frequency of the input signal. Hence, physical events with relatively high frequency and 

high amplitude are accentuated, whereas events with relatively high energy only or 

high frequency only are depressed. The instantaneous nature of the TKEO and its very 

low computational time make it an ideal tool for a real-time application [95]. 
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4. Application of a window function to the TKEO output to localize local maxima [95]. 

The Bartlett window function with an integer filter implementation was chosen to keep 

the complexity of the algorithm as low as possible.  

𝛹𝐵(𝑆(𝑛)) = 𝛹(𝑆(𝑛))  ⊗ 𝑤(𝑛)  4.9 

where 𝑤(𝑛) is the window function and ⊗ is the convolution operator. The window 

output is proportional to the square of the product of the instantaneous amplitude and 

the frequency of the input signal [95]. Hence, the implementation of this function 

increases the unstable crack indicator uniqueness in the output signal. 

4.4.2. Implementation of the Signal Processing Approach in a Real-Time 
Application 

For real-time implementation of the proposed signal processing approach, 

challenge (iv), detecting the unstable crack propagation phase, preceding tool chipping, 

using the AErms raw signal as stated in Section 4.4.1, needs to be addressed. The 

processing time is affected by the signal segment length and sampling rate. As the 

proposed processing approach accentuates the relative high frequency/energy events, 

short windows may not contain enough relative data to process. Furthermore, a low 

sampling rate may cause the loss of some of the high-frequency information in the 

prefailure phase. On the other hand, long time windows and/or high sampling rates 

increase the signal-processing time. Hence, to select a representative segment for the 

repetitive load on the cutting tool, a full workpiece rotation window was used. To 

ensure no loss of information related to the relative changes in the instantaneous 

amplitude and frequency of the processed signal interval, a 50% overlap between 

segments was implemented. This assures that the beginning and ending of the 

prefailure phase is captured and compared to steady state cutting. Additionally, the 

AErms was calculated from the analogue raw AE signal, before digitalization, in order not 

to lose signal content, and to minimize the required sampling rate and data storage. AE 

raw analogue signals were filtered using a band from 100 kHz to 900 kHz to isolate the 

high frequency sound emission signals and to improve the signal to noise ratio. 

Moreover, signal linear de-trending was applied to remove the signal gradual change 

due to the tool path.  
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The main feature that represents an abnormal event in the processed signal is the 

maximum peak value for each window 𝚿BW=max(𝚿B). Hence, it was extracted and used 

as a prefailure detection parameter. A static threshold was defined experimentally 

based on 𝚿BW to predict tool prefailure. 

4.5. Testing the Developed Approach Using Artificial Signals 

To demonstrate the performance of the proposed approach, Figure 4-5 (a) shows 

an ideal nonlinear periodic signal, which represents the AErms signals during cutting 

operations. This signal has been contaminated by an artificial fault signal, shown in 

Figure 4-5 (b). This is a sinusoidal decaying signal that simulates a sudden AE burst 

generated by a non-stationary crack propagation process. The contamination signal has 

been added to the original signal, as seen in Figure 4-5 (c). To apply the HHT method, 

the signal has been first decomposed into its intrinsic mode functions IMFs using the 

empirical mode decomposition method, described by Equation 4.3 and 4.4. In total, the 

contaminated signal was decomposed into 10 superposition natural modes IMF, as seen 

in Figure 4-5 (d). These IMFs can be grouped into two categories, a high frequency 

range (e.g., from IMF1 to IMF5) and a low frequency range (e.g., IMF6 to IMF10), where 

IMF10 represents the signal residue r.  

The Hilbert Huang transformation was applied to all the generated IMFs to calculate 

their frequencies in the time domain and to define the intra-frequencies during the 

abnormal event. Equations 4.5, 4.6 and 4.7 were used to find the HHT spectrum of the 

contaminated signal by calculating the processed signal instantaneous amplitude, 

frequency and the phase function of each IMF. The HHT spectrum was generated by the 

summation of the IMF transforms. To emphasize the instantaneous changes in 

frequency-dependent energy in the HHT spectrum and to suppress the normal signal 

peaks, the TKEO was applied using Equation 4.8 to find the 𝚿B vector. This was followed 

by applying the Bartlett windowing function, shown in Equation 4.9, to highlight the 

abnormal event peak in the processed signal, as shown in Figure 4-5 (e). The applied 

approach successfully accentuated the fault induced in the 3rd peak (i.e., at ~0.6 s) and 

depressed all the other signal peaks. During the real-time application of this processing 
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approach, the signal was segmented and processed as shown in the previous section. 

First, the signal was segmented for each 2 workpiece/tool engagements (i.e., two 

sequential signal bursts) with a 50% overlap between segments. Then, the processing 

approach was applied to each segment individually and the maximum peak value of 

each processed segment was extracted to represent the prefailure detection parameter 

𝚿BW, as shown in Figure 4-5 (f), where a static threshold was applied to define the onset 

of prefailure phase evolution. 

  

Figure 4-5 (a, b and c) Simulated signals (d) normalized IMFs (e) normalized 
Bartlett-TKEO-HHT 𝚿B (f) maximum peak value of 𝚿B for each window 𝚿BW 

To reveal the capability of the developed processing approach to capture both tool 

prefailure and the onset of chipping, the approach was applied to the acquired signals 

during the experimental investigation of the monitoring signal ability to detect the tool 

prefailure and failure as showed in Section 4.2. Figure 4-6 shows the acquired data and 
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the calculated 𝚿B for (a) resultant forces, (b) vibrations, (c) AErms and (d) power signals 

before, during and after chipping. As seen in the AErms processed signal, the processing 

approach successfully localized the crack evolution phase. Furthermore, it depressed 

the AErms peaks before and after the chipping event period, which could have the same 

amplitudes, but low relative frequencies. The processed AErms signals captured the 

onset of the prefailure stage four engagements earlier before fracture, compared to 

three engagements using the raw signal. This response provided an earlier time 

window to stop the machine before any damage could happen to the machined part. 

The AErms response can be directly related to the elastic stress waves produced by the 

release of strain energy during the course of crack propagation and the generation of 

new surfaces. Additionally, mounting the sensor on the tool has significantly enriched 

the acquired signal by the waves generated from the tool material rather than the 

workpiece. This outcome shows the approach capabilities to indicate abnormal events 

during intermittent cutting operations using the AErms signals.  

 

Figure 4-6 Normalized signals and corresponding TKEO-HHT responses of (a) 
resultant force ‘Fr’ (b) vibrations in feed direction ‘Vf’ (c) acoustic emission rms ‘AErms’ 

and (d) drive motor power ‘P’ during the prefailure phase and the chipping event. 
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This processing approach also showed the resultant force and the vibration signals 

suitability to capture the onset of chipping only as the processed signal bursts during 

the prefailure period were comparable to the ones after chipping, as shown in Figure 

4-6 (a) and (b). On the other hand, the processed power signals did not show any peaks 

in the time-frequency spectrum, which confirmed the signal insensitivity to the crack 

evolution and the chipping event.  

The output nature of the signal processing approach allowed the application of a 

static threshold experimentally. Once the processed signals were calibrated with the 

tool condition, a threshold limit could be defined by comparing the processed signal 

peak values in the prefailure phase to the ones during normal cutting. 

4.6. Summary 

A method was devised to induce cyclic load on the cutting tool tip to study the effect 

of unstable crack propagation, which preceded tool chipping, on indirect sensing 

methods using cutting forces, vibrations, power and AE signals. 

Forces and vibrations were shown to be sensitive to the onset of tool chipping, 

whereas the power was shown to be insensitive to the event in contrast to the literature. 

This insensitivity can be related to the small chipping size of 0.1 mm. These signals did 

not show any change during the prefailure phase 

The AE raw signal and the AErms were shown to be sensitive to the elastic waves 

generated in association with the generation of new surfaces during the unstable crack 

propagation phase. The phase was captured before the onset of chipping by three 

sequential engagements between the tool and workpiece. However, this left a relatively 

short time (on the millisecond scale) for taking corrective action after detection. 

During the prefailure phase, the unstable crack indicator in the AE signals was 

characterized by infinitesimal time spans of high energy/frequency bursts. In addition, 

the AE signals generated were nonlinear, non-stationary and contaminated by bursts 

coming from the force variation in the intermittent cutting processes. 

To emphasize the crack propagation effect on the AErms signal and to depress the 

steady state cutting effect, a two-stage novel approach was introduced to detect the 
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prefailure evolution phase. The first stage analyzed the AE signal in the time-frequency 

domain using the non-stationary and nonlinear Hilbert-Huang Transform. In the second 

stage, the prefailure indicator was emphasized using the Teager-Kaiser Energy 

Operator and Bartlett widowing function. 

A method was developed to implement the signal processing approach for real-time 

applications. The method was optimized to minimize the computational time while 

ensuring no loss of information related to the relative changes in the instantaneous 

amplitude and frequency of the processed signal. 

The capability of the signal processing approach to capture induced artificial faults 

in ideal nonlinear periodic signals has been tested using artificial signals. The approach 

was further applied to real forces, vibrations, AErms and power signals, which were 

acquired during the characterization test. The approach successfully captured the 

prefailure phase earlier by 4 tool/workpiece engagements. This was one engagement 

earlier than when using the raw signals. In addition, the approach depressed the AE 

peaks coming from normal cutting status. The approach emphasized the onset of 

chipping on both the force and vibration signals, and proved the insensitivity of the 

power signals to the chipping event. 
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CHAPTER 5 
EXPERIMENTAL TESTING, VALIDATION AND ONLINE 

IMPLEMENTATION OF THE DEVELOPED TOOL PREFAILURE 
DETECTION SYSTEM 

5.  

5.1. Introduction 

In this chapter, extensive experimental testing and validation of the proposed signal 

processing approach for tool prefailure detection were carried out in both intermittent 

turning and milling applications. Different cutting parameters, tools and workpiece 

materials were used to investigate and validate the generalization capability of the 

proposed approach. Additionally, correlation between the chipping size and the 

prefailure phase features was developed for decision making. A thresholding function 

was introduced as well to avoid any tool chipping in order to protect the machined 

surfaces. A real-time data acquisition and signal processing controller were developed 

to implement the developed system online. This system acquired and processed the 

AErms signal in real-time to detect tool prefailure. The system was featured by a 2-way 

communication controller that was developed to overwrite the machine cutting 

parameters to safeguard the machined part in case of prefailure detection. Extensive 

experimental validation confirmed the accurate prediction of tool failure. The time 

required for signal processing, decision making and communication with the machine 

controller allowed stopping the operation before part damage. Such a system has not 

been created before. 

5.2. Design of Experiments 

To test the developed signal processing approach during intermittent turning 

applications, the same method devised in Section 3.7 and used in Chapter 4 was used to 

focus only on cracks due to mechanical loads and to avoid the occurrence of tool wear 

and build-up edges. Dry turning operations were carried out using carbide inserts on 

the 6-axis Boehringer-NG200 CNC turning center. The experiments were designed to 
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validate the independence of the proposed approach of the cutting parameters and 

workpiece material. The insert types, workpiece material, and cutting conditions are 

given in Table 5-1. Inserts 1 and 2 have the same geometry, coating (CVD 

TiCN/AI2O3/TiN), and nose diameter of 0.4 mm, but from different suppliers, whereas 

insert 3 has a PVD (Ti, Al) N/TiN coating and a 0.8 mm nose diameter. Additionally, 

three different types of steel and aluminum materials were used. The high speed 

camera HSC imaging was used for synchronization with the acquired cutting forces, 

vibrations and AE signals to record the chipping events in real-time during cutting. In 

addition, the imaging of this HSC was used to measure the chipping size at the insert 

nose. The chipping area Ac of the new generated surface was calculated as the product 

of the chipping size and depth, as shown in Section 3.6. The time of onset of chipping 

captured by the HSC imaging and the cutting force and vibration signals was compared 

to 𝚿BW peak location. 

For milling tests, the experimental setup shown in Section 3.7 was employed to 

investigate the prefailure detection approach in different cutting parameters and tool 

paths. Slotting and side milling experiments, which represent the main operations in 

any milling tool path, were carried out using endmill cutters on the 5-axis DMU 100P 

duoBlock machining center. Five solid tungsten carbide end milling tools and inserts 

with different diameters and corner radii were used to machine 200 mm long slots in 

different steel and aluminum workpieces under dry cutting condition. The 3-

component cutting forces, vibrations and AE signals were acquired during the tests in 

synchronization with high speed camera imaging. In milling applications, the width of 

the chipped edges Wc, shown in Figure 5-1, was employed as the chipping measurement 

criterion.  

 

Figure 5-1 Chipping on an endmill edge 

W
c
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Table 5-2 shows the tools, the cutting conditions (rotational speed n, feed rate f and 

axial depth of cut ap) and the workpiece materials used in these tests. The tools and 

workpiece material properties are described in detail in Section 3.3 and 3.4. Due to the 

difficulty of using the HSC imaging to assess the tool condition, a Winslow tool analyzer 

model 560 was used to measure the chipping width and the generated new surfaces at 

the end of the cutting paths.  

Table 5-1 Cutting conditions for intermittent turning operations 

Test Insert type (number) Workpiece material n (rpm) f (mm/rev) ap (mm) 

1 
DCMT11T304 (1) ASTM A514-B 200 

0.08 
2 

2 0.1 
3 

DCMT11T304 (2) ASTM A514-B 450 
0.15 

1 
4 0.2 
5 

DCMT11T304 (2) AISI1018 450 
0.2 

1 6 0.3 
7 0.45 
8 

DCMT11T308 (3) ASTM A514-B 900 
0.47 

2 
9 0.5 

 
Table 5-2 Cutting conditions for milling operations 

Test Tool Workpiece material n (rpm) f (mm/tooth/rev) ap (mm) ae (mm) 

10 
T16F2R40 AISI1018 900 0.08 4 

2 
11 3 
12 

T20F2R40 
AISI1018 900 0.08 4 2.5 

13 AL7075 16000 0.25 6 20 
14 T25F2R04 ASTM A514-B 900 0.1 6 3 
15 

T25F2R40 
ASTM A514-B 

900 
0.1 

6 3 
16 AISI1018 0.08 
17 T50F4R40 AISI1018 900 0.08 6 6 

5.3. Experimental Results and Discussion 

5.3.1. TKEO-HHT Processing Approach Capabilities 

The results of test number 6 are demonstrated as a representative case of the turning 

tests in order to show the capabilities of the TKEO-HHT approach to deal with the non-

stationary and nonlinear AErms signal in the prefailure phase. Figure 5-2 (a), (d) and (e) 

show the normalized raw vibration, AErms and the corresponding output of the Bartlett 

function of the TKEO-HHT (𝚿B), respectively, for eight engagements. These signals 
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were acquired during the prefailure phase and the chipping of the cutting tool. In this 

test, a chipping area of 2.46 mm2 was observed on the cutting insert tip using the HSC 

after 6 cutting engagements, as shown in Figure 5-2 (b) and (c). Only the chipping event 

was captured by the vibration signals in the cutting direction, as shown in Figure 5-2 

(a). On the other hand, the acoustic emission raw signals, Figure 5-2 (d), showed 

relatively high peak values in the prefailure phase (i.e., engagements 2 to 5) followed 

by the highest peak value at engagement 6. These peaks were, however, not highly 

indistinguishable compared to the rest of the cut, e.g., the peak of engagement 8 

occurred after chipping, and had almost the same value. The peak of engagement 7 was 

relatively low due to the reduced contact between the chipped tool tip and workpiece. 

The TKEO_HHT approach discriminated the high energy events of the prefailure 

phase, while depressing any other low energy signal variation, as shown in Figure 5-2 

(e). The proposed approach was thus able to distinguish between the signals inherent 

to the cutting process, even at impact load conditions, and the non-stationary signals 

associated with the stress waves released by the surface’s formation, before and at 

chipping. The onset of fracture was predicted during this pass four engagements earlier. 

For the milling operations, a high-speed high-feed roughing test (test number 13) is 

presented to demonstrate the characteristics of the acquired signals in harsh cutting 

conditions. Figure 5-3 (a) and (b) show the raw acquired Vf and AErms signals for a 

period of 200 seconds (~ 55 tool rotations). A chipping width Wc of 0.05 mm was 

observed after only 593 ms of cutting. The event was not captured by any of the raw 

signals, as seen in Figure 5-3 (a) and (b), due to the high rotational speed and the multi-

engagements between the tool teeth and the workpiece per rotation. However, by 

applying the TKEO-HHT approach to the Vf signals, the event was accentuated, as seen 

in Figure 5-3 (c). The processed AErms signal 𝚿B (AErms) successfully predicted the 

prefailure stage at 574 ms, which was five rotations before the onset of chipping, as 

seen in Figure 5-3 (d). This provided a 20 ms window to process the signal, to make a 

decision and to take an action before chipping during this high speed milling 

application.  
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Figure 5-2 (a) Normalized filtered vibrations, (b and c) high speed camera photos, 
(d, e) raw and processed AErms signal (𝚿B) of test number 6 

 

Figure 5-3 (a and b) Normalized raw vibrations and AErms, (c and d) processed 
vibrations and AErms signal (𝚿B) respectively of test number 13 
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5.3.2. Online Implementation and Threshold of the TKEO-HHT Approach 

The acquired AErms signals were conditioned, segmented and processed, as 

described in Section 4.4 in order to be implemented in real-time applications. A static 

threshold per tool was defined experimentally, based on the processed signal value 

during normal cutting conditions, to indicate the tool condition. The threshold function 

was independent of the cutting conditions, tool path, workpiece material and tool 

diameter. Figure 5-4 (a) and (b) and Figure 5-5 (a) and (b) show the prefailure detection 

parameter 𝚿BW of the AErms signals, the corresponding chipping size, and the real-time 

HSC tool imaging acquired during intermittent turning tests (Tests 1 to 9) and milling 

tests (Tests 10 to 17), respectively. Due to the complexity of the milling process and the 

nature of the tool/workpiece engagement in the milling process, it was difficult to 

acquire tool imaging in the real-time. Therefore, Figure 5-5 shows the tool condition, 

captured by a WINSLOW 560 tool analyzer, after each cutting path, and the 

corresponding chipping width. Hereafter, the onset of tool chipping in milling tests was 

detected by processing the vibration signals in the feed direction, as shown previously 

in Sections 4.5 and 5.3.1. The response of the processed vibration signals was compared 

to the AErms response to measure the prefailure time window. As seen in these figures, 

the developed signal processing approach achieved a 100% accuracy, predicting all the 

chipping events during both the turning and milling tests, regardless of the cutting 

speed, feed rate, depth of cut, tool geometry, tool material, cutting path and workpiece 

material. It also suppressed any AErms signal peaks caused by other sources that were 

not related to the prefailure phase. Additionally, the approach demonstrated a high 

ability to predict the chipping of an already chipped tool, as seen in tests numbered 1, 

3, 5, 7, 10, 11, 12, 14, 15 and 17. Moreover, the approach predicted overlapping chipping 

events, where two or more chipping events occurred on the same location on the 

cutting edge as in most of the cases, as shown in Figure 5-4 and Figure 5-5. Furthermore, 

the approach also predicted overlapping prefailure stages for different chipping events, 

where more than one crack unstably propagated at the same time, such as in tests 

numbered 1, 3, 7 and 17. Additionally, the approach also detected the onset of tool 

chipping for several events, such as tests numbered 5, 8 and 9. The proposed approach 
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was also able to detect chipping events with a width as small as 0.05 mm, even during 

high speed roughing operations, as shown in tests numbered 10, 12 and 13. 

The window size is mainly dependent on the unstable crack propagation rate. Such 

a stochastic phenomenon depends on controllable parameters, such as the cutting 

forces and the tool material and geometry properties, as seen in Equation 4.1, and other 

uncontrollable features, such as the existence of minor cracks and material 

imperfections. However, the proposed approach provided a window ranging from 4 to 

6 engagements between one tooth of the cutting tool and the workpiece for different 

cutting parameters and tool materials in both turning and milling applications.  

 

 

Figure 5-4 (a) Prefailure detection parameter 𝚿BW for turning tests 1 to 4 with 
respect to the tool/workpiece engagement number EN and the corresponding tool 

condition and chipping area Ac 
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Figure 5-4 (b) Prefailure detection parameter 𝚿BW for turning tests 1 to 4 with 

respect to the tool/workpiece engagement number EN and the corresponding tool 
condition and chipping area Ac 
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Figure 5-5 (a) Prefailure detection parameter 𝚿Bw for milling tests 10, 11, 12, 13 

and 16 with respect to cutting time and the corresponding tool condition and chipping 
width Wc. 
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Figure 5-5 (b) Prefailure detection parameter 𝚿Bw for milling tests 14, 15 and 17 
with respect to cutting time and the corresponding tool condition and chipping width 

Wc. 
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Table 5-3 shows the range of the prefailure detection window for the turning and 

milling tests and the corresponding processing time. For aerospace applications of high 

speed milling, typically the cutting speed varies between 6,000-20,000 rpm, which 

provides a window of 12 to 60 ms to predict tool chipping/fracture and take corrective 

action before a complete tool failure. The proposed approach successfully predicted all 

the chipping events with a maximum processing time of 2 ms. The processing time 

mainly depends on the cutting speed, signal sampling rate and the sifting process to 

extract the IMFs. The sifting process and its stopping criterion in addition to the 

sampling rate were optimized to minimize the processing time to a range between 0.8 

to 2 ms. This time is equivalent to approximately 0.25 to 0.65 of a tool rotation at a 

speed of 20,000 rpm. The prefailure window was insensitive to the cutting conditions, 

workpiece material as well as insert geometry and coating. 

Table 5-3 Ranges for prefailure detection window and the corresponding 
processing time 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

No. of chipping event 2 2 2 1 2 1 5 1 1 2 2 2 1 7 5 1 5 

Prefailure window range 5-6 6 4-5 5 4-5 4 4 5 4 6 4-5 4-6 5 4-6 4-6 4 4-6 

Processing time/Engagement (ms) 1.9-2 1-1.5 0.8-09 0.8-0.1 0.75 0.75-1.5 

 

The prefailure detection parameter 𝚿BW showed a quantitative relationship with 

the chipping size. Figure 5-6 (a) shows the prefailure detection parameter 𝚿Bw for the 

chipping events of test 7 as a representative case of successive tool chipping. This 

parameter is sensitive to the generated new surface area only regardless of the tool 

condition preceding the prefailure phase (i.e., healthy or chipped tool condition). The 

parameter 𝚿Bw showed an exponential relationship with the chipped area Ac. The same 

relationship was observed for the milling tests for two tools with the same geometries, 

but different diameters, namely, T20F2R40 and T25F2R40, as seen in Figure 5-6 (b). 

The sensitivity of the processing approach to the chipping area was not affected by tool 

diameter, tool path, cutting conditions and workpiece material. In some industrial 

applications, chipping does not prevent cutting totally and can be tolerated depending 

on the chipping level. Hence, this relation can be used to define a threshold of 𝚿Bw 

depending on the acceptable tool chipping. If 𝚿Bw exceeded this threshold, the process 
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should be stopped immediately to prevent part damage. However, the application of a 

global threshold using the 𝚿Bw directly for industrial applications has some challenges. 

The ‘𝚿Bw–Ac’ relationship is affected by the tool coating, geometry, boundary conditions 

and cutting conditions, which requires more learning effort to determine this 

exponential relationship for each tool. To overcome this limitation and to provide a 

general rule for a tool prefailure detection threshold, the relative percentage increase 

in 𝚿Bw at prefailure with respect to steady state cutting was calculated and found to be 

always significantly high and distinguishable. Figure 5-6 (c) shows the percentage 

increase in 𝚿Bw versus the chipped area at the prefailure detection of the first chipping 

event of each test. It can be shown that the percentage increase in 𝚿Bw follows the same 

‘𝚿Bw–A’ relationship, as shown in Figure 5-6 (a), although it was obtained at different 

cutting conditions and insert coating (inserts 1 and 2). This shows the dominant effect 

of the chipping area on the percentage increase in 𝚿Bw. Although this is still sensitive to 

the tool geometry, as shown for insert 3, the percentage increase in 𝚿Bw at prefailure 

detection was always higher than 10 times the normal cutting response under all 

circumstances. This percentage can be used in cutting applications that do not tolerate 

chipping as a reliable prefailure detection indicator with minimum learning effort. The 

aforementioned observations of the proposed approach clearly demonstrate the 

method’s capability to capture tool prefailure in real-time for industrial applications.  

 

     

Figure 5-6 Prefailure detection parameter 𝚿Bw for chipping events in (a) test 
number 7 and (b) milling tests using different tool diameters and (c) percentage 

increase in 𝚿Bw at prefailure for different inserts during turning. 
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It should be noted that, due to the AErms signal segmenting and overlapping, the 𝚿Bw 

mainly indicates the beginning of the prefailure phase and the chipping onset, while the 

intermittent peaks (i.e., peaks occurred during the prefailure phase) of 𝚿B, are 

suppressed. This is because, at the prefailure phase limit, the approach emphasizes the 

relative change between the prefailure phase and the steady state cutting. Although 

within the prefailure phase peaks, the relative change in the frequency/amplitude are 

insignificant, and hence, they are suppressed by the processing approach, which does 

not affect the prefailure detection accuracy. For example, Figure 5-4 (Test 2) shows the 

𝚿Bw during the prefailure phase of chipping event 4. It is clear that the 𝚿Bw is 

significantly high at the prefailure phase limits only, even when a surface crack was 

induced at engagement 23.  

5.3.3. Cutting Operation Stopping Time 

The total time needed to stop a machine, in the case of prefailure detection, can be 

divided into the time needed for (a) acquiring data, (b) conditioning and processing of 

the AErms signal, (c) communicating with the machine automation system, and (d) 

executing a stopping command and deceleration of moving the spindle/table. Despite 

the limited control on (d), the time needed for (a), (b) and (c) can be optimized. Hence, 

an ultra-high-speed processor was integrated in the TCM system for real-time signal 

acquisition, decision making and communication within a short time span. A National 

Instrument real-time embedded industrial compact controller chassis cRIO with an 

FPGA and a real-time processor were used as the TCM system hardware. Full 

description of the developed hardware and communication system can be found in 

Section 3.8.  

The developed TCM system was used to send a feed-hold command to the CNC 

controller during slot milling tests using a T25F2R04 tool with a rotational speed of 

16,000 rpm and different cutting feed rates and depth of cut (ap). The tests were 

monitored using a high speed camera to measure the communication time between the 

developed TCM system and the CNC machine as well as the machine response time. A 

5v TTL signal was sent to the HSC in synchronization with the feed-hold command, 
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which was sent to the CNC machine. This signal was used to mark the event time on the 

HSC camera. Figure 5-7 shows the time elapsed between sending a feed-hold command 

and the total stop of the table feed drive of the DMU-100P duoBlock CNC machine 

center. Regardless of the cutting feed rate, the drive stopping profile showed a linear 

relationship with the cutting feed rate. The deceleration function, which is the slope of 

the curves in Figure 5-7 (a), was a constant of approximately 0.6 G for all the tests. The 

time elapsed during communication and machine response ranged between 1 to 2 ms, 

as seen in Figure 5-7 (b). These measurements represent only the tested DMU CNC 

machine, which is driven by a SIMATIC S7-300, 317-2 DP central processing unit CPU. 

Faster response time can be achieved using a faster machine tool CPU, which has a 

response time. i.e., as low as 500 μs [96]. Overshooting took place at the end of the 

stopping procedure that resulted in contact between the cutting tool and the workpiece 

(i.e., positive feed rate) during the settling time, as shown in Figure 5-7 (c). A maximum 

feed rate of 170 mm/min was observed during this time that lasted for only 35 ms. This 

is equivalent to a feed rate of 0.016 mm/tooth/rev which limits the contact between 

the chipped surfaces of the cutting edge and the machined part. In addition, during this 

event, a total length of only 100 μm was cut. Such conditions have minimal influence on 

the surface integrity of the machined part and can be tolerated.  

Figure 5-8 shows the total time needed to completely stop the CNC machine using 

the developed, novel integrated TCM system. This includes time for acquiring the signal, 

processing it, sending the command to controller and completely stopping the feed 

motion. The figure shows the minimum Wmin and the maximum Wmax prefailure 

detection window limits (i.e., 4 and 6 tool revolutions respectively) of the cutting feed 

rate over a typical range of high speed cutting conditions of aluminum alloys in 

aerospace applications, where the cutting speed and feed rate varies between 6,000 to 

20,000 rpm and 0.05 to 0.127 mm/tooth/rev, respectively. This graph was generated 

assuming one tool/workpiece engagement per rotation, which is generally the case in 

milling, and a single flute tool. Under these conditions, a cutting process at a rotational 

speed of 16,000 rpm can be operated safely with a feed rate of up to 0.13 mm/rev. 

Additionally, due to the prefailure window independence of the cutting conditions, the 

tests data can be extrapolated to a maximum rotational speed of the testing CNC 
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machine (i.e., 18,000 rpm). Despite diminishing Wmin and Wmax to 13.4 and 20 ms, 

respectively, at this speed, the extrapolated stopping time of the operation is 14.5 ms, 

approximately 1.2 ms after chipping, assuming the lowest prefailure window provided 

by the proposed approach (i.e., 4 revolutions). This is equivalent to a 0.5 tool rotation; 

by which time, the chipped tool would not encounter the machined part. The proposed 

approach responds to the industrial need in a real working environment and can be 

retrofitted to existing machine tools. It is worth noting that no such system is currently 

available. 

 
Figure 5-7 (a) Stopping profile of DMU CNC center at a speed of 16,000 rpm (b) 

communication time measurement and (c) settling time 

 

Figure 5-8 Safe region to stop the cutting process before chipping at typical HSM 
cutting conditions of aluminum alloys in aerospace applications 
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5.4. Summary 

Intermittent turning and milling tests were conducted to test and validate the 

proposed signal processing approach under a wide range of cutting parameters, tools 

and workpiece materials. The onset of tool failure was captured using a high speed 

camera as well as force and vibration signals to be compared to the prefailure detection 

parameter of the AE signals. 

The developed signal processing approach was able to accentuate the prefailure 

phase in the AErms signals and depress the signal bursts that were generated during 

normal cutting. In addition, it detected tool prefailure even when there was no 

straightforward evidence of the unstable crack indicator in the raw AE signals in the 

time domain. This was shown in an analysis of signals acquired during a high speed 

milling application.  

The signal processing approach accurately predicted tool chipping in all the 

validation tests regardless of the cutting parameters, tool path or workpiece material, 

using a maximum processing time of 2 ms. Moreover, the approach captured 

overlapping chipping events, where two or more chipping events occurred on the same 

location of the cutting edge, and overlapping prefailure stages for different chipping 

events, where more than one crack were unstably propagating at the same time.  

The developed approach provided a window between 4 to 6 tool/workpiece 

engagements to take corrective action by stopping the machining process before tool 

failure happened. This is equivalent to a window of 12 to 60 ms. The approach was 

optimized to be implemented in real-time to predict tool chipping/fracture and to take 

corrective action before a complete tool failure in high speed milling applications. 

The prefailure detection parameter showed an exponential quantitative 

relationship with the chipping area. This relationship was insensitive to the tool 

diameter, tool path, cutting conditions and workpiece material. Therefore, it can 

provide a threshold to tolerate acceptable chipping size. In addition, the percentage 

increase in the prefailure detection parameter is always significantly high and 

distinguishable, regardless of the cutting conditions, workpiece material or tool coating. 
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A static threshold was found which can be applied with minimum calibration effort to 

prevent tool chipping during intermittent cutting operations. 

A real-time tool prefailure detection and tool failure prevention system was 

developed. The system uses an innovative approach and a 2-way communication 

interface for real-time control of the process parameters. The system provides an 

adequate time window to stop the machine before any damage to the machined part. 

The developed system was able to prevent tool chipping and safeguard the surface 

integrity of the machined part in high speed applications to a spindle rotational speed 

of up to 18,000 rpm. The proposed approach responds to industrial needs in a real 

working environment and can be retrofitted to existing machine tools. It bridges a gap 

in the current state of knowledge, since no such system is presently available. 
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CHAPTER 6 

DEVELOPMENT OF A REAL-TIME TOOL WEAR 
MONITORING SYSTEM 

6.  

6.1. Introduction 

In this chapter, an innovative signal processing approach is developed to deal with 

the limitations of using spindle drive feedback signals. This novel, rapid and effective 

approach is proposed to extract generalized features that can describe the tool 

condition under different cutting conditions and optimize the learning process time 

during intermittent cutting operations. The approach masks the effect of the cutting 

feed rate and depth of cut, and emphasizes the effect of the tool condition on the 

extracted features. Extracted features were analyzed using an N-way ANOVA test and 

then ranked, according to their sensitivity to the tool condition. In addition, an approach 

is proposed to benchmark six widely used pattern recognition classification methods 

with respect to their characteristics and computational efficiency to optimize the 

learning effort, the classification accuracy and the calculation time for TCM systems. A 

reassessment of the performance and accuracy of the classification methods was done 

using generalized extracted features (i.e., non-determined problem data) to provide a 

general judgment on the performance of these methods. These methods were selected 

due to their potential in the broad literature, namely, Binary Support Vector Machine 

(SVM), Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Neural 

Network (NN), Naïve Bayes (NB), and Decision Trees (DT). The following sections 

describe the feature extraction and generalized processing approach, the N-way 

ANOVA for feature ranking, and the methods used for classification, and they discuss 

the benchmarking approach as well as the feature selection and optimization 

techniques for online TCM. 
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6.2. Nature of the Problem 

As shown in Chapter 2, available TCM systems suffer from the lack of 

standardization, generalization and the need for extensive learning effort. Additionally, 

the TCM challenges increase with the recent trend of applying adaptive control systems. 

The critical literature review showed the high potential of using feedback signals from 

the spindle and feed motors compared to force and vibration signals for industrial 

applications. This is due to their non-intrusive nature and applicability for monitoring 

HSM processes of large parts. In the literature, signals acquired from spindle and feed 

motors have shown the capability to capture tool wear, and there has been no evidence 

that one of them is more sensitive to the tool condition than the other. In this work, the 

spindle drive feedback signals were selected over the feed motor feedback. This was to 

minimize the number of sensing systems, and the associated computational effort, to 

monitor all the feed motors in multi-axis CNC machines.  

The information content of the force signals is the best way to describe the cutting 

process. The cutting power, for instance, has an adequate amount of this information as 

well. This is because the power needed in the cutting process is a function of the 

resultant cutting forces and the spindle speed. For the same cutting parameters, there 

is a linear relationship between tool flank wear VB1 and cutting power as shown in 

Figure 6-1 (a) [97]. The same relationship can be found for the cutting current. 

However, power also increases by increasing the metal removal rate (MRR) during the 

cutting process. Figure 6-1 (b) shows the normalized power measured during a slot 

milling process using the same tool and workpiece material versus the MRR. The MRR 

was increased from MRR1 to MRR4 by increasing the depth of cut. Due to MRR 

dependency on the feed rate, speed and depth of cut, the power-wear relationship 

cannot be generalized. Therefore, time domain trend analysis techniques cannot be 

applied. On the other hand, advanced frequency domain processing techniques, which 

have been reported as a powerful processing tool in the literature for wear detection, 

are time consuming. Thus, they cannot be applied for HSM TCM applications as well. 

Hence, in this work, pattern recognition methods were investigated to detect the tool 

wear condition based on feedback signals of the spindle motor. 
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Figure 6-1 (a) Cutting power vs. wear, turning operation for C45 steel using a P30 

tool, v=165 m/min, f=0.45 mm/rev, ap=2.5 mm [97] (b) normalized cutting power vs. 
metal removal rate, milling operation of AL7075 using T25F2R04 

In modern CNC machines, 400 Hz 2-pole induction motors are usually used as a spindle 

motor. These motors are controlled by a pulse width modulation (PWM) module to control 

the spindle torque and speed. As the spindle is subjected to cyclic torque during the 

milling process, a PWM module changes the supplied frequency and voltage to maintain 

constant speed. Unfortunately, there is no single standard PWM controlling strategy 

that can be applied for CNC spindle control among the wide range of cutting speeds and 

torques. As a result, to maintain the same spindle torque and speed, different 

combinations among the drive motor voltage, current and the phase between them can 

be found. To illustrate the effect of the PWM controller on the acquired spindle feedback 

signals (i.e., power, voltage and current), Figure 6-2 shows the current and voltage 

during machining tests that were acquired simultaneously with the power as shown in 

Figure 6-1 (b). The cutting power showed a gradual increase from MRR1 to MRR4. 

However, from MRR1 to MMR2, there was a slight increase in the voltage whereas the 

current contributed mainly to increase the power, as shown in Figure 6-2. In contrast, 

from MRR2 to MRR3, the increase in power was mainly dependent on voltage increase. 

Furthermore, from MRR3 to MRR4, although the power increased, both current and 

voltage decreased. This can be related to decreasing the phase between the generated 

signals. As a result, in this work, features extracted from all the feedback signals, 

namely, voltage, current and power, are studied and analyzed to select the most 

sensitive features to the tool condition. Subsequently, they are fused using a pattern 

recognition method to detect the tool condition, as is shown later.  
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Figure 6-2 (a) Normalized current and (b) normalized voltage acquired during the 
tests shown in Figure 6-1 (b)  

6.3. Proposed Generalized Method for Feature Extraction and 
Analysis 

6.3.1. Proposed Signal Processing Approach 

The signal processing approach introduced in this research significantly reduces the 

required system learning through masking the effect of the cutting conditions and 

emphasizing the effect of the tool condition. This approach was applied to the acquired 

force and spindle drive feedback signals to produce normalized patterns within scaled 

segments that have the same number of points per revolution. Producing such unified 

patterns is essential for adopting a deterministic approach for online pattern 

recognition and decision making, which reduces the processing time and improves 

system reliability. The use of forces is not practical for implementation in an industrial 

environment. Therefore, in this study, forces are only used as a reference to insure the 

validity of using spindle drive feedback signals, namely, the spindle motor current, 

voltage and power, for tool condition monitoring. In order to eliminate noises resulting 

from the spindle drive motors, the second passing frequency of the cutting tool was 

applied as a low pass filter for the acquired signals. This filtering reduces the signal 

noises and prevents aliasing problems due to sampling without affecting the 

fundamental features of the cutting process [42, 98]. 

Following signal filtering, the following two main consecutive operations are 

applied to spindle drive feedback signals prior to feature extraction: 
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1. Signal segmentation in the time domain: Owing to the repetitive nature of the milling 

process, the acquired signals were segmented per tool rotation to provide repetitive 

patterns of the extracted signal segments. This provided a fixed pattern independent of 

the cutting speed. An overlapping moving frame was also applied for segmentation in 

order to remove any constraints on the segmented pattern boundaries to match the 

starting and ending points of the tool/workpiece engagement. Such an action removed 

the constraints on the segmentation timing, and hence, provided more “generalized 

features”.  

2. Normalization: The cutting feed rate and depth of cut controlled the segment peak 

values during the cutting process. Therefore, each segment was normalized with 

respect to its maxima to mask the feed rate and depth of cut effects. 

6.3.2. Feature Extraction 

The obtained normalized segments contain the information required to detect the 

tool status. This is clearly demonstrated in Figure 6-3, which shows the change in the 

pattern of the normalized signals of the worn tool compared to the fresh tool within one 

revolution. For a worn tool, the change in the geometry of the cutting edge due to the 

developed wear resulted in a longer contact time between the tool and the workpiece. 

This alters the frequency spectrum and the statistical features of the standard pattern 

of a fresh tool, which can be used to detect the level of tool wear. In this study, 40 

physical and statistical features were considered and tested. These features were 

selected because of their sensitivity to the physical tool condition change in the time 

and/or frequency domains of the force [33, 99-102] and spindle feedback [33, 103, 104] 

signals. However, only the most noteworthy features are reported in this chapter for 

simplification. These features are the segments: Energy E (represented by the area 

under the curve of the analyzed signal), Minimum min, Root Mean Square rms, Standard 

Deviation SD, Mean, Kurtosis K, Variance Var and Peak magnitude to rms ratio (P2rms) 

in the time domain. In the frequency domain, the mean and median normalized 

frequency of the signal power spectrum fmean and fmed, the band power BP, the maximum 

peak value of the periodogram Pp and Welch power spectral energy Pw are extracted.  
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Figure 6-3  Normalized, filtered resultant force of a fresh and worn tool. n=14,000 
rpm, f= 3,500 mm/min and ap = 3 mm. 

6.3.3. Data Analysis 

In order to verify the significance of the processing method on masking the effect of 

cutting conditions, an N-way ANOVA analysis and f-test were carried out on the 

extracted features after applying each of the signal processing operations, namely, 

segmentation and normalization. The feature sensitivity to the tool condition, cutting 

feed rate and depth of cut was tested. Subsequently, a flag value was used to describe 

the change in the feature sensitivity to the tool condition after each processing 

operation. To ease the presentation of the ANOVA test results, and to test the 

plausibility and sensitivity of the tested features, which depended on the p-values and 

f-values of the feature, respectively, the following scheme was used. 

• A value of ‘1’ is assigned to any processed feature that has a p-value less than the 

ANOVA test significance level (i.e., 0.01) and the maximum f-value corresponds 

to the tool condition. 

• Oppositely, a flag value of ‘-1’ is assigned to any processed feature that has a p-

value larger than the significance level (α= 0.01) or the tool condition f-value is 

not the maximum value. 

• A flag value of ‘0’ is assigned to any feature that does not satisfy any of the 

previous conditions. 
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6.3.4. Features Ranking 

The extracted features were ranked according to their sensitivity to the tool 

condition and their insensitivity to the cutting conditions and tool size. A ranking 

function Ri was created to fulfill these qualities by sequentially feeding the p-values and 

f-values obtained from these analyses to the ranking function in order to select the most 

indicative features that correlate to the tool condition. The feature ranking score can be 

determined using the following equation: 

𝑅𝑖 =  ∑

1 −
𝑓𝐹 + 𝑓𝑎𝑑

𝑓𝑇𝐶
]

𝑖
+

𝑓𝑇𝐶𝑖

max (𝑓𝑇𝐶 ↾ [𝑁] )

2𝑁

𝑁

1

 ;   {
𝑓𝑖 = 𝑓 𝑝𝑖 ≤ 𝛼
𝑓𝑖 = 0 𝑝𝑖 > 𝛼

  ;  𝑖

∈ {1,2, … 𝑞} 

6.1  

where 𝑓𝐹 , 𝑓𝑎𝑑
 and  𝑓𝑇𝐶  are the f-values corresponding to the cutting feed rate, axial depth 

of cut and tool condition respectively, 𝑝𝑖 is the p-value for different tested features, α is 

the ANOVA test significance level, and 𝑞 is the number of features extracted. In Equation 

6.1, 𝑁 represents the number of similar tools of different sizes. The feature ranking 

score, 𝑅𝑖, varies from -∞ to 1. A value of 𝑅𝑖 = 1 indicates ultimate sensitivity to the tool 

condition, while 𝑅𝑖 = 0 shows extremely low sensitivity to the tool condition. On the 

other hand, a value of 𝑅𝑖< 0 denotes that this feature is insensitive to the cutting 

condition. The role of the assessment based on the p-value is to determine whether the 

extracted feature is applicable or not. Features with p-value less than 0.01 were the 

ones further ranked based on their f-values. 

6.4. Pattern Recognition Classification Methods 

The most frequently used pattern recognition methods, which were found in the 

literature, were considered in this study. These methods are the Binary Support Vector 

Machine (SVM), Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Neural 

Network (NN), Naïve Bayes (NB), and Decision Trees (DT). To apply these methods, the 

machine learning toolbox of MATLAB© software was used. In addition, empirical prior 

probabilities were utilized as required depending on the relative incidences of the tool 

condition in the trained data. A small number of training samples may produce an 
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undefined classifier, whereas a high number may lead to an over-defined classifier. In 

both cases, the error increases. Therefore, different numbers of training samples were 

tested to reach near optimum classifiers. It should be noted that, due to the application 

of moving frame segmentation, the minimum number of segments to be used in the 

classifier training process should be at least equal to 1/(window overlapping 

percentage). This guarantees total coverage of all possible segment patterns in the 

learning process. 

6.4.1. Support Vector Machine 

The support vector machine solves the problem of separation of two classes by 

finding a linear function f, called hyperplane, that separates the classes and finds the 

widest margin between them by minimizing w as follows [61]: 

 

𝑓(𝑥) = (𝑥 ∙ 𝑤) + 𝑏; {
𝑓(𝑥) > 0 𝑓𝑜𝑟 𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 1

𝑓(𝑥) < 0 𝑓𝑜𝑟 𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 2
} 6.2 

 

This was done using the sequential minimal optimization technique. For nonlinearly 

separable data, a slack variable is allowed for samples from boundaries of the 

separation margin with a penalization parameter. A support vector machine proved to 

be less vulnerable for the overfitting problem and had a higher generalization ability 

since it was designed to minimize structural risk [105]. In addition, the method does 

not require a large number of training samples and can solve the learning problem even 

when only a small amount of training samples are available [61]. A linear SVM with a 

regularization parameter equal to 1 was used in this work. 

6.4.2. Linear Discriminant Analysis (LDA) 

Linear discriminant analysis is a mathematical model to classify multivariate data 

based on statistical analysis. It is based on assumptive Gaussian distributions of the 

learned data classes. The score function of the LDA model can be expressed as follows 

[106]: 
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𝑆𝑓(𝛽) =
𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛
=

𝛽𝑇𝜇1 − 𝛽𝑇𝜇2

𝛽𝑇𝐶𝛽
 6.3 

where 𝛽 is the linear model coefficient, 𝐶 is the pooled covariance matrix, and 𝜇1 and 

𝜇2 are the mean vectors. This equation guarantees maximal separation between classes 

by maximizing the ratio of the ‘between-classes’ variance to the ‘within-class’ variance 

in the training data set. It predicts the tool condition by estimating the probability that 

a tested observation belongs to a tool condition class based on Bayes Theorem [106]. 

This allows fitting one of the pre-defined classes according to the mean and variance 

for each data class. The assumed distribution parameters are used to search for a linear 

combination of variables that best separate the learned data classes. This linear 

combination is used to determine the class of the tested data.  

6.4.3. K-Nearest Neighbor (KNN) 

K-Nearest Neighbor classification is a fundamental classification method that is 

recommended when it is difficult to determine reliable parametric estimates of 

probability densities [107]. It is based on learning by analogy. It measures the distance 

between the tested observation and the closest K-nearest neighbors in the learned 

dataset in an n-dimensional space. In this work, the Euclidean distance metric is utilized 

to determine neighbor closeness [107]. It is defined as the length of the line segments 

connecting the tested observation point Po = (Po1, Po2, …, Pon) by the nearest k-points Pk 

= (Pk1, Pk2, …, Pkn) in an n features domain. It can be calculated as follows: 

 

𝑑𝑘(𝑃𝑜 , 𝑃𝑘) = √(𝑃𝑜1 − 𝑃𝑘1)2 + (𝑃𝑜2 − 𝑃𝑘2)2 + ⋯ + (𝑃𝑜𝑛 − 𝑃𝑘𝑛)2 6.4 

 

The tested observation class is determined by using the assumption that objects near 

each other are similar. Hence, it categorizes tested data based on the classes of their 

nearest k-neighbors in the learned dataset.  
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6.4.4. Neural Network (NN) 

Neural Networks are a computational model inspired by the neural structure of the 

human brain, which find data structures and algorithms for learning and classification 

of data. They consist of an interconnected group of multi-layers of neurons that relate 

the inputs to the desired outputs. The network is trained by iteratively modifying the 

strength of the structure connections based on the information flow through the 

network to map the inputs to the correct response [108]. Usually NN is used to model 

complex relationships and find patterns in nonlinear data. A one-layer NN of size 10 

with one output was constructed using the Levenberg-Marquardt training algorithm 

[109] as well as the extracted features in this research. 

6.4.5. Naïve Bayes (NB) 

Naïve Bayes is a statistical method which is used to construct classifiers that predict 

the probabilities of each class feature. They are based on Bayes theorem with a strong 

(naive) independence assumption between the features. This assumption states that 

the conditional probability of a feature for a class is independent of the conditional 

probabilities of other features from the same class, and hence, all features are equally 

important and statistically independent. The joint probabilities of new data is used to 

predict their class, depending on the training dataset features probability distribution 

[110]. New data is classified based on the highest probability of its belonging to a 

particular class. Despite the incorrectness of this assumption, as regular features are 

dependent, NB classifiers are simple to apply and usually provide high accuracy [110]. 

Normal distribution was assumed to calculate the predictor distribution parameters 

within each class. 

6.4.6. Decision Trees (DT)   

A DT is a hierarchical model composed of decision rules that recursively splits 

independent variables into homogeneous zones [111]. It is a flowchart-like tree 

structure of decision rules to predict a new observation class from a set of input 

features. At each tree branching condition (node), the feature vector of a new 

observation is compared to a weight obtained from the training dataset. The number of 
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branches and the values of weights are determined during the training process. The DT 

method identifies and removes branches that may reflect noise in the training dataset 

to improve the classification accuracy. Decision trees have been applied successfully in 

many real-world situations for classification and prediction. The Gini diversity index 

was used in this work as a split criterion to classify the tool condition. 

6.5. Benchmarking Approach of the Pattern Recognition Methods 

The six pattern recognition models were trained and tested using the approach 

shown in Figure 6-4. The approach can be described as follows. 

First, the top ranked time and frequency domain features were divided into training 

and testing sets. Depending on the capability of the processing approach to mask the 

cutting conditions, the training set was biased by selecting only one cutting condition 

per tool for this purpose and using the rest of the cutting conditions to test the 

developed models. This is done to test the model capability to accurately define the tool 

condition using the minimum training effort.  

Next, in order to find the most suitable classifier for minimum training effort, the 

top ranked time and frequency domain features are divided into two distinct datasets 

for training and testing. Depending on the capability of the signal processing approach 

to mask the cutting conditions effect on the extracted features, a biased training dataset 

is generated from the features extracted from only one cutting feed rate and depth of 

cut combination per tool condition. The rest of the cutting conditions are used to test 

the developed models. This is done in order to test model capability to accurately define 

the tool condition using the minimum training effort, which is one cut per tool 

condition. It should be noted that, to achieve higher accuracy from the testing database, 

classifier underfitting is required. This is because in the proposed training and testing 

scheme, the classifier is tested using totally new data that has never been used for 

training. Hence, the more the classifier is fitted to the training data, the more it could 

misclassify new data. To illustrate, two curve fitting models, which are considered a 

machine learning model, are shown in Figure 6-5. These are a linear model and a six-

degree polynomial model, which were generated using only 50% of the given data. As 
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seen, the polynomial model has provided higher accuracy than the linear one within the 

training data. However, for the total dataset, the linear model, which underfitted the 

training data, provided higher accuracy. Therefore, linear separation was applied in the 

tested classifiers when applicable. 

 

Figure 6-4 Benchmarking general approach 

 

Figure 6-5 Curve fitting using 50% of the data for training 

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12

Data

Polynomial

Linear

Training Testing



90 
 

After that, for classification model training, five training subsets Ti were created 

randomly using 20%, 40%, 60%, 80% and 100% of the training dataset. Each subset 

was used for generating 11 different models of the same classifier method using an m 

number of features. Each size-feature subset Tim represents m number of features, 

where m varies from 1 to 11 according to their ranking score Ri in sequence. In total, 

55 models were generated and analyzed for each pattern recognition method. A five-

fold cross validation method was implemented in the training process in order to train 

the models by 5 stages/folds of the training data. Finally, the testing dataset was used 

to test and analyze the accuracy and computational time for the generated models. 

The methods were compared according to classification accuracy, computational 

time and learning effort, which consisted of the number of training segments and the 

number of extracted features needed in the learning process. For a better 

representation of the classification method accuracy from a practical point of view, two 

types of false classification errors of the tool condition were introduced, namely, Safe 

False Alarm (SFA) and Unsafe False Alarm (USFA) rates. USFA occurs when the tool is 

worn, but the method classifies it as fresh. The SFA is the opposite where the tool is 

classified as worn while it is in a good state. Although SFAs may reduce productivity, 

they do not affect part quality. In contrast, the USFA condition could lead to more 

damage as the part surface integrity could be affected before tool replacement. Both 

errors rates were computed for all the classification methods 

6.6. Feature Selection and Optimization  

6.6.1. Feature Independency  

The feature subset in the above benchmarking approach was generated in sequence, 

according to the ranking score for benchmarking purposes only. However, the 

combination of these features may not be the optimum feature subset and the level of 

accuracy may be increased by further optimization of the feature subset. In addition, 

the above feature selection algorithm does not consider interactions between features. 

For example, features selected from the list based on their relative ranking score may 

also contain redundant information, so that not all the features may be needed to 
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achieve the same level of accuracy. Hence, a more advanced feature selection algorithm 

is needed to identify the most characterizing features, to optimize the classification 

problem dimensionality (i.e., size of feature subset) and to improve the performance 

and accuracy.  

To identify most characterizing features, redundant features are excluded from the 

positively ranked features. This is done by calculating the matrix of the pairwise 

correlation coefficient between each pair of features using Pearson's linear correlation 

method. The Pearson coefficient measure has a value from -1 to +1, where -1 is total 

negative linear correlation, +1 is a total positive linear correlation and 0 is no 

correlation. For a feature observation matrix Xqn, where q is the number of features and 

n is the number of observations, the Pearson’s linear correlation coefficient r between 

two features a and b (i.e., two columns in X) is defined as [112]: 

 

𝑟(𝑎, 𝑏) =
∑ (𝑋𝑎,𝑖 − �̅�𝑎

𝑛
𝑖=1 )(𝑋𝑏,𝑖 − �̅�𝑏)

(∑ (𝑋𝑎,𝑖 − �̅�𝑎)2𝑛
𝑖=1 ∑ (𝑋𝑏,𝑖 − �̅�𝑏)2𝑛

𝑖=1 )
1/2

 
6.5 

 

where the mean value of the feature observations �̅� = (∑ 𝑋𝑖)/𝑛𝑛
𝑖=1 . The practicality of 

the correlation is more vital than the statistical significance. Therefore, a threshold 

absolute r value of 0.95 is used to determine highly correlated features to be eliminated 

from the features’ subset.  

6.6.2. Feature Optimization  

After filtering the features dataset by ruling out highly correlated features, it was 

optimized to reduce the classification problem dimensionality and to improve the 

performance and accuracy. This was done using the wrapper feature selection method, 

where one predetermined classification algorithm was used, and its estimated 

performance was implied as the evaluation criterion. A forward sequential feature 

selection SFS was applied. The minimum misclassification error rate (MCE) was 

employed as the cost function of the sequential feature selection method. It could be 

defined as the sum of misclassified segments over the total number of observations. 

Both techniques (i.e., forward and backward search) were applied on a training data 
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subset (i.e., Ti) to select the most expressive features with minimum MCE. The feature 

selection problem can be formulated as follows: 

 

𝑀𝐶𝐸(𝑇𝑖𝑑) = min
𝑇𝑖 ∈ 𝐷𝐵

𝑀𝐶𝐸(𝑇𝑖) 6.6 
 

where Tid is a possible subset that contains d number of features and DB is the feature 

database. Hence, for the forward SFS method, starting from an empty feature set, the 

best individual feature, which generates the lowest misclassification error rate MCEd, is 

selected to generate the initial subset Tid. Then, a candidate subset is created by 

sequentially adding each of the features not yet selected f + to obtain a new minimum 

MCE as follows: 

𝑓+ = arg  min
𝑓 ∈ 𝑑

 𝑀𝐶𝐸+(𝑇𝑖𝑑+1) 6.7 

 

where MCE+ denotes that the error rate, obtained by Tid+1, is less than MCEd. This 

process continues until adding more features does not decrease the error rate. For the 

backward SFS, the same procedure is followed in a top-down approach starting with 

the complete set of features, where redundant features are removed until d features 

remain. In this work, the forward sequential feature selection with a 5-fold cross-

validation was applied to optimize the number of features. 

6.7. Correlation between Fresh and Worn Tools 

Worn tools were generated for the development of the tool condition monitoring 

system in a laboratory environment. However, it is more feasible to use the fresh tools 

only without the need for generating worn tools. This reduces the learning effort, the 

cost and the time required to implement the developed system for industrial 

applications. Hence, to further enhance the applicability of the developed system, an 

analysis was carried out to develop and validate a correlation between the features 

extracted from the fresh and worn tools. Such a correlation could further reduce the 

learning effort by 50% because only the fresh tool features would need to be used to 

develop the classification model.  
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6.8. Summary 

The PWM spindle drive module controls the supplied voltage, current and the phase 

between them to provide the desirable power, torque and speed to the spindle. 

Therefore, features extracted from all the feedback signals, namely, voltage, current and 

power, were studied and analyzed to select the most sensitive features to tool wear, 

which was defined by uniform flank wear. 

Based on the repetitive nature of the milling process, a robust and reliable signal 

processing approach was proposed to extract generalized features in both time and 

frequency domains. The approach filtered, segmented per revolution and normalized 

the signals to mask the effect of the cutting conditions on the extracted features and to 

accentuate the tool condition effect. The normalized segments showed that the 

developed tool wear resulted in a longer contact time between the tool and the 

workpiece, which altered the value of the extracted features. 

An N-way ANOVA test and f-test were carried out to characterize the extracted 

features according to their sensitivity to the tool condition, feed rate and depth of cut. 

The outcome was used afterwards in a ranking function in order to select the most 

indicative features that correlate to the tool condition. 

Using the features that had a high sensitivity to the tool condition, an approach was 

proposed for a systematic study of the widely used pattern recognition methods, 

namely, Support Vector Machine, Linear Discriminant Analysis, K-Nearest Neighbor, 

Neural Network, Naïve Bayes, and Decision Trees. The study benchmarked the methods 

based on their conservation characteristics as well as learning and computational 

effort, and they provided a general judgment on the classifying method performance. 

The positive ranked features were optimized by first excluding redundant features, 

which had high correlations, then using the sequential feature selection method to 

develop a pattern recognition classification model with high accuracy. Such a process 

significantly reduced the number of features needed to identify the tool condition, and 

hence, reduced the computational effort. A correlation between the optimized features 

of fresh and worn tools was proposed to reduce the learning effort by 50% and to 

increase the flexibility of the developed system to be useful in industrial applications.
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CHAPTER 7 
EXPERIMENTAL TESTING, VALIDATION AND ONLINE 
IMPLEMENTATION OF THE DEVELOPED TOOL WEAR 

DETECTION SYSTEM 
7.  

7.1. Introduction 

In this chapter, the experimental results of testing and validating the proposed tool 

wear monitoring system are discussed. Generalized features that are independent of 

the cutting parameters and only sensitive to the tool condition were extracted, ranked 

and optimized based on the methods described in Chapter 6. The benchmarking results 

of six common pattern recognition classification methods, namely, Binary Support 

Vector Machine, Linear Discriminant Analysis, K-Nearest Neighbor, Neural Network, 

Naïve Bayes, and Decision Trees are discussed. The analysis of their characteristics and 

computational efficiency to optimize the learning effort, classification accuracy and 

calculation are demonstrated in this chapter. Based on the benchmarking results, the 

classification method with the best performance for real-time application was selected 

and used to build a tool condition classification model. A TCM system using this model 

was developed based on features extracted from the power, voltage and current signals 

of the spindle motor drive module. Experimental validation tests were carried out to 

demonstrate the robustness and high accuracy of the generated TCM system in real-

time applications. The system capability to detect the tool condition was tested with 

respect to the cutting speed, feed rate, axial and radial depth of cut, tool diameter, tool 

corner radius, and number of flutes. The system generalization capability to detect the 

tool condition in different configurations of tool/workpiece engagement were tested as 

well. The following sections describe the experimental setup, sensor selection and the 

design of experiments; discuss the results of the N-way ANOVA test and feature ranking 

and selection; benchmark the methods used for pattern recognition; and demonstrate 

the validation results. 
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7.2. Design of Experiments for Tool Wear Monitoring System 
Development 

7.2.1. Tool Wear Generation 

According to ISO standards [2], a cutting  tool reaches a severe wear condition when 

either or both of the acceptable flank wear VB threshold values (0.3 mm uniform or 0.5 

mm localized) are exceeded [2].  In this research work, uniform flank wear was selected 

as the tool life criterion. Uniform worn tools, as shown in Figure 7-1, were distinguished 

compared to fresh ones. The tested tool conditions were categorized into two ranges, 

namely, a fresh tool (0 mm ≤ VB < 0.07 mm) and a worn tool (0.25 mm ≤ VB < 0.3 mm). 

This level of tool wear was generated on the cutting tool edges through controlled 

milling processes on steel workpieces prior to performing the TCM milling tests. Tool 

wear was measured using a Winslow cutting tool analyzer system model 560. 

 

Figure 7-1 Tool wear generation (a) VB = 0.29 mm (b) VB = 0.27 mm 

7.2.2. Design of Experiments for System Development 

Experimental slot tests were performed on a 5-axis DMU 100P duoBlock machining 

center. The test setup, tools and workpiece material properties and chosen sensors are 

discussed in detail in Chapter 3. Seven solid tungsten carbide endmills with different 

diameters and corner radii were used to machine 100 mm long slots in the AL-7075 

workpieces under flood cooling conditions. The 3-component cutting forces and the 

spindle drive motor current and voltage signals were acquired during the tests, and the 

tool condition was evaluated after each cut slot. The motor current and voltage signals 

(b) (a) 
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were used afterwards to digitally calculate the instantaneous motor power. Table 7-1 

shows the full factorial matrix of the cutting conditions (rotational speed n, feed rate f 

and axial depth of cut ap), as well as the wear levels used in the slotting tests. These tests 

were used in the development stage to analyze and select the most expressive features 

and classification method. A total of 112 slot tests were performed including one 

replicate of each set of cutting conditions. This section focuses on the cutting feed rate 

and depth of cut, as they have a direct relationship with the cutting energy, and hence, 

changing such parameters directly affects the monitored signals. 

Table 7-1 Full factorial experimental design of the cutting conditions for TCM 
system development 

Tool VB (mm) n (rpm) f (mm/tooth/rev) ap (mm) 

T12F2R00 

0 - 0.07 
 
 
 
 

0.25 - 0.3 

14,000 

0.1 
 
 
 
 

0.14 

3 
 
 
 
 

5 

T16F2R00 

T16F2R04 

T16F2R33 

T20F2R04 

T20F2R33 

T25F2R04 

7.3. Experimental Results and Discussion 

In this section, the ability of the processing approach to mask the cutting conditions 

is demonstrated, and the results of the N-way ANOVA test, the feature ranking, and the 

LDA model are presented. For simplicity, the results of the current signals only are 

presented and compared to the cutting force signals. The same processing procedures 

were applied to the spindle voltage and power, and equivalent results were obtained. 

Figure 7-2 shows the normalized filtered signals of the (a) resultant force and (b) 

resultant spindle motor current. The cutting tests were performed at n =14,000 rpm, f= 

3,500 mm/min, ap = 3 mm, using tool T12F2R00. As shown in Figure 7-2 (a), the 

resultant force signals were steady and consistent through the repetitive 

tool/workpiece engagements. On the other hand, the resultant current signals showed 
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a repetitive, inconsistent pattern, as shown in Figure 7-2 (b). This inconsistency can be 

related to signal distortion due to the pulse width modulation that drives the spindle 

motor, which toggles the voltage/current signals on and off rapidly to control the motor 

speed and the delivered electrical power.  

 

Figure 7-2 Normalized filtered (a) resultant force and (b) resultant current. 
n=14000 rpm, f= 3500 mm/min and ap = 3 mm 

After processing the acquired signals and extracting the desired features, N-way 

ANOVA tests were carried out using a confidence level of 99% (significance level α= 

0.01) to test feature sensitivity to the cutting tool condition, cutting feed rate and depth 

of cut. The N-way ANOVA tests were performed using MATLAB's ANOVA routine from 

the Statistics and Machine Learning Toolbox. About 150,000 observations in total were 

employed in the ANOVA analysis. This includes the overall number of observations that 

came from the current and force signals acquired from 112 cutting tests. An average 

number of 350 samples per test for each acquired signal were analyzed for each 

processing operation. The f-values and p-values of the most significant features are 

presented in Tables 7-2, 7-3, 7-4 and 7-5 for the resultant force and resultant current 

signals acquired from the tools T16F2R00 and T12F2R00, respectively. These tables 

show the ANOVA test results after signal filtration, segmentation and normalization. 

They also show the flag values assigned to each feature according to its improvement 

in sensitivity to the tool condition after each processing operation, where an increase, 

no change and a decrease of the feature sensitivity to tool condition are represented by 

a flag value of 1, 0 and -1, respectively. 
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Table 7-2 N-way ANOVA test results for resultant force signals for tool T16F2R00 

  E min rms Mean K Var P2rms fmean Pw fmed BP Pp 

f-value filtration 

TC 0.8 501.2 308.2 307.7 14.4 66.8 20.0 217.9 23.5 14.2 217.9 31.2 

f 0.8 91.0 54.5 54.4 2.1 6.0 0.1 41.6 1.1 30.9 41.6 0.2 

ap 1.9 218.1 126.8 126.8 7.7 7.2 4.4 79.6 25.4 1.2 79.6 34.0 

f-value segmentation (x103) 

TC 2.9 112.6 77.7 77.5 0.8 13.6 4.9 52.6 46.6 4.8 52.6 52.3 

f 0.5 19.8 13.6 13.6 0.1 1.1 0.0 9.9 8.8 0.0 9.9 9.9 

ap 0.0 50.5 31.5 31.5 0.7 1.3 0.0 18.9 16.8 0.2 18.9 18.9 

f-value normalization (x103) 

TC 0.0 2.2 4.9 5.0 0.8 4.7 4.9 4.9 0.8 4.8 4.9 4.1 

f 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ap 1.8 1.1 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.2 0.0 0.0 

p-value filtration (x10-3) 

TC 432 0 0 0 19 1 11 0 8 20 0 5 

f 497 0 1 1 237 62 885 2 409 4 2 850 

ap 238 0 0 0 50 55 103 1 7 334 1 4 

p-value segmentation (x10-3) 

TC 0 0 0 0 0 0 0 0 0 0 0 0 
f 0 0 0 0 0 0 505 0 0 23 0 0 

ap 7 0 0 0 0 0 0 0 0 0 0 0 

p-value normalization (x10-3) 

TC 0 0 0 0 0 0 0 0 0 0 0 0 

f 0 0 427 424 0 17 505 388 834 23 388 450 

ap 0 0 0 0 0 0 0 0 126 0 0 2 

Segmentation Flag 1 1 1 1 1 1 1 1 1 1 1 1 

Normalization Flag -1 1 1 1 0 1 0 1 1 0 1 1 

 
Table 7-3 N-way ANOVA test results for resultant force signals for tool T12F2R00 

  E min rms Mean K Var P2rms fmean Pw fmed BP Pp 

f-value filtration 

TC 58.7 99.7 98.1 98.2 252.4 22.9 50.2 31.8 19.8 3.6 31.8 32.0 
f 13.1 34.0 29.5 29.6 0.0 2.3 0.2 11.4 0.6 55.7 11.4 0.2 

ap 5.1 26.2 22.7 22.8 1.3 1.0 0.1 4.6 6.9 0.1 4.6 8.1 

f-value segmentation (x103) 

TC 11.7 25.8 24.5 24.5 27.8 5.6 8.6 7.9 7.7 10.2 7.9 7.9 
f 0.5 8.8 7.3 7.3 0.0 0.5 0.0 2.8 2.8 0.1 2.8 2.8 

ap 0.4 6.8 5.7 5.7 0.1 0.2 0.0 1.1 1.1 0.0 1.1 1.1 

f-value normalization (x103) 

TC 8.6 12.2 8.6 8.7 27.8 10.2 8.6 8.7 1.3 10.2 8.7 7.2 
f 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 

ap 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

p-value filtration (x10-3) 

TC 2 1 1 1 0 9 2 5 11 129 5 5 
f 18 3 4 4 986 217 810 22 574 1 22 837 

ap 88 7 9 9 320 373 821 99 58 750 99 47 

p-value segmentation (x10-3) 

TC 0 0 0 0 0 0 0 0 0 0 0 0 
f 0 0 0 0 200 0 0 0 0 0 0 0 

ap 0 0 0 0 0 0 54 0 0 92 0 0 

p-value normalization (x10-3) 

TC 0 0 0 0 0 0 0 0 0 0 0 0 
f 0 0 0 0 200 0 0 0 259 0 0 0 

ap 0 0 65 64 0 123 54 70 508 92 70 100 

Segmentation Flag 1 1 1 1 1 1 1 1 1 1 1 1 

Normalization Flag 1 1 1 1 0 1 0 1 1 0 1 1 
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Table 7-4 N-way ANOVA test results for current signals for tool T16F2R00 

  E min rms Mean K Var P2rms fmean Pw fmed BP Pp 

f-value filtration 

TC 0.0 8.7 44.2 26.1 55.6 47.8 52.4 40.0 1.7 18.8 40.0 2.9 
f 8.0 0.1 44.9 57.6 2.1 7.8 1.9 41.6 0.5 26.9 41.6 4.1 

ap 0.6 1.5 9.3 16.8 0.6 0.0 5.9 8.3 5.0 1.3 8.3 5.3 

f-value segmentation 

TC 30.1 1.0 57.1 29.7 58.8 253.8 275.6 75.7 36.5 204.3 75.7 40.2 
f 68.4 16.9 96.7 91.5 14.0 79.2 29.7 106.2 67.6 14.2 106.2 98.3 

ap 4.8 84.2 28.7 34.1 9.9 2.3 7.0 27.9 21.2 4.3 27.9 33.2 

f-value normalization 

TC 23.4 69.9 268.7 284.8 58.8 22.2 275.6 260.8 183.9 204.3 260.8 273.1 
f 5.9 37.6 30.7 30.8 14.0 0.9 29.7 30.7 22.3 14.2 30.7 30.3 

ap 43.9 17.1 8.9 4.7 9.9 26.1 7.0 9.8 4.9 4.3 9.8 5.3 

p-value filtration (x10-3) 

TC 929 42 3 7 2 2 2 3 260 12 3 164 
f 40 947 2 1 239 42 262 2 626 5 2 107 

ap 489 290 38 15 478 993 73 45 88 311 45 82 

p-value segmentation (x10-3) 

TC 0 308 0 0 0 0 0 0 0 0 0 0 
f 0 0 0 0 0 0 0 0 0 0 0 0 

ap 29 0 0 0 2 133 8 0 0 38 0 0 

p-value normalization (x10-3) 

TC 0 0 0 0 0 0 0 0 0 0 0 0 
f 3 0 0 0 0 423 0 0 0 0 0 0 

ap 0 0 3 30 2 0 8 2 28 38 2 22 

Segmentation Flag  -1 -1 -1 -1 1 1 1 -1 -1 1 -1 -1 

Normalization Flag  -1 1 1 1 0 -1 0 1 1 0 1 1 

 
Table 7-5 N-way ANOVA test results for current signals for tool T12F2R00 

  E min rms Mean K Var P2rms fmean Pw fmed BP Pp 

f-value filtration 

TC 2.0 5.5 153.4 204.3 24.3 0.4 111.0 166.2 1.8 0.6 166.2 17.8 
f 12.2 0.4 2.5 9.7 4.1 20.2 66.9 2.9 4.6 45.1 2.9 41.2 

ap 1.8 1.2 2.3 4.7 7.0 1.8 3.9 2.5 0.2 0.5 2.5 1.9 

f-value segmentation  

TC 8.4 176.1 317.6 405.2 93.7 1.1 270.0 337.8 270.3 280.0 337.8 431.5 
f 35.7 104.0 11.2 26.0 15.2 38.5 65.7 10.6 10.8 80.9 10.6 25.5 

ap 6.8 21.0 2.9 5.7 28.0 4.3 6.9 2.7 2.0 14.9 2.7 5.5 

f-value normalization 

TC 1.5 139.2 271.7 305.8 93.7 104.2 270.0 269.7 180.3 280.0 269.7 306.4 
f 35.4 109.1 71.0 84.8 15.2 52.2 65.7 72.9 46.5 80.9 72.9 86.6 

ap 8.6 18.1 6.4 8.8 28.0 7.8 6.9 6.1 3.9 14.9 6.1 8.3 

p-value filtration (x10-3) 

TC 226 79 0 0 8 576 0 0 246 476 0 14 
f 20 672 194 29 108 8 1 165 90 2 165 2 

ap 246 335 204 97 57 255 121 188 695 537 188 244 

p-value segmentation (x10-3) 

TC 4 0 0 0 0 287 0 0 0 0 0 0 
f 0 0 0 0 0 0 0 0 0 0 0 0 

ap 9 0 89 18 0 39 9 100 153 0 100 19 

p-value normalization (x10-3) 

TC 218 0 0 0 0 0 0 0 0 0 0 0 
f 0 0 0 0 0 0 0 0 0 0 0 0 

ap 3 0 11 3 0 5 9 14 47 0 14 4 

Segmentation Flag -1 1 1 1 1 -1 1 1 1 1 1 1 

Normalization Flag -1 1 1 1 0 1 0 1 1 0 1 1 
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The tables are color mapped to easily visualize the results. For each feature, the 

highest f-value is shaded in dark blue, whereas the p-value is shaded and written in red 

if it exceeds the significance level (i.e., p-value > α). Finally, the flag value is colored in 

green, yellow and red for the flag values of 1, 0 and -1, respectively. The other tools 

showed equivalent results, and hence, they are not presented here. 

7.3.1. Resultant Force Signal Results 

As shown in Table 7-2 and Table 7-3, several features extracted from the filtered 

resultant force signals show high f-values corresponding to the tool condition while 

providing p-values less than α. This demonstrates that the variations in the force 

features, by nature, due to the tool condition are higher than the variation caused by 

the cutting conditions. Additionally, the processing approach improved feature 

sensitivity to the tool condition as follows. 

• The segmentation process increased the feature sensitivity to the tool condition. 

This is evident by the decrease in the extracted feature p-values, while the fTC 

values are at the maximum. This can also be noticed by the process flag values.  

• The normalization process further decreased the signal sensitivity to the cutting 

conditions as seen by the decrease in the cutting condition f-values. 

For example, in Table 7-2, in the filtration stage, features such as min, rms and fmean 

were sensitive, without any further processing of signals, to the tool condition more 

than the cutting feed rate and the depth of cut just after filtering. Features such as Pw 

and Pp were, however, most sensitive to the depth of cut. Other features such as K and 

P2rms showed a relatively higher p-value than α, and hence, there was no correlation 

between their value and the tool condition regardless of the f-value. Just after 

segmentation per tool rotation and before extracting the tested features, all the features 

under investigation showed an almost zero p-value and relatively high f-value 

corresponding to the tool condition compared to the cutting conditions. This proved 

that the segmentation step increased the feature sensitivity to the tool condition. This 

sensitivity was increased further by the normalization stage as demonstrated by the 

increase in the p-value of some features corresponding to the cutting conditions (seen 
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in red) and the decrease in the cutting condition f-values of all the features to almost 

zero. Only the E feature, representing the area under the curve, showed inconsistent 

sensitivity to the tool condition after normalization. The plausibility and the strength of 

the effect of the stages of the processing approach on the tested feature sensitivity can 

be seen in the flag values for each stage. It is clearly shown that the segmentation has 

increased the sensitivity of all the features to the tool condition (flag value=1). In 

addition, the normalization step further increased this sensitivity for several features 

such as min, rms and Pw, whereas it did not significantly affect the K, P2rms and fmed 

sensitivity (flag value=0). The flag value shown in the last two rows of Table 7-2 

confirms the importance of applying both processing stages to increase feature 

sensitivity to the tool condition. Such an output demonstrates the capability of the 

processing approach to mask the effect of the cutting conditions on the extracted 

features, while accentuating the tool condition effect. The same feature response to the 

processing approach was observed for other tools, as shown in Table 7-3 for example. 

7.3.2. Resultant Current Signal Results 

Contrary to the force signal, the current signal shows inconsistent output between 

the tools after the filtration and segmentation stages, as shown in Tables 7-4 and 7-5. 

This is expected as current signals generated by pulse width modulation techniques 

suffer from aliasing distortion [113]. The effect of this distortion was intensified by 

extracting the features per revolution, making the real representation of the cutting 

operation more difficult. However, the extracted features showed high sensitivity to the 

tool condition and high consistency after the normalization stage. This is demonstrated 

by the high f-value corresponding to the tool condition (shaded in dark blue), by the 

almost zero p-value and by the normalization flag value. This reveals the capability of 

the processing approach to mask the signal distortion and noise as well.  

These results show the capability of the processing approach to depress the 

variations in the extracted features due to the cutting conditions, and hence, increase 

the impact of the tool condition variations. This can be observed through the features 

that are sensitive to the cutting conditions before processing and showed high 
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sensitivity to the tool condition and/or less sensitivity to the cutting conditions after 

the normalization operation, such as the rms, mean and Pp of the forces and current 

signals. Moreover, the reliability of the generalized, extracted features is demonstrated 

by the consistency of the ANOVA test results of these features for different cutting tools. 

However, it should be noted that the sensitivity of the kurtosis, peak to root mean 

square ratio, and the median frequency of the tool and cutting conditions was not 

improved after the normalization operation, as can be observed by their flag values. 

This action shows the independency of these specific features to the cutting conditions, 

which influence the peak values of the segments. 

7.4. Feature Ranking Results 

The ANOVA test results of the two tested cutting tools were employed for ranking 

the extracted features using Equation 6.1. Figure 7-3 shows the ranking scores of the 

features extracted from the resultant force and current signals. In the time domain, the 

peak to root mean square P2rms, mean and rms show high sensitivity to the tool 

condition in both resultant force and current signals, regardless of the tool geometry. 

For the same signals, the features fmean and BP are, however, the highest ranked 

extracted features in the frequency domain. It is also worth noting that the feature Pp 

showed high sensitivity to the tool condition in the resultant current signals. This 

means that as the tool becomes worn, the distribution of the segmented current signal 

variance increases over its frequency range. Features such as K and min in the time 

domain show low ranking score, as they demonstrated sensitivity to the tool size in the 

ANOVA test. To demonstrate the processing approach effect on clustering the extracted 

features, Figure 7-4 shows the deviation in the mean values of selected generalized 

features extracted from the acquired signals before and after processing of all the 

cutting tests for tool T16F2R00 using fresh and worn tools. As shown in Figure 7-4 (b) 

and (d), the processing approach minimized the variations in the extracted features due 

to the cutting parameters and signal noise, and emphasized the effect of the tool 

condition, which confirmed the ANOVA test results. Hence, for both signals, the features 

can be clearly divided into two isolated clusters with respect to the tool condition. 
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Figure 7-3 Ranking score of extracted features according to Equation 6.1 

 

Figure 7-4 Features extracted from tool T1 of the resultant force signals (a) before 
processing and (b) after processing, and features extracted from the resultant current 

signals (c) before processing and (d) after processing 
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7.5. Results and Discussion of Benchmarking Pattern Recognition 
Methods 

According to the benchmarking approach defined in Section 6.5, biased training 

data that consisted of only one cutting condition were used to train the classification 

models while the rest of the cutting conditions tests were used for validation. In this 

work, cuts with feed and axial depth of cut of 0.1 mm/rev/tooth and 5 mm respectively 

were randomly selected for training. In total, 14 cuts were used as a training database 

for the seven tested tools. The rest of the cutting tests (98 tests including one replicate 

of each set of cutting conditions) were used for testing the performance of the 

classification models. 

7.5.1. Learning Effort and Accuracy 

Figure 7-5 shows the maximum accuracy achieved by the six classification methods 

with respect to (a) the training dataset size and (b) the number of features used for 

training, respectively. In general, the LDA and SVM showed higher accuracy than the 

other methods. In addition, they were able to achieve an almost 90% accuracy using 

only 20% of the training data. This accuracy was more or less the same when five or 

more features were used regardless of the training dataset size. Hence, 20% of a 

training set consisting of the five top ranked features were enough to achieve high 

accuracy for both methods. The high performance of the LDA method was due to its 

assumption of training data normality and not adapting the data distribution. 

Therefore, the LDA prediction errors were due to the errors in estimating a 

representative mean and variance out of the training dataset whereas the SVM ability 

to minimize structural risk limited its classification errors to the difficulty of calculating 

global boundaries for the separation margin using the training data. In addition, the 

linear separation adopted by these two methods provided an underfit model, which is 

usually better for biased training data. However, the LDA showed higher accuracy 

compared to the SVM even when only one feature was used for training. Hence, the LDA 

classification method is recommended for applications with limited training data as in 

the TCM system learning process for machining operations. This was expected as the 
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LDA uses the training data mean and variance to enforce normal distribution on the 

classification model and does not adopt the distribution of training subset data as is. In 

addition, according to the central limit theorem [114], given a sufficiently large sample 

size from a population with a finite level of variance, the mean of all samples from the 

same population is approximately equal to the mean of the population. Furthermore, 

all the samples follow an approximate normal distribution pattern with all variances 

being approximately equal to the variance of the population divided by each sample's 

size. This is the case in a dynamic cutting application such as milling and due to the 

distortion in the acquired current signals from the PWM controller. 

On the other hand, DT and KNN methods, which adopt the training set distribution, 

showed the lowest accuracy, with a maximum of 84.2% and 84.6% respectively, 

through all the training dataset sizes. The KNN method showed an increasing trend 

when the number of training samples increased. The NB and NN showed a steady 

accuracy of around 85% regardless of the number of features used. The NN had a 

decreasing trend by increasing the number of training samples. It also provided the 

highest accuracy when five features were used, which decreased afterwards. This 

performance illustrates the method’s sensitivity to the training dataset size, which is in 

agreement with the results found in [76]. The decision tree models showed the same 

sensitivity. Such performance may not provide a generalized approach for TCM 

systems, and hence, the application of both classification methods should be limited. 

 

Figure 7-5 Classification method accuracy with respect to (a) the training dataset 
size Ti and (b) the number of features used for training 
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Figure 7-6 shows the safe and unsafe false alarm rates achieved by the classification 

methods at their highest accuracy levels. The LDA showed the lowest SFA and USFA 

rates with values of 6.2% and 3.6% respectively, followed by the SVM method. On the 

other hand, the DT, KNN and NN methods showed an USFA rate as high as 10%, while 

the NB method reached the highest SFA rate. From these results, a conclusion can be 

drawn that implementing the LDA and SVM methods in TCM systems should increase 

the systems accuracy and the machining process productivity. 

 

Figure 7-6 Safe and Unsafe false alarms at the highest accuracy values 

It should be noted that, in this work, each model included five different tools. The 

results showed the capability of fusing the developed signal processing approach with 

pattern recognition methods to mask the effect of different tool diameters and corner 

radii while preserving a high accuracy level. 

7.5.2. Computational Time 

Early detection of tool wear minimizes the impact of a worn tool on the workpiece 

surface integrity. Hence, the time needed per one revolution was used as a reference for 

comparing the pattern recognition method classification time. In this work, a spindle 

speed of 14,000 rpm was applied. At this speed, 4.28 ms is required for one full tool 

rotation. Figure 7-7 shows the average time needed for each classification method to 

classify one segment. The time ranges were calculated for all the tested sample sizes 

Tim. The results show that the DT has the lowest classification time of 6.8 µs and the 
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lowest deviation as well, followed by the NB and LDA, respectively. As Figure 7-7 shows, 

the KNN showed the highest classification time of ~115 µs. Although these time ranges 

are low compared to the time needed for 1 revolution in high speed machining 

applications, it represents the relative computational effort and memory needed to 

classify the tool condition. 

 
Figure 7-7 Classification time per segment 
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hence, it was eliminated. Similarly, high correlation was found between the frequency 

domain features BP and Pp and the time domain features Mean, rms, and P2rms. These 

frequency domain features are costlier to compute, and hence, were eliminated. Among 

these time domain features, the Mean feature is the least costly to compute, and hence, 

was selected while eliminating the rms and P2rms features. Consequently, out of the 11 

top-ranked features, only six features showed high independency. These features are 

the current Mean, fmean, Pw, K, min and var.  

Table 7-6 Correlation matrix for current features 

 
Mean Pp rms P2rms fmean BP fmed Pw K min Var 

Mean 1 0.997 0.981 -0.969 -0.809 0.981 -0.86 0.946 -0.25 0.8 -0.628 

Pp 
 1 0.977 -0.958 -0.806 0.982 -0.851 0.948 -0.237 0.806 -0.637 

rms 
  1 -0.993 -0.688 0.998 -0.746 0.944 -0.374 0.685 -0.465 

P2rms 
   1 0.67 -0.984 0.738 -0.928 0.404 -0.658 0.432 

fmean 
    1 -0.692 0.968 -0.732 -0.193 -0.912 0.912 

BP 
     1 -0.746 0.948 -0.357 0.694 -0.478 

fmed 
      1 -0.766 -0.099 -0.923 0.904 

Pw 
       1 -0.266 0.716 -0.535 

K 
        1 0.036 -0.352 

Min 
         1 -0.904 

Var           1 

The same independency analysis was carried out for the power and voltage signals 

as well. The analysis concluded that, out of the top-ranked features for power, only the 

K, fmed, min and Pw were highly sensitive and independent. Additionally, for the voltage 

signals, fmean, fmed, SD and Var were selected.  

7.6.2. Signal Fusion and Feature Optimization 

In this section, the forward sequential feature selection SFS method was applied to 

train a linear discriminant analysis LDA model using the independent top-ranked 

features. The dataset collected from the current, voltage and power signals of the seven 

tested tools was used to develop one LDA model. Similar to the training method used in 

the comparison of the pattern recognition methods in Section 7.5, a training set 

consisting of the features collected from only one cutting condition was used to develop 
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the LDA model while the rest of the machining tests were used for testing model 

accuracy. The SFS selected 11 features in total from the power, current and voltage 

signals. These features are the K, fmed and min from the power signals, the fmean, K, Mean, 

Var and min from the current signals, and the fmean, fmed and SD from the voltage signals. 

Again, for simplicity, the SFS iteration results of the features extracted from the 

current signals only are presented in Figure 7-8. The fmean feature was the best 

individual feature, which generated the lowest misclassification error rate MCE of 17%. 

This error dropped significantly by adding the Kurtosis feature to the LDA model to 

only 8%. Such action indicates the significance of these two features on the 

classification process. This significance is due to the change in the geometry of the 

cutting edge owing to the developed wear and the resulting longer contact time 

between the worn tool and the workpiece. This alters the frequency spectrum and its 

mean value. In addition, the normalized segment of the worn tool showed a platykurtic 

shape (i.e., lower kurtosis value), as shown in Figure 6-3, compared to the fresh tool 

pattern. 

 

Figure 7-8 MCE% developed by adding features using the SFS method 
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ranking score than both the min and Var. This is because adding more features overfits 

the model, which increases the classification error. 

7.7. Correlation between Fresh and Worn Tools 

In the LDA method, the mean and standard deviation of the training features, after 

assuming normal distribution among them, were used to generate a classification 

model. Hence, to find a correlation between the features extracted from the fresh and 

worn tools, a linear correlation was assumed between the features’ mean, while the 

same standard deviation was assumed for both tool conditions. The dataset collected 

from the seven tested tools was used to develop the correlation vector between the 

mean values of the sequentially selected features of all the feedback signals of the 

spindle motor. The correlation vector of the features extracted from the current signals 

and their changing percentage are presented in Table 7-7. The fmean feature shows a 

reduction of 13% when the tool is worn. This is the highest difference among all the 

features, which explains why it was selected as the best individual feature by the SFS 

method. This was followed by the Kurtosis and Mean features, where a reduction of 

11% and 8% were reached, respectively. On the other hand, the Var and min show low 

difference percentage (<3%). However, when these features were fused in the LDA 

model, the classification accuracy was improved.  

The obtained correlation vector was applied to the features extracted from only one 

cutting condition per each fresh tool to generate an LDA model similar to Section 7.5. 

The model showed similar accuracy to what was obtained when both fresh and worn 

tools were used. Such an output demonstrates the robustness and applicability of the 

usage of the correlation vector. The application of the correlation vector further 

reduced the learning effort by 50%. Hence, the total learning effort presented in this 

work was reduced by 87.5% compared to what is reported in the literature. 

Table 7-7 Correlation vector between fresh and worn tool 

Feature fmean K Mean Var min 

Correlation value 0.87 0.89 0.92 1.02 0.97 

Linear difference % 13 11 8 2 3 
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7.8. Online Implementation of the Tool Wear Monitoring System 

The hardware and software described in Section 3.8 was used to implement the tool 

wear monitoring system in real-time. Tool wear is a lengthy progressive process. Hence, 

demonstrating the tool condition with high resolution (i.e., for each tool rotation) is not 

required. Therefore, for real-time implementation of the TCM system, the mode of the 

tool condition per segment for a period of 1 second of real cutting was used to define 

the final tool condition, while the classification accuracy per segment was referred to 

as the classification confidence level CL. The LDA classification model was generated 

offline using the feature correlation vector and the features extracted from one cutting 

condition using the fresh tool only. The model was subsequently integrated into the 

cRIO controller for real-time detection of tool wear. Current and voltage signals were 

acquired and segmented per one second of cutting in the FPGA while power generation, 

signal filtering, segmenting per revolution, processing and decision making were done 

by the real-time processor. The system was migrated from the MATLAB environment, 

which is the developing language, to LabView. The total needed time span starting from 

signal acquisition to decision making did not exceed 0.7 ms per revolution. The 

developed system is ultra-fast and can be applied for speeds up to 85,000 rpm.  

The gradual nature of tool wear allows different types of decision making compared 

to only the need to stop as in sudden failure events such as chipping and breakage. 

These decisions could be, for example, to change the tool after finishing the tool path or 

finishing the part. Hence, in the case of tool wear detection, the system sends an alarm 

to the CNC machine HMI to declare tool wear. This communication can be done using 

the 2-way communication interface, as described in Section 3.8. In addition, an audible 

and visual alarm is sent to the operator to take suitable corrective action. This is done 

using a National Instruments simultaneous, ±10 voltage output module connected to an 

industrial warning tower and siren. 

7.9. Validation Tests and Results 

The performance of the generalized selected features and classification model for 

detecting tool wear was validated against a wide range of cutting parameters. These 
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parameters can be divided into two main categories, namely, (i) tool geometry, which 

includes the tool diameter, number of flutes and corner radius. (ii) tool/workpiece 

engagement, which includes the variations of the cutting radial depth of cut and multi-

axis tool paths. Both categories were tested using a wide range of cutting conditions 

(i.e., speed, feed rate and axial depth of cut). The validation tests comprised 7 tools with 

different diameters and corner radii, 2 tool conditions VB, 2 speeds n, 6 feeds f, 4 axial 

depth of cut ap and 12 radial depth of cut ae. 

7.9.1. Tool Geometry Validation Tests  

Tests were performed to validate the developed system practicality and accuracy. 

Fresh and worn tools with 2, 3 and 4 flutes, different corner radii and diameters ranging 

from 20 to 50 mm where used in this test. In total, 96 slot cuts, including one repetition 

of each cutting condition, were performed. The cutting speed was 14,000 rpm while a 

feed of 0.1 and 0.14 mm/tooth/rev as well as a depth of cut of 3 and 5 mm were used. 

Table 7-8 shows the full factorial selection of the tools and cutting parameters used for 

linear slotting tests. The acquired current, voltage and power signals were processed to 

extract the sequentially selected features described in Section 7.6. Features extracted 

from the fresh tool tests with a feed of 0.14 mm/tooth/rev and 3 mm depth of cut were 

implemented along with the feature correlation vector, which was developed in Section 

7.7, to generate a general LDA model. In total, features extracted from seven cutting 

tests out of 96 tests were used to train the LDA model, which represented 12.5% of the 

features dataset. The LDA classified tool condition and the classification confidence 

level percentage CL% of the fresh and worn tools are shown in Figure 7-9 (a) and (b) 

respectively. As seen in these figures, the generated TCM system accurately detected 

the tool condition in 96.5% of the validation tests with an average confidence level of 

93%. Only two tests were misclassified as fresh whereas they were worn. In these two 

tests, the 50 mm tool was used at the maximum cutting condition. The cutting power 

required at these conditions was higher than 97% of the maximum spindle power of 

the machine tool. This increased the instability of the pulse width drive module, and 

hence, the generated feedback signals. Thus, the extracted features did not accurately 
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represent the tool condition. The LDA accuracy and confidence level demonstrated the 

generated TCM system capability to capture the tool condition under different tool 

geometries and cutting conditions. 

Table 7-8 Full factorial of validation tests 

Tool 
VB 

(mm) 
n 

(rpm) 
f 

(mm/tooth/rev) 
ap 

(mm) 

ae 
(% of tool 
Diameter) 

Repetitions 
Total 

number 
of cuts 

T20F2R40 
0 - 

0.07 
 
 

0.25 - 
0.3 

14,000 0.1, 0.14 3, 5 100 2 112 

T25F2R04 
T25F2R40 
T25F3R04 
T25F3R33 
T50F4R04 
T50F4R40 

 

 

Figure 7-9 Classification accuracy of (a) fresh and (b) worn tools 
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7.9.2. Tool Path Validation Tests 

The capability of the developed system to capture tool conditions in complex tool 

paths is demonstrated in this sub-section. A total of 128 partially immersed slotting cuts 

were performed to validate the TCM system accuracy. In addition, different complex 

features were machined including: 4-axis slanted surfaces (3), linear slots with variable 

depth of cut (4), curved slots (5), and straight (6) and inclined (7) pockets, as seen in 

Figure 7-10 (a). Each of these geometrical features was machined using fresh and worn 

tools. The different levels of axial and radial depth of cut of these features are shown in 

Figure 7-10 (b) while the cutting parameters are shown in Table 7-9. An adaptive 

control system with constraints (ACC) was used during the machining of the variable 

depth slots and inclined pockets. This system maintained a constant machine spindle 

power during cutting by continuously altering the feed rate. The system was programed 

to alter the feed rate within a range of 80 to 150% of the feed rate programmed in G-

code to maintain a constant level of power equal to 90% of the machine maximum 

power.  

 

Figure 7-10 (a) Representative part (b) cutting radial and axial levels 
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Table 7-9 Geometrical and cutting parameters of tested tool paths 

No
. 

Feature Tool 
VB 

(mm) 
ae 

(% Dia) 
n 

(rpm) 

f 
(mm/tooth

/rev) 

ap 
(mm) 

Total 
number 
of cuts 

1 
Partial 

immersion 
T25F2R40 

0 - 
0.07 

 
0.25 - 

0.3 

10, 20, …, 90 16,000 0.25, 0.3 4, 6 72 

2 
Partial 

immersion 
T50F2R04 10, 20, …, 70 14,000 0.1, 0.125 3, 5 56 

3 
Slanted 
surfaces 

T50F2R40 40 14000 0.1 0-4 2 

4 
Variable depth 

slots 
T25F2R40 100 16000 0.14 - ACC 0-6 2 

5 Curved slots T25F2R40 100 14000 0.25 4,4,4,6 2 

6 
Straight 
pockets 

T20F2R40 100 + 60 16000 0.25 4,4,5,5 2 

7 
Inclined 
pockets 

T25F2R40 Variable 14000 0.22 - ACC 4,4,4,6 2 

 Total number of tests 138 

 

The general LDA model, described in Section 7.9.1, was used in this section to detect 

the tool condition in real-time. A static threshold was applied to the current signal to 

exclude air cuts from the collected signals before processing. Figure 7-11 (a) shows the 

TCM system accuracy level for the tests described in Table 7-9. The system successfully 

achieved nearly an accuracy of 91% for all the partial immersion tests conducted by 

two different tools (No. 1 and 2 in Table 7-9). It also attained a 100% accuracy for all 

full immersed slots regardless of the tool path (i.e., variable depth of cut (4) and curved 

slots (5)). Furthermore, accuracies of 93%, 95%, and 92% were reached when 

detecting the tool condition during the machining of slanted surfaces (3), straight 

pockets (6) and inclined pockets (7) respectively. Figure 7-11 (b) demonstrates the 

TCM system output during machining a straight pocket using a worn tool. As seen in 

this figure, the system can clearly define the tool as worn. The misclassification errors 

that occurred during this test were mainly taking place during the changing events of 

the tool path (i.e., at pocket corners). At these events, the CNC controller completely 

stopped the tool feed motion in one direction and started it in another one. This 

transient action reduced the load significantly on the cutting edge, which altered the 

extracted pattern features and led to this misclassification error. In general, the results 

demonstrated in this section proved the capability of the generated TCM system to 
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capture the tool condition under complex tool/workpiece engagements and different 

speeds with or without an adaptive control environment. 

  

Figure 7-11 TCM system (a) accuracy for complex paths and (b) output for 
machining a straight pocket (6) using worn tool 

7.10. Summary 

Two levels of tool condition were adopted in this work, namely, a fresh tool (0 

<VB<0.07) and a worn tool (0.25 < VB 0.3 mm). This level of tool wear was generated 

using severe, controlled cutting conditions prior to the experimental tests. 

Features were extracted from the acquired force, voltage, current and power signals 

after processing them using the proposed approach. An N-way ANOVA test were 

conducted and showed the effectiveness of the proposed signal processing approach to 

depress the sensitivity of the extracted features to cutting conditions and accentuate 

the effect of the tool condition only. The resultant current signals showed a repetitive 

inconsistent pattern. However, the signal processing approach showed high capability 

to mask this effect as well on the extracted features. 

Features were ranked depending on their sensitivity to the tool condition. The 
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The results revealed the processing approach capability to separate the top-ranked 
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The practicality of applying different pattern recognition methods in TCM systems 

was benchmarked in this work. The following conclusions can be drawn from the 

conducted tests, analysis and comparison. 

• The linear discriminant analysis, followed by the support vector machine, 

are the most recommended classification methods for TCM applications.  

• The LDA showed the highest classification accuracy and lowest USFA rate 

using a limited learning effort with an applicable classification 

computational time. This shows the high performance and applicability of 

such method when the provided training data is limited as in the learning 

process of TCM systems.  

• Decision trees and k-nearest neighbor classification methods provided the 

lowest accuracy and highest USFA rate. Hence, the application of these 

methods in TCM systems should be minimized.  

• The neural network and naïve Bayes classification methods provided a 

steady accuracy regardless of the training size. However, the neural network 

method gave higher USFA rates.  

• Fusing the adopted processing approach with pattern recognition methods 

can mask the effect of tool diameter and corner radius on the learning and 

classification process in TCM systems.  

The independency analysis of the top ranked features reduced the computational 

effort by ~50%. Subsequently, the forward sequential feature selection method was 

applied to optimize the number of features using the misclassification error of a linear 

discriminant analysis model as the cost function. The outcome showed the significance 

of 11 features extracted from the power, current and voltage signals to capture the tool 

condition in a wide range of cutting parameters. A linear correlation vector was 

generated between the features extracted from seven fresh and worn tools to reduce 

the learning effort by 50%. 

The same hardware and software described in Chapter 4 were used to implement 

the tool wear detection system in real-time applications. The total time span needed 

starting from signal acquisition to decision making did not exceed 0.7 ms per 
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revolution. The developed system is ultra-fast and can be applied for speeds up to 

85,000 rpm. 

Validation tests were conducted using untrained tools to authenticate the capability 

of the developed system to deal with different tool geometries and tool/workpiece 

engagement, including 4-axis milling operations and adaptive control environments. 

Using only the features extracted from one cutting condition combination of a fresh tool 

and the generated correlation vector, the system achieved an accuracy of 96.5% with 

respect to tool geometries and an accuracy ranging from 91% to 100% when the 

tool/workpiece engagement was tested.  
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CHAPTER 8 
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH WORK 
8.  

8.1. Conclusions 

In this thesis, all the research objectives have been met. A new generalized sensor-

fusion TCM system was developed for tool failure prediction and prevention during 

intermittent cutting processes. The developed system can predict tool 

chipping/breakage as well as detect tool wear in real-time. Using minimum learning 

effort, the system showed high sensitivity to the tool condition, regardless of cutting 

conditions, tool and workpiece materials, and cutting tool geometries. It was also 

insensitive to the dynamic tool-workpiece interaction during cutting. The developed 

system achieved an accuracy of 100% for tool prefailure detection and an accuracy 

ranging from 91% to 100% for tool wear detection, with a high confidence level. The 

developed system was integrated in real-time, high speed cutting applications and was 

able to take corrective action by stopping the cutting process before any damage to the 

machined part. No such system is currently available. The following conclusions are 

drawn from the experimental and analytical investigation that was performed in this 

research. 

8.1.1. Conclusions from the Developed Tool Prefailure Detection and 
Failure Prevention System 

• The AErms signals can represent the elastic waves associated with the 

generation of new surfaces during unstable crack propagation, which 

precedes tool chipping and/or fracture. Forces and vibrations are sensitive 

to the onset of fracture only whereas, in contrast to literature findings, the 

power signal cannot detect tool chipping. 

• The AErms raw signal is insufficient by itself to be an indicator for tool 

prefailure detection. The main challenges for detecting the unstable crack 
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propagation phase, preceding tool chipping, using the AErms raw signal are: 

(i) the nonlinear relationship between the AErms response and the change in 

the crack area, (ii) the non-stationary nature of the stochastic unstable crack 

propagation process, which induces high frequency/amplitude bursts in the 

AErms signals, (iii) the contamination of the crack propagation bursts in the 

AErms signal by the bursts coming from the force variation during 

intermittent cutting, and (iv) the infinitesimal time spans of the high 

frequency bursts inherent in unstable crack propagation. This leaves a 

relatively short time (on millisecond-scale) for taking corrective action after 

detection. 

• The AErms signals generated during the prefailure phase were found to have 

a relatively high frequency and high energy compared to the AErms signals 

during a normal cutting process. 

• Based on the characterization study of the AE signals in the prefailure stage, 

this work introduced a two-stage novel signal processing approach that can 

deal with the aforementioned challenges of using the AErms raw signal for 

tool prefailure detection. In the first stage, the Hilbert-Huang Transform 

method is used to overcome challenges (i) and (ii) by representing the AErms 

in the time-frequency domain. In the second stage, the Teager–Kaiser Energy 

Operator is applied to highlight the prefailure phase and to suppress the 

bursts coming from the force variation and signal noise in the cutting 

process, overcoming challenge (iii). In addition, an algorithm was developed 

to optimize the implementation of this approach in a real-time application to 

provide an adequate time window to stop the machine before any damage to 

the machined part, thus dealing with challenge (iv). 

• The developed two-stage signal processing approach analyzes the AErms 

signals to detect abrupt events with relatively high energy/frequency, which 

is a characteristic of the AE signals during unstable crack propagation. It can 

clearly identify the prefailure phase and depress any events with relatively 

low frequency and/or low energy.  
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• The approach successfully captured tool prefailure in all tested conditions 

and tools. It predicted tool failure earlier by a time window ranging from 4 

to 6 tool/workpiece engagements, regardless of the cutting process (i.e., 

milling or intermittent turning), cutting parameters and tool path. Such 

results were supported by high speed imaging of the cutting process. 

• An exponential relationship was identified between the prefailure detection 

indicator and the chipping area, regardless of the cutting conditions, tool 

path and workpiece material. The relationship can be used to define 

thresholds to tolerate acceptable chipping sizes or to prevent tool chipping 

during intermittent cutting operations. 

• The developed real-time tool failure prediction and prevention system can 

control the machine tool in real-time to stop the feed motion of the cutting 

process before tool failure. This non-intrusive system was shown to 

safeguard the machined part from any damage in typical high-speed milling 

applications with speeds up to 18,000 rpm. No such system is currently 

available. 

8.1.2. Conclusions from the Developed Tool Wear Detection System 

• Neither the spindle motor power, current nor voltage signals can be used as 

a standalone signal to detect the tool condition. A feedback signal fusion is 

essential to develop a generalized TCM system that can define the tool 

condition under wide range of cutting conditions. 

• The characterization of the acquired signals showed that tool wear increased 

the contact time between the tool and workpiece. Such a condition alters the 

physical and statistical features of the signal pattern per tool rotation. 

• A novel generalized approach for real-time tool condition monitoring was 

developed. The processing approach can effectively mask the effects of the 

cutting conditions and signal noise on the extracted features, while 

emphasizing only the tool condition effect.  
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• The statistical analysis of the extracted features identified the features of 

high sensitivity to the tool condition, in both forces and current signals. 

Equivalent results were obtained for the power and voltage signals as well. 

These features were ranked according to their sensitivity to the tool 

condition, and then, used to benchmark six different pattern recognition 

methods. The analysis showed that linear discriminant analysis classification 

model outperforms other methods. It also proved that the highly ranked 

generalized features can be classified into two mutually exclusive clusters 

according to their tool condition. The developed model reduced the learning 

effort by 75%, compared to other models found in the literature. 

• Feature optimization, based on independency analysis and the forward 

sequential feature selection method, decreased the computational effort by 

~50%. Furthermore, the generation of a correlation vector between the 

features extracted from fresh and worn tools in the system development 

stage decreased the learning effort further by 50%. The correlation vector 

was shown to be effective for new tools that were not used to generate this 

correlation vector. 

• A generalized signal-fusion based TCM system was developed to detect a tool 

wear condition in real-time. The system is able to deal with a wide range of 

cutting conditions, such as cutting speed, feed rate, axial and radial depth of 

cut, and tool geometries, such as tool diameter, number of flutes and corner 

radius. The system can also accurately detect the tool condition in an 

adaptive control environment and for 4-axis machining tool paths. The 

developed system reduced the learning effort by 87.5%, compared to those 

reported in the open literature. The system achieved an accuracy of 96.5% 

with respect to tool geometries, and an accuracy ranging from 91% to 100% 

for complex tool paths. The proposed system is robust with a total signal 

processing and decision-making time of 0.7 ms, which makes it applicable 

for high speed machining applications with a cutting speed up to 85,000 rpm. 

This non-intrusive system also effectively reduced the learning process and 
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provided high accuracy levels to achieve industrial requirements. Such a 

TCM system has never been previously developed. 

8.2. Recommendations for Future Research Work 

The following recommendations are proposed for future research work. 

Future research work should be oriented toward developing an unmanned real-

time intelligent TCM package, assisted by logical tools and methods, including self-

learning and self-diagnostic algorithms, to increase the system accuracy, applicability 

and flexibility, and to minimize the inevitable intervention of the system developer and 

operator. Such aspects can be achieved, based on the presented work for tool wear and 

prefailure detection through: 

1. Enhancing the tool prefailure detection capability by achieving the following: 

a. Testing the approach sensitivity to different interfering tool defect 

phenomena that can affect the generated AE signals such as, chip 

weldment, built-up edges and double cutting. 

b. Standardizing the learning process of the prefailure detection system to 

define a simple and rapid threshold function for different tool materials.  

c. Implementing embedded wireless sensors to monitor the tool condition 

in applications where using miniature sensors is not possible (e.g., micro-

milling processes). 

2.  Developing a capability for online TCM self-learning and self-diagnostics based 

on AI algorithms. This includes automatic development of the system algorithm 

with minimal operator intervention as follows: 

a. Online feature extraction and selection, 

b. Online training and validating of pattern recognition models for TCM, 

c. Real-time adaptive update and tuning of the classification model during the 

cutting process.  
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