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ABSTRACT

Loosely supported cylinders subjected to cross-flow may underge fluidelastic in-
stability in the support inactive mode resulting in cylinder/support impacting. The
cylinder/support interaction forces and, in turn, the resulting cylinder wear rates are
strongly dependent on the detailed dynamical response. This Thesis examines the re-
sponse of a loosely supported cylinder located in the third row of an otherwise rigid
rotated triangular array. The feasibility and potential of a modern nonlinear dynamics
approach to the understanding of the underlying dynamics is investigated.

A nonlinear quasi-steady model was formulated to model the dynamical be-
haviour. The steady fluid force field, required as input to the model, was measured ex-
perimentally for a cylinder within a rotated triangular array. A linear stability analysis
showed the cylinder stability behaviour to be strongly dependent on cylinder position.
This result serves as a possible explanation for the rare occurrence of, theoretically
predicted, multiple instability regions in experimental measurements.

The nonlinear analysis uncovered two important transition routes to chaos. The
first, a switching mechanism prevalent at the onset of impacting. The second and
most important is the intermittency route to chaos. The theoretical model showed
good agreement with experiments in predicting the bifurcation sequences and transi-
tions to chaos — comparisons were quantified via fractal dimensions and saddle orbit
distributions.

The identification of type [ intermittency leads to a quantitative estimate of the
probability distribution of the length of laminar phases. It is shown that the average
duration of laminar phases and the associated frequency may provide better estimates

of integration time and frequency for wear-rate computation.



SOMMAIRE

Les tubes attachés aux supports intermédiaires laches et soumis 2 un écoulement
transversal peuvent subir des instabilités fluidélastiques dans le mode inactif du sup-
port qui entrainent des chocs entre le tube et le support. Les forces d’interaction
tube/support, puis les taux d'usure des tubes qui en résultent, dépendent en grande
partie de la réponse dynamique détaillée. Cette Thése se propose d’étudier la réponse
d’un tel tube situé dans la troisiéme rangée d’un faiscean de tubes rigides a géométrie
triangulaire pivotée. Elle examinela possibilité d'utiliser une approche de la dynamique
non-linéaire moderne qui permettrait de mieux comprendre la dynamique sous-jacente.

Pour modéliser le comportement dynamique, un modéle non-linéaire quasi-constant
a été élaboré. Le champ constant de force du fluide, requis par le modele, a été
obtenu expérimentalement pour un tube situé dans un faisceau & géométrie triangu-
laire pivotée. Une analyse de stabilité linéaire a démontré que la stabilité du tube
repose surtout sur sa position. Ce résultat explique peut-étre pourquoi peu de zones
d’instabilité multiple prédites de maniére théorique se retrouvent dans les mesures
expérimentales.

L’analyse non-linéaire identifie deux routes importantes de transition vers le
chaos. La premiere correspond a un meécanisme de commutation prédominant aux
vitesses d'écoulement proches du premier du choe. La seconde, qui est aussi la plus
importante, est la route d’intermittence vers le chaos.

Les résultats obtenus au moyen du modéle théorique correspondent bien avec ceux
obtenus expérimentalement en prédisant les séquences de bifurcation et les transitions
vers le chaos. Des mesures quantitatives, qui incluent les dimensions fractales et les
distributions d’orbites de col, elles-mémes associées aux attracteurs chaotiques dans le

systéme expérimental, ont également été assez bien prédites.



L’identification de l'intermittence de type I conduit a une estimation quantitative
de la distribution de la probabilité de la longucur de phases laminaires dans le régime
a réponse intermittente. On a montré que la longueur des phases laminaires et la

fréquence associée pourraient donner de meilleures estimations de taux d'usure du

tube.
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Statement of Contribution to Original Knowledge

Experimenters investigating the wear of loosely supported unstable cylinders have
concluded that cylinder wear rates are intimately related to the detailed dynamical
behaviour. The dynamics of a loosely supported cylinder is the subject of the study

presented here. Below are the contributions of this Thesis to original knowledge:

¢ Position dependent steady fluid forces were for the first time measured in a rotated
triangular array for all tube positions in the third row of the array. A linear
stability analysis showed that variations in cylinder position may drastically alter

expected cylinder stability.

e The detailed dynamical behaviour of a Joosely-supported cylinder was deter-
mined. To the author’s knowledge this is the first quantitative elucidation, of
the detailed dynamics, involving direct comparison of theory and experiments.
The identification of types I and III intermitiency transitions to chaos as well as

the switching mechanism is believed to be a first in fluid-structure interaction.

o The average duration of laminar phases, and corresponding frequency, are shown

to be applicable to wear-rate computation.
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Chapter 1

INTRODUCTION

As research into the problem of fluid-structure interaction in cylinder arrays sub-
jected to cross-flow enters its fourth decade of concerted effort, significant developments
have taken place both in understanding the underlying governing mechanisms, as well
as towards theoretical modelling for prediction of structural response to fluid excita-
tion. The understanding of flow-induced vibration in cylinder arrays is vital for the
design of heat exchangers, to eliminate undesired tube! instabilities which may lead to
gradual tube wear or catastrophic failure.

Identification of two of the three excitation mechanisms to which such systems
are subjected, turbulent buffeting and flow periodicities, derived naturally from studies
aimed at understanding the fundamental fluid dynamics of turbulent flows and the
earlier observations of periodic vortex shedding for flow over solitary bluff bodies.

The third and most potent mechanism, that underlying fluidelastic instability,
was more elusive. For cylindrical structures subjected to cross-flow, fluidelastic insta-
bility is only possible for multiple cylinders. Hence, unlike the other two mechanisms,
no analogy could be made with the case of a single cylinder subjected to cross-flow.
Fluidelastic instability is characterized by a critical flow velocity, past which cylinder
instability is initiated. The instability is the result of a positive feedback mechanism
through which net energy is extracted from the flowing fluid, to balance the energy loss

through both the cylinder internal structural damping and the external flow-induced
damping,.

1The words “tube” and “cylinder” will be used interchangeably; in some cases this is necessary for
consistency in reference to other investigators® work.

1
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1.1 DEVELOPMENTS IN FLUIDELASTIC
INSTABILITY THEORIES

Following the identification of fluidelastic instability as a distinct phenomenon,
several] theoretical models have been developed, enabling approximate prediction of the
critical instability velocity as well as an understanding of the governing mechanisms.
In this section, the developments leading to the present understanding of fluidelastic
instability are reviewed. This reViéw is by no means exhaustive. It is intended to give
the reader a good overall picture of the collective effort of numerous researchers. There
is also an intentional bias in detail, towards work that leads directly to the subject
treated in this Thesis, which clarifies the motivation for the present study.

The first attempt to analytically model and explain fluidelastic instability was
by Roberts (1962, 1966), who proposed a jet-switching mechanism behind a staggered
row of cylinders which, when synchronized with cylinder motion, could result in net
energy input to the cylinder per cycle of oscillation. In his model, fluidelastic instability
was predicted for in-flow cylinder vibration. A crucial component of the model is the
hysteresis in the variation of the cylinder base pressure with cylinder displacement,
which makes positive energy feedback possible for large enough cylinder displacement.

Unquestionably the most widely accepted and used formula for predicting the
critical flow velocity for fluidelastic instability was developed by Connors (1970). Study-
ing a flexible row of cylinders, Connors proposed a semi-empirical quasi-static model,
in which a time-dependent displacement mechanism resulted in net energy being ex-
tracted from the fluid by the vibrating cylinders. Connors measured cylinder lift (Cr)
and drag (Cp) coefficients as functions of inter-cylinder positions; where cylinder dis-
placements were along trajectories following an idealized mode of vibration during
instability. The same hysteretic discontinunity in Cp as obtained by Roberts (1962,
1966) was again observed in the experimental measurements. However, Connors sub-
tracted this jet-switch effect, having recognized that it was not the predominant effect,

thus being left with a “pure” displacement-related variation; Connors remarked that a
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highly specialized set of circumstances was required for the occurrence of jet-switching
coupled with a finite minimum time necessary for the jet-switch to be possible. The
now famous stability criterion of Connors was derived by equating fluid-energy input

per cycle to the energy dissipation through damping. The critical flow velocity for
finidelastic instability U, is given by

U, . [ mé
oD =I\1fﬁ (1.1)

where U is the flow velocity through the minimum gap between adjacent cylindersin the

same row (subscript ¢ indicating a critical velocity), and m, § and fj are cylinder mass
per unit length, logarithmnic decrement of damping and natural frequency, respectively;
for a staggered row of cylinders with inter-cylinder spacing P/D = 141 , K = 9.9
was obtained by Connors. As noted later in reviews by Paidoussis (1983), Weaver
& Fitzpatrick (1988) and others, equation (1.1) was extensively, and incorrectly, used
for heat exchanger cylinder array design, despite its having been derived for a row of
flexible cylinders.

Blevins (1974, 1977, 1979) re-derived Connors’ displacement mechanism model,
albeit following a different approach, and extended the theory to cylinder arrays. The
stability criterion obtained by Blevins was an expression for the critical flow velocity
of the same form as equation (1.1). For the single row of cylinders studied by Connors,
Blevins’ stability criterion reduced to equation (1.1) if Connors’ experimental force
coefficients were utilized. Two other developments by Blevins were (i) an attempt to
analytically determine the fluid force coefficients which lead to the value of the constant
K and (ii) an extension of the theoretical model to account for the flow-dependent fluid
damping.

The basic form of equation (1.1) was retained by many researchers who con-
centrated their efforts on experimental measurements of U, and on correlating with
mé/pD? to determine K for various array geometries and inter-cylinder spacing. Sug-

gested values for K vary from 0.8 (Paidoussis, 1980) to 8.6 (Blevins, 1977). The value
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K = 3.3 (Pettigrew et al, 1978; Connors, 1978) has been widely accepted by heat
exchanger designers, although recently it was revised downwards (Pettigrew & Taylor,
1991). In their review, Weaver & Fitzpatrick (1988) discuss the various efforts under-
taken to determine K from correlation with experimental results, and they also provide
design guidelines to avoid fluidelastic instability.

It was clear from the outset, however, that better modelling and determination
of fluid force coefficients was required. The complexity of the flow structure within the
array made analytical determination of the fluid forces practically impossible. Never-
theless, for arrays with small wake regions, an attempt to determine the fluid forces
using potential flow theory was made by Chen (1975, 1978), Balsa (1977) and Paidous-
sts et al. (1984). Forces proportional to fluid inertia (added mass effects) were found
to agree well with experimental measurements. On the other hand, velocity- and
displacement-dependent forces, which are strongly affected by fluid viscosity, could not -
be correctly determined. Inviscid potential flow theory also rendered the system conser-
vative; hence, no dynamic instabilities could be precipitated by the fiuid forces therein.
While potential low models made it possible to determine added mass effects relatively
accurately, it became clear that fluid viscous effects could not be ignored. Paidoussis
et al. (1985) therefore incorporated heuristically a phase lag between cylinder motion
and the resulting fluid forces to account for the viscous nature of the flow. An analysis
of a rotated triangular array with P/D = 1.3 or 1.5 showed that dynamic instabilities
occurred for non-zero values of the phase lag, while static instabilities were predicted
with a zero phase lag value. The stability boundary was found to be extremely sensi-
tive to the magnitude of the phase lag, and comparison with experimental data showed
that critical flow velocities were overestimated by a factor of approximately 5.

A semi-analytical approach was taken by Lever & Weaver (1982, 19862,b) and
Yetisir & Weaver (1988) in which the flexible array stability was approximated by that
of a single flexible cylinder. In their apalysis, the presence of neighbouring cylinders
resulted in a wavy stream-cylinder channel flow around the flexible cylinder under
consideration. A second flow region consisted of wake flow attached to the cylinder.
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Assuming that cylinder motioa results in a redistribution of the stream-tube arca,
expressions were obtained for the time variation of this area, the gap flow velocity and
the pressure, for sinusoidal cylinder motion. Similarly to Paidoussis et al. (1983), it was
recognized that for the stream-tube flow it was necessary to introduce a phase lag due
to fluid inertia effects. Using the unsteady continuity and momentum equations, the
pressure distribution and hence resulting fluid forces could then be determined. The
criterion for instability was that the total system damping be zero, hence predicting
single mode negative damping instability. Good agreement with experimental results
was obtained for rotated triangular arrays with P/D = 1.375.

The analytical approaches reviewed above have contributed to the understand-
ing of the mechanisms underlying fluidelastic instability in cylinder arrays. It has also
become clear, however, that for the accurate determination of stability boundaries, an
experimental input, of some of the important parameters that cannot as yct be ana-
lytically determined, is necessary. The resulting semi-empirical models require varying
amounts of experimental input.

Semi-empirical theoretical models have successfully been applied for the deter-
mination of instability flow velocities. In general, improved accuracy is obtained with
increased experimental data input. These models fall broadly into two categories:
general unsteady models and quasi-steady models.

Tanaka & Takahara (1981) were the first to develop a theoretical model which
took into account “all” first order components of the unsteady fluid dynamics forces.
The in-line array geometry studied by Tanaka & Takahara is shown in Fig.1.1. Consid-
ering the central cylinder O, the fluid forces acting on the cylinder are due to displace-
ments of cylinders L,R,U and D, as well as cylinder O itself. Three types of fluid forces
may be identified: inertia forces proportional to cylinder acceleration, fluid damping
forces proportional to cylinder velocity, and stiffness forces due to dynamic pressure

and cylinder displacement. Considering cross-flow motion, the total fluid dynamic force
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per unit length may be expressed as

1 . 1 P |
F, = 5pD*Cy §+ 5pDUCy § + 5pUCx y + O(4), (1.2)

where Cypr, Cv and Cy are respectively the added mass, damping and stiffness coefii-
cients; O(y?) denotes second order terms. The fluid dynamic force F} is, in general, a
non-linear function of y; hence, equation (1.2), with the second order terms neglected,
is a linear approximation about the equilibrium position ¥ = 0. Assuming a sinusoidal

displacement y = Ye™!, equation (1.2) can be written in the form

—4722D%Cyy . 27wDCy
g =7

F,= %ptﬁ )+ C|Y = 2pU°CLUY.  (13)
Corresponding to displacement of cylinder O and each of the neighbouring cylin-
ders is a component of the coefficient Cy(U), identified as Cy;y (or Cy;.) proportional
to the induced component of F,, when cylinder j is displaced in the y {or z) direction.
The total force Fj, therefore, becomes
1 5
F,= EpUgg(Cy,-,X,- + Cy;,Y5)- (1.4)
The coefficient Cy;., for example, may be interpreted as the partial derivative 8C, /90X,
evaluated at X; = 0. In equation (1.4), the assumption is made that the fluid forces sum
linearly. Equation (1.4) may also be viewed as a Taylor series expansion of F, in the
displacements .X; and Yj, in which only the first order terms are considered, rendering
it a linear expansion. Using this complete set of first order, unsteady fluid forces,
Tanaka & Takahara obtained instability boundaries that were in excellent agreement
with experimental results. An important finding of their work was the discontinuous
variation of instability flow velocity with fluid density. This was attributed to a change
in the orbital motion, which for high density fluids was essentially in cross-flow, while
coupled in-flow/cross-flow motion occurred for low density fluids.

Chen (1983a,b) generalized the unsteady model above, rendering it applicable to
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arbitrary cylinder configurations. Using the data of Tanaka & Takahara, Chen studied
the stability of cylinder configurations ranging from a single flexible cylinder (in an ar-
ray) with one degree-of-freedom, to multiple flexible cylinders executing predetermined
orbital motion patterns. With his study, came probably the next most important fun-
damental contribution after Connors’ work, which was the identification of two distinct
mechanisms independently capable of precipitating fluidelastic instability. The first is
the so called damping controlled mechanism and the second, the stiffness controlled
mechanism.

The damping controlled mechanism is predominant for high fluid density flows
(low m/pD?), and requires but a single degree-of-freedom. Instability is precipitated
when the component of the fluid force in phase with cylinder velocity overcomes the
mechanical damping force; i.e., essentially via the vanishing of the total dampirg in a
given degree of freedom. In low fluid density flows (high m/pD?), the fluid dynamic
stiffness controlled mechanism comes into play, in which fluid force changes due to
relative cylinder displacements predominate. Multiple-flexible cylinders are required,
resulting in fluid-dynamically coupled degrees of freedom. Due to the non-conservative
nature of the fluid-force field, net positive energy can be extracted from the flow, which,
at a critical flow velocity, overcomes the mechanical damping.

Using unsteady models, it has become possible to accurately predict the on-
set of fluidelastic instability, and explain the fundamental aspects of the underlying
mechanisms. As predictive tools, however, these models require a prohibitive amount
of experimental data, when one considers that the fluid force coefficients in equation
(1.4) depend on array geometry and inter-cylinder spacing; measurements must also
be taken for a range of Reynolds numbers and reduced frequencies (fD/U).

The need for simpler but still accurate models has therefore arisen, in order to
enable a stability analysis unencumbered by the intensive data requirements of the
fully unsteady models. One such theoretical model has been developed by Price &
Paidoussis (1982, 1983, 1984, 1985, 1986a,b), belonging to a class of what are termed
quasi-steady models. Fundamental to the quasi-steady models is the assumption that
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the instantaneous fluid forces acting on an oscillating cylinder are the same as on a
static cylinder located at the reference instantaneous static position; it is only necessary
to account for the relative velocity between the cylinder and the fiuid when determining
the fluid-dynamics, the forces being considered to be independent of cylinder oscillation
frequency; (2 frequency effect is, however, considered, as discussed later.)

In the original version of their model, Price & Paidoussis (1982, 1983) analysed
the stability of a double row of cylinders (Fig.1.2(a)). For a given cylinder the fluid
force in cross flow, for instance, could be expressed as

1

50D*Cmaii + O(3), (1.5)

F,= %pmug, [c,,(l - %55) - %CD] +
where D /U = « is the induced incidence of the flow approaching the cylinder, and
U the gap flow velocity given by U = U,T/(T — D/2), (Fig.1.2). Equation (1.5) is
identical, in form, to the unsteady formulation given in equation (1.2), if motion in the
in-flow direction is not considered. The difference is manifested in the determination
of the fluid force coefficients.

Price and Paidoussis, considering C; and Cp to be functions of position and
induced incidence, assumed a linear approximation near the cylinder equilibrium posi-
tion. The lift force coefficient, for instance, could then be expressed as

5, ack  ack

3 Ck
Cilz,y,0) = Clo+ 3 (a: 3_:zf+yi S T3

2 T (1.6)

for cylinder k in a generalized staggered array, where n corresponds to the number
of neighbouring cylinders. The complexity of the flow structure within the array ren-
ders the definition and measurement of «, hence of 8C%/da. difficult and inherently
susceptible to uncertainty.

Recognizing the difficulty in determining 8Cf /e, Price and Paidoussis circum-
vented this problem in later revisions of their model (e.g. Price & Paidoussis (1984,
1986a,b)), by expressing C, and Cp in terms of relative “apparent” inter-cylinder dis-

placements, hence eliminating the need for an explicit inclusion of the flow approach



DEVELOPMENTS IN FLUIDELASTIC INSTABILITY THEORIES 9

angle a. An important component of the analysis is consideration of the time lag
between the displacement of cylinder i and its effect being propagated by the flow to
be manifested at cylinder k; secondly, cross-flow cylinder motion results in an angu-
lar displacement of the cylinder wake relative to the free stream flow. With the time
delay and wake relative orientation considered in determining apparent inter-cylinder
displacements &; and 7;, the lift coefficient C} on cylinder k, induced by its own motion
and all immediately neighbouring cylinders 1 to n becomes
x,,_ 9CE oCt

Ct=C*% ; =), 1.7
L L0+§(E 3E; + 7, am) (1.7)

where §; and 7; are the apparent cylinder displacements.

As observed by Simpson & Flower (1977), fluid approaching the stagnation point
upstream of a cylinder decelerates, resulting in a retardation in comparison to steady
flow. Price and Paidoussis found this retardation effect to be extremely important
in cylinder arrays and indeed imperative for the precipitation of a negative damping
instability, and hence incorporated it in their model. Despite the quasi-steady theo-
retical foundations of this model, the analysis therefore, crosses over into the unsteady
regime, by modelling approximately the most important effects of unsteadiness in the
fluid dynamics.

In its general form, Price & Paidoussis’ (1984,1985) model results in large ma-
trices when coupled motion involving many cylinders is considered. The model was
therefore extended and simplified by assuming an inter-cylinder modal pattern (simi-
lar to Connors’ (1970)), in which fixed phase differences between the motion of adjacent
cylinders were applied; this essentially constrained the array modal response to certain
orbital patterns. It was then possible to decouple the motion of a small representative
kernel of cylinders from the general array, thereby much simplifying the solution of
the governing equations. This constrained-mode analysis was found to yield very good
agreement with both the generalized analysis and experimental resuilts.

Based on the identification of the two instability mechanisms by Chen (19832,b)
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as wel] as experimental evidence, Price & Paidoussis (1986b) and Paidoussis & Price
(1988) undertook a single fiexible cylinder analysis. The basic assumption in this anal-
ysis was that the stability behaviour of the fully flexible array could be reasonably
represented by that of a single flexible cylinder in an otherwise rigid array. This holds
true only when instability is of the negative damping type — predominant for low
values of the mass damping parameter (mé/pD? < 300). A single cylinder analysis is
clearly appealing, due to its simplicity as well as the minimal amount of experimental
data required. For the array geometries studied, fluidelastic instability was found to
primarily occur in the cross-flow direction. The time delay due to flow retardation was
found to be an important determining factor for the instability to occur — introduc-
ing a phase difference between cylinder displacements and the fluid dynamic forces.
The instability condition requires that the total system damping vanish. The resulting
expression for the criticz] low velocity is an implicit norlinear algebraic equation relat-
ing the reduced critical flow velocity U./fD to the cylinder mas: lamping parameter
mé (where 72 = m/pD?). Considering cross-flow motion for instance, the stability

boundary equation is

—_n2 "Tcmu . ﬁ_ @L
d [1+ 4 ]+"D L-— am 27 f D
_i U _29C =DPlr . . —Diir _
{1 2ﬁ1(27?fD) 7 [cos(aU/Z'-‘fD)+zsm(aU/27rfD) =0, (1.8)

where p is the dimensionless frequency. For large enough values of U/fD, the trigono-
metric functions can be linearized, yielding the following expression for the critical flow

velocity:

U. 4 mé

75~ (o= 3 -
where . is a positive flow retardation parameter of O(1) and the derivative 8C /0y is
evaluated at the equilibrium position y = 0. According to equation (1.9) single-mode
instability is only possible for large and negative 8C/dy.

For low values of the mass damping parameter mé/pD?, the non-linear stability
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boundary equation (1.8) has to be solved by an iterative procedure. Multiple instability
boundaries are obtained, which is attributed to the sign changes in the trigonometric
functions as the phase lag changes. The condition of large and negative 8C. /0y is

no longer necessary; depending on the phase lag, a large and positive value of this

derivative will also precipitate instability.

1.2 POST INSTABILITY CYLINDER
DYNAMICS

The linear theoretical models discussed above can only be used to predict the
onset of fluidelastic instability. Investigators have been interested in post instability
cylinder dynamics due to the damage potential of the ensuing cylinder vibrations (see,
for instance, Paidoussis (1980)). .

Fluidelastic instability may caunse large amplitude cylinder vibration which for
high enough flow velocities results in impact with loose supports and even inter-cylinder
clashing. Two kinds of non-linearities need to be included in the theoretical models for
post-instability analysis. The first is the non-linear variation of fluid-dynamic forces
with cylinder displacement and velocity {the second being discussed in the next para-
graph). Non-linear components of the fluid-dynamic forces introduce damping into the
system 2 which, together with dissipation, balances the energy input due to instability
at a given cylinder oscillation amplitude; the result is limit cycle motion.

Heat exchanger tubes are supported at several locations along their span by
tube support plates (TSP). To allow for thermal expansion and ease of assembly, TSP
holes are drilled with slightly larger diameters than the tube diameter, resulting in
tube/support gaps of up to 0.25D, D being the tube diameter. At some flow veloc-
ity U > U, the limit cycle amplitude reaches the clearance gap value, resulting in

2Not all fluid-force non-linearities are necessarily stabilizing; non-linear stiffness effects are respon-
sible for the instability observed by Roberts (1962,1966), for instance. The existence of non-linear
fluid forces related with flow periodicities is also noted; the associated frequencies are, however, often
far enough from the fluidelastic frequency allowing these forces to be neglected.
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tubz/support impacting, often referred to as a TSP-active condition. This structural
non-linearity in the system, involving a discontinuous jump in the stiffness, is the sec-
ond non-linear aspect that needs to be considered when modelling post-instability tube

behaviour.

1.2.1 Review of Support-Influenced Dynamics in
Cross-Flow

To study purely fluid excited non-linear cylinder response, Price & Valerio (1990)
extended the quasi-steady model of Price & Paidoussis (1986b) to include velocity- and
displacement-dependent non-linearities. The relative velocity vector U, (Fig.1.2(b)),
was expressed as a Taylor series expansion including up to second order terms in the
cylinder cross-flow velocity, . Experimental measurements had shown the fluid dy-
namic force coefficients (Cr and Cp) to be strongly non-linear functions of cylinder
displacement. Fifth order polynomial curve fits were performed on the experimentally
determined force coefficient variations with cylinder cross-flow displacement, y. Ap-
proximate analytical solutions for limit cycle amplitudes in various array geometries
were obtained using the Krylov and Bogoliubov (K & B) averaging method. A require-
ment of the K & B method is that non-linear terms remain small in magnitude; this
was satisfied by limiting calculations to higher values ? of the mass damping parameter
mé/pD?. In the analysis, only cross-low motion was considered; thus, the only insta-
bility mechanism would be of the one-degree-of-freedom negative damping type. Their
analysis showed that the rate of increase of limit cycle amplitude with flow velocity for
lower values of mé/pD? was much greater than for high values.

System non-linearity introduced by impacting at loose supports has received
wider attention than fluid force related non-linearity. Investigators are primarily in-
terested in determining tube wear rates due to impacting with the support, following
instability. Numerous experimental data have been collected, correlating tube wear

rates and tube excitation (e.g., Ko (1979)). Numerical prediction of tube wear rates

3For the rotated triangular array, this corresponds to values of reduced flow velocity U/fD > 1.1.

I
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~
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has also been attempted by Frick et al. (1984), Antunes et al. (1988) and Fricker(1988)
among others. A host of dynamical experiments, where a tube is mechanically cxcited
(e.g., Blevins (1975), Goyder (1982), Axisa et al. (1988)) have also been conducted.

The complexity of the problem is undisputed. It is particularly evident in the
margin of uncertainty in wear-rate measurements and calculations. Cylinder/support
interaction, characterized by impact and sliding contact forces and resulting wear are
determined by the detailed cylinder dynamics. To improve the ability to predict wear
rates, it is clear that an understanding of the underlying cylinder dynamics by accurate
modelling and analysis is required.

Significant effort has already gone into modelling post-instability tube dynamics
with impacting. Axisa et al. (1988) studied the response of a multi-span tube with
loose supports under fluidelastic instability excitation. The mode! studied was a pin-
ended tube, supported at midspan; tube motion was limited to one direction only,
hence modelling an anti-vibration bar (AVB) rather than a circular support. The loose

support was modelled as a trilinear spring. The resulting support impact force was

therefore given by

F,=-K,(z| &) |z]> e

F,=0, Iz| <e,, (1.10)

where z is the transverse tube displacement, e, the tube/support clearance and K, the
effective support contact stiffness. Following their earlier work (Axisa et al., 1984), the
support stiffness K, was estimated to be that due to local tube ovalization given by

B rt,\}/?
=19—4—=|—= A1

K,=19= ( D) : (1.12)
where E is the Young’s modulus and ¢,, the tube thickness. Suggestions for possible
refinements of this model, such as inclusion of non-elastic impact effects and consider-

ation of fluid effects at the impact location were also given.

In Axisa’s et al. work, fluidelastic instability was modelled following Connors’
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quasi-static approach. Assuming the existence of a destabilizing fluid damping force

proportional to the flow velocity U, the total modal damping (; was expressed as

G=¢ [1 - (%)2] : (1.12)

U. being the critical instability reference-gap velocity, and {, the modal structural
damping in stagnant fluid. This being a linear fluid model, limit cycle amplitudes
would grow unhindered for U > U,, to be limited only by the loose support when
the amplitude attains the clearance value e,. Assuming non-linearities to be strictly
localized at the support, modal superposition was considered to be sufficient for the
structural modelling. The resulting modal equations were integrated using an explicit
Devogelaere algorithm. Results of their numerical simulations showed the tube response
to undergo a distinct sequence of bifurcations which in some cases resulted in drastic
increases in tube wear rates (the primary object of their investigation). Strictly periodic
motion was obtained in the velocity range U/U. < 2.0. Above this limit, an unidentified
bifurcation resulted in a chaotic-like response which was corroborated by evidence in
phase-space plots and PSD calculations. Return to periodic motion, albeit with higher
oscillation frequencies, occured starting at U/U, ~ 3. Axisa et al. observed and
remarked on the importance of (; which determines the linear instability growth rate,
where small changes in { would significantly alter the observed response, hence the
wear rates. Finally they concluded that fluidelastic vibratio limited by a loose support
does not have a unique vibratory “signature”.

Fricker (1988) studied the dynamics of a loosely supported cantilever beam, the
loose support modelling an anti-vibration-bar (AVB). Similarly to Axisa et al., a flu-
idelastic instability model was developed by assuming a destabilizing force in phase

with tube vibrational velocity having the form

—liepr L
F = SUDIRS, (1.13)

K being an unknown fluidelastic constant, characteristic of the array geometry, D and
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[ the tube diameter and length, respectively, w the vibrational frequency, and y the
tube velocity transverse to the flow. From equation (1.13), and a similar expression
for the mechanical damping force, Fricker obtained the following expression for the

effective total system damping:

(=6 [1 - -‘:—" (-g:)TJ , (1.14)

where (o is the mechanical damping factor and w, the nth modal natural frequency.
Equation (1.14) is similar to the expression obtained by Axisa et al. {equation (1.12)),
with the difference of the inclusion of the effect of vibrational frequency on the fluid
damping.

A finite element approach was taken by Fricker to determine the system structural
matrices. Long time simulations showed that complete convergence of the solution (to
a simple periodic motion) did not occur. It was found that small changes in the
accuracy of the solution completely changed the details of the impact forces after a
short period. Fricker concluded that the tube response was primarily periodic, but
with a superimposed chaotic component. Impacting with a loose support was found
to have a stabilizing effect; this was due to the effective change of tube boundary
conditions from clamped free to clamped-pinned. Support damping made it possible for
the flow velocity to be increased well beyond the critical value for the clamped-pinned
configuration. However, this instability could be initiated by impulsively loading the
tube at mid-span. This non-linear effect suggests a subcritical instability which ~an be
triggered by a large displacement.

In more recent work, Fricker (1991) reports the existence of truly periodic motion,
as well multiple solutions in the response of a U-bend tube with an AVB support.
With the tube symmetrically located within the AVB, double-sided impacting motion
predominated for U/ > U.. Due to the linear modelling of the impact stiffness and
the fluidelastic forces, Fricker found that changing the gap size had no effect on the
vibrational frequency, while vibration amplitudes and impact forces scaled linearly.
Bifurcations of the tube response as U was varied resulted in discontinuous changes in
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vibration frequencies and imipact forces. The bifurcations did not occur abruptly, but
rather over small but finite velocity ranges, over which several solutions co-existed. In
an attempt to gain some insight into the complex response observed, a one degree-of-
freedom oscillator, modelling only the most important characteristics of the impacting
system was developed. This model was found to provide reasonable bounds for the
frequency ratio and impact forces obtained with the complete model.

Cai & Chen (1991) modelled the impacting response of a loosely supported tube
subjected to non-uniform flow. In their analysis, the complete unsteady model of Chen
(1983a,b) was used. In their structural model the tube parameters were considered to
change during tube/support contact; the two sets of structural boundary cenditions be-
ing pinned-pinned-free and pinned-picned-spring-loaded corresponding to TSP-inactive
and TSP-active modes respectively; in the latter case, an equivalent spring constant
representing the effective support stiffness was introduced. Following the instability
of the TSP-inactive mode, vibration amplitudes increased until impacting occurred.
Energy loss on impact reduced the vibration amplitude, and the growth cycie was re-
peated. Cai et al. did not attempt to analyze the tube dynamics observéd, except for
acknowledging the complexity underlying the tube response.

In another recert study, Paidoussis & Li (1991, 1992) have studied the response
of a loosely supported tube within an in-line array. The purpose of their study was to
investigate the possibility and proof of existence of chaotic vibrations in such a system.
In their model, tube motion was considered only in cross-flow. Impact dynamics were
modelled via either 2 cubic or tri-linear spring. Their work was a pioneering effort in
using modern noa-linear dynamics concepts and methods to study and quantify the
tube dycamics. Bifurcation diagrams were used to summarize in a 2-D representa-
tion the variation of the tube response with flow velocity, making transitions in the
response easily identifiable. Lyapunov exponents were for the first time calculated for

a set of delay-differential equations; this made it possible to unequivecally confirm the
 existence of chaos; th1$ could only be done for the analytical cubic support model.
With the tri—linea.r spring impact model, chaotic-like motion was obtained right from

-
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the onset of impacting. To further investigate the route to chaotic motion, a simplified
one-dimensional impact oscillator, capturing just the essence of the complete system,
was also studied. For this model the Poincaré technique could be used to determine
the condition for the occurrence of period-doubling and saddle-node bifurcations. This
model enabled clarification of the existence of quasi-periodic motion previously sus-
pected to be chaotic. Multiple impact quasi-periodic motions were found to lead to the

observed chaotic response, following the onset of impacting for the tri-linear support

model.

1.2.2 Nonlinear Dynamics Concepts

As first envisioned by Paidoussis & Li (1991), any hope of understanding the
complex system of a loosely supported multi-span tube in cross-flow lies in a wider
application of non-linear dynamics concepts. Recently developed methods have given
new hope in deciphering and understanding the behaviour of non-linear systems. Sta-
bility and bifurcation theories coupled with mathematical topology underly the study
of non-linear dynamics. The stability of the equilibrium solutions (attractors), as well
as the robustness of the governing equations of motion can be investigated. In this sec-
tion, we introduce some basic definitions and methodology used to analyze dynamical
systems. Inevitably the complete -letails cannot be presented here; hence the reader
is referred to the excellent texts by Guckenheimer & Holmes (1983), Moon (1987) and
Wiggins (1990).

For the system studied here, we attempt to understand the dynamical behaviour
as a parameter p (primarily the flow velocity) is varied. The solution undergoes a
sequence of bifurcations; this referring to qualitative changes in the phase portrait
representing the steady state solution, or simply changes from one type of attractor
to another. An attractor may be defined as the transitive set in phase-space, ulti-
mately filled by a single steady state trajectory, representing the time evolution of the
dynamical system.

To fix ideas, we consider the response of a tube subjected to cross-flow and
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vibrating only in its first mode; hence, a one degree-of-freedom system. The equation

of ﬁxotion for this system is
§ + 2wCy + 'y = F(y,9, 5, 1), (1.13)

F representing the fluid force and the parameter i here being the flow velocity. Defining

a vector Y = {3,y}7, equation (1.15) may be recast in the form
Y =F(Y,p), (1.16)
where F is now a vector function given by
F = {F - 2u(y-u?y,9}". (1.17)

Equation (1.16) governs the time evolution of the state vector Y = {y,y}” in phase-
spacé. The function ¥ is a vector, tangent to the trajectory of the phase point, hence,
referred to as a vector field. A study of the vector ficid F yields information on the
system equilibria and their stability, as well as other information as follows.

The system equilibria or fixed points are determined by solving the equation
F(Y,n) =0. (1.18)

For the example above, the state of rest, Y = Yy = 0, is the unique stable fixed point.
Hence, the equilibrium, motionless state of a cylinder for 4 < p. (or equivalently
U < U,) corresponds to a point attractor in phase space.

Of interest is the stability of the fixed point Yy; Y, is stable if every nearby
solution of equation (1.16) stays nearby. Taylor-expanding equation (1.16) about Y,
yields

Y (2) = DF(Yo, 2)Y(2) + O(Y2(t)). (1.19)

The eigenvalues A(u) of the Jacobian derivative DF(Yy, 1) determine the stability of
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Y. Fluidelastic instability, associated with a Hopf bifurcation, occurs at u = g, when
Re(Mue)) =0.

The limit cycie is the second 'si'rnblest attractor. Similarly to the fixed point, a
stability analysis of the limit cycle can be undertaken, yielding information on the rate
of convergence of nearby trajectories to the limit cycle — a measure of stability. This
can be achieved by calculating Floquet multipliers (Guckenheimer & Holmes, 1983).
Loss of stability of the limit. cycle is characterized by a crossing of the unit circle by any
one of the multipliers. The unstable limit cycle may be replaced by quasi-periocic mo-
tion for instance, the result of a Hopf bifurcation of the limit ¢cycle. A phase-plane plot
of the quasi-periodic motion would be characterized by two incommensurate frequen-
cies, with the trajectory describing a 2-D attractor, graphically similar to a toroidal
surface. Alternatively, the original limit cycle may undergo a saddle-node bifurcation,
resulting in an asymmetnc lumt -cycle. This is often a precursor to the period dou-
bling (flip) blfurcatlon casc::.de, which ultimately leads to chaos (Feigenbaum, 1978).
A saddle-node bifurcation may also lead to an intermittency transition to chaos. The
quasi-periodic motion above may alsc undergo another Hopf bifurcation, introducing
a third incommensurate frequency. Quasi-periodic motion with three incommensurate
frequencies has been shown to be unstable under small perturbations (Ruelle & Takeﬁs,
1971) and can degeneraie into chaotic motion. Some of these routes to chaos will be
discussed further in later chapters.

The final atiracting set or “recurrent” behaviour has been dubbed the strange
attractor. While the classical attractors described in the foregoing are associated with
classical geometrical objects (n-dimensional surfaces, where n is an integer), strange
attractors can only be described in terms of fractal sets;fdilowing the attracting set
to have a non-integral dimens_iqn. An excellent treatrient of fractal geometry is given
by Mandelbrot (1983). A treatment of fractal dimensions as applied to dynamical
systems, as well as a2 numerical procedure for their determination is given by Moon
(1987). Phase-plane plots of motion on a strange attractor show repeated stretching
and folding of trajectory bundles. Consequently, initially nearby stites show locally
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exponential divergence with time; the baker’s transformation (Farmer et al., 1983)
vividly describes this scenario. The horse-shoe map (Smale, 1963, 1967), responsible
for similar stretching and folding has been found to be common to all strange attractors.

Thus far, the bifurcations discussed belong to the class of local bifurcations. Lo-
cal bifurcations can be characterized as qualitative changes in phase portraits occurring
near a single point; this holds for bifurcations of the limit cycle when the phase fiow
is reduced to a Poincaré mapping in which a limit cycle corresponds to a fixed point.
Qualitative changes may also occur in the behaviour of a dynamical system involving
global aspects of the phase-space flow. An example of this is the transversal inter-
section of homoclinic orbits for planar vector fields. The simplest global bifurcation
occurs for a homoclinic orbit containing a single saddle point. A change in the system
parameter results in the disappearance of a periodic orbit associated with the saddle
loop, resulting in a qualitative change or (homoclinic) bifurcation of the phase-space
flow. Less degenerate global bifurcations are obtained, for example, with loops formed
from multiple saddle separatrices (Guckenheimer & Holmes, 1983).

Associated with local bifurcations is a simplification of the dynamics in the neigh-
bourhood of the fixed point. In reality only a few “modes” will be associated with the
bifurcation. The system can therefore be reduced to the lowest order part of the vector
field ¥ on which t'.e bifurcation depends. The appropriate reduction procedures are the
subject of the Centre Manifold and Normal Form theories (Guckenheimer & Holmes,
1983), through which systematic computation to determine the local dynamics can be
done. : |

11; general, such calculations are only possible for simple analytical forms of the
vector field F. However, using such simple forms of F it is possible to enumerate
and classify all possible local bifurcations (see, for instance, Thompson (1986)). The
local bifurcations are associated with unique and distinctive topological changes in the
phase-plane plot which can be identified purely geometrically. Identification of these
local structures therefore becomes & powerful tool for analyzing complex systems not

amenable to analytical manipulation. This fact will prove invaluable to the present —;_’

=~
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study.

1.3 OBJECTIVES OF PRESENT WORK

The study to be presented aims to build on the knowledge of non-linear tube
dynamics on two fronts. On the first, the problem of fluidelastic instability is revisited;
of particular interest is the fluid-force field. On the second front, a non-linear dynamical

analysis, involving theory and experiment of the support influenced tube dynamics is

undertaken.

1.3.1 The Non-Linear Fluid Force Field and Limit Cycle
Motion

To date, studies on support-influenced tube motion have used linearizca theories
to model the fluid-dynamic aspect of the problem — hence no limit-cycle motion is
possible without the presence of the support. Also, while the assumption of linear
fluid dynamics may be valid for small tube displacements, static force measurements
by Price & Paidoussis (1986b) have shown the fluid forces to be strongly non-linear
functions of tube displacement. Fig.1.3 shows an example of the variation of Cp with
tube non-dimensional cross-flow displacement, ; it is clear that the linear assumption
is valid only in the region near § = 0. Linearized theories are no longer valid in the
post-instability regime, in which they predict an infinite amplitude growth. While this
is countered by the presence of the support, the rate of energy addition to the tube for
U > U, is inflated, éue to the absence of non-linear fluid-damping forces.

A rotated triangular array geometry, shown schematically in Fig.1.4, will be the
focus of this study. This geometry, with tube spacing P/D = 1.375, has been found to
be highly unstable (Frice & Paidoussis, 1986b). Fluidelastic instability was found to be
of the one-degree-of-freedom negative damping type, with motion predominantly in the
cross-flow difection. A single flexible cylinder model will therefore give a reasonably

accurate répraentation of the flexible array behaviour.
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The fluid force field is investigated first. It is presently not known how Cj
and Cp vary with in-flow and cross-flow tube displacements. Accurate static force
measurements are conducted over a grid covering the complete area within whick the
tube can move, thus enabling 2 mapping of the co:nplete static force field in this array
for the first time. A study of this force map is also undertaken. Using the same force
field, a linear stability analysis is performed to determine tube stability away from the
geometrical equilibrium position.

To date, the only existing non-linear model capable of predicting limit-cycle am-
plitudes (neé.r U = U,) is that by Price & Valerio (1990), albeit with tube motion
limited to the cross-flow direction only. With the complete two dimensional static
force field known, non-linear quasi-steady theory is used to investigate coupled {z, ),
i.e. orbital, motion and the effect of fluid coupling on the limit cycle motion. The
effect of sy;tem parameters such as tube natural frequencies, and mass-damping is also

quantified.

. 1.3.2 Support-Influenced Tube Dynamics

In the second part of this Thesis, a study of the tube dynamics under the influence
of impacting will be undertaken. This system poses special challenges in the attempt
to understand the resulting complex tube response coupled with bifurcation sequences,
as system parameters are varied, for the following reasons. The discontinuity ir the
stiffness at the loose support renders the system non-analytic. The governing equa.ﬁéns
of moi::ion are stiff delay differential equations; stiffness in the equations, which is
the result of large varia.tii:ns in the effective system stiffness, brings about numerical
stability problems. Delay terms in the equations, from the quasi-steady model, resuit
in delay differential equations which have no analytical solution; conversion to ordinary
differential equation form is, nevertheless, possible for small delays via Taylor series
expansions.

In the analysis; the key bifurcations in the solution as system parameters are

varied are identified and enumerated. Particular attention is paid to local bifurcations
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and their topological structures. Details of the characteristics of such bifurcations
are already well known; hence, system behaviour following such bifurcations can be
predicted.

Reduction of the effective system dimension via the Poincaré section is performed
near certain bifurcations where the geometry of the underlying attractor is expected
to be uncovered via such an approach. In particular, the possibility of uncovering
behaviour approaching one- or two-dimensional maps (solutions to difference equations)
is very rewarding; one-dimensional maps can be fully analyzed, while the theory for
certain two-dimensional maps is well founded and understood. The period-doubling

route to chaos, for instance, is exhibited by the 1-D map

Prny1 = p(l - pn)pn- (1°20)

Feigenbaum (1978) showed that the critical parameter at which successive period dou-

blings occur satisfies the relation

Hn4l — Uy
- Hn = Hn-)

-

= 4.6692. (1.21)

This gives a specific criterion for testing the onset of chaotic behaviour when a period
doubling cascade occurs in any dynamical system.

Thé flow velocity is but one of the important parameters affecting the dynamics.
Others include the clearance to the support, e, the tube mass damping parameter
mé/pD?, and the frequency wy. The effect of varying these parameters is also investi-
gated.

TLe robustness of the dynamical behaviour obtained depends on the structural
stability of the vector ﬁiald, F, which represents the theoretical modelling of the physical
system. Both the fluid and structural models are approximate to some degree. It is
important to test to what extent the dynamical bebaviour obtained is affected by
changes in the theoretical modelling. In view of the complexity entailed in an accurate

model, it is of interest to evaluate the extent to which simplifications may be carried
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out while maintaining the correct dynamical picture.

An exploration of the dynamical behaviour of a simple two degree-of-freedom
model is the starting point of the non-linear analysis. The simplicity of this low-
dimensional system makes geometrical interpretation of phase space behaviour possible;
tube motion occurs essentially in a plane (2-D space). This simplified model is also
accurately representative of the system behaviour up to and including the first Hopf
bifurcation. Hence, it is expected that bifurcations at higher Sow velocities will give
an idea of the dynamical behaviour of the complete infinite-dimensional system.

Following this preliminary work, an in-depth study of the dynamical behaviour
of a non-uniform cantilever tube is undertaken. This presents us with an infinite-
dimensional system with motion occurring in 3-D space. Coupling occurs not only
between the orthogonal in-flow and cross-flow directions, but also between the vari-
ous modes in a given direction. The resulting dynamical behaviour can therefore be
expected to be much more complex, as compared to the two degree-of-freedom sys-
tem studied in the foregoing. The accuracy of the predicted behaviour is tested by
experiments — in fact, conducted prior to the 3-D analysis.

The experimental tests are conducted in a water tunnel. Motion of the can-
tilevered tube utilized is limited by a circular suppo;t at 1ts upper end when vibration
amplitudes exceed the tube/support clearance. The flow velocity is varied in the range
0—2.5 U, where U, is the critical fow velocity for the Hopf bifurcation. A typical range
for operational support clearances 0.07D < e, < 0.23D is used in the tests. Interstitial
gap fluid effects are also investigated by conducting tests with impacting occurring in
air and water. The dynamical behaviour is characterized via response spectra, phase-
space portraits, fractal dimensions as well as saddle orbit distributions. Bifurcation
diagrams are constructed to create a global picture of the dynamical behaviour in
parameter space.

Theoretically, further studies on parameter effects and more importantly on pos-
si’ble model simplifications are carried out; particular attrntion is paid to the possibility

of obtaining low-dimensional maps via the Poincaré section reduction. Lyapunov ex-
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ponent and fractal dimension computations are used to characterize any attractors
obtained.

The non-uniform cantilever tube in the experimental tests is designed such that
the two lowest transverse natural frequencies are separated by a wide margin from
the higher frequencies, keeping a large percentage of the system energy and hence the
dynamics in the two lowest modes. Tubes within steam generators and heat exchangers
have uniformly distributed mass and stiffness and, hence, will not have a large disparity
in the frequencies of the lower and the higher modes. In the final part of this work,
this more realistic condition is modelled by studying a two-span loosely supported tube
with a loose support at mid-span. Of interest will be the implications of the results
obtained from the analysis of the low dimensional systems above to this more complex

system.

1.4 THESIS OUTLINE

In Chapter 2, the complete theoretical model is presented. The quasi-steady
model for the fluid dynamic aspects is based on the work of Price & Pa.idﬁussis (1984,
1986b). In the second part of this chapter the problem of modelling the loose support
is considered. ’

With the theoretical formulation in place, the next task is the determination of
the fluid force field. Experimental apparatus and test procedure are the subjects of
Section 3.1 of Chapter 3. In Section 3.2, the measured force field is analysed and its
implications on tube stability discussed at length.

The dynamical behaviour of the reduced one-mode, two-degree-of-freedom model
under the influence of this force field is considered in Chapter 4. In the same:chapter,
the loose support is introduced in the dynamical problem; its implications form the
subject of the latter part of this chapter.

In Chapter 5, results of an experimental study of the post-fluidelastic instability

behaviour of 2 non-uniform tube are presented. Experimental results are also compared
RERRE
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with a theoretical analysis of the same system.

The study concludes, in Chapter 6, with a brief presentation of the response of a
two-span uniform tube with a loose support at mid-span with particular focus on the
implications of the preceding low dimensional analyses to this high dimensional system.
This chapter closes with some remarks on the implication of the chaotic transition to
wear-rate computation; possible improvements in the wear computation procedure are
suggested.

In Chapter 7, a retrospective summary of this study, as well as possible directions

for future work are presented.



Chapter 2

THEORY

The governing equations of motion will now be presented. The system under
consideration is a circular flexible tube subjected to non-uniform cross-flow U(s) as
depicted in Fig.2.1. The flexible tube is located in row 3 of a rotated triangular array,
as shown schematically in Fig.1.4. At a location s = s, along the tube span, a loose
support with clearance e, exists. Although thé tube shown in Fig.2.1 has clamped-
pinned boundary conditions, the response of a clamped-free tube will also be studied.

For *his two-span model, for small clearance, vibration amplitudes will remain
small relative to the tube length [; the linearized Euler-beam equations therefore will
be sufficient. The mechanical coupling between the spatially orthogonal directions will

also be negligible; hence, the governing equations of motion are

641' al' az:c . _
Elgg+c 5y tmos = Faplz, 3,0 ) + 8(5 = 5p)Fes(2.9) (2.1)

-

for the x—direction, and

Gy & Lz
e Famed = Fyyly, g, ) + (s — 5p)Fyalz, ) (22)

EI dst at ot?

for the y-direction, where z(s,t) and y(s,t} are, respectively, the streamwise (in-flow)
and cross-stream (cross-flow) tube displacement, m is the tube mass per unit length,
EI the flexural rigidity and ¢ the material damping coefficient. Subscripts f and s on
the right-hand side indicate fluid and support forces, respectively, and &(s — s;) is the
' Dirac delta function. '

27
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2.1 THE QUASI-STEADY FLUID-DYNAMIC
MODEL

The quasi-steady approach of Price & Paidoussis (1986b) analyzing a single flex-
ible cylinder is followed in determining the fluid-dynamic forces. Several modifica-
tions are made to their basic model. The complete position-dependent non-linear
fluid force field is utilized in the present work. Second-order terms in tube velocities
(£(s,t),3(s,t)) are also included. Axial variation of the fluid forces, resulting from
tube deflection and a non-uniform flow velocity, is also accounted for in the model.

A ling_a; stgperposition of fiuid force components dependent on cylinder accelera-
tion, véfocity and displacement leads to the following formulations (Price & Paidoussis
1986b):

2 21 T
Fop= —m,,%t-i:- +33 PUZD [Cr(z4,ya)Sine + Cp(z4, wa)cosa] | (2.3)
2 1 .
Fyr= -magt-g- + Ea—szf D [Cr(za, ya)ecosa — Cp(z4, ya)sina] , (2.4)

where p is the fluid density, m, the added mass, U;(s) is the flow velocity relative to the
tube, and o the flow approach angle as depicted in Fig.1.2(b). The factor a accounts
for the fact that Cp and Cp are based, as measured, on the upstream flow velocity U,.
The ga;;ﬂow velocity U is related to Uy, by U/Uy = T/ (Ti— D) = a. The delayed
displacements, accounting for the effect of a phase lag between cylinder displacement

and the ‘luid forces are given by .
zq=xz(s,t — At), ya=y(s,t - At). (2.5)

The time delay At is approximated by At = u.D/U, where y, = O(1) (Price &
Paidoussis, 1984). Z
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2.2 THE SUPPORT RELATED FCRCES

At the loose support, several forces come into play. Considering a cross-section
at the support location s = s, the tube geometrical centre is limited to move withina
circle of radius e, as shown in Fig.2.2; a typical impact with local incident tube velocity
u and restitution velocity v is depicted. For such an impact, radial and tangential
forces are manifested. The most significant is the normal impact force F;, which is
proportional to the support stiffness and is a function of the local contact geometry.
Coupled with F; is 2 damping force, F,4, representing energy loss due to effects such
as plastic deformation and stress-wave generation in the tube. The presence of a
significantly viscous fluid in the interstitial gap also introduces squeeze-film damping.
Explicit formulations for Fy; and F,s do not exist. Hence, in the next two subsections
we turn to approximate analyses, coupled with empirical results to determine some

approximate formulations for these forces.

2.2.1 Empirical Formulation for the Stiffness Force F;;

The impa-t stiffness force is a function of the deformation, referred to as the
“approach”, a,?of the centres of mass of the impacting bodies), Fig.2.3. It is also
strongly depeﬁdent on the geometry of the contacting surfaces. In general, the impactr
force can only be analytically determined for simple geometries, where impacting bodies
are compact. For the so called stereo-mechanical impact of compact bodies, Hertzian

theory (Engel 1976) gives a force-approach law of the form

F, = K%, (2.6)

o being the approach, or relative displa.cement of the impacting bodies, and K, an

effective stiffness. For two spheres of equal radius r, and of the same material, we have

' 2E
Kn = m T./z,: (2.7)

/
it
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E being the material modulus of elasticity and v Poisson's ratio.

Permanent deformations occur in materials with high surface hardness, even at
very low impact velocities. Impact involving metals, in which plastic deformations
invariably occur, cannot be modelled by Hertzian theory. The Meyer law (Goldsmith,
1960), which has been fi?und to be reasonably accurate, is an empirical relation of the
form

F, = K.o%, (2.8)

where the exponent £ will vary in the range 0 < £ < 1, indicating impacting that varies
between ideal plasticity and elasticity. In reality, a combination of plastic and elastic
deformations occur. The exact value of £ has been found to have minimal effect on
the total response of a tube under impacting (Goldsmith 1960); it is only necessary
that the contact force time-history exhibit the correct total impulse for the correct
prediction of the resulting response.?

While tube-to-support impacting is well beyond the realm of compact body in-
teraction one can envisage a force-approach law (at s = s,) similar to equation (2.8),
albeit with a different constant and exponent. Using a relation of the form of equation

(2.8), the force F,; can be expressed as
Fu(t) = K,0t(2), (2.9)

where ¢(2) is the approach at s = s, and is given by o(t) = (s,,t) — e,, With r(s,, 1) =

‘/1:2(3,,, t) + y%(s,,t) being the tube radial displacement at the support location, see

Fig.2.3. K, is an effective contact stiffness, which can be determined experimentally.

Note, however, that local stresses will be strongly dependent on the accuracy of the force time-
history.
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2.2.2 The Impact Damping Force F},4

F,¢ may be expressed as a viscous force as follows:
Fra = c,(0)F + c,p(0, e, ). (2.10)

The damping coefficient ¢, is a non-linear function of ¢ and is related to direct impact-
ing energy loss, while ¢,y relates to squeeze-film damping effects; ¢, and ¢,y can only be
determined approximately. As discussed later, considerabiy more effort has gone into

the estimation or measurement of c,;. Firstly, we turn to a theoretical analysis for the

determination of c,. .

2.2.2.1 Estimation of the equivalent viscous damping coefficient c,

Traditionally, the mechanics of impacting bodies has been treated by introducing
a coefficient of restitution to represent the resulting energy loss. From experimental
tests, the coefficient of restitution is known to be a non-linear function of the impact

velocity u, and of the form
e=1-au +au’ +.. (2.11)

(Goldsmith 1960), in which u, > 0. The coefficient of restitution method does not give
an explicit expression for the impact damping force as sought for in equation (2.10),
nor indeed any details regarding the impact process. It is, however, possible to obtain
an expression for the impact damping force ¢,(¢)é from knowledge of the dependence
of e on %, {(equation (2.11)) and the choice of a functional form of ¢,(¢) which meets
certain experimentally determined criteria. The resulting analysis was first proposed
by Hunt & Crossely (1975) who studied the stereomechanical impact of two spheres.
For the present analysis, cylinder/support impacting is not a stereomechanical process,
hence beam modal deflection needs to be considered.

For the equivalent viscous damping force to be representative of the energy dis-
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sipation mechanism during an impact, the functional form of ¢,(o) must satisfy the
following conditions:

(i) the total energy dissipated by the equivalent viscous force should equal the energy
loss indicated by the coefficient of restitution;

(ii) ¢,(c) should increase smoothly from zero at ¢ = 0 and vanish smoothly at the
end of the impact; hence the force variation should be as depicted by the solid line
in Fig.2.4 which is in concordance with experimental observation (the dotted curve in
Fig.2.4 depicts the discontinuous jump, at ¢ = 0 in the damping force (incorrectly)
predicted when ¢, = const.);

(iif) the resulting impact history should be reasonably representative of a real impact
prbcws.

In the analysis that follows will shall refer back to these conditions and show how they
apply.

The impact process may be represented by Fig.2.3 if the moving body is taken
to be the cylinder (the cross-section shown here being at the axial location s = sp);
fﬁrthermore, to simi:lify the analysis we consider only planar transverse tube motion
in the first mode, hence, r(s,t) = y(s,t) = @(s)g(t); ¢(s) is the first-mode beam
eigenfunction. The tube approaches the support with an incident velocity u, = 9(Sprti)
and leaves the support with a restitution velocity v, = ¥(sp,t,), where u, and v, are
related via the coefficient of restitution e, which is a function of u, as ind’cated by
equation (2.11).

The difference in kinetic energies before and after impact is
1 . .
AE, =35ml [#(:) - 8%(t)] - (2.12)

where I = Jj ¢%(s)ds.
~ Equation (2.11) may be written in terms of the generalized coordinate ¢(t) by
substituting u, = ¢(sp)d(t;). The result is the following relation between 4(¢;) and
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a(to):

4(ts)
g(t:)

=¢ =1 — a;18(sp)d(t:) + x26?(5,)3° (L) + oous a; > 0. (2.13)

Using equation {2.13) to the linear term, the following is obtained for the energy
loss (2.12):

AE, = %Tﬁflq.z(ti) [1 - {(1 = 201¢"(Sp)d(ti) + (‘9‘1ﬁzs(sx-v)‘j(ti))2 + (---2a2¢2(sp)éz(ti)---)}]

~ mhayé(sp)d(t:)- (2.14)

Condition (i) on p.32 requires that the equivalent viscous force result in energy

dissipation equal to AE}. This leads to the equality
fc,(cr)c’rda = AE;. (2.15)

The loop integral is performed around the solid curve shown in Fig.2.4. Approximating

this by twice the integral from ¢ = 0 to ¢ = oy, and using the final result in equation
(2.14), equation (2.15) becomes

2 .[3 i cs(0)odo = mIyay ¢(s,)d3(t:). (2.16)
Guided by condition (ii), the following functional form of ¢,(o) is taken:
¢s(0) = T,of, (2.17)

where G, is an unknown censtant. The solution of equation (2.16) for c,(), which is
our primary goal, then simply reduces to the determination of the constant c,.

As yet, equation (2.16) can still not be solved since the approach velocity during
the impact (¢) and the maximum approach o,, remain unknown. & and Om Will be
determined using condition (iii) as a guide. The total energy lost at impact is generally
a small fraction of the total energy of the cylinder. It is therefore expected that for
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the real impact process, ¢ and o, will oot deviate significantly from the velocity time-
history and maximu a approach for the casé of a perfectly elastic impact. Estimates of
& and o, will therefore he obtained by considering a perfectly elastic impact.

From the onset of the impact process, the total system energy is

1

Eg=2

mhd(e) + bt + [ Kiotdo, (2.18)

* where I; = fl ¢*(s)ds and I, = f} ET[¢"(s)]® ds. The last term in equation (2.18) is the

potential energy stored in the support as a result of the support stiffness force given
by equation (2.9).

:;I;—t.ze tube energy at the instant the impact commences (at t = ¢;) is, from equation
(2.18) | :

Ez=l

. 1
2m119‘2(t=') + Engz(t.-). (2.19)
Equations (2.18) and (2.19) may be equated, to obtain an expression for tube
velocity variation during a perfectly elastic impact. The resulting expression for ¢(t) is

1/2

§(t) = [q'z(t.-) - ;‘rj—l- () - ) - ;%;1)05“ : (2.20)

The following relations between the physical and generalized coordinates are used in

obtaining an expression for &:

c = Y(sp.t) = e,
= &(sp) [at) — q(t:)); (2.21)
hence,
&= $(s)i(2). (2.22)

=

Equation}i‘—\?l)‘can also be used to express ¢(t) in terms of ¢, specifically noting that

- e
- . Tt
.
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e. = &(s,)q(t;), thus vielding

2 2 _v g
0= £100 = g5 (20 + 5 (222)

Finally substituting (2.20) into (2.22) and using (2.23), the following expression is

obtained for the approach velocity verie.tion:

The maximum approach ¢,, occurs when & = 0. Hence, from equation (2.24),

om satisfies the equation

- T [ (o 2)] - ko o

mh(§+1)

With the expressions for & and o, determined, equation (2.16) can be solved for

the damping constant which gives

g = mhiong’(t: (2.26)
y fom 208 [qz(t ) - (alcr + a«.a'2 + a:,af‘*'l)]l"2 do’ ) )
where
_ 2eh I 2K,
U=TLEE) 2T mhety ™M eTnnesn @80

2.2.2.2 The squeeze-film damping coefficient c,s

For a radial tube/support approach t}ie presence of fluid within the tube/support
gap introduces squeeze-film damping (¢, ;) into the system. A tangential relative motion
between tube and support also results in viscous shear damping (C., ). oy is particularly
important when the radial eccentricity surpasses e./2. The determination of {,; has
been undertaken by Jendrzejczyk (1986) theoretically and Rogers & Ahn (1986) and
Kim et ol. (1988) experimentally. The same investigators have shown that ,, is
generally small compared to (,s. Kim et al. obtained the following empirical expression
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for (s by correlating with their experimental data:

s @) ()e em

where ?, is the TSP (tube support plate) thickness, 7 the tube eccentricity within the
support, f the oscillation frequency, and # is an empirical factor equal to 100. St is the
squeeze-film Stokes number defined as St = 2xfe?/v;, where vy is the fluid viscosity.

Following Jendrzejezyk (1986), ¢,y was related to (s by ¢,5 = [2mlw; /¢3(sp)] Cos-

2.2.3 Final Form of Support Related Forces

In summary, referring to equations (2.9) and (2.10), the sum total of support

related forces becomes

F, = K,(r - &)t + [c',(r —e)+3 (1—_1r /e,)] 7 (2.29)

for the radial direction, where

= (FE) (5) (@) s ew

and T, is given by equation (2.26) and, as in equation (2.28), # = 100. Tangentially to

the contact location (see Fig.2.2), friction effects come into play, resulting in a force
Fy= y'frFr; v >0, (231)

where s, is the Coulomb dry-friction coefficient. As indicated, equation (2.31) is only
correct when the resulting Fy does not result in direction reversal of the tangential
velocity v, (i.e. during sliding motion). Otherwise, an iterative procedure is required
to determine the unknown contact force (during sticking) to ensure that a final state
of v; = 0 is attained. This will be considered further in Chapter 4.
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Transforming the support forces to Cartesian coordinates (Fig.2.2) we obtain

F., = Fpsinf — F.cosf
= {K,(r -e )+ 7 [c‘_,'re +3 (1 _17_/6 )] } (yrsind — cosfl), (2.32)

F,s = —Fycosd — Fisind
- {I{,(r —e )Y+ [c‘,r’-" + 3 (

- _lr /e,-)] } (17rc080 +sinf). (2.33)

2.3 THE FINAL SYSTEM EQUATIONS

The governing equations of motion ( 2.1 - 2.4, 2.32 - 2.33) are rendered non-

dimensional by introducing the following non-dimensional quantities:

Fe Z ogol sof o alm %

=D YTp Tp "Tpp YT

ET U .~ K,D¢!

2 4 —_ i
wy = 1( lq)! T =wit, V'_wID! 3 mwf '
s _ Dt - B (=S Mg
* Pme’ T m T 2muw ™ prD2/4
= _ T ;=&
F=g5 &=g5 (2.34)

After some algebraic manipulation, the equations in their non-dimensional form are:

for the in-flow direction,

1rC'm Pz o | 10°%
(“' )61'2 TAG T x* Fr
1 oz 2 @. 2 ay 0% :
P [(V— 5+ 5 (20t + V=300

+6(5 — 5;) {I{',(F &) 47 [c,rf +f (1 _1,, /e?)] } (p,,.s_ina —cosf);  (2.35)
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and for the cross-flow direction,

1rC'm., 7 1%
1+ ) +2Ca -A-al'—-
i
5513 o5 5
5,%;5{(3—6—:)2+( 7 (- Bree- Pes)

—6(5 = 5p) {I?,(F —-&)F+7 [é;rE +f (1 ~ F/é’,)] } (ugecosd + sind). (2.36)
The time delay requires that the force coefficients be evaluated as follows:

Cr = Cr(&(r — A7), §{(7 — A7), ‘
Cp = Cp(i(r — A7), §{r - A7), T (2.37)

the non-dimensional time delay AT being given by

pruy D

AT = T

where g, = O(1).
A standard Galerkin expansion for the orthogonal beam displacements is utilized

as follows:

£(5,7) = Z $i(8)Fi(7) »

:-—1

§(3,7) = Z ¢:(5)a(r) (2.38)
=1
where ¢;(5) are the beam eigenfunctions which, for constant m, satisfy the orthogonal-

ity conditions

L 1 for i=j d¢; (3) M for i=]
i(5)@;(5)ds = d i J :
jc; e(5)65(8) {0 for i#j '[ o { 0forizj.

Substituting (2.38) into the governing equations (2.35, 2.36) and then multiplying

=
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through by ¢;(5) and integrating with respect to § we obtain,

1 1 07T ., 7o .
A2+ (=g [ |-+ G (et e v - Erco) as s
éi(3p) {I{’,(F &Y+ [c',if +3 (1 -IF/e',.)] } (psrsiné - cos), (2.39)

0
¢;(§p) { (F—&)X+7 [C,TE +8 ( 1_ 7 )] } (psrcosd + sinf). (2.40)

i+ 258+ (G = g [ [(if——)2+( )2] '((V—@)c,.—cpa)qs.a.s—

where, 7 = (1 + 7Cnmo/(4%)) and § = ((Mi/ M jé is the modal damping.

Equations (2.39) and (2.40) fully describe the tube response under fluid excitation,
limited by impacting at the loose suppori. It is reiterated that the friction term 1s
employed with caution to ensure that no reversal of the tube tangential velocity occurs
following an impact. The fluid force coefficients Cp and Cp are empirical inputs to the

theoretical model. The experimental determination of these coefficients is the subject
of Chapter 3. -

2.4 REDUCTION TO A
TWO-DEGREE-OF-FREEDOM SYSTEM

A natural starting point for the study of the system represented by equations
(2.39) and (2.40) is a linearized stability analysis. For this purpose, it is sufficient to
reduce the system to its lowest order, which still exhibits the initial cylinder instability
behaviour; in this case a linearized 2-d.o.f system, in which only the first mode in the
two orthogonal directions is considered. Two sinipliﬁca.tions may be constdered. Firstly,
the support-related forces are zero at the cylinder equilibrium position where cylinder
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stability is investigated. The second is linearization of the position- and velocity-
dependent fluid force terms.

To linearize the velocity terms, the following approximation is used

OZ o o] 1 67

v-Zr+ @] e (1-52). (241
Without loss of generality in the stability analysis, we may also consider planar (z,¥)
tube motion, hence the physical and generalized coordinates are identical; e.g. Z = p,
which is physically equivalent to analyzing a rigid, flexibly mounted tube. Furthermore,

the position-dependent force coefficients are linearized via the Taylor expansions

oc, ._oC

~ —AAT L L

CL—CLO'*'e: (P T + 41 3q1)

Cp = Cpo + €337 (p %CD + 1aCD) . (2.42)
1 aq

The factor exp{—AA7T), where Aisa compl;ex number, represents the time-delay effect
in the fuid forces; harmonic: tube motion, for flow velocities in the neighbourhood
of the critical instability velocity, is implicitly assumed in this formulation (Price &
Paidoussis, 1986b).

Equations (2.41) and (2.42) are substituted into (2.39) and (2.40), maintain-
ing only linear terms. Introducing the vector w = {.a@}%, the resulting linearized

equation system may be conveniently expressed in the following vector form:

IVIJ% -+ [D]¥ + [K]w + Fo = 0, (5.43)

where
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96, + ¥ _¥Cy

[D] _ ha? ? 2ma?

Ve - ve
s 26 + Sk

- V2e—AdT aCp - P2emAdr 8Cn

[K] = 2ma  8py ? 2mat O
_ VRearac,  _yRedarac, |
1 ma*  8py ? 2ma* O
and

= o e _VCn
I T [F ] — 2mas
0 12C:0
" Zme?

For the purpose of a stability analysis, the steady force Fo determines the tube static
equilibrium position, We, at which the matrices [D] and [K] are evaluated; equi\"ra.lcntly,
the Taylor series expansions in eqnation ﬁ@AZ)" are for a coordinate system centred at
this equilibrium position. For a given ﬂc;ﬁ:'elocit}-, w. may be obtained by solving the

non-linear force balance equation
We = _[K(wes V)]“IFO(WQ, V)' (2'44)

A stability analysis of equation (2.43) is carried out using standard eigenvalue tech-
niques. With the complete position-dependent fluid force-field known, the effect of the
tube equilibrium position on the instability flow velocity can also be determined. For

the moment, however, we turn to the experimental determination of the fluid force
field.
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Chapter 3

THE STATIC FLUID-FORCE FIELD

Lift and drag forces were measured for 2 test-cylinder mounted on a biaxjal force
balance in a blow-down wind-tunnel. The test-cylinder was part of an array of otherwise
rigidly fixed cylinders. The array consisted of seven cylinder rows, with alternate rows
containing 14 ard 15 cylinders, respectively. The rigid cylinders spanned the test-
section and were mounted on aluminium plates, which were in turn fixed to the top
and bottom test-section surfaces. The test-cylinder protruded outside the test-section,
being mounted to the force balance at the bottom. To eliminate any cylinder vibration,
a damping mechanism was attached to the upper end of _t_'.hé test cylinder as shown in
Fig3.1. T

The wind tunnel test section measures 609 X 914 mm, and has free-stream tur-
bulence of 0.5%. A maximum wind speed of 40 m/s can be attained in the empty test
section. Blockage introduced by the array reduces this maximum velocity to approxi- o

mately 15 m/s.

3.1 FORCE BALANCE CALIBRATION

The force balance employs two linear displacement transducers to sense the dis-
placement of two pairs of short rectangular beams positioned orthogonally to each
other. The transducer signal is amplified and multiplicd by 2 calibration factor to give
the static force reading.

ﬁCa.libration of the force balance was performed by applying a known static force

and ﬁe&ﬁng the corresponding voltage output. Weights, ranging from 0.1 N to 10

-
~

42
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N, provided the required force.

Fig.3.2 shows the calibration curves for the drag and lift directions, respectively.
The force balance exhibits excellent linearity in the force range considered for both the
orthogonal directions. During the experiments the highest load on the force balance

corresponded to an output of approximately 1000 mV which is well within the linear

range.

3.2 THE EFFECT OF REYNOLDS NUMBER
ON Cp

Tests were first conducted to investigate the variation of Cp with Reynolds
number, Re. For these tests the upstream flow velocity U,, was varied in the range
1.3 < Uy, < 7.5 m/s. This corresponds to a Re range, 2.15 x 10° < Re < 1.24 x 10%.

The variation of Cp with Re, for the cylinder located at the array equilibrium
position, is shown in Fig.3.3. Results for increasing and decreasing flow velocity are
plotted, showing good repeatability and little hysteresis (if any). Cp shows a decreasing
trend, initially at a high rate. For Re > 109, Cp almost levels off to an average value
of 6.3. In comparison, a nearly constant Cp value is obtained for a solitary cylinder in
the same Re range (not shown). Hence, in the array, there is a slower migration with
Re of the separation point, responsible for the gradual decrease in Cp; this may be
related to the confinement of the flow within the inter-cylinder channels in the array.

The Lift cceﬁ_;;ht-vaﬂation is also shown in Fig.3.3. Array symmetry dictates

-,fhat Cr be zere for the cylmder position tested. As shown later, C;, is extremely
sensmve to cross-flow ¢ c_) hnder position (§) near ¥ = 0. ThlS sensitivity is reflected in
the shghu:,'non-zero value of C. in Fig.3.3..Indeed, a cylinder displacement of 5/1000
in. (0127 mm) resulted in a significant change in C},.

v
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3.3 VARIATION OF C; AND Cp IN THE
RANGE —0.23 < (%,§) < 0.23

In the primary force measurement tests, Cy and Cp were measursd over a range
of in-flow and cross-iow cylinder displacements. An area of 0.46.D X 0.46.D was covered
by a grid of size D/52 (= 1/52 in., or 0.49 mm). The force balance was mounted on a bi-
directional traverse mechanism which made possible accurate cylinder displacements.
The displacement range, which corresponds to an area of (.0529 in® was covered with
625 grid points. With the cylinder positioned at each grid point, a 1 minute settling
period was allowed. A 10 sec. time average of the force outputs was then taken, using
a HP 3562A FFT spectrum analyzer.

Fig.3.4 shows the variation of Cp and Cp with cross-flow displacement § with
the movable cylinder at its the equilibrium in-flow position (f = 0). Most striking
is the extreme sensitivity of Cy near ¥ = 0, the cross-flow equilibrium position. As
shown by Price & Paidoussis (1986b), the large and negative value of 8C. /07 makes -
this cylinder location very susceptible to instability. C. also varies nearly linearly at
this location; although only three data points show this linearity, repeated tests showed
this to be always the case. Cy, reaches extremum values of +4.1 at ¥ = F0.055. This
variation in C; may be associated with the cylinder emerging from the wake of its
upstream neighbour and being subjected to the high speed channel flow between the
cylinder columns, Fig.3.5. A gradual drop in |C.] to an average value of 3.0 occurs as
the cylinder approaches either of its row-2 neighbours (cylinders 2 and 3 in Fig.3.3).

The drag coefficient (Fig.3.4(b)) shows local maxima, also at § = £0.055, with a
peak average value of Cp = 7.0, again an effect of exposure to the streaming channel
flow. At § = 0, the test cylinder falls directly behind a row-1 cylinder resulting in a
local minimum in Cp. For |§| > 0.055 Cp decrcases monotonically as more of the test
cylinder falls in the “shadow” of the neighbouring row-2 cylinder.

‘When the in-flow tube position % is c:ha.nged, the Cr and Cp versus § trends
observed in Fig.3.4 vary differently, depending on whether for the new in-flow position
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Z > 0 (corresponding to a downsiream displacement) or T < 0 (an upstream displace-
ment). Note, however, that this does not imply the existence of symmetry at = 0, but
rather that the neighbourhood of ¥ = 0 is a transition region. The proximity of the test
cylinder to its upstream or downstream neighbours, and the associated inter-cylinder
gaps determine the changes that occur in the force coefficients.

Considering first an upstream displacement of the test cylinde; to £ = —0.173,
the resulting force coefficient variations are shown in Fig.3.6. At this position, both the
magnitudes and trends in the force coefficients variation with cross-flow displacement
differ appreciably from the trends at the equilibrium cylinder location £ = 0. C shows
increased magnitudes in the range 0.05 < || < 0.20, attaining a maximum absolute
value of 7.0. The C variation is also approximately piecewise linear over the complete
i range. Proximity to either of the row-2 cylinders has a drastic effect on Cy, resulting
in a reversal of the lift force direction at § = £0.23. Coincidentally with this reversal
in lift force direction, a large drop in Cp occurs, Fig.3.6(b). For # = —0.173 the test
cylinder is located deeper within the wake of the row 1 cylinder which accounts for
the overall reduction in Cp. The drastic drop in Cp and simultaneous vanishing of C
occur when the ¢ylinder essentially blocks the strcaming channel flow on one side (e.g.
between cylinders 1 and 2 in Fig.3.5) while widening the available channel area on the
opposite side.

The force coefficient variatior changes significantly for downstream positions of
the cylinder £ > 0. Fig.3.7 shows the results for Z = +0.173. In this case the variation
is largely determined by proximity to row-4 and -5 cylinders as well as the inter-cylinder
gap. A large and negative value of dC /97 is obtained not only in the neighbourhood
of |§| = 0, but essentially over the complete range of —0.23 < § < +0.23; the only
exception being the two inflection points at § = £0.06. At the extreme positions,
¥ iz +0.23, an extremum C, value with magnitude |C;]| = 8.5 is obtained. A reversal
in the Cp trend is observed at || = 0.12, resultiug in increased drag. This is due to
_ the cylinder mcreasmgly blocking the downstrea.m inter-cylinder gap, which results in
Cp values as high as 7.0 for § = £0.23.
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In the complete test area, —0.23 < Z,§ < +0.23, the force coefficients exhibit a
smooth transition between the three scenarios described above. In Fig.3.8 are presented
results in the form of 3-D plots for the complete test area. Note that the axes and flow
directions are different for the two maps; the perspectives were chosen for optimum
visualization. The neighbourhood of Z = 0 is seen to be a transition region between
the two trends in the force coefficient variations discussed zbhove. At the extreme up-
stream and downstream positions (and for |j| > 0.22) very large changes in C; and
Cp occur. Near T = —0.23,7 = £0.23, a reversal in the lift force direction resuits.
This has significant consequences for cylinder stability, since a reversal in the force
direction indicates that the cylinder would be susceptible to a static instability but not
a dynamic instability at this position (in the cross-flow direction). In the in-flow direc-
tion, large Cp values coupled with positive 8Cp /8% imply increased cylinder stabilit;:
far downstream. It is expected that for other cylinder positions also, the significant
variations in Cp and Cp will be reflected in the cylinder stability characteristics.

Contour piots corresponding to the 3-D plots are shown in Fig.3.9. The large and
negative 3C /37 in the corridor centred about § = 0 (Fig.3.9(a)) vanishes downstream,
near Z = 0.10, resulting in a region where the cylinder experiences no lift force. With
the exception of the extreme cylinder positions, the overall variation in Cp magnitudes
is relatively small (Fig.3.9(b)) in comparison to the variations observed for C;. A
convolution of the lift and drag cdéfﬁcients gives a net fluid force vector as shown in
Fig.3.10. The length of the arrows is proportional to 2 norraalized force magnitude.
QOver most".bf the test region, the steady force is directed towards the symmetry line § =
0. The locations of possible cross-flow static instability are evident at Z = —0.17,§ =
£0.2, where the net force changes direction and Cy ~ 0. The steady force increases

for downstream cylinder positions primarily due to higher Cp values.



Chapter 4

THE DYNAMICS OF A TWO-
DEGREE-QCV-FREEDOM SYSTEM

The fluid force variation discussed in Chapter 3 suggests the possibility of highly
unstable cylinder behaviour in the neighbourhood of the corridor = 0. Moreover, for
some cylinder positions far upstream, a necessary condition for static instability was

seen to exist. This is significant since this array is well known for being highly unstable

. - dynamically but not statically (when stability in the neighbourhood of £ = § =0 is

considered). !

A detailed analysis of cylinder stability behaviour will be presented in the first
part of this chapter. Using a linear stability analysis, the effect on cylinder stability
of varying the cylinder position over the range of the experimental tests will be deter-
mined. The study is initially restricted to the analysis of the system in which only first
modes in the two orthogonal directions are considered.

The linear stability study is a precﬁrsor to a complete nonlinear analysis under
fluid excitation of the system to be presented in Section 4.2. By systematically including
initially the fluid-related non-linearities, and later support related non-linearities, in the

'2-d.o.f model of Section 2.4, it will be possible to elucidate the effects specific to either
one of the non-linear effects without the added complication of higher modes. As
discussed in Section 4.2, the effect of the support is introduced via a simple restitution
model both for simplicity and also for consistency with the structural simplification
to a single mode ( in each of the orthogonal directions) in the present system. The
complete support model developed in Chapter 2 is utilized in the analysis of the higher
dimensional systems later, in Chapters 5.and 6.

47
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4.1 LINEAR STABILITY ANALYSIS AND
EFFECT OF THE TUBE EQUILIBRIUM
POSITION

Restricting the analysis to obtaining a stability boundary, 2 solution to the lin-
carized equations (2.43) will suffice. Considering a solution of the form w(7) =
woexp(A7) and substituting into the linear equations, and “neglecting” the steady

force Fg,! we obtain,

{/\2[M] + AD(V)] + [K(A, V)] }woexp(A7) = 0. (4.1)

For a solution to exist we must have

Det [A2[M] + AD(V)] + [K(), V)] =0. (4.2)

On the stability boundary, purely imaginary or zero eigenvalues exist. An iterative
procedure is used to solve equation (4.2), the iteration starting with an initial, assumed
value of A.

4.1.1 Low mmé versus High mé Stability Behaviour

For low values of the mass-damping parameter 4§, stability behaviour is charac-
terized by regions of instability interspersed with stable regions as the flow velocity is
varied. Fig.4.1 shows pluts of Re(}) and Im(}) as functions of non-dimensional flow
velocity, V', for the cylinder parameters m = 100, § = 0.001, and the tube equilibrium
position at Z = 0,3 = 0. The eigenvalue A; corresponds to cross-flow motion while A,
relates to the in-flow direction. -

Starting iterations at the-low fow velocity V' = 0.020, the firsi instability occurs
at V' = 0.065 as evidenced in'lé‘ié.«i.l(a) by Re();) > 0. The ;é:tibﬂzty is the result of

1The results thus obtained pertain to a single cylinder model of a fully flexible array for which Fo
causes no change in the relative cylinder positions; this is discussed further in Section 4.1.2. -
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a Hopf bifurcation, resulting in a purely imaginary eigenvalue. The instability occurs
in only the cross-flow direction; hence, A;, associated with the in-flow direction, has
a negative real part, confirming that the instability is of the single degree-of-freedom
negative damping tvpe. As V is increased, restabilization occurs (Re(A) < 0) at
V =0.077. The alternation between stability and in.r.ta.bility is repeated at V = 0.112
and V = 0.153. Final instability, above which no restabilization occurs, isat V' = 0.343.
This sequence is typical for low meaus damping parameter values, at least when the
tube is located at the array equilibrium position. Fig.4.1(b) shows that the predicted
fluidelastic frequency remains within 0.5% of the no flow frequency for the cross-flow
directiLa, while e(.;;éntially no change in in-flow frequency is observed.

For high mass damping parameter values, m = 10,000 and § = 0.1, and trbe
position £ = 0,7 = 0, only one stability boundary exists. A monotonic increase in
Re(A,) is observed in this case, as shown in Fig.4.2(a), while Re(A2) remains negéxtive.
A corresponding 11.5% increase in frequency is observed in cross-flow at the instability

velocity, relative to the no flow frequency.

4.1.2 Effect of Cylinder Position on Instability

The damping and stiffness matrices, D and K, are nonlinear functions of the
cylinder position being composed of Cr, Cp and their derivatives with respect to po-
sition (see equation (2.43)). With these quantities known from the experimental mea-
surements, it is possible to evalﬁate the effect of displacing the cylinder from the array
equilibrium position on the resulting stability behaviour. This reflects the scenario in
reality where, more often than not, a tube within a.n array will not be perfectly aligned.

The eigenvalue analysis was performed for cylinder equilibrium positions within
the force measurement range, (~0.23 < Z < 0.23, —0.23 < § < 0.23). The tube
static equilibrium position varies ﬁth flow velocity due to the steady force Fg. Linear
stability analysis does not consider this effect of tube equilibrium position variation
with flow, but only the ﬁga.l tube position. Noulinear dyna.rﬁ}mleﬁ'ects may alter

the final state as the tube migrates towards the static equilibrium po%itic{n; hence, for
Sy
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instance, stability may not be regained if lost while the cylinder passes through an
unstable location, despite 2 predicted final stable equilibrium position. The results
obtained more closely represent the case of a cylindgr deep inside a fully flexible array,
in whick Fp causes equal static displacement of all cylinders, hence relative cylinder
positions remain unchanged; 2 cylinder equilibrium position then, refers to the zero
flow cylinder position. B

Fig.4.3 shows contour and 3-D plots of cylinder instability velocity for the low
mass damping parameter 72 = 100, = 0.01. The instability boundary considered here
is the final one, past which no restabilization occurs. Increasingly darker shades of
grey in Fig.4.3(a) correspond to increased instability; the most lightly shaded areas
correspond to complete cylinder stability.2

As predicted by a study of the fluid forces in Chapter 3, cylinder position variation
markedly affects the resulting stability behaviour. The stability behaviour not only
changes, but in some cases, instabilities no longer occur, e.g. at Z = +0.06, 7 = £0.08.
The corridor || < 0.04 is highly unstable, as are most upstream positions in the range
% < —0.10, |§] < 0.20. For most of the unstable region, the instability is dynamic. In
the two small regions centred about £ = —0.18,% = +0.20, however, static instability
occurs. Thisis in concordance with the observation of a vanishing of C with 8C; /3% >
0 in this region, as discussed in Chapter 3. ﬁ

'The dependence of V, on cylinder position correlates with the variation of the
derivative 8C/8§; compare Figs.4.3(2) and 4.4(a). The distinct stable islands centered
at T = +0.06, 7 = £0.08 coincide with high and positive values of 9C/27.

For the central position £ = § = 0 an unstable velocity range exists, below the fi-
nal instability velocity, as shown in Fig.4.5(a,b). When the cylinder position is changed
in the cross-flow direction by 0.02 cylinder diameters, (to position ‘A’ in Fig.4.3(a}),
the low velocity instability range dxsappea?s as seen in Fig.4.5(c,d). The disappearance
of this instability region for a displacement of only 2% of the cylinder diameter is very

- 2A cylinder position was considered stable if no instability occurred at 10 times the instability
velocityat Z=§=0. .
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significant, as it may explain why these instability regions have remained elusive to
experimenters, despite their theoretical prediction in the present work and previously
by others, e.g. Price & Paidoussis (1986b) and Lever & Weaver (1986b). Only in highly
specialized and precisely controlled experiments have multiple instability regions been
observed (Andjeli¢ et al. 1990). For the present array at least, it is clear that the preci-
sion in tube positioning (to within 0.02D), makes it nearly impossible to observe these
instabilities in ordinary experiments or operational heat exchangers. This, of course,
is good news to the designer, since the most important instability ( and possibly the
only one likely to occur) is the highest-velocity instability.

Fig.4.6 shows eigenvalue plots for positions incr;'z.-f_-;ngly farther away from the
symmetry line § = 0; (2,b) and {c,d) correspond to ﬁositién ‘B’ (£ = 0.16, § = 0.02)
and ‘C’ (Z = 0.06, § = 0.19) respectively in Fig.4.3. Final instability occurs at
V. = 0.43 for location ‘B’ a.ndwat Ve = 0.40 for position ‘C’. No multiple instability
regions are observed for these positions; the graphs of Re(J;) in fact show the likelihood
of the occurrence of multiple instability regions to be diminished.

At high mass-damping parameter values 77 = 10,000 and § = 0.1, the stability
boundary contour plot, Fig.4.7, shows overall similarity to the low mé case. For the
present set of parameters, however, stability is more widespread. This is mainly asso-

ciated with the change in time-delay, as compared to the low mass-damping parameter

case.

4.2 SUPPORT-INACTIVE CYLINDER
RESPONSE

For the purpose of determining the non-dimensional critical flow velocity (V;) for
fluidelastic instability, as well as the uninhibited rate of growth of the limit cycle ampli-

tude, the tube support was initially ignored. Hence, the support rea.ctioﬁ, represented

Arb?i;he terras F, and Fy, in equations (2.1, 2.2) is zero. In the analysis to follow, the

cylinder equilibrium position is at % = §j = 0.
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Previous studies have shown that, at large values of the mass damping param-
eter (mé), V. varies apﬁfoximately linearly with mé. For mé = 1000, the non-linear
analysis gives a critical flow velocity of V, = 10.8, in agreement with the linearized
analysis. Fig.4.8(a) shows the post—instability limit cycle amplitude for vross-flow mo-
tion as a function of non-dimensional flow velocity, V. The instability was Zzund to
be of the supercritical Hopf type; hence, for V' < V, tube oscillations decayed to zero
for all initial conditions. The lowest limit cycle amplitude is § = 0.02. This value of 7
corresponds to the limit of the band (centred around § = 0) in which C varies linearly
with #, as described earlier. Due to this linear behaviour of C; near = 0 (for the
most part of the % range), the minimum limit cycle amplitude is 0.02, for any veloc-
ity at which jhé system is unstable. For V' > V, the limit cyae amplitude increases
almost linearly with V. As predicted by the linear analysis the instability was of the
~ negative damping type, and occurred only in the cross—flow direction. In—flow vibra-
tion resulting from fluid coupling exhibits a similar trend, as depicted in Fig.4.8(b),
albeit with more pronounced rnon-linearity in the amplitude growth compared to the
crass-flow case. Note that in—flow amplitudes are two orders of magnitude lower than
the cross-flow amplitudes. The drag coefficient, Cp, is rela.ti;rely independent of 7 near
the equilibrium position (Z = § = 0); hence, despite large cross—flow vibration, there
is little in—flow mction. .

Low 74 linear stability behaviour are charaterized by regions of instability, inter-
spersed with stable regions over a certain range of V' — until a final velocity is reached,
past whiéh, stability is no longer regained. -

Fig.4.9(2,b) shows in-flow and eross-flow limit cycle amplitude variations with
V for m = 100,6 = 0.01. An unstable region is observed prior to the final instability.
Notice that in the unstable velacity range, the lowest cross-flow amplitude is 0.02.

In-flow motion (Fig.4.9(z;;)‘j is three orders of magnitude smaller than its cross-
flow counterpart. Once again, the in—flow direction is stable and motion is only induced

through the weak fluid coup\l:ing between the orthogonal directions.
When § is decreased by a factor of 10 to 0.001, cross-flow vibration ampli-
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tudes increase to approtimately double their values at § = 0.01, Fig.4.9(c). For
this lower damping level, a second instability region exists in the lower velocity rang:e
0.065 < V < 0.077. A third instability region is observed when § is reduced to 0.0001,
Fig.4.9(d).2 The velocity ranges éorresponding to these instability regions are identi-
cal to those predicted by the linearized analysis. The increase in amplitude with the
second reduction in § is much lower than that associated with the first, being only
approximately 15% at V' = 0.13 and less than 5% at V' = 0.45. This variation in limit
cycle amplitude with § is summarized in Fig.4.10, where the amplitude at a constant

non—-dimensional flow velocity V' = 0.13 is plotted versus 6.

4.3 THE EFFECT OF A LOOSE SUPPORT ON
THE 2-D.O.F. SYSTEM RESPONSE

In this section the presence of the motion-limiting loose support is taken into ac-
count. The most important effect of the support is to introduce strong coupling between
the two orthogonal directions, once vibration amplitudes surpass the cylinder/support
clearance value, e,. The primary goal, at the present stage, is to investigate the ef-
fect on the global tube dynamics of the presence of the support. To avoid delving
into details of the cylinder/support interaction during an impact, in the spirit of t1}e
present simplified 2-d.o.f. model, the complex support model of equations (2.32, 2.333)
. in Section 2.2 is replaced by 2 simple restitution/impact model. |

The cylinder response may be thought of as comprised of two regimes. In the
‘Hight’ regime, the cylinder is under the influence of the fluid force field only. In
the secon, the ‘impact’ regime, support interaction forces arise. The tube velocities
before and after impact are.related via the restitution model as follows. Consider the
planar motion of the cylinder centre of mass as represented in Fig.4.11(a). At the

contact location ¢, the tube approach velocity is u, while the velocity after impact is

31t should be remarked that it is not pretended that such low values of 4 are achievable in practice;
the intention here was to see what the effect of increasing or decreasing § is on the number of unstable
regions.
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v. Considering the momentum change in the radial direction, we have
m i, + Ny = m vy, (4.3)

where N, is the impulse of the radial impact force and where u, and v, are the radial
components of u and v, they are magnitudes as defined in Fig.4.11(a) rather than vec-
tors. The corresponding equation for the momentum change in the transverse direction
t is,

mu,+Ny=muy,. (4.4)
To account for the energy loss at impact (radial direction only), a coeflicient of resti-
tution, e, is used; hence,

Imiol=¢ (% ) uZ) . (4.5)

The normal and transverse impulses are related by the coefficient of friction,
fee = N /N,. (4.6)
By using equations (4.3) and (4.5) we obtain
N, =mu (1 +e). ' (4.7)

From equations (4.4), (4.6) and (4.7), the transverse velocities before and after impact

are related by

Uy = U — Uyr 'U-,-(l + e)! (vt > 0)7 (4‘8)

where the velocity directions are as defined in Fig.4.11(a). Clearly equation (4.8) is
only valid if v; > 0; otherwise we have the adherence condition, for which v, = 0. The
velocity vector diagram in Fig.4.11(b) relates the polar coordinate velocities derived

above to their Cartesian counterparts. The transformation equations before impact,
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for instance, are

~t

# = (ur cosf—u, sinb) fuwpD,

=t

¥ = (u, sinf+u cosb) fweD, {4.9)

where, for instance, the dimensionless velocity Z = £/uwyD. The angle 6 = tan™(§/%)
and Z,7 are dimensionless coordinates of the impact location ¢. When u, = 0, pure
sliding motion occurs. The radial tube/support contact force is then mu?/e,. This

results in a transverse frictional force given by ps.mu?/e..

4.3.1 Solution of the Equations of Motion

The final form of the equations of motion is

- ——t . = 1 ~r -m1/2
'+ei’+z = (m){(v—z)"’—i-ya}

X [§ Cr(r)+(V - F)Cp(7)],
() (v - 2P 49y

2a?

x[(V=%)C(r) -F Co(7)], (4.10)

—ef

'+ +7

where Cr(7) and Cp(7) are determined as discussed in Section 2.1 to account for

the time delay.? Equations (4.10) are valid as long as the tube radial displacement

7 = (22 + 7%)Y/2 is less than &,, the radial clearance. When ¥ = &,, impacting occurs.
Equations (4.10) are numerically integrated using a fourth order Runge-Kutta

algorithm. The cylinder and support parameters are

M =10, 6=005, wy=623, & =0.08, ;=010 and e=0.70.

‘Frequency components far above the fluidelastic frequency arise for support-active cylinder vi-
bration. Fluid-inertia and -viscosity effects, however, limit the frequency at which fluctuations in the
fluid force can occur —the limiting frequency is proportional to 1/At; the time-delayed response is
therefsre numerically filtered to reflect this effect.
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The starting set of initial conditions is § = 0.04, £ = ¥’ = ¥ = 0. When the impact
condition (7 = €,) is satisfied, equations (4.5) and (4.8) are used to determine the new
velocities after impact, which are converted to Cartesian coordinate velocities through

a transformation similar to equation (4.9).

4.3.2 Overview of Tube Response Variation with V

Similarly to the purely flow-induced vibration case, cylinder response for the
support-influenced tube motion may be summarized by plotting peak cylinder dis-
placement as a function of the flow velocity, V. Unlike the previous case where a single
smooth curve was obtained after the initial instability, sudden discontinuities or bifur-
cations occur. Furthermore, at a given flow velocity, a multiplicity of amplitudes may
occur indicating (quasi)periodic motion with multiple frequencies, or chaotic motion.
In modern nonlinear dynamics parlance such a plot is an example of a bifurcation
diagram, in this case the velocity V being the bifurcation parameter.’

Fig.4.12 displays the bifurcation diagram for the z— (in-flow) and y— (cross-
flow) responses, respectively. The first instability, the result of 2 Hopf bifurcation of
the original stable equilibrium, occurs at V, = 0.32. As V is increased, cross-flow
amplitudes quickly grow, resulting in impact at V = 0.35. Following the onset of
- impacting the response undergoes a complex sequence of bifurcations. The increased
y/z coupling results in in-Bow amplitudes of the same order of magnitude as the cross-
flow amplitudes, as seen in Fig.4.12 for V' > 0.35. Over most of the velocity range,
bifurcations result in transitions between periodic solutions. However, two significant
chaotic regimes are also manifested. We now turn to a closer investigation of the types
of bifurcations involved and the resulting responses.

Over a small range of V above V, the vibration amplitudes remain below the
support clearance value e,. As observed in Section 4.2, coupling to the stable in-

flow direction is minimal for pure fluid excitation. However, a distinct orbital z/y

SThe bifurcation diagram may be obtained using any quantity representative of the system be-
haviour; hence, tube velocities instead of amplitudes can also be plotted as is demonstrated below.
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motion can be identified, v-t2 the in-flow vibration occurring at double the cross-flow
frequency. Fig.4.13(a) shows this orbital motion for V' = 0.34. A time trace of the
induced in-flow vibration and the corresponding frequency spectrum as well as other
cross-flow results, are also shown in Figs.4.3(b-g). ]

The limit cycle amplitude quickly grows to reach e,. At V = 0.36, double;_'
sided impacting occurs. The fesulting orbital motion is complex and appears chaotic,
Fig.4.14(a). This non-periodic motion is manifested as a set of peak amplitude values
in the bifurcation diagrams (Fig.4.12) at V = 0.36. A closer look at the in-flow time
trace, Fig.4.14(b), gives some insight into the underlying instability mechanism. The
in-flow response at w o< 2wy is seen to be no longer stable. Hen}ce, after several cycles
(in which the amplitude is non-constant) a subharmonic bifurcation occurs, resul_tip;;;,
in in-flow orbital motion at w = wy for a period of time (see Fig.4.14(b) near 7 =Z'Z/50).
At some point, the response at w =~ 2wy is reinstated, and the cycle is repeated. It
is important to note, however, that the duration of the above mentioned cycle is not
constant; the bursts of subharmonic orbiting motion occur intermittently at seemingly
random time intervals. The chaotic éha.ractcr._ of the in-flow response is well evidenced
in the in-flow response phase plot and spectrum, Fig.4.14(d,f). Cross-flow motion, on
the other hand, remains predominantly periodic as shown in Fig.4.14(c,e,g).

The velocity range over which this chaotic motion occurs is fairly limited, such
that at V = 0.40, a return to periodic motion occurs. It is interesting to note that
impacting is single-sided, occurring once per oscillation as seen in Fig.4.15(a-c) for
V = 0.40. Both the in-flow and cross-flow responses are now at the same frequency
w = wp resulting in an ovalling type motion of comparable in-flow and cross-flow
amplitudes. As V is further increased, a subharmonic bifurcation occurs, resulting in
period-2 motion. Fig.4.15(d-f) shows the period-2 motion for V' = 0.45. Inspection
of a sequence of x/y orbital plots similar to Fig.4.15(d) shows that, as V is increased
above V = 0.45, a decreasing trend_; in the asymmetry of the orbital motion occurs.

The velocity V =0.481s a li;niting velocity at which the period-2 response loses
stability. The result is a double-sided in;:pacting perind-1 response at the frequency
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w =~ wp. A second period-1 solution, albeit with a much higher in-flow frequencj',
w o 3w, and coexisting with the low frequency solution appears near V = 0.35.
Fig.4.16 shows the co-existing solutions ({a-c) and (d-f), respectively) at V = 0.57. The
dashed line in the bifurcation diagram (Fig.4.12) depicts the existence of an unstable
solution separating the two stable solutions. The high frequency solution is seen to
be nearly purely in cross-flow, noting the expanded z-axis scale in Fig.4.16(d,e), in -
contrast to the low frequency orbiting solution of Fig.4.16(a). The low frequency
solution disappears near V = 0.66. At V = 0.68, the high {requency solution is no
longer stable and is replaced by asymmetric solutions, which corresponds to the two
branches in the bifurcation diagrams in the range 0.68 < V < 0.92 (Fig.4.12). In
the same velocity range, in-flow response is characterized by nearly linear amplitude
growth, while the converse is true for the orthogonal direction cross-flow response.
A ’symmetrica.l solution reemerges in the velocity range 0.92 < V < 1.06. In
this fvelocity range in-flow response amplitﬁdes approach cross-flow amplitude values.
Fig.4.17 shows cylinder orbital z/y motion and the corresponding phase plots within
this velocity range for V = 1.00. Impacting occurs at essentially two locations, the
resulting coupling introducing significant in-flow ampliiud&. AtV =1.06 thxs solution
becomes unstable and the response degenerfates into chaotic motion. Fig.4.18 shows
an example of the resulting response in the chaotic regime for the velocity V' = 1.09.
The orbital and phase plane plots show that the chaotic response comprises mostly
of double impacti..3 orbits with continuously varying impact locations; hence, no sin-
gle orbit is repeated as is characteristic of chaotic solutions. The in-flow frequency
spectrum, Fig.4.18(f), indicates that in-flow motion is étrongly chaotic, exhibiting a
broad-banded spectrum particularly at low frequencies, as is typical of chaotic solu-
tions. The cross-flow spectrum on the other hand (Fig.4.18(g)) shows that a significant
periodic component st111 exists, albeit with a widening ;f the peak at the majer re-
sponse frequency to indicate a chaotic component in the response. A periodic window
in the bifurcation appears near V' = 1.10. The orbital motion in this pe_riodic window

is shown in Fig.4.19 for-V = 1.10. Chaotic motion predominates for ﬁ'i//’:> 1.10, until
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permanent contact with the support occurs due to the steady drag.

4.3.3 Characterization of the Cylinder Response

It is evident, as one might have suspected from the outset, that, even for this
simple form of our dynamical system, a wealth of dynamical behaviour exists.

The bifurcations just described are of the codimension one type, since they occur
as a single sygtem parameter, in this case V', is varied. Other bifurcation sequences are

obtained when other parameters, e.g. the friction coefficient u1y. or support clearance

e, are varied, as will be discussed in due course.

In this section we shall investigate further the bifurcations in Fig.4.12. Specifi-
cally, the goal will be to identify the bifurcation types and analyze their characteristics.
As discussed in Chapter 1, a host of standard bifurcations in nonlinear dynamical sys-
tems have already been uncovered and extensively studied. We shall draw on this
-vealth of existing knowledge and apply some of the techniques and methods developed
1o unravel the dynamics underlying the behaviour exhibited by our system.

Furthermore, for the velocity regimes in which chaotic motion is predicted, we
would like to identify the route to chaos, and characterize the underlying strange at-
tractor via Poincaré sections, fractal dimension and the largest Lyapunov exponent —

which is a measure of the degree to which the attractor is chaotic.

4.3.3.1 Transition to Chaos following Onset of Impacting

It was shown in Section 4.1 that the present system has a single fixed point,
which is a stable focus for V' < V.. A Hopf bifurcation of the fixed point occurred in
the cross-flow direction at V' = V.. In the ensuing limit cycle motion, limited coupling
to the stable in-flow direction occurs as discussed in Section 4.2.

A natural starting point to analyze the effect of impacting on the initial limit
cycle is therefore a local analysis of the limit cycle stability. A standard approach to
study locally based bifurcations is the Poincaré reduction of the system and subsequent
stability analysis of the resulting fixed point(s). A direct analogy exists between the
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stability behaviour in the reduced Poincaré map and stability behaviour in the original
high dimensional system. Hence, for insta;nce, loss of stability of a fixed point in the
-diecrete Poincaré map corresponds to destabilization of a limit cycle in the differential
system. Tle Poincaré map; which is lower dimensional, has the advantage of being a
relatively simpler system to aualyze.

As a first approximation, the four-dimensional (4-D) system is projected onto
a 1-D manifold. The result is a return map relating subsequent values of a selected
quantity representative of the response on a defined hypersurface. The resulting map
may be expressed in the form

X1 = F(X). (4.11)

The Poincaré surface ¥ selected is given by {3 | = 0,y > 0}. Hence, in equation
-x:(4.117)£:_),_f2‘ and X, are successive extrema of z when ¥ > 0. Equation (4.11)is a
di?éréte diﬁ'erence equation rela.ting successive in-flow amplitudes.
AtV = 0.326, the system response lies ca a simple limit cycle attractor. Figs.4.20(a-
e) show the orbital z/y motion, time trace é.nd phase plane plots as the system ap-
proaches the stable orbit; for this velocity, no impacting occurs. Fig.4.20(f) shows an
iteration sequence in which successive iterates finally lead to the stable fixed point P;
hence, a limit cycle in the higher dimensional system is manifested as a fixed point on
the 1-D map. The iteration points (in Fig.4.20(f)) are replotted in Fig.4.20(g), reveal-
ing they fall on a simple curve; hence the function F iq equation (4.11) exists and is
of relatively simple form. It shemld be noted, that the reduction to a 1-D map of a
high dimensional system, does noi always necessarily lead to a tractable map, hence
the existence of such a map for the prisent system is an important result. A direct
analogy exists between the stability of the fixed point P (defined by X,;1 = X,) of
this discrete dynamical system and that of the limit cycle. The stability of the fixed
point P is determined by the eigenvalues A, of the Jacobian matrix of F; for a 1-D
map this reduces to the durivative dF/dX,, evaluated at P; the fixed point P is stable
if |A;| < 1, in which case successive iterates converge to the fixed point. This is the
case in Fig.4.20(f,g). However, |[dF/dX,| at P is just below unity. This makes it likely
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that as V is varied, the condition |{dF/dX,| = 1 might be met, which would lcad to
an instability of the fixed point P. A value of A, = —1, which is the most likely from
Fig.4.20(g), leads to a flip or subharmonic bifuréation. In fact, such a bifurcation does
occur as evidenced by the in-flow response of Fig.4.14(b) and as we shall see below.
In mathematical formalism, F(X,) in equation (4.11) may be approximated by U
a polynomial to yield

Xow1 = F{Xn,€) = —(1+ )X, +aX? + bX3 + O(X3), (4.12)

where ¢ is related to the bifurcation parameter. For ¢ > 0, the fixed point P is unstable.
Equation (4.12) is tie so called normal form © for a flip or subharmonic bifurcation.

For V' = 0.330, slightly, above the critical impact velocity, Fig.4.21 shows the
orbital z/y motion, time traces and phase plane plots, as well as the corresponding
Poincaré return map. While the basic figure-of-eight orbit is maintained (Fig.4.21(a)),
the in-flow time trace shows bursts of amp!it-ide growth followed by a gradual decay
and settling on the periodic orbit corresponc:ng to P in Fig.4.21(g). Note, however,
that inspite of the presence of impacting, the energy transfer is fairly limited, such that
the cross-flow response appears completely pericdic :nd of nearly constant amplitude
(Fig.4.21(c)) — this is also well depicted in the phase plane plots of Fig.4.21(d,e). The
return map predicts well the return to the neighbourhood of P following an amplitude
burst. However, this 1-D map fails to unearth the instability mechanism leading to
the escape of iterates from the neighbourhood of 2. In Fig.4.21(f), where a2 number
of iterations are shown, it is seen that an unstable branch appears along which iter-
ates escape from the neighbourhood of P. Thus the onset of impact introduces 2 new
unstable manifold in the return map, but the original orbital motion is still relatively
stable. o

The fixed point P of the return map becomes unstable at V = 0.3423, signified
by a slope of A, = —1 at P. This indicates that the original imit cycle, to which the

8The normal form is the simplest form to which, a system of equations exhibiting a given bifurca-
tion, can be reduced.”
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response was attracted after the amplitude bursts, is no longer stable. This instability
is associated with a subharmonic (flip) bifurcation in the dynamical system. It is man-
ifested as the appearance of orbital motior at half the original in-flow orbital frequency
(recall that in-flow response is coupled to cross-flow response at w =~ 2wy). Fig.4.22
shows results for V = 0.343, which is slightly above this new instability threshold. The
subharmonic motion is evidenced by comparing the time traces of Fig.4.22(b,c}, which
show periods of equal frequency in the two orthogonal directions, but also periods
where the two frequencies are related a factor of 2. The corresponding phase plots are
presented in Fig.4.22(d,e), showing the dominant effect of the instability to be in the
in-flow direction. Fig.4.22(f,g) shows the Poincaré return map. F(X,) is no longer a
smooth continuous function; instead, it has a discontinuity on the first bisectrix near
the original fixed point r’. Hence, not only do we have a flip bifurcation but also an
instability leading to two new fixed .points Py and P,. The slope |[dF/dX,| > 1 at P,
hence, on this lower branch the fixed point is unstable. The subharmonic bifurcation is
evidenced by the existence of another pair of points, labelled pl and p2 in Fig.4.22(g),
that are mutual images which reflects the existence of a periodic orbit on the iterated
map;  in the neighbourhood of these points the response is approximately period-2.
The approximation to period-2 motion is supported by the concentration of iterates
in the neighbourhood of pl and p2 in Fig.4.22(g). As seen in the return map, the
subharmonic orbit (pl — p2) is unstable, occurring only intermittently for a few cy-
cles before breaiing up. A period-2 orbit born of a subcritical bifurcation is unstable,
hence the resulting response veers away from the orbit after several cycles — leading
_ to the in-flow amplitude burst seen in Fig.4.22(b).

The qualitative behaviour, specifically the aspects associated with the flip bi-
furcation and the resulting unstable pl — p2 orbit, described ahove fits in well with
the Pomeau-Manneville Intermittency transition route to chaos. Intermittenc_y coupled

with a subharmonic bifurcation was labelled as “type III intermittency” by Manneville

TNote that a period-1 orbit on the iterated map corresponds to a period-2 orbit in the actunal
system. '
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and Pomeau. The neighbourhood of pl,p2 has been dubbed the “laminar regime”
of the response (Pomeau & Manneville, 1980), as contrasted to the outlying “tur-
bulent regimc” visited by the iterates during a turbulent burst. The intermittency
route to chaos is well documented. It has been uncovered in diversely varying systems.
The simplest are 1-D return maps. More complex systems include the Lorenz modecl
for atmospheric convection, temperature-gradient-driven Rayleigh-Bénard convection
(Bergé et al., 1980) in fluid dynamics and the Belousov-Zhabotinsky chemical reaction
system (Pomeau et al., 1981). Intermittent transition to turbulence has been known
by fluid dynamicists for many years. Sreenivasan & Ramshankar (1986) have shown
that there are significant similarities between such transitions in pipe flow to the inter-
mittency observed in the low dimensional dynamical systems enumerated above. The
wide variance in the dynamical systems exiibiting the intermittency transition — with
quantitative measures and characteristics in common — attests to the ubiquity of this
route to chaos.

To sum up, there is evidence that type III intermittency plays the dominant role
leading to chaotic behaviour at the onset of impacting. There also exists, however, a
second mechanism which introduces an unstable manifold (Fig.4.22) tkus contributing
to the chaotic behaviour. Although not quantitatively confirmed, the second mecha-
nism is suspected to be the so called switching mechanism; this mechanism is discussed

in greater detail in Chapter 5.

4.3.3.2 Bifurcation of Periodic Solutions

The frequency of intermittent bursts of chaotic motion increases with increasing
flow velocity, such that at V' = 0.365 no laminar phase is discernible in the in-flow
direction time trace, Following this, an apparent reversal of the original flip bifurcations
occurs culminating in a single-sided impacting periodic solution with a frequency w =
wy.

It is clear that a symmetry-breaking pitchfork bifurcation has also occurred,
resulting in asymmetry in the period-1 motion. Fig.4.23(a) shows an example of the
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stable asymmetric period-1 motion at V' = 0.40 for the initial cross-flow displacement
#(0) = 0.04. A change in sign of §(0) to §(0) = —0.04 results in the mirror image
(about y = Q) orbit of Fig.4.23(b). While the velocity at which the pitchfork bifurcation
occurs cannot be ascertained, it is most likely coincident with the onset of impacting,
determined by the condition ¥ > 0 or ¥ < 0 when impact commences. The orbits in the
chaotic regime just described, although continuously varying, allude to an asymmetry
in the long term response.

Instability of the new period-1 motion is once again via a flip bifurcation, at
V ='0.43. In this case, however, the bifurcation is supercritical leading to stable period-
2 motion. Three impacts per cycle occur in the new response (Fig.4.15(d)). Period
doubling bifurcation of an asymmetric period-1 solution, in systems with symmetry, is
often the initiation of a cascade of period doublings (the Feigenbaum cascade) culmi-
nating in chaos. Such a cascade does not materialize for the present system. Instead,
the period-2 motion is destabilized, reverting to period-i motion. This is a bifurcation
qualitativel:;r similar to period ‘bubbling’; however, the change in in-flow amplitude in

this case shows a discontinuous jump as seen in Fig.4.12(2). Closer examination of the

* orbital motion as V' approaches the (period bubbling) bifurcation velocity, V' = 0.48,

reveals that the two half orbits comprising the period-2 motion approach each other.
A quantitative measure of the convergence is given by a trace of the bifurcation in the
impact velocities in this range. Fig.4.24 shows bifurcation diagrams of the radial and
tangential impact velocities. The bifurcation parameter is the flow velocity V, as pre-
viously; u, and u, are respectively the radial and tangential cylinder/support approach
velocities. The disappearance of period-2 motion at V = 0.48 occurs when the radial
and the tangential velocities of the two half orbits coincide indicating merging to a
single orbit. This limiting orbit is, however, unstable, resulting in 2 jump to a new
period-1 double-sided impacting orbit with new angular impact positions.

Fold bifurcations, commensurate with the appearance of a parameter range of

coexisting periodic solutions, are common in nonlinear systems. An oscillator with

cubic stiffness, the Duffing system, is an example of such a system. In the parameter
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range of coexisting stable orbits, the stable orbits are separated by an unstable limit cy-
cle. An important feature of the fold phenomenon is the hysterisis effect, accompanied
by a jump phenomenon. The foregoing characterizes the bifurcation behaviour in the
vicinity of V' = 0.55. The hysteretic jump occurs between the asymmetric motion at
w = wy, and a new symmetric periodic response as depicted in Fig.4.16. The symmetric
response in-flow amplitude is almost ten times smaller than the asymmetric resposise
as seen by comparing Figs.4.16(a) and (d) (noting the magnification of the z-axis in
Fig.4.16(d)). The fold phenomenon is delineated in Fig.4.12(a) and also in Fig.4.24.
Fig.4.24 shows that for the symmetrical response, the cylinder approaches the support
purely radially, hence, u, = 0. As was the case in the preceding, the stability of this
symmetrical solution is short lived (in parameter space) and undergoes a symmetry
breaking pitchfork bifurcation at V' = 0.6§ as is well demonstrated in Figs.4.12 and
4.24. In Fig.4.24 it is seen that, after the bifurcation, the radially approaching impact -
(u¢ = 0) for one of the impacts, while for the second u; # 0 and corresponds to the
lower branch in the u, bifurcation diagram for 0.68 < V' < 0.92.

The original symmetrical orbit exists, albeit as an unstable limit cycle demarcat-
ing the domains of attracticii"of the asymmetrical stable solutions. At V = (.92 the
symmetrical orbit regaius stability. While this is associated with a smooth merging of
the u, branches of the asymmetrical orbits, the tangential impact velocity u, shows a

discontinuous jump at the instability velocity in Fig.4.24.

4.3.3.3 Final Transition to Chaos

The chaotic character of motions at high enough V (V' > 1.06) is well supported
by the bifurcation diagrams of Figs.4.12,4.24. The concentration of points near u, =0
in Fig.4.24(a) suggests the occurrence of significant sliding motion in the second chaotic
regime. The low density or reduced occurrence of impacts with u, = 0 implies also that

pure impact type motions are also reduced. At this point, the unanswered question is:

.. how does the bifurcation to chaos come about — i.e., what is the route to chaos,

Period doubling and quasi-periodic routes are ruled out since none of the char-
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acteristic bifurcations associated with either of these routes are observed. This is also
true for global bifurcations associated with homoclinic orbits, since these do not exist
in the present system.

Fig.4.25 shows time traces for three velocities V' = 1.07,1.09 and 1.15 fully chaotic
respectively. V' = 1.07 is just above the transition velocity to chaos. Both the in-flow
and cross-flow traces at V = 1.07 (Fig.4.25(a,b)) exhibit long durations of almost
periodic response interrupted by brief, large amplitude bursts, which results in loss
of temporal correlation. This suggests intermittency as a candidate for the route to
chaos, in this case also. The frequency of turbulent bursts increases with flow velocity
and ultimately, e.g. at V = 1.15, regions of the laminar phase are no longer discernible
— further evidence of an intermittency transition. For V' < 1.07 the turbulent bursts
occur less and less frequently; the limiting velocity is the transition velocity Vi; = 1.06.

In order to ascertain our claim of an intermittency route to chaos, as well as
determine the intermittency type, we now proceed to a qualitative analysis to show
the existence of some universal characteristics and measures which would confirm it.
As previously, the approach taken is an analysis of a reduced Poincaré return map of
the system. Near the critical velocity to chaos, a 1-D map is extracted from the system.

The 1-D map relates the in-flow amplitudes as follows:
Xosr= G(Xn, V). (4.13)

We seck a form of the function G in the vicinity of the original fixed point, i.e. in
the larainar phase of the iztermittent response. This can then be compared with the
expected form for 2 map exhibiting a specific intermittency transition.

Fig.4.25(a) shows a map corresponding to equation (4.13) at V = 1.07 which is
just above the critical velocity for the onset of final chaos V;y = 1.06. The laminar
region 1s distinguished near the point marked P. In this region, iterates fall on a simple
curve; hence, it is possible to obtain a simple form for G(X,,, V') for the laminar regime.

The collapse of G(X,, V) onto a single curve strongly suggests that the system has 2 1-D
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centre manifold on which the bifurcation occurs. This curve is also tangent to the first
bisectrix near P at V' = 1.07 which is just above the intermittency threshold velocity,
Ves = 1.06. The characteristics of the map of Fig.4.26(a), coupled with intermittent
responses of Fig.4.25 point to the so called “type I intermittency” route to chaos. This
transition is characterized by a saddle-node or tangent bifurcation of a simple fixed
point (on the Poincaré plane). -

For the map of Fig.4.26(a), the transition may be described as follows. For
V < V5, G(X,,V) has two fixed points of opposite stability near the tangency point
labelled P. The stable fixed point corresponds to the period-1 limit cycle motion existing
for V < V. As V is increased, the two fixed points merge (at P) and disappear
at V = V,;. The disappearance of the two fixed points at V = V; is the result
of a saddle-node bifurcation which occurs when the eigenvalue A, = +1; for the 1-
D map, A, is simply the slope at the fixed point P — this is evidently the case in
Fig.4.26(a), quantitatively confirming the bifurcation. For V slightly above V;, a
narrow channel opens up such as in Fig.4.26(a). Successive itcrates travel along the
channel, as demonstrated in Fig.4.16(b), which requires a large number of iterations;
in fact the closer G(X,, V') is to the first bisectrix, the larger the number of iterations,
hence cycles in the laminar phase. The iterates eventually escape from the narrow
channel. Qutside the channel, the co:relation exhibited in the laminar region vanishes
as the s;stem explores unstable regions of phase space; this is signified by the scatter
of points in Fig.4.26(a) away from the neighbourhood of P. In the system response,
this corresponds to the turbulent burst of chaotic motion. Following a turbulent burst
then, the return of the system fo the laminar phase corresponds to a reinjection into the
channel, a process referred to as relmninarization. A case of reinjection into the channel
following an esca} e may be seen in Fig:4f26(b). The duration of a given laminar phase
is determined by the reinjection point into the channel; hence, shorter laminar phases
correspond to reinjection deeper within the channel.

Type I-intermittency has been observed both in simple low dimensional systems

as well as in complx high dimensional systems. The baker’s transformation, which

N
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we discuss later in Chapters 5 and 6, is an example of a simple map exhibiting type I
intermittency. Examples of complex dynamical systems include the Lerenz model for
Rayleigh-Bénard convection and the Belousov-Zhabotinsky chemical reaction.

An important feature of intermittency transitions is that, near critical parameter
values, where 2 significant laminar regime exists, the system bebaviour remains close
to the original periodic solution. This makes possitile for quantitative estimation of
important parameters such as the probability distribution of the duration of laminar
phases — that is, the average time spent by the attractor nu-z: the original stable orbit.

We return to this important analysis in Chapter 6.

4.3.4 Attractor Characterization and Quantitative
Measures

In the preceding section, evidence supporting the existence of a chaotic attractor
for the present system has been found, most significantly in the high flow velocity
range. This was supported not only by the observation of a chaotic character of the
motions in the time traces and phase plane plots but also in the characteristic broad-
banded frequency spectra with high low-frequency content, typical of chaotic solutions.
Most significant, however, is the distinctive intermittent transition route to chaos, well
supported both qualitatively and quantitatively.

We close the present discussion with a characterization of the high velocity chaotic
attractor and determination of some standard attractor measures.

While the transition to cha‘.s may imply total loss of order in the conventional
sense, investigators have uncovered remarkable organization or geometry in a response
that has become chaotic. The Poincaré section is a geometrical construction utilized to
view the attractor phase plane plot on 2 reduced dimension and is a tool for revealing
such organizrtion. The Poincaré section selected for the present 4-D space is defined
by the plane § = 0. For the flow velocity V = 1.09, the result of a projection of the
Poincaré-section (which is itself embedded in 3-D space) onto the 2-D plane § = 0
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results in the geometrical object presented in Fig.4.27.% Distinct structure is observed
as is typical of chaotic attractors; the striucture showed no variation in the relative
density of iterates after a certain minimum number of iterates required to reveal its
basic form.

For the fractal attractor revealed by the Poincaré section there exists a fractal
dimension, a characteristic of attractors associated with dissipative systems. There
exist several variants for the definition of the fractal dimension, as detailed by Grass-
berger & Procaccia (1983). For brevity the two variants deemed most significant in
the present context are considered.

Firstly we examine the capacity dimension, d,, which is most closely related to
the traditional idea of dimension, i.e. the topological dimension in Euclidean space.
Let A denote the set of points making up the attractor and assume A to be bound
by a subset of R™ — for our cace m = 3. Let N(¢) denote the minimum number of

m-dimensional cubes of side ¢ needed to cover A. For small ¢, N{¢) increases as

N(e) o €%, (4.14)

and in the limit

& = 1 N )

8 ogld (4.15)
One easily sees that N(e) = 1, L/e, S/¢ for a point, line and surface, respectively,
leading to d. = 0, 1, 2 for these three standard geometrical objects.

Another definition for the fractal dimension is called the correlation dimension,
der. The underlying idea in this defirition is that the pairwise correlation C(e) in a
hypersphere of size € about points in A scales exponentially with . Mathematically,

.1 . o,
Cle)= lim ﬁ‘_%l‘l'(e— i = %)), i#7, (4.16)

S$Note that in Fig.4.27 the Z position, rather than amplitude, is plotted.
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where ¥(p) is the Heaviside function

¥(p)=0, p<O,

¥(p)=1, »p>0 (4.17)
d.. is then given by
_ i Jog[C(e)]
der = lim Togle] (4.18)

Grassberger & Procaccia (1983) have shown that the fractal dimensions defined above

arc related by
der < de, (4.19)

and also that for most attractors d.. 22 d..

For the attractor corresponding to Fig.4.27, d.. was computed. In Fig.4.28(a)
the variation of C(¢) with ¢ is shown on a log-log plot. The correlation dimension
is determined from the linear portion of the graph giving a value of d., = 2.07. For
comparison, the result of a similar computation, this time for the periodic response at
V = 0.40 (cf. Fig.4.15), is presented in Fig.4.28(b); do = 1.036 for this case, which is
reasonably close to the expected value of d.. = 1.0 for a period-1 response.

Intuitively the dimension of a space denotes the amount of information needed

to specify a location. Equation (4.15) suggests that for fractal sets the dimension need

_not be an integer. For high dimensional systems attractors are often found with a

significantly lower fractal dimension. The practical significance of this result is that
the dynaniics on the attractor, hence the system, can be capturéd on a significantly |
reduced dimaznsion space relative to the original embedding phase space dimension. A
value of do = 2.07 for the attractor of Fig.4.27 suggests that the attractor is limited
to under 3 dimensions of the 4-dimensional phase space.

A ha.lln;xagk of chaotic attractors is the effect of exponential divergence of initially

_nearby states as a result of stretching and folding. The rate of divergence of nearby

p

states is a measure of the extent to which an attractor is chactic. This divergence
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rate is determined by the Lyapunov exponents of the system. We shall be particularly
interested in the largest, or most positive, exponent — this being sufficient for the

identification of chaos. To define the Lyapunov exponent consider a system

% = F(x), | (4.20)

for which theve exists a solution ¢(7). For two solutions ¢1(7), #2(7) commencing at

nearby initial conditions, one can define a variational vector function

u(7) = ¢1(7) — ¢=2(7). (4.21)

When the condition |u| << 1 is satisfied, the time evolution of the variational vector

is determined by the linear equation

= DF(¢)u, (4.22)

where DF(¢) is the Jacobian matrix function of the vector field F(x).

The solution to the first-order matrix differential equation (4.22) takes the form
[u(7)] = u{0)e"". (4.23)

Hence the Lyapunov exponent @ dctermines the exponential rate of divergence of
nearby solutions. The exponential growth of u(7) cannot continue indefinitely, since
the attractor is bounded; hence ¥ has to be determined from many different initial

conditions. The formal definition of the Lyapunov exponent is

- |u:(7)| '
7= lr“_nmsz [|u,(0)|]’ (4.24)

where 1;{0) is the initial variational vector for the i*" initial condition along the test
~orbit ¢(r).

When the vector field F is analytic, DF(¢) can be obtained, in which case 7
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is easily determined by simultaneously integrating (numerically) equations (4.20) and
(4.22). For systems in which F is non-analytic such as the one under study, or exper-
imental systems where the form of F is unknown, a numerical procedure is necessary
to track the evolution of u(7) on a reconstructed phase space. For this purpose, an
algorithm developed by Wolf et al. (1985) was adapted for the present system.

The algorithra works by analyzing a database of phas: space vectors that trace
a trajectory ¢(7). Ensuring a large enough number of orbits around the attractor, an
initial variational vector u(7) is determined by two phase points within a distance do.
Subsequent phase points are tracked over a distance along the at‘ractor corresponding
to a predetermined evolution time 7, resulting in a final separation d,.. For one such

iteration, an estimate of the largest Lyapunov exponent is given by
7. = <ln [ﬁ] . (4.25)

Since the initial phase points separated by dy may be located anywhere on the attractor,
individual values of 7, will diﬁ'er significantly, reflecting local attractor behaviour such
as stretching or folding; 7 is therefore the average of a large number of 7.

For a periodic solution the Lyapunov exponent @ = 0. This serves as a test for the
algorithm. Fig.4.29(a) shows the convergence to an average value of 7 for the period
two solution at V' = 0.45 (Fig.4.15). Convergence to the expected value of ¥ = 0 is
found to be very good and occurs within about 30 iterations.

An estimate for 7 in the chaotic regime at V' = 1.09 is shown in Fig.4.29(b).
Although convergence is not as smooth as in the periodic case, an average value of
¥ = 1.4 is obtained for this attractor. The positive Lyapunov exponent supports the
earlier ccnclusions of the chaotic nature of the response and the existerce of a strange

attractor in this high velocity regime.
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4.3.5 Codimension 2 Bifurcations

The tube-support gap spacing é, is possibly the second most important system
narameter after the flow velocity from a dynamics point of view. Varying &, results in
significant changes in system response. The totality of the range of system responses
as the parameters V' and &, are varied is summarized in a bifurcation set diagram,
Fig 4.30. The clearance é, was varied in the range 0.02D to 0.08D.

The various types of tube responses may broadly be divided into five regions, as
shown Fig.4.30. Region I corresponds to limit-cycle motion, immediately following the
Hopf bifurcation at V, = 0.32. In this region, limit-cycle amplitudes remain below the
tube-support clearance and no impacting takes place; the cylinder exhibits a figure-of-
eigut orbital motion, as depicted by inset (a). Once the limit-cycle amplitude surpasses
the tube-support clearance, complex orbital motion ensues, as shown in insets {(b) and
(¢) in Region 1I. For a given velocity, V, the type of response obtained (in Region II)
depends on the dimensionless clearance &,. For low clearances, é, < 0.04, the tube
response is complex quasi-periodic, as depicted in inset (¢). At higher &,, this quasi-
periodic motion intermittently breaks down into chaotic motion; an example is shown
in inset (b). For &, = 0.08, the response is chaotic, which is particularly evident in the
in-flow component of the motions, as discussed earlier in Section 4.3.3.

The responses in Region III may be considered to mark the onset of impact-
dominated motion, for & < 0.05. Taking for example the case of & = 0.07, the
chaotic response of Region III develops into an asymmetric period-2 orbital motion;
see inset {(d) for Region IIIa. For higher V, this period-2 motion collapses into a
period-1 orbital motion; see inset (e}, Region IIIb. As V is increased further, the
next bifurcation gencrates a symmetric high-frequency motion, almost purely in the
cross—flow direction — see Region Illc, inset (g). At still higher V, a pitchfork-like
bifurcation results in loss of symmetry in the motion, as shown in inset (h), Region
"II1d; then, this bifurcation is reversed and in Region IV we once more have symmetric
high-frequency response.

_These results, applicable for 0.05 < &. & .08, are quite similar to those depicter]
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in the bifurcation diagram cf Fig.4.2 for €. = 0.08. It is of interest that the dynamics
in this range of &, is much richer than for smaller &,; the number of types of response
increases with €.. In fact, the set of respoases at given values of &, is always a superset
of the equivalent set for a smaller value of €.. Thus, for &, < 0.04, the sequence of
bifurcations of Region III does not occur. Instead, the quasi—-periodic motion of Region
IT collapses directly into the high-frequency response of Region IV — see inset (f).
For all clearance values, it is the high-frequency response of Region IV that un-
dergoes an abrupt breakdown, resulting in chaos (Region V). The orbital motion in
the chaotic regime is similar for all values of V and &, — suggesting a similarity or

identity in the underlying chaotic attractor.

4.3.6 Frequency Variation

The non-dimensional frequencies of oscillation in the in-flow and cross—flow direc-
tions as V is increased are shown in Fig.4.31. For chaotic and quasi-periodic motions,
w- and @, are simply the dominant frequencies, which appear to always be discernible.
Various regimes may be distinguished, corresponding to those in Fig.4.12. These are
identified by the letters P or C corresponding to periodic and chaotic regimes respec-
tively. Region P1 is the first periodic region with no impacting, at the lowest end
of which the motion is in the figure-of-eight pattern so that @, =~ 2&,. Cl and P2
are the first chaotic and next periodic regions, respectively, over which @, ~ w, =~ 1;
i.e., W: and W, are sensibly close to the zero-flow values. For V' =~ 0.6, corresponding
to the drastic reduction in in-flow motion shown in Fig.4.12 and in Fig.4.16(d-f) the
frequency of oscillation increases significantly by a factor of 3 approximately for @,
and 1.5 for @, where once more @, =~ 2%@,. The frequency continues to increase with
V, but more gradually, in region P3 — to a maximum, at the end of this region, of
@y = 3.7 and @, = 1.9. In C2, the main chaotic region, the frequencies are reduced
abruptly back to &, ~ 2@, =~ 3, but again gradually increase, reaching eventually

@, = 2W, = 4 in the periodic window near the maximum V' shown in Fig.4.31.



Chapter 5

AN EXPERIMENTAL STUDY OF
CYLINDER DYNAMICS IN
WATER-FLOW AND COMPARISON

| WITH THEORY ‘

The theoretical analysis of Chapter 4 has shown that a wealth of complex dynam-
ical behaviour is exhibited by the system under study. Mo.t interesting is the finding
that transition to chaos occurred via a ‘standard’ route which is well understood and
leads to a response with properties that can easily be measured experimentally.

For continuation of the analysis, an experimental system will now be studied. The
goal of the experimental study is to determine the dynamical behaviour under more
complex real conditions. In particular, it is of interest to ascertain and identify distinct
bifurcations in the response, as well as examine the characteristics of the resulting
behaviour. The effect of several parameters on the resulting tube response is also
investigated. These parameters include cylinder/support clearance, interstitial gap
fluid at the support, as well as the Coulomb friction coefficient at the support.

In the second part of this chapter, the full theoretical model developed in Chapter
2 is applied to the experimental system. The ability of the model to predict the cylinder
dynamical behaviour is tested. Further analysis is also possible, including a qualitative
analysis of the dynamical system and extraction of practically useful information.

The findings of Chapter 4 will provide possible avenues for the elucidation of the

dynamical behaviour of this more complex system.

o |



5.1 DYNAMICS OF THE EXPERIMENTAL
SYSTEM

5.1.1 Experimental Setup and Test Procedure

Tests were conducted in a Kempf and Remmers recirculation water tunnel. Per-
tinent parameters for the water tunnel are: a test section of dimensions 0.26x0.26x 1.1
m, velocity range 0 — 15 m/s, and free-stream turbulence intensity 0.5%. The upstream
flow velocity was measured using a Kentlea mini;probe turbine flow meter, accurate to
within 0.0005 m/s in the range 0.0 — 3.0 m/s.

The system under study comprises a single flexibly-mounted cylinder located in
row 3 of an array of otherwise rigidly fixed cylinders. The array consists of 7 rows of
cylinders. Cylinder dimensions are: diameter 12.7 mm (0.5 in.} and 238 mm (9.37 in.)
long. The test cylinder was mounted as a cantilever and consisted of a rigid section
(m = 0.301 Kg/m), of length 356 mm (14.0 in.) which spanned the water tunnel cross
section, and a lower smaller-diameter (4.8 mm (0.19 in.)) and hence flexible section
fixed at its bottom end; see Fig.5.1. The flexible part of the test cylinder extended out
of the water tunnel working section, in a specially designed cylindrical compartment
below. The only fluid connection between the lower compartment and the test section
was the clearance hole for the test tube, and hence the flexible part of the tube was
immersed in essentially stagnant fluid. A close-up of the central part of the array is
shown in the cross-sectional view of Fig.5.1(b). A locking setup, at the bottom of
the cantilever, is provided for alignment and clamping of the test cylinder. At the
upper end of the rigid (larger diameter) section of the test cylinder is mounted a solid
cylindrical impact piece 25.4 mm (1.0 in.) long, protruding into an upper box-like
compartment. The support piece consists of 2 9.5 mm (0.375 in.) square slab with a
cirenlar hole of appropriate diameter for the desired clearance. At the impact surface,
the éupport thickness is reduced to 3.6 mm (0.14 in.). The test cylinder logarithmic
decrement of damping é = 0.01; f, = 6.1 Hz in air, and approximately 5.5 Hz in water.

Five support clearance diameters were tested, in the range 0.07D — 0.23D; the



Hopf Bifurcation and Support-Inactive Cylinder Response 7

largest being close to the maximurn possible support-inactive tube displacement. Most
tests were conducted with the brass tube impacting on brass support pieces. However,
to investigate material effects on the tube dynamics, special tests were conducted with
stainless steel and Delrin, rather than brass, supports. The interstitial fluid medium
at the support location (air or water) was varied by changing the water level within
the containing plexiglas compartment above the test section; the tunnel pressuriza-
tion/depressurization system made it possible to maintain a steady water level.

Tube motion in two orthogonal directions was sensed by an Optron non-contacting
optical motion follower, which focused and locked onto a target at the upper end of the
test cylinder; the sensor output consisted of both the tube displacement and velocity,
in the in- and cross-flow directions. Other components of the data-acquisition sys-
tem included 2 Nicolet digital oscilloscope for real-time monitoring, an HP3562D FFT
digital signal analyzer, a Racal analog tape recorder and an HP9000 series computer.

During a typical test, the flow velocity was incremented in the range 0 to 0.18
or 0.25 m/s (depending on support clearance). On attaining a steady state, response
spectra were calculated, giving vibration amplitudes and the corresponding frequencies.
Simultaneously, velocity and displacement signals were recorded for further analysis.
Recording durations were kept short (typically between 3 and 10 minutes), to ensure

that relatively constant support conditions were maintained throughout the test.

5.1.2 Hopf Bifurcation and Support-Inactive Cylinder
Response

Freliminary tests were couducted to determine the critical flow velocity for fluide-
lastic instability and the limit-cycle amplitude-growth rate. The maximum clearance
available to the cylinder was 0.25D, this being the inter-cylinder clearance. During
the experiments the test cylinder is constantly subject to turbulent buffeting, hence,
the “initial conditions” (position and velocity) are indeterminate. The response results
presented therefore may be considered to correspond to the most likely attractor in
cases where multiple attractors (solutions) may be possible; the attractor most likely
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to be manifested in the experiment is the one with the largest basin of attraction. How-
ever, the repeatability of the results suggests that the variability of initial conditions
did not affect the final results.

Typical graphs of rms vibration amplitade response of the test cylinder versus
velocity are shown in Fig.5.2; #jp and Z represeat the non-dimensional cross-flow and in-
flow amplitude, respectively. Fluidelastic instability occurs at U, =~ 0.10 m/s. Several
tests have been conducted, and an average value of U, = 0.105 m/s was obtained which
vields V. = 0.216; this is the value for V, that will henceforth be used. The instability
is sharply defined. In-flow amplitudes remain approximately five times smaller than
their cross-flow counterparts, reflecting the existence of weak fluid coupling between
Cp and the cross-flow displacement 3.

Fig.5.3 shows the cross-flow and in-flow response power spectra and the corre-
sponding phase plots at V' = 1.05 V,. The slight deviation from a pericdic orbit, most
noticeable in the in-flow direction, reflects the effect of unsteadiness in the flow velocity;
this was found to be approximately 4% of the mean velocity, despite the Ward-Leonard
control for the motor driving the water tunnel impeller (perhaps because the flow ve-

locity was so small). The limit-cycle amplitude grows to reach the maximum available
clearance at V = 1.14 V..

5.1.3 Post-Instabi]ity Response with Impacting

Tests were conducted for five non-dimensional tube/support gap sizes: & =
0.067, 0.132, 0.174, 0.200 and 0.229. Preliminary tests showed that, due to the
smallness of &, the steady drag quickly (in terms of flow velocity range) resulted in
pinning the cylinder against the baffle-hole wall in the drag direction. Tests were
therefore conducted with an initial upstream deflection of the test cylinder relative to
the clearance hole, Z. = 0.148, s0 as to increase the range of useful experiments. There
. was also an (unwanted) offset of §. = 0.03; note that this value of g, corresponds to an
offset of 0.4 mm which is close to the tolerance of the cylinder alignment mechanism.
The radial offset then is 7. = 0.151. Hence, for tests with &, < 0.151, the test cylinder
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was initially preloaded by a support contact force.

The tube response with varying €, may broadly be divided into two categories.
For the larger gap sizes (€. > 0.170), periodic motion, or motion with a distinct
periodic component, was predominant over the complete test flow-velocity range, with
the exception of a small chaotic band. For smaller gap sizes (¢, < 0.170), on the
other hand, the response culminated in chaos for high values of the flow velocity and
thereafter remained chaotic. The behaviour of the system will be described next in

detail, for the different values of impact clearance.

5.1.3.1 Results for é, = 0.174

We first present results for gap size &, = 0.174 and for various flow velocities; the
tube impact-piece and support material was brass, with impacting cccurring in air.

Following the Hopf bifurcation (hence, onset of fluidelastic insﬁﬁfity) the limit-
cycle amplitude grows sufficiently for impacting to occur at V' = 1.17 V.. At this
velocity, interaction with the support has a significant damping effect such that, for
several cycles after impacting, the amplitude is reduced to below &,. Fig.5.4(a) shows
the orbital (z,y) motion at V' = 1.17 V.. The induced in-flow motion is nearly quasi-
periodic, the second frequency representing the time interval between impacts; the
time interval in-betweer impacts , however, appears to be random, thus introducing a
chaotic component in the response. This quasi-periodic like character is well depicted
by the in-flow and cross-flow time traces of Fig.5.4(b,c). The corresponding frequency
spectra, Fig.5.4(d,e) show the period-1 motion to be predominant.

Double-sided impacting commences at V' = 1.2 V.. Typical results are shown
in Fig.5.5 for V = 1.24 V. It is seen that motion is predominantly in the cross-flow
direction (Fig.5.5(2)), albeit slightly skewed. The cross-flow time trace, (Fig.5.5(c)),
has an almost constant amplitude. This motion is close to a simple limit cycle of
pericd-1, as evidenced by the power spectra in Fig.5.5(d,e).

Another bifurcation occurs at V' =~ 1.43 V; the double-sided impacting response

intermittently loses stability, breaking down into a complex ovalling motion, as shown
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in Fig.5.6 for V = 1.47 V.. While the cross-flow amplitude remains almost constant
(Fig.5.6(a,c)), in-flow motion (Fig.5.6(a,b}) exhibits bursts of amplitude growth during
the orbiting phase. It is the in-flow component of motion that introduces a chaotic
element to the response, since the bursts of amplitude-growth are intermittent. At
the onset of intermittency, nearly-periodic motion (corresponding to a laminar phase)
is still predominant over any given period of time of the intermittent response. The
in-flow and cross-flow power spectra in Fig.5.6(d,e) indicate that 2 significant periodic
component still exists in the response. This type of response is commonly encountered
in operational heat exchangers and is referred to as breathing type response. It is
characterized by bursts of periods of audible impacting, which are interspersed between
relatively long quiet durations. In the experiments, audible impacting occurred in the
double-sided impacting phase, while the orbiting motion was relatively quiet.

As V is increased further, the time between intermittent bursts of amplitude
growth is diminished; a comparison of Fig.5.7(b), showing in-flow response at the
higher velocity V = 1.54 V,, and Fig.5.6(b) shows this diminution. The increased
chaotic content in the response is also reflected in the spectra of Fig.5.7(d,e). At
V = 1.69 V. periodicity in the in-flow response has vanished altogether, as seen in
Fig.5.8, marking the onset of generalized chaotic motion, as evidenced by both the
orbital plot and the time trace of Fig.5.8(a,b); further evidence is provided by the
in-flow power spectrum of Fig.5.8(d), which shows significant low frequency content
as well as overall broad-bandedness typical of chaotic response spectra (cf. Figs.5.6(d)
and 5.7(d)). In the above described scenario, there is evidence purporting transition
to chaos via intermittency. This will be investigated in due course.

The intermittently orbiting response occurs over the r;_'.n'ge‘: ;f flow velocities,
1.69 € V/V, < 1.80. At the higher end of this range the component of the response
at 2f, in the in-Jow direction becomes predom‘_.{.iant. This marks a transition to a
response with in-flow frequency double the cross-flow frequency.\w]\si shown in Fig.5.9
for V = 1.91 V,, the doubling of the in-flow frequency results in a figure-of-eight orbital
motion; at this velocity, significant sliding at the support occurs, introducing a chaotic
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component to the response. This latter type of motion is sustained for higher values
of V/V,, until ‘sticking’, due to blow-back occurs at V =~ 1.95 V..

The cylinder response described above, and associated bifurcations, is unchanged
for the two larger &., namely & = 0.200 and 0.22S. The identical bifurcation sequence
is repeated. For the larger gap sizes, however, the chaotic regime occurred over a wider
velocity range. This finding suggests that the bifurcation sequence is quite robust and
might possibly represent ‘typical’ behaviour for this system in the parameter range
tested. The results for the gap size & = 0.200 are compared with theoretical findings
in Section 5.2.2.

5.1.3.2 Results for Small Gap sizes

Significant changes in the overall cylinder response occur when the cylinder/support
clearance is significantly reduced. Initial cylinder/support contact at zero flow, which
results in preloading of the cylinder, is primarily responsible for the overall change in
the response. For &, = 0.132 for instance, initial preload results in a delay in the appear-
ance of cylinder vibration until V' = 1.05V_.. The quasi-periodic like and double-sided
impacting responses do not occur for this gap size. Instead, the Hopf bifurcation leads
directly to combined double-sided impacting with intermittent orbiting response. This
response is shown in Fig.5.10 for V = 1.29V,. Similarly to the case with &, = 0.174,
this response is replaced at higher velocities by 2 figure-of-eight orbiting response as
seen in Fig.5.11 for V = 1.62V.. This motion, despite being mainly periodic, exhibits
bursts of amplitude growth which introduces a chaotic component in the response.

Next, some results for a relatively small gap-size are presented, namely &, =
0.067, two times smaller than in the foregoing case. The initial preload introduces
even stronger nonlinearities, both due to the larger lifting force necessary to overcome
the initial preload and the directly related friction force. The cylinder is initially
in contact with the support, and single-sided impacting therefore, occurs after the
onset of fluidelastic instability. The result is dynamical behaviour which is distinctly
different. For V' = 1.10V,, the first signs of fluidelastic instability are manifested.
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As shown in Fig.5.12, the destabilizing fluidelastic force occasionally lifts the cylinder
from the support. The response appears to already be chaotic. Single-sided impacting
chaotic motion occurs fer V' = 1.20V,, as seen in Fig.5.13. The preload contact force
is large enough such that no double-sided impacting motion occurs. Instead, at a
higher velocity V = 1.43V., the single-sided impacting motion has a significant orbiting
component, Fig.5.14. At V = 1.58V,, the large incident angle of impact results in
significant coupling between the cross-flow and in-flow motions. The result is x and
y components of comparable amplitude, as seen in Fig.5.15. In Fig.5.16 is shown the

tube respounse at V' = 1.T1V;, where occasionally the cylinder/support contact force
causes sticking.

5.1.3.3 Co-dimension 2 Response Bifurcation Diagram

The results obtained for all gap sizes may conveniently be summarized in the 2-D
bifurcation diagram of Fig.5.17. It is clearly seen that the number of bifurcations in the
response increases with increasing €., although it is possible that some or all may still
exist for small &,, but over inconsequentially small ranges of V. On the other hand,
chaotic response is confined to a small, intermediate range of V' for large &., whereas
for smaller €, it occurs earlier and lasts much longer; for small enough é,, the response

is chaotic over the complete velocity range.

5.1.4 Effect of Different Support Materials on Impacting
Response

For the gap size of &, = 0.200, the effect on the impact dynamics of two material
combinations, other than brass-on-brass, was investigated. For this purpose, the im-
mobile impact piece, forming the “baffle hole”, was changed to either stainless steel or
Delrin (Actal). The pertinent physical parameters are summarized in Table 5.1.

By comparing the response of the brass/stainless-steel (b/s) combination to the
brass/brass (b/b) one, the effect of increased support stiffness may be assessed, while
the Coulomb friction coefficieat uf,. remains essentially unchanged. Delrin, because ‘of
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Table 5.1: Physical properties of support materials; p is the density of water and p,
is the density of the support-plate material

Material — E (N/m*) pyr ps/p
Brass 8.96 x 10°* 0.4 8.35
Stainless Steel 2.0x 10 0.4 7.80
Delrin 3.33x10° 0.01 1.54

its lubricating properties, provides (in the brass/Delrin (b/d) combination) information
on the effect of a low coefficient of friction on the dynamics, while support stiffness is
still maintained high.

Fig.5.18 shows a comparison of rms response amplitudes for the b/b, b/s and b/d

cases. The cross-flow response amplitudes are seen to be quite independent of material ~

combination over most of the flow velocity rarge. Hence, the cross-flow amplitude is
largely determined by the maximum possible clearance in the cross-flow direction for
a given in-flow deflection (due to steady drag).

The high friction coefficient for the b/b and b/s combinations results in sticking
at V =~ 2.0 V,. For the b/d case, however, sliding motion continues to higher flow
velocities, due to the lower py. involved.

The dominant response frequencies for the b/b and b/d combinations are com-
pared in Fig.5.19. As might have been expected, no significant differences were observed
between the b/b and b/s cases. Noting the expanded scale of the ordinate in Fig.5.19,
it is clear that for V < 1.62 V_ , the frequencies remain approximately the same; how-
ever, a significant increasing trend in the response frequency occurs for b/b starting
near V = 1.62 V.. For b/d impacting, this trend is delayed to V = 1.71 V,. Period-2
in-flow motion occurs for b/b starting at V' ~ 1.80 V,; the in-flow response frequency
fz = 2f;, in the velocity range V' > 1.80 V,, and hence is off-scale in Fig.5.19. Coinci-
dentally with a doubling of the in-flow response frequency, a reversal of the increasing
trend in the cross-flow motion occurs, marking the transition to a motion that is less
impact-dominated and with a larger sliding component. This transition does not occur

for the case of b/d impacting, where a period-2 component is discernible but does not
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become dominaat until just prior to sticking: instead. orbiting motion persists for b/d.
Figs.5.20(a-c) show this response for V' = 1.60V; and b/d impacting; this response is to
be contrasted with that shown in Fig.5.8 for b/b impacting showing much lower in-fiow
amplitudes. At V = 1.90V; large in-flow amplitudes are sustained for b/d impacting
as shown in Fig.5.20(d,e).

5.1.5 Effect of Interstitial Support Gap Fluid

Next, we investigate how the tube response is affected by the interstitial fluid
at the support location. The effect of water at the contact location is expected to be
twofold: firstly, a lubricating effect on the contact surfaces, hence reduced frictional
resistance to sliding. Secondly, additional squeeze-film fluid damping at the support;
this should be particularly important for small &,.

Comparison tests were once again conducted for the gap size €. = 0.200. Fig.5.21
shows the response amplitudes and frequencies for wet and dry impacting tests. The
increased fluid damping for the wet tests ( a portion of the test cylinder is now immersed
in still water) raises the critical velocity to V, = 0.120 m/s, as seen in the amplitude
plots of Fig.5.21(2). A decrease in the vibration frequencies also occurs for the wet
tests as shown in Fig.5.21(b). Comparing the wet and dry tests, the cylinder cross-
flow response amplitude is seen to be approximately equal over the velocity range
1.20 < V/V, < 2.00; hence, it is determined by the maximum possible cross-flow
clearance, depending on the cylinder static equilibrium position due to blow-back. This
suggests that energy loss through squeeze-film damping at the support is negligible for
this gap size. The expected lubricating effect is apparent for V' > 2.00 V., where, while
sticking occurs for dry impacting, orbital motion is now sustained up to V = 2.15 V..
On the other hand, a difference in the in-flow amplitudes is noticeable for the velocity
range V > 1.70 V.. Similarly to the Delrin tests, the increased in-flow response for
V > 1.70 V, is the result of a decrease in the effective friction coefficient at the support.

The final bifurcation in the tube response is different for impacting in water.
For the dry tests, tﬁe complex orbiting motion collapsed into a figure-of-eight motion.
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Decreased friction in the wet tests results in a new orbital motion, with a significant
continuous sliding component. This motion has been found to be chaotic, albeit with
a prominent periodic component.

The difference in the response frequencies for wet and dry tests shown in Fig.5.21(b)
is by-and-large an added mass effect, hence, not primarily introduced by the presence
of water at the support. Stronger fluid coupling between the orthogonal directioes is
also introduced for the wet tests. The bifurcation to the final chaotic orbital motion
is reflected by a tendency toward levelling off of the response frequencies for the wet

tests for V > 1.70 V..

5.2 THEORETICAL ANALYSIS OF THE
CYLINDER RESPONSE

In this section, the theoretical model, developed in Chapter 2, is applied to the
experimental system. The first goal is to test the ability of the model to predict the dy-
namical behaviour exhibited by the experimental system. Using the theoretical model,
further numerical experiments are carried out so as to determine some quantitative

measures of the system behaviour where it appears to lie on a strange attractor.

5.2.1 The Governing Equations of Motion

The governing equations of motion, derived earlier in Chapter 2, are as follows:

it + 2t Q5= [ [ B+ @] (0Zr v - Brco) s+

2ma? or

#i(3p) {K (F-&)X+7 [c’..F‘E +p ( lr TE )] } (#srsind — cosB), (5.1)
g +26d] (—)“ = 2,,,02 f [ )2] " ((V - %)CL - cpg-g) ¢:d5 —

¢i(§,,) {K,(F &S+ 7 [e,rf +5 (1 _lﬁé;)] } (usrc0s0 +sind). (5.2)
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where, i = 1,2, ...V, ¥ = (1 + #Cma/(47R)) and § = ¢(AifA1)? is the modal damping.

Several simplifying assumptions are made in the equations above. To facilitate
the evaluation of the integrals involving C; and Cp, approximate analytical forms
for these force coefficients are desirable. A study of Fig.3.8 and previous discussion
indicated that for || < 0.20, C(%, §) exhibits reasonably similar trends over a range of
Z. Furthermore, results of ad hoc calculations on the two degree-of-freedom mode! using
the curve C(Z = 0,y) compared very well with those using the complete map C(Z, 3).
An approximate analytical form of Cr(Z = 0, ) was determined by performing a least-
squares, fifth-order polynomial fit on the experimental data.

Average Cp variation is less than 20% of the mean value in the range ||, [§| <
0.20. The results of Chapter 4 also showed that no instability associated with the
Cp variation is manifested; this is also supported by the experimental results, which
confirm the stability of in-flow motions. Hence, a constant value of Cp = Cp(Z =

0, = 0) is used in equations (5.1,5.2). The expressions for Cy and Cp are then

Co = Cp(=0,§=0),
5 -

Cr = Y of, (5.3)
1

where a; = —31.30, a3 = 2.935, 5 = —863.7,and o; = 0 for i = 2,4. The magnitude
of the relative velocity vector in equations (5.1,5.2) is approximated by V.

The fact that the test cylinder is subjected to non-uniform flow needs also to be
considered. To account for this, as well as the non-uniformity of the composite cylinder

itself, we introduce the functions 7; ! to express these spanwise variations, hence

m(3) = mY(3); EI(3) = EIs(3);
V('s') = V%(E), Ewu:;(g)=Cwm"1b2(§); (54)

1Note that the functions i; are not strict mathematical functions; they are just intended to indicate
the existence of discontinuities, hence cannot be operated on: Thus, for instance, (V(5))? = V3¢ (5).
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where

%) =1 for 5§5<1,
= 5.31 for §>1,
P(5) = 0 for §<1,5>2.54,
= 1 for 1< §<2.54,
() =1 for §<1,

0 for §>1.

Using the simplifications above, equations (5.1,5.2) may be expressed as
Mp" +Dlp’ +[Klp =F + [Fld + F.,

Mlq" + [D]q’ + [K]q =F! + [F*p' + F,, (5.5)
where
M = j " (B + Crata(S ) 15
Dy = Gyt [ g B un(a)u(F)es()e,
— VCD
Dii = G+ fo ¢2(3)¢=(3)¢:(3)
3y X‘
K; = ju 4¢3(3)¢.(8)¢,(8)d~9,

)
f

5 V2
b= [T s Cm()ee)s,

-— » V2
F; = fo 2machv:(8)¢,(S)ds

F; = - .[o @CL%(-?)%(E)%‘(E)C&
» V
F; = [7 s==Crn@(a)s)es. (5.6)

G = G for i = 7, and 0 for i & j.
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Table 5.2: Theoretically determined test-cylinder modal parameters

Mode A.‘I a; Wen Werp
1 0.357 0.941 41.3 38.3
2 1.542 0.693 T768.7 6912
3 4.805 1.015 T7458.1 6189.9

F., and F,, are the support forces. The ith components of these forces are given by
the last terms in equations (5.1) and (5.2), respectively.

To determine the beam modes ¢;, the test cylinder was considered as comprising
two parts, a flexible section to which a ‘rigid’ section is attached. Hence the upper
rigid section could be replaced by an equivalent moment M and shear force V at the
free end of the flexible cylinder. The appropriate boundary conditions to be applied to

the general solution of the Euler-Bernoulli beam equation are

50) = 40 =0,
s = g0,
¢”’(1)

—MP p), (5.7)

where M, and I, are the mass and moment of inertia of the rigid section.
The boundary conditions (5.7) were applied to the general solution to the Euler-
Bernoulli beam equation and the ¢; were determined using Mathematica. The resulting

beam mode shapes are given by

& = ¢i(3) 0<i<1 (5.8)
= ¢(1)+(5-1)¢:(1), 1<5< 5, (5.9)

where
#:(3) = ai(cosA;5 — coshA;5) + sinA;5 + sinh;3. (5.10)

The constants a; and eigenvalues J; are given in Table 5.2, where the predicted theo-
retical natural frequencies are compared to measured values for the first three modes.
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The deviation of the theoretical frequencies from their experimental counterparts
could be attributed partly to the quality of the welding at the joint between the flexible
and rigid sections of the test cylinder. A certain amount of flexibility occurred at high
frequency, making the joint less than rigid and giving measured frequencies lower than
theoretically predicted.

The integrals (5.6) were evaluated using a Mathematica routine presented in
Appendix I. The sample run presented in the appendix corresponds to a two-mode
Galerkin expansion in the z and y directions.

A value of the exponent £ = 1, where £ relates the radial support stiffness force
to the approach at the support (equation (2.9)), was found to be reasonable for small
magnitudes of the approach, which is the case here. The added mass coefficient Cp,,
was determined from potential flow theory, by considering a seven cylinder kernel in
quiescent fluid (Paidoussis et al. 1984), yielding Cpo = 1.332; the variation of Cp,
with changes in local array geometry, as the cylinder is displaced from the equilibrium
position, was found to be negligible. Other system parameters in equaticas (5.5) —

see (5.1, 5.2) are as follows:
K,=10° N/m?% p;, =035 and a= 17236 (5.11)

The dimensionless support damping constant &, (= ¢,D%/(mw,)), depends on the ini-
tial impact velocity (2.26). For each impact, the maximum approach o, was estimated
from equation (2.25). Thereafter, equation (2.26) could be integrated to give %,, and
hence, &,. G, which is related to squeeze-film damping, is zero for in air impacting.
Equations (5.5) were solved using a fourth order Runge-Kutta routine: when
sticking occurred, an implicit iterative algorithm was applied to determine the correct

force balance. Unless otherwise stated, initial conditions applied in the numerical

simulations were

q=0001, ¢g=4g=0 1i>1;
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P£=P;=0, 1> 1.

For the purpose of determining the tube dynamics, a three-mode Galerkin expan-
sion was found to be sufficient.? This is due to the special design of the test cylinder,
with the result that a large separation in the modal stiffnesses exists between the first

two modes and the higher modes (see Table 5.2).

5.2.2 Predicted Cylinder Response and Underlying
Dynamics

The initial Hopf bifurcation which results in fluidelastic instability is predicted
theoretically at V' = 0.185. This is in reasonably good agreement with the experimental
value of V; = 0.216. From hereon, all velocities (theoretical and experimental) are
expressed relative to the experimental critical flow velocity, V. = 0.216.

Figs.5.22 to 5.26 show comparison between experimental and theoretically pre-
dicted responses over a range of flow velocities for the gap size &. = 0.200. These results
correspond to brass/brass impacting with air as the interstitial support-gap fluid.

The single-sided impacting motion found to occur following the Hopf bifurca-
tion is predicted by the theoretical model as shown in Fig.5.22 for V = 1.10V.. The
modulation effect which is characteristic of this motion is also observed in the corre-
sponding in-flow time traces. Cross-flow time traces, on the hand, show only minimal
modulation. A comparison of the response frequencies (Fig.5.22(d,h)) indicates close
agreement between theoretical and experimental results.

Bifurcation to double-sided impacting motion occurred at V' = 1.20V in the
experiments and is predicted at V' = 1.24V, theoretically. This response is shown in
Fig.5.23 for V = 1.29V, and V' = 1.21V, for theory and experiment, respectively. The
cross-flow component of the response predominates in this new response regime. In-

flow amplitudes are significantly smaller and non-periodic, Fig.5.23(d,h). Intermittent

2Note that higher modes would still be needed for an accurate determination of the impact forces
for wear rate determination.
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Table 5.3: Comparison of theoretically predicted bifurcation velocities with
experimental measurements
Transition Via/Ve Vep/Ve EI. %
Hopf 0.86 1.00 -14
DS Impact 1.24 1.20 3
Interm’t’cy 1.52 1.41 7.8
Chaos 1.86 1.70 9.4
P2 2.10 1.95 7.2

breakdown of this double sided-impacting motion leads to the predominant response
for the present gap size: double-sided impacting orbiting response. Measured and
predicted velocities for the onset of intermittency are, respectively, V = 1.41V, and
V = 1.52V.. Experimental and theoretical examples of this motion are shown in
Fig.5.24, the corresponding velocities being V = 1.76V, and V' = 1.62V/ for theory and
experiment, respectively. The intermittent amplitude bursts, particularly in the in-
flow direction, are well depicted in the time traces of Fig.5.24(b,f). A chaotic character
is introduced in the response by these amplitude bursts, which occur at uncorrelated
time intervals. This is reflected in the broad-banded effect at the dominant response
frequency in the corresponding in-flow spectra, Fig.5.24(d,h).

Experimental tests show that the time interval between turbulent bursts vanishes
near V = 1.TV,. The result is a chaotic response as shown in Fig.5.25. Theoretically
chaotic motion is predicted at V' = 1.90V,; the experimental response at this velocity
is shown in Fig.5.25(e-h). In both theory and experiment it is clear that the final
breakdown to chaos is a result of the vanishing time interval between turbulent bursts.
In-flow time traces and response spectra display the chaotic character of the response.
In the cross-flow direction, on the other hand, despite the existence of a chaotic com-
ponent, period-1 motion is still predominant in Fig.5.25(c,g) and Fig.5.25(d,h).

In the final bifurcation, the system response becomes more periodic, which is a
stabilization of the period-2 attractor; Fig.5.26 shows this final period-2 response. The
theoretical model predicts this final transition very well and fairly accurately, giving a
transition velocity near V' = 2.10V, as compared to the experimental value V' ~ 1.95V.
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In summary, the theoretical model is able to reasonably accurately predict the
dynamical behaviour. Not only are all the bifurcations in the response predicted, but
also the critical bifurcation velocities are obtained within an average discrepancy of
10%, and in most cases better, as tabulated in Table 5.3.

It is important that a theoretical model accurately predict the detailed cylinder
dynamics since, ultimately, this completely determines the cylinder/support force his-
tory and hence wear rates. With this in mind, we proceed to investigate, in further
detail, the dynamical behaviour within the various bifurcation regimes. The analysis
provides a better understanding of the system. Furthermore, comparison criteria in
cases where the response is non-periedic allow for further quantitative comparison of

theory and experiment.

5.2.3 Characterization of the System Attractors:
Underlying Mechanisms and Some Associated
Discrete Dynamical Systems

It is clear from the preceding that, like any other nonlinear dynamical system,
a distinct sequence of bifurcations is uncovered as the parameter V is varied over the
range of interest. Identification of the bifurcation types and underlying mechanisms
provides valuable information for a better understanding of the dynamical system. Al-
though the system is infinite-dimensional, the experimental results, supported by the
theoretical findings, indicate that the mechanisms underlying the observed bifurcations
may involve only a few dimensions. In nonlinear dynamics parlance, the centre man-
ifold associated with these bifurcations is expected to be low-dimensional. This is a
gratifying result, the reason being that there is then a much better chance of uncover-
ing the underlying mechanisms that determine the bifurcations and associated system

dynamics.
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5.2.3.1 Dynamical behaviour at onset of impacting

The dynamical behaviour at the onset of impacting is characterized by a quasi-
periodic-like response. Intuitively the underlying mechanism is rather obvious. The
vibration amplitude in the unstable cross-flow direction grows to attain the support
clearance value &.. During the impact process energy is removed from the unstable
cross-flow mode and transferred to the stable modes, in particular the first in-flow
mode. Two regimes in phase space may be identified. The first, a slow regime where
the cylinder is in flight and the response is governed by the fluid dynamics. In this
regime, cylinder in-flow motion may be described by a simple oscillator with exponen-
tially decaying amplitude (cross-flow motion, on the other hand, exhibits exponential
growth). This may be verified in the example of Fig.5.22 where this regime lasts be-
tween two and five cycles at a time. The fast regime is the impact process itself. The
strong nonlinearities in this regime may lead to chaotic behaviour.

To see how this might happen, we consider an analysis of a simple ‘pseudo’® 1-D
map, whose behaviour may be considered as a first approximation to that of the present
system. From the theoretical time trace of Fig.5.22(b) a Poincaré map is extracted
and is shown in Fig.5.27(a); once again, here, straight line segments trace the iteration
sequence . Although this map appears quite disordered at first glance, a certain pattern
emerges after a careful study of the iteration sequence. First, the branch labelled b,
is identified to correspond to the simple exponentially decaying solution. The second
observation is that the trajectory may enter a region of fast motion at certain points
on b;. The points above the first bisectrix represent amplitudes immediately following
such a transition. Further investigation reveals the existence of distinct trajectories or
paths that are traced by successive iterations.

The trajectories, may be classified into two types, which we shall label A and B.
In type A trajectories, the in-flow amplitude grows following one or more impacts, and

then decays exponentially without interruption to a low value along b;. More complex

3Such 2 qualification is necessary since the resulting map, as defined, is multivalued and non-
invertible, hence, pat a 1-D return map in strict mathematical definition.
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behaviour is observed for type B trajectories. Decaying oscillations over a portion of
branch &, labelled 813, are interrupted at relative high amplitudes. Fig.5.27(b) is a
map extracted from Fig.5.27(a), which illustrates a type A trajectory. Starting with an
amplitude X;, the system undergoes four oscillations before returning to the vicinity
of X;. Branches b» and b; represent a piecewise linear approximation of the functional
behaviour above the first bisectrix determined from a study of the average location
of iterates in Fig.5.27(a).% Piecewise linear functions, approximating the solution in
the unstable direction, are also used to depict a type B orbit. The resulting map is
presented in Fig.5.27(c), in which a sample orbit is illustrated. Iterates are trappcd
in an intermediate orbit by — bz prior to expulsion to b3, whence type A behaviour
begins.

Several conclusions may be reached from a study of Fig.5.27(b,c). Firstly, simple
period-1 motion is precluded since the combined map exhibits no (stable) fixed points.
This conclusion is confirmed by the experimental and numerical results. Nearly periodic
orbits of order n > 1, n being the number of period-1 cycles, are however possible.
The trajectory illustrated in Fig.5.27(b) suggests an orbit close to n = 4. This leads
to the quasi-periodic-like character in the time traces as discussed above. Another
important conclusion that can be drawn from these 1-D maps concerns the possibility
of chaotic motion in the present velocity rahge. A trapping region exists from which
trajectories cannot escape; therefore an attractor exists. Mixing of trajectories, an
important property of chaotic attractors, clearly occurs particularly in the transition
between the two maps and within the individual maps. These properties, coupled with
the lack of periodic points as stated earlier, leads to the conclusion that the possibility
of a strange attractor exists in the present velocity range, despite the large periodic
component observed in the response.

The mechanism underlying this type of transition to chaos has been labelled a
switching mechanism (Pikovsky & Rabinovich, 1981); the name indicating switching

4Note that analytical forms of these functions cannot be determined. This would require knowledge
of and the existence of analytical solutions to the governing equations of motion.
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between fast and slow motions as discussed above. This mechanism has been shown
to underly chaotic behaviour in other very different physical systems. The first is an
electronics circuit whose active element is a tunnel diode; the diode current/voltage
characteristic exhibits a discontinuous jump at some critical value. The second system
is the well known Belousov-Zhabotinsky chemical reaction.

The fundamental aspects of the switching mechanismu are as illustrated in the

following schematic:

Monotonic Energy Source (or Sink) — Oscillating System —
Catastrophic Energy Drop (or Input)

The scenario depicted in the schematic is precisely the one at play at the onset of
impacting for a loosely supported cylinder. It is therefore expected that this mecha-
nism might play an important role in efforts to understand and quantify the cylinder

dynamics in this regime.

5.2.3.1 Intermittency Transition and Restabilization of Period-2 Motion

As observed in section 5.2.2.1, the double-sided impacting orbiting response re-
sults from a loss of stability of the double-sided impacting response. A study of in-flow
time traces revealed the existence of durations of low amplitude period-2 motion inter-
rupted by large amplitude period-1 orbiting motion. The period-1 motion then decays
gradually and the cycle is repeated. Bursts of period-1 motion occurred intermittently
at apparently random time intervals.

This intermittent behaviour was even more clearly exemplified by a one-mode
two-degree-of-freedom reduction of the system. Fig.5.28(a) shows 5 in-flow response,

in the one-mode model, for V = 2.0V,.. Just prior to the onset of intermittency, a

*In this case, the one mode reduction shows poorer agreement with experiments for the intermit-
tency range which should be 1.4 < V/V, < 1.7,
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subharmonic bifurcation occurs in the in-flow direction, hence, intermittency results
from instability of the period-2 cycle. In cross-flow, on the other hand, the basic cycle
is period-1 as seen in Fig.5.28(Db).

The Poincaré map technique is once again utilized as a tool to investigate further
the intermittency behaviour. We consider, as before, a next-peak value (X,,) map of
the in-flow motion. In view of the existence of period-2 motion in this direction, a more
judicious choice is to plot the map X, 42 versus X; in this case, a fixed point of the
map corresponds to a period-2 orbit on the original system. The resuliing Poincaré
map, corresponding to the laminar region in Fig.5.28(a)}, is shown in Fig.5.28(c). The
organization of successive iterates in a definite pattern, in this case a curve, confirms
the notion of short term deterministic behaviour in the laminar regime.

The fixed point, apparent at the cusp in Fig.5.28(c), corresponds to a periodic
orbit of frequency w =~ 2wy . A concentration of iterates occurs as this point is ap-
proached, as well as several iterations after. This reflects the response behaviour in
the region of nearly constant-amplitude periodic motion in the middle of the laminar
region in Fig.5.28(a). The cusp-shaped curve of Fig.5.28(c) suggests the possibility of
similar properties between this map and a slightly modified form of the well known
baker's transformation of the unit square onto itself (Bergé et al., 1980). The baker's

transformation is a 2-D map, on a plane defined by coordinates p; and p,, defined by:

Pt — 2p1, P2 — Pp2/2 for p; < 0.3,
= 2pm—1, pa—(p2+1)/2 for p, > 0.5. (5.12)

Coordinate p; represents the unstable manifold along which divergence of nearby tra-
jectories occurs; pa, on the other hand, parametrizes the area-preserving property of
the map. It is necessary to modify the form of ps to account for the area-contraction

property of our dissipative system. The resulting map takes the form

P1 — 2p1, p2— aqpe for p; < 0.5,
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mo— 2m—1+g(m). p2~a(p2—1)+1 for p; >05. (5.13)

where oy = 0.475, and g(p1) = assin{27p; ) + agsin(4xp;). This formulation was first
proposed by Bergé et al. 1980. In the present analysis, a different set of the parameters
oy — ag is utilized: o7 = 0.400, a2 = 0.23 and a3 = 0.10.

Fig.5.29(a) shows trajectories of iterates for-two initial conditions. A fixed point
of the map exists at p; = 0.75 and po = 1.0. The trajectory labelled ‘1’ passes
close to the fixed point, hence the concentration of iterates near P; trajectory ‘2’ only
approaches the fixed point. This attraction of iterates towards the fixed point is similar
to that which occurs in the map of Fig.5.28(c). The coordinates in Fig.5.28(c) contain
a combination of both the stable and unstable directions. In the case of Fig.5.29(a),
however, the stable and unstable directions are isolated and are parametrized by the
coordinates ps and p;, respectively. To obtain the cusp shape then, a projection of the
modified transformation (5.13) onto a different direction, which gives a similar ‘view’

of the trajectory of iterates, is necessary. The resulting return map is given by
F= a4p1 +asp2 + as, (5.14)

where a5 = —0.5, a5 = —1.0 and ag = 1.2. A return map of successive iterates of p is
shown in Fig.5.29(b). The similarity to Fig.5.28(c) is evident.

Figs.5.30(a,c) show close-ups of the laminar phases in the theoretical and ex-
perimental in-flow responses, respectively, presented earlier in Fig.5.24. It is seen
that the single-mode model predicts the general character of the intermittent reponse
(cf. Fig.5.28(a)). Poincaré maps corresponding to the Figs.5.30(a,c) are presented in
Figs.5.30(b,d), respectively. These maps are quite similar to the map of Fig.5.29(b), de-
rived from the baker’s transformation. The theoretical model predicts a closer approach
to the periodic orbit, hence. the sharply defined cusp in Fig.5.30(b). Experimentally,
the response does not approach a periodic orbit as closely as theoretically predicted,
hence, a true cusp is not formed; this might corresponds to the type ‘2’ trajectory

in Fig.5.29(a); such a trajectory results in iterations in Fig.5.29(b) crossing the first
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bisectrix before reaching the fixed point at the cusp tip.

It is quite interesting that, once again, a simple map exhibits some quantitative
similarity with the present system. The concentration of iterates near the fixed point
was shown earlier to be a property of type I intermittency. As will be shown in Chapter
6, a return map, exhibiting the narrow channel (Fig.4.26}.{ which is the hallmark
for type I intermittency), can be obtained from the baker’s transformation. This,
once again, points to type I intermittency as the mechanism underlying transition to
chaos in the experimental system. For the two degree-of-freedom system, intermittency
resulted from the bifurcation of a period-1 orbit. In the experimental system, however,

intermittency results from the bifurcation of a period-2 response.

5.2.4 Attractor Characterization and Invariant Measures

In Section 3.2.2, cylinder responses, determined theoretically and experimentally,
were compared. For periodic attractors, exact comparison was possible since a periodic
orbit is uniquely determined by its frequency and amplitude. As shown in the preced-
ing, a semi-quantitative comparison is also possible in the case of non-periodic motion
in the vicinity of a deterministic attractor. It is desirable to have access to equivalent
measures in the case of chaotic motions that can allow for quantitative comparison of
theoretical predictions with experimental results.

Lyapunov exponents and attractor fractal dimension are related to the global
behaviour of the attractor and provide measures for quantitative comparison. More
interestingly, the geometrical structure of the attractor can also be probed for saddle
orbits. Saddle orbits provide a quantitative description of the apparent self-similarity
of chaotic attractors (Auerbach et al., 1987), these orbits being the essential building
blocks of most typical chaotic attractors. Comparable attractors should have the same
saddle orbits, with identical distributions. The attractor phase point should also visit
the various orbits with the same frequency. Characterization of the chaotic attractors
by saddle orbits is chosen as a tool for quantitative comparison and validation of the

theoretical model. This approach has the added advantage that, as shown below,
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saddle orbits can easily be determined from experimental data; furthermore, only one
experimental variable is necessary for complete characterization.

A property of saddle orbits is the attraction of nearby phase space trajecto-
ries along certain directions (the corresponding stable manifolds). Trajectories remain
nearby for a time before escaping along an unstable manifold. An orbit is then simply
determined by establishing the return of a phase point to the neighbourhood of a cho-
sen starting point in phase space. In the orbital plot of Fig.5.24, for instance, period-1
saddle orbits are clearly evident. From the corresponding power spectra, the period-1
frequency is w,; = wp. To determine higher order orbits, a procedure first put forward
by Lathrop & Kostelich (1989) is utilized. In essence, the attracting property of saddle
orbits (along the stable manifold) is exploited as follows. Consider the system state
in phase space to be represented by the vector of generalized coordinates and veloc-
ities X. Starting with a phase point Xj, on a trajectory in phase space, the images

Xis1r Xjp2--. of X; are followed until the smallest index k > i is found which satisfies
X —X;| < & e>0. (5.15)

X; is then referred to as an (m,e€) recurrent point where m = k — i. The orbital

frequency associated with the corresponding (m, €) orbit of order n is
Wan = mAt, (5.16)

where At is the temporal spacing of the phase points. w;, is determined for each phase
point and the results are presented in the form of a histogram of the frequency count
of the various saddle orbits encountered.

Before proceeding with the determination of saddle orbits, the question of the
experimental phase space needs to be addressed. Specifically, not all phase space
variables, positions and velocities for the various modes, are known; the physical dis-
placements in the in-flow and cross-flow directions at the cylinder tip being the only
readily available variables. A reconstruction of the phase is therefore necessary. The
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delay embedding technique used was first proposed by Packard et al. (1980). Pseu-
dovectors X; of the embedding dimension m are formed from the two scalar time series

2}, (v}, as per the formulation below:
i=l i=1

X = [z(int), y(ine), z((i + d)At), y((i + d)At), ...,
z((i + (m/2 = 1)d)At, y((i + (m/2—1)d)A1], (5.17)

where d x At is the delay. Takens (1980) showed that for sufficiently large m (m >
attractor dimension), the reconstructed pseudo-phase space has the same propertics as
the true phase space. The delay factor d is selected such that the reconstructed phase
space reveals the topological structure of the attractor. From correlation dimension
calculations on the theoretical model, an attractor dimension d.. < 3.5 was obtained
for the various response regimes as discussed below. An embedding dimension m = 4
was therefore selected for the experimental data. Fig.5.31 shows several projections of
a reconstructed phase plane plot for V' = 1.62V;; the delay was taken as dAt = (.1s.
The various projections reveal a clear structure in the attractor.

In determining the saddle orbits, the recurrence distance ¢ was chosen to be 2%
of the maximum separation of attractor points. Fig.5.32 depicts examples of period-2
and -3 saddle orbits extracted from the reconstructed phase plot for V = 1.62V.. In
both cases the apparent self-crossings are the result of the projection onto a plane. The
trajectory returns to the vicinity of the starting point only after the complete loop.
Fig.5.33 shows the experimental and theoretical histograms of the distribution of saddle
orbits for V' = 1.62V,. In both cases more than 90% of phase points fall on saddle orbits
of order 1 to 10. The predominance of period-1 saddle orbits predicted theoretically is

in concordance with experimental results. Furthermore, theoretical results concur with

the experimental finding that in this velocity regime the cylinder response is primarily :

comprised of saddle orbits of order 1 to 7. The discrepancy in the percentage of the
period-1 saddle orbits might be attributed, at least partly, to experimental noise.

A similar saddle orbit histogram plot is presented in Fig.5.34 for the lower velocity - o

-
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V = 1.20V,, corresponding to the single-sided impacting response. In this case, the
results suggest that the corresponding experimental attractor is characterized by saddle
orbits of order 1 to 4 (Fig.5.34(a)). Theoretically, the occurrence of period-3 and -4
orbits is quite infrequent and only barely observable. This difference, compared with
experimental results, may be attributed tv the significant effect of experimental noise,
particularly in the in-flow direction where response amplitudes are relatively small.
Period-3 and -4 orbit counts may be viewed, in Fig.5.34(a), to be just above the
count attributed to noise, hence, reflecting the low occurrence rate suggested by the
theorctical result. Overall, it can be concluded fairly confidently, that the theoretical
model predicts the topological structure of the experimental attractor with reasonable
accuracy.

We conclude this section by looking at a characterization of the attractor di-
mension in phase space. Correlation dimensions were evaluated using the procedure
described in Section 4.3.4 for the same two attractors above. The single-sided impacting
motion is comprised of primarily period-1 and -2 saddle orbits. The correlation dimen-
sion average value of d.. = 2.6 for the experimental attractor as shown in Fig.5.35(a).
A lower value of d., = 2.1, Fig.5.35(b), is predicted theoretically for the same attrac-
tor. Fig.5.36(a,b) shows the results for V = 1.62V, for the experimental and theoretical
attractors respectively. An average attractor dimension d. = 3.3 is obtained for the
experimental attractor while, d.. = 3.5 for the theoretical attractor, hence in very good
agreement. It is gratifying to find that, despite the high number of dimensions involved
in this system, the resulting attractors remain well within low dimensional spaces. It
is for this reason that low dimensional models (one and two dimensional maps) predict

the dynamical behaviour well, both qualiitatively and at least semi-quantitatively.



Chapter 6

PRACTICAL CONSIDERATIONS

The analysis of the preceding chapters has shown that the dynamics of low di-
mensional models of a loosely supported cylinder can be elucidated to a satisfactory
degree via modern nonlinear dynamics methods. Transition routes to chaos have been
identified and quantified using invariant measures (Lyapunov exponents, correlation
dimensions and saddle orbit distributions).

In this final chapter the implications of these findings to a more practical situation

and a possible practical application are considered.

6.1 THE EFFECT OF INCREASED NUMBER
OF DEGREES OF FREEDOM

The dynamical models studied in Chapters 4 and 5 were intentionally designed to
have a low number of ‘active’ degrees of freedom. By eliminating the added complexity
associated with higher modes, the response behaviour remained transparent enough,
enabling a rigorous study of the underlying dynamics.

Heat exchanger tubes have uniform mass and stiffness, hence, no large disparity
exists between the lower and higher modes. As a result, a larger number of modes is
required to model the resulting dynamics.

We proceed to study the response of a uniform loosely supported cylinder. A
clamped-pinned tube, with a loose support at mid-span, is modelled. Of particular
interest is the effect of the increased participation of higher modes on the resulting
dynamical behaviour. The cylinder parameters are selected such that the first mode

102
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Table 6.1: Uniform-cylinder modal parameters
Mode A.I Ly
1 393 377

2 7.07 1220
3 10.21 254.5
4 13.35 435.0
3 16.49 663.7

instability velocity is close to that of the experimental system studied in Chapter 5.

.- Cylinder parameters are, [ = 2.64 m, D = 0.01 m, D; = 0.009 m, where ! is the
cyli;:dcr length, D the outside cylinder diameter as before, and D; is the internal
diameter. The cylinder material is considered to be steel, giving cylinder mass per unit
length m = 0.1164 Kg/m. The cylinder is subjected to uniform flow over the complete
span. It is symmetrically located within the circular support in cross-flow, while in the
in-flow direction, the cylinder has an eccentricity of 0.160D in the upstream direction.
Limiting the analysis to the flow velocity range where only the first mode is unstable,
a five-mode Galerkin projection was found to be sufficient to describe the cylinder
dynamics. Table 6.1 summarizes the ¢ylinder modal properties.

The equations to be solved are equations (5.5). In evaluating the integrals of
equation (5.6), clamped-pinned modal functions are utilized, and the flow and tube
material properties are considered uniform. To simplify the evaluation of the integrals
of equation (5.6) the delayed cross-flow displacement, §a ( equation (2.5)), required
for the evaluation of Cr, was expressed as (1) = ¢(1)a1(7 ~ AT). The simplified
expression was necessary to maintair a manageable number of terms in the integrals
of equations (5.6). This exclusion of higher modes is equivalent to applying a filter
to the delayed response for the purpose of determining the fluid force; elimination of
high frequency fluctuations is desirable, as noted in Chapter 4, since fluid-inertia and
viscous effects limit the frequency at which fluctuations in the fluid force can occur.

Initial conditions applied in the numerical simulations were

q = 0005 g=qg=0 i>1,
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p = pi=0, i>1,

where p; and g; are the generalized coordinates in the in-flow and cross-flow directions,
respectively.

For this system, the Hopf bifurcation, associated with fluidelastic instability,
occurs at V. = 0.265. At V' = 1.25V,, in-flow cylinder response exhibits complex albeit
periodic motion, Fig.6.1(a-c). Cross-low amplitudes are large enough for impacting
with the support to occur. In-flow amplitudes, on the other hand, remain significantly
smaller than their cross-low counterparts. The velocity V = 1.30V, Fig.6.1(d-f), is
in a transition regime associated with a bifurcation leading to a new periodic motion
with primarily period-3 and -6 components. This response becomes even more clearly
defined at V = 1.35V,, as shown in Fig.6.2(a-c).

The response in the velocity range 1.25 < V/V, < 1.35 corresponds to the double-
sided impacting velocity regime in the experimental system. In the latter, period-1
motion occurred in cross-flow with similarly low in-flow amplitudes to the present
case. The proximity of the higher mode frequencies to that of the first mode then
results in complex periodic motion replacing the simple period-1 motion observed in
the previous case. The periodic motion in Fig.6.2 undergoes a bifurcation near V' =
1.38V.. The result is in-flow motion of primarily period-2. This motion is, however,
unstable. Hence, at indeterminate time intervals, the motion is interrupted by bursts
of uncorrelated large amplitude motions, having a lower frequency; this is followed
by a restabilization of the higher frequency period-1 motion. Fig.6.3 depicts the type
of response for V = 1.40V,. The scenario described in the foregoing is precisely the
intermittency phenomenon which was found to predominate in the response in the
experimental system. Comparing the in-flow responses of Fig.5.24 and Fig.6.3, the
following observation can be made. The in-flow response exhibits intermittent bursts
in amplitude which intersperse durations of nearly periodic motion — the lamipar
regime. The higher modes increase the system stiffness, resulting in reduced in-flow

amplitudes in Fig.6.3. Fundamentally, however, the intermittency mechanism governs
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the response in both cases. This result attests to the robustness of the intermittency
transition in the present system.

At V = 145V, a reversal of this transition to chaos has commenced resulting
in a reorganization of the response, as seen in Fig.6.4 where we observe marginally
stable period-2 motion in the in-flow response. As V' is further increased the period-2
response becomes stable as shown in Fig.6.5(a-c) for V = 1.50V,. Finally at V' = 1.60V,
(Fig.6.5(d-f)), period-1 motion has returned in the in-flow direction albeit at double
the cross-flow frequency. The result is the now familiar figure-of-eight orbital motion
which marked the final response in the experimental system.

The results in the preceding were obtained for symmetrical cross-flow cylinder
location within the support. Fig.6.1 to Fig.6.5 indicate that zero eccentricity in the
cross-flow direction results in a significant reduction in coupling between the in-flow and
cross-flow motions. To test this conclusion, calculations wore carried out for 2 cylinder
cross-flow eccentricity of 0.03D at the support. Sample orbital plots are presented
in Fig.6.6. The single- and double-sided impacting motions, previously encountered
for the experimental system, are identified in Figs.6.6(2) and (b) for V' = 1.20V; and
V = 1.25V,, respectively. A transition via intermittency results in an orbiting motion,
as exemplified by Fig.6.6(c) for V = 1.60V,. The figure-of-eight orbital motion is once
again the final response, as depicted in Fig.6.6(d) for V = 1.73V...

It is quite remarkable that, despite the significant differences between the sys-
tem studied here and the experimental system of Chapter 5, the bifurcation history
of the response remains fundamentally similar. Two important conclusions may be
drawn from the foregoing. Firstly, that the analysis of low dimensional models may
lead to profound insight into the otherwise intractable dynamics of higher dimensional
systems. The second pertains to analysis of support influenced cylinder dynamics in
general. Experimentalists measuring tube wear have long concluded that tube wear
rates are intimately related to the underlying cylinder dynamics. The present analy-
sis gives an idea of the complexity of the dynamics. On the same note, however, the

situation is not entirely hopeless. The cylinder response observed here shares common
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characteristics with other dynamical systems currently under study. Thus, under oper-
ational conditions fluidelastic instability is most likely to occur in the first TSP inactive
mode, which is the case studied here. QOver a range of flow velocities it is expected
that major aspects of the response will remain in low dimensional space involving only
a few modes. Furthermore, despite transition to chaos, the motion is likely to remain
borderline chaotic — hence, a significant periodic component will remain, while the
overall attractor will be low dimensional. An important property of borderline chaotic
attractors is their relationship to nearby periodic attractors in parameter space. The
intermittent response is an example of borderline chaotic motion. In the laminar phase
the intermittent response is very similar to the periodic response prior to the onset of
intermittency. This property makes it possible for a quantitative analysis leading to
an estimate of the expected length of laminar phases in the intermittent response. We

close this chapter with a closer look at this point.

6.2 TYPE I INTERMITTENCY REVISITED

In type I intermittency the dynamical behaviour, in the laminar phase, occurs on

a reduced one-dimensional manifold. The archetype map describing this behaviour is
Prt1 = H(Dn, tp) = tp + P+ Pa + -y (6.1)

where the parameter p, is related to the flow velocity, rescaled such that the onset
intermittency is at up, = 0. Here we define this parameter as, g, = (V — Vy)/Viy,
where Vi is the critical flow velocity for the onset cf intermittency. Equation (6.1)
gives a quantitative description of the system behaviour in the laminar phase. To see
how an estimate of quantitative measures may be derived, consider the case when z,
is small. In this case, equation (6.1) can be cast in the approximate differential form

dp _ 2
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where n is now viewed as a continuous variable. An integration of equation (6.2) yields

P = VEtanly/F(n - no)l (6.3)

ng is the value of n in the narrowest part of the channel. Tzking ny = 0 for conve-
nience, p in equation (6.3) becomes unbounded when ,/Z;n = 7/2, at which point the
approximation of equation (6.2) is no longer valid. We can therefore conclude that
the number of iterations during the laminar phase scales as /7. Thus, near Vs the

duration ¢; of the laminar phases should be related to p, as follows:

1
L & \/—.u_p (6'4)

This result is supported by the results in Fig.6.7 for the two degree-of-freedom
system studied in Chapter 4, where #; is plotted versus p, for a range of velocities near
#p =0 (V = V,s). Superimposed on the data points is the curve ¢ = 0.055/,/%;, which
shows a very good fit.

From a practical viewpoint the result of equation (6.4) gives 2 quantitative mea-
sure that can be 'f:ested for in any physical system suspected to be exhibiting an inter-
mittency transition. Another result that can be put to practical use is the probability
distribution of laminar phases. As shown by Bergé et al. (1980), the probability

Fi(t1, pp) of the occurrence of a laminar phase of duration t; satisfies the equation

% b
t = fo P,(t,,p,)t;dt,zﬁ. (6.5)

Qualitatively, Pi{t;, p) should vary as depicted in Fig.6.8. The time needed to drift
through the narrow channel (see Fig.4.26) is seen to be bounded from above, and hence,
can fluctuate to lower values only. The probability distribution of impact forces will
be undoubtedly be related to the distribution of Fig.6.8.

Unlike in the }aminar regime, where dynamical behaviour is universally deter-

mined by equation (6.1), turbulent regime behaviour is unique to the system itself. It

f
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is possible, however, that certain aspects of the dynamics, such as the stretching and
folding of trajectories in phase space which leads to sensitivity to initial conditions, as
well as the relaminarization process itself, may be at least qualitatively described by
simpler low dimensional maps.

The baker’s transformation of the unit square describes a possible scenaric lead-
ing to relaminarization after a turbulent burst. This transformation was found to yield
a return map topologically equivalent to that extracted from the experimental system
in the intermittency response velocity range (see Fig.5.29). The baker’s transformation
may be shown to exhibit type I intermittency by considering a map relating succes-

sive iterates of the coordinate p; (equation (5.13)). For convenience, we re-write the

transformation as follows:

n = —2P1, pl>_0'5s

= =2pp+1-g(p1), p1<-05 (6.6)

where, as before, g(p1) = aosin(27z) + agsin(4wz). Fig.6.9(a) shows a plot of p;__,
versus p;,. The appearance of a small channel near p;, = —0.72 is evident. The
translation of the map normal to the first bisectrix and hence the width of the narrow
channel is determined by the coefficient ;. The coefficient a5 is therefore proportional
to fp,. The sample iteration sequence depicted in Fig.6.9(a) demonstrates the relam-
inarization process for this map. It is seen that this occurs as itera.tes: jump across
the discontinuity at p, = —0.5, thus returning to the laminar regime along the second
branch of the map. Although equation (6.6) exhibits the intermittency phenomenon,
this single coordinate map is not uniquely invertible and hence cannot represent a
differential dynamical system as it stands. A second coordinate is therefore required,
making the map two dimensional, which distinguishes the two branches in Fig.6.9(a).

The Poincaré return map obtained for the two degree-of-freedom model of Chap-
ter 4 (Fig.4.26(a)) is replotted in Fig.6.9(b), in which a typical iteration is also de-
picted. The similarity with Fig.6.9(a) is evident, in particular the jump near X, =
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0.00095 which leads to relaminarization. Recalling that Fig.6.9(b) is derived from a
4-dimensional system the agreement is quite remarkable. The high dimensionality of
the system results in the scatter of iterations in Fig.6.9(b). It is noteworthy, however,
that the relaminarization process in the baker’s transformation appears qualitatively

similar to that in the 2 d.o.f. system.

6.3 IMPLICATIONS TO WEAR-RATE
COMPUTATION

Statistical methods are usually used to determine tube wear rates for given impact
force probability distributions. The laminar phase, in the present system, corresponds
to a regime of high frequency impacting motion. During the turbulent bursts, lower
frequency coupled impact/sliding motion occurs. These two types of response exhibit
different wear characteristics. Information about the characteristics of the response,
such as the probability distribution of the laminar phases, for example, may there-
fore prove useful. To see how this might be applied, we consider a typical wear rate

calculation. The time-averaged wear work-rate W is defined as

1

— T
W= T Jo | Frivpldt, (6.7)

where F; is the radial contact force and v, the transverse sliding velocity at the support.
The integration time T is chosen to ensure that the computed wear rate is stationary
(Axisa et al., 1988). A simplified formulation has also been proposed by Axisa et al.,

in which the wear rate is approximated by

W = asfd?crrmu (6'8)

where

- 1 (T
F.= T/o | Fildt, (6.9)

Trms is the tube rms displacement at the support, fy the dominant frequency of the
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response, and a,, a shape factor dependent on the contact geometry.

For a tube exhibiting an intermittent response, the quantitative analysis of such
a response may be an aid to determining a better value for the integration time T in
equations (6.7,6.9). Dividing the response into a laminar and a turbulent pbase, the
average length of the laminar phase provides a reasonable value for the integration
time T in the wear rate calculation. For the same laminar phase, a clear dominant
frequency corresponding to the original limit cycle exists, giving an estimate for fy in
equation{6.8); note that fs may not be clearly defined when a power spectrum of the
total response (laminar plus turbulent phase) is evaluated. The dominant frequency
is also different for the laminar and turbulent phases (e.g., in Fig.6.3, in-flow motion
during the turbulent burst occurs at a lower frequency than in the laminar phase).

In view of the significant difference between the responses in the two phases, a better

formulation for W may take the form:

W = a,(fiFr + fiFirt ), (6.10)

where the superscripts “I” and “t” distinguish between the laminar and turbulent
phases, employing knowledge of the existence of different responses, hence force histo-
ries, and also the expected average duration of the respective responses. The average
duration of the turbulent bursts still has to be determined via physical or numeri-
cal experiments. For systems where an identifiable relaminarization process, such as
the baker’s transformation above, exists, useful information regarding the statistical
properties of the response may still be obtained.

Equation(6.10) is expected to be most useful near the onset of intermittency

where the laminar pﬁase is interrupted only after large time intervals.



Chapter 7

SUMMARY AND CONCLUSIONS

In this Thesis the dynamical response of a loosely supported cylinder, unstable
in the first TSP-inactive mode, has been studied. Using modern nonlinear dynamics
theories and techniques, this system was cast in the light of general nonlinear dynamical
systems. '

To determine the cylinder response in the post-fluidelastic-instability regime, the
complete steady fluid-force field was measured experimentally. The cylinder drag force
was found to be relatively independent of cylinder position; the exception being the
extreme upstream and downstream positions where the cyli_t}der essentially blocked off
the wavy channe] between the corresponding upstream a.nci downstrea.m neighbouring
cylinders. The result was a large increase in Cp for the downstream position, while
a significant decrease occurred upstream. Cr, on the other hand showed a strong de-
pendence on the cylinder equilibrium position over the test range. This translated
into a strong dependence of cylinder stability on position in a linear stability analysis.
Hence, while the array is generally regarded as highly unstable, no instability occurred
for certain cylinder positions. The reversal of the lift force direction resulted in the
prediction of static rather than dynamic instability. The same analysis showed that
small changes in eylinder position may significantly alter the resulting stability be-
haviour. Hence, multiple instability regions, predicted for the cylinder located at the
array equilibrium position (Z = § = 0), disappeared when the cylinder cross-flow posi-
tion was altered by 2% of the cylinder diameter. This result might explain why multiple
instability regions are observed only in carefully controlled high precision experiments.

To investigate the dynamics of cylinder/support interaction, the analysis of a

s
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simplified two degree-of-freedom model was chosen as a starting point. This low di-
mensional system exhibited a wealth of dynamical behaviour. The cylinder response
was found to undergo a sequence of bifurcations as the flow velocity was varied. Not
only were periodic solutions obtained, but also velocity ranges in which chaotic motion
predominated. One of the most important findings in this study was first uncovered in
this low-dimensional system. This is the transition to chaos via type I intermittency,
in effect bringing this system into the fold of other dynamical systems exhibiting the
same transition. Strong evidence suggesting type III intermittency was also uncovered
at the onset of impacting — however, due to “interference” by an unknown mechanism,
this transition could not be unequivocally confirmed. Another conclusion reached in
the study of the two degree-of-freedom system pertains to the sensitivity of the re-
sponse bifurcation to cylinder/support gap size. For large gap sizes, periodic solutions
comprise a large component of the response over the flow velocity range investigated.
For smaller gap sizes, chaotic motion was more prevalent. This was later confirmed for
an experimental system.

The feasibility and potential of a nonlinear dynamics approach was rigorously
tested by analyzing a specially designed experimental model of 2 loosely supported
cylinder. The experimental model also served as a test-bed for the nonlinear quasi-
steady model.

Experimental measurements confirmed the existence of a complex sequence of
bifurcations in the post-Hopf-bifurcation cylinder response, similarly to the case of the
simple theoretical model. Over a significant velocity range, a double-sided-impacting
orbiting motion predominated in the response for large gap sizes. This response became
destabilized, at higher velocities, leading to chaotic motion. At higher velocities still,
the final bifurcation resulted in a transition to periodic motion, with in-low response
at double the cross-flow response frequency. Distinctly different bifurcation behaviour
occurred for small gap sizes: chaotic motion was found over the complete velocity
range; also, the initial preload, present for small gap sizes, was found to have a pivotal
effect on the cylinder response, by increasiﬁg the role played by frictional effects.
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The presence of water in the interstitial support gap resulted in increased lubrica-
tion, hence reduced Coulomb friction forces, leading to increased sliding motion at the
support. Squeeze-film damping was not found to be significant — this is attributed
to the relatively large gap at the supports used in the experiments; the small sup-
port thickness is another contributing factor. Low Coulomb friction tests using Delrin
showed that reduced friction at the support significantly alters the cylinder response.
In the experimental test, reduction in friction resulted in the replacement of a periodic
motion by a chaotic one, with significantly reduced in-flow response frequency.

The nonlinear quasi-steady model was found to predict the cylinder response and
bifurcation sequence reasonably accurately. This, in essence, also validates this model
for the present system. The theoretical bifurcation velocities were within an average of
8% of the experimental values. In the chaotic response regimes experimental and the-
" oretical results were compared by determining quantitative measures associated with
the underlying chaotic attractors. Fractal chme;ﬁon calculations showed the dimen-
sion of the theoretically determined attractors to be close to that of the corresponding
experimental attractors for both low and high velocity regimes. These attractors were
further comp-red by breaking them down into the individual saddle orbits comprising
the attractors. Attractor characterization by saddle orbits was found to be a novel
technique for quantitative comparison of the chaotic attractors, since it involves com-
parison at all regions of phase space. At this level, some discrepancies between theory
and experiment were found, specifically in the distribution of saddle orbits. However,
the theoretical model was still found to correctly predict the most predominant saddle
orbits reasonably well. Experimental noise was cited as a contributing factor to the
discrepancy at this level of comparison. ;

Two regimes of chaotic motion were identified for the experimental system. In
the first regime, transition to chaos is associated with a switching mechanism which is
predominant at the onset of impacting. This mechanism is common to systems in which
gradual monotonic energy change within the system undergoes sudden- discontinuous
iﬁterruptions. Examples of such systems include the Belousov-Zhabotinsky chemical
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system as well as a modified Van der Pol oscillator containing a tunnel diode. It is
expected that the switching mechanism will be commonly observed in the response of
marginally unstable loosely supported cylinders.

The second transition mechanism to chaos was type I intermittency. The result-
ing double-sided impacting orbiting response was identified as the commonly observed
breathing type vibration of loosely suppported tubes in heat exchangers. It is notable,
as mentioned above, that this transition was also found in the simplest two degree-of-
freedom system studied. This may be considered as an indication of the robustness of
the intermittency transition in the present system. In type I intermittency, relaminar-
ization is associated with a discontinuous jump which returns the system to the vicinity
of the laminar regime. In the case of the loosely supported cylinder, relaminarization
was attributed to the transition between sliding motion and sticking, which is char-
acterized by such a discontinuity in th2 sliding velocity at the support. The modified
baker’s transformation modelled the intermittency behaviour reasonably well; for the
two degree-of-freedom system relaminarization was at least topologically equivalent to
that in the baker's transformat.on.

The systems in the foregoing were intentionally designed to be low dimensional.
As a practical consideration, the response of a uniform cylinder with a larger number
of ‘active’ modes wa;inva;tigated. The main difference to the low-dimensional models
investigated before was the occurrence of complex periodic motion which replaced the
simple period-1 motion in the experimental system. Overall, however, the response
bifurcation history remained fundamentally the same. In particular, intermittency
occurred as predicted by the low-dimensional systems. The final figure-of-eight periodic
response was also exhibited by this higher dimensional system.

These results highlight the potential for the analysis of low-dimensional models.

_Most remarkable is the dynamical behaviour in the laminar phase, which even for -

the last system, modelled in 20 dimensions, is quantitatively described by a trivial
one dimensional map. An analysis of the return map yielded not only 2 description
of the dynamical behaviour, but also resulteﬁ;in prediction of g:iantitative measures
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associated with response.
The implications of an intermittency transition to wear calculations were briefly
probed. It was shown that the average duration of laminar phases and the associated

frequency may prove to be useful parameters for wear computations.

7.1 RECOMMENDATIONS FOR FUTURE
RESEARCH

In this Thesis the potential for the application of modern nonlinear dynamics
to the problem of support-influenced cylinder dynamics has been demonstrated for a
small range of system parameters and a single array geometry.

The effect of varying the system parameters on the resulting bifurcation sequence
needs further investigation. In particular, Coulomb friction at the support has been
found to be intimately related to the resulting bifurcations; this relation needs to be
elucidated.

Transition to chaos for small gap sizes is still not well understood. When coupled
with initial preloads, the dynamics become quite complex. It is noted that in practical
applications support gap sizes will often be small. -

An extension of the present work would be the determination of cylinder wear-
rates in light of the bifurcation behaviour obtained. It would be interesting to in-
v&st’_:ga.te the correlaticn between specific bifurcations and resulting wear rates. In
the chaotic regime, sta.ti;tical properties of the réulting attractors might be potential

candidates for wear computations.

A/
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Figure 1.2: (a) The double-row array, modelled by Price & Paidoussis (1982,1983);
(b) the relative-velocity vector diagram.
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Figure 2.1: 2-span loosely supported tube subjected to non-uniform flow, U(s); e, is
the tube/support clearance.

Figure 2.2: Impact circle geometry showing tube velocities and support reaction
forces.
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Figure 2.4: Variation of the total radial cylinder/support interaction force, F,
(= Fy; + Frq), for non-constant support damping (¢, = ¢,(o)); the dotted
line depicts the case ¢, = const. :
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Figure 3.5: 7 cylinder kernel at the test location.
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Figure 4.11: (2) Impact circle geometry: (b) velocity vector diagram for coordinate
transformation.



FIGURES

0.08 —"I—r—l—T" p~2 D|f' 1 r ] r.%l"::;osl
() Period “bubbling” 27
- AL
] o
]
0.06  Transitional '/ / #
L P -
< o / F
5 |
%" 0.04 - ’ / Symmetry restoration
g - Chaotic , |
; L . .
é Periodic |} Symmetry-breaking bif.
Z 0.02f |-‘ { about §=0) -
~ 2
N ~ "purely” cross-flow
4 1 1 l 13 LY LY _L.ﬂ 1 Fos A ] A
0'000.0 0.2 0.4 0.6 0.8 1.0 1.2
v
0.08 LA A Bt I BN B SN A S 2y | —) T T v
L (b) (- :‘.D:-:; -
: o
0.06 |- s
o i o]
- ot
3 e |
s 0% ]
5 | T
-~ .
%am— -
O |
I 1 '] l I i L J ]_L ' . ! A N3
000665207 o6 08 16 12

Figure 4.12: Bifurcation diagram based on V: (2) in-flow peak amplitude; (b)
cross-low peak amplitude; m = 10,6 = 0.05,€, = 0.08.

148



FIGURES 149
0.10
0.05 |
y f
.00 ¥
-0.05 }
-0.10 L L L ]
0.0120 0.0124
o.012M ¢ - 3 0.10 T T r .
0.0120 -(b) -f (C) b
3 E oo0s [ .
ootz | 3 S'- E
Xoo122 - 3 o.00 |- ]
co120 | \/ 3 3
- 3 -.05 = b
00118 E- -‘ ]
o.o116 E 1 e . 3 -0.10 . . ]
623 630 633 Lo oas €3 630 633 7 640 Gas
0.0010 0.10 ¢ . .
(e) _
0.0008 | o0s | 4
X y : ]
0.0000 0.00 - -
) ; ]
-0.0005 —.0s |- =
-0.0010 -0.10 : ; .
-0.10 =005 .. 0.00 0.05 0.10
- Do -
— o - = [ i
3 HD i = (g) ]
: ] <00 | -
10 |- - [ ]
: ] < [ ]
b ] &=¢ 3
o » 3] [ ]
— ok A T ] g o . — N
-] 1 - 3 (-] 1 -* -3

= >
wo,

Figure 4.13: Cylinder response at V = 0.34: (a) orbital (£, §) motion; (b,c) in-flow
and cross-flow time traces; (d,e) in-flow and cross-flow phase plane

plots; (f,g) corresponding response spectra.



FIGURES 150

0.10
0.05 | -
y ot ]
0.00 3
.05 | .
: h
.10 2 3 b b
0.008 0010 _0.012 0014 0016
.10 K )
.08 !
y0.00
~0.03 .
0.0 L . . 3
OO 420 AdO oSG0 A NO 300
T
©.004 r T o.10 - v
(d) e 3 He)
o002 | ,:'-.T_‘_\~\ - oos b .
X oo \\ 3 ¥ f 3
o000 & (g "T:\‘\('i'-i'm),ﬁ = Yo.00 F ]
: N E s 1
.00z | ::':"/ - 3 -0.03 | -
=0, OOl . - l 3 -0,10 d ik -
O.00N8 0.010 0.2-12 0,014 0.016 0,10 =-0.03 0,00 0.03 .10
X y

;

..
" ]

=
2

1n-Now Spectrum {1.0.)
o u 2
%h-u T
L r
saasl

aataazalag

:
1

Cross-Mow Spactrum (au )
1}
(]

©
]

Figure 4.14: Cylinder response at V' = 0.36: (a) orbital (Z,#) motion; (b,c) in-flow
ard cross-low time traces; (d,e) in-flow and cross-flow phase plane
plots; (f,g) corresponding response spectra.



FIGURES

Y

002 }

o

0.00

002 t

2004 Lot 2 020 b
002 000 _ 002 004 006 004 002 000 002 004 0.06
X X
0.10 T 0.10 =t —————r
H(c) : H(f) _
005 £ ] 005 | .
-~y b - ~—
Yot 1 Y i :
0.00 - ] 0.00 |- ]
005 ; 005 F .
0.10 —— L e L .0.10 —a et
0.0 -005_000 005 010 010 005 _000 005 0.0
y y

Figure 4.15: Cylinder response for (a-¢) V = 0.40, (d-f) ¥ = 0.45: (a,d) motion in
the (Z,7) plane; (b,e) in-flow phase plots; (¢,f) cross-fiow phase plots.



FIGURES

0.10 [T T T ]

F(a) :

0.05 | .

7 5

0.00 |- -

0.05 | .

0.10 e
002 000_ 002 004 006

X
0.05

0.00 .

4 ]

-0.05 -

_0.10 . & i T B ]
002 006 002 004 006

X

0.10 [ T T ——1 ]

- (c) ]

0.05 | .

bt - e

y ]

0.00 | .

0.0s b .

_0.10 AP B A AT
010 005 000 005 0.10

y

0.10 — ———————

0.05 k

y i
000 |

-0.05 |

al s g

_0.10 ] " -
0.020 0.025 _, 0.030

»

0.02 SES—

0.035

 (e)
0.01 |
~, "

X
0.00

T

-0.01

0.02 : '

0.020 0.025 ¥ 0.030

0.035

0.10 [ T T T

()

0.05
o~y

y
0.00

<005

PErIrSrE

4

1

_0-10. | PRI R SV

010 005 000 005 0.10

y

Figure 4.16: The co-existing solutions at V' = 0.57: {(a) and (d) show motion in the
(%,7) plane; (b} and (e) are in-flow phase plots; (¢) and (f) depict

cross-flow phase plots.



FIGURES 133

0.10 ————— 7
[{a) ]
0o0s | .
L p
7 oo | -
005 | .
: 5
-0.10 FEEPEErES U SR R TP T P
002 003 004 005 006
X
0. — 02 S —
10 (o) T T T :(C) T ]
00s | . 01 | ]
-~y L i -y | g
. 1 Y i :
0.00 | . 00 .
00s |- 3 01 | -
[ ] : ]
_O_IO”J_LAlt....'..,__l,;_._.- 02 L ]
002 003 004 005 006 010 005 000 005 0.0
X y

Figure 4.17: The symmetrical ~olution with a large in-flow component at V' = 1.00:
(a) motion in the (Z, ) plane; (b) in-flow phase plots; (¢) cross-flow
phase plots.



FIGURES 154

0.10
005 |
y I
0.00 |
-0.05 |
'0.10 : L | . ]
000 002 _004 006 0.8
X
o.1 " =
co |- 1“rjf)\
Y eI
-Q.1 - \_'-':':-_-'—'i':l
-2

o.08

— . —_— ©
f(c) | I -0

©.08 - W. k WW k - E —40

o.04 | ‘ 3 -Go

- F | g

X ]

o0z [ 4] g—so
! % —100

0.co : -120

300 3so . 4co 450
o.10 ) o
—
3 ; =20
.06 | 7 S
—~— - = —dO
yooo 5 E —s0
2 _xo E 3
-0.06 [ = § 3 3
] = -100 | E
-o.10 L . . . —120 E 2
2300 aso 400 450 o 2 - 6 n 10
T W/wg

Figure 4.18: Cylinder response at V' = 1.09: (a) orbital (%, ) motion; (b,e) in-flow
and cross-flow phase plane plots; (¢,d) in-flow and cross-flow time
traces; (f,g) corresponding response spectra.



FIGURES 155

011011']"""']'1‘1!'1

L e 4

0.03

r

<t

0.00

a a2 b a s s a bl s aaa Ll s a aa

yYrTvYrrvTYTvYyYTrTY

a2 a2 % & a2 a1 2 2 4+ N 4 42 2 1 2 4 o
0055 o0z 0o% 006 008 0.10

X

Figure 4.19: Orbital (Z,#) plot in the periodic window for V = 1.10.



FIGURES 156

0.0135 r : -
o.0130 |- R
3 ]
o.012s8 |- ]
— : -
Xo.0120 =
oor1s E
0.0110 © ! 1
50 100 ¢ 150 200
0.002 r 0,10 y T .
-(e) ]
0.001 0.05 | -
— F ]
X Y . :
0.000 0.00 i 3
—0.001 -0.05 | -
—0.002 -0.10 ) . .
—0.10 —0.0s
0.0135 (f) T T 0.0135
I — ; I
! = ] I
0.0130 >— - 0.0130 [

¥

Xn+l [ A 'E ] n+l |
0.0125 < - 0.0125

e
-

00120 ' : ' 0.n120 : U
00120 00125 00130 00135 00120 00125 00130 00135

X X

n n

Figure 4.20: Unsteady cylinder response at V' = 0.326: (a} orbital (Z,#) motion;
(b,c) in-flow and cross-flow time traces; (d,e) in-flow and cross-flow
phase plane plots; (f) Poincaré return map showing iteration sequence;
(g) same map as in (f) showing only iterates and a curve fitting of the
data points.



FIGURES 157
0.10 ¢ . r -
H(a) :
0.05 | >
000 | 3
1 ]
005 | -
.10 L . ot
00115 00120 00125 0.0130 0.0135
X 0.10
0.0133 —_— Y 10 ¢ T v .
(b 3 F(C) ]
0.0130 [ 3 o.os | r
X : | ] Y 5
c.o123 |- \ - 0.00 B 3
o.0120 - .0.05 [ =
00115 C L 1 ] -0.10 L : : 3
300 3%0 T 400 430 300 350 "c 400 450
0.002 C.10 Y T —
5 (€) =
0.001 3 c.os 3
x i ¥V :
0.000 - o.00 [ 3
-0.001 = -0.05 | =
-0.002 . 0.0 C s L 2 .
0,0113 00120 0.0125 0.0130 0£.0135 -0,10 -0D.05 .00 Q.05 [« 3533
X Yy
0.0134 ® x =~ T 7 0.0134 :
A ) j
0.0132 - ] 0.0132 -'
X [ ]
o+l | ] Xn+l .
00130 [4 | (L] - 0.0130 | ]
o L [ i
. -
-« 4
0.0128 ¢t - . . 4 L 0.0128 ¥ 1. [P |
0.0126 0.0130 0.0132 0.0134 0.0136 0.0128 0.0130 0.0132 0.0134 0.013€
X X,
Figure 4.21: Cylinder response at V = 0.330: (a) orbital (Z, ) motion; (b,c) in-flow

and cross-flow time traces; (d,e) in-flow and cross-flow phase plane
plots; (f) Poincaré return map showing iteration sequence; (g) same
map as in (f) showing only iterates and a curve fitting of the data

points.
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Figure 4.22: Cylinder response at V = 0.343: (a) orbital (Z,7) motion; (b,c) in-flow
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plots; (f) Poincaré return map showing iteration sequence; (g) same
map as in (f) showing only iterates and & curve fitting of the data
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Figure 4.25: Time traces for the flow velocities (a,b)V = 1.07, (¢,d) V = 1.09 and

(e,f) V = 1.15; (a,c,e) show in-low motion; {b,d,f) show cross-flow
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. Figure 4.30: Co-dimension 2 qualitative bifurcation diagram in terms dimensionless
velocity, V, and gap é&,. Inset diagrams show typical motion in the
(%, %) plane for the (V,é,) combination indicated.



FIGURES

Dimensionless frequency

Figure 4.31: The dimensionless frequencies (Z/%5) versus V: (a) in-flow, @.; (b)
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Figure 5.6: Cylinder response exhibiting the intermittent instability of the
double-sided impacting motion; V = 1.47V.: (a) orbital (Z, #) motion;
(b) in-flow and (c) cross-flow time trace, respectively; (d,e)
corresponding power spectra; €. = 0.174.
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Figure 5.11: The final figure-of eight response for the gap &, = 0.132 at V' = 1.62V:
(a) orbital (Z, ) motion; (b) in-flow and (c) cross-flow time trace,
respectively; (d,e) corresponding power spectra.
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Figure 5.15: The impact/sliding cylinder response at V = 1.58V for the small gap
size €, = 0.067: (a) motion in the (Z, 7) plane; (b) in-flow and (c)
cross-flow time trace, respectively; (d,e) corresponding power spectra.
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material combinations: (A, A) brass/brass (b/b); (+, x) brass/st. steel
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