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Abstract 

The dataftow model of computation offers an attractive alteinative for exploiting pro

gram parallelism throllgh ov('rlapped ('xecution. The dataftow concept of computation 

overcomes the sequential natllle of conventlOllal machines, by allowing the avallability of 
data to determine the executlOn sequence, rather than a sequential IllstmctlOIl counter. 

This thesis examines the dataftow ~oft\""are pipelilllllg - an efficient code mappll1g strategy 
for array operations and 1 teratl\ e COIIStI Hcts on IlIgh performance dal dftOW ardlltectures. 

It illustrates how the rllra:-. opel atlOl1E> III loop expressIOns can Iw l'ffectlvely <,xplOltcd on 

a highly Plpelined st atlc dataftow ploces:',or alchltecture ba$('d Oll t h<, rL7!/1l7Twnt fctchmg 

data-driven prInciple. A code generator has bcen unplement(>d \\'I11ch élutomatIcally gener

ates code for a subset of SISAL The SISAL front-end and iL hierarchical data derwnclence 
constructor have been Hsed to coust 1 uct the program graph, ""hcle the tl all~latlOn ta ma

chme code was applied. By f'XecutlOn of the compiled code on ct comptlerjalchitccture 

testbed, the efficiency of the dataftow software pipelining scheme and certalll optlll1izatlon 

methods are evaillated. A. detailed analysis based on the Simulation results 15 presellted, 

and the Impact of sorne alclutectural factols is (hscussed. 
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Abstract 

Le modèle de évaluation flot de donnees offre une alternative intéressante de profiter 

du parallélisme dans les programmes par l'intermédIaIre de chevauchement cl 'exécu tIOn 

La techni4Lle de flot de donnees surmonte la nature séquentIelle de machllles classiques en 
autorisant l'exécution des instructIOns selon la dispolllbIlité des données, et non par leur 

ordonnancement séquentiel. Cette thèse présente une technique flot de données pal pipeline 

logiciel - une stratégie efficace pour la réalIsatIOn de tableaux et boucles S\ll des maclllues 

à flot de données de haute performance Elle exphque comment léallser de façon efficace 
les opérations répétItl\"es sur tableaux ~ur des maclllnes flot Je données statlque~ basées 

sur les prinCipes "apporte-argument" (nrgument-fetch) Cn g,énérateur de code pour un 

sous-ensemble du langage Sisal a été COllstnllt );O\1S const IUlsons le graphe 111eI archlque 

du programme avec l'aide du compilateur Sisal et un transfollnateur de graphes. Ensmte, 

le code est généré directement du graphe On a exécuter le code sur un slmtdateur et 

mesuré l'efficacité de quelques méthodes de optimisatIOn r ne analyse des résultats est 
présentée, et l'impact de divers éléments architecturaux est évalué. 
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Chapter 1 

Introduction 

Advancements in technological growth cause the demand for more powerful computing 
to rise rapidly. Anticipating the continuation of this trend, research in the area of parallel 

computation seeks to achieve high performance by designing new architectures and struc
turing programs to exploit the parallelism inherent in many problems. Efficient explOlta
tion of parallehsm has been a challenge for designers of von );cumann parallel computers. 

However, the infiexibility of the program counter based sequential control mechanisms and 
the physical constraints that are Imposed from the electrolllc technology severely limit the 

ability to exploit the lllherent parallelism 1Il algorithms which demand large quantitles t)f 
computer power. The sequential nature of von Neumann architectures, where a sequential 

control mechanism 1S used to schedüle instruction execution, creates the so-called von ~eu

mann bottleneck [11]. Attempts to eliminate this bottleneck by overlappmg instruction 

executlOn through the use of pipelining, vector processmg and von ~eumann based \II~lD 

processors have yet to produce satisfiable solutions. In particulal, to the two fundamental 
problems of von Neumann multiprocessmg' the unpredictable meII10ly latellcy and the 

cost associatecl with the synchronization among the processors [6,8] 

A promising alternative to satisfy the appetite for computational cycles, 1S offered by 

the dataftow model of computation The dataftow concept of computation ovelcomes the 

sequential nature of conventional machines, by allowing the availabili ty of data to determine 
the execution sequence, rather than a sequential instruction counter. The side-effect free 

property eliminates the need for explicit synchronization among the processing elements. 
An instruction can affect another instructlOn only if the output of the first mstructiOl1 

1 
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is specified as input to the second instruction. 11oreover, dataftow computer exploit the 
parallelism at the fine-grain level as opposed to von ~eumann based multiprocessors. 

Dataflow programmmg languages facilitate the writing of highly concurrent programs. 
The use of applicative programming paradigm contains implicit concurrency and allows 
much simpler analysis of programs. The user does not need to use explicit commands to 
identify concurrent actlvities. The smgle asszgnment ru le and the referenttal transparency 

in the functional programming style, allmv the parallelism to be fully and naturally ex

pressed in the programs [1,11]. 

Translators for these types of languages represent the parallelism in a dataftow graph. 
Consisting of nodes and directed graphs, the data dependencies of operations in a program 
are explicitly shown. Each node identifies an operation and the arcs indieate the ftow of 
values among the various operatIOns. Given a graph representation of a program, dataftow 
architectures use a mode! of execution that exploits the concurrency implied in the graph. 
The general execution model exeeutes eaeh no de when ail of its mputs have been received. 
Sueh a model ean fully SUppOl t the concmrellcy expresslble Hl the graph 

In the last decade. several ide as and results have been drawn from many dlffelent rc
se:.trch efforts in dataflow. The first dataflO\v model being proposed was the statle dataftow 
model [15}. In the static dataflow mode!, statie graphs are used to represent the com
putation. The major characteristic of this model 15 that no more than one value cau be 

present on an arc at a time. To ensure tIns property and to eliminate the possibilities 
of overwriting, anode becomes enabled only if there are no values on any of its output 
arcs. Also in a statie dataftow computer. all the storage required for program executlOn is 

allocated at compile-tlme. 

Since Dennis at NIIT first introdueed the static dataflow approaeh, tremendous amounts 

of researeh efforts have gone into this area. Another dataftow research effort at 1IIT uuder 

Arvind, introduced the idea of dynamic dataflow model [5]. In the dynanuc dataftow 

model of computation, every value as it moves along the dataflow graph, carries a label. 
The dynamie tagging approach to dataflow computation assoeiates a unique tag with 

eaeh instantiation of an instruction within a program. Thus, each data opeland for an 
instruction carries a tag that specifies the particular inst:tntiation for wlllch the data is 

intended. The tag therefore distmguishes data operands fol' ,";'iffelcnt instant lat ions of the 
same instruction. This allows multiple values to occupy an arc at the same time. This 

approach is the one realized by the NIIT Tagged Token Dataflow Architecture (TTDA) [5]. 

2 
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Although the dynamic approach offers tremendous exploitation of parallelism in loops 
and in functions caUs, it requires a very sophisticated hardware to match the parallelism 
that the abstract mode! can explore. ~Ioreover, it do es not answer to one of the major 
criticism against the dataftow model: the unnecessary data movements through the sev
eral units of the processing elements. This problem becomes even worse ln the dynamic 
model, where every value must carry a tag which can be several bits long. This creates a 
considerable overhead in computing and moving the tag through the several umts of the 
processing elements. 

As a result of the active research in the static dataftow model, a highly pipelined static 
c!ataftow multiprocessor architecture has been proposed recently [18,30]. It is based on the 
principle of the argument-fetchmg datafiow model. The main char:acteristic of this model 
is that data never move through the units of a processing element. In this model data 
values and control signaIs are separated, and an instruction fetches its own arguments 
from a data memory just like m cOlwentional processor architectures Signais \vhich hold 
th'3 sequencing information among the ll1structions, are the only entities that are mOVll1g 
aro,md the circular structure of the processing element. 

The principle of datafiow software pzpelmmg appears as an effiC1ent mappll1g scheme 
for exploiting the parallelism in loop constructs. and array operatlOns. Software P1pehning 
is performed on units of program text that define the major structure values involved in 
a computation. Applymg this mapping scheme, the machine code lS arranged such that 
successive computations cau follow each other through oue copy of the code. 

This work focus on the efficiellcy that is gained by applyillg the dataftow software 
pipelining on the argument fetching architecture. Throughout this work. we try to investi
gate, both theoretically and expelÏmentally, the degree that these two recent developments 
affect the performance of the executing programs in a static dataftow arch1tecture. For 
this purpose an experimentaI compiler has been constructed which generates code for the 
argument fetching architecture. The principle of dataftow software pipehmng has been en
capsulated in the loops and conditlOnal expressions, allowing us to ldentify its effectiveness 
by running various programs. Three are the main objectives of this thesis: 

1. to construct an experimental code generator for the argument fetching architecture, 
which will be used as the ground work for future developments in the compiler for 
this architecture; 

3 
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2. to measure the effectiveness and identify the limitations of the datafto\v software 
pipelining, as this is applied to loops and conditional expressions; 

3. to gain a deeper inslght of the impact of several key modules of the aràitecture, and 
to discover relations between program structure. compiler optimization techniques 
and architectural characteristics. 

Aside from the code generator, the compiler/architecture testbed, which ailows us to 
conduct all the experimental work, consists of a compiler front end, a hierarchical data
dependence graph, an assembler, and an instrumented macrosimulator of the argument 
fetching architecture. 

1.1 Structure of the Thesis 

To establish the context of this work, we first describe the concept of the argument 
fetching model of computation and the princlple of dataftow software pipelining. Chapter 
2 describes the design of the architecture and the rationale behind the design decisions. It 
also presents the principle of dataftow software pipelining, using as an example the mapping 
of a basic code block. A brief comparison with other related work lS also described. 

Chapter 3 presents an experimental core language based on SISAL single assignment 
language. It describes in detall ail the data types, operatlOns and control constl ucts that 
are included in this subset. The main features of this language are the monolzthzc definition 
of arrays, which are static and rectangular, and the conditional and parallelloop constructs, 
where the software pipelining mapping scheme is apphed. 

The fourth chapter presents the mappmg schemes for aIl the operations and constructs 
of the language that has been defined in the previous chapter. First the program graph 
is presented as the abstract dataftow graph. In most cases there lS an one-to-one corre
spondence between constructs/operatlOns in the source language and nodes III the program 
graph. The organization of the machine graph lS also presenteJ in thlS chapter. ~lachine 
graph reftects the model of computation of the underline archItecture. Finally the transla

tion from the program graph ta machine graph is given for aIl the operations and COl1structs 
of the subset of SISAL language, which has been defined m the previous chapter. 
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Chapter 5 presents the performance analysis on a set of Livermore loops through simu
lation. The performance gained by applying software pipelining to these loops is evaluated 
by measuring the speedup and utilization factors. :\lso the effect of balancmg through 
an in-depth study of the simulation results of one of the Livermore loops is shown. Fi
nally, a detailed analysis based on the simulation results is presented, addressing two key 
architectural factors that substantlally lllfluence the efficiency of the running programs. 
By experimenting wlth different architectural configurations the relation between progr2..n1 
structure, compller optimization techniques and the architectûral features is addressed 

In chapter 6, we concentrate on the technique of software pipelining \vhich has been 
studied and implemented in von :'\Teumann style architectures. A comparison study of 
dataflow software pipelining and the software pipelinmg as applied to Warp systolic al'
ray architecture is presented [ .. l1J. In this study the effectiveness of software Plpehning is 
investigated in terms of scheduling efficlency, scheduling limitatIOns, space requirements, 
and compiler complexity. :vIoreover, a comparison study based on the pelformallce statis
tics gathered for the same set of LivermOle loops on both alchltectUles, is presented. 
This performance evaluation study is mamly focused on the achieved performance and the 
scheduling limitations. :\lso a detail analysls for the statistics gathered for the argument 
fetching architecture is dlscussed in relation ta the individu al loop characteristics. 

Lastly , chapter Î presents the conclusion of this work along \vith suggested areas for 
future research. 
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Chapter 2 

The Argulllent Fetching Dataflow 
Architecture and the Principle of 
Dataflow Software Pipelining 

In contrast to the sequential von-);ewman model of computation, the dataftow model 
of computation offers a simple and powerful formalism for descnbmg parallel computa
tion. The data fiow model of computation is based on the pnnclples of asynchrony and 
junctwnahty. The first denotes that ail operations are executed when and only when the 
required tokens are available, while the second imphes that any two enabled opelatlOns can 
be executed in either order or concurrently without affectIng the result of the computation 
(determinacy [1-1]). 

The first static dataflow model was proposed by Dennis and ~Iisunas [15]. In this model 
each instruction is activated by the presence of its operand value: its executlon consists of 
performing the indicated operation and delivering copies of the result value as specified by 
the destination fields. The presence of acknowIedge signaIs guarantee tnat an instructIOn 
cannot be fired again before its target instructions are ready to recelve new data. 

One of the major criticism to the traditional statie model and to aU the other proposed 
dataRow architectures is the high overhead due to the data traffic. In the tradltlOnal data 
flow model this is due to the unnecessary data movements. The operands of the UlstructlOns 
are "Rowing" through aIl the umts m the processing element, although they are used only 
upon the execution umt. Result values are eopied and stored in dupheate whenever there 
is more than one target Instructions. 

6 
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Fixe Dona 

OISO 

Figure 2.1: An argument- fetching data flow processor 

In the traditional static dataflow arcllltecture, known as argument-fiow architecture, 
the main reason for the above mefficiencies arises from the declsion to keep data and 

control information bound together in packets as they traverse the circular structure of the 
proeessor pipeline [16]. 

2.1 The Argument Fetching DataFlow Architecture 

The main principle that differentiates the new al.gument-fetchmg architecture ftolll the 

traditional argument-flow static data flow architecture, is the separation of data and signals 
in the information packets(tokens). It becomes evident that it is better for an instruction 
to feteh its own arguments from a data memory than its predecessor instructions to store 

result values in the operand fields of several target instructions 

The target architecture to be studled 111 this thesis, is a pipehned dataflow processor 
arc1lÏtecture based on the argument fetchmg data-driven principle The key [eature 1S that 
data 'lever "flow", while instructlOn scheduling remains data-driven. This architecture has 

been pioposed and reported in [18,23.24]. 

FigUl ~ 2.1 shows a block diagram of this architecture. The argument-fetching processor 
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consists of two major processing modules design to perform the instruction execution and 
scheduling functions: 

• The data fiow mS~TUctwn schedulzng nmt (D/SU) holds the szgnal graph of the col
lection of Jata flow instructIOns allocated to the processing element and mail1tains a 
record of which instructions are enabled for executlOn . 

• The pipelmed mstructwn processzng umt(PIPU) is an instructlOn processor that uses 
conventional techniques to achieve fast pipelined operation. The PIPU executes 
enabled instructions and informs the DISU when each instruction finishes execution. 

The fire link in Figure 2.1 IS for transmitting the addresses of enabled instructions from 
the DISU to the PIPU. The donc link is for transmitting the addresses of the instructions 
which have completed execution in the PIPU, together wIth a condztzon code used by the 
OISU to control the sending of conditional signais By decoupling data and sIgnais, the 
argument fetching architecture combines the powerful data-driven instruction scheduling 
of the data flow model (01SU), with the simplicity of a conventional pipelined processor 
(PIPU). 
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DISU 
~ 

fire ~one 

Enabl. 
Memory - Siqnal -... ... 

and Proe ••• or 

Sebedul.r 

Figure 2.2: The structure of DISe 

2.1.1 The Organization of DISU 

The DISU lU the argument fetching architecture plays the l'ole ofthe program counter by 
providing addresses of candidate cxecutable instructions. The difference is that the DISU 
is a "data-dnven program counter" wInch mamtams not one but a pool of instructions 

that are Ieady fOl cxecutlOll. 

The structUle of DISe is shown ll1 figure 2.2. It conslsts of a (l s7gnal pr-oCCSSln[j 

unzt(SP) and an enable controller unzt(EC). The signal graph, wl11('h hold the sequencing 

information among the instructIOn of a program, is represented in the DISU by the signal 

lists stored in the sIgnal ltst memory of the SP unit. Each signal list represents a set of 
signal arcs leaving the associated lIlstruction of the SIgnal graph The enable count mernory 

of the enable controller UIllt holds the C01mt and the reset status values of each nocle in the 

signal graph. 

In response to a clone signal from the PIPe for an lllstructlOIl. the SP unit Ietllevcs the 

signallists for tlus insti uetlon and sends a count slghal for each entry 11l the active list The 

EC unit lecci\'es the COllut signal and decrements the count value of the imhcatcd nocle. 

\Vhen this eonnt value becomes zero. an enable ftag fOl this instructIOn IS set and the rcset 

value is copied back iuto the count to prepare the next firing cycle of the instructIon. The 
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Interproce .. or 
Slgn.l. 

PIPU 

fin don. 

Figure 2.3: The structure of PIPU 

EC unit rontinuously monitors aIl the enable flags and issues fire signaIs for the enable 
nodes. 

2.1.2 The Organization of PIPU 

The PIPU can be considered as a conventional pipelined processor without a program 

counter Slllce the DISU is responsible for provlding addresses of candidate executable in

structions. The block structure orgal1lzation of the PIPC is shown ln figure 2 3. 

It consists of six pipeline stages to handle instruc tion fetch and decode, opeland effectIve 
address calculatioll and feteh, m~tl'1lctio!1 exeeution and store of the result values. The 

instruction execution conslsts of a scalar operation unit and a ~tllletUle operation unit. 

The scalar operation unit perfOl ms alÏt hmetic and logie functIOlls as \vell as scalar l11Clllory 
operations, while the stl ucture melllOly HIll t pel forms data ~truct III e 01 iented memory 

operations. such as array accesses. The IPC umt IS used for interplOcessor commUl1lCatlOns. 

The architecture aiso provides bUllt-in primitives for handling FIFO bllffers 
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2.2 The Concept of Software Pipelining 

The static dataftow model of computation derives ItS simpliclty by disallowing more 
than one instantiation of any lllstructlOn slmultaneously. It can exploit the parallelism of 
the programs by p2pelmmg data from multiple lllstantiations of a loop or a procedure body. 
In the static dataftow model, Plpelmmg means arranglllg the machine code su ch that the 
successive computations can follow each other through one copy of the code. If we present 
a sequence of values to the inputs of the dataftow graph, these values can flow through the 
program in a pipelined fashion. 

In dataftow computatlOn. program mapping is performed on units of program text 
that define the major structured values lllvolved in a. computatlOn. These program units 
are compiled lllto Ul1lts of code called code blocks Code blocks are the units of source 
programs to be handled by code mappmg strategies and will be decomposed and assigned 
to the processing elements of a dataftow multiprocessor computer. In SISAL, many code 
blocks can be written as for-in expressions. The following SISAL program is an example 
of such a code black: 

X :=for i in 1,n 
returns array of 
exp(exp(2*A[i], 2) + exp(2*B[i], 2), 2) 

end for 

This code block take as input two arrays A and Band produces another array X such 
that: 

The main feature of a for-in code block is that the array elements of the result array X 
can be evaluated in parallel because there are no data dependencles among them. In the 
dataftow graph based on the pipelined mapping of the above example, successive elements 
of the input array A will be fetched and fed into the dataftow graph. The progl'am is 
fed sequences of elements A[l], A[2], ... , A(n] and B[!], B{2], ... , B[n]. The computation 
proceeds in a pipelined fashion. 
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Figure 2...1: Software pipelining of datatlow programs 

Figure 2...1 illustrates the fine-grain parallelism that eXlsts in the abO\'e SISAL program, 
In tlllS datatlow graph. nodcs lepresent instructions and alCS leplesent data vailles, In
structions that belong to the same stage can he executed in patallel. ~lllce thelC ên:, no (lata 

dependencies among them, ),[orco\'er, dnnng the Plpelined executlOll of thE' prog, am. mul
tiple stages can be executed coneUl rently Stage 1 and 3 alf' enabled and ran be l'xecutcd 

in parallel: the same apphes to stage 2 and ~tage·1. The powel of fine-gram parallelism 

can be denved from programs that fo1'm a large pipelllle in which many lllstructions in 
multiple stages cau execute concllrrently. 

Howe\'er, unlike ln \'ector processOlS. there IS 110 leqUlrement that the actlVlties of one 

\'eetor operatlOll must be continuously processed by one or a group of dedicatcd fll11ction 

nnits in the processor, The applicative nature of the data tlmv graph model allo\'·;s flexlble 

scheduling of the execution of enabled aetors III the P1pelme In faet. an ideal data flow 

scheduler (w1th a suffieiently large data fiow computer) will exceutc each actor a,.s soon as 

its input data become a\'ailable. Therefore. massive paralleli~m of \'CctOl OpclùtlOllS can be 

effectively exploited by a data flow computer in a fine-grain mannCl' the scheduling of thc 

phys1cal function uuits and other reSOUlees for sustainil1g snch \'CetOl operations arc totally 
transparent to the user This is called software plpelmÎng - the arcs drmvn bet\vccll actors 

correspond to addresses ll1 stored datatlow machine code, and not to the witce! connections 

bet\veen logic elements. For more detai!ed discussion concermng the software pipelinll1g, 

the readers are referred to [28,21,22], 
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Loop unraveling has been proposed for the exploitation of parallelism as another pow

erful alternative technique in tagged-token dataftow archItecture [il. A major difference 
is that, during loop unraveling, each iteration lS assigned a new tag, which implies new 

resources are al!ocated to the activations 10 the new iteration. For example. ln the ~IIT 
tagged-token dataftow architp.cture (or TTDA li]). this means potentlal more space in the 
token matchlng store 18 lcquned to handle the concurrent activltles. In the new ~IIT 

~lansoon project [10], thlS implies that a new copy of memory frame IS requlred for each 
iteration to hold the tokens for the loop body. In either cases, the overhead becomes 
large when large number of IteratlOns is to Ge unraveled. One danger is the posslbility of 
overloading the system with parallelism. The recent work on Ioop "throttling" technique 
can partially reduce the overhead in loop unraveling by limiting the number of concurrent 

iteratlOns [il. 

On the other hand, the dataftow software pipelining suggested here will use the same 
code and data memory space for the entire loop pipelining. FurthermOle. no new tags 
are required for concurrent executlon of iteratlOns and the danger of overwhelming the 
computational resources IS prevented. 

2.3 Summary 

Dataftow computers are based on the concept of data-dr'tVen computation, i.e., the 
instruction execution in a conventiof1al \'on :'-J'eumann computer is under program-ftow 
control, where as that III dataftcw is driven by data availabllity. In argument fetching 
dataflow model of computation, the execution of a program 18 data-driven without the 

Q\'erhead of trallsmrtting data fwm one instruction to another. 

Dataftow software pipelining is an efficient program mapping strategy for compound 

constructs and data structure operations, that keep enough instructions enabled for pro

cessing. The parallelism In array opera +,ions of loop expressions frcquently found in scien

tifie computation can be effectively expl )lted by organrzing the dataftow machine program 

such that array operations can be fully ,1ipelined. Cnder soft\vare pipelinmg scheme pro

gram mapping is performed on Ulllts of IH'ogram text, called code blacks, that define the 

major array values involved ln a computation. The statlc dataflO\v model of computation 

can encapsulate the software pipelining very effectively without introducing much com

plexity to the compiler. ~Ioreover milllmai space requirements are needed to exploit this 
technique in the static argument fetching architecture. 
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Chapter 3 

The Language 

It is very important in a parallel computing system to facilitate the exploitatlOn of 
parallelism of the running programs. ~loreover, it lS important that application programs 
are written in high-Ievel programmmg languages that allow the programmer to abstract 
away from details of the machine structure. One optlOn is ta generate parallel code from a 
conventional high-Ievel programming language, without any extenslOns to support paral
lelism. Due to potential side-effects of program statements, comptle-time data dependence 
analysis is often difficult especlally for inter-procedure analysis and handling of aliasmg 
caused by the use of pointels [1,6]. 

As an alternative, functlOnal programming languages have been proposed. Functional 
languages are very attractive because their side-effect-free nature means that the Older 
of execution is irrelevant. Recently there has been a lot of effort 111 Implementation of 
szngle-asszgnment programming languages. In such languages there 15 no concept of global 
storage, and state. \Vhen assignment is restricted to occur only once for each van able in 
a program, the effect is as if assignment statements are definitlOus of the value names. 

Instead of reinventing everything from scratch, we decided to start our work \Vith an 
existing functionallanguage which must satisfy the following two couditions: 

1. it has a substantial body of real programming done in large-sc ale scientific program
ming, and 

2. it has given reasonable consideration to provide array operations. 
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vVe have chosen SISAL as our candidate. because it is a language which seems to satisfy 

the above criteria. Particularly, this work is focus on a subset of SISAL. the main feature 
of which is the monolithic and static definition of arrays. 

3.1 The SISAL Programming Language 

SISAL is well-suited to parallel processing applications because of three Important 
features: the language does not have any side effects. it does not require explicit syn

chronization primitives. and it encourages parallel solutions. Side effects are ehmll1ated 
by SISAL's single assignment rule. SISAL has no explicit featmes for synclllonizatlOn\ 
and programmers need Ilot worry about the difficulty of understandll1g and programmmg 
explici t synchronizatlOn priml ti ves 

The language is strongly typed using structural type equivalence, and allows only ex

plicit type converSlOn. A SISAL program is concerned wIth the defimtlOn and use of values. 
A value may be a constant value or a value name whlch is associaterl with the result of 
an expression evaluation. Xo value name may be redefined, and 50 ail uses of a g,l\'en 

value name in other expressIOns will always refer to the same value. The value of every 
expression depends solely upon the \'alues of the ll1puts to the expression The arder of 
the execution of a SISAL program IS thus determined solely from the avaIlabIlity of values 
for lise in the computation of expressions, and do es not affect the computed lesults 

An expressIOn may )"Jeld more than one result. The number of results Ploduced byan 

expression is refell'ed to as ItS anty. Expressions may be nested wlthin other expressions. 
provided that its arity and the types of its results are correct for the context in which 

it is used. Expressions are entirely flee from side-effects. A function calI is one kind of 

expression. A function definition simply encapsulates an expression with proper parameter
passing mechanism. Functions have access only to their arguments and ta oth~r functions. 

3.2 A SISAL-based Experimental Language 

Here we do not attempt to give a complete descnptlOn of SISAL, as this can be found 

in [39]. In fact throughout the thesis we will restrict our attention to a subset of SISAL, 
referred to as the SISAL I\ernel. The motlvation of defining this language is twofold: 
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1. to serve as the minimal basis of a functional language \vhich will be devf'lopl'd for 
the argument fetching statie datatlow architecture; 

2. to be used by the compiler as a sOll1'ce language from which to generate code for t hil> 
architecture. 

\Vith respect to the above objectives, the SISAL Kernel allows only Olle pTOymm mod
ule which conta;ps only one function. Since this language ha.') bren deslgned for a static 
datafiow architecture where function calls are Implemented by in-line expanSIOn, thls re
striction does not affect the generality of the language. By disallowing recursion, a program 

with sever al function caIls can be 1 ranslated to a siugle functlOll body WhPlf all the calIce! 
functions are replaced by their code. The description of SISAL Kerncl is glven in the 
following sections. 

3.2.1 SISAL Kernel Data Types 

The SISAL Kernel supports two data types: sealars and arrays The rrmailllng set of 
data types that is supported in SISAL but not in the Kernt>l that we are cOllcerned with 
here includes: streams, records, unzons and error values. Although a large subsct of SISAL 
data types are excluded. this language stIll can express a large numlwr of kernel plOglams 
that consume the moc:;t cycles in sClentific computation proglam!:> wl1l('h iuvolvc only ~('alat 

and alfay operatiolls. Finding efficient mappll1g schemes for t hcse two data types lS, by no 
doubt, the most crucIal part in design and implementatlOn of code gCllC'ratOls for high-Ievel 

languages. 

Scalar Types 

The SISAL Kernel provides the following scalar types together \Vith the llsual operations 
on and between them: 

• boolean, 

• integer, 

• real, and 
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• double real. 

AU the SISAL scalar types are provided except the chamcteT type. Although tlle SISAL 
Kernel provides for the declaration of value names. the typing system enables the type of 
any value name to be directly deducible From its defining expression, so declarations are 
only used wh en their inclusion improves program clarity. A number of predefined functions 
are provided together with explicit type converSIOn operations The set of predefined 
functions includes modulus (mod), magmtude (abs), max:imum (max), minimum (mm), 
and a real and mixed exponentiation (exp). ~o implicit type coercions are performed. The 
set of aIl the valid operations for each data type will be listed in the next section. 

Arrays 

Arrays are the most important data types in scientific numerical computation. Arrays 
have been a challenge to the researchers of functional languages due to the difficulty of 
finding an efficient implementation. In a pure functionallanguage which has no notion of 

computation by effects, an anay is treated as a functional aggregate value. 

In SISAL, an anay has components of arbitrary type and an llnplicit integer ll1dex. 
Each array's size lS detel mined by evaluatlOn of the expression defilling the array value. 
:\Iulti-dimensiollal arrays ale represented as "arrays of arrays·'. :\Ioreover an array append 
operation, generates a new array which agrees everywhere with the old anay except ll1 

the position that its value has been changed. However, such ll1cremental array update 

operations also cause large overhead due to copyll1g. 

In SISAL Kernel the array definitions meets the following three criteria: 

1. have reasonable expressive power to meet with programming lequirements in scientific 

numerical computations; 

2. keep space/time efficiency, while providing an implementatIOn scheme which can 

effectively exploit parallelism; 

3. keep clean semantics for parallel processing; 
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SISAL Kernel adapts the use of monolithie arrays, the comput atioll of whos(' P\t'IlWIl!:-' 

are defined aIl at once when the array IS fhst created [2!J]. An n-dlllH'IlSiollallllollo\itlllc 
array is defined by a mapping: 

where U is the set of the CartesIan coordinates defincd 011 Cl !'('ct allgular ll-dillH'Il~i()lla\ 

Euclidean space, and V is the set of values of type T. In adchtioll to tlH'lr l1lollolithi(' 

nature, arrays in SISAL I\ernel have the followmg th!'('e characteristics: 

1. Theil' size is constant, kllown at compile time. 

2. They are rcctangular, i e. aIl the elements in the same dinwnsion havI' the :-'élmc sizp. 

3. The lower bound 15 always l'quai to one. 

This class of anays can be called: statie rectangular arrays. A lalge Humber of 
numerical computation pIOgrams can be written using only static rectangu\ar arrays and 

thus their mapping to efficient dataftow machme prograrns is crucial. 

3.2.2 SISAL Kernel Operations 

Here we specify the sets of operations applIcable to cach data typP of SISAL Kpillei. 
The valid operations for booleans, integers. reals. arrays and typp-rOllvelslOll oppratiol1!> 

are listcd in tables 3.1, 3.2, 3 3. 3A and 3.5 respectl\'cly. In tho!>e tables. ~ymbob have the 

follO\vmg meaning: P and Q for booleau, .J and K for illtegcrs, X and Y for real:-., A for 
arrays, T for arbitrary types, and V for values of arbitrary type 

Notice in table 3.4 that the "crcate by clements" array operatlOIl retllrns an an ay of the 

indicated type wlth law index equal to 1 and high l'quai to k The k-elenH'nt!> of the éll'ray 

are equal ta VI .... , Vk respectlvely. The "type llélmc" If> optlOnal. bllt If IHPs('nt. lllll!>t 
conform with the type of V. This "type nétmc" den()te~ the type of tlte allay OjH'ratlOn and 

therefore must be an array type - Ilot the type of the comj)ollent FlIlally the array _fiU 
operation creates an array with the glvcn lange i.e. flOm 1 to a l11gh !;olllld Hi. Ali the 
clements are eqllal to the given value V. 
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Boolean Operations 
operation notatwn junctzonality 

and P&Q bool, bool -+ bool 
or P*Q bool, bool -+ bool 
not -p bool -+ bool 
equal P-Q bool, bool -+ bool 
notequal p .... = Q bool, bool -+ bool 

Table 3 1: SISAL l\:ernel boolean operations 

Integer Operations 
operatwn notatwn junctionality 

addition J+K int,int-int 
su btraction J-K int,int-int 
multiplication J*K int,int-int 
division J/K int,int-int 
modulus mod(J,K) int,int-int 
exponentiation exp(J,K) int,int-int 
negation -J int-+int 
magnitude abs(J) int-+int 
maximum max(J,K) int,int-int 
ffillllmum min(J,K) int,int-+int 
equal J=K int,int-int 
not equal J -= K int,int-bool 
greater J>K int,int-bool 
less J<K int,int-bool 
greater or equal J >= K int,int-bool 
less or equal J <= K int,int-hool 

Table 3.2: SISAL Kernel integer operations 
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Real Operations 
operation notation jllndzonalzty 

addition X+Y real,real-real 
subtraction X-Y real,real-real 
multi plication X·Y real,real-real 
division X/Y real,real-real 
modulus mod(X,Y) real,real-real 
exponentiatIOn exp(X,Y) real,real- real 
exponentiation exp(X,J) real,int-real 
negation -X real-real 
magnitude abs(X) real-real 
maximum max(X,Y) real ,real- real .. 

min(X,Y) real,real-real minImum 
equal X=Y real,real- real 
not equal X-= Y real,real-bool 
greater X>Y real,real-bool 
less X<Y real,real-bool 
greaterjequal X >= Y real,real- bool 
less or equal X <= Y real,real-bool 

Table 3.3: SISAL Kernel l'cal operations 

Array Operations 
operation notatzon functionaLlty 

create by elements array[type-name][l: VI ... VkJ int, T-array[TJ 
createjfill array Jill( 1,Hi,V) int, int, T -array[TJ 
select A[Jl array[T], int-T 

Table 3A: SISAL I\erncl anay ()peratioll~ 
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Type-Conversion Operations 
operation notation functiona/ity 

real- to-integer floor(X) real-+-int, double-+-int 
integer(X) real-+-int, double-+-int 
trunc(X) real-+-int, double-+-int 

integer- to-real real( J) int-+-real 
doubleJeal(J) Înt-+-double 

integer- to-real real(X) double-+-real 
double1eal(X) real-+-dou ble 

Table 3.5: SISAL Kernel type-conversion operations 

3.2.3 SISAL Kernel Control Constructs 

The program structures described in tills section are specifie forms of expressions le gal 
in the SISAL Kernel. A more detalled descliption of the these constructs can be found in 

[391· 

The Let Construct 

The purpose of the let block is to define one or more value names, which are then used 
in the evaluation of an expression. The result oi this expression 1S the result of the block. 
Every value name introduced 1ll a "let" block oceurs on the left hand side of ":=" exactl)' 
once. The scope of each value name introduced 111 a let block is the entire block following 
the definition, except any inner constructs that reintlOduce the same value name. \'alue 
names defined in a black are not available for use outside that black. 

The IF Conditional Construct 

The conditional construct is used to select one of two alternative expressions for evalua
tion, depending on the result of the boolean test. The selected expression is e\'aluated and 
its results are returned as the results of the whole construct. The else bran ch must always 
be present to define the results of the cOllùitlOnal when the test yields false. Similarly, the 
expressions given 111 the two branches must conform 11l the number and types of results 
produced, 
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A single eonditional eonstruet ean be IIs<>d. without ncsting, to ~I'h,('t Olll' of tIlt' M'vl'ral 

expressions for t'valuation using one or more elself brancllt's. In t his l'aSI" the l'Ilt in' 1'011-

struet is an expression whose tuple of \'ahlPs i~ that of t h<> first arm whost' t('st l'XIH('~~ion 

is "true", or the final arm if ail test expressions are "false". Finall~', tht· ('onditLOllal (,Oll

struet does not introduce an}' value names. Ali value name ~copes pass into tht· conditional 

construct. 

The FORALL Iterative Construct 

In SISAL there are two forms of iteratlve constructs: (1) the non-plOcll\ct, fOl m (for

initial), and (2) the product fOllU (for-in). The non-product form p(,l'fol1n~ ~('qIH'Btlal 

iteration in whlch one iteratlOn cycle depends on the result of the plC\'IOIlS cycle., Th!' 

product form is a special case of the non-pl'oduct form that provI<!es a. 1Il00P (,Olll'l~1' \Vay to 

specify arrays It is used to denotes that there a.re no Joop carry d<'[)(,II<l('n(,H'~ ilmong the 

cycles of the iteratlOll. 50 Hleally the computations of the cycles call be dOl\(' III !Hua.llt·l. 

SISAL Kernel uses ouly the product for111 of the SISAL Iterative <'OBstlllet. Tht, Ploduet 
form allows inner and/or outer (Cartesian) array mdcx prod\lcts ta lw spcnned Sil\('1' our 
main concern has been focused iu the efficient implementatlOIl of manolitlllc arnly~, wC' 

use the for-in construct as one parallel monolithlc array COllstructor TIl(' ~yllt ax of t hi1'! 

construct is the following' 

for generator 

body 
returns return-expresswn-list 

end for 

The for-in construct comprises from three parts: 

1. a generator, which specifies the range of values for which the body will be f'xecuted, 

2. the loop body, and 

3. the return-expression-lzst, which specifies the value( s) to be returned. 
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operation comments 
elem in A process ail elements of 

array A. 
elem in A at l process ail elements of array 

A and bind the corresponding 
indexes to 1. 

Table 3.6: Array clement in expression 

SISAL Kernel supports aH the expressions that can exist in the generator of a for
in. These expressions are in. at, dot. and cross. l:sing these four fonns of generators. 
elements of an ana)' may be available inside the loop without explicit subsnipting. Table 
3.6 shows how this can be accomplished by mamplllatmg an anay A. In case that the 
array A is multidimenslOllal. the in expreSSlOl1 process the elements aclOSS the olltcrmost 
dimension of the array. Also. multiple ranges may be specified and combined USll1g cither 
dot or cross prodllcts. In a dot product. the ranges must have the same Size and the i-th 
indexing element of each range is lIsed to drive the I-th iteratlOn. The cross plOduct is 

short-hand for a nested for-in. A more detailed description for the functlOnality of these 

four expressions is given in [39]. 

The result of for-in construct is the tuple of values defined by the return-expresswn
list. In the for-in construct. Slllce ail the elements of the range are independent of each 
other, ordermg of the results is defined by using the range expreSSlOll 's hst ordellng. Each 

return expreSSIOn must contall1 some expression that descnbes a result to be plocluced. 
The expression list is defined from two par ts: a prefix and an expression. In SISAL I\erne! 
there are two possIble prefixes: 

• value of 

• arrayof 

The value of prefix signifies that the followillg expression produces a sll1gle value in 

one of two ways. If the value of is not followed by one of the reduction operators, the 
result produced by this clause is the last element of the sequence (as descl1becl above). 

If a reductzon operator is in the clause, it means that aIl elements of the sequence wrll 

be combined USillg the reduction c.perator to produce the slIlgle value. The reductwn 
names, their operation along with the legal set of types, are l1sted in table 3. ï. The 
reduction operation is al ways performed within the lowest dimensiollecl sequences and 

then successively applied to aU higher level dimensiolled sequences. 
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Reduction Operators 
operator name [egal types operatIOn 

sum int, real. double, addition or 

boolean boolean OR. 

product int, real, double. multiplication 

boolean or boolean AND. 
least int. real, double minimum. 

greatest mt, real, double maximum. 

Table 3. ï. SISAL I\:l'rIlell(>ductlon opt'ratOlh 

The array of prodllces an ai ray ha.\'lllg Sile ('<jual to t hat of the hequl'Jl('(' of t hl' 
results as described above and cout aming l'xaet Iy t hOhl' \'ahws III t Ill' Dl dPI dt'tilll'd by t Ill' 
sequence. The lower bound of the éurny IS alwaYh t'quai tn Olle. If thl' for-in d"till(>S a cr()~S 
product range. then the r('su!tmg array Ih ll1ultHlilllPIlslOllal. SISAL l'Pll1(>1 ,tppli(>h Ollt' 
restriction in the COBstruct ion of nm! t I-dll11eUSlOlltll éU rays 1 t cioes Ilot allow t ht' l'x(lort at 1011 

of a subarray wluch 15 used for the constructIOn of il blgger alla\' Thih ih ,1 II',L,>ollable 

assumptlOn whlch dops not affect the gl'Jl('1 ah ty of (,Oll~t IlIctllIg 1Il1l! t 1-<1 III l<'lIhÎOIIal allétyh 
in a for-in construct. The reason belllud tlus a.'lSllmptlOll v,,'dllwcOllW appan'nt. 1\1 chapt!'l 
5, where the machine code mappmg ,,('heI1H>~ arc pleSl'lltcd 

For the reduction operators. SISAL KelllPI ".1'>0 ..,IlPPOl t~ a. ma . ..,!üng rlélllhe l1loditipl'. 
Each result clause may optionally 1)(> follO\wd by <l. bookan ('Xl)JI'~~IOll pll'cl'c1('(l by a 

when indicator whieh aets as a filtel Thi~ tilt!'l dptellllllll''; If hpentic !-.('(!1IPllCP \'ahu'h 
should be taken out Df the sequence pllOI tn tinallpsult calculatlollh Aftl'I l'ach it('lation 
cycle. the maskil1g clauses are c\'alllatrrl. If the when dall">p I~ !a[ . .,e. th!' ('Olll'hpOllding 
expressIOn value is dropped flOm the 5cquencr. 

3.3 Summary 

SISAL Kernells an experimental core language ba...,ed on SISAL ~lIlgll'-a,,">~lgllllll'nt lan
guage. A!though it is in a way restllctl\'e III the ,>pt of clata typl''> and tlH' 01H'lat.lolI!> that 
it a11ows, It is powerful enough to ('XIH ('ss kellwb that (' ,tpt III (' 11111<'11 of t Ilf' ('{JIII p1\ t at 1011 of 

larger scientific programs It 15 also 5111tahle fOl {'XIH:lllllelltlllg and IIwa . ..,lllllIg t Il<' ('ffi('\('Il<'Y 

of the generated code in respect to mapplllg hchcllll'''> that ille ,lPP!\('c! 1'10111 the ('olllllliei 
in a statie dataftow al cllltect me. 

The main features of the language are: (1) the l11onohthic clpfillitioll of al !'av'). which are 
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rectangular and their size is known at compile time, and (2) the for-in construct, which is 
used as the main parallel monolithic array constructor. In addition to array data types all 
the other scalar types are supported, with the exception of character types. The for-in and 
the if constructs constitute the major features of code blocks where the software pipelining 
mapping scheme wlll be applied. 
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Chapter 4 

Translation ta Machine Code 

Here we will show how to systematically translate program graph~ lllto machille graphs 

which contains only instructions suit able for executioll on the argument fetchlllg éUchitcc

ture. First the program graph will be presented. The program glaph 15 composed flOlll 

a collection of nodes. each wlth an operatIOn code that id('ntifirs Its fUllction. and ..,ollle 

number of mputs and outputs 

Translation to machll1e code is accomplished hy sllbstitllting caeh nod(' of the program 

graph by groups of tuples. each one contaming the machine operation code along \vith tll<' 

arguments and the signallllg ll1formation. Hele wc prf'~(>llt the mapplllg scl!PlIlcs for ail the 

operations and constructs of the SISAL I\:t'rnel. For ('iteh ~Illlple 01 compound 1I0r!1' that 

replesents an operatIOll or a construct of the SISAL I\:elucl, \VI' pll'~t'Ilt Ih Ill,U 11l11t· gtaph 

showing pictorially the data and the sIgnaI depenùellcle~ amollg the mét('hull' 1Il~ t 11Ict I()n~. 

The categories of simple and the compound Hodes that conl'spond to tIlt' opl'Iat.ions 

and constructs of the SISAL Kernel, are the following: 

1. arzthmettc and boo/ean nades, 

2. type converSlOn nodes, 

3. array manipulation nodes, 

4. nodes dealing with multiple values. 
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5. select compound node, and 

6. forall compound node. 

As we describe the translatlOn to machine code, we will introduce the machine instruc
tions as needed. For a more detail description of the available machine instructions and 
their functionalities, the reader should refer in Appendix A. 

4.1 A Hierarchical Data Dependence Program Graph 

The single-assignmellt and fUllctional properties of SISAL make it particularly smted 
to translation into data dependence graph form. The first step 111 the SISAL compiler, is 
to produce a maclllue-illdependent graph, kllown as IF 1 (Intermediate Form - version I) 
[45]. IFI is very high level, and the structure of an IFl program follows closely the SISAL 
program it was derived from. Also a number of machine-independent optinllzations had 
been applied at the IFl level from the SISAL compiler. Loop-invariant removal, common 
subexpression elnnination, constant folding, dead-code elinunatlOn and function in-line 
expansion are sorne of the most Important optimizations. 

IFI files comprise a number of lines that contain printable ASCII characters The hi
erarchical data dependence glaph (HOOG) that is used here, 1S based on the IFI common 
intermediate form for SISAL. The HOOG data structures are produced from the IFI pro
gram in two steps. In the first st~p, the IFI program file is parsed. and the data structure 
representing that program is constructed. In the second step, the data structure 15 ma11lpu
lated to construct a HDDG data structure. At this step, aIl the imphcit data dependencies 

in IFI are converted to explicit. 

HD DG is based on acyclic gmphs. The HO DG data structures represents a set of graphs, 

one for each SISAL function. Graphs ronsists of nodes and edges. )rodes denote ope1ations 
and edges represent data dependencies between nodes. Types may also be attached to each 

edge. Graph boundanes surround groups of nodes and edges. 

Nodes represent operations on values. There are two types of node5: szmple and com

pound nodes. The difference between these two categories of nodes is that compound nodes 

contain subgraphs while simple nodes do not. The semantics of simple nodes describe the 
relation of the inputs of the no de to its outputs. ~odes receives their values flOm a number 
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of mput ports and "deposit" the produccd \'a!\ll'S to Ihr output l)(),.t.~ \[o:-.t ."illlpll· nnd"" 

have a fixed number of input and out put pOl ts, ait h011gh t ht,lt, .Ut' \'lU lahlt' llllll\ht'I'~ of 
inputs to nodes that blllid "tructl1r<,d da.ta tVI)l'!-' 

The compound nodes ait' hJI'I<\lclucallv d~'filll'(1. 'oU that ~llh~tlllctllll''''' .111' dPllot"d hy 

subgraphs. The Sl'lllantlcs of C(J1ll pound lIodt'~ (!t>!-I('J 1 ht'" t Iw wa \ ~ III \\'ll1l"h t!1C' -.1\ iJgl aph:-. 
of the compound no de intelact Compollnd llod,'" g,tt h('r th(' \'1\1111':-' I1p"d,'cl h\' t IlI'lI ~lIh

graphs, so they gCIlf'rally havI' au al bittalV nllllllH'! of lIl(>ut and olltput pOl t!'> 

4.2 Machine Graph 

A program for tlj(' argllment fetching élichitectlll(' 1., it set of m.~fl1u;tum !lLpie!!. Eiu'h 
znstructwn tllplCConslsts ofa ]J-mstTïlctum. wll1ch d!'filH'S ,1 thlt'('-addIP!'>., lIl~tlll('IIOI1 thal l!-> 

executed when thls lllstfllctlOIl becolllc:-, l'Ilahlt', alol1g \Vith ,li! . .,-m.~tl'lldW1l tltal "1)('('111('8 

the seqllencing lIlfol matlOn tllllong lIl~t Illet lOn~ of a piOglillll and I~ 1>l1l··(· .... "l'd illOIS U, 

Each s-znstructzon ïontalll~ two fil:'lds' tilt' CTIrlb!f' field Illdlcatl'!'> ho\\' lllallV "'IRIIab Illll!'>t 

yet be receivrd fOl' an 1l1stIuction to !)('('omr ('11,tble and thl' T'I'.~(~t fidd h()ld.., tll<' \.du/' tl/ 

be placed in the enllbic fil'Id wlH'1l the lIl:-,lluïtlon I!-I fill'd \1..,0. P;!c!t ..,Ignal 1 .... ta~~~'d wlth 

a conci!tlOll code TIll{,(' are thl:' p()s~lhle (olldltlOIl ('[Jdp~ t 11\(" fab\', ,lIld Il 1l('()!1 (It t lllllai 

Accordrng to the rt':-'lIlt condItion codl' of t hl' ('01 1 (,!-ljlO!Hltng, JI-I1!.~f11Ld/(J1/. oulv Oll/' (jf t h,''''(' 

sig,nalltst'> 1)('('()111l'~ (tetne l'<\eh Imw an lIl-,tl Il ct 101l ('(Jlllpl,·t~· .... lh ~'XI'('\ltl()ll 

The rlScf'mbly fonn of the program tllpl!· .... 1'> IUtllll'cl .\-('odf', ,-\-('"d(' ""11 l'pOl ha Il'dll('pd 

~et of rnstructions wl1lch can be dlVid,'d illto aI lthllll'tll'. IO)!,lc. (Olllpal l!-lOIl. IYp" (,()1l\'('I~i()1l 

and data transf{'r 01H'ratlOns. The set of tIlt' p-ms!T1Lcfwns that all' !-IllpPO( t('<1 1:-' gl\'Pll III 

Appel1dix A. 

Translations from the ll1tcrrncdlate progralll graph:-, to lIlac hlIl(' graph-, al" lIlo<,l P:I."t1y 
expl essed pictorially, Figure -4 1 prf'~(,llt ~ the madlIllP gl apI! fOI t Ill' l'X (li ""''>1011 (,l + 1; )( c+ 2) 
In a machine graph repre,>pntatlon, ln.~t7'1t(;tz()T/,~ f1l1)lt:,~ ail' 11'\>1I·'>/·III1·d \)\ bO\I'''' ,d l lll!!, "Ilh 

al! the incoming arcs Throllgholl t t 1 If' lt'~t of ! 111' (hap! l'L rlw t 1'1 III 1 fi ~ Il /LI t /lm t I(Jllr',~ 

will be interchangeahly u'ied \\lth tl\l' tl'lIll mac/mu; 111.~tnLdllm.~ <lI '>llllplv m,t11LI'IWTtS, 

The operatIon ('ode of th<, p-instrnctlOll l~ Wllttl'll ill~ldl' tlw box 1 \1(' al('~ • \li , lalH'I('d to 

dCllote a 'lignai or/and a data dcp('ndcucy Iwtwf'i'1l t\ .... o tllplt·,>, .\11 tll1' lill'Olllm)!; "Ignab 

laheled wlth "ri" repr('~,cnt data arcs ail ri ('orn""polld 10 an l'xi!->tpll('1' I)f:ln alglIllwllt III tilt' 

tluee-address p-ll1~trllction of tll1~ tuplp. 
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Figure -L1. ~Iachme graph of the (a + b)(c + 2) expreSSIOn 

LiteraIs are represented by denoting their values mside quotes aiong with '"d" arcs 
pointed to the instructions that use them. The result register of every tuple is not showed 
explicItly m the machme graph: it is imphed that for every tuple there IS ulllque register 
that holds the result of the operatIOn. In general, every tuple has ItS own result register 
unless lf it is stated otherwise. 

The arcs labeled with "s" represent signaIs and correspond to a signalm the s-instruction. 
There are two types of signaIs: the count and the no-count sIgnaIs These two type of sig
naIs are needed because the typical initial values of the enable and reset fields for each 
instruction are not equal. For the first finng, an mstruction requires signals only from its 

predecessors (count signais). To fire again, an instructlOn should wait also for ackno\'v'Iedg
ment signaIs (no-count SIgnaIs) from the lI1structlOl1S that con~ume the data plOduced by 
this instruction. Therefore, for each insU Hction the value of the enable field 1S the sum of 

aIl the C01l.nt signaIs, while the value of the reset field is the SUlU of aIl the sIgllaIs In the 

machine graphs presented here, aIl the fOl \vard SIgnal arcs represent connt slgnaIs, while 
the backward signal alCS represent no-count signais. The enable and reset fields of each 

instruction is not explicitly shown in the machine graphs, but they are easy derivable by 

counting the incoming forward and backward signaIs The condi tionaI code of a signal 
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Machme 
HDDG nodes op. codes operation 

Plus Add addition 

Times Mult multi plication 

Minus Sub subtraction 

Div Div division 

Mod Mod modulo 

Abs Abs absolu te value 

Neg Cos negation 

Not Not boolean negation 

Less Lt boolean "less" 

LessEqual Leq boolean "less or equal" 

Equal Eq boolean "equal" 

Table .-1.1. Plll111tivr ant hmet le and boolpan op Cl at ions 

can be derived from the labelmslde the box of the source tuple. An "F" dellotl'S a faise 

conditional code. a "T" denotes a true conditional code, while the absence of any label 

denotes an unconditlOnal code. 

A non-deterministic SIgnal melge is defined by using a @ symbolm the machine graph, 

In the current implementatlOll literaIs ale implemented wlthollt lIsing SignaIs to lIHlIcate 

t hat they are available This plimmates the eXIstence of SlgllctlS III the f,-paI t of tilt> t lIples 

to notify that a constant 15 available ThelefOle. a lItrrai ap!H'ét!'> only a." illl ;uglll1ll'llt in 

the p-instruction of a tuple. 

Finally note that in most of the graphs that will be pl esented in this chapter, the 

outermost box always corresponds to the bOllndary of the HDDG node whose machine 

graph is presented. 

4.3 Mapping Arithmetic and Boolean operations 

ylost of the arithrnetic and boolean Hodes are supported 'l.s plill11tive machine instruc

tions in the argument fetching architecture. Table .. 1.1 shows the one-ta-olle lelation 1)('

tween the HDDG nodes "-nd their corresponding machine instructIOn op(>ratIOIl rodes. As 

figure 4.2 shows, this set of nodes IS directly translated into Olle machine in~tructioll. Thb 
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from 
producer 

tu pie. 

opcode 

to 
consumer 

tuples 

Figure 4.2: )"Iachine graph for primitive arithmetic and boolean operations 

instruction is activated whenever the two input values are available. These two mput val
ues represent the two arguments in the p-znstruction, where the corresponding operation 
will be applied. Upon the end of the execution of this instructIOn, the "producer" and the 
"consumer" instructIOns are notified by teceinng signaIs from the executed lllStl uchon. 
Note that for the "Abs", Chs" and ";';ot" maclune instructions. the translation 1S the same 
except that these 111structions receive one mstead of two mput values. 

There are four HDDG nodes 111 this category that are not translated into one machine 
111structlOn. These nodes ale: (1 )max. winch finds the maximum bet\veen t\\'o lllpU t llum
bers, (2)mzn, which finds the miI1lmum bet\veen t\,,.o input numbers, (3)not equal. which 
finds if the two input arguments al e not equal, and (-1) exp which implemems the exponen

tiation function. In the following, \ve present the mappmg schemes for each of these four 
arithmetic nodes. 

4.3.1 Translation of Max and Min Operations 

These two nodes have similar implemelltation graphs. Both are expanded in four in

structions whose operation codes and signaling information is shown in figures 4.3 and -tA. 

The "LT" machine instruction receives two arguments: the comparand and the comparator, 
which correspond to the left and the nght arguments respectively. This instl uction returns 

a "true" conditional code ("T'), if the comparand is strictly less than the comparator: 
otherwise it returns "false" ("F"). 
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comp.rond/compo,olor 

Figure -!.3: ~Iachille graph of .\Iax operat.ion 

comp.rond comporolor 

compor.ndlcompor.lor 

Figure -!A: .\lachine graph of ~lin operation 
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comp.r.nd comp.r.tor ... .... 

.,_,d 

NOT 

"1" or "0" 

Figure -1 5: ~Iachine graph of the NotEqual operatIOn 

The "ID" operations sim ply tlansfer the contents of the one input argument they re

ceive, ta their result reglster \"otice that in bath figures the two "IDs" \vhich receive 
signaIs from the booIean operatIOll "LT", ale actmg as gates where the l1linlll1UIl1 or the 

maximum value IS passed accordingly to the executed operation. Each time only Olle of 
these two "IDs" will be activated in respect to the boolean conditIOn code that is returned 

from the "LT" instructIOn. The last "ID" is used to pass the selected value to the ll1struc

tions that use the lesult of tills operation. The non-deterministic merge dènotes that only 
one signal is necessary to be send From the two predecessor "IDs" to actl\'ate the last "ID" 

i nstruct ion. 

4.3.2 Translation of the NotEqual Operation 

Figure -1.5 shows the machine graph of the "NotEqual" simple node. This HDDG 

node takes two operands and returns ·'true", if these operands are not equal. and "false" 

otherwise. 

In A-Code "true" and "faIse" ale represented by the integei values "1" and "0" re

spectively. The mapping of this mstruction consists of two machme instructions. an "EQ" 

and a "~OT" instruction. "EQ" receives two aiguments which ale compaied. If they are 

equal, "1" is produced; otherwise "0" ":.lOT" is a boolean negation operation. If the input 

operand is "1", then "0" (i.e. "faIse") is returned as the result of the operation; otherwise 

a 1 (i.e. "true") is returned. 
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4.3.3 Translation of the Exponential Operation 

Figure 4,6 shows the mappillg of tht' {'XIHHll'ntlal fllllCtioll, Thl' ('X!)()W'l1f laI f11ll!'t 1011 I!

represented in the HOOG by tll(' ..,llllplp nodl' t'I]J, Thi~ flll1ctlOlI takl'~ thl' liI..,t illpllt tl) 

the power of the second 1Il pllt Th(' 1 (,~lll t I!-> always a 1 cal or dOllIJlt, (t Iw lan l'I' ollly 0('('111!

If one of the operands is a dOl1 bl(· ), The t lallslatlOll 1)1 (,~(,Ilt('d 111'1(' do(',> Ilot ~11 PP!)!'t t Ill' 

error condztzons t hat can OCC1ll' ha.<.;t>d on t h(' ~Igll and t he type of t Il!' lllpU t alJ!,ll!lll'llh, it 

is the programmcr's r('sp0I!c,lblhty to l1S(' the I1ght ~lgll aud typP of aq.!,Il11H'llt~, 

The "IGEY' shown 11l figme ..f 6 i::, cl machille 1l1~tll1eti()11 that I~ Il~('d in 1I1()~t of tl)(' 

mapplI1g schemes that \vIlI be plc~eIltcd III i Ill~ chapter This 1ll~tJ11ctl()1l aets as il gl'lll'i ,ltOI' 

of a seqllence of Index \'altll's \\lthlIl a :'PPCltiC lange Thl' til~t cUgllllH'lIt '>!H'(,lti('~ t.hl' 10\\'('1 

bOUlld "a", wlllle the ,>ccone! algllnlt'nt "IH'nnp<.; the Illghel bOUlld "l>" of tlll' of illdt'X 

range. "IGE0;" genel'atcs the lallge: (a+l), ,b, Erich tilIl<' ,lll IlIdex I~ gl'll!'lal(·d. il "tille" 

conditional code is l'etUI n('d: wheu ail t he lIld('xc~ wlthlll t hl' ..,pt'citic 1 illlg(' h;n'(' b('(,l1 

generated, "IGE);" leturns a "false" conditlOnal codl' "IGE;,;" IS always accolllpallH'd hy 
an "ID" instructIOn \VIlleh IS 1\sed to iIlltlali7P the l(,~lllt IPgl..,tPl' of "IGE:':" to thl' lo\\,('! 
index value. This rcstllctlOn IS ('nforcc>c! by the ~lllllliator (If the al'chit('ctllle (":\.0") ancl 

is expected to 11a\"c a hetter solutIOn III thc f1\t\lle 

Figure ..f 6 ple~(>llts the llladulle glaph of the l'XpOIH'lltlal OpeIatlOll. TIIl~ llllpll'llH'llta

tion follows an iteratlve algollthm, whele the lllleger expollt'llt (I3) ddillt!!'l tlll' 1I1lIld)f'l' of 

times that the mantlssa (.-\) shonlcl be l1lUltlphed by Itsplf. The "IGE):" illld tilt' "~IL"LT" 

machllle instructions consti t li te a loop \\'hcl'c t he main com pll t at 1011 of t h(' (1)('1 at 1011 t a!\c>s 

place. Based on the value of B (expollellt), 'IGE:';" C011llb how Ill<tlly times th(' tilst al

gument .-\ (malltissa) should be lllultipllNl. ErPI)' activation of IGE;';" I~ foll()\\'('d by il 

subsequent activatlOn of the "~[CLT' in~tll1('tlOll, winch mllltlplc>~ th(' 1('~\\lt of thl' jll(·vi

ous multiplication with the value of mallti~<;a \\lIPIl tlH'lC' eUt' no Illon' It"latlOll~. 'rGE:':" 
returns a "faIse" conditlOnal code', ('..nd '>I).',llab to the 1>0011'a11 ()lPlatlOll "LT" (Jp..,~ thall), 

This instruction checks the sign of t hl' ~p('ond ll1j>ut ;\1 gll111cnt , wlllch 1,> t Ill' l'XpOIll'lIt, <llld 

accordingly activates one of the su\)se(!11Put two lll~trllctl()ll!'> If tIlt' (,xpolleut l~ P()~ltl\'(', 

then the previously calculated rC~lIlt from tlH' "),lCLT' jla • ..,~(·!'> tlllollgh ail "ID" il1~tl1lC'

tion, which acts a..;; a gate for thi~ value. If thl' ('xponent l!'l IH'gatIVf', a '01\'" lI1~tlllctioll 

reverses the prevlOllsly caklllatcd 1 <,!'>uIt , by divHling "1" with tItis vall11' 

The operations dellotcd by da.c,hed b()xe~ al (' optionally uscd aCCOl cllllg t 1) t llP dat il 
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Figure 4.6: Machine graph of the Exp operation 
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type of the two input arguments, The implementation of tYpt'-COI1\'('ISIOI1 op .. rati()l1~ will 

be presented in the followmg section, "ABS" rctlll'llS the absolute mltu' of tht' l'X!}()lwllt. 

which is used as the highf'f bound of the g('IIl'rated range, The "ID" lll!->tIUctlOl1 at tht' top 

of figure .Jo,6 is u:'f'cl to lI11tlahzc the 1{,~ltlt Irgbtf'1 of "IGEZ'l''' to "0". ~ll('h that It will ht' 

leady for the next activatIOn of the "pxp" fUllctlOl1, Finally tl1<' "ID" instnH'tloll 111 thl' 

bottom left. is llsed to ll1itiahze the l(,~llit Il'glstpr of thl' "~ICLT" lll!->trllctioll tn "l", 

4.4 Mapping Type-Conversion Operations 

As mentioned in the plenOllS chapter SISAL doesll't allO\v ('()el ClOll. t h(,l('fon' typl' 

conversion bhonld be exphCl tly do ne by the plOgl ammer \\'1 th the l'Xl'pptlnn of t Ill' jlool' 
operatIOn. the HDDG nocks that COll(,~pOlld:, tn the typf' ('Oll\('ISlOll f'll11ctioll:, cali 1)(' 
divided lUto two catf'golles (1) the pnmi t IV(' typP conV('l ~101l l1ode!:> , \V hPI (' t 11('1 (' b a ollC

to-olle correspondence betwpen t he HO OG IlOc!PS and the milch1l1l' Ill:.t rurtlollS. and (2) 

the non-pnmitive type convclslOlllloùes, that ait' expanded into two machine lll:-.truct.iOllS, 

The functlOnality of these t\',:o categolles of type COllwrSlOlI nodes l!' prc:.elltpc! III table -4 2 
and table 4.3 rcspecti\"ely: thelr mapping schemes is pres('Jlt('(l 1Il figlll('S -l ï and -l 8, 

4.4.1 Translation of the Floor Operation 

Figure .Jo,a shows the machine glaph for thp fioor type-coll\'('r~iol1 OP('l,ttiOll, This 

operation convcrts the real or thc double input valuc to an lIlteger. who~e mlu(' I~ the 

glcatest intcger le~s than or l'qual to the mput \'alue, Fil:.t, the "seB" lllstlllctlOll :-'1\btract~ 

"0,5" from the input value, and thcn a "ROC:'\O" lll~truction 1:' usee! to gf'IIt'latC' tll(' il!teg('r 

that is doser ta the value returned hy the "SeI3" in:,trllctlOll If the lllt('glai pal t 15 I(':.~ 

thal1 ,5, lt returns the largest mteger Ilot glcater than the Illput lealnum))('l, ()tllf'lWI~(" Il 

l'l'tUlus the smallcst integer that IS greatel than the input lcal 1I11lllbl'l. TIl<' "SI:'\GLEF" 

instructIOn exists only If the 111 pu t valuc 1:' a dou ble lluIllber, aud 1 t I~ u,>pd t () ('Oll \'1'1 t t hl' 

double to the corresponding rea.l numbf'r. 
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Machine 
HDDG nodes op. codes junctlonality 
Booi Id integer-+ bool 
Single Single integer-+real 

Singlef double-+real 
Double Doublef real-+double 
Trunc Trunef real-+integer 
INT Id boolean -+integer 

Roundf real-+integer 

Table 4.2: Primitive type-conversion operations 

opcode 

Figure -l, ï: Machine graph of the primitive type-conversion operations 
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Alachme instructions 
HDDG nodes Operation code 1 Operation code 1] junctionalzty 
Double Single Doublef integer-+double 
Trunc Singlef Truncf integer-+double 
Int Singlef Roundf double-+integer 

Table 4.3: ~on-primltive type-conversion operations 

r-t 

~r~ 
1p.,d 

r. opcod.1 

.,d ,. 
opcod.2 

;,d 

'1 
u-

Figure 4.8: .\Iachine graph of the non-primitive type-conversion opetations 
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Figure -l.9: ~Iachine graph of the Floor type-conversion operation 

4.5 Mapping Array Operations 

As mentioned earlier. a research in the dataftow are a which is concerned with scientific 
compllting, has been concentrated on the efficient implementation of arrays and other 
data structures. The most popular scheme is to hold each structure 111 a speclal-pm'pose 
structure store and represent arrays by their descïlptors. Elements of astI ucture can be 
put iuto or obtamed from the store using the descriptor together \vith an index to construct 
an array or read the elements of an array respectively, 

Here we are concentrated to the class of arrays that has been defined in the previous 
chapter Le. the statzc rectangular arrays with a constant lower bound of 1. In this class 
of arrays, the descriptor is a single pointer to the base of the structure memory, where 
the elements of the array are stored. Also the implementation of arrays presented' here 
considers arrays as stïlct data structures, i.e. subsequent operations can use an array only 
if aIl the elements of that anay have been stored. \Ve are currently mvestlgating efficient 
implementation schemes for structure memory operation able to SUppOl t eaqer evaluation 
of array operations. Eager implementations schemes for the argument fetching architecture 
has been proposed in [29]. 
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Figure .. 1.10: ~Iachine graph of one-dimensional ABU11d OIH'ration 

In this section we w1l1 present the milchin(' graph for t hrce aIra}' operatlOll~ Tll('s(' 
array operations incl udcs two anay constlllctlOll operation!'> and an lU ray seled oppratioll. 
In a latter section, t,,,·o other operatiOllf> fOl scatterillg and gcncrating an éll'ray il1~idc a 

loop, will be presented. 

4.5.1 Translation of the Array Build Operation 

The array build operation constructs an array by providing a lo\\,('r hound along with 

the values of the elements of the array that will be construC'tc>d The SISAL ('ompilpl' 

translates the arra\.' build expression into ét ~lInplc Bode nanH'd A Bmld TI\(' nn.,t IIIpl1 t 

port of this nocle plOvldes the low('r bonne! of the array, whi11' the l('~t of tl\(' illpllt port:-. 

pl'ovicles the elements of the array :':ote that for tlll~ node, altho11gh the 1111mb"r of input 

ports varies, it is known at compile tlme. 

Translating a one-dimensional Array Build operation 
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Consider the expression array[l: 10, 15, 20] which constructs an one dimensIOn array 
\Vith lower bound of one and size three. figure -t.1O presents the machine graph of the 
ab ove SISAL expression. In the above example, the elements of the array are: 10, 15 20. 
As mentioned earlier, the number of the input ports and the type of the input data for 
each ABuild node is known at compile time. Therefore the compiler knows the size of the 
array and can calculate the address in the structure memory, where each element will be 
stored. 

The "STORE" machine instructIOns are used to store the input data lIlto the stl ucture 
memory location, specified by the statically calculated from the compIler adclress. The 
"ID" is used as a syuchronizatIOn instruction; it is executed when all the elements of the 
array have been stored. Also the "ID" uode is used as a g3.te that passes the "base-adchess" 
of the new array, to successor tuples that uses the elements of the array. 

Translating a multi-dimensional Array Build operation 

In the case where the data lU the input ports of an AButld operation are arrays, a 
multi-dimensional al ray 15 constructed whose dimension is gleater by l, compare to the 
dimension of the input anays. :'\ote that the lUput arrays should have the saille dimension 
and the same size, and thelr elements should have the same data type. 

Figure -t.ll presents the machine graph of the expreSSlOn nrray[l: A, B], where .\ and 
B are arrays of the same size. Their base address ln the structure memory is denoted by 
"A" and "B" respectively. Their size is referred as "input array size" In thlS mapping 
scheme, for every input array, an "IGEN" operation is associated, wlllch generates the 
indexes of every element of the input array. The "\'WLT" instruction IS genetatecl only If 
the elements of the mput arrays ale doubles: it is used to calculate the relatl\'e aclclress of 
the input elements. An array read operation is translated mto a pair of instl tlctions: (1) 

an "ADD", which computes the actual element address from the base address of the lllput 
array and the generated index, and (2) a "LOAD", which uses tlllS address to pelform the 
actual memory transaction. Similarly, a pair of "ADD" and "STORE" operatIOns are used 
to store the elements of each input array to the right locatIOn reserved for the l1e\v anay. 
Note that the elements are always stoled in a mw-major-arder. 

As with the pleviously presented mappmg scheme, an "ID" lIlstruction IS used as a 

synchronization tuple, which fires when al! the elements of the array have been stOled. At 
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that point of time, aIl indexes have been genelated, and therefore aU the "IGE~" tup1es 
return a "false" conditional code, \\'hich activates the execution of the "ID" instruction. 
The "ID" is also used to pass the base address of the generated array to the l'est of the 

tup1es that use this array. 

4.5.2 Translation of the Array Fill Operation 

The array fill operation Cleates an array with a given range and aH elements equal to a 
given value. The SISAL compiler translates this operation ta a simple HO de namcd A Fûl. 

AFzll has always three lI1put ports It creates an array filled \VIth the value gn'cn on the 
third port. The lllteger on port one glves the 10wer bound, and the integer on pOl t t\,O 
gives the upper bound of the alray being bulld Since we are concern with statlc arrays, 
the values of the first two ports should be known at compile rime. The outermost range 
of the constructed array IS equal to the range defined from the first two ports, llluitiplied 
by the size of the input elemem 

The element on the tlurci pott can be eithet a scalar 01 an array S1l11l1atly wlth A Bnzld. 

two mapplllg schemes ale used for tllls opel atIOn dependillg on the data t~ pc of the lllpllt 

element. The iTIapplng schemes for both cases are plesented 111 figures ·U2 and ,*.13, In 
figure -1.12, the input scala! 15 8tored so many times as tlns lS defined from the range 
generated by the "IGE:;" Therefore, the input range in thlS case also defines the 1l1llnber 
of clements of the aIray 

In case of the construction of a multl-dimensIOnal array as this is presented In figule ... 1:. 13, 
two index generator instructions are used The "IGE)I" in the top of thlS figure generates 

the indexes that are used to calculate the base addresses of the subanays, \vhere the 

elements of the mput auar WIll be stored . .-\ suball'ay 111 this operatIOn ahvays cOll'espollds 
to the input array. The mput all'ay tS stoled in contlguous space III the stluctUlE' memol'y. 
as many times as tIns 18 defin~d from the input lange. The "IGE~" III the bot tom of figure 

-! 13, repeatedly generates indexes t.hat. are used to a~cess the elements of the input array. 

This "IGEN" generates the same set of mdexes as many times as tIns is defilled from the 
range in the first two mput ports. Finally note that like in the previous mapping, the 
elements of a multi-dimensional array are always stored in a row-maJor-order, 
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4.5.3 Translation of the Array Selection Operation 

The array selectlOl1 opelatloll IS repre!-'(,llled III tll<' HODG hy tlH' AElcH!('nt ~llllph' 

node, This node cxtractr-, tll<' (ll('ment of an luray at a !!,I\'(,ll index pO!->ltlO11 :\ot(l tllat only 
one level of 5ubscriptlllg 15 d0111' by t hl!> operatlOll 

The mappmg of the A Element llod(' appeals 1Il tigurt'.t 14, ;\ot icI' t hat r iw ha.,>(· ad,1! ('~:-' 
of the input array is gl\'C'n III the fil~t lIlpllt pOlt, wlule tht' llldpx \'aIU(lI~ /1;1\1'11 111 tl\(' ~I'('()lld 

input port, Depending on the sizl' and the dimensIOn of the array, tht' actllal lud('x \'alll!' 

lS calculated from the input llldex, The tirst ":\ICLT' lIl!:>trnrtlllll ",dl lw IHI'~('llt ollh 

If the elements of the lIlpllt ilU,ly (tU' "d(}ulJlL·~" TIH' !-> ('('0 ll< 1 ")'ICLT" Ill~tIll('tl()n wIll 

be generated only If the Illpllt IS a 11l1lItl-dllll(,1l~iüllal allay, tlll~ llI..,tl 'Ici 1011 plOdu('('!-> th(' 

lelatl\'e base addre5s of tlH' ,>('lectpc! subanay The llctual addl{'!->~ I!-> \'olllpllt!'d [tom t Ill' 
"ADD" op(,latlOu, If the lllput all'ay IS ollP-<linwu..,lollal, the "LOAO" Opt'1 ,\t 10 Il l't'tllt·\'(,~ 

the scalar element from the ~tructUle l1lel1lOly: otlll'l'\\'lse the "LOAD" OlwratlOllI'> omlttl'd. 

and the calculated address represput the base addrt,ss wlwre the ~t'\('('t('d snhanav IS ~tol'l'd 

4.6 Mapping Conditional Expressions 

In HDDG the conditlOnal ('xpres<;ions arc Icpre~l'JlU'(l. Ily thl' Se/l'ct ('OIll!>OIIIHI Ilodf' 

The Selcct node Implemellts the "lf-fltcn-cise" two way ~ele('tIOB, 1llld it cali l!'('lll~I\'('ly 

contain other Select Bodes E\elY Selcct compolllld node con~l~t~ of thl/'(l ~lIbglapb IllI' 

Seleetor, the Falsc and the T7'1le ~llbgraph The Sclector ~llbg,aph y'll'ld~ il I)()O!l'illl Ihat 

selects the appropnate brandi ~llbglaph The Truc and False hl(uwh '>llbglaph~ ('O/ltalll 

the body of the expreSSlOI1S that s!Jn,uIJ be executed whell tll(' !Jooll'an \a!ll(l 1-' "tll1c" 

and "false" respectlvely The arity of the condltwllal PX!)l'(,~~lOn~ \al!t·~ (l('('Olcllllg to Ih(' 

number of results that should be retllrned 

Consider a typlcal condltlOnal expws'>!OIl <;uch a.c." 

if b(x) then f(y) else g(y), 

:\ nai\'e llnplementatlOll conld allow only one activatIOn of thl' C'ondltlOual 10 ht~ ill 

progress at a time, In sneh a scheme, the rondltional l'XpreSSlOl1 ('an 1)(' IPartl\'atpd olll!' If 
its previous activatIOn has computed all the f'x!wctpd rf'sults HpI(' Wf' pI('~el1t il l'lJldmnf 

-tG 



A 1 , n 

• ~d , r"1" 
sua 

.,d, V-"2" .............. ~ 
• , 
• , 
• MULT , 
• , 
• , 
'- :~~-~d-:.I .. of A' • 

• ub.rr.y" ........ , ... _-, , , , , 
MULT 

, , , , , , , ...... ...... 
s,d , +S,d 

ADD 

,.,d 
....... -=-_ ... ., 
• , , , , LOAD , , , , , 
~ -- ...... \ 

AELEMENT 
~.,.,d 

u 1 AI) 

Figure 4.14: Machine graph of the AElement operation 

, 
47 



mapping scheme for the conditional expressions Thi~ mapping ..,c1l1'IlH' allow.., 1ll00l' t hall 
one activation of the sa me ron(h t ion al expre~sioll to !H' aet ive at the ..,aIlH' t \Ill!' [31] 

Figure..J: 15 .,ho\\"s tht> mélchlllc p,taph for the abo\'(' cOllditlOllal l'XP[('''~IOII il.'" thi~ h.!...., 
been derived by translatlllg the Select cOlllpoulld node followillg Ill(' pIJ)('IIIll'd l11applllg 

scheme. For demoIl~tratlOn ptllposr~. tlll~ figlll!' pr(,sPllt~ thl' Sl'll'l'fm' ,>uhglaph 10 1)(' 
empty; in general, palt or tlw \\hole hookall f'Xpf("..,~lOn co1lld IH' 1l1'>lcll' tlll~ ~\lbgraph 

Xotice that since the anty of the test PXPIPSSlOll b(x) IS always ('Cjll.l! 10 oll('. lt 1'> (ln~~lbk 
to ide nt if y the last tuplc of b(x) and lalwled It as L(l.~th in th(' figu[(' TlIpk y 15 tlll' Olll\" 

tuple \vhose rl'sul t value IS lmport('d III bot h aI ms of t he rondi t 10llal pxpr ('~~101l .-\1 thollgh 

its value is used lllside the~c aIlllS, y ..,Ignal.., to L(l.~tl, luple ACCOldlllf1, 10 tlll' \altlP that 1" 

produced from the boolcan exple~~lOll b(x), L{/.~tb sIgnai..., la elthel False 01 TnLf' ~\lbglaph. 

The "ID" instructIOll at the tnp of l'ach brandi ~ubgraph. ha\"(' 1)('('11 lllllOd\lcpe! h~' 

the code generator snch t hat t he ail ty of p(lch value that IS lI11pOI tPd III IIJ(' t \\ () 1>1 allch 

su bgraphs of a coudl t ional expl ession \vIII !H' always oue. In gel!el al. fOl ('\'('1 ~ \ .tille t hat 

is imported and usee! lllside these two ~Ilhgraphs, tht' code gem'latOl a . ..,~orlat(·!,,! Ol!<' "ID" 
tuple in each subgraph The~e "ID" tuples SPI\'e él. • ..., gatc~ that pa . ...,~('~ .dl tll<' llnpolt('d 

values to the rest tuples of the COI!l'spondlllg cOlldJtlOual al Ill. 

The Plpelmcd l'XCcutlOl! of the COl!(1!tlOnal ('Xf)l('S'>J{)!l'" ('ollldll't 1)(' pO~""lhle \\ithollt 

the eXistence I)f a FIFO, \\'ll1ch ~tOJ('S tht' \(dll<'~ a..<; tll<'Y ;\11' PIOc!II('!'c! flOlll tll<' IJOull'.ln 

eXpreS"ilOU of t IH' condi t J()ual Thel dOl l' t IJ(' FIFO hll ffe 1 I~ ll('/'d('c! t () hold tilt' 1 (,~Illt ~ 

of te...,t~ whIle the COlll'spondlIlg computations alP 1)('1 fOI 1111'<1 b,\" tll<' ('ollChtlOllal allll-; 

Dependlllg on boolean \'aines !'>tored III the FIFO, the t 11 pies lll!'>It!P t 1)(' applOlH Idt!' III allc h 
that produce the final reslllt values ale slgu;lled \\"ltllOut lost of g(·llclahtv. III figlll'<' -l 13 

we assllme both f(y) and g(y) letllll1 oue l('s11lt vaille The t\\O la.,>t tllpl(!"! of f ,uld g that 

plOduce the final rl'sult value, are labeled by L(j.~t f and L(l~tf} Il''>I)(·(·tl\<'iv :\olp that, 

Lastf and Lastg are ordlllary tuples lU thC' glaph, and lllu~t han· th!' ,>am(' 1<'...,lllt Il'~l!"!tl'r 

Finally for evely value that IS l'etllllll'd flOIll the ('oll(htlOllal l''\pl(''>!''!IOll, the ('odl' gl'll

eratoi associates one "ID" tllplc that f'XpOlt tll!' I{,~ldt vaill/' II) th<' Illpl!'.., ollt~lde tlH' 

condi tIOnal COIlStruct Each "ID" tu pif' l'('('CI \"('S Olll' ..,Ignal flom l'(lrh pan of "l,\...,t" t Il p1(':-, 
that producc the corrcspondll1g final value 1Il tll(' Ihu: cille! thl' FfLl.~f; '>1l1)~lapll 1(·...,p<'(·II\"('ly 

Since only one <;pt of 'last" tuples Will be (\ctl\at<,d a.t a. (1Ill<' III ('11111'1 tIlt' T71Lf: Ol thl' 

Faise subgraph, Ci 1l01l-dctf'11ll1llistlC llH'rge i'i n(,f'd('d tn ...,t'ne! il :'Igllal flOIII ('arh IM11' to tllP 

assoclated "ID" tuple In figull' 4,15, wl1('[(' only Ollf> Il'...,ult 1<., IPt 11I1l<'(1. t 111' peur of . 1 a .. .., t" 

tuples IS dpnoted by L(l.~tf and Lfl5fg and the 1I01l-df'tl'rrnllll!'>t)(' 1II1'1/!.1' l,y (:) 

-l8 



1. 

y 

• 

r,""""""'" 
~ SELECTOR : 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , , , 
~ , 
~ , 
~ , , , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , 
~ , , , 
~ , 
~"'II"IIIIIII'~ 

.,d 

• 

~'IIII' .1 "111 ~ 

; FALSE • d , , , , , 
; ID ' , , , , , ~ , , , , , , , , , , , , 
~ , 
~ g( y) : , , , , , , 
~ , 
~ , , , , ~_.----~~~ 
~ L .. ~ , , , , 

ID 

'" ~ , 
~ 
; , 
; 
; , 
~ 
; , , 
; , , , , 
; , , , 
~ 

Figure 4.15: Machine graph of the Select compound node 

49 

f( y) 

• 

"",., 
TRUE, , , , , , , , , , , , , , , , , , , , , , , , , , , , 



a 

1 

Notice that for the pipelined mapping of the conditlOnal pxples:,;ions. the cOlllpil('l 

generates code for a number of "ID" instructions that does not serVI' an}' comput ational 

purpose. The overhead of illtroducing these "dlllllJ11Y" tuplcs i~ tolerated from the ~imph('

ity, and the lllodularity of the implemented mapping scheme. a .. '> tills has bl'('11 J)l('l'>(>lltl'd 

here. 

4. 7 Mapping Forall Expressions 

RecaU that SISAL for-zn IS a loop COll'ltrnct which states explicltly that there éUe no data. 

dependencies among the itel atlOn of the loop. SIS.-\L compiler translates thi~ (,OBstruct ta 

a compound no de llallled Forall The Fomll node in HO DG b ll~ed to denote llldl'pentlent 

execution of multiple instances of an exple~sioll. It has thrcE.' sllbglapb. 

1. the Generator, that produces values for each lIlstance of the loop body; 

2. the Body, which contams the expression ta bE.' evaluated; 

3. the Retnms. that gather::; aU the results comput cd fwm the distinct body lIlstanc('~. 

Here wc apply the software ptpeLmmg schemc as this has !wen dl'~Cl t1H'c! in chaptl'r 

2. AccOlding to thls seheme. lllstcad of plOviding lllultiple copie:, of the lJody. ollly one 

copy is llsed and the parallehsIll 15 explOltcd by means of PIJH'liIllIlg. The 1 paht.at 1011 of 

the software Plpehnmg mappll1g seheme 15 pre5ented 111 the I(·:,t of tilt' chaptel', wll('l'e the 

translation for eaeh operation in the Genemtor and Retums sllbgraphb ib dlscu:'hed. 

4.7.1 Translating Operations Dealing with Multiple Values 

In RDDG, the class of nodes deahng w1th multiple valueb helollgb tn Olle of following 

two categories: 

1. nodes that for a given input gE.'ucrate a ~equence of values: 

2. nodes that operate on a sequence of values. 
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The first category of nodes appears only in the Generator subgraph of a Forall com
pound node. The only nodes that can appear in this subgraph are two (1) RangeGenerate, 
which generates a sequence of indexes, and (2) AScatter, which scatters the elements of an 
input array upon ltS first dimension. The machine graphs of these two nodes are pre~ented 

latter in this section. 

In a Forall compound node, the second category of nodes appears only in the Retums 
subgraph. Recall from the previous chapter. that the returns expressions that allowed in 
SISAL Kernel are the array of' and "value of' expressions. SISAL compiler translates 
these two expressions to A Gather and Reduce simple nodes respectlvely. The mapping of 

these two nodes is also presented latter in this section. 

Translation of the Range Generate operation 

The RangeGenerate no de produces a sequence of mtegers in the (inclusive) range that 
is specified in the two input pOl ts. The low value of the range is speciued in the first port 
and the high in the second port. If the value at port one is greater than the value at port 
two, then the output value 1S \lull. 

The maclune graph fOl tIns operatlOll 1S g1ven in figure -1 16 ,l..n "IGE::'\" opc1atlOll lS 
used to generate the speCIfiee! range of llltegers. As mentlOned before, for a g1ven range 
with low value of "a" and 111gh value of "b". "IGE:';" generates the lange from "a+ 1" up to 
"b" integer \'alues, Therefore, in order to mclude the low index value, a "SUE" operation 

is used to subtract by 1 the value which is provided m the first port Also the three "ID" 
t1lples are used to Hnplement correctly the signaling scheme of the "IGE~" lllstruction. 

Two instructlOns in the Generator subgraph always consist the pair of tuples that 

"drives" the execution of the Forallloop. These tuples are caIled dnvmg tuples and are 
specified by the "SUB" and the "ID" instructlOns at the top of figme -1.16. For every new 

activation of the Forall, these two tuples hold the values that are used from the reduction 
operators in the Retums subgraph to specify the range of the accumulatIOn, 

AIl the inputs of the Forallloop whose values are used in the Body and the Retums 
subgraphs of the loop, signal their availability to one of the dnvmg tuples. The Generator 
starts to produce the specified sequence of values, only when aIl signaIs from the inputs 
have been arrived. Aiso a new activation of a loop is allowed only when ail the tuples 
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of the reduction nodes in the Returns subgraph that specify the end of the accumulation, 
signal back to the driving tuples in the Generator subgraph. 

For every Forall loop. there is one pair of driving tuples. The two driving tuples of a 
Forall can be found in either a Range Generate or an AScatter ll1apping scheme. since these 

two are the only simple nodes that can eXIst in the Generator subgraph. The code generator 
al ways picks one no de in the Generator subgraph and associates the corresponding tuples 
to be the driving tuples of the loop. 

Translation of the Array Scatter operation 

SISAL compIler translates the array sratter operation into anode named AScatter. 

Similarly to the RangeGenerate. AScatter appears only m the Generate subgraph of a 
Forallloop. AScatter has only one port which holds the base addre~s of the ll1put array. 

The elements of the input array are plûced sequentially in the first output port. Their 
corresponding index values are placed on the second output port 

Figure 4.1 ï presents the machine graph of the AScatter node. This operatlOn repeatedly 
applies the array select opelatlOl1 to the outelmost dimensIon of the input anay :\'ote t hat 
the range of the loop. is speclfied by the Slze of the outermost dImenSIOn of the input ana}', 
as this is lepresellted by the name "High" III figure 4.1 ï The "IGE:-';" generate this range of 

indexes, and depencllllg on th~ element Slze and the dimension of the mput al ra)', the aetual 
index value is calculated Like the ana)' selectlOn operatIOll, the fiist ")'ll'LT' in~tl uetion 
will be present only if the elements of the Input array are doubles. wlule the second will 

be generated only if the input is a multl-dimenslOnal array The "LOAD" operation is 

generated only if the input an'ay is one-dimension al array, to fetch the scalar values from 
the structure memory The "ADD" operation in right slde of figure .. 1.1 ï. generates the 
indexes that are placed on the second port, by incrementmg by 1 aIl the values genclated 
from ·'IGEN". 

The tuples in the mapping of figme 4.1 ï that ean serve as the drinng tuples of the 
loop, are the top two "ID"s. The functionality of these tuples in the computation of the 

loop, has been explained in the RangeGenerate mapping presented previously. 

Translation of the Reduce operation 
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As mentioned earlier, the "value of' expression in SISAL is trans!atpd to ct Rcdw:tJ 
simple node in the Retums subgraph of a Forall compound uoùe. The R('d1lœ uoc!p ha.o.; 

four input ports. The first port defines the function that will be applied to the incomiug 

values. These functions correspond ta the four l'eductwn 0pclaf01's that han' bf'PIl ddilled 
in the previous chapter. Recall that these fUIlctlollS éliC' (1) sum, (2) p7odlll't, (3) [m..;t, aud 

( .t) greatest. The second in pu t pOl t holds the mi t!éd vahl(' of t hp 1 pd uet IOH opf'tatnr The 

third port proVldes the values that are produccd from the Body ...,ubgLaph. th(' IPdudlon 

function i8 applied ta thlS sequence of values. The fomth lllput pal t i& optlonal: If pr<'!:>('llt. 

it provides a sequence of boolean values, which defines If the corn'spolldmg valu('s III the 

third port will be used In the reductlOn 

Figures .t.18 presents the machine graph of the uncondûzonal Red1lcc op('latioll fOi 

the "sum" and "producf' reductioll operatOls. The mapping of the other two leductlOll 

operators is similar. In t his scheme the reductlOn operation appltes to aU t he values t hat 

are coming in the third port. Ouring one activatIOn of a Fomll, "IGE);" actlvat{'!:> so many 

times the reduction mstl uctlOn ".-\00" or ":\[liLT' as It 15 ddillCÙ flOlll tile 1.1l1gC of t his 

palticular activation. The range IS plonded from the t\\O dnVlWj tupll','i 1lI tl\(' Gnwmfor 
subgraph. The "AD D" lllstruction IS generated wheu the If'ductlOll fUllctlon III tlle fil~t 

port is "sum": the ":\IULT" is genelated when the re<luctlOll opelatlOn 18 "l)7odw't" 

The "ID" instruction at the top of figure .t.18 i~ used tn initlahll' tl11' valuc of tlw 

"I< mN" instruction. Tlus value IS passed flom t h(' dllVIll~ t Il pie t h,tt plOdllc(,~ t li(' low 

range of the loop. At the end of the accumulation, "IGE:'>!" letlll'llS a "f;the" ('OI1(lttlOllal 

code, which activates an "ID" im,truction that passes the (tccullllllate<l \('!:>lIlt val\1(' ln the 

other tuples outslde the Forall It also slgnab to the dnmnq tuples 111 the Ge1lemtm !:>lIb

graph to denote the end of the accumulatiOn Finally, Il !:>lgnab to a thlle! "10" lIl,>trul'l.iOll 

which is used to initialize the value of reduction instrllctlon for the next actmltlOl1 of the 

Fo rai l. If the reduction operation IS "ADO", then the vaille I~ lllltialtzed to 0, If it 15 

"~1ULT" , the mitialized value is 1. .-\ similar mapplIlg apphes for the 11 llr 011 (!I tiollal lwst 

and greatest reduction operations. 

Figure -1.19 presents the machine graph of a condttwnal RedlJ.ce 110d(' fOl the ~ame 

reduction operators. This mapping contains ail the instructlOn~ pre~euted for the 1111<'011-

ditional node; in additiOn, there is an "ID" in~tructlOl1 which IS <'XI Cl1tpc! WllPllP\'('r tlt(· 

two correspollding mput values ale pre~ellted in the thild aud th(' tourth l11pl1t pOit If 

the boolean value on the fourth port IS "true", the accumulation lll~tl HctlOU I~ act 1 vated 

and the value in the third port is added or multiplted to tlH' plevlOllsly acclll1ltdat<·d value; 
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otherwise, the value in the third port is discarded. The two rnutual exclusive signais are 

merged in a "~OOP" instructIOn which IS used to send "acknowleclgrnent" signais to the 

tuples that generates the values in the third and fourth port. A simllar mapplllg appHes 

for the conditional [east and greatest reduction operatlOns. 

Translation of the Array Gather operation 

Recall that Forall is also used for bUlldlllg arrays. The returns expressIOn "army of' 
is translated from the SISA.L compiler to an AGather simple nocle, which ahvay" eXlsts in 

the Returns subgraph of a Forallloop. This node builds an array fJOm the values provided 

011 its second input port. The first Illput port gives the lower bouncl of the aITay. 

Figure -! 20 presents the maclune graph for the A Gather operatIOn \'otiee that sillee 

we are concerned wlth statle arrays. thelr size I~ known at compile tlme For l'very element 

of the array. "IGE:"" actlvates the path of the computatlO11 that IS used to !:>tOle the 

llleOl1Ung values III the stl uetme I11CmOI)" The ")'Il'LT" lllstructlOll multiplie., the llldex 

that is generated from the "IGE:;" by 2. only If the elements are doubles ThiS \'alue 

c1efines the relative offset in the 5tructure memory. where tlll' element \\Ill br stOI('c! TIte 
actual address is calculated from the "AOO" IIlstruetlOn. \\'I11ch adds the Iclatl\e Illdex 

to the base address of the generated array. The "STORE" lll~tJ uet IOn 15 Il',ed to ~tore 

the clement that 15 pronded fJOIll the thlld pOit. to the ab~olute addu'ss that has bpen 

calculat2d from the "AOO". 

The top two "ID" IllstructlOns are llsed to pass the low and the 11Igh IIHlex value to 

the "IGE:;". The "ID" in the nucldle of the figure -l 20. IS actl\'ated whf'n ,dl the f'lements 

of the array have bcen stored It IS llsed to signal t he top t\VO ID" lll~tl UCtlOllS t helt él 

new computation can start. It also passes the base addre~s of the gt'llelated éillcly 10 the 

instructions outside the Forall. 

:;ote that in the case of the construction of a k-dlInensional anay 1Il a F01ail compoll11d 

node, a number of k AGather operatIOns will be comblllccl. each one ICSpOIl'ilble fOl buIldlllg 
one dimension of the array In ulder to aVOld the overh<>ad of copylllg tilt' al1ays thelt cvely 

AGather bmld" 111 the I11terrnrdiate step5 dUllng the con~tructlOTl uf the final allay. elll 

the elements are gatheleJ lTl the outelI110st AGather TllIs ll11pl!('S thdt ail the 11111(,llllo~t 

A Gather nodes, operate as gates that pass the elements to the llpxt Illglwl dIlllcnSl0n. 

The penalty pald is that this scheme does Ilot allow the exportatiOIl of a ,,>uhall a)' f1Oll1 an 

111ner AGatherwhich e~actly follows the philosophy of "monolIthic allays" TlllS should he 
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consider as a minor restrictlOn compared to the efficiency of generatlilg lllulti-dimellfoliollai 

arrays without copymg. 

4.8 Summary 

HDDG IS an llltermediate fOI 111 of a SISAL program: it stands bet\\'e('n the ollglllai code 

and the final maclllIle code. The HDDG fOlm of a prograIll plO\'ldes aIl ll1SUlatlOll flom 

the fcatures of the programl1l111g language and the Idiosyncrasies of the talget arcllltectnl'c. 

It can also be llsed as a ft amewoi k. \\'I!('I e rcrtalll klIlds of progr am t 1 dll~follnat iOll~ <llld 

optimlzations can be applIed 

The use of data dcpendence graph::, a::, an IIllermedlate leprespntatlOll of SISAL pro

grams is the basls of generatmg rocle for the argument fetchlIlg arcllltf'ctllle \\"e focus 

on generating code fol' the SISAL I{elIlel. whlch IS the subset of SISAL that ha.,> heen 

described III the pre\'!ons chcl.pter Thiel' alc the Illalll plinnplt's of g/'Ill'Iatlll~ ('od!' for 

thls alchltectllle. 

1. preselvlllg the well-brhaved propcrty of the graphs; 

2. mmimizing the number of SignaIs while extractmg l'Ilough paralleIbm to kcep the 

1 esources busy; 

3. applYll1g software ]Jzpelmzng to loops and to cOlldltional con:-,tl'Il('t~ 

\Yell-behan'd dataftow programs are these progIams that fOI il uIlIque set of IIlput 

values, a unique set of output valucs IS detcrmIllcd [1--1]. It hru, IW(,Il plO\"cn that III 

DcnI1Is-~Iisunas statlc dataftow archltcctUle [38]. dataftow graph::, \dllCh coutain demen

tmy opl'rators, conditlOnaI and loop ('on~tl1}('ts. are well behawd. Tht> maclllnf' glapit!'> of 

the argument fetchlllg architecture presentee! hrrr, ale dlffrn'Iltlat('d t'lOm the tracl!tional 

statlc dataftow graphs from the fact that 'iignals and data <ue !)('pmated A.lthough \',;e 

dOll't have a formaI proof of the well-bf'ha\'ed pro pert y for the argul1lellt fetclllng mdlltcc

turc. a lot of effort has bcen lIlve~ted sneh that for eaell ~(>paratlOll ot '-,1i!,II<lb ,Uld dat a. the 

mapplllg schemes will pleseIve the data dependcIlCl\'~. and a~~llre tIlt' (·()ne(·tn('~~ and the 

cleterminacy of the programs. 
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Considering the limits in the processing ability of the machine, we tlY to kcep a bal

ance between the number of the generated signaIs and the potentmI palallelIsm of the 

program. From simulation studies. it has been proven that a key factor which deternllnes 

the utilizatlOll of the algumellt fetclllng arclutecture, 15 related \vlth the siguai traffic. The 

filllte signal proceSS1l1g abihty of the DISe. Imposes a lImitatlOll to the number of signais 

that cau be present in a cycle A more detaded analysis of ho\v tl1lS factor affects the 

performance of the plOgrams. 15 chscussed lI1 chapter 5 

Finally, the encapsulatlOn of the pnnclple of ",oftware pipehnlllg IS twofold: (1) to allO\v 

multiple activations of compound COllstructs such as condltlOnals and loops. (2) to plevent 

saturation of the mach me resolllces. while I11aklllg better use of the data meI110ly space 

Applying dataftow software pipelilllI1g to loops. allows more than Olle cycles uf the loups 

to be actiw at a t1lne The palallel pxecutlOll u5mg thls techlllque. 15 leahzcd by the 

mt~rlapping activatiOlls of the same loop In a pi pehned fashlOll The effects of applylIlg 

t lllS technique in the o\'el ail pCI fOlmallCe. will be prescnted III the followll1g two chapters. 
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Chapter 5 

Performance Evaluation 

The ide as and techniqnes plesentee! III the prenous chaptels have been l1l\"estlgated 

and validated in a testbed SUItC for tht> argument fetchlIlg arcllltectUle \\"e cho05e, as 

a benchmark, a set of Ll\"ClIllOH' Loops[10..iO], cl.nd study the pelfollllélllcr of the~e loops 

t hrough simulatIOIl :\ Ille of t hl' ~('t of LI \"0 rI 11 01 c Loops, ail cOlltallllllg fondl loop'>, cU e 

selectee! for lllu5tration The ~el('ctcd set of LlwllllOie Loop~ 1.., rcpre~('ntatl\"C of the a\'t'lage 

performance gain by sl'wml otlH'r marhlIles for the wholc ,>et of the 2-1 Ll\"CrTllolc Loops 

[37]. By eXeClltlllg cOlllpJied code 011 the te~tl)('d, the efficIL'llCY of the 'ioftwale PIlH'hllmg 

schenH'<' and cel talll O{)tllllllatlonlllet hod5 han' be('!l e\'aluated \\'e ha\ (' ~pen a '>llb5tantlal 

5peedup, and a 11Igh ntIllléltlOn factor of the expcutlon Ulllt ThIS 15 aclue"cd by f'lllployll1g 

only the bablC ~oftwille plpelllllIlg fOI the loop'" te.,t(,d a .. '> t111~ ha . .., becn d(,lll()Il~tlated 

in chapter 2 and chaptel -1 In maIly c;\..,e~. cL b,tlaIlclIlg tpchl1lqlle {'cUl bl' ('lllploYl'd as 

a further optllllization on top of the ba...,IC soft\\ale plpellIllllg The dfect of balanclllg lS 

shown here through an lIl-depth study of the .,lIll11latlOn lesults of Olle of the Ll\('1l110le 

loops. A simllar analysls for au one-dlIuentlOnal Laplace ~oh'er, appealS tn [32] 

.-\ detalled analysls ba..sed on the SllllulatlOll lPSlIlts IS pft'sented, addres~ll1g two key ar

cllltecturai factors - the signal caparlty clnd 5chedullllg meChalll~11l fOl l'llclbllllg lllstlllctions 

- t hat substalltially Inti uence the dfiuellC) of the 1 \lIlning progl alll~ Thc~e al du teet 111 (' 

factors 1 epresent the abll! ty of t lte macllllle t 0 explol t fine-gralll pal allt:'I!~1ll I3 y expell

menting with dlffelent éucllltt'ctulal configtll atlOn the relatlon bet\\CPll proglalll ~tlllctllle, 

compiler optlmization techlllques and the alclutectUlal feature~ l~ addrcssed. 
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Figure 5.1: The simulatIOn testbed 

5.1 The Testbed Suite 

"acro 
Simulator 

(AD' 

An over\'lew of the eomptlerjalcluteeture testbed that has been used throughout the 

simulation tests. 15 presenter! 111 Fip,ure 5 1 In chapter .!, we show how startlllg fWIll 

the SISAL front end. SISAL Kelllel plOgrams are translated lllto a lllerarchicai data

dependel1ce glaph (HDDG). and s\lbsequently the way that t~lP code generator translates 

the machine-ll1dependent HDDG forms lllto machme graphs (.-\-Code) DAS~I 15 an as

semblel for A-code. the assemblel forIll for the argument fetchlllg dataftow archItectUle 

DAS~l stands for data-dnven as~el!1bler. and rt rs llsed to generate execlltable code for a 

macrosllllUlator of the architecture 

The macroslmulator AD ca.n be newed as a l, .g,hly mstrllmented Illterpleter that rep

resents ~iI1l111atlon at the major funetlOn level of the arc!utecture [··W.-ii] The !'>lX prpelme 

stages of the PIPer and the two major Ulllts of the DISe are Implelllcn t ed by dlstlllet 5elf

contamed code UllltS, WlllCh srffilliate the f\lnctlOnahty of eaeh hardware umt :';0 specifie 

restrIction has been made. at the SlIllulatlûll level, to define the tll111ng relatron between 

the PIPe and the DISU maclllne cydes The eunent 11llplementatlûll conslders that these 

t,va 11l1lts have the same maclllne cycle. althaugh 111 a real maclllne. tlllllng constrcunts of 

the hardware teehnology may change this proportlOll 

Two of the simulator 's pal ameters that are llsed ta define a processmg element are the 
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following: 

fire 

PIPU 

• • • 
PIPU 

DISU 

done 

Figure 5.2: ~umber of PIPes 

• -np <num>. This parametel sets the number of the PIPCs The default value IS 

one . 

• -ne <mtm>. This parametel sets the number of con nt signab that ale allO\ved per 

cycle in the DISU umt. The default value IS four. 

Figures 5.2 and 5 3 illustrate the above two parameters. These two numbers are \lsed to 

set up the machine configuration each tlme a test is conducted By lnCledSlllg the Humber 

of PIPCs, we lllcrease the execution ~apaclty of the processmg element proportlOnally The 

second parameter is used to control the propagatlOn of<;lgnals III tll(' DISe 1llllt The mOle 

~ignals that can proceed ln a cycle. the more f'nable lIlstructlOll~ cau becoml' él\adahle III 

a cycle. The number of signais thrlt ran be handlcd III a cycle by the DISe detille~ Its 

sIgnal processmg capaclty (or "iimply. sIgnal capaclty). The pffects of thl'~e iucllltpcturai 

parameters are investlgated in more detail in a lat tel sectIOn. 
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Figure 5.3: The DISli processing capac1ty 

5.2 Performance Metrics 

dont 

For each program. we present a set of pe1formance metncs, \vhich 1ecord the values of 

various parameters during th!" executlOn of the program: 

• The Total lnstïuctwns Execute(l records the number of the tluce-address PIPe in

structions that have been executed in the PIPe. 

• The Total Run Tlme records the llumber of machine cycles elapsed: 

• The Total Idle Cycles records the total Humber of machine cycles where the 1l1struc
tion proceSS1l1g umts (pipes) \vere ldle, due ta the lack of ava1lable execution in

structions. 

• The Processor Utzlzzatwn of ~ PIP CS 1S t he ratio 

(TotalRüllTirne * X) - TotalIdleCycles 

TotalRunTl171e * .V 

• The Speed- Up 1S the ratio 
SequentwlTlme 

TotalRunTlme 

65 



1 

1 

l 

where the the "SequentiaITime" is the product of the "Tot al Instluction Executcd" 

with the execution time per instructIOn. In the current implcmentation, a PIPe unit 

needs six machIne cycles ta execute an instruction; sa speedup can be achieved by 
prpelining and mul tiproccssmg . 

• Pop71latwn recolds the average population In the en able memory and in the file queue 

(see figure 5.3) of the lllstructIOlls that \\-'ere ready ta fire but wlllch were delayed for 

more than one machll1e cycle. waltIng 111 the en able memOl)' or in the fire queue 

• The Total Count Szqnals records the number of count signaIs Ul the DISe plOduced 

by the executed program COllceptually this metric represents the signal traffic in 

the DISl~ 

5.3 Pipelining of the Livermore Loops 

In order ta test the plOposed software pipelining schemes a number of benchmark 

pragrams haw been selected for execution on the srmulated model We choose '3Cientlfic 

applications because of tholr sirnplIclty and matunty. Screntific comput mg proncles a 

nch set of Important applIcatIOns which are bath computationally llltensive and well

suited for paral1el exccutlOll. ~Ioreover the demand for SupPlcomputels able ta acceleratc 

computatIOlls 111 the ~('lentlfic and engineenng fields IS subst,lIltlal and e\Cr-lllCle;llilllg 

The Livermore loops [10AO] are a collectIOn of tYPlcal loops extracted flOlll IInpOl tant 

sClentific applicatlOns developed at Lawrence LlvermOle ~atlOnal LtbOlatoI) that consume 

as man)' cycles as can be provrded by the world's fastest supercomputcIs The keluels cap

ture the inner loop calculatIOns WhICh constrtllte the most comput ationally llltell~l\'C POl

trons of the applicatIOns from whrch tllPY are extracted The IllIle kelllE'ls exccutecl on the 

simulated version of the argument fetchlllg architecture embody the following algorithms. 

1. Loop 1: Excerpt from a Hydrodynanllcs Code 

2. Loop 3: Inner Product 

3. Loop ï: Equation of State Fragment 

-1. Loop 10: Difference Predictor 
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5. Loop 12: First Difference 

6. Loop 16: Monte Carlo Search Loop 

1. Loop 21' \Iatrix by \Iatnx Product 

8. Loop 22: Planckian Dlstnbution 

9. Loop 2-1. Find LocatIOn of the Fust \linimum in Array 

These are the benchmark programs that are used for the performance evaluatlOn study 

presented in this chapter. The SISAL source code for the above set of Livermore kellleis. 

can be found III Appendix B. Although the kernels capture only small fragments of much 

larger applications, they are nevertheless lepresentative of the dynamlc lllstructlOn mix for 

these programs. The Implication of running the kernels efficlently IS that correspondlllg 
programs wIll have the potentlal to exlllbit simllar performance figures sm ce most of the 
computation takes place withill these loops. The common feature of the set of proglams 
chosen IS that ail C'ontain at least one Jorall code block [19] WhlCh may be lle~ted ,vIth 

other foraU and condltional code blocks This IS a sUltable set of proglaIll~ to test the 
effectiveness of the soft\vare pipelilllng III the code produccd by the code generator The 

static dataftow model effectIvely supports the software pipehning wlthout requuIllg !Iluch 

complexity in the compIler. In thrs study ,ve rel)' on dataftow software pipelll1ll1g to expose 

program parallelism fOl overlapped execution The effect of further compIler optlll1lZatlOn 
is presented In the next sectIOn. 

The performance of LIVCll1l0re loops on a processing element of one PIPe and a DISC 

sIgnal capacity of four IS plesented lU Table 5.1. The average utihzation IS applOxlIl1ately 

ïO% and the average speedup is -1. ;\otice that since one PIPC IS a 5ix-stage pipehne, 

the optimum speedup that can be achieved is 6. \'[oreover the space that the softwme 

Plpelined program requires is small, since only one copy of the program IS needecl for the 

execution. Only one set of data memory 10catlOIls are needecl and the)' arc Ieused by the 

separate iterations - a contrast from the loop unraveling suggestecllIl the dynall11C clataftow 

archItecture [ï,9]. 0:ote the difference in performance between somc loops \\lllic Ioopl 

and loopï achieve almost optimum performance, 100p16 and 100p2-1 have relative poor 

performance. This difference 111 speedup and utiIrzation IS related to the stlUctule of each 

kerneI. In a static data fiow aIchItecture, where only one instantlatlOll of an instI uctioll 1S 

allowed, the followll1g two factors that affect the performance in forallloops where soft,vaie 

pipelining is applied: 
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PIPU: 1, DISU signal capacity: 4 

Total Total 
Kernels Instructions Run-time Population Utilization Speedup 

Executed 
Loop1 6,258 6,329 1.7 98.0% 5.9 

Loop3 352 486 0.9 72.4% 4.3 

Loop7 1,057 1,141 7.5 92.6% .5.5 

LooplO 78,090 114,022 0.7 68.4% 4.1 

Loop12 3,013 .5,476 0.5 55.0% 3.3 
Loop16 845 2,206 0.4 38.3% 2.2 

Loop21 10,319 23,102 1.0 78.8% 4.7 

Loop22 5,240 7,613 0.8 68.8% 4.1 

Loop24 4,218 14,001 0.3 30.1% 1.8 

Table 5.1' Performance of Llvermore Loops 

1. The size of the Joop. Loops wlth small sizes may have limlted parallelism. 

2. The degree of balancmg. If the program graph is unbalanced, fully Plpehned execu

tion cannot be achieved [21]. 

One way to exploit the parallelism ln forallloops \Vith small SIZCS IS to gellerate statlcally 

more than one copy of the loop body. Since there are no data dependencies affiong the loop 
iteratlOlls, the separate pieces of code can run 111 parallel. The space/time tladcoff shonlcl 

be considered if such an optimization is to be apphed ta the generated code. :\ deta!led 

analysis of how the performance IS related wlth t 11e program structure of cach kernel, wIll 

be presented in the next chapter. 

5.4 Optimization by Balancing Techniques 

Cnequal path lengths in machine graph between any two instructlOlls, l~ a major lilm

tatiou in fine grain software Plpelining schecluling. It cau be effectively solved by applying 

balancing techniques that have been proposed for static dataftow computers. The goal of 

68 



, 
the compiler to keep the minimum amount of space can be preserved by applying an opti

mal balancing which introduces the minimum buffering in data flow graphs such that their 

execution can be fully pipelined [21.261. 

The purpose of this section lS to demonstrate the effects of baianclI1g dataftow programs. 

The goal of balancing is to introduce the nll1umum buffering into data ftow graphs such 
that their execution can be fully plpellIled. A consequence is that a balanced graph can 

l'un 111 a maximally pipelined fashion [26,421. Therefore. to achiew maximum pipehlling, 
a basic technique lS to transform an unbalanced slgnal-flow graph lIlto a balanced graph 
by introducing FIFO buffers or a chain of identity tuples on certain alCS. The pIinciple of 

balancing for software pipel111lI1g is discussed in [211. 

\Ve choose to apply balancillg to Livelmore Ioop ï. The reason for select mg tIus loop 
was ltS higher deglee of unbalancmg compared to the l'est of the loops Loop ï and loop 
16 are the most unbalanced loops flOIll the selected set of kernels Due to ItS slmplIcity, 

loop ï is more suitable for demonstlating the effects of balancmg 111 a Ielatlvel) unbalanced 

code. Two techniques have been used to balance the maclune graph of loop ï 

1. Breaking artificlal data dependencies that had been introc!uced from the code gener
ator. 

2. Inserting dummy nodes in the unbalanced paths of the graph. 

Table 5.1 shows that the utllization and the speedup of loop ï lS close l'l optllllllln 

III an processing element consisted of one PIPe and one DrSe ,vIth a sIgnal capacity of 

-1. In oider to test the effects of balancing obviously we have to use more PIPes and a 

Iarger capacity in the DISU. Expenments with three different arcllltecture configurations 

ale presented in tables 5.2,5.3, and 5..1. 

From lhese tables we observe that in aIl three machine COll figuration a consld€'rable 

pelformance improvement has been obselved by using the balallced plOgram. Espectally 

in the model where two PIPUs and a sIgnal capaclty of five ale used. the balanced scheme 

achieves almost optimum performance. In this machme configuratlOll the balanced program 

is faster Ly 30% than the unbalanced wl1l1e it keeps the two PIPes busy dunng the whole 

computation \Vhen tllfee PIPUs and signal capacity of five are used (Table 5 -1), the 

speedup of the balanced program is by a factor of 1.6 better compare to the unbalanced. 
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PIPU: 2, DISU signal capacity: 4 

1 Performance Balanced 
Metrics Pipelined Pipelined 

Total 
Instructions 12,821 14,811 

Executed 
Total 

Run-time 9,236 8,377 

Total 
Count SignaIs 34,648 32,827 

Uttlization 69.4% 88.4% 

Speedup 8.3 10.6 

Population 1.9 2.6 

Table 5.2: Performance of the balanced loop7 

PIPU: 2, DISU signal capacity: 5 

Performance Balanced 
Metrics Pipelined Pipelined 

Total 
Instructions 12,821 14,811 

Executed 
Total 

Run-time 8,523 7,588 
Total 

Count Signals 34,648 32,827 

Utilization 75.2% 97.5% 

Speedup 9.0 ' 11.7 ,-

Population 2.7 6.8 

Table 5.3: Pprformance of the balanced loop7(cont.) 
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PIPU: 3, DISU signal capacity: 5 

Performance Balanced 
Metrics Pipelined Pipelined 

Tota.l 
Instructions 12,821 14,811 

Executed 

Total 
Run-time 8,320 5,957 

Total 
Count SignaIs 34,648 32,827 

Uttlzzatzon 51.3% 82.8% 

Speedup 9.2 15 

Populatzon 2.5 4.1 

Table 5.-1. Performance of the balanced loopï(cont.) 

The way that balancmg has been unplemented in thl" experiment by intlOducillg 

dummy nodes causes an lllC'lease 1Il the proglam Slze. In the future wOlk. \\'e plan to 

investigate an effiCIent Implementation of FIFOs l!l order to a\'old executlllg m:-,tlllctlOns 

that ale not selVlng any complltatlonal pUlpose. It is noticcable that. even III the l'\lllent 

11l1plementatlOn where the dummy llodes causf' the IMIanced progIam to f'xecute allllost one 

thousand mstructlons more than the unbalanccd. the total executlOn time of the balanced 

code is stIll ShOl ter by more than one thousand machine cycles 

.\nother intcresting observatIOn is t11at In the configuratlOn whele (1, moclel of twü PIP"es 

and a sIgnal capaclty of four IS used, the balanccd proglam docs not achieve the optImum 

per formance as one Il1lght expect In order ta aChIC\'(' the opt ImUJl1 pel fOl mancc t he sIgnaI 

capacity of the DISe :-,hould be lllcreasrd by one. III thi~ rél.bC th\' !){'nefits of tllc balanclllg 

are lealized in full extent TIll~ small change 1Il ~lgllal Cclpa('lt\ ('(lll'ol'''' an lll('l(~(1.'>C fwm 

88 -!% to aï 5% in the utlllzatlOn "hllc the "pecdup lw·Lca .. <,t'<., l'JUIll iD C tu 11 ï FlOm thlS 

test it is clear that the the lllldedYlIlg iucllltecture !t,\...., (t dlll'( t 11llP,lct on the hr>lIdit5 of 

compiler optimizations snch ,1..., balaIlllug. Thl" ob:-,cnatlOrI Illutniltl'd Ils tu ,>tut!} III more 

detaiI the behavlOr of this loop under different maclllI1C configl1ratlOl1s. The lesults of this 

study are presented lU the next section. 
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5.5 The Impacts of Two Key Architectural Factors 

As dcscl'ibed above. the argument fetching architecture conslsts of a pipcllllCd pl'ocessing 

clement where a large pool of cnablcd InstructIOns should be avarlable for executlOll b} the 

PIPes. In l'calIty. a machiIl(> may only han' lilluted parallelrsm In ct balanccd oesIgn. the 

DISe wIll be able to supply fire 'lrgnais to the PIPe Just fast enough to keep the rnstruction 

execu t IOll pr pelrnes oper ating con t IllllOU ç;ly III full capacl ty 

As tllc prevlOus test !'.hO\\!C'd. thl'l'e Illay be case5 where the oemand of srgnal processrng 

in the DISU cannot be sdtl~fied fast ('nough - It nay becomes a bottleneck of the through

put. In slIcll ca."es. the optIll1Izdtlon !)y code balanclllg can not achll'\'P the deSllf'r! rcsults 

~Ioreovcl'. ('ven If a large 'iIgnal capaCi ty 1" pr onded. poor deSign of the cliable lllel1l0Iy 

scheduler can also dC'grade the j)élrallehslll offeled by the Illnning [)Iograms 

In t hls test w(' stucly the ('ff(>ct '" Oll performance of t hese two crUCial al dll t cd UI al factors 

by runnIllg the balanced \C1SI011 of joopï on chfferent machme configlllatlOns In \\'hlch the 

Ilumber of PIPlTs and the "Igual capaclty of the DISe are vaned 

5.5.1 Architectural Factor 1 : The DISU Signal Capacity 

Figure 5...1 11lustlatc5 th(> SpCl'dllp <':lllVC5 under (ltfferent maclllIlc coufigllléltlOll5 for the 

balanced loop ï \\'hell thr 'SIgnal capaclty is !css than 8 the plO).!,Iilm <.:annot achle\'(' the 

maximum speednp no matter hm\' Illally PIPl's are Ilsed In thI5 Cél.'>t' the computatIOn r5 

DISe.: bOIlIJdcd ThIS mcaIl~ that the DISe IS unable to satisfy the dcmélnd for malllpulatmg 

t hf' ll1coming SIgnais. call'Sing a dcgradatlOn 111 the pel formancc of the IllllIllIlg plOgl am. 

The obsencd relatlvely low !'.pcedup is caused by the linlltcd llum!wr of fil(>d lllstIllctlOns 

generated by the DIStJ per cycle. 

Studylllg the speedup wlth IPspect to thl' llllIIlber of PIPe,>. \\'(> (',lIl Ob'>l>l\'e t\\O dfects 

For ')mall DISe throughput (1-2 bIgnals) tlte speer/llp remains COll,>tallt \vlth le"!W(·t to the 

llumber of PIPes that are ll~C'd ThIS 1') due to the faet that althollgh the plOgl<lm offels 

enough palalleIrsm and the machiue hab PilOUgh PIPCs to cxecutp t II(' ('ll<tbk Ill,>t 1 \let Ions, 

the small slg;llal capaclty co\tld not IHo\'lde Pllollgh PlUl.hled !Il~tl\ll'tl()ll~ to (>xplolt the 

parallehsm of the program and of the il\ ailable har (h~ rUl' On the ot hel il and. w 1l!'11 the 

signal capacity is lalge t'lIollgh to ~atisfy tll(' dernand of the ill('Olllll1g '>lgllals. thr spppdnp 

increases up to a thre~hold value (132 fOl tlus program). Increa.'>lllg the eXCCtltlOIl power 
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from .t to 8 and the DrSU signal capaclty from 8 to 12 doesn 't affect the speedup whlch 

remains constant to 15 2 

A relateù effect can be seen lB figure 5.5 where the utIlIzatlon IS plotted a.5 a functlOll 

of the llumber of PIPCs anù the !'lIgnaI capaclty of DISe. \\'hen the capacity IS small the 

utilIzation drops wlth the numlwl of PIPCf:, that are u~ed When the capac!ty 15 laige 

enough ta expIaIt the palalll'lI~m of the plOgiam. the lltllrzatlOn of PIPCs IS kept 11Igh 

\Vith respect ta the avallablc parallehsm of the program III thls tl'ost. Ioop7 coulcl keep up 

ta 2 pipelInes busy worklllg aIlllo~t cH full cdpaclt.r The numbPI of PIPC~ that l'an J)(' 
kept bus)' depends ail the palallehsm of the Iunlllllg programs 

FlOm the slll1ulatlOll stnÙIl'S wuducteù runnll1g sC\eral plOgram~. therc 15 a Stlong 

expellmentai f'\ ldence t hat fOl ('(\ch plOglillll thel e IS an opt 1 IllU III machlIle configurat IOn 

which can best exploit Its paléllle:'<'lll III a l'ost effectl\'e fasillon In Older ta clcllle\'e such 

optimahty, the followlIlg ale llnpOI tant 

1. The PIPC capacrty (mca.~lllcd by the nUlllber of PIPC executlOl1 pipelines and ùe

noted by P) m\l~t match tIl<' parallehsm of the program (comp71tfltzon pm',dlelzsm): 

2. The DISl! signal rapacity. dcnoted by C. must matrh the demand of mal11pulatlllg 

the signaIs reqlllred fOI explOlting the computatlOnal parallehsm (s!JnchronzzatzoH 

requzrement) 

ThiS study shows that. l'Yen fOl a program wlth computatIOn palàllehsm lllgh enough 

ta keep the PIPe filled under an idealized DISl7 (wlth lI1fiIllte signal capaClty), the actual 

performance ooser \'ed in a real machllle may be far bplow the Idedl \'alue. The outcome 

depends on the average number of signaIs S that arc needed ta fire an II1structloll This 

number, whlch we call aJ,'erage sIgnal densIty, IS gl\'en by the fol1O\\ Illg forlllula. 

5 = Totale Ol/I/t Slijl/fIls 

Totnl 1 Tlstr !/('tlOn,'; E J:ecuted 

For a given machine configuration, the condition ta keep the PIPU pipehne usefully 

busy is: 

C ->p 5-
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Coneeptually th1s means that ta fully f-'XpiOlt the computatlOn paIalleh~ll1 of a g1ven 

plOgram, the DISU eapacIty should be at lcast ('(Iual ta the p10duct of the aveIage signal 

traffie densIty of the program \,,'ith the numbeI of PIPC" of the gl\'('n ronfigUlatlOl1. This 

is not surpIislllg notlllng 15 free FlIle-gralll parallelrsm hru, a pIlee and the DISe must 

pay it! 

The results of 0111 <'llllulatiOn l!,l\P \(,llfil'd tll1'> l'OndItIOl1 III the IlttÎanccd Plpdined 

velSIOn of loopï, wc ean clell\"(> flOIll tht' tables ,j ~, and ,j 3 that the ,l\l'rage "lgnal tratfic 
S is 2 3 In the casp whNe t\\ a PIPe,> (P = 2) and a SILe f0111 ..,Ignal pIpe IS l1~<,d (c = 
04) the ratIOn t I~ 1 ï, wh!('h 1., 11>e,,, than the num}wr of PIPC" Tlll~ cau~e., the ~Ignal 
pl pe ta bccollle Cl bott I('ncrk rlegl adllig t Il!' 11 tlhzat IOn and the,> pt>pd u p of the plUL?;ralll .j 2 

By lllercaslllg the 0 IS C sIgnai c aprll' 1 t y by o Ill' , t he ratIO 1 )t'Ulllll'S 2 U2 w IlIch lllcets the 

abo\"e condItiOn \\"e can o!J"el\"p tllelt tlll" "lll,dllllcleru,e III the '>1!.!,llcll l'apaclty ('allsr~ the 
computatlOIl ta fun almo,">t III optlIll1llll utdwttltlll and "pt'<,dllp,j 3 

Tills I~ rln eneouraglllg ..,tep to\\ (ml und(,l ',t andll1g the d} naml<'~ of plOgléUll exeeu

tian behanor and thell lPLltltJll,>lllp to ,uelllt('Ct1llet! paraIlletel~ Hu\\f'\"('l'. there ale stIll 
chffienlt prol)lcms to 1)(' dp,t!t \nth In paltlc1l1ar, \\{' \Vould hke to ch,uactellz(' the lrla

tian between the 0 IS r signaI ( ,lJMïl ty alld the "}Ïl('hroIllZation l e<[l111 emt'nt of a [>1Og,1 am, 
willeh fluct1latef. gleatly flom olle ploglam to anothl'l, and ('\"t'n bpt\\ecn paIts of the saille 
proglam 

Both the DISe capaclty ,Uld PIPe capacity ..,hould he tclken a .. .., important palalllrters 
III cam prIer opt imlzat IOn for the arg1lment fetc hlllg archl teetl1i(>. III a lllaclllne w hel e the 

signaI t raffie plays "ueh an lIll pal t aIlt Iule III the CO III p1l t atlün, t hl' com prIel ~hould tl y to 
mininllze the ll1lmher of slgllab \VI t hou t ..,aciifirlllg the ('OIrect Ij(>~~ of t h(' Illl pklllclltat IOn. 

This \va.s one of t he deSIgn pIlnclples t hat ha..'> becn folIo" pc! cl 1l11ng the de..,lgn and the 
implelllentatlOn of the code generatol 

5.5.2 Architectural Factor II: The Enable Memory Scheduler 

The other architectural faetol tllat affects the !wlfolmallce of the 11l1111111g programs 

IS the cnable mcm077J seher/ulcr [2,1] 01llmg ;dl the ..,IIllulatlOn te')t::. ct "Bow \Vatcher" 

sehednler has JWPll ll:-.ed Tlll~ l'llable I1l1'lllolY ,>ehedulel orgalllœ~ lll"tluctlOIl~ by IOW and 
colull1n according ta thelr addl ec,s , and ~clects the enabled lIl~tl uetlon!'> fI am one lUW at 

il, time , seheduling them fOl exeeutlOn. If thele are not enough PIPL"s available, then tire 
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selected enabled lllstructions stay 1Il the FIFO fire queue until thele are available PIPCs 

to execute them 

Figure;) 6 Illustrates a sItuat:on in the enable memory where such a scheduler becomes 

a bottleneck of the macllllle There are four lIlstI uctIOns that are enabled 111 four dlfferent 

II)\\S III the l'nabI(' llH'IllOl)" The Row \"atcher cannot cl!<;patch them (dl III the ~ame 

cycle to the PIPr~ fOl eXl'C1!tlOll III thi~ :-,nap<;llOt of computatIOll, although the 11111111Ilg 

proglam has the !JotPlltlàl to keep fom PI?Cs blls) at the llext maclllJl(, ('} l'le, the Row 

\"atcher can ollI\' l'\:plolT 257r of the patallellsm thdt the program I)tfl'l~ àt that ,>tage. 

The I1lf'tnr that allows 115 ta study the beha\'lOl of the ('nable mê1l10Iy 'ichecluler IS the 

"a\erage populatIOn" <I.e;, thlS IS leportrd flom the sIIr!1t!ator at the elld of the executIOn of 

each program ThIS metnc records the avelage llumber of enabll'd lllbtluctlOllS that wait 

more than Olle cycle ('ltlter III thr> cnable lllf'IllOly or !Il the filP qll('lI(' '-\":-'lllll111g tltat the 

SIze of the fire quelle and the SI7e of the l'llable mcmOl y al l'laI ge ellough t () aCCOllllllodate 

the degree cf paraIIelt~Il1 of the IUlll1lllg ploglillllS ail lIlcrease III the populatIOll C<lll have 
two causes' 

1. Increased Populatzon zn the Fzre Queue. If the llumber of the PIPCs are ,lOt enough 

to execute al! the fired instructions that are schcduled from the cnable ll1ell1Ol)' 
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scheduler, then the lllcrease of the v.'aitmg lllstructions in the fire queue causes an 
lllCrea.5e in the average populatlOll metr ic. 

2. Increased Populatzon ln the Enable Memory The numbcr of enabled instructIOns 

that are waItlllg for more than one cycle III the en able memory causes an lllCrea.5e III 

this metnc. 

In order to stuu,v the 1Illpact of the ~chedlller 1Il the performance of the 1 li Il Il lllg pro

grams, \\'e not onl,v have ta look at the \allle of the populatIOn menle but cllso to the 

utrlizatlOIl of the PIPl'" High populatlOll accompallled wlth Illp;h utlllzatiOll 1ll1plles that 

the comp1ltatlOn IS PIPC bound alld that the lllcrea.se !Il the populatIOn h (,<lllsed from the 

en able rnstructlon~ that ale waltIllg III the tire queue. On the other hand Illgh populatIOn 

accompaIlled \VI t h lo\\' 11 t Ilrzat Ion Il Il plres t hat the sched uling mCehctlll'im \\01 ks pondy anu 
does Ilot expIait the palallclI.,m of the eOlllput,ttlOll 

The average populatIOll on ddfelent cOllfigulatlon lllodeis for la op ï I~ "hO\\'11 III figure 

5 ï. The four jwab !Il thls bar glaph eue cilllsed b,v the t\',:o dlffelf'llt lea ... '>Oll~ {>xplarned 

abo\'e The 1 ~ ï and G 8 pl'aks of the a\"CI age p(Jplllat IOn app(>(ll ~ \\ hell a '>Igllal (' apaC! ty of 

elght IS \lsed \VIth 1 and:2 ('xccutlOil PIJ)f'hnc~ I!'~pt'ctlvrly Tlw utdIzatlOll ofPIPC,:> fOI bath 

configuratIOlls IS 09 1(!c (figlllf' .j .j). tlWlefoll' the (,olllputatloll III the,>!' t\\O ((JIlfiglllatlOIl~ 

IS PIPe bound The othel two peah." 1Il the éncrage poplliatloll ,lppe,U'l \\hCll ~ and 8 
PIPl'" are opelatlllg \\ltl! ct DISe of '>Ignal (',lpclnty S l'lldel hotl! (,()llnglll,ltlOns the 

\alue of tlll~ ml'tlle 1" -l whde t' c utdIlatIoll 1'> G:3'1c and .31 C'1c !f''>[J('(·tI\('!.\ In tills (',\.,>e 

althollgh the l'xeCl.tlOll plp(,~ ale Ilot fllll:- utJ!lIed the popuiatloll lelll,lI11':> IP!,tl l\'Ply lllgh. 

In the case of.f PIPl's. the llllt'Xploltpd palalleh..,rn t'Olle~polld<., to a '2ï() I()..,~ of lltdllatlOll. 

and IS expl f'ssed hy the H,V('I age of ~ cu able Ill~t Illet 101l~ wal tlllg III t h{, ('ll,lble l1lemory t.o 

be '3cheduled 

From thesc slmtrlatlOn studles It bccomes apparent that. the effpct 11l t he pel formance of 

the en able memory sched uler makes t llls compOllcnt Olle of the 1110st Clllcléllmod Ille'3 of the 

architecture. The limitatIOns and compIPxltles that are ir : ospe! by the IlllderlYlllg hard

,vare cause a tradeoff between f'fficiency and romplexIty III the de~lgn ami implelllcnta.tioll 
of the enable memory scheduler. 
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5.6 Summary 

In this chapter \'le argue thôt fine-grain software pipelining is an effective applOach in 

exploiting the paralleljplpelmerl processing power of high-performancc dataRow mcllltec

tures. \Vithollt any further optlllllZatIon, the basIC soft\'lare pmehnlllg aione achieves a 

ïO% utrlizatlon and speedllp of -! fOl nine Ll\erI110Ie loops wlth forall and condltional code 

blocks m thelr complltatIOnal body \re beheve the basic dataRO\v softwalc Plpehning can 

be apphed simrlarly to loops wlth depcndenncs bet\vccn iteratiolls. although tlus IS left a.,> 

a fnture research dilectIOn 

1 he effect of balalll'lllg a.3 a global opt1ll1lZation method has been exposed throllgh 

the detarled study of t 11e simulatIOn results of one of the Llvermore loops An optimum 

pel fOI mance has L"en achleved lllldcr il CCI talll macluue configUl atIOn The lJalallclllg 

technique ha.,> the potf'ntlal to :neld maximally Plpelined code and slgI1lficallt -,peedup of 

the com pu t atIOn Ba.sec! on t lw<.,(' observat Ion, \H' DelIe\'(' that the com piiei of t lie ,li gument

fetching dataftow alchitectllle :c,hollld ('ollsldel balanclng as a lllaJor compIle-rlIllc global 

code optlmization By comlmllng ~oftwaIe piPPlrlllllg with the balanl'Illg tCl'hlllque. the 

parallehsm of many loops l'an be cffecti\'cly pxploled \VIth mlllUI1Ulll space lequllt'Illents 

The simulation ~tlldleS condllcted have abo r('vealed the relatIOll bet\\een DISl: ~Ignal 
capaclty and plOgram synchronization [pqullemellts \\'c al!'>o gallleu cl deepl'l 1!l~lght of 

the impact of the ('nable nWlIlOly ~chcdlller. In additIOn to PIPe capaClty. the power to 

explOit fint-gram palallchsm III the alchltectme IS detelI11med by the.,e two key factois. It 
is critical to engineer th~ deSign of these components sn ch that il compIler l',Ul gellerate 

code to fully utilize the parallelisll1 III both the proglam and the Illét( lune 
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Chapter 6 

A cOI!lparison study of software 
pipelining in von-Neumann 
architectures 

Optimal mapp~ng of loops has long been a challenge for vou ~eumann style arcllltec

tures. Recently, there has been considerable interest 1Il scheduling techniques that exploit 
the repetitlve nature of mnermost loops to generate highly efficient code for conventlonal 

pipelined plocessor arcllltectnres [4-.t 48,41] .-\ technique called '"'5oft\\'are pipelilllllg·'. has 

been proposed [2,13,41] \vhere an ItelatlOn of a loop IS actl\ated bcfOle ItS plecedlllg Itera

tion is completed - thlls multIple lllstructlOns ale in concurrent executlOIl .-\part from the 

differences III target architecture models, a major dlstmctlOn here IS that dataftow software 

pipelining IS done at "fine-gram" leI/el -- an mstruction is a umt of scheduling, willie the 

software pipelming Clted above IS done 1Il a "coarse-gram" levei - an Iteration lS a umt for 

scheduhng. 

Software pipelining can be studlCd as a scheduhng technique that exploits the repetl

tive nature of loops to generate lughly efficient code for proccssors \\lth palallel, prpelined 

functional units. In that perspective a meaningful comparisoll can be applted to dlfferent 

architectures which use the same technique to explOlt the parallehslll 111 the loops. One of 

the von-Neumann architcctnres that uses thr coarse-gram scheduling IS the \Varp architec

ture [41]. The Warp machme IS a lllgh-performance programmable S) stohc lil1ear array of 

VLI\V processors. In software pipelining fOl tills architecture, iteratlOlls of Cl la op in the 
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source prograrn are continuously initiated at constant intervals, before the precedlllg iter

ations complete, The objective of soft\vare pipehning is to I1ul1lmize the lIlterval at which 

iterations are initiated; the mitiation mten:al detelmines the throughput for the loop, 

There lS strong endence that "fine-gram" "ichedullI1g has an ad\antage O\'el "coarse 

scheduling" in pipelil1lIlg of loops. a fact that lS recoglllzecl to be tl ue e\'en III convelltlOnal 

pipehned arcllltectures as c1escnbed III [..J:3]. It is argued that fine-gralll ,>oftwale plpehllillg 

and relatively "clean" hélld\'.rale Plpehnes can togethel explOIt patallehsm III loops in an 

optimal or suboptlmal fashion (lll telIl1 of tlme complexlty) Ilot possible by the COéllse

grain method~ Dataftow software Pipelllling (based on balancmg techlllques) helS another 

impOl tant (unfort unately often IgnOl ccl) (teh'antage t hat It uses a prechctable and small 

amount of storage bouncled by the 51ze of the loop body FurthelinOle the locatIOns are 

effectively reused, thus the hald plOblem of legister allocation is aVOlded. Tills lS due to 

the fact that the dataftow arcllltecture mode! ensurf'S that the memoly 10catlOIls for the 

lllstructlOns (argumentsjlesults) are also used m a pipelmed fasillon 

In this chapter we stucly the effectl\"Cne~s of applying the software plpelullng lllto these 

two different architectUles, the \\'alp architectme and the argument fetching alchitecture. 

6.1 Software Pipelining in the Warp Architecture 

The \Valp madllue [3,..11] is a l11gh pelformance "iystolic curay computer cleslgnecl for 

computation intensive apphcatlOns In a typical cOllfiguration. \\'arp conSI::,ts of a llIlear 

systolic array of ten ldentlcal cells, each of which is a 10 ~1FLO PS pl ogtalllmable plOcessor. 

Each \Valp cell bas its own sequencer and program memory Its data path COIlSI<;ts of a 

floating-pomt multiplier, a floatmg-point adder, an lI1tq~er ALe, tluee register files (one for 

each arithmetic UIllt). a 512-word queue for each of the two lI1ter-ccli data COlIllllllIlkation 

channels, and a 32 1\ word data nWllloly :\ll t hese ('omponents ail' ('OBllcct('d t hro\lgh a 

crossbar, and can be prügrammed to opcratc concurrent Iy \ ta \\ Ide IIlstluctlOllS of over 

200 bits. The multlpher and cuidel ,U(' both j-~tage pipelinrd: togethcl \\lth the \'\\0 cycle 

delay through the ll'gl~tel file, multlplicatIOlls and aclditlOn~ take ï cycle" to cOlllplete. 

The compdel for the \\'ét! p Illélc!tme has beell extenslvely Uf-f'd in mally applications 

sllch as robot navigation, Image and ..,Ignal plocesslllg and ~cientlfic cornpnting [3,-l]. It 

consists of two ma]Ol pha."es· (1) a machine indepenùent front end translates the ~Olll ce 
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programs written in a Pascal-like language into machine independent flow graphs (2) and 
the back end translates the flow graph into code for the \Varp cells. The code generator 
as a part of the back end of the \Varp compiler, follows two steps: (1) the transformation 
of the machine mdependent flow graph produced by the front end mto machine dependent 
flow graph, where generic operator in the former are mapped onto micro-operatlOns and 

(2) the scheduling of the operations 

Software pzpelmmg is the the scheme that is used from the Warp code generator m order 
to schedule the operation':>. In soft,"are pipelining for the Warp machine, the iterations 
of a loop in the source program are continuously mitiated at constant intervals befOle 

the preceding iterations complete. The objectiw of the software plpehnmg hcre is to 
minimize the interval at wlllch iteratlOns are lllltiated: the il1ltiation intel val deternunes 
the throughput for the loop. The basIC Ul1lts of scheduhng ale ll1dlvisible sequences of 
micro-instructions ThIS reveals the coarse-glain natme of thlS soft\vare pipellllmg. 

6.2 Effectiveness of Software Pipelining 

In our perspective there are four parameters that should be taken under consideration 

when we study the effectiveness of software pipelinmg for a speclfic architecture: 

1. The scheduling efficiency as this is defined from the rate that instructions/Iterations 
are scheduled. 

2. The scheduling limitations which specify in what extcnt the software pipelining 

can be applied. 

3. The space that is needed to apply the software pipelining in telms of the llumber of 

register that are used . 

..J:. Compiler complexity as a measure of the work that the code generator must 

perform in order to apply this scheduling technique to a speclfic éllchitecture. 

Based on tlle above four factors, we make a companson of the effectiveness of the 

software pipelining in the \Varp machine and in the argument fetching architectule. 
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6.2.1 Efficiency of Software Pipelining 

In the Warp compiler the efficiency of software pipelining is defined by the minimum rate 

that different iterations can be scheduled in an overlapp,~d fashion. The scheduling problem 

is to find a schedule of the operatlOlls wlthin an lteratlon. such that the samc scheuulc 

can be pipelined with the sho! tetlt. constant !IlltlatlOn interval :\s mentlOued car/ier. 

the objective of the software Plpelinmg in tlus architecture is ta mlll1l1llZe the mterval at 

wlll~h iterations are in'tIated. A lower b01lnd of mztzatwn mterval can be calculated either 

statically or dynamically based on some scheduhng constramts. Thcse constraints refer 

ta the resource reqUlrements that are needed from the overlapped itel (ülOns and ta the 

Plecedence constraints that defines the data dependency relatIOns hetween the lteratlOns 

[41]. 

Starting from the lower bound and based on the schedulmg COll::.tl alllts, t Il(' code gen

erator for the \Varp machine tries ta find the best schedule. The schedullllg pro cess is 

repeated with a e;reater interval value \vhen an attempt ta find a ~chedule for a given 

initiation interval is aborted due to the reSOUIce LOnflicts The efficlency of the software 

pipelining dep€llds 011 the interval value that is derived by the compdcr. when the schedule 

meets the lower bonnd then the best software Plpelilling sclLC'dule has bcen acllleved 

The performance gall1 by applying the soft\vare pipehmn~ in a static clataflow aldntec

ture depends on the followmg tV,IO factors: 

1. the balanczng factor, and 

2. the szze of the loop. 

The balancing factor determlfiCS the activation rate of succeSSlV(' rUIlS, i.e., the rate at 

which input tokens can be consumed. Therefore, the efficlency of the dataftow software 

pipelining can be measured as the degrcc of llnbalancing of the gf'llCléltl'O code In a 

static dataftow architecture. the maxilllally Plprhned throughpnt fOl <lllV maclllllc glUph 

is 1/2, 1 e. every 11lstructlOn can be rcady fOl CXCCutlOll evely !-,('colld macllllle cycle [21). 
In the previous chapter, \'v'e saw that an optlll1nIIl performallcf' ha.,> bl'l'Il achicvcd when 

the balancing techmque ha.<; becn applied to one of the LlveUllOlC loop~ It l!-' ploved that 

applying this technique to acyclic graphs, a maximally PIPclined thlollghput of Cl Ioop can 

be achieved [21]. Therefore the efficiency of the software pipellllillg is dncctly lclated to 

how weIl the body of a loop is balanced. Althongh wc conjectUlcd that tins optimization 
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cau also be applied to certain cyclie graphs ,vith the same effectivel1ess, making balancing 

a general technique for maxIIllally Plpelinecl the loops, this stllllemains an open lcsearch 

topie. 

One effect of balallcing I~ to lIlClPH5P the romputatlonal parall<,lislll of tht' proglam by 

allowillg more in~tructlOn~ to lw cnabled in eaeh step of the computation :\.S mentiolled 

before, the complltatlonal palallclI~lll, a.'~ tlllS lS explored by applying the softwale PlpelIu

ing techIllque. depellds Ilpon the sW' of the loop. The ~Ize of the loop pu t s an Ilppl'\' hOllnd 

to the aclllewd efficlc-ncy . 

.-\s expl;.. ined rai lIer, software plpd1l1lng uses only one copy of the loop body making 

the best use of space and c!('lllitllding onlv a f>mallnumbcr of l'<'glst<'lS tn pipelIne the loop. 

The tradeoff hcrc is that the mé\Xlllllllll number of ovedapped computations that can be 

executed is equal to the Illlml)!'r of the lllstructions in the loop body. The lcngth of the 

pipeline IS equal ta the depth of thr maehllle graph for the loop body, and ItS width Will 

vary according to the spatial paralleli~m of the graph. Therefore, the amount of parallelism 

that can be explOltcd by softwale pil)(>lming is bounded by t.he size of the loop 

The effects of the balanclllg factor and t he ~ize of the loops in the perfol mance Oll the 

selected set of Livermore Loops. will be explored latter in t Ill~ chapter. 

6.2.2 Scheduling Limitations 

There al e se\'eral factors that determinate the applicability and the effectn eness of 

soft,valC plpelining 111 the Warp mach111c. Tht' \Varp code generator ooes not make any 

attempt to pipelinE' the loops when their length exceeds a thleshold valuc. Also if the 

statieally calculated lower bound of the il1l tiatlOn interval 1S closed to the length of the 

unoipelined loop l, then software Plpelining is not applied. Furthermore, due to the (,O<1rse

grain scheduling, the \Varp compiler in many cases disallows overlap of laop and conditional 

constructs with ("olIer operatÎ')us outside these two constructs 

Software pipelining as 1mplemented in the argument fetchll1g architectllle daes not 

apply any limitation due to the length Slze or to the degree of nesting of the compound 

control constructs. AIso, the loops can be overlapped with other operations no matter what 

their executlOn stage is. The pipelined scheme of the conditional expressions allows more 

1 Unpipelined loop is a loop where only one Iteration 1:' allowed per tlme. 

85 



than one activation of a condition al statement to be executed at the same time. There 
is no limitation applied due to the nesting of the conditional expressions. In additlOn, 
the pipelined scheme do es not prevent o\'ellapping the conditional statement \Vith other 
operations outside th!' conditional. 

6.2.3 Space Requirements 

In order to apply '5oftware pipelinmg in loops, the code generator for the \Varp machine 
needs sometimes to unroll the loops. An optimlzation method is used to leduœ the number 
of locations allocated to a variable by lellsmg the same location ID non-o\'erlapping itera
tions. Olle implicatIOn of applyll1g software pipelinlllg in the \Yarp maclllne 1'5 the lllcrease 
of program size. If the number of 1 teratlOns is knowll at compile tllne. the code Slze of the 
pipelined lo')p IS withm three to five tlmes the code size of one IteratIon of the loop. If the 

number of iterations is not known at compile time then additlOnal code must be generated. 
In addition ta that, any code scheduled in parallel with any condrtional statement should 

be duplicated in both branches 

In the fine grain soft\Vale pipehnillg the code Size that 15 nceded ta execute a IO'J!) is 

equal ta the code Slze that is ueecled for one iteratlOll of the loop. The code geuelalor 
does Ilot need ta unroll the loop& or ta apply auy other optll11lZatlOll method 111 arder ta 
acllleve the minimum number of reglsters that are needed for the soft\vare pipelil1111g. The 

argument fetching dataflow model ensures that the memory locatIOns fOl the instl uctions 

are also used in a pipelined fashion. 

6.2.4 Compiler Complexity 

The code generator for the \Varp architecture must do a detailed analysis ta find the 
minimum initiation intervai. As explained earlier, this intervai defines the best schedule 

that can be applied ta all the Ioop iterations. Then it repeatedly tlies ta find a schedule 
for a given initiation intervai, starting from the predefined best schedule. If an attempt to 
find a schedule for a given illltiation interval due to resource conflicts is aborted then the 

scheduling pro cess is repeated with a greater mterval value. The compder uses a linear 

search to find the schedule: first establish a lower and an uppel bound of the initiation 
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interval, and then use a linear search ta find the smallest initiatlOll illten·al. ~tartillg flOm 

the lower bound. Althoug'l empiIical results show that a schedule mel'tll1g the lower bound 

can often be round. the overhead of the compiler ta apply this iteratlve approach could 

be substantlal. The llutiatlOn intcrval can be defined either statically If the llumber of 

iterations is known at compile tlme or <lynamically by generatlllg code that handles the 

schedllling at run Ume. 

The benefit of fine grain software pipehning for the argument fet.chmg architecture 
is that a compiler does not need to lllake analysis to determine the lwst schedllie. The 
software pipelinmg schedllling IS done totally at l'un-Ume. In OIder to achieve the opti

mum scheduling, the compilel sllnply pel forms code b[)lanclllg, whose etfects have been 
demonstrating in the Plevious chapt('r. 

6.3 Performance Evaluation 

In the analysls of this chapter we assume an Ideal hardware such that the ~igl1al process
iug capaclty and the schcdulel do not Impose any restnctlOll of exploltlIlg the pal aIIehslll 

This sectlOn presents the effectl\'enes~ of software pipeliulIlg in the t\\'o Hurlel !'>tudy ar

chitectures. The compallson study attemptlIlg here IS malllly focused ou the achievable 

pelformance and the scheduling linlltatlOns. The performance for the lllue LivellllOie loops 
are givcn for the compiler generated code in both architectures. 

6.3.1 Performance Statistics 

Table 6.1 shows the performance of the Livelmore loops in a slllgie \Varp cclI. The 

speedup factors given 10 the second column arc the ratios of the exccutlOll tllne between 

an unpipelined and the pipehned kCl ne! The utihzation given in thc t hlld column of Ta

ble 6.1 are for single preClSlOn ftoatlllg pOlOt arithmetlc. They measlllP the ratio of the 

achieved ~lFLOPS over 10, whlch IS the maXImum number of the ftoatl11g pomt OpclatlOns 

capable in a cell. The last colllmn contains lower bound figUlcs of the efficiency of the 
software plpellOlOg technique They were obtained by divlding the lower bound of the ini

tiation interval by the aclueved interval value, and represent a lowel bound of the achieved 

efficiency. 
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Kernels Speedup Utilization Efficiency 

(lower bound) 
Loopl 8.25 62% 1.00 
Loop3 2.71 14% 1.00 
Loop7 6.00 79% 1.00 
LooplO 5.31 34% 0.85 
Loop12 4.00 17% 1.00 
Loop16 1.00 3% 1.00 
Loop21 6.00 30% 1.00 
Loop22 1.00 11% 0.56 
Loop24 1.33 4% 1.00 

1 Average .1 3.9 28% 

Table 6.1: Performance of Livermore loops in a single Warp cell 

Speedup Utilization Efficiency 

Non Non ( unbalancing 
Kernels Pipelined Pipelined Pipelined Pipelined factor) 

Loop1 2.21 7.26 18.4% 60.5% 0.4 
Loop3 1.83 4.84 15.2% 40.3% 1.0 

Loop7 5.03 9.02 41.9% 75.2% 0.3 
Loop10 2.10 4.43 17.5% 36.9% 1.0* 

Loop12 1.60 3.55 13.3% 29.6% 0.7 

Loop16 2.11 2.42 17.6% 20.3% 0.07 
Loop21 1.92 5.13 16.0% 42.8% 0.7 
Loop22 1.47 3.82 12.2% 31.9% 0.3* 
Loop24 1.19 1.84 9.9% 15.5% 1.0 

1 Average 1 2.16 4.10 18.0% 39.2% 0.6 

*: loops that contain cyclic graphs. 

Table 6.2: Performance of Livermore loops in the argument fetching architecture 

t 
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Table 6.2 presents the performance of the ~ame set of LivermOlc 100ps 111 a plOccssing 

element of the argument fetching arclutectllle For a lllealllllgfui LOmpal ison betwcen 

the two architectures, the argument fetclung proces!'or 1ll t lll~ t(l!,t contains t\\'o PIPVs 

such that ItS exeClltioll po\\er IS vel)' close to the exccutlOI1 powC'r of a single \Vmp œil 
The Signal proces5.ing capanty III the DISe IS ~ct to l'ight which IS f'Bollgh ta satIsfy the 

synchronizatlOIl requirement of aIl the 5C'lp,t('(1 kernds ily settlIlg t he ~lgnal plOce~ s1l1g 

capaClty ta f'lght, we l'liminate the IC'5t11('tlOl1 llnposed by the secol1d alcllltC'ctllwl fac~or 

as this has been explored 1ll the ple\'1011S chapter 

The IltilizatlOll and the speed IIp factors a.,<, have bren defined III the pI(IViOIlS chapter 

are presented in table 62. For both of these lllctncs we gIn' the pelfmmance of t\VO 

implementations of each kelnel In the fiIst Implementation the ~oftwa!(l plp<,lllllng IS Ilot 

applied ta the Iterative COllstruCtS of the kernels ("non-plpelined" colul11n) \vhile in the 

second the software pipf'hning IS appherl to the 100ps and to tlw COIHhtlOual constructs 

of each kernel ("pipelined" co[umn) Since the datafiow modcl of computatIOn exploits 

the parallelism III the fine-gralll lcvel. It IS important lJl this t('st to (h~tlIlglll"h the spatial 

palallehsm from the tempOlal péllalleh~m as thl~ is exploited from thl' ,"OftwéllC' pipehning. 

In the l'non-pIpeIined" plOgIétmS, ollly one ltelatlOn of the loops IS ,dlowed ta proceed at 

a tlme Thcse programs explott only the spatIal paralleh~m t hat ('XI~t:; III the j.;C'lllelS. 

The benefits of the softwale plpclIllll1g are explOltpd in the "pipelllled" plOgléuns, whele 

multiple instantlatlOns of a loop is allowerl by plpclllllng the data tlllo1lgh the dataftow 

actors. 

The efficiency of software pipelinlllg IS mea."lll('d by the deglee of llllbalanclIlg in the 

machine graph of each kernel. The unbalancing factor for each kcrnellil table 6 2 has been 

cleuved by takmg the maximum unbalanclIlg factor betwren two tnples The ll11balanclllg 

factor bC'twecn two tuples is obtained by divldll1g the minimulll IPllgth ovel the maximum 

length of aIl the distinct paths between the two tuples [21]. SOIlW keIlleb 1Il table 62 that 

contain cJ'chc graphs are marked wlth an asterisk A ~ lIH'utlOlled (';-1I IIPI 1 t IS st III <1I1 open 

problem ta maximize the throllghpllt of programs that contalIl c~'('hc graphs. The effect of 

halanclIlg in these programs can not be preclicted. :--'Iore resemch IS lleeded ta lllvestigate 

how to balance programs wlth cyclic graphs 

In arder ta have a better understanding of the achieved peIfoI mallCC, the Size of each 

loop should be taken under consideratIOn. The size of the la op detel mllles the maXImum 

parallelism that the software Plpelining can exploit from the loop. The blgger the size is, 

the more parallelism can be exploited. The effect of the balancmg factOi and of the loop 

size, will be investigated in more detail in the following section. 
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Analyzing the statistics of the fine-grain software pipelining 

The benefit of applying the fine-gram software Plpelining is rewaled by the dlfference in 
the performance rates betwcen the non-pipelined and the pipelined mappmg of each loop. 

As table 6.2 illustrates. tlllS diffNcncc in the performance between the t\\'o Implementations 
is related to the unbalancing factor and with the size of the loop 

For loop ï, althollgh its size 15 large enough to keep the 2 PIPes busy, the unbi1Jancmg 
factor of 3/10 prevents this loop to aclllcve the maXlllml1l speedup and utlhzation. .-\s 

has been shown 1Il the prenOllS chapter. the maximum performance I~ aclueved when the 

loop becomes balanct'd USllll!; ct \'onfigma.tlon of 2 PIPes and a. DISe \\lth at least -! slgnal 
processing capaclty The ('ffcct of the small size of a loop 1Il the .-lcllle\'('c! pCI formance I~ 

revealed by looking at the pPlfOlmance llumbers of loop 3 and loop 2.t. Thcse t,,"o loops 
although fully balanced (thc llnbalanclllg factor IS equal to 1) acllle\'e a speeclup of -48 and 

1.8 respectlvely. Tlus IS cansed by the s111a11 Size of the loops as tl11s can be measured by 

the number of machine IIlStlllCt IOns t hat t hese t\VO loops contam In thls case the Slze of 

the loops sets a upper Imllt to the maxm1l1m spcedup that can be aC'llle\'cd hy applying the 

dataftow soft\vare plpellI1lI1g .-\ slIIlllar obsenatlOn can be dellvcd fOI loop 12 ,-\Ithough 
its degree of unbalauclIlg I~ ~mall (2/3), ltS ~mall slze dOllllllates the aclllevcù 'i!)('pc!up 

(3.85). On the other hand, loop 1 wlth a Illgher degree of t111b.-llanclllg achleves double the 

speedup and utlllzatlOn due to its lalger slze 

T\\'o loops belong to a speCial category' loop 10 and loop 22 are kelllcis that contam 
cyclic graphs. .-\s mentlOned earlier thcrc IS no way to assure a maXllUUIl1 throughput 

for programs that contam cycles. Assummg that the cycles in the maclune graphs are 

executed only once, the efficiency of the software pipehning ln these loops IPpresents the 

lo\ver bound of the unbalancing factor. Despite the eXIstence of cycle III t helr machine 

graph, the pipelmed version of Ioop 10 and loop 22 achlc' es double "peedup compare to 

the non-pipelined, as table 6.2 illustrates. 

6.3.2 A Comparison Analysis Based on the Performance Statis
tics 

Table 6.3 correlates the achieved performance in the argument fetching maclune and 
in the \Varp machine for each individual loop. By looking at the average numbers in the 
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Speedup Utilization Efficiency 
Warp arch. Arg fetch. Warp arch. Arg. fetch. Warp arch. Arg. fetch. 

Loopl 8.25 7.26 62% 605% 1.00 0.4 

Loop3 2.71 ·1.84 14% ·10 3% 1 00 1.0 

Loop7 6.00 902 ï9% ~5 ')0/< , .- 0 1.00 0.3 

CooplO 531 4,43 34% 36.9% 0.85 1.0* 

Loop12 4.00 3,55 17% 29.6% 1.00 0.7 

Loop16 1.00 2.42 3% 203% 1.00 0.07 

Loop21 6.00 .5 13 30% 42.8% 1.00 0.7 

Loop22 1.00 3.82 11% :319% 0.56 0.3* 

Loop24 1.33 1.84 4% 15.5% 1.00 l.0 

1 Average 1 3.9 4.70 28.0% 39.2% 0.93 0.6 

Table G 3. Perfoimance of the argument fetclllng vs the Warp mchitect\lle 

last Imes of table 63, \\'f' obsPlve a 3!) spepdllp III the \Yarp macllllle as opposed to -1.7 

aclllcved in the arguHwnt fetrillug '>1I111llator This differf'IlCP III the 1)('1 fOl 11léUl('(> l)(>(,OlllCS 

bigger If Wf> ('onsldcr t hat the !Pllgt h of (>aeh ftoatmg pOlll t pl (W l1l t hl> \ \'ai p cell I~ .. q liai 

to seven while the lpngth of (,éteh exerutlOll Pl!wline 1Il the ,ll).!;ll11wnt fptdl1l1g éuclllt<>cture 

is SIX Sillee the ~p('edllp 1'> !lIl11ted by the }ength of the Pl!H', the lllaXlll1t1lll ~P(>('dl1D that 

a program can get III a. \\',up C('!l lS fOlllteen wlule in the ,ugllllH'nt ft'trlllng p1ocp~sing 

clement of two PIPe'i IS twelye 

A sinlllar ohflervatlOn for the utll1za.tion lS nenvrd for the two mcllltpctlllP"'. The ;m~lage 

Iltlilzatlün lI1 the \\'aIp cell is 2870 as opposed to 392% in the two ex('clltioll p1pdll1C5 of 

the argument fctching simulator. Tllls chffercllcc in the !)f'lfOlIllilllce 1-; ,l('l!l('\,cd \vlllic 

for most of the kernels the \Valp compder obtatllS the theoIetlc,d optllll\ll1l f,('hcdllie In 
seven out of nIlle loops, the aChle\'ed effic1ency IS ('quai to OIW Tlll~ ll\(,;Ul~ tbat for these 

kernels the optmlUm schedule !las heC'll aclllc\'cd uIldel \Val p \ ('OlllptlPI On the ot her 
hand the fine-grain software pipehll1l1g c!ops Ilot mect the f>étme dCglP(, of ptfiClcncy due 

to the unbalancmg factor as thlS present cd m table G 3 Thcleforc wc should expect the 
performance advantage to become l'ven biggcr when balancing IS encapsulatcd ln the code 

generator of the argument fetching alclutecture 

Comparing the acllleved pe1formance ofloops 22 and 16 (table G 3), we leahze the gen

erality and applicabtlity of the fine-grain as opposed to the coarse-gr alI1 software Plpelining. 
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LOOb.lllg at the speedup of loop 22 lU table 6,l. we see that the \\'al p compIlel cannot fint! 

a satisfactory schedule and thercfore the speedup for tlus loop 15 l'quai ta 1 The leason l~ 

that the code is tao large and too cieeply nested, On the othel hand the softwale Plpeliued 

program in the argument fetching arclutecture achie\'es a 3.82 ~peed\lp It is also worth 

noting that eveu the "non-plpplined" prugram adueves a l 4ï speedup due to the ~patlal 

parallelism that tllIS Kernel off Cl ') 

Examllling the pClformance of loup 16 1I1 the two archItectures. Wp ~ee that tlllS kelnel 

cannat be p:pelined frolll the \\'arp compiler beeause the statlcally cakulatee! 10\\'('1 bonne! 

of the 1I11tiation interval wa.'> \\itlllll !J!J(I{ of the length of the llnplpellIlcd loop The code 

generator of the argument fetchlllg éllclutpcture réln acllle\'e a 242 specdup Looklllg at the 

performance of the non-PIPl'iined ,wd the jllpelllled plogram of tlli'i kellH:l (table G,2) we 

conclude that the spf'edup IS dell\pc! mo,>tly from the explOItatIOll of the spatial parallehsl11 

Consldering the high deglee of l111balallelllg of t hlS kernel. wc should expeet a ('on~ldelable 

increa.c;e of the speedup and Iltlltzatioll If halanelllg 15 apphed to tllls kernel 

6.4 Summary 

The supenonty of fine-gl am as opposed to coarse grain soft\ ... al e plpellIling hd.s beell 1Il

vest igated through the stlldy of the ('Olll pIler generated rode of t\\'o al du t cet III cs the \ \'aI P 

systolic array and the arg1lment fet( hmg archltectmc Tite power of the dataftow model 

for exploiting complltatlonally lIltenSI\'C programs 15 l'ven 1ll00e impOitant. If Olle cOllslder 

that the \Yarp systohe arcJutectllle IS a feasible and extenslvely tcsted paralle! machine 

OlganizatlOn. ~IOleo\'er the software plpeilIlIng 1Il thls arcllltecture has beell de\'eloped 

lIlto a complete algollthm that IS based on ~oftware heunstlcs The \\'arp compIlel IS capa

ble to apply t he software pipelllllng 111 the lI1nel most loops and In ('olldl tlOnal statements 

somethlllg that rnost honzontally nucloroeled or \'LI\\' maclllne callnot apply 

The effectiveness of software pipehnIng III the \\'arp architectllle lelies on ~e\'('lal as

sumptions on the archl tect ure and program charactenstics. ,-\1 though t hese aSSll III pt IOns 

may be realistic for a class of programs. the feaslblhty of software Pipelllling 15 IcstlÎcted, 

On the other hand the flexlbIlity and the generality of fine-glall1 software pipelilllng make 

this technique a powerf111 code mapplIlg strategy for exploitlllg tempolai patalleltsm with· 

out sacrificlIlg the simpbclty of the statie dataflo\v mode!. 

The results presented III tlus chapter show the bene fit of fine-gram scheduhng. winch 

outperformed the coarse gram scheclulmg as bath were applied to ct set of nine LI\'ellnore 
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loops. ~Ioreover, we observe that the pt'l fOI lIH\I1C(, of nllP-gl<lIll ~()ft\\"al(' Pllwl III i Il!!, d('lH'I\(I~ 
on the charactcnstics of the ploglalll Thl' exploitation nf p1\lall('h~1lI 1'" lilllltt'd b~ the 

lInbalancing factor and by t IH' ..,i/P of tIlt' plOgram. On t lu' ollw! haud t ht' llii li III 1 Il m ~paCl' 
lC'quiremcllts (hu:, tn t he ~lllgip copy of t Il!' Inor> body COIl..,t 1 t 11 t (' il t 1 adt'otf IH'I W('l'n the 

maXlnlUIll parallelislIl and t Il(' "pace l'ftiCll'llcy achl('wd from t'xplolt lll).!; t he pal alldl~m in 

loops. 
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Chapter 7 

Conclusions 

The dataftow mode} offers a very pOVI,el fuI framework for exploi ting program parallelism 
to yield high speed computatIOn. The static dataftow architecture. which is the target of 

this study, is attractIve fol' ItS halch..-are slmphclty and cost effectlveness However. many 
criticisms ha,"e allsen mainl}' from its lllablhty to express tempozal patallehsm 

In this thes1s, we exammed a lecently proposed statie drltaftow alclutectule. the argu
ment fetchmg datafiow archzfecture. In tl11s archItecture, the data and the slgnaling roles 

of the information packets are separated. and an lI1struetion [etches its own arguments 
from the data memory just like in conventlOnal processor alchitectures. This eliminates 
the token traffie. 

Dataftow software ptpelmmg proved to be a powerful mapping scheme for explOlting 

the parallelism in a static dataftow architecture. This can be achieved by ananging the 

machine code su ch that the successive computations can follow each other tluough one 
copy of the code. 

A code generator has been implemented wlllch automatically generates code for a subset 
of SISAL. The main principles in the design and implementation have been focused on 

producing well-behaved graphs and minimizing the sIgnal traffic of the generated code. 

A collection of Livermore loops has been chosen as the basis for the empirical research 

presented here. The perform;cnce results gained by executing this set of benchmark pro

grams are very promising. \Ve clemonstratecl that software pipelining IS very effective, 

improving clrastically the performance of the benchmark programs. The superionty of the 
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fine-grain software pipelinmg as Oppos{'cl ta the coarse graill ~()ftwar(> plpt>llIllllg. ha.s also 

been inwstlgated through a compallson ~tudy WI th the CO III pil"l for the \ \'a! p .,ystohc 

array architecture 

~loreovpr, Wf' ll~e the ('olllpilt'r gf'Ill'1 atec! rode a."i a \'p!l1c!e for tl'~ t IlIg .,('\'('1 al opt lllllza

tions methods and IdcntIf) mg the bott!eIlcrks of thc tlndNhll(' arcllltpctllll' Thl' balallt'lIlg 

techlllquc ha." been apphed and ail optlllltlm !H'rfOllllall('c ha.,> bt't'Il acllil'\'('d Illld('r ,t l't'If aln 

llIachll1e configurat ion Dy 1ll0dlfYlllg t ht' configura t 1011 paranH'tt'\'~ of tIlt' ,t! cl 11 (('ct urt'. a 

better unclcrstandlllg of PIO('(''''>OI d""lgl1 (,Oll~tl(tlllts ha." bt't'Il (·.,tablt"!u'd 

7.0.1 Directions for Fut ure Research 

This thesls has lall! the grollndwOi k for t he design and implemclltation of a code g('Ilf'ra

tor based on the pllnClple of datafiow software plpl'lll1mg Howewl, ('()(It· gelu'latlOn I~ oue 

of the latc&t phases 111 the compilatlOll pIOC!'SS, To producf' Illon' l'fficlellt ol>JI'('t ('ode for 

a parallel dataftow al cIlltecttli('. Illall\' d('rl~lOn~ and optl1l1lZatlOll!'l "hou Id })(' (·oll..,H!ered at 

earlier st ages of compdat IOU, The df'\'ploplIlg and the Ulld!'1 gOlllg 1 ('..,pal ch of tilt' ('0 III piler 

IS \'el y crucial for cxplOJ tlllg the mhel ('Ilt parallelislJl t hat t hl' tllld .. dl1H' ill gll Il j('llt fpt d11llg 

arcl11tccture offers 

Figure ï 1 shows an OWI \"JCW of th!' compIler PIOJt'Ct. R('''('iuch wdl })(' foclI..,pc! 1IImnly 

in four levels, In the language le\'('1. Hn applicative progra1ll11l1I1g languagc EVA L 15 llllCler 

de\'elopment at the Ad\'allced Computer Arcllltc('tllfe and Plogram Stl1lctll\('~ GIOUp a1. 

),IcGill Fniversity, The goal is to dcsign a gCllclal purpo..,p language. \vlllch faCilItatcs 

productl\'e programming in scicntlfic numencal computation.., TIlt' CO\(' of t 111~ lallguage 

will be ba.sed on SISAL and VAL These two langllagf's arc wpll-kllOWll fOi thell ('mphaSl5 

111 pro\'idlllg array opelatlOns and haVing suhstantw.l body of It'al !)Iogl;UlllllllIg done III 

lalge-scale sCientific applIcations SOllle fcatHl cs t hat al e IH'lIlg con '>ldPI t'd fOI t 11l~ Ilew 

language is the stream data type, hlgh-ordel funetions. type polyn,Ol pl11:'Ill. Iloll-~tnct 

functions and error handling 

At the program graph Ievel, HDOG form is com'cment fOl cCltalIl kinds of program 

analyzers and transformers, Currently, HDDG parses the SISAL fwut-end IIltermediate 

fOl m, and generates a dataftow graph where nodes and edges rcplcsents opel atlOns and 

data dependencies respectl\'ely, HODG can be further anaIyzed and allll1fOlmatlOn ,,,hich 

are considered important couid be extracted and attached ta respec1.l\'c nodes III HOOG 

as their attributes, 
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Followmg the extraction of attnlmtl's, the program ean 1)(' pal'tltioned lllto uuits c"Jled 

code blocks The mam interest at this stage will be focus(,d in optlllliling iuray oJll'l<lt!On~. 

All'ay operatIOns in I,uge l1ulllencal computatlOIls u~lIally t ak<, place in a 1('~nlar and 

lepetiti\"(~ pattrln. FOI t'xample, III man,v "'ltuatlOlls, whele two code hlod\~ W'll!'late and 

use an array lI1 a pl od llcer-('{Jn~llllH'1 fa . ...,lllon, t h(' rl(,l1wnts of the array can be t lé\ll:':>llll t ted 

bctwCf'1l t\\'o blacks III a PIPt'hlll'cl fa."lllo!1 \\"It haut USlIlg nwmOly il • ..., ail 1111('1 m('dliltt~ storage. 

TlliS not only "Il b~t ant lall~" S(\WS l1Wlllory spacf', lm t also 1 PlllOWS all all,l)' O}WratlOlls 

Ot her klIld of al ra)' opt Illlilat IOIIS "hould also he ('on~ldf'l ecl 

Anot her cruCial IS~lle t hat ..,hOllld 1)(' COllfllClNed at t III 'i ..,t ag<' , IS the Sclll'd Ullllg of 

tasks and 1ll~tluctions Oll l)lOC('~SOI~. Although the ploble!ll of optimal !'>dll'dnlll1g IS :\P
complete, compile-nille élllalY..,ls ba.'ipd on tll!' data-e!eppnc!ellcc alld the ..,tluctllle of the 

program graph, c'an l)(' llsed to IllllUlllW' the' parallel ex('cutlOll t1111l' Cawful ,lttentlOll 15 

rcqll11 cri to balancf' IwtW(,{,ll the complexlty of t he code scheel nlmg pIOblems clllel the on'r

head anrl feasd)llity to g('(l('rate effici('nt code. Dllllllg tl11s phase the llIéldllne palametcrs 

are consideree! as part of t hc III pu t. 

In t his work, \,,"e <1 • ..,"ul11e t hat clat a COllst 1 uctor~ are fit nct, 1 e the com pOlll'llt expl es

SlOns a.t:.' evaluated lwfcH f' lmt!ding the struct ule Thc sault' appli('s to loop-dll \'(ln ail it\ 

constluctor'3, V.:/H'IC the ('\alucltlOn of thelr boches starts \\llf'll ail thp Illputs lIme 1)('('11 

computed .. -\ n()n-,~t1'lct P\"aluatlOn \\ould dlow data com,tl\lctOIS to bnlld the ..,tluctme 

before evaluatlllg tll!' f'omponent CXpreS'3IOllS, and loop-dll\en \'Ollstlllct01S to cvalllate 

their bodies, lcceinllg the arguments Iluevaluated. \Ve aH' c111l(\ntly lllw,,>tlgat1l1g dfi

rient implementatioll schcrnes for structure operations to ~Uppolt pffectlvely this t)pe of 

computatIOn. \\"c expect the impact on the pelformance will be cOllflldelabll'. 

Anot her pIÏmaly issue 1Il t he code generatIOn, is the errOl handling ElIOI values can 

be produced at any stage of computatIOn; thercfore code should 1)(> ~ellemted to c1ctl'ct 

these exceptlOnal situations and hanclle them effcct1wly Other ielated dl1ectlOll~ cÎdelre~s 

the issues of debugging, separa te compilation and an allth1l1etlc fUlldlon hblêt,y support 

Finally, the whole compiler Will be 1l1tegrated in an pIOgrammillg e!lYilOIl'l1ent, plondillg 

the facilities to the user to intelchangc lllformatIOn interactlycly wlth the LOmpIler, which 

will be used for generating more efficient code. 

At the architecture level, the simulation stndles conducted hcre have shown that the 

DISU signal capacity and the enable memory scheduler are the most clitical comj)oncnts of 

the architecture. Simulation of much larger computatlOnal problem<; IS nccc\cd to establbh 

a better undelstanding of the limitatIOIl that are lInposed [rom the undelhllc aldlltectl1l'C 
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A tradeoff between efficiency and complexity in the design and implemelltation of these two 
crucial parts of the architecture should also be considered. Active study is being pursued 
in our group in the are a of enable memory architecture and scheduling mechanisms [35]. 

Finally, further study will be done to develop a rigorous chal acterization of program 
structure in terms of both its computation paraIIeIism and synchronization requiremellt. 
New performance metrics and measuring methods may aIso be requiIed. \Vith such research 
underway, more advanced code optuuizatlOn such as balancing techniques cau be effectively 
employed in compilers for high-performance dataftow machines. 
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Appendix A 

Machine Instruction Set 

PIPU operations correspond ta the p-znstructions in the program tuple .. -\-Code sup

ports a reduced set of instructions which can be divided into arithmetic, logic, comparison 

and data transfer operations. Both signed and unsigned operations are supparted. Arith
metic ()t)erations, unless otherwise stated, al! return a condition code of T ("true") if the 
re5ult is non-zero, else they return F ("faIse"). Boolean loglc operatIOns return the resnlt of 

the conditional test. Data tlausfer operations, by defauIt, irtlll!1 ouly Z ("uncondltlOna!"). 
In the followlng descriptions, the "Code Returned" field IS lllcluded for those operations 
whose return conditIOn code is not inur.ediately clear. 
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Usage: ABS negatzve absolute 

ABS 
ABSF 

ABS returns the absolu te value of an integer. ABS takes a single argument, a signed word 
or doubleword integer, and places its absolute value in the result register. ABSF performs 
the same operation for a floating point number. 

Usage: ADD argl arg2 sum 

ADD 
ADDF 
ADDU 

ADD. ADDU and ADDF perform the signed, unsigned and ftoating point addition func
tians respectively. Both take as arguments a pair of single or double ward number (illtegers 
for ADD and UADD and a floating point real for FADD) and produce a sum which is placed 
into the result register. Users should note that carries and borrows out of the high order 
bit and other exception conditions are not currently detected by this operation. 
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AND 

Usage: A~D bit-argl bit-arg2 result 

Code Returned: T if the bitwise logical AND is non-zero 
F if the result is zero 

AND performs a bitwise logical and operation on the first and second arguments and places 
the result in the register specified by the result operand. 

L'sage: ASL bit-arg count result 

Code Returned: Z 

ASL 
ASR 

ASL and ASR perform the arithmetic shift operations. ASL shifts bzt-arg count bit po
sitions to the left and replicates the least significant bit into vacated bit positions, while 
ASR shifts bit.arg count positions right and replicates the sign bIt .. \s with all shift and 
rotate operations, the condition code returned IS always "Z". 
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Usage: CRS argl result 

CHS 
CHSF 

CRS expects a signed integer operand and performs a two's complement operation on that 
argument. The net effect is a change of sign of the operand (i.e. from negatlve to positive). 
CRSF is similar to CHS except that the change of sign IS performed on a ftoatmg point 
operand. Therefore CHSF does not complement aH of the word or doubleword operand, 
but only the mantissa. 

COMP 

Usage: COMP bit-arg result 

Code Returned: T if the result is non-zero 
F if the resul t is zero 

CO:'-!P performs a bit\vise one 's complement of the first argument and places the result In 

the second (result) argument. COMP tests the result operation and returns false (tlUe) If 
the result is zero (non-zero). 

Usage: DIV dividend divisor quottent 

DIV 
DIVF 
DIVU 

DIV performs the division operation on signed, unsigned and fioating point operations. 
Both single and double word division is supported in aU cases. If divzsor equals zero, an 
is_error condition is returned in quotient. 
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DOUBLEF 

Usage: DEC real double 

DOUBLEF takes a l'eal number and l'eturns the corresponding double l'eal. 

EQ 
EQF 
EQU 

Usage: EQ comparand comparator test-result 

Code Returned: T if the two arguments are equal 
F otherwise 

EQ is similar to the A~D operation in that the two input arguments are logically ;\:"iDed 
together However, the results of the AND are not placed in the result register. Instead, a 

"0" is placed in test-rcsult and a "False" is returned as condition code If the logical .-\.).'D 

produces a non-zero lesult, and a "1" IS placed in the result rcglster and the condition code 

retUlns "Truc" otherwise. Hence titis a boolean opclatlOn, \'vlth "0" lepresenting "false" 

and "1" l'epresenting "true". EQF and EQU pcrforms the floatll1g pOlllt and the ullslgned 

operations respectively. 
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GEQ 
GEQF 
GEQU 

Csage: GEQ comparand comparator test-result 

Code Returned: T if comparator is greater than or equal to comparand 
F otherwise 

GEQ compares comparand against compamtor and places a "l" in the result register and 
returns a condition code of "True" if comparand is greater than or equal ta compamtor. 
Otherwise, a "0" is placed in the result register and the operation returns "False". GEQF 
and GEQU are the floating point and unslgned versions of GEQ, and expects two fioating 
point and unsigned integer op el ands respectively. 

GT 
GTF 
GTU 

Csage: GT comparand comparator test-result 

Code Returned: T if comparator is greater than comparand 
F otherwise 

GT is similar ta GEQ, except the operation returns "True" if comparator is strictly greater 
than comparand. Otherwise, a "0" is placed in the result register and the operation returns 
"False". GTF and GTU are the floating and unsigned integer compalison instructions 

respectively. 
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lIsage: ID noop-argument noop-res1llt 

ID 
IDF 
IDU 

GATE 

Code Returned: T if noop-argument IS nou-zero 
F if noop-mgument is zero 

ID and GATE both perform the same operatiOn. They are, in fact, simply aliases for each 
other. These operations simply transfer the contents of the first argument to the result 
reglster specified by the second argument. Thus. they may be Ilsed as the "T'and "F" 
gates found in static ùataflow éllchltectures The conditiOn code is retlllned by ID is "[aIse" 
if the input argumcnt IS ZClO: othenvlse. It rctUlns "Uue" IDF and ror <He Ilsed when 
the input argument is a ftoating pOlllt number or an 1lllSlgUC'd Humber lespectl\'el~. 

LEQ 
LEQF 
LEQU 

Csage: LEQ comparand comparator test-result 

Code Returned: T if comparand < comparator 

F otherWlse 

LEQ performs the integer "Less Than or Equal to" operation, returning "True" if the first 

argument is less than or equal to the second A "l" is placed in the result register if LEQ 

returns true, and a "0" is placed othel\vise. LEQF and LEQU pelform the same operation 
on ftoating point and unsigned arguments respectivel}'. 
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LINDEX 

Vsage: LI;';DEX base index absolute-address 

Code Returned: Z 

LI:"DEX IS used III conjunctlOn \\'ith the LOAD operation on structured mel1l0ly ele
ments. Its effect is some\vhat like that of I-structure arra)' accesses in taggecl-token cly
namic dataftow architectures \\'hen an LI~OEX ll1strllction IS fired. éUl absolllte adchess 
is calculated from the hase and iIldex gi\'en by the filst and second opclaud lcspectl\'ely, 
and then the "Védid/in\'ahd" bit of the actuallocation itself is checked If tills bit is l'eset, 
it is invalid, and LI~DEX \Vll! place Itself in a hst of pending :nstructIOlls walting for t hat 

particular datum. ~o "do ne" signalls released III that case. If the bIt 15 set, U:':OEX \Vll! 
continue and release a "done" signal 

See also: LOAD, SI~OEX, STORE. 

LT 
LTF 
LTU 

Csage: LT comparand comparator test-result 

Code Returned: T if comparand < comparator 

F otherwise 

LT is similar to LEQ, returning "True" if the first argument is strictl)' less than the second. 

LTF and LTU perform the same operation on floating point and unsigned arguments 

respectively. 
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LOAD 

l'sage: LOAD absolute-address memOT1j-element 

Code Returned: Z 

The first argument passed to LO.-\D is an address into strnctme memory. From this 
address, a single or double word memory element IS retlÎeved and placed into the result 
register specified by the second element. LOAD returns no condition code (i e. retlln1S 
··Z·'). 

Csage: ~rOD dwzdend rlWlSOT modulo 

MOD 
MOnU 

).10D returns the remalllder of an integer division. dzvulend is di\'lcled by dzvzso7' and 
the remainder is placed into modulo. ~I 0 D expects two sigucd integers as arguments anù 
Ieturns a signed modulo result. ~IODr performs the sanw operatIon on t, .... o unsigned 
operands. 

MULT 
MULTF 
MULTU 

rsage: ~IULT mult'lpicand multipher prodUt t 

~ICLT returns the product of the first two arguments, with the result placed into the third 

register. ~Il'LTF and ~lt:LTU are the fioating point and unsigned \l1teger equi\'alents of 
~leLT respectively. 
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NOOP 

Csage: NOOP 

Code Returned: Z 

NOOP is a true no-operation instructlOn. If receives and produces 110 arguments. :\OOP 
instructions are usually used in nodes used for AND-type signal merges. input operand is 
non-zero, and "faIse" if it is zero. 

NOT 

Usage: ~OT argument result 

Code Returned: T if the input argument is zero 
F if the input argument lS non-zero 

~OT is similar to the CO:-'IP operation, howe\'er, while CO:-'IP performs a bitwise negatlOn 
of its input operand and places the result 111 the result register, :\"OT is a boolean negation 
function, hence the input operand lS compared to "0" (faIse), and If equal, a "l" (true) IS 

placed into the result register. Otherwise, a "O" (false) is placed 111 the result legister. 

Csage: OR bzt-argl bzt-arg2 result 

Code Returned: T if the result is non-zero 
F if the result is zero 

OR 

OR performs a bitwise Iogicai OR of the two input arguments, placing the result in the 

third argument. 
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l'sage: ROL bzt-arg count reS1llt 

Code Returned: Z 

ROL 
ROR 

ROL (ROR) rotates the bit pattel'll specified by the first argument count Humber of bits 
ta the left (nght). Each lOtatlOn shifts the bit pattern one bit left (light) and places the 

most (least) sigl1lficant bit iuto the vacated bit position at the right (left). 

ROUNDF 

Csage: ROUNDF real mteger 

ROC;';DF returns as resl11t the mteger value that 1S closer to input real number. For reals 

\Vith llltegrai part less than .5. it returns the largest integer not greater thall the input 

leal number: otherwise, it returns the smallest integer that is greater than the input real 
number. 
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Usage: SHL bit-arg count result 

Code ReLurned: Z 

SHL 
SHR 

SHL (SHR) is similar to the rotate instructions (ROL and ROR), except that the most (or 
least) siglllficant bits are Ilot rotatcd mto vacated b1t positions. Instead. SHL and SHR 
shifts the bit pattern Idt and 11ght respectively. and places zero inta vacated bit positions. 
The total number of shifts pel fOl mecl is specified by tl1(> second operand. 

SINDEX 

Usage: SI~DEX base mdex absolute-address 

Code Returned: Z 

SIND EX is used ln conJunction with STORE to store elements of an anay into structure 
memory. \Vhen an SI~DEX instruction is executed, the absolute address is calculated 

flO111 the base and index given by the first two arguments, and the "valid/im'alid" bit of 

that l11emOly locatlOn in structure memory 15 set Tlus will cause the release of aIl pending 

instructions (i e. a "done" signal will be sent for all the blocked nstructlOl1s). SI~DEX 
usually uses the "shOlt-cut" fire mechanism to tire its partner STORl' instruction to plevent 

hazards. 

See aIse: LINDEX, LOAD, STORE 
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SINGLE 
SINGLEF 

esage: SINGLE mteger real Usage: SINGLEF double real 

SINGLE converts the input integer to the cOTlI:;<;ponding real number. while SINGLEF 
converts the input double to the corresponding real. The conversion from double to real is 
rounded. 

STORE 

Usage: STORE datum absolute-address 

Code Returned: Z 

STORE places the rlatum specified by the first argument iuto thé structlll'e memoly loca
tion specified by the second argument. STORE always returns Z. 

Csage: SUB argl arg2 result 

SUB 
SUBF 
SUBU 

SUB subtracts the second argument from the first and places the result in the result register 
specified by the third argument. 
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TRUNCF 

Usage: TRU~CF real mteger 

TRUNCF converts the input l'eal number to the corresponding integer by deleting any 
non-integral portion of the real number. 

XOR 

Usage: XOR bzt-argl bzt-arg2 result 

Code Returned: T if the lesult is non-zero 
F if the lesult is zero 

XOR performs the bitwise exclusive OR function on the first two arguments, placing the 
result into the result register. A "True" is returned if the result is non-zero, and a "False" 
is returned otherwise. 
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Appendix B 

The Livermore Kernel Benchmarks 

The Livermore Loops are 2-1loops from actual production codes rlln nt LaWl'C'IlCC Liver

more National Laboratory. The Loops represent the type of computatIOn kel'llt'I.., typindly 

found in large-seale scientIfic computing. 

Here, we present the SISAL source code for the set of lo()p~ that has been uscd for the 

performance evaluation, studied in tlus thesrs. The SISAL funetions fait hfully unplemcllt 
the computatIOns of the loops, whieh originally have been \vlÏttcn in Fortran. Ail the !oops 

presented here, contain at least one for- in expression, whieh ll1dicates tÎlat thc~e loops can 
potentially executed in parallel since there are no dependeuCles aCIOSS Iterations 
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Benchmark 1: Excerpt from a Hydrodynamics Code (loop 1) 

This code fragment is the first Livermore Kernel and is excerpted from a hydrodynamics 
code. The values Q, R, Tare scalar coefficients while Y and Z are one dimensional arrays. 
This Ioop returns an one-climensionaJ array of size n. :.Iote that for the cousti uction of a 
statie array, the value of n shollid be known at compile time. 

type OneDim == array[double], 
function Loop1 (n: integer: Q ,R, T: integer; 

Y.Z: OneDim; returns OneDim) 
for k in l,n 
returns 

Q + (Y[k] * (R * Z[k+lO] + T * Z[k+ll])) 
end for 

end function 

Benchmark 2: Inner product of two arrays (loop 3) 

This code fragment is the third Livermore Kernel and calculates the inner prodllct of 
two arrays. The inputs X and Z represent one-dimensiollal arrays whose inner product is 
calcnlated. 

type OneDim == array[doubleJ; 
function Loop3(n: integer; X,Z: OneDim; returns real) 

for i in 1,n 

returns value of sum Xli] * Z[i} 
end for 

end function 
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Benchmark 3: Equation of State Fragment (loop 1) 

This code fragment is the sevellth LiverlllOle l\:('rnpl and l('tllrn~ il olH'-clilll('IlS10Ilal alla.\' 

of size n. Rand Tare coctfici<'llts. whih' C. Y. and Z me lllpllt allay!'> that :\1(' \1<".,11 for 
the construction of the retllllled alray The valuc of Il should 1)(' kllOWll at colllpil(' fllll(' 

type OneDim = array[doublc]; 
function Loopï(n: lllteger; R.T:rcal; r,Y.Z: OneDlIll; returns OIH'Dim) 

for k in l,n 
returns array of Clk] + R * (Z[k} + R >1< Y[k]) 

end for 
end function 

+ T * (C[k+3] + R * (C[k+2] + R * l'[k+1]) 
+ T >1< (C[k+6] + R * (L:[k+:J] + R >1< r[k+.t]))) 

Benchmark 4: Difference Predictors (loop 10) 

This code fragment 1S the tenth Livermorc I\ernel that rf'tllllls a two-dllll('n~lollal allél~' 

of size (5 .. 14. l .. n}. :\ dOllbly-ncsted for aIl explcssioll compute!'> the in!'>tanc('s of th(' 

equation and gathers the results Illto ail allay A :'lIlgle eXIH('~~lOll III the 1<'t1l111~ dall~(, 

states the equation. The sum O\rr "PX" is r<,tmned by a t Illld foraIl ('XIHI'~~I()n WlllCh 
fetehes the values in parallel and rl'duces them via the value of sum l<'(ltH'tlOn o!)f'ratol 
The result is then subtracted <lllcetl)' fl0111 CX(,'),J). Tb,· \,alu(' of Il ~hollld Iw knOWll at 

compIle time. 

type TwoDim = array[OneDim]; 
function LooplO (n: integer; ex.px: TwoDim; returns TwoDilll) 

for i in 5,1-1 cross j in l.n 
returns array of 

eX[5j] - for k in 6,i 

end for 

end function 

returns value of sum PX[lq] 

end for 
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Benchmark 5: First Difference Calculation (loop 12) 

This code fragment is the twelfth Livermore I\ernel and performs a first differellCC caleu

lation. It returns a one-dimensional array of si7.e n. For the construction of a static array, 
the value of n should be lmmvn at compile time. The lth element of the dIray IS set to 

Y[i+l]-Y[i]. 

type OneDim = array[doublej; 
function Loop12(n: integer; Y:OneDim: returns OneDim) 

for i in Ln 
returns array of Y[i+l] - Y[i] 

end for 

end function 

Benchmark 6: Monte Carlo Search Loop (loop 16) 

This code fragment is the sixteenth Livermore I\ernel, which searches for a partlcle in a 

two-dimensional gird divided into ZONE!l] zones. Each zone IS subdiVIclecl iuto n groups. 

If the particle is found, the bf function returns the zone and group number of the locatIOn: 
eIse, it returns ZONE 1, GROUP O. 

type IntOneDim = array[integer]; 
function Loop16(u: integer: R,S,T: integer; D.PL.-\.~:IutOneDim; 

ZONE'IntOneDim; returns mteger.integer) 

let Y := for i in l,ZONErl] cross j in l,n 

j4 := 2 * (n * (i-l) + j - 1) + 3; 

j5 := ZONE[2 * (n * (1-1) + J - 1) + 3]; 

test :== DU5] - (D[j5-l] :je exp(T - 0[j5-2], 2) + 

exp(S - D[j5-3], 2) + exp(R - D!J5--l], 2)): 
Cl := if j5 < 11/3 then 

if PL.-\.~!J5] < T then ZO:\E[j-l-l] 
elseif PLA~[j51 == T then a 
else -ZONE[j4-l] 
end if 
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elseif j5 < '2*11/3 then 
if PL\~[jjl < S then ZO~E[.H-il 
elseif PL.-\~U.jl = S then () 
else -ZO~E[J-t-lj 
end if 

elseif.15 < Il then 
if PL.-\~[.l,jl < n then ZO~E[J-t-lJ 
elseif rL.-\~[J51 = R then 0 
else -ZO~Eb-t-ll 
end if 

elseif j5 = Il then () 
elseif test < 0 then ZO~E[Ji-ll 
eise -ZO~E[.l-t-ll 
end if 

returns value of least if Cl = 0 then j-t 

end for 

else 2 * Il * ZO~EI1I + '2 
end if 

in if Y = 2 * 11 * ZO~E[ll + 2 then l, 0 
else (Y - 3) / (2 * Il) + 1. Y 
end if 

end let 
end function 
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Benchmark 7: Matrix Multiply (loop 21) 

This code fragment is the t\',,'enty-fiIst Livermo!e Kernel and pelfolllls a ~tan(hud mat! ix 
multiplication, The calculation is exp!essed entirely III the returns clause. It computes 
the inner Ploducts of the lOWS of VYand the colul11ns of ex in parallel and thcn added 
the lesults dlrectly the apPlopuate PX dement. The yalue of n, winch specIfies the Size of 

the innermost dimension of the array. should be known at compile time. 

type OneDim = array[double]; 
type TwoDim = array[OneDim]; 
function Loop21(n: lllteger; CX.PX.VY:TwoDim; returns TwoDim) 

for i in 1.15 cross J in Ln 
returns 

array of PX[l.j] + for k in 1,15 

end for 
end function 

returns value of sum VY[i.kj * CX[k,j] 
end for 

Benchmark 8: Planckian Distribution (loop 22) 

This code fragment is the twenty-second Livermore I~ernel and letUrIlS two one-dimensional 

arrays of size Tt' Y and W. ~ote, that the value of n should be known at compile time, 

such that the construction of statie arrays will be possible. 

type OneDim = array[double]; 
function Loop22( n: intèger; {j ,V ,X:OneDim; returns OneDim, OneDim) 

for i in l,n 
y := if V[i] = 0.0 then 20.0 

eise min(U[ij/V[i], 20.0) 
end if; 

\V := Xli] / (exp(2.ï1828182845905, Y) - 1.0) 

returns array of \V 
array of Y 
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end for 
end function 

Benchmark 9: Find Location of First Minimum in Array (loop 24) 

This code fragment is thc twcnty-fonrth Li\"l'llllOl(l Kelnl'! and 11't1l1n~ tlll' til"t lo('afloll of 

the mil1ll11ull1 valuc orthe inpllt anay:\ Th(' tüst Ioop tin(b tht' lI1illllllll1ll \'allll' of X .. llld 
the second Ioop lctUl'll& thl' llldpx of tht' tüst of thos!' \'allll's I30th 1(0»" ail' p.llallc-I alld 
use the value of least lcductlOn OIwlator ta rl't1ll1l the !-llllalll'~t \'al\ll'. 

type OncDim = array[douhlc]: 
function Loop2-1( n: illtcgcr: A OneDim. returns lllfcgPl) 

let 
x := for y in A 

returns value of least y 

end for 
in for y in A at i 

returns value of least i when y = x 
end for 

end let 
end function 
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