Code Generation for
Dataflow Software Pipelining

by
Zaharias Paraskevas

A Thesis submitted in to the
Faculty of Graduate Studies and Research
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE
IN
COMPUTER SCIENCE

at the
McGILL UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
August 30, 1989

(©Zaharias Paraskevas 1989




Abstract

The dataflow model of computation offers an attractive alteinative for exploiting pro-
gram parallelism through oveilapped execution. The dataflow concept of computation
overcomes the sequential natuie of conventional machines, by allowing the availability of
data to determine the execution sequence, rather than a sequential struction counter.
This thesis examines the dataflow software pipeliming - an efficient code mapping strategy
for array operations and iterative constiucts on high performance dataflow architectures.
It illustrates how the airay opeiations in loop expressions can be effectively exploited on
a highly pipelined static dataflow processor aichitecture based on the argument fetching
data-driven principle. A code generator has been implemented which automatically gener-
ates code for a subset of SISAL The SISAL front-end and a hierarchical data dependence
constructor have been used to construct the program graph, wheie the translation to ma-
chine code was applied. By execution of the compiled code on a compiler/aichitecture
testbed, the efficiency of the dataflow software pipelining scheme and certain optimization
methods are evaluated. A detailed analysis based on the simulation results 1s presented,
and the impact of some aichitectural factors is discussed.



Abstract

Le modéle de évaluation flot de donnees offre une alternative intéressante de profiter
du parallélisme dans les programmes par l'intermédiaire de chevauchement d'exécution
La technique de flot de donnees surmonte la nature séquentielle de machines classiques en
autorisant l'exécution des instructions selon la dispomibilité des données, et non par leur
ordonnancement séquentiel. Cette thése présente une technique flot de données pat pipeline
logiciel ~ une stratégie efficace pour la réalisation de tableaux et boucles sui des machines
a flot de données de haute performance Elle explique comment 1éaliser de facon efficace
les opérations répétitives sur tableaux sur des machines flot de données statiques basées
sur les principes “apporte-argument” (argument-fetch) Un générateur de code pour un
sous-ensemble du langage Sisal a été construit  Nous constiuisons le graphe hierarchique
du programme avec ['aide du compilateur Sisal et un transfoirmateur de graphes. Ensuite,
le code est généré directement du graphe On a exécuter le code sur un simulateur et
mesuré |'efficacité de quelques méthodes de optimisation Une analyvse des résultats est
présentée, et I'impact de divers éléments architecturaux est évalué.
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Chapter 1

Introduction

Advancements in technological growth cause the demand for more powerful computing
to rise rapidly. Anticipating the continuation of this trend, research in the area of parallel
computation seeks to achieve high performance by designing new architectures and struc-
turing programs to exploit the parallelism inherent in many problems. Efficient exploita-
tion of parallelism has been a challenge for designers of von Neumann parallel computers.
However, the inflexibility of the program counter based sequential control mechanisms and
the physical constraints that are 1mposed from the electronic technology severely limit the
ability to exploit the inherent parallelism in algorithms which demand large quantities of
computer power. The sequential nature of von Neumann architectures, where a sequential
control mechanism 1s used to schedile instruction execution, creates the so-called von Neu-
mann bottleneck [11]. Attempts to eliminate this bottleneck by overlapping instruction
execution through the use of pipelining, vector processing and von Neumann based MIMD
processors have vet to produce satisfiable solutions. In particulai, to the two fundamental
problems of von Neumann multiprocessing: the unpredictable memory latency and the
cost associated with the synchronization among the processors [6,8]

A promising alternative to satisfy the appetite for computational cycles, 1s offered by
the dataflow model of computation The dataflow concept of computation overcomes the
sequential nature of conventional machines, by allowing the availability of data to determine
the execution sequence, rather than a sequential instruction counter. The side-effect free
property eliminates the need for explicit synchronization among the processing elements.
An instruction can affect another instruction only if the output of the first instruction




is specified as input to the second instruction. Moreover, dataflow computer exploit the
parallelism at the fine-grain level as opposed to von Neumann based multiprocessors.

Dataflow programming languages facilitate the writing of highly concurrent programs.
The use of applicative programming paradigm contains implicit concurrency and allows
much simpler analysis of programs. The user does not need to use explicit commands to
identify concurrent activities. The single assignment rule and the referential transparency
in the functional programming style, allow the parallelism to be fully and naturally ex-
pressed in the programs [1,11].

Translators for these types of languages represent the parallelism in a dataflow graph.
Consisting of nodes and directed graphs, the data dependencies of operations in a program
are explicitly shown. Each node identifies an operation and the arcs indicate the flow of
values among the various operations. Given a graph representation of a program, dataflow
architectures use a model of execution that exploits the concurrency implied in the graph.
The general execution model executes each node when all of its mnputs have been received.
Such a model can fully suppoit the concuirency expressible in the graph

In the last decade, several ideas and results have been drawn fiom many different re-
search efforts in dataflow. The first dataflow model being proposed was the static dataflow
model [13]. In the static dataflow model, static graphs are used to represent the com-
putation. The major characteristic of this model 1s that no more than one value can be
present on an arc at a time. To ensure this property and to eliminate the possibilities
of overwriting, a node becomes enabled only if there are no values on any of its output
arcs. Also in a static dataflow computer, all the storage required for program execution is
allocated at compile-time.

Since Dennis at MIT first introduced the static dataflow approach, tremendous amounts
of research efforts have gone into this area. Another dataflow research effort at MIT under
Arvind, introduced the idea of dynamic dataflow model [5]. In the dynamic dataflow
model of computation, every value as it moves along the dataflow graph, carries a label.
The dynamic tagging approach to dataflow computation associates a unique tag with
each instantiation of an instruction within a program. Thus, each data operand for an
instruction carries a tag that specifies the particular instantiation for which the data is
intended. The tag therefore distinguishes data operands for uifferent instantiations of the
same instruction. This allows multiple values to occupy an arc at the same time. This
approach is the one realized by the MIT Tagged Token Dataflow Architecture (TTDA) [5].




Although the dynamic approach offers tremendous exploitation of parallelism in loops
and in functions calls, it requires a very sophisticated hardware to match the parallelism
that the abstract model can explore. Moreover, it does not answer to one of the major
criticism against the dataflow model: the unnecessary data movements through the sev-
eral units of the processing elements. This problem becomes even worse in the dynamic
model, where every value must carry a tag which can be several bits long. This creates a
cousiderable overhead in computing and moving the tag through the several units of the
processing elements.

As a result of the active research in the static dataflow model, a highly pipelined static
cataflow multiprocessor architecture has been proposed recently (18,30]. It is based on the
principle of the argument-fetching dataflow model. The main characteristic of this model
is that data never move through the units of a processing element. In this model data
values and control signals are separated, and an instruction fetches its own arguments
from a data memory just like in conventional processor architectures Signals which hold
tu~ sequencing information among the nstructions, are the only entities that are moving
aro.nd the circular structure of the processing element.

The principle of dataflow software pipelining appears as an efficient mapping scheme
for exploiting the parallelism in loop constructs, and array operations. Software pipelining
is performed on units of program text that define the major structure values involved in
a computation. Applying this mapping scheme, the machine code 1s arranged such that
successive computations can follow each other through one copy of the code.

This work focus on the efficiency that is gained by applying the dataflow software
pipelining on the argument fetching architecture. Throughout this work, we try to investi-
gate, both theoretically and expetimentally, the degree that these two recent developments
affect the performance of the executing programs in a static dataflow architecture. For
this purpose an experimental compiler has been constructed which generates code for the
argument fetching architecture. The principle of dataflow software pipelining has been en-
capsulated in the loops and conditional expressions, allowing us to 1dentify its effectiveness
by running various programs. Three are the main objectives of this thesis:

1. to construct an experimental code generator for the argument fetching architecture,
which will be used as the ground work for future developments in the compiler for
this architecture;
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2. to measure the effectiveness and identify the limitations of the dataflow software
pipelining, as this is applied to loops and conditional expressions;

3. to gain a deeper insight of the impact of several key modules of the architecture, and
to discover relations between program structure, compiler optimization techniques
and architectural characteristics.

-

Aside from the code generator, the compiler/architecture testbed, which allows us to
conduct all the experimental work, consists of a compiler front end, a hierarchical data-
dependence graph, an assembler, and an instrumented macrosimulator of the argument
fetching architecture.

1.1 Structure of the Thesis

To establish the context of this work, we first describe the concept of the argument
fetching model of computation and the principle of dataflow software pipelining. Chapter
2 describes the design of the architecture and the rationale behind the design decisions. It
also presents the principle of dataflow software pipelining, using as an example the mapping
of a basic code block. A brief comparison with other related work 1s also described.

Chapter 3 presents an experimental core language based on SISAL single assignment
language. It describes in detail all the data types, operations and control constiucts that
are included in this subset. The main features of this language are the monolithic definition
of arrays, which are static and rectangular, and the conditional and parallel loop constructs,
where the software pipelining mapping scheme is applied.

The fourth chapter presents the mapping schemes for all the operations and constructs
of the language that has been defined in the previous chapter. First the program graph
is presented as the abstract dataflow graph. In most cases there 1s an one-to-one corre-
spondence between constructs/operations in the source language and nodes 1n the program
graph. The organization of the machine graph 1s also presented in this chapter. Machine
graph reflects the model of computation of the underline architecture. Finally the transla-
tion from the program graph to machine graph is given for all the operations and constructs
of the subset of SISAL language, which has been defined in the previous chapter.




Chapter 5 presents the performance analysis on a set of Livermore loops through simu-
lation. The performance gained by applying software pipelining to these loops is evaluated
by measuring the speedup and utilization factors. Also the effect of balancing through
an in-depth study of the simulation results of one of the Livermore loops is shown. Fi-
nally, a detailed analysis based on the simulation results is presented, addressing two key
architectural factors that substantially influence the efficiency of the running programs.
By experimenting with different architectural configurations the relation between program
structure, compiler optimization techniques and the architectural features is addressed

In chapter 6, we concentrate on the technique of software pipelining which has been
studied and implemented in von Neumann style architectures. A comparison study of
dataflow software pipelining and the software pipelining as applied to Warp systolic ar-
ray architecture is presented [41]. In this study the effectiveness of software pipelining is
investigated in terms of scheduling efficiency, scheduling limitations, space requirements,
and compiler complexity. Moreover, a comparison study based on the peiformance statis-
tics gathered for the same set of Livermoie loops on both aichitectuies, is presented.
This performance evaluation study is mainly focused on the achieved performance and the
scheduling limitations. Also a detail analysis for the statistics gathered for the argument
fetching architecture is discussed in relation to the individual loop characteristics.

Lastly , chapter 7 presents the conclusion of this work along with suggested areas for

future research.




Chapter 2

The Argument Fetching Dataflow
Architecture and the Principle of
Dataflow Software Pipelining

In contrast to the sequential von-Newman model of computation, the dataflow model
of computation offers a simple and powerful formalism for descrnibing parallel computa-
tion. The data flow model of computation is based on the principles of asynchrony and
functionalaty. The first denotes that all operations are executed when and only when the
required tokens are available, while the second implies that any two enabled opeiations can
be executed in either order or concurrently without affecting the result of the computation
(determinacy [14]).

The first static dataflow model was proposed by Dennis and Misunas [13]. In this model
each instruction is activated by the presence of its operand value: its execution consists of
performing the indicated operation and delivering copies of the result value as specified by
the destination fields. The presence of acknowledge signals guarantee that an instruction
cannot be fired again before its target instructions are ready to receive new data.

One of the major criticism to the traditional static model and to all the other proposed
dataflow architectures is the high overhead due to the data traffic. In the traditional data
flow model this is due to the unnecessary data movements. The operands of the instructions
are “flowing” through all the units in the processing element, although they are used only
upon the execution unit. Result values are copied and stored in duplicate whenever there
is more than one target instructions.




Fire Done

DISU ————

Figure 2.1: An argument-fetching data flow processor

In the traditional static dataflow architecture, known as argument-flow architecture,
the main reason for the above inefficiencies arises from the decision to keep data and
control information bound together in packets as they traverse the circular structure of the
processor pipeline [16].

2.1 The Argument Fetching DataFlow Architecture

The main principle that differentiates the new aigument-fetching architecture fiom the
traditional argument-flow static data flow architecture, is the separation of data and signals
in the information packets(tokens). It becomes evident that it is better for an instruction
to fetch its own arguments from a data memory than its predecessor instructions to store
result values in the operand fields of several target instructions

The target architecture to be studied in this thesis, is a pipelined dataflow processor
architecture based on the argument fetching data-driven principle The key feature 1s that
data never “flow”, while instruction scheduling remains data-driven. This architecture has
been proposed and reported in [18,23.24].

Figu= 2.1 shows a block diagram of this architecture. The argument-fetching processor
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consists of two major processing modules design to perform the instruction execution and
scheduling functions:

e The data flow winstruction scheduling unit (DISU) holds the signal graph of the col-
lection of data flow instructions allocated to the processing element and maintains a
record of which instructions are enabled for execution.

o The pipelined instruction processing unit(PIPU) is an instruction processor that uses
conventional techniques to achieve fast pipelined operation. The PIPU executes
enabled instructions and informs the DISU when each instruction finishes execution.

The fire link in Figure 2.1 1s for transmitting the addresses of enabled instructions from
the DISU to the PIPU. The done link is for transmitting the addresses of the instructions
which have completed execution in the PIPU, together with a condition code used by the
DISU to control the sending of conditional signals By decoupling data and signals, the
argument fetching architecture combines the powerful data-driven instruction scheduling
of the data flow model (DISU), with the simplicity of a conventional pipelined processor
(PIPU).




DISU
PR
fire one
Enable
Memory ] Sional
and Processor
Scheduler

Figure 2.2: The structure of DISU

2.1.1 The Organization of DISU

The DISU 1n the argument fetching architecture plays the role of the program counter by
providing addresses of candidate executable instructions. The difference is that the DISU
is a “data-driven program counter” which maintamns not one but a pool of instructions
that are 1eady for execution.

The structuie of DISU is shown in figure 2.2. It consists of a a srgnal processing
umt(SP) and an enable controller unit(E'C). The signal graph, which hold the sequencing
information among the instruction of a programn, is represented in the DISU by the signal
lists stored in the signal list memory of the SP unit. Each signal list represents a set of
signal arcs leaving the associated instruction of the signal graph The enable count memory
of the enable controller unit holds the count and the reset status values of each node in the
signal graph.

In response to a done signal from the PIPU for an instruction. the SP unit 1etireves the
signal lists for tlus instiuction and sends a count sigual for each entry m the active list The
EC unit 1eceives the count signal and decrements the count value of the indicated node.
Wlhen this count value becomes zero. an enable flag for this instruction is set and the reset
value is copied back into the count to prepare the next firing cycle of the instruction. The




interprocessor
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Memory
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-

fire done

Figure 2.3: The structure of PIPU

EC unit continuously monitors all the enable flags and issues fire signals for the enable
nodes.

2.1.2 The Organization of PIPU

The PIPU can be considered as a conventional pipelined processor without a program
counter since the DISU is responsible for providing addresses of candidate executable in-
structions. The block structure organization of the PIPU is shown 1n figure 2 3.

It consists of six pipeline stages to handle instruction fetch and decode, operand effective
address calculation and fetch, instruction execution and store of the tesult values. The
instruction execution consists of a scalar operation unit and a stiuctuie operation unit.
The scalar operation unit performs aiithmetic and logic functions as well as scalar memory
operations, while the stiucture memoiy wt peiforms data structuie oriented memory
operations, such as array accesses. The IPC unit 1s used for interpiocessor communications.
The architecture also provides bwilt-in primitives for handling FIFO buffers
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2.2 The Concept of Software Pipelining

The static dataflow model of computation derives its simplicity by disallowing more
than one instantiation of any instruction simultaneously. It can exploit the parallelism of
the programs by pipelining data from multiple instantiations of a loop or a procedure body.
In the static dataflow model, pipelining means arranging the machine code such that the
successive computations can follow each other through one copy of the code. If we present
a sequence of values to the inputs of the dataflow graph, these values can flow through the
program in a pipelined fashion.

In dataflow computation. program mapping is performed on units of program text
that define the major structured values involved in a computation. These program units
are compiled into units of code called code blocks Code blocks are the units of source
programs to be handled by code mapping strategies and will be decomposed and assigned
to the processing elements of a dataflow multiprocessor computer. In SISAL, many code
blocks can be written as for-in expressions. The following SISAL program is an example
of such a code block:

X:=foriinln
returns array of
exp(exp(2*Ali], 2) + exp(2*B|i], 2), 2)
end for

This code block take as input two arrays A and B and produces another array X such
that:
X[o] = (2% A[i])?* + (2% BR))*)2 V2 € (1,n)

The main feature of a for-in code block is that the array elements of the result array X
can be evaluated in parallel because there are no data dependencies among them. In the
dataflow graph based on the pipelined mapping of the above example, successive elements
of the input array A will be fetched and fed into the dataflow graph. The program is
fed sequences of elements A[l], A[2], ..., A[n] and B{1], B2, ..., B[n]. The computation
proceeds in a pipelined fashion.

11



A[n] ...A[1]

B[n] . .. B[1]

L} N L} :

\ \

v N N )
stage | stage 2 stage 3 stage 4

Figure 2.4: Software pipelining of dataflow programs

Figure 2.4 illustrates the fine-grain parallelism that exists in the above SISAL program.
In this dataflow graph. nodes tepresent instructions and aics iteptesent data values. [n-
structions that belong to the same stage can be executed in parallel. since thete are no data
dependencies among them. Moreover, during the pipelined execution of the progiam, mul-
tiple stages can be executed concuirently Stage 1 and 3 aie enabled and can be executed
in parallel; the same applies to stage 2 and stage 4. The powel of fine-grain parallelism
can be derived from programs that form a large pipeline in which many mstructions in
multiple stages can execute concurrently.

However. unlike 1n vector processous. there s uo tequirement that the activities of one
vector operation must be continuously processed by one or a group of dedicated function
units in the processor. The applicative nature of the data flow graph model allows flexible
scheduling of the execution of enabled actors in the pipeline In fact. an ideal data flow
scheduler (with a sufficiently large data flow computer) will execute each actor as soon as
its input data become available. Therefore, massive parallelism of vector operations can be
effectively exploited by a data flow computer in a fine-grain manner* the scheduling of the
physical function units and other resouices for sustaining such vector operations are totally
transparent to the user This is called software pipelining - the aics drawn between actors
correspond to addresses 1n stored dataflow machine code, and not to the wiited connections
between logic elements. For more detailed discussion concerning the software pipelining,
the readers are referred to [28,21,22].
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Loop unraveling has been proposed for the exploitation of parallelism as another pow-
erful alternative technique in tagged-token dataflow architecture {7]. A major difference
is that, during loop unraveling, each iteration 1s assigned a new tag, which implies new
resources are allocated to the activations in the new iteration. For examble, in the MIT
tagged-token dataflow architecture (or TTDA {7]), this means potential more space in the
token matching store 1s tequited to handle the concurrent activities. In the new MIT
Mansoon project {10], this implies that a new copy of memory frame 1s required for each
iteration to hold the tokens for the loop body. In either cases, the overhead becomes
large when large number of iterations is to be unraveled. One danger is the possibility of
overloading the system with parallelism. The recent work on loop “throttling” technique
can partially reduce the overhead in loop unraveling by limiting the number of concurrent
iterations [7].

On the other hand, the dataflow software pipelining suggested here will use the same
code and data memory space for the entite loop pipelining. Furthermoie, no new tags
are required for concuirent execution of iterations and the danger of overwhelming the
computational resources 1s prevented.

2.3 Summary

Dataflow computers are based on the concept of data-driven computation, i.e., the
instruction execution in a conventional von Neumann computer is under program-flow
control, where as that in dataflcw is driven by data availability. In argument fetching
dataflow model of computation, the execution of a program 1s data-driven without the
overhead of transmitting data fiom one instruction to another.

Dataflow software pipelining is an efficient program mapping strategy for compound
constructs and data structure operations, that keep enough instructions enabled for pro-
cessing. The parallelism 1n array opera‘ions of loop expressions fiequently found in scien-
tific computation can be effectively expl nuted by organmizing the dataflow machine program
such that array operations can be fully pipelined. Under software pipelining scheme pro-
gram mapping is performed on units of program text, called code blocks, that define the
major array values involved in a computation. The static dataflow model of computation
can encapsulate the software pipelining very effectively without introducing much com-
plexity to the compiler. Moreover minimal space requirements are needed to exploit this
technique in the static argument fetching architecture.
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Chapter 3

The Language

It is very important in a parallel computing system to facilitate the exploitation of
parallelism of the running programs. Moreover, it 1s important that application programs
are written in high-level programming languages that allow the programmer to abstract
away from details of the machine structure. One option is to generate parallel code from a
conventional high-level programming language, without anv extensions to support paral-
lelism. Due to potential side-effects of program statements, compile-time data dependence
analysis is often difficult especially for inter-procedure analysis and handling of aliasing
caused by the use of pointes [1,6].

As an alternative, functional programming languages have been proposed. Functional
languages are very attractive because their side-effect-free nature means that the order
of execution is irrelevant. Recently there has been a lot of effort in 1mplementation of
single-assignment programming languages. In such languages there 1s no concept of global
storage, and state. When assignment is restricted to occur only once for cach variable in
a program, the effect is as if assignment statements are definitions of the value names.

Instead of reinventing everything from scratch, we decided to start our work with an

existing functional language which must satisfy the following two conditions:

1. it has a substantial body of real programming done in large-scale scientific program-
ming, and

2. it has given reasonable consideration to provide array operations.
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We have chosen SISAL as our candidate, because it is a language which seems to satisfy
the above criteria. Particularly, this work is focus on a subset of SISAL, the main feature
of which is the monolithic and static definition of arrays.

3.1 The SISAL Programming Language

SISAL is well-suited to parallel processing applications because of three important
features: the language does not have any side effects. it does not require explicit syn-
chronization primitives, and it encourages parallel solutions. Side effects are eliminated
by SISAL's single assignment rule. SISAL has no explicit features for synchionization,
and programmers need not worry about the difficulty of understanding and programming
explicit synchronization primitives

The language is strongly typed using structural type equivalence, and allows only ex-
plicit type conversion. A SISAL program is concerned with the definition and use of values.
A value may be a constant value or a value name which is associated with the result of
an expression evaluation. No value name may be redefined, and so all uses of a given
value name in other expressions will always refer to the same value. The value of every
expression depends solely upon the values of the inputs to the expression The order of
the execution of a SISAL program 1s thus determined solely from the availabuility of values
for use in the computation of expressious, and does not affect the computed 1esults

An expression may yield more than one result. The number of results produced by an
expression is refeired to as its arity. Expressions may be nested within other expressions,
provided that its aritv and the types of its results are correct for the context in which
it is used. Expressions are entirely fiee from side-effects. A function call is one kind of
expression. A function definition simply encapsulates an expression with proper parameter-
passing mechanism. Functions have access only to their arguments and to other functions.

3.2 A SISAL-based Experimental Language

Here we do not attempt to give a complete description of SISAL, as this can be found
in (39]. In fact throughout the thesis we will restrict our attention to a subset of SISAL,
referred to as the SISAL Kernel. The motivation of defining this language is twofold:
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. to serve as the minimal basis of a functional language which will be developed for
the argument fetching static dataflow architecture;

. to be used by the compiler as a source language from which to generate code for this
architecture.

With respect to the above objectives, the SISAL Kernel allows only one program mod-
ule which contains only one function. Since this language has been designed for a static
dataflow architecture where function calls are implemented by in-line expansion, this re-
striction does not affect the generality of the language. By disallowing recursion, a program
with several function calls can be translated to a single function bhody wheie all the called
functions are replaced by their code. The description of SISAL Kernel is given in the
following sections.

3.2.1 SISAL Kernel Data Types

The SISAL Kernel supports two data types: scalars and arrays The remaining set of
data types that is supported in SISAL but not in the I{ernel that we are concerned with
here includes: streams, records, unions and error values. Although a large subset of SISAL
data types are excluded. this language still can expiess a large number of kernel programs
that consume the most cycles in scientific computation progtams which involve only scalai
and airay operations. Finding efficient mapping schemes for these two data types 1s, by no
doubt, the most crucial part in design and implementation of code generatots for high-level
languages.

Scalar Types

The SISAL Kernel provides the following scalar types together with the usual operations
on and between them:

e boolean,

e integer,

e real, and
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o double real

Allthe SISAL scalar types are provided except the character type. Although thie SISAL
Kernel provides for the declaration of value names. the typing system enables the type of
any value name to be directly deducible from its defining expression, so declarations are
only used when their inclusion improves program clarity. A number of predefined functions
are provided together with explicit type conversion operations The set of predefined
functions includes modulus (mod), magnitude (abs), maximum (maz), minimum (mn),
and a real and mixed exponentiation { ezp). No implicit type coercions are performed. The
set of all the valid operations for each data type will be listed in the next section.

Arrays

Arrays are the most important data types in scientific numerical computation. Arrays
have been a challenge to the researchers of functional languages due to the difficulty of
finding an efficient implementation. In a pure functional language which has no notion of
computation by effects, an array is treated as a functional aggregate value.

In SISAL, an array has components of arbitrary type and an implicit integer index.
Each array’s size 1s detetmined by evaluation of the expression defining the array value.
Multi-dimensional arrays aie 1epresented as "arrays of arrays”. Moreover an array append
operation, generates a new array which agrees everywhere with the old array except in
the position that its value has been changed. However, such incremental array update
operations also cause large overhead due to copying.

In SISAL Kernel the array definitions meets the following three criteria:

1. have reasonable expressive power to meet with programming 1equirements in scientific
numerical computations;

2. keep space/time efficiency, while providing an implementation scheme which can
effectively exploit parallelism;

3. keep clean semantics for parallel processing;




SISAL Kernel adapts the use of monolithic arrays, the computation of whose elements
are defined all at once when the array 1s fiist created [29]. An n-dimensional monolithic
array is defined by a mapping;:

Uy
where U is the set of the Cartesian coordinates defined on a rectangular n-dimensional
Euclidean space, and V is the set of values of type T. In addition to their monolithic
nature, arrays in SISAL Kernel have the following three characteristics:

1. Therr size is constant, known at compile time.
2. They are rectangular, i e. all the elements in the same dimension have the same size.

3. The lower bound 1s always equal to one.

This class of airays can be called: static rectangular arrays. A laige number of
numerical computation piograms can be written using only static rectangular arrays and
thus their mapping to efficient dataflow machine programs is crucial.

3.2.2 SISAL Kernel Operations

Here we specify the sets of operations applicable to each data type of SISAL Keinel.
The valid operations for booleans, integers, reals, arrays and type-conversion operations
are listed in tables 3.1, 3.2, 3 3, 3.4 and 3.5 respectively. In those tables, symbols have the
following meaning: P and Q for boolean, J and K for integers, X and Y for reals, A for
arrays, T for arbitrary types, and V for values of arbitrary type

Notice in table 3.4 that the “create by elements” array operation returns an array of the
indicated type with low index equal to 1 and high equal to k The k-elements of the array
are equal to V, ..., Vi respectively. The “type name” 1s optional. but if present, must
conform with the type of V. This “type name” denotes the type of the array operation and
therefore must be an array type - not the type of the component Fmally the array _fill
operation creates an array with the given 1ange i.e. fiom 1 to a Iugh bound Hi. All the
elements are equal to the given value V.
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Boolean Operations

operation | notation | functionality
and P & Q | bool, bool — bool
or P » Q | bool, bool — bool
not ~P bool — bool
equal P — Q | bool, bool — bool
notequal | P ~= Q | bool, bool — bool

Table 3 1: SISAL Kernel boolean operations

Integer Operations

operation notation | functionality
addition J+ K int,int—int
subtraction J-K int,int—int
multiplication J*K int,int—int
division J /K | int,int—int
modulus mod(J,K) | int,int—int
exponentiation | exp(J,K) | int,int—int
negation -J int—int
magnitude abs(J) | int—int
maximum max(J,K) | int,int—int
minimum min(J,K) | int,int—int
equal J =K | int,int—int
not equal J ~=K | int,int—bool
greater J > K | int,int—bool
less J<K int,int—bool
greater or equal | J >= K | int,int—bool
less or equal J <= K | int,int—bool

Table 3.2: SISAL Kernel integer operations
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Real Operations

operation notation | functionality
addition X+ Y |realreal—real
subtraction X-Y real,real-—real
multiplication X*Y real,real—real
division X/Y real,real—sreal
modulus mod(X,Y) | real,real—real
exponentiation | exp(X,Y) | real,real—real
exponentiation | exp(X,J) | real,int—real
negaticn -X real—real
magnitude abs(X) | real—real
maximum max(X,Y) | real,real—real
minimum min(X,Y) | real.,real—real
equal X =Y |realreal—real
not equal X ~=Y |real,real—bool
greater X>Y |realreal—bool
less X <Y |realreal—bool
greater/equal X >=Y |realreal—bool
less or equal X <=Y | real,real—=bool

Table 3.3: SISAL Kernel real operations

Array Operations

operation

notation

functionality

create by elements

create/fill
select

array{type-name|{1:V}...Vi]
array fill(1,Hi,V)
AlJ]

int, T—array{T]

int, int, T—array(T)]

array[T}, int—T

Table 3.4: SISAL Kernel array operations
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[ Type-Conversion Operations
operation notation functionality
real-to-integer floor(X) real—int, double—int
integer(X) real—int, double—int
trunc(X) real—int, double—int
integer-to-real real(J) int—real
double_real(J) | int—double
integer-to-real real(X) double—real
double_real(X) | real—double

Table 3.5: SISAL Kernel type-conversion operations

3.2.3 SISAL Kernel Control Constructs

The program structures described in this section are specific forms of expressions legal
in the SISAL Kernel. A more detailed desciiption of the these constructs can be found in

[39].

The Let Construct

The purpose of the let block is to define one or more value names, which are then used
in the evaluation of an expression. The result of this expression 1s the result of the block.
Every value name introduced in a “let” block occurs on the left hand side of ":=" exactly
once. The scope of each value name introduced 1n a let block is the entire block following
the definition, except any inner constructs that reintioduce the same value name. \alue
names defined in a block are not available for use outside that block.

The IF Conditional Construct

The conditional construct is used to select one of two alternative expressions for evalua-
tion, depending on the result of the boolean test. The selected expression is evaluated and
its results are returned as the results of the whole construct. The else branch must always
be present to define the results of the conditional when the test yields false. Similarly, the
expressions given i the two branches must conform n the number and types of results

produced.
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A single conditional construct can be used, without nesting, to select one of the several
expressions for evaluation using one or more elserf branches. In this case, the entire con-
struct is an expression whose tuple of values is that of the first arm whose test expression
is “true”, or the final arm if all test expressions are “false”. Finally, the conditional con-
struct does not introduce any value names. All value name scopes pass into the conditional
construct.

The FORALL Iterative Construct

In SISAL there are two forms of iterative constructs: (1) the non-product form (for-
initial), and (2) the product foim (for-in). The non-product form perfoims sequential
iteration in which one iteration cycle depends on the result of the previous cyeles The
product form is a special case of the non-product form that provides a mote concise way to
specify arrays It is used to denotes that there are no loop carry dependencies among the
cycles of the iteration, so 1deally the computations of the cycles can be done in parallel.

SISAL Kernel uses only the product form of the SISAL iterative constiuct. The product
form allows inner and/or outer (Cartesian) array index products to be specified  Since our
main concern has been focused in the efficient implementation of monolithic arrays, we
use the for-in construct as one parallel monelithic array constructor The syntax of this
construct is the following-

for generator

body

returns return-ezpression-list
end for

The for-in construct comprises from three parts:

1. a generator, which specifies the range of values for which the body will be executed,
2. the loop body, and

3. the return-ezpression-list, which specifies the value(s) to be returned.
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operalion comments

elem in A process all elements of

array A.

elem in A at [ | process all elements of array
A and bind the corresponding
indexes to I.

Table 3.6: Array element in expression

SISAL Kernel supports all the expressions that can exist in the generator of a for-
in. These expressions ate in. at, dot. and cross. Using these four forms of geneiators.
elements of an array may be available inside the loop without explicit subscripting. Table
3.6 shows how this can be accomplished by manipulating an ariay A. In case that the
array A is multidimensional. the in expression process the elements actoss the outermost
dimension of the array. Also. multiple ranges may be specified and combined using either
dot or cross products. In a dot product, the ranges must have the same size and the i-th
indexing element of each range is used to drive the i1-th iteration. The cross product is
short-hand for a nested for-in. A more detailed desciiption for the functionality of these
four expressions is given in [39].

The result of for-in construct is the tuple of values defined by the return-ezpression-
list. In the for-in construct, since all the elements of the range are independent of each
other, ordering of the results is defined by using the range expression’s list otdering. Each
return expression must contain some expiession that describes a 1esult to be produced.
The expression list is defined from two paits: a prefix and an expression. In SISAL Kernel
there are two possible prefixes:

e value of

e array of

The value of prefix signifies that the following expression produces a single value in
one of two ways. If the value of is not followed by one of the reduction operators, the
result produced by this clause is the last element of the sequence (as described above).
If a reduction operator is in the clause, it means that all elements of the sequence will
be combined using the reduction cperator to produce the single value. The reduction
names, their operation along with the legal set of types, are listed in table 3.7. The
reduction operation is always performed within the lowest dimensioned sequences and
then successively applied to all higher level dimensioned sequences.
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Reduction Operators
operator name legal types operation
sum int, real, double, | addition or
boolean boolean OR.
product int, real, double, | multiplication
boolean or boolean AND.
least int, real, double | mmmimum.
greatest int, real, double | maximum.

Table 3.7. SISAL Keruel teduction operatons

The array of produces an array having size equal to that of the sequence of the
results as described above and containing exactly those values in the order defined by the
sequence. The lower bound of the airay is alwayvs equal to one. If the for-in defines a cross
product range, then the resulting array 15 multi-dimensional. SISAL Keinel applies one
restriction in the construction of multi-dimensional arrays 1t does not allow the exportation
of a subarray which 1s used for the construction of a bigger artav This 1s a reasonable
assumption which does not affect the generality of constiucting multi-dunensional arrays
in a for-in construct. The reason behind this assumption will become apparent i chapter
3, where the machine code mapping schemes are presented

For the reduction operators, SISAL Keinel also suppotts a masking clause modifier.
Each result clause may optionally be followed by a boolean expiession preceded by a
when indicator which acts as a filtet  This filter determmnes af specific sequence values
should be taken out of the sequence p1ior to final 1esult calenlations  After each iteration
cycle, the masking clauses are evaluated. If the when clause 15 false. the cotnresponding
expression value is dropped fiom the sequence.

3.3 Summary

SISAL Kernel 1s an experimental core language based on SISAL single-assignment lan-
guage. Although it is in a way restiictive 1 the set of data types and the operations that
it allows, 1t is powerful enough to expiess kernels that capture much of the computation of
larger scientific programs It 1s also suitable for experimenting and measuning the efficieney
of the generated code in respect to mapping schemes that ate apphed from the compiler
in a static dataflow aichitecture.

The main features of the language are: (1) the monohthic definition of airays, which are
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rectangular and their size is known at compile time, and (2) the for-in construct, which is
used as the main parallel monolithic array constructor. In addition to array data types all
the other scalar types are supported, with the exception of character types. The for-in and
the if constructs constitute the major features of code blocks where the software pipelining
mapping scheme will be applied.




Chapter 4

Translation to Machine Code

Here we will show how to systematically translate programn graphs mto machine graphs
which contains only instructions suitable for execution on the argument fetchung aichitec-
ture. First the program graph will be presented. The program giaph 1s composed fiom
a collection of nodes, each with an operation code that identifies 1ts function, and some
number of nputs and outputs

Translation to machine code is accomplished by substituting each node of the program
graph by groups of tuples, each one containing the machine operation code along with the
arguments and the signaling information. Hete we present the mapping schemes for all the
operations and constructs of the SISAL Kernel. For each simple o1 componnd node that
reptesents an operation or a construct of the SISAL Kernel, we present 1rs machine graph
showing pictorially the data and the signal dependencies among the machie mstiuetions.

The categories of simple and the compound nodes that cortespond to the operations
and constructs of the SISAL Kernel, are the following:

1. arithmetic and boolean nodes,
2. type conversion nodes,
3. array manipulation nodes,

4. nodes dealing with multiple values.



5. select compound node, and

6. forall compound node.

As we describe the translation to machine code, we will introduce the machine instruc-
tions as needed. For a more detail description of the available machine instructions and
their functionalities, the reader should refer in Appendix A.

4.1 A Hierarchical Data Dependence Program Graph

The single-assignment and functional properties of SISAL make it particularly suited
to translation into data dependence graph form. The first step in the SISAL compiler, is
to produce a machine-independent graph, known as [F1 (Intermediate Form - version 1)
[43]. IF1 is very high level, and the structure of an IF1 program follows closely the SISAL
program it was derived from. Also a number of machine-independent optimizations had
been applied at the IF1 level from the SISAL compiler. Loop-invariant removal, common
subexpression ehmination, constant folding, dead-code elimination and function in-line
expansion are some of the most important optimizations.

IF1 files comprise a number of lines that contain printable ASCII characters The hi-
erarchical data dependence graph (HDDG) that is used here, 1s based on the [F1 common
intermediate form for SISAL. The HDDG data structures are produced from the IF1 pro-
gram in two steps. In the first step, the IF1 program file is parsed. and the data structure
representing that program is constructed. In the second step, the data structure 1s manipu-
lated to construct a HDDG data structure. At this step, all the implicit data dependencies
in IF1 are converted to explicit.

HDDG is based on acyclic graphs. The HDDG data structures represents aset of graphs,
one for each SISAL function. Graphs consists of nodes and edges. Nodes denote opeiations
and edges represent data dependencies between nodes. Types may also be attached to each
edge. Graph boundaries surround groups of nodes and edges.

Nodes represent operations on values. There are two types of nodes: simple and com-
pound nodes. The difference between these two categories of nodes is that compound nodes
contain subgraphs while simple nodes do not. The semantics of simple nodes describe the
relation of the inputs of the node to its outputs. Nodes receives their values fiom a number
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of tnput ports and “deposit” the produced values to the output ports Most simple nodes
have a fixed number of input and output potts, although thete are vanable numbers of
inputs to nodes that build structured data tvpes

The compound nodes are letarchically defined, so that substructures ate denoted by
subgraphs. The semantics of compound nodes descithes the wavs i wloel the subgraphs
of the compound node interact  Compound nodes gather the values needed by their sub-
graphs, so they generally have an aibitiarv number of mput and output ports

4.2 Machine Graph

A program for the argument fetching architecture 15 a set of mstruction tuples. Each
wnstruction tuple consists of a p-instruction, which defines a thiee-addiess mstruetion that 1s
executed when this mstruction becomes enable, along with an s-instruction that specifies
the sequencing mformation among mstructions of a piogram and 15 processed an DISU.
Each s-instruction contains two fields: the enable field mdicates how many signals must,
vet be received for an mstiuction to become enable and the reset ficld holds the value to
be placed in the enable field when the mstiuction is fited  \lso, each signal s tagged with
a condition code Thiee ate the possible condition codes  tre, false, and nnconditional
According to the result coudition code of the cottesponding p-mstruction, oulv one of these
signal lists becomes active each tune an mstincetion completes its execution

The assembly form of the program tuples 1s named A-Code. A-Code supports a reduced
set of instructions which can be divided into anithmetie, logie, compatison, type conversion
and data transfer operations. The set of the p-instructions that are suppotted 15 given
Appendix A.

Translations from the intermediate program graphs to maclme graphs are most easily
expiessed pictorially. Figure 4 1 presents the machine graph for the expression (a+b){e+2)
In a machine graph representation. mnstructions tuples are represented by hoves along with
all the incoming arcs  Throughout the test of the chapter, the tetw wnstruction tuples
will be interchangeably used with the term machine wmstructions oy sunply mstructons,
The operation code of the p-instruction 1s wiitten inside the box  The ates are labeled to
denote a signal or/and a data dependency between two tuples. All the wcomng signals
labeled with “d” represent data arcs and correspond to an existence of an argument m the
thiee-address p-instruction of this tuple.




MULT

s,d

Figure 4.1. Machine graph of the (a + b)(c + 2) expression

Literals are represented by denoting their values inside quotes along with “d” arcs
pointed to the instructions that use them. The result register of every tuple is not showed
explicitly in the machine graph: it is implied that for every tuple there 1s unique register
that holds the result of the operation. In general, every tuple has its own result register

unless 1if it is stated otherwise.

The arcs labeled with “s” represent signals and correspond to a signal in the s-instruction.
There are two types of signals: the count and the no-count signals These two type of sig-
nals are needed because the typical initial values of the enable and reset fields for each
instruction are not equal. For the first firing, an instruction requires signals only from its
predecessors (count signals). To fire again, an instruction should wait also for acknowledg-
ment signals (no-count signals) from the instructions that consume the data produced by
this instruction. Therefore, for each instiuction the value of the enable field 1s the sum of
all the count signals, while the value of the reset field is the sum of all the signals In the
machine graphs presented here, all the forward signal arcs represent count signals, while
the backward signal aics represent no-count signals. The enable and reset fields of each
instruction is not explicitly shown in the machine graphs, but they are easy derivable by
counting the incoming forward and backward signals The conditional code of a signal
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Machine
HDDG nodes | op. codes | operation
Plus Add addition
Times Mult | multiplication
Minus Sub subtraction
Div Div division
Mod Mod modulo
Abs Abs absolute value
Neg Cis negation
Not Not boolean negation
Less Lt boolean “less”
LessEqual Leq boolean “less or equal”
Equal Eq boolean “equal”

Table 4.1. Pumitive anthmetic and boolean operations

can be derived from the label inside the box of the source tuple. An “F” denotes a false
conditional code, a *T" denotes a true conditional code, while the absence of any label
denotes an unconditional code.

A non-deterministic signal meige is defined by using a ® symbol 1n the machine graph.
In the current implementation literals aie implemented without using signals to indicate
that they are available This eliminates the existence of signals i the s-patt of the tuples
to notify that a constant 1s available Therefore, a literal appeats ounly as an argument in
the p-instruction of a tuple.

Finally note that in most of the graphs that will be piesented in this chapter, the
outermost box always corresponds to the boundary of the HDDG node whose machine
graph is presented.

4.3 Mapping Arithmetic and Boolean operations

Most of the arithmetic and boolean nodes are supported as primmtive machine instruc-
tions in the argument fetching architecture. Table 4.1 shows the one-to-one 1elation be-
tween the HDDG nodes and their corresponding machine instruction operation codes. As
figure 4.2 shows, this set of nodes 1s directly translated into one machine instruction. This
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Figure 4.2: Machine graph for primitive arithmetic and boolean operations

instruction is activated whenever the two input values are available. These two 1input val-
ues represent the two arguments in the p-instruction, where the corresponding operation
will be applied. Upon the end of the execution of this instruction, the “producer™ and the
“consumer” instructions are notified by 1eceiving signals from the executed mstiuction.
Note that for the "Abs”, Chs” and “Not" machine instructions, the translation is the same
except that these instructions receive one nstead of two mput values.

There are four HDDG nodes 1n this category that are not translated into one machine
instruction. These nodes ate: (1)maz. which finds the maximum between two input num-
bers, (2)min, which finds the mimimum between two input numbers. (3)not equal, which
finds if the two input arguments aie not equal, and (4)exp which implements the exponen-
tiation function. In the following, we present the mapping schemes for each of these four
arithmetic nodes.

4.3.1 Translation of Max and Min Operations

These two nodes have similar implementation graphs. Both are expanded in four in-
structions whose operation codes and signaling information is shown in figures 4.3 and 4.4.
The “LT" machine instruction receives two arguments: the comparand and the comparator,
which correspond to the left and the right arguments respectively. This instiuction returns
a “true” conditional code (“T”), if the comparand is strictly less than the comparator;
otherwise it returns “false” (“F").
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comperand comparator
- Py

comparand/comparator

Figure 4.3: Machine graph of Max operation

comparand comparator

comparand/comperator

Figure 4.4: Machine graph of Min operation

32




comparand comparator

NOT_EQUAL

!s,d

U

"1" or "0'

Figure 4 5: Machine graph of the NotEqual operation

The “ID" operations simply ti1ansfer the contents of the one input argument they re-
ceive, to their result register Notice that in both figures the two “IDs" which receive
signals from the boolean operation “LT". aie acting as gates where the minimum or the
maximum value 1s passed accordingly to the executed operation. Each time only one of
these two “IDs” will be activated in respect to the boolean condition code that is returned
from the “LT" instruction. The last "ID” is used to pass the selected value to the instruc-
tions that use the 1esult of this operation. The non-deterministic merge denotes that only
one signal is necessary to be send from the two predecessor “IDs” to activate the last ~ID”

instruction.

4.3.2 Translation of the NotEqual Operation

Figure 4.5 shows the machine graph of the “NotEqual” simple node. This HDDG
node takes two operands and returns “true”, if these operands are not equal, and “false”
otherwise.

In A-Code “true” and *“false” aie represented by the integer values 1" and "0" re-
spectively. The mapping of this instruction consists of two machine instructions. an "EQ"
and a “NOT” instruction. “EQ" receives two aiguments which aie compaied. If they are
equal, “1” is produced; otherwise *0” “NOT” is a boolean negation operation. If the input
operand is “1", then “0" (i.e.“false™) is returned as the result of the operation; otherwise
a 1 (i.e.“true”) is returned.
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4.3.3 Translation of the Exponential Operation

Figure 4.6 shows the mapping of the exponential function. The exponential function s
represented in the HDDG by the simple node erp. This function takes the fiist input to
the power of the second mnput The result 15 always a teal or double (the latter only ocens
if one of the operands is a double). The tianslation presented hete does not support the
error conditions that can occur based on the sign and the type of the mput argnments, it
is the programmer’s responsibility to use the nght sign and type of arguments.

The “IGEN" shown n fignie 4 6 is a machine mnstiuction that 1s used in most of the
mapping schemes that will be presented in this chapter This instiuction acts as a generator
of a sequence of index values within a specific tange  The fitst argument specifies the lower
bound “a”, while the second argument specities the higher bound h™ of the of index
range. "IGEN" gencrates the1ange: (a+1). .b. Each time an mdex 1s generated. a “tine’
conditional code is returned: when all the mdexes within the specific 1ange have heen
generated, "IGEN™ 1eturns a “false” conditional code “IGEN" 1s always accompanied by
an “ID" instiuction which 1s used to initialize the result register of "IGEN™ to the lower

1

index value. This restniction is enforced by the simulator of the architecture ("AD™) and
is expected to have a better solution n the future

Figure 4 6 presents the machine graph of the exponential opetation. This unplementa-
tion follows an iterative algorthm, whete the integer exponent (B) defines the mmber of
times that the mantissa (A) should be multiphed by 1tself. The "IGEN™ and the “MULT”
machine instructions constitute a loop where the main computation of the operation takes
place. Based on the value of B (exponent), 'IGEN" counts how many times the first a-
gument A (mantissa) should be multiplied. Every activation of IGEN™ 15 followed by a
subsequent activation of the *"MULT" instiuction, which multiples the 1esult of the previ-
ous multiplication with the value of mantissa When thete are no more iterations, " IGEN”
returns a “false” conditional code, and signals to the boolean operation "LT™ (less than).
This instruction checks the sign of the second imput argnment, wiich 15 the exponent, and
accordingly activates one of the subsequent two mstructions If the exponent 1s positive,
then the previously calculated result from the "MULT" passes thiough an “ID” instine-
tion, which acts as a gate for this value. If the exponent 1s negative, a DIV 1nstinction
reverses the previously calculated 1esult, by dividing ~1" with this value

The operations denoted by dashed boxes aie optionally used according to the data

34



A
EXP \ sy k’\
'SINGLEF\
| ro” G AN
2. FowDE}
1D *.0¥
ABS
v
l_'?/ »;
s,dv v:,d
IGEN
o
d’dl F__ _—,—P r
MULT P LT,
T o
dg¥s dYVayd
ID DIV

ID
s,d ]
' SINGLE +
s,dl
R S
\DOUBLEF
e - < ‘\
s,d
-
A

Figure 4.6: Machine graph of the Exp operation




type of the two input arguments. The implementation of type-convetsion operations will
be presented in the following section. “ABS” returns the absolute value of the exponent,
which is used as the higher bound of the generated range. The ~“ID" mstiuction at the top
of figure 4.6 is used to mitialize the result 1egister of "IGEN™ to =0, such that 1t will be
teady for the next activation of the “exp” function. Finally the “ID” instruction m the
bottom left, is used to mitialize the 1esult 1egister of the “MULT™ mstruction to *17,

4.4 Mapping Type-Conversion Operations

As mentioned in the previous chapter SISAL doesn’t allow coeicion, thetefore type
couversion should be explicitly done by the progiammer With the exception of the floor
operation, the HDDG nodes that cortesponds to the type converston functions can bhe
divided 1nto two categoties (1) the prunitive type conversion nodes, where there is a one-
to-one correspondence between the HDDG nodes and the machine wstructions, and (2)
the non-primitive type conveision nodes, that are expanded into two machine istructions.
The functionality of these two categories of type conversion nodes 1s presented m table 4 2
and table 4.3 respectively: their mapping schemes is presented in figutes 4 7 and 4 8.

4.4.1 Translation of the Floor Operation

Figure 4.9 shows the machine giaph for the floor type-conversion operation. This
operation converts the real or the double input value to an integer, whose value 1s the
gleatest integer less than or equal to the input value. Fist, the “SUB™ mstiuetion subtracts
"0.5" from the input value, and then a *“ROUND™ mstruction 1s used to generate the integer
that is closer to the value returned by the "SUB” instruction If the wmtegial part s less
than .3, 1t returns the largest integer not gieater than the imput 1eal numbet. otherwise, 1t
retuins the smallest integer that 1s greater than the input 1eal number. The “SINGLEF®
instruction exists only 1f the input value 1s a double number, and 1t 15 used to convert the
double to the corresponding real number.
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Machine
HDDG nodes | op. codes | functionality
Bool Id integer—bool
Single Single | integer—real

Singlef | double—real
Double Doublef | real—double
Trunc Truncf | real—integer
INT Id boolean—integer

Roundf | real—integer

Table 4.2: Primitive type-conversion operations

Figure 4.7: Machine graph of the primitive type-conversion operations
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Machine instructions
HDDG nodes | Operation code 1 | Operation code 2| functionality
Double Single Doublef integer—double
Trunc Singlef Truncf integer—double
Int Singlef Roundf double—integer

Table 4.3: Non-primitive type-conversion operations

apcodet

Agirﬂ

opcode2

I S—

s,d

Figure 4.8: Machine graph of the non-primitive type-conversion opetations
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4.5 Mapping Array Operations

As mentioned earlier. a research in the dataflow area which is concerned with scientific
computing, has been concentrated on the efficient implementation of arrays and other
data structures. The most popular scheme is to hold each structure in a special-purpose
structure store and represent arrays by their descriptors. Elements of a stiucture can be
put into or obtained from the store using the descriptor together with an index to construct
an array or read the elements of an array respectively.

Here we are concentrated to the class of arrays that has been defined in the previous
chapter i.e. the static rectangular arrays with a constant lower bound of 1. In this class
of arrays, the descriptor is a single pointer to the base of the structure memory, where
the elements of the array are stored. Also the implementation of arrays presented here
considers arrays as strict data structures, i.e. subsequent operations can use an array only
if all the elements of that array have been stored. We are currently investigating efficient
implementation schemes for structure memory operation able to suppoit eager evaluation
of array operations. Eagerimplementations schemes for the argument fetching architecture
has been proposed in [29].
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ABUILD

array(1:10,18,20]
Figure 4.10: Machine graph of one-dimensional ABuild operation

In this section we will present the machine graph for three airay operations These
array operations includes two array constiuction operations and an atray select operation.
In a latter section, two other operations for scattering and generating an array inside a
loop, will be presented.

4.5.1 Translation of the Array Build Operation

The array build operation constructs an array by providing a lower bound along with
the values of the elements of the array that will be constructed The SISAL compiler
translates the arrav build expression into a sumple node named ABwld  The first mput
port of this node provides the lower bound of the array, while the 1est of the input ports
provides the elements of the array Note that for this node, although the number of input
ports varies, it is known at compile time.

Translating a one-dimensional Array Build operation
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Consider the expression array(l: 10, 15, 20] which constructs an one dimension array
with lower bound of one and size three. Figure 4.10 presents the machine graph of the
above SISAL expression. In the above example, the elements of the array are: 10, 13 20.
As mentioned earlier, the number of the input ports and the type of the input data for
each ABuild node is known at compile time. Therefore the compiler knows the size of the
array and can calculate the address in the structure memory, where each element will be
stored.

The “STORE” machine instructions are used to store the input data 1nto the stiucture
memory location, specified by the statically calculated from the compiler address. The
“ID” is used as a synchronization instruction; it is executed when all the elements of the
array have been stored. Also the “ID" node is used as a gate that passes the “base-addiess”
of the new array, to successor tuples that uses the elements of the array.

Translating a multi-dimensional Array Build operation

In the case where the data in the input ports of an ABwild operation are arrays, a
multi-dimensional airay 1s constructed whose dimension is gieater by 1, compare to the
dimension of the input airays. Note that the input arrays should have the same dimension
and the same size, and their elements should have the same data type.

Figure 4.11 presents the machine graph of the expression array[l: A, B], where A and
B are arrays of the same size. Their base address 1n the structure memory is dencted by
*A" and “B” respectively. Their size is referred as “input array size” In tlis mapping
scheme, for every input array, an “IGEN" operation is associated, which generates the
indexes of every element of the input array. The *MULT” instruction 1s generated only 1f
the elements of the input arrays aie doubles: it is used to calculate the relative address of
the input elements. An array read operation is translated nto a pair of instiuctions: (1)
an “ADD?”, which computes the actual element address from the base address of the input
array and the generated index, and (2) a “LOAD”, which uses this address to peiform the
actual memory transaction. Similarly, a pair of “ADD” and “STORE" operations are used
to store the elements of each input array to the right location reserved for the new ariay.
Note that the elements are always stored in a row-major-order.

As with the pireviously presented mapping scheme, an “ID” nstruction 1s used as a
synchronization tuple, which fires when all the elements of the array have been stored. At
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that point of time, all indexes have been generated, and therefore all the “IGEN" tuples
return a “false” conditional code, which activates the execution of the "ID” instruction.
The “ID” is also used to pass the base address of the generated array to the rest of the

tuples that use this array.

4.5.2 Translation of the Array Fill Operation

The array fill operation cieates an array with a given range and all elements equal to a
given value. The SISAL compiler translates this operation to a simple node named AFuil.
AFill has always three input ports It creates an array filled with the value given on the
third port. The integer on port one gives the lower bound, and the integer on poit two
gives the upper bound of the airay being build Since we are concern with static arrays,
the values of the first two ports should be known at compile time. The outermost range
of the constructed array 1s equal to the range defined from the first two ports, multiplied
by the size of the input elemem

The element on the third pott can be eithel ascalar ot an array Sumilaily with A Buald,
two mapping schemes aie used for this operation depending on the data type of the mput
element. The mapping schemes for both cases are presented n figures 412 and 4.13. In
figure 4.12, the input scalai 1s stored so many times as this 1s defined from the range
generated by the "IGEN" Therefore, the input range in this case also defines the number

of elements of the airay

In case of the construction of a multi-dimensional array as this is presented in figure 4.13,
two index generator instructions are used The "IGEN" in the top of this figure generates
the indexes that are used to calculate the base addiesses of the subartays, wheie the
elements of the input aitay will be stored. A subairay 1n this operation always coiresponds
to the input array. The input airay 1s stoted in contiguous space in the stiucture memory.
as many times as this 1s defined from the input 1ange. The “IGEN" in the bottom of figure
4 13, repeatedly generates indexes that are used to access the elements of the input array.
This “IGEN” generates the same set of indexes as many times as this is defiued from the
range in the first two input ports. Finally note that like in the previous mapping, the
elements of a multi-dimensional array are always stored in a row-major-order.
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4.5.3 Translation of the Array Selection Operation

The array selection opetation 1s represented 1 the HDDG by the AElement sunple
node. This node extracts the element of an atray at a given index position  Note that only
one level of subscripting 1s done by this operation

The mapping of the A Element node appeats in figure 4 14, Notice that the base adediess
of the input array is given m the fitst mput port, while the index value is gnven i the second
input port. Depending on the size and the dimension of the array, the actnal index value
1s calculated from the input index. The first “"NMULT” 1nstruction will be present only
if the elements of the mput artay ate “doubles™  The second “MULT™ mstinction will
he generated only 1f the wmput 1s a multi-dunensional atray, this wstriction produces the
telative base address of the selected subartay The actual addiess 1s computed fiom the
“ADD” opetation. If the wmput array 1s one-dimensional, the “LOAD" operation retneves
the scalar element from the structuie memory: otherwise the "LOAD™ operation s omitted,
and the calculated address represent the base address where the selected subariav s stored

4.6 Mapping Conditional Expressions

In HDDG the conditional expressions ate tepresented by the Select compound node
The Select node implements the “if-then-clse” two way selection. and it can reenrsively
contain other Select nodes Every Select compound node consists of thiee subgraphs the
Selector, the False and the True subgraph The Selector subgraph vields a boolean that
selects the appropriate branch subgiaph The True and False lnanch subgraphs contam
the body of the expressions that should be executed when the boolean value 15 “tine”
and “false” 1espectively The arity of the conditional expressions varies according to the
number of results that should be returned

Consider a typical conditional expression such as,
if b(x) then f(y) else g(y).

A naive unplementation conld allow only one activation of the conditional to be in
progress at a time. In such a scheme, the conditional expression can be reactivated only 1f
its previcus activation has computed all the expected results Here we present a ppelined
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mapping scheme for the conditional expressions This mapping scheme allows mote than
one activation of the same conditional expression to be active at the same time [31]

Figure 4 15 shows the machine graph for the above conditional expression as this has
been derived by translating the Select compound node following the pipehined mapping
scheme. For demonstration purposes. this figuie presents the Selector subgraph to be
empty; in general, pait o1 the whole boolean expression could be mside this subgraph
Notice that since the arity of the test expression b(x) s always equal to one, 1t 15 possible
to identify the last tuple of b(x) and labeled 1t as Last, in the figure Tuple v s the only
tuple whose result value 1s imported 1n both aims of the conditional expression  Although
its value is used 1nside these aims, y signals to Last, tuple According to the value that 1s
produced from the boolean expiession b(x), Last, signals to either Fulse ov True subgraph.

The "ID” instruction at the top of cach branch subgraph, have been mtroduced by
the code generator such that the anty of each value that 1s unported m the two hranch
subgraphs of a conditional exptession will be always one. In general, for every value that
is imported and used mside these two subgraphs, the code generator associates one “ID”
tuple in each subgraph These “ID" tuples seive as gates that passes all the imported
values to the rest tuples of the cotresponding conditional arm.

The pipelined execution of the conditional expressions couldn’t be possible without
the existence of a FIFO. wlich stotes the vahies as they are produced from the boolean
expression of the conditional Therefore the FIFO buffer 1s needed to hold the results
of tests while the corresponding computations are performed by the conditional arms
Depending on boolean values stored in the FIFO, the tuples mside the appropriate bhranch
that produce the final result values ate signaled Without lost of generahitv, i figure 4 13
we assume both f(y) and g(y) retuin one result value The two last tuplcs of f and g that
produce the final result value, are labeled by Last; and Last, 1espectivelv Note that,
Lasty and Lasty are ordinary tuples in the graph, and must have the same tesult register

Finally for every value that 1s returned from the conditional expression, the code gen-
crator associates one “ID” tuple that export the result value to the tuples outside the
conditional construct Each “ID" tuple receives one signal from each pan of “last” tuples
that produce the corresponding final value in the True and the Fulse subgraph tespectively
Since only one set of last” tuples will be activated at a time i either the True o the
False subgraph. a non-deternunistic merge is needed to send a signal fromn each pair to the
associated “ID” tuple In figute 4.15, where only one result s teturned, the pair of last™
tuples 1s denoted by Last, and Last, and the non-determimstic merge by @
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Figure 4.15: Machine graph of the Select compound node
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Notice that for the pipelined mapping of the conditional expiessions, the compilet
generates code for a number of “ID” instructions that does not serve any computational
purpose. The overhead of introducing these “dummy” tuples is tolerated from the simplie-
ity, and the modularity of the implemented mapping scheme, as this has been presented

lere.

4.7 Mapping Forall Expressions

Recall that SISAL for-in1s a loop construct which states explicitly that there are no data
dependencies among the iteration of the loop. SISAL compiler translates this construct to
a compound node named Forall The Forall node in HDDG is nsed to denote independent
execution of multiple instances of an exptession. It has three subgiaphs.

1. the Generator, that produces values for each instance of the loop body;

SV

. the Body, which contains the expression to be evaluated;
3. the Returns, that gathers all the results computed from the distinct body nstances.
Here we apply the software pipelining scheme as this has been desciibed in chapter
2. Accoiding to this scheme, mstead of providing multiple copies of the body, ouly one
copy is used and the parallelism 1s exploited by means of pipelimmng. The realization of

the software pipelining mapping scheme is presented 1n the rest of the chapter, where the
translation for each operation in the Generator and Returns subgraphs is discussed.

4.7.1 Translating Operations Dealing with Multiple Values

In HDDG, the class of nodes dealing with multiple values belongs to one of following
two categories:

1. nodes that for a given input generate a sequence of values;

2. nodes that operate on a sequence of values.
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The first category of nodes appears only in the Generator subgraph of a Forall com-
pound node. The only nodes that can appear in this subgraph are two (1) RangeGenerate,
which generates a sequence of indexes, and (2) AScatter, which scatters the elements of an
input array upon 1ts first dimension. The machine graphs of these two nodes are presented
latter in this section.

In a Forall compound node, the second category of nodes appears only in the Returns
subgraph. Recall from the previous chapter, that the returns expressions that allowed in
SISAL Kernel are the array of"' and “value of’ expressions. SISAL compiler translates
these two expressions to A Gather and Reduce simple nodes respectively. The mapping of
these two nodes is also presented latter in this section.

Translation of the Range Generate operation

The RangeGenerate node produces a sequence of integers in the (inclusive) range that
is specified in the two input potts. The low value of the range is specified in the first port
and the high in the second port. If the value at port one is greater than the value at port
two, then the output value 1s null.

The machine graph for this operation 1s given in figure 4 16 An "IGEN" opeiation is
used to generate the specified range of integers. As mentioned before, for a given range
with low value of “a” and high value of "b". "IGEN" generates the 1ange from "a+1" up to
“b" integer values. Therefore, in order to include the low index value, a "SUB” operation
is used to subtract by 1 the value which is provided in the first port Also the three “ID”
tuples are used to unplement correctly the signaling scheme of the "IGEN" wstruction.

Two instructions in the Generator subgraph always consist the pair of tuples that
“drives” the execution of the Forall loop. These tuples are called driving tuples and are
specified by the “SUB” and the "ID" instructions at the top of figuie 4.16. For every new
activation of the Forall, these two tuples hold the values that are used from the reduction
operators in the Returns subgraph to specify the range of the accumulation.

All the inputs of the Forall loop whose values are used in the Body and the Returns
subgraphs of the loop, signal their availability to one of the driving tuples. The Generator
starts to produce the specified sequence of values, only when all signals from the inputs
have been arrived. Also a new activation of a loop is allowed only when all the tuples

31




A B
]
- " '
g g e
s s
\\ AL E R 1 :\\\\-
\
N s ) suB : s D
L3
:\\\\\\\\\\‘ L9 S . 9N |
\ T k
\ \““\‘\‘\‘\W "ARLRRNRRRRRNNY
\ s,d :
: AwmBTRBVBBMRUNBAY \
\ \ \
\ v
\
\ iD \ N
\ \ \
\ \ \
\ \ \
\ \ \
\ \ v
\ ! \ \
\ \ :
: "d* {'vd : \
\ N \
\ \ \
\ \ \
N IGEN \ \
\ Voo
\ F T NN
N | \ \
\ \ \
\ \ :
\ s,d R
\ \ \
\ \ \
\ N
\ 10 NI
\ \ N
\ \ \
3 \ \ \
\ \ \
\ v
\)
\ RANGE ’)d \ :
\ GENERATE 3.d }s,d\
: (fr (AA+1,..., B) NI
: rom Reduction A,
: nodes ) (tonl%%gl.lc)tlon
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of the reduction nodes in the Returns subgraph that specify the end of the accumulation,
signal back to the driving tuples in the Generator subgraph.

For every Forall loop. there is one pair of driving tuples. The two driving tuples of a
Forall can be found in either a Range Generate or an AScatter mapping scheme, since these
two are the only simple nodes that can exist in the Generatorsubgraph. The code generator
always picks one node in the Generator subgraph and associates the corresponding tuples
to be the driving tuples of the loop.

Translation of the Array Scatter operation

SISAL compiler translates the array scatter operation into a node named AScatter.
Similarly to the RangeGenerate. AScatter appears only in the Generate subgraph of a
Forall loop. AScatter has only one port which holds the base address of the input array.
The elements of the input array are placed sequentially in the first output port. Their
corresponding index values are placed on the second output port

Figure 4.17 presents the machine graph of the AScatter node. This operation repeatedly
applies the array select operation to the outermost dimension of the input array Note that
the range of the loop, is specified by the size of the outermost dimension of the input array,
as this is 1epresented by the name “High" in figure 4.17 The "IGEN" generate this range of
indexes, and depending on the element size and the dimension of the input airay, the actual
index value is calculated Like the ariay selection operation, the fitst *MULT" instiuction
will be present only if the elements of the input array are doubles, while the second will
be generated only if the input is a multi-dimensional array The “LOAD” operation is
generated only if the input array is one-dimensional array, to fetch the scalar values from
the structure memory The “ADD” operation in right side of figure 4.17. generates the
indexes that are placed on the second port, by incrementing by 1 all the values generated
from “IGEN".

The tuples in the mapping of figuie 4.17 that can serve as the driving tuples of the
loop, are the top two “ID"s. The functionality of these tuples in the computation of the
loop, has been explained in the RangeGenerate mapping presented previously.

Translation of the Reduce operation
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As mentioned earlier, the “value of expression in SISAL is translated to a Reduce
simple node in the Returns subgraph of a Forall compound node. The Reduce node has
four input ports. The first port defines the function that will be applied to the incoming
values. These functions correspond to the four reduction operators that have been defined
in the previous chapter. Recall that these functions ate (1) sum, (2) product, (3) least, and
(4) greatest. The second input pott holds the mitial value of the reduction operator The
third port provides the values that are produced from the Body subgraph. the reduction
function is applied to this sequence of values. The fourth input port is optional: if present,
it provides a sequence of boolean values, which defines 1f the corresponding values m the
third port will be used 1n the reduction

Figures 4.18 presents the machine graph of the unconditional Reduce operation for
the “sum” and “product’ reduction operatoits. The mapping of the other two teduction
operators is similar. In this scheme the reduction operation applies to all the values that
are coming in the third port. During one activation of a Forall, "IGEN" activates so many
times the reduction nstiuction “ADD" or “MULT" as 1t 1s defined from the range of this
patticular activation. The range 1s provided from the two drunng tuples in the Generator
subgraph. The “ADD” wmstruction s generated when the reduction function m the first
port is “sum”; the “MULT" is geneirated when the reduction operations “product”

The “ID” instruction at the top of figure 4.18 is used to initialize the value of the
“IGEN" instruction. This value 1s passed fiom the duving tuple that pioduces the low
range of the loop. At the end of the accumulation, “IGEN" returns a “false™ conditional
code, which activates an “[D” instruction that passes the accumulated tesult value to the
other tuples outside the Forall It also signals to the drinng tuples in the Generator sub-
graph to denote the end of the accumulation Finally, it signals to a thud “ID” mstruction
which is used to initialize the value of reduction instruction for the next activation of the
Forall. If the reduction operation 1s “ADD”, then the value 15 mntialized to 0. 1f it 1s
“MULT?”, the initialized value is 1. A similar mapping applies for the unconditional least
and greatest reduction operations.

Figure 4.19 presents the machine graph of a conditional Reduce node for the same
reduction operators. This mapping contains all the instructions presented for the uncon-
ditional node; in addition, there is an “ID” instruction which 1s executed whenever the
two corresponding mput values ate presented in the thitd and the tourth mput port If
the boolean value on the fourth port 1s “true”, the accumulation mstiuction 1s activated
and the value in the third port is added or multiplied to the previously accumulated value;
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Figure 4.19: Machine graph of the Conditional Reduce operation
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otherwise, the value in the third port is discarded. The two mutual exclusive signals are
merged in a *NOOP” instruction which 1s used to send “acknowledgment” signals to the
tuples that generates the values in the third and fourth port. A similar mapping applies
for the conditional least and greatest reduction operations.

Translation of the Array Gather operation

Recall that Forall is also used for building arrays. The returns expression “array of’
is translated from the SISAL compiler to an AGather simple node, which always exists in
the Returns subgraph of a Forallloop. This node builds an array fiom the values provided
on its second input port. The first input port gives the lower bound of the array.

Figure 4 20 presents the machine graph for the AGather operation Notice that since
we are concerned with static arrays. their size 1s known at compile time For every element
of the array, "IGEN" activates the path of the computation that is used to stoie the
incomng values i the stiucture memory The "MULT" wstruction multiphies the imdex
that is generated from the “IGEN" by 2, only if the elements are doubles This value
defines the relative offset in the structure memory, where the element will be stoted The
actual address is calculated from the "ADD" instruction, which adds the telative mdex
to the base address of the generated array. The "STORE™ instiuction 1s used to store
the element that 1s provided fiom the thud port, to the absolute addiess that has been
calculated from the "ADD™.

The top two "ID" instructions are used to pass the low and the high mndex value to
the "IGEN". The ~“ID"” in the middle of the figure 4 20, 1s activated when all the elements
of the array have been stored It i1s used to signal the top two ID” stiuctions that a
new computation can start, 1t also passes the base address of the generated array to the
instructions outside the Forall.

Note that in the case of the construction of a k-diumensional artay in a Forall compound
node, a number of k AGather operations will be combined, each one 1esponsible for building
one dimension of the array In oider to avoid the overhead of copyving the anays that every
AGather builds 1n the intermediate steps during the construction of the final anay, all
the elements are gatheted in the outermost AGather This unplies that all the mmnernmost
AGather nodes, operate as gates that pass the elements to the next higher dimension.
The penalty paid is that this scheme does not allow the exportation of a subaiiay fiom an
inner AGather which exactly follows the philosophy of “monolithic airays”™ This should be
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consider as a minor restriction compared to the efficiency of generating multi-dimensional
arrays without copying.

4.8 Summary

HDDG 1s an mtermediate form of a SISAL program: it stands between the onginal code
and the final machine code. The HDDG form of a program provides an msulation fiom
the features of the programming language and the 1diosyncrasies of the taiget architecture.
It can also he used as a framewotk. wheie certain kinds of program transfoimations and
optimizations can be apphed

The use of data dependence graphs as an mermediate 1epresentation of SISAL pio-
grams is the basis of generating code for the argument fetching architecture  We focus
on generating code for the SISAL Kernel, which 1s the subset of SISAL that has been
described 1 the previous chapter Thiee ate the main principles of generating code for
this architecture.

1. preserving the well-behaved property of the graphs;

[SV)

minimizing the number of signals while extracting enough parallelism to keep the
1esources busy:

3. applying software pipelining to loops and to conditional constructs

Well-behaved dataflow programs are these progiams that for a umque set of mput
values, a unique set of output values 1s determuned [14]. It has been pioven that n
Dennis-Misunas static dataflow architecture [38]. dataflow graphs wlich contain elemen-
tary operators, conditional and loop constinets, are well behaved. The inachine graphs of
the argument fetching architecture presented here, ate differentiated from the traditional
static dataflow graphs from the fact that signals and data ae separated Although we
don’t have a formal proof of the well-behaved property for the argument fetching arclhatec-
ture. a lot of effort has been invested such that for cach separation of signals and data, the
mapping schemes will preserve the data dependencies, and assure the coriectness and the
determinacy of the programs.
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Considering the limits in the processing ability of the machine, we t1y to keep a bal-
ance between the number of the generated signals and the potential paiallehsm of the
program. From simulation studies. it has been proven that a key factor which determines
the utilization of the aigument fetching architecture, 1s related with the signal traffic. The
finite signal processing ability of the DISU, imposes a hmitation to the number of signals
that can be present in a cycle A more detailed analysis of how this factor affects the
performance of the programs. 1s discussed 1n chapter 5

Finally, the encapsulation of the principle of software pipelining 1s twofold: (1) to allow
multiple activations of compound constructs such as conditionals and loops, (2) to prevent
saturation of the machine resonices. while making better use of the data memory space
Applying dataflow software pipelining to loops, allows more than one cycles of the loops
to be active at a time The paiallel execution using this techmique. 1s 1ealized by the
overlapping activations of the same loop in a pipehined fashion The effects of applying
tuis technique in the overall petformance, will be presented in the following two chapters.
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Chapter 5

Performance Evaluation

The ideas and techniques presented i the previous chapteis have been mvestigated
and validated in a testbed suite for the argument fetching architecture We choose, as
a benchmark, a set of Liveimote Loops{19.40], and study the petformance of these loops
through simulation Nme of the set of Livermoie Loops. all contaiming forell loops, are
selected for illustration The selected set of Livermore Loops is representative of the average
performance gain by several other machines for the whole set of the 24 Livermote Loops
[37]). By executing compiled code on the testbed, the efficiency of the softwaie pipehning
schemes and cettain optimization methods have been evaluated  We have seen a substantial
speedup. and a high utilization factor of the execution unmit Thus s achieved by employing
ouly the basic softwaie pipelining for the loops tested  as this has been demonstiated
in chapter 2 and chapter 4 In many cases. a balancing techmque can be emploved as
a further optimization on top of the basic softwaite pipelining  The etfect of balancing 1s
shown here through an in-depth study of the sunulation 1esults of one of the Liveimore
loops. A similar analysis for an one-dumentional Laplace solver, appeats in [32]

A detailed analysis based on the simulation 1esults 1s presented, addressing two key ar-
chitectural factors - the signal capacity and scheduling mechanism for enabling instiuctions
- that substantially influence the efficiency of the tunning programs These aichitectuie
factors 1epresent the abihty of the machine to exploit fine-graimn paiallelism By expert-
menting with diffetent aichitectural configuiation the relation between program stiuctuie,
compiler optimization techniques and the aichitectural features 15 addressed.
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Figure 5.1: The simulation testbed

5.1 The Testbed Suite

An overview of the compiler/atchitecture testbed that has been used throughout the
simulation tests, 1s presented in Figure 351 In chapter 4, we show how starting fiom
the SISAL front end. SISAL Keinel piograms are translated mto a hierarchical data-
dependence graph (HDDG), and subsequently the way that tiie code generator translates
the machine-independent HDDG forms into machine graphs (A-Code) DASM 1s an as-
sembler for A-code, the assembler form for the argument fetching dataflow airchitecture
DASM stands for data-driven assembler, and 1t 1s used to generate executable code for a

macrosimulator of the architectule

The macrosimulator AD can be viewed as a I .ghly instrumented interpieter that rep-
tesents simulation at the major function level of the architecture [46.47] The six pipehine
stages of the PIPU and the two major units of the DISU are implemented by distinct self-
contained code umts, which simulate the functionahty of each hardwaie umt No speafic
restriction has been made, at the simulation level, to define the timing relation between
the PIPU and the DISU macliine cyveles The current implementation considers that these
two umts have the same machine cycle, although 1n a real machine, timing coustraints of
the hardware technology may change this proportion

Two of the simulator’s patameters that are used to define a processing element are the
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following:

e -np <num>. This parameter sets the number of the PIPUs The default value 1s
one.

¢ -nc <num>. This parametel sets the number of count signals that are allowed per
cycle in the DISU umt. The default value 1s four.

Figures 5.2 and 3 3 illustrate the above two parameters. These two numbers are used to
set up the machine configuration each time a test is conducted By incieasing the number
of PIPUs, we 1increase the execution capacity of the processing element proportionally The
second parameter is used to control the propagation of signaisn the DISU umt The mote
signals that can proceed in a cycle, the more enable mstructions can become available i
a cycle. The number of signals that can be handled i a cycle by the DISU defines its
signal processing capacity (or simply, signal capacity). The effects of these arclitectural
parameters are investigated in more detail in a latter section.
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5.2 Performance Metrics

done

For each program, we present a set of peiformance metrics, which 1ecord the values of

various parameters during the execution of the program:

structions that have been executed in the PIPU.

o The Total Run Tume records the number of machine cycles elapsed:

The Total Instructions Executed records the number of the thiee-address PIPU in-

e The Total Idle Cycles records the total number of machine cycles where the instruc-
tion processing units (PIPUs) were 1dle, due to the lack of available execution in-

structions.

The Processor Utiization of N PIPUs 1s the ratio

(Total RunTime = N') — TotalldleC ycles

The Speed-Up 1s the ratio

Total RunTime x N

SequentialTime

Total RunT ime
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where the the “Sequential Time" is the product of the “Total Instiuction Executed”
with the execution time per instruction. In the current implementation, a PIPU unit
needs six machine cycles to execute an instruction; so speedup can be achieved by
pipelining and multiprocessing.

o Population records the average populationin the enable memory and in the fite queue
(see figure 3.3) of the wstructions that were ready to fire but which were delayed for
more than one machine cycle. waiting 1n the enable memoty ot in the fire queue

o The Total Count Signals records the number of count signals in the DISU produced
by the executed program Conceptually this metric represents the signal traffic in

the DISU

5.3 Pipelining of the Livermore Loops

In order to test the proposed software pipelining schemes a number of benchmark
progtams have been selected for execution on the simulated model We choose scientific
applications because of their simplicity and maturity. Scientific computing provides a
rich set of important applications which are both computationally mtensive and well-
suited for parallel execution. Moreover the demand for supercomputeis able to accelerate
computations m the scientific and engineering fields 1s substantial and ever-incicasing

The Livermore loops [19,40] a1e a collection of typical loops extracted flom impoitant
scientific applications developed at Lawrence Livermoie National Laboratory that consume
as many cycles as can be provided by the world's fastest supercomputers The kernels cap-
ture the inner loop calculations which constitute the most computationally mtensive pot-
tions of the applications from which they are extracted The nine keinels executed on the
simulated version of the argument fetching architecture embody the following algorithms.

1. Loop 1: Excerpt from a Hydrodynamics Code
2. Loop 3: Inner Product
3. Loop 7: Equation of State Fragment

4. Loop 10: Difference Predictor
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5. Loop 12: First Difference

6. Loop 16: Monte Carlo Search Loop
7. Loop 21- Matrix by Matrix Product
8. Loop 22: Planckian Distribution

9. Loop 24. Find Location of the Fust Minimum in Array

These are the benchmark programs that are used for the performance evaluation study
presented in this chapter. The SISAL source code for the above set of Livermore keinels.
can be found 1in Appendix B. Although the kernels capture only small fragments of much
larger applications, they are nevertheless 1epresentative of the dynamic instruction mix for
these programs. The implication of running the kernels efficiently 1s that corresponding
programs will have the potential to exhibit similar performance figures since most of the
computation takes place within these loops. The common feature of the set of progirams
chosen 1s that all contain at least one forall code block [19] which may be nested with
other forall and conditional code blocks This 1s a suitable set of progiams to test the
effectiveness of the software pipelimng in the code produced by the code generator The
static dataflow model effectively suppoits the software pipelining without requiring much
complexity in the compiler. In this study we rely on dataflow software pipelining to expose
program parallelism fo1 overlapped execution The effect of further compiler optinzation
is presented 1n the next section.

The performance of Liveimore loops on a processing element of one PIPU and a DISU
signal capacity of four 1s piesented 1in Table 5.1. The average utilization 1s approxunately
70% and the average speedup is 4. Notice that since one PIPU 1s a six-stage pipeline,
the optimum speedup that can be achieved is 6. Moreover the space that the softwale
pipelined program requires is small, since only one copy of the program 1s needed for the
execution. Only one set of data memory locations are needed and they are reused by the
separate iterations - a contrast from the loop unraveling suggested i1n the dynamic dataflow
architecture [7,9]. Note the difference in peiformance between some loops While loopl
and loopT7 achieve almost optimum performance, loopl6 and loop24 have relative poor
petformance. This difference in speedup and utilization 1s related to the stiuctuie of each
kernel. In a static data flow aichutecture, where only one instantiation of an instiruction 1s
allowed, the following two factors that affect the performance in forall loops where softwaie
pipelining is applied:
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R,

PIPU: 1, DISU signal capacity: 4

Total Total
Kernels | Instructions | Run-time | Population | Utilization | Speedup
Executed

Loopl 6,258 6,329 1.7 98.0% 5.9

Loop3 352 486 0.9 72.4% 4.3

Loop7 1,057 1,141 7.5 92.6% 5.5
Loopl0 78,090 114,022 0.7 68.4% 4.1
Loopl12 3,013 5476 0.5 55.0% 3.3
Loopl6 845 2,206 0.4 38.3% 2.2
Loop21 10,319 23,102 1.0 78.8% 4.7
Loop22 5,240 7,613 0.8 68.8% 4.1
Loop24 4,218 14,001 0.3 30.1% 1.8

Table 5.1 Performance of Livermore Loops

1. The size of the loop. Loops with small sizes may have limited parallelism.

2. The degree of balancing. If the program graph is unbalanced, fully pipelined execu-

tion cannot be achieved {21].

One way to exploit the parallelism 1n forall loops with small sizes 1s to generate statically
more than one copy of the loop body. Since there are no data dependencies among the loop

|
|
} iterations, the separate pieces of code can run in parallel. The space/time tiadeoff should

be considered if such an optimization is to be applied to the generated code. A detailed
analysis of how the performance 1s related with the program structure of each kernel, will

be presented in the next chapter.

5.4 Optimization by Balancing Techniques
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Unequal path lengths in machine graph between any two instructions, 1s a major limi-
tation in fine grain software pipelining scheduling. It can be effectively solved by applying
balancing techniques that have been proposed for static dataflow computers. The goal of




the compiler to keep the minimum amount of space can be preserved by applying an opti-
mal balancing which introduces the minimum buffering in data flow graphs such that their
execution can be fully pipelined [21.26].

The purpose of this section 1s to demonstrate the effects of balancing dataflow programs.
The goal of balancing is to introduce the minimum buffering into data flow graphs such
that their execution can be fully pipelined. A consequence is that a balanced graph can
run 1n a maximally pipelined fashion [26,42]. Therefore, to achieve maximum pipelining,
a basic technique 1s to transform an unbalanced signal-flow graph into a balanced graph
by introducing FIFO buffers or a chain of identity tuples on certain aics. The piinciple of
balancing for software pipelining is discussed in [21].

We choose to apply balancing to Liveimore loop 7. The reason for selecting this loop
was 1ts higher degiee of unbalancing compared to the rest of the loops Loop 7 and loop
16 are the most unbalanced loops fiom the selected set of kernels Due to its simplicity,
loop7 is more suitable for demonstiating the effects of balancing in a 1elatively unbalanced
code. Two techniques have been used to balance the machine graph of loop 7

1. Breaking artificial data dependencies that had been introduced from the code gener-
ator.

2. Inserting dummy nodes in the unbalanced paths of the graph.

Table 5.1 shows that the utilization and the speedup of loop 7 1s close «» optumum
i an processing element consisted of one PIPU and one DISU with a signal capacity of
4. In oider to test the eifects of balancing obviously we have to use more PIPUs and a
laiger capacity in the DISU. Experiments with three different architecture configurations
ale presented in tables 5.2, 5.3, and 5.4.

From these tables we observe that in all three machine coufiguration a considerable
petformance improvement has been observed by using the balanced program. Especially
in the model where two PIPUs and a signal capacity of five ase used, the balanced scheme
achieves almost optimum peiformance. In this machine configuration the balanced program
is faster by 30% than the unbalanced while it keeps the two PIPUs busy during the whole
computation When three PIPUs and signal capacity of five are used (Table 5 4), the
speedup of the balanced program is by a factor of 1.6 better compare to the unbalanced.
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I PI;U: 2, DISU signal capacity: 4 ]

Performance Balanced
Metrics Pipelined | Pipelined
Total
Instructions 12,821 14,811
Executed
Total
Run-time 9,236 8,377
Total
Count Signals 34,648 32,827
Utilization 69.4% 88.4%
Speedup 8.3 10.6
Population 1.9 2.6

Table 5.2: Performance of the balanced loop7

DIPU: 2, DISU signal capacity: 5 ]

Performance Balanced
Metrics Pipelined | Pipelined
Total
Instructions 12,821 14,811
Executed
Total
Run-time 8,523 7,588
Total
Count Signals 34,648 32,827
Utilization 75.2% 97.5%
Speedup 9.0 1.7 ]
Population 2.7 6.8
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L PIPU: 3, DISU signal capacity: 5 J

Performance Balanced
Metrics Pipelined | Pipelined
Total
Instructions 12,821 14,811
Executed
Total
Run-time 8,320 5,957
Total
Count Signals 34,648 32,827
Utiization 51.3% 82.8%
Speedup 9.2 15
Population 2.5 4.1

Table 5.4. Petformance of the balanced loop7(cont.)

The way that balancing has been implemented in this experiment by intioducing
dummy nodes causes an inciease 1n the program size. In the future woik, we plan to
investigate an effictent implementation of FIFOs 1n oider to avoid executing instructions
that aie not serving any computational putpose. It is noticeable that. even m the curtent
unplementation whete the dummy nodes cause the balanced program to execute almost one
thousand 1nstructions more than the unbalanced. the total execution time of the balanced
code is still shorter by more than one thousand machine cycles

Another interesting observation is that in the configuration where a model of two PIPUs
and a signal capac:ty of four 1s used. the balanced program does not achieve the optimum
petformance as one might expect In order to achieve the optimum performance the signal
capactty of the DISU should be increased by one, i this case the benefits of the balancing
are 1ealized in full extent This small change m signal capacity causes an increase from
88 4% to 97 5% in the utithzation while the speedup mcieases fiom 10 6 to 11 7 From this
test it is clear that the the undetlying architecture has a duect unpact on the benefits of
compiler optimizations such as balancimg. This observation motnated us to study i more
detail the behavior of this loop under different machine configurations. The 1esults of this

study are presented 1n the next section.



5.5 The Impacts of Two Key Architectural Factors

As described above, the argument fetching aichitecture consists of a pipelined processing
element where a laige pool of enabled instiuctions should be available for execution by the
PIPUs. In reality, a machine may only have limited parallehsm In a balanced design, the
DISU will be able to supply fite signals to the PIPU just fast enough to keep the instruction
execution pipelines cpetating continuously n full capacity

As the previous test showed. there may be cases where the demand of signal processing
in the DISU cannot be satisfied fast enough -1t nay becomes a bottleneck of the through-
put. In such cases. the optimzation by code balancing can not achieve the desited results
Moreover, even 1f a large signal capacity 15 provided. poor design of the enable memory
scheduler can also degrade the parallelism offered by the tunning programs

In this test we study the effects on performance of these two crucial arclutectuial factors
by running the balanced veision of loop7 on different machine configurations in which the
number of PIPUs and the signal capacity of the DISU are varied

5.5.1 Architectural Factor I : The DISU Signal Capacity

Figure 3.4 1llustiates the speedup curves under different machine configurations for the
balanced loop 7 When the signal capacity is less than 8 the program cannot achieve the
maximum speedup no matter how many PIPUs are used In this case the computation s
DISU bounded This means that the DISU 1s unable to satisfy the demand for manipulating
the incoming signals, causing a degradation in the petformance of the running program.
The obsetved relatively low speedup is caused by the Limited number of fired mstiuctions
generated by the DISU per cycle.

Studying the speedup with 1espect to the number of PIPUs, we can observe two effects
For small DISU throughput (1-2 signals) the speedup 1emains constant with tespect to the
number of PIPUs that are used This 1s due to the fact that althongh the program offers
enough patallelism and the machine has enough PIPUs to execute the enable mstiuctions,
the small signal capacity could not provide enough enabled mstiuctions to exploit the
parallelism of the program and of the available hardware  On the other hand, when the
signal capacity is laige enough to satisfy the demand of the incoming signals, the speedup
increases up to a thieshold value (152 for this program). Increasing the execution power
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from 4 to 8 and the DISU signal capacity from 8 to 12 doesn't affect the speedup which
remains constant to 15 2

.

A related effect can be seen 1n figure 5.5 where the utilization 1s plotted as a function
of the number of PIPUs and the signal capacity of DISU. When the capacity 1s simall the
utilization drops with the number of PIPUs that are used When the capacity 1s laige
enough to exploit the parallelism of the progiam. the utilization of PIPUs 1s kept lugh
with respect to the available parallelism of the program In this test, loop7 could keep up
to 2 pipelines busy working almost at full capacity The number of PIPUs that can be
kept busy depends on the parallelism of the 1unning programs

From the simulation studies conducted running several programs, there 1s a stiong
experimental evidence that for each program there 1s an optimum machine configuration
which can best exploit 1ts paralleirsm in a cost effective fashion In order to achieve such
optimality, the following are important

1. The PIPU capacity (measuied by the number of PIPU execution pipehines and de-
noted by P) must match the parallelism of the program (computation parallelism):

o

The DISU signal capacity. denoted by C. must match the demand of manipulating
the signals required for exploiting the computational parallelism (synchronization
requiretnent)

This study shows that. even for a program with computation parallelism high enough
to keep the PIPU filled under an idealized DISU (with infinite signal capacity), the actual
performance observed in a real machine may be far helow the ideal value. The outcome
depends on the average number of signals S that are needed to fire an instruction This
number, which we call average signal density, 1s given by the following formula.

_ TotalCountSignals
" TotalInstructionsE recuted

For a given machine configuration, the condition to keep the PIPU pipeline usefully
busy is:

WO
v
~




Figure 3.4: Speed up on different machine configuiations
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Conceptually this means that to fully exploit the computation parallehsm of a given
program, the DISU capacity should be at least equal to the product of the average signal

traffic density of the program with the number of PIPUs of the given configuration. This
is not surptising nothing 1s free  Fine-grain parallelism has a price and the DISU must
pay it!

The results of owr siumulation have venfied this condition In the balanced pipelined
version of loop7, we can denve fiom the rables 5 2, and 3 3 that the average <ignal traffic
Sis 23 In the case where two PIPUs (P = 2) and a size four signal pipe 15 used (C =
4) the ration % 15 1 7. which 1s less than the number of PIPUs  This causes the signal
pipe to become a bottleneck degrading the utilization and the speedup of the program 3 2
By mcreasing the DISU signal capacity by one. the ratio becomes 2 02 wlich meets the
above condition We can observe that this small increase i the signal capacity causes the

computation to run almost i optimum utilization and speedup 53

This 15 an encouraging step toward understanding the dynamies of progiam execu-
tion behavior and theur 1elationship to archutectural parameters However, there ate still
difficult problems to be dealt with In partcular, we would like to charactenze the rela-
tion between the DISU signal capacity and the synchromzation tequurement of a program,
which fluctnates greatly flom one program to another, and even between paits of the same
progiam

Both the DISU capacity and PIPU capacity should be taken as important parameters
i comptler optimzation for the argument fetching architecture. In a machine whete the
signal tiaffic plays such an important rule 1 the computation, the compiler should tiy to
mininuize the number of signals without sacnificing the correctness ot the mmplementation.
This was one of the design principles that has been followed duning the design and the
implementation of the code generator

5.5.2 Architectural Factor II: The Enable Memory Scheduler

The other architectural factor that affects the petformance of the 1unnmg progiams
is the cnable memory scheduler [24]  Dunng all the sumulation tests a “Row Watcher”
scheduler has been used This enable memory scheduler organizes mstiuctions Ly 1ow and
column according to their addiess , and selects the enabled wmstiuctions flom one 1ow at
a time , scheduling them fo1 execution. If theie are not enough PIPUs available, then the
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selected enabled instructions stay in the FIFO fire queue until theie are available PIPUs
to execute them

Figure 5 6 1llustrates a situat:on in the enable memory where such a scheduler becomes
a bottleneck of the maclhine There are four instiuctions that are enabled i four different
1ows 1 the enable memory  The Row Watcher cannot dispatch them all 1n the same
cycle to the PIPUs for execution In this snapshot of computation. although the mnning
program has the potential to heep four PI2Us busy at the next machine cycle, the Row
Watcher can onlv exploir 25% of the paiallelism that the program offers at that stage.

The metric that allows us to study the beliavior of the enable memory scheduler 1s the
"average population” as this is teported from the sunulator at the end of the execution of
each program This metric records the average number of enabled mstiuctions that wait
more than one cycle either m the enable memory or 1n the fite queue  Assuming that the
size of the fire queue and the size of the enable memory ate laige enough to accommodate
the degree of parallehsm of the 1unning programs an mcrease w the population can have

two causes’

1. Increased Population wn the Fire Queue. If the number of the PIPUs aie .10t enough
to execute all the fired instructions that are scheduled from the enable memory
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scheduler, then the increase of the waiting instructions in the fire queue causes an
increase in the average population metiic.

2. Increased Population wn the Enable Memery The number of enabled instructions
that are waiting for more than one cvele m the enable memory causes an 1nciease 1n
this metric.

In order to study the mpact of the scheduler i the peifoimance of the tunning pro-
grams, we not only have to look at the value of the population meriic but also to the
utilization of the PIPUs High population accompanied with high utilization nnples that
the computation 1s PIPU bound and that the mcrease in the population 15 caused from the
enable instructions that are waiting i the fire queue. On the other hand high population
accompanied with low utilization unplies that the scheduling mechanism woiks pootly and
does not exploit the parallelism of the computation

The average population on different configuration models for loop 7 15 shown 1n figure
5 7. The four peaks in this bar graph are cansed by the two different reasons explained
above The 14 7 and 6 8 peaks of the average population appeais when a signal capacity of
erght 1s used with 1 and 2 execution pipelines tespectively The utithzation of PIPUs for both
configurations 1s 99 14 (figure 5 3). therefore the computation i these two configurations
1s PIPU bound The other two peahs mn the average population appears when 4 and 8
PIPUs are operatmg with a DISU of signal capacity 8 Under both confignrations the
value of this metiic 15 4 while t' e utilization 15 63% and 31 67 1espectively  In this case
although the execution pipes are not fully utilized the population remaims relatively high.
In the case of 4 PIPUs, the unexploited parallehsm cortesponds to a 27 loss of utilization.
and 1s expressed by the average of 4 enable mstiuctions waiting i the enable memory to
be scheduled

From these simulation studies 1t becomes apparent that the effect m the petformance of
the enable memory scheduler makes this component one of the most crucial modules of tle
architecture. The limitations and complexities that are ir ; osed by the underlymg haid-
ware cause a tradeoff between efficiency and complexity in the design and implementation
of the enable memory scheduler.
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5.6 Summary

In this chapter we argue that fine-grain software pipelining is an effective appioach in
exploiting the parallel/pipelined processing power of high-performance dataflow architec-
tures. Without any further optimization, the basic software pinelining alone achieves a
70% utilization and speedup of 4 for nine Livermoire loops with forall and conditional code
blocks 1n their computational body We believe the basic dataflow softwaie pipelining can
be applied similarly to loops with dependencies between iterations, although this 1s left as
a future research direction

The effect of balancing as a global optimization method has been exposed through
the detailed study of the simulation results of one of the Livermore loops An optimum
petformance has len achieved under a certain machine configuration The balancing
technique has the potential to vield maximally pipelined code and significant speedup of
the computation Based on these observation, we believe that the compiler of the atgument-
fetching dataflow architecture should consider balancing as a major compile-tune global
code optimization DBy combimng seftware pipelimng with the balancing technique, the
parallelism of many loops can be effectively explored with minunum space requirements

The simulation studies conducted have also revealed the relation between DISU signal
capacity and program synchronization requuements We also gained a deeper msight of
the impact of the enable memory scheduler. In addition to PIPU capacity. the power to
exploit fine-grain parallelism 1 the aichitecture 1s determimed by these two key factors. It
is critical to engineer the design of these components such that a compiler can generate
code to fully utilize the parallelism in both the progiam and the macline
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Chapter 6

A comparison study of software
pipelining in von-Neumann
architectures

Optimal mapping of loops has long been a challenge for von Neumann style architec-
tures. Recently, there has been considerable interest 1n scheduling techniques that exploit
the repetitive nature of innermost loops to generate highly cfficient code for convent.onal
pipelined processor architectures [44 48,41] A technique called “software pipelining”. has
been proposed [2,13.41] where an iteration of a loop 1s activated before its preceding, tteta-
tion is completed — thus multiple instructions aie in concurrent execution Apart from the
differences in target architecture models, a major distinction here 1s that dataflow software
pipelining 1s done at “fine-grain” level - an mstruction is a umit of scheduling, while the
software pipelining cited above 1s done 11 a “coarse-grain” level — an iteration 1s a umt for
scheduling.

Software pipelining can be studied as a scheduling technique that exploits the repeti-
tive nature of loops to generate highly efficient code for processors with patallel, pipelined
functional units. In that perspective a meaningful comparison can be applied to different
architectures which use the same technique to exploit the parallelism in the loops. One of
the von-Neumann architectures that uses the coarse-grain scheduling 1s the Warp architec-
ture [41]. The Warp machine 1s a high-performance programmable sy stolic linear array of
VLIW processors. In software pipelining for this architecture, iterations of a loop in the
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source program are continuously initiated at constant intervals, before the preceding iter-
ations complete. The objective of software pipelining is to mimimize the interval at which
iterations are initiated; the initiation inteival determines the throughput for the loop.

There 1s strong evidence that “fine-grain™ scheduling has an advantage over “coarse
scheduling™ in pipelining of loops. a fact that 1s recogmzed to be tiue even i conventional
pipelined architectures as described n [43]. It is argued that fine-grain software pipelining
and relatively “clean” haidwaie pipelines can together exploit paiallelism in loops in an
optimal or suboptimal fashion (in termn of time complexity) not possible by the coaise-
grain methods Dataflow software pipelining (based on balancing techniques) has another
important (unfortunately often 1gnoted) advantage that 1t uses a predictable and small
amount of storage bounded by the size of the loop body Furtheimoie the locations are
effectively reused, thus the haid problem of 1egister allocation is avoided. This 1s due to
the fact that the dataflow architecture model ensures that the memoty locations for the
istructions (arguments/1esults) are also used 1n a pipelined fashion

In this chapter we study the effectiveness of applying the software pipelining into these
two different architectures, the Waip airchitecture and the argument fetching aichitecture.

6.1 Software Pipelining in the Warp Architecture

The Waip machine [3,41] is a lugh peiformance systolic airay computer designed for
computation intensive applications In a typical configuration. Warp consists of a linear
systolic array of ten 1dentical cells, each of which is a 10 MFLOPS pirogiammable processor.

Each Waip cell has its own sequencer and program memory Its data path consists of a
floating-point multiplier, a floating-point adder, an integer ALU, thice 1egister files (one for
cach arithmetic unit), a 512-word queue for each of the two nter-cell data communlcation
channels, and a 32 Kword data memory All these components ate counected through a
crossbar, and can be programmed to operate concurtently via wide stiuctions of over
200 bits. The multiplier and adder ate both 3-stage pipelined: together wath the wwo cycle
delay through the 1egister file, multiplications and additions take 7 cyveles to complete,

The compiler for the Waip machme has been extensively used in many applications
such as robot navigation, unage and signal processing and scientific computing [3,4]. It
consists of two majo1 phases: (1) a machine independent front end translates the souice
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programs written in a Pascal-like language into machine independent flow graphs (2) and
the back end translates the flow graph into code for the Warp cells. The code generator
as a part of the back end of the Warp compiler, follows two steps: (1) the transformation
of the machine independent flow graph produced by the front end into machine dependent
flow graph, where generic operator in the former are mapped onto micro-operations and

(2) the scheduling of the operations

Software pipelining is the the scheme that is used from the Warp code generator in order |
to schedule the operations. In softvare pipelining for the Warp machine, the iterations |
of a loop in the source program are continuously initiated at constant intervals befoie
the preceding iterations complete. The objective of the software pipelining here is to
minimize the interval at which iterations aie mtiated; the initiation interval determines
the throughput for the loop. The basic units of scheduling aire indivisible sequences of
micro-instructions This reveals the coarse-giain nature of this softwaie pipelining.

6.2 Effectiveness of Software Pipelining

In our perspective there are four parameters that should be taken under consideration
when we study the effectiveness of software pipelining for a specific architecture:

1. The scheduling efficiency as this is defined from the rate that instructions/iterations
are scheduled.

2. The scheduling limitations which specify in what extent the software pipelining
can be applied.

3. The space that is needed to apply the software pipelining in teims of the number of
register that are used.

4. Compiler complexity as a measure of the work that the code generator must
perform in order to apply this scheduling technique to a specific aichitecture.

Based on the above four factors, we make a comparison of the effectiveness of the
software pipelining in the Warp machine and in the argument fetching architecture.
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6.2.1 Efficiency of Software Pipelining

In the Warp compiler the efficiency of software pipelining is defined by the minimum rate
that different iterations can be scheduled in an overlappad fashion. The scheduling problem
is to find a schedule of the operations within an iteration, such that the same schedulc
can be pipelined with the shoitest, constant imitiation interval As mentioned eatlier,
the objective of the software pipelining in this architecture is to mininnze the nterval at
which iterations are in'tiated. A lower bound of initiation interval can be calculated either
statically or dynamically based on some scheduling constraints. These constraints 1efer
to the resource requirements that are needed from the overlapped iterations and to the
piecedence constraints that defines the data dependency relations between the iterations
[41].

Starting from the lower bound and based on the scheduling covstiaints, the code gen-
erator for the Warp machine tries to find the best schedule. The scheduliug process is
repeated with a greater interval value when an attempt to find a schedule for a given
initiation interval is aborted due to the resouice conflicts The efficiency of the software
pipelining depeuds on the interval value that is derived by the compiler, when the schedule
meets the lower bound then the best software pipelining schiedule has been achieved

The performance gain by applying the software pipelining in a static dataflow aichitec-
ture depends on the following two factors:

1. the balancing factor, and

2. the size of the loop.

The balancing factor determines the activation rate of successive runs, i.e., the rate at
which input tokens can be consumed. Therefore, the efficiency of the dataflow software
pipelining can be measured as the degiee of unbalancing of the geneiated code In a
static dataflow architecture, the maximally pipelined throughput for anv machine graph
is 1/2, 1e. every instruction can be ready for execution every second maclune eycle [21).
In the previous chapter, we saw that an optunum performauce has been achieved when
the balancing technique has been applied to one of the Livetmote loops It 1s proved that
applying this technique to acyclic graphs, a maximally pipelined thionghput of a loop can
be achieved (21]. Therefore the efficiency of the software pipelining is duectly 1elated to
how well the body of a loop is balanced. Althongh we conjectured that this optimization
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can also be applied to certain cyclic graphs with the same effectiveness, making balancing
a general technique for maximally pipelined the loops, this still 1emains an open 1esearch

topic.

One effect of balancing 1s to inciease the computational parallelism of the progiam by
allowing more instructions to be enabled in each step of the computation As mentioned
before, the computational patallelism, as this is explored by applying the softwaie pipelin-
ing technique. depends upon the size of the loop. The size of the loop puts an upper bound
to the achieved efficiency.

As expl=ined cailier, software pipeliming uses only one copy of the loop body making
the best use of space and demanding onlv a small number of registers to pipehne the loop.
The tradeoff here is that the maximum number of ovellapped computations that can be
executed is equal to the number of the instructions in the loop body. The length of the
pipeline 1s equal to the depth of the machine graph for the loop body, and its width will
vary according to the spatial parallelism of the graph. Therefore, the amount of parallelism
that can be exploited by software pipelining is bounded by the size of the loop

The effects of the balancing factor and the size of the loops in the performance on the
selected set of Livermore Loops. will be explored latter in this chapter.

6.2.2 Scheduling Limitations

There are several factors that determinate the applicability and the effectiveness of
softwate pipelining in the Warp machine. The Warp code generator does not make any
attempt to pipeline the loops when their length exceeds a thieshold value. Also if the
statically calculated lower bound of the initiation interval 1s closed to the length of the
unnipelined loop !, then software pipelining is not applied. Furthermore. due to the coarse-
grain scheduling, the Warp compiler in many cases disallows overlap of loop and conditional
constructs with other operations outside these two constructs

Software pipelining as implemented in the argument fetching architectuie does not
apply any limitation due to the length size or to the degree of nesting of the compound
control constructs. Also, the loops can be overlapped with other operations no matter what
their execution stage is. The pipelined scheme of the conditional expressions allows more

"Unpipelined loop is a loop where only one 1teration 15 allowed per time.
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than one activation of a conditional statement to be executed at the same time. There
is no limitation applied due to the nesting of the conditional expressions. In addition,
the pipelined scheme does not prevent oveilapping the conditional statement with other
operations outside the conditional.

6.2.3 Space Requirements

In order to apply software pipelining in loops, the code generator for the Warp machine
needs sometimes to unroll the loops. An optimization method is used to 1educe the number
of locations allocated to a variable by 1eusing the same location 1n non-overlapping itera-
tions. Oue implication of applying software pipelining in the Warp machine 1s the increase
of program size. If the number of 1terations is known at compile time. the code size of the
pipelined lonp 1s within three to five times the code size of one 1teration of the loop. If the
number of iterations is not known at compile time then additional code must be generated.
In addition to that, any code scheduled in parallel with any conditional statement should
be duplicated in both branches

In the fine grain softwaie pipelining the code size that 1s needed to execute a louy is
equal to the code size that is needed for one iteration of the loop. The code generacor
does not need to unroll the loops or to apply any other optimization method n order to
achieve the minimum number of registers that are needed for the software pipelining. The
argument fetching dataflow model ensures that the memory locations fo1 the instiuctions
are also used in a pipelined fashion.

6.2.4 Compiler Complexity

The code generator for the Warp architecture must do a detailed analysis to find the
minimum initiation interval. As explained earlier, this interval defines the best schedule
that can be applied to all the loop iterations. Then it repeatedly tiies to find a schedule
for a given initiation intervai, starting from the predefined best schedule. If an attempt to
find a schedule for a given initiation interval due to resource conflicts is aborted then the
scheduling process is repeated with a greater interval value. The compiler uses a linear
search to find the schedule: first establish a lower and an uppe: bound of the initiation
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interval, and then use a linear search to find the smallest initiation interval, starting fiom
the lower bound. Although empitical results show that a schedule meeting the lower bound
can often be found. the overhead of the compiler to apply this iterative approach could
be substantial. The mitiation interval can be defined either statically if the number of
iterations is known at compile time or dynamicaily by generating code that handles the
scheduling at run time.

The benefit of fine grain software pipelining for the argument fetching aichitecture
is that a compiler does not nced to make analysis to determine the best schedule. The
software pipelining scheduling 1s done totally at run-time. In oirder to achieve the opti-
mum scheduling, the compiler simply petforms code balancing, whose effects have been
demonstrating in the pievious chapter.

6.3 Performance Evaluation

In the analysis of this chapter we assume an 1deal hardware such that the signal process-
ing capacity and the scheduler do not mpose any restriction of exploiting the patallelism
This section presents the effectiveness of software pipelining in the two under study ar-
chitectures. The companson study attempting here 1s maily focused on the achievable
peiformance and the scheduling limitations. The performance for the mne Liveimore loops
are given for the compiler generated code in both architectures.

6.3.1 Performance Statistics

Table 6.1 shows the performance of the Liveimore loops in a single Warp cell. The
speedup factors given in the second column are the ratios of the execution time between
an unpipelined and the pipelined keinel The utilization given in the thud column of Ta-
ble 6.1 are for single precision floating point arithmetic., They measure the 1atio of the
achieved MFLOPS over 10, which 1s the maximum number of the floating point operations
capable in a cell. The last column contains lower bound figutes of the efficiency of the
software pipelining technique They were obtained by dividing the lower bound of the ini-
tiation interval by the achieved interval value, and represent a lower bound of the achieved
efficiency.
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Kernels | Speedup | Utilization | Efficiency
(lower bound)
Loopl 8.25 62% 1.00
Loop3 2.71 14% 1.00
Loop7 6.00 79% 1.00
Loopl0 5.31 34% 0.85
Loop12 4.00 17% 1.00
Loopl6 1.00 3% 1.00
Loop21 6.00 30% 1.00
Loop22 1.00 11% 0.56
Loop24 1.33 4% 1.00
| Average | 3.9 | 28% | 0.93 }

Table 6.1: Performance of Livermore loops in a single Warp cell

[ Speedup Utilization Efficiency
Non Non (unbalancing
Kernels | Pipelined | Pipelined | Pipelined | Pipelined factor)
Loopl 2.21 7.26 18.4% 60.5% 0.4
Loop3 1.83 4.84 15.2% 40.3% 1.0
Loop7 5.03 9.02 41.9% 75.2% 0.3
Loopl10 2.10 4.43 17.5% 36.9% 1.0*
Loopl12 1.60 3.55 13.3% 29.6% 0.7
Loopl6 2.11 2.42 17.6% 20.3% 0.07
Loop21 1.92 5.13 16.0% 42.8% 0.7
Loop22 1.47 3.82 12.2% 31.9% 0.3*
Loop24 1.19 1.84 9.9% 15.5% 1.0
|Average | 216 [ 470 [ 180% | 39.2% | 0.6 |

*: loops that contain cyclic graphs.

Table 6.2: Performance of Livermore loops in the argument fetching architecture
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Table 6.2 presents the performance of the same set of Livermoie loops in a processing
element of the argument fetching architectuie For a meanmingful compatison between
the two architectures, the argument fetching processor in this test contains two PIPUs
such that 1its execution power 1s very close to the execution power of a single Warp cell
The signal processing capacity 1 the DISU 1s set to eight which 1s enough to satisfy the
synchronization requirement of all the selected kernels By setting the signal processing
capacity to eight, we eliminate tle 1estniction imposed by the second architectural facior
as this has been explored 1n the previous chapter

The utilization and the speedup factors as have been defined in the previous chapter
are presented in table 6 2. For both of these metrics we give the peiformance of two
implementations of each keinel In the fitst implementation the softwaie pipelinng is not
applied to the 1terative constructs of the kernels (“unon-pipelined” column) while in the
second the software pipelining i1s apphied to the loops and to the conditional constructs
of each kernel (“pipelined” column) Since the dataflow model of computation exploits
the parallelism 1n the fine-grain level, 1t 1s important in this test to distinguish the spatial
paiallelism fiom the tempoial parallelism as this is exploited from the softwaie pipelining.
In the “non-pipelined” progiams, ouly one 1teration of the loops 1s allowed to proceed at
a time These programs exploit only the spatial parallehsm that exists m the keinels.
The benefits of the softwaie pipelining are exploited in the “pipelined™ programs, whete
multiple instantiations of a loop is allowed by pipelining the data thiough the dataflow
actors.

The efficiency of software pipelining 1s measured by the degice of unbalancing in the
machine graph of each kernel. The unbalancing factor for each kernel 11 table 6 2 has been
denved by taking the maximum unbalancing factor between two tuples The unbalancing
factor between two tuples is obtained by dividing the minimum length over the maximum
length of all the distinct paths between the two tuples [21]. Some keinels m table 6 2 that
contain cychc graphs are marked with an asterisk A« mentioned catlier 1t 1s still an open
problem to maximize the throughput of programs that contain cvehe graphs. The effect of
balancing in these programs can not be predicted. More reseaich 1s needed to mvestigate
how to balance programs with cyclic graphs

In order to have a better understanding of the achieved peiforinance, the size of each
loop should be taken under consideration. The size of the loop deteimines the maximum
parallelism that the software pipelining can exploit from the loop. The bigger the size is,
the more parallelism can be exploited. The effect of the balancing factor and of the loop
size, will be investigated in more detail in the following section.
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Analyzing the statistics of the fine-grain software pipelining

The benefit of applying the fine-grain software pipelining is revealed by the difference in
the performance rates between the non-pipelined and the pipelined mapping of each loop.
As table 6.2 illustrates, this difference in the performance between the two implementations
is related to the unbalancing factor and with the size of the loop

For loop 7, although its size 1s large enough to keep the 2 PIPUs busy, the unbalancing
factor of 3/10 prevents this loop to achieve the maximum speedup and utilization. As
has been shown 1n the previous chapter, the maximum performance 1s achieved when the
loop becomes balanced using a configuration of 2 PIPUs and a DISU with at least 4 signal
processing capacity The effect of the small size of a loop 1n the achieved peiformance 1s
revealed by looking at the peiformance nuinbers of loop 3 and loop 24. These two loops
although fully balanced (the unbalancing factor 1s equal to 1) achieve a speedup of 4 8 and
1.8 respectively. This 1s caused by the small size of the loops as this can be measured hy
the number of machine instiuctions that these two loops contain In this case the size of
the loops sets a upper linut to the maximum speedup that can be achieved by applying the
dataflow software pipelining A similar observation can be denved for loop 12 Although
its degree of unbalancing 1s small (2/3), 1ts small size donnates the achieved speedup
(3.83). On the other hand. loop 1 with a Ingher degree of unbalancing achteves double the
speedup and utilization due to its laiger size

Two loops belong to a special category: loop 10 and loop 22 are keinels that contain
cyclic graphs. As mentioned earlier there 1s no way to assure a maxumum throughput
for programs that contain cycles. Assuming that the cycles in the maclune graphs are
executed only once, the efficiency of the software pipelining :n these loops 1epresents the
lower bound of the unbalancing factor. Despite the existence of cycle n their machine
graph, the pipelined version of loop 10 and loop 22 achic'es double speedup compare to
the non-pipelined, as table 6.2 illustrates.

6.3.2 A Comparison Analysis Based on the Performance Statis-
tics

Table 6.3 correlates the achieved performance in the argument fetching machine and
in the Warp machine for each individual loop. By looking at the average numbers in the
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Speedup Utilization Efficiency
Warp arch. | Arg fetch. | Warp arch. | Arg. fetch. | Warp arch. | Arg. fetch.
Loopl 8.25 7.26 62% 60 5% 1.00 0.4
Loop3 2.71 1.84 14% 10 3% 100 1.0
Loop7 6.00 902 9% 75.2% 1.00 0.3
Loopl0 531 4.43 34% 36.9% 0.85 1.0*
Loop12 4.00 355 17% 29.6% 1.00 0.7
Loopl6 1.00 2.42 3% 20 3% 1.00 0.07
Loop21 6.00 513 30% 42.8% 1.00 0.7
Loop22 1.00 3.82 11% 31 9% 0.56 0.3*
Loop24 1.33 1.84 1% 15.5% 1.00 1.0
[ Average | 3.9 470 | 28.0% | 392% | o093 | 06 |

Table 6 3. Performance of the argument fetching vs the Warp architectuie

last lines of table 6 3, we observe a 3 9 speedup 1 the Warp machine as opposed to 4.7
achieved in the argument fetching simulator This difference m the performance hecomes
bigger 1f we consider that the length of each floating pomnt pipe m the Wairp cell 1s equal
to seven while the length of each execution pipeline in the argument fetehig architecture
is six Since the speedup 15 limited by the length of the pipe, the maximum speedun that
a program can get 1 a Waip cell 1s fourteen while in the argument fetehing processing
element of two PIPUs 15 twelve

A similar observation for the utihzationis derived for the two aichitectuires. The average
utthzation 1n the Waip cell is 28% as opposed to 39 2% in the two execution pipelines of
the argument fetching simulator. This difference in the performance 1s achieved while
for most of the kernels the Waip compiler obtains the theotetical optimum schedule In
seven out of nine loops, the achieved efliciency 1s equal to one This means that for these
kernels the optimum schedule has been achieved under Waip's compiler On the other
hand the fine-grain software pipelining does not meet the same degiee of effictency due
to the unbalancing factor as this presented in table 6 3 Theiefore we should expect the
performance advantage to become even bigger when balancing 1s encapsulated 1n the code
generator of the argument fetching architecture

Comparing the achieved peiformance of loops 22 and 16 (table 6 3), we 1calize the gen-
erality and applicability of the fine-grain as opposed to the coarse-giain software pipelining,.
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Loohing at the speedup of loop 22 1n table 6.1. we see that the Waip compiler cannot find
a satisfactory schedule and thercfore the speedup for this loop 1s equal to 1 The reason 1s
that the code is too large and too deeply nested. On the other hand the softwate pipelined
program in the argument fetching architecture achieves a 3.82 speedup It is also worth
noting that even the “non-pipelined” program achieves a 1 47 speedup due to the spatial

parallelism that this kernel offeis

Examining the petformance of loop 16 1n the two architectures, we see that this kernel
cannot be p:pelined from the Warp compiler because the statically calculated lower hound
of the imitiation interval was within 99% of the length of the unpipelined loop The code
generator of the argument fetching architecture can achieve a 2 42 speedup  Looking at the
performance of the non-pipelined and the pipelined program of this kernel (tabie 6.2) we
conclude that the speedup is denved mostly from the exploitation of the spatial parallelism
Considering the high degiee of nnbalancing of this kernel. we should expect a considerable
increase of the speedup and utihzation 1if balancing 1s applied to this kernel

6.4 Summary

The supenionty of fine-grain as opposed to coarse grain software pipelining lhas been n-
vestigated through the study of the compiler generated code of two aichitectuies the Waip
systolic array and the argument fetching architecture  The power of the dataow model
for exploiting computationally mtensive programs is even mote important, if one cousider
that the Warp systolic architectule 1s a feasible and extensively tested patallel machine
organization. Moieover the software pipeliming n this architecture has been developed
into a complete algorithm that i1s based on software heuristics The Warp compiler 1s capa-
ble to apply the software pipelmng in the mnermost loops and 1 conditional statements
something that most horizontally miciocoded or VLIW machine cannot apply

The effectiveness of software pipehining i the Warp architectuie 1elies on several as-
sumptions on the architecture and program characteristics. Although these assumptions
may be realistic for a class of programns, the feasibility of software pipelining is 1estiicted.
On the other hand the flexibility and the generality of fine-grain software pipelining make
this technique a powerful code mapping strategy for exploiting tempotal paiallelism with-
out sacrificing the simphicity of the static dataflow model.

The results presented m this chapter show the benefit of fine-giain scheduling, which
outperformed the coarse grain scheduling as both were applied to a set of nine Liveimore
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loops. Moreover, we observe that the petfoimance of fine-gram softwatre pipelining depends

on the characteristics of the progiam  The exploitation of parallelisin 1s linated by the
nnbalancing factor and by the size of the program. On the othet hand the minmmum space
tequirements due to the smgle copy of the loop body constitute a tiadeoff hetween the
maximum parallelisin and the space eficiency achieved from explotting the parallelism in

loops.
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Chapter 7

Conclusions

The dataflow model offers a very poweiful framework for exploiting program parallelism
to yield high speed computation. The static dataflow architecture, which is the target of
this study, is attractive for its haidware simplicity and cost effectiveness However. many
criticisms have anisen mainly from its imability to express temporal parallelism

In this thesis, we examined a 1ecently proposed static dataflow aichitectute, the argu-
ment fetching dataflow architecture. In this architecture, the data and the signaling roles
of the information packets are separated. and an instruction fetches its own arguments
from the data memory just like in conventional processor aichitectures. This eliminates

the token traffic.

Dataflow software pipelining proved to be a powerful mapping scheme for exploiting
the parallelism in a static dataflow architecture. This can be achieved by arianging the
machine code such that the successive computations can follow each other thiough one

copy of the code.

A code generator has been implemented which automatically generates code for a subset
of SISAL. The main principles in the design and implementation have been focused on
producing well-behaved graphs and minimizing the signal traffic of the generated code.

A collection of Livermore loops has been chosen as the basis for the empirical research
presented here. The performi.nce results gained by executing this set of benchmark pro-
grams are very promising. We demonstrated that software pipelining 1s very effective,
improving drastically the performance of the benchmark programs. The superionty of the
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fine-grain software pipelining as opposed to the coarse grain software pipelining, has also
been investigated through a companson study with the compiler for the Waip systohie
array architecture

Moreover, we use the compiler generated code as a vehiele for testing several optinmiza-
tions methods and 1dentifying the bottlenecks of the underhne architecture The balancing
technique has been applied and an optimum performance has been achieved under a certain
machine configuration By modifving the configuration parameters of the architecture, a
better understanding of processor design constraints has been established

7.0.1 Directions for Future Research

This thesis has laid the groundwork for the design and implementation of a code genera-
tor based on the principle of dataflow software pipelining However, code generation 1s one
of the latest phases in the compilation process. To produce more efficient object code for
a parallel dataflow aichitecture. manv decisions and optunizations should be considered at
earlier stages of compilation. The developing and the undergoing research of the compiler
1s very crucial for exploiting the inhetent parallelism that the undeithne argument fetching
architecture offers

Figure 7 1 shows an overview of the compiler project. Rescarch will be focused mamly
in four levels. In the language level. an applicative programuung language EVAL 1s under
development at the Advanced Computer Architecture and Program Stinctures Group at
McGill University. The goal is to design a general purpose langunage. which facilitates
productive programming in scientific numerical computations The core of this langnage
will be based on SISAL and VAL These two languages are well-known for then emphasis
i providing array operations and having substantial body of real programming done n
laige-scale scientific applications Some featuies that ate bemg considered for this new
language is the stream data type, high-order functions. type polynioiphism, non-strict
functions and error handling

At the program graph level, HDDG form is convenient for certain kinds of program
analyzers and transformers. Currently, HDDG parses the SISAL fiont-end itermediate
form, and generates a dataflow graph where nodes and edges repiesents operations and
data dependencies respectively. HDDG can be further analyzed and all information which
are considered important could be extracted and attached to respective nodes n HDDG
as their attributes.
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Figure 7.1: A compiler overview
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Following the extraction of attributes, the program can be partitioned into units called
code blocks The main interest at this stage will be focused in optinnzing atray operations.
Atray operations in laige numerical computations usually take place in a regular and
repetitive pattein. For example. in many situations, where two code blocks generate and
use an array 1n a producer-consumet fashion, the elements of the array can be tiansmitted
between two blocks 1n a pipehned fashion without using memory as an intermedhate storage.
This not only substantially saves memory space, but also 1emoves all ainay operations
Other kind of array optimizations should also be considered

Another crucial 1ssue that should be considered at this stage, 1s the scheduling of
tasks and mstinctions on processors. Although the problem of optimal schieduling 1s NP-
complete, compile-tumne analyvss based on the data-dependence and the stiucture of the
program graph, can be used to minmnuze the parallel execution tune Careful attention 1s
requited to balance between the complexity of the code scheduling problems and the over-
head and feasibility to generate efficient code. Duning this phase the machine parameters
are considered as part of the input.

In this work. we assume that data constiuctors are strict, 1 e the component expres-
sions a.¢ evaluated before huilding the structurie  The same applies to loop-diiven artay
constinctors, where the evaluation of their bodies starts when all the mputs have been
computed. A non-strict evaluation would allow data constiuctors to bumld the stiuctuie
before evaluating the component expressions, and loop-dinven constiuctors to evaluate
their bodies. teceiving the aiguments unevaluated. We are curently mvestigating effi-
cient implementation schemes for structure operations to suppott effectively this type of
computation. We expect the impact on the peiformance will be considerable.

Another primaiy issue in the code generation, is the errot handling Eiior values can
be produced at any stage of computation; therefore code should he generated to detect
these exceptional situations and haundle them effectively Other ielated duections address
the issues of debugging, separate compilation and an anthmetic function hbrary support
Finally, the whole compiler will be itegrated in an programming envitonrnent, providing
the facilities to the user to inteichange mformation interactively with the compiler, which
will be used for generating more efficient code.

At the architecture level, the simulation studies conducted here have shown that the
DISU signal capacity and the enable memory scheduler are the most ciitical components of
the architecture. Simulation of much larger computational problems 1s needed to establish
a better undeistanding of the limitation that are imposed from the undeiline aichitecture




A tradeoff between efficiency and complexity in the design and implementation of these two
crucial parts of the architecture should also be considered. Active study is being pursued
in our group in the area of enable memory architecture and scheduling mechanisms {33].

Finally, further study will be done to develop a rigorous chatacterization of program
structure in terms of both its computation parallelism and synchronization requirement.
New performance metrics and measuring methods may also be requited. With such research
underway, more advanced code optimization such as balancing techniques can be effectively
employed in compilers for high-performance dataflow machines.
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Appendix A

Machine Instruction Set

PIPU operations correspond to the p-instructions in the program tuple. A-Code sup-
ports a reduced set of instructions which can be divided into arithmetic, logic, comparison
and data transfer operations. Both signed and unsigned operations are supported. Arith-
metic cperations, unless otherwise stated, all return a condition code of T (“true”) if the
result is non-zero, else they return F' (*“false”). Boolean logic operations return the result of
the conditional test. Data tiansfer operations, by default, retwin only Z ( “unconditional”).
In the follow.ng descriptions, the “Code Returned” field is mcluded for those operations
whose return condition code is not immediately clear.

99




Usage: ABS negative absolute

ABS returns the absolute value of an integer. ABS takes a single argument, a signed word
or doubleword integer, and places its absolute value in the result register. ABSF performs
the same operation for a floating point number.

ADD
ADDF
ADDU

Usage: ADD arg! arg2 sum

ADD, ADDU and ADDF perform the signed, unsigned and floating point addition func-
tions respectively. Both take as arguments a pair of single or double word number (integers
for ADD and UADD and a floating point real for FADD) and produce a sum which is placed
into the result register. Users should note that carries and borrows out of the high order
bit and other exception conditions are not currently detected by this operation.
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AND

Usage: AND bit-argl bit-arg2 result

Code Returned: T if the bitwise logical AND is non-zero
F if the result is zero

AND performs a bitwise logical and operation on the first and second arguments and places
the result in the register specified by the result operand.

ASL
ASR

Usage: ASL bit-arg count result
Code Returned: Z

ASL and ASR perform the arithmetic shift operations. ASL shifts bit-arg count bit po-
sitions to the left and replicates the least significant bit into vacated bit positions, while
ASR shifts bit-arg count positions right and replicates the sign bit. As with all shift and
rotate operations, the condition code returned 1s always “Z".

t 101




Usage: CHS arg! result

CHS expects a signed integer operand and performs a two's complement operation on that
argument. The net effect is a change of sign of the operand (i.e. from negative to positive).
CHSF is similar to CHS except that the change of sign 1s performed on a floating point
operand. Therefore CHSF does not complement all of the word or doubleword operand,
but only the mantissa.

COMP

Usage: COMP bit-arg result

Code Returned: T if the result is non-zero
F if the result is zero

COMP performs a bitwise one’s complement of the first argument and places the result in
the second (result) argument. COMP tests the result operation and returns false (tiue) 1f
the result is zero (non-zero).

DIV
DIVF
DIVU

Usage: DIV dividend divisor quotient

DIV performs the division operation on signed, unsigned and floating point operations.
Both single and double word division is supported in all cases. If dimisor equals zero, an
1s-error condition is returned in quotient.
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DOUBLEF

Usage: DEC real double

DOUBLEF takes a real number and returns the corresponding double real.

EQ
EQF
EQU

Usage: EQ comparand comparator test-result

Code Returned: T if the two arguments are equal
F otherwise

EQ is similar to the AND operation in that the two input arguments are logically A NDed
together However, the results of the AND are not placed in the result register. Instead, a
“0" is placed in test-result and a “False” is returned as condition code if the logical AND
produces a non-zero tesult, and a “1” 1s placed in the result register and the condition code
retutns “True” otherwise. Hence this a boolean operation, with 0" tepresenting “false”
and *1” representing “true”. EQF and EQU performs the floating pomt and the unsigned
operations respectively.
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GEQ
GEQF
GEQU

Usage: GEQ comparand comparator test-result

Code Returned: T if comparator is greater than or equal to comparand
F otherwise

GEQ compares comparand against comparator and places a “1” in the result register and
returns a condition code of “True” if comparand is greater than or equal to comparator.
Otherwise, a ~0” is placed in the result register and the operation returns “False”. GEQF
and GEQU are the floating point and unsigned versions of GEQ, and expects two floating
point and unsigned integer operands respectively.

GT
GTF
GTU

Usage: GT comparand comparator test-result

Code Returned: T if comparator is greater than comparand
F otherwise

GT is similar to GEQ, except the operation returns “True” if comparator is strictly greater
than comparand. Otherwise, a 0" is placed in the result register and the operation returns
“False”. GTF and GTU are the floating and unsigned integer compatison instructions
respectively.
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Usage: ID noop-argument noop-result

Code Returned: T if noop-argument 1s non-zero
F if noop-aigument is zero

ID and GATE both perform the same operation. They are, in fact, simply aliases for each
other. These operations simply transfer the contents of the first argument to the result
register specified by the second argument. Thus, they may be used as the “T" and “F”"
gates found in static dataflow aichitectures The condition code is retuined by ID is “false”
if the input argument 1s zetro: otherwise, 1t retuins “tiue” IDF and IDU aie used when
the input argument is a floating pownt number or an unsigned number 1espectively.

LEQ
LEQF
LEQU

Usage: LEQ comparand comparator test-result

Code Returned: T if comparand < comparator
F otherwise

LEQ performs the integer “Less Than or Equal to” operation, returning “True” if the first
argument is less than or equal to the second A “1” is placed in the result register if LEQ
returns true, and a “0" is placed otheiwise. LEQF and LEQU petform the same operation
on floating point and unsigned arguments respectively.
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LINDEX

Usage: LINDEX base inder absolute-address

Code Returned: Z

LINDEX 1s used 1n conjunction with the LOAD operation on structured memory ele-
ments. Its effect is somewhat like that of I-structure array accesses in tagged-token dy-
namic dataflow architectures When an LINDEX instruction 1s fired. an absolute addiess
is calculated from the base and index given by the fiist and second opeiand respectively,
and then the “valid/invalid™ bit of the actual location itself is checked If this bit is reset.
it is invalid, and LINDEX will place 1tself in a list of pending instructions waiting for that
particular datum. No “done” signal 1s released in that case. If the bit 1s set, LINDEX wall
continue and release a “done” signal

See also: LOAD, SINDEX, STORE.

LT
LTF
LTU

Usage: LT comparand comparator test-result

Code Returned: T if comparand < comparator
F otherwise

LT is similar to LEQ, returning “True” if the first argument is strictly less than the second.
LTF and LTU perform the same operation on floating point and unsigned arguments
respectively.
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LOAD

Usage: LOAD absolute-address memory-element
Code Returned: Z

The first argument passed to LOAD is an address into structuie memory. From this
address, a single or double word memory element 1s retiieved and placed into the result
register specified by the second element. LOAD returns no condition code (i e. returns

..Z" ).

MOD
MODU

Usage: MOD dindend divisor modulo

MOD returns the remamder of an integer division. dwndend is divided by divisor and
the remainder is placed into modulo. MOD expects two signed integers as arguments and
teturns a signed modulo result. NODU performs the same operation on two unsigned
operands.

MULT
MULTF
MULTU

Usage: MULT multipicand multipher produt

MULT returns the product of the first two arguments, with the result placed into the third
register. MULTF and MULTU are the floating point and unsigned integer equivalents of
MULT respectively.
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NOOP

Usage: NOOP
Code Returned: Z

NOOP is a true no-operation instruction. If receives and produces no arguments. NOOP
instructions are usually used in nodes used for AND-type signal merges. input operand is
non-zero, and “false” if it is zero.

NOT

Usage: NOT argument result

Code Returned: T if the input argument is zero
F if the input argument s non-zero

NOT issimilar to the COMP operation, however, while COMP performs a bitwise negation
of its input operand and places the result i1n the result register, NOT is a boolean negation
function, hence the input operand 1s compared to 0" (false), and 1if equal, a “1” (true) 1s
placed into the result register. Otherwise, a “0” (false) is placed 1n the result 1egister.

OR
Usage: OR bit-argl bit-arg2 result

Code Returned: T if the result is non-zero
F if the result is zero

OR performs a bitwise logical OR of the two input arguments, placing the result in the
third argument.
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ROL
ROR

Usage: ROL bit-arg count result
Code Returned: Z

ROL (ROR) rotates the bit pattern specified by the first argument count number of bits
to the left (right). Each i1otation shifts the bit pattern one bit left (1ight) and places the
most (least) significant bit into the vacated bit position at the right (left).

ROUNDF

Usage: ROUNDF real integer

ROUNDF returns as resnlt the integer value that is closer to input real number. For reals
with integral part less than .5, it returns the largest integer not greater than the input
1real number: otherwise, it returns the smallest integer that is greater than the input real
number.
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Usage: SHL bit-arg count result

Code Rewurned: Z

SHL (SHR) is similar to the rotate instructions (ROL and ROR), except that the most (or
least) significant bits are not rotated into vacated bit positions. Instead, SHL and SHR
shifts the bit pattern left and right respectively. and places zero into vacated bit positions.
The total number of shifts petfoimed is specified by the second operand.

SINDEX

Usage: SINDEX base index absolute-address

Code Returned: Z

SINDEX is used 1n conjunction with STORE to store elements of an array into structure
memory. When an SINDEX instruction is executed, the absolute address is calculated
fiom the base and index given by the first two arguments, and the “valid/invalid" bit of
that memory location in structure memory 1s set This will cause the release of all pending
instructions (i e. a “done” signal will be sent for all the blocked nstructions). SINDEX
usually uses the “shott-cut” fire mechanism to fire its partner STORI instruction to prevent

hazards.

See alsc: LINDEX, LOAD, STORE

110




SINGLE
SINGLEF

Usage: SINGLE integer real Usage: SINGLEF double real

SINGLE converts the input integer to the coriesponding real number. while SINGLEF
converts the input double to the corresponding real. The conversion from double to real is
rounded.

STORE

Usage: STORE datum absolute-address

Code Returned: Z

STORE places the datum specified by the first argument into the structure memory loca-
tion specified by the second argument. STORE always returns Z.

SUB
SUBF
SUBU

Usage: SUB arg! arg2 result

SUB subtracts the second argument from the first and places the result in the result register
specified by the third argument.
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TRUNCF

Usage: TRUNCF real integer

TRUNCEF converts the input real number to the corresponding integer by deleting any
non-integral portion of the real number.

XOR
Usage: XOR bit-arg! bit-arg2 resuit

Code Returned: T if the 1esult is non-zero
F if the 1esult is zero

XOR performs the bitwise exclusive OR function on the first two arguments, placing the
result into the result register. A “True” is returned if the result is non-zero, and a “False”
is returned otherwise.
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Appendix B

The Livermore Kernel Benchmarks

The Livermore Loops are 2+ loops from actual production codes tun at Lawrence Liver-
more National Laboratory. The Loops represent the type of computation kernels typically
found in large-scale scientific computing.

ST RE T MR T AT T T A g WP LR -

| Here, we present the SISAL source code for the set of loops that has been used for the
‘; performance evaluation, studied in this thesis. The SISAL functions faithfully implement

the computations of the loops, which originally have been wiitten in Fortian. All the loops
S presented here, contain at least one for- in expression, which indicates that these loops can
; potentially executed in parallel since there are no dependencies actoss iterations
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Benchmark 1: Excerpt from a Hydrodynamics Code (loop 1)

This code fragment is the first Livermore Kernel and is excerpted from a hydrodynamics
code. The values Q, R, T are scalar coefficients while Y and Z are one dimensional arrays.
This loop returns an one-dimensional array of size n. Note that for the constiuction of a
static array, the value of n should be known at compile time.

type OneDim = array/(double],
function Loopl (n: integer; Q,R,T: integer;
Y.Z: OneDim; returns OneDim)
for kin 1.n
returns
Q + (Y[k] * (R * Z[k+10] + T * Z[k+11]))
end for
end function

Benchmark 2: Inner product of two arrays (loop 3)

This code fragment is the third Livermore Kernel and calculates the inner product of
two arrays. The inputs X and Z represent one-dimensional arrays whose inner product is
calculated.

type OneDim = array[double];

function Loop3(n: integer; X,Z: OneDim; returns real)
foriinln
returns value of sum X[i| * Z[i]
end for

end function
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Benchmark 3: Equation of State Fragment (loop 7)

This code fragment is the seventh Livermore IXernel and ieturns a one-dimensional arvay
of size n. R and T are coefficients, while U, Y, and Z ate mput antayvs that are used for
the construction of the returned array The value of n should be known at compile time

type OneDim = array[double];
function Loop7(n: mteger; R.T:real; U.Y.Z: OneDim; returns OneDim)
forkin ln
returns array of Ulk] + R * (Z[k] + R * Y[k])
+ T* (Uk+3] + R * (Ulk+2] + R * Ulk+1])
+ T* (Ulk+6] + R * (Ulk+3] + R * U[k+4])))
end for
end function

Benchmark 4: Difference Predictors (loop 10)

This code fragment 1s the tenth Livermore Kernel that retuins a two-dimenstonal anay
of size [§..14, 1..n]. A doubly-nested for all expression computes the instances of the
equation and gathers the results mto an antay A single expression m the tetuins clause
states the equation. The sum over “PX" is retutned by a thud forall expiession which
fetches the values in parallel and redices them via the value of sum 1eduction operator
The result is then subtracted diectly fiom CX(3,3). The value of n should be known at
compile time.

type TwoDim = array{OneDim];
function Loopl0 (n: integer; CX.PX: TwoDim; returns TwoDim)
foriin 5,14 cross j in 1,n
returns array of
CX[5) - for kin 6.
returns value of sum PX[k,]
end for
end for
end function




q

Benchmark 5: First Difference Calculation (loop 12)

This code fragment is the twelfth Livermore Ikernel and performs a first difference calcu-
lation. It returns a one-dimensional array of size n. For the construction of a static array,
the value of n should be known at compile time. The :** element of the airay 1s sct to
Y[i+1]-Y[i].

type OneDim = array[double];

function Loopl2(n: integer; Y:OneDim: returns OneDim)
foriin l.n
returns array of Y[i+1] - Y[i]
end for

end function

Benchmark 6: Monte Carlo Search Loop (loop 16)

This code fragment is the sixteenth Livermore Kernel, which searches for a particle in a
two-dimensional gird divided into ZONE/I] zones. Each zone 1s subdivided into n groups.
If the particle is found, the bf function returns the zone and group number of the location:
else, it returns ZONE 1, GROUP 0.

type IntOneDim = array{integer};
function Loopl6(n: integer: R,S,T: integer; D.PLAN:IntOneDim;
ZONE IntOneDim; returns integer.integer)
let Y := foriin 1,ZONE[l] cross j in 1,u
d=2*m*E1)+j-1) + 3
j9=ZONE[2* (n * (:-1) +3-1) + 3};
test := D[j5] - (D[j5-1] * exp(T - D[j3-2], 2) +
exp(S - D[j5-3], 2) + exp(R - D{j)5-4]. 2)):
Cl :=if j5 < n/3 then
if PLAN[}3] < T then ZONE[j4-1]
elseif PLAN[j3] = T then 0
else -ZONE[j4-1]
end if
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elseif j5 < 2*n/3 then
if PLAN[j5] < S then ZONE[j4-1]
elseif PLAN[j5] = S then 0
else -ZONE[j4-1]
end if

elseif }5 < n then
if PLAN[;5] < R then ZONE[j4-1]
elseif PLAN[)5] = R then 0
else -ZONE[j4-1]
end if

elseif j5 = u then 0

elseif test < () then ZONE[}4-1]

else -ZONE[j4-1]

end if

returns value of least if C1 = 0 then j4
else 2 * n * ZONE[1] + 2
end if
end for
inif Y =2*n*ZONE|l] + 2 then 1, 0
else (Y-3)/(2*n)+ 1LY
end if
end let
end function
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Benchmark 7: Matrix Multiply (loop 21)

This code fragment is the twenty-fiist Livermote Kernel and petforms a standaid matiix
multiplication. The calculation is expiessed entirely in the returns clause. It computes
the inner products of the 1ows of VY and the columns of CX in parallel and then added
the 1esults directly the appiopnate PX element. The value of n, which specifies the size of
tlie innermost dimension of the array, should be known at compile time.

type OneDim = array[double];
type TwoDim = array[OneDim];
function Loop21(n: integer; CX.PX.VY:TwoDim; returns TwoDim)
foriin 1,153 cross jin l.n
returns
array of PX[1j] + for k in 1,15
returns value of sum VY[i.k] * CX([k.j]
end for
end for
end function

Benchmark 8: Planckian Distribution (loop 22)

This code fragment is the twenty-second Livermore Kernel and 1eturns two one-dimensional
arrays of size n= Y and W. Note, that the value of n should be known at compile time,
such that the construction of static arrays will be possible.

type OneDim = array[double;
function Loop22(n: integer; U,V,X:OneDim; returns OneDim, OneDim)
foriinln
Y := if V[i] = 0.0 then 20.0
else min(U[i]/ V], 20.0)
end if;
W = X[i] / (exp(2.71828182845905, Y) - 1.0)
returns array of W
array of Y
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end for
end function

Benchmark 9: Find Location of First Minimum in Array (loop 24)

This code fragment is the twenty-fourth Livermote Kernel and retuins the tirst location of
the minimum value of the input artay A The fitst loop finds the minimum value of X, and
the second loop 1eturns the mdex of the fitst of those values Both loops are parallel and
use the value of least teduction opetator to return the smallest value.

type OuneDim = array([double];
function Loop24(n: integer: A OneDim, returns integer)
let
x:=foryin A
returns value of least v
end for
in for v in A at i
returns value of least i when v = x
end for
end let
end function
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