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Abstract

This thesis describes the application of a Radio-Acoustic Sounding System (RASS)

at an urban site, and proposes a Rank-Order Signal Processing Algorithm (ROSPA) to

overcome the problems associated with that type of application. Th~ main problem is

c1utter of many kinds contaminating the clear-air profiler measurcments. ROSPA uses

primarily order statistics. and operates in two main stages. The first stage operates

on the clear-air Doppler vetocity spectra by using a threshold minimum filter on the

successive spectral power values at a given Doppler velocity bin for several spectra

at a given altitude. The threshold minimum filter is a variant of the minimum filter.

The second stage operates on the time-height mean Doppler clear-air velocity data

by imposing a median filter. It is shown using theoretical models that the minimum

and median filters possess the properties required to eliminate intermittent dut ter.

namely their insensitivity with respect to outliers..-\ profiler / RASS at an urban site.

another at a rural site. and an airplane flying over rnainly rural terrain. are used

to study the urban boundary layer on the clear and convective carly afternoon of

June 28. 1996. The rural profilerjRASS data are free of clutter and show an initially

stable rural boundary layer becoming convective in the middle of the observation

period, and attaining a depth of about l km at the end of the period. The urban

profiler/RASS data are treated with ROSPA to eliminate the severe intermittent

dutter contamination and show a convective urban boundary la.yer over the entire

observation period. with a depth increasing from l.5 to 1.8 km. The heat flux profile

of the second half of the rural RASS data agrees weIl with the airplane profile up ta

about 0.6 km. The surface heat flux estimated by airplane measurements is 146 ±

0.77 \V/m2
, while the urban RASS measurementsyield523 ± 2:39 \V/m2

• This result,

along with camparisons of the vertical velocity variance profiles~ is consistent with the

differences between urban and rural boundary layers. It is conduded that the results

indicate the usefulness of the profilerIRASS in urban boundary layer studies, and it

is suggested that the anomalies in the urban heat and vertical velocity variance flux

profiles may be due to factors independent of ROSPA.



•
l\IICGILL UNIVERSITY~

Date: October, 1998

Author:

Title:

Guy Potvin

The Application of RASS in Urban Boundary

Layer Meteorology

Department: Atmospheric and Oceanic Sciences

Degree: Ph.D. Convocation: FaU Year: 1998

•

•

Permission is herewith granted ta NlcGill University to circulate and ta

have copied for non-commercial purposes. at its discretion. the above title upon

the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FR.OM fT MAY
BE PRINTED OR OTHERWISE REPRODUCED \VITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

11



•

•

•

MCGILL UNIVERSITY

DEPARTNIENT OF

ATl\IIOSPHERIC AND OCEANIC SCIENCES

The undersigned hereby certi~y that they have read and recammend

ta the Faculty of Graduate Studies and Research for acceptance a thesis

entitled "The Application of RASS in Urban Boundary Layer

Meteorology!~by Guy Potvin in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Date: -----

External Examiner:

Research Supervisar:
Prof. R. R. Rogers

Examing Commit tee:

111



•

•

•

Cette thèse est dédiée à mon père. Robert.

ainsi q7.l'à ma 'mère. Colette.

IV



•

•

•

Résumé

Cette thèse décrit l'application du RASS (Radio-Acoustic Sounding System) en milieu

urbain. Afin d'éliminer les échos du sol et les échos parasites des mesures de vélocité

verticale de l'air, l'algorithme ROSPA (Rank Order Signal Processing Aigorithm) est

proposé. ROSPA fait usage des statistiques de rang, tel le minimum ou la médiane

d'un ensemble fini de variables aléatoires, et opère principalement en deux étapes. La

première étape consiste à trouver l'enveloppe minimum des spectres Doppler de rair

clair en utilisant la puissance minimale, à chaque composante de vélocité Doppler

et à chaque altitude, de plusieurs spectres Doppler d'affilée, créant ainsi des spec­

tres Doppler presque sans échos parasites. La seconde étape consiste à utiliser la

médiane d'un groupe de vélocités moyennes de l'air clair, regroupées dans le temps

et l'altitude, ce qui élimine les échos parasites restants. Un RASS se trouvant sur un

site urbain, un autre sur un site rural. et un avion instrumenté survolant un terrain

rural, ont été déployés afin d'étudier la couche lirnite urbaine lors de l'après-midi en­

qoleillé du :28 juin 1996. Les mesures d'air clair du RASS rural ne comportent aucune

contamjnation d'échos du sol ou parasites, et démontrent une couche limite initiale­

ment stable devenant convective au milieu de la période d'observation pour atteindre

une épaisseur de l km à la fin de la période. Les mesures d'air clair du RASS urbain

sont traitées avec ROSPA afin d'éliminer les échos parasites, et présentent une couche

limite convective durant toute la période d'observation avec une épaisseur allant de

1..5 km au début à 1.8 km à la fin. Le profil de flux de chaleur de la seconde moitié

des mesures du RASS rural est en bon accord avec le profil mesuré par l'avion, du

sol jusqu'à 0.6 km d'altitude. Le flux de chaleur au sol. évalué à partir du profil

mesuré par l'avion, est de 146 ± 0.ï7 \V1m2 , alors que le RASS urbain nous donne

.523 ± 239 VV1m2
• Ce résultat. ainsi que les profils de variance de la vélocité verticale,

sont compatibles avec les différences attendues entres les couches limites urbaines et

rurales. Nous affirmons que le RASS est un outil valable pour l'étude de la couche

limite urbaine, et que les anomalies des profils de flux de chaleur et de flux de variance

urbains sont causées par des facteurs indépendants de ROSPA .
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Statement of Originality

The signal processing algorithm presented in this thesis (ROSPA) is wholly original.

NIinimum and median filters are known. and have been used in other applications.

including, to a certain extent. profiler applications. Indeed. medians have been used

in profilerjRASS applications as a means of smoothing contanlÎnated data. mainly

for presentation purposes. or as a means of finding a robust central value estimate of

part or aIl of a time series. for the purpose of eliminating outliers. But this is the

first time that these filters have been used as signal processing steps in their own

right, with a view towards estimating turbulence statistics. ROSPA is. therefore. the

application of minimum and median filters specifically for estimating second-order

statistics from contÎnuous, and contaminated. profilerjR:\SS data. In addition. the

use of RASS acoustic velocity data to calibrate ROSPA is also originaL while the use

of Gaussian white noise statistics and hypothesis tests for white noise suppression

is. if not originaL at least uncommon. N[ost important of aIl. the various turbulent

statistics of the urban boundary layer taken by the profilerjR:\SS. the purpose of

ROSPA, is original. In particular. the profiles of heat and vertical air velocity variance

flux using the eddy-correlation method with ROSPA treated urban profilerjRASS

data is unprecedented.
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Chapter 1

Introduction

The precursor to the Radio-Acoustic SOllnding System (R:-\SS). known as the

electromagnetic-acoustic (E~TAC) probe. was invented in the late 19.50'5. The E1tIAC

probe. using the same physical princip!es as the RASS. was designed to measure

wind velocity (see Smith and Fetter (1989) for an historical review of the E~IAC

probe). The potential of E~[AC probe technology for temperature rneasurements

was tirst suggested by Atlas (1962), and the tirst successful RASS temperature pro­

files were obtained by North et al. (197:3). Ever since the early 19ïO·s. the R.ASS

has been continually improved. and used to study a variety of boundary-Iayer and

tropospheric meteorological phenomena. Among them. we note the lise of RASS for

studying mesoscale and synoptic scale weather systems (Neiman et al.. 1991; Neiman

et ai.~ 1992: Cohn et al.~ 1996); tropospheric and stratospheric temperatllre evolution

(~Iatuura et al.. 1986; Tsuda et aL 1989: Tsuda et al.. 1994): and bOllndary-layer

inversions (Bonino et al., 1981) and momentum and virtual heat fluxes (Peters et al.~

1985; Angevine et al., 1993a; Angevine et al.. 199:3b; Angevine. 1994; Peters and

I(irtzel, 1994).

However~ ta the best of the author's knowledge, RASS was never used to study the

urban boundary layer. This leaves open important questions about the urban bound­

ary layer concerning the vertical structure and evolution of the turbulent kinetic

1
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energy and virtual potential temperature. among others. [n particular. no attempt

was made to estimate profiles of vertical turbulent flux in an urban boundary layer

using RASS. This requires simultaneous measurements of the profiles of temperature

and vertical air velocity. which in principle may be obtained from a combined wind

profiler-RASS system. Reasons may be that the opportunity never presented itself

or that profiler measurements of vertical air motion at an urban site can be severely

contaminated by many kinds of clutter. The clutter can compromise the quality

of the vertical air velocity measurements. which are essential jf the eddy-correlation

method is to be used to estimate the tluxes. And yet. the profiler /RASS combination

has certain advantages over aircraft and towers. Less expensive than an aircraft. the

profiler/ RASS also provides better resolution in height over longer times. Indeed. the

continuous time-height data of air motion and temperature of the profiler/ RASS is

comparable to tower data. However. the profilerjRASS cano under certain meteoro­

logical conditions. provide a greater height coverage than any tower. In addition. a

profilerjRASS can be designed in such a way as to be transportable. which is not

easily done for a tower.

There are good reasons. therefore. to remove the clutter fronl the clear-air profiler

measurements. particularly in an urban boundary layer. .-\ very complex environ­

ment. the urban boundary layer is aiso difficult ta probe on account of restrictions

on aircraft Hight paths and on the type and location of ground-based instruments.

The urban boundary layer. therefore. is still a relatively unexplored environment,

certainly as campared with the rural boundary layer. Reliable profilerjRASS data

would undoubtedly be a valuable addition to the study of that environment.

The goals of this thesis are twofald: first. ta develop a signal processing algorithm

capable of adequately eliminating the clutter from the clear-air velocity measure­

ments; second, to analyze and compare the structure of a convective urban boundary

2
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Figure 1.1: A view of the downtown core of l\tfontreal centered on the campus of
lVlcGill University.

3
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Figure 1.2: The array of instruments on the roof of Burnside Hall, on the campus of
w[cGill University in downtown lVlontreal. The profiler is in the center, surrounded
by four RASS acoustic speakers (cylinders).

layer with that of a rural convective boundary layer. The second goal will be accom­

plished using data taken by a profiler/RASS located at an urban site, by another

profiler/RASS located at a rural site, and byan instrumented airplane flying between

the two~ over largely rural terrain. The urban site is the roof of Burnside Hall, 10­

cated on the campus of lVlcGill University in downtown Nlontrea1. The campus and

its environs are shown in Fig. 1.1, and the profiler, along with the RASS acoustic

speakers, are shown in Fig. 1.2.

Chapter 2 begins by explaining the physical principles of the dear-air profiler and

acoustic RASS measurements, along with the technical characteristics of the pro­

filer/RASS used here, and ends with the spectral statistics of Gaussian white noise.

Chapter 3 will review the different types of dutter affecting profiler measurements and

4
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various methods used to suppress them. Afterwards, Chapter 3 will explain the dif­

ferent steps used in the signal processing. At each step~ we win eplain the theoretical

principles involved. Chapter 4 will review the essential physical aspects of the urban

boundary layer. In Chapter .5, we win start with an overview of the conditions on the

day of a special boundary layer experiment: June 28. 1996. Then, we examine in de­

tail the data from the rural profilerjRASS and the airplane. The data from the urban

profilerjRASS will be treated with the signal processing algorithm. which first needs

to be calibrated. The calibration procedure will be explained. and the urban baund­

ary layer wiU be analyzed using the treated profiler j RASS data. Tapies relating ta

the treatment of the data. errors on the profilerjRASS measurements. aircraft-RASS

comparisons, and the differences between rural and urban turbulent flux profiles. will

he examined in Chapter .5 and, in a more general way. in the discussion in Chapter

6. 'vVe summarize our conclusions in Chapter ï .

5
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Chapter 2

The Profiler/RASS

In arder ta understand the profiler/RASS measurements presented in chapter .5. it

is necessary first ta explain the physical princi pies inval veel. This will gi ve us sorne

idea of which physical processes in the atmosphere correspond to what characteristics

of the measurements. It will also give us an understanding of the limitations and

qualities of the profiler/RASS system. First. we will focus on profiler measurements

of clear air reflectivity. mean Doppler velocity. and spectral width. Second. we win

look at RASS measurements of quantities related to an acollstic wave propagating

in the atmosphere. Finally. we will review the effect of Gaussian white noise on the

c1iscrete-time signal processing relevant to profilerjRASS measurements.

2.1 Clear-Air Radar Measurements

The literature on all aspects of clear-air measurements by Doppler radars is vast.

Therefore, we will not cite al! the relevant references on this tapie. Suffice it to say

that the basic theory of radar wave and clear air interactions can he found in Tatarski

(1961), white a con1prehensive account of the theoretical aspects of Doppler radar

measurernents of clear air can he found in Doviak and Zrnié (1993). Additional ma­

terial regarding clear-air returned power, mean Doppler velocity, and spectral width,

6
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can be round in Ottersten (1969). Gage and Balsley (1978L Gage et al. (1980). Hock­

ing (198:3). Gossard and Strauch (1983)~ and Nluschinski (1998).

The general equation describing the detected electric field from refractive index

fluctuations for a vertically-pointing pulsed Doppler radar (profiler), is

k 2 :lrr rr(1. ra+L/1. _ ._
Ep ( Tl. ro) = -.-2 r !.! I.-t( O. d:» 12 el (2kor p -woTippn)

21ira Jrp=O 8=0 r=ro -L12 (2.1)

'l(r.f).(J),nTipp + l'o/e - rp/c)d~';

where Ep(n. ro) is the detected electric field. with n is the pulse number. ro is the

range. k is the wavenumber of the returned field. 1.4(0.0)1'1. is proportional to the

angular t.ransmitted power distribution of the profiler antenna about the main lobe

(0 = 0). ~'o is the angular frequency of the profiler (A'o = ""'01 c). Tipp is the interpulse

period (IPP). ,,(r.O.(b.t) is the field of refractive index fluctuations of air. ~'~ is the

resolution volunle. and rp = r - ra. A derivation of this equation can be found in

Appendix A.

~ote that Eq. 2.1 is expressed using spherical coordinates because they coincide

with the emitted radar waves. However. if we concentrate on the [nain lobe only. and if

we assume that its beamwidth is sufficiently small. then we can neglect the curvature

of the radar wavefronts within the main lobe. It is then convenient ta express Eq. 2.1

in cartesian coordinates with the origin centered in the resollltion volume (ip )' For the

moment. we will assume that the resolution volume is a rectangular parallelepiped

where -ro~()/2 ~ X p ~ ro~()12~ -ro~OI2 ~ YP ~ ro~()/2, and -L/2 ~ ::p ~

L1'2. where ~e is the profiler beamwidth. vVe will further assume that the profiler

illuminates the entire volume equally: l:f(xp )l2 = constant. Ali this gives us the

equation

E (n r ) - k21.4121 ei(2kozp-wo11ppn)n(x nT; + raie - - le)d~" (2.2)
p ,0 - ') 2 " P' lPP -p P_7rro Vp

where we have dropped the limits of integration, and we have set =p = =- ro. vVe

will now make use of the Fourier transforrn of the refractive index fluctuation field,
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(2.3)

where kT/ == (kT/.lT)" mT/) and ""'r., are the wavenumbers and angular frequencies of the

clear-air refractive index fluctuations. Also note that we abbreviate by showing only

one integral sign instead of four. a convention !"'le will use from now on unless stated

otherwise. vVe place Eq. 2.:3 in Eq. 2.2 to obtain

•
The integrals in square brackets can be easily integrated ta give

k2 ~ Î ~I12 j":-O _
Ep(n. ro) == ("):)~ 2 «(>ry(kr)~""''1)eIW'1rl)/c sinc[(:2ko - nlT/ - w1)/c)L/2]

_Il ro -':-0

sinc( kT/ro~O12) sinc( 11)ro~O /2) el(""'"-,",,,o )1;pp n d3 kT]diN'r)

(2.4 )

(.) "')_.:)

•

where sinc(.r) == sin(;r) /.r is a function with a nlain lobe at .r == 0 (sinc( 0) == l). with

side lobes on both sicles. and attaining zero at .r = ±rr. ±2:i. ±:J:i. etc. In facto it can

be shawn that. CL • sinc(ax) ~ ii<5(X). where <5 is the Dirac delta funetion. as a ~ cc

(Arfken. 198.5). In what foHows. we will drop the '-'l1J/ c term in the first sine function.

because we assume that lepr)(kT],w1J)1 2 has power only where mT/ »-..)1)/c, In other

words, any realistic atmospheric phase velocity is very much less than the speed of

light. IWT]/m1) 1 «c. The discrete-time Fourier transform (see Appendix B: Eq. B.2)

of Ep(n. ro). is

where we used equation B.11 to introduce the delta functions. Before we integrate

with respect ta W 11 ' we perform the transformation w ~ W - wo. This is because

8



•
the profiler emits a wave with angular frequency Wo and detects one with angular

frequency wo - vJTp namely, a wave with the atmospheric frequency 'riding' on the

profiler frequency. ft is convenient ta remove the carrier frequency from the returned

signal. The result is

k2~/~I·iI2 j'oo [ ~ fI> (k ,'-L-')rrkIT )ei(..,+21rk/7ipplrol.:]
(')_)0. 2'7"'. ~ Il 'l'..L. 1 -' "PP

_Il ro.Lipp -'::>0 k=-r:c

sinc[(:2ko - m,,)L/2] sinc(k'1ro~O/2)sinc(l'lra~O/2)d3 kT/' (2.ï)

vVe will assume that the [PP (interpulse period) is chosen sa that aH the atmospheric

spectral power is contained within the angular frequency interval [-jj /1ipp . ïi /Tipp] ,

where vJ;v = iT/~pp is the Nyquist angular frequency defined by the [PP. This means

that only the term k = 0 in the summation is not zero. giving

•
k2~/ I.II 2 00 _ .

ff ( , ) - P • l '" (II.' ,) .""'·ro/e,· ((')11.' )Lj')]
p .... ra - (.)_) .... 2T: 'l''1'I'W e ~lnc - a - mTj -

_Il ra 'pp -.)0

sinc( kT/ro~O/2 )sinc( 1rlra~O /2) d3 kT/'

(2.8)

At this point. it is important to mention that the turbulent refractive index fluc­

tuations are modelled by a stationary random field with zero mean. [n other words.

not only is the ensemble mean zero. '7 = O. but the covariance function depends only

on the space and time lags between the two points:

(2.9)

If the refractive index fluctuation field is random, then 50 is <f.>(k'1'vJT1 ) and Hp(w. ra).

Aiso. given a stationary random refractive index fluctuation field. it can be shown

that

(2.10 )

•
where ST/(kT/' WT/) is the power spectrum of '1' Equation 2.10 is an important result in

the theory of random fields (Panchev, 1971; Vanmarcke, 1983). The power spectrum

represents the contribution of each frequency and wavenumber ta the variance of the

9



•
random field. In this case. we have

(2.11)

(2.12)

It also follo\vs that the power spectrum of the returned signal is

L 1':08p(w. rI)) = :!ii _.;ç ffp(w. ra) . H;(w'. ra) cl"",'!.

'VVe place Eq. 2.8 ioto Eq. 2. L2. we use Eq. 2. LO when we integrate with respect to

the primee! wavenumber and frequency coordinates~ to obtain

(2. l:3)

•
which is a relationship between the profiler Doppler spectrum and the power spectrum

of the clear-air refractive index fluctuations. If the resolution volume is large enough

sa that the sine functions can be approximated as delta functions. we can approximate

Eq. 2.1:3 as

(2.14)

!-Iere. the profiler essentially singles out the wavenumber vector kTi = (O. O. 2ko ). It is

the clear-air refractive index fluctuations with a vertical wavelength half the profiler

wavelength ("\TI = ;\0/2. a condition known as Bragg malching) that contributes the

most to the detected spectral power. As we will see, Bragg matching also plays an

essential role in RASS measurements. 'VVe can simptify further by using the expression

~'~ = ra(~O)2 L~ to find

(2.15)

•
where we defined the constant A = k·I(~O)2 L[.41-1 /(32ii2Ti~p)' and where we can see

the r a2 dependence that must be taken into account when measuring clear-air reflec­

tivity.

10



•
The range-normalized detected power is defined as

(2.16)

Furthermore. if the turbulence causing the refractive index fluctuations is stationary~

locally homogeneolls. isotropie and in the inertial range. the structure function of

'7(i.t) is

which means that the range-normalized detected clear-air power is proportional ta

the intensity of the turbulence (Ottersten. 1969: Doviak and Zrnié. 199:J).

where C~ is the refractivity turbulence structure parameter. which is a rneasure of the

intensity of the turbulence (Gage et al.. 1980). The corresponcling spectrum is given

by 8T) "X Ikry/-IL/3. In that case. and if the profiler wavelength is within the inertial

range (which is usually the case). we can say that

•

[1](1 + ~i. t) - '7(1. t)]2 = C~I~iI2/3

P ( ) C'1.1.1/1
RN "0 eX nl\O

(2.17)

(2.18)

If the radial component of the wincI within the resollltion volume has a rrlean

value of zero. then it is reasonable to assume that the covariance function satisfies

the condition: Cov(~i.~t)= Cov(~i. -~t), and consequently the power spectrum:
- -STJ(k"",wTf) = S'.,., (k.,.,. -":1/)' These properties refiect the fact that with a zero mean

winci. the motion of the eddies will, on average, cancel each other out. They also im­

ply that the first-order spectral moments will vanish: f~ STj (O. O. 2ko,WT/ )w.,.,dw1/ =
J~"'C 8p (w. ro)",-'dw = O. vVe can introduce a mean advection by performing the

substitution .r -+ i - (il. where [7 = (u, V. LV) is the advection velocity. That

substitution implies others, namely: Cov( ~i~ ~t) -+ Cov(~i - [Ï~t~ ~t) and

Sry(k""wt]) -+ 8T/(kt],wT) - 0 . k.,,) (see Potvin (1993) for a similar analysis applied

to rainfall fields). Using that substitution, the mean Doppler frequency, defined as

• ( )
_ f~ Sp(w, ro)wdw

Wn 1'0 - 00 ... ( )df-oc:'p w,ro w

Il

(2.19)



•
becomes

Using the spectral symmetry mentioned earlier. 5 11 (0. O~ 2ko.;,;.,'

51/(0. O. 2ko• -u..' + 2wko). it foUows that

>N'D ::::::: 2kow

(2.20)

2wko) =

(2.21)

•

and consequently. the vertical air velocity measured by the profiler 1S taken to be

WD = ;,;.)0 j('l.ko). This analysis depends on the rather artificial division of atmospheric

motion into turbulent small-scale eddies and constant large-scale motion advecting

the eddies. Of course. the large-scale motions can be just as turbulent as the small­

scale eddies. particularly in the boundary layer. The profiler measures the mean

Doppler velocity over a firrite integration time. The constant motion ( can therefore

be seen as the average of the turbulent rnotions over the resolution volume and the

integration tirne.

The standard deviation of the Doppler velocity about its mean is defined by

(2.22)

•

and it describes the broadening of the power spectrurn. By convention. the spectral

width. J1.D. is sometimes defined by P.D = 'laD. which is twice the standard deviation

of the Doppler velocity. To a first approximation, the spectral width is twice the

value of the root mean square (l'ms) vertical velocity of eddies with sizes ranging

from the smallest scales present ta either the resolution length of the profiler or the

largest scare of the turbulence, whichever is smaller (Hocking, 1983). However, other

factors, such as the finite resolution volume and integration tirne (windowing effects,

see Appendix B), and the uneven illumination within the resolution volume, affect

the spectral width (Doviak and Zrnié! 199:3). In addition, spectral broadening is

also caused by the cross-beam wind component (Hocking, 1983; Doviak and Zmié,
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•

199:3; Leblanc~ 1994: Rogers et al.. 1996). That effect is not obvious from our previous

development since \ve ignored the curvature of the radar wavefronts. Also. the profiler

side lobes are inclined with respect to the vertical. The lobe inclined in the direction

of the horizontal wind will measure an incoming Doppler velocity. while that inclined

in the opposite direction will measure an outgoing Doppler velocity. These Doppler

velocities contribute to increasing the spectral width.

2.2 RASS Measurements

:Yrathematical descriptions of various aspects of the RASS are numerous in the litera­

ture. For instance. Lataitis (1992) estimated the returned power: Nalbandyan (19i6a;

19i6b). Kon and Tatarski (1980). and ~ray el al. (1990) examined the Doppler spec­

trum: attenuation of sound by turbulence \Vas examined by Clifford and \Vang (19ii)

and ~Iakarova (1980): ternperature errors were investigated by Lataitis (199:3). Pe­

ters (1994b: l!)94a) and Peters and Angevine (1996): altitude coverage by :VIasuda

(1988). Takahashi et al. (1988). and Baller and Peters (199:J): and Rnally. a general

description of RASS was given by Nalbandyan (19iï) and Lataitis (199:3).

The main difference between RASS and c1ear-air measurernent is the origin of the

refractive index fluctuations. Unlike the random refractive index fluctuations due to

turbulence, the RASS creates and detects an acoustic wave. which induces refractive

index fluctuations by the compression and rarefaction of the air. For the moment. we

will assume the acollstic wave to be perfectly deterministic. with the form of a plane

'Nave within the resolution volume

(2.23)

•
where ka. = (ka., l!l~ ma.) and Wa. are~ respectively, the acoustic wavenumber and angular

frequency. Also, the dispersion relation for the acoustic wave is ~a. = Ca. 1ka. 1 + [7 . ka.,

where [7 = (u, 'V, w) is the motion of the air inside the resolution volume, Ca. =
V( '"Y RTv ) is the speed of sound in still air, ""{ = lA is the ratio of the specifie heats at
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constant pressure and constant volume, R ::: 2Sï m1s-2 1\:-1 is the gas constant of dry

air~ and Tl' is the virtual temperature of the air (1\:). The wind velocity appears in

the dispersion relation because acoustic waves are advected by it. unlike radar waves.

In what follows. we will assume that the atmospheric flow is laminar and stationary.

:\coustic wave propagation in a stratifled atmosphere, such that r ::: (u(=), l.'(,:).0)

and Ca ::: Ca ( =), which tioes not vary rnuch over an acoustie wavelength (i.e. the limit of

geomelrical acollstics: 18tT/ü=I"\'L -+ 0 and laC~L/a.:I"\a -+ 0) is a weil known problcm

in atmospheric aeollstics (Rayleigh. 1896; Baten1an. 1918: ~Iilne. 1921; PridnlOre­

Brown. 1962: Lighthill. (978). Furthermore. we will not disellss the attenuation of

sound in air. although it can be a major factor in the altitude limitation of RASS

(~[ay et al.. 1988). Suffice it to say that the ruolecular attenuation of sound in air is a

conlplieated function of acallstic frequeney. air temperature and relative humidity. as

shawn by Harris ( 1966). In general. the attenuation increases \Vith acotlstic frequency.

and dry cald air and rnoist hot air have law attenuation values .

Since the acotlstic wave clescribed in Eq. 2.2:3 is a plane wave. its spectrum is

«),,(kT/'~'1J) ::: (2iT)·1:VoS(kT/- ka)e5(iN'ry - "'a). which we place in Eq. 2.8 ta find the

cletected Doppler spectrun1 of RASS. After performing the integration with respect

ta the wavenumber coordinates. we obtain

fI ) k2~'~.Vol.~Ir~ ~( ) iwro/c· [(')k )L/')]p(""""o :::} c} W - ..'rL e Sinc -'0 - lTI 'L -

l'Ô Iipp

sinc( Â;aro~O /2 )sinc(lrtro~O/2).

(2.24 )

•

Here. we see that the detected signal has the same angular frequency as the acoustic

wave. ~. ::: i..IJu ~ but the power will depend on how close the acoustic wavenumber ka is

to the vector (0, O~ 2ko ). If the acoustic wave propagates vertically, then the maximum

detected power is reached when the Bragg matching condition is satisfiecl,ma = 2ko,

in which case the mean Doppler frequency is WD = 2ko(Ca + w), and the measured

RASS velocity is CR ::: Ca. + w .
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•

vVe can now identify two problems with RASS measurements. First. in order ta

obtain a reasonably strong detected power. the acoustic frequency must be snch that

Bragg matching is satisfied ("""'a::::::: 2A:oca). The proper frequency therefore depends

on the speed of sound. which. in turn. is a function of the virtual temperature. But

the virtual temperature is not known prior to measurernent. The acoustic speakers of

the RASS must therefore emit acoustic waves over a range of frequencies sufficiently

wide to contain the proper Bragg match freqllency. As we shaH see. the R:\SS llsed

in our experirnents emits acoustic waves with a frequency that varies over a preset

bandwidth. The detected power spectrum is not. therefore. a sharp peak at a single

frequency. but a wider Gaussian shape with a nlaximum at the Bragg match fre­

quency. The second problern is the contribution of the vertical air velocity to the

R..-\SS velocity. which is the principal source of error in R..-\SS ternperature estimates.

This error can be removed if we possess aCCllrate vertical air velocity measurements.

However. the clear-air power spectra might sllffer from contarnination. making the

vertical air velocity values unreliable. Chapter :3 will deal with such an eventuality.

:\nother source of errar is the nlisalignment of the aconstic wavenumber vectar

\Vith respect to the raclar wavenllmber vector. Such a misalignment has a variety

of causes: the displacement of the acollstic source with respect to the profiler. the

horizontal displacerrlCnt of the spherical acoustic wavefronts by wincI advection. the

deformation of the acoustic wavefronts by turbulent eddies (mainly horizontal shear

of vertical air velocity) ancl temperature fluctuations. If we assume no wincl. [7 = D.

and an inclined acoustic wavenumber vector. ka = (1 ka 1 sin 4>. D.lkal cos c1», where cP is

s1l1alL then the acoustic frequency that gives the highest detected power according to

Eq. 2.24 is, to a first approximation:

(2.25 )

•
where j3 = '-0:3.0/ L is the aspect ratio of the resolution volume. The corresponding
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(2.26 )

•

•

•

RASS velocity is

Ca COS ci>
CR = .

C052 (f; +,32 sin2 (D'

At low altitudes . .32 « l and CR ~ C(l sec ç)~ which means that the RASS measures

a artificially high velocity. CR - ca ~ ca(sec ci> - t) ~ ca o2 /2 ~ O. or an artificial1y

warm temperature. At altitudes where the resolution volume is as wide as it is high.

3'2 ~ 1. the R.-\SS measures a velocity CR ~ Ca COS (/J. which is too low with respect ta

the speed of sound. CR - ca ~ C(l( COS 0 - 1) ~ -Ca (;/' /2 ~ O. Alternatively. using small

angle approxinlations. we can state that CR - C(l ~ c t1 ( 1/2 - J!)dJ'2. \vhich means that

the RASS is insensitive to leading-order misalignment errors at ro = (/2)-[ LI~O.

The aspect ratio of the resalution volunlc appears in Eqs. 2.25 and 2.26. because

findir.g the peak of Eq. 2.24 in1plies maximizing the product of t\VO competing sine

functions. That Îs. the vertical function sine[(2ko - 1(11 cos (f))LI2] has a nlaximum

at Ikal = "!.ko sec o. while the horizontal function sinc[( ro~O/2) Ik'll sin <1>J attains a

maxinuul1 at Ikal = O. \Vhich function predominates depends on the height of the

resolution volume. L. relative to its width. ,.O~O. such that if L » ro~O. then the

vertical sinc funetion has a. rnuch sharper maximum than the horizontal sine fljnction.

and so the vertical sine fllnction determines the frequency of the maximum.

As mentioned previousiy~ Eq. 2.24 does not take into account the spherical nature

of the radar wavefronts. or the uneven illumination within the resoilltion volume.

~Ioreoever~ it does not take into account the spherieal form of the aeoustic wave­

fronts. the uneven distribution of acoustic power within the resoiution volume. or

interference effects that may be created by multiple aeoustic speakers. Indeed~ in

many treatments of RASS. such as Lataitis (1992; 199:J)~ the spherieal shape of the

wavefronts plays a major role. The curvature and position of the acoustic wavefronts

relative ta the radar wavefronts are assumed to focus or diffuse the returning power to

the profiler. ~IIost important, though, is the assumption of a constant misalignment

over the entire resoiution volume. In fact, the action of turbulent eddies deforms

the propagating aeoustic wavefronts, causing a variable misalignment throughout the
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volume.

Turbulence interacts with sound in many ways. Turbulent eddies can emit aeous­

tie waves of their own (Lighthill. 19.52). but this sound has little power and a low

frequency. and 50 does not interfere with RASS measurements. Turbulent eddies also

scat ter propagating aeoustic waves (Lighthill. 195:3: Kraichnan. 19.5:3: Tatarski. 1961:

~[onin. 1962: Clifford and Brown. 19iO). There appear to he two types of scattering

nlechanisms: the turbulent eddies proper. and turbulent temperature fluctuations

(Howe. 19ï:3). For the turbulent eddies. only the cases where the acoustic wavelength

is either nluch longer or much silorter than the eddy size are weIl understood. while

the intcrmecliate case poses sorne difficulty (Lighthill. 19ï2). There is. on average. a

net 105S of acollstic energy to the turbulence. From this. \\'e can define an attenuation

of sound due to turbulence. not accounted for by molecular attenuation. According ta

lngard (L95:3). attenuation due to atrnospheric turbulence can he stronger than any

other type of attenuation (nl0Iecular. fog. rain or ground). \vhile Brown and Clifford

( L9ï6) clain1 that other factors nat related ta the atmosphere. such as beamwidth

and beam orientation. can be just as inlportant.

The effect of turbulence on the acotlstie wave is llsually described llsing Rytov's

form (Chernov. 1960: Tatarski. 1961: lshimaru. L9ï8L which is

r/( .r. l) = 'l( .r. l) exp[\( .r. t) + ili'( .r.t)1 (.) 'r-)_.-1

•

where 1]'( .r. l) is the perturbed acoustic wave. 1]( .r. t) is the unperturbed incident

acoustic wave. deseribed in Eq. 2.2:3. and \ = ln( 1'7'1/1"'71) and ri' are. respectively~

the turbulent fluctuations of the log-amplitude and phase of the incident wave. The

acoustic wave~ 'l' (i~ l), is therefore random~ rather than deterministic. Aeeording to

Peters and Angevine (1996), the amplitude fluctuations are negligible compared to

the effect of the phase fluctuations. Indeed, it is the phase fluetuations,~'(i,t), that

create 'correlation patehes ~, zones of more or less constant inclination, indepencient of

one another, within the resolution volume. It is the aspect ratio of these patehes, PT,
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•
that now should appear in Eq. 2.26. :\150. according to Tatarski (1961). and Clifford

and 'Nang (19ïï). the acoustic wave is much more coherent along the direction of

propagation than perpendicular to it (or along the wavefronts). This means that

the correlation patches are elongated along the acoustic wavenumber vector. ka =

(O~ o~ fkal). which implies that 3T « l for all altitudes. A more accurate aspect ratio~

however. should be

J
T

= min(ro~O. L.l)
min( L. LI[)

(2.28)

•

•

where LII is the length of the correlation patch along (1" and L.l.. is the length per-

d· 1 . B L l L -3/5 h' 1pen lCU al' to It. ut Il ~ l'o. ane .l..:X 1'0 50 t at. III genera. we assume

3T = LJ./ L < L. Of course. the inclination angle of each correlation patch. (f). is

itself a randonl variable. According to Peters and Angevine (1996). if we assume

homogeneou5 turbulence and a rnean wincl with a value of zero. the overall error is

CR - ca ~ (1/4)c(Lep2. where 0'1. is the variance of the inclination angle.

.-\part from the vertical air velocity. horizontal wind. and turbulence. other sources

of error exist (Angevine and Ecklund. 1994). :\mong them. we flnd errors in range:

that is. the acoustic attenllation and the horizontal winds may cause an uneven ver­

tical distribution of acoustic energy within the resolution volume. rneaning that the

measured temperature is not an llnweighted average over the volume. In addition~

slight deviations from the formula. Ca = V(1 RTu ). due to a weak dependence on at­

mospheric variables other than the virtual temperature. such as pressure. humidity or

CO2 concentration (Harris, 1971; Cramer, 1993) may cause errors. RASS-radiosonde

comparisons (Nlay et al.~ 1989: Angevine and Ecklund. 1994: ;Vloran and Strauch~

1994: Peters and Angevine. 1996; Riddle et al., 1996), as weIl as RASS-tower com­

parisons (Angevine et al.~ 1998) show that~ overall, the RASS measurements have

random and systematic errors in the arder of 1°C, without any correction. The sys­

tematic error is negative close ta the ground ( < 250 m AGL) and positive at higher

altitudes. If we take into account the vertical air velocity, the random error can be
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•
reduced to about O.2°C, depencling on the meteorological conditions and the quality

of the velocity measurements.

2.3 Examples of Profiler and RASS Observations

The technical characteristics of the particular profilerjRASS system determine the

kinds of measurenlents that can be performeu with acceptable accuracy. In this sec­

tion. we williist the technical and signal processing characteristics of the ~IcGill pro­

filer jR:-\SS. exarnine its capabilities. and show sorne exanlples of profiler and RASS

data.

Table 2.1: The characteristics of the profiler (top) and RASS (bot torn) components.

• Freqllency
\Vavelength
Peak power
.-\ntenna aperture
Antenna type
Number of beams
Painting directions
Beamwidth
Pulse dllration
Pulse length
Acoustic power
:-\collstic frequency
:\collstic bandwidth
.-\coustic wavelength
Freq. selection
:-\coustic Dwell time
Speaker diameter
Speaker beamwidth

915 ~\'[Hz

:32.8 crn
.500 \V

1.8 n1 x 1.8 m

6~l elenlent array
.)

Vertical: 2L0 zenith angle at cardinal points
go

O. ï ILS (typical)
10.5 m (typical)

:30 \V (norninal)
2 kHz (typical)
120 Hz (typical)
16 cm (typical)

random
1.5 ms
1.2 m

100

•
The radar winci profiler is the prototype of the Radian model LAP-:3000 built for

~IcGill University by the Aeronomy Laboratory of the U.S. National Oceanic and
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Atmospheric Administration. Its main characteristics are: wavelength :33 cm. peak

power .500 VV, beaunvidth go and. in the examples shown~ pulse duration 0.7 j.1S. In

the RASS mode~ the acoustic signal is transmitted continuonsly with its frequency

changed every 1.5 ms and selected randomly fronl the interval :202.5-21:30 Hz. corre­

sponding to a tenlperature intentaI of .5-:3.5°C. The fundamental vertical resolution

in the examples. as determined by the radar pulse duration. was l05 ffi. though the

RASS signaIs were sanlpled at an interval of 0..1 ILS to give a spacing in altitude

of 60 m. Ta reduce the signal-to-noise ratio. nine consecutive detectecl pulses were

coherently integrated to fornl one element in a 2048-point time series. The average

was renloved from the tinle series (OC filtering). and a Hanning window was im­

posed on it. :\ Fast Fourier Transform (FFT. see Appendix B) was perfornlecl on the

tinle series. producing a power spectrum extending over the Doppler velocity interval

±:396 mis. Twenty-four sllch power spectra \Vere then averaged. The time resolu­

tion. deterrnined by the anl0unt of coherent and spectral integration. was 22 s. The

characteristics of the profiler1RASS are sunlmarized in Table 2. Land descri bed by

Angevine et al. (1994b). The signal processing parameters are listed in Table 2.2.

Table 2.2: The signal processing parameters of the profiler operating in RASS mode.

Figure 2.1 shows an example of profiler clear-air measurements, taken over wlcGill•

[nterpulse perioc1
Li nanlbiguolLs range Emit
Sampling interval
Sampling resolution
Coherent integration
OC filtering
\,yindowing

Spectral integration
Number of spectral points
Pulse coding
Nyquist Doppler velocity

2:3 JlS

:3A5 km

004 ILS

60 m

9
yes

Hanning

24
2048
none

:396 mis
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Year 98 Day 112

'--_....J<

r----, >
50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

-5.0

r----i -10.0

f
>

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

<
1600

1600

1500

1500

1400

1400

MW? Vertical Reflectivity (dBZ)

1300

1300

1.0

MWP Vertical Velocity (mis)

1.0

SNR lhreshold -12. dB

April 22. 1998

4.0~

o. 0 -+-------,-----,.----,,..----..----..,...........--~--~--_4_

1200

0.0-+-----,-----r------,---~--~--_,__--__r_--_+_

1200

4.0

Q.l

-g 2.0
-'
.....
<:

E 3.0
~

E 3.0
~

•

SNR lhreshold -12. dB
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Figure 2.1: An example of time-height profiler data of clear-air reflectivity (top)
and mean Doppler velocity (bottom). The sign convention is that positive Doppler
velocity indicates motion towards the radar.
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Figure 2.2: An example of RASS virtual temperature profiles. The profiles are con­
sensus averages over 4 minutes (7-8 measurements), at the start of every hour.
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on April 22, 1998. .-\n inversion layer persists over the entire 4-hour period at 2.5

km AG L. The layer is visible because of the shear-driven turbulence mixing the air

above and below the layer. with different potential temperature and humidity values,

causing the necessary refractive index fluctuations. Inside the layer. there is a more

or less reglliar oscillation between upward and downward motion. possibly the result

of gravi ty waves. Between l km AG L ancl the inversion layer. we see the occasional

outburst of convection. particularly From l200 ta 1240 and from l:300 to 1500 Eastern

Standard Time (EST). See Rogers et al. (199:3: 1994) for an analysis of sirnilar profiler

data. Of particular importance ta us. however. is the persistent detected power from

the ground ta about l knl .-\GL. That signal is mainly clutter from the grouncl. or

flying abjects (the clark patehes in the reflectivity plot). contaminating the clear-air

data. Describing the different types of clutter. and eliminating them. is the central

topie of Chapter :1.

Figure :!.2 shows a series of R.-\SS virtual temperature profiles fronl 0400 ta 1500

EST. on April 2. 1998. At the start of every hour. RASS measurements were taken

over a 4-rninute period. yielding ï-S measurements at each height. The virtual tem­

perature nleasurenlents \vere averaged using a consensus averaging algorithm. which

is designed ta elirninate outliers fronl a clataset prior to averaging. First deseribed

by Strauch et al. (l9S-l)~ consensus averaging is used for obtaining reliable horizontal

winci profiles fronl profiler data. The hourly profiles in Fig. 2.2 begin at 0400 EST ~

when there are two stable layers (one from 0.2 to 004 knl AG L, and the other from

0.6 to l km AGL). The lower stable layer persists until the last profile at 1.:500 EST.

The upper stable layer is progressively weakened. until it disappears conlpletely by

1200 EST. leaving behind a mildly stable layer from about 0..5 to 1.2 km AGL.
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2.4 Effects of Gaussian White Noise

AlI measurements include a randon1 el'ror. whether large or small with respect to

the measllred value. due to imperfections in the instrument. ProfilerjRASS meaSllre­

ments are certainly no exception. linlike contamination which may or may not be

prespnt. thp random PITor is present in every ffieasurement. .\ny signal praccssing

algorithrn must. therefore. be able ta deal \Vith this type of error. It is thus important

to understand the effect of these erl'ors on the profilerj R...\SS Doppler spectra so that

we can take them into aCcollnt in the signal processing.

.Voi...e tlsually designatcs a randonl errar that affects each rnember in a tirne series

and is inclependent of ail other Inenlbers. The noise cornponent of a discrete-tinlc tilne

series is given as .:[n]. which is composed of independent and identically distributed

(iid) randonl variables =such t hat: (i) .: has an average of zero (:: = 0): (ii) .: [il is

independent of =[j] for aIl i :j:. j. The square bl'ackets are used to denote a discrete

argurnent. :\150. for convenience. wc assunle that :: is complex. == ::,. + i =1' where the

l'eal and irnaginary parts are iid with a Gaussian probability dcnsity function (also

called a normal probability density function) with a nlean IL = 0 and a variance a:2:

[

_:.! ]. L - iJd=d = , exp - -,) .
av'(2iT) '2a-

(:2.29)

Next. we consider a trme series only .V points long~ such that n = 0, .... ;.V - L.

and, for the sake of generality, we impose a window w[nl on the time series. The DFT

(see Appendrx B) of this time series is then

•
N-L

Z[kl = L w[n]=[n]e- i {:2l1"kn/t·n.
n=O
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The real and imaginary parts of Z[k] are

.V-1

Z,.[k] = L w[n] {=,.[n] cos(2iTk'nrV) + ':i[n] sin(27ïkn/.V)}
n=O
.V-1

Zi[k] = L w[n]{':i[n] cos(2iTknj.V) - =,.[n] sin(~7ïknrV)}
n=O

(2.:31)

(2.:32)

•

where w[n] is assumeJ to be reaL Equations 2.:l1 and 2.;3~ are SUffiS of normally

distribllted random variables. Given .V normally distribllted random variables. with

means l'n and variances (j~. it is well known that the sum of these random variables is a

normally distribllted randonl variable \vith a nlean Ils = =:=-01Itn and a variance a; =
L;:=~1 (j~. Furthermore. suppose !J = a::. where .: is a nornlally distribllted random

variable with a nlean Il and a variance /T2 and (l is a real constant. It is not hard to

see that .li is a nonnally distributcd random variable with a nlean (lll and a variance

a'2(j'2. It follows then that Zr[k] is a nornlally distribllted random variable with a zero

mean. Jl,. = O. and a variance (j; = L~;~-o1 0"~wl[n]{cos'2(2iTkn/.V) + sin2(2ïrk'n(V)} =
0'2 =~;":oL w2[n]. The same applies for Z;[k]: Ili = 0 and a'f = a2 L~":ol w1[n]. ~ote

that these pararneters do Ilot depend on k. The joint probability density function of

Zr and Zi is

(2.:3:3 )

(2.:34 )

(2.:35)

where as = a,. = (Ji. \Ve now express g(Z,.. Zd in a polar rcpresentation. Z = Reirp
•

Using the fact that dZI'dZi = RdRdo and R'!. = Z;~ + Zr we find

R [R"2]g( R. rfJ) = .)_ 'l exp -.) 2 •
_'las _a!J

Since Eq. 2.:3--1 does not depend on dJ~ it is convenient ta find the marginal density

function~ g( R) = f~rr g( R. d> )d(D.

R [ R
2

]g(R)=2€XP -~.
as _G"s

However~ we are only interested in the spectral power E = Z- Z = R'l. vVe obtain the

probability density function of the spectral power by using RdR = tdE in Eq. 2.35,

• g(E) = Àexp[-.-\E]
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where ...\ = (:20";)-1. The probability density function of the spectral power value of

Gaussian white noise is therefore exponential for any value of k. The signal processing

algorithm of a profiler/R.-\SS may average m power spectra together. It is \vell known

that the average of nz exponentially distributed random variables is a random variable

with a gamina probability density function (~Iarsha.ll and Hitschfelc1. 19.5:3: vVallace.

195:~: Feller. 1971): that i5.

where

.., L rn-l

E - - ~ E
'L - L J'

111 J=U

( .J '3-)_.,1

(2.:38 )

•

•

From Eq. 2.:Jï. we also know that E" = 1/ ...\. which is the noise level of the spectrurn.

Equation 2.:lï will therefore he Ilsed as a ruodel ta estinlate the probabilities of the

spectral powel' of white noise. Note that the coherent intcgration of the white noise

time series . .:{[n] = Lj:~ .:[l12 - jJ. \\Tould not change the preceding c1eveloptnent since

.:dn] would still be a Gaussian noise time series. It should be noted. however. that the

scat ter from turbulence leads ta spectral power components that are also exponen­

tially distributed (Doviak and Zrnié. 199:3). But while the spectral components that

contain power due ta turbulence have the sanle type of distribution as those with

only noise. it is more than reasonable to assume that the value of the parameters

will be verv different (for instance. E turb » Enoise). ft is this difference that will be

exp[oited in subsection :3.2.:3 on noise suppression.

rn conclusion. we can say that EC(. 2.:3ï glves us a general description of the

probability density function of white noise spectral power. This density function will

enable us to eliminate white noise in a way based on its statistics. vVe will therefore

be able to express the elimination of spectral white noise in probabilistic terms.
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Chapter 3

Signal Processing

The promise of the RASS is only fully realized when an accurate and l'diable es­

timation of the vertical air velocity is available. In an urban environment. this is

problematic given the type of clutter affecting the clear-air Doppler spectra at close

range. :\n appropriate signal processing algorithm is therefore essential. In this

chapter. wc present such an algorithm basecl on order ..,tatistics. These are statis­

tics referring ta the sorting of random data into ascending or descending arder. The

minimum. maximum and rnedian of a finite number of individual measurements are

examples of order statistics. \Ve begin by describing the types of clutter in an ur­

ban setting near the grouncl. and review various rnethods of clutter reduction used

by others. In the second section. we explain the various steps involvecl in the signal

processing algorithm.

3.1 The Problem of Clutter

Clutter, in aU its forms. is the bane of profilers, particularly at low altitudes and

for sites like the one at NlcGill University, in which the profiler is located atop a

high building in the center of a city. In this section, we will start by identifying the

different types of c1utter along with their causes and characteristics. Next, we will

examine sorne other methods designed ta deal with the problem of c1utter.
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3.1.1 Types of Clutter

By duiter. we mean any radio wave soul'ce~ reflective object. or other cause. that

cl'eates a power spectrum in the Doppler profiler data which is nat related ta the at­

mosphel'ic signal spectrum. and may make its identification difficult. if not impossible.

Note. however. that we do not consider white noise to be cllltter.

Ground Clutter

C'round dulie,. is the po\ver obtained by the backscattering of energy in the antenna

sidelobes off the ground or objects on the ground. C'onsequcntly. nearly aU the spec­

tral power of grouncl clutter is concentrated in or near the zero DO(Jplcr velocity bin.

The presence of mobile objects on the ground. notably swaying trees. nlay introclllce

sorne spectral power close to. and on either sicle of the zero Doppler veloeity bin.

lndeecl. since mobile abjects are equally likely ta rnove towards as away fronl the

profiler. wc expect the ground clutter spectrllm ta be symmetric on average with

respect ta the zero Doppler velocity bin. Furthermore. windowing effects nlay also

cause sorne of spectral power in the zero Doppler velocity bin ta leak into lobes on

both sicles of the bin. Overall. though. the ground clutter spectrum tends ta be very

narrow. with a spectral width < l rnls (I\:eeler and Passarelli. 1990L and tends to

decrease in intensity at higher altitudes.

Grouncl cllltter also tends to be much worse in urban areas than in rural areas.

given the presence of many high-rise buildings in the vicinity. \Vhile the ~'IcGill

profiler in downtown ;\Iontreal is placed on the roof of a fOllrteen story building,

there are many taller buildings in the neighborhood. These are an obvious source

of ground clutter~ possibly even causing multiple reflections of sicle lobe enel'gy. The

ground cluttel' spectrum can be a steady featul'e. remaining unchanged over long

periods. Occasionally~ the ground clutter spectrum 'Rares upr. that is it suddenly

gains a lot of power (as much as 40 dB) over a wide range of Doppler velocities

(about Lü mis) and over periods of about 1 min, but sometimes as long as 5 min.
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It is not clear what causes this phenomenon. or even if it is really ground related.

Nevertheless. we will classify it as a ground clutter phenomenon.

Intermittent Clutter

!nter'mittent c!ulter is defined here as a brief (llsually less than a minute) but intense

surge in reHectecl power. independent of ground clutter. noise and atrnospheric signal

and fairly weil localized in alti tllde (llsllally less t han 200 m wide). This is accounted

for by the backscattering of main or sicle lobe energy off flying abjects. mainly birds

and aircraft..-\S a consequence. intermittent clutter tends to be short lived. uSllally

less than :30 s. approxinlately. The lifetime depencls. of course. on the velocity of the

Hier and the wiclth of the profiler beam at that altitude. For birds flying in a straight

line across the profiler bearn (\Nith a bearl1width of go. for example). with a velocity

of about ï mis (typical for llligrating birds (~[erritt. UJ95)) at an altitude of L km.

the intermittent clutter lifetime will he approxirnately 22 s. Sorne birds nlay linger

over the profiler. of course. callsing a longer intermittent clutter lifetirne.

Inte1'nlittent cllltter also can he mllch 0101'e powerful than the atmosphe1'ic signaL

particularly clear-air signaIs. causing it to dominate the spectrum. This need not

always be the case. howeve1'. and sa it is inapprop1'iate to use a tîxed spectral power

thresholel ta distinguish internlittent clutter from the atmosphcric signal since bath

have a very wide dynamic range.

Radio Frequency Interference

Radio Frequency Interference (RFI) is power recei veel from sources emitting near

the profiler frequency and over a fairly narrow bandwidth. Cellular phones are one

such example. Cont1'ary ta ground or intermittent clutter, RFI is not the result of

scattering of the profiler emitted power. Since the profiler emits finite pulses but

receives a continuous RFI signal, RFI is seen as a signal at aIl altitudes but ove1' a

narrow Doppler veLocity interval (about :3 mis). The RFI tends to move slowLy across
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the Doppler velocity axis. RFr episodes usually last a few minutes. rarely more than

ten. However, RFr episocies aIso tend to cluster. where on certain days manyepisodes

rapidly succeed one another.

3.1.2 Review of Clutter Suppression Methods

~Iost clutter suppression rnethods are directed towards ground dutter. Sorne involve

directly modifying the power spectrum (Passarelli el al.. 198 L: Ohsaki and ~[asuda.

(996). while others analyze the form of the corresponding autocorrelation function

(Passarelli. L98 L: Sato and \Voodman. L98:2). The spectral methods sometimes in­

volve elirninating the spectral power in bins at or close ta zero Doppler velocity.

The choice of bins is either predetermined or variable according to the shape of the

spectrum. :\fter the power in those bins has been eliminated. they are replaced by

SOOle interpolated values from the llnaffected bins. Dther spectral methods aSSllme a

grouncl cllltter spcctrum that is synlmetric about the zero Doppler velocity bin. and

exploit that symmetry in sorne \vay. .-\ll these nlethods l'un the risk of eliminating

too much or to little of the original spectrum. In the present work, a synlmetry-based

spectral method will be adopted (see subsection :3.1.4). mainly because of its sirnplic­

ity.

The autocorrelation methods l'est on assumptions about the grollnd dlltter and

atmospheric signal spectra (symrnetric. Gaussian. etc.) which are designed to restrict

the degrees of freedom of the autocorrelation function. This means that the entire au­

tocorrelation function may be specified by a few parameters (mean Doppler velocity,

spectral width. etc.), according to the assumptions. The theoretical autocorrelation

function which best fits the measured autocorrelation is round and the corresponding

parameters are taken to be the truth. The autocorrelation methods require. therefore,

that the assumptions and the parameters sought be specified ahead of time. llnlike

the spectral methods which, if properly done, theoretically allow the estimation of

any number of spectral moments.
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It is weIl worth mentioning the Statistical Averaging ~Iethod (SAj\;I) by Nlerritt

(199.5), because it uses order statistics. SA~I is basically a spectral averaging method

that excludes spectral power values containing intermittent dutter by performing

tests on the distribution of these values. ft is assumed that noise and atmospheric

signal spectral power values are exponentially distributed. while the intermittent clut­

ter values have a very different kind of distribution. For a given Doppler velocity bin,

the successive spectral power values are sorted in ascending arder. ft is aiso assumed

that the noise and atmospheric spectral power values are much weaker than the in­

ternlittent clutter power values. 50 that the lowest values are likely not ta contain

intermittent clutter. Starting from the two sITlallest values. several tests are performed

to see if those values are consistent with an exponential distribution. If the tests faiL

then only the smallest value is used. If the tests do nat faiL then they are performed

on the three lowest values. and on the four lowest and 50 on. until either the tests

fail or aIl the power values are accepted. The spectral averaging is performed solely

with the accepted power values. This ITlethod operates on the unaveraged spectra

and works best with a large number of them. [t also assumes that the dwell tirne

(the total coherent and spectral integration time) is longer than the duration of the

intermittent clutter event, 50 that at least sorne of the spectral power values are free

of clutter. If birds are the cause of the dutter~ then the necessary dwell time increases

with altitude due to the spreading of the profiler beam. ~I[erritt recommends dwell

tinles of 1-2 min ta assure sorne dean spectral power values. However. in the present

study we only have access to the averaged spectra~ which~ given the integration tirne

of about 22 s, severly limits the number of spectra available. "Ve must then llse the

most efficient method possible for eliminating intermittent clutter. As we shaH see in

chapter .5. sorne on-line spectral averaging programs for profilers use SAN! to elimi­

nate intermittent c1utter (see, for example, Angevine (1997)).

Ir one has access ta the time series of the returned radar signal, then additional
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methods are available. Jordan e.t al. (1997), for instance. use wavelet transforms to

analyze the profiler time series. Ground and intennittent dutter are easier ta separate

from the clear-air signal using wavelet transforms because, unlike Fourier transforms,

they do not suffel' from windowing effects and we are free to use a wavelet form specif­

ically chosen to identify grollnd and/or intern1Ïttent clutter. Once the gronnd and

intermittent cllltter are identified in the wavelet transforms. their energies are reduced

to nlatch the dear-air levels llsing an interpolation scherne. Hocking (199ï) renloves

ground dutter by fitting a polynomial to the time series and removing it. while ~ray

and Strauch ( 1998) propose llsing a digital filter on the time series ta rpmove ground

dlltter. The subsequent Fourier transform shows much less ground c1utter. \Vhat

remains is removed using a 'notch filter' around the zero Doppler velocity bin. [nter­

mittent c1utter due to aircraft nlay also be reducecl by an algorithm operating on the

profiler tinle series. However. the returned racial' signal tiIne series is not available to

us. and so we will restrict ollrselves ta spectral data.

('ornman et al. (1998) use fuzzy logic to identify the clear-air spectra in the pres­

ence of ail types of clutter. The method is applied rnainly to spectral power fields in

Doppler velocity-height coorclinates. S( u. h.). at a given time. For every point. local

properties of the spectral power field. S( L'. h). are found. such as its Cllrvatllre. gra­

dient and others. For each of these properties~ membership functions are consultecl

and the membership value is round for that property. The membership fllnctions

vary from 0 to l and express the degree ta which that property value belongs to the

set of clear-air property values (1 means that the value belongs ta the clear-air set, 0

means it daes not). The membership values for each property for every point are then

weighted and adcled tagether, creating a total membership function. AITCu ,h), that

varies between 0 and l, and expresses the degree to which that point is a clear-air

spectral component. The total membership function is further modified in such a

way as ta enhance coherent features and suppress isolated points. Finally, the points

that are used in the spectral moment calculations are those whose membership values
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exeeed a certain threshold value. Issues regarding the determination of the mem­

bership functions and the threshold value aside, the membership values do not tell

us how much of the spectral power at a given point is due ta clear air. Therefore~

this method nlay have difficulty handling cases where different kinds of spectra are

overlayed on top of one another. \Vhile C'ornman et al. do not use arder statistics.

there is no reason why they cannot be ineorporated into this method. However. in

arder ta ineorporate them in a fuzzy logic algorithm. their properties must first be

unclerstood. Therefore. we will restriet ourselves ta using order statistics only.

Since the rnenlbership fllnctions represent the beliefs of a human expert. the fllZZY

logic algorithm attempts to mirrlic the pattern recognition ability of a human expert.

:\. similar thing is done by C'lothiaux et al. (L994) using a neural network. Simply

put. the local rnaxima of spectral power of clear-air Doppler spectra. are identified for

each range gate. From these. aU possible winci profiles are constructed by linking to­

gether a local maximunl at each range gate ta fonn a profile. :\ human analyst then

rates eaeh profile according to how dosely it l'esembles a l'eal atrnospheric profile.

This information is then used to "train' a neural netwol'k to identifr l'cal atmospherie

profiles. The neural network is then llsed to identify atnlospheric winci profiles from

profiler data taken in meteorological conditions similar to those of the data llsed to

train it. Neural networks are. ho\vever. beyoncl the scope of this thesis.

Finally. \-'le mention what we describe as simple threshold methods~ used by

Lataitis (199:JL Angevine (1994), Angevine et al. (1994a; 1994b: 1994c), Lippmann et

al. (1996). Usually, the methods start by evaluating sorne central tendeney statistic

over the entire contaminated trme series, either the mean or meclian. followeci by its

standard deviation (Angevine, 1994; Angevine et al.. 1994a). Only those points that

falI within an interval consisting of the mean or median~ plus or minus sorne multiple

of the standard deviation, are aecepted. This is done for the clear-air Doppler veloc­

ity, spectral width, and the signal-to-noise ratio time series in parallel~ over periods
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of one to two hours (with 20-:30 seconds between ITleaSUrements). :\ given point must

falI within every interval in arder to be accepted. These methods use the statistics

of the entire time series ta identify outliers. with no attempt to treat the data prior

to compiling these statistics. The outliers may make the standard deviations of the

time series tao large which in turn may cause the simple threshold method ta accept

too many outliers..-\lso. this method does nothing to remove points near the rnean

or meclian which are still suspect because they are discontinuous with respect ta their

immediate neighbors.

:\lternatively~ a relatively short l'unning window may be inlposed on the mean

Doppler velocity time series. and those data points within the windo\,t that 'c1uster'

sufficiently are accepted (Lataitis. L99:J: Lippmann El al.. L996). The clustering is

determined for a given point by finding the number of points that fall within the

interval consisting of its data vaIlle plus or nlinus a predeterrnined threshold length.

If this number of points. normalized with respect to the total nurnber of points within

the winclow. is above a certain threshold. then the point is accepted. Presumably. an

outlier stands out by virtue of its extreme value. and 50 few points \\till fall within the

interval centered about its data value. However. should the outliers within a \vindow

cluster sufficiently. which may happen in the case of grouncl clutter for instance. they

will aiso be accepted.

3.2 The Ranked-Order Signal Processing

Algorithm (ROSPA)

Here, we introduce, explain and analyze the processing algorithm llsed to treat the

urban RASS data, called ROSPA. ROSPA is a sequence of filters and operations

applied principally to the clear-air spectral data measured by a profiler in RASS

mode. As we shaH see, the acoustic velocity data is not ouly interesting by itself, but

is also valuable in calibrating ROSPA for treatment of the clear-air Doppler velocities.
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3.2.1 The Minimum Filter

Definition

The mini'mllTn flUer is a type of ranked-order filter described by Heygster (1982).

Kirn and Yaroslavskii (1986). Pitas and Venetsanopoulos (1990), and by Astola and

Kuosrnanen (L997). GivelL éLU input di~crete-tirne time series . .l'[i] where the square

brackets are llsed ta indicate that the argument is discrete. the minimum filter inlposes

a moving window an odcl number of points long. "2.n + 1. \Vith n points on either sicle

of the center point i. The output time series. y[iL is simp!y the minimum value of

the points within tbe winelow. ~[athematically. we have

.u[i] = Hlin(.r[i - TlJ ..r[i - Tl + Ll c[i + n - Ll . .l'[i + n])

where .r[i] is the input time series. and y[i] is the output tirne series. Figure :3.1

demontrates the rninimunl fitter.

Theory

\Ve will now evaluate the effect of the minimum filter on an input tinlC series . .c[i].

which is random and characterized as follows: (i) .r[i] and .rU] are independent for

aU i =1= j; (ii) ·di] = .:[i]. where .:[i] is a series of independent identically distributed

(iid) random variables \Vith a probability density function f(.:): (iii) for any given

time i. an error ç-[i]. also iid \Vith density function g(ç) and independent of =[i]. is

added ta the time series..r[i] = =[i] + ç[i], with a probability of occurrence p. Also,

(lV) the error is always positive. g(ç) = 0 for aU ç ~ O. In essence~ I[i] is a series of

iid random variables with a positive impulsive noise added to it. Unlike white noise~

which affects every member of a time series equally, impulsive noise only affects cer­

tain members and not others. In this case, which members are affected is determined

randomly by a probability of occurrence, p. Impulsive noise is interpreted here as rep­

resenting a malfunction or disruption of the normal process of measurement, caused

by factors physically unrelated ta the quanti ty of interest. For a profiler measuring
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Figure :3.1: Schematic demonstration of the minimum fil ter. The upper plot shows
the original data, with the three-point \Vide window (box) going from left ta right. At
each window position, the minimum value of the points inside the window is found
and given to the corresponding point in the [ower plot.
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clear-air reflectivity. for instance. the power returned due to refractive index fluctua­

tions represents a normal measurement. while the power returned by a bird or aircraft

represents a disruption. In this model. the l'andom variable ç l'epresents a disruption.

The randonl variable =represents a normal measllrement. which we will also cail the

signal to emphasize its usefulness.

For convenience. we introduce the random variable CL = =+ç. with the probability

den~ity fUilction h( a) = J~x; g( ç)f( a - ç)d(. The overail probability density function

for a given point of the input time series. fii(.r). is given by

Pi (.r) = (l - p)f (.r) +p h(.1.' ) • (:3.2)

•
Furthermore. we introduce the input curnulative probability distribution function.

Ri(.r) = f~" Pi(.r')d.r'. which equals

Ri(.r) = (l - p)F(.r) +pf/(.r)

where F(.r) = f~X. f(=)d= and fI(.r) = J;':- h(a)da are the distribution functions

of the uncontarninated and contan1inatcd points respectively. The average 7 =

J~ Pi(.r ).rd,f. is given by

where ~ = r~~"'V !(=)= d.:. and a = f~ h(a)a da. However. because a = -= +~. where

~ = fo'X; g(ç)( dç. we have

(:3.5 )

•

Since the errûr is undesirable and ~ 2: O. we have an average positive bias ofx-= = p~,

From the correct average =. The effect of the error is to create a longer tail on the

positive sicle of the probability density function !(=).

Now, we determine the characteristics of the output time series, y[i], of an m­

point minimum fil ter. Note that these characteristics are only valid for the particular
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in put time series .r [il. A general theory of rank-arder filters is not possible since these

filters are nonlinear. "'le must therefore specify the characteristics of the input before

we can say anything about the output. Since the probability that a point may be

contaminated with an error is independent of aIl the other points. the probability

that an rn-point windo\v may contain n :::; rn contaminated points follows a binomial

distri bution.
,

P [] m. m-n ,~
m.p n = ,( )' (l - p) p

r2. m - n. .
(:3.6)

•

For a glven fl. the conditional probability density function of the mlnlmunl y.

Pmm(yln) is

The first ternl in Eq. :3.ï represents the case when one of the rn. - n uncontaminated

points has the minimunl value. The factor (rn - n) is there ta take into account

the fact that any of the uncontanlinated points nlay have the minirnum value. The

second tern1 represents the sanle thing for the contarninated points. The overall

output probability density function. Po(Y). is then

•

rn

Po(U) = L Pm.p[n]Pmin(y[n).
n=O

ft is now llseful ta partition Po(Y) into.

where

m 1
Jmin(Y) = :Lem - n) , rn. ),(1 _ p)m-npnr-n-1(y)W(y)f(y).

n=O n.(m - n .

and
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Here. we have two types of data points in the time series: those that do not contain

an error (good points). and those that do (bad points). "Vhen we flnd the minimum

in a given window. that point can be good or bac!. Therefore~ fmin(Y) represents the

contribution to the overaU probability density funetion of the good points. "Vhen a

good point is the minimum. we caU this event a correct recoTZsll~llction. fol1owing Pitas

and Venetsanopoulos (L990) in their discussion of the median filter. vVe will adopt

this terminology. C'onversely. when a bad point is the minimum. this is an incorrect

reconstruction and its contribution is representecl by hmin(y). vVe can lIse the fact

that f(::) = -F'(::) and h(a) = -f{'(a). where the prirne denotes differentiation with

respect to the argument. to rewrite Eqs. :3.10 and :3.11 as.

• "1 , l
~ ,n. rn-Tl "Fm-ri ( n

Il rn HL LI}) = - L- r ( ) , ( 1 - p) p' (y )-[ (El (y ) ).
n=O n. ,n - n . ( y

which. if llsed in Eq. :3.~J. lead to.

Tri f cl
'"' ln. )m Tl TI Fm Tl fIn )p,Ay) = - L-, ),(l - p - p ~(. - (y) (y).
rl=O n.(Tn - Tl . uy

(:3. L:3)

(:3.14 )

Alternativel)'. ifwe def1ne Ro(Y) = f~X, pAy')dy'. or p,Ay) = -R~(y). we can transform

Eq. :3.14 into

To go further. we must now attribute a specifie form to f(::) and g(ç). 'VVe assume

that g( ç) and f(::) are gamma density functions,

•
( )

uÇU-l

g( ç) = va ~ e-l'a€ 0 < ç < 00
('O-1)!

=0 -oo<e::;O

39

(3.16)



•
and.

( \)
W w-l

f(:;) = w, .: e- W '\;:

(w - l)!
O<.:<x

(:3.1 ï)

=0

where te and v are integer parameters. and ,\ and Q are real parameters. to be set

later. The density f(::) is a garnma function so as to simulate the spectral power of

Gaussian white noise for a fixed frequency bin (see section :2.·l). The time series .:[i]

represents successive values of the spectral power for that bin for \vhite noise spectra.

The density g(ç) is a ganlma function for Coo1putational simplicity. The distribution

fllnction F( y) takes the farm.

[

rv-l ( \ ) l ]

F( y) = L lL'~fY e- rv .\1j

l=O l.

• .-\S for fl(y). we have.

=L

a < y <:oc

- :c < y ~ D.

(:3.18 )

f{(y) = j"x. h(a)da
!J

= [' {1" g(Of( (l - ç)dç}da

= fa'x. g( ç) F( Y - é,)clé,

(:3.1 g)

(:3.20)

(:3.21 )

where the order of integration has been reversecl ta obtain this result. The function

fI (y) will be evaillated flumerical1y. Before ~ve can do this. however. we must choose

sorne values of the parameters. \Ne postulate that an errOf. when it occurs. is huge

relative to the average value of the good points. namely ~ = 1000 =. The average of

a gamma clensity function is

vVe set w = 24, because we wish to simulate the white noise spectrum as measured

by the profiler using RASS settings, where typical1y 24 spectra are averaged together•
==1/,\.

~ = lia.

(:3.22)

(:3.23)
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Figure :3.2: .-\n artificially generated input time series for the minimum filter. using
the specifications described in the text.

(see section 2.4). :\150. we set ..\ = l 50 that -= = L. vVe want a relatively broad error

density function. u = 2. Finally~ given our constraint on the means, we set Q = 0.001

50 that ë= 1000. Note that if the errors were caused by reflections off bircls, then a

log-normal error densi ty function would be more appropriate (I{onrad et al.. 1968),

but we choose a gamma function instead for computational convenience. vVe further

assume that an error is relatively rare, p = 0.1. Figure 3.2 shows an exarnple of such

a time series.

• Figure :3.3 shows graphically the results of the model described previously. The
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Figure :3.:3: Theoretical probability distributions of the input Hi (x) (the solid line
labeled INPUT), the output of a :3-point minimum filter (the solid tine labeled wIIN3) ,
and the output of a ,j-point minimum filter (the solid Line labeled NIIN5). The dashed
tine is the probability distribution function of the uncontamined data F( z).
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•

line labeled INPUT is the input probability distribution function Ri ( x). and the

dashed line is the uncontaminated probability distribution function F( =). vVe can see

that the input distribution function has a sharp drop at about unity. then~ beyond

l. has a plateau \Vith a probability value of about 0.1. The plateau represents the

approximately LO% of the points that are bad. The initial drop. which fo110\\'5 the

dashed line reasonably weil. represents the approximately 90% of the points that

are good. The output of the :l-point minimuITl filter (~lIN:3) shows a plateau with

a probability value of about 0.001. This is because the ~[IN;3 output may l'each a

\ralue greatër thL1,n about :2 only if there is an incorrect reconstruction. which can

only happen if aIl the points within the window are bad. Since the probability of

occurrence of an erraI' is O. L. then the probability of three bad points in a l'ow is

0.1 x 0.1 x 0.1 = 0.00 L The same reasoning applies for the plateau on the .S-point

minimum filter (:\IIN5) output distribution. vVe also see that bath the ~l[N:3 and

:\lIN.5 output distributions initially fali raster than the dashecl line. such that the

probability that the :\lIN:3 and ~IIN.j outputs reach or surpass the threshold value

of 1. is less than that for the uncontarninated distribution. This is explained by the

fact that if all the points \vithin the winclow are good. then the process of finding the

minimum will necessarily induce a bias towards srnaller values.

Application

The minimum filter. applied ta clear-air spectra. takes the forul.

Smin[k~j. i] = min(S[k.j. i - n] . .... S[k.j. i + n]) (:3.24)

•

where S[k. j, i] is the spectral power for the Doppler velocity bin index k. at altitude

index j and time index i~ and Smin [k, j, i] is the spectral minimum of a sequence of

2n + 1 spectra. The sequence in time of power values for a fixed Doppler velocity bin

and altitude is used as an input time series, .ra,p(oi] = S[k = a, j = ,8, il. ft is this

time series which is treated with a minimum filter; the output is then used to create

a new set of clear-air spectra~ Smin[k = a~j = ,8, il = Ya,p[i]. Ta see how weIl the
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minimum filter works. we must first examine the time structure of the spectra. The

clear-air spectra can be decomposed in the following way:

8[k.j. i] = A[k.j. i] + ;V(k.j. i] + C;[k.j. i] + I[k.j~ i] ('3 .)-).._u

•

•

where .-1.(k.j, i] is the atmospheric signal spectrum. .:V[k.j. i] is a white noise spec­

trllIll. C;[k. j. il is the grollnd clutter. and l(k. J, i] is the internli ttent clutter. The

atn10spheric spectrllm. the white noise. and the ground c1utter are relatively constant

within a timescale of about L rninute (approximately :3 spectral integration times).

The intermittent c111tter. on the other hand. varies greatly from one integration time

to the next,

Figure :3.-H a) shows an example of the spectral power time series for a fixed

Doppler velocity bin and altitude. X cr ,,3[i]. Note that the power is expressed as a

power-to-noise ratio (PNR). which is the total spectral power (signal + noise) di­

videcl by the noise level (~V). The PNR is more convenient than the signaI-to-noise

ratio (SNR) because occasionally the power faIls below the noise level. causing the

SNR to go to ruinus infinity on a logarithmic scale. The spikes in Fig. :3.4{a) probably

indicate intermittent clutter. The spikes appear to be placed on top of a slowly vary­

ing signal. which wc assume is the atmospheric signal. Figure :3.4( b) is the output of

a :3-point nlinimum filter applied to the time series in (a). ~[ost of the spikes have

been eliminated. but sorne still persiste :\lso. we can discern the atmospheric signal

better. Figure :3A( c) is the output of a ,5-point minimum filter applied to the time

series in (a). Essentially aU the spikes are gone but the atmospheric signal appears

to have suffered sorne power clepletion.

Figure :3.5 shows an example of a :3-point (n = 1) minimum spectral filter on the

vertical pattern of clear-air spectral data. :\11 of the first three plots ((a) to (c) )show

signs of intermittent clutter contamination. The intermittent clutter appears as a

region of very high power, extending about 150 m in height and :3 mis in Doppler ve­

locity and usually accompanied by lobes regularly spaced along the Doppler velocity
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Figure 3.4: The application of :J-point (b) and 5-point (c) minimum filters to the
clear-air spectral power-to-noise ratio (in decibels) tirne series (a) of the 2.ï mis
Doppler velocity bin, at 345 m AGL on June 28, 1996, over the l\tIcGill campus. Note
that the Hne at 0 dB represents the noise level.
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aXIS. Intermittent dutter events llsually last only one integration time~ such as the

one at 0.6 km in Fig. :3 ..5( a). However. intermittent clutter events occRsional1v last

longer~ such as the one at 0.:2 km in Figs. :3.5(b) and (c). Nonetheless. the :J-point

minimum filter in Fig. :3.5( d) eliminates much of the clutter and praduces a ridge of

high power that forms an arc extending from O.l ta l.2 km in height~ on the positive

Doppler velocity sicle. The ridge most likely represents an upclraught. Secondary

peaks and the spread of power (as evident from the.) and US dB contours) imply

that the intermittent clutter has not been completely eliminated in this case. :\ weak

ridge along the zero velocity line can also be seen (examine the .5 dB contour). which

is a manifestation of ground clutter.

Intuitively. then. we can see that if interI11ittent cIutter events are sufficiently

short-lived ta affect only one spectrllI1l. and if they are sllfficiently rare sa that at

least one spectrum within a :3 or .) point window is free of intermittent clutter. and

given that spectral power is ahvays positive. then the minimum is likely to be the

spectral po\ver value that cloes nat include the intermittent clutter. ~[oreover. if in­

termittent clutter events persist for [nore than one spectral integration time. then the

performance of minimum filter woulcl not be seriously affected as long as the lifetime

of the individual events is shorter than the window length.

3.2.2 The Threshold Mininlum Filter

Unfortunately~ we cannat use the spectral power Smin[k.j, i]~ given by Eq. :3.24, to

estimate the mean Doppler velocity for purposes of heat flux and vertical air velocity

variance estinlation. The reason is that the minimum filter modifies the correlation

between successive Doppler velocity estimates. which is undesirable if we wish ta

reliably eliminate the random error variance from estimates of vertical air velocity

variance. To recluce this effect, the estimate Smin [k, j,il will be used as a reliable

lower bound on the estimation of spectral power at that bin, altitude and time, in
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Figure :3.5: Doppler spectral contours of the clear-air spectral power-to-noise ratio,
expressed in decibels, measured by the profiler using the RASS settings, at the NlcGill
campus, on June 28, 1996. Figures (aL (b) and (c) show three consecutive untreated
spectral plots. Figure (d) shows the minimum of the three previous plots at each
point.
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what is known as a decision-based fllter (Astola and Kuosmanen. 1997), which we will

caIl a threshold minimum fllter.

Definition

Given the outputs of a series of m = 2n + L point minimum filters. Ymin(2n+l)(i]. where

n = O~ 1, ... ~ ~V. and the input time series~ .r[i], where Ymin(2N+l)[i] ~ Ymin(2N-l)[i] ~

... ~ Ymin3(i] ::; x(i], and a threshold factor. r > 1. from which we create a theshold

time series. r[i] = TYmin(2N+l)[iL we can define a threshold minimurn filter denoted

by Tj\:IIN[2N+1]:

=: Ymin(2;v+l)[iJ•
Ytmin(lN+l)(i] = .r[i]

=: Ymin3[i]

= Ymin5[i]

if (.r[i] ~ f[i])

if CYmm3 [il ::; r [iJ < .r(iD
if (Ymin5[i} ::; r[i] < Ymin3[i])

if (r[i] < Ymtn(2N-l)[i]).

(:3.26)

•

[n other words. the output of a (2.V+l)-point minimum filter. Ymin(2N+l)(i]~ is used

as a reliable baseline: that is a baseline assumed ta be completely unaffected by in­

termittent clutter. For this. the window must be long enough to include at least one

point which is clutter free. But since the baseline might aiso be too rigid. we would

like to indude points from the input time series~ x[i], that are reasonably close ta the

baseline. and are therefore assumed to be good. vVe introduce a threshold for each

point which is sorne multiple of the baseline~ r[i] =: rYmin(2N+l)[i]. fr the input time

series is less or equal to the threshold~ .7:[i] ::; r[i]. at that point. then it is accepted.

ff not, then the :J-point minimum filter output is tested: Ymin3[i] ~ r[i]. If it passed

the theshold test for that point, then it is accepted; if not then the same thing is done

for the NIIN5 output. and 50 on until we reach the baseline itself. The end result will

therefore be a composite of the input time series and the outputs of minimum filters

with various window sizes (but no larger than (21V+1)).
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In those reglOns where the input time series is relatively smooth! most of the

output points will simply be the original input points. In those regions where the

input time series is highly contaminated by intermittent clutter. the output will be

minimum fEter output points with a window just large enough to adequately eliminate

the clutter. The threshold is a multiple of the baseline because we assume that the

good points obey a gamma probability density function. where aH the moments are

propartional ta the correspanding power of the mean. If the minimum of a group of

good points is. on average. also proportional to the mean. then the moments also scale

with respect ta the minimum..-\ multiple of the minimum is therefore the best way

to account for the change in statistics as a function of time. vVe will explore this issue

in more deta.il in the theory on threshold minirnum filters. Of course. there remains

the question of the appropriate threshoId factor. which will be disclLssed latel'.

Theory

The theory of threshold minimum filters deals essentially with the choice of a given

threshold factor value. T. IndeecI. the decisions cIescribed in Eq. :3,26 are in fact a

series of hypothesis tests (see :\ppendix (' for a description of hypothesis tests). \Ne

will use the same nlodeI input time series usecI for the theory of the minimum filter!

in suhsection :3.2.1. to compute the significance level Q of the tests. In particlllar. we

will concentrate on the test on the input time series. x(i] ::; r[i]. :\150. we will limit

ourselves to the case where either aH of the points within the window are good (the

null hypothesis HoL or they are aH gooe! except the middle one! which is contami­

nated (the alternative hypathesis Rd.

vVe start by introducing the joint distribution of two order statistics (see David

(1970)). Given m = 2n + 1 iid random variables. xU - n], x[i - n + 1], ... , ,r[i + n ­

1], .r[i + nL with distribution F(x), described by Eq. 3.18, w~ sort thern in ascending

order, X(l), x(2b ••. , X(mb where the subscripts denote the arder. The joint probability

density fllnction for the random variables x(r) and x(s), where 1 :::; T < S :::; m and
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where f(x) is the probability density function of the good points (see Eq. :3.1 ï). Note

that we adopt the cOn'vention that fr.s(;r, y) denotes the joint probability density

function of .r(,.) = .r and .L'(s) = y. And of course. when l' =.s. then we set fr.s(.r. y) =

fr(.r)6(.L· - y). The baselinc is .r(L)' The point in the midclle of the window. x[ij.

has an equal chance of having any rank: x[i] = .r(s)' where s = 1. .... nz with equal

probability. This is because ail the points within the window are iid. Therefore. the

joint probability density function of the baseline. .l'( L) = .L·. and the nliddle point.

.rU] = y, is

•

•

x (r) < .1'(.'1), is then

1

f •..(J:, y) =(r -l)!(s _ ~~ l)!(m _ s),[l- nrW-lf(J:)

. [F(x) - F(y)r-r-Lf(y)Fm-s(y)

L rn

ft,i(.l·. y) = - L ft,,,(x. y).
rn s;L

The significance leveL a. of the first hypothesis test is therefore

ü(r) = j"X! [j'~ fu(.r,y)dy]cl.r
.r=U y=r.r

('3 ,)-)•• _1

(:3.28)

(:3.29)

(:3.30)

which is the probability that the first test fails when Ho is true (a type [error). as a

function of the threshold factor.

Alternati vely, if HL is true. then the middle point is contaminated and obeys the

probability distribution function ff (.r). described by Eq. :3.21. In t his case. the middle

point has a greater probability of possessing a higher rank than a lower one. From

Eq. 3.2ï~ we can deduce that the joint probability density function of x = X(Lb and

y = x(s) ~ where oS > l, and where y is also a bad point, is

n~!
91,s(X,y) = ( _ '))'( _ .),f(x)[F(x) - F(y)]s-2h(y)Fm

-
s (y).

s _. m ~.

•
From this~ we can forrnulate the caunterpart ta Eq. :3.28:

1 m

91,i(X, y) = - L gl,s(X, y)
n~s=l

50
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Figure :3.6: A plot of the probabilities of a type 1 error, 0, (solid line) and of a
type Il error, ;3, (dashed line) of the threshold minimum fllter hypothesis test, as a
function of the threshold factor, T, for a :3-point window (TMIN3) .
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where 9l.1(X,y) =m.Fm-l(.r)h(x)J(x - y), is the probability that the bad point is the

minimum. The probability. 3~ of accepting Ho when HL is true (a type Il error). is

8( T) = r:c [ (rI 91,i( x. Y)dy] d.r
J.r=o Ju=x

which is also expressed as a function of the threshold factor T.

(:3.:32 )

•

•

Figure :3.6 shows the a( T) and J( T) functions for the case nl = :3. where there

is only one hypothesis test to perform. The solid line represents a( T). which starts

at a( 1) = 2;:3. meaning that there is a 1;:3 probabili ty that the nliddle point is the

rninimum. and drops very rapiclly \vith increasing T. meaning that the good points

are closely grouped together and that a threshold factor of ï ;::::: LO essentially includes

ail good points. The dashed line in Fig. :3.6 represents 3( T). [t starts at J( L) ;::::: 10-5
•

which is the probability that the bad middle point is the minimum. and ends at

J( 00) = 1. which means that for a large enough T. the bad point will certainly pass

the hypothesis test. As expected. we see that as a decreases . .3 increases. Also. there

is faid)' wide range. :3 ~ T ~ SO. where bath error probabilities are acceptably small.

a and 3 ~ Lc.7c). This is because the probability clensity functions of the goocl and bad

points are faidy weIl separated in this model. which nlay not be the case for real data.

Note that as T increases beyond T = 80. not only does the probability of accepting a

bad point become significant. but the magnitude of these bad points also increases.

giving us a good reason to limit the size of the threshold factor as much as possible

without eliminating too many good points.

The analysis is much more complicated if we include the possibility of more than

one bad point within the window. or a window size that requires more than one

hypothesis test. Nevertheless. the previous example demonstrates the main points of

the threshold minimum fUter, namely that the threshold factor must be large enough

ta include most good points~ and small enough ta exlude most bad points, particularly

those with very large values. It is reasonable to assume that the optimal value of the

threshold factor is a function of the ratio of the window period,mLl (~ is the time
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between measurements) ~ and the timescale of the uncontaminated time series. T, such

that if; = m~/T is small. then the variation of the good points within the window

is aiso small, thereby requiring a small thresho1d factor vaiue. :-\lso of concern is the

average size of an error. ~. as this contraIs the size of the threshald factor which \vould

admit too many bad points.

Application

The application here is the same for the mininlUffi filter (subsection :3.:2.1). that is.

Stmin[k.j. i] = T~IIN(S[k.j. i - n] . .... S[!-:.). i + n] 1 ()

where ( = lü log( T) is the theshold factor in clecibels. Figure:3. ï shows an example of

a T~UNï filter application \Vith a 10 dB thresholcl factor (T = lO). Graph (b) shows

the output of a ~[lNï filter. which eliminates the spikes frorn the input but is tao

correlatecl over short tirne lags and suffers from po\ver depletion. Graph (c) shows

the output of a T~IINï filter with a 10 dB threshold. which is less correlated over

short lags and cloes not suffer as much from power depletion. while still excluding the

obviously bac! spikes. Howcver. it is not hard ta see in Fig. :3. ï that as the thresholcl

increases. more and more spikes are admitted to the output. Therefore. we need a

\Vay to fincl the optin1al thresho1cl factor value. one that allows enough good points

for a reasonable reconstruction of the spectra while exluding most if not aIl of the bac!

points. This issue will be discussecl in greater detail in the chapter on data analysis.

3.2.3 Spectral Noise Suppression

Every bin in the spectrum includes a power contribution From white noise. \Ve want

to iclentify those bins that aiso include power from something other than noise. This

is done by pelforming a hypothesis test on each bin (see Appendix C for a description

of hypothesis tests). The nuU hypothesis, Ho, in this case is the statement that the

power in a given bin is due only to white noise (S = iV). Conversely, we define the

alternative hypothesis, Hl, as the statement that the power in a given bin is due to
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Figure :3.7: The appLication of a 7-point minimum fiLter (b) and a 7-point threshold
minimum filter with a 10 dB threshold (c) ta the clear-air spectral power-to-noLse
ratio (in decibels) time series (a) of the 2.7 mis Doppler velocity bin, at 345 m AGL
on June 28, 1996, over the NlcGill campus.
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somethingother than white noise. in addition to the noise component (5' = LV +other).

If Ho is true. then we can postulate a reasonable probability density function for

the power value using the results from section 2.4 on white noise. Therefore~ we

know that the value of white noise spectral power has a probability density function

described by Eq. 2.:37. and a probability distribution function given by Eq. :3.18. The

distribution function is thus

(:3.:34 )

•

•

for .v ~ 0 (Fu( ~V) = l otherwise). where lU is the nunlber of spectral averages. and

the average white noise spectral power (noise level) ..V. is .V = 1/ ..\. In our work. tU

is ordinarily 24. The noise level is determined using the method by Hildebrand and

Sekhon (1974). applied to the R.~\SS power spectrum. The function Fo(~V) appeared

as the dashed line in Fig. :3.:3. The critical region C. \vhich is the set of values of 5'

where Ho is rejected (and Hl accepted). is defined using a threshold .Vr . where C is

~VT < S < ':G. Conversely. the region of acceptance is where Ho is accepted (and Hl

rejected) and is clefined as a::; S ::; .\fT .

Since rejecting the nul! hypothesis when it is in fact true is orten considered

serious. Ct is llsually rnade small. In our case. \'le will fix the significance level at

1%. or Ct = 0.0 1. This corresponds ta a threshold value of about :\fT = 1..5:34..\ -l. or

1VT = 1.5:34LV. [f Hl is true. then we do not know exactly the form of the probability

distribution of the spectral power (Fi (S)) other than it must favour greater values of S'

(FdS) ~ Fo(SL far aU S) because. in this case~ there is a randoul power value added

ta the white noise spectral power. The probability of a type Il error. ;3 = L- Fl(lVT ),

is also unknown, except that ,3 ~ I-G. In general, ~vhen we decrease 0'. we increase ;3.

This seerns ta be the case here, since decreasing 0' increases lVT , which may increase

13 (as we saw in subsection :3.2.2 on the threshald minimum filter). On average, an

atmaspheric signal must have a spectral power (A) greater than lVT - LV in order for

Hl ta be accepted and for that bin to be used in spectral moment calculations. In
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SNR units. we l'equire AI iV > (lVT - IV)/ LV, or .-l/ LV > -2.72 dB. on average. at

the 1% significance level. This l'equirement is easily satisfied for most bins at low

altitudes for a strong returned signal, meaning a low ,3 for this kind of spectrum. For

weak signaIs at high altitudes. however, there is a possibility that even the peak of the

power spectrum may not satisfy the requirement. meaning that the entire spectrum

may be mistaken for noise and that 3 is quite high. vVhen a given bin is ruled to be

only noise. the power value for that bin is replaced with .\1. which serves as a flag to

omit this bin in spectral moment calculations.

3.2.4 Ground Clutter Removal

Our stl'ategy for eliminating grouncl clutter is based on the assumption that the

ground clutter spectrum is symmetric about the zero Doppler velocity bin. vVe there­

fore expect the symmetry

• G[k.j. i] =C;[-k.j, i] (:3.:35 )

to hole1. where 1.: = 0 Îs taken ta be the zero Doppler velocity bin. Following the work

of Ohsaki and N[asuda (1996), the symmetric part of the spectrum is identified and

removed. Our first estimate of the grollnd c111tter spectrum è;'[k. j. i] is taken to be

è;'[k.j. i] = è;'[-k.j, i] = min(S[k.j, il, S[-k.j. i]) - ~v. k > o.
(:3.:36 )

Here, we assume that 5[k. j. i] has already undergone minimum filtering and spectral

noise suppression. which means that G'[k. j, i] is sometimes exactly zero but never

negative. [n an effort ta produce as conservative an estimate of ground c1utter as

possible, we will ensure that the final estimate. G[k.j, il, decreases monotonically

with increasing Ikj:

•
è[l,j, i] = G[-l,j, il = G'[l,j, i]

G[k, j, il = G[-k, j,i] = min( 6'[1, j,.il, ... , G'[k, j, iD,
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Our estimate of the atmospheric signal at the zero Doppler velocity bin. .~[o.j~ il, will

always be interpolated from the values of the estimatecl atmospheric signal spectrum

on either sicle of the zero Doppler velocity bi n (.~ [± L j, il ..-I[±2. j, il. ...L which in

our case 15

• l • .) • .) • L •
'[a . "] - '[')"J - '[ l .' '] - '[1 " ., 1[')' '1.1 .J.I - -"6'1 --.J.I + 3.1 - .J.i + 3,-1 .J.lJ - 6. 1 .:..J.lJ

(:3.:38 )

whel'e the estimates .-t[±Lj. i] and .-Ï[±2.j. il. clepencl on the values of è;[l.j. i] and

è;[2.j. il. respectively. vVe use these coefficients as they allow for the possibility of a

local maximum or minimum at the zero Doppler velocity bin. as opposed to a simple

lineal' interpolation. Therefore. we will not attempt to evaillate è;[o.j. il. since it has

no effect on our estimate of .-i[a. j. il. The treatment clescribed in Eq. :3.:3; may be

too conservative. however. becallse the windowing effect may give the ground clutter

secondary lobes on either sicle of the k = 0 bine Equation :3.:3ï would not attribute

these lobes ta the ground clutter estimate. vVe will accept this risk. though. rather

than allow the ground c1uttel' estinlate ta potentially inc111de far tao much power.

Note that if the atnlospheric signal spectrum should be centered about zero velocity

(no overall vertical air motion). then the ground dutter estimate would include most

of the atmospheric signal power. thereby causing a very unreliable estinlate of vertical

air velocity. This is a common problem for grollnd clutter estimation methods.

3.2.5 Peak Identification

In the event of a spectrum "vith separated, nonoverlapping multiple peaks. it is nec­

essary to identify one as the proper one~ isolate it and ignore the other peaks. As we

shaH see in the next subsection. it is better to run the risk of choosing the wrong peak.

and getting a completely wrong Doppler velocity value. than ta use aU the peaks and

obtain a partially wrong Doppler velocity value. The peak identification algorithm

used here is very similar to one proposed by Nlay and Strauch (1989). vVe start by

finding the spectral component with the most power, Smax = S(kmaxJ. From the
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spectral component kmax , the algorithm proceeds outwards in both directions until

it encounters a spectral component with a power value less than the noise threshold

LVT • from sllbsection :3.2.:3 on spectral noise suppression. ~[athematically.we have

SpI[k] = S[k] - ~VT. a :s k :s b

= O. clscwherc
(:3.:39 )

•

where Cl ~ kmax ~ band S[k] ~ .VT for aIl k belanging to the interval (a. b). However.

if two or more peaks overlap sllfficiently. then the trough between the peaks rnay nat

descend belaw the threshold value. in which case the peak identification algorithm

may include more than one peak.

3.2.6 The Median Filter

Artel' the clear-air spectra have been treated with a minirTIum filter. noise suppression.

ground dutter rernoval. and the highest peak isolatecl. the mean Doppler velocities of

these spectra are estimated. The resulting time series of the mean Doppler velocity.

hawever. may still exhibit obvious bacl points. The nledian filter is therefore llsed at

this stage to eliminate these points.

Definition

The median flUer is identical ta the minimunl filter except that the median. rather

than the minimurn. of the points \vithin the window. is used. ~[athematical1y. the

median filter is expressed as.

y[i] = med{x[i - nI. .r[i - n + IL .....rU + n - 1], x[i + n]) (:3.40)

•

where the conventions are the same as for Eq. :3.1 in section :3.2.1 on minimum filters.

[f the window is an odd number of points long, m = 2n + 1, the median is simply

the value which exceeds those for n points and is exceeded by those for the other n

points. The median is readily defined for an odd number of points, but not for an even

number. Therefore, we will use windows with an odd number of points exclusively.
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Figure :3.8 demonstrates the median fUter.

The median filter can be extended to two dinlensions as weIl. In this case~ the

window must also be two dimensional. In mathematical terms. we have.

y(i.j] = rncd(.r[i + r.j + .:iJ; (r.s) E A)

where A is the set of acceptable values of rand 8. The only constraint that we

l'equire on the set .-t is that it contain an odd number of points. ~[oreover. A can

assume a variety of shapes. snch as squares (:3 x :3 for instance). rectangles. crosses

(+ or X shaped). or others. The appropriate shape depends strongly on the specific

application.

Theory

The median filter is the best known and the mast widely llsed of the rank-arder fil­

ters. ~[edian filters \Vere pioneered in the i970's (Rabiner et al.. 197.5: .layant. 1976:

~Iosteller and Tukey. 19;7: Tllkey. (977). Ini tially. they served in speech processing to

smooth over bad data points. Dllring the i980~s. they were llsed in image processing

(Heygster. L982: Reeves. 1982: Kim and \{aroslavskii. L986). It was aiso during this

perioci that the theory and sorne statisticai properties of the median filter were inves­

tigated (Kuhlmann and \Vise. L981; Ataman et al.. 1981; Gallagher and \Vise. 1981;

Nodes and Gallagher. 1982: ~odes and Gallagher. 1984: Arce et a/.. 1986). :\[edian

filters are a special case of filters based on arder statistics, snch as ranked-order or

trimmed mean filters. These~ as weIl as othel' types of filters are described by Pitas

and Venetsanopoulos (1990). and by Astola and Kuosmanen (1997).

The theory presented here on median filters will deal only with one-dimensional

time series. but an extension to two dimensions is straightforward. vVe start by con­

structing a simple model for the input, just as we did for the minimum fiIter. Because

we are considering smoothly varying signaIs, we assume that the signal in the absence

59



•
ca
~

cu
C

(;
...

1
C 1'm 1
'i: 1
0 1

1
1- - -- ...
1
1

1 2 3 4 5 6 8

• ca
~

ta
C
"0
Q,)..
Q,)
:=
iL:
c
ta:s
Q,)

:lE

1 2 3 4 5

Time
6 7 8

•
Figure :3.8: Schernatic demonstration of the median fUter. The upper plot shows the
original data, with the three-point wide window (box) going from left to right. At
each window position, the median value of the points inside the windo\v is found and
given ta the corresponding point in the lower plot .
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of intermittent c1utter is perfectly correlated with itself over the length of the win­

dow. In other words, if z[i] is the signal time series and m is the window length.

we assume that z[i] = z[i + 1] = ... = =[i + m - 1] with probability 1. The signal

value .::, constant within the window. is a random variable with a probability density

function f(::). However. each point of the input time series. xfi], has a probability p

of being intermittent clutter (. which is itself a random variable with a probability

density function g((). The intermittent clutter here is an impulsive noise much like

the kind considered for the minimum filter. except that ( may be negative and. more

importantly, the value of ( is nat added to the signal but rather replaces it altogether.

The impulsive noise here is not additive but rather substitutive.

To justify these assumptions. wc recall Eq. :3.2.5 but we assurne that the noise and

graund dutter spectra have been completely eliminated:

S[k] = A[k] + l[k]

where A[k] is the atnlospheric signal spectrum. and l[k] is the intermittent clutter

spectrum that got through the minimum filter. Note that we omit the i and j indices

for now. The mean Doppler velocity of 8[k] is

LS[k]k
Vs = ~v 2: S[k]

where ~L' is the Doppler velocity increment. It is easy to see that

Us = PAVA + Prvr (:3.44 )

•

where V.4 = ~V(L A[k]k)/(L: A[k]) is the atmospheric signal Doppler velocity (ver­

tical air velocity), VI = ~v(L l[k]k)/(2: I[k]) is the intermittent c1utter Doppler

velocity, PA = 0: A[k])/{2:{A[k] + l[kl}) is the ratio of the atmospheric signal power

to the total power, and similarly Pr = (2: I(k])/(2:{.4[k] + I[k]}). It is obvious that

P.4 + Pr = 1, and that Vs may be identified as the input time series x, VA as the

signal time series z and VI as the intermittent dutter ~. Clearly then, VI may be
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positive or negative. vVhen intermittent dutter is not present. then PI = O~ but when

it is present, it is usually rnuch more powerful than the atmospheric signal. sa that

PI » P.-l' It is nat clear, though, if this is still the case after the spectra have been

treated with the threshold minimum filter. However, as we have seen in subsection

:3.2..5. the rnean Doppler velocity algorithm we llse starts by identifying the peak of

the spectrum. then attempts to identify the spectrum associated with it. Therefore,

if the spectra of the atmospheric signal and internlittent clutter are sufficiently far

apart. there will be little or no averlap between them and the algorithm will choose

one or the other.

The assumption of perfect correlation is used nlainly ta simplify the following de­

velopnlcnt. If that assun1ption is relaxecl. then the theoretical results are valid in the

limit (( - .:'mr~ » (.=[i] - .:'m)'~' where .:'m = rn- l L;~~L :[l] is the average of the signal

points within the window. In other words. if the deviation of the clutter from the

window averaged signal value is rnuch greater than the variation of the signal within

the window. then the perfect correlation assumption is valid. Note that. the perfect

correlation assumption implies (.:[i] - .:'m r-~ = o.

The probability density function for the input is

pi(.r) = (1 - p)f(x) +pg(.r). (:3.45 )

As before. the probability of having n intermittent clutter points within an rn-point

window follows a binomial distribution (see Eq. :3.6). Note that from here on, we will

consider only the case where ln = .5. Next, we evaluate the conditional probability

density function of the median for a given n, Pmea(yjn). As Fig. :3.9 shows. when

n = 0, 1,2 the median must he a signal point due ta its perfect correlation within the

window. Therefore, we have

•
Pmed(yln) = f(y)
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For the case n = :3.

'3'
Pmed(yI3) = ',.;, [C;2(y)(1- G(y)) + C:(y)(l - G(y)f]f(Y)

1._.

+ l;~~! [F(y)(1- G(y)f + (1- F(y))G1(y)]g(y)
(:3.47)

where F( y) ~ J; f( =)d.: and G( y) = Jy~ g( ()d(, The factûrial coefTILÎents take into

account aIl possible permutations of the clutter and signal points. For the case n = .:1,

-1! .) .)
Pmed(yj4) = 2!2! (1 - C:( y) )-C:-( y )f(y)

+ ,4;.), [G(y)( 1 - C;(y))1. F(y) + (;'2(y)( l - G(y))( 1 - F(y))]g(y). (:3,48)
1.1._.

And finaily. for n = 5.

The overall output probability density function. Po(Y). is completely analogous ta the

minimum filter case. Eq. :3.8.•
-,

Pme,dyl·1) = 1!~!2!(1- G(y))2(;2(y)g(y),

5

Po(Y) = L Pm.p[n]Pmeri(yln).
n=O

(:3,-19 )

(:3.50 )

As before. we partition Pù(Y) into correct reconstruction. f med(Y). and incorrect re­

construction. 9med( y). segments.

(:3.51 )

•

where

fmed(Y) = [t '/~ )1(1 - p)5-npn] f(y)
n=O n.,J n.

+ l!~:2! (1 - pfpJ [(1 - G(y) )G2(y) + (1 - G(y) fG(Y)] f(y)

.. ,
+ l!~!2!(1- p)p4(1_ G(y))2G2 (y)f(y), (3.52)
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and
..,

gmed(Y) = L!~!2!(1- p)2 p3[F(Y)(1_ C(y))'! + (1 - F(Y))G2(y)]g(y)

-,
+ 1!1'~~!2!(l- p)p.l[C(Y)(l - C;(y))2F(y) +(;2(y)(1_ G(y))(l- F(y))]g(y)

.. ,
+ l!~ ~ 2! p5 ( l - (;(!J )f' (;2 (y )!J(y) . ( :3)5:3 )

Of course. the total probability of a correct reconstruction is

and for an incorrect reconstruction

\Ve must now specify reasonable shapes for the probability density functions.

Figure :1.10 shows the forms assumed for the intermittent clutter (() density function

(a fourth order polynonliaI) and the signal (=) density function (a Gaussian with

tapered tails). Since we wish to model the profiler vertical air velocity measurements.

we choose ranclom variables with a finite clornain (from -la to la) and \Vith zero

means. -:: = ~ = O. Figure :3.11 shows the input probability density functions. pi(.r),

described by EC[. :3.4.5 and where p = 0.1 (solid tine) and p = 0.4 (dashed line). The

obvious effect of the intermittent dutter contamination is to broaden the tails and

flatten the peak of the density function. The output of the ,S-point median fiiter is

shown in Fig. :3.12, where we see that the output density function (solid line), Po(Y),

looks much like the signal density function in Fig. :3.10. However, the tails, while

much reduced \Vith respect to the input density function, are still slightly broacler

than those of the signal density function. This is due ta incorrect reconstructions

in those windows where n ?: 3. The total probability of a correct reconstruction.

p=, is plotted as a function of the input signal probability q = 1 - p in Fig. :3.13.

The upward deviation from the diagonal of this plot indicates that the meclian filter

64



•

s s c s c c
'-
(J.) s s s s s C"'C
'-
0 c::
Cl ca
c: S S S S S S ....-1J

"'C Q)
c: ~(J.)
(J s s s c s Sen

• «

S C S C C S

(A) n = 0 (8) n = 1 (C) n = 2

Figure :3.9: The possible configurations when the points within the window are
sorted in ascending arder. ·S~ signifies a signal point and 'C' a dutter point. The
signal points. being perfectly correlated. are always grouped together. The dutter
points have values that are greater or less than the signal points. vVe neglect the case
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case when there are no clutter points. (B) when there is one c111tter point~ and (C)
when there are two cllltter points. In aIl cases~ the signal is the median.
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NIED5 has a better chance of selecting signal points for the output than if we simply

passed the input through unaltered (diagonal Land this is true for aU values of q. The

nlecIian filter therefore has a propensity for selecting the signal points in this case.

Application

Our application of the median filter on real time-height vertical air velocity data uses

a two-dimensional X-shaped window shown in Fig. :3.14. Given the shape of the

window and the number of input points within it. we calI this application an X~[ED.5

filter. ;\Iathematically. this filter is expressed as:

L'oU. i] = med( L'U + l.i - l]. vU - Li - 1]. v(j. il. vU + 1. i + L]. L'U - Li + l])

(3.56 )

where v(j. i] is the input time-height vertical air velocity data. va[j. i] is the output.

j is the height index and i is the time index. The reasons for this window configu­

ration are closely linked ta the characteristics of the profilerjR..-\SS system described

in section 2.:3. and the desired properties of the output. \Ve do not want ta induce

artificially strong correlation between points adjacent in time. which is why the input

points v[j. i - 1] and u[j. i + 1] were exduded from the window. The reasons for this

are the sanle stated for the threshold minimum filter. that is \ve must be able ta elim­

inate the random error variance from the vertical air velocity variance estimate. :\lso.

since the pulse length of the profiler is 10.5 fi. and the sampling resolution is 60 fi in

RASS mode (see Tables 2.1 and 2.2). there is considerable overlap of the resolution

volumes for measurements adjacent in height. The overlap increases the correlations

between time series adjacent in height. Therefore~ we assume that points adjacent in

height are weIl correlated~ and that the data directly above and below a given point

should resemble its data value. Although these may be used in a median filter, a bad

value at a given point will also be present at the points directly above and below,

and so we must exclude the points u[j + 1, il and u[j - 1, i] from the window, thereby

resulting in its X-shape.
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Figure :3.10: The solid line is the hypothetical signal probability density fllllction.
The dashed line is the hypothetical probability density function for intermittent clut­
ter.
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Figure :3.11: The solid line is the input probability density fllnction for p = 0.1. The
dashed line is the input probability density function for p = DA.
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• 69



•

/

/

/

/
/

/

/

/

/

/

/

/

/

/

/

/
/

/

/

/

/
/

/

/

/

/

/

/

/

/

/

/

/

1.0-.------------------------===-----..

1
09~

0.8j
0.7~

06~
05~

041
03~
0.21
01

1o.0 ---+-1---.------,-.,--..,.--,....----,---.--.....-...,.----.----r-----r-..---~~ ........__._---,---1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

•

[npul signal probabilit.y
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5-point median filter (wIED5), as a function of the input signal probability (1 - p).
The dashed line is the diagonal plotted for comparison. It represents a null result.
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Figure 3.1.j offers an overview of the main points of ROSPA. The untreated vertical

air velocity in Fig. :3.15(a) is heavily contaminated with intermittent dutter. The

vertical air velocity is then treated with a 7.5 dB TwIINï filter. followed by spectral

noise suppression. ground clutter removal and peak identification. The resulting time

series. in Fig. :3.15( b). shows significant improvement with only a few remaining bael

points. which are subsequently eliminated by the XNIED.j filter (Fig. a.15c). Though

not present in Fig. :l.l.j(c). there might still be a few olltliers remaining at this stage.

:-\ method for eletecting outliers is therefore needed.

3.2.7 Outlier Detection

The central problem of out lier detection is how we justify our expectations of what

good data shauld look like (Barnett and Lewis. 1978). In other wards. if wc have a

set of data where nlost of the membcrs cluster arounel a central value \vith a given

variance. and a few members deviate from the central value by an amount far in ex­

cess of the variance. then the clllstered data conditions our expectations of what good

data should look like. and the rew extreme members produce a sense of 'surprise' with

respect to these expectations. The extrcme members are assunled ta be the result

of a disruption or malfunction of the measurement process and consequently obey

a probability distribution different from that of the clustered data. Ho\vever. unless

the disruption or rnalfunction can be confirnled independently. we can never be sure

if the clustered and extreme points are produced by different processes. They may

come From the same measurement process and therefore be equally good, while con­

forming to a very wide probability distribution. Furthermore. without independent

confirmation~ there is no way of being sure if sorne of the c1ustered members are nat

the result of a faulty measurement process that happens ta agree with the gaod points

by accident.

Nevertheless, we will identify outliers using a hypothesis test similar ta that used

in subsection :3.2.2 on the threshold minimum, in a process we will caU a threshold
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Figure :3.15: The main stages of ROSPA. The top curve (a) is the untreated vertical
air velocity at 40.5 m over wlcGill, on June 28, 1996. The middle curve (b) is the
vertical air velocity treated with a 7.5 dB TwIIN7 filter, followed by spectral noise
suppression, ground clutter removal and peak identification. The bottom curve (c) is
the output of curve (b) treated with a XJVIED5 filter.
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nledian (TNIEDL and which is very similar to a method used by Peters and Kirtzel

(1994) for treating RASS data. Note that. contrary to the threshold minimum, only

one test will be performed and those points that fail will simply be excluded from

the dataset from which we compile statistics. The idea is that by this stage. the time

series of vertical air velocity will contain relatively few outliers. TNIED is therefore

seen as a means of -cleaning up' the data just priaI' to compiling statistics. rather

than as a signal processing procedure in its own right. Just as for the threshold nlÎn­

imum. we must construct a statistically robust baseline from which we will identify

the outliers. Rather than using the output of a median filter. which may have sharp

edges which may cause the magnitude of the residual between it and the good input

points to be slightly too high. we will constuct a smoother baseline with the use of a

template.

Creating a Template

The template is a clevice for identifying the "good' points of a discrete tirne series. lt

takes the form of a vector of Iogical variables as long as the time series it represents.

L[iJ. The first step consists of initializing aIl points of the tenlplate ta "[aIse'. Then. a

running window is passed over the time series..-\t each window position. the median

point of the set of points inside the window is round. This point is tagged as "good'

by setting the corresponding position (of the point. not the window) on the template

to "true'.

Note that the window is an odd number of points long, m = 'ln + l, and the win­

clow length must be short enough 50 that the signal points are well correlated with

one another, but long enollgh so that the clutter points are likely ta cancel each other

when estimating the median. Three is too short because a clutter point is too likely

to be the nledian. Five gives acceptable results, and since seven yields essentially the

same results, the window length will be set ta five. The template is then a series
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Figure :3.16: :-\ demonstration of the template forming algorithm. The box represents
the window going from left to right over the time series. The template is shown as
the series of circles under the graph. :-\ white circle indicates a ·true· point. black a
'faIse' point. Here. data point 6 is the median of the set of points inside the window.
The corresponding position on the template is set to 'true'.

of logical variables identifying as "true' every point in the time series that was the

median of at least one window (out of.5 windows) which included it.

Figure :3.16 demonstrates the aforementioned procedure. In it~ we see that the

algorithm accepts points 1 and 6, which we expect are valid. and rejects points 4,

,j and 7, which we suspect are clutter. However, points 2 and :3 were aiso rejected,

which appear to be valid. The baseline r[-i] takes on the value of the input time

series, x(i], if the corresponding point on the template, L[i}, is true. If L[i] is [aIse,

75



•
then the baseline is the linear interpolation of the two nearest 'good' points: r[i] ==

.l'[j] + (i - j) . (;r(k]- x[j])/(k - jL where j < i < k and L[j] = L[k] = true.

Definition

Given the baseline r[i]. and a normalized threshold v > O. we clefine the threshold

median as the following test:

if f[i] - VO'b ::; .l'fi] ::; f[i] + VO'b.

otherwise.

then accept

reject

•

•

where O'b is the standard cleviation of the baseline. vVe llsed the standard deviation of

the baseline tin1e series rather than of the input time series because we want to avoid

outliers producing a standard c1eviation that is too large. ~ote that since r[i] = .c[i]

where L[i] = true. there is a subset of the input points that will pass the test fOL'

any value of the normalized thresholcl. If the baseline was produced using a 5-point

median filter. this subset is typically .50 - 'i0 % of the input time series.

vVe will omit describing in detail the theory of the thresholcl nledian. except to

say that it is very similar to that of the threshold minimum. :\s for the thresholcl

minimum. the optin1al choice of v is a balance between accepting as many good points

as possible while rejecting as many bad points as possible. [n addition. we can also

assume that the best value of the normalized threshold is a function of the ratio of

the window period and the timescale of the uncontaminated time series, ; = m~/T

(the symbols are the same as in subsection :3.2.2 on the threshold minimum). That

is, when "'/ is smalt the normalized variation of the good points within the window

is accordingly smalt and so v can aiso be small. However, by this stage, whatever

outliers remain tend to be a few isolated spikes~ which means that the good and bad

points are reasonably well separated and that the choice of v is not cri tical. 'vVe need

only insure that the value of v accepts all good points.

76



•

•

•

Application

The application of the threshold median is done by creating an input time series for

each height ..r/3[iJ == u[j == J. il. where ur), iJ is the input time-height vertical air ve­

locity data, j is the height index and i is the tinle index. Then. for every height, we

create a baseline fa[i] from .Ea[i]. Using v and frJ[i]. we perform t.he test described

in Eq. :.3.5ï on the corresponding input time series .ra[i], which we repeat for every

value of 3. For every point in .r.3[iJ \vhich is rejected. we also reject the corresponding

point in the tinle-height vertical air velocity data. t'[j == 3. il == .L'J[il. The rejected

points in vU. il are then omitted frorn statistical estimates.

It is worth noting that the threshold median is the only procedure used on the

RASS acollstic velocity data. The acollstic velocity data are not subject to ground

or intermittent dutter. and RFI usually does not occur. That means that the falI of

retllrned power below its noise level at distant range. i.e. the slldden loss of returned

power frOITI the acoustic wave. are mainly responsible for outliers in RASS acollstic

velocity data. and llsually near the highest ITleasurable R:\SS altitude. If the outliers

are sllfficiently rare at a given height. such that the thresholcl median eliminates only

10% or less of the time series. then that height is llsed in statistical estimates. If. on

the other hand. the threshold median rejects more than 10% of the points at a given

height, then it is considered too contaminated and the RASS data at that height and

higher are not llsed in statistical estimates. ObviollSly. if the lack of returned power

is the cause of olltliers. then minimum filters. threshold or not~ are llseless since they

can only reduce the spectral power in the Doppler velocity bins. The XwIED.5 filter

is not used on RASS data because we wish to limit the amount of signal processing

clone to the acollstic velocity data. vVe williimit ourselves ta either eliminating bad

points at a given height, or not using that height at aIl if too contarninated.

In this chapter. we have seen the various signal processing steps that make up

ROSPA. vVe have tried ta devise a signal processing algorithm especiaI1y suited for
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profiler/RASS clear-air rneasurernents strongly contarninated with various types of

clutter. ROSPA is intended to be robust and based on relatively simple principles.

Both the threshold minimum and median fiiters are based on creating a robust base­

line llsing arder statistics. and accepting or modifying data points according to sorne

threshold based on the baseline~ and the X'\IED.5 fiiter is simply a two-dimensional

meclian fiiter. Other signal processing methods based on these principles are possible.

of course. which rnay be more efficient than ROS?:\.. Nevertheless. we will settle on

this particular con1bination of steps as we estimate it to be büth reasonably effective

and sirnple.

Next~ wc will examine the environrnent under stlldy itself. nanlely the urban

bOllndary layer. and how it differs fronl the rural boundary layer. This will give us

sorne idea of the kind of resllits ta expect over a city centre. and. conseqllently. sorne

way of estimating the credibility of the profiler/RASS meaSllren1t~ntsusing ROSPA .
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Chapter 4

The Urban Boundary Layer

This thesis. beeause of its ernphasis on the RASS. whieh is limited to approxirnately

the lowest kilometer of the atrnosphere. will focus nlainly on the rnixed layer portion

of the urban boundary layer. Nevertheless. to provide a background for interpreting

the observations. the horizontal and vertical struct llre of the urban boundary layer

will be describecL fronl the ground to the entrainment layer.

4.1 The Urban Heat Island

N[ost eities are sources of heat and pollution. Indeed, the production. dispersion. and

radiative properties of aerosols are major problems in urban meteorology (Summers,

1964; Yap. L969: Bergstrom and Viskanta, 1973a; Bergstrom and Viskanta. 1973b:

Rouse et al., L97:3; Takeda and [wasaka, 1982). Also. the downtown cores of cities are

predominantly covered by asphalt and concrete. These materials are dry, water-praof,

and possess albedoes and heat capacities that convert and store incoming radiation

into sensible heat better than the surrounding countryside. As a consequence, the

surface air temperatures in the eity cores are usually warmer than the temperatures in

the surrounding rural areas. Figure 4.1 il1ustrates the effect. The warmer isotherms

tend to form c10sed loops around the city core. The pattern thus formed resembles

the topographie contours of an island, hence the use of the term 'U'rban heat is/and
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Figure 4.1: Idealized isotherm heat island pattern over an urban area (shaded) (from
Stuli (1988 )).

to describe it. Howard (18:3:3) was the first to find evidence of the heat island effect.

Since then this effect has been very weil studied. though mainly in midlatitude cities

(for instance. Renou (L862), or Hammon and Ouenchei (1902)). For reviews regarding

the urban heat island effect, and urban c1imatology in general, one may consult Oke

(1982; 1988). Lee (1984) or Stull (1988). A good bibliography of material regarding

urban meteorology can be found in 0 ke (1990).

Furthermore, rural areas tend to cool more at night than do urban areas (see Fig.

4.2). The urban heat island effect is therefore strongest at this time. This is becallse

during the clay, the urban area was able to store more sensible heat than the surround­

ing rural areas, thus requiring more time to release it into the boundary layer and

thereby causing a smaller cooling rate in the city at night (Oke and ~IIaxwell, 1975).

The difference in temperature between the urban and rural areas has a maximum in

the order of 2 to 3°C for towns with a population of about 1000, whHe cities of a
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Figure 4.2: Idealized diurnal surface air temperature cycles for urban and rural areas
(from Stull (L9S8)).

million or more can generate temperature excesses of 8 ta 12°(' (Oke. 1982). Dllring

the month of .January~ at nighL the downtown core of ~[ontreal can be as much as

,jOC warmer than the surrollnding rural areas (Environment Canada. 198ï). At about

midday, the urban heat island is almost undetectable at the surface. Righ wincls. pre­

cipitation. and cloud cover are significant weather related factors that reduce the heat

island intensity, defined as the difference in temperature (üke and Nlaxwell. 1975) or

potential temperature (Oke. 1982) between an urban and a rural area. In sorne cases.

the rural temperature lapse rate close to the ground can be strongly correlated with

the nighttime heat island intensity (Ludwig, 1970). Geographical factors include the

proximity of water bodies, topographical features (\Vanner and Filliger, 1989) and

the nature of soils, vegetation and land use in the region (for example, see Katsoulis

and Theoharatos (198.5) for Athens; Oke and Hannell (1970) for Hamilton, Ontario;

or Bornstein (1968) for New York City).
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Figure 4.:3: Local circulations ineluced by a warm city dllring caIrn ambient flow.

4.2 The Urban Plume

Now we look at the vertical structure of the urban bounelary layer. If there is little

or no wind. the thermal modification of the city extends upward as a self-contained

urban heat -dome·. accompanied by a closed mesoscale circulation arollnd the city.

Figure 4.:3 shows an idealized diagram of the mesoscale circulation. The heat island

of the city produces warm rising air above it, which in turn causes horizontal con­

vergence close to the surface layer along with a horizontal divergence near the top of

the boundary layer, completed by descending air around the city (Stllll, 1988). The

rising air may cause condensation, producing douds and a limited but real urban

precipitation anomaly (Lee, 1984). This circulation pattern has also been observed in

laboratory (Giovannoni, 1987) and numerical (Delage and Taylor. 1970) simulations.

However, it is more common that winds will carry away the warm, dry, and

polluted city air (with significant concentrations of ozone and nitrogen oxides (Trainer
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et al.. 1995)). fornling an urban plume (Oke~ 1982). Figure 4.4 shows an exampleof an

urban plume. During the day (Fig. 4.4( a))~ the advectioo of the rural boundary layer

over the city creates an internai bo-undary layer~ that is, the roughness and warmer

temperature (mainly in the morning and afternoon) of the city modifies the air that

flows over iL thus creating a boundary layer extending from the city surface to the

rural bounelary layer air aloft (see Garratt (1990) for a review of internaI boundary

layers). The dept h of the urban bourrdary layer increases as the clay progresses. along

with that of the rural boundary layer. However. a slight doming of the mixed layer

over the city may be eviclent (by up to about 0.25 km (Spangler and Dirks. 19(4).

Fig. 4.4( a))~ slightly downwincl of the city core (Godowitch et ai.. 198ï). Similarly.

another internai boundary layer forms as the air flows from the urban to the rural

areas. The effect of the wind can also be seen in Fig. 4.1. where the isotherms are

closer together along the upwind sicle than along the downwind side of the heat island.

The nighttime urban plume. Fig. -L-l(b-d). is noteworthy because of the surface

rnixed layer that is retained over the city. The rural areas have no rnixed layers due

to the surface-based radiative inversions. But as the stable rural air is advected over

the city, the warmth and roughness of the city eliminates its stability up to 100-:300 m

(Fig. 4.4(c))(DeJ\t[arrais. 1961: Yap et al.. 1969), and an elevated warm plume appears

on the lee side of the city (Oke and East. 19(1). A plot of the heat island intensity

with height for the city centre (Fig. 4A( cl)) shows the potential temperature excess

declining rapidly with height until it becomes negative (rural warmer than urban)

near the top of the urban boundary layer in the cross-over effect (Duckworth and

Sandberg, 19.54; Bornstein, 1968).

4.3 Convection and Fluxes

Before we can discuss the convection in an urban boundary layer, we must first de­

scribe the different sublayers within it. Figure 4.5 shows the divisions of the urban
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Figure 4.4: General form of the urban boundary layer in a large mid-latitude city
during clear summer weather (a) by day. including profiles of potential temperature
(0) and the depths of the urban and rural internaI boundary layers (dashed) and
the daytime mixed layer (dot-dashed) and (b) at night. Comparison of (c) rural
and urban potential temperature profiles and (d) the resulting profile of heat island
intensity in the city centre at night ([rom üke (1982)) .
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boundary layer according to Oke (1988) or Stull (1988). The urban canopy layer

is defined as the layer that extends from the ground to about rooftop height (Oke,

1976; Oke, 1988; Lee, 1984; Stull, 1988). Analogous to a plant canopy layer (Garratt,

1992~ Kaimai and Finnigan~ 1994), the urban canopy layer is subject to microscaie

effects such as multiple reflections of radiation and ducting of airt10w by buildings.

affect ing, among other things. the Reynolds stress profile withi n it (Rotach. 199:3).

It is in this layer that most traditionai urban observations have been concentrated

(i.e. surface stations. instrumented automobiles, etc). The urban canopy layer is

most clearly àefined in areas of high building density. lt may be discontinuous or

absent in less densely developed suburban areas..~\bove it is the turbulent wake layer

(aiso known as the ro'ughness layer (Oke~ L988)). where the wakes and the internaI

boundary layers from the individuai buildings and surface patterns can still be felt.

The depth of the turbulent wake layer (typically about :20-90 m in cities) is two to

three times the average horizontal spacing of the dominant roughness elements (Oke~

1985). Higher still is the sUlface layer. where the individual wakes are not important.

but where the mornentum and heat budgets feel the average effect of the urban area.

Finally the urban mixed layer extends from the top of the surface layer to the top

of the urban boundary layer. It is dominated by convective motions that penetrate

through the entire layer, and has mostly llniform wind. hllmidityand potential tem­

perature profiles. The convective motions have been observed by lidar (Kllnkel et al..

1977), tetroons (Angell et al., 197:3), echosounder (i\IelIing and List, 1980). Doppler

sodar (Casadio et al., 1996), and instrumented aircraft (Hildebrand and Ackerman,

1984; Godowitch, 1986).

Figure 4.6 shows idealized profiles for a rnixed layer over fiat terrain. The con­

trolling parameters in the mixed layer are the surface potential temperature flux,

Qo = w'I)'ls, and the convective boundary layer (CBL) height, Zi (wlc8ean, 1976;
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Figure 4.5: The different layers within the urban boundary layer (from Stull (l988)).

Garratt. 1992: \VyngaarcL 1992: Kaimal and Finnigan. L994). From these pararne­

ters. a scaling velocity is defined by

[
9Q[j0Zi] 1/3

w. = (4.l)

where 9 is gravity, 0 Îs the average potential temperature through the rnixed layeL

and O. is a scaling temperature defined by

O. = Qo/w•. (4.2)

•

Note that the profiles in Fig. 4.6 are normalized wi th respect ta these scales. Oc­

casionally, variants of Eq. 4.1 are used to deJine the scaling velocity (Kaimal et al.,

1976; Lenschow and Stankov, 1986), but the values of w. and O. turn out ta be almost

the same.

By and large, the normalized profiles for fiat terrain are still valid in the urban

boundary layer. In particular, the normalized potential temperature flux profile is

valid in the urban boundary layer; only the parameters Zi and Qo are greater (Qo is 2­

4 times greater) (Hildebrand and Ackerman, 1984). We must bear in mind, however,
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Figure 4.6: Idealized boundary layer profiles of (clockwise, from top left plot) vertical
velocity variance, O'~, and horizontal velocity variance~ O'~,v Cu is parallel ta the mean
wind~ v is perpendicular); potential temperature variance, O'~; energy dissipation rate,
ê; and potential temperature flux, w'f)', for a boundary layer over fiat terrain. Dashed
portions of the curves imply extrapolations through the surface layer (from KaimaI
and Finnigan (1994)).
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that temperature advections caused by air moving over terrain with a large temper­

ature gradient. which are not unusual in and around a city. can have a significant

impact on the heat flux profiles as weIl (Ching et al.~ 1983). Cold air advection from

a rural area to a urban area, for instance. can increase the vertical heat flux over a

city. Nlelling and List (1980) daim that the normallzed urban vertical velocity vari­

ance profiles agree well \Vith the fiat terrain case for:; / =j > 0.4. However. Hildebrand

and Ackertnan (1984) maintain that the urban normalized vertical velocity variance

profiles are consistently larger than their rural counterparts. particularly near the top

of the boundary layer. .-\Iso. the peak value of the normalized urban vertical velocity

variance profiles is located at a higher normalized altitude than for the rural profile.

i\[oreover. vertical velocity variance values are typically 2-:3 times greater in the urban

boundary layer than in the rural (Hildebrand and Ackerman. 1984). Nevertheless~

the profiles shown in Fig. 4.6 may be regarded as reasonably good approximations

for urban profiles .

4.4 Spectra and Cospectra

Now we examine the farm of power spectra and cospectra of winds and tempera­

ture in the boundary layer. Figure 4. ï shows the idealized form of power spectra

of a stable surface layer over fiat terrain (KaimaI. 19ï3). The power spectra of the

quantity o. which can stand fOfU. u. W, Of e. are multiplied by the frequency f
and divided by the corresponding variance 0'';, producing a dimensionless function

of f . Note that we will be using this type of normalization often when presenting

power spectra. The basic form of the curve in Fig. 4.7 is quite general and most

of the power spectra we are likely to encounter in the mixed layer should conform

to it to one degree or another. Indeed, in the rnixed layer, the power spectra of u,

v, and w retain that shape; the only difference with respect to the surface layer is

a change in the scaling parameters, nameIy, Qo and zfZi (Kaimai et al., 1976). The

potential temperature power spectra in the rnixed layer cannot be easily generalized,
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particularly in the upper half of the mixed layer, due to entrainment effects. At high

frequency, the effect of inertial subrange turbulence is felt, resulting in Sa(f) ex: f- 5
/
3

,

or fSa(f) ce f- 2
/
3 and a slope of -2(3 in log-log coordinates. Note that the -2/3 slope

at the high frequency end should be apparent aU through the mixed layer, and for all

types ofspectra (u.u.w.D) (Kaimal et aL 1976). At low frequency. fSa(f) ex: f. or

Sa(f) = const .. because at those scales the turbulence is directly coupled to a forcing

mechanism (such as thermal plumes), and is no longer inertial. In the surface layer.

the cospectrum of LU and e (heat flux cospectrum) shows a -ï (:3 power-law in the

inertial subrange: Swo(f) (X f- ï
/
3 or [S'lue(f) 'x f- 4

/
3 (h~aimal et ai.. 1972: KaimaL

197:3). However. there is no universal form for the heat flux cospectrum in the rnixecl

layer (I\:aimal et ai.. 1976). although individual cospectra might be very useful in

identifying the predominant heat transport mechanism. such as thermals with a low

characteristic freq llency.

Roth et al. (1989). üke et al. (198~)) and Roth and Oke (199:3) present spectral

and cospectral measurements taken close to the junction between the turbulent wake

layer and the surface layer over a subllrban surface. The IV and espectra and cospec­

tra show good agreement \Vith their counterparts over a smooth surface. with a few

minor differences. Namely. the peak of the power spectrum of tu is slightly shifted

towards lower frequencies and the power spectrum of 0 is slightly shifted towards

higher frequencies. Therefore. the general characteristics of spectra and cospectra

over smooth surfaces may serve as an approximate model for urban boundary layers.

vVhile much more can be said about the urban boundary layer~ the overview in this

chapter adequately covers those aspects of it measurable by a profiler/RASS. This,

along with our understanding of the workings of ROSPA, gives us what we need to

evaluate profiler/RASS measurements taken at the NlcGill University Campus site in

downtown Nlontreal, which is an important topie in the next chapter.
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Chapter 5

The June 28, 1996 Experiment

5.1 Overview of MERMOZ

In the NlERiYIOZ project of the summer of 1996 (i\-fontreal Experiment on Regional

~fixing and Ozone). the Atmospheric Environment Service of Canada (AES) oper­

atecl a UHF boundary-layer wind profiler, similar ta the one at NfcGilL at a field

station at a fural site 70 km southwest of ~fontreal (see Fig. .5. 1). Equipped with

a RASS. the radar was llsed mainly in a five-beam mode for routine wind profiIing.

However. during a :J-hour period (104.) to 1400 EST) in the early afternoon of June

28, the profiler was used for continuous RASS observations. producing a record of

virtual temperature profiles up to 1 km with a height resollltion of 60 m and a time

resolution of 22 s. Clean and free of dutter or interference, the record is sllitable

for analysis of temperature and vertical velocity fluctuations and for estimation of

the profile of vertical heat flux. A research aircraft of the National Research Council

of Canada (NRC) was flying nearby during the saIne time, measuring along with

other quantities the air temperature. humidity, and vertical velocity. In addition, the

~IcGill profilerjRASS located in downtown Nlontreal, was also used continuously for

RASS observations over a a-hour period (1200 to 1530 EST). See section 2.3 for a de­

scription of the profilerjRASS equipment. Ta support the observations, a radiosonde

was launched from the St-Anicet site at 1347 EST, followed by another at 1850 EST.
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See ~Iailhot et al. (1998) for an detailed account of ~'IERNIOZ.

The AES and NRC cosponsored and co-directed the aircraft operations in NIER­

NIüZ. The aircraft. a DeHavilland DHe-6 Twin Otter. flew 24 flights. recording

atmospheric state and radiometric data. and measuring the vertical fluxes of sensible

and latent heat. C02~ ozone. momentuffi. and turbulent kinetic energy. The aircraft

uses a noseboom-mounted Rosemount 858 5-hole pressure probe and a Litton-90-l00

Inertial Reference System to measure the three orthogonal components of atmospheric

motion over a frequency range of O-lO Hz (~·lacPherson. 1990). [n post-processing.

the accuracy of the measured \vinds is improved to better than 0.2 m S-l utilizing

a Kalman filtering technique that corrects the inertial velocities using G PS navi­

gational data (Leach and ~vlacPherson. 1991). Temperature is sensed by a heated

Rosemount lO:2DJ 1CG fast-response probe and correctecl for dynamic heating us­

ing pressures measured by the noseboom. Humidity is measured by a fast-response

LI-COR LI-6262 infrared CO2/H'20 gas analyzer. Fluxes are calculated using the

technique of ecldy correlation after removing trends in the time histories. Data are

digitally recorded at :32 Hz after anti-alias filtering at 10 Hz: at a typical airspeed of

about .S ..5 m 5- L• the along-trad( resolution of the data is approximately .) m.

The early afternoon of June 28. 1996. was clear, cIoudless with light winds, due to

a synoptic-scale high pressure system dominating the region. As Fig .5.2 shows. the

winds were predominantly from the east. The CaL height for profile A. was about

500 fi, and about 1 km for profile B~ as we shaH see in subsection .5.:3.1. Figure .5.2

therefore shows that the winds were mostly ~ 2 mis within the CBL, and approxi­

mately 5 mis above the CBL for profile A, which is consistent with the wind profile of

a CBL described by Kaimal and Finnigan (1994). A ground fog had formed over the

region early in the morning, starting at about 0030 EST and dissipating over NlcGill

by about 0600 EST, and over St-Anicet by 0900 EST. The fog was at most :]1)0 m

thick. Figure 5.3 shows relatively cool temperatures early in the morning, especially
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Figure 5.1: NIap of the Nlontreal region showing the location of the aircraft flight
path, the profilerjRASS and surface stations at St-Anicet (circle) and at the down­
town NIcGill campus (square).
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Figure .5.:3: Plot of the hourly surface air temperature measurements at St-Anicet
(triangles) and NIcGill (squares) on .June 28. 1996.

at St-Anicet where the air at the surface was saturated with a temperature of about

11 0 ta 120 C. :\Iso note the resemblance of Fig. 5.3 with Fig. 4.2. The surface tem­

peratures at NlcGill were generally warmer than those at St-Anicet: as much as :3° C

warmer after sundown, an obvious urban effect.

•
Figures 5.4 and .5 ..5 show the potential temperature, virtual potential tempera­

tul'e, and watel' vapor mixing ratio profiles, taken by radiosonde over St-Anicet at

1347 and 18.50 EST, respectively. The potential temperature profile in Fig. 5.4 is
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approximately constant at 29:3 K from the ground up ta about 1 knl, where a capping

stable layer (also called an inversion layer) begins, followed by the free atmosphere,

starting at about l.1 km. This kind of potential temperature profile is typicai of a

CBL with a height of 1 km (see, for instance, Fig. 4A(a), or consult Stull (1988),

Garratt (1992). or Kaimai and Finnigan (1994)). The mixing ratio profile in Fig..5.4

is aiso typicai of a CBL. where we see a il10re or less constant value within the CBL

(about.5 g/kg). and a noticeable decrease above the CBL (down to about 2 g/kg in

the free atmosphere) (Garratt. 1992: \Vyngaard. 1992). The drop in mixing ratio

tends to reduce the increase in virtual potential temperature between the CBL and

the free atmosphere. However. as Emanuel (1994) showed. it is the vertical gradient of

the virtual potential temperature that determines the static stability of moist unsat­

urated air. The inversion layer is therefore less stable than the potential temperature

profile woulel suggest. because it i5 the virtual potential temperature profile which

is important for a moist unsaturated CBL. The erratic fluctuations in the potential

temperatllre. virtual potential temperature and mixing ratio profiles between O. ï and

1 km. may be due to the mixing between the CaL and the free atmosphere in that

layer.

The radiosonde sounding at 18.50 EST in Fig .5 ..5. on the other hand, shows no

sign of a CBL. [nstead. the free atmosphere appear5 to start at :200 m. below which

is what looks like the beginnings of a nociurnal inversion layer. that is. a layer of

air nlade stable by cooling from the bot tom due to the ground. Indeed. as Fig..5.:3

shows. the surface air temperature at St-Anicet falls 8° C between 1700 and :2000

EST. This may mean that the ground is radiating more energy than it is receiving

from the sun after 1700 EST, which in turn implies that after that time the surface

virtual heat flux drops significantly~ thereby inhibiting convection. It is also possible

that the weakness of the inversion layer at 1347 EST favoured the entrainment of the

free atmosphere into the CBL.
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Figure 5.4: Profiles of potential temperature (solid line) and virtual potential tem­
perature (dashed line ) on the left, and the water vapor mixing ratio profile on the
right, taken from a radiosonde lauched at St-Anicet, 1347 EST on June 28, 1996.
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Figure 5.5: Same as in Fig. 5.4. but for a radiosonde lauched at St-Anicet. 1850
EST on June 28, 1996.
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5.2 The Aircraft Data

Figure .5.6 shows the vertical velocity, virtual temperature. and virtual heat flux

trace from the aircraft measurements at one altitude. The vertical air velocity and

the virtual temperature fluctuations were high-pass filtered to remove trends caused

by instrument effects or large scale gradients. The high-pass filter strongly attenuated

any signal component with a wavelength of 12 km or greater. Figure 5. i shows power

spectra and the cospectrum of vertical velocity and virtual temperature for the air­

craft measurements. These were smoothed at low wavenumbers by a running average

over .5 wavenllrnber bins. At higher wavenumbers. however. the wavenumber bins ap­

pear doser and doser together in the logged wavenumber coordinates. Therefore. at

high wavenumbers. if the interval in the logged coordinate between two wavenumbers

five bins apart faIls below 0.0.5. we average over aIl the wavenumber bins inside a 0.05

wide window in the logged wavenumber coordinate. PriaI' to the Fourier transform. a

Hamming ~vindow (Kaimal and Finnigan. 1994: Oppenheim and Schafer. L989) was

applied to the data to recluce leakage between wavenumbers or frequencies. The power

spectra were then multiplied by the wavenumber and divided by the variance of the

time series with the Hamming window applied to it. This normalization produces a

power spectrum with an area under the curve in linear-log coordinates equal ta l. For

spectra 50 normalized. and when plotted as here on log-log coordinates. a slope of -2/3

is expected in the inertial subrange of homogeneons. isotropie turbulence (Caughey,

1984; Kaimal and Finnigan, 1994; Kaimal el al., 19ï6). The cospectra are multiplied

by the wavenurnber, the density of the air p = 1.2 kg rn-3 • and the specifie heat of

dry air at constant pressure Cp = 1005 m2s-2
I{-1. This normalization produces a

cospectrum with area under the curve in linear-log coordinates equal ta the virtual

heat flux.

The velocity power spectrum, Fig. 5.7(a) solid Hne, has most of its energy be­

tween 3x 10-4 and 10-3 m- 1 (or between land 3.3 km wavelengths), and an inertial

subrange, approximately the -2/3 law, extending from about 0.003 m-1 (330 m) ta
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Figure 5.6: Distribution along a line of (a) vertical velocity fluctuations, (b) virtual
temperature fluctuations, and (c) virtual heat flux trace, taken from an aircraft run
at 450 m AGL, for 9 min starting at 1322 EST.
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smaller scales. The temperature power spectrum, Figure 5.7(a) dotted line. has its

peak at slightly lower wavenumbers. 3x 10-4 to 6x 10-4 m- 1 (1.7 to 3.3 km). However,

at high wavenumbers the -2;:3 slope is not weIl obeyed. This is possibly due to noise

contaminating the signal, as the initial small drop in the temperature autocorrelation

function (Figure 5.8(a)) would suggest. Noise would appear as a line with a slope

of +1 in the spectral plots. The aircraft cospectrum, Figure ,j.7( b), demonstrates a

sharp peak at 4 x 10-4 m- 1 (2.5 km), in accord with the velocity and temperature

peaks. and raIls rapidly to zero over the inertial range. almost vanishing at scales less

than LOO m. thereby demonstrating that the inertial subrange does not contribute

much to the overall heat flux.

5.3 The Profiler/RASS Data

In this section. we will examine the data from the profilerjRASS at both locations.

However. we begin by examining the data f1'on1 St-Anicet given the absence of ground

and intermittent dutter at that location. Next. we calibrate ROSPA using the St­

Anicet and ;\,IcGill data. The dean St-Anicet data will then be used as a guide for

evaluating the treated wlcGill data.

5.3.1 St-Anicet Data

vVe must point out that the spectral averaging for the profiler at St-Anicet was per­

formed using SANf (Statistical Averaging Nlethod), an on-Hne intermittent dutter

rejection algorithm by Nlerritt (1995), which we described in ~mbsection 3.1.2. The

dean and dutter free profiler data is probably due in part to the use of SAN!. How­

ever, it also seems likely that the St-Anicet site itself was in part responsible for the

quality of the profiler data. First, the St-Anicet clear-air spectra show no sign of

ground dutter, something which SA~I does not eliminate. Second, the time reso­

lution of 22 s is probably tao short to allow SA~I to efi"ectively eliminate an of the
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Figure .5.7: Power spectra and cospectrum of the data in Fig..5.6. Graph (a) shows
the power spectra of the vertical velocity (solid line), and the virtual temperature
(dashed line), muitiplied by the wavenumber and divided by the variance, that is,
(kS(k)/(j2). Graph (b) shows the cospectrum of the vertical velocity and the vir­
tuaI temperature, multiplied by the density, specifie heat, and wavenumber, that is,
(pCpkSwT(k) ).
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Figure .5.8: Virtual ternperature (a) and vertical velocity (b) autocorrelation function
for aircraft data at 450 fi AGL. Note the corresponding standard deviations, ff~ in
the upper righthand corners. The dotted line represents the Ile value (0.3679) of the
correlation.
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intermittent clutter. had that type of contamination been severe. lt therefore seems

likely that the clutter contamination at the St-Anicet site was not very serious.

Structure and Evolution of the CBL

Figure .5.9 shows a plot of the range-normalized signal-to-noise ratio of the clear-air

signal measured by the profiler. Angevine et al. (1994c) explain that the altitude of

the maximum of this quantity serves as a good approximation ta the inversion height.

The figure shows that the thickness of the boundal'Y layer is appl'oximately constant

at 0.6 km AG L llntil about 12:30 EST. when the bllildup of the CB L begins. This

kind of sudden growth has been observed pl'eviously by Carson (19;:3).

Figure 5.10 shows the virtual potential temperatul'e obtained by imposing a half­

hour l'unning average (or about SO measurements. 22 seconds apart) on RASS virtllal

temperatllre data and asslln1ing a hydrostatic condition for obtaining pressure by

upwards integration using surface pressure data. :\lthough the reach of the RASS on

this day was excellent. the raw data contained sorne olltliers due ta occasional weak­

ness of the RASS signal at high altitudes. They were rernoved prior ta averaging by

applying a median filter with a .S-point window. to the raw data. Figure 5.10 shows

a strong gradient of virtual potential temperature (a stable layer) at about 0.6 km

initial1y (from 1100 to approximately Il:30 EST) and at about 1 km towards the end

of the observation period (the last hour). These stable layers inhibit convection at

those altitudes. thereby capping the thermal plumes. [n the middle of the period the

height of the stable layer is not well defined. probably due ta the rapid evolution of

the CBL at this time. The warming of the CBL is evident from the downward slant of

the virtual potential temperature contours. In particular, the 289 and 290 K contours

show a sudden descent into the ground, indicating a rapid heating of the initial 0.6

km deep CB L. resulting in the weakening of the statically stable layer capping it and

the subsequent release of convection up to 1 km starting at about 1230 EST.
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Figure 5.9: Time-height plot of the range normalized clear-air signal-to-noise ratio
over St-Anicet on June 28, 1996.
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Figure 5.10: Same as Fig. 5.9, but for virtual potential temperature.
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Figure .5.11: Same as Fig. 5.9~ but for the vertical air velocity. Note that the solid
line is the zero velocity contour.

•

Finally~ Fig. .5.11 shows the vertical air velocity measured by the profiler. It

indicates the presence of plumes and reveals their vertical structure, mainly in the

second half of the period, when columns of rising and descending air are clearly visible.

Such a structure of vertical air motion is consistent with the descriptions of Carson

(19ï3) and Wyngaard (1992) and the observations of Kaimal et al. (1976) of the

thermal plumes in a CBL. The time averaged vertical velocity over the entire period

was removed from the velocities shawn in Fig. 5.11 for each height, to eliminate any

possible instrumental bias in the vertical velocity measurements (Angevine, 1997).
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Here, we analyse the data and demonstrate certain difficulties in estimating the virtual

heat flux. Figure 5.12 shows time series of measured and derived RASS quantities

at one particular altitude (412 m). The uncorrected virtual temperature (curve a)

includes the effeet of vertical air veloeity (curve b). which explains why these traces

resemble each other. The interdependence of these quantities foUows from

R=c+ LU (5.1 )

(.5.3)

•

•

where R is the velocity of the acoustic wave measured by the RASS. LV is the vertical

veloeity of the air, measured by the profiler. and c is the speed of sound in still air.

e iven that c = J, Ra Tu, where f = LAis the ratio of specifie heats of air. Ra = 287

m2s-2 {\:-1 is the gas constant of air. and Tu is the virtual temperature in I\. we may

convert Eq..5. L ta

where TR = R'1 / (""1 Ra) is the uncorreeted temperature measured by the RASS and

displayed in curve (a). The corrected temperature (curve c) has the effect of vertical

air motion removed. From Eq..5.2. this quantity is given by

f!i:R w2
Tu = TR - 2w -- + --.

,Ra A/Ra

The smooth line in curve (c) is the quadratic least-squares fit to the data. lt indicates

the general warming trend during the observing period and is taken to represent the

non-stationary mean temperature. Deviations of the corrected temperature from

this line are taken to be the turbulent fluctuations used in heat flux calculations.

The detrending necessary to obtain the corrected temperature fluctuations Îs the

only correction for nonstationarity used on the RASS data. Because RASS measures

virtual temperature, the product of the deviations from this line and the vertical air

velocity gives the buoyancy flux, which when multiplied by the product of air density

and specifie heat gives the virtual heat flux trace (curve d). Notable in the trace are
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bursts of heat flux~ sometimes exceeding 1000 \V1m2

, which become more frequent

as time increases. The virtual heat flux trace as plotted is in fact the average of

two estimates of the flux: (1) the trace produced with the velocity time series moved

ahead one time step with respect ta the temperature time series and (2) that with

the temperature time series moved ahead one time step with respect to the velocity

time series. That is.

F[i] = p;P(w'[i + tJT~[il + w'[i]T~(i + l]) (5,4 )

•

•

where P = 1.:2 kg m-3 is the density of air. Cp = lOO.S m2s-2[~-l is the specifie heat

of dry air at constant pressure. F is the virtual heat flux in \Vlm2. i is the discrete

time index. and the primes denote fluctuations from the nlean. The time average of

the resulting trace is mathematically equivalent to a rnethod of heat flux calculation

used by Peters el al. (l9S.5) .

The reason for the time shift in Eq..SA is to eliminate a systematic bias. This is

made clear when we consider Eq. 5.:3 and assume that TR and LV bath carry errors. 'IR

and "W respectively. These errors are assumed random. with zero means and variances

O"h and O"~ • .-\lso. we assume that '7R is independent of '7w and that the erraI' at one

time is independent of the errors at other times. Therefore. if there were no time

shift in the definitioIl of the heat flux trace (F[i] = pCpl.v/[i]T~[i]). then Eq..5.:3 tells

us that the errors 1Jw would combine in such a \Vay as ta praduce an constant average

bias in the heat flux estimation,

bias = -2PCPlT~~ I
T
;. (5.5)

where the overbar denotes a time average. Eq. .5.5 shows that the bias is always

negative. By time shifting, this bias is avoided although the heat flux may be slightly

llnderestirnated (Peters et al.. 198.5).

The turbulent fluctuations of virtual temperature shawn for one altitude in Fig.

5.12( c) are plotted in time-height coordinates in Fig..5.13. These fluctuations have a
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Figure .5.12: Tirne series of (a) uncorrected RASS temperature, (b) vertical air
velocity, (c) corrected temperature, (cl) virtual heat flux, at 412 fi AGL over St­
Anicet on June 28, 1996.
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structure resembling that of the vertical velocity fluctuations in Fig..5.11, but with

generally shorter durations. There is aIso a predominance of positive temperature

fluctuations between 0.8 and 1.2 km and from 1230 EST onwards. This coincides

with a net preponderance of downwards motion in the same region (Fig..5.11). An

entrainment of potentially warm air from the free atmosphere downwards into the

mixed layer is therefore suggested. Figure .5.14 shows the virtual heat flux. There

is a predominance of positive heat flux in the lower part of the CBL~ particularly

towards the end of the periode Conversely, there is a predominance of negative heat

flux around the top of the CSL (compare with Fig..5.9).

Figure .5.15 shows a quadrant analysis of the heat flux. similar to the kind used

by 1\"1'000 and Bink (1996) or Grant et. al. (1986L except that rather than compiling

statistics. a time-height contour plot is used. This analysis partitions the flux into

upwards and downwards motion and cool and warm currents. In the second half of

the periode there are vertical columns of predominantly warm rising air with regions

of nlainly cool descending air. This structure is consistent with the picture of regions

of descending cool air separated by thin walls of rising warm air~ described by Schmidt

and Schumann (1989) using a large-eddy simulation. The entrainment of warm air

from the free atmosphere ta the mixed layer is seen once again by the predominance

of the positive downward (PD) quadrant at the top of the CBL.

Figures .5.16 to .5.19 demonstrate the spectral and correlation structure of the

RASS data. The smoothing of the spectra and cospectra is identical ta what was

done to the aircraft spectra, except that at low frequencies the spectra and cospectra

were averaged over three bins only. The RASS data were split into two parts, 1048

to 1224 EST and 1224 ta 1400 EST, to show explieitly the nonstationarity. The first

part has a CBL top relatively constant at about 0.6 km. The second part contains

a CBL whose height grows rapidly from 0.6 km to about 1 km. Figure 5.16 shows

the first part. The broad maximum of the velocity spectrum extends from 6 x 10-4 to
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Figure .5.1:3: Time-height plot of virtual temperature fluctuations over St-Anicet, on
June 28, 1996. Note that the solid line represents the zero value contour.
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Figure 5.14: Same as in Fig. 5.13, but for the virtual heat flux. Note that the solid
tine represents the zero value contour.
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Virtuel Heet Flux Quadrants
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Figure 5.15: Same as in Fig. 5.13, but for the virtual heat flux quadrants. Note
that, PU = positive virtual temperature fluctuation and upward vertical velocity
fluctuation, NU = negative-upward, PD = positive-downward, and ND = negative­
downward.
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1.2 X 10-3 Hz (14 ta 28 min) with a maximum at about 17 min. The stope at high fre­

quencies seems steeper than 2;:3, possibly due to a low-pass filter effect induced by the

size of the profiler pulse volume. Eddies smaller than the pulse volume are averaged

out, leaving the larger eddies which may have lifetimes greater than the integration

time of the profiler. A low-pass filter effect may also be induced by the horizontal

wind advecting eddies through the pulse volume over the integration time, thereby

extending the effective averaging volume. The velocity spectrum in Fig..5.17( a) has

a similar structure with a peak at about 9 min and a high frequency slope steeper

than 2/:3.

The temperature power spectra in Figs..5.1 ï( a) and especially .5.16( a) appear to

be strongly contaminated by a kind of measurement error (which tends to induce

a slope of +1). making the identification of a peak unreliable. However. as Figs.

5. L6( b) and .5. Lï( b) show. only the spectral components with periods ranging from

.5 ta 1.5 min. approximately, contribute significantly to the heat flux. Although the

temperature spectral peaks at those periods may be obscured by the measurement

errors. they still contribute. on average. to the cospectrum as though there \Vere no

measurement errors. The measurement errors cano however. increase the uncertainty

of the heat flux estimates. 'YVhite noise is suggested by the rapidly decreasing temper­

ature autocorrelation functions in Figs. 5.18(a) and 5.19(a), although it is difficult to

estimate the signal-to-noise ratio confidently due to the uncertainty in extrapolating

the signal autocorrelation function to zero lag. The white noise is probably caused

by errors in the estimation of temperature due to factors other than the vertical air

velocity, such as small-scale turbulence, horizontal winds, and others (Angevine and

Ecklund, 1994). These errors represent an inherent limit to the accuracy of RASS

temperature measurements independent of the presence of c1utter or interference in

the vertical air velocity measurements. Therefore, the temperature white noise may

not be reduced by the vertical air velocity low-pass lUter effect. The heat flux cospec­

tra, Figs. 5.16(b) and 5.17(b), have greater peaks, 170 and 200 "V1m2 respectively,
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than the aircraft cospectrum, 8,5 vVjm2 , along with substantial negative components.

Figures .5.20 and .1.21 show profiles of vertical air velocity variance, while Figs .

.5.22 and .5.23 show profiles of vertical air veloci ty variance flux (the third order

mOillent of the vertical velocity, (w - w)3). for both wind profilerjRASS and aircraft

measurements. The erraI' bars for these and subsequent quantities \vere estimated

llsing the methods described by Lenschow el al. (199:3; 1994). For the variance of the

estimation of the average of a time series. Lenschow et al. propose

U5.6)

•
where êl is the standard deviation of the estimate of the average (which we aiso caH the

erraI' on the estimate). (j is the standard deviation of the tinle series. T = f~Xj p(~)d~

is the integral timescale of the time series (p(~) i5 the autocorrelation function of a

stationary time series), and T is the duration of the time series. For the error on the

estimate of the variance. we use

:2 - ');T"lr/T_2 -_v

and for the erraI' on the third-order moment

2 6·
ê 3 = 40' TIT.

(5.ï)

(5.S)

•

Also note that the vertical air velocity variance for the profiler measurements is

in fact the statistic (w[i] - w)( w[i + 1] - w), that is, the autocovariance function at

lag 1. This i5 done to avoid any bias that might result due ta random and inde­

pendent errors (noise) on the profiler measurements. The profiler measLLres vertical

air velocity averaged over the resolution volume and the integration time, which re­

duces the contribution of small eddies. It is therefore not surprising that the aircraft

measures a greater variance than the profiler in Figs. .5.20 and 5.21, given its tiuer

resolution. The dashed lines in Figs. 5.20 and 5.21 represent the SUffi of the variance

and the average clear-air spectral variance. The spectral variance is defined as the
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RASS Data, 412 m AGL, From 1048 To 1224 EST
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Figure 5.16: Power spectra and cospectrum of the RASS data at 412 m AGL from
1048 to 1224 EST. Graph (a) shows the power spectra of the vertical velocity (solid
line), and the virtual temperature (dashed Line) , multiplied by the frequency and
divided by the variance, that is, f5(f)/O' 2

• Graph (b) shows the cospectrum of the
vertical velocity and the virtual temperature, multipLied by the density, specifie heat,
and frequency, that is, pepfSwT(f).
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RASS Dota, 412 m AGL, From 1224 To 1400 EST
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Figure 5.17: Same as in Fig..j.1B, but for RASS data at 412 m AGL [rom 1224 ta
1400 EST.

•
118



•
RASS Data 1 41 2 m AGL, From 1048 To 1224 EST
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Figure .j.18: Virtual ternperature (a) and vertical velocity (h) autocorrelatian func­
tian for RASS data at 412 m AGL from 1048 ta 1224 EST. Nate the the corresponding
stantard deviations, (j, in the upper righthand corners. The squares represent the dis­
crete lags, 22 s apart, and the dotted line represents the Ile value (0.3679) of the
correlation.
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second-order moment of a power spectrum and is equal to half the spectral width

squared (O'b = (f.lD/2)2, see Eq. 2.22 in section 2.1). Adding the spectral variance

helps somewhat, but it should be noted that this quantity is not necessarily equal, or

even proportional, to the vertical velocity variance of the small eddies. See section

2.1 for an analysis of the physîcal meaning of clear-air spectral moments. The dashed

line should only be seen as a rough estimate of the total variance.

The RASS vertical air velocity variance profiles in Figs .5.20 and .5.21 are roughly

what we would expect from Fig. 4.6. namely a smooth curve with a maximum at

about OAZi. [n Fig..5.20. we estimate the CBL ta be approximately 0.6 km deep.

and we have a maximum velocity variance at about 0.25 km. [n Fig..5.21. the CBL

grows from 0.6 to about l km over the averaging period. 50 =j is not easy to eval­

uate. But if we take the average over the period. =j ~ 0.8 km. then the rnaximum

variance should be at about 0.:3 km. which given the error bars. is approximately

correct. Both variance profiles do not decrease as fast with height near the top of the

CBL as the idealized profile in Fig 4.6. however. This may he due ta weak returned

signaIs at those altitudes. giving unreliable vertical air velocity measurements with

an error component which increases the total variance. However. the lag 1 value of

the autocovariance function is plotted specifically ta avoid this effect. \Ve can only

conclude that if unreliable measurements are responsible, then the errors must be

correlated ta sorne degree, over one time lag or more. The aircraft variance profiles

do not seem ta follow the form of the RASS profiles. Indeed, the profile in Fig..5.20

appears constant with height. Possible reasons for this difference will be discussed

later, in chapter 6.

According to Stull (1988), vertical motions dominate the turbulent kinetic energy

(TKE) in the rnixed layer, which means that the vertical air velocity variance ap­

proximates the TKE, and the vertical velocity variance flux approximates the TKE

flux. We expect the profiles in Figs. 5.22 and 5.23 to be positive everywhere within
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Figure 5.20: RASS (solid line with squares) and aircraft (dotted lines with diamonds)
profiles of vertical air velocity variance, with error bars. The time period represented
here is 1048 to 1224 EST for RASS, 1155 ta 1235 EST for aircraft. The dashed line
is the RASS vertical air velocity variance plus the average Doppler velocity variance
of the clear-air spectra.
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Figure .5.21: Same as in Fig..5,20~ but for the period L224 ta 1400 EST for RASS
and 1247 to 1:335 EST for aircraft.
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the CBL and to reach a rnaximum around its middle, because we expect a growing

CBL to transport Th-:E upwards. vVe also expect that the maxinlum of the vertical

velocity variance profile corresponds to a convergence zone of the TKE flux. This is

approximately what we observe for the RASS data, though while the aircraft profiles

are positive. only the second profile has a convergence zone that corresponds to the

variance maximum (compare Fig. 5.:21 with Fig. 5.23).

Figures .5.24 and .5.25 show profiles of virtual heat flux from RASS and aircraft

data. The RASS profile was obtained from time averages of traces as in Fig..5.12( d) at

different altitudes and tinles. For the aircraft data. the virtual heat flux was obtained

from time averages of traces. as in Fig..5.6(c). along flight tracks at different altitudes

and times. Two RASS and aircraft profiles are plotted: Fig..5.24 for aircraft runs

between 115.5 and 1:2:3.5 EST and a RASS period from 1048 ta 1224 EST: Fig. 5.25

for runs between 124; and 1:3;3.5 EST and RASS period from 1224 to 1400 EST. The

evolution of the CBL is evident by marked difference between the RASS profiles.

There is reasonable agreement between the later RASS profile and the aircraft profile

between 0.1.5 and 0..5 km. Similarly. there is reasonable agreement between the early

RASS profile and the aircraft profile between 0.2.5 and 0.5 km. Below 0.25 km, the

early RASS heat flux values are less than 10 \V1m2
• much less than the aircraft values

of approximately 1:35 \V1m2
• This may be due to the static stability of that layer at

the start of the observation period. which inhibits convection and favors a negative

heat flux if only small eddies are present (Garratt. 1992). Above 0.5 km, both RASS

flux profiles decrease with height and becorne negative. as expected at the top of a

CBL (Garratt, 1992). The aircraft flux values decrease only weakly above 0.5 km.

From the RASS profiles, however, it would appear that the top of the CBL increases

from about 0.55 (early profile) to 0.7 km (late profile). But in Fig..5.9, we see that

the CBL top increases from 0.6 to 1 km, mainly in the second half of the observation

period. It should be noted that these profiles really represent the average heat flux

profile over the averaging period. Therefore, the later RASS profile should show a
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Figure .5.22: RASS (solid tine \Vith squares) and aircraft (dotted Hnes with dia­
mouds) profiles of vertical air velocity variance flux, with error bars. The time period
represented here is 1048 to 1224 EST for RASS, 115.5 ta 1235 EST for aircraft .

125



•
1.0

........:::0
......

...........
".

'" ". ......
" .

~ .... ,. 1

0.8

0.2

0.6....-..
E
~
'-""

cu
"'tJ• ::J-:;:;
< 0.4

2.50.0 0.5 1.0 1.5 2.0
Vertical Velocîty Variance Flux (m/sY'

o.0 ~...-I---.l..--'--'---....-..L.-L--..oI--...--....-.L-~-L--.4--I,-.."I,--L---&..-&........--L--........L...-.L--L.---&..~~

-0.5

Figure 5.23: Same as in Fig..5.22, but for the period 1224 to 1400 EST for RASS
and 1247 ta 1335 EST for aircraft.
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CBL top halfway between 0.6 ancl l km - about 0.8 km. A CBL top at 0.7 km in the

later profile is therefore acceptable considering the errors in the heat flux estimates

due to their intermittency.

Temperature Correction for Turbulence

Figure .5.26 shows an example of clear-air and RASS Doppler power spectra for sev­

eral heights. On the left-hand-sicle of the figure. we see an updraft extending from

172 to 5:32 fi AGL. and a downwarcl motion at 592 m AGL and higher. The change in

vertical velocity creates a region of strong convergence from -~72 to .592 m AG L. [t is

reasonable to assume that the shear produces small-scale turbulence. which manifests

itself in the wide clear-air spectral widths. particularly at .5:32 m. The corresponding

RASS spectrum at .5:32 m .-\G L is also wide. presumably caused by the turbulent

eddies perturbing the acollstic wavefront. According to Peters and Angevine (1996).

among others. the perturbation of the acoustic wavefront can only increase the mea­

sured RASS temperatllre. Therefore. rather than widening in both directions equaUy.

as for the clear-air spectrum. the RA.SS spectrum widens towards higher acollstic ve­

Iocities only. [n addition. because the acoustic wave continues to prapagate llpwards

after being perturbed. the temperature error also prapagates llpwards. vVe can see

this effect in the RASS spectrum at .592 m. It is broader than the corresponding

clear-air spectrum at the same altitude. suggesting that it is the turbulence at .532

m which caused its wide bimodal farm. As far as heat flux is cancerned, the exceed­

ingly warm temperature at .592 m leads ta a falsely positive temperature fluctuation

where the vertical air velocity is negative. resuiting in an erroneous negative heat

flux. Other factors influence the width of the RASS spectra (temperature gradients,

length of the Bragg-match region within the pulse volume~ etc.)~ but we will assume,

in this subsection, that only the turbulent eddies cause the asymmetrical spreading

of the RASS spectra.
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Figure 5.24: RASS (soUd Hne with squares) and aireraft (dotted lines with diamonds)
profiles of virtual heat flux (pCp(Po/p)fÇw'T~, where p is the density of air, Cp is the
specifie heat capacity at constant pressure, and K: != 0.286), with error bars. The tirne
period represented here is 1048 ta 1224 EST for RASS, 1155 ta 1235 EST for aircraft .
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Figure 5.25: Same as in Fig..j.24, but for the period 1224 ta 1400 EST for RASS
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• 129



•

•

772 m 1

712 m

652 m

592 m

s.. 532 m
lU
~
0
a.

"0 472 m
lU
N

~

E
r.. 412 m0
z

352 m

292 m

232 m

CLEAR AIR

June 28, 1996, al llh38m 9s EST

RASS

-5.0 -3.0 -1.0 1.0 3.0 5.0 336.0 338.0 340.0 342.0 344.0 346.0

•

Doppler velocity (m/s)

Figure .5.26: Clear-air (left) and RASS (right) spectra over St-Anicet, at 1138 EST.
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the spectra are normalized so that the maximum of each spectrum reaches the top of
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velocity (v), the horizontal Hne the spectral width (20"v) .
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Peters and Angevine (1996) propose a method for correcting the RASS tempera­

ture for errors due to turbulence. This method only applies to the first-order moments

of the RASS spectra, not to the spectra themselves. The proposed turbulence tem­

perature correction can be formulated as

JT_ ~ 0 4~3 _6/5 k2/ 5( ("12 )6/5T . C - a '-a (.5.9)

where JTfT is the relative temperature correction, :; is the altitude in rneters, ka is

the acoustic wavenumber (m- l ). and C;; (m- 2/ 3 ) is a weighted path average of the

acoustic refractive index structure parameter

(.5.10 )

•

•

where C~(:;) is the local acoustic refractive index structure parameter. which is ex­

pressed as

(.5.11)

where Cj.(:;) and C~(:;) are. respectively. the temperatllre and velocity structure pa­

rameters. T(:;) is the absolute temperature and caC:) is the speed of sound. The

velocity struct ure parameter. c; ~ is taken ta be proportional ta the square of the

clear-air spectral width, and Cf is assumed to be negligible.

In other words, the turbulence temperature correction depends mainly on the

altitude and a weighted integral of the square of the clear-air spectral width. The

integration in Eq..5.10 can he problematic since we only have a limited number of al­

titudes ta work with, and the spectral width values may not be accurate. Figure .5.27

shows a comparison between the virtual temperature fluctuations at 532 m ACL, and

the temperature correction, J'T, due to turbulence, calculated from Eqs. 5.9 and 5.10.

There is a definite correlation between the two quantities. In particular, we suspect

that the large positive temperature fluctuations at 1230 and 1345 EST may be due

ta turbulence. Correspandingly, we see large spikes in the turbulence temperature
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correction time series at the same times. However, we also see that the temperature

correction is about one order of magnitude too small to adequately correct the tem­

perature fluctuations. A possible explanation would be that the method used is based

on the assumption of homogeneous turbulence with no coherent large-scale structures.

But in a CBL. the turbulence is not homogeneous but rather depends on large-scale

coherent structures, such as thermal plumes. The assumption may therefore cause

an underestimation of the temperature correction. Another source of error may be

our method of estimating the spectral widths (integration over the useable portion of

the clear-air spectrum). Perhaps other methods (such as the log-fitting of a Gaussian

function ta the clear-air spectrum (Gossard et al.• 1998)) might yield better results.

Figure .5.28 shows the effect of the temperature correction for turbulence on the

virtual heat flux profile in Fig..5.25. OveraIl, there is a slight reduction in the mag­

nitude of the heat flux at aIl altitudes. This is consistent with the picture mentioned

above. where the turbulence causes a warming of the temperatl1re fluctuations. Cor­

reeting for turbulence would recluce the magnitude of the temperature fluctuations,

and eonsequently the heat flux. However. when we compare with Fig..5.25, we see

that the effect of the correction faUs weIl within the error bars of the heat flux esti­

mates. This does not necessarily mean that the effect of turbulence itself on the heat

flux estimate is negligible. but only that our method ta correct for it is inadequate.

However, the method by Peters and Angevine is concerned \Vith correcting for the

systematic error on the mean temperature measurements due to turbulence, not with

the cross-correlation of temperature with the vertical air velocity.

5.3.2 McGill Data

In this subsection, we perform the same analysis on the McGill data as on the St­

Anicet data. However, given the necessity ta treat the wlcGill data, we must first

calibrate ROSPA so as to obtain the best possible performance.
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Figure 5.27: The virtual temperature fluctuation (a) and the turbulence temperature
correction (b) time series for St-Anicet, at 532 m AG L.
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Figure 5.28: The RASS virtual heat flux profiles from 1224 ta 1400 EST (as in Fig.
5.25), with (dotted line) and without (solid line) turbulence temperature corrections.
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Calibration of ROSPA

Before we can examine the j\;IcGill data. we must first determine the most appropri­

ate choice of the thresholds required by ROSPA. The threshold values will be chosen

according to two criteria. The first. called the RASS correlation criterion. is based

on the correlation between the treated vertical air velocity time series and the raw

RASS velocity time series. A high correlation is expected if the treated veLocities

are accurate. The second criterion is the degree to which the algorithm leaves good

verticaL air veLocity data~ Like the St-Anicet data. llnchanged. This will be measured

by the correLation between the treated and untreated time series of the good data. a

correlation of l indicating no change. [t shollid be stressed. however. that the first

criterion is more importanL particularly for meaSllrements taken in the rnixed layer

of a CBL. This is because the RASS velocity fluctuations due ta temperature fluctua­

tions are small cornpared ta those due ta vertical air velocity fluctuations. Therefore.

if the RASS data is good (no power drop-outs. no RFI. etc... ). we would expect the

accurate vertical air velocity time series to closely resemble the RASS velocity time

series. and we would expect a good correlation between them. vVe assume. then, that

any improvement in the RASS correlation criterion implies better vertical air velocity

estimation. and is not fortuitolls. Aiso. we can avoid fixing the threshold values once

and for aIl. but rather adjust them for every new dataset. Thus. in the event of clean

data~ the RASS correlation criterion would allow threshoLd values high eaough to al­

low the good data through ROSPA unaltered. thereby satisfying the second criterion

automatically.

[a order to explore the RASS correlation criterion, we examine it mathematically

to find an expression for the best possible correLation. vVe begia by describing the

main featllres of the RASS signal (at a fixed altitude):

where R[i] is the RASS velocity time series, c[i] the speed of sound in still air as a•
RU] = cU] + wU] + EU] (5.12)
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function of the time index i, w[i] the vertical air velocity, and f[i] the error on the

RASS measurement, which we assume has the characteristics of white noise. It is

useful to partition the speed of sound into two components:

where m[i) is an average speed of sound which may change over the observing time

because of the overall warming or cooling of the boundary layer. over time scales of at

least an hour. and f[i] is the short-term fluctuations due ta temperature fluctuations

associated mainly with thermals. Over a period of three hours. we assume that the

trend can be adequately expressed as a quadratic. m[iJ = a+ bi + c(ir!. In addition.

we have a profiler-measured time series of the air velocity which 'vve assume is dutter

free:

where w[i] is the vertical air velocity. and '1[i] is the erraI' on the profiler measure­

ment, assumed to be white noise. :-\11 the statistics needed for the correlation will be

estimated using a time average over the ~V points of the time series, denoted by an

overbar. The average RASS measurement is then R = rn, where we have assumed.

without loss of generality. that 7 = w = t = O. Similarly, the average profiler air

measurement is P = 0, assuming rj = O. The variance of the RASS time series can

be decomposed as

•

c[i] = m[i] + f[i]

P[il = iL' [ i] + rd i]

(.5.13)

(.5.14)

(.5.1.5 )

where we have assumed that f is independent of m, f, and w. However, we will

neglect the terms 2mf and 2mw, assuming that the average speed of sound, m[i], is

approximately constant over the decorrelation times of f and w, so that

(5.16)

•
Similarly, for the air signal, we can state

(5.17)
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where we have assumed that '1 is independent of w. And using Eqs. 5.12 and 5.14,

we can find the joint moment

PR = wf+a~ (5.18)

where we have assumed that (.T7 = ml] = f'l = O. It is now convenient to introciuce the

time series ,[i] = f[i] + w[i]. and the corresponding variance a;. :\lso~ we will need

to introduce the correlation between f and w: rH = wl/(O"ruaj). where the subscript

H denotes its relationship to the heat flux. Finally. let ,J.rIY = G.r/ay denote the ratio

of thp standard deviations of the quantities .r and !J. Lising these conventions and a

bit of algebra. \ve can write an expression for the correlation r = PR/(t7paR):

•
(.5.19 )

(.5.20 )

•

where a < fICJTJ!,u) ::s; 1 represents the loss of correlation due to the errar in the

profiler measurements. 0 < G(,:3mh . ,3,,1'1) ::s; 1 represents the loss of correlation due

to the trend in the RASS time series and the error on the R:\SS measurements, and

- L :::; F(~ Ilw. l'fi) ::s; 1 is the correlation between 1 = 1 + tu and w. In the mixed

layer. we have 0 < Jflw < L. and if '·H = 1. then F = 1; if rH = -1. F = 1: and F

reaches its minimum at l'il = - t,df1w, where F = l - ~,L3Jlw. Therefore, if pIlw = 0.:3,5.

a reasonable value for the rnixed layer, then 0.9:38 < F ~ L depending on the value

of rFl. Taking into account H and G then, a correlation of r ~ 0.9 is probably the

most we can reasonably expect in the rnixed layer of a CBL.

Figure .5.29 demollstrates how weIl the RASS correlation criterion serves as an

indicator of the accuracy of the vertical air velocity retrieva1. The soHd lines are the

correlation values between the untreated and treated vertical air velocities for the St­

Anicet data. They indicate how weIl the T~nN7 filter recovers the original vertical

air velocities, as a function of the spectral threshold. The correlation is very nearly
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unity for spectral threshold values greater than 30 dB~ which means that at this level

the TwIINT fUter does not substantially modify the spectral data. The slight initial

drop in correlation is due to the fact that as the spectral threshold value increases

beyond 0 dB, the resulting vertical air velocity time series does not change its overall

shape, but rather becomes noisier. This means that the joint moment PR does not

change. while a~ increases. which causes a slight reduction in correlation. The dashed

lines in Fig ,5.29 are the correlation values between the untreated R:\SS signal and

the treated air signal. \Ve see a reasonably good correspondence between the solid

and dashed lines. particularly for the lowest altitude. This may be due to the action

of turbulence and winds on the RASS measurements. which affect the higher range

gate n10re (see. for instance..-\ngevine and Ecklund (1994)). Another factor coulel be

the decrease of the signal-to-noise ratio with height of the air signal. Together. these

factors can help explain why at 5:3:2 m AG L. the R:\SS correlation criterion (dashed

line) starts at approximately .50% and attains a plateau at about 10 dB. while at L72

m AG L. it starts at 75% and attains a plateau at about the same level as the soliel line

(:30 dB). Therefore. it seems that when choosing an appropriate spectral threshold

leveL we should favor the RASS correlation criterion at the lower range gates.

Figure ,5.:10 shows the RASS-profiler correlation for various values of the spectral

threshold of a T~IIN7 filter. with (solid line) or without (dashed line) an X~IED5

lUter afterwards. for the l\IcGill data. Vvïthout the X~IED5 filter. the correlations faIl

rapidly after reaching their maxima which occur at 10 dB for 225 m and at .5 dB for

40.5 m and .j8.5 m. \Vith the XwIED.5 flIter. the correlation seems much less sensitive

to the choice of threshold, though peaking at about the same threshold values as

before. The initial increase in correlation is because at the low threshold values, we

allow more and more good spectral power values while still exluding bad values. The

subsequent decrease in correlation arises because at those threshold values we have

already allowed most or aU of the good spectral power values, and are beginning to

include bad values of ever increasing severity, as we saw in subsection :3.2.2 on the
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Threshold Tests for the St-Anicet Data
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Figure 5.29: The correlation (x 100) between the untreated RASS data and the
profiler data treated by a T~nN7 filter (dashed line) and between the untreated and
treated profiler data (solid line) for the St-Anicet dataset, as a function of the spectral
threshold and for three altitudes (bottom graph: 172 m AGL; center: :352 m AGL;
top: .532 fi AGL).
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threshold minimum filter. The consistently better result of the combined TNIIN7­

XwIED5 filter shows the ability of the median filter to select good Doppler velocity

values. Indeed. at the 225 and 405 m levels. the T~IIN7-XN[ED5filter almost reaches

90% correlation, the highest we can reasonably expect. Figure .5.:30 suggests that the

best spectral threshold values would be between 5 and la dB.

The perfornlance of the threshold median on the St-Anicet data is shown in Fig.

5.3l. As expected from the definition of the threshold median (subsection :3.2. ï). we

have a subset of points (~ 6.5%) that are always accepted as the normalized threshold

(v) tends towards zero. ~[ost of the missing points are recovered at L~ = l. and

essentially aIl are recovered at v =:2. \Ne will therefore set v = 2 in what follows to

insure that goocl Doppler velocity values are acceptecl. thereby satisfying the second

criterion mentioned previollsly..-\5 we will see. the wfeGill data have a greater time

scale than the St-Anicet data. which implies that the normalized variability within a

.S-point window should be less and that the TNIED.5 filter should be able to accept

more good points.

Structure and Evolution of the CBL

Figures .5.32 and 5.33 show. respectively, the range normalized c1ear-air reflectivity

over ~IcGiIl before and after the continuous RASS period. Figure 5.:32 shows strong

growth of the CBL beginning as early as 0900 EST, and continuing until the end of

the plot, when it reaches a height of approximately 1..5 km. This is in sharp contrast

\Vith the CBL over St-Anicet (Fig. 5.9). which only begins to grow significantly

arter 1230 EST. Figure .5.:33 shows a CBL approximately 1.8 km high at 1.5:30 EST,

remaining relatively constant until 1700 EST, when it begins to descend. Figure .5.:34

indicates a more or less uniform warming of the virtual potential temperature of the

CBL during the RASS observing period, with a mildly stable layer extending from

the ground up to about 0.:3 km AGL, and a broad maximum of potential temperature

between 0.5 and 0.7 km AGL. The temperatures were corrected using the vertical air
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Figure 5.30: The correlation (x 100) between the untreated RASS data and the
profiler data treated by a TrvnN7 filter only (dashed Line) and by a TMIN7 filter
followed by a X1tIED.5 filter (solid Hne), as a function of the spectral threshold and
for three altitudes (bottom graph: 225 fi AGL; center: 405 m AGL; top: 585 fi

AGL), for the ~lcGill data.
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Median Threshold Tests for the St-Anicet Data
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Figure .5.31: The number of points (in percentage) of the vertical velocity data for
St-Anicet, that are accepted by the threshold median TMED5 as a function of the
normalized velocity threshold (bottom: 172 m AGL; middle: :352 m; and top: 532
m).
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velocity fluctuations shown in Fig..5.35 prior to the half-hour running average and

median fil ter. The vertical velocity fluctuations in Fig. 5.35, obtained using a TNIIN7­

XNIED5 filter with a spectral threshold of .5 dB and a TNIED5 filter with v = 2. They

demonstrate the same sort of vertical structure as for the St-Anicet data. except that

the plumes are taller, more intense and longer lasting. The convection appears well

developed over the entire observing periode From aIl these observations. we conclude

that the CBL grew more or less constantly from 1.,j to 1.8 km. and possessed more

or less stationary statistics. over the continuous RASS observation periode Turbulent

statislics will therefore be compiled over the entire periode Contrary to the St-Anicet

data. no segmentation is necessary.

Data and Heat Flux Analysis

Here. we will use the sanle data analysis methods used for the St-Anicet data. while

bearing in mind the possible effects of ROSPA on the results. The appearance of the

vertical air velocity retrieval is evident in Fig. 5.:36. There is an obvions correlation

bet,veen the uncorrected virtual temperature (curve a) and the treated vertical air

velocity (curve b). 89% in facto particularly with respect to the major featl1res. ft

is interesting to compare the strength of the convection over ~[cGill with the rather

weak convection at St-Anicet. The corrected virtual temperature in curve (c). along

with the least-squares quadratic fit (smooth line in (c)). show a long-terro warming of

about :20 C over the :3t hour periode The fluctuations in the uncorrected temperature

time series. as much as 7° C in magnitude, are reduced to about 1°C on average in the

corrected virtual ternperature tirne series. However, curve (c) still shows important

temperature fluctuations, as rnuch as :3-4° C in magnitude, much stronger than in

the St-Anicet data. The urban CBL is usually driven by a greater surface heat flux

than the rural CBL, which is expected to create greater temperature fluctuations in

the urban CBL. Nevertheless~ we suspect that imperfect retrievals of the vertical air

velocities, along with errors on the RASS measurements caused by turbulence and
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Figure 5.32: Time-height plot of the range normalized clear-air reflectivity over
~lcGill on June 28, 1996, for the four hour period preceding the continuous RASS
measurernents .
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Figure .5.33: Time-height plot of the range normalized clear-air refiectivity over
j\JlcGill on June 28, 1996, for the four hour period following the continuous RASS
measurements.
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Figure 5.34: Time-height plot of the virtual potential temperature over NlcGill on
June 28. 1996.
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Figure 5.35: Same as in Fig. 5.34, but for vertical air velocity. Note that the solid
line is the zero velocity contour.
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winds, are aiso partIy responsible for the noisy appearance of the corrected temper­

ature time series. \Ve presume that this noise is also responsible for the appearance

of the virtual heat flux trace (curve dl. Instead of the intermittent bursts of positive

heat flux observed in the St-Anicet data, we have aimost continuaI bllrsts of heat flux

in either direction. \tVhiie the heat flux trace might actually be more turbulent over

the w[cGill site. we suspect this is due mainly to the errors in the vertical air velocity

and correctecl temperature time series.

Figure 5.3ï is a time-height contour plot of the virtual temperature fluctuations,

like the ones shown in Fig..5.:36( c), while Fig..5.:38 is a contour plot of the virtual

heat flux. the same quantity in the trace in Fig..5.36(d). [n these figures. we see an

overall vertical structure of the temperature fluctuations and heat flux that is con­

sistent with strong convection. Note. however. that there is a slight predominance of

negative heat flux between 0.4 and 0.6 km AGL over the observing period. Figure

.5.39 is a tin1e-height plot of the virtual heat flux quadrants. The structure of de­

scending cool air separated by thin walls of risiog warm air. visible in the St-Anicet

data. is not evident here. The updrafts to not appear ta be predominately warm. just

as the downdrafts do nat seem predominately cool. This coulel be due ta the noise

in the temperature fluctuations mentioned earlier, which would overwhelm the real

temperature fluctuations responsible for the heat flux. There could also be a question

of scale involved, namely that the CBL height is about 1.65 km AGL and that the

timescale is longer than at St-Anicet. Therefore, we do not see the entire vertical

extent of the CBL as we did in the St-Anicet data, and the observing time period is

proportionally shorter if we take into account the longer timescale. ~lore important,

however, is the possibility that the city induced a slowly changing circulation pattern

over the NlcGill RASS, like the kind described in section 4.2. Physically, this means

that rather than having a spatial pattern of cool descending air and warm ascending

air moving over us, we instead have a local circulation pattern caused by the city

that is not being advected over us. Therefore, Figs 5.37 to 5.39 may not represent
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Figure .5.36: Time series of (a) uncorrected RASS temperature. (b) vertical air
velocity, (c) corrected temperature, (cl) virtual heat flux, at 405 m AGL over ~IcGill

on June 28, 1996. Note that the vertical air velocity was treated with a T~nN7 fiiter
with a 5 dB threshoid, foUowed by a XlVIED5 filter.
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Figure .j.:37: Tirne-height plot of virtual temperature fluctuations over w[cGill. on
.June 28. 1996. Note that the solid tine represents the zero value contour.

a horizontal cross section given sorne advection velocity, but rather a changing local

circulation pattern over the NlcGill site.

•

Figures 5.40 and 5.41 demonstrate the spectral and correlation structure of the

NlcGiU RASS data. The windowing and smoothing performed on the power spectra

and cospectrum in Fig. 5.40 are identical to that done on the St-Anicet data. The

velocity spectrum has a broad maximum extending from 6 x 10-4 ta 3 x 10-3 Hz (6

ta 28 min periods) with a maximum at about 8 min. The slope at high frequencies

is steeper than 2/3, maybe due to a low-pass filter effect caused by the averaging
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Figure 5.38: Same as in Fig..5.37, but for the virtual heat flux. Note that the soUd
line represents the zero value contour.
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Virtual Heat Flux Quadrants
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Figure 5.39: Same as in Fig. 5.37, but for the virtual heat flux quadrants. Note
that, PU = positive virtual temperature fluctuation and upward vertical velocity
fluctuation, NU = negative-upward, PD = positive-downward, and ND = negative­
downward.
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of the pulse volume, as was explaîned in the section on the St-Anicet data. Note

that beyond about 10-2 Hz, the velocity spectrum displays a positive slope of about

1. This may mean that at those frequencies the spectral power is dominated by the

vertical velocity measurement errors (white noise spectrum). Also~ in Fig..5A1(a)

we see that the vertical air velocity has a timescale of about 6 min and a standard

deviation of 1.5 nI/s. which are significantly greater than the corresponding values

for the St-Anicet data (2-:3 min and 0.6-0.8 m/s~ see Figs..5.18(a) and .S.19(a)). The

temperature spectrum in Fig. 5AO( a) appears to be strongly contaminated by mea­

surement errors (white noise). as we would expect from our previous analysis. which

rnakes the identification of a peak unreliable and increases the uncertainty of the

heat flux estimates. Further evidence of white noise in the temperature time series is

seen in the rapidly decreasing autocorrelation function in Fig..SA1(a). The heat flux

cospectrum in Fig. .5AO( b) shows a sizeable peak. almost 2.50 'vV lm}. at its maximum.

between 10-3 and 2 xl 0-3 Hz (8 to LÎ min). Just as for the St-Anicet data. the peak

is much greater than for the aircraft copsectrum (85 'vV1m2 ), but with important

negati 'le components. ~ote that the cospectrum in Fig. .5AO( b) was not subject to

a Hamming window since this procedure made the integral of the cospectrum (total

heat flux) artificially negati 'le.

Figure .5.42 shows profiles of vertical air velocity variance~ and Fig. 5A3 shows

profiles of vertical air velocity variance flux, for both wlcGill RASS and aircraft mea­

surements. Figure .5.42 shows that there is good agreement between the later aircraft

profile (diamonds with dotted lines) and the RASS profile (squares with solid lines)

up to about 0.5 km. This gaod agreement may be deceptive, hawever, given that

the aircraft detects eddies which are averaged out over the resolution volume of the

profiler. The dashed Line represents the sum of the variance and the average of the

c1ear-air spectral variance, same as the dashed line in Figs. .5.20 and 5.21 for the

St-Anicet data. However, given the c1utter contamination of the c1ear-air measure­

ments, the spectral variance is quite unreliable, which explains the erratic shape of
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Figure 5.40: Power spectra and cospectrum of the RASS data at 405 fi AGL from
1200 to 1530 EST. Graph (a) shows the power spectra of the vertical velocity (solid
Hne), and the virtual temperature (dashed line), multiplied by the frequency and
divided by the variance, that is, fS(f)/(j2. Graph (b) shows the cospectrum of the
vertical velocity and the virtual temperature, multiplied by the density, specifie heat.
and frequency, that is, pep!SwT(f).
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Figure .5.41: Virtual temperature (a) and vertical velocity (b) autocorrelation func­
tion for RASS data at 405 m AGL from 1200 to 1.530 EST. Note the corresponding
stantard deviations, u, in the upper righthand corners. The squares represent the
discrete lags, 22 s apart, and the dotted 1ine represents the 1/e value (0.3679) of the
correlation.
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the dashed tine. ROSPA was designed to find only the mean Doppter velocities of

clear air; it cannot estimate the second-order moments of the cLear air spectra with

any accuracy. We therefore cannot use the dashed line as a rough estimate of the

total variance. Be that as it may~ the RASS variance profile (squares with soHd lines)

is roughly what we expect from the idealized profiles in Fig. 4.6, which is a srnooth

curve with a maximum at about DA =i. Given =i ~ 1.65 km. we expect a maximum

at about 0.6.5 km. which is consistent with the observed profile. taking into account

the erraI' bars.

The fluxes of vertical air vetocity variance in Fig..5.4:3. and heat in Fig..5.44 are

unexpected. The RASS vertical air velacity variance flux is nat positive at aIl alti­

tudes, which is the case for the aircraft variance flux profiles. but instead is negative

below O.ï km with a minimurn between 0.4 and 0.6 km. There is therefore a flux

convergence of vertical air velocity variance below 0..5 km. and a divergence above

that leveL Similarly, the RASS virtual heat flux in Fig. 5.44 shows a sudden decrease

in heat flux between 0.4 and 0.6 km. One suspects that the heat flux decrease may

be due in part ta the effect of turbulence on the RASS temperature measurements.

vVe will attempt to correct for turbulence later. Hawever. the erfars on the RASS

temperature measurements do not explain the shape of the variance flux profile in

Fig..5.42. It is possible that these flux profiles rnay he due to an imperfect retrieval by

ROSPA. As Fig..5,45 shows, though, varying the spectral threshold for the TNIIN7

filter from 5 to 10 dB, the range where T~IIN7-X~[ED5 is optimal, does not sig­

nificantly alter the heat flux values. considering the error on these estimates. The

same can be said about the variance flux profile~ though this is oot shown in a figure.

Another explanation for the unexpected profiles in Figs. 5.43 and .5,44~ would be the

horizontal advection of virtual temperature and TKE caused by changes in surface

temperature, roughness and moisture. Indeed~ the urban area immediately around

the McGill site is a patchwork of high-rise and low-rise buildings, parks, a wooded

hill, not to mention a river less than 2 km upwind. We must also consider the possible
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Figure 5.42: Profile of vertical air velocity variance, with error bars, for McGill
RASS data (squares). The dashed line is the RASS vertical air velocity variance plus
the average Doppler velocity variance of the clear-air spectra. Also shown are the
vertical air velocity variance profiles for aircraft data (diamonds), from 1155 to 1235
EST (solid line) and from 1247 to 1335 EST (dotted Hne) .
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local circulation induced by the urban heat island. which may cause temperature and

TKE advections of its own. AIl these factors may cause virtual temperature advec­

tions much greater than those measured along the aircraft runs over essentially rural

terrain (~ 10-2 K/hr (Potvin et aL 1997)). See Kaimal and Finnigan (1994) for a

review of the effects of complex terrain on boundary layers.

Two important features of the heat flux profiles in Fig..5.44 are the surface virtual

heat flux. obtained by the intercept at the ground of the linear least-squares fit to the

profiles. and the rate of warming of the C'BL implied by the slope of the linear fit. Note

that only the first five heat flux estimates of the RASS profile are used for the linear

fit. since we assume that the RASS temperature measurements are reliable at those

altitudes. vVe also assume that the heat flux profile should have an approximately

linear form fronl about O.L:; to about O.S,:';. as shown in Fig. 4.6. Since we estimate

,:'i ~ 1.6.) km over the ~,IcGill site, the first five RASS heat flux estimates fall within

this range. By inspection of Fig. 5.44, the linear profile hypothesis seems to be

appropriate for the aircraft heat flux profile as well. The RASS surface heat flux i~

52:3 ± 239 VV1m2
• and 146 ± 0.ï7 VV lm'}. for the aircraft. The R:\SS surface heat flux

value is approximately :3.5 times greater than the aircraft value. This is consistent

with the finding by Hildebrand and :\ckerman (1984). that the urban surface heat

flux is 2-4 times greater than the rural surface heat flux. Also noteworthy is the large

error on the RASS surface heat flux value, ± 2:39 VV1m2
, compared with the aircraft

errOL ± O.ïï VV1m2
• Possible reasons for this difference with be discussed in greater

detail in chapter 6. The negative slopes of the linear fits implies a convergence of heat

flux for both profiles. If we assume no horizontal virtual temperature advection. then

the heat flux convergence may he transformed into a warrning rate by the formula

aou _ -1 aHv s
at - PCv 8z +

where Ou is the virtual potential temperature, Hu is the virtual heat flux, P is the

density of air, Cp is the specifie heat of dry air at constant pressure, and S is the

SUffi of latent heating, net radiation and potential temperature advection, which we
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Figure .5.43: Same as in Fig. 5.42, but for the vertical air velocity variance flux.
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assume S = O. The RASS heat flux profile yields a warming of 2.36 ± 2.53 K/hr~

while the aireraft gives 0.:329 ± 0.004 K/hr. Obviously, the virtuai temperature time

series shown in Fig. 5.36( e) does not demonstrate a warming of 2.:36 K/hr, nor does

the virtual potentiai temperature contour plot in Fig..5.34. A warming of about 0.5

[(/hr over the NIeGill site is more realistic. The discrepancy may be explained by the

uneertainty on the RASS warming rate. but also there is the possibility of signifieant

temperature advection over the urban site.

Temperature Correction for Turbulence

'vVe will now apply the temperatul'e correction for turbulence ta the ~IcGill data

mainly for the sake of consistency with respect ta our tl'eatment of the St-Anicet

data. As we will see. the clear-air spectral width estimates for the ~IcGill data are

very uncertain. making the temperature correction not entirely appropriate for this

dataset. The normalized clear-air spectra over ~IcGill. shawn in Fig. .5.46. were

treated with a T:YIINï filter with a 7..5 dB threshold. folhved by the spectral noise

suppression. ground clutter removal ancl peak identification algorithms. The X;\IED5

and the T~IED.) filters were not tlsed here as they cleal only with the mean Doppler

velocities, not the spectra themselves. The clear-air spectl'a show an updraft from

:22.5 ta :345 m AGL. and a clowndraft at 40.) ID AGL. At 46.5 m AGL~ however. we see

a bimodai spectl'um with one peak aligned with the peak at -10.5 m. and the other

centered at about +:3.5 mis. 'vVe suspect that the second peak at 465 m is intermit­

tent clutter that survived the filtering algorithms. The resulting bimodal spectrum

has an artificially wide spectral width, which will adversel}' affect the turbulence tem­

perature correction. The cIutter aiso affects the cIear-air spectra at .j25 and .585 m

AGL. Only at 645 m AGL do we l'ecover the downdraft. The RASS spectra seem to

confirm the hypothesis of an updraft at low levels and a downdraft above, given the

decrease of the RASS velocities between 345 m to 525 m AG L.

The c1utter, therefore, has two effects on the spectral profiles in Fig. 5.46. First,
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Figure 5.44: RASS (squares) and aircraft (diamonds) profiles of virtual heat flux
(pCp(Po/p)"'w'T~), with error bars. The dotted Hue is the least squares fit of the
aircraft heat flux values, which yields a surface heat flux (zero intercept) of 146 ±
0.77 W/m2

• The slope of the line implies a warming of 0.329 ± 0.004 K/hr. The
goodness-of-fit of the dashed line is 91 %. The soUd line is the least squares fit of the
first five RASS virtual heat flux values. The surface virtual heat flux is 523 ± 239
W/m2, and the warming is 2.36 ± 2.53 K/hr. The goodness-of-fit is 3.7%.
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Figure .5.45: RASS virtual heat flux profiles where the clear-air spectral data is
treated with TNIINi and X~IED5 filters, with different values of the spectral threshold
for the TrvIIN7 filter. The TrvIIN7 threshold is 5 dB (dashed line), 7.5 dB (solid Hne)
and 10 dB (dotted line). Note the errors bars on the 7.5 dB lîne.

162



•
765 m 1

705 ID

645 ID

585 ID

1.0 525 ID
~

~
a
C.

't' 465 ID
~

~
:a• E
1.0 405 IDa

Z

345 ID

285 m

225 ID

165 m

CLEAR AIR

June 28, 1996. at 14h12m39s EST

RASS

-5.0 -3.0 -1.0 1.0 3.0 5.0 338.0 336.0 340.0 J4~.0 344.0 348.0

•

Doppler velocity (mis)

Figure .5.46: Clear-air (left) and RASS (right) spectra over NlcGill, at 1413 EST.
Note that the spectra are stacked as a function of altitude (in meters AGL). AIso, the
spectra are normalized sa that the maximum of each spectrum reaches the top of its
display rectangle. The clear-air spectra were treated with a T~IIN7 fUter with a 7.5
dB threshold and ground dutter removal. The verticalline in each spectrum denotes
the mean Doppler velocity (v), the horizontalline the spectral width (2uv )'
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by creating an erroneous positive vertical air velocity between 465 and 585 m, it also

creates a falsely negative temperature fluctuation when we correct the RASS tempera­

ture for vertical velocities. The result is an erroneously negative heat flux fluctuation.

Second, the dutter creates artificially wide clear-air spectra at those heights, which

causes an artificially high turbulence temperature correction value at that time. These

effects can be seen in Fig..5,47. The c1utter in the profiles in Fig..5.46, corresponds

ta the large negative temperature fluctuation at L413 EST, in Fig. 5A7(a), and the

large turbulence temperatllre correction value at the same time. in Fig. ,5,4ï( b). The

same thing happens, to a lesser extent. at L:24:3 EST. So in cases like these. the tur­

bulence temperature correction makes the temperature fluctuations more inaccurate.

Nevertheless. the positive temperature fluctuations at L:32.5 and 1515 EST do have

corresponding turbulence temperature correction fluctuations at the same times and

with roughly comparable magnitudes. This indicates a certain degree of effectiveness

of the method by Peters and .-\ngevine (1996) under these conditions. Also note that

if the clutter created an artificially negative velocity fluctuation. it would lead to an

artificially positive temperature fluctuation. which would lead to a falsely negative

heat flux fluctuation. It is not certain if the turbulence temperature correction would

adequately compensate in this case.

We see the effect of the turbulence temperature correction on the virtual heat

flux profile in Fig. 5.48. .J ust as for the St-Anicet heat flux profiles, the turbulence

correction has little effect, with respect to the error bars in Fig..5.44, on the virtual

heat flux profile. Note, moreover, that the heat flux values between 450 and 600

m AGL are noticeably more negative with the turbulence correction, although still

within the error range. This may mean that the remaining clutter and inaccurate

clear-air spectral widths combine to make matters worse in that height range when

the correction is applied.
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Figure 5.47: The virtual temperature fluctuation (a) and the turbulence temperature
correction (b) time series for wlcGill, at 585 m AG L.
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Figure 5.48: A comparison of the virtual heat profile for J\tIcGill with (dotted Hne)
and without (solid rine) the turbulence temperature correction
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5.4 Synthesis

This chapter began with an overview of the type. characteristics. and location of the

instruments used on the afternoon of June 28. 1996, during the N[ER~[OZ project.

The c1ear, calm and convective conditions on that afternoon were examined using

radiosonde. surface station. and \vind profiler data. The spectral. co~pectral. and

correlation structure of the aircraft data were also examined. The clean. clutter

free data collected by the profiler/RASS located at St-Anicet were then analyzed.

Specifical1y. we examined the time-height structure of the clear-air reflectivity. vir­

tuaI potential temperature and vertical air velocity. This revealed a nonstationary

CBL within the observing period. The spectral. cospectral and correlation structure

of the St-Anicet data were analyzed. along \Vith profiles of virtual heat flux. vertical

air velocity variance and variance flux. which were compared with the corresponding

aircraft profiles. :\ method for correcting the errors due ta turbulence on the RASS

temperature measurements was tested on the St-Anicet data. For the J\lcGill data.

the clutter removal algorithm. ROSPA. was first calibrated ta give the optimal per­

formance on this dataset. Subsequently. the ~lcGill data were analyzed in the same

way as the St-Anicet data.

During the course of these analyses. many issues were brought up which deserve

an in-depth discussion. Among these is the comparability of profiler/RASS mea­

surements with aircraft measurements. N[ore important is the relationship between

timescales measured by the profiler/ RASS and the spatial scales measured by the

aircraft: namely, the validity of Taylor~s hypothesis in a CaL. AIso, issues such as

the effects of detrending, space and/or time averaging, and nonstationarity on the

estimates of turbulent and mean properties deserve to be discussed. Finally, issues

relating specifical1y to the RASS data from the NlcGill site should be analyzed. Fore­

most among these are the possible effects of the urban environment on the estimates of

turbulence statistics. These topies, and suggestions for future \York, will be discussed

in chapter 6.
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Chapter 6

Discussion

In arder ta obtain a more comprehensive view of the results presented in chapter 5.

we should now examine sorne of the issues relating to them. First. we will discllss

the problerns associated with RASS-aircraft turbulent flux comparisons. and how

they relate specifically ta the RASS profiles over St-Anicet and NlcGilL Second.

the possible effects of the variolls data processing operations on the profiles will be

investigated. Lastly, we will suggest various tapies for future work.

6.1 RASS-Aircraft Comparison

In the previous chapter. aircraft profiles were used as the standard by which we

would judge the corresponding RASS profiles. However, estimates of turbulent quan­

tities from aircraft data also suffer from errors and uncertainties. As Angevine et al.

(1993b) argued, sorne of the differences between RASS and aircraft profiles are due

to their different kind of samplings of the CBL. In fact, RASS-aircraft comparisons

have many points in common with tower-aircraft comparisons, the characteristics of

which are described by Desjardins et al. (1995) and Mahrt (1998), among others. In

this section, we will review the various sources of error for aircraft and RASS, and

discuss how they relate to our results.
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6.1.1 The Aircraft Data

The Twin Otter research aircraft flux measurement system is a mature platform,

which has been compared favourably with other aircraft on nurnerous occasions~

and was acknowledged as the comparison standard for aircraft measurernents in the

BüREAS experiment (Dobosy et al.. 1997). Nevetheless. given that aircraft measllre­

ments are usually taken over long distances at constant altitude. and over relatively

short time periods. the aircraft statistics are basicaHy spatial statistics. Since vir­

tually aIl land surfaces are heterogeneons to one extent or another. this means that

the aircraft flies over different types of terrain. Aircraft statistics are therefore com­

posites over varions terrain types. This effect is strongly dependent on the altitude

of the aircraft run. The higher the aircraft. the farther upwind the terrain may be

which contributes to the measurements. For example. even at ;30 nl above ground.

significant horizontal transport may occur on scales larger than :) or lO km (~[ahrt.

1998).

Aircraft flights may not be completely level due ta vertical displacements of the

aircraft by turbulent motion and the difficulty of maintaining a constant altitude over

changing terrain. If the quantity being measured has a rnean vertical gradient. then

variations in altitude will lead to artificial fluctuations in the aircraft time series.

Sorne of the long (about .5 km) virtual temperature fluctuations in Fig..5.6(b) may

he due to altitude variations of the aircraft. This effect is compensated for in the heat

flux calculations by using the virtual potential ternperature (!VlacPherson. 1990), be­

cause that quantity is not expected ta have a mean vertical gradient in the rnixed

layer of a CBL. Also, nonstationarity may appear in the aircraft data because of

large scale horizontal gradients, or possible drifts in the aircraft navigational systems

used to compensate for the aircraft motion in wind measurements. These drifts are

compensated for during post-processing, as mentioned in section 5.1, but that still

leaves the question of large sca1e vertical motion and temperature gradients. We will

discuss different ways of eliminating nonstationarity in subsection 6.2.1.
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vVe end this subsection by mentioning certain features of aircraft measurements.

The first is the scale of the individual measurements. \Vith respect ta the profiler

resolution volume and integration times, the individual aircraft measurements are

essentially instantaneous averages along a thin line about 5 meters long. :\lso. since

a given aircraft run is :30-:3.5 km long. each run most likely samples a large nllmber

of coherent structures. namely thermal plumes in the case of a CBL. Since it is the

thermal plumes that are considered to be largely responsible for the fluxes in the CBL.

the aircraft should obtain reliable flux estimates provided that the flux statistics are

relatively homogeneous over the length of the l'un.

6.1.2 The St-Anicet RASS Data

The agreement between the St-Anicet RASS and aircraft profiles of virtual heat flux

is good~ but only within a limited altitude range and for the second half of the RASS

data. In general. cornparisons between aircraft and tower fluxes reveal that aircraft

sensible heat flux values are usually less than tower values (Desjardins et al., 199.5~

Nlahrt~ 1998), but this is perhaps attributable to the differing footprints of the mea­

surements. .J llst as an aircraft may fly over many different terrain types~ a RASS or

tower may he subject to those types of terrain that predorninate locally. Of course.

the 'field of view' of the RASS, that is the surface area that contributes to the flux,

may increase with altitude. However, the field of view of the RASS also depends on

the characteristics of the convection carrying the flux. \Vith weak winds and signif­

icant local surface heating, stationary convective eddies might develop close to the

RASS and create a more or less local, nonadvecting and stationary circulation over

the RASS. This Îs not expected to be a problem for the St-Anicet RASS site, but as

we will see, may pose a significant problem for the NlcGill RASS site.

The discrepancies observed in Figs. 5.24 and 5.25 between the heat flux profiles
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measured by RASS and aircraft, could also be explained by spatial differences be­

tween the observations. The aircraft runs were 35 km long, and no doser than 30

km to the St-Anicet RASS site. A greater boundary layer thickness at the location

of the aircraft l'uns could explain why the aircraft virtual heat flux profiles never

become negative. For example, the highest aircraft flux l'un shown in Figure .j.25, at

an altitude of 870 m, occurred approximately :300 m below the CBL height estimated

from the aircraft data. where one could reasonably expect either positive or negative

fluxes. Indeed, as Barnes eL al. (1980) showed, the variability of the boundary layer

may cause different results from different instruments even when conditions are more

favorable than for this case. A difference in CBL height may aiso help to explain the

different shape of the aircraft vertical air velocity variance profiles in Figs. 5.20 and

.j.21, with respect to the St-Anicet RASS profiles.

Furthermore, the horizontal wind speed during the observing period was very weak

at allievels, making it questionable to assume the equivalence of temporal and spatial

statistics (Taylor's Hypothesis). If we define the integral scale as the lag where the

autocorrelation function falls to Ile. (see Teunissen (1980), for the relative merits of

di fferent integral scale retrieval methods), then Fig. .5.8( b) gives an integral spatial

scale of the vertical velocity of about 190 m, and Fig..5.19(b} gives a temporal time

scale of about 11 0 s. The ratio of these scales yields 1.7:3 mis as an advection veloc­

ity, which is comparable ta the horizontal wind at that altitude. Nevertheless. there

is every reason to expect that the eddies evolve considerably as they are advected

over the RASS. The -frozen turbulence' assumption is thus undermined. Under such

conditions, Antonia et. al. (1980) dernonstrated that the temporal spectra of a given

quantity are related to the spatial spectra by a complex convolution involving the

horizontal velocity spectrum. This may help to explain the different forms of the

aircraft and RASS cospectra.

Furthermore, under weak wind conditions, relatively few convective eddies will
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pass over the RASS during a given observation period. Therefore, over an averaging

time of 1t hours, RASS probably does not sample as many thermal plumes as a ;JO

km long aircraft run. InsufEicient sampling explains why the RASS error bars are

consistently larger than the aircraft error bars. Reliable estimates of the flux require

long averaging times, but these are not feasible because of the nonstationarity of the

data (Lippmann et al.. 1996). Despite all the problems, the agreement between air­

craft and RASS below 500 m, and in the second halE of the observation period. is

good. This suggests that the l'egime of large eddies ancl plumes in the rnixed layer

was sufficiently strong, persistent and widespread to allow a meaningful comparison

between the aircraft and thp St-Anicet RASS. Therefore. the low cost. high reach and

easy application of the RASS make it an invaluable tool for boundary layer research.

:\s mentioned previously. the profiler/RASS measurements are weighted averages

over the l'esolution volunle and the integration tin1e. [t is therefore not obvious how

the aircraft data may be processed in order ta resemble profiler data. Simplyaveraging

the aircraft data over the width of the resolution volume seems unlikely to recluce the

variabili ty of the aircraft data to match that of the profiler data. :\n instantaneous

line average the size of the width of the resolution volume is still not equivalent ta the

profiler space-time average. The instantaneous line average therefore has a greater

variability than the profiler measurements, and the aircraft vertical velocity data

would still possess a greater variance, as in Figs..5.20 and 5.21.

6.1.3 The McGill RASS Data

The NfcGill RASS site is located towards the southeast of the center of an urban

agglomeration. The J\tlontreal urban heat island is precisely the kind of local surface

heating, mentioned previously, that can cause a stationary convective eddy. Indeed,

the mesoscale circulation around a city, described in chapter 4, is an example of a

stationary eddy. A stationary eddy can cause problems: it obviously transports heat

and TKE, but the eddy-correlation method requires that we remove the average of
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Figure 6.1: Wind profiles over J\JcGill taken by the profiler, on June 28, 1996.
Profile .4. is a consensus average the one-hour period preceding the continuous RASS
measurements (1100 ta 1200 EST), while B is for the halE-hour fol1owing the RASS
measurements (15:30 ta 1630 EST). A half barb represents 0.5 rn/s, a full barb 1 rn/s,
and a triangle .j rn/s.
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the time series prior to computing the flux. For RASS data~ removing the average of

the time series is the same as removing the flux due to the stationary eddy. Following

NIahrt (1998), we will use the example of heat flux, H = wO = lO'O' + lo fi, where the

overbar denotes here an average over a wide area, and the primes denote the deviation

with respect to that average, lo' = lU - w, B' = B- O. If we assume w = O. then

where HR =< ..lw'~O' > is the heat flux measured by the RASS. This flux. therefore.

does not necessarily correspond to the area averaged heat flux. ffR = H - < w' ><

0' >. which we take to be the true heat flux. These considerations also apply ta the

vertical velocity variance flux.

The RASS measllrements are taken at one location over time. If the RASS is located

in the vicinity of a stationary convective eddy, then the time averaged vertical veiocity

< lo' >f: 0 over the RASS. The time averaged vertical velocity, < w' >. can therefore

be a function of position. Defining ..llo' = lo' - < w' >. and likewise for 0'. then we

can state

•

ff = lO'O'.

H = HR+ < w' >< 0' > .

(6.1 )

(6.2)

•

The wind profiles over ~[CGill. shown in Fig. 6.1. suggest the presence of the

kind of mesoscale circulation around a city, shown in Fig. 4.:3. \Vinci profile B, in

particular. is in sharp contrast with the St-Anicet wind profiles, in Fig..5.2. The iater

St-Anicet winds (profile B) are generally from the east. while the later wlcGill winds

(8), between 1.5 and 2 km, come from the west. This might be a manifestation of

the divergence of the mesascale circulation near the top of the CBL, assuming that

the center of the circulation is ta the west of the NlcGill site. The height of the CBL

over NIcGill after the RASS observation period was 1.8 km. which is approximately

the altitude of the winds barbs in profile B. Profile .4 in Fig. 6.1 is harder ta explain.

The wind profiles in Fig. 6.1 must be interpreted with caution, however, given the

contamination of the profiler data at the 1'IcGill site. Gnly the consensus averaging
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Figure 6.2: The profile of the average vertical air velocity over NlcGill, on .June 28,
1996. The average was performed over the continuous RASS observation period, from
1200 to 1530 EST.
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algorithm was used to eliminate outliers from the wind profiles (ROSPA was designed

for profiler data operating in eontinuous RASS mode). The intermittent c1utter can

reaeh as high as 1.5 km (the white patehes in Figs. 5.32 and 5.33), and the wind

barbs can change appreeiably as we change the consensus averaging parameters or

the averaging period. Nevertheless, the winds in profile B between 1.,5 and 2 km

should be relatively reliable.

Figure 6.2 shows the profile of the vertical air velocity averaged over the RASS ob­

servation period (1200 to 1.5:30 EST) over the :YlcGill site. This therefore corresponds

to a profile of < w' >. vVe see that the vertical velocity is everywhere positive and

bas a broad maximum between DA and 0.6 knl. almost reacbing 0.9 mis at its peak.

The altitude of the maximum corresponds roughly ta the region of the very negative

virtual heat flux in Fig..5.44. and the negative vertical air velocity variance flux in

Fig. 5.43. It therefore seems possible that the unexpected flux profiles in Figs..5.44

and ,5.4:3 are a result the fluxes due ta a stationary convective circulation which are

oot taken into account by the eddy-correlation method. We could. in theory. correct

the virtual heat flux profile in Fig. 5.44 by adding to it the product of the profile in

Fig. 6.2 with the profile of < (J' >, as in Eq. 6.2. The profile of < 0' > is the time

average of a potential temperatllre spatial anomaly. presumably the urban heat islancl

intensity profile. similar to the one in Fig. 4.-l( cl). The correction can be very sensitive

to the choice of < 0' >, however. which we do not know very precisely. In addition.

we must also use the profile in Fig. 6.2 with caution. :\ccording ta Angevine (1997),

the vertical air velocities measured by a profiler may contain significant systematic

errors. The systematic errors are always negative, between approximately -0.25 ta 0

rn/s, and vary with respect to altitude, time of clay, and clay of the year. Angevine

suggests that the error may be due to falling particulate scatterers in a CBL.

\Vith respect to any comparison between the aircraft data and the ~IcGill RASS,

it seems obvious that Taylor's hypothesis cloes not hold if there is in fact a stationary
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circulation above the ~rcGiIl site. The stationary circulation can also adversely affect

the ~rcGill RASS's sarnpling of the therrnals in the CBL. It may also help to explain

why the vertical velocity timescale over ~IcGill (6 min) is greater than the St-Anicet

timescale (2-:3 min). This inadequate sampling of the CBL over ivIcGili. along with

imperfect vertical air velocity retrievals by ROSPA. and the effect of winds and tur­

bulence on the RASS temperature measurements. may explain the large errors in the

RASS heat flux estimates compared with the errors on the aircraft estimates in Fig.

.5.44.

6.2 Data Processing

6.2.1 Removing Nonstationarity

Both the RASS and aircraft data may contain nonstationarities in the mean. The

aircraft might fly through a large scale horizontal gradient, while the warming of the

boundary layer may cause a nonstationary RASS temperature time series. How we

remove the trend can affect the shape of the power spectra. cospectra. and covariance

functions of the time series (Kaimal and Finnigan. 1994). This, in turn. can affect

estimates of integral scare. variance and heat flux. A quadratic least-squares fit was

used to remove the nonstationarity from the St-Anicet and ~IcGill corrected virtual

temperature time series. The fit for the St-Anicet data in Fig. ,5.12(c) is convincing,

but the fit for the NIcGill data, in Fig..5.:36( c). is less sa. Indeed, a linear least-squares

fit in Fig. 5.:36 might seem just as appropriate, but would yield a different heat flux

value.

Nonstationarity in the aircraft data was removed using a high-pass lllter that

strongly attenuated any signal component with a wavelength of 12 km or greater.

High-pass filters have the advantage of being simpler and their effects on spectra

are weIl understood. However, there still remains the choice of the wavelengths ta

attenuate. Using only signal components with a wavelength 12 km or less assumes
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that mesoscale motions make no significant contributions ta the flux, which may or

may not be true. AIL we can say with certainty is that removing nonstationarities is

somewhat arbitrary and may lead to bias (Nlahrt, 1998).

6.2.2 Ground Clutter Removal

As we explained in subsection :3.2.4 on ground clutter removal. aIl ground clutter re­

moval algorithms perform poorly when the vertical air velocity is equal or very close

to zero. Figure 6.:3 shows an example of the effects of the ground removal algorithm

on the clear-air data over St-Anicet. The untreated data (curve a) is already free of

ground clutter. \Vhen we apply the gronnd clutter removal. we see that the points

that were originally equal or close ta zero in curve (a) get 'pushed' away from the

zero velocity line. in both directions. The reason is that if we have a clear-air power

spectrum with no ground clutter and a peak near zero. +0..5 mis say, but that also

'spreads' over the zero Doppler velocity bin and into the negative velocities. then the

ground clutter removal algorithm usecl here will eliminate the spectral components

on the negative Doppler velocity side, as well as remove sorne spectral po\ver from

the positive Doppler velocity sicle. The end result is a power spectrum with spec­

tral power on the positive sicle only. The mean of the treatecl power spectrum will

be further from the zero Doppler velocity bin than the untreated mean. The same

reasoning applies to negative mean Doppler velocities. It aiso follows that a power

spectrum with a peak far enough from zero so that it does not cross over to the other

side, is unaffected by ground c1utter removal.

As Fig. 6.:3 shows, the ground clutter removal algorithm induces distortions in the

vertical air velocities. Of course, if ground clutter is present. and the ground clutter

removal algorithm is not applied, then the vertical air velocities will he to close to

the zero velocity Line, which is another kind of distortion. Since we determine the

temperature fluctuations by subtracting the vertical air velocities from the acoustic

velocities, these distortions can influence the temperature fluctuations and, in turn,
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the heat flux values. For the NlcGill data, we chose to remove the ground dutter

because we estimated that the distortions caused by removing ground dutter \Vere

less detrimental than those caused by the ground dutter itself. The reason is that the

distortions caused by the ground c1utter rernoval algorithrn decrease with increasing

magnitude of the velocity. Therefore. not aH of the vertical air velocities are seriously

affected. If we do not remove the ground dutter. more vertical velocity values would

be affected. even taking into account the peak identification algorithm (subsection

:3.2..5). That is because almost any overlap between the ground c1utter and clear­

air power spectra will cause the peak identification algorithm to include both. and

even if the power spectra are weIl separated. the peak identification algorithm may

still isolate the ground clutter spectrum if its peak power value is greater than that

of the clear-air spectrum. vVe condude. therefore~ that ground dutter removaI is a

compromise between two types of distortions. \Vhether it is worthwhile depends on

the presence and the strength of the ground clutter.

6.3 Future Work

The following are suggestions for future work. These suggestions are meant ta draw

attention ta certain problems encountered in this thesis, and to possible solutions.

AIso. we wish ta suggest ways ta expand on. and go beyond. the work already done.

6.3.1 Improving ROSPA

ROSPA is, by necessity, an exclusively post-processing signal processing algorithm.

This is because, for the wlcGill profiler/RASS, none of the on-Hne signal processing

steps (coherent integration, windowing, FFT, spectral averaging), do anything ta re­

duce or eliminate clutter, with the possible exception of the DC filtering. Therefore,

ROSPA could only use power spectra obtained after the on-line signal processing. As

we have seeu, however, the St-Anicet profilerjRASS on-line signal processing program

uses the SAlVI algorithm to eliminate intermittent clutter. This opens the possibility
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that ROSPA could improve if used in conjunction with an on-Line dutter suppression

algorithm, such as SA~I, and/or the various kinds of time series processing done prior

to, or in place of, the FFT (wavelets, digital filters~ polynomial fits. see subsection

3.1.2).

But even without on-line algorithms. there is certainly room for improvement. A

better ground dutter removal algorithm might be devised. for instance. without the

distortions mentioned previously. ~Iany different kinds of non-linear digital filters. not

necessarily based on order statistics. are available ta us (Pitas and Venetsanupoulos.

1990; Astola and Kuosmanen, 1997). AlI we require is that. based on order statis­

tics or not. the outputs of these filters must be robust wi th respect to outliers (see

Rousseeuw and Leroy (1987) for an simple and intuitive introduction ta the use of

robust statistics for real data).

ROSPA uses two threshold parameters: a multiplicative threshold on the spectral

data. used for the TJ\;IIN filter. and an additive threshold on the mean Doppler

velocities. used for the TwIED filter. both of which must be calibrated for each dataset

with the help of good RASS velocity data. :V[ore sophîsticated threshold schemes can

therefore be used, though one must try to keep things as simple as possible. AU of

the improvements just mentioned might benefit from the use of fuzzy logic methods

(one application of which was described in subsection :3.1.2). For example, one may

use membership functions instead of the thresholds just mentioned.

6.3.2 Improving the Turbulence Temperature Correction

The temperature correction for turbulence, proposed by Peters and Angevine (1996),

gives less than satisfactory results, at least with respect to short term temperature

fluctuations. We saw this in the St-Anicet data, for which the temperature correction

appeared ta be an order of magnitude too small. Applying the temperature correction

ta the McGill data only made matters worse, although this was mainly due to poor
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spectral width retrievals by ROSPA. However, an adequate correction for turbulence

may help in heat flux estimates and the cali bration of ROSPA.

The turbulence temperature correction method employed in this thesis used ex­

clusively the spectral width of the clear-air spectra. [n facto Peters and Angevine also

took into account the effect of the horizontal wind on the temperature correction.

For both the St-Anicet and ~IcGill data. however. the horizontal winds were light,

and not known very preci~ely. during the RASS observation periods. The horizontal

winds were therefore neglected.

Peters and Angevine assumed that the turbulence above the RASS was bath ho­

mogeneous and stationary. and that it was evident mainly in the spectral broadening

of the clear-air Doppler spectra. This did not take into account the inhomogeneities

and nonstationarities caused by the coherent structures in a CBL. It is entirely plau­

sible that the shearing and shifting of the winci field brought on by a thermal can

h;tve important effects on the measured RASS temperature. Therefore. it seems that

a more complete account of the effect of turbulence on RASS temperature measure­

ments should include the changes of vertical air velocity in height and time.

6.3.3 Supporting Observations of the Urban Boundary Layer

The ouly urban boundary layer data used in this thesis were taken by the wlcGill

profilerjRASS. But the data had ta be treated by ROSPA to be useful. Therefore,

other measurements of the urban boundary layer, preferably close to the NlcGill site,

would also have been usefuL Doppler sodar measurements of vertical velocity, for

instance, would have permitted us to check on the effectiveness of ROSPA. Doppler

sodar measurements of winds would also give us a better idea of the circulation pat­

tern over and around the city, and whether there is any bias in the average vertical

velocity profile in Fig. 6.2. Instrumented aircraft measurements over the city would

have given us another set of profiles with which to verify the ~IcGill profilerjRASS
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profiles. Obviously, other instruments may also contribute, directly or indirectly, to

our nnderstanding: tetroons, lidars, towers, and so on. The important thing is that

snch observations can be used ta validate the treated profiler/RASS measurements,

or enhance our knowledge of the urban boundary layer, or both.

Chapter .5 presented the results from the aircraft and the profiler/RASS data on

the convective boundary layer. rural and urban. on June 28. 1996. In Chapter 6, we

have dealt with sorne of the broader issues made relevant by the previous chapter. The

following chapter will summarize the results of this thesis and state the conclusioIl~.
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Chapter 7

Conelusions

The work in this thesis sought. first. to develop a signal processing algorithm. named

ROSP:\.. for heavily contaminated clear-air profilerjRASS measurements: second. to

use ROSPA on urban RASS measurements and to compare them with rural RASS

and aircraft measurements. ROSPA is based on arder statistics and operates in two

principal stages. The first stage treats the Doppler velocity power spectra of the

clear-air measurernents. [t applies what is called a threshold minimum filter. which

is a variant of the minimum filter. to successive spectral power values at a given fixed

height and Doppler velocity bin. Various theoretical aspects of the minimum fEter.

and the threshold minimum fil ter. are explored using a model of the input time se­

ries. It is demonstrated that the minimum filter is highly insensitive to rare, brier,

but very strong intermittent clutter power values. The threshold minimum fiIter is

less restrictive than the minimum filter! as it allows for a more flexible, less rigid,

output. As the name suggests. the threshold minimum filter requires that the value

of a multiplicative spectral threshold be specified. It is shawn! using the same model

input, that an optinlal spectral threshold value exists that accepts the most uncon­

taminated power values while rejecting the most intermittent c1utter power values.

The second stage of ROSPA operates on the clear-air mean Doppler vertical ve­

locity values. It imposes a moving X-shaped window on the time-height vertical air
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velocity data, which it uses in a median filter, called an X-median fUter. Again, on the

basis of model input data, it is shown that median filters are effective in exluding in­

termittent c1utter from their outputs. [n between the first and second stages, ROSPA

uses intermecliate steps to eliminate spectral white noise, ground clutter and to isolate

the strongest peak in the spectrum. After the second stage, ROSPA eliminates the

fe\-v remaining vertical air velocity outliers by using what is called a threshold median

filter. It should be notecl that the first and second stages form the core of ROSPA,

while the intermediate steps and the outlier rejection procedure are not essential to

ROSPA. They can be altered. improved or replaced without fundamentally changing

ROSPA.

The aircraft and profilerjRASS data were taken on .June 28. 1996. during the

early afternoon which was clear and convective with weak winds. The aircraft data

were taken between 1155 and 1:3:35 EST. over mainly rural terrain where the height

of the CBL \Vas estimated from the aircraft data at about L2 km. The vertical air

velacity power spectrum shows a peak between wavelenghts of land :3.:3 km and an

inertial subrange extending from :3:30 m clown ta about 10 m. The aircraft virtual

temperature power spectrum has its peak over slightly longer wavelengths. between

1.i and :3.:3 km. The aircraft heat flux cospectrum shows a sharp peak at the 2.5 km

wavelength. and vanishes over the inertial subrange.

The profilerjRASS data taken at the rural St-Anicet site extend from 104.5 to

1400 EST. The time-height SNR, virtual potential temperature. and vertical air ve­

locity datasets over St-Anicet show an initially stable boundary layer. 0.6 km deep~

from 1045 ta 12:30 EST. After that time there was a sudden growth of the boundary

layer, which became convective and reached up to 1 km at the end of the observation

period (1400 EST). Because of this evolution. the observation period was partitioned

into an early period (1045 to 1230 EST) with a basically stable boundary layer, and

a later period (1230 to 1400 EST) with a growing convective boundary layer. The
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structure of the convection over St-Anicet was consistent with the expected pattern

of thin walls of warm rising air separating regions of cool descending air. The early

vertical air velocity power spectrum has a broad maximum extending from 14 to 28

min periocis with a maximum power value at 17 min, while the later vertical air veloc­

ity power spectrum has a maximum power value at a period of 9 min. Both the early

and later virtual temperature power spectra are too contaminated bv white noise to

possess clearly distinguishable maxima. :\lso~ the early and later heat flux cospectra

possess peak values that are much greater than the aircraft cospectrum peak value.

along \vith substantial negativè components.

The profiler1RASS data taken at the urban NlcGill site extend from 1200 ta l5:J0

EST. They show a very convective boundary layer initially 1..j km d,~ep~ rising ta lo8

km deep at the end of the observation period. The ~IcGill clear-air measurements are

very contaminateci by clutter. and so must be treated with ROSPA. The correlation

between the RASS measurements and the treated vertical air veloci ty measurements

is llsed as a guide to choose the threshold values. The theoretical aspects of the corre­

lation between reliable RASS measurements and uncontaminated vertical air velocity

measurements are explained. It is shown that a correlation value of about +90% is

the most that can be reasonably expected in a CBL. For the optimal range of values

of the spectral threshold, from .5 to 10 dB. a RASS-profiler correlation value as high

as +89% is achieved. It is also demonstrated that the heat flux estimates are insen­

sitive to the exact choice of the spectral threshold within the optimal range. The

treated vertical air velocity data show a broad spectral maximum between 6 and 28

min periods, with a maximum at about 8 min. The heat flux cospectrum has a signif­

icant peak between about 8 to li min. The convective thermals over NlcGill appear

more intense and longer lasting than the convection over St-Anicet. The covariance

function of the treated vertical air velocity over NlcGill shows an integral timescale of

6 min (as compared to timescales of 2-:3 min over St-Anicet) and a standard deviation

of about 1.5 mis (0.6-0.8 mis over St-Anicet) .
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RASS-aircraft comparisons \Vere clone for profiles of vertical air velocity variance,

vertical air velocity variance flux, and virtual heat flux. The St-Anicet vertical air

velocity variance profiles, and the corresponding flux profiles, conform relatively weIl

to the form expected in a CBL. The corresponding aircraft profiles have values that

are consistently larger than the St-Anicet RASS values, and the profiles have a dif­

ferent form. This is attribllted to the differences in the CBL between St-Anicet and

the aircraft location. :\.lso, the greater spatial resollltion of the aircraft measurenlents

allow it distinguish smaller eddies than a profiler. which contribute to the variance.

The early heat flux profile does not agree very weIl with the aircraft profile. while

the later heat flux profile agrees weIl with the aircraft measurements up to about

0.6 km AGL. Again. the difference is attributecl to the different characteristics of the

boundary layers at the aircraft location and at the St-Anicet site for the early and

later periods.

The profile of vertical air velocity variance over ~lcGill conforms reasonably weIl

to the expected CBL profile. but the profiles of heat and vertical air velocity variance

flux show unexpected negative values. particularly between 0.4 and 0.6 km AGL. It

is suggested that a stationary convective eddy may reside over the NlcGill RASS. In

support of this hypothesis. a profile of time-averaged vertical air velocity over the ob­

servation period. is presented. It shows a velocity profile that is everywhere positive

and possesses a maximum between DA and 0.6 km. The portion of the fluxes carried

by the stationary eddy woulcl be unaccounted for by the eddy-correlation methocl

used on the profiler/RASS data. A close relationship is not expected between the

NlcGill RASS and the aircraft profiles since the lVlcGill profiles are urban in character

while the aircraft profiles are rural. However, a least-squares fit of the lowest five

NlcGill virtual heat flux estimates give a surface virtual heat flux value of +523 ±
239 \V1m2 , while a similar analysis on the aircraft virtual heat flux estimates gives

a surface value of +146 ± 0.77 vV1m2
• The NIcGill surface virtual heat flux is thus
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about 3.5 times greater than the aircraft value (and also the later St-Anicet value),

which is consistent with previous finciings on urban and rural surface virtual heat flux

values. AIso, it is suggested that the aircraft samples many more flux-carrying co­

herent structures than the profiler/RASS, which might help explain the much greater

errors on the LVfcGill heat flux estimates relative ta the aircraft error values.

The possibility that turbulence induced errors on the RASS temperature mea­

surements adversely affects heat flux estimates is investigated using the temperature

correction method proposed by Peters and Angevine (1996). The method uses mainly

the clear-air spectral width to estimate the efTect of turbulence on the RASS tem­

perature. [t is shown that. for the St-Anicet data. the temperature correction is

approximately one arder of magnitude tao small to adequately account for the appar­

ent temperature fluctuations clue to turbulence. while for the :YfcGill data. errors in

clear-air spectral width estimates render the temperature correction unreliable. The

effect of the temperature correction on both datasets is negligible.

Finally. we conclude that with the proper signal processing algorithm, the pro­

filer/R:\SS can be a valuable tool for urban boundary layer studies. vVe believe that

the algorithm proposed. ROSPA. was able ta retrieve vertical air velocities accurate

enough to produce acceptable second-order turbulent statistics. The expected flux

profiles over ~IcGili may have been caused by difficulties inherent in RASS measure­

ments and independent of ROSPA. namely, RASS temperature errors and stationary

convective eddies caused by the turbulence and mesoscale circulation characteristic of

an urban boundary layer. As we have seen, profiler/RASS data treated with ROSPA

allow us to determine a great deal about the urban boundary, including the evolution

of the virtual potential temperature profile, the time-height structure of updrafts and

downdrafts, and vertical fluxes of heat and vertical velocity variance. Even more can

he learned if one has access to simultaneous urban measurements from other instru­

ments at different location, and/or nearby rural measurements. 'vVe can predict that
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•

in the future, the profiler/RASS will play an important part in any urban boundary

layer measurement project .
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Appendix A

The Profiler Equation

The profiler is essentially a vertically painting radar capable of detecting refractive

index fluctuations in clear air, along with rain and snow. The refractive index fluc­

tuations in air are caused principal1y by turbulence acting on an existing background

gradient of refractivity~ but can also. in the case of RASS. be created artificially by

generating an appropriate acoustic wave. In the fol1owing, we shall use the work of

Tatarski (1961) and Doviak and Zrnié (1993) to~ first. explore the interaction between

an electromagnetic wave and the refractive index field, and then derive the equation

describing measurements by a profiler.

A.1 Fundamental Electrodynamics in Air

•

The wlaxwell equations are

v.fJ = 41t"p

- - 1 an 4rr-
V x H---=-J

c 8t c
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~ ~ 1aË

\J x E +-- = 0
c ât (A.4)

where fJ is the electric displacement field, p is the charge density field, B is the

magnetic induction field, lÏ is the magnetic field, J is the current density field, Ë is

the electric field, and c is the speed of light. vVe assume that air is electrically neutral

and nonconducting (i.e. p = 0 and j = 0). Also. we assume that air is a simple

isotropie medium (Jackson. 1975), which implies

jj = ItH

(A.5)

(A.6)

•
where E = E( i, t) is the dielectric constant field, !J. = !J.( i~ t) is the magnetic perme­

ability field. Nloreover. following Tatarski. we shaH assume that Il = l everywhere

and for aU time. The Nlaxwell equations now become.

(A.7)

(:-\.8)

(A.9)

(A.ID)

(A.Il)

An equation involving only the eleetric field follows by taking the curl of Eq. A.IO

and using the vector formula, V x (~ x Ë) = V(V . Ê) - \J2 Ê,

- - ~ ~ 18 ~ -
\J(V . E) - V'2 E + - -8(V x H) = 0

c t

•
and using Eq. A.9 ta eliminate the eurl of the magnetie field,

~ ~ ~ - 1 82
-

V(V· E) - V 2E + c2 8t2 (tE) = O.
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•
Equation A.7 can be rewritten as Ë· 'Ç7f+fV, Ë = 0, which yields V· Ë = - Ë· 'Ç7 (ln f).

Using this in Eq. A.12, and writing the second-order time derivative explicitly, we

obtain

(:\..1:3)

•

The index of refraction satisfies the formula n2 = (J.l, or in this case, n2 = t:. However,

it is convenient to write n = fi+ 1], where fi represents the ensemble average refractive

index and 1] is the fluctué:Ltion with respect ta the average. Aiso. If is usually very

close ta unity. sa in what follows we will set n = Land consequently f ~ 1 + 2'7 and

In( (.) ~ 21], to a first-order approximation. Equation :-\.1:3 then becomes

(A.14)

Note that we need not formlliate an equation for the magnetic field since for electro­

magnetic waves. the electric and magnetic fields are directly related ta one another.

It is sufficient, therefore, ta determine only one of them.

A.2 Profiler Measurements

[n arder ta proceed. we must make certain assumptions about the electric and refrac­

tive index fields. Since the source of the electromagnetic field is a profiler, we assume

the field has a frequency very close ta the profiler frequency (about 91.5 NIHz in our

case). vVe assume that the time dependence of the electric field has the form

Ë(i, t) = Ë(x)e- iwt (A.15)

•
where w is the frequency of the radar wave, close to the profiler frequency wo. The

difference is due ta the interaction between the emitted radar wave and the evolving

refractive index field. We assume the sarne farm for the magnetic field. Equation
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A.14 can be written as

(A.16)

where k2 = ((Nt/cf' is the wavenumber squared of the radar wave. Note that if n =1= L

then we would have k2 = (nw1c)'J.. If we postulate the existence of a characteristic

scale '/. and a characteristic frequency n for the refractive index fluctuations. then

we can say that là;'/I ~ ,/.r22 and làt'/I ~ '7.0.. Note that,/_ and 0. nlay either refer to

the intensity and eddy turnover time of the energy-containing eddies of turbulence, or

to the amplitude and frequency of an acoustic wave. SÎnce it Îs reasonable to assume

that '7. « 1 and n « u..t~ we can neglect the first two terms in the square brackets in

Eq. A.16,

•
(A.li)

Solving Eq. .-\.li is simplified if we adopt the method of small perturbations.

which entails using the expansion method to express to solution in the form (Hinch.

1991) .

Ë = Êo + '7. Ë~ + '/: Ë~ + ... (A.18)

where Ëj represents the perturbation electric field associated with the j-th power of

the refracti ve index fluctuations. Physically, Eo represents the emi tted radar wave

from the profiler. If there are no refractive index fluctuations (1]. = 0), then the

emitted wave is the solution. Substituting the expansion in Eq. A.18 into Eq. A.17

and equating like coefficients, we obtain

• 2 .... 2 .... - - -, 2-
V' El + k El = -2V'(Eo ' V''7) - 2k TJEo
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•
where Ë1 = '7. Ë~. vVe ignore the second-arder and higher perturbation fields because

'1. « 1. vVe therefore take the first-order perturbation field to constitute the entire

product of the interaction between the emitted wave and the refractive index fluc­

tuation field. Equation A.19 is a source-free wave equation for Êo, while Eq. ..-\.20

is a wave equation for Ë1 on the left-hand side. with the terms on the right-hand

side acting as a source distribution for these waves. The field È1 can be seen as a

superposition of spherical waves originating from the source distribution:

where 1= -2.ç( Ëa . .çT]) - 2k2 T]Ëa is the source distribution. which we assume is

completely contained in the volume V'. vVe can integrate Eq. A.21 with respect to

l'.

•

Ëdx, t) = __1 r r 1(1'. l') 8(t - l' ~ 1;_- J'Ile) dV'dt'
4ii Jt l J~" lx - x'l

E..... (-. ) = __1 i [(i'. t -Ii - .F'l/e) dt:'
l.r.t 1..... -1 v .411" 1/' X - x'

(A.21 )

(..-\.22)

It is convenient to decompose the source distribution into two functions. ft = k'l.TfÊo

and f~ = ~(Ëo' ~T])~ 50 that Eq. ..-\.22 becomes

E-...... = _L1 f~(i', t -Ii - i'l/c) d'" _L1 f~(i'. t - lx - i'l/c)dV'
l(.r.t) 1- ..... 1 y +) '.......... 1 .2ii \l' .r - .r' :"ii v' x - x'

(:\.23)

We mllst now specify the emitted radar wave Ëo. Following Doviak and Zrnié

(199:3), we state

- .4(o. cP) 1 [' 1 ]Eo(r, O~ r/J. t) = 'U(t - r c) exp -lWO(t - r c)
r

(A.24)

•
where r is the range from the profiler, 0 is the angular deviation from the axis of the

main lobe of the profiler beam, cP is the azimuthal angle about the axis of the main

lobe, ~4(0, cP) describes the angular distribution of emitted power within the beam,
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•
1.4.'0 is the angular frequency of the profiler, and U( t - r / c) describes the radial power

distribution over the length of one pulse. Also, we assume

U(t*) = l.

=0,

Ü:::;t*::;r

otherwise
(A.25)

•

•

where LW = l - rie is the retardation time and describes a pulse traveling in the pos­

itive r direction at the speed of light. Equation A.24 basically describes a spherical

wave emitted over a finite time, T. and where the power is not evenly distributed over

aIl directions. but rather is focused mainly in one direction. It is the spherical form

of the wave that justifies the use of spherical coordinates. Equation A.24 is valid far

from the profiler (see Jackson (19ï5) for the distinction between the near-field and

far-field of an antenna system). Since by definition the line 0 = 0 is the axis of the

main lobe of the profiler. which we assume is vertically pointing, it also corresponds

to a vertical line.

Equation :\.2:3 can be rewritten lU spherical coordinates. Yloreover. since the

point r = 0 is the location of the profiler. and since the transmission and reception

of the radar waves are done at the same place (a monostatic profiler: see Doviak and

Zrnié (199:3) and Doviak et al. (1994) for the bistatic case). and assuming we can

neglect the finite aperture size of the profiler antenna. we are ooly interested in the

returned electric field at i = O. 'vVe obtain

Ë1( O. t) = _1 l h(r' , 0' , 4/ ,t - r' / c) d \,/' + _1 [ h(r' , 0', cp' , t - r' / c) cl F '.
, 2rr Jv' r' 2rr lv' r'

(A.26)

Since the integrands in Eq. A.26 contain the emitted radar wave Ëo, they also contain

the pulse function, where U( t' - r'/c) -+ U( [t - r'/c] - r'/c) = U( t - 2r' / c) due to the

integration with respect to l' in Eq. A.21. This means that we only need integrate

with respect to r' over an interval ~r' = CT/2. vVe take L = CT/2 to be the resolulion

length of the profiler~ which is only half as long as the length of the emitted pulse,

CT. If we assume that the integration with respect to r' is centered about the value
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"0, and that ro » ~r', then we can say that (r')-l ~ (ro)-l and remove it from the

integrand,

-- l j'21r l1r/21ro+L/2 __
EdO. t) = -.)-. [fdr, 0, cP, t - rie)

-ir'ra 41=0 0=0 r=ro-L/2

+ f~(r.O.4J.t - rle)]r2 sinOdrdBdct> (:\.27)

whel'e 0 only extends to if12 radians because the plane 0 = Ti12 is parallel and close

to the grol.lnd. Note that we dropped the primes for convenience. Given a function

g( i, l-) = g(1. t - rie) ~ and that t is held constant. we can define a total gradient

operator:

where V'f is the total gradient operator. one that takes into accollnt the fact t- =

t - rie. and V is the gradient operator for fixed l-. In other words, the fllnction

g'(.r, t) = 9(1, t - rlc) does not have the same spatial dependence as g(i. t). which

must be taken into account when finding the gradient of g'(i. t). This means that

~Tg(i.t-) = 'Ç:g'(i,t). As it turns out. /~ = oÇ;g. where 9 = Ëo ' .ç1], and Vt- =

-c-l~r = -c-1F. where F is the unit radial vector. Equation :\.28 now gives

-- -- - - t·a --/2 = V'f(Ea . V'l) + ~ 8tJEa . Yq). (..-\.29)

The second term in Eq. :\.29 can be approximated as e-lrat·(Ëo·~") ~ -ikr(Éo,VTf)

where k = wlc ~ (""'a + fOie. Here. we take the augular freqllency of the returned

wave, w, to be about equal to the SUffi of the incident wave augular frequency. Wa, and

the characteristic angulal' frequency of the refractive index fluctuations, n. vVhen we

place Eq. A.29 into Eq. A.27, we see that Gauss' theorem applies ta the volume

integral of the first term of Eq. A.29, thereby turning it into a surface integral. But

since the boundary of the integration volume is arbitrary, and since the electric field

vanishes outside the pulse volume of the profiler, the boundary can always he pushed

out where the surface integral vanishes. Therefore~ ooly the second terrn contributes

ta the integral. We can apply the sarne reasoning to obtain

•

• -.... - - - - Éo • ;. Bry
Eo . Vry = vT('T/Eo) - "lVT . Eo+---­

e al*
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where the first term can be neglected as before~ the gradient of the incident electric

field in the second term is proportional to 1/r6, which we neglect, and the third term

is zero since Èo is a transverse wave propagating in the r direction (Eo . r = 0). vVe

conclude that f~ does not contribute significantly to Eq. A.2Î. Note that f~ vanishes

only because the profiler is monostatic: for the bistatic case. h would ensure that the

received waves are transverse (Tatarski, 196L; Doviak and Zrnié. 199:3). This leaves

us with

(A.31 )

•

•

where ËR ( t) = Ë1(O. t) is the returned electric field: \;; is the pulse volume whose

boundaries propagate in the positive r direction at half the speed of light. If we insert

Eq. :\..24 into Eq. A.:3L and we approximate r- 1 ~ rüL
:

- k2 12
11' 101r/2 j.ro+L/'l -ER( t) = -.-,-') , .-\ (o. ÇJ )e l (2kor-wot)'l( r. O. o~ t - r / c)d ~~

2rrrü ,;1=0 0=0 r=ro-L/2
(A.:J2)

where ko = ~o/c and ra = ct/2 is also a function of time. Equation :\..:32 describes

the returned electric field of one pulse emitted at t = O. Of greater relevance to us.

however. is the detected electric field. which is the electric field after its reception by

the profiler antenna. [t is given as

where 1.4(0, cP)1 2 expresses both the transmission and reception of the electric field

for a monostatic profiler, and where we can ignore the vector nature of the detected

electrie field (Doviak and Zrnié, 1993).

Of interest is the deteeted eleetric field From a fixed height. To aceomplish this,

the profiler emits pulses at regular intervals, Tipp, called the inter-pulse period (IPP).

A specifie altitude, ro, is isolated when the profiler measures the deteeted field at a
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time Ta = 2ra/cafter the emission of the latest pulse. If the pulses are emitted at the

times ln = nTipp , where n = .... -2. -1,0.1. 2, .... then the detected field is measured

at the times ln + Ta. vVe can now construct a time-height data field,

(:-\.34)

•

where Ep ( n, ra) is the form of the data recorded by the profiler. The height can only

be unambiguously determined if the detected electric field from one pulse vanishes

before the emission of the next pulse. The nlaximum unambiguous height is given as

r <l = cTipp /2. Otherwise. there will be confusion whether a given detected field is due

to a highly reflective object at high altitudes. r > ra. reflecting energy from the pulse

previous to the latest. or a weakly reflective abject at low altitudes, r < ra, reflecting

energy from the latest pulse. This phenomenon is known as range fo/ding.

vVe can now formulate the equation describing the detected electric field of a

pulsed Doppler radar. \Ve simply place Eq. :\..34 in Eq..~\.;3:3 to obtain

(A.:35 )

•

where. for convenience. we have defined rp = r - ra .
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Appendix B

Discrete-Time Signal Processing

The profilers used here are pulsed radars. ~Iorever. the discrete-time data given by

the profiler can be regarded as the sampling by instantaneous measurements equally

spaced in time of a hypothetical continuous atnlospheric signal. ft is then important

to review the special characteristics of discrete-time signal processing. 'VVe will explore

the theory behind the discrete Fourier transform (0 FT). which is based mainly on

the work of Oppenheim and Schafer (1989).

B.l Discrete Time Sampling

Given a continuous-time signal. .fe(t), where -00 < t < ex:. is a real time parameter,

we can create a discrete-time time series, x[n], as fol1ows,

x[nJ = xe(n T) n = .... -2. -1.0. L 2, ... (B.1 )

where n is an integer time parameter and T is the sampling interval. Note that square

brackets are used to indicate a discrete argument. Also note that x and Xc may be

complex. We define the Fourier transform

•
00

.X"(w) = L x[n]e- iwn

n=-oo
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•
where _\ is a continuous function of the real angular frequency w. The Fourier

transform is periodic in w wi th a period of 2iT,

where the periodicity of .\'"(w) n1eans we need only integrate from -ii ta ii because

that interval contains aIl the information necessary to retrieve the time series.•

00

X·(w +2iik) = L x[n]e-ù.m-i21rkn

<Xl

= L x[n]e-iwn(e-i21l')kn

since e- i2
Tf' = land where k is any integer.

The inverse Fourier transform is

[] L 11l' \-'"( ) Îwn 1.r n = -.- .\. I.J.,' e (""".
liT -Tf'

(B.3)

(B.4 )

(B ..j)

(B.6)

The Fourier transform of the continuous-time signal is

(B.ï)

which we will calI the continuous Fourier transforme .J ust as we went from a continu­

ons to a discrete time, t -+ n T, the angular frequencies transform as n -+ i"I,)/T. The

inverse continuous Fonrier transform is

(8.8)

We can place Eq. B.8 into Eq. B.l ta obtain

(B.9)

•
which we then place in Eq. 8.2,

(B.lO)
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Furthermore, we know that (Oppenheim and Schafer. 1989)

_1 ~ ei(nT-w)n = ~ 8(w _ nT + 2;rk)
');r La- La-
- n=-oo k=-oo

which, if we place in Eq. 8.10 we get

(8.11)

- iT ~ u) < iT. (8.12)

•

As Eq. B.6 showed. the angular frequency bandwidth -WN ~ w < 1.k';V. where WN = 7l'

is the limit frcquency, includes ail meaningful angular frequencies of the Fourier trans­

form. The corresponding physical frequency, 2rr IN = WN fT -t f.v = 1/(2T) is called

the iVyquist frequency. The Nyquist frequency represents the range of frequencies

that can be unambiguously recorded by the sampling operation, Eq. 8.1. That is,

if the continuous Fourier transform, .\c( n), vanished outside the angular frequency

interval -2rrIs ~ n < 27r fs and if fs < fN. then aIl the frequencies of the continuous

signal have been adequately recorded. [n that case. only the k = 0 term in Eq. B.l2

contributes to the SUffi and we have

(B.1:3)

which is an unambiguolls relationship between .Y(w) and .\c(!1). If, on the other

hand, fs > IN but 15 < 2fN, then Eq. B.12 becomes

(8.14)

O~W<iT

•

and 50 on for even greater values of Is. This phenomenon is called a/iasing and

represents the spectral energy outside the Nyquist bandwidth being folded back into

it. Aliasing is a major preoccupation when selecting parameters, such as the IPP, for

instance, of radar systems.
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B.2 Periodic Time Series

vVe introduce a periodic time series xp[n], which is defined as

(B.15)

h 1 .) l 0 1')' b" _1 \r' l . d ,. h .\v cre = -_, - . , lS an ar Itrary Integer, anu ~ l:::i t le peno or t e tlme

series. It can be shown that for a periodic time series. we do not need a Fourier

transform continuous in frequency, like the one defined in Eq. 8. ï (Oppenheim and

Schafer. 1989). Rather, a Discrete Fourier Transform (DFT), .\p[kL (k = 0, .... ;.V - l

is a discrete frequency index) is enough to completely specify the periodic time series,

xp[n]. The DFT and inverse DFT are. respectively:

• and

N-l

.\'p[k] = L .rp[n]H:,tn
n=O

(8.16)

(8.1 i)

where ~Vv = e- i (27r/N). The discrete frequency in Eq. 8.1 i is summed over positive

values only (from 0 to iV - L). This is solely a matter of convention. The periodicity

of the Fourier transform ensures that .\p[A.'] = .\p[k - iV]. From that, it is easy to

show that k in Eq. B.lï can also be summed from -1.V/2 to 1V/2 - 1. In that case.

the SUffi over the discrete frequency k in Eq. B.l i is analogous ta the integral over

the cantinuous frequency w in Eq. B.6.

In practice, we never have access ta an infinitely long time series. Instead, we only

have a finite number 'Jf points ta estimate the Fourier transform of the infini te tirne

series, _Y"(w). The sampled time series can be expressed as

•

B.3 Windowing

xw[n] = w[n]x[n]
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where x[nJ is the infinitely long time series, and w(nJ is the window which determines

bath the size of the sample and the weight of every point in the sample. For example,

if we sample lV points only (n = 0...1'1 - 1) with equal weight, we have a rectang'lLiar

window

w[n] = 1

=0

o::; n ::; iV - 1

otherwise.
(8.19)

•

The Fourier transform of the rectangular window is

~V(w) = e-iw(N-l)/2 Si~(WiV/2) .
sln(wj2)

The windowed Fourier transforme .\'"w(w), is

'::0

.\w(IN') = 2: l'L'[n]e- iwm

n=-'JO

'::0

= L w[n]x[n]e- iwn

n=-00

( 8.20)

(8.21)

Rearranging the arder of integration and summation, and using Eq. 8.11. we obtain

Xw(w) = ~[' [' ('1/(o)X(;3) (~ f: ei(O+I3-W )n) dBda
br -1T' -r. br n=-.X)

l /1r /1r ( 'Xl )= -::J ~V(o).\'(p) L S(w - 0 - j3 + 2rrk) dl3do.
_rr -1T' -1T' k=-oo

vVe integrate with respect ta 13 and exploit the periodicity of .\(w) to obtain

(8.22)

(8.23)

•
where the asterisk denotes the preceding operation, namely a convolution. l\'Iost win­

dows in use have a Fourier transform with same basic shape. The magnitude, IW(a)l,

is symmetric about a = 0, with a main lobe at zero frequency and side lobes on either
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side. Therefore~ Eq. B.2:3 means that those values of )«(w - Q) in the neighbourhood

of Q = 0 contribute the most to .'\'"w(w). The existence ofside lobes means that there

is also a contribution from frequencies far from v.,.'. The contribution to .\'w(w) from

frequencies other than w is called leakage due to windowing.

Two other relevant windows are the flanning and Hamming windows. The Han­

ning window has the form

Of the three windows seen here. the rectangular window has the narrowest main lobe

with a width of ~ür/LV. as compared with the Hanning and Hamming windows~ with

SiT / (LV - 1) each. However. the peak sicle lobe power of the rectangular window is 1:3

dB less than the peak power of the main lobe. This is much more than the Hanning

window. at :31 dB less. as well as the Hamming window. at 4L dB less (Oppenheim

and Schafer, 1989) .

•

•

w(n] = 0.5 - O..) cos(2rrn/( LV - 1))

=0

and the Hamming window

w(n] = 0.54 - 0,46cos(2iTn/(!V - L))

=0

o :5 n ~ :V - L

otherwise

otherwise.

(8.24 )

(8.25 )
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Appendix C

Hypothesis Tests

A hypolhesis lest is a test performed on a random variable used for deciding whether

or nat that variable belangs ta a specified probability distribution (see. for instance,

Bendat and Piersol (l966) for an demonstration of such a test on data). vVe begin by

defining a nul! hypothesis~ Ho~ which is the statement that the random variable~ x ~ be­

longs to the probability density function f(.r). with distribution F(x) = f: f(x')dx'.

Conversly, we define the alternative hypothesis. Hl~ which is simply the statement

that the random variable does not belong to the distribution F( x). Consequently,

if Hl is true, then we postulate the distribution G(x). However~ in most cases only

F(x) is known precisely. Note that HL is simply the opposite of Ho. Therefore, in

what fol1ows, when we say that Ho is true (accepted), we also mean that fI L is false

(rejectedLand vice-versa.

vVe must now define a region of rejection or a critical region c~ which is the set

of values of x where Ho is rejected (and HL accepted). Conversely, we define a region

of acceptance where Ho is accepted (and Hl rejected). To this end, we introduce

an interval with bounds a < b, where the critical region C is -00 < x < a and

b :::; x < 00, and the region of acceptance is a :::; x < b.

As Table C.I indicates, there are four possibilities to consider. The first is where

we accept Ho when it is true. The second is where we reject Ho when it is true, which
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Table C.I: The possible conclusions regarding the truth of Ho (left to right) and the
decision ta accept or reject Ho (top to bottom). The probability of making a type 1
error is cr, and ,8 for a type II error.

Ho is true Ho is false
Ho is accepted Correct decision Type II error (j3)
Ho is rejected Type 1errer (0:) Correct decision

is called a type [error and has a probability Q. [f Ho is true, then .x has the distribu­

tion F(.r). So the probability of accepting Ha is F(a) - F(b) and Ct = l- F(a) + F(b).

The probability of making a type [errer is also called the significance leve! of the

test. The third possibility is where Ho is rejected when it is false. Finally. the forth

is where Ho is accepted when it is faise. which is called a type II error and has a

prebability ,0 = C;( b) - G(a).

Since rejecting the null hypothesis when it is in fact true is often considered serious.

Q is usually made smaIL typically cr ~ 0.1. [f we do not know the farm of G( x), then

J is aIsa unknown. [n general. though. when we decrease Q. we also increase ,J.
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