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ABSTRACT 

Many a robotic pitch-roll wrist uses a bevel-gear differential train to drive the gripper. 

The innovative design of pitch-roll wrists using spherical cam-roller pairs is currently 

underway at Mc Gill University's Centre for Intelligent Machines, with the aim of 

overcoming the drawbacks of bevel-gear trains. This innovative design relies on Speed­

o-Cam, a new concept of speed-reduction mechanisms based on cams and pure-rolling 

contact, intended to replace gears and harmonie drives in applications where backlash, 

friction, and flexibility cannot be tolerated. The new mechanism consists mainly of 

a spherical conjugate cam subassembly and two roller-carrying disks. 

We start with a study of cam curvature, with special focus on its machinability. 

Drawing from experience, we introduce the hypothesis that high curvature changes 

of a cam profile are at the source of the concentration of machining errors. As 

a consequence, the machining accuracy of the concave regions in a cam profile is 

substantially lower than that of its convex regions. To pro duce a more accurate cam 

we developed the geometric condition that guarantees a fully convex spherical cam 

profile. 

The optimum design of the pit ch-roll mechanism based on cam-roller pairs is reported 

here. The optimization is intended to simplify the subassembly of spherieal conjugate 

cams of the oid design by means of a layout of two pairs of spherieal mechanisms of 

the Stephenson type and two conjugate cams mounted on distinct shafts. We focus 

on the optimum design of both the spherieal cam-roller mechanism and the spherical 

Stephenson mechanism. 



RÉSUMÉ 

Plusieurs poignets robotiques effectuant des mouvements de tangage et de roulis 

utilisent un train differéntiel à engrenages coniques pour entraîner l'efecteur. Un 

concept innovateur de mécanisme tangage-roulis utilisant des paires de cames et 

roulis sphériques est en cours de mise au point à l'Université McGill, au Centre 

pour les Machines Intelligentes, avec le but de pallier aux inconvénients des trains 

à engrenages coniques. Cette conception novatrice est basée sur Speed-o-Cam, un 

nouveau mécanisme destiné à la réduction de vitesse, basé sur des ensembles cames­

roulements, pour remplecer les réducteurs de vittesse classiques à engrenages ainsi 

que les harmonie drives, dans les applications ne tolérant pas le jeu, le frottement et 

la flexibilité. Ce nouveau mécanisme consiste essentiellement de sous-ensembles de 

cames sphériques conjugées et deux disques porteurs des roulements. 

Nous commençons par étudier la courbure de la came, en mettant l'accent sur son 

usinage. Nous introduisons l'hypothèse selon lequelle les changements de courbure 

d'un profil de came sont à la source des concentration des erreurs d'usinage. Par 

conséquent, la précision de l'usinage des régions concaves d'un profil de came est 

notamment moins élevée que celle des régions convexes. Dans le but d'augmenter la 

précision des cames nous établissons une condition géométrique qui garantit un profil 

entièrement convexe de cames sphériques. 

La conception optimale d'un mécanisme tangage-roulis basé sur des paires de cames 

et roulements est rapporté dans cette thèse. Le but de l'optimisation est de simpli­

fier le sous-ensemble de cames sphériques conjuguées en adoptant une disposition de 

deux paires de mécanisme sphériques de type Stephenson et de deux cames conjugées 

montées sur des arbres indépendents. Nous faisons le point sur la conception optimale 

des mécanismes sphériques de type Stephenson et des cames-roulements. 
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CHAPTER 1 

Introduction 

1.1. Background 

The aim of this work is to optimize the epicyclic transmission of spherical cam­

roller pairs, to be used as a pitch-roll wrist for a robotic manipulator or as a tool­

holder for a machine tool. In current industrial robots the design used to pro duce 

pitch-and-roll motions of a gripper is a differential mechanism that has two inputs 

and two outputs, the outputs being the pitch and the roll motions of the gripper. 

This differential mechanism is based on bevel gears and consists of two sun gears and 

one planet, carrying the gripper as shown in Fig. 1.1. 

An epicyclic transmission of spherical cam-roller pairs, is being developed at 

McGill University's Centre for Intelligent Machines (Ghuneim, Angeles and Bai, 

2004), and is based on the innovative design concept of Speed-o-Cam (Gonzalez­

Palacios and Angeles, 1999). This is a new generation of mechanical transmissions 

that offers advantages such as low friction, low backlash, high stiffness and manufac­

turability with general-purpose CNC machine tools. 



1.1. BACKGROUND 

FIGURE 1.1. Wrist from a Remote-Control Manipulator (Rosheim, 1989) 

The research leading to Speed-o-Cam has been undertaken at the Centre for In­

telligent Machines (Gonzalez-Palacios and Angeles, 1999) for the past few years. Pro­

totypes of planar and spherical Speed-o-Cam transmissions are shown in Figure 1.2. 

Figure 1.3 shows the first epicyclic transmission of spherical cam-roller pairs de­

veloped at Mc Gill University, as designed by Ghuneim (2003). This mechanism has 

two input shafts driven by one motor each, its two outputs being the pitch and the 

roll motions of the wrist. The wrist of Fig. 1.3 can realize an arbitrary pitch-roll 

gesture with unlimited mobility on both the pitch and the roll axes. The gestures can 

(a) (b) 

FIGURE 1.2. Planar (a) and Spherical (b) Speed-o-Cam prototypes 
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1.1. BACKGROUND 

FIGURE 1.3. Epicyclic mechanism based on cam-roller pairs 

be achieved, moreover, by controlling the velo city of the two motors. This mechanism 

has the features below: 

- Cam-roller coupling; 

- all links undergo spherical motion; 

- the roller-carrying disks play the role of sun gears, the conjugate-cam sub-

assemblies playing the roll of the rolling-and-pitching planets. In this mech­

anism the cam is the driven element; 

- three conjugate cam subassemblies are used, located 1200 apart, such that 

the mechanism is dynamically balanced; 

- each camshaft undergoes three turns for every turn of the roller-carrying 

disk; 

- each conjugate-cam subassembly consists of one shaft and two conjugate 

cams; the latter are mounted on a common shaft 1800 out of phase, so as 

to ensure cam-roller contact all the time. 

3 



1.2. LITERATURE REVIEW 

This new concept is intended to replace gripper drives based on bevel-gears trans­

missions. 

1.2. Literature Review 

Robotic wrists are commonly used in manipulators that require a large dextrous 

workspace (Cohen, Lipton, Dai and Benhabib, 1992; Howard, 2002; Rauchfuss and 

Yang, 2000; Yang, Lin and Cheng, 1990; Yang and Rauchfuss, 2001). The earli­

est pitch-roll wrists were developed by Raymond C. Goertz in the late 1940s and 

1950s at Argonne National Laboratory with the purpose of handling nuclear mate­

rials (Rosheim, 1989). This device used sets of bevel gears for driving pitch and 

roll end-effector motion. This classic design is still used to design robotic wrists. In 

industry, robotic wrists like the Cincinnati Milacron T3 and the Bendix wrist were 

designed with bevel-gear trains in a differential array (Tsai, 1988). Planetary bevel­

gear trains can be adopted to pro duce spherical wrist mechanisms. Straight-tooth 

bevel-gear spherical wrist mechanisms have advantages like simple kinematics and 

low manufacturing cost, but due to their inherent sliding, they pro duce noise and 

vibration. Spiral-tooth gears can be used in order to avoid these drawbacks (Gos­

selin and Cloutier, 1993), at the expense of an unaffordably high cost. New concepts 

of robotic wrists that are not based on gear trains have been developed, like the 

robotic wrist reported by Wiitala and Stanisic (2000), which was designed based on 

a symmetrically actuated spherical eight-bar linkage; this linkage can eliminate the 

singularity within its hemispherical workspace. Another concept is the Agile Wrist, a 

three degree-of-freedom parallel spherical robotic wrist made up of a moving platform 

and a fixed based connected by three identicallegs using revolute joints (Bidault, An­

geles and Teng, 2001). This design took the concept of the three-degree-of-freedom 

Agile Eye designed by Gosselin and Hamel (1994). At McGill University, a robotic 

4 



1.2. LITERATURE REVIEW 

pitch-roll wrist is being developed based on spherical cam-roller pairs (Ghuneim, 2003; 

Ghuneim, Angeles and Bai, 2004). An improvement of that concept is reported in 

this thesis, in which we aim at replacing the three conjugate-cam subassemblies by an 

alternative mechanism that consists of a layout of two pairs of spherical Stephenson 

mechanisms and only two conjugate cams with a convex profile mounted on different 

shafts. 

Most of the research work on spherical-linkage synthesis has focused on the spher­

ical four-bar linkage (Ge and Larochelle, 1999; Ge and McCarthy, 1991; Zanganeh and 

Angeles, 1994), but work on spherical Stephenson mechanisms and spherical five-bar 

linkages is rather scarce. In this the sis the design of spherical Stephenson mechanisms 

is based on the method proposed by Wampler (2004), who formulates and solves the 

loop equations for indecomposable spherical structures with up to three loops. 

In spherical cam-follower mechanisms, the axes of motion of the cam and the 

follower are concurrent (Angeles and L6pez-Cajun, 1991). To preserve concurrency, 

the manufacturing errors in the production of the spherical cams should be low, to 

guarantee a good performance of the mechanism. As reported by Lee (2001), when 

machining a concave cam profile, the accuracy of the concave part was substantially 

lower than that of the convex regions; hence, a fully-convex cam profile should be 

targeted. The research work on spherical cams has mainly focused on the determina­

tian of the cam profile, as reported by Yang (2001), who derived a general expression 

based on envelope theory for the surface geometry of spherical cams with a meshing 

follower. Work on the manufacturing of spherical cams was reported recently by Wei, 

Lai and Chen (2000), who derived the equations of the cam profile based on the theory 

of conjugate surfaces to generate the associated NC data for a five-axis CNC machine 

tool, to produce a spherical cam-oscillating roller-follower mechanism. A literature 

survey showed a lack of results on the synthesis of spherical convex cam profiles and 

5 



1.3. MOTIVATION 

their impact on the manufacturing accuracy of the cam. We thus undertook the 

derivation of a condition that guarantees a fully-convex cam profile. 

1.3. Motivation 

FIGURE 1.4. Hub with three conjugate cam subassemblies 

Figure 1.4 shows the hub of Ghuneim's mechanism, carrying three conjugate-cam 

subassemblies. For assembly, it is necessary to machine the two conjugate cams and 

their shaft from one single blank, but this machining is close to impossible with the 

above array. Machining the cams from separate blanks is not an attractive option 

because of the inherent assembly error incurred. Therefore, an alternative mechanism 

comprising four spherical mechanisms of the Stephenson type is proposed here, in 

order to avoid the use of two conjugate cams mounted on a common shaft. The 

layout of the alternative mechanism is shown in Figure 1.5. 

The alternative mechanism consists of two pairs of spherical Stephenson mecha­

nisms, one pair forming the main mechanism (M), the other being its mirror image (I). 

The two pairs are arranged in such a way that the two output links of the two main 

6 
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FIGURE 1.5. Layout of the alternative mechanism 

mechanisms are connected to their corresponding output links in the mirror image 

mechanisms, in order to transmit the same motion at the same angular velo city. It is 

necessary to connect between the two main mechanisms a mirror-image mechanism, 

with the purpose of having the same angular velo city at the input shaft of the two 

main mechanisms. In order to have a symmetric layout, moreover, the input shaft of 

each of the two pairs of mechanisms makes an angle of 1350 with each of their output 

shafts. Closing the loop, the whole arrangement has one degree of freedom. 

The input shafts of the two main mechanisms rotate with the same angular 

velocity, but in directions opposite those of the input shafts of the two mirror-image 

mechanisms. 

7 



1.3. MOTIVATION 

The input shafts of the two main mechanisms are connected to the cams. These 

two cams are conjugate, 1800 out of phase, as mounted on different shafts. Regarding 

the two input shafts of the two mirror-image mechanisms, one is connected to the 

gripper and the other to a counterweight for purposes of static balancing. 

This transmission mechanism requires only two conjugate cams, on different 

shafts; in the design of Fig. 1.3, on the contrary, three shafts with two conjugate 

cams are mounted on each shaft, the device thus requiring six cams. 

This configuration requires two identical pairs of spherical Stephenson mecha­

nisms, each pair composed of one such mechanism and its mirror image. 

The above work requires extremely tight tolerances because of the presence of 

conjugate cams, the need for an even distribution of manufacturing errors in the 

production of spherical cams thus becoming apparent. Indeed, measurements on 

planar cams have revealed that the highest errors are encountered in regions with 

large curvature variations, especially in regions with a concavity (Lee, 2001). Due to 

the pronounced change in curvature that a concavity in the cam profile entails, the 

accuracy of the concave part is substantially lower than that of convex regions. We 

thus adopt as a criterion to evenly distribute the machining errors the avoidance of 

contact surfaces with negative geodetic curvature (Chiang, 1988). With the aim of 

avoiding spherical cams with sign changes in the geodetic curvature of the contact 

surface, which thus gives rise to a concave region, we propose a procedure based on 

curvature analysis that allows us to obtain fully-convex spherical cams. To be true, 

convexity refers here to the conical contact surface of the cam. Since we are interested 

in obtaining a fully-convex spherical cam, we impose a condition guaranteeing that 

the geodetic curvature of the cam remains positive. 

8 



CHAPTER 2 

The Synthesis of the Spherical Cam 

Mechanism 

The machining of spherical cams is done with five axis CNC machine tools. Because 

of their speed of response, characterized by their bandwidth, these machines do not 

react fast enough under high changes of curvature in the workpiece. 

Because the motion of cam mechanisms is determined by the contact between cam 

and follower, the profile accuracy turns out to be extremely important. For example, 

for good valve train dynamics, the cutting accuracy is of the order of 0.00020" (5.08 

/--lm), point to point for 10 cam rotation, with an overall tolerance of ±0.0020" (50.8 

/--lm) (Jensen, 1987). 

Large fluctuations of the manufacturing errors were reported (Lee, 2001) in the 

production of the first prototype of a planar Speed-o-Cam (SoC), in which the cam 

had a concavity in its profile. The convex region of the cam exhibited a maximum 

error of 0.5 /--lm, while the concave region exhibited a maximum error of 2.5 /--lm. This 

indicates a machining error in the concave region of 500% that in the convex region. 

Our aim here is thus to avoid concavities in the contact surface of the cam. 



2.1. SPHERICAL CAM MECHANISMS 

To avoid machining a spherical cam profile with a concavity, we develop the 

condition that guarantees a fully-convex spherical cam profile. 

2.1. Spherical Cam Mechanisms 

FIGURE 2.1. General layout of a spherical cam mechanism with a ro11er­
follower [taken from (Gonzalez-Palacios and Angeles, 1993)J 

Figure 2.1 shows the general layout of a spherical cam mechanism with a roller­

follower of the conical type, which guarantees a pure rolling operation. The contact 

surface of the cam is a conie surface generated by a ray stemming from the centre of 

the sphere, as it traverses the generatrix of the cam profile (Gonzalez-Palacios and 

Angeles, 1993). 

This type of mechanism is composed of four links: (1) the frame; (2) the cam; 

(3) the roller; and (4) the follower. The geometric parameters defining the spherical 

cam mechanism are: 

(i) The angle al between the input and output axes. 

(ii) The angle a3 between the output and roller axes. 

10 



2.1. SPHERICAL CAM MECHANISMS 

FIGURE 2.2. An lndexing Cam Mechanism 

(iii) The angle Œ4 between the roller cone. 

Speed-o-Cam mechanisms have the morphology of lndexing Cam Mechanisms 

(ICM). As shown in Figure 2.2, an ICM consists of one cam and multiple rollers 

carried by a follower. When a roller cornes into contact with the cam, it forms a 

temporary single cam mechanism; when the roller loses contact with the cam, another 

roller begins to engage the cam, thereby keeping the follower under motion aIl the 

time. 

In order to transmit motion continuously to the output shaft of the transmission, 

moreover j the whole mechanism is made of two conjugate cams 1800 out of phase, as 

shown in Fig. 2.3. 

The input-output relation of the spherical Speed-o-Cam takes the form 

where 

N: number of rollers (number of indexing steps). 

11 



2.2. CURVATURE ANALYSIS 

'ljJ: angle of rotation of the cam. 

tjJ: angle of rotation of the follower. 

2.2. Curvature Analysis 

The contact surface of the cam is a conie surface produced by a ray stemming from 

the center of the sphere, as it traverses the generatrix r of the cam profile. Moreover, 

the roller becomes a frustroconic surface of cone angle Œ4 (GonzaJez-Palacios and 

Angeles, 1993). The geodetic curvature /'i, of a curve r on a spherical surface is given 

by (Chiang, 1998) 
eT(e' x e") 

/'i, = Il e' 11 3 
(2.1) 

where e is the unit position vector of a point on the generatrix lying on the surface 

of the unit sphere, while (/) and (") indicate first and second derivatives with respect 

to a parameter. The geodetic curvature is also defined as (Chiang, 1998), 

1 
/'i,=--

tanp 
(2.2) 

FIGURE 2.3. Indexing mechanism with two conjugate cams 1800 out of phase 

12 



2.2. CURVATURE ANALYSIS 

where P is the spherical radius of curvature that takes the value of the angle subtended 

by the arc of the great circle starting from the center of curvature to the curve. By 

definition, from eq.(2.2), the geodetic curvature K turns out to be dimensionless. 

In our case, the natural choice to parametrize the cam generatrix is the angle 'IjJ 

of rotation of the cam, which is shown in Fig. 2.1. From eq.(2.1) it is apparent that 

the derivatives of the cam profile with respect to the input angle 'IjJ will be needed. 

Based on the sphericalmechanism shown in Fig. 2.1, the unit vector e c of the cam 

profile and the unit vector of the pitch curve ep are defined as 

S( 'IjJ )Q( Œl)ST (cp )Q( (3)S(V )Q( (4)k 

S( 'IjJ)Q(Œl)ST (cp)Q(Œ3)k 

(2.3) 

(2.4) 

where Q and S represent rotation matrices about the X and Z axes, respectively, 

through angles given by their arguments, and k = [0 0 l]T. To carry out an analysis 

of curvature we can see in eqs.(2.3) and (2.4) that the expression for the unit vector 

ec of the cam profile is not as simple to handle as that of the pitch curve ep . 

Now, the spherical radius of curvature of the pitch curve Pp is equal to the sum 

of the spherical radius of curvature of the cam profile Pc and the spherical radius of 

the roller r, as indicated in Fig. 2.4, i.e., 

Pp = Pc + r (2.5) 

From eq.(2.5) the relation between the curvatures of the pitch curve Kp and the cam 

profile Kc are expressed as 

Kp 
Kc - tanr 

1 + Kc tan r 
(2.6) 

13 



2.3. CAM-PROFILE DETERMINATION 

As a consequence of the relations appearing in eqs.(2.5) and (2.6), a convex pitch 

curve guarantees a convex cam profile. Hence, we will work with the generatrix of the 

pitch curve, rather than with the cam profile, in the ensuing analysis. 

From eq.(2.4), ep reduces to 

(sin al cos a3 + cos al sin a3 cos <p) sin'ljJ - sin a3 cos 'ljJ sin <p 

ep = -(sin al cos a3 + cos al sin a3 cos <p) cos'ljJ - sin a3 sin 'ljJ sin <p (2.7) 

cos al cos a3 - sin al sin a3 cos <p 

2.3. Cam-Profile Determination 

In order to create a curve in CAD software, then integrating it into the CNC 

machine-tool code, we need to obtain the range of 'I/J values that produce a fully­

closed cam profile. This interval is determined by the angle .6. (Lee, 2001), as shown 

in Fig. 2.5, depicting a symmetric profile. Symmetry is natural here because of the 

function of the mechanism, which is identical to that of bevel gears. The angle 'I/J takes 

-
Pitch 

" {'Dttv~ 
\ 

o 

FIGURE 2.4. Spherical radius of curvature 
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2.3. CAM-PROFILE DETERMINATION 

y 

A B 

-4-------*------~~x 

FIGURE 2.5. A sketch of the cam profile geometry 

on values in the interval [0,21f], with the value 'IjJ = 0 at the point A of engagement 

and the value 'IjJ = 21f at the point B of disengagement, as illustrated in Fig. 2.5. 

From eq. (2.7) the variables x and y take the values of the first and second com­

ponents, respectively, that are the X and Y components of the position vector ep of 

the pitch curve, namely, 

x( 'IjJ) (sin al cos a3 + cos al sin a3 cos <p) sin'IjJ - sin a3 cos 'IjJ sin <p 

y( 'IjJ) -(sin al cos a3 + cos al sin a3 cos <p) cos 'IjJ - sin a3 sin 'IjJ sin <p 

Realizing that y is the axis of symmetry of the cam profile from Figure 2.5, we 

can obtain .6. by setting: 

x(.6. + 21f) = 0 (2.8) 

Taking x(.6. + 21f) equal to the first row of eq.(2.7) and simplifying trigonometri­

cally, we obtain 
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2.4. CONVEXITY CONDITION 

Let 

f(~) = (sin al cos a3 + cos al sin a3 cos cP(~ + 2n)) sin ~ - sin a3 sin cP(~ + 2n) cos ~ 

To find the roots ~ of f(~), we resort to the Newton-Raphson method, namely, for 

initial guess ~o, 

(2.9) 

where 

f' (ll) (cos ŒI sin Œ3 sin II sin <1>(ll + 2n) + sin Œ3 cos II cos <1>(ll + 2n)) q/ (ll + 2n) 

+ (sin ŒI cos Œ3 + cos ŒI sin Œ3 cos <1>( II + 2n)) cos II (2.10) 

+ sin Œ3 sin <1>( II + 2n) sin II 

This procedure stops when II~i - ~i-lll ::; E, for a prescribed tolerance E. Once 

the value of ~ is found, the cam profile is closed, with 'ljJmin = -~ and 'ljJmax = 2n + ~, 

l.e. , 

-~ = 'ljJmin ::; 'ljJ ::; 'ljJmax = 2n + ~ 

and hence, 'ljJ takes on values in the interval [-~, 2n + ~l. 

2.4. Convexity Condition 

The conie contact surface of a cam profile shows a concavity if the geodetic 

curvature of the pit ch curve r changes its sign, which happens when the numerator 

of the geodetic curvature vanishes. The condition for a convex cam profile is, therefore, 

that the numerator of the geodetic curvature do not change its positive sign, i.e., 

(2.11) 

To obtain an expression for the convexity condition we substitute the unit vector 

of the pitch curve ep into eq.(2.11), the first and second derivatives of this vector 
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2.4. CONVEXITY CONDITION 

being found with computer algebra, which yields the expression 

F ( 'ljJ) - A cos3 cp + B cos2 cp + C cos cp + D ~ 0 (2.12) 

where 

C sin ŒI sin Œ3 cp/2 (1 - 3 sin2 
(3) 

+ 3 cos ŒI sin ŒI sin Œ3 cp' (2 sin2 
Œ3 - 1) 

We call eq.(2.12) the convexity condition for spherical cams. This expression is 

apparently given in terms of the cosine of the input-output function cp( 'ljJ). 

A cam contact surface is thus convex if and only if F('ljJ) of eq.(2.12) is non­

negative for any real value of 'ljJ. 

2.4.1. Concavity-Occurrence in the Cam Profile If the geodetic curva­

ture of the cam vanishes and a change in sign is produced, then a concavity in the 

cam profile arises. To find the value of 'ljJ at which the concavity occurs, we need the 

roots of F('ljJ), with F('ljJ) = 0 defined in the convexity condition eq.(2.12), thereby 

deriving a cubic polynomial equation in cos cp, namely, 

F ( 'ljJ) _ A cos3 cp + B cos2 cp + C cos cp + D = 0 

17 



2.4. CONVEXITY CONDITION 

To find the roots of the above equation, let cos cp x which yields 

A x 3 + B x 2 + C X + D = 0 (2.13) 

From eq.(2.12) it is apparent that the coefficient A never vanishes because the 

values of al and a3 are bounded as: 0 < al :S 90° and 0 < a3 :S 900
; therefore, we 

can safely normalize eq.(2.13) upon dividing its two sides by A, thus obtaining 

() 
3 B 2 C D 

fx =x +-x +-x+-=O 
A A A 

(2.14) 

There can be up to three real roots for this polynomial, each root defining two 

values of 'IjJ. The real roots of the polynomial lie in the interval [-1,1]. To find the 

number of real roots of a polynomial in a given interval we recall Sturm 's theorem 

(Merlet, 1993): Let fo(x) = 0 be a polynomial of degree n in x 

n 

fo(x) = Laixi = 0 
o 

Considering the first derivative of this polynomial with respect to x, 

fI(x) = f~(x) 

the number ofreal raots of the equation f(x) = 0 in the interval [XI,X2] is obtained as 

the number of sign changes in the sequence fi(XI), fi+I(XI), i E [0, n - 1] minus the 

number of sign changes in the sequence fi(X2), fi+I(X2), i E [0, n - 1]. 

Figure 2.6a shows the synthesized cam profile of a Speed-o-Cam mechanism with 

al = 900
, a3 = 800 and N = 8. For those values, the cam profile exhibits a concavity 

in the interval 151.74° :S 'IjJ :S 208.26°. From Fig. 2.6b we can see that the geodetic 

curvature vanishes and changes its sign. 

Figure 2.7a shows the synthesized cam profile of a Speed-o-Cam mechanism with 

al = 900
, a3 = 730 and N = 8. For those values the cam profile is fully convex. In 
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2.4. CONVEXITY CONDITION 
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FIGURE 2.6. Synthesized concave cam (a) and its geodetic curvature (b) 

Fig. 2.6b we can see that the geodetic curvature of the convex cam profile does not 

vanish. 

2.' 
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FIGURE 2.7. Synthesized convex cam (a) and its geodetic curvature (b) 

From Figures 2.6b and 2.7b we can observe that the concave cam profile has a 

higher change of curvature with a peak-to-peak value of 33.79, vs. 0.95 forthe convex 

cam profile. 
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2.4. CONVEXITY CONDITION 
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FIGURE 2.8. Convexity condition F('ljJ) vs. 'ljJ: (a) for the concave cam; and 
(b) for the convex cam 

Figure 2.8 shows the plots of the convexity condition F( 'l/J) vs. 'l/J of the synthesized 

concave and convex cams. From Fig. 2.8a notice that F( 'l/J) reaches negative values, 

which indicates the concavity in the profile. 

Figure 2.9 shows the cam profile generated in PROjENGINEER for the convex 

profile. 

FIGURE 2.9. Convex cam profile 
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CHAPTER 3 

The Optimum Synthesis of a Spherical 

Stephenson Mechanism 

ln order to avoid the use of two conjugate cams mounted on the same shaft of the 

epicyclic transmission of Fig. 1.3, we develop here an alternative mechanism. This 

mechanism is intended to replace the hub that carries the conjugate-cam subassem­

blies of that epicyclic transmission. The layout of the alternative mechanism is shown 

in Fig. 1.5. This mechanism consists of two pairs of spherical Stephenson mechanisms, 

one pair being the main mechanism (M), the other its mirror image (1). From Fig. 1.5 

we can see that the two output links of the two main mechanisms are connected to 

the corresponding output links of the mirror-image mechanisms in order to transmit 

the same motion at the same angular velo city. This arrangement has the peculiar­

ity that the input shafts of the two main mechanisms rotate with the same angular 

velocity but in a direction opposite that of the input shafts of the two mirror-image 

mechanisms. 

To create a symmetric layout, the input shaft of each of the two pairs of mechanisms 

makes an angle of 1350 with respect to each of their output shafts. 

Using this layout, the design of the mechanism will simplify: Instead of designing four 

spherical Stephenson mechanisms, we design only one mechanism; its mirror image 

is used for the second pair. 



3.1. THE SPHERICAL STEPHENSON MECHANISM 

FIGURE 3.1. Spherical Stephenson mechanism 

In order to design the spherical Stephenson mechanism of interest, we resort to the 

synthesis equations of its four- and five-bar loops; then, we proceed finding a single 

input-output (10) equation that contains the input and the two output angles as weIl 

as the mechanism link dimensions. This procedure is reported in the sections below. 

3.1. The Spherical Stephenson Mechanism 

The classical Stephenson mechanism is a six-bar planar linkage that was originaIly 

designed to control the motion of a steam engine (Primrose, Freudenstein and Roth, 

1967). The kinematic chain of a spherical Stephenson mechanism is illustrated in 

Fig. 3.1. This mechanism comprises six links connected by seven revolute joints; laid 

out in two loops, the four-bar loop (left-hand side) and the five-bar loop (right-hand 

side) are coupled by means of a ternary link. This mechanism is known to have a 
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3.1. THE SPHERICAL STEPHENSON MECHANISM 

single degree of freedom, hence, one single input joint drives the mechanism. For the 

sake of conciseness, we refer to the various binary links by the labels of the arcs that 

define every such link. Due to our design requirements, we chose the link Œ4 as the 

input link and the links Œ2 and Œ6 as the output links. 

For the layout shown in Fig. 1.5, the four spherical Stephenson mechanisms make 

up a total of 24 links, but we need to consider that four of the links are counted twice, 

and that the fixed link is common to aIl four mechanisms, the total number of links 

then being 

l = 4(6) - 4 - 3 = 17 

For the same layout, we have a total of 28 revolute joints, but four of these are 

counted twice, the total number of joints then being 

j = 4(7) - 4 = 24 

Using the Chebyshev-Grübler-Kutzbach (CGK) formula (Hervé, 1978; Angeles, 

2003), to find the degree-of-freedom (do!) f of the layout, we have, 

f = 6(17 -1) - 5(24) = -24 

However, the above result is wrong, for it predicts a hyperstatic structure, while 

the mechanism moves with a dof f = 1. To prove this, we recaIl, the double Cardan 

joint or double univers al joint used in terrestrial vehicles, as illustrated in Fig. 3.2. 

The double Cardan joint is used to transmit motion from the motor of the vehicle 

to the differential gear train, located in Fig. 3.2 inside the "load" block. As is weIl 

known, the entire mechanism depicted in Fig. 3.2 has a dof f = 1, which can be 

shown by resorting to group theory, as proposed by Hervé (1978). 

In his 1978 paper, Hervé proposed [1 classification of mechanisms, for purposes of 

dof-determination, based on group theory. The concepts in this breakthrough paper 
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3.1. THE SPHERICAL STEPHENSON MECHANISM 

Chain # 1 

I=--
1 1 .. Motor 

Chain # 2 

1_- _ 1 
-- --

1 
ft 

:J 1 p 
1 

ci 

1 
-------~ ~ 

--y' 
Cardan shaft 

FIGURE 3.2. Double Cardan joint used in vehicles 

have, unfortunately, remained unnoticed in the mechanisms community, probably 

because it was written in French. Hervé's classification is outlined in (Angeles, 1982). 

Accordingly, mechanisms are classified into 

(a) Trivial, when the mechanism links are an constrained to move with dis­

placements belonging to one single displacement subgroup out of the 12 

subgroups of the displacement group. These subgroups are the six gener­

ated by the corresponding lower kinematic pairs (Hartenberg and Denavit, 

1964)-revolute, prismatic, screw, cylindrical, pl anar and spherical-plus 

other six resulting as combinations of the former: the planar translation; 

the spatial translation; the translating screw; the Schonflies subgroup; the 

identity subgroup; and the displacement subgroup itself. 

(b) Exceptional, when the mechanism links are an constrained to move with 

displacements (i) not belonging to one single proper subgroupl, but rather 

to a set of subgroups, and (ii) the intersection of these subgroups is a sub­

group. The dof of the mechanism, then, is the dimension of the intersection 

subgroup. 

1 A proper subgroup of a group 9 is any subgroup of g, excluding 9 itself. 
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3.1. THE SPHERICAL STEPHENSON MECHANISM 

(c) Paradoxical, when the mechanism links are all constrained to move with 

displacements including at least one subset that is not a subgroup. Exam­

pIes of this class abound in the literature, namely, the Bennett linkage, the 

Bricard mechanism, the planar double-parallelogram linkage, etc. These 

mechanisms are sometimes referred to as maverick or overconstrained. 

Under the above classification, it is now a simple matter to realize that the links 

of the double universal joint of Fig. 3.2 are constrained to move with displacements 

of two subgroups: the spherical subgroups with centres at 0 and P, respectively. 

The intersection of these two subgroups is that generated by the revolute of axis OP, 

whose dimension is unit y, hence, under Hervé's classification, this is an exceptional 

mechanism. The double universal joint thus has a dof f = 1. 

Following the same procedure as ab ove , in order to find the dof of the layout of 

Fig. 1.5, we proceed first by separating the mechanism of the same figure into two 

chains, as shown in Fig. 3.3, chain # 2 being the mirror-image of chain # 1 with 

respect to a plane perpendicular to axes A3 and A4, passing through the point of 

intersection of axes Al and A2 • Chain # 1 contains a main spherical Stephenson 

mechanism M, interconnected to its mirror-image mechanism 1 via shaft 8 1 . Since 

each spherical Stephenson mechanism has a dof f = 1 and the two are interconnected 

by the common shaft 8 1 , chain # 1 has also a dof f = 1. The same occurs for 

chain # 2, which is the mirror-image of chain # 1, and is formed also by two spherical 

Stephenson mechanisms interconnected via shaft 8 2 . 

N ow, each of the two subchains produced by the above cut having a single dof, 

it can be driven by one single input, namely, the angular velocity ~ of its camshaft, 

of axis A 2 . This subchain, then, has three outputs, those of AI, A3 and A4' The two 

outputs about shaft A4 are 'y, those about A3 are -'y. As a result, the two shaft pairs 

of axis A3 and those of axis A4 can be interconnected, for each pair is compatible. 

As a result, the interconnected mechanism of Fig. 1.5 is endowed with a single dof, 

and hence, can be driven with one single motor, driving either of the two shafts of 
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3.2. LOOP EQUATION 

Chain # 1 J!; 
? S3 

SI ·fil 
A Y 

A~ __ M _ -'~2 
ljJ ", ljJ 

y fil " 
S4 

"A 
3 

Y 
S2 Chain#2 

FIGURE 3.3. The layout of the alternative mechanism separated in two chains 

axis A2 • As a matter of fact, in the pitch-roll wrist under design, these two shafts 

are driven by means of motions impinged to their cams by the rollers in contact with 

them and carried by the plates driven by the two wrist motors. 

Below we explain the procedure used to obtain the equations of the four-bar and 

five-bar loops of this alternative mechanism. 

3.2. Loop Equation 

In order to find the four and five-bar loop equations, we resort to the method 

introduced by Wampler (2004). In this method, the first step is to define a set of 

coordinate axes at each joint aligning the z-axis with the axis of rotation of the joint. 
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3.2. LOOP EQUATION 

The x and y axes can be given any orientation normal to z, so as to form a right­

handed orthogonal coordinate system. The assumption that the links are rigid implies 

that the relative orientation between any two coordinate systems fixed to the same 

link is constant. Such rotations are called "side rotations" of the link. The x-axis is 

taken as the axis of rotation for the side rotations. In traversing a loop of a spherical 

mechanism, two types of rotations are found joint rotations, which are variable, and 

side rotations, which are constant. A typical loop matrix equation has the form 

(3.1) 

where Zi is a joint rotation about the z-axis, through angle Oi, namely, 

o o 1 

in link-fixed coordinates. Further, Si is a side rotation about the x-axis, through 

angle ai, namely, 

1 o o 

o sin ai cos ai 

and 1 is the 3 x 3 identity matrix. 

3.2.1. Rotation-Matrix Formulation The second step in Wampler's method 

is to eliminate the two joint rotations Zl and Zk from the loop equation matrix, 

eq.(3.1), to end up with a single trigonometric loop equation. 

Letting Zi = [0 0 1]T, we observe that Z[Zi = ZT and ZiZi = z, where Z = 

[0 0 1V. Thus, we can eliminate the two joint rotations, Zl and Zk from eq.(3.1) 

upon multiplying its two sides by SI Zk, and then multiplying the equation thus 
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3.3. THE FOUR-BAR LOOP 

resulting from the left by zr, namely, 

which can be readily simplified to yield 

(3.2) 

the right-hand side being the (3,3) entry of Sk. 

Equation (3.2) is the loop equation in triganametric Jarm. 

3.3. The Four-Bar Loop 

/~ Z 
X 1 

1 

FIGURE 3.4. The four-bar loop 

To find the four-bar loop equation based on Wampler's method we proceed by 

defining the coordinate axes at each joint, as shown in Fig. 3.4. To end up with a 

loop equation in trigonometric form as a function only of the input and output angles 
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3.3. THE FOUR-BAR LOOP 

'"Y and 'ljJ, respectively, we chose the loop equation so as to eliminate the two other 

joint angles. Hence, the loop equation is taken as 

Z4S4Z1S1Z2S2Z3S3 = 1 (3.3) 

where 

cos'lj; - sin'lj; 0 - cos '"Y - sm '"Y 0 

Zl= sin 'Ij; cos'ljJ 0 , Z2 = sm '"Y - cos '"Y 0 

0 0 1 0 0 1 

o o 1 o o 1 

Wampler's method uses exterior angles at each vertex, instead of interior angles, 

matrix Z2 being a function of the interior angle '"Y. Moreover, 

1 o o 1 o o 

1 o o 1 o o 
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3.4. THE FIVE-BAR LOOP 

We eliminate the joint matrices Z3 and Z4 from eq.(3.3) to have the loop equation 

in terms of the input and output angles alone. We do this by means of the relation 

whence the loop equation is obtained as 

(3.4) 

Equation (3.4) yields the loop-equation of the four-bar loop in trigonometric form, 

namely, 

in which 

sin a2 sin a4 sin 'Y sin 'ljJ + cos al sin a2 sin a4 cos 'Y cos 'ljJ 

+ sin al sin a2 cos a4 cos () - sin al cos a2 sin a4 cos 'ljJ 

+ cos al cos a2 cos a4 - cos a3 = 0 

Equation (3.5) is the input-output (10) equation of the four-bar linkage. 

3.4. The Five-Bar Loop 

(3.5) 

(3.6) 

Figure 3.5 shows the coordinate axes at each joint, of the five-bar loop. For 

this loop we also want to end up with a loop-equation in trigonometric form that 

contains the input and output angles 'ljJ and 4> only, and no other joint angle of the 

loop. From Fig. 3.5 we can see that now we have five joints, from which we can 

eliminate only two by their respective joint rotations, so that the trigonometric form 

of the loop equation, besides the input and output angles, will contain an extra joint 

angle. Hence, we chose the loop equation in a form that allows us to eliminate the 

joint rotations Z5 and Zg, and keep the joint rotations Z6 and Z7 that represent the 
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3.4. THE FIVE-BAR LOOP 
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FIGURE 3.5. The five-bar loop 

output and input angles as weIl as the joint rotation Zg; the latter is cornrnon to both 

the four-bar and the five-bar loops of the spherical Stephenson rnechanisrn. 

Thus, the loop-equation that we choose is 

(3.7) 

where 
cos (h - sin ()5 0 cos 4> - sin 4> 0 

o o 1 o o 1 
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3.4. THE FIVE-BAR LOOP 

-cos'ljJ -sin'ljJ 0 - COS ()8 - sin ()8 0 

Z7 = sin 'ljJ -cos'ljJ 0 , Z8 = sin ()8 - cos ()8 0 

0 0 1 0 0 1 

cos ()g - sin ()g 0 

Zg = sin ()g cos ()g 0 

0 0 1 

Matrices Z7 and Z8 are formulated to involve the internaI angles 'ljJ and ()8, re-

spectively. Moreover, 

1 0 0 1 0 0 

8 5 = 0 COSŒ5 - sinŒ5 , 8 6 = 0 COSŒ6 -SlllŒ6 

0 sinŒ5 COSŒ5 0 sinŒ6 COSŒ6 

1 0 0 1 0 0 

8 7 = 0 COSŒ7 -SlllŒ7 , 88 = 0 COSŒ4 - sinŒ4 

0 sinŒ7 COSŒ7 0 sinŒ4 COSŒ4 

1 o o 

8 g = 0 cos Œ~ - sin Œ~ 

o sin Œ~ cos Œ~ 

In order to eliminate the joint rotations Z5 and Zg we resort to the relation 

Z~Z989Z888Z787Z686Z5Z5 = z~8r Z5 
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3.4. THE FIVE-BAR LOOP 

which simplifies to 

(3.8) 

Furthermore, to eliminate the undesired angle Os, we express both cos Os and 

sinOs using what is known as the tan-half formulas, namely, 

1 - t 2
. 2ts 

cos Os = --~, sm Os = --2' ts = tan(Os/2) 
1 + t s 1 + t s 

(3.9) 

With these substitutions, we define Zs as 

-(1 - t~) -2ts o 

Zs = 2ts -(1 - t~) o 

o o (1 + t~) 

Thus, eq.(3.8) becomes 

(3.10) 

Equation (3.10) yields the five-bar loop equation in trigonometric form, namely, 

g(ts; 'l/J, <jJ; O.) = At~ + Bts + C = 0 (3.11) 

where 

(3.12) 

A ( 'l/J, <jJ; ô:) = - sin Œ6 sin <jJ sin 'l/J sin Œ~ cos Œ4 - cos Œ5 - sin Œ6 cos <jJ sin Œ7 sin Œ~ sin Œ4 
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3.5. THE 10 EQUATION OF THE SPHERICAL STEPHENSON MECHANISM 

B ( 7/J, cP; Ô) = 2 sin 0:6 cos cP cos 0:7 sin o:~ sin 7/J - 2 sin 0:6 sin cP sin o:~ cos 7/J 

+ 2 cos 0:6 sin 0:7 sin o:~ sin 7/J 

C ( 7/J, cP; ô) = - sin 0:6 cos cP sin 0:7 cos o:~ cos 0:4 + sin 0:6 cos cP cos 0:7 cos 7/J cos o:~ sin 0:4 

+ sin 0:6 cos cP cos 0:7 cos 7/J sin o:~ cos 0:4 

3.5. The 10 Equation of the Spherical Stephenson Mechanism 

The subject of this section is the derivation of a single 10 equation for the spherical 

Stephenson mechanism that includes only the input angle 7/J and the two output angles 

'"'! and cP. 

We can also have eq.(3.5) as a function of ()s. From Fig. 3.1 we notice that 

J1 + (3 + ()s = 27r; from the same figure we can find an equation for angle J1, namely, 

cos 0:1 cos 0:2 - cos 0:3 cos 0:4 + sin 0:1 sin 0:2 cos '"'! 
cOSJ1= ----------------------------------~ 

sin 0:3 sin 0:4 

whence an expression for cos,",! is readily derived: 

sin 0:3 sin 0:4 cos J1 - cos 0:1 cos 0:2 + cos 0:3 cos 0:4 
cos,",! = 

sin 0:1 sin 0:2 

(3.13) 

(3.14) 

Substituting J1 = 27r - ((3 + ()s) into eq.(3.14) we have a new expression for cos'"'!, 

namely, 

sin 0:3 sin 0:4 ( cos (3 cos ()s - sin (3 sin ()s) - cos 0:1 cos 0:2 + cos 0:3 cos 0:4 
cos,",! = . . (3.15) 

sm 0:1 sm 0:2 

The foregoing expression is now substituted into eq. (3.5), while cos ()s and sin ()s 

are expressed using the tang-half-angle formulas, eqs.(3.9). Hence the four-bar loop 
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3.5. THE 10 EQUATION OF THE SPHERICAL STEPHENSON MECHANISM 

equation in trigonometric form is now 

j(ts; 'ljJ, "Y; Ct, f3) = Dt~ + Ets + F = 0 (3.16) 

where 

D( 'ljJ,)'; Ct, f3) = cos 'ljJ cos al sin a3 cos f3 cos a~ + sin a4 cos'ljJ cos al cos a3 cos a4 

+ sin a2 sin a4 sin 'ljJ sin)' sin al - cos'ljJ cos al sin a3 cos f3 

- cos a4 sin al sin a3 sin a4 cos f3 + cos a~ sin al cos a3 

- cos a2 sin a4 cos 'IjJ - cos a3 sin al 

E( 'ljJ,)'; Ct, f3) = -2 cos'ljJ cos al sin a3 sin f3 + 2 cos 'ljJ cos al sin a3 sin f3 cos a~ 

- 2 cos a4 sin al sin a3 sin a4 sin f3 

F( 'ljJ,)'; Ct, f3) = cos 'ljJ cos al sin a3 cos f3 - cos 'ljJ cos al sin a3 cos f3 cos a~ 

- cos a2 sin a4 cos'ljJ + sin a4 cos 'ljJ cos al cos a3 cos a4 

+ sin a2 sin a4 sin'ljJ sin)' sin al + cos a~ sin al cos a3 

- cos a3 sin al + cos a4 sin al sin a3 sin a4 cos f3 

3.5.1. Elimination Procedure To obtain the la equation for the spherical 

Stephenson mechanism, we have to eliminate ts from eqs.(3.11 & 3.16). This can be 

done by means of dialytic elimination (Salmon, 1885), as discussed below. 

We recall here eqs.(3.11) and (3.16) for quick reference: 

g(ts; 'ljJ, cp; ô) = At~ + Bts + C = 0 

j(ts; 'ljJ, "Y; Ct, f3) = Dt~ + Ets + F = 0 

(3.17a) 

(3.17b) 

In order to eliminate t s from the above two equations, we proceed to deriving two 

additional equations from eqs.(3.17a & b). We do this by multiplying the two sides of 

each of these equations by t s, thereby obtaining a total of four polynomial equations 
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in ts, namely, 

At~ + Bt~ + Gts = 0 

3 2 . Dts + Ets + Fts = 0 

At~ + Bts + G = 0 

Dt~ + Ets + F = 0 

N ow we write the above four equations in linear homogeneous Jorm, namely, 

Mts = 0 

where the 4 x 4 matrix M and the 4-dimensional vector t 8 are defined as 

A B G 0 t 3 
8 

D E F 0 t 2 
8 

M= , t 8 = 

0 A B G t 8 

0 D E F 1 

(3.18) 

From eq.(3.18) it is apparent that a nontrivial solution is possible if and only if M is 

singular. Henee, the desired 10 equation for the spherical Stephenson mechanism is 

derived from the singularity condition of M, i.e., 

q('lj;,"f,q;;&,f3) = det(M) = 0 (3.19) 

with, 

(3.20) 

det(M) = AEBP - ACE2 
- A 2P 2 + 2ADFC - DB2F + DBCE - D2C 2 (3.21) 
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3.6. Dimensional Synthesis of the Spherical Stephenson Mech-
. anlsm 

Equation (3.19) expresses the relationship among an link dimensions and the 

angles 'I/J, r and cP, with'I/J as the input, the others as output. This equation can be 

used for either the analysis of the spherical Stephenson mechanism with a given set 

of linkage dimensions or its dimensional synthesis. 

To synthesize the spherical Stephenson mechanism, we define first the design 

vector y as 

(3.22) 

If the desired motion of a spherical Stephenson mechanism is specified by m 

input-output triads {'l/Ji' ri, cPi}Z:ll with m > 9, the dimension of y, then a problem 

of approximate synthesis is formulated. 

Substituting {'l/Ji' ri, cPàZ:l into eq.(3.19), we obtain 

(3.23) 

where di = ['l/Ji ri cPi]T, for i = 1, ... , m, and Mi is a function of the ith input-output 

triad. 

For the input-output triads we change the location of the zeros to consider in the 

synthesis the initial position of the mechanism. To this end, we rewrite the input and 

output angles in an incremental form, in terms of {Ll'I/Ji' Llri, LlcPi}Z:l' i.e., 
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where 'l/Jo, 1'0 and cPo are the reference angles that are now grouped in an 12-dimensional 

design vector y: 

Then, eq.(3.19) takes the form 

where 

and 

Using the tan-half formulas, let 

Xi = tan(ai/2), i = 1, ... ,7 

Xs = tan(a~/2) 

X9 = tan(;3 /2) 

XlQ = tan( 'l/Jo/2) 

X11 = tan( 1'0/2) 

X12 = tan( cPo/2) 

1- x? 
COS ai = --~ , 

1 + Xi 

1 1- x§ 
cosa3 = --2 ' 

1 +xs 
1- x2 

cos{3= __ 9 
1 +x~ , 

1- xio 
cos'lj;o = 2' 

1 +xlQ 

1- X2 
cos'" = 11 

,0 1 + 2 ' xn 
1- x2 

cos rh = 12 
'/'0 1 + 2 ' x 12 

· 2Xi 
SIn ai = --2' i = 1. .. 7 

1 + Xi 

• 1 2xs 
slna3 = --2 

1 +xs 

· {3 2X9 SIn =--
1 +x~ 

· 2xlQ 
sm'lj;o = 2 

1 + xlQ 

· 2X11 
sm "fo = --=..::;,.... 

1 + XII 
• rh 2X12 

SIn '/'0 = 2 
1 + X 12 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

(3.24e) 

(3.24f) 

(3.25a) 

(3.25b) 

(3.25c) 

(3.25d) 

(3.25e) 

(3.25f) 
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thereby defining a system of m > 12 nonlinear equations in 12 unknowns, namely, 

q(x) = 0 

where x = [Xl,"" xdT . This is an overdetermined system of nonlinear equations 

whose least square approximation yields the optimum linkage sought. The associated 

unconstrained nonlinear least-square problem is thus 

1 . . z(x) = - qTW q --+ mm 
2 x 

where W is an m x m positive-definite weighting matrix. When all the m nonlinear 

equations of vector q are considered with the same weight, the weighting matrix W 

can be defined as a multiple of the m x m identity matrix, namely, 

1 
W=-l 

m 

In order to reduce vibrations, the input link and the two output links should be 

capable of a full rotation. We define first the pairs of angles {'l/Ji, ÎÜ~l from the 

corresponding four-bar linkage with input and output cranks. Below we explain how 

this linkage is found. 

3.6.1. Spherical Drag-Link Mechanism We need a four-bar sphericallink­

age of the drag-link type, i.e., of the crank-crank type, with a good transmission 

quality, i.e., a good force transmission by avoiding large absolute values of the cosine 

of the transmission angle (Angeles and Bernier, 1987). 

For the design of this spherical drag-link mechanism we resort to the concept of 

zero-mean linkages, as proposed by Zanganeh and Angeles (1994). This concept is 

described in the subsection below. 

Zero-Mean Linkages. From Fig. 3.6 and eq.(3.5), the 10 equation ofthe spher­

ical four-bar linkage, expressed in terms of Freudenstein parameters is written as 

f ( 6, a, k) = k1 - k2 cos a + k3 cos 6 + k4 cos 6 cos a + sin 6 sin a = 0 (3.26) 
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FIGURE 3.6. The 4 bar mechanism 

where k = [kl , k2 , k3 , k4]T is the Freudenstein-parameter vector, with the definitions 

below: 

k _ cos Œl cos Œ2 cos Œ4 - cos Œ3 
1- .. 

SlllŒ2 SlllŒ4 

k
2 

= sin ~l cos Œ2 

SlllŒ2 

k3 = sin ~l cos Œ4 

SlllŒ4 

k4 = COSŒ1 

For this mechanism, the cosine of the transmission angle fJ, is given by 

cos Œl cos Œ2 - cos Œ3 cos Œ4 + sin Œl sin Œ2 cos eS 
cos fJ, = 

(3.27a) 

(3.27b) 

(3.27c) 

(3.27d) 

(3.28) 

As introduced in (Gosselin and Angeles, 1989) the transmission quality of a four­

bar mechanism is 

1 12
71" Q = - sin2 fJ, deS 

27r 0 
(3.29) 
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its complement being the transmission defect, defined as: 

1 12
71" D = - cos2 p,d8 

27r 0 
(3.30) 

Hence, 

Q+D=l 

It is apparent that the transmission quality is maximized if the transmission 

defect is minimized. 

From eq.(3.28) the co sine of the transmission angle can be written as 

(3.31) 

where 

. . 
SlllŒ3 SlllŒ4 

(3.32a) 

sin ŒI sin Œ2 
sinŒ3 sinŒ4 

(3.32b) 

Thus, D becomes, for an input crank, 

(3.33) 

where ci and c~ are posiiive-semidefiniie and posiiive-definiie quantities, respectively, 

Le., 

ci 2: 0, c~ > 0 

Thus, the second term of the right-hand si de of eq.(3.33) cannot vanish, whereas 

the first one cano This leads to the definition of a specific class of linkages, called 

zero-mean linkages, for which Cl = O. From eq.(3.31) it is apparent that Cl and 1/2 c~ 

are, in fact, the expected value and the variance of the cosine of the transmission 
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angle Le., 

When substituting cos Œi and sin Œi in terms of the Freudenstein parameters ki , 

for i = 1, ... ,4, in eq.(3.32a), with Cl equated to zero, we obtain 

(3.34) 

as the zero-mean condition for spherical four-bar linkages (Gosselin and Angeles, 

1989). 

The expression for D under the zero-mean condition becomes 

(3.35) 

where 

Mobility Conditions. The general mobility conditions for a spherical four-bar 

linkage (Zanganeh and Angeles, 1994) for the input link are in terms ofthe Freudestein 

parameters, 

(k3 + kl )2 ~ (k4 - k2 )2 

(k3 - kl? ~ (k4 + k2 )2 

The corresponding conditions for the output link are 

(3.36a) 

(3.36b) 
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(k1 - k2? :s; (k3 + k4)2 

(k1 + k2)2 :s; (k3 + k4)2 

(3.36c) 

(3.36d) 

For drag-link sphericallinkages the inequalities (3.36a-d) must be satisfied simul­

taneously. Thus, using the zero-mean condition, the general mobility conditions can 

be simplified as (Zanganeh and Angeles, 1994) 

(3.37a) 

(3.37b) 

(3.37c) 

(3.37d) 

Constrained Optimization with Arbitrary Objective Function. The soft­

ware library ODA, developed by ChinPun Teng in 1999 at McGill University, was 

used to obtain the optimum design of the spherical drag-link mechanism. This li­

brary is based on the Orthogonal-Decomposition Algorithm (Teng and Angeles, 2001). 

ODA can handle several classes of optimization problems, such as unconstrained lin­

ear least-square problems (over-, under-, or determined system of equations), con­

strained linear least-square problems, unconstrained nonlinear least-square problems, 

constrained nonlinear least-square problems, and constrained problems with an arbi­

trary objective function. In our case, we formulate the problem as 

z = D(k) --t min 
k 

subject the nonlinear equality constraints of eq.(3.34) and the nonlinear inequality 

constraints of eqs.(3.37a-d). The latter were converted to equality constraints by 
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means of slack variables {Si} r, taking the vector k of Freudestein parameters as the 

design vector. 

Notice that due to the features of our design, we already know the value al = 1350
, 

which yields k4 from eq.(3.27d). This value was substituted in our formulation, thus 

reducing the dimension of the design vector by one and eliminating the nonlinear 

inequality constraint (3.37d). 

The problem is now formulated as an equality-constrained optimization problem, 

namely, 

z = D(x) ~mln 
x 

subject to 

gl (x) = k2k4 + klk3 = 0 (3.38a) 

g2 (x) = kr - kâ + sr = 0 (3.38b) 

g3 (x) = kâ - kr + s~ = 0 (3.38c) 

g4 (x) = kj - kâ + s~ = 0 (3.38d) 

In this formulation, the design vector is redifined as 

but only the Freudestein parameters occur in z(x). 

The solution obtained by the ODA package is 

Zmin = 0.124764, x = [-0.007829 0.000125 0.002269]T (3.39) 

with SI = 0.707634, S2 = -0.007828 and S3 = 0.707063. 
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From eq.(3.39) we can see that the minimum linkage defect is about 12.48%; 

hence, the mechanism has a transmission quality of 87.52%, which is acceptable2
. A 

transmission quality of 100% is unreachable because the transmission angle f.-l changes 

as the input angle changes. 

Substituting the foregoing optimum values of the Freudestein parameters, with 

k4 = -0.707107, into eq.(3.27b-d) and solving for the link dimensions, we have: 

These values are close to those of the universal joint (UJ), whose link dimensions 

CY2, CY3 and CY4 take the value of 90°, with input and output axes at an angle of 45° 

Figure 3.7 shows the plots ofthe output angle a vs. the input angle 8 of the main 

mechanism and its conjugate. From the same figure we can see that the input and 

output links are cranks. 

Figure 3.8 shows the plot of the transmission angle f.-l vs. the input angle 8 of 

the main mechanism. We can see from this figure that the maximum and minimum 

values of the transmission angle are 135° and 45°, respectively, these two values being 

the sugested maximum and minimum allowed values of the transmission angle of 

a four-bar linkage (Norton, 2001). The average of the transmission angle f.-l of the 

universal joint with input and output shaft axes at an angle of 45° is 90°, which is 

the desired value for a good transmission quality. 

At this point, we can conclude that the foregoing universal joint garantees both 

a full rotation of the input and output angles and a good transmission quality, for the 

given value of angle between input and output shaft axes. 

20f course, what is acceptable is subjective. As a guideline, we looked at McGill University's marking 
scheme, under which the highest grade is A, that corresponds to a student's performance ranging 
from 85% to 100%. 
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15 vs cr (UJ) 
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0> 0 
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-100 
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FIGURE 3.7. (J vs. 8 for the main mechanism and its conjugate 

3.6.2. Optimum Synthesis of the Spherical Stephenson Mechanism In 

our design we have the freedom to choose any 10 function with the sole condition 

that the input and output links be cranks. According to the linkage configurations 

shown in Figs. 3.1 and 3.6, we make the pairs {'l/Ji, 'Yi}~l equal to the pairs {(Ji, 8i}~1 

of the universal joint. In order to form the 10 triads {'l/Ji, 'Yi, <Pà~l of the mechanism 

under synthesis we make the set {<Pi}~l equal to {8i}~1 because this set corresponds 

to a drag-link mechanism. Henee, 

Changing the zeros of the Input and Outputs Triads. We can take m = 360 

in order to produee 360 triads {'l/Ji' 'Yi, <PiH~~, then substitute them into eq.(3.19) to 

generate a vector q of dimension 360, whose ith component is F( 'l/Ji, 'Yi, <Pi, a, (3). It 

is also convenient to allow for the optimum location of the zeros of the input and 

output triads (Liu and Angeles, 1993). This can be do ne if we regard the original 10 

pairs as a set of input and output angle increments {~'l/Ji, ~'Yi, ~<PiH~~. If 'l/Jo, 'Yo and 
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cPo represent the location of the zeros of the three foregoing angles, we then have 

Geometrically, this me ans that we move aIl the points of the set {'lh "(i, cPi}f!~ 

to an optimum relocation under a pure translation in the 'lj;-"(-cP space, given by the 

values 'lj;o, "(0 and cPo. Then, eq.(3.19) takes the form 

(3.40) 

Thus, from the above equation, we can formulate the synthesis problem at hand 

as an unconstrained nonlinear least-square optimization problem. 

Unconstrained Nonlinear Least-Square Problem. The synthesis problem is 

defined as: Find an aproximate solution to the overdeterminated system of nonlinear 

equations 

<il 
Q) 

~ 
Cl 
Q) 

:e. 
"-

q(x) = 0 

The transmission angle Il vs /; (UJ) 
140,.---,.-----,r---------,,.-----,-----,-----,-----,-, 

130 

120 

110 ...................................... , ........... , ........... .. 

100 

90 

80 

70 

60 

50 

40L--_L-__ L-__ L-__ L-__ L-__ L-__ U 
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/; (degrees) 

FIGURE 3.8. The transmission angle p, vs o. 
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with the least-square error, where q and x are m- and n-dimensional vectors, respec­

tively, with m > n. The problem is described as 

1 . z(x) = - qTWq ----; mm 
2 x 

with W defined as an m x m positive-definite weighting matrix, to be determined 

according to problem needs. 

From the features of our design, as explained in Chapter 1, we know that both 

al and a7 are equal to 1350
• These values are substituted into eq.(3.40); for the 

remaining link dimensions, their cosine and sine function are then expressed in terms 

of tan-half angle formulas, as shown below 

1- x~ 
~ cosai+l = 2 

1 + Xi 

. 2Xi 2 
sm aH 1 = 2 , i = 1, 

1 + Xi 
(3.41a) 

1- X2 
cos a' = 3 

3 1 + x~ 
., 2X3 

slna3 = 2 
1 + x 3 

(3.41b) 

1- x~ 
~ cos ai = 2 

1 + Xi 

. 2Xi 4 5 6 
SIn ai = 2' i = , , 

1 + Xi 
(3.41c) 

1- x~ 
cosf3 = 2' 

1 + X 7 

2X7 
sinf3 = 2 

1 + x7 
(3.41d) 

The angles '!/Jo, 1'0 and <Po, are also expressed in terms of the tan-half angle for­

mulas, namely, 

1- x~ 
cos '!/Jo = 2 

1 + x 8 

· ni. 2X8 
SIn 'Po = 2 

1 + X 8 

(3.41e) 

1- x~ 
cos 1'0 = 2 

1 + x g 

· 2Xg 
sm 1'0 = 2 

1 + X g 
(3.4lf) 

1- X2 
cos <Po = 10 

1 + xio 
· '" 2XlQ 

SIn 'Po = 2 
1 + xlQ 

(3.41g) 

Thus, the design vector x is 10-dimensional. 

Therefore, substituing eqs.(3.41a-g) into eq.(3.40), vector q is now expressed as 

a function of the design vector x of the input and output angle increments, as shown 
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below: 

Thus, the unconstrained nonlinear least-square problem is 

(3.42) 

If all the 360 components of vector q were considered with the same weight, 

the weighting matrix W is defined as a multiple of the 360 x 360 identity matrix. 

Moreover, if that multiple is given by l/m, where m is the dimension of the design 

vector, then Z2 is half the square of the rms error of the approximation of the m 

nonlinear equations. In our case, m = 360. 

The numerical solution obtained is 

Xopt = [0.6814 0.8022 0.0181 0.8934 0.8036 0.9555 0.2313 0.0658 0.0652 0.0243f 

which yields erms = 2.24 X 10-6 . 

Substituing Xopt into eqs.(3.41a .. d) we obtain the link dimensions of the mecha-

nism, namely, 

ŒI Œ2 Œ3 Œ' 3 Œ4 Œ5 Œ6 Œ7 (3 
135° 68.54° 77.48° 2.07° 83.55° 77.57° 87.39° 135° 26.05° 

while the locations of the zeros of the input and output angles are 

1/Jo 1'0 cPo 
7.53° 7.46° 2.78° 

From the link dimensions we can see that the value of Œ~ is too small to be 

practical. We can increase this value by forcing Œ~ to be close to 90°. This is done 

by adjoining 
1 - x 2 

COSŒ; = 3 = 0 
1 + x~ 
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or 

1- x~ = 0 (3.43) 

to the components of vector q. The dimension of q being now 361. Thus, the 361st 

component of q is 

q361 = 1 - x~ 

We formulated the new optimization problem as an unconstrained weighted non­

linear least-square problem, taking the weighting matrix W as a 361 x 361 diagonal 

matrix, namely, 

for normalized weights Wi obeying 

(3.44) 

The new optimization problem is thus 

(3.45) 

Taking into account eq.(3.44) for the numerical solution, we assign the same 

weight to the first 360 equations, and a different weight to the 361st equation. 

Table 3.1 shows the optimum solution for different weights chosen. 

From Table 3.1 we can see that the numerical solution with the minimum erms 

found was for 
0.9 

WI = W2 = ... = W360 = 360; W361 = 0.1 

with 

erms = 1.32 x 10-5 

For the these weights, the link dimensions are 

al a2 Œ3 a' 3 a4 a5 a6 Œ7 f3 
135° 84.75° 70.25° 88.99° 86.08° 76.99° 83.23° 135° 56.85° 
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Weights a2 a3 a' 3 a4 a5 a6 (3 erms 

Wi = 0.9/360 
W361 = 0.1 84.75° 70.25° 88.99° 86.08° 76.99° 83.23° 56.85° 1.32 x 10-5 

Wi = 0.8/360 
W361 = 0.2 85.32° 70.85° 89.19° 87.24° 76.56° 83.81° 59.62° 2.14 x 10-4 

Wi = 0.7/360 
W361 = 0.3 85.25° 70.72° 89.50° 87.27° 76.51° 83.69° 59.37° 3.22 x 10-4 

Wi = 0.6/360 
W361 = 0.4 86.29° 71.78° 89.99° 90.63° 74.85° 84.46° 64.90° 3.14 x 10-4 

Wi = 0.5/360 
W361 = 0.5 85.98° 70.84° 89.99° 90.51° 74.68° 83.91° 63.53° 1.89 x 10-4 

Wi = 0.4/360 
W361 = 0.6 85.67° 71.12° 89.99° 90.27° 75.16° 84.17° 63.16° 4.91 x 10-4 

Wi = 0.3/360 
W361 = 0.7 84.82° 70.19° 90° 89.27° 74.42° 87.26° 61.86° 5.67 x 10-3 

Wi = 0.2/360 
W361 = 0.8 85.08° 70.32° 90° 90° 75.33° 83.55° 61.32° 7.25 x 10-3 

Wi = 0.1/360 
W361 = 0.9 85.06° 71.71° 90° 89.06° 76.48° 87.09° 64.23° 6.68 x 10-3 

TABLE 3.1. Numencal results of the wmghted nonlmear least-square optlmlzatlon 

51 



CHAPTER 4 

Design Embodiment 

The synthesized dimensions were adjusted to values that are practical to avoid large 

manufacturing errors. Table 4.1 shows both the synthesized and the adjusted dimen­

sions of the spherical Stephenson mechanism. 

We validate these results using PRO/ENGINEER, a CAD software package for 

mechanical design and analysis, and its module PRO /MECHANICA, that provides 

motion analysis, simulation and animation of complex mechanisms. 

4.1. Input-Output Relations 

It is noted that the change from the synthesized dimensions to the adjusted di­

mensions should affect the motion of the mechanism. Fig. 4.1 shows that there is a 

small difference between the output angles of the synthesized and adjusted mecha-

nisms. 

Mechanism ŒI Œ2 Œ3 Œ' 3 Œ4 Œ5 Œ6 Œ7 (J 
Synthesized 135° 84.75° 70.25° 88.99° 86.08° 76.99° 83.23° 135° 56.85° 

Adjusted 135° 85° 70° 90° 85° 75° 85° 135° 
TABLE 4.1. Syntheslzed and adJusted dlmenslOns of the sphencal Stephen­
son mechanism 
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4.1. INPUT-OUTPUT RELATIONS 
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FIGURE 4.1. Output angles vs. 7/J of the synthesized and adjusted mechanisms 

From Fig. 4.1 we can see that the angles 'Y and 'ljJ attain values corresponding to 

full mobility of the input and output links of the four-bar loop for the optimum values 

of 0:2 and 0:4, as required. However, from the same Figure, the plot of the output 

angl~ </>, shows that the corresponding link 0:6 works as a rocker, with mobility within 

the interval [205°,318°]. 

In the optimization problem we expected a full rotatability of the above-mentioned 

output link, but we did not impose any constraint on full rotatability. We could not 

find such constraint in the literature and neither the rotatability of Spherical Stephen­

son mechanisms nor that of spherical five-bar linkages. The only information that we 

have are theorems and corollaries of rotatability criteria of spherical five-bar linkages, 

as reported by Kolhi and Khonji (1994). 

We adopted the rocker output as a solution because it can also transmit the 

motion from the main mechanism to its mirror image without changing the kinematics 

of the whole system. 
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4.3. THE VIRTUAL PROTOTYPE 

The spherical Stephenson mechanism with the adjusted link dimensions is of the 

crank-crank-rocker type. 

4.2. Transmission Angles 

Figures 4.2 and 4.3 show the plot of the transmission angles 'Tl and v, respec­

tively, of the Stephenson mechanism of Fig. 3.1. Angle 'Tl attains the maximum value 

of 148.23° and a minimum of 49.1°, with an average of 98.66°. Angle v attains a 

maximum value of 122.36° and a minimum of 37.89°, with an average of 80.12°. This 

implies a deadlock-free transmission and a good transmission quality. 

The transmission angle '1 vs 'II (4-BAR LOOP) 
160,----,----,-------,.--------,------,------,------,-, 

60 

40~--~--~--~-~~-~~-~~-~~ 

o 50 100 150 200 250 300 350 
'II (degrees) 

FIGURE 4.2. Transmission angle Tl vs. 'ljJ 

4.3. The Virtual Prototype 

Figure 4.4 shows the kinematic chain of the Stephenson mechanism, whose coupler 

is a ternary link with the shape of a spherical triangle. This chain should be embodied 

in such a way that interferences be avoided, while attending manufacturability and 
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Transmission angle v vs 'II. (5-BAR LOOP) 
130,-----,------,-----,-----,,-----,-----,------,, 

110 

100 

90 ., 
Q) 

~ 

'" 80 
Q) 
:g. 
> 

70 

60 

50 

40 

30 
-250 -200 -150 0 50 100 

FIGURE 4.3. Transmission angle l/ vs. 'IjJ 

assemblability issues; for this reason, we shaped the coupler in a convinient form, 

thereby obtaining the preliminary embodiment shown in Fig. 4.5. 

FIGURE 4.4. Rendering of the kinematic chain of the optimum spherical 
Stephenson mechanism 
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4.3. THE VIRTUAL PROTOTYPE 

FIGURE 4.5. Spherical Stephenson mechanism with a streamlined coupler link 

Figure 4.6 shows the mirror image of the mechanism of Fig. 4.5; the reflected 

mechanism was obtained as the mirror image of the given one with respect to the 

plane passing through the centre of the mechanism and parallel to the unit vectors u 

and v. The images of u, v and w are u', v' and w', respectively. 

FIGURE 4.6. Mirror image of the optimum spherical Stephenson mechanism 
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Figure 4.7 shows the layout of the four mechanisms assembled. 

FIGURE 4.7. The four Stephenson mechanisms upon assembly 

Figure 4.8 shows the final embodiment, in which the coupler link was designed 

based on the standard cross of a commercial universal joint, and the input link was 

shaped as a yoke, as displayed in Fig. 4.9. 

FIGURE 4.8. Final embodiment of the solution mechanism 
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4.3. THE VIRTUAL PROTOTYPE 

FIGURE 4.9. Embodiment of the spherical Stephenson mechanism 

More specifically, the coupler link was designed using the cross element of an 

off-the-shelf universal joint, namely, the 302-0400 cross and bearing of G & G Manu­

facturing Co. of Omaha, Nebraska, to which a link on its end was added, along with 

two housing-bearing caps, as shown in Fig. 4.10. We selected needle bearings, of SKF 

RNAO 12 x 22 x 12 TN. The coupler will be assembled to the yoke by press-fitting. 

FIGURE 4.10. The shaping of the coupler link 

Below we outline the design of the structure supporting the chain of Stephenson 

mechanisms. 
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4.4. THE DESIGN OF THE MECHANISM MOUNTING 

4.4. The Design of the Mechanism Mounting 

FIGURE 4.11. Preliminary concept of the structure that will support the 
four Stephenson mechanisms 

Figure 4.11 shows a preliminary conceptual design for the structure supporting 

the four Stephenson mechanisms upon assembly. This structure is built upon two 

X-shaped elements, called the X-elements, each made up of two identical beams 

intersecting each other at the midpoints of their axes. Each element, moreover, has 

a cylindrical bore of axis normal to the common midplane of the pair of beams. 

The bore is needed to lodge the bearings that support the central element carrying 

the four output shafts of the Stephenson mechanisms. We can anticipate a high 

stress concentration occuring on the sharp corners of the X-elements, as predicted by 

the theory of elasticity (Neuber 1961; Timoshenko and Woinowsky-Krieger, 1959). 

Additionally, this structure needs four beams joining the X-elements, with a reduced 

contact area to allow for a robust assembly; not only this, the preliminary concept 

of Fig. 4.11 is unpleasant to the eye. In order to improve the design, we decided to 

first round the corners of the X-element, to produce a low change in curvature, that 
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4.4. THE DESIGN OF THE MECHANISM MOUNTING 

would reduce the stress concentration, while providing for a fiat surface on the si des 

of the structure to receive the input-shaft bearings of the Stephenson mechanisms. 

To this end, we can design the structure using conventional circular rounding in the 

corners; however, since the blending of a circular arc with a line along a tangent 

of the arc is continuous to the first order only (C1-continuity) , we will have stress 

concentration due to the curvature discontinuity at the points of the edges where 

the circular rounding and the fiat surface blend (Neuber 1961). Rence, we resort to 

Lamé curves, that are C 2-continuous. These curves were discovered by the French 

mathematician Gabriel Lamé in the 1800's and later used by the Danish inventor Piet 

Reins, who called them superellipses (Gardiner, 1965). Lamé curves lie between the 

ellipse and the rectangle. Just to mention one pertinent design application, the Lamé 

curves or superellipses were used in the design of the Olympie Stadium in Mexico 

City. The Lamé curves are recalled below. 

The canonical form of the equation of the ellipse is, 

( 4.1) 

Changing the exponents of eq.(4.1) to a more generic value p, we obtain the 

equations of the Lamé curves, namely, 

(4.2) 

in which increasing the integer exponent p, the curve looks more and more like a 

rectangle. In the limit, as p -t 00, the Lamé curve becomes a rectangle. 

Lamé curves for p = 1, 2, 3, 4, 5 and 6 are shown Fig. 4.12 for a = 200 and 

b = 100. 

Figure 4.13 shows the curvature distribution K, for each of the foregoing Lamé 

curves, plotted in the interval [-200,0]. From the same figure, we can see that the 

plots start from a value close to zero, to end with a value close to zero as well, that 
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FIGURE 4.12. Lamé curves for p = 1, 2, 3, 4, 5 and 6 

corresponds to the fiat regions of the Lamé curves. The curve that has the highest 

change in curvature is that for which p = 6. 
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x for Lamé curves with exponents 
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4.4. THE DESIGN OF THE MECHANISM MOUNTING 

To design the structure, that we caIl the caver, we select the Lamé curve for p = 4 

for its inside surface, which gives us a reasonable change in curvature. For the outside 

surface we select the Lamé curve for p = 6 that gives a pleasing appearence. 

Now, the structure must enclose the chain of Stephenson linkages to support 

them, but the structure must aIlow the assembly of the whole mechanism. Hence, a 

structure made of one single part is out of the question. Apparently, the preliminary 

design of Fig. 4.11 is composed of six parts, the two cross elements and the four 

beams joining them. We should aim at a simpler design, Le., one with fewer parts. 

We decided to use four parts: two identical parts formed by (i) cutting the who le 

structure into two identical halves and (ii) removing rectangular portions from each 

half, which would be used to join the two halves upon assembly of the mechanism, 

thereby ending up with a total of four parts for the structure. 

Figure 4.14 shows the side view of the coyer. 

FIGURE 4.14. Side view of the designed cover based on Lamé curves 

The assembly of the four parts of the structure, with the Stephenson mechanisms 

removed, is shown in Fig. 4.15. 
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4.4. THE DESIGN OF THE MECHANISM MOUNTING 

FIGURE 4.15. The assembly of the cover 

The assembly of the Stephenson mechanisms with their supporting structure, 

the cover, the two conjugate spherical cams, the gripper and the counterweight are 

displayed in Fig. 4.16. 

FIGURE 4.16. Final embodiment with the design of the cover 

The assembly of the final embodiment of the pitch-roll wrist that comprises the 

two cams, the gripper, the counterweight and the roller-carrying disks is illustrated 
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4.4. THE DESIGN OF THE MECHANISM MOUNTING 

in Fig. 4.17. The two-dof pitch-roll wrist is to be actuated by two face-to-face motors 

driving the two shafts mounted on the two supporting brackets. 

FIGURE 4.17. Embodiment of the complete pitch-roll wrist 
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CHAPTER 5 

Concluding Remarks 

5.1. Conclusions 

The optimum design of a spherical epicyclic transmission based on the concept 

of Speed-o-Cam reducers is the major subject of this thesis. This transmission is 

intended to compete with its current counterpart based on bevel gears, and used 

to pro duce the pit ch and roll motions of a robotic gripper, what is called a pitch­

roll wrist. A previous design of the epicyclic transmission comprises three pairs of 

conjugate-cam subassemblies that are virtually impossible to machine out of a sin­

gle blank, as needed for maximum accuracy. An alternative transmission, based on 

spherical Stephenson mechanisms, was developed, as reported here, to replace the 

previous design. The new transmission comprises two pairs of spherical Stephenson 

mechanisms; one of each pair, is the main mechanism, the other its mirror image. 

The assembled layout was explained in Chapter 1. Out of the two distinct spherical 

mechanisms, we designed only one; the second was designed as the mirror image of 

the main mechanism. 

In order to improve the machining accuracy of the spherical cams, we introduced 

in Chapter 2 a convexity condition that leads to a convex cam. 



5.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

We described the design procedure of the spherical Stephenson mechanism in 

Chapter 3. We proceeded by first deriving the synthesis equations of the four and five­

bar loops of the Stephenson mechanism using Wampler's rotation-matrix formulation. 

Then, we worked with the optimization of the four-bar loop using its loop equation and 

the zero-mean condition to find the link dimensions that lead to a drag-link mechanism 

with optimum transmission quality. The optimum mechanism has a transmission 

angle with a symmetric distribution throughout a full rotation of the input link. By 

dyalitic elimination, using the four and five-bar loop equations, we derived a single 

equation involving the input and the two output angles of the Stephenson mechanism. 

Taking into account the input-output pairs of the four-bar loop and the single equation 

of the whole mechanism, we prescribed a set of 360 input-output triads to be met 

with the synthesis equations. These were met approximately by me ans of least-square 

optimization, to obtain the link dimensions of the optimum mechanism. The results 

of the optimization were validated with a PRO /ENGINEER virtual prototype, as 

reported in Chapter 4. 

5.2. Recommendations for Future Research 

Future work expanding that reported here should include: 

(i) A dynamical analysis of the mechanism. 

(ii) The design of an inertially isotropic coupler of the spherical Stephenson 

mechanism, in order to avoid shaking forces and moments on the device. 

(iii) A suit able geometric modeling of spherical mechanisms, as explained below. 

PRO/ENGINEER is a CAD software that was not intended to model spher­

ical mechanisms, which are overconstrained versions of their spatial counter­

parts. The rounding error produced during the assembly of links whose di­

mensions and locations are not defined by integer values is a cause of major 

alignment problems. The default assembly-tolerance in PRO /ENGINEER 

does not allow for too much error. Generally, the problems of alignment 
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5.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

start with the last links to as se rnbly. In order to help the joint axes of those 

links intersect at the centre of the rnechanisrn, it is necessary to play with 

the nurnber of decirnals and rounding-off of the nurnerical values of the last 

links to assernbly. The nurnber of those decirnals that we chose was four. 

(iv) A design of the sphericallinkages robust against rnanufacturing errors, pos­

sibly replacing sorne revolutes by cylindrical joints. 

Last, but no rneans least, the designer should recognize the practical aspect of 

designing spherical rnechanisrns. Manufacturing and assernbly errors are bound to 

rnake it extrernely difficult to actually pro duce a highly overconstrained rnechanisrn. 

How to design robustly such rnechanisrns at an affordable cost is a challenging research 

task that should be undertaken in the future. 
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