INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deietion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are availabie for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

&

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, M! 48106-1346 USA
800-521-0600






The Application of RASS in Urban Boundary
Layer Meteorology

by
Guy Potvin

Department of Atmospheric and Oceanic Sciences

McGill University, Montreal. Quebec.

Submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.
October, 1998

© Copyright by Guy Potvin, 1998



i~

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre reference

Our file Natra retérence
The author has granted a non- L’auteur a accord¢ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-44556-9

Canadi



Abstract

This thesis describes the application of a Radio-Acoustic Sounding Systern (RASS)
at an urban site, and proposes a Rank-Order Signal Processing Algorithm (ROSPA) to
overcome the problems associated with that type of application. The main problem is
clutter of many kinds contaminating the clear-air profiler measurements. ROSPA uscs
primarily order statistics, and operates in two main stages. The first stage operates
on the clear-air Doppler velocity spectra by using a threshold minimum filter on the
successive spectral power values at a given Doppler velocity bin for several spectra
at a given altitude. The threshold minimum filter is a variant of the minimum filter.
The second stage operates on the time-height mean Doppler clear-air velocity data
by imposing a median filter. [t is shown using theoretical models that the minimum
and median filters possess the properties required to eliminate intermittent clutter.
namely their insensitivity with respect to outliers. A profiler/RASS at an urban site.
another at a rural site. and an airplane flying over mainly rural terrain. are used
to study the urban boundary layer on the clear and convective early afternoon of
June 28, 1996. The rural profiler/RASS data are free of clutter and show an initially
stable rural boundary layer becoming convective in the middle of the observation
period, and attaining a depth of about | km at the end of the period. The urban
profiler/RASS data are treated with ROSPA to eliminate the severe intermittent
clutter contamination and show a convective urban boundary laver over the entire
observation period, with a depth increasing from 1.5 to 1.8 km. The heat flux profile
of the second half of the rural RASS data agrees well with the airplane profile up to
about 0.6 km. The surface heat flux estimated by airplane measurements is 146 +
0.77 W/m?, while the urban RASS measurements yield 523 4 239 W/m?. This result,
along with comparisons of the vertical velocity variance profiles. is consistent with the
differences between urban and rural boundary layers. It is concluded that the results
indicate the usefulness of the profiler/RASS in urban boundary layer studies, and it
is suggested that the anomalies in the urban heat and vertical velocity variance flux

profiles may be due to factors independent of ROSPA.
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Résumé

Cette these décrit l'application du RASS (Radio-Acoustic Sounding System) en milieu
urbain. Afin d’éliminer les échos du sol et les échos parasites des mesures de vélocité
verticale de I'air. I'algorithme ROSPA (Rank Order Signal Processing Algorithm) est
proposé. ROSPA fait usage des statistiques de rang. tel le minimum ou la médiane
d’un ensemble fini de variables aléatoires. et opere principalement en deux étapes. La
premiére étape consiste a trouver |'enveloppe minimum des spectres Doppler de 1'air
clair en utilisant la puissance minimale. a chaque composante de vélocité Doppler
et a chaque altitude. de plusieurs spectres Doppler d’affilée, créant ainsi des spec-
tres Doppler presque sans échos parasites. La seconde étape consiste a utiliser la
médiane d’un groupe de vélocités moyennes de l'air clair. regroupées dans le temps
et 'altitude, ce qui élimine les échos parasites restants. Un RASS se trouvant sur un
site urbain, un autre sur un site rural, et un avion instrumenté survolant un terrain
rural, ont été déployés afin d’'étudier la couche limite urbaine lors de |'apres-midi en-
soleillé du 28 juin 1996. Les mesures d’air clair du RASS rural ne comportent aucune
contamination d’échos du sol ou parasites. et démontrent une couche limite initiale-
ment stable devenant convective au milieu de la période d’observation pour atteindre
une épaisseur de | km a la fin de la période. Les mesures d'air clair du RASS urbain
sont traitées avec ROSPA afin d'éliminer les échos parasites. et présentent une couche
limite convective durant toute la période d’observation avec une épaisseur allant de
1.5 km au début a 1.8 km a la fin. Le profil de flux de chaleur de la seconde mottié
des mesures du RASS rural est en bon accord avec le profil mesuré par I'avion, du
sol jusqu'a 0.6 km d’altitude. Le flux de chaleur au sol. évalué a partir du profil
mesuré par |’avion. est de 146 + 0.77 W/m?, alors que le RASS urbain nous donne
523 + 239 W/m?. Ce résultat, ainsi que les profils de variance de la vélocité verticale,
sont compatibles avec les différences attendues entres les couches limites urbaines et
rurales. Nous affirmons que le RASS est un outil valable pour I'étude de la couche
limite urbaine, et que les anomalies des profils de flux de chaleur et de flux de variance

urbains sont causées par des facteurs indépendants de ROSPA.



Statement of Originality

The signal processing algorithm presented in this thesis (ROSPA) is wholly original.
Minimum and median filters are known, and have been used in other applications.
including, to a certain extent. profiler applications. Indeed. medians have been used
in profiler/RASS applications as a means of smoothing contaminated data, mainly
for presentation purposes, or as a means of finding a robust central value estimate of
part or all of a time series. for the purpose of eliminating outliers. But this is the
first time that these filters have been used as signal processing steps in their own
right, with a view towards estimating turbulence statistics. ROSPA is. therefore, the
application of minimum and median filters specifically for estimating second-order
statistics from continuous, and contaminated. profiler/RASS data. [n addition. the
use of RASS acoustic velocity data to calibrate ROSPA is also original. while the use
of Gaussian white noise statistics and hypothesis tests for white noise suppression
is. if not original. at least uncommon. Most important of all. the various turbulent
statistics of the urban boundary layer taken by the profiler/RASS. the purpose of
ROSPA, is original. In particular, the profiles of heat and vertical air velocity variance
flux using the eddy-correlation method with ROSPA treated urban profiler/RASS

data is unprecedented.
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Chapter 1
Introduction

The precursor to the Radio-Acoustic Sounding System (RASS). known as the
electromagnetic-acoustic (EMAC) probe. was invented in the late 1950's. The EMAC
probe. using the same physical principles as the RASS. was designed to measure
wind velocity (see Smith and Fetter (1989) for an historical review of the EMAC
probe). The potential of EMAC probe technology for temperature measurements
was first suggested by Atlas (1962), and the first successful RASS temperature pro-
files were obtained by North ef al. (1973). Ever since the early 1970's. the RASS
has been continually improved. and used to study a variety of boundary-layer and
tropospheric meteorological phenomena. Among them. we note the use of RASS for
studying mesoscale and synoptic scale weather systems (Neiman et al., 1991; Neiman
et al., 1992; Cohn et al., 1996); tropospheric and stratospheric temperature evolution
(Matuura et al., 1986; Tsuda et al., 1989; Tsuda et al.. 1994); and boundary-layer
inversions (Bonino et al., 1981) and momentum and virtual heat fluxes (Peters et al.,
1985; Angevine et al., 1993a; Angevine et al.. 1993b; Angevine, 1994; Peters and
Kirtzel, 1994).

However, to the best of the author’s knowledge, RASS was never used to study the
urban boundary layer. This leaves open important questions about the urban bound-

ary layer concerning the vertical structure and evolution of the turbulent kinetic



energy and virtual potential temperature. among others. In particular. no attempt
was made to estimate profiles of vertical turbulent flux in an urban boundary layer
using RASS. This requires simultaneous measurements of the profiles of temperature
and vertical air velocity, which in principle may be obtained from a combined wind
profiler-RASS system. Reasons may be that the opportunity never presented itself
or that profiler measurements of vertical air motion at an urban site can be severely
contaminated by many kinds of clutter. The clutter can compromise the quality
of the vertical air velocity measurements. which are essential if the eddy-correlation
method is to be used to estimate the fluxes. And vet. the profiler/RASS combination
has certain advantages over aircraft and towers. Less expensive than an aircraft. the
profiler/RASS also provides better resolution in height over longer times. Indeed. the
continuous time-height data of air motion and temperature of the profiler/RASS is
comparable to tower data. However, the profiler/RASS can. under certain meteoro-
logical conditions, provide a greater height coverage than any tower. In addition. a
profiler/RASS can be designed in such a way as to be transportable. which is not

easily done for a tower.

There are good reasons. therefore. to remove the clutter from the clear-air profiler
measurements, particularly in an urban boundary layer. A very complex environ-
ment, the urban boundary layer is also difficult to probe on account of restrictions
on aircraft flight paths and on the type and location of ground-based instruments.
The urban boundary layer, therefore, is still a relatively unexplored environment,
certainly as compared with the rural boundary layer. Reliable profiler/RASS data

would undoubtedly be a valuable addition to the study of that environment.

The goals of this thesis are twofold: first. to develop a signal processing algorithm
capable of adequately eliminating the clutter from the clear-air velocity measure-

ments; second, to analyze and compare the structure of a convective urban boundary

[SV]



Figure 1.1: A view of the downtown core of Montreal centered on the campus of
McGill University.



Figure 1.2: The array of instruments on the roof of Burnside Hall, on the campus of
McGill University in downtown Montreal. The profiler is in the center, surrounded
by four RASS acoustic speakers (cylinders).

layer with that of a rural convective boundary layer. The second goal will be accom-
plished using data taken by a profiler/RASS located at an urban site, by another
profiler/RASS located at a rural site, and by an instrumented airplane flying between
the two, over largely rural terrain. The urban site is the roof of Burnside Hall, lo-
cated on the campus of McGill University in downtown Montreal. The campus and
its environs are shown in Fig. 1.1, and the profiler, along with the RASS acoustic

speakers, are shown in Fig. 1.2,

Chapter 2 begins by explaining the physical principles of the clear-air profiler and
acoustic RASS measurements, along with the technical characteristics of the pro-
filer/RASS used here, and ends with the spectral statistics of Gaussian white noise.

Chapter 3 will review the different types of clutter affecting profiler measurements and



various methods used to suppress them. Afterwards, Chapter 3 will explain the dif-
ferent steps used in the signal processing. At each step, we will eplain the theoretical
principles involved. Chapter 4 will review the essential physical aspects of the urban
boundary layer. [n Chapter 5, we will start with an overview of the conditions on the
day of a special boundary layer experiment: June 28, 1996. Then, we examine in de-
tail the data from the rural profiler/RASS and the airplane. The data from the urban
profiler/RASS will be treated with the signal processing algorithm, which first needs
to be calibrated. The calibration procedure will be explained, and the urban bound-
ary layer will be analyzed using the treated profiler/RASS data. Topics relating to
the treatment of the data, errors on the profiler/RASS measurements, aircraft-RASS
comparisons, and the differences between rural and urban turbulent flux profiles. will
be examined in Chapter 5 and, in a more general way. in the discussion in Chapter

6. We summarize our conclusions in Chapter 7.



Chapter 2

The Profiler/RASS

In order to understand the profiler/RASS measurements presented in chapter 3. it
is necessary first to explain the physical principles involved. This will give us some
idea of which physical processes in the atmosphere correspond to what characteristics
of the measurements. It will also give us an understanding of the limitations and
qualities of the profiler/RASS system. First. we will focus on profiler measurements
of clear air reflectivity. mean Doppler velocity, and spectral width. Second. we will
look at RASS measurements of quantities related to an acoustic wave propagating
in the atmosphere. Finally, we will review the effect of Gaussian white noise on the

discrete-time signal processing relevant to profiler/RASS measurements.

2.1 Clear-Air Radar Measurements

The literature on all aspects of clear-air measurements by Doppler radars is vast.
Therefore, we will not cite all the relevant references on this topic. Suffice it to say
that the basic theory of radar wave and clear air interactions can be found in Tatarski
(1961), while a comprehensive account of the theoretical aspects of Doppler radar
measurements of clear air can be found in Doviak and Zrnié (1993). Additional ma-

terial regarding clear-air returned power, mean Doppler velocity. and spectral width,



can be found in Ottersten (1969), Gage and Balsley (1978). Gage et al. (1980), Hock-
ing (1983). Gossard and Strauch (1983), and Muschinski (1998).

The general equation describing the detected electric field from refractive index

fluctuations for a vertically-pointing pulsed Doppler radar (profiler), is

k*  pmoopm/2 opretli2 o
Ep(n, "0) = / / |._1(g. @)I-’-et(%orp~wu7‘.ppn)
kA r

2rr3 Jo=0Jo=0 Jr=ro-L/2 (2.1)

n(r.8.0.nTipp + rofc — rp/c)dV,
where E,(n.rg) is the detected electric field. with n is the pulse number. rq is the
range. k is the wavenumber of the returned field. |A(#.)[* is proportional to the
angular transmitted power distribution of the profiler antenna about the main lobe
(0 = 0). wo is the angular frequency of the profiler (kg = wo/c). Tipp is the interpulse
period (IPP). n(r.0.®.¢t) is the field of refractive index fluctuations of air. V), is the
resolution volume. and r, = r — ro. A derivation of this equation can be found in

Appendix A.

Note that Eq. 2.1 is expressed using spherical coordinates because they coincide
with the emitted radar waves. However. if we concentrate on the main lobe only. and if
we assume that its beamwidth is sufficiently small. then we can neglect the curvature
of the radar wavefronts within the main lobe. It is then convenient to express Eq. 2.1
in cartesian coordinates with the origin centered in the resolution volume (&,). For the
moment. we will assume that the resolution volume is a rectangular parallelepiped
where —roA0/2 < 1, < reAb/2, —roA8/2 < y, < rod8/2, and -L/2 < 3, <
L/2. where Af is the profiler beamwidth. We will further assume that the profiler
illuminates the entire volume equally: |.‘—-1’(1':',,)|2 = constant. All this gives us the
equation
kzl.ilz

2rrd Sy,

Ey(n.ro) = g0z meoTionn) py(F o nTipp + rofc — zp/c)dV,  (22)

where we have dropped the limits of integration, and we have set z, = = — rq. We

will now make use of the Fourier transform of the refractive index fluctuation field,

7
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l b ~ (.7
n(Zp.t) = _/ (Dn(knv“’n)e_l(kqbrp_wn”d:’kndwn (2.3}

(2m)t S

where k, = (k,,l,.m,) and «, are the wavenumbers and angular frequencies of the
clear-air refractive index fluctuations. Also note that we abbreviate by showing only
one integral sign instead of four, a convention we will use from now on unless stated

otherwise. We place Eq. 2.3 in Eq. 2.2 to obtain

k'z _'T'-) < — . . L/’ y
Ep(n',.o) — | | . / (Dq(kn.w‘n)elwnro/:. f z( kg—my WU/L)-p(l"

(27)3rg L2
rod0/2 roA/2 .
[/ e—l(k"rp)d‘rp] [/ fd‘“"yp)dyp] e‘(“""“‘“mp""(l;’/c,,dw,,. (2.‘1)
—roAd/? —roAG/2
The integrals in square brackets can be easily integrated to give
VIR o e
Ey(n.rg) = —m /_‘?‘O ® (k. wy)e™“ ™ sinc[(2ko — m, — wn/e)L /2]

sinc(k,ro N8 /2) sinc(l,roN0/2) et#n==0)Twen 3k dop, (2.5)

where sinc(r) = sin(z)/r is a function with a main lobe at © = 0 (sinc(0) = 1). with
side lobes on both sides. and attaining zero at r = £, £27, £37. etc. In fact. it can
be shown that. a - sinc(az) — #d(r), where d is the Dirac delta function. as ¢ = oc
(Arfken. 1985). In what follows. we will drop the w,/c term in the first sinc function.
because we assume that |®,( ,,,u.',,)| has power only where m, > w,/c. [n other
words, any realistic atmospheric phase velocity is very much less than the speed of
light. |w,/m,| < c¢. The discrete-time Fourier transform (see Appendix B: Eq. B.2)
of Ey(n.rg), is

K2V, |»1|2

(2m) 47‘0

Hp(w.ry) = /— o, ( k‘,,...u Je* /< sinc[(2kg — my, )L /2] sinc(k,roA0/2)

sinc(l,,roAO/?.) [ Z J(ﬂpp(w — Wy +""‘0) + 271"A'.') dak’ldwﬂ (26)

k=-00
where we used equation B.1l to introduce the delta functions. Before we integrate

with respect to w,, we perform the transformation w — w — wp. This is because
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the profiler emits a wave with angular frequency wy and detects one with angular
frequency wy — wy, namely, a wave with the atmospheric frequency ‘riding’ on the
profiler frequency. It is convenient to remove the carrier frequency from the returned

signal. The result is

—

k'z%,._ﬂz °e Vb* I fe/ (wt2mk/Tipp)ro/c
Hylw,ro) =2z [~ | 32 @, (Fyy + 27k/ Tipp)e

(27 )4 rgTipp /- | 2=

sinc[(2ko — m, ) L/2] sinc(k,reA8/2)sinc(l,roN0/2) d°k,,. (2.7)

We will assume that the [PP (interpulse period) is chosen so that all the atmospheric
spectral power is contained within the angular frequency interval [—7/Tip,. 7/ Tipp],
where wy = 7/Tipp 1s the Nyquist angular frequency defined by the [PP. This means
that only the term & = 0 in the summation is not zero. giving

RVIAPR e

Hy(w.ro) = BryTo _.)O(D,,(/c.,,,u.')e"""'°/°sinc[(2/c0 —my,)L/2]

sinc(knroN0/2)sinc(l,reN0/2) d3k,,.

At this point. it is important to mention that the turbulent refractive index fluc-
tuations are modelled by a stationary random field with zero mean. I[n other words.
not only is the ensemble mean zero, 77 = 0. but the covariance function depends only

on the space and time lags between the two points:

—

n(Ey, )n(Ta, b2) = Cov(Ta — L1 b2 — b)), (2.9)

If the refractive index fluctuation field is random, then so is Q(E,,,w,,) and H,(w.rq).
Also. given a stationary random refractive index fluctuation field. it can be shown

that

® (K wg) B~ (KL, ) = (274 S (Ryywy) 8y — KL)S(wy — wh) (2.10)

where S,,(E,,,w,,) is the power spectrum of n. Equation 2.10 is an important result in
the theory of random fields (Panchev, 1971; Vanmarcke, 1983). The power spectrum

represents the contribution of each frequency and wavenumber to the variance of the
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random field. In this case. we have

. 1 x o~ -
0’,’: - (2m)4 /.,:o b,,(k,,,w,,)dak,,dw,,. (2.11)

It also follows that the power spectrum of the returned signal is

i Lo
Splw.ry) = — Hylw.rg) - Hy(w'. ro) de’. (2.12)

-l —_2C

We place Eq. 2.8 into Eq. 2.12. we use Eq. 2.10 when we integrate with respect to
the primed wavenumber and frequency coordinates, to obtain

ALY
KA /’0 I

ZRPriTE Salky.w) sinc®[(2ke — my)L /2]

Sp(w'. f'u) =

sinc?(k,roN0/2) sinc?(l,roN0/2) I3k, (2.13)

which is a relationship between the profiler Doppler spectrum and the power spectrum
of the clear-air refractive index fluctuations. If the resolution volume is large enough

so that the sinc functions can be approximated as delta functions. we can approximate
Eq. 2.13 as

Ay g
AV, | A|

) 2k 2
2 TE,

$,(0.0. 2kg. w). (2.14)

Sy(w.rg) =

Here. the profiler essentially singles out the wavenumber vector l::,, = (0.0.2ko). It is
the clear-air refractive index fluctuations with a vertical wavelength half the profiler
wavelength (\, = Ag/2. a condition known as Bragg matching) that contributes the
most to the detected spectral power. As we will see, Bragg matching also plays an
essential role in RASS measurements. We can simplify further by using the expression

Vo = rd(A9)%L, to find

Sy(w.ro) &= =5,(0,0, 2ko,w) (2.15)

-~ | .
ONl -

where we defined the constant \ = k“(AH)zLIf_l.P/(S'.ZTrZTi%p), and where we can see
the r5? dependence that must be taken into account when measuring clear-air reflec-

tivity.
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The range-normalized detected power is defined as

0

Pav(ro) =13 [

20
Sy(w, ro)dw & A f S,(0.0. 2kq, w)dew. (2.16)
-2 -0
Furthermore, if the turbulence causing the refractive index fluctuations is stationary,
locally homogeneous. isotropic and in the inertial range. the structure function of

I t)is

[1(F+ AE.t) — n(Z. )] = CHAF)? (2.17)

where ("2 is the refractivity turbulence structure parameter. which is a measure of the
intensity of the turbulence (Gage et al.. 1930). The corresponding spectrum is given
by S, x |ky|='"/3. In that case. and if the profiler wavelength is within the inertial

range (which is usually the case). we can say that
Pry(ro) x C2ky! (2.18)

which means that the range-normalized detected clear-air power is proportional to

the intensity of the turbulence (Ottersten. 1969: Doviak and Zrnic. 1993).

[f the radial component of the wind within the resolution volume has a mean
value of zero. then it is reasonable to assume that the covariance function satisfies
the condition: Cov(AZ. At) = Cov(Ar. —At), and consequently the power spectrum:
5',,(1_»:,,,..:.',,) = 5',,(1::".—«.‘:,7). These properties reflect the fact that with a zero mean
wind. the motion of the eddies will, on average, cancel each other out. They also im-

ply that the first-order spectral moments will vanish: f=5_ 5,,(0, 0. 2kg,w, )wydw, =

[ Sp(w.rg)wdw = 0. We can introduce a mean advection by performing the
substitution & — F — (¢, where ' = (u,v.w) is the advection velocity. That

substitution implies others, namely: Cov(ATZ.At) — Cov(AT — UAt, At) and
Sn(l-z:n,w,,) — S,,(E,,,w,, -0 E,,) (see Potvin (1993) for a similar analysis applied
to rainfall fields). Using that substitution, the mean Doppler frequency, defined as

% Sp(w, ro)wdw 5
wp(ro) = 225, (w, ro)dw (2.19)
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becomes

[228,(0.0. 2kg, w —~ 2wk Jwdw

—20

wD ro ~ — p . 2.20

(ro) 20 54,(0.0, 2kg. w — 2whke)dw ( )

Using the spectral symmetry mentioned earlier. 5,(0,0.2ko.w — 2wkg) =
S5,(0,0, 2k, —w + 2why). it follows that

wp = 2/60(0 (2.2].)

and consequently. the vertical air velocity measured by the profiler is taken to be
wp = wp/(2ky). This analysis depends on the rather artificial division of atmospheric
motion into turbulent small-scale eddies and constant large-scale motion advecting
the eddies. Of course. the large-scale motions can be just as turbulent as the small-
scale eddies. particularly in the boundary layer. The profiler measures the mean
Doppler velocity over a finite integration time. The constant motion { can therefore
be seen as the average of the turbulent motions over the resolution volume and the

integration time.

The standard deviation of the Doppler velocity about its mean is defined by

oo(ra) = |15 Splees o) w = wp)de) (
e J2% Splw. rg)dw )

[ ]
(]
[ O]
~

and it describes the broadening of the power spectrum. By convention, the spectral
width. pp. is sometimes defined by pp = 20p. which is twice the standard deviation
of the Doppler velocity. To a first approximation, the spectral width is twice the
value of the root mean square (rms) vertical velocity of eddies with sizes ranging
from the smallest scales present to either the resolution length of the profiler or the
largest scale of the turbulence, whichever is smaller (Hocking, 1983). However, other
factors, such as the finite resolution volume and integration time (windowing effects,
see Appendix B), and the uneven illumination within the resolution volume, affect
the spectral width (Doviak and Zrnié, 1993). In addition, spectral broadening is

also caused by the cross-beam wind component (Hocking, 1983; Doviak and Zrnic,

12



1993; Leblanc, 1994; Rogers et al.. 1996). That effect is not obvious from our previous
development since we ignored the curvature of the radar wavefronts. Also. the profiler
side lobes are inclined with respect to the vertical. The lobe inclined in the direction
of the horizontal wind will measure an incoming Doppler velocity. while that inclined
in the opposite direction will measure an outgoing Doppler velocity. These Doppler

velocities contribute to increasing the spectral width.

2.2 RASS Measurements

Mathematical descriptions of various aspects of the RASS are numerous in the litera-
ture. [For instance. Lataitis (1992) estimated the returned power: Nalbandyan (1976a;
1976b). IKon and Tatarski (1930). and May et al. (1990) examined the Doppler spec-
trum: attenuation of sound by turbulence was examined by Clifford and Wang (1977)
and Makarova (1930): temperature errors were investigated by Lataitis (1993), Pe-
ters (1994b: 1994a) and Peters and Angevine (1996); altitude coverage by Masuda
(1983). Takahashi et al. (1983). and Bauer and Peters (1993): and finallv. a general

description of RASS was given by Nalbandyan (1977) and Lataitis (1993).

The main difference between RASS and clear-air measurement is the origin of the
refractive index fluctuations. Unlike the random refractive index Huctuations due to
turbulence, the RASS creates and detects an acoustic wave. which induces refractive
index fluctuations by the compression and rarefaction of the air. For the moment, we
will assume the acoustic wave to be perfectly deterministic. with the form of a plane
wave within the resolution volume

n(F.t) = Noexp[—i(ks - T — wyt)] (2.23)
where k, = (ka,ls. ms) and w, are, respectively, the acoustic wavenumber and angular
frequency. Also, the dispersion relation for the acoustic wave is «, = ca|E¢| + 0k,
where 0 = (u,v,w) is the motion of the air inside the resolution volume, ¢, =

V(YRT,) is the speed of sound in still air, ¥ = 1.4 is the ratio of the specific heats at
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constant pressure and constant volume, R = 287 m? ™K™' is the gas constant of drv
air, and T, is the virtual temperature of the air (K). The wind velocity appears in
the dispersion relation because acoustic waves are advected by it. unlike radar waves.
In what follows. we will assume that the atmospheric flow is laminar and stationary.
Acoustic wave propagation in a stratified atmosphere. such that = (u(=z),v(=).0)
and cq = ¢,(=), which does not vary much over an acoustic wavelength (i.e. the limit of
geometrical acoustics: |90 /9z|\, = 0 and |dc,/dz|)\, — 0) is a well known problem
in atmospheric acoustics (Rayleigh. 1896;: Bateman. 1918: Milne. 1921: Pridmore-
Brown. 1962: Lighthill. 1978). Furthermore. we will not discuss the attenuation of
sound in air. although it can be a major factor in the altitude limitation of RASS
(May et al.. 1988). Suffice it to say that the molecular attenuation of sound in air is a
complicated function of acoustic frequency. air temperature and relative humidity. as
shown by Harris (1966). In general. the attenuation increases with acoustic frequency.

and dry cold air and moist hot air have low attenuation values.

Since the acoustic wave described in Eq. 2.23 is a plane wave, its spectrum is
(P,,(E,,.w,,) = ('27.')".’\"05(/:,, - /::n)d(.;.',, — @ ). which we place in Eq. 2.8 to find the
detected Doppler spectrum of RASS. After performing the integration with respect
to the wavenumber coordinates. we obtain
K2V, No AP

P 0‘ { S

b K
ra Lipp

Hy(w.ro) = w — wy )€ sinc((2ko — m,)L/2)]

(2.24)
sinc{h,roN0/2)sinc(l,roA0/2).

Here. we see that the detected signal has the same angular frequency as the acoustic
wave. w = w,, but the power will depend on how close the acoustic wavenumber /::u is
to the vector (0,0, 2kg). If the acoustic wave propagates vertically, then the maximum
detected power is reached when the Bragg matching condition is satisfied, m, = 2k,
in which case the mean Doppler frequency is wp = 2ko(cs + w), and the measured

RASS velocity is cp = ¢, + w.
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We can now identify two problems with RASS measurements. First. in order to
obtain a reasonably strong detected power, the acoustic frequency must be such that
Bragg matching is satisfied (w, & 2koc,). The proper frequency therefore depends
on the speed of sound. which. in turn. is a function of the virtual temperature. But
the virtual temperature is not known prior to measurement. The acoustic speakers of
the RASS must therefore emit acoustic waves over a range of frequencies sufficiently
wide to contain the proper Bragg match frequency. As we shall see. the RASS used
in our experiments emits acoustic waves with a frequency that varies over a preset
bandwidth. The detected power spectrum is not. therefore. a sharp peak at a single
frequency. but a wider Gaussian shape with a maximum at the Bragg match fre-
quency. The second problem is the contribution of the vertical air velocity to the
RASS velocity. which is the principal source of error in RASS temperature estimates.
This error can be removed if we possess accurate vertical air velocity measurements.
However. the clear-air power spectra might suffer from contamination. making the

vertical air velocity values unreliable. Chapter 3 will deal with such an eventuality.

Another source of error is the misalignment of the acoustic wavenumber vector
with respect to the radar wavenumber vector. Such a misalignment has a variety
of causes: the displacement of the acoustic source with respect to the profiler. the
horizontal displacement of the spherical acoustic wavefronts by wind advection. the
deformation of the acoustic wavefronts by turbulent eddies (mainly horizontal shear
of vertical air velocity) and temperature fluctuations. If we assume no wind. =0,
and an inclined acoustic wavenumber vector, /;,, = ([Eal sin .0, ll:ul cos @), where ¢ is
small, then the acoustic frequency that gives the highest detected power according to
Eq. 2.24 is, to a first approximation:

2kgc, coOs @

W= — 2.25
cos? & + 32sin? ¢ ( )

where 3 = roA8/L is the aspect ratio of the resolution volume. The corresponding
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RASS velocity is

Cq COS @

C

R= T 5 - 2.26
cos?d + 3?sin’ o ( )

At low altitudes, 3> « | and ¢p = ¢, sec o, which means that the RASS measures
a artificially high velocity. cp — ¢, = c,(seco — 1) = c,0*/2 > 0. or an artificially
warm temperature. At altitudes where the resolution volume is as wide as it is high.
3% = 1. the RASS measures a velocity cgp & ¢, cos @. which is too low with respect to
the speed of sound. cg—c, = ¢,(coso—1) = —¢,0° /2 < 0. Alternatively. using small
angle approximations. we can state that cg ~ ¢, & ¢,(1/2 — 3*)&*. which means that
the RASS is insensitive to leading-order misalignment errors at ry = (/2)"'L/A\4.
The aspect ratio of the resolution volume appears in Eqs. 2.25 and 2.26, because
findirg the peak of Eq. 2.24 implies maximizing the product of two competing sinc
functions. That is. the vertical function sinc[(2kq — |k,| cos ©)L/2] has a maximum

at |k,| = 2kgseco. while the horizontal function sinc{[(rgA0/2)|k,|sin o] attains a

maximum at Il:al = 0. Which function predominates depends on the height of the
resolution volume. L. relative to its width. rgAd. such that if L > roA0. then the
vertical sinc function has a much sharper maximum than the horizontal sinc function.

and so the vertical sinc function determines the frequency of the maximum.

As mentioned previously, Eq. 2.24 does not take into account the spherical nature
of the radar wavefronts. or the uneven illumination within the resolution volume.
Moreoever, it does not take into account the spherical form of the acoustic wave-
fronts, the uneven distribution of acoustic power within the resolution volume, or
interference effects that may be created by multiple acoustic speakers. I[ndeed, in
many treatments of RASS. such as Lataitis (1992; 1993), the spherical shape of the
wavefronts plays a major role. The curvature and position of the acoustic wavefronts
relative to the radar wavefronts are assumed to focus or diffuse the returning power to
the profiler. Most important, though, is the assumption of a constant misalignment
over the entire resolution volume. In fact, the action of turbulent eddies deforms

the propagating acoustic wavefronts, causing a variable misalignment throughout the
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volume.

Turbulence interacts with sound in many ways. Turbulent eddies can emit acous-
tic waves of their own (Lighthill. 1952). but this sound has little power and a low
frequency. and so does not interfere with RASS measurements. Turbulent eddies also
scatter propagating acoustic waves (Lighthill. 1953: Kraichnan. 1953: Tatarski. 1961;
Monin. 1962: Clifford and Brown. [970). There appear to be two types of scattering
mechanisms: the turbulent eddies proper. and turbulent temperature fAuctuations
(Howe. 1973). For the turbulent eddies. only the cases where the acoustic wavelength
is either much longer or much shorter than the eddy size are well understood. while
the intermediate case poses some difficulty (Lighthill. 1972). There is. on average. a
net loss of acoustic energy to the turbulence. I'rom this. we can define an attenuation
of sound due to turbulence. not accounted for by molecular attenuation. According to
[ngard (1953). attenuation due to atmospheric turbulence can be stronger than any
other tvpe of attenuation (molecular. fog. rain or ground). while Brown and Clifford
(1976) claim that other factors not related to the atmosphere. such as beamwidth

and beam orientation. can be just as important.

The effect of turbulence on the acoustic wave is usually described using Rytov's

form (Chernov. 1960: Tatarski. 1961: Ishimaru. 1978). which is

—

n'(F.t) = n(Z.t)exp[x(L.¢) + w(L.t)] (2.27)

where n’(f.t) is the perturbed acoustic wave. n(r.t) is the unperturbed incident
acoustic wave, described in Eq. 2.23. and \ = In(|#|/|7|) and ¢ are. respectively.
the turbulent fluctuations of the log-amplitude and phase of the incident wave. The
acoustic wave, n(f,t), is therefore random, rather than deterministic. According to
Peters and Angevine (1996), the amplitude fluctuations are negligible compared to
the effect of the phase fluctuations. Indeed, it is the phase fluctuations, ¥'(Z,t), that
create ‘correlation patches’, zones of more or less constant inclination, independent of

one another, within the resolution volume. It is the aspect ratio of these patches, gr,
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that now should appear in Eq. 2.26. Also, according to Tatarski (1961). and Clifford
and Wang (1977). the acoustic wave is much more coherent along the direction of
propagation than perpendicular to it (or along the wavefronts). This means that
the correlation patches are elongated along the acoustic wavenumber vector. k, =
(0,0, [k,]). which implies that Jr < 1 for all altitudes. A more accurate aspect ratio,
however. should be

min(roN0. L)

3r =
7 Tmin(L. Ly)

where [ is the length of the correlation patch along k.. and L, is the length per-
pendicular to it. But L) = ry. and L, x 1*0—3/5 so that. in general. we assume
Jr = Lo/L < 1. Of course. the inclination angle of each correlation patch. o. is
itself a random variable. According to Peters and Angevine (1996). if we assume
homogeneous turbulence and a mean wind with a value of zero. the overall error is

cr — ¢y = (1/4)c, 0% where o? is the vartance of the inclination angle.

Apart from the vertical air velocity. horizontal wind. and turbulence. other sources
of error exist (Angevine and Ecklund. 1994). Among them. we find errors in range:
that is. the acoustic attenuation and the horizontal winds may cause an uneven ver-
tical distribution of acoustic energy within the resolution volume. meaning that the
measured temperature is not an unweighted average over the volume. [n addition,
slight deviations from the formula. ¢, = /(7RT.). due to a weak dependence on at-
mospheric variables other than the virtual temperature. such as pressure, humidity or
CO, concentration (Harris, 1971; Cramer, 1993) may cause errors. RASS-radiosonde
comparisons (May et al., 1989;: Angevine and Ecklund, 1994; Moran and Strauch,
1994: Peters and Angevine. 1996; Riddle et al., 1996), as well as RASS-tower com-
parisons (Angevine et al., 1998) show that, overall, the RASS measurements have
random and systematic errors in the order of 1°C, without any correction. The sys-
tematic error is negative close to the ground ( < 250 m AGL) and positive at higher

altitudes. If we take into account the vertical air velocity, the random error can be

18



reduced to about 0.2°C, depending on the meteorological conditions and the quality

of the velocity measurements.

2.3 Examples of Profiler and RASS Observations

The technical characteristics of the particular profiler/RASS system determine the
kinds of measurements that can be performed with acceptable accuracy. I[n this sec-
tion. we will list the technical and signal processing characteristics of the McGill pro-
filer/RASS. examine its capabilities. and show some examples of profiler and RASS

data.

Table 2.1: The characteristics of the profiler (top) and RASS (bottom) components.

Frequency 915 MHz
Wavelength 32.8 ¢m
Peak power 500 W
Antenna aperture l.8m x .8 m
Antenna tvpe 61 element array
Number of beams 3
Pointing directions | Vertical: 21° zenith angle at cardinal points
Beamwidth 9°

Pulse duration 0.7 us (typical)
Pulse length 105 m (typical)
Acoustic power 30 W (nominal)
Acoustic frequency 2 kHz (typical)
Acoustic bandwidth 120 Hz (typical)
Acoustic wavelength 16 c¢cm (typical)
Freq. selection random
Acoustic Dwell time 15 ms
Speaker diameter 1.2 m
Speaker beamwidth 10°

The radar wind profiler is the prototype of the Radian model LAP-3000 built for
McGill University by the Aeronomy Laboratory of the U.S. National Oceanic and
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Atmospheric Administration. Its main characteristics are: wavelength 33 cm, peak
power 500 W, beamwidth 9° and. in the examples shown, pulse duration 0.7 ps. In
the RASS mode, the acoustic signal is transmitted continuously with its frequency
changed every 15 ms and selected randomly from the interval 2025-2130 Hz. corre-
sponding to a temperature interval of 3-35°C. The fundamental vertical resolution
in the examples, as determined by the radar pulse duration. was 105 m. though the
RASS signals were sampled at an interval of 0.4 us to give a spacing in altitude
of 60 m. To reduce the signal-to-noise ratio. nine consecutive detected pulses were
coherently integrated to form one element in a 2048-point time series. The average
was removed from the time series (DC filtering). and a Hanning window was im-
posed on it. A Fast Fourier Transform (FEFT. see Appendix B) was performed on the
time series. producing a power spectrum extending over the Doppler velocity interval
+396 m/s. Twenty-four such power spectra were then averaged. The time resolu-
tion. determined by the amount of coherent and spectral integration. was 22 s. The
characteristics of the profiler/RASS are summarized in Table 2.1 and described by

Angevine ef al. (1994b). The signal processing parameters are listed in Table 2.2.

Table 2.2: The signal processing parameters of the profiler operating in RASS mode.
[nterpulse period 23 ps
Unambiguous range limit | 3.45 km
Sampling interval 0.4 us
Sampling resolution 60 m
Coherent integration 9
DC filtering yes
Windowing Hanning
Spectral integration 24
Number of spectral points 2048
Pulse coding none

LNyquist Doppler velocity | 396 m/s

Figure 2.1 shows an example of profiler clear-air measurements, taken over McGill
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Year 98 Day 112

April 22, 1998 MWP Vertical Reflectivity (dBZ)
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Figure 2.1: An example of time-height profiler data of clear-air reflectivity (top)
and mean Doppler velocity (bottom). The sign convention is that positive Doppler
velocity indicates motion towards the radar.



Year 98 Day 092

April 2, 1998 MWP RASS Temperature (C)
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Figure 2.2: An example of RASS virtual temperature profiles. The profiles are con-

sensus averages over 4 minutes (7-8 measurements), at the start of every hour.
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on April 22, 1998. An inversion layer persists over the entire 4-hour period at 2.5
km AGL. The layer is visible because of the shear-driven turbulence mixing the air
above and below the laver. with different potential temperature and humidity values,
causing the necessary refractive index fluctuations. Inside the layer. there is a more
or less regular oscillation between upward and downward motion. possibly the result
of gravity waves. Between | km AGL and the inversion layer, we see the occasional
outburst of convection, particularly from 1200 to 1240 and from 1300 to 1500 Eastern
Standard Time (EST). See Rogers et al. (1993: 1994) for an analysis of similar profiler
data. Of particular importance to us. however. is the persistent detected power from
the ground to about | km AGL. That signal is mainly clutter from the ground. or
flving objects (the dark patches in the retlectivity plot). contaminating the clear-air
data. Describing the different types of clutter. and eliminating them. is the central

topic of Chapter 3.

Figure 2.2 shows a series of RASS virtual temperature profiles from 0400 to 1500
EST. on April 2. 1998. At the start of every hour. RASS measurements were taken
over a 4-minute period. yielding 7-8 measurements at each height. The virtual tem-
perature measurements were averaged using a consensus averaging algorithm. which
is designed to eliminate outliers from a dataset prior to averaging. First described
by Strauch et al. (1981), consensus averaging is used for obtaining reliable horizontal
wind profiles from profiler data. The hourly profiles in Fig. 2.2 begin at 0400 EST,
when there are two stable layers (one from 0.2 to 0.4 km AGL, and the other from
0.6 to 1| km AGL). The lower stable layer persists until the last profile at 1500 EST.
The upper stable layer is progressively weakened. until it disappears completely by

1200 EST. leaving behind a mildly stable layer from about 0.5 to 1.2 km AGL.



2.4 Effects of Gaussian White Noise

All measurements include a random error. whether large or small with respect to
the measured value. due to imperfections in the instrument. Profiler/RASS measure-
ments are certainly no exception. Unlike contamination which may or may not be
present. the random error is present in every measurement. Any signal processing
algorithm must. therefore, be able to deal with this type of error. It is thus important
to understand the effect of these errors on the profiler/RASS Doppler spectra so that

we can take them into account in the signal processing.

VNoise usually designates a random error that affects each member in a time series
and is independent of all other members. The noise component of a discrete-time time
series is given as z[n]. which is composed of independent and identically distributed
(iid) random variables = such that: (i) z has an average of zero (T = 0): (4i) z[i] is
independent of z[j] for all i # j. The square brackets are used to denote a discrete
argument. Also. for convenience. we assume that = is complex. = = =, +! ;. where the
real and imaginary parts are iid with a Gaussian probability density function (also

called a normal probability density function) with a mean g = 0 and a variance o

\ L 3 - L =7
rlsr) = —F—— & - ith~i) = ————eX - 1.
Jrlzr) a\/(-zx)em{ 20-} =)= 2o e p[ za-}
(2.29)
Next, we consider a time series only .V points long. such that n = 0,.... ¥V — 1,

and, for the sake of generality. we impose a window w{n] on the time series. The DFT

(see Appendix B) of this time series is then

N-1 .
Z[k] = 3 wln]z[n]e™ AN, (2.30)
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The real and imaginary parts of Z[k] are

N-1

Z.[k] = Z wln]{z-[n] cos(2zkn/N) + z;[n]sin(27kn/N)} (2.31)
ZJA-]:Z w[n]{z:[n] cos(2xkn/N) — =, [n] sin(2rkn/N)} (2.32)

where w(n| is assumed to be real. Equations 2.31 and 2.32 are sums of normally
distributed random variables. Given .V normally distributed random variables. with
means t, and variances a2, it is well known that the sum of these random variables is a
normally distributed random variable with a mean 1, = S5 4, and a variance o2 =
YNVl a?. Furthermore. suppose y = az. where = is a normally distributed random
variable with a mean g and a variance o° and « is a real constant. It is not hard to
see that y is a normally distributed random variable with a mean ey and a variance
a’*c?. [t follows then that Z.[k] is a normally distributed random variable with a zero

mean. p, = 0. and a variance a2 = Y0 o2w?[n]{cos*(2xkn/N) + sin*(2whkn/NV)} =

o? YV w?[n]. The same applies for Z;[k]: w; = 0 and o} = o> =¥} w?(n]. Note
that these parameters do not depend on k. The joint probability density function of

Z. and Z; 1s

g(Z.. Zi) = ! e\p[ é—tﬁ} (2.33)

2ra? 202

where o, = 5, = ;. We now express g(Z..Z;) in a polar representation. Z = Re'®.

Using the fact that dZ.dZ; = RdRdo and R* = Z} + Z}. we find

R R?
g(R.0) = =~ exp [— _,}. (2.34)
2ro; 207
Since Eq. 2.34 does not depend on o, it is convenient to find the marginal density
function. g(R) = &~ g( R, &)d.
R R2
-) ¥ :'

However, we are only interested in the spectral power £ = Z*Z = R*. We obtain the

probability density function of the spectral power by using RdR = 1d£ in Eq. 2.35,

g(E) = Aexp[—AE] (2.36)
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where A = (202)~'. The probability density function of the spectral power value of
Gaussian white noise is therefore exponential for any value of k. The signal processing
algorithm of a profiler/RASS may average m power spectra together. [t is well known
that the average of m exponentially distributed random variables is a random variable
with a gamma probability density function (Marshall and Hitschfeld, 1953: Wallace,

1953: Feller, 1Y71): that is.

(Am)m Em-t

gu(Ey) = L) exp[—AmE,]. (2.37)
where
1 m—1
E.=—Y L. (2.38)
m =

From Eq. 2.37. we also know that £, = 1/A. which is the noise level of the spectrum.
Equation 2.37 will therefore be used as a model to estimate the probabilities of the
spectral power of white noise. Note that the coherent integration of the white noise

j‘:h z[{n — j]. would not change the preceding development since

time series. z[n] =
z1[n] would still be a Gaussian noise time series. [t should be noted. however. that the
scatter from turbulence leads to spectral power components that are also exponen-
tially distributed (Doviak and Zrnic¢. 1993). But while the spectral components that
contain power due to turbulence have the same type of distribution as those with
only noise. it is more than reasonable to assume that the value of the parameters
will be very different (for instance. Erary >> Enoise). It is this difference that will be

exploited in subsection 3.2.3 on noise suppression.

[n conclusion, we can say that Eq. 2.37 gives us a general description of the
probability density function of white noise spectral power. This density function will
enable us to eliminate white noise in a way based on its statistics. We will therefore

be able to express the elimination of spectral white noise in probabilistic terms.



Chapter 3
Signal Processing

The promise of the RASS is only fully realized when an accurate and reliable es-
timation of the vertical air velocity is available. In an urban environment. this is
problematic given the type of clutter affecting the clear-air Doppler spectra at close
range. An appropriate signal processing algorithm is therefore essential. In this
chapter. we present such an algorithm based on order statistics. These are statis-
tics referring to the sorting of random data into ascending or descending order. The
minimum. maximum and median of a finite number of individual measurements are
examples of order statistics. We begin by describing the types of clutter in an ur-
ban setting near the ground. and review various methods of clutter reduction used
by others. In the second section, we explain the various steps involved in the signal

processing algorithm.

3.1 The Problem of Clutter

Clutter, in all its forms. is the bane of profilers, particularly at low altitudes and
for sites like the one at McGill University, in which the profiler is located atop a
high building in the center of a city. In this section, we will start by identifying the
different types of clutter along with their causes and characteristics. Next, we will

examine some other methods designed to deal with the problem of clutter.
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3.1.1 Types of Clutter

By clutter. we mean any radio wave source, reflective object. or other cause. that
creates a power spectrum in the Doppler profiler data which is not related to the at-
mospheric signal spectrum. and may make its identification difficult. if not impossible.

Note. however, that we do not consider white noise to be clutter.

Ground Clutter

Ground clulter is the power obtained by the backscattering of energy in the antenna
sidelobes off the ground or objects on the ground. Consequently, nearly all the spec-
tral power of ground clutter is concentrated in or near the zero Doppler velocity bin.
The presence of mobile objects on the ground. notably swaying trees. may introduce
some spectral power close to, and on either side of the zero Doppler velocity bin.
[ndeed. since mobile objects are equally likely to move towards as away from the
profiler. we expect the ground clutter spectrum to be symmetric on average with
respect to the zero Doppler velocity bin. Furthermore. windowing effects may also
cause some of spectral power in the zero Doppler velocity bin to leak into lobes on
both sides of the bin. Overall. though. the ground clutter spectrum tends to be very
narrow. with a spectral width < | m/s (Keeler and Passarelli. 1990), and tends to

decrease in intensity at higher altitudes.

Ground clutter also tends to be much worse in urban areas than in rural areas.
given the presence of many high-rise buildings in the vicinity. While the McGill
profiler in downtown Montreal is placed on the roof of a fourteen story building,.
there are many taller buildings in the neighborhood. These are an obvious source
of ground clutter, possibly even causing multiple reflections of side lobe energy. The
ground clutter spectrum can be a steady feature. remaining unchanged over long
periods. Occasionally, the ground clutter spectrum ‘flares up’, that is it suddenly
gains a lot of power (as much as 40 dB) over a wide range of Doppler velocities

(about 10 m/s) and over periods of about 1 min, but sometimes as long as 5 min.

o
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It is not clear what causes this phenomenon, or even if it is really ground related.

Nevertheless, we will classify it as a ground clutter phenomenon.

Intermittent Clutter

Intermittent clutter is defined here as a brief (usually less than a minute) but intense
surge in reflected power. independent of ground clutter. noise and atmospheric signal
and fairly well localized in altitude {usually less than 200 m wide). This is accounted
for by the backscattering of main or side lobe energy off flving objects, mainly birds
and aircraft. As a consequence. intermittent clutter tends to be short lived. usually
less than 30 s. approximately. The lifetime depends. of course, on the velocity of the
flier and the width of the profiler beam at that altitude. For birds flying in a straight
line across the profiler beam (with a beamwidth of 9°. for example). with a velocity
of about 7 m/s (typical for migrating birds (Merritt. 1993)) at an altitude of [ km.
the intermittent clutter lifetime will be approximately 22 s. Some birds may linger

over the profiler. of course. causing a longer intermittent clutter lifetime.

Intermittent clutter also can be much more powerful than the atmospheric signal.
particularly clear-air signals. causing it to dominate the spectrum. This need not
always be the case. however. and so it is inappropriate to use a fixed spectral power
threshold to distinguish intermittent clutter from the atmospheric signal since both

have a very wide dynamic range.

Radio Frequency Interference

Radio Frequency I[nterference (RFI) is power received from sources emitting near
the profiler frequency and over a fairly narrow bandwidth. Cellular phones are one
such example. Contrary to ground or intermittent clutter, RFI is not the result of
scattering of the profiler emitted power. Since the profiler emits finite pulses but
receives a continuous RFI signal, RFI is seen as a signal at all altitudes but over a

narrow Doppler velocity interval (about 3 m/s). The RFI tends to move slowly across
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the Doppler velocity axis. RFI episodes usually last a few minutes, rarely more than
ten. However, RFI episodes also tend to cluster, where on certain days many episodes

rapidly succeed one another.

3.1.2 Review of Clutter Suppression Methods

Most clutter suppression methods are directed towards ground clutter. Some involve
directly modifying the power spectrum (Passarelli ef al.. 1981: Ohsaki and Masuda.
1996). while others analyze the form of the corresponding autocorrelation function
(Passarelli. 1981: Sato and Woodman. 1Y82). The spectral methods sometimes in-
volve eliminating the spectral power in bins at or close to zero Doppler velocity.
The choice of bins is either predetermined or variable according to the shape of the
spectrum. After the power in those bins has been eliminated. they are replaced by
some interpolated values from the unaffected bins. Other spectral methods assume a
ground clutter spectrum that is symmetric about the zero Doppler velocity bin. and
exploit that symmetry in some way. All these methods run the risk of eliminating
too much or to little of the original spectrum. In the present work, a symmetry-based
spectral method will be adopted (see subsection 3.2.4). mainly because of its simplic-
ity.

The autocorrelation methods rest on assumptions about the ground clutter and
atmospheric signal spectra (symmetric. Gaussian. etc.) which are designed to restrict
the degrees of freedom of the autocorrelation function. This means that the entire au-
tocorrelation function may be specified by a few parameters (mean Doppler velocity,
spectral width. etc.), according to the assumptions. The theoretical autocorrelation
function which best fits the measured autocorrelation is found and the corresponding
parameters are taken to be the truth. The autocorrelation methods require, therefore,
that the assumptions and the parameters sought be specified ahead of time. unlike
the spectral methods which, if properly done, theoretically allow the estimation of

any number of spectral moments.
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[t is well worth mentioning the Statistical Averaging Method (SAM) by Merritt
(1995), because it uses order statistics. SAM is basically a spectral averaging method
that excludes spectral power values containing intermittent clutter by performing
tests on the distribution of these values. [t is assumed that noise and atmospheric
signal spectral power values are exponentially distributed, while the intermittent clut-
ter values have a very different kind of distribution. For a given Doppler velocity bin,
the successive spectral power values are sorted in ascending order. [t is also assumed
that the noise and atmospheric spectral power values are much weaker than the in-
termittent clutter power values. so that the lowest values are likely not to contain
intermittent clutter. Starting from the two smallest values, several tests are performed
to see if those values are consistent with an exponential distribution. If the tests fail,
then only the smallest value is used. If the tests do not fail. then they are performed
on the three lowest values. and on the four lowest and so on. until either the tests
fail or all the power values are accepted. The spectral averaging is performed solely
with the accepted power values. This method operates on the unaveraged spectra
and works best with a large number of them. [t also assumes that the dwell time
(the total coherent and spectral integration time) is longer than the duration of the
intermittent clutter event, so that at least some of the spectral power values are free
of clutter. If birds are the cause of the clutter, then the necessary dwell time increases
with altitude due to the spreading of the profiler beam. Merritt recommends dwell
times of 1-2 min to assure some clean spectral power values. However. in the present
study we only have access to the averaged spectra, which, given the integration time
of about 22 s, severly limits the number of spectra available. We must then use the
most efficient method possible for eliminating intermittent clutter. As we shall see in
chapter 5. some on-line spectral averaging programs for profilers use SAM to elimi-

nate intermittent clutter (see, for example, Angevine (1997)).

If one has access to the time series of the returned radar signal, then additional
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methods are available. Jordan ef al. (1997), for instance, use wavelet transforms to
analyze the profiler time series. Ground and intermittent clutter are easier to separate
from the clear-air signal using wavelet transforms because, unlike Fourier transforms,
they do not suffer from windowing effects and we are free to use a wavelet form specif-
ically chosen to identify ground and/or intermittent clutter. Once the ground and
intermittent clutter are identified in the wavelet transforms. their energies are reduced
to match the clear-air levels using an interpolation scheme. Hocking (1997) removes
ground clutter by fitting a polynomial to the time series and removing it. while May
and Strauch (1998) propose using a digital filter on the time series to remove ground
clutter. The subsequent Fourier transform shows much less ground clutter. What
remains is removed using a “notch filter’ around the zero Doppler velocity bin. Inter-
mittent clutter due to aircraft may also be reduced by an algorithm operating on the
profiler time series. However. the returned radar signal time series is not available to

us. and so we will restrict ourselves to spectral data.

Cornman et al. (1998) use fuzzy logic to identify the clear-air spectra in the pres-
ence of all types of clutter. The method is applied mainly to spectral power fields in
Doppler velocity-height coordinates. S(v.h). at a given time. For every point. local
properties of the spectral power field. S(v. ), are found. such as its curvature. gra-
dient and others. For each of these properties. membership functions are consulted
and the membership value is found for that property. The membership functions
vary from 0 to 1 and express the degree to which that property value belongs to the
set of clear-air property values {1 means that the value belongs to the clear-air set, 0
means it does not). The membership values for each property for every point are then
weighted and added together, creating a total membership function, Mr(v,h), that
varies between 0 and 1, and expresses the degree to which that point is a clear-air
spectral component. The total membership function is further modified in such a
way as to enhance coherent features and suppress isolated points. Finally, the points

that are used in the spectral moment calculations are those whose membership values



exceed a certain threshold value. Issues regarding the determination of the mem-
bership functions and the threshold value aside, the membership values do not tell
us how much of the spectral power at a given point is due to clear air. Therefore,
this method may have difficulty handling cases where different kinds of spectra are
overlayed on top of one another. While Cornman et al. do not use order statistics.
there is no reason why they cannot be incorporated into this method. However. in
order to incorporate them in a fuzzy logic algorithm, their properties must first be

understood. Therefore. we will restrict ourselves to using order statistics only.

Since the membership functions represent the beliefs of a human expert. the fuzzy
logic algorithm attempts to mimic the pattern recognition ability of a human expert.
A similar thing is done by Clothiaux et al. (1994) using a neural network. Simply
put. the local maxima of spectral power of clear-air Doppler spectra are identified for
each range gate. From these. all possible wind profiles are constructed by linking to-
gether a local maximum at each range gate to form a profile. A human analyst then
rates each profile according to how closely it resembles a real atmospheric profile.
This information is then used to “train’ a neural network to identify real atmospheric
profiles. The neural network is then used to identify atmospheric wind profiles from
profiler data taken in meteorological conditions similar to those of the data used to

train it. Neural networks are. however. beyond the scope of this thesis.

Finally, we mention what we describe as simple threshold methods. used by
Lataitis (1993). Angevine {1994), Angevine et al. (1994a; 1994b; 1994c), Lippmann ef
al. (1996). Usually, the methods start by evaluating some central tendency statistic
over the entire contaminated time series, either the mean or median. followed by its
standard deviation {Angevine, 1994; Angevine et al.. 1994a). Ounly those points that
fall within an interval consisting of the mean or median, plus or minus some muitiple
of the standard deviation, are accepted. This is done for the clear-air Doppler veloc-

ity, spectral width, and the signal-to-noise ratio time series in parallel, over periods
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of one to two hours (with 20-30 seconds between measurements). A given point must
fall within every interval in order to be accepted. These methods use the statistics
of the entire time series to identify outliers, with no attempt to treat the data prior
to compiling these statistics. The outliers may make the standard deviations of the
time series too large which in turn may cause the simple threshold method to accept
too many outliers. Also. this method does nothing to remove points near the mean
or median which are still suspect because they are discontinuous with respect to their

immediate neighbors.

Alternatively. a relatively short running window may be imposed on the mean
Doppler velocity time series, and those data points within the window that ‘cluster’
sufficiently are accepted (Lataitis. 1993: Lippmann et al.. 1996). The clustering is
determined for a given point by finding the number of points that fall within the
interval consisting of its data value plus or minus a predetermined threshold length.
[f this number of points. normalized with respect to the total number of points within
the window. is above a certain threshold. then the point is accepted. Presumably, an
outlier stands out by virtue of its extreme value. and so few points will fall within the
interval centered about its data value. However. should the outliers within a window
cluster sufficiently. which may happen in the case of ground clutter for instance. they

will also be accepted.

3.2 The Ranked-Order Signal Processing
Algorithm (ROSPA)

Here, we introduce, explain and analyze the processing algorithm used to treat the
urban RASS data, called ROSPA. ROSPA is a sequence of filters and operations
applied principally to the clear-air spectral data measured by a profiler in RASS
mode. As we shall see, the acoustic velocity data is not only interesting by itself, but

is also valuable in calibrating ROSPA for treatment of the clear-air Doppler velocities.
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3.2.1 The Minimum Filter
Definition

The minimum filter is a type of ranked-order filter described by Heygster (1982),
Kim and Yaroslavskii (1986). Pitas and Venetsanopoulos (1990). and by Astola and
Nuosmanen (1997). Given an input discrete-time time series. r{i] where the square
brackets are used to indicate that the argument is discrete. the minimum filter imposes
a moving window an odd number of points long. 2n + L. with n points on either side

of the center point . The output time series. y[i]. is simply the minimum value of

the points within tiie window. Mathematically, we have
yli] = min(x{i — n].xfi = n+ 1] .oefi +n = 1).z[i + n]) (3.1)

where 2[¢] is the input time series. and y[i] is the output time series. Figure 3.1

demontrates the minimum filter.

Theory

We will now evaluate the effect of the minimum filter on an input time series. x[i].
which is random and characterized as follows: (i) z[i] and &[] are independent for
all i # J; (dd) [i] = z[i]. where =[{] is a series of independent identically distributed
(iid) random variables with a probability density function f(z): {éit) for any given
time i. an error £[i]. also iid with density function g(£) and independent of z[i]. is
added to the time series. r{i] = =[] + £[i], with a probability of occurrence p. Also,
(iv) the error is always positive. g(€) = 0 for all £ < 0. In essence, r[¢] is a series of
iid random variables with a positive impulsive noise added to it. Unlike white noise,
which affects every member of a time series equally, impulsive noise only affects cer-
tain members and not others. In this case, which members are affected is determined
randomly by a probability of occurrence, p. Impulsive noise is interpreted here as rep-
resenting a malfunction or disruption of the normal process of measurement, caused

by factors physically unrelated to the quantity of interest. For a profiler measuring
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Figure 3.1: Schematic demonstration of the minimum filter. The upper plot shows
the original data, with the three-point wide window (box) going from left to right. At
each window position, the minimum value of the points inside the window is found
and given to the corresponding point in the lower plot.
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clear-air reflectivity, for instance. the power returned due to refractive index fluctua-
tions represents a normal measurement, while the power returned by a bird or aircraft
represents a disruption. In this model. the random variable £ represents a disruption.
The random variable = represents a normal measurement. which we will also call the

signal to emphasize its usefulness.

For convenience. we introduce the random variable ¢ = = +£. with the probability
density function h({a) = [j~ g(&)fla — &)dE. The overall probability density function

for a given point of the input time series. p;(.r). is given by

pi(c) = (L = p)fx) +ph(r). (3.2)

[urthermore. we introduce the input cumulative probability distribution function.

Ri(r) = [° pi(2’)d’. which equals
R(r)=(l -p)F(r)+pH(r) (3.3)

where F(x) = [° f(z)ds and H(r) = [ h(a)da are the distribution functions
of the uncontaminated and contaminated points respectively. The average T =

2 pilrede. is given by

T=(l-p)T+pa (3.4)
where ¥ = [*_ f(z)zdz. and @ = [ h(a)ada. However. because @ = = + £. where
£ = [5° g(€)€ €. we have

IT=3+p€ (3.5)

Since the error is undesirable and € > 0. we have an average positive bias of T—% = p€,
from the correct average =. The effect of the error is to create a longer tail on the

positive side of the probability density function f(z).

Now, we determine the characteristics of the output time series, y[i], of an m-

point minimum filter. Note that these characteristics are only valid for the particular
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input time series z[i]. A general theory of rank-order filters is not possible since these
filters are nonlinear. We must therefore specify the characteristics of the input before
we can say anything about the output. Since the probability that a point may be
contaminated with an error is independent of all the other points, the probability
that an m-point window may contain n < m contaminated points follows a binomial
distribution.

m!

Pnplnl = (L—=p)" "p" (3.6)

n!(m—n)!
For a given n. the conditional probability density function of the minimum y.

ﬁmm(!jl’l) s

Prnyln) = (m = n) F™="=Y () ™ (y) f(y) + nF™ () ™ (9)h(y).
(3.7)
The first term in Eq. 3.7 represents the case when one of the m — n uncontaminated
points has the minimum value. The factor {m — n) is there to take into account
the fact that any of the uncontaminated points may have the minimum value. The
second term represents the same thing for the contaminated points. The overall

output probability density function. p,(y). is then

m

poly) = D Puplnlpmin(yln). (3.8)

n=0

[t is now useful to partition p,(y) into.

Poly) = frmin(y) + hmin(y) (3.9)

where

m ]
Fminly) = X (m = n) L= p)™ T T ) )
(3.10)
and
m !

hmin(y) = 3 (L= " E N (9 )Ay) -



Here, we have two types of data points in the time series: those that do not contain
an error (good points), and those that do (bad points). When we find the minimum
in a given window. that point can be good or bad. Therefore, f,..(y) represents the
contribution to the overall probability density function of the good points. When a
good point is the minimum. we call this event a correct reconstruction. following Pitas
and Venetsanopoulos (1990) in their discussion of the median filter. We will adopt
this terminology. Conversely. when a bad point is the minimum. this is an incorrect
reconstruction and its contribution is represented by h.;,(y). We can use the fact
that f(z) = —=F"'(z) and h(a) = —H'(a). where the prime denotes differentiation with

respect to the argument. to rewrite Eqgs. 3.10 and 3.11 as.

n m! d
p,n,'n — - l - HL=11 nf[n —_ m =1 . : .12
fnialy) = = 2 et (L= g HN ) U ). 1312)
m m!

/lmm(!]) = - z: ]

=, nl(m = n)!

-n_n m—=rl l n . B
(L=p)" " F" ™ () M) (313)
dy

which. if used in Eq. 3.9. lead to.

1443

d
poly) = =3 (L= )" T (F™ T () H (). (3.14)

onim—n)l Y

m!

Alternatively. if we define R,(y) = [~ po(¥')dy’. or p,(y) = — R}(y). we can transform
Eq. 3.14 into

!
Roly) = Y =i (L = p)" P T ) HP ). (3.15)

To go further. we must now attribute a specific form to f(z) and g(£). We assume

that g(€) and f(z) are gamma density functions,

' _ (’L’G)UEU—I —vat
9(8) = =11 <f<eo (3.16)

=0 —0<€&L0
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and,
= — 0<:<o

(w—1)! (3.17)

=0 -x<z<0

where w and v are integer parameters. and A and a are real parameters. to be set
later. The density f(z) is a gamma function so as to simulate the spectral power of
Gaussian white noise for a fixed frequency bin (see section 2.-1). The time series z[/]
represents successive values of the spectral power for that bin for white noise spectra.
The density g(£) is a gamma function for computational simplicity. The distribution

function F(y) takes the form.

w—1 ’/\ :
F(lj) — [Z (lL l/) }E—ru.\y 0 < y < ~c

e (3.18)
=1 -—x <y<i
As for H(y). we have.
Hiy) = /‘ h(a)da (3.19)
Yy

=/VN{/'Ng(f)f(a—f)df}da (3.20)

y 0
= [ g(@F1y - e (3.21)

where the order of integration has been reversed to obtain this result. The function
H(y) will be evaluated numerically. Before we can do this. however. we must choose
some values of the parameters. We postulate that an error. when it occurs. is huge
relative to the average value of the good points. namely & = 10003. The average of

a gamma density function is

1]

=1/\ (3.22)
£=1/c. (3.23)

We set w = 24, because we wish to simulate the white noise spectrum as measured

by the profiler using RASS settings, where typically 24 spectra are averaged together
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Figure 3.2:  An artificially generated input time series for the minimum filter. using
the specifications described in the text.

(see section 2.4). Also, we set A\ = | so that T = |. We want a relatively broad error
density function. v = 2. Finally, given our constraint on the means, we set o = 0.001
so that € = 1000. Note that if the errors were caused by reflections off birds, then a
log-normal error density function would be more appropriate (Konrad ef al.. 1968),
but we choose a gamma function instead for computational convenience. We further
assume that an error is relatively rare, p = 0.1. Figure 3.2 shows an example of such

a time series.

Figure 3.3 shows graphically the results of the model described previously. The
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line is the probability distribution function of the uncontamined data £(z).

Theoretical probability distributions of the input R;(z) (the solid line
labeled INPUT), the output of a 3-point minimum filter (the solid line labeled MIN3)},
and the output of a 3-point minimum filter (the solid line labeled MIN35). The dashed



line labeled INPUT is the input probability distribution function R;(r). and the
dashed line is the uncontaminated probability distribution function F(z). We can see
that the input distribution function has a sharp drop at about unity. then, beyond
[. has a plateau with a probability value of about 0.1. The plateau represents the
approximately 10% of the points that are bad. The initial drop. which follows the
dashed line reasonably well. represents the approximately 90% of the points that
are good. The output of the 3-point minimum filter (MIN3) shows a plateau with
a probability value of about 0.001. This is because the MIN3 output may reach a
value greater than about 2 only if there is an incorrect reconstruction. which can
only happen if all the points within the window are bad. Since the probability of
occurrence of an error is 0.1. then the probability of three bad points in a row is
0.1 x 0.1 x 0.1 =0.00l. The same reasoning applies for the plateau on the 3-point
minimum filter (MIN3) output distribution. We also see that both the MIN3 and
MINS output distributions initially fall faster than the dashed line. such that the
probability that the MIN3 and MIN3 outputs reach or surpass the threshold value
of 1. is less than that for the uncontaminated distribution. This is explained by the
fact that if all the points within the window are good. then the process of finding the

minimum will necessarily induce a bias towards smaller values.

Application

The minimum filter, applied te clear-air spectra. takes the form.
Sminlk. j.i] = min(S[k.j.i — n..... S[k. j.i + n]) (3.24)

where S[k. J, ] is the spectral power for the Doppler velocity bin index k. at altitude
index j and time index ¢, and Snin(k, J, {] is the spectral minimum of a sequence of
2n + | spectra. The sequence in time of power values for a fixed Doppler velocity bin
and altitude is used as an input time series, rq (] = S[k = a,j = 3,i]. [t is this
time series which is treated with a minimum filter; the output is then used to create

a new set of clear-air spectra. Spi[k = @,j = 8,i] = Yas[i]. To see how well the
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minimum filter works, we must first examine the time structure of the spectra. The

clear-air spectra can be decomposed in the following way:
Stk.joil = Ak i)+ Nk o)+ Glek. g + [k 5. ] (3.253)

where A[k.j, ] is the atmospheric signal spectrum. V[k.j.{] is a white noise spec-
trum, Glk. j.¢] is the ground clutter. and [[k.j.:] is the intermittent clutter. The
atmospheric spectrum. the white noise. and the ground clutter are relatively constant
within a timescale of about 1 minute (approximately 3 spectral integration times).
The intermittent clutter. on the other hand. varies greatly from one integration time

to the next.

Figure 3.4(a) shows an example of the spectral power time series for a fixed
Doppler velocity bin and altitude. z, 3[{]. Note that the power is expressed as a
power-to-noise ratio (PNR). which is the total spectral power (signal + noise) di-
vided by the noise level (.V). The PNR is more convenient than the signal-to-noise
ratio (SNR) because occasionally the power falls below the noise level. causing the
SNR to go to minus infinity on a logarithmic scale. The spikes in Fig. 3.4(a) probably
indicate intermittent clutter. The spikes appear to be placed on top of a slowly vary-
ing signal. which we assume is the atmospheric signal. Figure 3.4(b) is the output of
a 3-point minimum filter applied to the time series in (a). Most of the spikes have
been eliminated. but some still persist. Also. we can discern the atmospheric signal
better. Figure 3.4(c) is the output of a 5-point minimum filter applied to the time
series in (a). Essentially all the spikes are gone but the atmospheric signal appears

to have suffered some power depletion.

Figure 3.5 shows an example of a 3-point (n = l) minimum spectral filter on the
vertical pattern of clear-air spectral data. All of the first three plots ((2) to (c¢))show
signs of intermittent clutter contamination. The intermittent clutter appears as a
region of very high power, extending about 150 m in height and 3 m/s in Doppler ve-

locity and usually accompanied by lobes regularly spaced along the Doppler velocity
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Figure 3.4: The application of 3-point (b) and 53-point (¢) minimum filters to the
clear-air spectral power-to-noise ratio (in decibels) time series (a) of the 2.7 m/s
Doppler velocity bin, at 345 m AGL on June 28, 1996, over the McGill campus. Note
that the line at 0 dB represents the noise level.
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axis. [ntermittent clutter events usually last only one integration time. such as the
one at 0.6 km in [ig. 3.5(a). However, intermittent clutter events occasionally last
longer, such as the one at 0.2 km in Figs. 3.5(b) and (c). Nonetheless. the 3-point
minimum filter in Fig. 3.5(d) eliminates much of the clutter and produces a ridge of
high power that forms an arc extending from 0.1 to 1.2 km in height, on the positive
Doppler velocity side. The ridge most likely represents an updraught. Secondary
peaks and the spread of power (as evident from the 5 and 15 dB contours) imply
that the intermittent clutter has not been completely eliminated in this case. A weak
ridge along the zero velocity line can also be seen (examine the 5 dB contour). which

is a manifestation of ground clutter.

Intuitively. then. we can see that if intermittent clutter events are sufficiently
short-lived to affect onlv one spectrum. and if thev are sufficiently rare so that at
least one spectrum within a 3 or 5 point window is free of intermittent clutter. and
given that spectral power is always positive. then the minimum is likely to be the
spectral power value that does not inciude the intermittent clutter. Moreover. if in-
termittent clutter events persist for more than one spectral integration time. then the
performance of minimum filter would not be seriously affected as long as the lifetime

of the individual events is shorter than the window length.

3.2.2 The Threshold Minimum Filter

Unfortunately, we cannot use the spectral power S,:.[k.J, (], given by Eq. 3.24, to
estimate the mean Doppler velocity for purposes of heat flux and vertical air velocity
variance estimation. The reason is that the minimum filter modifies the correlation
between successive Doppler velocity estimates. which is undesirable if we wish to
reliably eliminate the random error variance from estimates of vertical air velocity
variance. To reduce this effect, the estimate Spn:[k, J, ] will be used as a reliable

lower bound on the estimation of spectral power at that bin, altitude and time, in
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Figure 3.5: Doppler spectral contours of the clear-air spectral power-to-noise ratio,
expressed in decibels, measured by the profiler using the RASS settings, at the McGill
campus, on June 28, 1996. Figures (a), (b) and (c) show three consecutive untreated
spectral plots. Figure (d) shows the minimum of the three previous plots at each
point.

47



what is known as a decision-based filter (Astola and Kuosmanen, 1997), which we will

call a threshold minimum filter.

Definition

Given the outputs of a series of m = 2n + | point minimum filters. Ymin(an+n)[i]. where
n =0,1,... V. and the input time series, r[i]. where yminan+1)[f] < Yminan-n[t] <
cer € Ymina[f] < z[t], and a threshold factor. 7 > L. from which we create a theshold

time series. [[i] = Tymgn('z;v+1)[i], we can define a threshold minimum filter denoted
by TMIN[2N+1]:

!/:mm(z.-v+1)[il = -l'[i] if (l'[i] < F[i])
= Yminalt] if (Yyminali] < T2} < 2[2])
= Yminsll] I (Ymins (1] < T[E]) < Yminali]) (3.26)

= ,U.nin(2;V+l)[i] if (F[i] < .'J:nxn(2.V—l)[“])-

[n other words. the output of a (2.V+1)-point minimum filter. ymnan+1)[]. is used
as a reliable baseline: that is a baseline assumed to be completely unaffected by in-
termittent clutter. For this. the window must be long enough to include at least one
point which is clutter free. But since the baseline might also be too rigid. we would
like to include points from the input time series, z[i], that are reasonably close to the
baseline, and are therefore assumed to be good. We introduce a threshold for each
point which is some multiple of the baseline, I'l{] = T¥mini2nv+1)[é]. If the input time
series is less or equal to the threshold, z[i] < I'[], at that point. then it is accepted.
If not, then the 3-point minimum filter output is tested: ymina[i] < [[i]. If it passed
the theshold test for that point, then it is accepted; if not then the same thing is done
for the MIN5 output. and so on until we reach the baseline itself. The end result will
therefore be a composite of the input time series and the outputs of minimum filters

with various window sizes (but no larger than (2NV+1)).
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In those regions where the input time series is relatively smooth. most of the
output points will simply be the original input points. In those regions where the
input time series is highly contaminated by intermittent clutter, the output will be
minimum filter output points with a window just large enough to adequately eliminate
the clutter. The threshold is a multiple of the baseline because we assume that the
good points obey a gamma probabhility density function, where all the moments are
proportional to the corresponding power of the mean. [f the minimum of a group of
good points is. on average. also proportional to the mean. then the moments also scale
with respect to the minimum. A multiple of the minimum is therefore the best way
to account for the change in statistics as a function of time. We will explore this issue
in more detail in the theory on threshold minimum filters. Of course. there remains

the question of the appropriate threshold factor. which will be discussed later.

Theory

The theory of threshold minimum filters deals essentially with the choice of a given
threshold factor value. 7. Indeed. the decisions described in Eq. 3.26 are in fact a
series of hypothesis tests (see Appendix C for a description of hypothesis tests). We
will use the same model input time series used for the theory of the minimum filter,
in subsection 3.2.1. to compute the significance level a of the tests. In particular. we
will concentrate on the test on the input time series. x{i] < ['[i]. Also. we will limit
ourselves to the case where either all of the points within the window are good (the
null hypothesis Hg), or they are all good except the middle one. which is contami-

nated (the alternative hypothesis H,).

We start by introducing the joint distribution of two order statistics (see David
(1970)). Given m = 2n + 1 iid random variables, t[i — n],z[i —n + 1],...,z[li + n —
1], z[¢ + r], with distribution F(z), described by Eq. 3.18, we sort them in ascending
order, z(1), £(2), ---» £(m), Where the subscripts denote the order. The joint probability

density function for the random variables z(,) and z(,), where | < r < s < m and
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I(r) < Iys), is then

!
frola.y) = ~ 1= F) ™ fla)

(r=Dis—r—=1m—s)! (3.
F(z) = F)P™ " fy) F™*(y)

where f(z) is the probability density function of the good points (see Eq. 3.17). Note

()
-1
~

that we adopt the convention that f.(r.y) denotes the joint probability density
function of r(,) =« and r¢,) = y. And of course. when r = s, then we set f.,(r.y) =
fr(r)d(e — y). The baseline is r(;). The point in the middle of the window. z[i].
has an equal chance of having any rank: r[i] = r(,. where s = L.....m with equal

probability. This is because all the points within the window are iid. Therefore. the

joint probability density function of the baseline. r(;y = r. and the middle point.
il =y.is
. I &, 5
fritey) = =" fralz.y). (3.28)
m s=1
The significance level, a. of the first hypothesis test is therefore
a(t) = / [/ ‘ fl't‘(.l‘.y)dy}dl' (3.29)
=0 y=Tr

which is the probability that the first test fails when Hy is true (a type [ error). as a

function of the threshold factor.

Alternatively. if H; is true. then the middle point is contaminated and obeys the
probability distribution function H(.r). described by Eq. 3.21. In this case, the middle
point has a greater probability of possessing a higher rank than a lower one. From
Eq. 3.27. we can deduce that the joint probability density function of z = r(y), and

y = 2(5), where s > 1, and where y is also a bad point, is

m! s—2 m—s
gus(T,y) = (5_2)!(m_8)!f(r)[F(£)— F(y)l" " h(y) ™ (y).
(3.30)
From this, we can formulate the counterpart to Eq. 3.28:
I & .
gl,i(l7 y) = ;2.- Zgl,a(xv y) (331)

s=1
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where g,1(r.y) = mF™ Y (z2)h{z)d(z — y), is the probability that the bad point is the
minimum. The probability. 3. of accepting Hy when H, is true (a type ] error). is
atry= [ [ te.pdy|da (3.32)
r= y=z

which is also expressed as a function of the threshold factor r.

Figure 3.6 shows the a(7) and J(7) functions for the case m = 3, where there
is only one hypothesis test to perform. The solid line represents a(t). which starts
at a(l) = 2/3. meaning that there is a 1/3 probability that the middle point is the
minimum. and drops very rapidly with increasing r. meaning that the good points
are closely grouped together and that a threshold factor of 7 = L0 essentially includes
all good points. The dashed line in Fig. 3.6 represents .3(r). It starts at 3(1) ~ 1072,
which is the probability that the bad middle point is the minimum. and ends at
J(oc) = L. which means that for a large enough 7. the bad point will certainly pass
the hypothesis test. As expected. we see that as a decreases. .3 increases. Also. there
is fairly wide range. 3 < 7 < 80. where both error probabilities are acceptably small.
e and J < L%. This is because the probability density functions of the good and bad
points are fairly well separated in this model. which may not be the case for real data.
Note that as 7 increases beyond 7 = 80. not only does the probability of accepting a
bad point become significant. but the magnitude of these bad points also increases.
giving us a good reason to limit the size of the threshold factor as much as possible

without eliminating too many good points.

The analysis is much more complicated if we include the possibility of more than
one bad point within the window, or a window size that requires more than one
hypothesis test. Nevertheless. the previous example demonstrates the main points of
the threshold minimum filter, namely that the threshold factor must be large enough
to include most good points, and small enough to exlude most bad points, particularly
those with very large values. It is reasonable to assume that the optimal value of the

threshold factor is a function of the ratio of the window period, mA (A is the time
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between measurements), and the timescale of the uncontaminated time series, T, such
that if ¥ = mA/T is small, then the variation of the good points within the window
is also small, thereby requiring a small threshold factor value. Also of concern is the
average size of an error. £, as this controls the size of the threshold factor which would

admit too many bad points.

Application

The application here is the same for the minimum filter (subsection 3.2.1). that is.
Seminlk. J.f] = TMIN(S[k.jo i = n]..... Sk joi+ n] | ¢) (3.33)

where ¢ = 10log(7) is the theshold factor in decibels. Figure 3.7 shows an example of
a TMINT filter application with a 10 dB threshold factor (7 = 10). Graph (b) shows
the output of a MINT filter. which eliminates the spikes from the input but is too
correlated over short time lags and suffers from power depletion. Graph (c) shows
the output of a TMINT filter with a 10 dB threshold. which is less correlated over
short lags and does not suffer as much from power depletion. while still excluding the
obviously bad spikes. However. it is not hard to see in Fig. 3.7 that as the threshold
increases. more and more spikes are admitted to the output. Therefore. we need a
way to find the optimal threshold factor value. one that allows enough good points
for a reasonable reconstruction of the spectra while exluding most if not all of the bad

points. This issue will be discussed in greater detail in the chapter on data analysis.

3.2.3 Spectral Noise Suppression

Every bin in the spectrum includes a power contribution from white noise. We want
to identify those bins that also include power from something other than noise. This
is done by performing a hypothesis test on each bin (see Appendix C for a description
of hypothesis tests). The null hypothesis, Hq, in this case is the statement that the
power in a given bin is due only to white noise (§ = V). Conversely, we define the

alternative hypothesis, H;, as the statement that the power in a given bin is due to
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Figure 3.7: The application of a 7-point minimum filter (b) and a 7-point threshold
minimum filter with a 10 dB threshold (c) to the clear-air spectral power-to-noise
ratio (in decibels) time series (a) of the 2.7 m/s Doppler velocity bin, at 345 m AGL
on June 28, 1996, over the McGill campus.
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something other than white noise. in addition to the noise component (S = V+other).

[f Hg is true. then we can postulate a reasonable probability density function for
the power value using the results from section 2.4 on white noise. Therefore, we
know that the value of white noise spectral power has a probability density function
described by Eq. 2.37. and a probability distribution function given by Eq. 3.18. The
distribution function is thus

['"'l (w/\../\(")" om0\

AN = |

1=0

(3.34)

i!
for V > 0 (Fy(.V) = | otherwise). where w is the number of spectral averages. and
the average white noise spectral power (noise level). V. is ¥ = 1/\. In our work. w
is ordinarily 24. The noise level is determined using the method by Hildebrand and
Sekhon (1974). applied to the RASS power spectrum. The function Fy(.V) appeared
as the dashed line in Fig. 3.3. The critical region C'. which is the set of values of §
where Hg is rejected (and H; accepted). is defined using a threshold .Vy. where (' is
Nr < 5 < oc. Conversely. the region of acceptance is where Hy is accepted (and H,

rejected) and is defined as 0 < § < .Vp.

Since rejecting the null hypothesis when it is in fact true is often considered
serious. « is usually made small. In our case. we will fix the significance level at
1%. or & = 0.01. This corresponds to a threshold value of about Ny = 1.334A"!, or
Nr = 1.5334N. If H, is true. then we do not know exactly the form of the probability
distribution of the spectral power ( F1(S)) other than it must favour greater values of §
(FL(S) > Fy(S), for all S) because, in this case, there is a random power value added
to the white noise spectral power. The probability of a type [[error. 3 = | — F{(N7),
is also unknown, except that 3 < | —a. In general, when we decrease o, we increase J.
This seems to be the case here, since decreasing « increases :Nr, which may increase
3 (as we saw in subsection 3.2.2 on the threshold minimum filter). On average, an
atmospheric signal must have a spectral power (.4) greater than N7 — N in order for

H, to be accepted and for that bin to be used in spectral moment calculations. In
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SNR units. we require A/N > (Ny — N)/N, or A/N > —2.72 dB, on average. at
the 1% significance level. This requirement is easily satisfied for most bins at low
altitudes for a strong returned signal, meaning a low J for this kind of spectrum. For
weak signals at high altitudes, however, there is a possibility that even the peak of the
power spectrum may not satisfy the requirement. meaning that the entire spectrum
may be mistaken for noise and that J is quite high. When a given bin is ruled to be
only noise. the power value for that bin is replaced with V. which serves as a flag to

omit this bin in spectral moment calculations.

3.2.4 Ground Clutter Removal

Our strategy for eliminating ground clutter is based on the assumption that the
ground clutter spectrum is symmetric about the zero Doppler velocity bin. We there-

fore expect the symmetry
Glk. j.i] = G[=k.j.{] (3.35)

to hold. where k = 0 is taken to be the zero Doppler velocity bin. Following the work
of Ohsaki and Masuda (1996), the symmetric part of the spectrum is identified and

removed. Our first estimate of the ground clutter spectrum G'[k. j, ] is taken to be

Gl j.i] = G'[~k.j,i] = min(S[k. j,i]. S[—k.j.i) = V. k> 0.
(3.36)

Here, we assume that S[A. j.{] has already undergone minimum filtering and spectral
noise suppression. which means that G'[k. j,{] is sometimes exactly zero but never
negative. [n an effort to produce as conservative an estimate of ground clutter as
possible, we will ensure that the final estimate, G’[k.j, {], decreases monotonically
with increasing |k|:

G141 = Gl-L.jii] = GL.j.4]

Glk, j,i] = G[—k, 7,i] = min(G'[1, 4,1], ..., G'[k, ,é]), &> 1. (3.37)
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Our estimate of the atmospheric signal at the zero Doppler velocity bin. A[0. j. ], will

always be interpolated from the values of the estimated atmospheric signal spectrum

on either side of the zero Doppler velocity bin (A[xl,/,]. A[£2.7,{]. ...), which in

our case is

Al g = — A2,

- D .
A = ~g A2 + AL+

[N I )
S —

(3.38)
where the estimates A[%1.j.] and A[%2.,.:]. depend on the values of G[1..i] and
G[2. j. i]. respectively. We use these coefficients as they allow for the passibility of a
local maximum or minimum at the zero Doppler velocity bin. as opposed to a simple
linear interpolation. Therefore, we will not attempt to evaluate G[0. /. :]. since it has
no effect on our estimate of .i[O.j. {]. The treatment described in Eq. 3.37 may be
too conservative. however, because the windowing effect may give the ground clutter
secondary lobes on either side of the & = 0 bin. Equation 3.37 would not attribute
these lobes to the ground clutter estimate. We will accept this risk. though. rather
than allow the ground clutter estimate to potentially include far too much power.
Note that if the atmospheric signal spectrum should be centered about zero velocity
(no overall vertical air motion). then the ground clutter estimate would include most
of the atmospheric signal power. thereby causing a verv unreliable estimate of vertical

air velocity. This is a common problem for ground clutter estimation methods.

3.2.5 Peak Identification

In the event of a spectrum with separated, nonoverlapping multiple peaks. it is nec-
essary to identify one as the proper one, isolate it and ignore the other peaks. As we
shall see in the next subsection, it is better to run the risk of choosing the wrong peak.
and getting a completely wrong Doppler velocity value. than to use all the peaks and
obtain a partially wrong Doppler velocity value. The peak identification algorithm
used here is very similar to one proposed by May and Strauch (1989). We start by
finding the spectral component with the most power, Spnor = S[kmaz]. From the

(S]]
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spectral component k.., the algorithm proceeds outwards in both directions until
it encounters a spectral component with a power value less than the noise threshold
Nr. from subsection 3.2.3 on spectral noise suppression. Mathematically, we have

Sprlk] = S[k] = Nr.  a<k<b
(3.39)

0. clsewhere

where ¢ < hmor < b and S[k] > N7 for all & belonging to the interval («.b). However.
if two or more peaks overlap sufficiently. then the trough between the peaks may not
descend below the threshold value. in which case the peak identification algorithm

may include more than one peak.

3.2.6 The Median Filter

After the clear-air spectra have been treated with a minimum filter. noise suppression.
ground clutter removal. and the highest peak isolated. the mean Doppler velocities of
these spectra are estimated. The resulting time series of the mean Doppler velocity.
however. may still exhibit obvious had points. The median filter is therefore used at

this stage to eliminate these points.

Definition

The median filter is identical to the minimum filter except that the median. rather
than the minimum. of the points within the window. is used. Mathematically, the

median filter is expressed as.
y[i} = med(z[i = n],z[i = n + 1], ...2[i + n — 1}, 2[t + n]) (3.40)

where the conventions are the same as for Eq. 3.1 in section 3.2.1 on minimum filters.
If the window is an odd number of points long, m = 2n + L, the median is simply
the value which exceeds those for n points and is exceeded by those for the other n
points. The median is readily defined for an odd number of points, but not for an even

number. Therefore, we will use windows with an odd number of points exclusively.
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Figure 3.8 demonstrates the median filter.

The median filter can be extended to two dimensions as well. In this case, the

window must also be two dimensional. In mathematical terms. we have.
yli.Jl=med(zli +r.j +s}(r.5) € 1) (3.41)

where - is the set of acceptable values of r and s. The only constraint that we
require on the set 1 is that it contain an odd number of points. Moreover. 4 can
assume a variety of shapes. such as squares (3 x 3 for instance). rectangles. crosses
(+ or N shaped). or others. The appropriate shape depends strongly on the specific

application.

Theory

The median filter is the best known and the most widely used of the rank-order fil-
ters. Median filters were pioneered in the 1970°s (Rabiner et al.. 1975: Jayant. 1976:
Mosteller and Tukey. 1977: Tukey. 1977). Initially. they served in speech processing to
smooth over bad data points. During the 1930's. they were used in image processing
(Heygster. 1982: Reeves. 1982: Kim and Yaroslavskii. 1986). It was also during this
period that the theory and some statistical properties of the median filter were inves-
tigated (Kuhlmann and Wise. 1981; Ataman et al.. 1981; Gallagher and Wise, 1981;
Nodes and Gallagher. 1982: Nodes and Gallagher, 1984: Arce et al., 1986). Median
filters are a special case of filters based on order statistics, such as ranked-order or
trimmed mean filters. These, as well as other tvpes of filters are described by Pitas

and Venetsanopoulos (1990). and by Astola and Kuosmanen (1997).

The theory presented here on median filters will deal only with one-dimensional
time series, but an extension to two dimensions is straightforward. We start by con-
structing a simple model for the input, just as we did for the minimum filter. Because

we are considering smoothly varying signals, we assume that the signal in the absence
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Figure 3.8: Schematic demonstration of the median filter. The upper plot shows the
original data, with the three-point wide window (box) going from left to right. At
each window position, the median value of the points inside the window is found and
given to the corresponding point in the lower plot.
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of intermittent clutter is perfectly correlated with itself over the length of the win-
dow. In other words, if =[i] is the signal time series and m is the window length,
we assume that =[i] = z[i + 1] = ... = z[i + m — 1] with probability I. The signal
value z, constant within the window. is a random variable with a probability density
function f(:). However. each point of the input time series, z{i], has a probability p
of being intermittent clutter ¢, which is itself a random variable with a probability
density function ¢(¢). The intermittent clutter here is an impulsive noise much like
the kind considered for the minimum filter, except that ¢ may be negative and. more
importantly. the value of ¢ is not added to the signal but rather replaces it altogether.

The impulsive noise here is not additive but rather substitutive.

To justify these assumptions. we recall Eq. 3.25 but we assume that the noise and

ground clutter spectra have been completely eliminated:
STh] = A[k] + I[A] (3.42)

where A[k] is the atmospheric signal spectrum. and [[k] is the intermittent clutter
spectrum that got through the minimum filter. Note that we omit the / and j indices

for now. The mean Doppler velocity of S[&] is

¥ S[klk
s = Av 3.43
R ST B4
where Av is the Doppler velocity increment. It is easy to see that
vs = Pava + Prug (3.44)

where vy = Av(Y A[k]k)/(3 A[k]) is the atmospheric signal Doppler velocity (ver-
tical air velocity), vy = Av(T I[[k]k)/(X [[k]) is the intermittent clutter Doppler
velocity, Py = (¥ A[k])/({A[k] + [[k]}) is the ratio of the atmospheric signal power
to the total power, and similarly Pr = (3 [{k])/(X{A[k] + [[k]}). It is obvious that
Py + Pr = 1, and that vs may be identified as the input time series z, v4 as the

signal time series z and vy as the intermittent clutter {. Clearly then, v; may be
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positive or negative. When intermittent clutter is not present, then P; = 0, but when
it is present, it is usually much more powerful than the atmospheric signal. so that
P; > P,. It is not clear, though, if this is still the case after the spectra have been
treated with the threshold minimum filter. However, as we have seen in subsection
3.2.5. the mean Doppler velocity algorithm we use starts by identifying the peak of
the spectrum. then attempts to identify the spectrum associated with it. Therefore,
if the spectra of the atmospheric signal and intermittent clutter are sufficiently far
apart. there will be little or no overlap between them and the algorithm will choose

one or the other.

The assumption of perfect correlation is used mainly to simplify the following de-

velopment. If that assumption is relaxed. then the theoretical results are valid in the

limit (¢ — zm)? > (2[i] = zm)?. where z,, = m™' 25! 2[!] is the average of the signal
points within the window. In other words. if the deviation of the clutter from the
window averaged signal value is much greater than the variation of the signal within
the window. then the perfect correlation assumption is valid. Note that the perfect

correlation assumption implies (z[i] — z,)? = 0.

The probability density function for the input is

pi(r) = (L =p)f(r) +pg(e). (3.45)

As before. the probability of having n intermittent clutter points within an m-point
window follows a binomial distribution (see Eq. 3.6). Note that from here on, we will
consider only the case where m = 5. Next, we evaluate the conditional probability
density function of the median for a given n, pmed(yin). As Fig. 3.9 shows, when
n =0, 1.2 the median must be a signal point due to its perfect correlation within the

window. Therefore, we have

Prmed(yln) = fly)  for  n=0,1,2 (3.46)



For the case n = 3.

.3' ‘ ”
pmealy13) = T [G*(0)(L = Gly)) + )L = Gw))’] fly)

31 | | (3.47)
+F;wa—GwW+u-FwMHmMm
where F(y) = [;° f(z)dz and G(y) = [;7 g()d¢. The factorial coeflicients take into

account all possnble permutations of the Clutter and signal points. For the case n =,
A! ' 202
pmed JI4 )|)’( _C'(y)) r (U)f(y)

+ o= [G)(L = Gy)) Fly) + Gy)(L = Gu)(L = F(g)]gly). (348)

llll)l
And finally. for n = 5.
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pmealyld) = 15 ),,,(1 = Gly) G y)gly). (3.49)

The overall output probability density function. p,(y). is completely analogous to the

minimum filter case. Eq. 3.8.

/)0 Z Pmp n]Pmcd(J'”) (350)

n=0

As before. we partition p,(y) into correct reconstruction. fmeq(y). and incorrect re-

construction, gmed(y). segments.
Pa(!/) fmed( )+gmed(J) (551)

where

L 5! .
fmealy) = [Z (1 = p)”‘“p"]f(y)

=t nl(5 —n)!

+ !(1 )2#’[(1—G(y))G'Z(yH(l—G(y)J'z W) | f(y)

smeds
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Of course. the total probability of a correct reconstruction is

Po= [ fuealy)dy (3.54)

and for an incorrect reconstruction

Fe= j_; Imed(y)dy. (3.53)

We must now specify reasonable shapes for the probability density functions.
Figure 3.10 shows the forms assumed for the intermittent clutter (¢) density function
(a fourth order polynomial) and the signal (z) density function (a Gaussian with
tapered tails). Since we wish to model the profiler vertical air velocity measurements.
we choose random variables with a finite domain (from -10 to 10) and with zero
means. ¥ = ¢ = 0. Figure 3.11 shows the input probability density functions. p;(r),
described by Eq. 3.45 and where p = 0.1 (solid line) and p = 0.4 (dashed line). The
obvious effect of the intermittent clutter contamination is to broaden the tails and
flatten the peak of the density function. The output of the 5-point median filter is
shown in [ig. 3.12, where we see that the output density function (solid line), po(y),
looks much like the signal density function in Fig. 3.10. However, the tails, while
much reduced with respect to the input density function, are still slightly broader
than those of the signal density function. This is due to incorrect reconstructions
in those windows where n > 3. The total probability of a correct reconstruction,
P., is plotted as a function of the input signal probability ¢ = I — p in Fig. 3.13.
The upward deviation from the diagonal of this plot indicates that the median filter
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Figure 3.9:  The possible configurations when the points within the window are
sorted in ascending order. 'S’ signifies a signal point and "C" a clutter point. The
signal points. being perfectly correlated. are always grouped together. The clutter
points have values that are greater or less than the signal points. We neglect the case
where the value of a clutter point is exactly equal to the signal value. (A) shows the
case when there are no clutter points, (B) when there is one clutter point, and (C)
when there are two clutter points. In all cases, the signal is the median.
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MEDS5 has a better chance of selecting signal points for the output than if we simply
passed the input through unaltered (diagonal). and this is true for all values of q. The

median filter therefore has a propensity for selecting the signal points in this case.

Application

Our application of the median filter on real time-height vertical air velocity data uses
a two-dimensional X-shaped window shown in Fig. 3.14. Given the shape of the
window and the number of input points within it. we call this application an XMED3

filter. Mathematically. this filter is expressed as:

volg t] = med(e[j + Loi—1).efj = L= ool dloef+ i+ 1 e[ = Li + 1))

(3.56)
where v[j.!] is the input time-height vertical air velocity data. v,[j.i] is the output.
j is the height index and / is the time index. The reasons for this window configu-
ration are closely linked to the characteristics of the profiler/RASS system described
in section 2.3. and the desired properties of the output. We do not want to induce
artificially strong correlation between points adjacent in time. which is why the input
points v[j.: — 1] and ¢[j.i + 1] were excluded from the window. The reasons for this
are the same stated for the threshold minimum filter. that is we must he able to elim-
inate the random error variance from the vertical air velocity variance estimate. Also.
since the pulse length of the profiler is 105 m. and the sampling resolution is 60 m in
RASS mode (see Tables 2.1 and 2.2). there is considerable overlap of the resolution
volumes for measurements adjacent in height. The overlap increases the correlations
between time series adjacent in height. Therefore, we assume that points adjacent in
height are well correlated. and that the data directly above and below a given point
should resemble its data value. Although these may be used in a median filter, a bad
value at a given point will also be present at the points directly above and below,
and so we must exclude the points v[j + L,¢] and v[j — 1, {] from the window, thereby

resulting in its X-shape.
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Figure 3.11: The solid line is the input probability density function for p = 0.1. The
dashed line is the input probability density function for p = 0.4.
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Figure 3.12: The dashed line represents the input density function with p = 0.4.
The solid line is the output of a 3-point median filter (MEDS5).
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XMEDS5 filter. The input points within the window are used to evaluate the median
value, which is then placed at the center of the window (black circle) for the output
time-height data.



Figure 3.15 offers an overview of the main points of ROSPA. The untreated vertical
air velocity in Fig. 3.15(a) is heavily contaminated with intermittent clutter. The
vertical air velocity is then treated with a 7.5 dB TMINT filter. followed by spectral
noise suppression. ground clutter removal and peak identification. The resulting time
series, in Fig. 3.15(b). shows significant improvement with only a few remaining bad
points, which are subsequently eliminated by the XMEDD5 filter (Fig. 3.15c). Though
not present in Fig. 3.15(c). there might still be a few outliers remaining at this stage.

A method for detecting outliers is therefore needed.

3.2.7 Outlier Detection

The central problem of outlier detection is how we justifv our expectations of what
good data should look like (Barnett and Lewis. 1978). In other words. if we have a
set of data where most of the members cluster around a central value with a given
variance. and a few members deviate from the central value by an amount far in ex-
cess of the variance. then the clustered data conditions our expectations of what good
data should look like. and the few extreme members produce a sense of “surprise’ with
respect to these expectations. The extreme members are assumed to be the result
of a disruption or malfunction of the measurement process and consequently obey
a probability distribution different from that of the clustered data. However, unless
the disruption or malfunction can be confirmed independently, we can never be sure
if the clustered and extreme points are produced by different processes. They may
come from the same measurement process and therefore be equally good, while con-
forming to a very wide probability distribution. Furthermore. without independent
confirmation, there is no way of being sure if some of the clustered members are not
the result of a faulty measurement process that happens to agree with the good points

by accident.

Nevertheless, we will identify outliers using a hypothesis test similar to that used

in subsection 3.2.2 on the threshold minimum, in a process we will call a threshold
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Figure 3.15: The main stages of ROSPA. The top curve (a) is the untreated vertical
air velocity at 405 m over McGill, on June 28, 1996. The middle curve (b) is the
vertical air velocity treated with a 7.5 dB TMINT filter, followed by spectral noise
suppression, ground clutter removal and peak identification. The bottom curve (c) is

the output of curve (b) treated with a XMEDS filter.



median (TMED), and which is very similar to a method used by Peters and Kirtzel
(1994) for treating RASS data. Note that. contrary to the threshold minimum, only
one test will be performed and those points that fail will simply be excluded from
the dataset from which we compile statistics. The idea is that by this stage, the time
series of vertical air velocity will contain relatively few outliers. TMED is therefore
seen as a means of ‘cleaning up’ the data just prior to compiling statistics, rather
than as a signal processing procedure in its own right. Just as for the threshold min-
imum. we must construct a statistically robust baseline from which we will identify
the outliers. Rather than using the output of a median filter. which may have sharp
edges which may cause the magnitude of the residual between it and the good input
points to be slightly too high. we will constuct a smoother baseline with the use of a

template.

Creating a Template

The template is a device for identifying the ‘good” points of a discrete time series. [t
takes the form of a vector of logical variables as long as the time series it represents.
L[i]. The first step consists of initializing all points of the template to *false”. Then. a
running window is passed over the time series. At each window position, the median
point of the set of points inside the window is found. This point is tagged as ‘good”
by setting the corresponding position (of the point, not the window) on the template

to “true’.

Note that the window is an odd number of points long, m = 2n + 1, and the win-
dow length must be short enough so that the signal points are well correlated with
one another, but long enough so that the clutter points are likely to cancel each other
when estimating the median. Three is too short because a clutter point is too likely
to be the median. Five gives acceptable results, and since seven yields essentially the

same results, the window length will be set to five. The template is then a series
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Figure 3.16: A demonstration of the template forming algorithm. The box represents
the window going from left to right over the time series. The template is shown as
the series of circles under the graph. A white circle indicates a “true’ point. black a
‘false’ point. Here. data point 6 is the median of the set of points inside the window.
The corresponding position on the template is set to “true’.

of logical variables identifying as ‘true” every point in the time series that was the

median of at least one window (out of 5 windows) which included it.

Figure 3.16 demonstrates the aforementioned procedure. In it, we see that the
algorithm accepts points 1 and 6, which we expect are valid, and rejects points 4,
5 and 7, which we suspect are clutter. However, points 2 and 3 were also rejected,
which appear to be valid. The baseline ['[i] takes on the value of the input time

series, z[i], if the corresponding point on the template, L}, is true. If L[] is false,
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then the baseline is the linear interpolation of the two nearest "good’ points: ['[i] =
] + (e = j) - (x[k] — z[J])/(k — j), where j < i < k and L[j] = L[k] = true.

Definition

Given the baseline ['[i]. and a normalized threshold v > 0. we define the threshold
median as the following test:
if [l —vey < ofi) <T[i] + voo.  then accept
(3.57)
otherwise, reject

where o} is the standard deviation of the baseline. We used the standard deviation of
the baseline time series rather than of the input time series because we want to avoid
outliers producing a standard deviation that is too large. Note that since ['[i] = r[:]
where L[i] = true. there is a subset of the input points that will pass the test for
any value of the normalized threshold. If the baseline was produced using a 3-point

median filter. this subset is typically 50 - 70 % of the input time series.

We will omit describing in detail the theory of the threshold median. except to
say that it is very similar to that of the threshold minimum. As for the threshold
minimum. the optimal choice of v is a balance between accepting as many good points
as possible while rejecting as many bad points as possible. [n addition. we can also
assume that the best value of the normalized threshold is a function of the ratio of
the window period and the timescale of the uncontaminated time series, v = mA/T
(the symbols are the same as in subsection 3.2.2 on the threshold minimum). That
is, when % is small, the normalized variation of the good points within the window
is accordingly small, and so v can also be small. However, by this stage, whatever
outliers remain tend to be a few isolated spikes, which means that the good and bad
points are reasonably well separated and that the choice of v is not critical. We need

only insure that the value of v accepts all good points.



Application

The application of the threshold median is done by creating an input time series for
each height, r3[i] = v[j = J.i]. where v[j,{] is the input time-height vertical air ve-
locity data, j is the height index and ¢ is the time index. Then. for every height, we
create a baseline [';[i] from r;{i]. Using v and [;{i]. we perform the test described
in Eq. 3.57 on the corresponding input time series ry[i], which we repeat for every
value of J. For every point in . 3[] which is rejected. we also reject the corresponding
point in the time-height vertical air velocity data. ¢[j = J.i] = r;[i]. The rejected

points in v{j.!] are then omitted from statistical estimates.

[t is worth noting that the threshold median is the only procedure used on the
RASS acoustic velocity data. The acoustic velocity data are not subject to ground
or intermittent clutter. and RFI usually does not occur. That means that the fall of
returned power below its noise level at distant range. i.c. the sudden loss of returned
power from the acoustic wave. are mainly responsible for outliers in RASS acoustic
velocity data. and usually near the highest measurable RASS altitude. If the outliers
are sufficiently rare at a given height. such that the threshold median eliminates only
10% or less of the time series. then that height is used in statistical estimates. f, on
the other hand. the threshold median rejects more than 10% of the points at a given
height, then it is considered too contaminated and the RASS data at that height and
higher are not used in statistical estimates. Obviously, if the lack of returned power
is the cause of outliers. then minimum filters. threshold or not. are useless since they
can only reduce the spectral power in the Doppler velocity bins. The XMEDS3 filter
is not used on RASS data because we wish to limit the amount of signal processing
done to the acoustic velocity data. We will limit ourselves to either eliminating bad

points at a given height, or not using that height at all if too contaminated.

In this chapter, we have seen the various signal processing steps that make up

ROSPA. We have tried to devise a signal processing algorithm especially suited for
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profiler/RASS clear-air measurements strongly contaminated with various types of
clutter. ROSPA is intended to be robust and based on relatively simple principles.
Both the threshold minimum and median filters are based on creating a robust base-
line using order statistics. and accepting or modifying data points according to some
threshold based on the baseline, and the XMEDS35 filter is simply a two-dimensional
median filter. Other signal processing methods based on these principles are possible.
of course. which may be more efficient than ROSPA. Nevertheless. we will settle on
this particular combination of steps as we estimate it to be both reasonably effective

and simple.

Next, we will examine the environment under study itself. namely the urban
boundary laver. and how it differs from the rural boundary layer. This will give us
some idea of the kind of results to expect over a city centre, and. consequently. some

way of estimating the credibility of the profiler/RASS measurements using ROSPA.



Chapter 4
The Urban Boundary Layer

This thesis. because of its emphasis on the RASS. which is limited to approximately
the lowest kilometer of the atmosphere. will focus mainly on the mixed layer portion
of the urban boundary layer. Nevertheless. to provide a background for interpreting
the observations. the horizontal and vertical structure of the urban boundary layer

will be described, from the ground to the entrainment layer.

4.1 The Urban Heat Island

Most cities are sources of heat and pollution. Indeed, the production. dispersion, and
radiative properties of aerosols are major problems in urban meteorology (Summers,
1964; Yap. 1969: Bergstrom and Viskanta, 1973a; Bergstrom and Viskanta. 1973b;
Rouse et al., 1973; Takeda and [wasaka, 1982). Also. the downtown cores of cities are
predominantly covered by asphalt and concrete. These materials are dry, water-proof,
and possess albedoes and heat capacities that convert and store incoming radiation
into sensible heat better than the surrounding countryside. As a consequence, the
surface air temperatures in the city cores are usually warmer than the temperatures in
the surrounding rural areas. Figure 4.1 illustrates the effect. The warmer isotherms
tend to form closed loops around the city core. The pattern thus formed resembles

the topographic contours of an island, hence the use of the term urban heat island
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Figure 4.1: Idealized isotherm heat island pattern over an urban area (shaded) (from
Stull (1988)).

to describe it. Howard (1833) was the first to find evidence of the heat island effect.
Since then this effect has been very well studied, though mainly in midlatitude cities
(for instance. Renou (1862), or Hammon and Duenchel (1902)). For reviews regarding
the urban heat island effect, and urban climatology in general, one may consult Oke
(1982; 1988), Lee (1984) or Stull (1988). A good bibliography of material regarding
urban meteorology can be found in Oke (1990).

Furthermore, rural areas tend to cool more at night than do urban areas (see Iig.
4.2). The urban heat island effect is therefore strongest at this time. This is because
during the day, the urban area was able to store more sensible heat than the surround-
ing rural areas, thus requiring more time to release it into the boundary layer and
thereby causing a smaller cooling rate in the city at night (Oke and Maxwell, 1975).
The difference in temperature between the urban and rural areas has a maximum in

the order of 2 to 3°C for towns with a population of about 1000, while cities of a
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Figure 4.2: Idealized diurnal surface air temperature cycles for urban and rural areas

(from Stull (1988)).

million or more can generate temperature excesses of S to 12°C (Oke. 1982). During
the month of January, at night, the downtown core of Montreal can be as much as
5°C warmer than the surrounding rural areas (Environment Canada, 1987). At about
midday, the urban heat island is almost undetectable at tne surface. High winds, pre-
cipitation. and cloud cover are significant weather related factors that reduce the heat
island intensity, defined as the difference in temperature (Oke and Maxwell, 1975) or
potential temperature (Oke, 1932) between an urban and a rural area. In some cases.
the rural temperature lapse rate close to the ground can be strongly correlated with
the nighttime heat island intensity (Ludwig, 1970). Geographical factors include the
proximity of water bodies, topographical features (Wanner and Filliger, 1989) and
the nature of soils, vegetation and land use in the region (for example, see Katsoulis
and Theoharatos (1985) for Athens; Oke and Hannell (1970) for Hamilton, Ontario;
or Bornstein (1968) for New York City).
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Figure 4.3: Local circulations induced by a warm city during calm ambient flow.

4.2 The Urban Plume

Now we look at the vertical structure of the urban boundary layer. If there is little
or no wind. the thermal modification of the city extends upward as a self-contained
urban heat ‘dome’. accompanied by a closed mesoscale circulation around the city.
Figure 4.3 shows an idealized diagram of the mesoscale circulation. The heat island
of the city produces warm rising air above it, which in turn causes horizontal con-
vergence close to the surface layer along with a horizontal divergence near the top of
the boundary layer, completed by descending air around the city (Stull, 1988). The
rising air may cause condensation, producing clouds and a limited but real urban
precipitation anomaly (Lee, 1984). This circulation pattern has also been observed in

laboratory (Giovannoni, 1987) and numerical (Delage and Taylor, 1970) simulations.

However, it is more common that winds will carry away the warm, dry, and

polluted city air (with significant concentrations of ozone and nitrogen oxides ( Trainer

32



et al., 1995}), forming an urban plume (Oke, 1982). Figure 4.4 shows an example of an
urban plume. During the day (Fig. 4.4(a)), the advection of the rural boundary layer
over the city creates an internal boundary layer; that is, the roughness and warmer
temperature (mainly in the morning and afternoon) of the city modifies the air that
flows over it. thus creating a boundary layer extending from the city surface to the
rural boundary layer air aloft (see Garratt (1990) for a review of internal boundary
layers). The depth of the urban boundary layer increases as the day progresses. along
with that of the rural boundary layer. However. a slight doming of the mixed laver
over the city may be evident (by up to about 0.25 km (Spangler and Dirks. 1974).
Fig. 4.4(a)), slightly downwind of the city core (Gedowitch et al., 1987). Similarly,
another internal boundary layer forms as the air flows from the urban to the rural
areas. The effect of the wind can also be seen in Fig. {.1. where the isotherms are

closer together along the upwind side than along the downwind side of the heat island.

The nighttime urban plume. Fig. 4.4(b-d). is noteworthy because of the surface
mixed layer that is retained over the city. The rural areas have no mixed layers due
to the surface-based radiative inversions. But as the stable rural air is advected over
the city, the warmth and roughness of the city eliminates its stability up to 100-300 m
(Fig. 4.4(c))(DeMarrais, 1961: Yap et al.. 1969), and an elevated warm plume appears
on the lee side of the city (Oke and East. 1971). A plot of the heat island intensity
with height for the city centre (Fig. 4.4(d}) shows the potential temperature excess
declining rapidly with height until it becomes negative (rural warmer than urban)
near the top of the urban boundary layer in the cross-over effect (Duckworth and

Sandberg, 1954; Bornstein, 1968).

4.3 Convection and Fluxes

Before we can discuss the convection in an urban boundary layer, we must first de-

scribe the different sublayers within it. Figure 4.5 shows the divisions of the urban
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Figure 4.4: General form of the urban boundary layer in a large mid-latitude city
during clear summer weather (a) by day, including profiles of potential temperature
(8) and the depths of the urban and rural internal boundary layers (dashed) and
the daytime mixed layer (dot-dashed) and (b) at night. Comparison of (c) rural
and urban potential temperature profiles and (d) the resulting profile of heat island
intensity in the city centre at night (from Oke (1982)).
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boundary layer according to Oke (1988) or Stull (1988). The urban canopy layer
is defined as the layer that extends from the ground to about rooftop height (Oke,
1976; Oke, 1988; Lee, 1984; Stull, 1988). Analogous to a plant canopy layer (Garratt,
1992; Kaimal and Finnigan. 1994), the urban canopy layer is subject to microscale
effects such as multiple reflections of radiation and ducting of airflow by buildings.
affecting, among other things. the Reynolds stress profile within it (Rotach. 1993).
It is in this layer that most traditional urban observations have been concentrated
(1.e. surface stations. instrumented automobiles, etc). The urban canopy layer is
most clearly defined in areas of high building density. [t may be discontinuous or
absent in less densely developed suburban areas. Above it is the turbulent wake layer
(also known as the roughness layer (Oke, 1988)). where the wakes and the internal
boundary layers from the individual buildings and surface patterns can still be felt.
The depth of the turbulent wake laver (typically about 20-90 m in cities) is two to
three times the average horizontal spacing of the dominant roughness elements { Oke,
1988). Higher still is the surface layer. where the individual wakes are not important.

but where the momentum and heat budgets feel the average effect of the urban area.

Finally the urban mired layer extends from the top of the surface layer to the top
of the urban boundary layer. [t is dominated by convective motions that penetrate
through the entire layer, and has mostly uniform wind. humidity and potential tem-
perature profiles. The convective motions have been observed by lidar (Kunkel et al.,
1977), tetroons (Angell et al., 1973), echosounder (Melling and List, 1980), Doppler
sodar (Casadio et al., 1996), and instrumented aircraft (Hildebrand and Ackerman,
1984; Godowitch, 1986).

Figure 4.6 shows idealized profiles for a mixed layer over flat terrain. The con-
trolling parameters in the mixed layer are the surface potential temperature flux,

Qo = w'@|,, and the convective boundary layer (CBL) height, z; (McBean, 1976;
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Figure 4.53: The different layers within the urban boundary layer (from Stull (1988)).

Garratt. 1992; Wyngaard. 1992: Kaimal and Finnigan. 1994). From these parame-
ters. a scaling velocity is defined by

.13
v = [-"%] (4.1)

where g is gravity, 0 is the average potential temperature through the mixed layer,

and 0. is a scaling temperature defined by
8. = Qo/w.. (4.2)

Note that the profiles in Fig. 4.6 are normalized with respect to these scales. Oc-
casionally, variants of Eq. 4.1 are used to define the scaling velocity (Kaimal et al.,
1976; Lenschow and Stankov, 1986), but the values of w. and 6. turn out to be almost

the same.

By and large, the normalized profiles for flat terrain are still valid in the urban
boundary layer. In particular, the normalized potential temperature flux profile is
valid in the urban boundary layer; only the parameters z; and Qg are greater (Qp is 2-

4 times greater) (Hildebrand and Ackerman, 1984). We must bear in mind, however,
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¢; and potential temperature flux, w’@, for a boundary layer over flat terrain. Dashed
portions of the curves imply extrapolations through the surface layer (from Kaimal

and Finnigan (1994)).
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that temperature advections caused by air moving over terrain with a large temper-
ature gradient. which are not unusual in and around a city. can have a significant
impact on the heat flux profiles as well (Ching et al., 1983). Cold air advection from
a rural area to a urban area, for instance. can increase the vertical heat flux over a
city. Melling and List (1980) claim that the normalized urban vertical velocity vari-
ance profiles agree well with the flat terrain case for z/z; > 0.4. However. Hildebrand
and Ackerman (1984) maintain that the urban normalized vertical velocity variance
profiles are consistently larger than their rural counterparts. particularly near the top
of the boundary layer. Also. the peak value of the normalized urban vertical velocity
variance profiles is located at a higher normalized altitude than for the rural profile.
Moreover. vertical velocity variance values are typically 2-3 times greater in the urban
boundary layer than in the rural (Hildebrand and Ackerman. 1984). Nevertheless,
the profiles shown in Fig. 4.6 may be regarded as reasonably good approximations

for urban profiles.

4.4 Spectra and Cospectra

Now we examine the form of power spectra and cospectra of winds and tempera-
ture in the boundary layer. Figure 4.7 shows the idealized form of power spectra
of a stable surface layer over flat terrain (Kaimal, 1973). The power spectra of the
quantity «. which can stand for u, v, w, or 8. are multiplied by the frequency f
and divided by the corresponding variance o2, producing a dimensionless function
of f. Note that we will be using this type of normalization often when presenting
power spectra. The basic form of the curve in Fig. 4.7 is quite general and most
of the power spectra we are likely to encounter in the mixed layer should conform
to it to one degree or another. Indeed, in the mixed layer, the power spectra of u,
v, and w retain that shape; the only difference with respect to the surface layer is
a change in the scaling parameters, namely, Qo and z/z; (Kaimal et al., 1976). The

potential temperature power spectra in the mixed layer cannot be easily generalized,
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particularly in the upper half of the mixed layer, due to entrainment effects. At high
frequency, the effect of inertial subrange turbulence is felt, resulting in S,(f) o« f=3/3,
or fS.(f) & f72/* and a slope of -2/3 in log-log coordinates. Note that the -2/3 slope
at the high frequency end should be apparent all through the mixed layer, and for all
types of spectra (u.v.w.d) (Kaimal et al., 1976). At low frequency, fS,(f) x f. or
Sa(f) = const.. because at those scales the turbulence is directly coupled to a forcing
mechanism (such as thermal plumes). and is no longer inertial. In the surface layer,
the cospectrum of w and 8 (heat flux cospectrum) shows a -7/3 power-law in the
inertial subrange: S,o(f) x f~7% or fSue(f) x f~43 (Kaimal et al.. 1972; Kaimal.
1973). However, there is no universal form for the heat flux cospectrum in the mixed
layer (Kaimal et al. 1976). although individual cospectra might be very useful in
identifying the predominant heat transport mechanism, such as thermals with a low

characteristic frequency.

Roth et al. (1989). Oke et al. (1989) and Roth and Oke (1993) present spectral
and cospectral measurements taken close to the junction between the turbulent wake
layer and the surface layer over a suburban surface. The w and ¢ spectra and cospec-
tra show good agreement with their counterparts over a smooth surface. with a few
minor differences. Namely, the peak of the power spectrum of w is slightly shifted
towards lower frequencies and the power spectrum of § is slightly shifted towards
higher frequencies. Therefore. the general characteristics of spectra and cospectra

over smooth surfaces may serve as an approximate model for urban boundary layers.

While much more can be said about the urban boundary layer, the overview in this
chapter adequately covers those aspects of it measurable by a profiler/RASS. This,
along with our understanding of the workings of ROSPA, gives us what we need to
evaluate profiler/RASS measurements taken at the McGill University Campus site in

downtown Montreal, which is an important topic in the next chapter.
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Chapter 5

The June 28, 1996 Experiment

5.1 Overview of MERMOZ

In the MERMOZ project of the summer of 1996 (Montreal Experiment on Regional
Mixing and Ozone). the Atmospheric Environment Service of Canada (AES) oper-
ated a UHF boundary-layer wind profiler, similar to the one at McGill. at a field
station at a rural site 70 km southwest of Montreal (see Fig. 5.1). Equipped with
a RASS. the radar was used mainly in a five-beam mode for routine wind profiling.
However. during a 3-hour period {1045 to 1400 EST) in the early afternoon of June
28, the profiler was used for continuous RASS observations. producing a record of
virtual temperature profiles up to 1 km with a height resolution of 60 m and a time
resolution of 22 s. Clean and free of clutter or interference, the record is suitable
for analysis of temperature and vertical velocity fluctuations and for estimation of
the profile of vertical heat flux. A research aircraft of the National Research Council
of Canada (NRC) was flying nearby during the same time, measuring along with
other quantities the air temperature. humidity, and vertical velocity. In addition, the
McGill profiler/RASS located in downtown Montreal, was also used continuously for
RASS observations over a 3-hour period (1200 to 1530 EST). See section 2.3 for a de-
scription of the profiler/RASS equipment. To support the observations, a radiosonde
was launched from the St-Anicet site at 1347 EST, followed by another at 1850 EST.
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See Mailhot et al. (1998) for an detailed account of MERMOZ.

The AES and NRC cosponsored and co-directed the aircraft operations in MER-
MOZ. The aircraft. a DeHavilland DHC-6 Twin Otter, flew 24 flights. recording
atmospheric state and radiometric data. and measuring the vertical fluxes of sensible
and latent heat. CO,, ozone, momentum. and turbulent kinetic energy. The aircraft
uses a noseboom-mounted Rosemount 858 5-hole pressure probe and a Litton-90-100
[nertial Reference System to measure the three orthogonal components of atmospheric
motion over a frequency range of 0-10 Hz (MacPherson. 1990). [n post-processing,

the accuracy of the measured winds is improved to better than 0.2 m s~!

utilizing
a Kalman filtering technique that corrects the inertial velocities using GPS navi-
gational data (Leach and MacPherson. 1991). Temperature is sensed by a heated
Rosemount 102DJICG fast-response probe and corrected for dynamic heating us-
ing pressures measured by the noseboom. Humidity is measured by a fast-response
LI-COR LI-6262 infrared CO,/H,0 gas analyzer. Fluxes are calculated using the
technique of eddy correlation after removing trends in the time histories. Data are

digitally recorded at 32 Hz after anti-alias filtering at 10 Hz: at a typical airspeed of

about 35 m s~!, the along-track resolution of the data is approximately 5 m.

The early afternoon of June 28, 1996. was clear, cloudless with light winds, due to
a synoptic-scale high pressure system dominating the region. As Fig 5.2 shows, the
winds were predominantly from the east. The CBL height for profile 4 was about
500 m, and about 1 km for profile B. as we shall see in subsection 5.3.1. Figure 5.2
therefore shows that the winds were mostly < 2 m/s within the CBL, and approxi-
mately 5 m/s above the CBL for profile A, which is consistent with the wind profile of
a CBL described by Kaimal and Finnigan (1994). A ground fog had formed over the
region early in the morning, starting at about 0030 EST and dissipating over McGill
by about 0600 EST, and over St-Anicet by 0900 EST. The fog was at most 300 m

thick. Figure 5.3 shows relatively cool temperatures early in the morning, especially
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Figure 5.1: Map of the Montreal region showing the location of the aircraft flight
path, the profiler/RASS and surface stations at St-Anicet (circle) and at the down-
town McGill campus (square).
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Figure 5.2: Wind profiles over St-Anicet taken by the profiler. Profile 4 is a con-
sensus average the half-hour period preceding the continuous RASS measurements
(1015 to 1045 EST), while B is for the half-hour following the RASS measurements
(1400 to 1430 EST). A half barb represents 0.5 m/s, a full barb 1 m/s, and a triangle
5 m/s.
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Figure 5.3: Plot of the hourly surface air temperature measurements at St-Anicet
(triangles) and McGill (squares) on June 28. 1996.

at St-Anicet where the air at the surface was saturated with a temperature of about
11° to 12° C. Also note the resemblance of Fig. 5.3 with Fig. 4.2. The surface tem-
peratures at McGill were generally warmer than those at St-Anicet: as much as 3° C

warmer after sundown, an obvious urban effect.
Figures 5.4 and 5.5 show the potential temperature, virtual potential tempera-

ture, and water vapor mixing ratio profiles, taken by radiosonde over St-Anicet at

1347 and 1850 EST, respectively. The potential temperature profile in Fig. 5.4 is
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approximately constant at 293 K from the ground up to about 1 km, where a capping
stable layer (also called an inversion layer) begins, followed by the free atmosphere,
starting at about 1.I km. This kind of potential temperature profile is typical of a
CBL with a height of 1 km (see, for instance, Fig. 4.4(a), or consult Stull (1988),
Garratt (1992). or Kaimal and Finnigan (1994)). The mixing ratio profile in Fig. 5.4
is also typical of a CBL. where we see a more or less constant value within the CBL
(about 5 g/kg). and a noticeable decrease above the CBL (down to about 2 g/kg in
the free atmosphere) (Garratt. 1992: Wyngaard. 1992). The drop in mixing ratio
tends to reduce the increase in virtual potential temperature between the CBL and
the free atmosphere. However, as Emanuel (1994) showed. it is the vertical gradient of
the virtual potential temperature that determines the static stability of moist unsat-
urated air. The inversion laver is therefore less stable than the potential temperature
profile would suggest. because it is the virtual potential temperature profile which
is important for a moist unsaturated CBL. The erratic tluctuations in the potential
temperature. virtual potential temperature and mixing ratio profiles between 0.7 and
I km. may be due to the mixing between the CBL and the free atmosphere in that

layer.

The radiosonde sounding at 1850 EST in Fig 53.5. on the other hand, shows no
sign of a CBL. Instead. the free atmosphere appears to start at 200 m. below which
is what looks like the beginnings of a nocturnal inversion layer, that is. a layer of
air made stable by cooling from the bottom due to the ground. Indeed. as Fig. 5.3
shows, the surface air temperature at St-Anicet falls 8° C between 1700 and 2000
EST. This may mean that the ground is radiating more energy than it is receiving
from the sun after 1700 EST, which in turn implies that after that time the surface
virtual heat flux drops significantly, thereby inhibiting convection. It is also possible
that the weakness of the inversion layer at 1347 EST favoured the entrainment of the

free atmosphere into the CBL.
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Figure 5.4: Profiles of potential temperature (solid line) and virtual potential tem-
perature (dashed line) on the left, and the water vapor mixing ratio profile on the
right, taken from a radiosonde lauched at St-Anicet, 1347 EST on June 28, 1996.
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EST on June 28, 1996.
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5.2 The Aircraft Data

Figure 5.6 shows the vertical velocity, virtual temperature. and virtual heat flux
trace from the aircraft measurements at one altitude. The vertical air velocity and
the virtual temperature fluctuations were high-pass filtered to remove trends caused
by instrument effects or large scale gradients. The high-pass filter strongly attenuated
any signal component with a wavelength of 12 km or greater. Figure 5.7 shows power
spectra and the cospectrum of vertical velocity and virtual temperature for the air-
craft measurements. These were smoothed at low wavenumbers by a running average
over 5 wavenumber bins. At higher wavenumbers. however, the wavenumber bins ap-
pear closer and closer together in the logged wavenumber coordinates. Therefore, at
high wavenumbers, if the interval in the logged coordinate between two wavenumbers
five bins apart falls below 0.05. we average over all the wavenumber bins inside a 0.05
wide window in the logged wavenumber coordinate. Prior to the Fourier transform, a
Hamming window (Kaimal and Finnigan. 1994: Oppenheim and Schafer. 1989) was
applied to the data to reduce leakage between wavenumbers or frequencies. The power
spectra were then multiplied by the wavenumber and divided by the variance of the
time series with the Hamming window applied to it. This normalization produces a
power spectrum with an area under the curve in linear-log coordinates equal to 1. For
spectra so normalized, and when plotted as here on log-log coordinates. a slope of -2/3
is expected in the inertial subrange of homogeneous, isotropic turbulence (Caughey,
1984; Kaimal and Finnigan, 1994; Kaimal ef al., 1976). The cospectra are multiplied
by the wavenumber, the density of the air p = 1.2 kg m™3, and the specific heat of
dry air at constant pressure ¢, = 1005 m?*™2K~!. This normalization produces a
cospectrum with area under the curve in linear-log coordinates equal to the virtual

heat flux.

The velocity power spectrum, Fig. 5.7(a) solid line, has most of its energy be-
tween 3x10~* and 1073 m™! (or between | and 3.3 km wavelengths), and an inertial

subrange, approximately the -2/3 law, extending from about 0.003 m~! (330 m) to
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Figure 5.6: Distribution along a line of (a) vertical velocity fluctuations, (b) virtual
temperature fluctuations, and (c) virtual heat flux trace, taken from an aircraft run
at 450 m AGL, for 9 min starting at 1322 EST.
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smaller scales. The temperature power spectrum, Figure 5.7(a) dotted line. has its
peak at slightly lower wavenumbers, 3x10~* to 6x10™* m™! (1.7 to 3.3 km). However,
at high wavenumbers the -2/3 slope is not well obeyed. This is possibly due to noise
contaminating the signal, as the initial small drop in the temperature autocorrelation
function (Figure 5.8(a)) would suggest. Noise would appear as a line with a slope
of +1 in the spectral plots. The aircraft cospectrum, Figure 5.7(b), demonstrates a

sharp peak at 4x10™% m™!

(2.5 km), in accord with the velocity and temperature
peaks, and falls rapidly to zero over the inertial range, almost vanishing at scales less
than 100 m. thereby demonstrating that the inertial subrange does not contribute

much to the overall heat flux.

5.3 The Profiler/RASS Data

[n this section, we will examine the data from the profiler/RASS at both locations.
However. we begin by examining the data from St-Anicet given the absence of ground
and intermittent clutter at that location. Next. we calibrate ROSPA using the St-
Anicet and McGill data. The clean St-Anicet data will then be used as a guide for
evaluating the treated McGill data.

5.3.1 St-Anicet Data

We must point out that the spectral averaging for the profiler at St-Anicet was per-
formed using SAM (Statistical Averaging Method}, an on-line intermittent clutter
rejection algorithm by Merritt (1995), which we described in subsection 3.1.2. The
clean and clutter free profiler data is probably due in part to the use of SAM. How-
ever, it also seems likely that the St-Anicet site itself was in part responsible for the
quality of the profiler data. First, the St-Anicet clear-air spectra show no sign of
ground clutter, something which SAM does not eliminate. Second, the time reso-

lution of 22 s is probably too short to allow SAM to effectively eliminate all of the
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Figure 5.7: Power spectra and cospectrum of the data in Fig. 5.6. Graph (a) shows
the power spectra of the vertical velocity (solid line), and the virtual temperature
(dashed line), multiplied by the wavenumber and divided by the variance, that is,
(kS(k)/c?). Graph (b) shows the cospectrum of the vertical velocity and the vir-
tual temperature, multiplied by the density, specific heat, and wavenumber, that is,
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intermittent clutter, had that type of contamination been severe. It therefore seems

likely that the clutter contamination at the St-Anicet site was not very serious.

Structure and Evolution of the CBL

Figure 5.9 shows a plot of the range-normalized signal-to-noise ratio of the clear-air
signal measured by the profiler. Angevine et al. (1994c) explain that the altitude of
the maximum of this quantity serves as a good approximation to the inversion height.
The figure shows that the thickness of the boundary layer is approximately constant
at 0.6 km AGL until about 1230 EST. when the buildup of the CBL begins. This

kind of sudden growth has been observed previously by Carson (1973).

Figure 5.10 shows the virtual potential temperature obtained by imposing a half-
hour running average (or about S0 measurements. 22 seconds apart) on RASS virtual
temperature data and assuming a hydrostatic condition for obtaining pressure by
upwards integration using surface pressure data. Although the reach of the RASS on
this day was excellent. the raw data contained some outliers due to occasional weak-
ness of the RASS signal at high altitudes. They were removed prior to averaging by
applying a median filter with a 3-point window. to the raw data. Figure 5.10 shows
a strong gradient of virtual potential temperature (a stable layer) at about 0.6 km
initially (from 1100 to approximately 1130 EST) and at about | km towards the end
of the observation period (the last hour). These stable layers inhibit convection at
those altitudes. thereby capping the thermal plumes. In the middle of the period the
height of the stable layer is not well defined. probably due to the rapid evolution of
the CBL at this time. The warming of the CBL is evident from the downward slant of
the virtual potential temperature contours. [n particular, the 289 and 290 K contours
show a sudden descent into the ground, indicating a rapid heating of the initial 0.6
km deep CBL, resulting in the weakening of the statically stable layer capping it and

the subsequent release of convection up to | km starting at about 1230 EST.
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Figure 5.9: Time-height plot of the range normalized clear-air signal-to-noise ratio

over St-Anicet on June 28, 1996.
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Figure 5.10: Same as Fig. 5.9, but for virtual potential temperature.
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Figure 5.11: Same as Fig. 3.9, but for the vertical air velocity. Note that the solid
line is the zero velocity contour.

Finally, Fig. 5.11 shows the vertical air velocity measured by the profiler. It
indicates the presence of plumes and reveals their vertical structure, mainly in the
second half of the period, when columns of rising and descending air are clearly visible.
Such a structure of vertical air motion is consistent with the descriptions of Carson
(1973) and Wyngaard (1992) and the observations of Kaimal et al. (1976) of the
thermal plumes in a CBL. The time averaged vertical velocity over the entire period
was removed from the velocities shown in Fig. 5.11 for each height, to eliminate any

possible instrumental bias in the vertical velocity measurements (Angevine, 1997).
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Data and Heat Flux Analysis

Here, we analyse the data and demonstrate certain difficulties in estimating the virtual
heat flux. Figure 5.12 shows time series of measured and derived RASS quantities
at one particular altitude (412 m). The uncorrected virtual temperature (curve a)
includes the effect of vertical air velocity (curve b). which explains why these traces

resemble each other. The interdependence of these quantities follows from
R=c+w (5.1)

where R is the velocity of the acoustic wave measured by the RASS. w is the vertical
velocity of the air, measured by the profiler, and ¢ is the speed of sound in still air.

Given that ¢ = /YR, [, where v = 1.4 is the ratio of specific heats of air, R, = 287

m?s~2K~! is the gas constant of air. and T, is the virtual temperature in I\, we may

convert Eq. 3.1 to

T, w?
+

Th=T,+ 2w
. o R, R,

where Tp = R?/(+R.) is the uncorrected temperature measured by the RASS and
displayed in curve (a). The corrected temperature (curve c¢) has the effect of vertical
air motion removed. From Eq. 5.2, this quantity is given by

Tn w?
TR, 1R

T,=Tgr - 2w (5.3)

The smooth line in curve (¢) is the quadratic least-squares fit to the data. [t indicates
the general warming trend during the observing period and is taken to represent the
non-stationary mean temperature. Deviations of the corrected temperature from
this line are taken to be the turbulent fluctuations used in heat flux calculations.
The detrending necessary to obtain the corrected temperature fluctuations is the
only correction for nonstationarity used on the RASS data. Because RASS measures
virtual temperature, the product of the deviations from this line and the vertical air
velocity gives the buoyancy flux, which when multiplied by the product of air density

and specific heat gives the virtual heat flux trace (curve d). Notable in the trace are
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bursts of heat flux, sometimes exceeding 1000 W/m?, which become more frequent
as time increases. The virtual heat flux trace as plotted is in fact the average of
two estimates of the flux: (1) the trace produced with the velocity time series moved
ahead one time step with respect to the temperature time series and (2) that with
the temperature time series moved ahead one time step with respect to the velocity

time series. That is.
Fli] = ‘L,fﬁ(w'[z + T[] + [T+ 1) (5.4)

where p = 1.2 kg m™ is the density of air. ¢, = 1005 m?s™?K~" is the specific heat
of dry air at constant pressure, F is the virtual heat flux in W/m?. { is the discrete
time index. and the primes denote fluctuations from the mean. The time average of
the resulting trace is mathematically equivalent to a method of heat flux calculation

used by Peters ef al. (1985).

The reason for the time shift in Eq. 3.4 is to eliminate a systematic bias. This is
made clear when we consider Eq. 5.3 and assume that Tg and w both carry errors. ng
and n,, respectively. These errors are assumed random. with zero means and variances
o} and o?. Also. we assume that ng is independent of 1, and that the error at one
time is independent of the errors at other times. Therefore. if there were no time
shift in the definition of the heat flux trace (F[i] = pc,w’[{]T)[i]). then Eq. 5.3 tells
us that the errors n, would combine in such a way as to produce an constant average

bias in the heat flux estimation,

(S]]
(@ 1]
-

bias = —2pc,0? R

PP\ IR,
where the overbar denotes a time average. Eq. 5.5 shows that the bias is always
negative. By time shifting, this bias is avoided although the heat flux may be slightly

underestimated (Peters et al.. 1985).

The turbulent fluctuations of virtual temperature shown for one altitude in Fig.

5.12(c) are plotted in time-height coordinates in Fig. 5.13. These fluctuations have a
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Figure 5.12:  Time series of (a) uncorrected RASS temperature, (b) vertical air
velocity, (c) corrected temperature, (d) virtual heat flux, at 412 m AGL over St-
Anicet on June 28, 1996.
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structure resembling that of the vertical velocity fluctuations in Fig. 5.11, but with
generally shorter durations. There is also a predominance of positive temperature
Auctuations between 0.8 and 1.2 km and from 1230 EST onwards. This coincides
with a net preponderance of downwards motion in the same region (Fig. 5.11). An
entrainment of potentially warm air from the free atmosphere downwards into the
mixed layer is therefore suggested. [Figure 5.14 shows the virtual heat flux. There
is a predominance of positive heat flux in the lower part of the CBL, particularly
towards the end of the period. Conversely, there is a predominance of negative heat

flux around the top of the CBL (compare with Fig. 5.9).

Figure 5.15 shows a quadrant analysis of the heat flux. similar to the kind used
by Kroon and Bink (1996) or Grant et. al. (1936), except that rather than compiling
statistics. a time-height contour plot is used. This analysis partitions the flux into
upwards and downwards motion and cool and warm currents. [n the second half of
the period. there are vertical columns of predominantly warm rising air with regions
of mainly cool descending air. This structure is consistent with the picture of regions
of descending cool air separated by thin walls of rising warm air, described by Schmidt
and Schumann (1989) using a large-eddy simulation. The entrainment of warm air
from the free atmosphere to the mixed layer is seen once again by the predominance

of the positive downward (PD) quadrant at the top of the CBL.

Figures 5.16 to 5.19 demonstrate the spectral and correlation structure of the
RASS data. The smoothing of the spectra and cospectra is identical to what was
done to the aircraft spectra, except that at low frequencies the spectra and cospectra
were averaged over three bins only. The RASS data were split into two parts, 1048
to 1224 EST and 1224 to 1400 EST, to show explicitly the nonstationarity. The first
part has a CBL top relatively constant at about 0.6 km. The second part contains
a CBL whose height grows rapidly from 0.6 km to about | km. Figure 5.16 shows

the first part. The broad maximum of the velocity spectrum extends from 6x10~* to
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Figure 5.13: Time-height plot of virtual temperature fluctuations over St-Anicet, on
June 28, 1996. Note that the solid line represents the zero value contour.



Virtual Heat Flux w/m?

1.4
]
1.2 — 2000
1.0 -
5 ] 1000
XX
~ 0.8
Q
hel
2
Z 06 0
0.4
-1000
0.2
O.Ol.,..I,...,,f,,,...l.,.,[,,,,,j -2000
11:00 11:30 12:00 12:30 13:00 13:30 14:00

Time (EST)

Figure 5.14: Same as in Fig. 5.13, but for the virtual heat flux. Note that the solid
line represents the zero value contour.
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Virtual Heat Flux Quadrants
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Figure 5.15: Same as in Fig. 5.13, but for the virtual heat flux quadrants. Note
that, PU = positive virtual temperature fluctuation and upward vertical velocity
fluctuation, NU = negative-upward, PD = positive-downward, and ND = negative-

downward.
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1.2x107° Hz (14 to 28 min) with a maximum at about 17 min. The slope at high fre-
quencies seems steeper than 2/3, possibly due to a low-pass filter effect induced by the
size of the profiler pulse volume. Eddies smaller than the pulse volume are averaged
out, leaving the larger eddies which may have lifetimes greater than the integration
time of the profiler. A low-pass filter effect may also be induced by the horizontal
wind advecting eddies through the pulse volume over the integration time, thereby
extending the effective averaging volume. The velocity spectrum in Fig. 5.17(a) has
a similar structure with a peak at about 9 min and a high frequency slope steeper

than 2/3.

The temperature power spectra in Figs. 5.17(a) and especially 5.16(a) appear to

be strongly contaminated by a kind of measurement error (which tends to induce

Y

slope of +1). making the identification of a peak unreliable. However, as Figs.

(511

.16(b) and 5.17(b) show. only the spectral components with periods ranging from

to 15 min. approximately, contribute significantly to the heat flux. Although the

O

temperature spectral peaks at those periods may be obscured by the measurement
errors. they still contribute. on average, to the cospectrum as though there were no
measurement errors. The measurement errors can. however, increase the uncertainty
of the heat flux estimates. White noise is suggested by the rapidly decreasing temper-
ature autocorrelation functions in Figs. 3.18(a) and 5.19(a), although it is difficult to
estimate the signal-to-noise ratio confidently due to the uncertainty in extrapolating
the signal autocorrelation function to zero lag. The white noise is probably caused
by errors in the estimation of temperature due to factors other than the vertical air
velocity, such as small-scale turbulence, horizontal winds, and others (Angevine and
Ecklund, [994). These errors represent an inherent limit to the accuracy of RASS
temperature measurements independent of the presence of clutter or interference in
the vertical air velocity measurements. Therefore, the temperature white noise may
not be reduced by the vertical air velocity low-pass filter effect. The heat flux cospec-

tra, Figs. 5.16(b) and 5.17(b), have greater peaks, 170 and 200 W/m? respectively,
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than the aircraft cospectrum, 85 W/m?, along with substantial negative components.

Figures 5.20 and 5.21 show profiles of vertical air velocity variance., while Figs.
5.22 and 5.23 show profiles of vertical air velocity variance flux (the third order
moment of the vertical velocity, (w — w@)3). for both wind profiler/RASS and aircraft
measurements. The error bars for these and subsequent quantities were estimated
using the methods described by Lenschow et al. (1993; 1994). For the variance of the

estimation of the average of a time series. Lenschow et al. propose
1 =2*1)T (5.6)

where ¢, is the standard deviation of the estimate of the average (which we also call the
error on the estimate). o is the standard deviation of the time series. 7 = [;° p(QA)dA
is the integral timescale of the time series (p() is the autocorrelation function of a
statlonary time series), and T is the duration of the time series. For the error on the

estimate of the variance. we use

:3=2'r/T (5.

(1]
=1
~—

and for the error on the third-order moment

2 = 40%7/T. (5.

(W13
oL
~—

Also note that the vertical air velocity variance for the profiler measurements is

in fact the statistic (w[¢] — @)(w[i + L] — @), that is, the autocovariance function at
lag 1. This is done to avoid any bias that might result due to random and inde-
pendent errors (noise) on the profiler measurements. The profiler measures vertical
air velocity averaged over the resolution volume and the integration time, which re-
duces the contribution of small eddies. It is therefore not surprising that the aircraft
measures a greater variance than the profiler in Figs. 5.20 and 5.21, given its finer
resolution. The dashed lines in Figs. 5.20 and 5.21 represent the sum of the variance

and the average clear-air spectral variance. The spectral variance is defined as the
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RASS Data, 412 m AGL, From 1048 To 1224 EST
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Figure 5.16: Power spectra and cospectrum of the RASS data at 412 m AGL from
1048 to 1224 EST. Graph (a) shows the power spectra of the vertical velocity (solid
line), and the virtual temperature (dashed line), multiplied by the frequency and
divided by the variance, that is, fS(f)/o?. Graph (b) shows the cospectrum of the
vertical velocity and the virtual temperature, multiplied by the density, specific heat,
and frequency, that is, pc, fSur(f)-
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RASS Data, 412 m AGL, From 1224 To 1400 EST
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Figure 5.17: Same as in Fig. 5.16, but for RASS data at 412 m AGL from 1224 to
1400 EST.
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RASS Data, 412 m AGL, From 1048 To 1224 EST

1.0 7 — — —- -

. g =0373C N

c 7 -
S 08+ ~
5 1 C
£ 06— =
o] n L
O ] r
B 04 TN e e —
2 ] N
o 027 C
. s //A\":
) OO- W L
-2 —_— —r
0 L2 3 4 5

1.0 7] — C

4 = g = 0.588 m/s f

c 0.8 -
9 ] S C
S o1 -
I ;
O s WL -
3 ] -
o 0.2 = -
> . -
2 0.0 :
-2J ——————————— et
0 1 2 3 4 5

Lag (min)
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RASS Data, 412 m AGL, From 1224 To 1400 EST
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second-order moment of a power spectrum and is equal to half the spectral width
squared (¢} = (#p/2)?, see Eq. 2.22 in section 2.1). Adding the spectral variance
helps somewhat, but it should be noted that this quantity is not necessarily equal, or
even proportional, to the vertical velocity variance of the small eddies. See section
2.1 for an analysis of the physical meaning of clear-air spectral moments. The dashed

line should only be seen as a rough estimate of the total variance.

The RASS vertical air velocity variance profiles in Figs 5.20 and 5.21 are roughly
what we would expect from Fig. 4.6. namely a smooth curve with a maximum at
about 0.4z, In Fig. 5.20. we estimate the CBL to be approximately 0.6 km deep,
and we have a maximum velocity variance at about 0.25 km. In Fig. 5.21. the CBL
grows from 0.6 to about | km over the averaging period. so z; is not easy to eval-
nate. But if we take the average over the period. z; = 0.8 km. then the maximum
variance should be at about 0.3 km. which given the error bars, is approximately
correct. Both variance profiles do not decrease as fast with height near the top of the
CBL as the idealized profile in Fig 4.6. however. This may be due to weak returned
signals at those altitudes. giving unreliable vertical air velocity measurements with
an error component which increases the total variance. However, the lag | value of
the autocovariance function is plotted specifically to avoid this effect. We can only
conclude that if unreliable measurements are responsible, then the errors must be
correlated to some degree, over one time lag or more. The aircraft variance profiles
do not seem to follow the form of the RASS profiles. Indeed, the profile in Fig. 5.20
appears constant with height. Possible reasons for this difference will be discussed

later, in chapter 6.

According to Stull (1988), vertical motions dominate the turbulent kinetic energy
(TKE) in the mixed layer, which means that the vertical air velocity variance ap-
proximates the TKE, and the vertical velocity variance flux approximates the TKE

flux. We expect the profiles in Figs. 5.22 and 5.23 to be positive everywhere within
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the CBL and to reach a maximum around its middle, because we expect a growing
CBL to transport TKE upwards. We also expect that the maximum of the vertical
velocity variance profile corresponds to a convergence zone of the TKE flux. This is
approximately what we observe for the RASS data, though while the aircraft profiles
are positive. only the second profile has a convergence zone that corresponds to the

variance maximum (compare Fig. 5.21 with Fig. 5.23).

Figures 5.24 and 3.25 show profiles of virtual heat flux from RASS and aircraft
data. The RASS profile was obtained from time averages of traces as in Fig. 5.12(d) at
different altitudes and times. For the aircraft data. the virtual heat flux was obtained
from time averages of traces. as in Fig. 5.6(c). along flight tracks at different altitudes
and times. Two RASS and aircraft profiles are plotted: Fig. 5.24 for aircraft runs
between [155 and 1235 EST and a RASS period from 1048 to 1224 EST: Fig. 5.25
for runs between 1247 and 1335 EST and RASS period from 1224 to 1400 EST. The
evolution of the CBL is evident by marked difference between the RASS profiles.
There is reasonable agreement between the later RASS profile and the aircraft profile
between 0.15 and 0.5 km. Similarly. there is reasonable agreement between the early
RASS profile and the aircraft profile between 0.25 and 0.5 km. Below 0.25 km. the
early RASS heat flux values are less than 10 W/m?, much less than the aircraft values
of approximately 135 W/m?. This may be due to the static stability of that layer at
the start of the observation period, which inhibits convection and favors a negative
heat flux if only small eddies are present (Garratt, 1992). Above 0.5 km, both RASS
flux profiles decrease with height and become negative, as expected at the top of a
CBL (Garratt, 1992). The aircraft flux values decrease only weakly above 0.5 km.
From the RASS profiles, however, it would appear that the top of the CBL increases
from about 0.55 (early profile) to 0.7 km (late profile). But in Fig. 5.9, we see that
the CBL top increases from 0.6 to | km, mainly in the second half of the observation
period. It should be noted that these profiles really represent the average heat flux
profile over the averaging period. Therefore, the later RASS profile should show a
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CBL top halfway between 0.6 and | km - about 0.8 km. A CBL top at 0.7 km in the
later profile is therefore acceptable considering the errors in the heat flux estimates

due to their intermittency.

Temperature Correction for Turbulence

Figure 5.26 shows an example of clear-air and RASS Doppler power spectra for sev-
eral heights. On the left-hand-side of the figure. we see an updraft extending from
172 to 5332 m AGL. and a downward motion at 392 m AGL and higher. The change in
vertical velocity creates a region of strong convergence from 172 to 592 m AGL. [t is
reasonable to assume that the shear produces small-scale turbulence. which manifests
itself in the wide clear-air spectral widths. particularly at 532 m. The corresponding
RASS spectrum at 532 m AGL is also wide, presumably caused by the turbulent
eddies perturbing the acoustic wavefront. According to Peters and Angevine (1996).
among others. the perturbation of the acoustic wavefront can only increase the mea-
sured RASS temperature. Therefore, rather than widening in both directions equally.
as for the clear-air spectrum. the RASS spectrum widens towards higher acoustic ve-
locities only. In addition. because the acoustic wave continues to propagate upwards
after being perturbed. the temperature error also propagates upwards. We can see
this effect in the RASS spectrum at 592 m. [t is broader than the corresponding
clear-air spectrum at the same altitude, suggesting that it is the turbulence at 532
m which caused its wide bimodal form. As far as heat flux is concerned, the exceed-
ingly warm temperature at 592 m leads to a falsely positive temperature fluctuation
where the vertical air velocity is negative. resulting in an erroneous negative heat
flux. Other factors influence the width of the RASS spectra (temperature gradients,
length of the Bragg-match region within the pulse volume, etc.), but we will assume,

in this subsection, that only the turbulent eddies cause the asymmetrical spreading
of the RASS spectra.
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Figure 5.25: Same as in Fig. 5.24, but for the period 1224 to 1400 EST for RASS
and 1247 to 1335 EST for aircraft.
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Figure 5.26: Clear-air (left) and RASS (right) spectra over St-Anicet, at 1138 EST.
Note that the spectra are stacked as a function of altitude (in meters AGL). Also,
the spectra are normalized so that the maximum of each spectrum reaches the top of
its display rectangle. The vertical line in each spectrum denotes the mean Doppler
velocity (7), the horizontal line the spectral width (20,).
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Peters and Angevine (1996) propose a method for correcting the RASS tempera-
ture for errors due to turbulence. This method only applies to the first-order moments
of the RASS spectra, not to the spectra themselves. The proposed turbulence tem-
perature correction can be formulated as

T

= = 0483 O KI(CT) (5.9)

where 8T /T is the relative temperature correction, = is the altitude in meters. A, is
the acoustic wavenumber (m™'). and C? (m~2/%) is a weighted path average of the

acoustic refractive index structure parameter

2 _ 15 CHONER)AC
TR

where C'?(z) is the local acoustic refractive index structure parameter. which is ex-

(5.10)

pressed as

C3z) = o+ ==

4T*z) (=) (5-11)

where C3(z) and C?(=) are. respectively. the temperature and velocity structure pa-
rameters, 1'(z) is the absolute temperature and c,(z) is the speed of sound. The
velocity structure parameter. C2, is taken to be proportional to the square of the

clear-air spectral width, and C% is assumed to be negligible.

[n other words, the turbulence temperature correction depends mainly on the
altitude and a weighted integral of the square of the clear-air spectral width. The
integration in Eq. 5.10 can be problematic since we only have a limited number of al-
titudes to work with, and the spectral width values may not be accurate. Figure 5.27
shows a comparison between the virtual temperature fluctuations at 532 m AGL, and
the temperature correction, 7, due to turbulence, calculated from Egs. 5.9 and 5.10.
There is a definite correlation between the two quantities. In particular, we suspect
that the large positive temperature fluctuations at 1230 and 1345 EST may be due

to turbulence. Correspondingly, we see large spikes in the turbulence temperature
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correction time series at the same times. However, we also see that the temperature
correction is about one order of magnitude too small to adequately correct the tem-
perature fluctuations. A possible explanation would be that the method used is based
on the assumption of homogeneous turbulence with no coherent large-scale structures.
But in a CBL. the turbulence is not homogeneous but rather depends on large-scale
coherent structures, such as thermal plumes. The assumption may therefore cause
an underestimation of the temperature correction. Another source of error may be
our method of estimating the spectral widths (integration over the useable portion of
the clear-air spectrum). Perhaps other methods (such as the log-fitting of a Gaussian

function to the clear-air spectrum (Gossard et al.. 1998)) might vield better results.

Figure 5.28 shows the effect of the temperature correction for turbulence on the
virtual heat flux profile in Fig. 5.25. Overall, there is a slight reduction in the mag-
nitude of the heat flux at all altitudes. This is consistent with the picture mentioned
above, where the turbulence causes a warming of the temperature fluctuations. Cor-
recting for turbulence would reduce the magnitude of the temperature fluctuations,
and consequently the heat flux. However, when we compare with Fig. 3.25, we see
that the effect of the correction falls well within the error bars of the heat flux esti-
mates. This does not necessarily mean that the effect of turbulence itself on the heat
flux estimate is negligible, but only that our method to correct for it is inadequate.
However, the method by Peters and Angevine is concerned with correcting for the
systematic error on the mean temperature measurements due to turbulence, not with

the cross-correlation of temperature with the vertical air velocity.

5.3.2 McGill Data

In this subsection, we perform the same analysis on the McGill data as on the St-
Anicet data. However, given the necessity to treat the McGill data, we must first

calibrate ROSPA so as to obtain the best possible performance.
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correction (b) time series for St-Anicet, at 532 m AGL.
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Calibration of ROSPA

Before we can examine the McGill data, we must first determine the most appropri-
ate choice of the thresholds required by ROSPA. The threshold values will be chosen
according to two criteria. The first, called the RASS correlation criterion, is based
on the correlation between the treated vertical air velocity time series and the raw
RASS velocity time series. A high correlation is expected if the treated velocities
are accurate. The second criterion is the degree to which the algorithm leaves good
vertical air velocity data, like the St-Anicet data. unchanged. This will be measured
by the correlation between the treated and untreated time series of the good data, a
correlation of | indicating no change. It should be stressed. however. that the first
criterion is more important, particularly for measurements taken in the mixed layer
of a CBL. This is because the RASS velocity fluctuations due to temperature fluctua-
tions are small compared to those due to vertical air velocity fluctuations. Therefore,
if the RASS data is good (no power drop-outs. no RFI. etc...). we would expect the
accurate vertical air velocity time series to closely resemble the RASS velocity time
series. and we would expect a good correlation between them. We assume. then, that
any improvement in the RASS correlation criterion implies better vertical air velocity
estimation. and is not fortuitous. Also. we can avoid fixing the threshold values once
and for all. but rather adjust them for every new dataset. Thus. in the event of clean
data, the RASS correlation criterion would allow threshold values high enough to al-
low the good data through ROSPA unaltered, thereby satisfying the second criterion

automatically.

In order to explore the RASS correlation criterion, we examine it mathematically
to find an expression for the best possible correlation. We begin by describing the

main features of the RASS signal (at a fixed altitude):
R[i] = cfi] + w{i] + €[i] (5.12)
where R[i] is the RASS velocity time series, c[i] the speed of sound in still air as a
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function of the time index ¢, w(i] the vertical air velocity, and €[] the error on the
RASS measurement, which we assume has the characteristics of white noise. [t is

useful to partition the speed of sound into two components:
c[i] = m[i] + f[{] (5.13)

where m{] is an average speed of sound which may change over the observing time
because of the overall warming or cooling of the boundary layer. over time scales of at
least an hour, and f[¢] is the short-term fluctuations due to temperature fluctuations
associated mainly with thermals. Over a period of three hours. we assume that the
trend can he adequately expressed as a quadratic. m[ij = a + bi + ¢(¢)*. In addition.
we have a profiler-measured time series of the air velocity which we assume is clutter

free:
Pli] = w{i] + n[¢] (5.14)

where wli] is the vertical air velocity. and nfi] is the error on the profiler measure-
ment, assumed to be white noise. All the statistics needed for the correlation will be
estimated using a time average over the .V points of the time series, denoted by an
overbar. The average RASS measurement is then R = ., where we have assumed.
without loss of generality. that f = @ = € = 0. Similarly, the average profiler air
measurement is P = 0, assuming 7 = 0. The variance of the RASS time series can

be decomposed as
ch=0n+0}+oL+0.+2mf +2wf + 2mw (5.15)

where we have assumed that € is independent of m, f, and w. However, we will
neglect the terms 2mf and 2w, assuming that the average speed of sound. m[i], is
approximately constant over the decorrelation times of f and w, so that
oh = ol + 0%+ 05+ 0] +2uf. (5.16)
Similarly, for the air signal, we can state
2

op =0l +a} (5.17)
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where we have assumed that n is independent of w. And using Eqgs. 5.12 and 5.14,

we can find the joint moment

PR=uwf+a2 (5.18)

where we have assumed that €7 = m77 = fn = 0. [t is now convenient to introduce the
time series v[{] = f[i] + w(t]. and the corresponding variance 2. Also, we will need
to introduce the correlation between f and w: ry = wf/(o,0;). where the subscript
H denotes its relationship to the heat flux. Finally. let 3., = 0./0, denote the ratio
of the standard deviations of the quantities r and y. Using these conventions and a

bit of algebra. we can write an expression for the correlation r = PR/(opog):

el el
VIL+ B LV + 30, + ) LV + 2radpe + JF,)
= H{341)G (Bt 3in) F(Bppae i) (5:20)

where 0 < H(3,.,) < | represents the loss of correlation due to the error in the
profiler measurements. 0 < G(Bmpy.3ey) < | represents the loss of correlation due
to the trend in the RASS time series and the error on the RASS measurements, and
—1 < F(3fw-ru) < Lis the correlation between v = f 4+ w and w. In the mixed
layer. we have 0 < 3y, < l.and if ry = L. then F=L:if ry = ~1. F=1:and F
reaches its minimum at ry = —13y),, where F = 1 - %J}!w. Therefore, if 35, = 0.35.
a reasonable value for the mixed layer, then 0.938 < F < 1, depending on the value
of rgy. Taking into account H and G then, a correlation of r = 0.9 is probably the

most we can reasonably expect in the mixed layer of a CBL.

Figure 5.29 demoustrates how well the RASS correlation criterion serves as an
indicator of the accuracy of the vertical air velocity retrieval. The solid lines are the
correlation values between the untreated and treated vertical air velocities for the St-
Anicet data. They indicate how well the TMIN7 filter recovers the original vertical

air velocities, as a function of the spectral threshold. The correlation is very nearly
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unity for spectral threshold values greater than 30 dB, which means that at this level
the TMINT filter does not substantially modify the spectral data. The slight initial
drop in correlation is due to the fact that as the spectral threshold value increases
beyond 0 dB, the resulting vertical air velocity time series does not change its overall
shape, but rather becomes noisier. This means that the joint moment PR does not
change. while o7 increases, which causes a slight reduction in correlation. The dashed
lines in Fig 5.29 are the correlation values between the untreated RASS signal and
the treated air signal. We see a reasonably good correspondence between the solid
and dashed lines. particularly for the lowest altitude. This may be due to the action
of turbulence and winds on the RASS measurements. which affect the higher range
gate more (see. for instance, Angevine and Ecklund (1994)). Another factor could be
the decrease of the signal-to-noise ratio with height of the air signal. Together. these
factors can help explain why at 532 m AGL. the RASS correlation criterion (dashed
line) starts at approximately 50% and attains a plateau at about 10 dB. while at 172
m AGL. it starts at 73% and attains a plateau at about the same level as the solid line
(30 dB). Therefore. it seems that when choosing an appropriate spectral threshold

level, we should favor the RASS correlation criterion at the lower range gates.

Figure 5.30 shows the RASS-profiler correlation for various values of the spectral
threshold of a TMINT filter. with (solid line) or without (dashed line) an XMED5
filter afterwards. for the McGill data. Without the XMED?3 filter. the correlations fall
rapidly after reaching their maxima which occur at 10 dB for 225 m and at 5 dB for
405 m and 385 m. With the XMEDS filter, the correlation seems much less sensitive
to the choice of threshold, though peaking at about the same threshold values as
before. The initial increase in correlation is because at the low threshold values, we
allow more and more good spectral power values while still exluding bad values. The
subsequent decrease in correlation arises because at those threshold values we have
already allowed most or all of the good spectral power values, and are beginning to

include bad values of ever increasing severity, as we saw in subsection 3.2.2 on the
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threshold minimum filter. The consistently better result of the combined TMINT-
XMEDS filter shows the ability of the median filter to select good Doppler velocity
values. Indeed. at the 225 and 405 m levels. the TMIN7-XMEDS5 filter almost reaches
90% correlation, the highest we can reasonably expect. Figure 5.30 suggests that the

best spectral threshold values would be between 5 and 10 dB.

The performance of the threshold median on the St-Anicet data is shown in Fig.
3.31. As expected from the definition of the threshold median (subsection 3.2.7), we
have a subset of points (= 65%) that are always accepted as the normalized threshold
(v) tends towards zero. Most of the missing points are recovered at v = [, and
essentially all are recovered at v = 2. We will therefore set v = 2 in what follows to
insure that good Doppler velocity values are accepted. thereby satisfying the second
criterion mentioned previously. As we will see. the McGill data have a greater time
scale than the St-Anicet data. which implies that the normalized variability within a
3-point window should be less and that the TMEDS5 filter should be able to accept

more good points.

Structure and Evolution of the CBL

Figures 5.32 and 5.33 show. respectively, the range normalized clear-air reflectivity
over McGill before and after the continuous RASS period. Figure 5.32 shows strong
growth of the CBL beginning as early as 0900 EST, and continuing until the end of
the plot, when it reaches a height of approximately 1.5 km. This is in sharp contrast
with the CBL over St-Anicet (Fig. 5.9). which only begins to grow significantly
after 1230 EST. Figure 5.33 shows a CBL approximately 1.8 km high at 1530 EST,
remaining relatively constant until 1700 EST, when it begins to descend. Figure 5.34
indicates a more or less uniform warming of the virtual potential temperature of the
CBL during the RASS observing period, with a mildly stable layer extending from
the ground up to about 0.3 km AGL, and a broad maximum of potential temperature

between 0.5 and 0.7 km AGL. The temperatures were corrected using the vertical air
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Figure 5.30: The correlation (x100) between the untreated RASS data and the
profiler data treated by a TMIN7 filter only (dashed line) and by a TMINT filter
followed by a XMEDS3 filter (solid line), as a function of the spectral threshold and
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AGL), for the McGill data.
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velocity fluctuations shown in Fig. 5.35 prior to the half-hour running average and
median filter. The vertical velocity fluctuations in Fig. 5.35, obtained using a TMIN7-
XMEDS5 filter with a spectral threshold of 5 dB and a TMEDS5 filter with v = 2. They
demonstrate the same sort of vertical structure as for the St-Anicet data, except that
the plumes are taller, more intense and longer lasting. The convection appears well
developed over the entire observing period. From all these observations, we conclude
that the CBL grew more or less constantly from 1.5 to 1.8 km, and possessed more
or less stationary statistics, over the continuous RASS observation period. Turbulent
statisiics will therefore be compiled over the entire period. Contrary to the St-Anicet

data, no segmentation is necessary.

Data and Heat Flux Analysis

Here. we will use the same data analysis methods used for the St-Anicet data, while
bearing in mind the possible effects of ROSPA on the results. The appearance of the
vertical air velocity retrieval is evident in Fig. 5.36. There is an obvious correlation
between the uncorrected virtual temperature (curve a) and the treated vertical air
velocity (curve b). 89% in fact. particularly with respect to the major features. It
is interesting to compare the strength of the convection over McGill with the rather
weak convection at St-Anicet. The corrected virtual temperature in curve (c). along
with the least-squares quadratic fit (smooth line in (c)). show a long-term warming of
about 2° C over the 31 hour period. The fluctuations in the uncorrected temperature
time series, as much as 7° C in magnitude, are reduced to about 1° C on average in the
corrected virtual temperature time series. However, curve (c) still shows important
temperature fluctuations, as much as 3-4° C in magnitude, much stronger than in
the St-Anicet data. The urban CBL is usually driven by a greater surface heat flux
than the rural CBL, which is expected to create greater temperature fluctuations in
the urban CBL. Nevertheless, we suspect that imperfect retrievals of the vertical air

velocities, along with errors on the RASS measurements caused by turbulence and
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Figure 5.32:  Time-height plot of the range normalized clear-air reflectivity over
McGill on June 28, 1996, for the four hour period preceding the continuous RASS
measurements.
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Figure 5.33: Time-height plot of the range normalized clear-air reflectivity over
McGill on June 28, 1996, for the four hour period following the continuous RASS
measurements.
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Figure 5.34: Time-height plot of the virtual potential temperature over McGill on
June 28, 1996.
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Figure 5.35: Same as in Fig. 5.34, but for vertical air velocity. Note that the solid
line is the zero velocity contour.
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winds, are also partly responsible for the noisy appearance of the corrected temper-
ature time series. We presume that this noise is also responsible for the appearance
of the virtual heat flux trace (curve d). Instead of the intermittent bursts of positive
heat flux observed in the St-Anicet data, we have almost continual bursts of heat flux
in either direction. While the heat flux trace might actually be more turbulent over
the McGill site, we suspect this is due mainly to the errors in the vertical air velocity

and corrected temperature time series.

Figure 5.37 is a time-height contour plot of the virtual temperature fluctuations,
like the ones shown in Fig. 5.36(c), while Fig. 5.38 is a contour plot of the virtual
heat flux. the same quantity in the trace in Fig. 5.36(d). I[n these figures. we see an
overall vertical structure of the temperature fluctuations and heat flux that is con-
sistent with strong convection. Note. however. that there is a slight predominance of
negative heat flux between 0.4 and 0.6 km AGL over the observing period. Figure
5.39 is a time-height plot of the virtual heat flux quadrants. The structure of de-
scending cool air separated by thin walls of rising warm air, visible in the St-Anicet
data, is not evident here. The updrafts to not appear to be predominately warm., just
as the downdrafts do not seem predominately cool. This could be due to the noise
in the temperature fluctuations mentioned earlier, which would overwhelm the real
temperature fluctuations responsible for the heat flux. There could also be a question
of scale involved, namely that the CBL height is about 1.65 km AGL and that the
timescale is longer than at St-Anicet. Therefore, we do not see the entire vertical
extent of the CBL as we did in the St-Anicet data, and the observing time period is
proportionally shorter if we take into account the longer timescale. More important,
however, is the possibility that the city induced a slowly changing circulation pattern
over the McGill RASS, like the kind described in section 4.2. Physically, this means
that rather than having a spatial pattern of cool descending air and warm ascending
air moving over us, we instead have a local circulation pattern caused by the city

that is not being advected over us. Therefore, Figs 5.37 to 5.39 may not represent
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Figure 5.36: Time series of (a) uncorrected RASS temperature, (b) vertical air
velocity, (c) corrected temperature, (d) virtual heat flux, at 405 m AGL over McGill
on June 28, 1996. Note that the vertical air velocity was treated with a TMINT filter
with a 5 dB threshold, followed by a XMEDS3 filter.
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Figure 5.37: Time-height plot of virtual temperature fluctuations over McGill. on
June 28, 1996. Note that the solid line represents the zero value contour.

a horizontal cross section given some advection velocity, but rather a changing local

circulation pattern over the McGill site.

Figures 5.40 and 5.41 demonstrate the spectral and correlation structure of the
McGill RASS data. The windowing and smoothing performed on the power spectra
and cospectrum in Fig. 5.40 are identical to that done on the St-Anicet data. The
velocity spectrum has a broad maximum extending from 6x10™* to 3x10~* Hz (6
to 28 min periods) with a maximum at about 8 min. The slope at high frequencies

is steeper than 2/3, maybe due to a low-pass filter effect caused by the averaging
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Figure 5.38: Same as in Fig. 5.37, but for the virtual heat flux. Note that the solid
line represents the zero value contour.
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Virtual Heat Flux Quadrants
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Figure 5.39: Same as in Fig. 5.37, but for the virtual heat flux quadrants. Note
that, PU = positive virtual temperature fluctuation and upward vertical velocity
fluctuation, NU = negative-upward, PD = positive-downward, and ND = negative-
downward.
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of the pulse volume, as was explained in the section on the St-Anicet data. Note
that beyond about 1072 Hz, the velocity spectrum displays a positive slope of about
1. This may mean that at those frequencies the spectral power is dominated by the
vertical velocity measurement errors (white noise spectrum). Also, in Fig. 5.41(a)
we see that the vertical air velocity has a timescale of about 6 min and a standard
deviation of 1.5 m/s. which are significantly greater than the corresponding values
for the St-Anicet data (2-3 min and 0.6-0.8 m/s, see Figs. 5.18(a) and 53.19(a)). The
temperature spectrum in Fig. 5.40(a) appears to be strongly contaminated by mea-
surement errors (white noise), as we would expect from our previous analysis, which
makes the identification of a peak unreliable and increases the uncertainty of the
heat flux estimates. Further evidence of white noise in the temperature time series is
seen in the rapidly decreasing autocorrelation function in Fig. 5.41(a). The heat flux
cospectrum in Fig. 5.40(b) shows a sizeable peak. almost 250 W/m? at its maximum.
between 107> and 2x 1072 Hz (8 to L7 min). Just as for the St-Anicet data, the peak
is much greater than for the aircraft copsectrum (85 W/m?), but with important
negative components. Note that the cospectrum in Fig. 5.40(b) was not subject to
a Hamming window since this procedure made the integral of the cospectrum (total

heat flux) artificially negative.

Figure 5.42 shows profiles of vertical air velocity variance, and Fig. 5.43 shows
profiles of vertical air velocity variance flux, for both McGill RASS and aircraft mea-
surements. Figure 5.42 shows that there is good agreement between the later aircraft
profile (diamonds with dotted lines) and the RASS profile (squares with solid lines)
up to about 0.5 km. This good agreement may be deceptive, however, given that
the aircraft detects eddies which are averaged out over the resolution volume of the
profiler. The dashed line represents the sum of the variance and the average of the
clear-air spectral variance, same as the dashed line in Figs. 5.20 and 5.21 for the
St-Anicet data. However, given the clutter contamination of the clear-air measure-

ments, the spectral variance is quite unreliable, which explains the erratic shape of
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RASS Data, 405 m AGL, From 1200 To 1530 EST
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Figure 5.40: Power spectra and cospectrum of the RASS data at 405 m AGL from
1200 to 1530 EST. Graph (a) shows the power spectra of the vertical velocity (solid
line), and the virtual temperature (dashed line), multiplied by the frequency and
divided by the variance, that is, fS(f)/o?. Graph (b) shows the cospectrum of the
vertical velocity and the virtual temperature, multiplied by the density, specific heat,

and frequency, that is, pc, fSur(f).
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RASS Data, 405 m AGL, From 1200 To 1530 EST
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Figure 5.41: Virtual temperature (a) and vertical velocity (b) autocorrelation func-
tion for RASS data at 405 m AGL from 1200 to 1530 EST. Note the corresponding
stantard deviations, o, in the upper righthand corners. The squares represent the
discrete lags, 22 s apart, and the dotted line represents the 1/e value (0.3679) of the
correlation.
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the dashed line. ROSPA was designed to find only the mean Doppler velocities of
clear air; it cannot estimate the second-order moments of the clear air spectra with
any accuracy. We therefore cannot use the dashed line as a rough estimate of the
total variance. Be that as it may, the RASS variance profile (squares with solid lines)
is roughly what we expect from the idealized profiles in Fig. 4.6, which is a smooth
curve with a maximum at about 0.4 z;. Given z; & 1.65 km. we expect a maximum
at about 0.65 km. which is consistent with the observed profile. taking into account

the error bars.

The fluxes of vertical air velocity variance in Fig. 5.43. and heat in Fig. 5.44 are
unexpected. The RASS vertical air velocity variance flux is not positive at all alti-
tudes, which is the case for the aircraft variance flux profiles. but instead is negative
below 0.7 km with a minimum between 0.4 and 0.6 km. There is therefore a flux
convergence of vertical air velocity variance below 0.5 km. and a divergence above
that level. Similarly, the RASS virtual heat flux in Fig. 5.44 shows a sudden decrease
in heat flux between 0.4 and 0.6 km. One suspects that the heat flux decrease may
be due in part to the effect of turbulence on the RASS temperature measurements.
We will attempt to correct for turbulence later. However. the errors on the RASS
temperature measurements do not explain the shape of the variance flux profile in
Fig. 5.42. It is possible that these flux profiles may be due to an imperfect retrieval by
ROSPA. As Fig. 5.45 shows, though, varying the spectral threshold for the TMINT
filter from 5 to 10 dB, the range where TMIN7-XMEDS5 is optimal, does not sig-
nificantly alter the heat flux values, considering the error on these estimates. The
same can be said about the variance flux profile, though this is not shown in a figure.
Another explanation for the unexpected profiles in Figs. 5.43 and 5.44, would be the
horizontal advection of virtual temperature and TKE caused by changes in surface
temperature, roughness and moisture. Indeed, the urban area immediately around
the McGill site is a patchwork of high-rise and low-rise buildings, parks, 2 wooded

hill, not to mention a river less than 2 km upwind. We must also consider the possible
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local circulation induced by the urban heat island, which may cause temperature and
TKE advections of its own. All these factors may cause virtual temperature advec-
tions much greater than those measured along the aircraft runs over essentially rural
terrain (= 107% K/hr (Potvin et al., 1997)). See Kaimal and Finnigan (1994) for a

review of the effects of complex terrain on boundary lavers.

Two important features of the heat flux profiles in Fig. 5.44 are the surface virtual
heat flux, obtained by the intercept at the ground of the linear least-squares fit to the
profiles, and the rate of warming of the CBL implied by the slope of the linear fit. Note
that only the first five heat flux estimates of the RASS profile are used for the linear
fit, since we assume that the RASS temperature measurements are reliable at those
altitudes. We also assume that the heat flux profile should have an approximately
linear form from about 0.1z; to about 0.8z;. as shown in Fig. 4.6. Since we estimate
z; & 1.65 km over the McGill site, the first five RASS heat flux estimates fall within
this range. By inspection of Fig. 5.44, the linear profile hypothesis seems to be
appropriate for the aircraft heat flux profile as well. The RASS surface heat flux iz
523 4 239 W/m?. and 146 £ 0.77 W/m* for the aircraft. The RASS surface heat flux
value is approximately 3.5 times greater than the aircraft value. This is consistent
with the finding by Hildebrand and Ackerman (1984), that the urban surface heat
flux is 2-4 times greater than the rural surface heat flux. Also noteworthy is the large
error on the RASS surface heat flux value, £ 239 W/m?, compared with the aircraft
error, £ 0.77 W/m?. Possible reasons for this difference with be discussed in greater
detail in chapter 6. The negative slopes of the linear fits implies a convergence of heat
flux for both profiles. If we assume no horizontal virtual temperature advection, then
the heat flux convergence may be transformed into a warming rate by the formula

o, _ 104,
at  pc, Oz

where 8, is the virtual potential temperature, H, is the virtual heat flux, p is the

+5 (5.21)

density of air, ¢, is the specific heat of dry air at constant pressure, and S is the

sum of latent heating, net radiation and potential temperature advection, which we
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assume S = 0. The RASS heat flux profile yields a warming of 2.36 £ 2.53 K/hr,
while the aircraft gives 0.329 £ 0.004 K/hr. Obviously, the virtual temperature time
series shown in Fig. 5.36(c) does not demonstrate a warming of 2.36 K/hr, nor does
the virtual potential temperature contour plot in Fig. 5.34. A warming of about 0.5
K /hr over the McGill site is more realistic. The discrepancy may be explained by the
uncertainty on the RASS warming rate. but also there is the possibility of significant

temperature advection over the urban site.

Temperature Correction for Turbulence

We will now apply the temperature correction for turbulence to the McGill data
mainly for the sake of consistency with respect to our treatment of the St-Anicet
data. As we will see, the clear-air spectral width estimates for the McGill data are
very uncertain, making the temperature correction not entirely appropriate for this
dataset. The normalized clear-air spectra over McGill, shown in Fig. 35.16. were
treated with a TMINT filter with a 7.5 dB threshold. follwed by the spectral noise
suppression. ground clutter removal and peak identification algorithms. The XMED5
and the TMED3 filters were not used here as they deal only with the mean Doppler
velocities, not the spectra themselves. The clear-air spectra show an updraft from
225 to 345 m AGL. and a downdraft at 405 m AGL. At 465 m AGL. however, we see
a bimodal spectrum with one peak aligned with the peak at 405 m, and the other
centered at about +3.5 m/s. We suspect that the second peak at 465 m is intermit-
tent clutter that survived the filtering algorithms. The resulting bimodal spectrum
has an artificially wide spectral width, which will adversely affect the turbulence tem-
perature correction. The clutter also affects the clear-air spectra at 525 and 585 m
AGL. Only at 645 m AGL do we recover the downdraft. The RASS spectra seem to
confirm the hypothesis of an updraft at low levels and a downdraft above, given the
decrease of the RASS velocities between 345 m to 525 m AGL.

The clutter, therefore, has two effects on the spectral profiles in Fig. 5.46. First,
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Figure 5.46:
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by creating an erroneous positive vertical air velocity between 465 and 585 m, it also
creates a falsely negative temperature fluctuation when we correct the RASS tempera-
ture for vertical velocities. The result is an erroneously negative heat flux fluctuation.
Second, the clutter creates artificially wide clear-air spectra at those heights, which
causes an artificially high turbulence temperature correction value at that time. These
effects can be seen in Fig. 5.47. The clutter in the profiles in Fig. 5.46, corresponds
to the large negative temperature fluctuation at 1413 EST, in Fig. 5.47(a). and the
large turbulence temperature correction value at the same time. in Fig. 53.47(b). The
same thing happens, to a lesser extent, at 1243 EST. So in cases like these, the tur-
bulence temperature correction makes the temperature fluctuations more inaccurate.
Nevertheless, the positive temperature fluctuations at 1325 and 1515 EST do have
corresponding turbulence temperature correction fluctuations at the same times and
with roughly comparable magnitudes. This indicates a certain degree of effectiveness
of the method by Peters and Angevine (1996) under these conditions. Also note that
if the clutter created an artificially negative velocity fluctuation. it would lead to an
artificially positive temperature Huctuation, which would lead to a falsely negative
heat flux fluctuation. [t is not certain if the turbulence temperature correction would

adequately compensate in this case.

We see the effect of the turbulence temperature correction on the virtual heat
flux profile in Fig. 5.48. Just as for the St-Anicet heat flux profiles, the turbulence
correction has little effect, with respect to the error bars in Fig. 5.44, on the virtual
heat flux profile. Note, moreover, that the heat flux values between 450 and 600
m AGL are noticeably more negative with the turbulence correction, although still
within the error range. This may mean that the remaining clutter and inaccurate
clear-air spectral widths combine to make matters worse in that height range when

the correction is applied.
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Figure 5.47: The virtual temperature fluctuation (a) and the turbulence temperature
correction (b) time series for McGill, at 585 m AGL.
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5.4 Synthesis

This chapter began with an overview of the type. characteristics. and location of the
instruments used on the afternoon of June 28, 1996, during the MERMOZ project.
The clear, calm and convective conditions on that afternoon were examined using
radiosonde, surface station. and wind profiler data. The spectral. cospectral, and
correlation structure of the aircraft data were also examined. The clean. clutter
free data collected by the profiler/RASS located at St-Anicet were then analyzed.
Specifically. we examined the time-height structure of the clear-air reflectivity, vir-
tual potential temperature and vertical air velocity. This revealed a nonstationary
CBL within the observing period. The spectral. cospectral and correlation structure
of the St-Anicet data were analyzed. along with profiles of virtual heat flux. vertical
air velocity variance and variance flux. which were compared with the corresponding
aircraft profiles. A method for correcting the errors due to turbulence on the RASS
temperature measurements was tested on the St-Anicet data. For the McGill data.
the clutter removal algorithm. ROSPA. was first calibrated to give the optimal per-
formance on this dataset. Subsequently. the McGill data were analyzed in the same

way as the St-Anicet data.

During the course of these analyses. many issues were brought up which deserve
an in-depth discussion. Among these is the comparability of profiler/RASS mea-
surements with aircraft measurements. More important is the relationship between
timescales measured by the profiler/RASS and the spatial scales measured by the
aircraft: namely, the validity of Taylor’s hypothesis in a CBL. Also, issues such as
the effects of detrending, space and/or time averaging, and nonstationarity on the
estimates of turbulent and mean properties deserve to be discussed. Finally, issues
relating specifically to the RASS data from the McGill site should be analyzed. Fore-
most among these are the possible effects of the urban environment on the estimates of
turbulence statistics. These topics, and suggestions for future work, will be discussed

in chapter 6.
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Chapter 6
Discussion

In order to obtain a more comprehensive view of the results presented in chapter 5.
we should now examine some of the issues relating to them. First, we will discuss
the problems associated with RASS-aircraft turbulent flux comparisons. and how
they relate specifically to the RASS profiles over St-Anicet and McGill. Second.
the possible effects of the various data processing operations on the profiles will be

investigated. Lastly, we will suggest various topics for future work.

6.1 RASS-Aircraft Comparison

In the previous chapter, aircraft profiles were used as the standard by which we
would judge the corresponding RASS profiles. However. estimates of turbulent quan-
tities from aircraft data also suffer from errors and uncertainties. As Angevine et al.
(1993b) argued, some of the differences between RASS and aircraft profiles are due
to their different kind of samplings of the CBL. In fact, RASS-aircraft comparisons
have many points in common with tower-aircraft comparisons, the characteristics of
which are described by Desjardins et al. (1995) and Mahrt (1998), among others. In
this section, we will review the various sources of error for aircraft and RASS, and

discuss how they relate to our results.
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6.1.1 The Aircraft Data

The Twin Otter research aircraft flux measurement system is a mature platform,
which has been compared favourably with other aircraft on numerous occasions,
and was acknowledged as the comparison standard for aircraft measurements in the
BOREAS experiment (Dobosy ef al.. 1997). Nevetheless. given that aircraft measure-
ments are usually taken over long distances at constant altitude, and over relatively
short time periods. the aircraft statistics are basically spatial statistics. Since vir-
tually all land surfaces are heterogeneous to one extent or another, this means that
the aircraft flies over different types of terrain. Aircraft statistics are therefore com-
posites over various terrain types. This effect is strongly dependent on the altitude
of the aircraft run. The higher the aircraft. the farther upwind the terrain may be
which contributes to the measurements. For example. even at 30 m above ground,
significant horizontal transport may occur on scales larger than 5 or 10 km (Mahrt,

1998).

Aircraft flights may not be completely level due to vertical displacements of the
aircraft by turbulent motion and the difficulty of maintaining a constant altitude over
changing terrain. If the quantity being measured has a mean vertical gradient. then
variations in altitude will lead to artificial fluctuations in the aircraft time series.
Some of the long (about 5 km) virtual temperature fluctuations in Fig. 5.6(b) may
be due to altitude variations of the aircraft. This effect is compensated for in the heat
flux calculations by using the virtual potential temperature (MacPherson. 1990), be-
cause that quantity is not expected to have a mean vertical gradient in the mixed
layer of a CBL. Also, nonstationarity may appear in the aircraft data because of
large scale horizontal gradients, or possible drifts in the aircraft navigational systems
used to compensate for the aircraft motion in wind measurements. These drifts are
compensated for during post-processing, as mentioned in section 5.1, but that still
leaves the question of large scale vertical motion and temperature gradients. We will

discuss different ways of eliminating nonstationarity in subsection 6.2.1.
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We end this subsection by mentioning certain features of aircraft measurements.
The first is the scale of the individual measurements. With respect to the profiler
resolution volume and integration times, the individual aircraft measurements are
essentially instantaneous averages along a thin line about 5 meters long. Also. since
a given aircraft run is 30-35 km long. each run most likely samples a large number
of coherent structures. namely thermal plumes in the case of a CBL. Since it is the
thermal plumes that are considered to be largely responsible for the fluxes in the CBL.
the aircraft should obtain reliable flux estimates provided that the flux statistics are

relatively homogeneous over the length of the run.

6.1.2 The St-Anicet RASS Data

The agreement between the St-Anicet RASS and aircraft profiles of virtual heat flux
is good, but only within a limited altitude range and for the second half of the RASS
data. In general. comparisons between aircraft and tower fluxes reveal that aircraft
sensible heat flux values are usually less than tower values (Desjardins et al., 1995;
Mahrt. 1998), but this is perhaps attributable to the differing footprints of the mea-
surements. Just as an aircraft may fly over many different terrain types, a RASS or
tower may be subject to those types of terrain that predominate locally. Of course.
the *field of view’ of the RASS, that is the surface area that contributes to the flux,
may increase with altitude. However, the field of view of the RASS also depends on
the characteristics of the convection carrying the flux. With weak winds and signif-
icant local surface heating, stationary convective eddies might develop close to the
RASS and create a more or less local, nonadvecting and stationary circulation over
the RASS. This is not expected to be a problem for the St-Anicet RASS site, but as

we will see, may pose a significant problem for the McGill RASS site.

The discrepancies observed in Figs. 5.24 and 5.25 between the heat flux profiles
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measured by RASS and aircraft, could also be explained by spatial differences be-
tween the observations. The aircraft runs were 35 km long, and no closer than 30
km to the St-Anicet RASS site. A greater boundary layer thickness at the location
of the aircraft runs could explain why the aircraft virtual heat flux profiles never
become negative. For example, the highest aircraft flux run shown in Figure 5.25, at
an altitude of 870 m, occurred approximately 300 m below the CBL height estimated
from the aircraft data, where one could reasonably expect either positive or negative
fluxes. Indeed, as Barnes ef. al. (1980) showed, the variability of the boundary layer
may cause different results from different instruments even when conditions are more
favorable than for this case. A difference in CBL height may also help to explain the
different shape of the aircraft vertical air velocity variance profiles in Figs. 5.20 and

5.21, with respect to the St-Anicet RASS profiles.

Furthermore, the horizontal wind speed during the observing period was very weak
at all levels, making it questionable to assume the equivalence of temporal and spatial
statistics (Taylor's Hypothesis). [f we define the integral scale as the lag where the
autocorrelation function falls to 1/e. (see Teunissen (1980), for the relative merits of
different integral scale retrieval methods), then Fig. 5.8(b) gives an integral spatial
scale of the vertical velocity of about 190 m, and Fig. 5.19(b) gives a temporal time
scale of about 110 s. The ratio of these scales yields 1.73 m/s as an advection veloc-
ity, which is comparable to the horizontal wind at that altitude. Nevertheless, there
is every reason to expect that the eddies evolve considerably as they are advected
over the RASS. The ‘frozen turbulence’ assumption is thus undermined. Under such
conditions, Antonia ef. al. (1980) demonstrated that the temporal spectra of a given
quantity are related to the spatial spectra by a complex convolution involving the
horizontal velocity spectrum. This may help to explain the different forms of the

aircraft and RASS cospectra.

Furthermore, under weak wind conditions, relatively few convective eddies will
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pass over the RASS during a given observation period. Therefore, over an averaging
time of 13 hours, RASS probably does not sample as many thermal plumes as a 30
km long aircraft run. Insufficient sampling explains why the RASS error bars are
consistently larger than the aircraft error bars. Reliable estimates of the flux require
long averaging times, but these are not feasible because of the nonstationarity of the
data (Lippmann et al.. 1996). Despite all the problems, the agreement between air-
craft and RASS below 500 m, and in the second half of the observation period. is
good. This suggests that the regime of large eddies and plumes in the mixed layer
was sufficiently strong, persistent and widespread to allow a meaningful comparison
between the aircraft and the St-Anicet RASS. Therefore. the low cost. high reach and

easy application of the RASS make it an invaluable tool for boundary laver research.

As mentioned previously. the profiler/RASS measurements are weighted averages
over the resolution volume and the integration time. [t is therefore not obvious how
the aircraft data may be processed in order to resemble profiler data. Simply averaging
the aircraft data over the width of the resolution volume seems unlikely to reduce the
variability of the aircraft data to match that of the profiler data. An instantaneous
line average the size of the width of the resolution volume is still not equivalent to the
profiler space-time average. The instantaneous line average therefore has a greater
variability than the profiler measurements, and the aircraft vertical velocity data

would still possess a greater variance, as in Figs. 5.20 and 5.21.

6.1.3 The McGill RASS Data

The McGill RASS site is located towards the southeast of the center of an urban
agglomeration. The Montreal urban heat island is precisely the kind of local surface
heating, mentioned previously, that can cause a stationary convective eddy. Indeed,
the mesoscale circulation around a city, described in chapter 4, is an example of a
stationary eddy. A stationary eddy can cause problems: it obviously transports heat

and TKE, but the eddy-correlation method requires that we remove the average of
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Figure 6.1: Wind profiles over McGill taken by the profiler, on June 28, 1996.
Profile A is a consensus average the one-hour period preceding the continuous RASS
measurements (1100 to 1200 EST), while B is for the half-hour following the RASS
measurements (1530 to 1630 EST). A half barb represents 0.5 m/s, a full barb 1 m/s,
and a triangle 5 m/s.
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the time series prior to computing the flux. For RASS data, removing the average of
the time series is the same as removing the flux due to the stationary eddy. Following
Mahrt (1998), we will use the example of heat flux, H = w8 = w0’ + T 0, where the
overbar denotes here an average over a wide area, and the primes denote the deviation

with respect to that average, v’ = w — @, §' = 6 — 8. If we assume @ = 0, then
H = uw?. (6.1)

The RASS measurements are taken at one location over time. If the RASS is located
in the vicinity of a stationary convective eddy, then the time averaged vertical velocity
< w' ># 0 over the RASS. The time averaged vertical velocity, < w’ >. can therefore
be a function of position. Defining Aw’ = w'— < v’ >. and likewise for ¢, then we

can state
H=Hpg+<uw >< 8 >. (6.2)

where Hp =< Aw’A# > is the heat flux measured by the RASS. This flux. therefore,
does not necessarily correspond to the area averaged heat flux, Hg = H—- < v’ ><
9" >. which we take to be the true heat flux. These considerations also apply to the

vertical velocity variance flux.

The wind profiles over McGill. shown in Fig. 6.1, suggest the presence of the
kind of mesoscale circulation around a city, shown in Fig. 4.3. Wind profile B, in
particular, is in sharp contrast with the St-Anicet wind profiles, in Fig. 5.2. The later
St-Anicet winds (profile B) are generally from the east, while the later McGill winds
(B), between 1.5 and 2 km, come from the west. This might be a manifestation of
the divergence of the mesoscale circulation near the top of the CBL, assuming that
the center of the circulation is to the west of the McGill site. The height of the CBL
over McGill after the RASS observation period was 1.8 km, which is approximately
the altitude of the winds barbs in profile B. Profile A in Fig. 6.1 is harder to explain.
The wind profiles in Fig. 6.1 must be interpreted with caution, however, given the

contamination of the profiler data at the McGill site. Only the consensus averaging
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Figure 6.2: The profile of the average vertical air velocity over McGill, on June 28,
1996. The average was performed over the continuous RASS observation period, from
1200 to 1530 EST.



algorithm was used to eliminate outliers from the wind profiles (ROSPA was designed
for profiler data operating in continuous RASS mode). The intermittent clutter can
reach as high as 1.5 km (the white patches in Figs. 5.32 and 5.33), and the wind
barbs can change appreciably as we change the consensus averaging parameters or
the averaging period. Nevertheless, the winds in profile B between 1.5 and 2 km

should be relatively reliable.

Figure 6.2 shows the profile of the vertical air velocity averaged over the RASS ob-
servation period (1200 to 1530 EST) over the McGill site. This therefore corresponds
to a profile of < w’ >. We see that the vertical velocity is everywhere positive and
has a broad maximum between 0.4 and 0.6 km. almost reaching 0.9 m/s at its peak.
The altitude of the maximum corresponds roughly to the region of the very negative
virtual heat flux in Fig. 5.44. and the negative vertical air velocity variance flux in
Fig. 5.43. It therefore seems possible that the unexpected flux profiles in Figs. 3.44
and 5.43 are a result the fluxes due to a stationary convective circulation which are
not taken into account by the eddy-correlation method. We could. in theory, correct
the virtual heat flux profile in Fig. 5.44 by adding to it the product of the profile in
Fig. 6.2 with the profile of < 6’ >, as in Eq. 6.2. The profile of < ¢’ > is the time
average of a potential temperature spatial anomaly. presumably the urban heat island
intensity profile, similar to the one in Fig. 4.4(d). The correction can be very sensitive
to the choice of < #' >, however, which we do not know very precisely. In addition,
we must also use the profile in Fig. 6.2 with caution. According to Angevine (1997),
the vertical air velocities measured by a profiler may contain significant systematic
errors. The systematic errors are always negative, between approximately -0.25 to 0
m/s, and vary with respect to altitude, time of day, and day of the year. Angevine

suggests that the error may be due to falling particulate scatterers in a CBL.

With respect to any comparison between the aircraft data and the McGill RASS,

it seems obvious that Taylor’s hypothesis does not hold if there is in fact a stationary
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circulation above the McGill site. The stationary circulation can also adversely affect
the McGill RASS’s sampling of the thermals in the CBL. It may also help to explain
why the vertical velocity timescale over McGill (6 min) is greater than the St-Anicet
timescale (2-3 min). This inadequate sampling of the CBL over McGill. along with
imperfect vertical air velocity retrievals by ROSPA, and the effect of winds and tur-
bulence on the RASS temperature measurements. may explain the large errors in the
RASS heat flux estimates compared with the errors on the aircraft estimates in Fig.

3.44.

6.2 Data Processing

6.2.1 Removing Nonstationarity

Both the RASS and aircraft data may contain nonstationarities in the mean. The
aircraft might fly through a large scale horizontal gradient, while the warming of the
boundary layer may cause a nonstationary RASS temperature time series. How we
remove the trend can affect the shape of the power spectra. cospectra. and covariance
functions of the time series (IKaimal and Finnigan. 1994). This, in turn. can affect
estimates of integral scale. variance and heat flux. A quadratic least-squares fit was
used to remove the nonstationarity from the St-Anicet and McGill corrected virtual
temperature time series. The fit for the St-Anicet data in Fig. 5.12(c) is convincing,
but the fit for the McGill data, in Fig. 5.36(c), is less so. Indeed, a linear least-squares
fit in Fig. 5.36 might seem just as appropriate, but would yield a different heat flux

value.

Nonstationarity in the aircraft data was removed using a high-pass filter that
strongly attenuated any signal component with a wavelength of 12 km or greater.
High-pass filters have the advantage of being simpler and their effects on spectra
are well understood. However, there still remains the choice of the wavelengths to

attenuate. Using only signal components with a wavelength 12 km or less assumes
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that mesoscale motions make no significant contributions to the flux, which may or
may not be true. All we can say with certainty is that removing nonstationarities is

somewhat arbitrary and may lead to bias (Mahrt, 1998).

6.2.2 Ground Clutter Removal

As we explained in subsection 3.2.4 on ground clutter removal. all ground clutter re-
moval algorithms perform poorly when the vertical air velocity is equal or very close
to zero. Figure 6.3 shows an example of the effects of the ground removal algorithm
on the clear-air data over St-Anicet. The untreated data (curve a) is already free of
ground clutter. When we apply the ground clutter removal. we see that the points
that were originally equal or close to zero in curve (a) get "pushed’ away from the
zero velocity line. in both directions. The reason is that if we have a clear-air power
spectrum with no ground clutter and a peak near zero, +0.5 m/s say, but that also
‘spreads’ over the zero Doppler velocity bin and into the negative velocities, then the
ground clutter removal algorithm used here will eliminate the spectral components
on the negative Doppler velocity side, as well as remove some spectral power from
the positive Doppler velocity side. The end result is a power spectrum with spec-
tral power on the positive side onlv. The mean of the treated power spectrum will
be further from the zero Doppler velocity bin than the untreated mean. The same
reasoning applies to negative mean Doppler velocities. [t also follows that a power
spectrum with a peak far enough from zero so that it does not cross over to the other

side. is unaffected by ground clutter removal.

As Fig. 6.3 shows, the ground clutter removal algorithm induces distortions in the
vertical air velocities. Of course, if ground clutter is present, and the ground clutter
removal algorithm is not applied, then the vertical air velocities will be to close to
the zero velocity line, which is another kind of distortion. Since we determine the
temperature fluctuations by subtracting the vertical air velocities from the acoustic

velocities, these distortions can influence the temperature fluctuations and, in turn,
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Figure 6.3: An example of the effect of ground clutter removal on the vertical air
velocity at 412 m AGL over St-Anicet, on June 28, 1996. Curve (a) is the untreated
data, while curve (b) has been treated with the ground clutter removal algorithm.
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the heat flux values. For the McGill data, we chose to remove the ground clutter
because we estimated that the distortions caused by removing ground clutter were
less detrimental than those caused by the ground clutter itself. The reason is that the
distortions caused by the ground clutter removal algorithm decrease with increasing
magnitude of the velocity. Therefore, not all of the vertical air velocities are seriously
affected. If we do not remove the ground clutter. more vertical velocity values would
be affected. even taking into account the peak identification algorithm (subsection
3.2.5). That is because almost any overlap between the ground clutter and clear-
air power spectra will cause the peak identification algorithm to include both, and
even if the power spectra are well separated. the peak identification algorithm may
still isolate the ground clutter spectrum if its peak power value is greater than that
of the clear-air spectrum. We conclude, therefore, that ground clutter removal is a
compromise between two types of distortions. Whether it is worthwhile depends on

the presence and the strength of the ground clutter.

6.3 Future Work

The following are suggestions for future work. These suggestions are meant to draw
attention to certain problems encountered in this thesis, and to possible solutions.

Also. we wish to suggest ways to expand on. and go bevond. the work already done.

6.3.1 Improving ROSPA

ROSPA is, by necessity, an exclusively post-processing signal processing algorithm.
This is because, for the McGill profiler/RASS, none of the on-line signal processing
steps (coherent integration, windowing, FFT, spectral averaging), do anything to re-
duce or eliminate clutter, with the possible exception of the DC filtering. Therefore,
ROSPA could only use power spectra obtained after the on-line signal processing. As
we have seen, however, the St-Anicet profiler/RASS on-line signal processing program

uses the SAM algorithm to eliminate intermittent clutter. This opens the possibility
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that ROSPA could improve if used in conjunction with an on-line clutter suppression
algorithm, such as SAM, and/or the various kinds of time series processing done prior

to, or in place of, the FFT (wavelets, digital filters, polynomial fits. see subsection
3.1.2).

But even without on-line algorithms. there is certainly room for improvement. A
better ground clutter removal algorithm might be devised. for instance, without the
distortions mentioned previously. Many different kinds of non-linear digital filters, not
necessarily based on order statistics, are available to us (Pitas and Venetsanupoulos,
1990; Astola and Kuosmanen, 1997). All we require is that. based on order statis-
tics or not. the outputs of these filters must be robust with respect to outliers (see
Rousseeuw and Leroy (1987) for an simple and intuitive introduction to the use of

robust statistics for real data).

ROSPA uses two threshold parameters: a multiplicative threshold on the spectral
data, used for the TMIN filter. and an additive threshold on the mean Doppler
velocities. used for the TMED filter. both of which must be calibrated for each dataset
with the help of good RASS velocity data. More sophisticated threshold schemes can
therefore be used, though one must try to keep things as simple as possible. All of
the improvements just mentioned might benefit from the use of fuzzy logic methods
(one application of which was described in subsection 3.1.2). For example, one may

use membership functions instead of the thresholds just mentioned.

6.3.2 Improving the Turbulence Temperature Correction

The temperature correction for turbulence, proposed by Peters and Angevine (1996),
gives less than satisfactory results, at least with respect to short term temperature
fluctuations. We saw this in the St-Anicet data, for which the temperature correction
appeared to be an order of magnitude too small. Applying the temperature correction

to the McGill data only made matters worse, although this was mainly due to poor
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spectral width retrievals by ROSPA. However, an adequate correction for turbulence

may help in heat flux estimates and the calibration of ROSPA.

The turbulence temperature correction method employed in this thesis used ex-
clusively the spectral width of the clear-air spectra. In fact. Peters and Angevine also
took into account the effect of the horizontal wind on the temperature correction.
For both the St-Anicet and McGill data. however. the horizontal winds were light,
and not known very precisely. during the RASS observation periods. The horizontal

winds were therefore neglected.

Peters and Angevine assumed that the turbulence above the RASS was both ho-
mogeneous and stationary, and that it was evident mainly in the spectral broadening
of the clear-air Doppler spectra. This did not take into account the inhomogeneities
and nonstationarities caused by the coherent structures in a CBL. It is entirely plau-
sible that the shearing and shifting of the wind field brought on by a thermal can
have important effects on the measured RASS temperature. Therefore. it seems that
a more complete account of the effect of turbulence on RASS temperature measure-

ments should include the changes of vertical air velocity in height and time.

6.3.3 Supporting Observations of the Urban Boundary Layer

The only urban boundary layer data used in this thesis were taken by the McGill
profiler/RASS. But the data had to be treated by ROSPA to be useful. Therefore,
other measurements of the urban boundary layer, preferably close to the McGill site,
would also have been useful. Doppler sodar measurements of vertical velocity, for
instance, would have permitted us to check on the effectiveness of ROSPA. Doppler
sodar measurements of winds would also give us a better idea of the circulation pat-
tern over and around the city, and whether there is any bias in the average vertical
velocity profile in Fig. 6.2. [nstrumented aircraft measurements over the city would

have given us another set of profiles with which to verify the McGill profiler/RASS
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profiles. Obviously, other instruments may also contribute, directly or indirectly, to
our understanding: tetroons, lidars, towers. and so on. The important thing is that
such observations can be used to validate the treated profiler/RASS measurements,

or enhance our knowledge of the urban boundary layer, or both.

Chapter 5 presented the results from the aircraft and the profiler/RASS data on
the convective boundary layer. rural and urban, on June 28, 1996. In Chapter 6. we
have dealt with some of the broader issues made relevant by the previous chapter. The

following chapter will summarize the results of this thesis and state the conclusions.
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Chapter 7
Conclusions

The work in this thesis sought, first. to develop a signal processing algorithm, named
ROSPA. for heavily contaminated clear-air profiler/RASS measurements: second. to
use ROSPA on urban RASS measurements and to compare them with rural RASS
and aircraft measurements. ROSPA is based on order statistics and operates in two
principal stages. The first stage treats the Doppler velocity power spectra of the
clear-air measurements. [t applies what is called a threshold minimum filter. which
is a variant of the minimum filter. to successive spectral power values at a given fixed
height and Doppler velocity bin. Various theoretical aspects of the minimum filter,
and the threshold minimum filter, are explored using a model of the input time se-
ries. [t is demonstrated that the minimum filter is highly insensitive to rare, brief,
but very strong intermittent clutter power values. The threshold minimum filter is
less restrictive than the minimum filter, as it allows for a more flexible, less rigid,
output. As the name suggests. the threshold minimum filter requires that the value
of a multiplicative spectral threshold be specified. [t is shown, using the same model
input, that an optimal spectral threshold value exists that accepts the most uncon-

taminated power values while rejecting the most intermittent clutter power values.

The second stage of ROSPA operates on the clear-air mean Doppler vertical ve-

locity values. It imposes a moving X-shaped window on the time-height vertical air
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velocity data, which it uses in a median filter, called an X-median filter. Again, on the
basis of model input data, it is shown that median filters are effective in exluding in-
termittent clutter from their outputs. In between the first and second stages, ROSPA
uses intermediate steps to eliminate spectral white noise, ground clutter and to isolate
the strongest peak in the spectrum. After the second stage, ROSPA eliminates the
few remaining vertical air velocity outliers by using what is called a threshold median
filter. It should be noted that the first and second stages form the core of ROSPA,
while the intermediate steps and the outlier rejection procedure are not essential to

ROSPA. They can be altered. improved or replaced without fundamentally changing

ROSPA.

The aircraft and profiler/RASS data were taken on June 28, 1996. during the
early afternoon which was clear and convective with weak winds. The aircraft data
were taken between 1135 and 1335 EST. over mainly rural terrain where the height
of the CBL was estimated from the aircraft data at about 1.2 km. The vertical air
velocity power spectrum shows a peak between wavelenghts of | and 3.3 km and an
inertial subrange extending from 330 m down to about 10 m. The aircraft virtual
temperature power spectrum has its peak over slightly longer wavelengths. between
1.7 and 3.3 km. The aircraft heat flux cospectrum shows a sharp peak at the 2.5 km

wavelength. and vanishes over the inertial subrange.

The profiler/RASS data taken at the rural St-Anicet site extend from 1045 to
1400 EST. The time-height SNR, virtual potential temperature, and vertical air ve-
locity datasets over St-Anicet show an initially stable boundary layer, 0.6 km deep,
from 1045 to 1230 EST. After that time there was a sudden growth of the boundary
layer, which became convective and reached up to 1 km at the end of the observation
period (1400 EST). Because of this evolution, the observation period was partitioned
into an early period (1045 to 1230 EST) with a basically stable boundary layer, and
a later period (1230 to 1400 EST) with a growing convective boundary layer. The
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structure of the convection over St-Anicet was consistent with the expected pattern
of thin walls of warm rising air separating regions of cool descending air. The early
vertical air velocity power spectrum has a broad maximum extending from 14 to 28
min periods with a maximum power value at 17 min, while the later vertical air veloc-
ity power spectrum has a maximum power value at a period of 9 min. Both the early
and later virtual temperature power spectra are too contaminated by white noise to
possess clearly distinguishable maxima. Also, the early and later heat flux cospectra
possess peak values that are much greater than the aircraft cospectrum peak value,

along with substantial negative components.

The profiler/RASS data taken at the urban McGill site extend from 1200 to 1530
EST. They show a very convective boundary layer initially 1.5 km d-ep, rising to 1.8
km deep at the end of the ohservation period. The McGill clear-air measurements are
very contaminated by clutter. and so must be treated with ROSPA. The correlation
between the RASS measurements and the treated vertical air velocity measurements
is used as a guide to choose the threshold values. The theoretical aspects of the corre-
lation between reliable RASS measurements and uncontaminated vertical air velocity
measurements are explained. [t is shown that a correlation value of about +90% is
the most that can be reasonably expected in a CBL. For the optimal range of values
of the spectral threshold, from 5 to 10 dB. a RASS-profiler correlation value as high
as +89% is achieved. [t is also demonstrated that the heat flux estimates are insen-
sitive to the exact choice of the spectral threshold within the optimal range. The
treated vertical air velocity data show a broad spectral maximum between 6 and 28
min periods, with a maximum at about 8 min. The heat flux cospectrum has a signif-
icant peak between about 8 to 17 min. The convective thermals over McGill appear
more intense and longer lasting than the convection over St-Anicet. The covariance
function of the treated vertical air velocity over McGill shows an integral timescale of
6 min (as compared to timescales of 2-3 min over St-Anicet) and a standard deviation

of about 1.5 m/s (0.6-0.8 m/s over St-Anicet).
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RASS-aircraft comparisons were done for profiles of vertical air velocity variance,
vertical air velocity variance flux, and virtual heat flux. The St-Anicet vertical air
velocity variance profiles, and the corresponding flux profiles, conform relatively well
to the form expected in a CBL. The corresponding aircraft profiles have values that
are consistently larger than the St-Anicet RASS values, and the profiles have a dif-
ferent form. This is attributed to the differences in the CBL between St-Anicet and
the aircraft location. Also, the greater spatial resolution of the aircraft measurements
allow it distingnish smaller eddies than a profiler. which contribute to the variance.
The early heat flux profile does not agree very well with the aircraft profile, while
the later heat flux profile agrees well with the aircraft measurements up to about
0.6 km AGL. Again, the difference is attributed to the different characteristics of the
boundary layers at the aircraft location and at the St-Anicet site for the early and

later periods.

The profile of vertical air velocity variance over McGill conforms reasonably well
to the expected CBL profile. but the profiles of heat and vertical air velocity variance
flux show unexpected negative values. particularly between 0.4 and 0.6 km AGL. It
is suggested that a stationary convective eddy may reside over the McGill RASS. In
support of this hypothesis. a profile of time-averaged vertical air velocity over the ob-
servation period, is presented. [t shows a velocity profile that is everywhere positive
and possesses a maximum between 0.4 and 0.6 km. The portion of the fluxes carried
by the stationary eddy would be unaccounted for by the eddy-correlation method
used on the profiler/RASS data. A close relationship is not expected between the
McGill RASS and the aircraft profiles since the McGill profiles are urban in character
while the aircraft profiles are rural. However, a least-squares fit of the lowest five
McGill virtual heat flux estimates give a surface virtual heat flux value of +523 +
239 W/m?, while a similar analysis on the aircraft virtual heat flux estimates gives

a surface value of +146 £ 0.77 W/m?. The McGill surface virtual heat flux is thus
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about 3.5 times greater than the aircraft value (and also the later St-Anicet value),
which is consistent with previous findings on urban and rural surface virtual heat flux
values. Also, it is suggested that the aircraft samples many more flux-carrying co-
herent structures than the profiler/RASS, which might help explain the much greater

errors on the McGill heat flux estimates relative to the aircraft error values.

The possibility that turbulence induced errors on the RASS temperature mea-
surements adversely affects heat flux estimates is investigated using the temperature
correction method proposed by Peters and Angevine (1596). The method uses mainly
the clear-air spectral width to estimate the effect of turbulence on the RASS tem-
perature. [t is shown that. for the St-Anicet data. the temperature correction is
approximately one order of magnitude too small to adequately account for the appar-
ent temperature fluctuations due to turbulence. while for the McGill data, errors in
clear-air spectral width estimates render the temperature correction unreliable. The

effect of the temperature correction on both datasets is negligible.

Finally. we conclude that with the proper signal processing algorithm, the pro-
filer/RASS can be a valuable tool for urban boundary layer studies. We believe that
the algorithm proposed. ROSPA. was able to retrieve vertical air velocities accurate
enough to produce acceptable second-order turbulent statistics. The expected flux
profiles over McGill may have been caused by difficulties inherent in RASS measure-
ments and independent of ROSPA. namely, RASS temperature errors and stationary
convective eddies caused by the turbulence and mesoscale circulation characteristic of
an urban boundary layer. As we have seen, profiler/RASS data treated with ROSPA
allow us to determine a great deal about the urban boundary, including the evolution
of the virtual potential temperature profile, the time-height structure of updrafts and
downdrafts, and vertical fluxes of heat and vertical velocity variance. Even more can
be learned if one has access to simultaneous urban measurements from other instru-

ments at different location, and/or nearby rural measurements. We can predict that



in the future, the profiler/RASS will play an important part in any urban boundary

layer measurement project.
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Appendix A

The Profiler Equation

The profiler is essentially a vertically pointing radar capable of detecting refractive
index fluctuations in clear air, along with rain and snow. The refractive index fluc-
tuations in air are caused principally by turbulence acting on an existing background
gradient of refractivity, but can also. in the case of RASS. be created artificially by
generating an appropriate acoustic wave. In the following, we shall use the work of
Tatarski (1961) and Doviak and Zrni¢ (1993) to. first. explore the interaction between
an electromagnetic wave and the refractive index field, and then derive the equation

describing measurements by a profiler.

A.1 Fundamental Electrodynamics in Air

The Maxwell equations are

V.D=4mp (A.1)
V.-B=0 (A.2)
-~ - 18D 4r -
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VxE+-—-=0 (A4)

where D is the electric displacement field, p is the charge density field, B is the
magnetic induction field, # is the magnetic field, J is the current density field, E is
the electric field, and c is the speed of light. We assume that air is electrically neutral
and nonconducting {i.e. p = 0 and J = 0). Also, we assume that air is a simple

isotropic medium (Jackson. 1975), which implies

D=ck (A.5)

T

B

L (A.6)

where € = ¢(.Z,t) is the dielectric constant field, p = p(F.t) is the magnetic perme-
ability field. Moreover. following Tatarski. we shall assume that 4 = | everywhere

and for all time. The Maxwell equations now become.

Vo (e£)=0 (A.7)
V-H=0 (A.8)
= = la(cE)_
Vx--—===0 (A.9)
VxE+ lﬁ =0. (A.10)
c dt

An equation involving only the electric field follows by taking the curl of Eq. A.10
and using the vector formula, V x (V./; X E) = 6(6 . E) - V2E,

6(6-@)—V2E‘+%%(6xﬁ)=o (A.11)

and using Eq. A.9 to eliminate the curl of the magnetic field,
6(6-E)—vﬂé+ia—2( Ey=0 (A.12)
2t cE) =0 12



Equation A.7 can be rewritten as £-Ve+eV-E = 0, which yields V- £ = —E-V(lne).
Using this in Eq. A.12, and writing the second-order time derivative explicitly, we

obtain

- 2 = _ 9% c?ec)E PFE
— 3 2 ——— —
V(E - V(lne)) -V E-i- Edt‘* +2 ETIET +cat2 = 0.

{(A.13)

The index of refraction satisfies the formula n® = ey, or in this case, n? = ¢. However,
it is convenient to write n = W+ n, where 7 represents the ensemble average refractive
index and n is the fluctuation with respect to the average. Also. 7 is usually very
close to unity. so in what follows we will set @ = 1. and consequently € =~ | + 25 and

In(e) = 27, to a first-order approximation. Equation A.13 then becomes

6777 QE OE

.52 LOPE e 2 a'-’r, .\
- “ot ot T Mo |

(A.14)

Note that we need not formulate an equation for the magnetic field since for electro-
magnetic waves. the electric and magnetic fields are directly related to one another.

It is sufficient, therefore, to determine only one of them.

A.2 Profiler Measurements

[n order to proceed, we must make certain assumptions about the electric and refrac-
tive index fields. Since the source of the electromagnetic field is a profiler, we assume
the field has a frequency very close to the profiler frequency (about 915 MHz in our

case). We assume that the time dependence of the electric field has the form
E(Z,t) = E(§)e™™* (A.15)

where w is the frequency of the radar wave, close to the profiler frequency wg. The
difference is due to the interaction between the emitted radar wave and the evolving

refractive index field. We assume the same form for the magnetic field. Equation
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A.l4 can be written as

= . = - = 2E[0? Y .
VIE + K E = —2V(E-Vn)+ a—t’j - ZZLwa—Z — (A.16)

where k? = (w/c)? is the wavenumber squared of the radar wave. Note that if @ # 1.
then we would have k? = (Rw/c)?. If we postulate the existence of a characteristic
scale n. and a characteristic frequency ( for the refractive index fluctuations, then
we can say that |92n] = n.Q* and {9.n| = n.Q. Note that n. and  may either refer to
the intensity and eddy turnover time of the energy-containing eddies of turbulence, or
to the amplitude and frequency of an acoustic wave. Since it is reasonable to assume

that n. < | and Q « w. we can neglect the first two terms in the square brackets in
Eq. A.186,

ViE + k*E = =2%(E - V) = 2k*nE. (A.17)

Solving Eq. A.17 is simplified if we adopt the method of small perturbations.
which entails using the expansion method to express to solution in the form (Hinch,
1991),

E=Eo+nEl +nE + ... (A.18)

where E; represents the perturbation electric field associated with the fth power of
the refractive index fluctuations. Physically, E, represents the emitted radar wave
from the profiler. If there are no refractive index fluctuations (7. = 0), then the
emitted wave is the solution. Substituting the expansion in Eq. A.18 into Eq. A.17

and equating like coefficients, we obtain
V2Ey + k?Ey =0 (A.19)
V2E, + K E, = —2V(Ey - V) — 2k*nEy (A.20)
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where £} = r],E-"{. We ignore the second-order and higher perturbation fields because
n. < 1. We therefore take the first-order perturbation field to constitute the entire
product of the interaction between the emitted wave and the refractive index fluc-
tuation field. Equation A.19 is a source-free wave equation for Ep, while Eq. A.20
is a wave equation for El on the left-hand side, with the terms on the right-hand
side acting as a source distribution for these waves. The field £, can be seen as a

superposition of spherical waves originating from the source distribution:

- S(t=t -] =1"/c)
E\(ft) = —— f / 7. n dvde’ A21
(Z, 47 Jo Jvr |F— 7| (A.21)
where f = —'26([::.0 . 617) — ‘Zk'zr]éo is the source distribution, which we assume is

completely contained in the volume V’. We can integrate Eq. A.21 with respect to
tl

S l F(F.t = |E = F|fc) ...

E\(f.t) = ~— N _,l ~ I/ )dl/’. (A.22)

dr Jvr |E — |

It is convenient to decompose the source distribution into two functions. f; = k*nk,
and f, = V(Eq - Vn). so that Eq. A.22 becomes
- L "-‘/t__-'_-/ ] l —.-"’,f—‘-'—-.'

Brg o L[ G E=Fle L R 1E - Flfo

2 Jve |r — 7| 2 Jv |F — &)

dv’.
(A.23)

We must now specify the emitted radar wave £y. Following Doviak and Zrnié

(1993), we state

Eo(r.0.0.t) =

.4(0;, ?) U(t — r/c)exp[—iwg(t —r/c)] (A.24)

where r is the range from the profiler, § is the angular deviation from the axis of the

main lobe of the profiler beam, ¢ is the azimuthal angle about the axis of the main

lobe, A(8,) describes the angular distribution of emitted power within the beam,
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wp is the angular frequency of the profiler, and /(¢ — r/c) describes the radial power
distribution over the length of one pulse. Also, we assume
Ur)y=1, 0<t"<r
(A.25)
=0, otherwise
where {* = ¢ — r/c is the retardation time and describes a pulse traveling in the pos-
itive r direction at the speed of light. Equation A.24 basically describes a spherical
wave emitted over a finite time, 7, and where the power is not evenly distributed over
all directions. but rather is focused mainly in one direction. It is the spherical form
of the wave that justifies the use of spherical coordinates. Equation A.24 is valid far
from the profiler (see Jackson (1973) for the distinction between the near-field and
far-field of an antenna system). Since by definition the line § = 0 is the axis of the
main lobe of the profiler. which we assume is vertically pointing, it also corresponds

to a vertical line.

Equation A.23 can be rewritten in spherical coordinates. Moreover. since the
point r = 0 is the location of the profiler. and since the transmission and reception
of the radar waves are done at the same place (a monostatic profiler: see Doviak and
Zrni¢ (1993) and Doviak et al. (1994) for the bistatic case). and assuming we can
neglect the finite aperture size of the profiler antenna, we are only interested in the

returned electric field at £ = 0. We obtain

- . o ) 3 't —
E(0.0)= 5 V,f‘(’"’”"f', )y g L ’ B8 o rle) gy
) ) (A.26)

Since the integrands in Eq. A.26 contain the emitted radar wave Eg, they also contain
the pulse function, where U(t' —r'/c) — U([t ~r'/c]—r'[c) = U(t —2r'/c) due to the
integration with respect to ¢’ in Eq. A.21. This means that we only need integrate
with respect to r’ over an interval Ar’ = ¢7/2. We take L = ¢7/2 to be the resolution
length of the profiler, which is only half as long as the length of the emitted pulse,

cr. If we assume that the integration with respect to 7’ is centered about the value
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ro, and that ro 3> Ar’, then we can say that (r')~! = (rq)~! and remove it from the

integrand,
7"/2 ru+L/2 -
t) , —
E 0 7Trr0[¢ _/ /—TD—L,’ fl(rvgw(bvt r/C)
+ fo(r.0.6.t - r/c)]r? sin drdéde (A.27)
where 8 only extends to /2 radians because the plane § = 7 /2 is parallel and close

to the ground. Note that we dropped the primes for convenience. Given a function
g(Z.t") = g(f.t — r/c). and that t is held constant, we can define a total gradient

operator:
- .. = d .
Vrg(Z.t") = Vg(F.t°) + Vit —g( t%) (A.28)

where V7 is the total gradient operator. one that takes into account the fact ¢* =
t —r/e. and V is the gradient operator for fixed ¢*. In other words, the function
g (F,t) = g(L.t ~ r/c) does not have the same spatial dependence as g(Z.t). which
must be taken into account when finding the gradient of ¢/(£.¢). This means that
Vrg(F.t7) = 6g’(i’,t). As it turns out, f; = Vg, where g = Eq - 617, and V" =
1

—¢~!'Vr = —¢7'#, where 7 is the unit radial vector. Equation A.28 now gives

e e a o 3 N
fo= V(s - V) + ’Za?(E" V). (A.29)

The second term in Eq. A.29 can be approximated as ¢~ 70y ( Eo- V) & —ik#( Eo- V1)
where k = w/c = (wg + )/c. Here. we take the angular frequency of the returned
wave, w, to be about equal to the sum of the incident wave angular frequency, wg, and
the characteristic angular frequency of the refractive index fluctuations, Q2. When we
place Eq. A.29 into Eq. A.27, we see that Gauss’ theorem applies to the volume
integral of the first term of Eq. A.29, thereby turning it into a surface integral. But
since the boundary of the integration volume is arbitrary, and since the electric field
vanishes outside the pulse volume of the profiler, the boundary can always be pushed
out where the surface integral vanishes. Therefore, only the second term contributes
to the integral. We can apply the same reasoning to obtain
Ey-7 On
ot

Eo-Vn=Vr(nEy) = nVr- Eo+ (A.30)
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where the first term can be neglected as before, the gradient of the incident electric
field in the second term is proportional to 1/r3, which we neglect, and the third term
is zero since E-fg Is a transverse wave propagating in the 7 direction (Eg -r =0). We
conclude that f; does not contribute significantly to Eq. A.27. Note that f; vanishes
only because the profiler is monostatic: for the bistatic case, fo would ensure that the
received waves are transverse (Tatarski, 1961; Doviak and Zrnié¢. 1993). This leaves
us with

L2

27!'7‘0

Ea(t) = fv Eo(r8.0.t = r/c)n(r.0, 0.t — r/c)dV,. (A.31)
P

where E’R(t) = £,(0,¢t) is the returned electric feld: V, is the pulse volume whose

boundaries propagate in the positive r direction at half the speed of light. [f we insert

Eq. A.24 into Eq. A.31, and we approximate r~! L

w2 ro+L/2 __ ok .
— )T, -/D /9 / L/z .o)e i(2kor —wo ].,7(,..0. ot — I'/C)d‘,
0 v+ rerg—

where kg = wo/c and ro = c¢t/2 is also a function of time. Equation A.32 describes

xrg

(A.32)

the returned electric field of one pulse emitted at ¢ = 0. Of greater relevance to us.
however, is the detected electric field. which is the electric field after its reception by

the profiler antenna. [t is given as

/ / m/ T 30, 0)pesrnn(r, 0, 6.t — rfc)dV
9 _ + Yy )
71'7'0 ¢=0 ro-—L/Z

(A.33)

é)?

where |~I(9 expresses both the transmission and reception of the electric field

for a monostatic profiler, and where we can ignore the vector nature of the detected

electric field (Doviak and Zrni¢, 1993).

Of interest is the detected electric field from a fixed height. To accomplish this,
the profiler emits pulses at regular intervals, T, called the inter-pulse period (IPP).

A specific altitude, rg, is isolated when the profiler measures the detected field at a
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time Ty = 2rg/c after the emission of the latest pulse. If the pulses are emitted at the
times ¢, = nTipp, where n = ..., =2, —1,0,1.2,.... then the detected field is measured

at the times ¢, + To. We can now construct a time-height data field,
Eo(n,re) = Ep(nTipp + 2ro/c) (A.34)

where £,(n,ro) is the form of the data recorded by the profiler. The height can only
be unambiguously determined if the detected electric field from one pulse vanishes
before the emission of the next pulse. The maximum unambiguous height is given as
r. = cIipp/2. Otherwise, there will be confusion whether a given detected field is due
to a highly reflective object at high altitudes. r > r,. reflecting energy from the pulse
previous to the [atest. or a weakly reflective object at low altitudes, r < r,, reflecting

energy from the latest pulse. This phenomenon is known as range folding.
We can now formulate the equation describing the detected electric field of a
pulsed Doppler radar. We simply place Eq. A.34 in Eq. A.33 to obtain

Ep(n.re) = | (0. 0)|2e!(Phorp=woTippn)

&2 /2.? 7/2 rra+Ll/2
>

v )
2rrg Jo=0Jo=0 Jr=rq-L/2

n(r.0,0.nTipp + rofc — rp/c)dV; (A.35)

where. for convenience, we have defined r, = r —rq.
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Appendix B
Discrete-Time Signal Processing

The profilers used here are pulsed radars. Morever. the discrete-time data given by
the profiler can be regarded as the sampling by instantaneous measurements equally
spaced in time of a hypothetical continuous atmospheric signal. It is then important
to review the special characteristics of discrete-time signal processing. We will explore
the theory behind the discrete Fourier transform (DFT). which is based mainly on

the work of Oppenheim and Schafer (1989).

B.1 Discrete Time Sampling

Given a continuous-time signal. r.(t), where —oc < t < o is a real time parameter,

we can create a discrete-time time series, z{n], as follows,
zfn]| =z (nT) n=..-2,-101.2,.. (B.1)

where n is an integer time parameter and T is the sampling interval. Note that square
brackets are used to indicate a discrete argument. Also note that z and z. may be

complex. We define the Fourier transform

X(w) = f: z[n]e=" (B.2)
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where X is a continuous function of the real angular frequency w. The Fourier

transform is periodic in w with a period of 27,

X(w +27k) = Z z[n]e=wn2mkn (B.3)
— Z I[n]e—iun(e—iZR)kn (B‘U
= X(w) (B.3)
since €™ = 1 and where & is any integer.

The inverse Fourier transform is

r(n] = Lr X(w)e“ dw (B.6)

P o

where the periodicity of X(w) means we need only integrate from —= to = because

that interval contains all the information necessary to retrieve the time series.

The Fourier transform of the continuous-time signal is
X.(Q) = / ro(t)e™ Udt (B.7)

which we will call the continuous Fourier transform. Just as we went from a continu-
ous to a discrete time, ¢ — n T, the angular frequencies transform as Q — «/T. The

inverse continuous Fourier transform is

2o(t) = -)l; ™ x(@)edn (B.8)

We can place Eq. B.8 into Eq. B.1 to obtain

1 oo .
oln] = 5= /_ _ Xm0 (B.9)

which we then place in Eq. B.2,
X(w) = él; _: XC(Q)[ > e*(ﬂT—w)n} do. (B.10)
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Furthermore, we know that (Oppenheim and Schafer, 1989)
L — ¢ —-w)n — g
> 3o TN = N S(w - QT + 2nk) (B.11)

n=—m0 k=—

which, if we place in Eq. B.10 we get

XC(%+2—;£) —-T<w<T. (B.12)
As Eq. B.6 showed. the angular frequency bandwidth —wy < w < wy. wherewy =7
is the limit frequency, includes all meaningful angular frequencies of the Fourier trans-
form. The corresponding physical frequency, 2r fy = wn/T — fx = 1/(2T) is called
the Nyquist frequency. The Nyquist frequency represents the range of frequencies
that can be unambiguously recorded by the sampling operation, Eq. B.l. That is,
if the continuous Fourier transform, X.({1), vanished outside the angular frequency
interval =27 fs < Q < 2xfs and if fs < fy. then all the frequencies of the continuous
signal have been adequately recorded. In that case, only the A =0 term in Eq. B.12
contributes to the sum and we have

1 W
X(w) = TXC (—f) - w< T (B.13)

which is an unambiguous relationship between X(w) and X (). If, on the other

hand, fs > fv but fs < 2fy, then Eq. B.12 becomes

9
X(w)=%.’(c(-b;-,)+711:-’(c(%+%> —-r<w<0
I { 5 (B.14)
w w T
= Tl 7 _'-)(c = T <w
Lo(2)obefz-Z) osees

and so on for even greater values of fs. This phenomenon is called aliasing and
represents the spectral energy outside the Nyquist bandwidth being folded back into
it. Aliasing is a major preoccupation when selecting parameters, such as the IPP, for

instance, of radar systems.



B.2 Periodic Time Series
We introduce a periodic time series ,[n], which is defined as
rp(n] = x,[n + [N] (B.15)

where [ = .... -2, -1.0, 1,2, ... is an arbitrary integer, and .V is the period of the time
series. [t can be shown that for a periodic time series. we do not need a Fourier
transform continuous in frequency, like the one defined in Eq. B.7 (Oppenheim and
Schafer. 1989). Rather, a Discrete Fourier Transform (DFT). X,[k]. (k =0....N -1
is a discrete frequency index) is enough to completely specify the periodic time series,
zp[n]. The DFT and inverse DFT are, respectively:
N-1
k] = 3 rpn]Win (B.16)
n=0

and

=

1 -1
— 3 XKWk (B.17)
."V p P N

Ipln| =

™

0

-i2r/N) " The discrete frequency in Eq. B.17 is summed over positive

where Wy = ¢
values only (from 0 to .V —1). This is solely a matter of convention. The periodicity
of the Fourier transform ensures that X,[k] = X [k — V]. From that, it is easy to
show that & in Eq. B.17 can also be summed from —¥/2 to N/2 — 1. In that case.
the sum over the discrete frequency & in Eq. B.17 is analogous to the integral over

the continuous frequency w in Eq. B.6.

B.3 Windowing

In practice, we never have access to an infinitely long time series. Instead, we only
have a finite number of points to estimate the Fourier transform of the infinite time

series, X (w). The sampled time series can be expressed as

z,[n] = win]z[r] (B.18)

[ S%)
[==]
[3%)



where z[n] is the infinitely long time series, and w{n] is the window which determines
both the size of the sample and the weight of every point in the sample. For example,
if we sample N points only (n =0...V — 1) with equal weight. we have a rectangular

window

wnl=1 0<n<N-1

(B.19)
=0 otherwise.
The Fourier transform of the rectangular window is
- w’z\//)
W(w) = em(N=1/2 L__ 5
(w) (/) (B.20)
The windowed Fourier transform. X, (w), is
Z -L'u. n]e—zwn
= Z win]z[n]e~*"
T (B.21)

’ mn 1 idn —iwn
=n--n(’~r/-n” da )(;r X(3)e ”dﬁ)e ,

Rearranging the order of integration and summation, and using Eq. B.11, we obtain

Xu(w) = f_”/ W(a)X(3) (~ Z e““*‘?““’”) d3da

A= =20

= /_" i W(a)X(3 ( Y Sw-—a—-3+ 77&))(1;3(10 (B.22)

k==

We integrate with respect to 4 and exploit the periodicity of X(w) to obtain

Xow) = — [ __W(a)X(w~a)da
2r (B.23)
Xoe=W=x X

where the asterisk denotes the preceding operation, namely a convolution. Most win-
dows in use have a Fourier transform with same basic shape. The magnitude, |W{a)|,

is symmetric about @ = 0, with a main lobe at zero frequency and side lobes on either
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side. Therefore, Eq. B.23 means that those values of X(w — «) in the neighbourhood
of a = 0 contribute the most to X, (w). The existence of side lobes means that there
is also a contribution from frequencies far from w. The contribution to X, (w) from

frequencies other than w is called leakage due to windowing.

'T'wo other relevant windows are the Hanning and Hamming windows. The Han-

ning window has the form

wln] = 0.5 = 0.5cos(27n/(N — 1)) 0<n< V-1

(B.24)
=0 otherwise
and the Hamming window
wfn] = 0.54 — 0.46 cos(27n/(N — 1)) 0<n<N-1
(B.25)

=0 otherwise,

Of the three windows seen here, the rectangular window has the narrowest main lobe
with a width of 47/V. as compared with the Hanning and Hamming windows, with
37 /(N — 1) each. However. the peak side lobe power of the rectangular window is 13
dB less than the peak power of the main lobe. This is much more than the Hanning

window. at 31 dB less. as well as the Hamming window, at 41 dB less (Oppenheim
and Schafer, 1989).



Appendix C
Hypothesis Tests

A hypothesis lest is a test performed on a random variable used for deciding whether
or not that variable belongs to a specified probability distribution (see. for instance,
Bendat and Piersol (1966) for an demonstration of such a test on data). We begin by
defining a null hypothesis, Hg, which is the statement that the random variable, r, be-
longs to the probability density function f(r). with distribution F(z) = 7 f(2')da’.
Conversly, we define the alternative hypothesis. H,, which is simply the statement
that the random variable does not belong to the distribution F(z). Consequently,
if H, is true, then we postulate the distribution G(r). However, in most cases only
F(z) is known precisely. Note that H, is simply the opposite of Hg. Therefore. in
what follows, when we say that Hy is true (accepted), we also mean that H, is false

(rejected), and vice-versa.

We must now define a region of rejection or a critical region C, which is the set
of values of r where Hy is rejected (and H; accepted). Conversely, we define a region
of acceptance where Hy is accepted (and H, rejected). To this end, we introduce
an interval with bounds @ < b, where the critical region C is —o0 < ¢ < @ and
b < z < o0, and the region of acceptance is a <z < b.

As Table C.1 indicates, there are four possibilities to consider. The first is where

we accept Hg when it is true. The second is where we reject Hy when it is true, which
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Table C.1: The possible conclusions regarding the truth of Hy (left to right) and the
decision to accept or reject Hy (top to bottom). The probability of making a type [
error is «, and O for a type [[ error.

e Hg is true Hy is false

Hy is accepted | Correct decision | Type I error (3)
Hy is rejected | Type [error (o) | Correct decision

is called a type [ error and has a probability a. If Hy is true, then z has the distribu-
tion F(z). So the probability of accepting Hq is F'(a¢) — F(b) and a = | — F(a)+ F(b).
The probability of making a type [ error is also called the significance level of the
test. The third possibility is where Hy is rejected when it is false. Finally. the forth
is where Hy is accepted when it is false, which is called a type /I error and has a

probability 3 = G(b) — G(a).

Since rejecting the null hypothesis when it is in fact true is often considered serious.
« is usually made small. typically o < 0.1. If we do not know the form of G/(z), then

J is also unknown. In general. though. when we decrease a. we also increase J.
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