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ABSTRACT

Loosely supported cylinders subjected to cross-fiow may undergc fiuidclastic ill­

stability in the support inactive mode resulting in cylinder/support impacting. The

cylinder/support interaction forces and, in turn, the resulting cylinder wear rates arc

strongly dependent on the detailed dynamical response. This Thesis examines the re­

sponse of a loosely supported cylinder located in the third row of an othcrwise rigid

rotated triangu!ar array. The feasibility and potential of a modern nonlinear dynamics

approach to the understanding of the underlying dynamics is investigated.

A nonlinear quasi-steady model was formulated to model the dynamical be­

haviour. The steady fiuid force field, required as input to the model, was measured cx­

perimentally for a cylinder within a rotated triangular array. A linear stability analysis

showed the cylinder stability behaviour to be strongly dependent on cylinder position.

This result serves as a possible e;"planation for the rare occurrence of, theoretically

predicted, multiple instability regions in experimental measurements.

The nonlinear analysis uncovered two important transition routes to chaos. The

first, a switching mechanism prevalent at the onset of impacting. The second and

most important is the intermittency route to chaos. The theoretical model showed

good agreement with experiments in predicting the bifurcation sequences and transi­

tions to chaos - comparisons were quantified via fractal dimensions and saddle orbit

distributions.

The identification of type l intermittency leads to a quantitative estimate of the

probability distribution of the length of laminar phases. It is shown that the average

duration of laminar phases and the associated frequency may provide better estimates

• of integration time and frequency for wear-rate computation.
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SOMMAIRE

Les tubes attachés aux supports intermédiaires lâches et soumis à un écoulement

transversal peuvent subir des instabilités fluidélastiques dans le mode inactif du sup­

port qui entrainent des chocs entre le tube et le support. Les forces d'interaction

tube/support, puis les taux d'usure des tubes qui en résultent, dépendent en grande

partie de la réponse dynamique détaillée. Cette Thèse se propose d'étudier la réponse

d'un tel tube situé dans la troisième rangée d'un faisceau de tubes rigides à géométrie

triangulaire pivotée. Elle e.xamine la possibilité d'utiliser une approche de la dynamique

non-linéaire moderne qui permettrait de mieu:" comprendre la dynamique sous-jacente.

Pour modéliser le comportement dynamique, un modèle non-linéaire quasi-constant

a été élaboré. Le champ constant de force du fluide, requis par le modèle, a été

obtenu e.,périmentalement pour un tube situé dans un faisceau à géométrie triangu­

laire pivotée. Une analyse de stabilité linéaire a démontré que la stabilité du tube

repose surtout sur sa position. Ce résultat e.,plique peut-être pourquoi peu de zones

d'instabilité multiple prédites de manière théorique se retrouvent dans les mesures

expérimentales.

L'analyse non-linéaire identifie deux routes importantes de transition vers le

chaos. La première correspond à un mécanisme de commutation prédominant aux

vitesses d'écoulement proches du premier du choc. La seconde, qui est aussi la plus

importante, est la route d'intermittence vers le chaos.

Les résultats obtenus au moyen du modèle théorique correspondent bien avec ceu.x

obtenus e.\.-périmentalement en prédisant les séquences de bifurcation et les transitions

vers le chaos. Des mesures quantitatives, qui incluent les dimensions fractales et les

• distributions d'orbites de co~ elles-mêmes associées aux attracteurs chaotiques dans le

système e.xpérimental, ont également été assez bien prédites.

ü
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L'identification de l'intermittence de type l conduit à une estimation quantitatiyc

de la distribution de la probabilité de la longueur de phases laminaires d.U1S le régimè

à réponse intermittente. On a montré que la longueur des phases laminaires ct la

fréquence associée pourraient donner de meilleures estimations de taux d'usure du

tube.
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Statement of Contribution to Original Knowledge

Experimenters investigating the wear of loosely supported unstable cylinders have

concluded that cylinder wear rates are intimately related to the detailed dynamical

behaviour. The dynamics of a loosely supported cylinder is the subject of the study

presented here. Below are the contributions of this Thesis to original knowledge:

• Position dependent steady tluid forces were for the tirst time measured in a rotat.ed

triangular array for ail tube positions in the third row of the array. A Iinear

stability analysis showed that variations in cylinder position may drastically alter

expeeted cylinder stability.

• The detailed dynamieal behaviour of a Joosely-supported cylinder was det.er­

mined. To the author's knowledge this is the tirst quantit.ative clucidation, of

the detailed dynamics, involving direct comparison of theory and cxperiments.

The identification of types 1 and III intermittency transitions to chaos as weil as

the switching mechanism is belie\'ed to be a tirst in tluid-structure interactioll.

• The average duration of laminar phases, and corresponding frequency, are shown

to be applicable 1.0 wear-rate computation.
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Chapter 1

INTRODUCTION

.A,$ research into the problem of f1uid-structure interaction in cylinder arrays sub­

jected to cross-f1ow enters its fourth decade of concerted effort, significant developments

have taken place both in understanding the underlying governing mechanisms, as weB

as towards theoretical modelling for prediction of structural response to f1uid exl'ita­

tion. The understanding of f1ow-induced vibration in cylinder arrays is vital for the

design of heat exchangers, to eliminate undesired tubel instabilities which may lead to

gradual tube wear or catastrophic failure.

Identification of two of the three excitation mechanisms to which such systems

are subjected, turbulent buffeting and f10w periodiciti\'S, derived naturally from studies

aimed at understanding the fundamental f1uid dynamics of turbulent f10ws and the

earlier observations of periodic vortex shedding for f10w over solitary bluff bodies.

The third and most potent mechanism, that underlying f1uidelastic instability,

was more elusive. For cylindrical structures subjected to cross-f1ow, f1uidelastic insta­

bility is only possible for multiple cylinders. Hence, unlike the other two mechanisms,

no analogy could be made with the case of a single cylinder subjected to cross-f1ow.

Fluidelastic instability is characterized by a critical f10w velocity, past which cylinder

instability is initiated. The instability is the result of a positive feedback mechanism

through which net energy is extracted from the f10wing f1uid, to balance the energy 1055

through both the cylinder internal structural damping and the external f1ow-induced

damping.

lThe words "tube" and "cylinder" 'I\iIl be used interehangeahly; in some cases this is necessary for
consistency in reference to other investigators' work.

1
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Following the identification of fiuidelastic instability as a distinct phenomenon,

several theoretica1 models have been developed, enabling approximate prediction of the

critical instability velocity as weil as an understanding of the governing mechanisms.

In this section, the developments leading to the present understanding of fiuidelastic

instability are reviewed. This review is by no means exhaustive. It is intended to give

the reader a good overall picture of the collective effort of numerous researchers. There

is also an intentional bias in detail, towards work that leads directly to the subject

treated in this Thesis, which clarifies the motivation for the present study.

The first attempt to analytically model and CÀ"plain fiuidelastic instability was

by Roberts (1962, 1966), who proposed a jet-switching mechanism behind a staggered

row of cylinders which, when synchronized with cylinder motion, could result in net

energy input to the cylinder per cycle ofoscillation. In his model, fiuidelastic instability

was predicted for in-fiow cylinder vibration. A crucial component of the model is the

hysteresis in the variation of the cylinder base pressure with cylinder displacement,

which makes positive energy feedback possible for large enough cylinder displacement.

Unquestionably the most widely accepted and used formula for predicting the

critical fiow velocity for fiuidelastic instabilitywas developed by Connors (19ïO). Study­

ing a fiexible row of cylinders, Connors proposed a semi-empirica1 quasi-static model,

in which a time-dependent displacement mechanism resulted in net energy being e:\:­

tracted from the fiuid by the vibrating cylinders. Connors measured cylinder lift (CL)

and drag (CD) coefficients as functions of inter-cylinder positions; where cylinder dis­

placements were along trajectories following an idealized mode of vibration during

insta.bility. The saIne hysteretic discontinuity in CD as obtained by Roberts (1962,

1966) was again observed in the experimental measurements. However, Connors sub­

tracted this jet-switch efÏect, having recognized that it was not the predominant effect,

thus being left with a "pure" displacement-related variation; Connors remarked that a



highly specialized set of circumstances was required for the occurrence of jet-switching

coupled with a finite minimum time necessary for the jet-switch to be possible. The

now famons stability criterion of Connors was derived by equating fluid-energy input

per cycle to the energy dissipation through damping. The critical flow velocity for

fluidelastic instability U. is given by

•
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U. =KV me
loD pD2

3

(1.1)

where U is the flow velocity through the minimum gap betwecn adjacent cylinders in the

same row (subscript c indicating a critical velocity), and m, eand 10 :lIe cylinder mass

per unit length, logarithmic decrement of damping and natural frequency, respectivcly;

for a staggered row of cylinders with inter-cylinder spacing P / D = 1.41 , K = 9.9

was obtained by Connors. As noted later in reviews by Paidoussis (1983), Weaver

& Fitzpatrick (1988) and others, equation (1.1) was extensively, and incorrectly, used

for heat exchanger cylinder array design, dcspite its having been derived for a TOW of

flexible cylinders.

Blevins (19ï4, 19ïï, 19ï9) rc-derived Connors' displacement mechanism model,

albeit following a different approach, and e."(tended the theory to cylinder arrays. The

stability criterion obtained by Blevins was an e.xprcssion for the critical flow velocity

of the same form as equation (1.1). For the single row of cylinders studied by Connors,

Blevins' stability criterion reduced to equation (1.1) if Connors' experimental force

coefficients were utilized. Two other developments by Blevins were (i) an attempt to

analytically determine the fluid force coefficients whi<-.h lead to the value of the constant

K and (ii) an extension ofthe theoretical model to account for the flow-dependent fluid

damping.

The basic form of equation (1.1) was retained by many rcsearchers who con­

centrated their efforts on experimental measurements of U. and on correlating with

mo/pD2 to determine K for various array geometries and inter-cylindcr spacing. Sug-

• gested values for K vary from 0.8 (Paidoussis, 1980) to 8.6 (Blevins, 1977). The value



K = 3.3 (Pettigrew et al., 19ï8; Connors, 19ï8) has been widely accepted by heat

exchanger designers, although recently it was revised downwards (Pettigrew & Taylor,

1991). In their review, Weaver & Fitzpatrick (1988) discuss the various efforts under­

taken to determine K from o:orrelation with experimental results, and they aIso provide

design guidelines to avoid f1uidelastic instability.

It was clear from the outset, however, that better modelling and determination

of f1uid force coefficients 'Ivas required. The complexity of the f10w structure within the

array made analytical determination of the f1uid forces practically impossible. Never­

theless, for arrays with small wake regions, an attempt to determine the f1uid forces

using potential f10w theory was made by Chen (19ï5, 19ï8), Balsa (19ii) and Paidous­

sis et al. (1984). Forces proportional to f1uid inertia (added mass effects) were found

to agree weIl with experimental measurements. On the other hand, velocity- and

displacement-dependent forces, which are strongly affected by f1uid viscosity, could not

be correctly determined. Inviscid potential f10w theory aIso rendered the system conser­

vativej hence, no dynamic instabilities could be precipitated by the f1uid forces therein.

\Vllile potential f10w models made it possible to determine added mass effects relatively

accurately, it became clear that f1uid viscous effects could not be ignored. Paidoussis

et al. (1985) therefore incorporated heuristicallya phase lag between cylinder motion

and the resulting f1uid forces to account for the viscous nature ofthe f1ow. An analysis

of a rotated triangular array with P/ D =1.3 or 1.5 showed that dynamic instabilities

occurred for non-zero val:.;es of the phase lag, while static instabilities were predicted

\'Iith a zero phase lag value. The stability boundary was found to be e,,:tremely sensi­

tive to the magnitude of the phase lag, and comparison with e."q)erimental data showed

that critical f10w velocities were overestimated by a factor of approximately 5.

A semi-analytical approach was taken by Lever & Weaver (1982, 1986a,b) and

Yetisir & Weaver (1988) in which the flexible array stability "'"aS approximated by that

of a single flexible cylinder. In their analysis, the presence of neighbouring cylinders

resulted in a wavy stream-cylinder channel f10w around the flexible cyIinder under

consideration. A second f10w region consisted of wake f10w attached to the cyIinder.

•
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Assuming that cylinder motion results in a redistribution of the stream-tube area,

expressions were obtained for the time variation of this area, the gap fiow velocit)· and

the pressure, for sinusoïdal C)·linder motion. Similarly to Paidoussis et al. (1985), it was

recognized that for the stream-tube fiow it was necessary to introduce a phase lag due

to fiuid inertia effects. Using the unsteady continuit)· and momentum equations, the

pressure distribution and hence resulting fiuid forces could then be determined. The

criterion for instability was that the total system damping be zero, hence predicting

single mode negative damping instability. Good agreement with e."perimental results

was obtained for rotated triangular arrays v;ith P / D =1.3ï5.

The analytical approaches reviewed above have contributed to the understand­

ing of the mechanisms underlying fiuidelastic instability in cylinder arrays. It has also

become clear, however, that for the accurate determination of stability boundaries, an

e."Perimental input, of some of the important parameters that cannot as yet be ana­

lytically determined, is necessary. The resulting semi-empirical models require varying

amounts of experimental input.

Semi-empirical theoretical models have successfully been applied for the deter­

mination of instability fiow velocities. In general, improved accuracy is obtained with

increased e>.:perimental data input. These models fall broadly into two categories:

general unsteady models and quasi-steady models.

Tanaka & Takahara (1981) were the first to develop a theoretical model which

took into account "all" first order components of the unsteady fiuid dynamics forces.

The in-line array geometry studied by Tanaka & Takahara is shown in Fig.Ll. Consid­

ering the central cylinder 0, the fiuid forces acting on the cylinder are due to displace­

ments of cylinders L,R,U and D, as weIl as cylinder 0 itself. Three types of fiuid forces

may be identified: inertia forces proportional to cylinder acceleration, fiuid damping

forces proportional to cylinder velocity, and stiffness forces due to dynamic pressure

and cylinder displacement. Considering cross-fiow motion, the total fiuid dynamic force

•
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pcr unit Icngth ma)' be expressed as

6

(1.2)

where CM, Cv and CK are respecth'ely the added mass, damping and stiffness coeffi­

cients; 0(11) denotes second order terms. The fiuid dynamic force F~ is, in general, a

non-linear function of y; hence, equation (1.2), with the second order terms neglected,

is a linear approximation about the equilibrium position y = O. Assuming a sinusoidal

displacement y = YéJI
, equation (1.2) can be 'written in the form

(1.3)

Corresponding to displacement of cylinder 0 and each of the neighbouring cylin­

dcrs is a component of the coefficicnt CI(U), identified as C~j~ (or C~j",) proportional

to the induced component of F~ when cylinder j is displaced in the y (or :r;) direction.

Thc total force F~, therefore, becomes

F~ = ~PU2t(C~i:<Xj + C~j~Yj).
j=1

(1,4)

The coefficient C~j"" for example, may be interpreted as the partial derivative ac~/axj ,

evaluated at X j =O. In equation (1.4), the assumption is made that the fiuid forces sum

linearl)'. Equation (1,4) may also be viewed as a Taylor series expansion of F~ in the

displacements X j and rj, in which only the first order terms are considered, rendering

it a linear expansion. Using this complete set of first order, unsteady fiuid forces,

Tanaka & Takahara obtained instability boundaries that were in e.'i:cel1ent agreement

with e.'\..perimental results. ,.:\Il important finding of their work was the discontinuous

variation of instability fiow velocity 'with fiuid density. This was attributed to a change

in the orbital motion, which for high density fiuids was essentially in cross-fiow, while

coupled in-fiow/ cross-fiow motion occurred for low density fiuids.

• Chen (1983a,b) generalized the unsteady model above, rendering it applicable to



arbitrary cylinder configurations. Using the data of Tanaka &: Takahara, Chen studicd

the stability of cylinder configurations ranging from a single flexible cj'linder (in an ar­

ray) 'l''lith one degree-of-freedom, to multiple flexible cylinders e.'Cecuting predetermincd

orbital motion patterns. "Vith his study, came probablj' the ne.'Ct most important fun­

damental contribution after Connors' work, which was the identification of two distinct

mechanisms independently capable of precipitating f1uidelastic instability. The first is

the so called damping controlled mechanism and the second, the stiffness controllcd

mechanism.

The damping controlled mechanism is predominant for high f1uid density f10ws

(low mlpD2), and requires but a single degree-of-freedom. Instability is precipitated

when the component of the f1uid force in phase with cylinder velocity overcomes the

mechanical damping force; i.e., essentially via the vanishing of the total damping in a

given degree of freedom. In low f1uid density f10ws (high mlpD2 ), the f1uid dynamic

stiffness controlled mechanism comes into play, in which f1uid force changes due to

relative cylinder displacements predominate. Multiple-f1e.'Cible cylinders are required,

resulting in f1uid-dynamically coupled degrees of freedom. Due to the non-conservative

nature of the f1uid-force field, net positive energy can be extracted from the f1ow, which,

at a critical f10w velocity, overcomes the mechanical damping.

Using unsteady models, it has become possible to accurately predict the on­

set of f1uidelastic instability, and explain the fundamental aspects of the underlying

mechanisms. As predictive tools, however, these models require a prohibitive amount

of experimental data, when one considers that the f1uid force coefficients in equation

(1.4) depend on array geometry and inter-cylinder spacing; measurements must also

be taken for a range of Reynolds numbers and reduced frequencies (fDIU).

The need for simpler but still accurate models h3$ therefore arisen, in order to

enable a stability analysis unencumbered by the intensive data requirements of the

fulIy unsteady models. One such theoretical model has been developed by Price &

Paidoussis (1982, 1983, 1984, 1985, 1986a,b), belonging to a class of what are termed

quasi-steady models. Fundamental to the quasi-steady models is the assumption that

•

•
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the instantancous f1uid forces acting on an oscillating cylinder are the same as ou a

static cylinder located at the reference instantaneous static position; it is only necessary

to account for the relative vdocity between the cylinder and the fiuid when determining

the fiuid-dynamics, the forces being considered to be independent of cylinder oscillation

frequency; (a frequency effect is, however, considered, as discussed later.)

In the original version of their model, Price & Paidoussis (1982, 1983) analysed

the stability of a double row of cylinders (Fig.1.2(a». For a given cyiinder the fiuid

force in cross fiow, for instance, could be e),."pressed as

•
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(1.5)

where ilD/U =0< is the induced incidence of the fiow approaching the cylinder, and

U the gap fiow velocity given by U =UooT/(T - D/2), (Fig.1.2). Equation (1.5) is

identical, in form, to the unsteady formulation given in equation (1.2), if motion in the

in-fiow direction is not considered. The difference is manifested in the determination

of the fiuid force coefficients.

Price and Paidoussis, considering CL and CD to be functions of position and

induced incidence, assumed a linear approximation near the cylinder equilibrium posi­

tion. The lift force coefficient, for instance, could then be expressed as

k ) Cl. ~(ôCi ôci ôci)CL(x,y,Ot = LO+L"X;-ô. +Yi-Ô ' +o<-ô
;=1 x, Y. Ot

(1.6)

•

for cylinder k in a generalized staggered array, where n corresponds to the number

of neighbouring cylinders. The complexity of the fiow structure within the array ren­

ders the definition and measurement of Ot, hence of ôCi/ÔOt. difficult and inherently

susceptible to uncertainty.

Recognizing the difficulty in determining ôCi/ÔOt, Price and Paidoussis circum­

vented this problem in later revisions of their model (e.g. Price & Paidoussis (1984,

1986a,b», by e.,."pressing CL and CD in terms ofrelative "apparent" inter-cylinder dis­

placements, henee eliminating the need for an C),-plicit inclusion of the fiow approach



angle 0<. An important component of the analysis is consideration of the time lag

between the displacement of cylinder i and its effect being propagated by the flow to

be manifested at cylinder k; secondly, cross-flow cylinder motion results in an angu­

lar displacement of the cylinder 'I,ake relative to the free stream flow. With the time

delay and wake relative orientation considered in determining apparent inter-cylinder

displacements ~i and 1)i, the lift coefficient ct on cylinder k, induced by its own motion

and all immediately neighbouring cylinders 1 to n becomes

•
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where ~i and 1)i are the apparent cylinder displacements.

As observed by Simpson & Flower (19ï7), fluid approaching the stagnation point

upstream of a cylinder decelerates, resulting in a retardation in comparison to steady

flow. Price and Paidoussis found this retardation effect to be e>.:tremely important

in cylinder arrays and indeed imperative for the precipitation of a negative damping

instability, and hence incorporated it in their mode!. Despite the quasi-steady theo­

retical foundations of this model, the analysis therefore, crosses over into the unsteady

regime, by modl!lling approxîmately the most important effects of unsteadiness in the

fluid dynamics.

In its general form, Price & Paidoussis' (1984,1985) model results in large ma­

trices when coupled motion involving many cylinders is considered. The model was

therefore extended and simplified by assuming an inter-cylinder modal pattern (simi­

lar to Connors' (19ïO», in which fixed phase differences between the motion of adjacent

cylinders were applied; this essentially constrained the array modal response to certain

orbital patterns. It ";as then possible to decouple the motion of a small representative

kernel of cylinders from the general array, thereby much simplifying the solution of

the governing equations. This constrained-mode analysis was found to yield very good

agreement with both the generalized analysis and experimental results.

Based on the identification of the two instability mechanisms by Chen (1983a,b)



as well as experimental evidenee, Price & Paidoussis (1986b) and Paidoussis & Price

(1988) undertook a single flexible cylinder analysis. The basic assumption in this anal­

ysis was that the stability behaviour of the fully flexible array could be reasonably

represented by that of a single flexible cylinder in an otherwise rigid array. This holds

true only when instability is of the negative damping type - predominant for low

values of the mass damping parameter (m6/pD2 < 300). A single cylinder analysis is

clearly appealing, due to its simplicity as well as the minimal amount of e.xperimental

data required. For the array geometries studied, f1uidelastic instability was found to

primarily occur in the cross-f1ow direction. The time delay due to f10w retardation was

found to be an important determining factor for the instability to occur - introduc­

ing a phase difference between cylinder displacements and the f1uid dynamic forces.

The instability condition requires that the total system damping vanish. The resulting

expression for the criticcl f10w velocity is an implicit nonlinear algebraic equation relat­

ing the reduced critical f10w velocity Uc/ 1D to the cylinder ma.::.' :amping parameter

in6 (where in = m/pD2). Considering cross-f1ow motion for instance, the stability

boundary equation is

•
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(1.8)

where pis the dimensionlessfrequency. For large enough values of U/ID, the trigono­

metric functions l'an be linearized, )ielding the follo\\ing expression for the critical f10w

velocity:

Uc ( 4 )m6
fD= -CD-f.LrD(ôCL/ôy) pD2'

(1.9)

•
where f.Lr is a positive f10w retardation parameter of 0(1) and the derivative ôCL/ôy is

evaluated at the equilibrium position y = O. According to equation (1.9) single-mode

instability is only possible for large and negative ôCL/ôy.

For low values of the mass damping parameter m6/ pD2, the non-linear stability



boundary equation (1.8) has to be solved by an iterative procedure. Multiple instability

boundaries are obtained, which is attributed to the sign changes in the trigonometric

functions as the phase lag changes. The condition of large and negative ôCL/ôy is

no longer necessary; depending on the phase lag, a large and positive value of this

derivative will also precipitate instability.

•
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1.2 POST INSTABILITY CYLINDER
DYNAMICS

The linear theoretical models discussed above can only be u~ed to predict the

onset of Huidelastic instability. Investigators have becn intercsted in post instability

cylinder dynamies due to the damage potential of the ensuing cylinder vibrations (see,

for instance, Paidoussis (1980)).

Fluidelastic instability may cause large amplitude cylinder vibration which for

high enough How velocities results in impact with loose supports and even inter-cylinder

clashing. Two kinds of non-linearities need to be included in the theoretical models for

post-instability analysis. The first is the non-linear variation of Huid-dynamic forces

with cylinder displacement and velocity (the second being discussed in the next para­

graph). Non-linear components of the Huid-dynamic forces introduce damping into the

system 2 which, together with dissipation, balances the energy input due to instability

at a given cylinder oscillation amplitude; the result is limit cycle motion.

Heat exchanger tubes are supported at several locations along their span by

tube support plates (TSP). To allow for thermal expansion and ease of assembly, TSP

holes are drilled with slightly larger diameters than the tube diameter, resulting in

tube/support gaps of up to O.25D, D being the tube diameter. At some How veloc­

ity U > Uc, the limit cycle amplitude reaches the clearance gap value, resulting in

2Not al! f1uid-force non-linearlties are necessarïly stabilizing; non·linear stiffness effects are respon­
sible for the instability observed by Roberts (1962,1966), for instance. The existence of non-linear
f1uid forces related with f10w periodicities is also noted; the associated frequencies are, however, often
far enough from the f1uide1astic frequency allowing these forces to be neglected.



tub':l/support impacting, often referred to as a TSP-active condition. This structural

non-linearity in the system, involving a discontinuous jump in the stiffness, is the sec­

ond non-linear aspect that neecls to be considered when modelling post-instability tube

behaviour.

•
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1.2.1 Review of Support-Influenced Dynamics in
Cross-Flow

To study purely fiuid excited non-linear cylindu response, Price & Valerio (1990)

e>.:teIîded the quasi-steady mode! ofPrice & Paidoussis (1986b) to include velocity- and

displacement-dependent non-linearities. The_relative velocity vector Ur (Fig.1.2(b)),

was expressed as a Taylor series expansion including up to second order terms in the

cylinder cross-fiow velocity, if. E>.:perimental measurements had shov,"Il the fiuid dy­

namic force coefficients (CL and CD) to be strongly non-linear functions of cylinder

displacement. Fifth order pol)"Ilomial curve fits were performed on the e>.:perlmentally

determined force coefficient variations with cylinder cross-fiow displacement, y. Ap­

proximate analytical solutions for limit cycle amplitudes in various array geometries

were obtained using the Krylov and Bogoliubov (K & B) averaging method. A require­

ment of the K & B metbod is tbat non-linear terms remain small in magnitude; this

was satisfied by limiting calculations to higher values 3 of the mass damping parameter

m6/ pD2. In the analysis, only cross-fiow motion was considered; thus, the only insta­

bility mechanism would be of the one-degree-of-freedom negative damping type. Their

analysis showed that the rate of increase of limit cycle amplitude with fiow velocity for

lower values of m6/ pD2 was much greater than for high values.

System non-linearity introduced by impacting at loose supports bas received

wider attention than fiuid force related non-linearity. Investigators are prlmarily in­

terested in determining tube wear rates due to impacting with the support, following

instability. Numerous e.'\-perlmental data have been collected, correlating tube wear

• rates and tube excitation (e.g., Ko (19i9)). Numerica1 prediction of tube wear rates

'For the rotated triangular arra)', this corresponds to ,-alues of reduced f10w ve10city U/ f D > 1.1.



has also been attempted by Frick et al. (1984), Antunes et al. (1988) and Frickcr(1988)

among others. A host of dynamical experimcnts, whcrc a tubc is mcchanically cxcitcd

(e.g., Blevins (19ï5), Goyder (1982), A."àsa et al. (1988» have also been conducted.

The comple."àty of the problem is undisputed. It is particularly cvidcnt in the

margin of uncertainty in wear-rate measurements and calculations. Cylinder/support

interaction, characterized by impact and sliding contact forces and resulting wear are

d~termined by the detailed cylinder dynamics. To improve the ability to predict wear

rates, it is clear that an understanding of the underlying cylinder dynamics by accurate

modelling and analysis is required.

Significant effort has already gone into modclling post-instability tube dynamics

v.'ith impacting. Axisa et al. (1988) studied the response of a multi-span tube with

loose supports under fluidelastic instability excitation. The model studied was a pin­

ended tube, supported at midspan; tube motion was limited to one direction only,

hence modelling an anti-vibration bar (AVB) rather than a circular support. The loose

support was modclled as a trilinear spring. The resulting support impact force was

therefore given by

•
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F. = -I{Alxl- er ),

F. = 0, (LlO)

where x is the transverse tube displacement, er the tube/support clearance and K. the

effective support contact stiffness. Following their earlier work (Axisa et al., 1984), the

support stiffness K. was estimated to be that due to local tube ova1ization given by

K =1 9Et~ (t.,)1/2
• . D D ' (l.11)

•
where E is the Young's modulus and t., the tube thickness. Suggestions for possible

refinements of this model, such as inclusion of non-elastic impact effects and consider­

ation of fluid effects at the impact location were also given.

In Axisa's et al. work, fluidelastic instability was modelled following Connors'



quasi-static approach. Assuming the existence of a destabilizing fluid damping force

proportional to the flow velocity U, the total modal damping (~ was expressed as
•
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(1.12)

•

Ue being the critical instability reference-gap velocity, and (n the modal structural

damping in stagnant fluid. This being a linear fluid model, limit cycle amplitudes

would grow unhindered for U > Ue , to be limited only by the loose support when

the amplitude attains the clearance value er • Assuming non-linearities to be strictly

localized at the support, modal superposition was considered to be sufficient for the

structural modelling. The resulting modal equations were integrated using an e.xplicit

Devogelaere algorithm. Results of their numericalsimulations showed the tube response

to undergo a distinct sequence of bifurcations which in some cases resulted in drastic

increases in tube wear rates (the primary object oftheir investigation). Strictly periodic

motion was obtained in the velocity range UlUe < 2.0. Above this limit, an unidentified

bifurcation resulted in a chaotic-like response which was corroborated by evidence in

phase-spacc plots and PSD calculations. Return to periodic motion, albeit with higher

oscillation frequencies, occured starting at UlUe :::: 3. Axisa et al. observed and

remarked on the importance of (~ which determines the linear instability growth rate,

where small changes in (~ would significantly alter the observed response, hence the

wear rates. Finally they concluded that fiuidelastic vibratio~imitedby a loose support

does not have a unique vibratory "signature".

Fricker (1988) studied the dynamics of a loosely supported cantilever beam, the

loose support modelling an anti-vibration-bar (AVB). Similarly to Axisa et al., a flu­

idelastic instability model was developed by assuming a destabilizing force in phase

with tube vibrational velocity having the form

(1.13)

K being an unkncm"ll fluidelastic constant, characteristic of the array geometry, D and



l the tube diameter and length, respectively, w the vibrational frequency, and il the

tube velocity transverse to the fiow. From equation (1.13), and a similar expression

for the mechanical damping force, Fricker obtained the following e.'l:pression for the

effective total system damping:

•
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(1.14)

•

where Ço is the mechanical damping factor and Wn the nth modal natural frequency.

Equation (1.14) is similarto the expression obtained by A.'l:Ïsa et al. (equation (1.12»,

with the difference of the inclusion of the effect of vibrational frequency on the fluid

damping.

A finite element approach was taken by Fricker to determine the system structural

matrices. Long time simulations showed that complete convergence of the solution (to

a simple periodic motion) did not occur. It was found that small changes in the

accuracy of the solution completely changed the details of the impact forces after a

short period. Fricker concluded that the tube response was primarily periodic, but

v.ith a superimposed chaotic component. Impacting with a loose support was found

to have a stabilizing effect; this was due to the effective change of tube boundary

conditions from clamped free to clamped-pinned. Support damping made it possible for

the fiow velocity to be increased weil beyond the critical value for the clamped-pinned

configuration. However, this instability could be initiated by impl1L~ively loading the

tube at mid-span. This non-linear effect suggests a subcritical instability which <:an hl:

triggered by a large displacement.

In more recent work, Fricker (1991) reports the existence of truly periodic motion,

as weil multiple solutions in the response of a U-bend tube with an AVB support.

With the tube symmetrically located within the AVB, double-sided impacting motion

predominated for U > U.. Due to the linear modelling of the impa=t stiffness and

the fiuidelastie forces, Fricker found that changing the gap size had no effect on the

vibrational frequency, while vibration amplitudes and impact forces scaled linearly.

Bifurcations of the tube response as U was varied re.mlted in discontinuous changes in



vibration frequencies and m.pact forces. The bifurcations did not occur abruptly, but

rather over sma!l but nuite velocity ranges, over which severa! solutions co-existed. In

an attempt to gain some insight into the complex response observed, a one degree-o:­

freedom oscillator, modelling only the most important characteristics of the impacting

system was developed. This model ""as found to provide reasonable bounds for the

frequency ratio and impact forces obtained with the complete model.

Cai & Chen (1991) modelled the impacting response of a loosely supported tube

subjected to non-uniform :l!ow. In their ana!ysis, the complete unsteady model of Chen

(1983a,b) "..as used. In their structural model the tube parameters were considered to

change during tube/support contact; the two sets ofstructural boundary conditions be­

ing pinned-pinned-free and pinned-pinned-spring-Ioaded corresponding to TSP-inactive

and TSP-active modes respectively; in the latter case, an equivalent spring constant

representing the effective support stifrness was introduced. Following the instability

of the TSP-inactive mode, vibration amplitudes increased until impacting occurred.

Energy loss on impact reduced the vibration amplitude, and the growth cycie was re­

peated. Cai et al. did not attempt to analyze the tube dynamics observed, except for

acknowledging the complexity underlying the tube response.

In another recell.t study, Paidoussis & Li (1991, 1992) have studied the response

of a loosely supported tube within an in-line array. The purpose of their study 'I\"a5 to

investigate the possibility and proof of existence of chaotic vibrations in such a system.

In their model, tube motion was considered only in cross-fiow. Impact dynamics were

modelled via either a cubic or tri-linear spring. Their work was a pioneering effort in

using modern nOJl-linear dynamics concepts and methods to study and quantify the

tube dYll.amics. Bifurcation diagrams were used to summarize in a 2-D representa­

tion the variation of the tube response with fiow velocity, making transitions in the

response easily identifiable. Lyapunov e~..ponents were for the first time calculated for

a set of delay-differential equations; this made it possible to unequivocal1y confirm the

existence of chaos; this could only be done for the analytical cubic support mode!.

With the tri-linear spring impact model, chaotic-like motion was obtained right from

•

•
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the onset of impacting. To further in\"estigate the route to chaotic motion, a simplificd

one-dimensional impact oscillator, capturing just the essence of the complete system,

was also studied. For this model the Poincaré technique could be used to determine

the condition for the occurrence of period-doubling and saddle-node bifurcations. This

model enabled clarification of the existence of quasi-periodic motion prcviously sus­

pected to be chaotic. Multiple impact quasi-periodic motions were found to lead to the

observed chaotic response, following the onset of impacting for thc tri-linear support

mode!.

•
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1.2.2 N onlinear Dynamics Concepts

As first envisioned by Paidoussis & Li (1991), any hope of understanding the

complex system of a loosely supported multi-span tube in cross-fiow lies in a wider

application of non-linear dynamics concepts. RecentIy developed methods have given

new hope in deciphering and understanding the behaviour of non-linear systems. Sta­

bility and bifurcation theories coupled with mathematical topology underly thc study

of non-linear dynamics. The stability of the equilibrium solutions (attractors), as wcll

as the robustness of the governing equations of motion can be investigated. In this sec­

tion, we introduce some basic definitions and methodology used to analyze dynamical

systems. Inevitably the complete '!etails cannot be presented here; hence the reader

is referred to the excellent texts by Guckenheimer & Holmes (1983), Moon (198i) and

Wiggins (1990).

For the system studied here, we attempt to understand the dynamical behaviour

as a parameter JJ. (primarily the fiow velocity) is varled. The solution undergoes a

sequence of bifurcations; this referring to qualitative changes in the phase portrait

representing the steady state solution, or simply changes from one type of attractor

to another. An attractor may be defined as the transitive set in phase-space, ulti­

mately filled by a single steady state trajectoI)', representing the time evolution of the

• dynamical system.

To fix ideas, we consider the response of a tube subjected to cross-fiow and



vi})r~ting only in its first mode; hence, a one degree-of-freedom system. The equation

of motion for this system is
•
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y+ 2wÇy +w2y = F(y, y, y, p.),
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(1.15)

F representing the fiuid force and the parameter p. here being the fiow velocity. Defining

a vector Y ={y,yV, equation (1.15) may be reeast in the form

y =F(Y,p.),

whcre F is now a vector funetion given by

(1.16)

(1.1 ï)

Equation (1.16) governs the time evolution of the state veetor Y = {y, yV in phase­

space. The funetion F is a veetor, tangent to the trajeetory of the phase point, henee,

referred to as a veetor field. A study of the veetor fit:id F yields information on the

system equilibria and their stability, as weil as other information as follows.

The system equilibria or fixed points are determined by solving the equation

The eigenvalues >.(p.) of the Jacobian derivative DF(Yo, p.) determine the stability of

For the e.\:ample above, the state of rest, Y =Yo =0, is the unique stable fixed point.

Henee, the equilibrium, motionless state of a cylinder for p. < P.c (or equivalently

U < Uc) corresponds to a point attractor in phase spaee.

Of interest is the stability of the fixed point Yo; Yo is stable if every nearby

solution of equation (1.16) stays nearby. Taylor-expanding equation (1.16) about Yo,

yields

•

F(Y,p.) =o.

Y(t) =DF(Yo,p.)Y(t) +O(y2(t)).

(1.18)

(1.19)



Yo. Fluidelastic instability, associated with a Hopf bifurcation, occurs at JL =JLc, whcn•
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Re(À(JLc» = O.

The limit cycle is the second simplest attractor. Similarly to the fixcd point, a

stability analysis of the limit cycle can be undertaken, yielding information on the ratc

of convergence of nearby trajectories to the limit cycle - a measure of stability. This

can be achieved by calculating Floquet multipliers (Guckenheimer & Holmes, 1983).

Loss of stability of the limit. cycle is characterized by a crossing of the unit circ1e by any

one of the multipliers. The ur.::.table limit cycle may be replaced by quasi-pt>';oclic mo­

tion for instance, the result of a Hopf bifurcation of the limit <:ycle. A phase-plane plot

of the quasi-periodic motion would be characterized by two incommensurate frequen­

cies, '1I,ith the trajectory describing a 2-D attractor, graphically similar to a toroidal

surface. Alternatively, the originallimit cycle may undergo a saddle-node bifurcation, ­

resulting in an asymmetric limitcc-jcle. This is often a precursor to the period dou­

bling (fiip) bifurcation casciiJe, which ultimately leads to chaos (Feigenbaum, 19ï8).

A saddle-node bifurcation may also lead to an intcrmittency transition to chaos. The

quasi-periodic motion above may also ttndergo another Hopf bifurcation, introducing

a third incommensurate frequency. Quasi-periodic motion ",ith three incommcnsuratl'

frequencies has been shown to be unstable under small perturbations (Ruelle & Takens,

19ï1) and can degeneraie into chaotic motion. Some of these routes to chaos will be

discussed further in later chapters.

The final attracting set or "recurrent" bchaviour has been dubbcd the strangc

attractoT. While the classical attractors described in the foregoing are associatcd with

c1assical geometrical objects (n-dimensional surfaces, where n is an integer), strange

attractors can only be described in terms of fractal sets;~d1lowing the attracting set

to have a non-integral dimensioll. An excellent treatLlent of fractal geometry is given

by Mande1brot (1983). A treatment of fractal dimensions as applied to dynamical

systems, as well as a numerical procedure for their determination is given by Moon

(1987). Phase-plane plots of motion on a strange attractor show repeated stretching

and folding of trajectory bundles. Consequently, initial1y nearby shtes show locally



cxponential divergence ",;th time; the baker's transformation (Farmer et al., 1983)

vividly describes this scenario. The horse-shoe map (Smale, 1963, 196ï), responsible

for similar stretching and folding has been found to be common to all strange attractors.

Thus far, the bifurcations discussed belong to the class of local bifurcations. Lo­

cal bifurcations cao be characterized as qualitative changes in phase portraits occurring

near a single point; this holds for bifurcations of the limit cycle when the phase fiow

is reduced to a Poincaré mapping in which a limit cycle corresponds to a fi.xed point.

Qualitative changes may aIso occur in the behaviour of a dynamical system involving

global aspects of the phase-space fiow. An example of this is the transversal inter­

section of homoclinic orbits for planar vector fields. The simplest global bifurcation

occurs for a homoclinic orbit containing a single saddle point. A change in the system

parameter results in the disappearance of a periodic orbit associated with the saddle

loop, resulting in a qualitative change or (homoclinic) bifurcation of the phase-space

f1ow. Less degenerate global büurcations are obtained, for example, with loops formed

from multiple saddle separatrices (Guckenheimer & Holmes, 1983).

Associated with local bifurcations is a simplification of the dynamics in the neigh­

bourhood of the fixed point. In reality only a few "modes" will be associated ",;th the

bifurcation. The system can therefore be reduced to the lowest order part of the vector

field F on whicht""e bifurcation depends. The appropriate reduction procedures are the

subject of the Centre Manifold and Normal Form theories (Guckenheimer & Holmes,

1983), through which systematic computation to determine the local dynamics cao be

done.
-

In general, such calculations are only possible for simple analytical forms of the

vector field F. However, using such simple forms of F it is possible to enumerate

and classify all possible local bifurcations (sec, for instance, Thompson (1986)). The

local bifurcations are associated ",ith unique and distinctive topological changes in the

phase-plane plot which cao be identified purely geometrically. Identification of these

local structures therefore becomes a powerful tool for analyzing complex systems not

amenable to an~yticalmanipulation. This fact will prave invaluable to the present
-~--...>-

•
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The study to be presented aims to build on the knowledge of non-linear tube

dynamics on two fronts. On the first, the problem of f1uidelastic instability is revisited;

of particular interest is the f1uid-force field. On the second front, a non-linear dynamical

analysis, involving theory and e:I.-periment of the support influenced tube dynamics is

undertaken.

1.3.1 The Non-Linear Fluid Force Field and Limit Cycle
Motion

To date, studies on support-influenced tube motion have used linearizcJ.theories

to model the fluid-dynamic aspect of the problem - hence no limit-cyc1e motion is

possible without the presence of the support. Also, while the assumption of linear

f1uid dynamics may be valid for small tube displacements, static force measurements

by Priee & Paidoussis (1986b) have shown the f1uid forces to be strongly non-linear

functions of tube displacement. Fig.1.3 shows an example of the variation of CL with

tube non-dimensional cross-f1ow displacement, y; it is c1ear that the linear assumption

is va1id only in the region near y =o. Linearized theories are no longer valid in the

post-instability regime, in which they predict an infinite amplitude growth. While this

is countered by the presence of the support, the rate of energy addition to the tube for

U > U. is inflated, due to the absence of non-linear f1uid-damping forces.

A rotated triangular array geometry, shown schematically in Fig.1.4, will be the

focus of this study. Thi..~ geometry, with tube spacing P/ D =1.375, has been found to

be highly unstable (Priee & Paidoussis, 1986b). Fluidelastic instability was found to be

of the one-degree-of-freedom negative damping type, with motion predominantly in the

cfoss-flow direction. A single flexible cylinder model will therefore give a reasonably

accurate representation of the flexible array behaviour.



The fiuid force field is investigated first. It is presently not known how CL

and CD vary with in-fiow and cross-fiow tube displacements. Accurate static force

measurements are conducted over a grid covering the complete area within whic1 the

tube can move, thus enabling a mapping of the co:nplete static force field in this array

for the first time. A study of this force map is also undertaken. Using the same force

field, a linear stability analysis is performed to determine tube stability away from the

geometrical equilibrium position.

To date, the only existing non-linear model capable of predicting limit-cycle am­

plitudes (near U = Ue) is that by Price & Valerio (1990), albeit with tube motion

limited to the cross-fiow direction only. With the complete two dimensional static

force field known, non-linear quasi-steady theory is used to investigate coupled (x, y),

i.e. orbital, motion and the effect of fiuid coup1ng on the limit cycle motion. The

effect of system parameters such as tube natural frequencies, and mass-damping is also

qûantified.

•
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1.3.2 Support-Influenced Tube Dynamics

In the second part ofthis Thesis, a study of the tube dynamics under the infiuence

of impacting will be undertaken. This system poses special challenges in the attempt

to understand the resulting complex tube response coupled with bifurcation sequences,

as system parameters are varied, for the following reasons. The discontinuity ir the

stiffuess at the loose support renders the system non-analytic. The governing equatlôns

of motÏl'n are stiff delay differential equationsj stiffuess in the equations, which is

the result of large variations in the effective system stiffuess, brings about numerical

stability problems. Delay terms in the equations, from the quasi-steady model, result

in delay differential equations which have no analytical solutionj conversion to ordinary

differential equation form is, nevertheless, possible for small delays via Taylor series

expansions.

• In the analysi~the key bifurcations in the solution as system parameters are

varied are identified and enumerated. Particular attention is paid to local bifurcations



and their topological structures. Details of the characteristics of such bifurcations

are already weil known; hence, S)"Stem behayiour following such bifurcations can be

predicted.

Reduction of the effective system dimension via the Poincaré section is performed

near certain bifurcations where the geometry of the underl)ing attractor is expected

to be uncovered via such an approach. In particular, the possibility of uncovering

beha\iour approaching one- or two-dimensional maps (solutions to difference equations)

is very rewarding; one-dimensional maps can be fully analyzed, while the theory for

certain two-dimensional maps is weIl founded and understood. The period-doubling

route to chaos, for instance, is exhibited by the 1-D map

•
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Pn+! =p(l - Pn)Pn.
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(1.20)

Feigenbaum (19ï8) showed that the critical parameter at which successive period dou­

blings occur satisfies the relation

Pn+! - Pn = 4.6692.
Pn - Pn-!

(1.21)

This giYes a specifie criterion for testing the onset of chaotic behaviour when a period

doubling cascade occurs in any dynamical system.

The flow velocity is but one of the important parameters affecting the dynamics.

Others include the clearance to the support, er, the tube mass damping parameter

m6/ pD2 , and the frequency Wn • The effect of varying these parameters is also investi-
'-, -

gated.

The robustness of the dynamical beha\iour obtained depends on the structural

stability of the yector .àeld, F, which represents the theoretical modelling of the physical

system. Both the fluid and structural models are approximate to some degree. It is

important to test to what extent the dynamical be1laviour obtained is affected by

• changes in the theoretical modelling. In view of the complexity entailed in an accurate

model, it is of interest to evaluate the extent to which simplifications may be carried



out while maintaining the correct dynamical picture.

An exploration of the dynamical behaviour of a simple two degree-of-freedom

model is the starting point of the non-linear analysis. The simplicity of this low­

dimensional system makes geometrical interpretation ofphase space behaviour possible;

tube motion occurs essentially in a plane (2-D space). This simplified model is also

accurately representative of the system behaviour up to and including the first Hopf

bifurcation. Hence, it is expected that bifurcations at higher fiow velocities will give

an idea of the dynamical behaviour of the complete infinite-dimensional SYStem.

FoUowing this preliminary work, an in-depth study of the dynamical behaviour

of a non-unifonn cantilever tube is undertaken. This presents uS with an infinite­

dimensional system with motion occurring in 3-D space. Coupling occurs not only

between tlie orthogonal in-fiow and cross-fiow directions, but alse between the vari­

ous modes in a given direction. The resulting dynamical behaviour can therefore be

expected to be much more complex, as compared to the two degree-of-freedom sys­

tem studied in the foregoing. The accuracy of the predicted behaviour is tested by

experiments - in fact, conducted prior to the 3-D analysis.

The experimental tests are conducted in a water tunnel. Motion of the can­

tilevered tube utilized is limited by a circular support at its upper end when vibration

amplitudes exceed the tube/support clearance. The fiow velocity is varied in the range

0-2.5 Uc, where Uc is the critical fiow velocity for the Hopf bifurcation. A typical range

for operational support clearances O.OïD < er < O.23D is used in the tests. Interstitial

gap fiuid effects are also investigated by conducting tests with impacting occumng in

air and water. The dynamical behaviour is characterized via response spectra, phase­

space portraits, fractal dimensions as we1l as saddle orbit distributions. Bifurcation

diagrams are COnstTUCted to create a global picture of the dynamical behaviour in

parameter space.

Theoretical1y, further studies on parameter effects and more importantly on pos­

sihle model simplifications are carried out; particular atYlltion is p&1d to the possibility

of obtaining low-dimensional maps via the Poincaré section reduction. Lyapunov ex-

•

•
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ponent and fractal dimension computations are used to characterize any attractors

obtained.

The non-uniform cantilever tube in the experimental tests is designed such that

the two lowest transverse natural frequencies are separated by a wide margin from

the higher frequencies, keeping a large percentage of the system energy and hence the

dynamics in the twO lowest modes. Tubes within steam generators and heat exchangers

have uniformly distributed mass and stiffness and, hence, will not have a large disparity

in the frequencies of the lower and the higher modes. In the final part of this work,

this more realistic condition is modelled by studying a two-span loosely supported tube

with a loose support at mid-span. Of interest will be the implications of the results

obtained from the analysis of the low dimensional systems above to this more comple.'I:

system.

•
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1.4 THESIS OUTLINE

In Chapter 2, the complete theoretical model is presented. Thequasi-steady

model for the fiuid dynamic aspects is based on the work of Priee & Paidoussis (1984,

1986b). In the second part of this chapter the problem of modelling the loose support

is considered.

With the theoretical formulation in place, the ne.'l:t task is the determination of

the fluid force field. Experimental apparatus and test procedure are the subjects of

Section 3.1 of Chapter 3. In Section 3.2, the measured force field is analysed and its

implications on tube stability discussed at length.

The dynamical behaviour ofthe reduced one-mode, two-degree-of-freedom model

under the influence of this force field is considered in Chapter 4. _In the same chapter,

the loose support is introduced in the dynamical problem; its unplications form the

subject of the latter part of this chapter.

In Chapter 5, results of an experimental study of the post-fiuidelastic instability

behaviour of a non-uniform tube are presented. Experimental r'!Sults are also compared
=~



with a theoretical analysis of the same system.

The study concludes, in Chapter 6, with a brief presentation of the r~sponseof a

two-span uniform tube with a loose support at mid-span with particular focus on the

implications of the preceding low dimensional analyses to this high dimensional system.

This chapter closes with some remarks on the implication oi the chaotic transition to

wear-rate computation; possible improvements in the wear computation procedure are

suggested.

In Chapter 7, a retrospective summary of this study, as weil as possible directions

for future work are presented.

•

•
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Chapter 2

THEORY

The goveming equations of motion ",ill now be presented. The system under

consideration is a circular flexible tube subjected to non-uniform cross-f1ow U(s) as

depicted in Fig.2.1. The flexible tube is located in row 3 of a rotated triangular array,

as shown schematically in Fig.1.4. At a location s = sp along the tube span, a loose

support ",ith clearance e. exists. Although the tube shown in Fig.2.1 has c1amped­

pinned boundary conditions, the response of a clamped-free tube will also be studied.

For ~his two-span model, for small clearance, vibration amplitudes wilr remain

small relt.tive to the tube length 1; the linearized Euler-beam equations therefore will

be sufficient. The mechanical coupling between the spatially orthogonal direc,tions will

also be negligible; hence, the go\"erning equations of motion are

for the x-direction, and

Û-y ôy EPy . -
El ôs4 + c ôt + m ôt2 = FyJ(Y, y, ....) +<5(s - sp)Fy.(x, y) (2.2)

for the y-direction, where x(s, t) and y(s, t) are, respectively, the streamwise (in-f1ow)

and cross-stream (cross-f1ow) tube displacement, m is the tube mass per unit length,

El the f1exural rigidity and c the material damping coefficient. Subscripts f and s on

the right-hand side indicate f1uid and support forces, respectively, and b(s - sp) is the

Dirac delta function.

27
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2.1 THE QUAS!-STEADY FLUID-DYNAMIC
MODEL

28

The quasi-steady approach of Price & Paidoussis (1986b) ana!yzing a single flex­

ible cylinder is followed in determining the f1uid-dynamic forces. Severa! modifica­

tions are made to their basic mode!. The complete position-dependent non-linear

f1uid force field is utilized in the present work. Second-order terms in tube velocities

(.:i:(s, t), y(s, t)) are also included. Axia! variation of the f1uid forces, resulting from

tube deflection and a non-uniform f10w velocity, is also accounted for in the mode!.

A"linear superposition of f1uid force components dependent on cylinder accelera-
:',-

tion, velocity and displacement leads to the follo'l\"Ïng formulations (Price & Paidoussis

1986b):

(2.3)

(2.4)

where p is the f1uid density, me the added mass, UrJS) is the f10w velocity relative to the

tube, and 0' the f10w approach angle as depicted in Fig.1.2(b). The factor a accounts

for the f:;.:t that CL and CD are based, as measured, on the upstream f10w velocity Uoo•

The gapflow velocity U is related to Uoo by U/Uoo =T/(T:" D) = a. The delayed

displacements, accounting for the effect of a phase lag between cylir.der displacement

and the Juid forces are given by

Xd =x(s, t - ~t), Yd =y(s, t - ~t). (2.5)

•
The time delay ~t is approximated by ~t = p..D/U, where p.. ~ 0(1) (Price &

Paidoussis, 1984).



Empirical Formulation for the Stiffness Force

• 2.2 THE SUPPORT RELATED FORCES
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At the bose support, several forces come into play. Considering a cross-section

at the support location S = sP' the tube geometrical centre is limited to move within a

circle of radius er, as shown in Fig.2.2j a typical impact with local incident tube velocity

u and restitution velocity v is depicted. For such an impact, radial and tangcntial

forces are manifested. The most significant is the normal impact force FM, which is

proportional to the support stiffness and is a function of th!' local contact geometry.

Coupled with FM is a damping force, Frd , representing energy loss due to effects such

as plastic deformation and stress-wave generation in the tube. The presence of a

significantly viscous f1uid in the interstitial gap also introduces squeeze-film damping.

Explicit formulations for FM and Frd do not exist. Hence, in the next two subsections

we turn to approximate analyses, coupled with empirical results to determine sorne

approximat~ formulations for these forces.

2.2.1 Empirica1 Formulation for the Stiffness Force FT;

The imP3:t stiffness force is a function of the deformation, referred to as the

"approach", (1, (of the centres of mass of the impacting bodies), Fig.2.3. It is also.

strongly dependent on the geometry of the contacting surfaces. In general, the impact

force can only be analytically determined for simple geometries, where impacting bodies

are compact. For the so called stereo-mechanical impact of compact bodies, Hertzian

theory (Engel 1976) gives a force-approach law of the form

(1 being the approach, or relative displacement of the impacting bodies, and K n an

effective stiffness. For two spheres of equal radius T. and of the same material, we have

• 2E CM
Kn = 3(1 _ v2) Vr./2,

(2.6)

(2.7)



E being the material modulus of elasticit",f and v Poisson's ratio.

Permanent deformations occur in materials with high surface hardness, even at

very low impact velocities. Impact involving metals, in which plastic deformations

invariably occur, cannot be modelled by Hertzian theory. The Meyer law (Goldsmith,

1960), which has been fllunti to be reasonably accurate, is an empirical relation of the

form

•
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(2.8)

where the e".-ponent ewill vary in the range 0 < e< l, indicating impacting that varies

between ideal plasticity and elasticity. In reality, a combination of plastic and elastic

deformations occur. The exact value of ehas been found to have minimal effect on

the total response of a tube undcr impacting (Goldsmith 1960); it is only necessary

that the contact force time-history exhibit the correct total impulse for the correct

prediction of the resulting response.!

While tube-to-support impacting is weIl beyond the realm of compact body in­

teraction one tan envisage a force-approach law (at $ = $1') similar to equation (2.8),

albeit with a different constant and exponent. Using a relation of the form of equation

(2.8), the force FM can be e".-pressed as

(2.9)

•

where u(t) is the approach at S =sI' and is given by u(t) =T(Sp, t) - er, with T(Sp, t) =
Jx2(sp,t) +y2(Sp,t) being the tube radial displacement at the !';upport location, see

Fig.2.3. K. is an effective contact stiffness, which tan be determined e>..-perimentally.

INote. however, that local stresses will be strongly dependent on the accuracy of the force time­
history.
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2.2.2 The Impact Damping Force FTd

FTd may be e.'\.-pressed as a Yiscous force as follows:

(2.10)

The damping coefficient c. is a non-linear function of u and is related to direct impact­

ing energy loss, while c.! relates to squeeze-film damping effects; c. and c.! can only he

determined approximately. As discussed later, considerabiy more effort has gone into

the estimation or measurement of c.!. Firstly, we tum to a theoretical analysis for the

determination of c•.

2.2.2.1 Estimation of the equivalent viscous damping coefficient c.

Traditionally, the mcchanics of impacting bodies has becn treated by introducing

a coefficient of restitution to represent the resulting energy loss. From experimental

tests, the coefficient of restitution is known to be a non-linear function of the impact

velocity UT and of the form

(2.11)

(Goldsmith 1960), in which UT > O. The coefficient ofrestitution method does not give

an explicit expression for the impact damping force as sought for in equation (2.10),

nor indeed any details regarding the impact process. It is, however, possible to obtain

an expression for the impact damping force c.(u)ü from knowledge (If the dependence

of e on UT (equation (2.11)) and the choice of a functional form of c.(u) which meets

certain e.xperimentally determined criteria. The resulting analysis was first proposed

by Hunt & Crossely (1975) who studied the stereomcchanical impact of two spheres.

For the present analysis, cylinder/support impacting is not a stereomechanical process,

hence beam modal defiection necds to be considered.

• For the equivalent viscous damping force to be representative of the energy dis-



sipation mechanism during a!l impact, thc functional fo= of c.(O") must satisf:,- the

following conditions:

(i) the total energy dissipated by the equivalent viscous force should equal the energy

loss indicated by the coefficient of restitution;

(ii) c.(O") should increase smoothly from zero at 0" = 0 and vanish smoothly at the

end of the impact; hence the force ,'ariation should be as depicted by the solid line

in Fig.2.4 which is in concordnnce v."Ïth e:,<:perimental observation (the dotted curve in

Fig.2.4 depicts the _-:liscontinuous jump, at q = 0 in the damping force (incorrectly)

predicted when c. = const.);

(iii) the resulting impact history:;hould be reasonably representative of a real impact

process.

In the analysis that follows will shall refer back to these conditions and show how they

apply.

The impact process may be represented by Fig.2.3 if the moving body is taken

to be the cylinder (the cross-section shown here being at the a'Ciallocation s = sp);

furthe=ore, to simplify the analysis we consider only planar transverse tube motion

in the fust mode, hence, r(s,t) = y(s,t) = q'>(s)q(t); l,I>(s) is the fust-mode beam

eigenfunction. The tube approaches the support with an incidcnt velocity Ur = V(sp, t;)

and leaves the support v."Ïth a restitution velocity Vr = li(sp, to), where Ur anj Vr are

related via the coefficient of restitution e, which is a function of Ur as ind.:cated by

equation (2.11).

The difference in kinetic energies before and after impact is

•
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(2.12)

.:
where Il =JJ q'>2(s)ds.

Equation (2.11) may be written in terms of the generalized coordinate q(t) by

substituting Ur = I,I>(Sp)q(ti). The result is the follov.ug relation between q(t;) and
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(2.13)

Using equation (2.13) to the !inear term, the following is obtained for the energy

loss (2.12):

b.Ek - ~mIl(z2(ti) [1- ({1- 2Cl<19(sl')q(ti) + (Cl<19(SI')q(ti»2 + (...2Cl<292(SI')q2(t;) ...))]

~ mI1Cl<19(SI')q3(ti)' (2.14)

Condition (i) on p.32 requires that the equivalent viscous force result in energy

dissipation equcl to b.Ek' This leads to the equality

(2.15)

The loop integral is performed around the solid curve shown in Fig.2.4. Approximating

this by twice the integral from U = 0 to U = Um , and using the final result in equation

(2.14), equation (2.15) becomes

Guided by condition (ii), the following functional form of c.(u) is taken:

c.(U) =ë.~,

(2.16)

(2.17)

•
where ë. is an unknov,"1l constant. The solution of equation (2.16) for c.(u), which is

our primary goal, then simply reduces to the determination of the constant ë•.

As yet, equation (2.16) can still not be solved since the approach velocity during

the impact (ci') and the maximum approach Um remain unknown. ci' and Um will b~

determined using condition (iii) as a guide. The total energy lost at impact is generally

a sm311 fraction of the total energy of the cylinder. It is therefore expected that for
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the real impact proccss, il <:nd CTni '1Yill I:ç,~ deviate significantly from the velocity time­

history and maximt:.l approa.ch for the case of a perfectly elastic impact. Estimates of

il and CTm will therefore he ohtained by eonsidering a periectly elastic impact.

From the onset of the impact process, the total sYstem energy is

(2.18)

where Il =J~ t/J2(s)ds and 12 =J~ El [4>"(s)f ds. The last term in equation (2.18) is the

potential energy stored in the support as a result of the support stiffness force given

by equation (2.9).

-The tube energy at the instant the impact co=ences (at t =ti) is, from equation

(2.18)

(2.19)

Equations (2.18) and (2.19) may be equated, to obtain an expression for tube

velocity '1ariation during a perfeetly elastic impact. The resulting expression for q(t) is

(2.20)

•

The following relations between the physical and generalized coordinates are used in

obtaining an (....\:prcssion for ,;.:

CT - y(sp, t) - Cr

- t/J(sp) [q(t) - q(ti)] ; (2.21)

hence,

il = t/J(~·p)q(t). (2.22)
'::.::::::::=

Equation~-:>~.21rean aise be used to e.xpress q(t) in terms of CT, specifica1ly noting that
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er = ~(Sl')q(ti), thus yielding
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~ (2.23)

Finally substituting (2.20) into (2.22) ar.d using (2.23), the following e.....pression is

obtained for the approach velocity Vc""Ïl'.tion:

(2.24)

The maximum approach Um occurs when il = O. Hence, from equation (2.24),

Um satisfies the equation

(2.25) .

With the expressions for il and Um determined, equation (2.16) can he solved for

the damping constant which gives

where

_ mIICklf(ti)
c. = lém 2uqq2(ti) _ (al u + a2u2 + a3u!+1 »)1/2 du'

(2.26)

(2.27)

•

2.2.2.2 The squeeze-film damping coefficient c./

For a radial tube/support approach the presence of fiuid within the tube/support

gap introduces squeeze-film damping «(./) into the system. A tangential relative motion

between tube and support aise results in viscous shear damping «(•• ). (./ is particularly

important when the radial eccentricity surpasses er /2. The determination of (./ has

been undertaken by Jendr2ejczyk (1986) theoretica11y and Rogers & Ahn (1986) and

Kim et al. (1988) experimentally. The same investigators have shown that (•• is

genera1ly small compared to (./. Kim et al. obtained the following empirica1 expression
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for (., by correlating with thcir experimental data:

( = /3 (2t..\ (t.)O.7 (.E...)O.4 ( 1 ) St-O.6
., 1) D 2e,. 1 - rler '
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(2.28)

where t. is the TSP (tube support plate) thickness, r the tube eccentricity v..ithin the

support, f the oscillation frequency, and /3 is an empirical factor equal to 100. St is the

squeeze-film Stokes number defined as St =2r.ft?,.lv" where v, is the fiuid viscosity.

Following Jendrzejczyk (1986), c., was related to (., by c., = [2mlwl/4>r(sp)] (.,.

2.2.3 Final Form of Support Related Forces

In summary, referring to equations (2.9) and (2.10), the sum total of support
-

related forces becomes

(2.29)

for the radial direction, where

(2.30)

and ë. is given by equation (2.26) and, as in equation (2.28). /3 =100. Tangentially to

the contact location (see Fig.2.2), friction effects come into play, resulting in a force

(2.31)

•
where !J.'r is the Coulomb dry-friction coefficient. A$ indicated, equation (2.31) is ooly

correct when the resulting Fo does not result in direction reversai of the tangential

velocity VI (i.e. during sliding motion). Otherwise, an iterative procedure is required

to determine the unknown contact force (during sticking) to ensure that a final state

of VI =0 is attained. This 'will be considered further in Chapter 4.



THE FINAL SYSTEM EQU.4.TIONS

Transforming the support forces to Cartesian coordinates (Fig.2.2) we obtain

3i

F",. - F8sinl1 - Frcos/1

- {K.(r - er)e +r [e.re+ ii (1-~/eJ]} (J.L/rsinl1 - cos/1), (2.32)

F~. - - F8c0s/1 - Fr sinl1

- - {K.(r - er)e + r [e.. re + ii (1-~/eJ]} (J.L/rcos/1 + sinl1). (~.33)

2.3 THE FINAL SYSTEM EQUATIONS

The governing equations of mot.ion ( 2.1 - 2.4, 2.32 - 2.33) are rendered non­

dimensional by introducing the following non-dimensional quantities:

x - y s m _ sI'
X - D' Y = D' S = ï' Th = pD2' sI' = /'

w2 >'1(:~ ), u K•. K.De- 1

- T = w1t, V=--, ,1 wlD mw2
1

De $-- ii c
Cme =

me
ë. - e..--, - , (= 2mwl' p1rD2/4'mwl m

T
r _ er (2.34)- D' er = D'

After some algebraic manipulation, the equations in their non-dimensional form are:

for the in-f10w direction,

• (2.35)
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and for the cross-f1ow direction,

38

The time delay requires that the force coefficients be evaluated as follows:

CL = CL(~:(T - ~T),Y(T - ~T)),

CD = CD(:i;(T-~T),Y(T-~T)),

the non-dimensional time delay ~T being given by

(2.3ï)

where Jl.r ::::: 0(1).

A standard Galerkin expansion for the orthogonal beam displacements is utilized

as follows:

N

X(S,T) = L !pM)p;(T) ,
i=l -

N

y(s, T) =L !Pi(S)q;(T) ,
i=l

(2.38)

where !Pi(S) are the beam eigenfunctions which, for constant m, satisfy the orthogonal­

ity conditions

•
(1 tP;(s)!pj(S)dS = { 1 for i j

Jo 0 for i;é j

(1 <fI!p"(S) { >.1 for i = j
and Jo !p;(s) ~4 dx = •

. 0 Ofori ;éj.

Substituting (2.38) into the governing equations (2.35, 2.36) and then multiplying
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through by <Pj (s) and integrating with respect to s we obtain,

39

•

, 1 1 [" a- a- ]1/2( a- a-)-II -.", "i4- X 2 Y2 X Y
7q· + 2Çiq· +(-) q' =-- r CV - -) +(-) (V - -)CL - CD- Ij>·ds-, • >'1 • 2ma2 Jo ar ar ar ar'

<pi(Sp) {K.(f - l,.)( + ff [ë.T( +P(1 _~/ë,.)]} (tL/rCosS +sin9). (2.40)

_ i =1,2, ....N.

where, 7 =(1 + r.Cma/(4m» and (i =Ç(>';/>'1)2 is the modal damping.

Equations (2.39) and (2.40) fully describe the tube response under fiuid excitation,

limited by impacting at the loose support. It is reiterated that the friction term is

employed with caution to ensure that no reversal of the tube tangential velocity occurs

following an impact. The fluid force coefficients CL and CD are empirical inputs to the

theoretical mode!. The experimental determination of these coefficients is the subject

of Chapter 3.

2.4 REDUCTION TO A
TWO-DEGREE-OF-FREEDOM SYSTEM

A natural starting point for the study of the system represented by equations

(2.39) and (2.40) is a linearized stability analysis. For this purpose, it is sufficient to

reduce the system to its lowest order, which still exhibits the initial cylinder instability

behaviour; in this case a linearized 2-d.o.f system, in which only the first mode in the

two orthogonal directions is considered. Two simplificationsmay be considered. Firstly,

the support-re1ated forces are zero at the cylinder equi!ibrium position where cylinder

=



stability is investigated. The second is linearization of the position- and velocity­

dependent fluid force terms.

To lincarize the velocity terms, the following approximation is used

•
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(2.41)

Without loss of generality in the stability analysis, we may also consider planar (x, y)

tube motion, hence the physical and generalized coordinates are identical; e.g. ft = Pl,
which is physically equivalent to analyzing a rigid, flexibly mounted tube. Furthermore,

the position-dependent force coefficients are linearized via the Taylor C>..-pansions

(2.42)

The factor exp(-À~T), where À is a complex number, represents the time-delay effect

in the fluid forces; harmonie' tùbe motion, for flow velocities in the neighbourhood

of the critical instaJ:lility ve!ocity, is implicitly assumed in this formulation (Priee &

Paidoussis, 1986b).

Equations (2.41) and (2.42) are substituted into (2.39) and (2.40), maintain­

ing only linear terms. Introducing the vector w = {jh, ql y, the resulting linearized

equation system may be conveniently expressed in the following vector form:

•

~....:-

where

[M]w + [D)w + [K)w +Fo =0, (2.43)
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[

21 + rC/l!)
[D] = .,,1 ma' ,

VCrn
ma2 ,

and

[ -~][FO] = 2ma'.
_ 'tr2C;.o.

2ma'

For the purpose of a stability analysis, the steady force F 0 determines the tube static

equilibrium position, W e, at which the matrices [D] and lK] are evaluated; equiValently,

the Taylor series expansions in eqllatio~J2A2) are for a coordinate system centred at

this cquilibriuIn position. For a gi\"cn f1o\\" vclocity, W e may be obtained b~solvillg the

non-lïnear force balance equation

(2.44)

•

A stability analysis of equation (2.43) is carried out using standard eigenvalue tech­

niques. With the complete position-dependent f1uid force-ficld known, the effect of the

tube equilibrium position on the instability f10w velocity can also be determined. For

the moment, however, we turn to the experimental determination of the f1uid force

field.
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THE STATIC FLUID-FORCE FIELD

Lift and drag forces were measured for a. test-cylinder mounted on a biaxial force

balance in a blow-down wind-tunnel. The test-cylinder was part ofan array ofotherwise

rigidly fixed cylinders. The array c'lnsisted of seven cylinder rows, with alternate rows

containing 14 and 15 cylinders, respectively. The rigid cylinders spanned the test­

section and were mounted on aluminium plates, which were in turn fixed to the top

and bottom test-section surfaces. The test-cylinder protruded outside the test-section,

being mounted to the force balance at the bottom. To eliminate any cylinder vibration,

a c1d.illping mechanism was attached to the upper end of the test cylinder as shoWI! in

Fig.3.l.

The wind tunnel test section measures 609 x 914 =, and has free-stream tur­

bulence of 0.5%. A ma.'l:Ïmum wind speed of 40 mis can be attained in the empty test

section. Blockage introduced by the array reduces this maximum velocity to approxi-~: .

mately 15 m/s.

3.1 FORCE BALANCE CALIBRATION

The force balance employs two linear displacement transducers to sense the dis-

'_ placement of two pairs of short rectangular beams positioned orthogonally to each
' ../

other. The transducer signal is amplified and multiplitid by a calibration factor to' give

the static force reading.

• "Calibration of the force balance was performed by applying a known static force

and measuring the corresponding voltage output. Weights, ranging from 0.1 N to 10
o --=---

-~.
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N, provided the required force.

Fig.3.2 shows the calibration curves for the drag and lift directions, respectively.

The force balance e;"hibits excellent linearity in the force range considered for both the

orthogonal directions. During the experiments the highest lo..d on the force balance

corresponded to an output of approximately 1000 mV which is weil within the linear

range.

3.2 THE EFFECT OF REYNOLDS NUMBER
ONen

Tests were first conducted to investigate the variation of CD with Reynolds

number, Re. For these tests the upstream flow velocity Uoo was varied in the range

1.3 < Uoo < 7.5 m/s. This corresponds to a Re range, 2.15 x 103 :::; Re:::; 1.24 x 104•

The variation of CD with Re, for the cylinder located at the array equilibrium

position, is shown in Fig.3.3. Resul~ for increasing and decrcasing flow velocity are

plotted, showing good repeatability and Iittle hystercsis (if any). CD shows a decreasing

trend, initiallyat a high rate. For Re ;::: 10\ CD almost levels off to an average value

of 6.5. In comparison, a nearly constant CD value is obtained for a solitary cylinder in

the same Re range (not shown). Hence, in the array, there is a slower migration with

Re of the separation point, responsible for the graduai decrease in CD; this may be

_ . related to the confinement of the flow within the inter-cylinder channels in the array.

The lift c~e!fi~tvariation is also shown in Fig.3.3. Array symmetry ~ictates

ci~at CL be zer" for th~ cylinder position tested. As shown later, CL is extremely

sen~\tive to cross~t1owcslinder position (Y) near fi = O. This sensitivity is reflected in

the sligbil:r·ltOn~zerovalue of CL in Fig.3.3., Indeed, a cylinder displacement of 5/1000
---==.- -

in. (0.127=) resulted in a significant change in CL'

•
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3.3 VARIATION OF CL AND CD IN THE
RANGE -0.23 < (x, y) < 0.23

44

•

In the primary force measurement tests, CL and CD were measurPC! over a range

of in-f1ow and cross-f1ow cylinder displacemcnts. An area of 0.46D x 0.46D was cO',ered

by agrid ofsize D/52 (= 1/52 in., or 0.49 mm). The force balancewas mounted on a bi­

directional traverse mechanism which made possible accurate cylinder displacements.

The displacement range, which corresponds to an area of u.0529 in2 was covered ,,;ith

625 grid points. With the cylinder positioned at each grid point, a 1 minute settling

period was allowed. A 10 sec. time average of the force outputs was then taken, using

a HP 3562A FFT spectrum analyzer.

Fig.3.4 shows the variation of CL and CD with cross-f1ow displacement y with

the movable cylinder at its the equilibrium in-fiow position (x =0). Most striking

is the extreme sensitivity of CL near Y= 0, the cross-fiow equilibrium position. As

shown by Priee &Paidoussis (1986b), the large and negative value of ôCLlôy makes

this cylinder location very susceptible to instability. CL also varies nearly linearly at

this location; although only three data points show this linearity, repeated tests showed

tllls to be always the case. CL ieaches extremum values of ±4.1 at y = :r0.055. This

variation in CL may be associated with the cylinder emerging !rom the wake of its

upstream neighbour and being subjected to the high speed channel fiow between the

cylinder columns, Fig.3.5. A gradual drop in ICLI to an average value of 3.0 occurs as

the cylinder approaches either of its row-2 neighbours (cylinders 2 and 3 in Fig.3.S).

The drag coefficient (Fig.3.4(b)) shows local maxima, also at y=±0.055, with a

peak average \<ùue of CD = 7.0, again an effect of exposure to the streaming channel

fiow. At y =0, the test cylinder falls direct1y behind a row-l cylinder resulting in a

local minimum in CD. For Iyl > 0.055 CD decreases monotonkally as more orthe test

cylinder falls in the "shadow" of the neighbouring row-2 cylinder.

-When the in-fiow tube position x is changed, the CL and CD versus y trends

observed in Fig.3.4 vary different1y, depending on whether for the new in-f1ow position



x> 0 (corresponding to a downstream displacement) or x < 0 (an upstream displacf"­

ment). Note, howe\"er, that this does not imply the e...astencc ofsymmctry at Ir = O. but

rather that the neighbourhood of if = 0 is a transition region. The proximity of the test

cylinder to its upstream or downstream neighbours, and the associated inter-cylinder

gaps determine the changes that occur in the force coefficients.

Considering first an upstream displacement of the test cylinder to Ir = -0.1n,
the resulting force C"oefficient variations are shown in Fig.3.G. At this position, both the

magnitudes and trends in the force coefficients ,;ariation ,vith cross-flow displacement

differ appreciably from the trends at the equilibrium cylinder location x = O. CL shows

increased magnitudes in the range O.OS < liil < 0.20, attaining a ma...amum absolute

value of i.O. The CL variation is also approximately piecewise linear over the complete

ii range. Proximity to either of the row-2 cylinders has a drastic effect on CL. resulting

in a reversai of the lift force direction at ii = ±0.23. Coincidentally with this reversai

in lift force direction, a large drop in CD occurs, Fig.3.G(b). For Ir = -0.1 ï3 the test

cylinder is located det~per v.ithin the wake of the row 1 cylinder which accounts for

the overall reduction in CD. The drastic drop in CD and simultaneous vanishing of CL

occur when the ~'linder essentially blocks the streaming channel flow on one side (e.g.

b~tween cylinders 1 and 2 in Fig.3.S) while widening the available channel arca on the

opposite side.

Tr~ force coefficient variatiol! changes significantly for downstream positions of

the CJ'linder x> O. Fig.3.i shows the results for x= +0.1ï3. In this case the variation

is largely determined by proximity to row-4 and -S cylinders as weil as the inter-cylinder

gap. A large and negative value of ôCL/ôii is obtained not only in the neighbourhood

of liil = 0, but essentially ovet- the complete rang-:: of -0.23 < ii < +0.23; the only

exception being the two inflection points at ii = ±O.OG. At the extreme positions,

ii::: ±0.23, an extremum CL value v.ith magnitude ICLI = 8.5 is obtained. A reversai

in the CD trend is observed at liil =0.12, resultiug in increased drag. This is due to

_the cylinder increasingly blocking the downstream int=r-cylinder gap, which results in

CD values as high as i.O for ii =±0.23.

•

•

v:4.RL-\TION OF CL .4.ND CD 4S

---



VARIATION OF CL AND CD 46

----:

•

In the complete test area, -0.23 $ Z, y $ +0.23, the force coefficients exbibit a

smooth transition between the three scenarios described above. In Fig.3.S are presented

results in the form of 3-D plots for the complete test area. Note that the axes and fiow

directions are different for the two maps; the perspectives were chosen for optimum

visualization. The neighbourhood of Z = 0 is seen to be a transition region between

the two trends in the force coefficient variations discussed ahove. At the extreme up­

stream and downstream positions (and for IYI > 0.22) very large changes in CL and

CD occur. Near Z = -0.23, y = ±0.23, a reversal in the lift force direction resuits.

This has significant consequences for cylinder stability, since a reversal in the force

direction indicates that the cylinder would be susceptible to a static instability but not

a dynamic instability at this position (in the cross-fiow direction). In the iÏl-fiow direc­

tion, large CD values coupled with positive ôCD/ôz irnply increased cylinder stabilit:"

far downstream. It is e."(pected that for other cylinder positions also, the significant

variations in CL and CD \,ill be refiected in the cylinder stability characteristics.

Contour plots corresponding to the 3-D plots are shown in Fig.3.9. The large and

negative ôCL/ôyin the corridor centred about y = 0 (Fig.3.9(a)) vanishes downstream,

near Z =0.10, resulting in a region where the cylinder e>...periences no lift force. With

the exception of the e>...treme cylinder positions, the overall variation in CD magnitudes

is relatively small (Fig.3.9(b)) in comparison to the variations observed for CL. A

convolution of the lift and drag cl,efficients gives a net fiuid f6rce vector as shown in

Fig.3.l0. The length of the arrows is proportional to a. non"lalized force magnitude.

Over most"ofthe test region, the steady force is directed towards the symmetry line fi =

o. The locations of possible cross-fiow stat;c instability are evident at Z =-0.1i, fi =
±O.ZtJ where the net force changes direction and CL ~ o. The steady force increases

for downstream cylinder positions primarily due to higher CD values.
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THE DYNAMICS OF A TWO­
DEGREE-Ol?-FREEDOM SYSTEM

The fiuid force variation discussed in Chapter 3 suggests the possibility of highly

unstable cylinder behaviour in the neighbourhood of the corridor y= o. Moreover, for

some cylinder positions far upstream, a necessary condition for static instability was

seen to exïst. This is significant since this array is weIl known for being highly unstable

: -dynamically but not ",tatically (when stability in the neighbourhood of x = y = 0 is

considered).

A detailed analysis of cylinder stability behaviour will be presented in the first

part of this chapter. Using a linear stability analysis, the effect on cylinder stability

of varying the cylinder position over the range of the experimental tests will be deter­

mined. The study is initially restricted to the analysis of the system in which only first

modes in the two orthogonal directions are considered.

The linear stability study is a precursor to a complete nonlinear analysis under

fiuid excitation ofthe system to be presented in Section 4.2. By systematically including

initiallythe fiuid-related non-linearities, and later support related non-linearities, in the

2-d.o.f model of Section 2.4, it ",ill be possible to elucidate the effects specific to either

one of the non-linear effects ",ithout the added complication of higher modes. As

discussed in Section 4.2, the effect of the support is introduced via a simple restitution

mode! both for simplicity and also for consistency with the structural simplification

to a single mode ( in each of the orthogonal directions) in the present system. The

• complete support mode! deve!oped in Chapter 2 is utilized in the analysis of the higher

dimensional systems later, in Chapters S,and 6.

47
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4.1 LINEAR STABILITY ANALYSIS AND
EFFECT OF THE TUBE EQUILIBRIUM
POSITION

48

Restricting the analysis to obtaining a stability boundary, a solution to the lin­

earized equations (2043) will suffice. Cons:dering a solution of the form w(r) =
woexp(Àr) and substituting into the linear equations, and "neglecting" the steady

force FO,I we obtain,

{>.2(M] + À[D(V)] + [K(À, V)]}woe.,:p(Àr) =o.

For a solution to exist we must have

Det [À2(M] + À[D(V)] + [K(À, V)]] =O.

(4.1)

(4.2)

•

On the stability boundary, purely imaginary or zero eigenvalues exist. An iterative

procedure is used to solve equation (4.2), the iteration starting v.ith an initial, assumed

value of À.

4.1.1 Low mS versus High mS Stability Behaviour

For low values of the mass-damping parameter Thé, stability behaviour is charac­

terized by regions of instability interspersed with stable regions as the fiow veloclty is

varied. Figo4.1 shows pluts of Re(À) and Im(À) as functions of non-dimensional fiow

velocity, V, for the cylinder parameters Th = 100, e5 = 0.001, and the tube equilibrium

position at x= 0, fi = O. The eigenvalue ÀI corresponds to cross-fiow motion while ),2

relates to the in-fiow direction.

Starting iterations at the-Iow fow velocity V =0.020, the firs;;:nstability occurs. -. ~

at V =0.065 as evidenced ili Figo4.1(a) by Re(),I) > O. The inStability is the result of

IThe results thus obtained pertain 10 a single cylinder mode! of a. fully flexible a.rra.y for which Fa
c:a.nses no change in the retath-e cylinder positions; this is diseussed further in Section 4.1.2.



a Hopf bifurcation, resulting in a purel)' imaginary eigenvalue. The instability occurs

in onl)' the cross-fiow direction; hence, >'2. associated with the in-f1ow direction, has

a negative real part, confirming that the instabilit~· is of the single degrec-of-frecdom

negative damping typ.~. As V is increased, restabilization occurs (Re(À) < 0) at

V =O.Oïï. The altemation between stability and in.stability is repeated at V =0.112

and V =0.153. Final instability, above which no restabilization occurs, is at l1 =0.343.

This sequence is ~'Pical for low m!l>J5 damping parameter values, at least when the

tube is located at the array equilibrium position. Fig.4.1(b) shows that the predicted

f1uidelastic frequenCYJemains within 0.5% of the no f10w frequency for the cross-f1ow
-~/'

directiv.l, while essentially no change in in-f1ow frequency is observed.

For high mass damping parameter \'a1ues, in = 10,000 and é = 0.1, anù tl'be

position ft = 0, ii = 0, only one stability boundary exists. A monotonie incrcase in

Re(À) is observed in this case, as shown in Fig.4.2(a), while Re(À2 ) remains negative.

A corresponding 11.5% increase in frequency is observed in cross-f1ow at the instability

velocity, relative to the no f10w frequency.
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4.1.2 Effect of Cylinder Position on Instability

The damping and stiffness matrices, D and K, are nonlinear functions of the

cylinder position being composed of CL, CD and their derivatives with respect to po­

sition (see equation (2.43». With these quantities known from the experimental mca­

surements, it is possible to ev;luate the efi'ect of displacing the cylinder from the array

equilibrium position on the r\~ulting stability behaviour. This ref!ects the scenario in

reality where, more often than not, a tube within an array will not be perfectly aligned.

The eigen\'a1ue analysis was performed for cylinder equilibrium positions within

the force measurement range, (-0.23 < ft < 0.23, -0.23 < ii < 0,23). The tube

static equilibrium position varies with f10w velocity due to the steady force Fo. Linear

stability analysis does not consider this effect of tube equilibrium position variation

v.ith f1ow, but only the ~al: tube position, Nonlinear dynanÎi\..i•.effects may alter

the final state as the tube migrates towards the static equilibrium p~t~on; llence, for'.,
""
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significant, as it may explain wh)' these instability regions have remained elusivc to

e>..-perimenters, despite their theoretical prediction in the present work and previously

by others, e.g. Price & Paidoussis (1986b) and Lever & Weaver (1986b). Only in highly

specialized and precisely controlled experiments have multiple instability regions been

observed (Andje1ié et al. 1990). For the present array at least, it is c1ear that the preci­

sion in tube positioning (to 'within 0.02D), makes it nearly impossible to observe these

instabilities in ordinary experiments or operational heat exchangers. This, of course,

is good news to the designer, since the most important instability ( and possibly the

only one likely to occur) is the highest-velocity instability.

FigA.6 shows eigenvalue plots for positions increg.~ngly farther away from the

symmetry line fi =0; (a,b) and (c,d) correspond to position 'B' (x =0.16, fi =0.02)

and 'c' (x = 0.06, fi = 0.19) respectively in FigA.3. Final instability occurs at

Vc = 0.43 for location 'B' and at Vc = 0040 for position 'C'. No multiple instability

regions are observed for these positions; the graphs of Re(>'l) in fact show the likelihood

of the occurrence of multiple instability regions to be diminished.

At high mass-damping parameter values in =10,000 and 6 =0.1, the stability

boundary contour plot, FigA.ï, shows overall similarity to the low in6 case. For the

present set of parameters, however, stability is more widespread. This is mainly asse­

ciated with the change in time-delay, as compared to the low mass-damping parameter
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case.

4.2 SUPPORT-INACTIVE CYLINDER
RESPONSE

For the purpose of determining the non-dimensional critical fiow velocity (Vc) for

fiuidelastic instability, as weil as the uninhibited rate of growth of the limit cyéiè ampli­

tude, the tube support was initia11y ignored. Hence, the support reaction, represented

lWthe terros F". and FlI• in equations (2.1, 2.2) is zero. In the analysis to follow, the

cylinder equilibrium position is at x= fi =O.



Preyious studies haye shown that, at large yalues of the mass damping param­

eter (ii1o), 11;, varies approximately linearly with ii1o. For ii10 =1000, the non-linear

analysis gives a critieal fiow velocity of 11;, = 10.8, in agreement with the linearized

analysis. Fig.4.8(a) shows the post-instability limit cycle amplitude for cro:<s-fiow mo­

tion as a function of non-dimensional fiow velocity, V. The instability was .:'; und to

be of the supercritical Hopf type; hence, for V < 11;" tube oscillations decayed to zero

for all initial conditions. The lowest limit cycle amplitude is fi = 0.02. This value of fi
corresponds to the limit of the band (centred around fi = 0) in which CL varies linearly

with fi, as described earlier. Due to this linear behaviour of CL near fi = 0 (for the

most part of the x range), the minimum limit cycle amplitude is 0.02, fOl any veloc­

ity at which }he system is unstable. For V > 11;, the limit cycle amplitude increases

almost linearly with V. As predicted by the linear analysis the instability was of the

:negative damping type, and occurred only in the cross-fiow direction. In-fiow vibra­

tion resulting from fiuid coupling exhibits a similar trend, as depicted in Fig.4.8(b),

albeit with more pronounced non-iinearity in the amplitude growth compared to the

cJ::)ss-fiow case. Note that in-fiow amplitudes are two orders of magnitude lower than

the cross-fiow amplitudes. The drag coefficient, CD, is relatively independent of fi near

the eqwilibrium position (x = fi =0); hence, despite large cross-fiow vibration, there

is little in-fiow motion.
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Low ii10 linear stability behaviour are charaterized by regions of instability, inter­

spersed with stable regions over a certain range of V - until a final velocity is reached,

past which, stability is no longer regained. :

Fig.4.9(a,b) shows in-fiow and cross-fiow limit cycle amplitude variations with

V for ii1 =100,6 =0.01. An unstable region is observed prior to the final instability.

Notice that in the unstable vela<:;ity range, the lowest cross-fiow amplitude is 0.02.

In-fiow motion (Fig.4.9(~» is three orders of magnitude smaller than its cross­

fiow counterpart. Once again, the in-fiow direction is stable and motion is only induced
- '"

through the weak fiuid coupling between the orthogonal directions.

When 0 is decreased by a factor of 10 to 0.001, cross-fiow vibration ampli-



tudes increaseto apprcdmately double their values at 6 = 0.01, Fig.4.9(c). For

this lower damping level, a second instability region e.xists in the lower velocity rang~

0.065 < V < 0.077. A third instability region is observed when li is reduced to 0.0001,

FigA.9(d).3 The velocity ranges corresponding to these instability regions are identi­

cal to those predicted by the linearized analysis. The increase in amplitude with the

second reduction in li is much lower than that associated with the first, being only

approximately 15% at V = 0.13 and less than 5% at V =0045. This variation in limit

cycle amplitude with li is summarized in FigA.10, where the amplitude at a constant

non-dimensional flow velocity V = 0.13 is plotted versus li.
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4.3 THE EFFECT OF A LOOSE SUPPORT ON
THE 2-D.O.F. SYSTEM RESPONSE

In this section the presence of the motion-limiting loose support is taken into ac­

count. The most important effect of the support is to introduce strong coupling between

the two orthogonal directions, once vibration amplitudes surpass the cylinder/support

clearance value, er • The primary goal, at the present stage, is to investigate the ef­

fect on the global tube dynamics of the presence of the support. To avoid delving

into details of the cylinder/support interaction during an impact, in the spirit of the
.

present simplified 2-d.o.f. model, the complex support model of equations (2.32, 2.33)

in Section 2.2 is replaced by a simple restitution/impact mode!.

The cylinder response may be thought of as comprised of two regimes. In the

'f1ight' regime, the cylinder is under the influence of the fluid force field only. In

the secC'.,-!, the 'impact' regime, support interaction forces arise. The tube velocities

before and after impact are!~ated via the restitution model as follows. Consider the

planar motion of the cylinder centre of mass as represented in FigA.ll(a). At the

contact location c, the tube approach velocity is u, while the velocity after impact is

3It should be remarked that it is not pretended that such low values of 6are achievable in praetice;
the intention here was to sec what the efl'eet of increasing or decreasing 6 is on the number of unstable
regions.
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'f!. Considcring thc momcntum changc in thc radial direction, we have

mur+Nr=mv.,

54

(4.3)

whcre Nr is the impulse of the radial impact force and where Ur and Vr are the radial

components of u and v; they are magnitudes as defined in Figo4.ll(a) rather than vec­

tors. The corresponding equation for the momentum change in the transverse direction

t is,

m Ut + Nt =m v,. (404)

To account for the energy loss at impact (radial direction only), a coefficient of resti­

tution, e, is used; hence,

1m v2 - e2 (1 m u 2)·2 r- 2 r"

The normal and transverse impulses are related by the coefficient of friction,

By using equations (4.3) and (4.5) we obtain

N r = mlurl(l + e).

(4.5)

(4.6)

(4.7)

From equations (4.4), (4.6) and (4.7), the transverse velocities before and afterimpact

are relatcd by

Vt =Ut - /lJr ur(l +e), (Vt > 0), (4.8)

•:::::;-

where the velocity directions are as defined in Figo4.ll(a). Clearly equation (4.8) is

only valid if Vt > 0; otherwise we have the adherence condition, for which Vt =O. The

velocity vector diagram in Figo4.11(b) relates the polar coordinate ve10cities derived

above to their Cartesian counterparts. The transformation equations before impact,
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fo,.;ii:lstance, are

x' - (ur cosll-Ut sinll)/woD,

fl - (Ur sin Il + Ut cose) /woD,

55

(4.9)

where, for instance, the dimensionless velocity x' =x/woD. The angle Il =tan-lW/x)

and x, y are dimensionless coordinates of the imp~.ct location c. When Ur =0, pure

sliding motion occurs. The radial tl'.>e/support contact force is then muUer • This

resu1ts in a transverse frictional force given by !J./rmuUer .

4.3.1 Solution of the Equations of Motion

The final form of the equations of motion is

x" + ëx' +x = (2~a2) {(V - X')2 + y12r/2

x [y' CL(r) + (V - x')CD(r)] ,

y" + ëY' + y - (2~a2) {(V - x'? + yt2}1/2

X [(V - x') CL(r) - fl CD(r)] , (4.10)

•

where CL(r) and CD(r) are determined as discussed in Section 2.1 to account for

the time delay.4 Equations (4.10) are valid as long as the tube radial displacement

r =(x2+ y2)1/2 is less than ë.. the radial clearance. When r =ë.. impacting occurs.

Equations (4.10) are numerica1ly integrated using a fourth order Runge-Kutta

algorithm. The cylinder and support parameters are

m=10, 6 =0.05, Wo =62.3, ë. =0.08, !J.fr =0.10 and e =0.70.

4Frequency components far above the lIuide1astic frequency arise for support-active cylinder vi­
bration. F1uid-inertia and -viscosity elI'ects, however, limit the frequency at which lIuctuations in the
lIuid force can occur -the limiting fre'luency is proportiona! to 1/t:.t; the timeodelayed response is
theref:lre numerica11y filtered to rellect this efl'ect•



The starting set of initial conditions is fi = 0.04, x = x' = fi = O. When the impact

condition (1' =: ër ) is satisfied, equations (4.5) and (4.8) are used to determine the new

velocities after impact, which are converted to Cartesian coordinate velocities through

a transformation similar to equation (4.9).

•
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4.3.2 Overview of Tube Response Variation with V

Similarly to the purely fiow-induced vibration case, cylinder response for the

support-infiuenced tube motion may be summarized by plotting peak cylinder dis­

placement as a function of the f10w velocity, V. Unlike the previous case where a single

smooth curve was obtained arter the initial instability, sudden discontinuities or bifur­

cations occur. Furthermore, at a given fiow velocity, a mu1tiplicity of amplitudes may

occur indicating (quasi)periodic motion with multiple frequencies, or chaotic motion.

In modem nonlinear dynamics parlance such a plot is an example of a bifurcation

dia!;'Tam, in this case the velocity V being the bifurcation parameter.5

FigA.12 displays the bifurcation diagram for the x- (in-ftow) and y- (cross­

ftow) responses, respectively. The first instability, the result of a Hopf bifurcation of

the original stable equilibrium, occurs at li;, = 0.32. As V is iI:creased, cross-f1ow

amplitudes quickly grow, resulting in impact at V = 0.35. Following the onset of

impacting the response undergoes a complex sequence of bifurcations. The increased

y/x coupling resu1ts in in-ftow 'Ullplitudes of the same order of magnitude as the cross­

ftow a::nplitudes, as seen in FigA.12 for V > 0.35. Over most of the velocity range,

bifurcations result in transitions between periodic solutions. However, two significant

chaotic regimes are also manifested. We now turn to a closer investigation of the types

of bifurcations involved and the resulting responses.

Over a small range of V above li;, the vibration amplitudes remain below the

support clearance value e.. As observed in Section 4.2, coupling to t.he stable in­

f10w direction is minÎInai for pure ftuid excitation. However, a distinct ~rbital x/y

SThe bifurcation diagram may be obtained using any quantity representative of the system be­
ha\iour; henee, tube \oelocities instead of amplitudes ean also be plotted as is demonstrated be1ow.



motion can be identified, ,::;'h the in-flow ....ibration occurring at double the cross-flow

frequency. FigA.13(a) shows this orbital motion for V = 0.34. A time trace of the

induced in-fiow vibration and the corresponding frequency spectrum as well as other

cross-fiow results, are also shov,,"Il in FigsA.3(b-g).

The limit cycle amplitude quickly grows to reach er • At V = 0.36, double­

sided impacting occurs. The resulting orbital motion is complex and appears chaotic,

FigA.14(a). This non-periodic motion is manifested as a set of peak amplitude ....alues

in the bifurcation diagrams (FigA.12) at V =0.36. A closer look at the in-flow time

trace, Fig.4.14(b), gi....es sorne insight into the underlying instability mechanism. The

in-fiow response at w ::::: 2wo is seen to be no longer stable. Hence, after se....eral cycles

(in which the amplitude is non-constant) a subharmonic bifl.ixcation occurs, resultÏIJ~

in in-flow orbital motion at w ::::: Wo for a period of time (see Fig.4.14(b) near T = 450).

At sorne point, the response at w ::::: 2wo is reinstated, and the cycle is repeated. It

is important to note, howe....er, that the duration of the abo....e mentioned cycle is not

constant; the bursts of subharmonic orbiting motion occur intermittently at seemingly

random time intervals. The chaotic charact,,~: of the in-flow response is weil evidenccd

in the in-fiow response phase plot and spectrum, FigA.14(d,f). Cross-f1ow motion, on

the other hand, remains predominantly periodic as shown in Fig.4.14(c,e,g).

The ....elocity range over which this chaotic motion occurs is fairly limited, such

that at V = DAO, a retum to periodic motion occurs. It is interesting to note that

impacting is single-sided, occurring once per oscillation as seen in Fig.4.15(a-c) for

V = DAO. Both the in-fiow and cross-flow responses are now at the same frequency

w ::::: Wo resulting in an ovalling type motion of comparable in-flow and cross-flow

amplitudes. As V is further increased, a subharmonic bifurcation occurs, resulting in

period-2 motion. FigA.15(d-f) shows the period-2 motion for V = 0045. Inspection

of a sequence of x/y orbital plots similar to FigA.15(d) shows that, as V is increased

abo....e V =0045, a decreasing trendi'!l the asymmetry of th'~ orbital motion occurs.

The velocity V =0048 is a limiting velocity at which the period-2 response loses
-,

stability. The result is a double-sided impacting period-l response at the frequency

•
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W ~ wo. A second period-1 solution, albeit with a much higher in-fiow frequency,

w ~ 3wo, and coexisting with the low frequency solution appears near V = 0.55.

Fig.4.16 shows the co-existing solutions «a-c) and (d-f), respectively) at V =0.57. The

dashed line in the bifurcation diagram (Fig.4.12) depicts the existence of an unstable

solution separating the two stable solutions. The high frequency solution is seen to

be nearly purely in cross-fiow, noting the ~"panded x-axis scale in Fig.4.16(d,e), in

contrast to the low frequency orbiting solution of Fig.4.16(a). The low frequency

sOlution disappears near V =0.66. At V = 0.68, the high frequency solution is no

longer stable and is replaced by asymmetric solutions, which corresponds to the two

branches in the bifurcation diagrams in the range 0.68 < V < 0.92 (Fig.4.12). In

the same velocity range, in-fiow response is characterized by nearly linear amplitude

growth, while the converse is true for the orthogonal direction cross-fiow response.

A. symmetrical solution reemerges in the velocity range 0.92 < V < 1.06. in

thi~ velocity range in-fiow response amplitudes approach cross-fiow amplitude values.

Fig.4.17 shows cylinder orbital x/y motion and the corresponding phase plots within

this velocity range for V = 1.00. Impacting occurs at essentially two locations, the

resulting coupling introducing significant in-fiow amplitudes. At V =1.06 iliis solution

becomes unstable and the response degenerates into chaotic motion. Fig.4.18 shows

an example of the resulting response in the chaotic l'egime for the \~locity V = 1.09.

The orbital and phase plane plots show that the chaotic response comprises mostly

of double impacti~i;orbits with continuou~~y 'oarying impact locations; heIÎce, no sin­

gle orbit is repeated as is characteristic of chaotic solutions. The in-fiow frequency

spectrum, Fig.4.18(f), indicates that in-fiow motion is strongly chaotic, exhibiting a

broad-banded spectrum particularly at low frequencies, as is typical of chaotic solu­

tions. The cross-fiow sEectrum on the oth~!:.:hand (Fig.4.18(g)) shows that a significant

periodic component still e."<Ïsts, albeit "'"Ïth a widening of the peak at the major re­

sponse frequency to indicate a chaotic component in the response. A periodic window

in the bifurcation appears near V =1.10. The orbital motion in this periodic window
/.

is shown in Fig.4.19 for-V = LlO. Chaotic motion predominates for "v > 1.10, until

•
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l'ermanent contact with the support occurs due to the steady drag.

4.3.3 Characterization of the Cylinder Response
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It is eYident, as one might have suspected from the outset, that, eyen for this

simple form of our dynamical system, a wealth of dynamical behayiour exists.

The bifurcations just described are of the codimension one type, since they occur

as a single system parameter, in this case V, is varied. Other bifurcation sequences are

obtained when other parameters, e.g. the friction coefficient iL!. or support clearance

er , are varied, as will be discussed in due course.

In this section we shall investigate further the bifurcations in FigA.12. Specifi­

cally, the goal will be to identify the bifurcation types and analyzp. their characteristics.

As discussed in Chapter 1, a host of standard bifurcations in nonlinear d)'namical sys­

tems have already been uncoyered and ell:tensively studied. We shall draw on this

71ealth of exïsting knowledge and apply some of the techniq".les and methods developcd

to unravel the dynamics underlying the behayiour exhibited by our system.

Furthermore, for the velocity regimes in which chaotic motion is predicted, we

would like to identify the route to chaos, and characterize the underlying strange at­

tractor via Poincaré sections, fractal dimension and the largest Lyapunov exponent ­

which is a measure of the degree to which the attractor is chaotic.

4.3.3,1 Transition to Chaos following Onset of Impacting

It was shov,"Il in Section 4.1 that the present system has a single fixeci point,

which is a stable focus for V < v.,. A Hopf bifurcatÎon of the fixed point occurred in

the cross-f1ow direction at V =v.,. In the ensuing limit cycle motion, limited coupling

to the stable in-f1ow direction occurs as discussed in Section 4.2.

A natura! starting point to analyze the efi'ect of impacting on the initial limit

cycle is therefore a local analysis of the limit cycle stability. A standard approach to

• study locally based bifurcations is the Poincaré reduction of the system and subsequent

stability analysis of the resulting fixed pointes). A direct analogy exists between the



stability behaviour in the reduced Poincaré map and stability behaviour in the original

high dimensional 5Yl>tem. Hence, for instance, loss of stability of a fixed point in the

dis~ete Poincaré map corresponds to destabilization of a limit cycle in the differential

system. The Poincarémap; which is lower dimensional, has the advantage of being a

relatively simpler system to allll1yze.

As a first approximation, the four-dimensional (4-0) system is projected onto

a 1-0 manifold. The result is a return map relating subsequent values of a selected

quantity representative of the response on a defined hypersurface. The resulting map

may be expressed in the form
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(4.11)

The Poincaré surface L: selected is given by {L: lx = 0, y > O}. Hence, in equation

:{4.11bXn., and X n+! are successive e::\:trema of x when y > O. Equation (4.11) is a
<::::---. -'

discrete difference equation relating successive in-fiow amplitudes.

At V =0.326, the system response lies cn a simple limit cycle attractor. FigsA.20(a­

e) show the orbital x/y motion, time trace and phase plane plots as the system ap­

proaches the stable orbit; for this ve1ocity, no impacting occurs. FigA.20(f) shows an

iteration sequence in which successive iterates finally lead to the stable fixed point Pj

hence, a limit cycle in the higher dimensional system is manifested as a fixed point on

the 1-0 map. The iteration points (in FigA.20(f)) are replotted in FigA.20(g), reveal­

ing they fall on a simple CUITej hence the function F 5'.1 equation (4.11) exists and is

of relatively simple form. It shc"ld be noted, that the reduction to a 1-0 map of a

high dimensional system, does noL always necessarily lead to a tractable map, hence

the existence of such a map for the pr.:sent system is an important result. A direct

analogy e.'"ists between the stability of the fi.'"(ed point P (defined by X n+! =X n ) of

this discrete dynamical system and that oÏ the limit cycle. The stability of the fixed

point P is determined by the eigenvalues ),p of the Jacobian matri::\: of F; for a 1-0

map this reduces to the d...-ivative dF/ dXn evaluated at P; the fi.'"(ed point P is stable

• if I),pl < 1, in which case successi....e iterates con....erge to the fixed point. This is the

-- case in FigA.20(f,g). However, IdF/ dXnl at P is just be10w unity. This makes it likely



that as V is varied, the condition 1dF/dXn 1 = 1 might be met, which would lead to

an instability of the fixed point P. A ,'alue of >.,. = -l, which is the most likel)" from

Fig.4.20(g), leads to a flip or subharmonic bifurcation. In fact, such a bifurcation does

occur as evidenced by the in-flow response of Fig.4.14(b) and as we shaH sec below.

In mathematical formalism, F(Xn ) in equation (4.11) ma)" be approximatedby

a polynoJ"!lial to yield
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X n+1=F{Xn , E) = -(1 + E)Xn +aX~ + bX~ + O(X~),

61

(4.12)

•

where E is related to the bifurcation parameter. For E > 0, the fixed point P is unstablc.

Equation (4.12) is t1e so called normal form 6 for a f1ip or subharmonic bifurcation.

For V = 0.330, slightly, above the critica! impact velocity, Fig.4.21 shows the

orbital x/y motion, time traces and phase plane plots, as weil as the corresponding

Poincaré retum map. While the basic figtlN-of-eight orbit is maintained (Fig.4.21(a)),

the in-f1ow time trace shows bursts of ampli !:ide grov.-th followed by a grad'lal dccay

and settling on the periodic orbit corresponci;ng to P in Fig.4.21(g). Note, however,

that inspite of the presence of impacting, the enel;;Y transfer is fairly limited, such that

the cross·flow response appears completely perlodl~ .:nd of nearl)" constant amplitude

(Fig.4.21(c)) - this is also weil depicted in the phase plane plots of Fig.4.21(d,e). The

retum map predicts weil the retllm to the neighbourhood of P following an amplitude

burst. However, this 1-D map fails to unearth the instability mechanism leading to

the escape of iterates from the neighbourhood of P. In Fig.4.21(f), where a Dumber

of iterations are shown, it is seen that an unstable branch appears along which iter­

ates escape from the neighbourhood of P. Thus the onset of impact introducesa new

unstable manifold in the retum map, but the original orbital motion is still relatively

stable.

The fixed point P of the retum map bccomes unstable at V = 0.3425, signified

by a slope of >.,. = -1 at P. This indicates that the originallimit cycle, to which the

OThe nonnal form is the simplest form to which, a system of equatioDS exhibiting a gi~ bifurca­
tion, cau be reduced.



'Note that a period:l orbit on the iterated map eorresponds to a period·2 orbit in the actual
system.

response was attracted after the amplitude bursts, is no longer stable. This instability

is associated with a subharmonic (fiip) bifurcation in the dynamica! system. It is man­

ifested as the appearance oforbital motion at half the original in-fiow orbital frequency

(recall that in-fiow response is coupled to cross-fiow response at w ~ 2wo). FigA.22

shows results for V =0.343, which is slightly above this new instability threshold. The

subharmonic motion is evidenced by comparing the time traces of FigA.22(b,c), which

show periods of equal frequency in the two orthogonal directions, but aIso periods

where the two frequencies are related a factor of 2. The corresponding phase plots are

presented in Fig.4.22(d,e), showing the dominant effect of the instability to be in the

in-fiow direction. FigA.22(f,g) shows the Poincaré return map. F(X,,) is no longer a

smooth continuous function; instead, it has a discontinuity on the lirst bisectrix near

the original fixed point ? Hence, not only do we have a fiip bifurcation but also an

instability leading to two new fixedpoi:lts Pl and P2. The slope 1dF/dX"1> l at Pl

hence, on this lower branch the fi.'I(ed point is unstable. The subharmonic bifurcation is

evidenced by the existence of another pair of points, labelled pl and p2 in FigA.22(g),

that are mutual images which refiects the existence of a periodic orbit on the iterated

map; 7 in the neighbourhood of these points the response is approximately period-2.

The approximation to period-2 motion is supported by the concentration of iterates

in the neighbourhood of pl and p2 in FigA.22(g). As seen in the return map, the

subharmonic orbit (pl -+ p2) is unstable, occurring only intermittently for a few cy­

cles before breaIjng up. A period-2 orbit born of a subcritical bifurcation is unstable,

hence the resulting response v<:crs away from the orbit after several cycles - leading

to the in-fiow amplitude burst seen in Fig.4.22(b).

The qualitative behaviour, specifcally the aspects associated with the fiip bi­

furcation and the resulting unstable pl -+ p2 orbit, describea~hove lits in well with

the Pomeau-Manneville Intermittency transition route to chaos. Intermittency coupled

'Ivith a subharmonic bifurcatio~ was labelled as "type III intermittency" by Manneville

•
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and Pomeau. The neighbourhood of p1,p2 has been dubbed the "laminar regime"

of the response (Pomeau & Manneville, 1980), as contrasted to the outlying "tur­

bulent regim(;" visited by the iterates during a turbulent burst. The intermittency

route to chaos is well documented. It has been uncovered in diversely varying systems.

The simplest are 1-D return maps. More complex systems include the Lorenz model

for atmospheric convection, temperature-gradient-driven Rayleigh-Bénard convection

(Bergé et al., 1980) in f1uid dynamics and the Belousov-Zhabotinsky chemical reaction

system (Pomeau et al., 1981). Intermittent transition to turbulence has been known

by f1uid dynamicists for many years. Sreenivasan & Ramshankar (1986) have shown

that there are significant similarities between such transitions in pipe f10w to the inter­

mittency observed in the low dimensional dynamical systems enumerated above. The

,vide variance in the dynamical systems exi:ibiting the intermittency transition - with

quantitative measures and characteristics in common - attests to the ubiquity of this

route to chaos.

To sum up, there is evidence that type III intermittency plays the dominant role

leading to chaotic behaviour at the onset of impacting. There also exists, however, a

second mechanism !'Ihlch introduces an unstable manifold (Fig.4.22) thus contributing

to the chaotic behaviour. Although not quantitativcly confirmed, the second mecba­

nism is suspected to be the so called switching mechanism; this mecllanism is discusscd

in greater detail in Chapter 5.

•
Characterization of the Cylinder Response 63

•

4.3.3.2 Bifurcation of Periodic Solutions

The frequency of intermittent bursts of cllaotic motion increases with increasing

fiow velocity, such that at V = 0.365 no laminar phast· is discernible in the in-f1ow

direction time trace. Following this, an apparent reversai of the original f1ip bifurcations

occurs culminating in a single-sided impacting periodic solution with a frequency w ~

It is clear that a symmetry-breaking pitchfork bifurcation has also occurred,

resulting in asymmetry in the period-1 motion. Fig.4.23(a) shows an example of the



stable asymmetric period-l motion at V = 0040 for the initial cross-f1ow displacement

y(O) = 0.04. A change in sign of y(O) to y(O) = -0.04 results in the mirror image

(about y = 0) orbit of Fig.4.23(b). While the velocity at which the pitchfork bifurcation

occurs cannot be ascertained, it is most likely coincident with the onset of impacting,

determined by the condition y > 0 or y < 0 when impact commences. The orbits in the

chaotic regime just described, although continuously varying, allu<Ïe to an asymmetry

in the long term response.

Instability of the new period-l motion is once again via a f1ip bifurcation, at

V =0.43. In this case, however, the bifurcation is supercritica1leading to stable period­

2 motion. Three impacts per cycle occur in the new response (FigA.15(d». Period

doubling bifurcation of an asymmetric period-l solution, in systems with symmetry, is

often the initiation of a cascade of period doublings (the Feigenbaum cascade) culmi­

nating in chaos. Such a cascade does not materialize for the present system. Instead,

the period-2 motion is destabilized, reverting to period-l motion. This is a bifurcation

qualitatively similar to period 'bubbling'; however, the change in in-f1ow amplitude in

this case shows a discontinuousjump as seen in FigA.12(a). Closer examination of the

orbital motion as V approaches the (period bubbling) bifurcation velocity, V = 0048,

reveals that the two half orbits comprising the period-2 motion approach each other.

A quantitative measure of the convergence is given by a trace of the bifurcation in the

impact "clocities in this range. FigA.24 shows bifurcation diagrams of the radi~.l and

tangcntial impact velocities. The bifurcation parameter is the f10w velocity V, as pre­

viously; Ur and Ut are respectively the radial and tangential cylinderJsu?port approach

velocities. The disappearance of period-2 motion at V = 0048 occurs when the radial

and the tangential velocities of the two half orbits coincide indicating merging to a

single orbit. This limiting orbit is, however, unstable, resulting in a jump to a new

period-l double-sided impacting orbit with new angular impact positions.

Fold bifurcations, commensurate with the appearance of a parameter range of

coe."Ôsting periodic sOlutions, are common in nonlinear systems. An oscillator 'l';ith

cubic stifFness, the Duffing S)'Stem, is an e.xample of such a system. In the parameter
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range of coe.xistiDg stable orbits, the stable orbits are separated by an unstable limit c~·­

cleo An important feature of the fold phenomenon is the hysterisis effect, accompanicd

by a jump phenomenon. The foregoiDg characterizes the bifurcation behaviour in the

vieinity of V = 0.55. The hysteretic jump occurs between the asymmetric motion at

w ~ Wo, and a new symmetric periodic response as depicted in Fig.4.16. The symmetric

response in-f1ow amplitude is almost ten times smaller than the asymmetric respor.se

as seen by comparing Figs.4.16(a) and (d) (noting the magnification of the x-a.~s in

FigA.16(d)). The fold phenomenon is delineated in FigA.12(a) and also in Fig.4.24.

FigA.24 shows that for the symmetrical response, the cylinder approaches the support

purely radially, hence, Ut = O. As was the case in the preceding, the stability üf this

symmetrical solution is short lived (in parameter space) and undergoes a symmetry

breaking pitchfork bifurcation at V = 0.68 as is weil demonstrated in FigsA.12 and

4.24. In FigA.24 it is seen that, after the bifurcation, the radially approaching impact

(Ut = 0) for one of the impacts, while for the second Ut i- 0 and corresponds to the

lower branch in the Ur bifurcation diagram for 0.68 < V < 0.92.

The original symmetrical orbit e.~sts, albeit as an unstable limit cycle demarcat­

ing the domains of attracti-::it'.::'r the asymmetrical stable solutions. At V =0.92 the

symmetrical orbit regaÏ>Js stability. While this is assoeiated with a smooth mergiug of

the Ur branches of the asymmetrical orbits, the tangential impact veloeity Ut shows a

discontiD'louS jump at the instability veloeity in FigA.24.
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4.3.3.3 Final Transition to Chaos

The chaotic character of motions at high enough V (V > 1.06) is weil supportcd

by the bifurcation diagrams of FigsA.12,4.24. The concentration of points ncar Ur = 0

in FigA.24(a) suggests the occurrence of significant ~liding motion in the second chaotic

regime. The low density or reduced occurrence of impacts with Ut =0 implies also that

pure impact type motions are also reduced. At this point, the unanswc:red question is:

'''-C:. ': how does the bifurcation to chaos come about - i.e., what is the route to chaos.

Period doubling and quasi-periodicroutes are ruled out since none of the char-



acteristic bifurcations associated with either of these routes are observed. This is also

truc for global bifurcations associated with homodinic orbits, since these do not exist

in the present system.

Fig.4.25 shows time traces for three velocities V = l.Oi, l.09 and l.15 fully chaotic

respectively. V =l.Oi is just above the transition velocity to chaos. Both the in-fiow

and cross-fiow traces at V = l.Oi (Fig.4.25(a,b)) exhibit long durations of almost

periodic response interrupted by brief, large amplitude bursts, which results in loss

of temporal correlation. This sugges~s intermittency as a candidate for the route to

chaos, in this case also. The frequency of turbulent bursts increases with fiow velocity

and ultimately, e.g. at V = l.15, regions of the laminar phase are no longer discemible

- further evidence of an intermittency transition. For V < l.Oi the turbulent bursts

occur less and less frequently; the limiting velocity is the transition velocity l/;" = l.06.

In order to ascertain our daim of an intermittency route to chaos, as weIl as

determine the intermittency type, we now proceed to a qualitative analysis to show

the existence of some universal characteristics and measures which would confirm it.

As previously, the approach taken is an analysis of a reduced Poincaré retum map of

the system. Near the critical velocity to chaos, a I-D map is extracted from the system.

The I-D map relates the in-fiow amplitudes as follows:
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We seek a form of the function G in the vicinity of the original fixed point, Le. in

the la'llinar phase of the i:::termittent response. This can then be compared with the

e:"pected form for a map exhibiting a specific intermittency transition.

Fig.4.26(a) shows a map corresponding to equation (4.13) at V = l.Oi which is

just above the critical velocity for the onset of final chaos l/;,f = l.06. The laminar

region is distinguished near the point marked P. In this region, iterates fall on a simple

curve; hence, it is possible to obtain a simple form for G(Xn , V) for the laminar regime.

The collapse ofG(Xn , V) onto a single curve strongly suggests that the S)·stem has a I-D



centre manifold on which the bifurcation occurs. This curve is also tangent to the first

bisectrix near P at V = 1.Oï which is just above the intermittency threshold velocity,

Vel = 1.06. The characteristics of the map of Fig.4.26(a), coupled with intermittent

response<; of Fig.4.25 point to the so called "type l intermittency" route to chaos. This

transition is characterized by a saddle-node or tangent bifurcation of a simple fixed

point (on the Poincaré plane).

For the map of Fig.4.26(a), the transition may be described as follows. For

V < Ve" G(Xn , V) has two fixed points of opposite stability near the tangency point

labelled P. The stable fixed point corresponds to the period-llimit cycle motion existing

for V < Ve,. .1!I.s V is increased, the two fixed points merge (at P) and disappear

at V = Ve,. The disappearance of the two fixed points at V = v;" is the result

of a saddle-node bifurcation which oceurs when the eigenvalue Àr = +1; for the I­

D map, Àr is simply the slope at the fixed point P - this is evidently the case in

Fig.4.26(a), quantitatively confirming the bifurcation. For V slightly above Ve" a

narrow channel opens up such as in Fig.4.26(a). Successive iterates travc1 along the

channel, as demonstrated in Fig.4.l6(b), which requires a large number of iterations;

in fact the closer G(Xn , V) is to the first biseetrix, the larger the number of iterations,

henee cycles in the laminar phase. The iterates eventually escape from the narrow

channel. Outside the channel, the cO~Telation exhibited in the laminar region vanishes

as the s~...tem explores unst.able.l'egions of phase space; this is signified by the scatter

of points in Fig.4.26(a) away from the neighbourhood of P. In the system rcsponse,

this corresponds to the t.urbulent burst of chaotic motion. Following a turbulent burst

then, the return of the system to the laminar phase corresponds to a reinjection into the

ch:-..nne1, a process referred to as rel3.1:'linarization. A case of reinjection into the channel

following an esca~e may be seen in Fig.4~26(b). The duration of a given laminar phase

is determined by the reinjection point into the channel; hence, shorter laminar phases

..:orrespond to reinjection deeper within the channel.

Type J·intermittency has been observed both in simple low dimensional systems

as well as in compl:'x high dimensional systems. The baker's transformation, which
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we discuss later in Chapters 5 and 6, is an example of a simple map exhibiting type l

intermittency. Examples of complcx dynamical systems include the Lcrenz model for

Rayleigh-Bénard convection and the Belousov-Zhabotinsl.:y chemical reaction.

An important feature of intermittency transitioID' is that, near critical parameter

values, where a significant laminar regime exists, the system behaviour remains close

to the original periodic solution. This makes possihle for qu:mtitative estimation of

important parameters such as the probability distribl:tion of the duration of laminar

phases - that is, the average time spent by the attractor n€-'lI the original stable orbit.

We return to this important analysis in Chapter 6.

•
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4.3.4 Attractor Characterization and Quantitative
Measures

In the preceding section, evidence supporting the e:dstence of a chaotic attractor

for the present system has been found, most significantly in the high flow velocity

range. This was supported not only by the observation of a chaotic character of the

motions in the time traces and phase plane plots but also in the characteristic broad­

banded frequency spectra with high low-frequency content, typical of chaotic solutions.

Most significant, however, is the distinctive intermittent transition route to chaos, weil

supported both qualitatively and quantitatively.

We close the present discussion with a characterization of the high velocity chaotic

attractor and determination of some standard attractor measures.

While the transition to cha/~ may imply totalloss of order in the conventional

sense, investigators have uncovered remarkable organization or geometry in a response

that has become chaotic. The Poincaré section is a geometrical construction utilized to

view the attractor phase plane plot on a reduced dimension and is a tool for revealing

such organizl'tion. The Poincaré section selected for the present 4-D space is defined

by the plane y= O. For the flow velocity V =1.09, the result of a projection of the

• Poincaré-section (which is itself embedded in 3-D space) onto the 2-D plane y = 0



results in the geometrical object presented in Fig.4.2ï.s Distinct structure is obscrved

as is typical of chaotic attracto~; the stn;cture showed no \'aI'Ïation in the relative

density of iterates after a certain minimum number of iterates required to reveal its

basic form.

For the fractal attractor revealed by the Poincaré section there exists a fractal

dimension, a characteristic of attractors associated with dissipative systems. Therc

e.'CÏst several variants for the definition of the fractal dimension, as dctailed by Grass­

berger & Procaccia (1983). For brevity the two variants deemed most significant in

the present context are considcred.

Firstly we examine the capacity dimension, de, which is most closely relatcd to

the traditional idea of dimension, Le. the topological dimension in Euclidean spacc.

Let A denote the set of points making up the attractor and assume A to be bound

by a subset of Rm - for our ca.-.. m = 3. Let N(E) denote the minimum numbcr of

m-dimensional cubes of side Eneeded to cover A. For small E, N(E) increases as
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(4.14)

•

and in the limit
d r 10g[N(E») ( )

e = (~ 10g[E) . 4.15

One easily sec<; that N(E) =1, LIE, 51E2 for a point, !ine and surface, respcctively,

leading to de =0, 1, 2 for these three standard geometrical objects.

Another definition for the fractal dimension is called the correlation dimension,

der. The underlying idea in this definition is that the pairwise correlation C(E) in a

hypersphere of size E about points in A scales exponentially with E. Mathematically,

(4.1G)

8Note that in Fig.4.2i the fi position, rather than amplitude, is plotted.
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where '1'(p) is the Heaviside function

ïO

'1'(p) = 0,

'1'(p) = l,

der is then given by

p<O,

p>Oj (4.1ï)

d - r 10g[C(E)] (4.18)
er- Imo 1 [] .(- OgE

Grassberger & Procaccia (1983) have shown that the fractal dimensions defined above

arc related by

(4.19)

and also that fJr most attractors der ~ de.

For the attractor corresponding to Fig.4.2ï, der was computed. In Fig.4.28(a)

the variation of C(E) with E is shown on a log-log plot. The correlation dimension

is determined from the linear portion of the graph giving a value of der = 2.0ï. For

comparison, the result of a similar computation, this time for the periodic response at

V =0040 (cf. FigA.15), is presented in FigA.28(b); der =1.036 for this case, which is

reasonably close to the expected value of der =1.0 for a period-1 response.

Intuitively the dimension of a space denotes the amount of information needed

to specify a location. Equation (4.15) suggests that for fractal sets the dimension need

_not be an integer. For high dimensional systems attractors are often found 'with a

significantly lower fractal dimension. The practical significance of this result is that

the dyn:uI1Ï<'s on the attractor, hence the system, can be captured on a significantly

reduced dimension space relative to the original embedding phase space dimension. A

value of der = 2.0ï for the attractor of FigA.2ï suggests that the attractor is limited

to under 3 dimensions of the 4-dimensional phase space.

A hallm~k of chaotic attractors is the effect of exponential divergence of initially

-:- nearby states as a result of stretching and folding. The rate of divergence of nearby
::: ~-- --::..--

// statê:> is a measure of the e.'."tent to which an attractor is chat:tic. This divergence



rate is determined by the Lyapunov exponents of the system. We shaH be particularly

interested in the largest, or most positive, exponent - this being sufficient for the

identification of chaos. To define the Lyapunov e::-.:ponent consider a system
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x =F(x),

il

(4.20)

for which th,.,e exists a solution 4>(r). For two solutions 4>1 (r), <I>2(T) commencïllg at

nearby initial conditions, one can defiîiè a variational vector function

uer) =4>1(r) - 4>2(T). (4.21)

W"hen the condition lui << 1 is satisfied, the time evolution of the mriatiollal vector

is determined by the linear equation

ù =DF(4J)u, (4.22)

where DF(4J) is the Jacobian matrLx function of the vector field F(x).

The solution to the first-order matrix differential equatlon (4.22) takcs the form

IU(T)I = u(O)eVT
• (4.23)

Hence the Lyapunov exponent 17 dctermines the exponential rate of divergence of

nearby solutions. The exponential growth of uer) cannot continue indefinitcly, since

the attractor is boundedj hence 17 has to be determined from many different initial

conditions. The formai definition of the Lyapunov exponent is

_ . l' ~ 1 [lu;(r)l]
17- N;~oo~NTln IUi(O)Ï , (4.24)

where Ui(O) is the initial variational vector for the i'h initial condition along the test

• :>rbit 4>(T).

When the vector field F is analytic, DF(tfl) can be obtained, in which case 7!



is easily determined by simultaneo~sly integrating (numerically) equations (4.20) and

(4.22). For systems in whicb Fis non-analytic sucb as the one under study, or exper­

imental systems where the form of F is unknown, a numerical procedure is necessary

to track the evolution of u(T) on a reconstructed phase space. For this purpose, an

algorithm developed by Wolf et al. (1985) was adapted for the present system.

The algorithr.J. works by analyzing a database of phas2 space vectors that trace

a trajectory .p(T). Ensuring a large enough number of orbits around the attractor, an

initial variational vector U(T) is determined by two phase points within a distance do.

Subsequent phase points are tracked over a distance along the at:ractor corresponding

to a predctermined evolution time Te, resulting in a final separation de. For one sucb

iteration, an estimate of the largest Lyapunov exponent is given by
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Üe= .!..ln [de] .Te do

ï2

(4.25)

•

Since the initial phase points separated by do may be locatecl anywhere on the attractor,

individual values ofüe will differ significant1y, refiecting local attractor behaviour sucb

as stretcbing or foldingj Ü is therefore the average of a large number of üe•

For a periodic solation the Lyapunov e."(ponent Ü = O. This serves as a test for the

algorithm. Fig.4.29(a) shows the convergence to an average value of Ü for the period

two s<>lution at V = 0045 (Figo4.15). Convergence to the expected value of Ü = 0 is

found to be very good and occurs within about 30 iterations.

An estimate for ü:n the cbaotic regime at V = 1.09 is shown in Figo4.29(b).

Although convergence is not as smooth as in the periodic case, an average value of

ü ~ 1.4 is obtained for this attractor. The positive Lyapunov e."(ponent supports the

earlier ccnclusions of the cbaotic nature of the response and the existe:c.ce of a strange

attractor in this high velocity regime.
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4.3.5 Codimension 2 Bifurcations

ï3

The tube-support gap spacing èr is possibly the second most important system

!larametE'r after the fiow velocity from a dynamics point of view. Varying èr results in

significant changes in system response. The totality of the range of system responses

as the parameters V and èr are varied is summarizcd in a bifurcation set diagranl,

Fig.4.30. The clearance èr was varicd in the range 0.02D to O.OSD.

The various types of tube responses may broadly be divided into five regions, as

shov,rn Fig.4.30. Region l corresponds to limit-cycle motion, immediately fol1owing the

Hopf bifurcation at li;, = 0.32. In this region, limit-cycle amplitudes remain below the

tube-support clearance and no impacting takes place; the cylinder exhibits a figurc-of­

eigilt orbital motion, as depicted by inset (a). Once the limit-cycle amplitude surpasses

the tube-support clearance, complex orbital motion ensues, as shown in insets (b) and

(c) in Region II. For a given velocity, V, the type of response obtained (in Region II)

depends on the dimensionless clearance ër • For low clearances, ër :s 0.04, the tube

response is complex quasi-periodic, as èepicted in inset (c). At higher ë., this quasi­

periodic motion intermittently breaks down into chaotic motion; an example is shown

in inset (b). For ër =O.OS, the response is chaotic, which is particularly evident in the

in-fiow com;>onent of the motions, as discussed earlier in Section 4.3.3.

The responses in Region III may be considercd to mark the onset of impact­

dominated motion, for ër ~ 0.05. Taking for example the case of èr = 0.07, the

chaotic response of Region III develops into an asymmetric period-2 orbital motion;

see inset (d) for Region IIIa. For higher V, this period-2 motion collapses into a

period-l orbital motion; see inset (e), Region IITh.•A,s V is increased further, the

ne:d bifurcation generates a symmetric high-frequency motion, almost purcly in the

cross-fiow direction - see Region IIIc, inset (g). At still higher V, a pitchfork-like

bifurcation results in loss of symmetry in the motion, as shown in inset (h), Region

IIId; then, this bifurcation is reversed and in Region IV VIe once more have symmetric

• high-frequency response.

. These results, applica.ble for 0.05 ~ è,: ,;. il.OS, are quite similar to those depicterl



in the bifurcation diagram cf FigA.2 for ër = 0.08. It is of interest that the dynamies

in this range of ër is much richer than for smaller ër ; the number of types of response

increases with ër • In fact, the set of respoases at given values of ër is always a superset

of the equÏ'lralent set for a smaller value of ër • Thus, for ër .:s 0.04, the sequence of

bifurcations of Region III does not occur. Inst<!ad, the quasi-periodic motion of Region

II collapses directly into the high-frequency response of Region IV - sec inset (f).

For all clearance values, it is the high-frequency response of Region IV that un­

dergoes an abrupt breakdovm, resulting in chaos (Region V). The orbital motion in

the chaotic regime is similar for all values of V and ër - suggesting a similarity or

identity in the underlying chaotic attractor.
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4.3.6 Frequency Variation

The non-dimensional frequencies ofoscillation in the in-fiow and cros..,,:-fiow direc­

tions as V is increased are shown in FigA.31. For chaotic and quasi-periodic motions,

w" and wy are simply the dominant frequencies, which appear to always be discernible.

Varlous regimes may be distinguished, corresponding to those in FigA.12. These are

identified by the letters P or C corresponding to periodic and chaotic regimes respec­

tively. Region Pl is the first periodie region with no impacting, at the lowest end

of which the motion is in the figure-of-eight pattern so that w" ~ 2Wy. Cl and P2

are the first chaotic and next periodic regions, respectively, over which W" ~ Wy ~ l;

i.e., W", and wy are sensibly close to the zero-fi')w values. For V ~ 0.6, corresponding

to the drastic reduction in in-fiow motion shown in FigA.12 and in FigA.16(d-f) the

frequency of oscillation increases significantly by a factor of 3 approximately for w'"

and 1.5 for Wy, where once more W'" ~ 2 Wy' The frequency continues toincrease with

V, but more gradually, in region P3 - to a maximum, at the end of this region, of

w'" ~ 3.i and wy = 1.9. In C2, the main chaotic region, the frequencies are reduced

• abruptly back to w'" ~ 2 wy ~ 3, but again gradually increllSe, reaching eventually

w'" ~ 2 wy ~ 4 in the periodic window near the maximum V shown in FigA.31.
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Chapter 5

AN EXPERIMENTAL STUDY OF
CYLINDER DYNAMICS IN

'}~ATER-FLOWAND COMPARISON
WITHTHEORY

The theoretical analysis of Chapter 4 has sho",'ll that a wealth of complex dynam­

ical behaviour is exhibited by the system under study. Mo-;t interesting is the finding

that transition to chaos occurred via a 'standard' route which is weil understood and

lcads to a rcsponse with propcrties that can easily be measured e"."perimentally.

For continuation of the analysis, an e"."perimental system will now be studied. The

goal of thc expcrimcntal study is to determine the d)'llamical behaviour under more

complcx real conditions. In particular, it is of interest to 'ascertain and identify distinct

bifurcations in the response, as wcil as examine the characteristics of the resulting

behayio~r. The effcct of scveral paramcters on the resulting tube response is also

investigated. Thesc parameters includc cylinder/support clearance, interstitial gap

fluid at the support, as wel1 as the Coulomb friction coefficient at the support.

In the second part of this chapter, the ful1 theoretical model developed in Chapter

2 is applied to the e.,."perimental system. The ability of the model to predict the cylinder

d)'llamical behaviour is tested. Further analysis is also possible, including a qualitative

analysis of the d)'llamical system and e.'l:traction of practically useful information.

The findings of Chapter 4 'will pro\ide possible avenues for the elucidation of the

dynamicaI behaviour of this more comple.'I: system.

ï5



• 5.1 DYNAMICS OF THE EXPERIMENTAL
SYSTEM

5.1.1 Experimental Setup and Test Procedure

76

Tests were conducted in a Kempf and Remmers recirculation water tunnel. Per­

tinent parameters for the water tunnel are: a test section ofdimensions 0.26 x 0.26 x 1.1

m, velocity range 0-15 m/s, and free-stream turbulence intensity 0.5%. The upstream

flow velocity was measured using a Kentlea mini-probe turbine flow meter, accurate to

within 0.0005 mis in the range 0.0 - 3.0 m/s.

The system under study comprises a single flexibly-mounted cylinder locatcd in

row 3 of an array of otherwise rigidly fixed cylinders. The array consists of 7 rows of

cylinders. Cylinder climensions are: diameter 12.7 mm (0.5 in.) and 238 mm (9.37 in.)

long. The test cylinder was mounted as a cantilever and consist~d of a rigid section

(m = 0.301 Kg/m), oflength 356 mm (14.0 in.) which spanned the water tunnel cross

section, and a lower smaller-diameter (4.8 mm (0.19 in.» and hence flexible section

fixed at its bottom end; see Fig.5.1. The flexible part of the test cylindcr cxtended out

of the water tunnel working section, in a specially designed cylindrical compartment

below. The only fluid connection between the lower compartment and the test section

was the clearance hole for the test tube, and hence the flexible part of the tube was

immersed in essentially stagnant fluid. A close-up of the central part of the array is

shown in the cross-sectional view of Fig.5.1(b). A locking setup, at the bottom of

the cantilever, is provided for alignment and clamping of the test cylinder. At the

upper end of the rigid (larger diameter) section of the test cylinder is mounted a solid

cylindrical impact piece 25.4 = (1.0 in.) long, protruding into an upper box-like

compartment. The support piece consists of a 9.5 mm (0.375 in.) square slab with a

circlùar hole of appropriate diameter for the desired clearance. At the impact surface,

the support thickness is reduced to 3.6 = (0.14 in.). The test cylinder logarithmic

• decrement of damping 0 =0.01; fa =6.1 Hz in air, and approximately 5.5 Hz in water.

Five support clearance diameters were tested, in the range 0.07D - 0.23D; the



largest being close to the maximum possible support-inactive tube displacement. Most

tests were conducted with the brass tube impacting on brass support pieces. However,

to investigate materi:ù effects on the tube dynamics, special tests were conducted with

stainless steel aud Delrin, rather than brass, supports. The interstitial fluid medium

at the support location (air or water) was varied by changing the water level within

the containing plexiglas compartment above the test section; the tunnel pressuriza­

tion/depressurization system made it possible to maintain a steady water level.

Tube motion in two orthogonal directions was sensed by an Optron non-contacting

optical motion follower, which focused and locked onto a target at the upper end of the

test cylinder; the sensor output consisted of both the tube displacement and velocity,

in the in- and cross-flow directions. Other components of the data-acquisition sys­

tem included a Nicolet digital oscilloscope for real-time monitoring, an HP3562D FFT

digital signal analyzer, a Racal analog tape recorder and an HP9000 series computer.

During a typical test, the flow velocity was incremented in the range 0 to 0.18

or 0.25 mIs (depending on support clearance). On attaining a steady state, response

spectra were ca1culated, giving vibration amplitudes and the corresponding frequencies.

Simultaneously, velocity and displacement signals were recorded for further analysis.

Recording durations were kept short (typica1ly between 3 and 10 minutes), to ensure

that relatively constant support conditions were maintained throughout the test.
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5.1.2 Hopf Bifurcation and Support-Inactive Cylinder
Response

Preliminary tests were conducted to determine the critica1 flow velocity for fluide­

lastic instability and the limit-cycle amplitude-growth rate. The maximum clearance

available to the cylinder was 0.25D, this being the inter-cylinder clearance. During

the experiments the test cylinder is constantly subject to turbuleu.t buffeting, hence,

the "initial conditions" (position and velocity) are indeterminate. The response results

presented therefore may be considered to correspond to the most likely attractor in

cases where multiple attractors (solutions) may be possible; the attractor most likely



to be manifested in the e.xperiment is the one with the largest basin of attraction. How­

ever, the repeatability of the results suggests that the ~'ariabilityof initial conditions

did not affect the final results.

Typical graphs of rms vibration amplitude response of the test C)'linder versus

velocity are shown in Fig.5.2; fio and.7:orepreseilt the non-dimensional cross-fiow and in­

fiow amplitude, respectively. Fluidelastic instability occurs at Uc ~ 0.10 m/s. Several

tests have been conducted, and an average value of Uc =0.105 mIs was obtained which

yields v;, = 0.216; this is the value for v;, that \'l'ill henceforth be used. The instability

is sharply defined. In-fiow amplitudes remain approximately live times smaller than

their cross-fiow counterparts, reflecting the existence of weak fiuid coupling between

CD and the cross-fiow displacement fi.

Fig.5.3 shows the cross-fiow and in-fiow response power spectra and the corre­

sponding phase plots at V = 1.05 v;,. The slight deviation from a periodic orbit, most

noticeable in the in-fiow direction, reflects the effect ofunsteadiness in the fiow velocity;

this was found to be approximately 4% of the mean velocity, despite the Ward-Leonard

control for the motor driving the water tunnel impeller (perhaps because the flow ve­

locity was so small). The limit-cycle amplitude grows to reach the maximum available

clearance at V =1.14 v;,.
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5.1.3 Post-Instability Response with Impacting

Tests were conducted for live non-dimensional tube/support gap sizes: è. ­

0.067, 0.132, 0.174, 0.200 and 0.229. Preliminary tests showed that, due to the

smallness of è., the steady drag quickly (in terms of flow velocity range) resulted in

pinning the cylinder against the baffle-hole wall in the drag direction. Tests were

therefore conducted with an initial upstream deflection of the test cylinder relative to

the clearance hole, X. = 0.148,50 as to increase the range of useful experiments. There

, was also an (unwanted) offset of Yc = 0.03; note that this value of Yc corresponds to an

• offset of 0.4 = which is close to the tolerance of the cylinder alignment mechanism.

The radial offset then is Tc = 0.151. Hence, for tests with ë. < 0.151, the test cylinder



was initially preloaded by a support contact force.

The tube response with varying ër may broadly be divided into two categories.

For the larger gap sizes (ër > 0.170), periodic motion, or motion v."Ïth a distinct

periodic component, was predominant over the complete test flow-velocity range, with

the exception of a small chaotic band. For smaller gap sizes (ër < 0.170), on the

other hand, the rcsponse culminated in chaos for high values of the flow velocity and

thereafter remained chaotic. The behaviour of the system will be described next in

detail, for the different values of impact clearance.
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5.1.3.1 Results for ër =0.174

We fust present results for gap size ër = 0.174 and for various flow velocities; the

tube impact-piece and support material was brass, with impacting cccurring in air.

Following the Hopf bifurcation (hence, onset of fluidelastic insfai5ility) the limit­

cycle amplitude grows sufficiently for impacting to occur at V = 1.17 v.,. At this

ve1ocity, interaction with the support has a significant damping effect such that, for

several cycles after impacting, the amplitude is reduced to below ër • Fig.5.4(a) shows

the orbital (x, y) motion at V =1.17 v.,. The induced in-flow motion is nearly quasi­

periodic, the second frequency representing the time interva! between impacts; the

time interva! in-between impacts, however, appears to be random, thus introducing a

chaotic component in the response. This quasi-periodic like character is weil depicted

by the in-flow and cross-flow time traces of Fig.5.4(b,c). The corresponding frequency

spectra, Fig.5.4(d,e) show the period-1 motion to be predominant.

Double-sided impacting commences at V = 1.2 v.,. Typical results are shown

in Fig.5.5 for V = 1.24 v.,. lt is seen that motion is predominantly in the cross-flow

direction (Fig.5.5(a», albeit slightly skewed. The cross-flow time trace, (Fig.5.5(c»,

has an almost constant amplitude. This motion is close to a simple limit cycle of

period-1, as evidenced by the power spectra in Fig.5.5(d,e).

• Another bifurcation occurs at V ~ 1.43 v.,; the double-sided impacting response

intermittently loses stability, breaking down into a complex ova1ling motion, as shown



in Fig.5.6 for V = 1.47 v;,. \Vhile the cross-flow amplitude remains almost constant

(Fig.5.6(a,c)), in-flow motion (Fig.5.6(a,b)) exhibits bursts of amplitude growth during

the orbiting phase. It is the in-flow component of motion that introduces a chaotic

element to the response, since the bursts of amplitude-growth are intermittent. At

the onset of intermittency, nearly-periodic motion (corresponding to a laminar phase)

is still predominant over any given period of time of the intermittent response. The

in-flow and cross-flow power spectra in Fig.5.6(d,e) indicate that a significant periodic

component still exists in the response. This type of response is commonly encountered

in operational heat c-'i:changers and is referred to as breathing type response. It is

characterized by bursts of periods of audible impacting, which are interspersed between

relatively long quiet durations. In the c-'i:periments, audible impacting occurred in' the

double-sided impacting phase, while the orbiting motion was relatively quiet.

As V is increased further, the time between intermittent bursts of amplitude

gro"'1:h is diminished; a comparison of Fig.5.7(b), showing in-flow response at the

higher veloeity V = 1.54 Ve, and Fig.5.6(b) shows this diminution. The increased

chaotic content in the response is also reflected in the spectra of Fig.5.7(d,e). At

V = 1.69 v;, periodicity in the in-flow response has vanished altogether, as seen in

Fig.5.8, marking the onset of generalized chaotic motion, as evidenced by both the

orbital plot and the time trace of Fig.5.8(a,b); further evidence is provided by the

in-flow power spectrum of Fig.5.8(d), which shows significant low frequency content

as well as overall broad-bandedness typical of chaotic response spectra (cf. Figs.5.6(d)

and 5.7(d)). In the above described scenario, there is evidence purporting transition

to chaos via intermittency. This will be investigated in due course.
, '

Th: intermittently orbiting response occurs over the rl'..::..ge of flow velocities,

1.69 :s; VIv;, :s; 1.80. At the higher end of this range the c:>mponent of the response

at 21ft in the in-flow direction becomes predom~ant. This l.....arks a transition to a
'~ <.-:

response with in-flow frequency double the cross-flow frequency. AS shown in Fig.5.9

for V = 1.91 v;" the doubling of the in-flow frequency results in a figure-of-eight orbital

motion; at this velocity, significant sliding at the support occurs, introducing a chaotic

•

•
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component to the response. This latter type of motion is sustained for higher values

of VIVe, until 'sticking', due to blow-back occurs at V ~ 1.95 Ve.

The cylinder response described above, and associated bifurcations, :s unchanged

for the two larger ë., namely ë. = 0.200 and 0.229. The identica1 bifurcation sequence

is repeated. For the larger gap sizes, however, the chaotic regime occurred over a wider

velocity range. This finding suggests that the bifurcation sequence is quite robust and

might possibly represent 'typical' behaviour for this system in the parameter range

tested. The results for the gap size ë. = 0.200 are compared with theoretical findings

in Section 5.2.2.
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5.1.3.2 Results for Small Gap sizes

Significant changes in the overall cylinder response occur when the cylinder/support

clearance is significantly reduced. Initial cylinder/support contact at zero fiow, which

results in preloading of the cylinder, is primarily responsible for the overall change in

the response. For ë. =0.132 for instance, initial preload results in a de1ay in the appear­

ance of cylinder vibration until V = 1.05Ve. The quasi-perlodic like and double'5ided

impacting responses do not occur for this gap size. Instead, the Hopf bifurcation leads

directly to combined double-sided impacting with intermittent orbiting response. This

response is shown in Fig.5.10 for V = 1.29Ve. Similarly to the case with ë. =0.li4,

this response is replaced at higher velocities by a figure-of-eight orbiting response as

seen in Fig.5.U for V = 1.62Ve. This motion, despite being mainly perlodic, exhibits

bursts of amplitude growth which introduces a chaotic component in the response.

Next, some results for a re1atively small gap-size are presented, name1y ë. ­

O.OGi, two times smaller than in the foregoing case. The initial preload introduces

even stronger nonlinearities, both due to the larger lifting force necessary to overcome

the initial preload and the directly related friction force. The cyllnder is initially

in contact with the support, and single-sided impacting therefore, occurs after the

• onset of fiuide1astic instability. The resu1t is dynamica1 behaviour which is distinctly

different. For V = 1.l0Ve, the first signs of fiuidelastic instability are manifested.



As shown in Fig.5.12, the destabilizing fluidelastic force occasionally lifts the cylinder

from the support. The response appears tC' already be chaotic. Single-sided impacting

chaotic motion occurs fer V =1.20v;" as seen in Fig.5.13. The preload contact force

is large enough such that no double-sided impacting motion occurs. Instead, at a

higher velocity V =1.43v;" the single-sided impacting motion hal> a significant orbiting

component, Fig.5.14. At V = 1.58v;" the large incident angle of impact results in

significant coupling between the cross-flow and in-flow motions. The result is x and

y components of comparable amplitude, as seen in Fig.5.15. In Fig.5.16 is shown the

tube respouse at V = 1.ï1v;" where occasionally the cylinderlsupport contact force

causes sticking.
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5.1.3.3 Co-dimension 2 Response Büurcation Diagram

The results obtained for ail gap sizes may conveniently be summarized in the 2-D

bifurcation diagram of Fig.5.1ï. It is clearly seen that the number of bifurcations in the

response increases with increasing ër , although it is possible that some or ail may still

e:dst for small ër, but over inconsequentially small ranges of V. On the other hand,

chaotic response is confined to a small, intermediate range of V for large ër , whereas

for smaller ër it occurs earlier and lasts much longer; for small enough ër , the response

is chaotic over the complete velocity range.

5.1.4 Effect of Different Support Materials on Impacting
Response

For the gap size of ër =0.200, the effect on the impact dynamics of two material

combinations, other than brass-on-brass, was investigated. For this purpose, the im­

mobile impact piece, forming the "bafile hole" , was changed to either stainless steel or

Delrin (Actai). The pertinent physical parameters are summarized in Table 5.l.

By comparing the response of the brasslstainless-steel (bis) combination to the

brass/brass (b/b) one, the eifect of increased support stiffness may be assessed, while- . .- .

the Coulomb friction coeflicie'.lt Jl.fr remains essentially unchanged. Delrin, because of
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Table 5.1: Physical properties of support materialsj p is the density of v.-ater and P.
is the density of the support-plate material

Material E (N/m') !J.fr P./p
Brass 8.96 x 1O,u 0.4 8.55

Stainless Steel 2.0 x 1011 0.4 ï.80
Delrin 3.33 x 109 0.01 1.54

itslubricatingproperties, provides (in the brass/Delrin (b/d) combination) information

on the effect of a low coefficient of friction on the dynamics, while support stiffness is

still maintained high.

Fig.S.18 shows a comparison of rms response amplitudes for the b/b, bIs and b/d

cases. The cross-f1ow response amplitudes are seen to be quite independent of material "

combination over most of the f10w velocity range. Hence, the cross-f1ow amplitude is

largely determined by the maximum possible clearance in the cross-f1ow direction for

a given in-f1ow deflection (due to steady drag).

The high friction coefficient for the b/b and bIs combinations results in sticking

at V ~ 2.0 Vc. For the b/d case, however, sliding motion continues to higher f10w

velocities, due to the lower !J.Ir involved.

The dominant response frequencies for the b/b and b/d combinations are com­

pared in Fig.S.19. As might have been expected, no significant differences were observed

between the b/b and bis cases. Noting the expanded scale of the ordinate in Fig.5.l9,

it is clear that for V < 1.62 Vc , the frequencies remain appro.'\"imately the same; how­

ever, a significant increasing trend in the response frequency occurs for b/b starting

near V =1.62 Vc. For b/d impacting, this trend is delayed to V ~ 1.ïl Vc. Period-2

in-f1ow motion occurs for b/b starting at V ~ 1.80 Vcj the in-f1ow response frequency

f., =2f~ in the velocity range V ~ 1.80 Vc, and hence is off-scale in Fig.S.19. Coinci­

dentally with a doubling of the in-f1ow response frequency, a reversaI of the increasing

trend in the cross-f1ow motion occurs, marking the transition to a motion that is less

impact-dominated and with a larger sliding component. This transition does not occur

for the case of b/ d impacting, where a period-2 component is discernible but does not



become dominant until just prior to sticking; instead. orbiting motion persists for bJd.

Figs.5.20(a-c) show this response for V = 1.60Vc and bJd impacting; this rcsponse is to

be contrasted 'l';ith that shown in Fig.5.S for bJb impacting showing much lower in-fiow

amplitudes. At V = 1.90v;, large in-fiow amplitudes are sustained for b/d impacting

as sho"'"Il in Fig.5.20(d,e).
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S.LS Effect of Interstitial Support Gap Fluid

Next, we investigate how the tube response is af!"ected by the interstitial fiuid

at the support location. The effect of water at the contact location is expected to he

twofold: firstly, a lubricating effect on the contact surfaces, hence reduced frictional

resistance to sliding. Secondly, additional squeeze-film fiuid damping at the support;

this should be particularly important for small è••

Comparison tests were once again conducted for the gap size è. = 0.200. Fig.5.21

shows the rE'Sponse amplitudes and frequencies for wet and dry impacting tests. The

increased fiuid damping for the wet tests ( a portion of the test cylinder is now immersed

in still water) raises the critical velocity to v;, =0.120 mis, as seen in the amplitude

plots of Fig.5.21(a). A decrease in the vibration frequencies also occurs for the wet

tests as shown in Fig.5.21(b). Comparing the wet and dry tests, the cylinder cross­

flow response amplitude is seen to be approximately equal over the velocity range

1.20 < V/v;, < 2.00; hence, it is determined by the maximum possible cross-fiow

clearance, depending on the cylinder static equilibrium position due to blow-back. This

suggests that energy loss through squeeze-film damping at the support is negligible for

this gap size. The expected lubricating effect is apparent for V > 2.00 v;" where, while

sticking occurs for dry impacting, orbital motion is now sustained up to V ~ 2.15 v;,.
On the other hand, a difference in the in-flow amplitudes is noticeable for the velocity

range V > 1.70 v;,. Similarly to the Delrin tests, the increased in-fiow response for

V > 1.70 v;, is the result of a decrease in the effective friction coefficient at the support.

• The final bifurcation in the tube response is difFerent for impacting in water.

For the dry tests, the complex orbiting motion collapsed into a figure-of-eigbt motion.



Decreased friction in the wet tests results in a new orbital motion, with a significant

continuous sliding component. This motion has been found to be chaotic, a1beit with

a prominent periodic component.

The difference in the response frequencies for wet and dry tests shown in Fig.5.21(b)

is by-and-Iarge an added mass effect, hence, not primarily introduced by the presence

of water at the support. Stronger fiuid coupling between the orthogonal directions is

a1so introduced for the wet tests. The bifurcation to the final chaotic orbital motion

is refiected by a tendency toward levelling off of the response frequencies for the wet

tests for V > 1.70 v;,.
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5.2 THEORETICAL ANALYSIS OF THE
CYLINDER RESPONSE

In this section, the theoretical model, developed in Chapter 2, is applied to the

eJl.'perimental system. The first goal is to test the ability of the model to predict the dy­

namical behaviour exhibited by the experimental system. Using the theoretical model,

further numerical experiments are carried out so as to determine some quantitative

measures of the system behaviour where it appears to lie on a strange attractor.

5.2.1 The Governing Equations of Motion

The governing equations of motion, derived earlier in Chapter 2, are as follows:



where, i =1,2, ....N, ï =(1 + r.Cm ./(4m» and Ç; =Ç(>';f>'d2 is the modal damping.

Several simplifying assumptions are made in the equations above. To facilitate

the evaluation of the integraIs involving CL and CD, approximate analytical forms

for these force coefficients are desirable. A study of Fig.3.S and previous discussion

indicateà that for Iyl ~ 0.20, CL(x, y) exhibits reasonably similar trends over a range of

X. Furthermore, results of ad hoc calculations on the two degree-of-freedom model usiug

the curve CL(x = O,y) compared very weil with those using the complete map CL(x,y).

An approximate analytical fonn of CL(X = 0, y) was determined by performing a least­

squares, fifth-order polynomial fit on the experimental data.

Average CD variation is less than 20% of the mean value in the range Ixl, Iyl ~
0.20. The results of Chapter 4 aIso showed that no instability associated with the

CD variation is manifested; this is aIso supported by the experimental results, which

confirm the stability of in-flow motions. Hence, a constant value of CD = CD(x =

O,y =0) is used in equations (5.1,5.2). The expressions for CL and CD~ then

•

•
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CD - CD(x =O,y =0),
5

CL - I>iyi,
1
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(5.3)

where QI = -31.30, Q3 =2.935, Qs =-863.7, and Qi =0 for i =2,4. The magnitude

of the relative velocity vector in equat.ions (5.1,5.2) is approximated by V.

The fact that the test cylinder is subjected to non-uniform flow needs also to be

considered. To account for this, as weil as the non-uniformity of the composite cylinder

itself, we introduce the functions '!/Ji 1 to express these spanwise variations, hence

mes) - mTPt(s);

v(s) - V'I/J2(s);

ËÏ(s) = EIT/J3(s);

Cm.(s) =Cm.'I/J2(s); (5.4)

1Note that the functioDS >/Ji are Dot strict mathematical functioDS; they are just intended to indicate
• the existenee of discontinuities, hence cannot be operated on: Thus'cfor instance, (V(i»2 = V2>/J2(i).
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• where

TPJ(S) - 1 for s ::; 1,

- 5.31 for s> 1,

'I/>2(s) - 0 for s < l,s > 2.54,

- 1 for 1 < s < 2.54,

tP3(S) - 1 for s ::; 1,

- 0 for s> 1.

Using the simplifications above, equations (5.1,5.2) may be expressed as

•
(M]p" + [D]p' + [K]p =FI + ~]q' +F:•

(M]q" + (D]q' + (K]q = FI + [F2]p' +FY'

where

Mi; 10'"- o ([tPI(S) +CmatP2(S)]}tPi(S)tPj(s)ds,

Dij - (ij +10'" :.?~ 'I/>2(s)tPi(s)tPj(s)ds,o ma

Dij - (ij +10'" ~C~ 'I/>2(s)tPi(s)tPj(s)ds,o ma

10'" >.~Kij - o >'1 tP3(S)tPi(S)tPj(s)ds,

F~ 10'" V2- <)"='2CLtP2(s)tPj(s)ds,J o _ma
-1 10'" V2Fj - o 2iiw.2CD'I/>2(s)tPj(s)dS,

Fi] 10'" V- - "="'"2CL'I/>2(S)tPi(S)tPj(s)dS,o ma

-r 10'" V- o 2iiw.2 CL '1/>2(S)tPi(s)tPj(s)dS.J

(ij = Ci for i =j, and 0 for i ~j.

(5.5)

(5.6)
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Table 5.2: Theoretically determiDed test-cylinder modal parametcrs
Mode ),;/ 0.; W'h WC""

1 0.35i 0.941 41.3 38.3
2 1.542 0.693 i68.i 691.2
3 4.805 1.015 i458.1 6189.9
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F"'. and F~. are the support forces. The ith components of these forces are given by

the last terms iD equations (5.1) and (5.2), respectively.

To determine the beam modes </Ji, the test cylinder was eonsidered as eomprising

two parts, a flexible section to which a 'rigid' section is attached. Hence the upper

rigid section could be replaced by an equivalent moment M and shear force V at the

free end of the flexible cylinder. The appropriate boundary conditions to be applied to

the general solution of the Euler-Bernoulli beam ec:l1ation arc

</J(O) - </J'(O) = 0,

4>"(1) I.,il '( )- El </J 1 ,

</Jill(1) - -~~w2 4>'(1), (5.i)

where Mr and Ir are the mass and moment of inertia of the rigid section.

The boundary conditions (5.i) were applied to the general solution to the Euler­

Bernoulli beam equation and the </J; were determined using Mathematica. The resulting

beam mode shapes are given by

where

</Ji - </Ji (5) 0 < s < 1

- </Ji(l) + (5 - 1)<P;(1), 1 < 5 < sP'

</J;(s) = 0.;(cos),;s - COSh),iS) +sin),;s + sinh)';s.

(5.8)

(5.9)

(5.10)

-

• The constants 0.; and eigenvalues ),; are given iD TabÎe 5.2, where the predicted thco-

retical natura! frequencies are compared to measured values for the first three modes.
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• The deviation of the theoretical frequencies from their e,,:perimental counterparts

could be attributed partly to the quality of the welding at the joint between the flexible

and rigid sections of the test cylinder. A certain amount of flexibility occurred at high

frequency, making the joint less than rigid and giving measured frequencies lower than

theoretically predicted.

The integrals (5.6) were evaluated using a Mathematica routine presented in

AppendLx 1. The sample ron presented in the appendix corresponds to a two-mode

Galerkin expansion in the x and y directions.

A value of the exponent e= 1, where erelates the radial support stiffness force

to the approach at the support (equation (2.9)), was found to be reasonable for small

magnitudes of the approach, which is the case here. The added mass coefficient Cm.

was determined from potential fiow theory, by considering a seven cylinder kernel in

quiescent fiuid (Paidoussis et al. 1984), yielding Cm. = 1.332; the variation of Cm.

with ehanges in local array geometry, as the cylinder is displaced from the equilibrium

position, was found to be negligible. Other system parameters in equatic.ns (5.5) ­

sec (5.1,5.2) are as fo11ows:

K. =llJ6 N/m2
, J.LJr =0.35 and a =1.7236. (5.11)

The dimensionless support damping constant ë. (= ë.D{/(mwj)), depends on the ini­

tial impact velocity (2.26). For each impact, the maximum approach Um was estimated

from equation (2.25). Thereafter, equation (2.26) could be integrated to give ë., and

hence, ë•. P, which is related to squeeze-film damping, is zero for in air impacting.

Equations (5.5) were solved using a fourth order Runge-Kutta routine: when

sticking occurred, an implicit iterative algorithm was applied to determine the correct

force balance. Unless other'Vise stated, initial conditions applied in the numerical
:

simulations were

• qj =0.001, qi =qi = 0, i > 1;
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Pi =P: =0, i ~ 1.
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For the purpose of determining the tube dynamics, a three-mode Galerkin e:"pan­

sion was found to be sufficient.2 This is due to the special design of the test cylinder.

v,,.ith the result that a large separation in the modal stiffnesses e."<Ïsts between the first

two modes and the higher modes (see Table 5.2).

5.2.2 Predicted Cylinder Response and Underlying
Dynamics

The initial Hopf bifurcation which results in fiuidelastic instability is predicted

theoreticallyat V = 0.185. This is in reasonably good agreement with the experimental

value of v;, = 0.216. From hereon, all velocities (theoretical and experimental) are

expressed relative to the experimental critical fiow velocity, v;, =0.216.

Figs.5.22 to 5.26 show comparison between experimental and theoretically pre­

dicted responses over a range of fiow velocities for the gap size èr =0.200. These results

correspond to brass/brass impacting with air as the interstitial support-gap fiuid.

The single-sided impacting motion found to occur following the Hopf bifurca­

tion is predicted by the theoretical model as shown in Fig.5.22 for V = LlOv;,. The

modulation effect which is characteristic of this motion is also observed in the corre­

sponding in-fiow time traces. Cross-fiow time traces, on the hand, show only minimal

modulation. A comparison of the response frequencies (Fig.5.22(d,h)) indicates close

agreement between theoretical and experimental results.

Bifurcation to double-sided impacting motion occurred at V = 1.20v;, in the

experiments and is predicted at V =1.24v;, theoretically. This response is shown in

Fig.5.23 for V = 1.29v;, and V = 1.21v;, for theory and experiment, respectively. The

cross-fiow component of the response predominates in this new response regime. In­

1l0w amplitudes are significantly smaller and non-periodic, Fig.5.23(d,h). Intermittent

• 2Note that higher modes would still be needed for an accurate detennination of the impact forces
for wear rate determination.
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Table 5.3: Comparison of theoretically predicted bifurcation velocities v,"ith
experimental measurements

Transition V,h/Yc Yc=/Yc Err. %
Hopf 0.86 1.00 -14

DS Impact 1.24 1.20 3
Interm't'cy 1.52 1.41 i.8

Chaos 1.86 l.ï0 9.4
P2 2.10 1.95 i.2
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breakdown of this double sided-impacting motion leads to the predominant response

for the present gap size: double-sided impacting orbiting response. Measured and

predicted velocities for the onset of intermittency are, respectively, V = 1.41Yc and

V = 1.52Yc. Experimental and theoretical e.'"amples of this motion are shown in

Fig.5.24, the corresponding velocities being V = l.i6Yc and V = 1.62Vc for theory and

experiment, respectively. The intermittent amplitude bursts, particularly in the in­

fiow direction, are well depicted in the time traces of Fig.5.24(b,f). A chaotic character

is introduced in the response by these amplitude bursts, which occur at uncorrelated

time intervals. This is refiected in the broad-banded effect at the dominant response

frequency in the corresponding in-fiow spectra, Fig.5.24(d,h).

Experimental tests show that the time interval between turbulent bursts vanishes

near V = 1.iYc. The result is a chaotic response as shown in Fig.5.25. Theoretically

chaotic motion is predicted at V = 1.90Yc; the e>..-perimental response at this velocity

is shown in Fig.5.25(e-h). In both theory and e>..-periment it is clear that the final

breakdown to chaos is a result of the vanishing time interval between turbulent bursts.

In-fiow time traces and response spectra display the chaotic character of the response.

In the cross-fiow direction, on the other hand, despite the existence of a chaotic com­

ponent, period-1 motion is still predominant in Fig.5.25(c,g) and Fig.5.25(d,h).

In the final bifurcation, the system response becomes more periodic, which is a

stabilization of the period-2 attractor; Fig.5.26 sho'l';s this final period-2 response. The

theoretical_ mode! predicts this final transition very we11 and fairly accurately, giving a

transition velocity near V =2.10Yc as compared to the experimental value V ~ 1.95V.,.



In su=ary, the theoretical model is able to reasonably accurately predict the

dynamical beha,,;our. Not only are all the bifurcations in the response predicted, but

also the critical bifurcation velocities are obtained within an average discrepancy of

10%, and in most cases better, as tabulated in Table 5.3.

It is important that a theoretical model accurately predict the detailed C)'linder

dynamies since, ultimately, this completely determines the eylinder/support force his­

tory and hence wear rates. With this in mind, we proceed to investigate, in further

detail, the dynamical behaviour within the various bifurcation regimes. The analysis

pro,,;des a better understanding of the system. Furthermore, comparison criteria in

cases where the response is non-periodic allow for further quantitative comparison of

theory and experiment.
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5.2.3 Characterization of the System Attractors:
Underlying Mechanisms and Some Associated
Discrete Dynamical Systems

It is clear from the preceding that, like any other nonlinear d)'Ilamical system,

a distinct sequence of bifurcations is uncovered as the parameter V is varied over the

range of interest. Identification of the bifurcation types and underlying mechanisms

provides valuable information for a better understanding of the dynamicaI system. Al­

though the system is infinite-dimensional, the experimental results, supported by the

theoretical findings, indicate that the mechanisms underlying the observed bifurcations

may involve only a few dimensions. In nonlinear dynamies parlance, the centre man­

ifold associated with these bifurcations is expected to be low-dimensional. This is a

gratif);ng result, the reason being that there is then a much better chance of uncover­

ing the underlying mechanisms that determine the bifurcations and associated system

dynamies.
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5.2.3.1 Dynamica1 behaviour at onset of impacting
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The dynamical behaviour at the onset of impacting is characterized by a quasi­

periodic-like response. Intuitive1y the underlying mechanism is rather obvious. The

vibration amplitude in the unstable cross-f1ow direction grows to attain the support

clearance value ër • During the impact process energy is removed from the unstable

cross-f1ow mode and transferred to the stable modes, in particu1ar the first in-f1ow

mode. Two regimes in phase space may be identified. The first, a slow regime where

the cylinder is in f1ight and the response is governed by the f1uid dynamics. :œ this

regime, cylinder in-f1ow motion may be described by a simple oscillator with e>..-ponen·

tially decaying amplitude (cross-f1ow motion, on the other hand, exhibits exponential

growth). This may be verified in the example of Fig.5.22 where this regime lasts be­

tween two and five cycles at a time. The fast regime is the impact process itself. The

strong nonlinearities in this regime may lead to chaotic behaviour.

To see how this might happen, we consider an analysis of a simple 'pseudo'3 I-D

map, whose behaviour may be considered as a first approximation to that of the present

system. From the theoretical time trace of Fig.5.22(b) a Poincaré map is extracted

and is shown in Fig.5.2ï(a); once again, here, straight line segments trace the iteration

sequence. Although this map appears quite disordered at first glance, a certain pattern

emerges after a careful study of the iteration sequence. First, the branch labelled b1

is identified to correspond to the simple e>..-ponentially decaying solution. The second

observation is that the trajectory may enter a region of fast motion at certain points

on b1• The points above the first bisectrix represent amplitudes immediately following

such a transition. Further investigation reveals the existence of distinct trajectories or

paths that are traced by successive iterations.

The trajectories, may be classified into two types, which we shalliabei A and B.

In type A trajectories, the ÏD-fiow amplitude grows following one or more impacts, and

then decays exponentially without interruption to a low va1ùe along b1• More complex

'Such a qualification is necessaIY since the resulting map, as defined, is multivalued and non­
in''ertible, hence,ll!!! a l·D retum map in strict mathematical de1inition.



•Note that analytica1 fonns ofthese functions cannot be detennined. This would require knowledge
of and the existence of analytica1 solutions to the governing equations of motion.

behaviour is observed for type B trajectories. Decaying oscillations over a portion of

branch bj, labelled bu, are interrupted at relative high amplitudes. Fig.5.2ï(b) is a

map e:\..tracted from Fig.5.2ï(a), which illustrates a type A trajectory. Starting with an

amplitude XI. the system undergoes four oscillations before returning to the vicinity

of Xl. Branches b:! and b3 represent a piece",-ïse !inear approximation of the functional

beha..-ïour above the first bisectrb.. determined from a study of the average location

of iterates in Fig.5.2ï(a).4 Piecewise !inear functions, approximating the solution in

the unstable direction, are also used to depict a type B orbit. The resulting map is

presented in Fig.5.2ï(c), in which a sample orbit is illustrated. Iterates are trappcd

in an intermediate orbit b4 -+ bs prior to e.xpulsion to b3, whence type A behaviour

begins.

Severa! conclusions may be reached from a study of Fig.5.2ï(b,c). Firstly, simple

period-l motion is precluded since the combined map e.xhibits no (stable) fixed points.

This conclusion is confirmed by the e.,..perimenta! and numerica! results. Nearly periodic

orbits of order n 2= 1, n being the number of period-l cycles, are however possible.

The trajectory illustrated in Fig.5.2ï(b) suggests an orbit close to n = 4. This leads

to the quasi-periodic-like character in the time traces as discussed above. Another

important conclusion that cau be drav."ll from these I-D maps concerns the possibility

of chaotic motion in the present velocity range. A trapping region exists from which

trajectories cannot escape; therefore an attractor exists. Mixing of trajectories, an

important property of chaotic attractors, clearly Occurs particularly in the transition

between the two maps and within the individua! maps. These properties, coupIed with

the lack of periodic points as stated earlier, leads to the conclusion that the possibility

of a strange attractor exists in the present velocity range, despite the large periodic

component observed in the response.

The mechanism underlying this type of transition to chaos has been labelled a

switching mechanism (Pikovsl..y & Rabinovich, 1981); the name indicating switching

•

•
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between fast and slow motions as discussed abo,·e. This mechanism has been shown

to underly chaotic behaviour in other very different physical systems. The first is an

electronics circuit whose active element is a tunnel diode; the diode current/voltage

characteristic exhibits a discontinuous jump at some critical value. The second system

is the well known Belousov-Zhabotinsky chemical reaction.

The fundamental aspects of the switching mechanisIll are as illustrated in the

following schematic:
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Monotonie Energy Source (or Sïnk) -+ OseiIlating System-+

Catastrophie Energy Drop (or Input)

The scenario depicted in the schematic is precisely the one at play at the onset of

impacting for a loosely supported cylinder. It is therefore expected that this mecha­

nism might play an important role in efforts to understand and quantify the cylinder

dynamics in this regime.

5.2.3.1 Intermittency Transition and Restabilization of Period-2 Motion

As observed in section 5.2.2.1, the double-sided impacting orbiting response re­

sults from a loss of stability of the double-sided impacting response. A study of in-flow

time traces revealed the existence of durations of low amplitude period-2 motion inter­

rupted by large amplitude period-1 orbiting motion. The period-1 motion then decays

gradually and the cycle is repeated. Bursts of period-1 motion occurred intenuittently

at apparently random time interva1s.

This intermittent behaviour was even more clearly exemplified by a one-mode

t\vo-degree-of-freedom reduction of the system. Fig.5.28(a) shows 5 in-flow response,

in the one-mode model, for V = 2.0v.,. Just prior to the onset of intermitteney, a

'In this case, the one mode reduction shows poorer agreement with experiments for the intermit·
tenC)' range which should be 1.4 < V/v" < l.i.



subharmonic bifurcation occurs in the in-fiow direction, hence, intermittency results

from instability of the period-2 cycle. In cross-fiow, on the other hand, the basic cycle

is period-1 as seen in Fig.5.28(b).

The Poincaré map technique is once again utilized as a tool to investigate further

the intermittency behaviour. We consider, as before, a ne.'"t-peak value (Xn ) map of

the in-f1ow motion. In view of the existence of period-2 motion in this direction, a more

judicious choice is to plot the map X n+2 versus Xn ; in this case, a fixed point of the

map corresponds to a period-2 orbit on the original system. The resulting Poincaré

map, corresponding to the laminar region in Fig.5.28(a), is shown in Fig.5.28(c). The

organi2ation of successive iterates in a definite pattern, in this case a curve, confirms

the notion of short term deterministic behaviour in the laminar regime.

The fixed point, apparent at the cusp in Fig.5.28(c), corresponds to a periodic

orbit of frequency w ~ 2wo . A concentration of iterates occurs as this point is ap­

proached, as weil as several iterations after. This reflects the response behaviour in

the region of nearly constant-amplitude periodic motion in the middle of the laminar

region in Fig.5.28(a). The cusp-shaped curve of Fig.5.28(c) suggests the possibility of

similar properties between this map and a slightly modified fonn of the weil known

baker's transformation of the unit square onto itself (Bergé et al., 1980). The baker's

transformation is a 2-D map, on a plane defined by coordinates PI and P2, defined by:

•
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for PI < 0.5,
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Pl --+ 2PI - 1, P2 --+ (P2 + 1)/2 for PI > 0.5. (5.12)

•

Coordinate Pl represents the unstable manifold along which divergence of nearby tra­

jectories occurs; P2, on the other hand, parametrizes the area-preserving property of

the map. It is necessary to modify the form of P2 to account for the arca-contraction

property of our dissipative system. The resulting map takes the form

Pl --+ 2Pb P2 --+ alP2 for PI < 0.5,
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PI - 2pI - 1 + g(pt}, 1>2 - QI (1)2 - 1) + 1 for PI > 0.5.

9ï

(5.13)

where QI = 0.4ï5, and g(pd = Q2sin(27rpd + Q3sin(47rpd. This formulation was first

proposed by Bergé et al. 1980. In the present analysis, a different set of the parameters

QI - Q3 is utilized: QI =0.400, Q2 = 0.23 and Q3 =0.10.

Fig.5.29(a) shows trajectories of iterates foI'~o initial conditions. A fi.",ed point

of the map exists at Pl = O.ï5 and 1>2 = 1.0. The trajectory labelled 'l' passes

close to the fixed point, hence the concentration of iterates near P; trajectory '2' only

approac1les the fixed point. This attraction of iterates towards the fixed point is similar

to that which occurs in the map of Fig.5.28(c). The coordinates in Fig.5.28(c) contain

a combination of both the stable and unstable directions. In the case of Fig.5.29(a),

however, the stable and unstable directions are isolated and are parametrized by the

coordinates 1>2 and Pl, respectively. To obtain the cusp shape then, a projection of the

modificd transformation (5.13) onto a different direction, which gives a similar 'view'

of the trajectory of iterates, is necessary. The resulting return map is given by

(5.14)

•

where Q4 = -0.5,Qs = -1.0 and Q6 = 1.2. A return map of successive iterates ofp is

shown in Fig.5.29(b). The similarity to Fig.5.28(c) is evident.

Figs.5.30(a,c) show close-ups of the laminar phases in the theoretical and ex­

perimental in-f1ow responses, respectively, presented earlier in Fig.5.24. It is seen

that the single-mode model predicts the general character of the intermittent reponse

(cf. Fig.5.28(a)). Poincaré maps corresponding to the Figs.5.30(a,c) are presented in

Figs.5.30(b,d), respecth·ely. These maps are quite similarto the map of Fig.5.29(b), de­

rived frOID the baker's transformation. The theoretical model predicts a closer approach

to the periodic orbit, hence. the sharply defined cusp in Fig.5.30(b). Experimentally,

the response does not approac1l a periodic orbit as closely as theoretically predicted,

hence, a true cusp is not formed; this might corresponds to the type '2' trajectory

in Fig.5.29(a); such a trajectory results in iterations in Fig.5.29(b) crossing the first



biscctrix bcforc rcaching thc fi.,cd point at the cusp tip.

lt is quite interesting that, once again, a simple map exhibits sorne quantitati\"c

similarity with thc present system. The concentration of iterates near the fi.,cd point

was shown earlier to be a property of type 1intermittency. As will be shown in Chapter

6, a retum map, exhibiting the narrow channel (Fig.4.26).( which is the hallmark

for type 1 intermittency), can be obtained from the baker's transformation. This,

once again, points to type 1 intermittency as the mechanism underlying transition to

chaos in the e>.."perimental system. For the two degree-of-freedom system, intermittency

resulted from the bifurcation of a period-l orbit. In the experimental system, howc\"cr,

intermittency results from the bifurcation of a period-2 response.

•
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5.2.4 Attractor Characterization and Invariant Measures

In Section 5.2.2, cylinder responses, determined theoretically and ell."pcrimentally,

were compared. For periodic attractors, exact comparison was possible since a periodic

orbit is uniquely determined by its frequency and amplitude. As shown in the prcced­

ing, a semi-quantitative comparison is also possible in the case of non-periodic motion

in the vicinity of a deterministic attractor. lt is desirable to have access to eqllivalent

measures in the case of chaotic motions that can allow for quantitative comparison of

theoretical predictions with experimental results.

Lyapunov exponents and attractor fractal dimension are related to the global

behaviour of the attràctor and provide measures for quantitative comparison. More

interestingly, the geometrical structure of the attractor can also be probed for saddle

orbits. Saddle orbits provide a quantitative description of the apparent self-similarity

of chaotic attractors (Auerbach et al., 198i), these orbits being the essential building

blocks of most typical chaotic attractors. Comparable attractors should have the same

saddle orbits, with identical distributions. The attractor phase point should also visit

the various orbits with the same frequency. Characterization of the chaotic attractors

by saddle orbits is chosen as a tool for quantitative comparison and validation of the

theoretical mode!. This approach has the added advantage that, as shown below,



saddle orbits can easily be determined from experimental data; furthermore, only one

experimental variable is necessary for complete chara.cterization.

A property of saddle orbits is the attraction of nearby phase space trajecto­

ries along certain directions (the corresponding stable manifolds). Trajectories remain

nearby for a time before escaping along an unstable manifold. An orbit is then simply

determined by establishing the return of a phase point to the neighbourhood of a cho­

sen starting point in phase space. In the orbital plot of Fig.5.24, for instance, period-1

saddle orbits are clearly evident. From the corresponding power spectra, the period-1

frequency is W.I ~ Wo. To determine higher order orbits, a procedure first put forward

by Lathrop & Kostelkh (1989) is utilized. In essence, the attra.cting property of saddle

orbits (along the stable manifold) is e.'\-ploited as follows. Consider the system state

in phase space to be represented by the vector of generalized coordinates and veloc­

ities X. Starting with a phase point Xi. on a trajectory in phase space, the images

Xi+1,Xi+2.... of Xi are followed until the smallest index k > i is found which satisfies
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e> o. (5.15)

Xi is then referred to as an (m,e) recurrent point where m = k - i. The orbital

frequency associated with the corresponding (m, e) orbit of order n is

W.n = mllt, (5.16)

where llt is the temporal spacing of the phase points. W.n is determined for each phase

point and the results are presented in the form of a histogram of the frequency count

of the varions saddle orbits encountered.

Before proceeding with the determination of saddle orbits, the question of the

e.'\-perimental phase space needs to be addressed. Specifica1ly, not all phase space

variables, positions and ve10cities for the varions modes, are known; the physical dis-

• placements in the in-fiow and cross-fiow directions at the cylinder tip being the only

readily a,'aiIable variables. A reconstruction of the phase is therefore necessary. The



delay embedding technique used was first proposed by Packa.rd et al. (1980). Pseu­

dovectors X; of the embedding dimension m are formed from the two scalar time series

{X;}f:I' {Y;}f:1 as per the formulation below:

•
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Xi = [x(i.6.t), y(i.6.t), x((i + d).6.t), y((i + d).6.t), ...,

x((i + (m/2 - l)d).6.t, y((i + (m/2 - l)d).6.t],
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(S.lï)

•

where d x .6.t is the delay. Takens (1980) showed that for sufficiently large m (m >
attractor dimension), the reconstructed pseudo-phase space has the sanIe properties as

the true phase space. The delay factor d is selected such that the reconstructed phase

space reveals the topological structure of the attractor. From correlation dimension

calculations on the theoretical model, an attractor dimension der ~ 3.S was obtained

for the various response regimes as discussed below. An embedding dimension m =4

was therefore selected for the e.'"perimental data. Fig.S.31 shows several projections of

a reconstructed phase plane plot for V = 1.62v.,; the delay was taken as d.6.t =O.ls.

The various projections reveal a c1ear structure in the attractor.

In determining the saddle orbits, the recurrence distance! was chosen to be 2%

of the ma."cimum separation of attractor points. Fig.S.32 depicts exarnples of period-2

and -3 saddle orbits e.'\."tracted from the reconstructed phase plot for V =1.62v;,. In

both cases the apparent self-crossings are the result of the projection onto a plane. The

trajectory returns to the vicinity of the starting point only after the complete loop.

Fig.S.33 shows the e."q)erimental and theoretical histograrns of the distribution ofsaddle

orbits for V = 1.62v;,. In both cases more than 90% of phase points fall on saddle orbits

of order 1 to 10. The predominance of period-1 saddle orbits predicted theoretically is

in concordance 'with experimental results. Furthermore, theoretical results concur with

the experimental finding that in this velocity regime the cylinder response is primarily .

comprised of saddle orbits of order 1 to 7. The discrepancy in the percentage of the

period-1 saddle orbits might be attributed, at least partly, to cxperimental noise.

A similar saddle orbit histograrn plot is presented in Fig.S.34 for the lower velocity
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• V = 1.20v." corresponding to the single-sided impacting response. In this case, the

results suggest that the corresponding experimental attractor is characterized by saddle

orbits of order 1 to 4 (Fig.5.34(a)). Theoretically, the occurrence of period-3 and -4

orbits is quite infrequent and only barely observable. This difference, compared 'with

experimental rcsults, may be attributed tu the significant effect of experimental noise,

particularly in the in-fiow direction where response amplitudes are relatively small.

Period-3 and -4 orbit counts may be viewed, in Fig.5.34(a), to be just above the

count attributed to noise, hence, refiecting the low occurrence rate suggested by the

theorctical result. Overall, it can be concluded fairly confidently, that the theoretical

model predicts the topologîcal structure of the experimental attractor with reasonable

accuracy.

We conclude this section by looking at a characterization of the attractor di­

mension in phase space. Correlation dimensions were evaluated using the procedure

described in Section 4.3.4 for the same two attractors above. The single-sided impacting

motion is comprised of primarily period-1 and -2 saddle orbits. The correlation dimen­

sion average value of d... =2.6 for the c-'\.-perimental attractor as shown in Fig.5.35(a).

A lower value of der = 2.1, Fig.5.35(b), is predicted theoretically for the same attrac­

tor. Fig.5.36(a,b) shows the results for V =1.62v., for the experimental and theoretical

attractors respectively. An average attractor dimension der =3.3 is obtained for the

experimental attractor while, der = 3.5 for the theoretical attractor, hence in very good

agreement. It is gratifying to find that, despite the high number of dimensions involved

in this system, the resulting attractors remain well within low dimensional spaces. It

is for this reason that low dimensional models (one and two dimensional maps) predict

the dynamical behaviour weil, both quaiitatively and at least semi-quantitatively.

•
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Chapter 6

PRACTICAL CONSIDERATIONS

The analysis of the preceding chapters has shown that the dynamics of low di­

mensional models of a loosely supported cylinder can be elucidated to a satisfactory

degree via modern nonlinear dynamics methods. Transition routes to chaos have been

identified and quantified using invariant measures (Lyapunov ell:ponents, correlation

dimensions and saddle orbit distributions).

In this final chapter the implications of these findings to a more practical situation

and a possible practical application arc considered.

6.1 THE EFFECT OF INCREASED NUMBER
OF DEGREES OF FREEDOM

The dynamical models studied in Chapters 4 and 5 were intentionally designed to

have a low number of 'active' degrees of freedom. By eliminating the added complexity

associated with higher modes, the response behaviour remained transparent enough,

enabling a rigorous study of the underlying dynamics.

Heat exchanger tubes have uniform mass and stiffness, hence, no large disparity

exists between the lower and higher modes. As a result, a larger number of modes is

required to model the resulting dynamics.

We proceed to study the response of a uniform loosely supported cylinder. A

clamped-pinned tube, with a loose support at mid-span, is modelled. Of particular

interest is the effect of the increased participation of higher modes on the resulting

dynamical behaviour. The cylinder parameters are selected such that the first mode
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Table 6.1: Uniform-cylinder modal parameters
Mode >'i1 Wi

1 3.93 3ï.ï
2 ï.Oï 122.0
3 10.21 254.5
4 13.35 435.0
5 16.49 663.ï
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instability velocity is close to that of the e~..perimental system studied in Chapter 5.

_ ,9ylinder parameters are, 1 = 2.64 m, D = 0.01 m, Di = 0.009 m, where l is the

cylinder length, D the outside cylinder diameter as before, and Di is the internal

diameter. The cylinder material is considered to be steel, giving cylinder mass per unit

length m = 0.1164 Kg/m. The cylinder is subjected to uniform flow over the complete

span. It is symmetrically located within the circular support in cross-flow, while in the

in-flow direction, the cylinder has an eccentricity of 0.160D in the upstream direction.

Limiting the analysis to the flow velocity range where only the first mode is unstable,

a five-mode Galerkin projection was found to be sufficient to describe the cylinder

dynamics. Table 6.1 summarizes the cylinder modal properties.

The equations to be solved are equations (5.5). In evaluating the integrals of

equation (5.6), clamped-pinned modal functions are utilized, and the flow and tube

material properties are considered uniform. To simplify the eva1uation of the integrals

of equation (5.6) the delayed cross-flow displacement, Yd ( equation (2.5)), required

for the evaluation of CL, was e~..pressed as Yd(r) = tP(l)ql(r - ~r). The simplified

e.'i:pression was necessary to maintain a manageable number of terms in the integrals

of equations (5.6). This e.'i:clusion of higher modes is equivalent to applying a filter

to the delayed response for the purpose of determining the fluid force; elimination of

high frequency fluctuations is desirable, as noted in Chapter 4, since fluid-inertia and

viscous effects limit the frequency at whiclI fluctuations in the fluid force cau occur.

Initial conditions applied in the numerical simulations were

• ql = 0.005, qi =q; =0, i > 1,
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Pi = P: =0, i ~ l,
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where Pi and qi are the generalized coordinates in the in-f1ow and cross-f1ow directions,

respectively.

For this system, the Hopf bifurcation, associated v.'Ïth f1uidelastic instability,

occurs at Vc = 0.265. At V = 1.25Vc, in-f1ow cylinder response exhibits complex a1beit

periodic motion, Fig.6.l(a-c). Cross-f1ow amplitudes are large enough for impacting

v.'Ïth the support to occur. In-f1ow amplitudes, on the other hand, remain significantly

smaller than their cross-f1ow counterpaIts. The velocity V = 1.30Vc, Fig.6.l(d-f), is

in a transition regime associated with a bifurcation leading to a new periodic motion

with primari1y period-3 and -6 components. This response becomes even more c1early

defined at V = 1.35Vc, as shown in Fig.6.2(a-c).

The response in the velocity range 1.25 < VIVc < 1.35 corresponds to the double­

sided impacting velocity regime in the experimental system. In the latter, period-1

motion occurred in cross-f1ow with similarly low in-f1ow amplitudes to the present

case. The proximity of the higher mode frequencies to that of the first mode then

results in complex periodic motion replacing the simple period-1 motion observed in

the previous case. The periodic motion in Fig.6.2 undergoes a bifurcation near V =
l.38Vc. The result is in-f1ow motion of primarily period-2. This motion is, however,

unstable. Hence, at indeterminate time intervals, the motion is interrupted by bursts

of uncorrelated large amplitude motions, having a lower frequency; this is followed

by a restabilization of the higher frequency period-1 motion. Fig.6.3 depicts the type

of response for V = 1.40Vc. The scenario described in the foregoing is precisely the

intermittency phenomenon which was found to predominate in the response in the

experimental system. Compaxing the in-f1ow responses of Fig.5.24 and Fig.6.3, the

following observation can be made. The in-f1ow response exhibits intermittent bursts

in amplitude which intersperse durations of neaxly periodic motion - the .laminar

regime. The higher modes increase the system stiffness, resulting in reduced in-f1ow

amplitudes in Fig.6.3. Fundamentally, however, the intermittency mechanism governs



the response in both cases. This result attests to the robustness of the intermittency

transition in the present system.

At V = 1.4Sv., a reversai of this transition to chaos has commenced resulting

in a reorganization of the response, as seen in Fig.6.4 where we observe marginally

stable period-2 motion in the in-fiow response. As V is further increased the period-2

response becomes stable as shown in Fig.6.S(a-c) for V =l.SOv.,. Finally at V =1.60v.,

(Fig.6.S(d-f)), period-l motion has returned in the in-fiow direction albeit at double

the cross-fiow frequency. The result is the now familiar figure-of-eight orbital motion

which marked the final response in the experimental system.

The results in the preceding were obtained for symmetrical cross-fiow cylinder

location within the support. Fig.6.1 to Fig.6.5 indicate that zero eccentricity in the

cross-fiow dir~tion results in a significant reduction in coupling between the in-fiow and

cross-fiow motions. To test this conclusion, calculation.~ "'cre carrled out for a cylinder

cross-fiow eccentricity of O.03D at the support. Sample orbital plots are presented

in Fig.6.6. The single- and double-sided impacting motions, previously encountered

for the experlmental system, are identified in Figs.6.6(a) and (b) for V = 1.20v., and

'V =1.25v." respectively. A transition via intermittency results in an orbiting motion,

as e.xemplified by Fig.6.6(c) for V = 1.60v.,. The figure-of-eight orbital motion is once

again the final response, as depicted in Fig.6.6(d) for V = 1.73v.,.

It is quite remarkable that, despite the significant differences between the sys­

tem studied here and the experimental system of Chapter 5, the bifurcation history

of the response remains fundamentally similar. Two important conclusions may be

drawn from the foregoing. Firstly, that the analysis of low dimensional models may

lead to profound insight into the otherwise intractable dynamics of higher dimensional

systems. The second pertains to analysis of support infiuenced cylinder dynamics in

general. Experimentalists measuring tube wear have long concluded that tube wear

rates are intimately related to the underlying cylinder dynamics. The present analy­

sis gives an idea of the complexity of the dynamics. On the same note, however, the

situation is not entirely hopeless. The cylinder response observed here shares common

•
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characteristics 'Ivith other dynamical systems currently under study. Thus, under oper­

ational conditions fiuidelastic instability is most likc1y to occur in the first TSP inactive

mode, which is the case studied here. Over a range of fiow velocities it is expected

that major aspects of the response wiII remain in low dimensional space involving only

a few modes. Furthermore, despite transition to chaos, the motion is Iikely to remain

borderline chaotic - hence, a significant periodic component wiII remain, while the

overall attractor will be low dimensional. An important property of borderline chaotic

attractors is their relationship to nearby periodic attractors in parameter space. The

intermittent response is an example of borderline chaotic motion. In the laminar phase

the intermittent response is very similar to the periodic response prior to the onset of

intermittency. This property makes it possible for a quantitative analysis leading to

an estimate of the expected length of laminar phases in the intermittent response. We

close this chapter with a closer look at this point.

•
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6.2 TYPE 1 INTERMITTENCY REVISITED

In type I intermittency the dynamical behaviour, in the laminar phase, occurs on

a reduced ont...dimensional manifold. The archetype map describing this behaviour is

Pn+! =H(Pn, J.lp) =J.lp + Pn + p~ + ..., (6.1)

•

where the parameter J.lp is related to the :lIow velocity, resca1ed such that the onset

intermittency is at J.lp = O. Here we define this parameter as, Pp = (V - Ve/)IVe"

where Vel is the critical :lIow velocity for the onset cf intermittency. Equation (6.1)

gives a quantitative description of the system behaviour in the laminar phase. To sec

how an estimate of quantitative measures may be derived, consider the case when Pp

is smalI. In this case, equation (6.1) can be cast in the approximate differential form

(6.2)



where n is now viewed as a continuous variable. An integration of equation (6.2) yields•
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p = Jji;tan[Jji;(n - no)];

10ï

(6.3)

no is the value of n in the narrowest part of the channel. Taking no = 0 for conve­

nience, p in equation (6.3) becomes unbounded when ViiPn =r./2, at which point the

approximation of equation (6.2) is no longer valid. We can therefore conclude that

the number of iterations during the laminar phase scales as Jji;. Thus, near Vol the

duration tl of the laminar phases should be related to fJ.p as follo"'"S:

(6.4)

This result is supported by the results in Fig.6.ï for the two degree-of-freedom

system studied in Chapter 4, where t/ is plotted versus fJ.p for a range of velocities near

fJ.p =0 CV =Vol). Superimposed on the data points is the curve tl =0.055/VïJ;, which

shows a very good fit.

From a practical viewpoint the result of equation (6.4) gives a quantitative mea­

sure that can be tested for in any physica.J Sj"stem suspected to be exhibiting an inter­

mittency transition. Another result that can be put to practica.J use is the probability

distribution of laminar phases. As shown by Bergé et al. (1980), the probability

Pt(t" pp) of the occurrence of a laminar phase of duration tl satisfies the equation

(6.5)

•

Qualitatively, Pt(t/, pp) should vary as depicted in Fig.6.8. The time needed to drift

through the narrow channel (see FigA.26) is seen to be bounded from above, and hence,

can fiuctuate to lower ,'alues only. The probability distribution of impact forces will

be undoubteclly be related to the distribution of Fig.6.8.

Unlike in the laminar regime, where dynamical behaviour is universally deter­

mined b~' equation (6.1), turbulent regime behaviour is unique to the system itself. It



is possible, however, that certain aspects of the dynamics, such as the stretching and

folding of trajectories in phase space which leads to sensitivity to initial conditions, as

weil as the relaminarization process itself, ma)" be at least qualitatively described by

simpler low dimensional maps.

The baker's transformation of the unit square describes a possible scenario lead­

ing to relaminarization after a turbulent burst. This transformation was found to yield

a retum map topologically equivalent to that e"..tracted from the e.,..perimental system

in the intermittency response velocity range (see Fig.5.29). The baker's transformation

may be shov.-n to exhibit type l intermittency by considering a map relating succes­

sive iterates of the coordinate Pl (equation (5.13)). For convenience, we re-write the

transformation as foilows:

•
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Pl> -0.5,

Pl < -0.5, (6.6)

where, as before, g(pr) =02sin(27l"x) + 03sin(47l"x). Fig.6.9(a) shows a plot of PI'+1

versus Pl.. The appearance of a small channel near Pl. = -0.ï2 is evident. The

translation of the map normal to the first bisectrix and hence the width of the narrow

channel is determined by the coefficient 02. The coefficient 02 is therefore proportional

to /tp. The sample iteration sequence depicted in Fig.6.9(a) demonstrates the relam­

inarization process for this map. It is seen that this occurs as iterates- jump across

the discontinuity at Pn =-0.5, thus retuming to the laminar regime along the second

branch of the map. Although equation (6.6) exhibits the intermittency phenomenon,

this single coordinate map is not uniquely invertible and hence cannot represent a

differential dynamical system as it stands. A second coordinate is therefore required,

making the map two dimensional, which distinguishes the two branches in Fig.6.9(a).

The Poincaré retum map obtained for the two degree-of-freedom model of Chap­

ter 4 (FigA.26(a)) is replotted in Fig.6.9(b), in which a typical iteration is also de-

• picted. The similarity with Fig.6.9(a) is evident, in particular the jump near X n =
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• 0.00095 which leads to relaminarization. Recalling that Fig.6.9(b) is derived from a

4-dimensional system the agreement is quite remarkable. The high dimensionality of

the system results in the scatter of iterations in Fig.6.9(b). It is noteworthy, however,

that the relaminarization process in the baker's transformation appears qualitatively

similar to that in the 2 d.o.f. system.

6.3 IMPLICATIONS TO WEAR-RATE
COMPUTATION

Statistical methods are usually used to determine tube wear rates for given impact

force probability distributions. The laminar phase, in the present system, corresponds

to a regime of high frequency impacting motion. During the turbulent bursts, lower

frequency coupled impactjsliding motion occurs. These two types of response e:cllibit

different wear characteristics. Information about the characteristics of the response,

such as the probability distribution of the laminar phases, for example, may there­

fore prove useful. To see how this might be applied, we consider a typicaJ wear rate

calculation. The time-averaged wear 'I\'ork-rate l'V is defincd as

-' 1 fT
l'V =T Jo 1FrivoIdt, (6.ï)

where Fri is the radial contact force and Vs the transverse slidingvelocity at the support.

The integration time T is chosen to ensure that th~ computed wear rate is stationary

(Axisa et al., 1988). A simplified formulation has also been proposed by A:cisa. et al.,

in which the wear rate is approximated by

Trm• is the tube rms displacement at the support, Id the dominant frequcncy of the•
where

- 1 fT
F c =T Jo IFrildt,

(6.8)

(6.9)



response, and Q., a shape factor dependent on the contact geometry.

For a tube e..'dlibiting an intermittent response, the quantitative analysis of such

a response may be an aid to determining a better value for the integration time T in

equations (6.i,6.9). Dividing the respon$e into a laminar and a turbulent phase, the

average length of the laminar phase pro\ides a reasonable ,,-aIue for the integration

time T in the wear rate calculation. For the same laminar phase, a clear dominant

frequency corresponding to the originallimit cycle e."cists, giving an estimate for Id in

equation(6.8); note that Id may not be clearly defined when a power spectrum of the

total response (laminar plus turbulent phase) is evaluated. The dominant frequency

is also different for the laminar and turbulent phases (e.g., in Fig.6.3, in-flow motion

during the turbulent burst occurs at a lower frequency than in the laminar phase).

In '\.iew of the significant difference between the responses in the two phases, a bctter

formulation for W may take the form:

•
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(6.10)

•

where the superscripts "1" and ''t" distinguish between the laminar and turbulent

phases, employing knowledge of the existence of different responses, hence force histo­

ries, and also the ell.-pected average duration of the respective responses. The average

duration of the turbulent bursts still has to be determined via physical or numeri­

cal e.'i:periments. For systems where an identifiable relaminarization process, such as

the baker's transformation above, exists, useful information regarding the statistical

properties of the response may still be obtained.

Equation(6.10) is expected to be most useful near the onset of intermittency

where the laminar phase is interrupted only after large time intervals.
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SUl\fMARY AND CONCLUSIONS

In this Thesis the dynamicaI response of a loosely supported cylinder, unstable

in the first TSP-inactive mode, has been studied. Using modem nonlinea.r dynamics

theories and techniques, this system was cast in the light ofgenera.! non1inea.r dynamica.!

systems.

To determine the cylinder response in the post-f1uide1astic-instability regime, the

complete steady f1uid-force field was measured experimenta.!ly. The cylinder drag force

was found to be relatively independent of cylinder position; the exception being the

extreme upstream and downstream positions where the cylinder esséntia.!ly blocked off

the wa'lry channel between the corresponding upstream and downstream neighbouring

cylinders. The result was a large increa.se in CD for the downstream position, while

a significant decrease occurred upstream. CL, on the other hand showed a strong de­

pendence on the cylinder equilibrium position over the test range. This translated

into a strong dependence of cylinder stability on position in a linea.r stability ana.!ysis.

Hence, while the array is genera.!ly regarded as highly unstable, no instability occurred

for certain cylinder positions. The reversai of the lift force direction resulted in the

prediction of static rather than dynamic instability. The same ana.!ysis showed that

sma.!l changes in cylinder position may significantly a.!ter the resulting stability be­

haviour. Hence, multiple instability regions, predicted for the cylinder located at the

anar equilibrium position (x = y = 0), disappeared when the cylinder cross-f1ow posi­

tion wa.s altered by 2% of the cylinder diameter. This result might explain why multiple

• instability regions are observed only in carefully controlled high precision experiments.

To investigate the dynamics of cylinder/support interaction, the ana.!ysis of a
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simplified two degree-of-freedom model was chosen as a starting point. This 10\\1 di·

mensional system e.xhibited a wealth of d)"Ilamical behaviour. The cylinder response

was found to undergo a sequence of bifurcations as the f10w velocity was varied. Not

only were periodic solutions obtained, but also velocity ranges in which chaotic motion

predominated. One of the most important findings in this stud)' was first uncovered in

this low-dimensional system. This is the transition to chaos via type 1 intermittency,

in effect bringing this system into the fold of other dynamical systems exhibiting the

same transition. Strong evidence suggesting type III intermittency was also uncovered

at the onset ofimpacting - however, due to "interference" byan unknown mechanism,

this transition could not be unequivocally confirmed. Another conclusion reached in

the study of the two degree-of-freedom system pertains to the sensitivity of the re­

sponse bifurcation to cylinder/support gap size. For large gap sizes, periodic solutions

comprise a large component of the response over the f10w velocity range invcstigated.

For smaller gap sizes, chaotic motion was more prevalent. This was later confirmed for

an experimental system.

The feasibility and potential of a nonlinear dynamics approach was rigorously

tested by analyzing a specially designed experimental model of a loosely supported

cylinder. The experîmental model also served as a test-bed for the nonlinear quasi­

steady mode!.

Experimental measurements confirmed the existence of a complex sequence of

bifurcations in the post-Hopf-bifurcation cylinder response, similarly to the case of the

&1mple theoreticaI mode!. Over a significant velocity range, a double-sided-impacting

orbiting motion predominated in the response for large gap sizes. This response became

destabilized, at higher velocities, leading to chaotic motion. At higher velocities still,

the final bifurcation resulted in a transition to periodic motion, with in-flow response

at double the cross-f1ow response frequency. Distinctly different bifurcation behaviour

occurred for small gap sizes: chaotic motion was found over the complete velocity

range; aIso, the initial preload, present for small gap sizes, was found to have a pivotai

effec,t on the cylinder response, by increasing the role played by frictional effects.

•

•
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The presence of water in the interstitial support gap resulted in increased lubrica­

tion, hence reduced Coulomb friction forces, leading to increased sliding motion at the

support. Squeeze-film damping was not found to be significant - this is attributed

to the relativeIy large gap at the supports used in the experiments; the small sup­

port thickness is another contributing factor. Low Coulomb friction tests using Delrin

showed that reduced friction at the support significant!y alters the cylinder response.

In the experimental test, reduction in friction resulted in the replacement of a periodic

motion by a chaotic one, with significantly reduced in-fiow response frequency.

The nonlinear quasi-steady mode! was found to predict the cylinder response and

bifurcation sequence reasonably accurately. This, in essence, also validates this model

for the present system. The theoretical bifurcation veIocities were within an average of

8% of the experimental values. In the chaotic response regimes experimental and the­

oretical results were compared by determining quantitative measures associated with

the underlying chaotic attractors. Fractal cliID.en~on calcu1ations showed the dimen­

sion of the theoretically determined attractors to be clo~e to that of the corresponding

experimental attractors for both low and high velocity regimes. These attractors were

further comp':Ted by breaking them down into the individual saddle orbits comprising

the attractors. Attractor characterization by saddle orbits was found to be a novel

technique for quantitative comparison of the chaotic attractors, since it involves com­

parison at all regions of phase space. At this level, some discrepancies between theory

and ~"perimentwere found, specifically in the distribution of saddle orbits. However,

the theoretical model was still found to correctly predict the most predominant saddle

orbits reasonably weIl. Experimental noise was cited as a contributing factor to the

discrepancy at this level of comparison.

Two regimes of chaotic motion were identified for the experimental system. In

the first regime, transition to chaos is associated with a switching mechanism which is

predominant at the onset ofimpacting. This mechanism is co=on to systems in which

gradual monotonic energy change within the system undergoes sudden-discontinuous

interruptions. Examples of such systems include the Belousov-Zhabotinsky chemical

•

•

SUMMARY AND CONCLUSIONS 113



system as well as a modified Van der Pol oscillator containing a tunnel diode. It is

e.'\.l'ected that the switching mechanism will be commonli observed in the response of

marginally unstable loosely supported cylinders.

The second transition mechanism to chaos 'l'las type l interrnittency. The result­

ing double-sided impacting orbiting response '\\"3S identified as the commonly observed

breathing type vibration of loosely suppported tubes in heat e.,,<changers. It is notable,

as mentioned above, that this transition was also found in the simplest two degree-of­

freedom system studied. Tllis may be considered as an indication of ~he robustness of

the intermitten~~.ransitionin the present system. III type 1 intermittency, rdaminar­

ization is 3SSOciated with a discontinuons jump which retums the system to the vicinity

of the laminar regime. In the case of the loosely supported C)·linder, relaminarization

was attributed to the transition between sliding motion and sticking, which is char­

acterized by such a discontinuity in th~ sliding velocity at the support. The modified

baker's transformation modelled the intermittency behaviour reasonably well; for the

two degree-of-freedom system relaminarization was at least topologically equivalent to

that in the baker's transformat;on.

•
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The systems in the foregoing were intentionally designed to be low dimensional.

As a practical consideration, the response of a uniform cylinder with a larger number

of 'active' modes was:investigated. The main difference to the low-dimensional models

invp.stigated before was the occurrence of complex periodic motion which replaced the

simple period-l motion in the experimental system. Overall, however, the response

bifurcation history remained fundamentally the same. In particular, intermittency

occurred as predicted by the low-dimensionalsystems. The final figure-of-eight periodic

response '\\"3S also exhibited by this higher dimensional system.

These results highlig~t the potential for the analysis of low-dimensional models.

Most remarkable is the dYnamical behaviour in the laminar phase, which even for

the last system, modelled in 20 dimensions, is quantitatively described by a trivial

one dimensional map. An analysis of the return map yielded not only a description

of the dynamical behaviour, but also resultet.-in prediction of ~antitativemeasures



associated with response.

The implications of an intermittency transition to wear calculations were briefly

probed. It was shown that the average duration of laminar phases and the associated

frequency may prove to be useful parameters for wear computations.

•
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7.1 RECOMMENDATIONS FOR FUTURE
RESEARCH

In this Thesis the potential for the application of modem nonlinear dynamics

to the problem of support-infiuenced cylinder dynamics has been demonstrated for a

small range of system parameters and a single array geometry.

The effect of varying the system parameters on the resulting bifurcation sequence

needs further investigation. In particular, Coulomb friction at the support has been

found to be intimately related to the resulting bifurcations; this relation needs to be

elucidated.

Transition to chaos for small gap sizes is still not well understood. When coupled

with initial preloads, the dynamics become quite complex. It is noted that in practical

applications support gap sizes will often be smalI.

An extension of the present work would be the determination of cylinder wear­

rates in light of the bifurcation behaviour obtained. It would be interesting to in­

ves1:'.ga.te the correlatk~between specific bifurcations and resulting wear rates. In
~ -

the chaotic regime, statistical properties of the resulting attractors might be potential

candidates for wear computations.
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Figure 1.1: The inline array geometry studied by Tanaka. & Takahara (1981).
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• Figure 1.2: (a) The double-row array, model1ed by Priee & Paidoussis (1982,1983);
(h) the relative-velocity vector diagram.
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Figure 1.3: Lift coefficient variation in row 3 of a rotated-triangular array. for fi: = o.

Figure 1.4: The rotated triangular array geometry.
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Figure 2.1: 2-span loosely supported tube subjected to non-uniform fiow, U(s)j er is
the tube/support clearance.

• Figure 2.2: Impact circ1e geometry showing tube velocities and support reaction
forces.
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•
Figure 2.4: Variation of the total radial cylinder/ support interaction force, Fr

C= FM +Frd), for non-constant support damping Cc, = coCu)); the dotted
!ine depicts the case c. =: const.
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Figure 3.1: Test cylinder located within wind-tunnel test section; the force balance
mounting and oil damper are shown.
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Figure 3.2: Force balance calibration curves relating output voltage to static force

for (a) the in-f1ow and (b) cross-f1ow directions.
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Figure 3.3: Variation of CD 'with Reynolds number, Re, for the cylinder position
fi =fi =O. CL, which should be zero for this position, is also shov,"ll; the
open and filled data points, corresponding to two different tests,
indicating repeatability of the measurements.
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Figure 3.4: Force coefficient variation with cylinder cross-flow displacement for

X = 0: (a) CL; (b) CD; for Re = 1.04 x 104
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Figure 3.5: ï cylinder kemel at the test location.
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Figure 3.6: Variation of (a) CL and (b) CD with y, for the in-f1ow cylinder position

x=-O.li3.
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Figure 3.i: Variation of (a) CL and (b) CLl v.i.th y, for the in-f1ow cylinder position

fi =+0.li3; for Re =1.04 x 104•
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Figure 3.8: 3-D representation of the measured force coefficients: (a) lift coefficient,

CL; (b) drag coefficient, CD; for a cylinder in the third row of the array,
and Re = 1.04 x 104•
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Figure 4.1: Variation of (a) real parts, Re(>'), and (b) imaginary parts,Im(>'), of the

system eigenvalues with V for ih_ 100, ô=0.001, at the cylinder
position x= il =o.
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system eigenvalues with V for ih =10,000, 6 =0.1, at the cylinder
position ft =fi =O.
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Figure 4.3: (a) Contour, and (b) 3-D plot of the critical velocity, Vc, as a function of

cylinder position (x, fi), for in = 100, li = 0.01.
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Figure 4.5: Variation of eigenvalues with f10w velocity, V: for: (a,b) !ë = Y= 0; and
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are m=100, 6 =0.01.



•
FIGURES 142

-<

0.010 ..,
(ll ) (C)

...,
1..)...."

Re(À) 1..)
Re(À)

00'

0""

0"

.....
2 ....

""0 ....
00 .. V

.. O~ o. .. DA DA .. ,.
V

'.00: 1.Dl

(b) (dl

'''''
...,

Im(À) Im(À)

.... 1.0'

0_ ,..
1..2

.... ...
00 .. .. DA 00 .. DA DA .. ,.

V V

•
Figure 4.6: Variation of eigenvalues with fiow velocity, V, for: (a,b)
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respectively, in FigA.3(a». Cylinder parameters are m= 100,6 = 0.01.
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Figure 4.11: (a) Impact circle geometry: (b) veJocity vector diagram for coordinate
transformation.
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Figure 4.12: Bifurcation diagram based on V: (a) in-flow peak amplitude; (bl
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Figure 4.13: Cylinder response at V =0.34: (a) orbital (x, fi) motion; (b,c) in·flow

and cross-flow time traces; (d,e) in-flow and cross-flow phase plane
plots; (f,g) corresponding response spectra.
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Figure 4.15: Cylinder response for (a-c) V =DAO, (d-f) '! =0045: (a,d) motion in

the (x,y) plane; (b,e) in-flow phase plots; (c,f) cross-flow phase plots.
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Figure 4.16: The co-existing solutions at V = 0.57: (a) and (d) show motion in the

(i,y) plane; (1)) and (e) are in-f1ow phase plots; (c) and (f) depict
cross-fiow phase plots.
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Figure 4.1 ï: The symmetrica: ~ùlution with a large in-fiow component at " = 1.00:

(a) motion in the (i,Y) plane; (b) Ïll-fiow phase plots; (c) cross-fiow
phase plots.
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• Figure 4.18: Cylinder response at V =1.09: (a) orbital (i, fi) motion; (b,e) in-flow
and cross-flow phase plane plots; (c,d) in-flow and cross-flow time
traces; (f,g) corresponding response spectra.
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• Figure 4.19: Orbital (x, y) plot in the periodic window for V = LlO.
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Figure 4.20: Unsteady cylinder response at V = 0.326: (a) orbital (x,y) motion;

(b,c) in-fiow and cross-fiow time traces; (d,e) in-fiow and cross-f1ow
phase plane plots; (f) Poincaré return map showing iteration sequence;
(g) same map as in (f) showing only iterates and a curve fitting of the
data points.
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Figure 4.21: Cylinder response at V = 0.330: (a) orbital (i,y) motion; (b,c) in-fiow

and cross-fiow time traces; (d,e) in-fiow and cross-fiow phase plane
plots; (f) Poincaré return map showing iteration sequence; (g) same
map as in (f) showing only iterates and a curve fitting of the data
points.
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Figure 4.22: Cylinder response at V = 0.343: (a) orbital (x, fi) motion; (b,c) in·f1ow

and cross-flow time traces; (d,e) in·flow and cross-f1ow phase plane
plots; (f) Poincaré retum map showing iteration sequence; (g) same
map as in (f) showing only iterates and a curve fitting of the data
points, including new fixed points, PI and ]52 .
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Figure ·1.23: Orbital (J. fil plots of the asymmetric period-1 motion for V = 0.40

and initial cross-fio\\" displacements; (a) fi(O) =0.04; (b) fi(O) =-0.04 .
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Figure 4.25: Time traces for the f10w velocities (a,b)V = l.Oi, (c,d) V = l.09 and

(e,f) V = 1.15; (a,c,e) show in·f1ow motion; (b,d,f) show cross·f1ow
motion.
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Figure 4.28: Correlation for; (0\) chaotic respollse at V = 1.09; (b) pcrlOd-l rcsponsc

a~ V = 0.40.
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Figure 5.1: (a) View of array within tunuel test-section; (h) array central hU:ldlc

before insertion into the water tunnel.
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Figure 5.2: Experimental non-dimensional response amplitudes in (a) cross-flow and

(b) in-flow directions; m=1.87, 6 =0.01; Re =12574 U [U(mfs)) .
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Figure 5.3: Cylinder response at V = 1.05v;,. Parts (a) and (b) show the power

spectra in cross- and in-fiow direction, respectively; the inset diagrams
show corresponding phase portraits. For this and all subsequent
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Figure 5.4: The single-sided impacting response for V = l.1ïv,,: (a) orbital (x,y)

motion; (b) m·flow and (c) cross-flow time trace, respectively; (d,c)
corresponding power spectra. The support gap size èr =O.lï4 .
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Figure 5.5: Double-sided impacting response at V = 1.24v.,: (a) orbital (ft, fi)

motion; (b) in-flowand (c) cross·flow time trace, respectively; (d,e)
corresponding power spectra; èr =0.1 ï4.
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Figure 5.6: Cylinder response exhibiting the intermittent instability of the

double-sided impacting motion; V = 1.4ïVc: (a) orbital (fi, fi) motion;
(b) in-f1ow and (c) cross-f1ow time trace, respectively; (d,e)
corresponding power spectra; ër =O.H4.
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Figure 5.T: Cylinder response showing frequent intermittent amplitude bursts at

V =1.54Vc: (a) shows orbital (i,y) motion; (b) and (c) are in-flow and
cross-flow time trace, respectively; (d,l') are the corresponding power
spectra; è, = 0.1 ï4.
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Figure 5.8: The chaotic motion for V =1.69Vc: (a) motion in the (:i:,fj) plane; (h)

in-flow and (c) cross-flow time trace, respectively; (d,e) corresponding
power spectra; ër =0.1ï4.



•
FIGURES lï6

(a)

X
0.20 0.2

~
c)

0.18
0.1

X0.16 Y
0.0

0.14

-0.1
0.12

0.10 -0.2
0 100 1: 200 300 0 100 1: 200 300

6010
~e)..., d) ';;l

" .d.~8

e i 40 f- -.5 6
u
8- '"'" 4 ~ -~ S 20 f-
e

~<:;: 2

J..: .. 11lI•
0 0

0 5
CJ)/c1'tJ

15 20 0 5 10 15 20
CJ)/roo

•
Figure 5.9: The figure-of-eight orbital response following the intermittency regime,

here V =1.9n~: (a) motion in the (x,y) plane; (b) in-f1ow and (c)
cross-fiow time trace, respectively; (d,e) corresponding power spectra;
èr =O.lï4.
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Figure 5.10: Double-sided impacting response for the smaller gap èr =0.132 at

V =1.29v;,: (aj orbital (x, y) motion; (b) in-fiow and (c) cross-llow
time traces respectively; (d,e) corresponding power spectra.



•
FIGURES liS

3002001:100
-o.IS

o

-0.10

-o.OS

o.OS

'lO.oo

X 0.10 r:""',---"""T---.,..,..------:J

3002001:

40
.,e)-;

,;
E 30
2
Ü
!!. ~o -'" -
~
0
c:

~
10 -

u IN",,)• ~

0
2 3 4 S 0

1o/COQ
3 4 S

ro/COQ

100

0.13

0.12

X
0.11

0.10

0.09

0.08
0

4
~ d)::i
.e 3
E

=;:; 2l!.
'"~
0 1c:

..è
0

0

•
Figure 5.11: The final figure-of eight response for the gap èr =0.132 at V = l.G2Vc:

(a) orbital (x, y) motion; (b) in-f1owand (c) cross-f1ow time trace,
respectivel)"; (d,e) corresponding power spectra.
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Figure 5.12: Initial post-fluidelastic instability cylinder responsc, showing clfcct of

preload, for the small gap size èr =O.OGi; the flow velocity, V = 1.10V<:
(a) shows motion in the (x,y) plane; (b,c) show in-flow and cross-flow
time traces, respectively; (d,e) are the corresponding power spectra.
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Figure 5.13: Singlc-sidcd impacting response at V = 1.20v;, for the small gap size

èr =0.06i: (a) motion in the (i:, fi) plane; (b) in-fiow and (c) cross-flow
timc trace, respectively; (d,e) corresponding power spectra.
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Figure 5.14: Single-sided impacting/orbiting response at V = 1.43Vc for the srn:dl

gap size èr = O.06i: (a) orbital (x, fi) motion; (b) in-fiowand (c)
cross-f1ow time trace, respective1y; (d,e) corresponding power spcctra.
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Figure 5.15: The impact/sliding cylinder response at V =1.58\10 for the small gap

size èr = D.DGi: (a) motion in the (i, fi) plane; (b) in-f1o\\' and (c)
cross-flow time trace, respecth'ely; (d,e) corresponding power spectra.
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Figure 5.16: The impactjslidillg cylinder response exhibiting periods of stickillg at

V =1.ilVc for the small gap size ër =O.06i; (a) shows motion in the
(i:,!i) plane; (b) and (c) are in-flow and cross-flow time traces,
respectÏ\'ely; (d,e) the corresponding power spectra.
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Figure 5.1 i: Experimental bifurcation diagram as a function of f10w veIoeit)', V, and

gap size, è•.
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Figure 5.18: Response amplitudes in cross- and in-flow directions for various

materia! combinations: (~,~) brass/brass (b/b); (+, x) brass/st. steel
(b/s); (0,.) brass/Delrin (b/d).
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Figure 5.19: Rcsponse frequencies for different material combinations: (~, Â)

brass/brass (b/b); (0,.) brass/Delrin (b/d).
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Figure 5.20: Cylinder response for brass/Delrin (b/d) impacting for: (a-c)

V =1.60v;,; (d-f) V =1.90v;,; (a,d) show the motion projected in the
(x,y) plane; (b,c) art: in-flow time traces; (d,e) the corresponding power
spectra; the gap size, ër =0.200.
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Figure 5.24: Cylinder response in the intermittency regimc: (a-d) theory,
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• cross·flow time traces; (e) and (h) are power spectra for in·flow motion.



•
FIGURES 192

(e)

0.0

(a)

~.,

..., -
y

00
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v· = 1.90Vc; (e-h) experiment, V = l.ï1Vc; (a) and (e) show motion in
the (x,jj) plane; (b) and (f) are in-flow time traces; (c) and (g) are

• cross-flow time traces; (e) and (h) are power spectra for in-flow motion.
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• Figure 5.2ï: (a) Poincaré return map extracted from the theoretical in-fiow response
at V = LlO\l;,: (h) type A trajectory; (c) type B trajectory.
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Figure 5.28: Intermittency response from the one-mode model for V =2Ve: (a)

in-fiow response; (b) cross-fiow responsc; (c) Poincaré second rcturn
map from in-fiow response.
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Figure 5.29: Iterations of the modified baker's transformation for t\\"o typical

trajectorics. (b) Rcturn map of a projection onto a direction similar to
that of the rcturn map of Fig.5-28(c).
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Figure 5.30: (a) Theoretically predicted in-flow laminar phase response at
V = 1.ï6Vc; (b) corresponding Poincaré second return map; (c)
experimentally measured in-f1ow laminar phase response at V = 1.62Vc;

(d) corresponding Poincaré second return map.
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Figure 5.32: Experimental saddle orbits for V = 1.62\1,,: (a) period-2; (b) period-3.
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Figure 5.33: Histograms of frequency distribution of saddle orbits for V = 1.62\1;,:

(a) experiment; (b) theory.
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Figure 5.35: Correlation dimension for V = 1.2011;,: (a) experiment; (b) theory.
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•
Figure 6.1: (a-c) The complex-periodic response, for V =1.25Vc, occurring at onset

of impacting; (d.f) period-6 response at V = 1.30Vc; (a) and (d) show
motion in the (x, y) plane; (b) and (e) depict the in-f1ow responses for
the two f10w velocities; (c) and (e) are the corresponding cross-f1ow
responses.



•
FIGL·RES 2U5

•
Figure 6.2: Periodic motion exhibited by the uniform cylinder for V = 1.35\1;,; (a)

motion in the (i,fi) plane; (b) in-flow time trace; (c) cross-flow time
trace.
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Figure 6.3: Cylinder response in the intermittency velocity range: the fiow velocity

11 =1.40v;,; part (a) shows motion in the (x, ii) plane; (b) the in-fiow
time trace; and (c), the cross-fiow time response.
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Figure 6.4: Cylinder response for V = 1.45Vc showing reorganization of the rc.'Sponse

to periodic motion; (a) projection onto the (x,y) plane; (b) in-f1ow and
(c) cross-f1ow time responses.
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Figure 6.5: The final periodic response for (a-c) 11 =1.5011<: (d-f) 11 = 1.60\/~: (a)
and (d) show motion in the (x,y) plane; (b) and (e) depict the in-flow
responses for the two flo\\" yelocities; (c) and (e) are the corresponding
cross-flow responses.
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Figure 6.7: Duration of laminar phases as a function of the intermittency param"ter
/lp for the 1-d.oJ system studied in Chapter 4. Superimposed on the
data is the analytical approximation.



•
FIGURES 211

•
Figure 6.8: Qualitative depiction of expected probability distribution of laminar

phases for type 1 intermittency.
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Figure 6.9: Demonstration of the relaminarization process in (a) the baker's

transformation, and (b) the I-d.o.f. system of Chapter 4.
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DETERMINATION OF SYSTEM MATRICES
AND FORCE VECTORS

(Case shown is for two mode expansion)

(* :I:NPU'l' PBYS:I:CAL SYS'l'EM PARAHE'l'ERS *)

lzO.154; lwz.~~15; 12=.50841;

n-=2i

philf=philexactf; philr=philexactr;
phi2fzphi2exactf; phi2r=phi2exactr;

phif[l] • philexactf; phif[2] • phi2exactf;
phir[l] z Expand[philexactr]; phir[2] • Expand[phi2exactr];

(* final integrals *)

rho=lOOO;
Df=0.00635;
Dr=0.0127;
Drin.0.01077;
mO.0.05671;
mrz O.3013;
Mpiece=0.024;

(* mass per unit length, flexible section *)
{* mass per unit length rigid section

cmaf-l.OO ;
CWlr=1.332; (* added mass coeff in array*)
mabf=rho*Pi*DfA2/4*cmaf)
mabr.rho*Pi*DrA2/4*CWlr; (* added mass per unit length,

wet section*)
cmab..mabr/mO;
mOb-m0/{aA2*rho*DrA2); (* non-D mass *)

:I:Ofz3.01846A{-11);
:I:Orz {{Dr/2)A4-(Drin/2)A4)*pi/4;

•
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(* special functions *)• psilf-l;
psilroomr/mO;

psi3f=mabf/mabr;
psi3r-l.0;
psi3rdry-O.O;

psi4f-1.0;
psi4r-l:Or/l:Of;

psi2flow-l.0;
psi2noflo_O.O;

(* mass distrbution function *)

(* o < x < 11 *)
(* 11 < X < lw *)

(* x > lw *)

(* moment of inertia o < x < 11 *)

(* flow velo 11 < x < lw *)

•

(* THE MASS MATRIX *)

Do[{
Do[{

Ml[lJ) = NIntegrate[psilf*phif[i)*phiffj), {x,O,l}],
M2[iJ) = !~ntegrate[psilr*phir[i)*phirül, {x,l,l2}],

M3[iJ) = NIntegrate[psi3f*phif[i)*phiffj), {x,O,l}],
M4[iJ) = NIntegrate[psi3r*phir[i)*phirfj), {x,I,lw}],
Mpce[lJ) = Mpiece*phir[i)*phirül/. x-> 12,

M[iJ)=Ml[iJ)+M2[iJ)+M3[iJ)+M4[iJ)+Mpce[iJ),
Print[M[iJ))

},O,l,n}],
},{i,l,n}];

Print[MatrixForm[M));

0.00366
0.00838144
0.00838144
0.127312
MatrixForrn[M)
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(* STIFFNESS MATRIX *)

(see OUtput Dext page)

Do[{
Do[{

K[iJ) = NIDtegrate[psi4f*D[phif[i),{x,2}]*D[phif[j),{x,2}],
{x,O,l}],
Print[K[iJll,

} ,{j,I,n}),
} ,{i,I,n}]

215
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0.0645449
0.974836
0.974836
1126.75

(* THE FLUID FORCES *)

yr=O;
wr=O;
Do[{

yr = yr + phir[i]*q[i],
wr = wr + phir[i]*p[i],
},{i,l,2}];

CD = 6.5 * 1.5; (* 1.5 is Re factor *)
CL = -31.276*yr + 301.706*yr"3 - 863.689*yr"5;
Print[ Expand[CL));

(* THE FORCES Fl,F1b, D, Db (exluding mechanical damping)*)

Dol{

F1[i] = VO"2f(Z*mOb)*Integrate[Expand[CL*phir[i)), {x,l,lw}],
F1b[i] = VO"21(Z*mOb)*Integrate[Expand(CD*phir[i)), {x,l,lw}],

Dol{
F2[iJ] = -VO/mOb*Integrate[Expand[CL*phirfi]*phirÜ)),
{x,l,lw}],

F2b[jJ] = -F2[iJ]I2;

D[iJ] = -VOI(Z*mOb)*Integrate[Expand[CD*phir[i]*phirÜ)),
{x,l,lw}],

Db[iJ] = Cf[iJ]*Z;

} ,U,l,n}];
} ,{i,I,n}];

(* FORCE Fl in column Vector FORK *)

Flmat=Table[Fl[i],{i,l,n}];MatrixForm[Flmat]

216
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2 3 -7 5
1.42206 VO 1-0.00935826 q[ll • 0.000129129 q[ll - 5.81371 10 q[ll - 0.0548193 q[21 •

2 4 2
0.00172798 q[ll q[2l - 0.0000101561 q[ll q[21. 0.0133463 a[ll q[2) -

3 2 3 2 3
0.00012609' q[ll q[21 • 0.0470262 q[2l - 0.0011421 q[ll q[21 -

4 5
0.0064777 q[ll q[2l • 0.0168388 q[2] )

2 3 5
1.42206 VO (-0.0548193 q[ll • 0.000575992 q[ll - 0.00000203122 q[ll - 0.517645 q(2) •

2 4 2
0.0133463 q[ll q[2l - 0.0000630469 q[ll q[2l. 0.141079 q[ll q[2l -

3 2 3 2 3 4
0.0011421 q[ll q[21 • 0.591295 q[2] - 0.0129554 q[l] q[2] - 0.084194 q[l) a(2)

5
0.238572 q[21 )

(* FORCE Flb in Column Vector For.œ*)

Flbmat=Table[Flb[i],{i,l,nl];MatrixForm[Flbmat]

2
0.114829 VO

2
0.772585 VO

(* FORCE F2 in Matrix For.œ *)

(* see output next page *)

F2mat=Table[F2[i,j],{i,l,nl,{j,l,nl];MatrixForm[F2mat]
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• 3 -8 5
-2.84412 VO (-0.000349053 Q[11 • 0.00000507047 Q[I] - 2.36724 10 Q[I] - 0.00178047 Q[2] •

2 -7 4 2
0.0000597729 Q[ll Q[21 - 3.71432 10 Q[I] Q[2]. 0.000414251 Q[I] Q[2]

3 2 3 2 3
0.00000413423 Q[I] Q[2] • 0.00135531 Q[2] - 0.000034386 Q[I] Q[2]

4 5
0.000183681 Q[I] Q[2] - 0.000458191 Q[2] 1

3 -8 5
-2.84412 VO (-0.00178047 Q[I] • 0.0000199243 Q[l] - 7.42864 10 Q[l] - 0.0152578 Q[2] •

2 4 2
0.000414251 Q[l] Q[21 - 0.00000206711 QI1] Q[2] + 0.00406593 Q[l] Q[2]

3 2 3 2 3
0.00003438. Q[l] Q[2] • 0.0162326 Q[2] - 0.000367361 Q[I] Q[2]

4 5
0.00229096 Q[l] Q[2] - 0.00630779 Q[2] 1

3 -8 5
-2.84412 VO (-0.00178047 Q[I] + 0.0000199243 Q[l] - 7.42864 10 Q[l] - 0.0152578 Q[2] +

2 4 2
0.000414251 Q[l] Q[2] - 0.00000206711 Q[l] Q[2] + 0.00406593 Q[I] Q[2]

3 2 3 2 3
0.000034386 Q[l] Q[2] + 0.0162326 Q[2] - 0.000367361 Q[l] Q[2]

4 5
0.00229096 Q[11 Q[2] - 0.00630779 Q[2] 1

3 -7 5
-2.84412 vO (-0.0152578 q[l] + 0.000138084 Q[l] - 4.13423 10 q[l] - 0.172485 q[2] +

,,2 4 2
0~--'06593 q[ll q[21 - 0.000017193 q[ll q[2l' 0.0486978 q[l] q[21

323
0.000367361 q[l] ~i2] + 0.218881 q[2]

4 5
0.0315389 q[l] q[2] - 0.09272&: 1[2] )

2 3
- 0.00458191 q[l] q[2]

•

(* FORCE P2b in Hatrix For.m *)

(F2b=F2I2)
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{* FORCE D in Matrix For.œ (no mechanical damping)*)

Cfmat=Tab1e[Cf[i,j],{i,1,n},{j,1,n}] ; MatrixForm [Cfmat]

-0.00414865 VO -0.0243022 VO

-0.0243022 VO -0.229479 VO

(* FORCE Db in Matrix For.œ *)

Cfbmat=Tab1e[Cfb[i,j],{i,1,n},{j,1,n}];MatrixForm[Cfbmat]

-0.00829729 VO -0.0486043 VO

•

-0.0486043 VO -0.458958 vo




