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ABSTRACT

Many a robotic pitch-roll wrist uses a bevel-gear differential train to drive the gripper.
The innovative design of pitch-roll wrists using spherical cam-roller pairs is currently
underway at McGill University’s Centre for Intelligent Machines, with the aim of
overcoming the drawbacks of bevel-gear trains. This innovative design relies on Speed-
0-Cam, a new concept of speed-reduction mechanisms based on cams and pure-rolling
contact, intended to replace gears and harmonic drives in applications where backlash,
friction, and flexibility cannot be tolerated. The new mechanism consists mainly of
a spherical conjugate cam subassembly and two roller-carrying disks.

We start with a study of cam curvature, with special focus on its machinability.
Drawing from experience, we introduce the hypothesis that high curvature changes
of a cam profile are at the source of the concentration of machining errors. As
a consequence, the machining accuracy of the concave regions in a cam profile is
substantially lower than that of its convex regions. To produce a more accurate cam
we developed the geometric condition that guarantees a fully convex spherical cam
profile.

The optimum design of the pitch-roll mechanism based on cam-roller pairs is reported
here. The optimization is intended to simplify the subassembly of spherical conjugate
cams of the old design by means of a layout of two pairs of spherical mechanisms of
the Stephenson type and two conjugate cams mounted on distinct shafts. We focus
on the optimum design of both the spherical cam-roller mechanism and the spherical

Stephenson mechanism.



RESUME

Plusieurs poignets robotiques effectuant des mouvements de tangage et de roulis
utilisent un train differéntiel & engrenages coniques pour entrainer l’efecteur. Un
concept innovateur de mécanisme tangage-roulis utilisant des paires de cames et
roulis sphériques est en cours de mise au point a I’Université McGill, au Centre
pour les Machines Intelligentes, avec le but de pallier aux inconvénients des trains
a engrenages coniques. Cette conception novatrice est basée sur Speed-o-Cam, un
nouveau mécanisme destiné & la réduction de vitesse, basé sur des ensembles cames-
roulements, pour remplecer les réducteurs de vittesse classiques a engrenages ainsi
que les harmonic drives, dans les applications ne tolérant pas le jeu, le frottement et
la flexibilité. Ce nouveau mécanisme consiste essentiellement de sous-ensembles de
cames sphériques conjugées et deux disques porteurs des roulements.

Nous commengons par étudier la courbure de la came, en mettant 'accent sur son
usinage. Nous introduisons 1’hypothese selon lequelle les changements de courbure
d’un profil de came sont a la source des concentration des erreurs d’usinage. Par
conséquent, la précision de l'usinage des régions concaves d’un profil de came est
notamment moins élevée que celle des régions convexes. Dans le but d’augmenter la
précision des cames nous établissons une condition géométrique qui garantit un profil
entierement convexe de cames sphériques.

La conception optimale d’un mécanisme tangage-roulis basé sur des paires de cames
et roulements est rapporté dans cette these. Le but de 'optimisation est de simpli-
fier le sous-ensemble de cames sphériques conjuguées en adoptant une disposition de
deux paires de mécanisme sphériques de type Stephenson et de deux cames conjugées
montées sur des arbres indépendents. Nous faisons le point sur la conception optimale

des mécanismes sphériques de type Stephenson et des cames-roulements.
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CHAPTER 1

Introduction

1.1. Background

The aim of this work is to optimize the epicyclic transmission of spherical cam-
roller pairs, to be used as a pitch-roll wrist for a robotic manipulator or as a tool-
holder for a machine tool. In current industrial robots the design used to produce
pitch-and-roll motions of a gripper is a differential mechanism that has two inputs
and two outputs, the outputs being the pitch and the roll motions of the gripper.
This differential mechanism is based on bevel gears and consists of two sun gears and

one planet, carrying the gripper as shown in Fig. 1.1.

An epicyclic transmission of spherical cam-roller pairs, is being developed at
McGill University’s Centre for Intelligent Machines (Ghuneim, Angeles and Bai,
2004), and is based on the innovative design concept of Speed-o-Cam (Gonzlez-
Palacios and Angeles, 1999). This is a new generation of mechanical transmissions
that offers advantages such as low friction, low backlash, high stiffness and manufac-

turability with general-purpose CNC machine tools.
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FIGURE 1.1. Wrist from a Remote-Control Manipulator (Rosheim, 1989)

The research leading to Speed-o-Cam has been undertaken at the Centre for In-
telligent Machines (Gonzalez-Palacios and Angeles, 1999) for the past few years. Pro-

totypes of planar and spherical Speed-o-Cam transmissions are shown in Figure 1.2.

Figure 1.3 shows the first epicyclic transmission of spherical cam-roller pairs de-
veloped at McGill University, as designed by Ghuneim (2003). This mechanism has
two input shafts driven by one motor each, its two outputs being the pitch and the
roll motions of the wrist. The wrist of Fig. 1.3 can realize an arbitrary pitch-roll

gesture with unlimited mobility on both the pitch and the roll axes. The gestures can

FIGURE 1.2. Planar (a) and Spherical (b) Speed-o-Cam prototypes
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FIGURE 1.3. Epicyclic mechanism based on cam-roller pairs

be achieved, moreover, by controlling the velocity of the two motors. This mechanism

has the features below:

Cam-roller coupling;

all links undergo spherical motion;

the roller-carrying disks play the role of sun gears, the conjugate-cam sub-
assemblies playing the roll of the rolling-and-pitching planets. In this mech-
anism the cam is the driven element;

three conjugate cam subassemblies are used, located 120° apart, such that
the mechanism is dynamically balanced;

each camshaft undergoes three turns for every turn of the roller-carrying
disk;

each conjugate-cam subassembly consists of one shaft and two conjugate
cams; the latter are mounted on a common shaft 180° out of phase, so as

to ensure cam-roller contact all the time.
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This new concept is intended to replace gripper drives based on bevel-gears trans-

missions.

1.2. Literature Review

Robotic wrists are commonly used in manipulators that require a large dextrous
workspace (Cohen, Lipton, Dai and Benhabib, 1992; Howard, 2002; Rauchfuss and
Yang, 2000; Yang, Lin and Cheng, 1990; Yang and Rauchfuss, 2001). The earli-
est pitch-roll wrists were developed by Raymond C. Goertz in the late 1940s and
1950s at Argonne National Laboratory with the purpose of handling nuclear mate-
rials (Rosheim, 1989). This device used sets of bevel gears for driving pitch and
roll end-effector motion. This classic design is still used to design robotic wrists. In
industry, robotic wrists like the Cincinnati Milacron T3 and the Bendix wrist were
designed with bevel-gear trains in a differential array (Tsai, 1988). Planetary bevel-
gear trains can be adopted to produce spherical wrist mechanisms. Straight-tooth
bevel-gear spherical wrist mechanisms have advantages like simple kinematics and
low manufacturing cost, but due to their inherent sliding, they produce noise and
vibration. Spiral-tooth gears can be used in order to avoid these drawbacks (Gos-
selin and Cloutier, 1993), at the expense of an unaffordably high cost. New concepts
of robotic wrists that are not based on gear trains have been developed, like the
robotic wrist reported by Wiitala and Stanisic (2000), which was designed based on
a symmetrically actuated spherical eight-bar linkage; this linkage can eliminate the
singularity within its hemispherical workspace. Another concept is the Agile Wrist, a
three degree-of-freedom parallel spherical robotic wrist made up of a moving platform
and a fixed based connected by three identical legs using revolute joints (Bidault, An-
geles and Teng, 2001). This design took the concept of the three-degree-of-freedom
Agile Eye designed by Gosselin and Hamel (1994). At McGill University, a robotic

4
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pitch-roll wrist is being developed based on spherical cam-roller pairs (Ghuneim, 2003;
Ghuneim, Angeles and Bai, 2004). An improvement of that concept is reported in
this thesis, in which we aim at replacing the three conjugate-cam subassemblies by an
alternative mechanism that consists of a layout of two pairs of spherical Stephenson
mechanisms and only two conjugate cams with a convex profile mounted on different

shafts.

Most of the research work on spherical-linkage synthesis has focused on the spher-
ical four-bar linkage (Ge and Larochelle, 1999; Ge and McCarthy, 1991; Zanganeh and
Angeles, 1994), but work on spherical Stephenson mechanisms and spherical five-bar
linkages is rather scarce. In this thesis the design of spherical Stephenson mechanisms
is based on the method proposed by Wampler (2004), who formulates and solves the

loop equations for indecomposable spherical structures with up to three loops.

In spherical cam-follower mechanisms, the axes of motion of the cam and the
follower are concurrent (Angeles and Lépez-Cajin, 1991). To preserve concurrency,
the manufacturing errors in the production of the spherical cams should be low, to
guarantee a good performance of the mechanism. As reported by Lee (2001), when
machining a concave cam profile, the accuracy of the concave part was substantially
lower than that of the convex regions; hence, a fully-convex cam profile should be
targeted. The research work on spherical cams has mainly focused on the determina-
tion of the cam profile, as reportéd by Yang (2001), who derived a general expression
based on envelope theory for the surface geometry of spherical cams with a meshing
follower. Work on the manufacturing of spherical cams was reported recently by Wei,
Lai and Chen (2000), who derived the equations of the cam profile based on the theory
of conjugate surfaces to generate the associated NC data for a five-axis CNC machine
tool, to produce a spherical cam-oscillating roller-follower mechanism. A literature

survey showed a lack of results on the synthesis of spherical convex cam profiles and
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their impact on the manufacturing accuracy of the cam. We thus undertook the

derivation of a condition that guarantees a fully-convex cam profile.

1.3. Motivation

FiGURE 1.4. Hub with three conjugate cam subassemblies

Figure 1.4 shows the hub of Ghuneim’s mechanism, carrying three conjugate-cam
subassemblies. For assembly, it is necessary to machine the two conjugate cams and
their shaft from one single blank, but this machining is close to impossible with the
above array. Machining the cams from separate blanks is not an attractive option
because of the inherent assembly error incurred. Therefore, an alternative mechanism
comprising four spherical mechanisms of the Stephenson type is proposed here, in
order to avoid the use of two conjugate cams mounted on a common shaft. The

layout of the alternative mechanism is shown in Figure 1.5.

The alternative mechanism consists of two pairs of spherical Stephenson mecha-
nisms, one pair forming the main mechanism (M), the other being its mirror image (I).

The two pairs are arranged in such a way that the two output links of the two main

6
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~<— Gripper
~
135° 135°
1 }
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Spherical 14 N g Spherical
Mechanism Cam
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/ ¥

FI1GURE 1.5. Layout of the alternative mechanism

mechanisms are connected to their corresponding output links in the mirror image
mechanisms, in order to transmit the same motion at the same angular velocity. It is
necessary to connect between the two main mechanisms a mirror-image mechanism,
with the purpose of having the same angular velocity at the input shaft of the two
main mechanisms. In order to have a symmetric layout, moreover, the input shaft of
each of the two pairs of mechanisms makes an angle of 135° with each of their output

shafts. Closing the loop, the whole arrangement has one degree of freedom.

The input shafts of the two main mechanisms rotate with the same angular
velocity, but in directions opposite those of the input shafts of the two mirror-image

mechanisms.



1.3. MOTIVATION

The input shafts of the two main mechanisms are connected to the cams. These
two cams are conjugate, 180° out of phase, as mounted on different shafts. Regarding
the two input shafts of the two mirror-image mechanisms, one is connected to the

gripper and the other to a counterweight for purposes of static balancing.

This transmission mechanism requires only two conjugate cams, on different
shafts; in the design of Fig. 1.3, on the contrary, three shafts with two conjugate

cams are mounted on each shaft, the device thus requiring six cams.

This configuration requires two identical pairs of spherical Stephenson mecha-

nisms, each pair composed of one such mechanism and its mirror image.

The above work requires extremely tight tolerances because of the presence of
conjugate cams, the need for an even distribution of manufacturing errors in the
production of spherical cams thus becoming apparent. Indeed, measurements on
planar cams have revealed that the highest errors are encountered in regions with
large curvature variations, especially in regions with a concavity (Lee, 2001). Due to
the pronounced change in curvature that a concavity in the cam profile entails, the
accuracy of the concave part is substantially lower than that of convex regions. We
thus adopt as a criterion to evenly distribute the machining errors the avoidance of
contact surfaces with negative geodetic curvature (Chiang, 1988). With the aim of
avoiding spherical cams with sign changes in the geodetic curvature of the contact
surface, which thus gives rise to a concave region, we propose a procedure based on
curvature analysis that allows us to obtain fully-convex spherical cams. To be true,
convexity refers here to the conical contact surface of the cam. Since we are interested
in obtaining a fully-convex spherical cam, we impose a condition guaranteeing that

the geodetic curvature of the cam remains positive.



CHAPTER 2

The Synthesis of the Spherical Cam

Mechanism

The machining of ‘spherical cams is done with five axis CNC machine tools. Because
of their speed of response, characterized by their bandwidth, these machines do not

react fast enough under high changes of curvature in the workpiece.

Because the motion of cam mechanisms is determined by the contact between cam
and follower, the profile accuracy turns out to be extremely important. For example,
for good valve train dynamics, the cutting accuracy is of the order of 0.00020” (5.08
pm), point to point for 1° cam rotation, with an overall tolerance of £0.0020” (50.8

pm) (Jensen, 1987).

Large fluctuations of the manufacturing errors were reported (Lee, 2001) in the
production of the first prototype of a planar Speed-o-Cam (SoC), in which the cam
had a concavity in its profile. The convex region of the cam exhibited a maximum
error of 0.5 um, while the concave region exhibited a maximum error of 2.5 ym. This
indicates a machining error in the concave region of 500% that in the convex regiomn.

Our aim here is thus to avoid concavities in the contact surface of the cam.
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To avoid machining a spherical cam profile with a concavity, we develop the

condition that guarantees a fully-convex spherical cam profile.

2.1. Spherical Cam Mechanisms

FIGURE 2.1. General layout of a spherical cam mechanism with a roller-
follower [taken from (Gonzélez-Palacios and Angeles, 1993)]

Figure 2.1 shows the general layout of a spherical cam mechanism with a roller-
follower of the conical type, which guarantees a pure rolling operation. The contact
surface of the cam is a conic surface generated by a ray stemming from the centre of
the sphere, as it traverses the generatrix of the cam profile (Gonzdlez-Palacios and

Angeles, 1993).

This type of mechanism is composed of four links: (1) the frame; (2) the cam;
(3) the roller; and (4) the follower. The geometric parameters defining the spherical

cam mechanism are:

(i) The angle o between the input and output axes.

(ii) The angle a3z between the output and roller axes.

10
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FIGURE 2.2. An Indexing Cam Mechanism

(iii) The angle a4 between the roller cone.

Speed-o-Cam mechanisms have the morphology of Indexing Cam Mechanisms
(ICM). As shown in Figure 2.2, an ICM consists of one cam and multiple rollers
carried by a follower. When a roller comes into contact with the cam, it forms a -
temporary single cam mechanism; when the roller loses contact with the cam, another
roller begins to engage the cam, thereby keeping the follower under motion all the

time.

In order to transmit motion continuously to the output shaft of the transmission,
moreover, the whole mechanism is made of two conjugate cams 180° out of phase, as

shown in Fig. 2.3.

The input-output relation of the spherical Speed-o-Cam takes the form

where

N: number of rollers (number of indexing steps).

11



2.2. CURVATURE ANALYSIS
1: angle of rotation of the cam.

¢: angle of rotation of the follower.

2.2. Curvature Ahalysis

The contact surface of the cam is a conic surface produced by a ray stemming from
the center of the sphere, as it traverses the generatriz I' of the cam profile. Moreover,
the roller becomes a frustroconic surface of cone angle ay (Gonzédlez-Palacios and
Angeles, 1993). The geodetic curvature & of a curve I" on a spherical surface is given
by (Chiang, 1998)

el (e x ")

where e is the unit position vector of a point on the generatrix lying on the surface
of the unit sphere, while (") and (”) indicate first and second derivatives with respect

to a parameter. The geodetic curvature is also defined as (Chiang, 1998),

1

K (2.2)

- tanp

FIGURE 2.3. Indexing mechanism with two conjugate cams 180° out of phase

12



2.2. CURVATURE ANALYSIS

where p is the spherical radius of curvature that takes the value of the angle subtended
by the arc of the great circle starting from the center of curvature to the curve. By

definition, from eq.(2.2), the geodetic curvature s turns out to be dimensionless.

In our case, the natural choice to parametrize the cam generatrix is the angle ¢
of rotation of the cam, which is shown in Fig. 2.1. From eq.(2.1) it is apparent that
the derivatives of the cam profile with respect to the input angle 1 will be needed.
Based on the spherical mechanism shown in Fig. 2.1, the unit vector e, of the cam

profile and the unit vector of the pitch curve e, are defined as

e = S)Q@)S"(H)Q(a)S()Qank (23)
e = S¥)Q()ST(4)Q(as)k (2.4)

where Q and S represent rotation matrices about the X and Z axes, respectively,
through angles given by their arguments, and k = [0 0 1]7. To carry out an analysis
of curvature we can see in egs.(2.3) and (2.4) that the expression for the unit vector

e, of the cam profile is not as simple to handle as that of the pitch curve e,.

Now, the spherical radius of curvature of the pitch curve p, is equal to the sum
of the spherical radius of curvature of the cam profile p, and the spherical radius of

the roller r, as indicated in Fig. 2.4, i.e.,
pp - pc + T (25)

From eq.(2.5) the relation between the curvatures of the pitch curve k, and the cam

profile k. are expressed as

. = ke —tanr (26)
P 14 k.tanr '

13



2.3. CAM-PROFILE DETERMINATION

As a consequence of the relations appearing in eqgs.(2.5) and (2.6), a convex pitch
curve guarantees a convex cam profile. Hence, we will work with the generatrix of the

pitch curve, rather than with the cam profile, in the ensuing analysis.

From eq.(2.4), e, reduces to

(sin aq cos ag + cos o sin g cos @) sin ¢ — sin oz cos P sin ¢
€ = | —(sin; cosag + cos oy sin az cos @) cos Y — sinazsiny sin ¢ (2.7)

COS ar] COS vy — sin qvg sin aig cos ¢

2.3. Cam-Profile Determination

In order to create a curve in CAD software, then integrating it into the CNC
machine-tool code, we need to obtain the range of ¥ values that produce a fully-
closed cam profile. This interval is determined by the angle A (Lee, 2001), as shown
in Fig. 2.5, depicting a symmetric profile. Symmetry is natural here because of the

function of the mechanism, which is identical to that of bevel gears. The angle v takes

o

FIGURE 2.4. Spherical radius of curvature
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2.3. CAM-PROFILE DETERMINATION

FIGURE 2.5. A sketch of the cam profile geometry

on values in the interval [0, 27|, with the value ¥ = 0 at the point A of engagement

and the value ¢ = 27 at the point B of disengagement, as illustrated in Fig. 2.5.

From eq.(2.7) the variables z and y take the values of the first and second com-
ponents, respectively, that are the X and Y components of the position vector e, of

the pitch curve, namely,

z(1)) = (sina;cosasz + cos oy sin ag cos ¢) siny — sin oz cos ¥ sin ¢

y() = —(sinoy cosaz—+ cos oy sin ag cos ¢) cos P — sin oz sin sin ¢

Realizing that y is the axis of symmetry of the cam profile from Figure 2.5, we

can obtain A by setting:
(A+27) =0 (2.8)

Taking (A + 27) equal to the first row of eq.(2.7) and simplifying trigonometri-

cally, we obtain
z(A+2m) = (sin a1 cos az +cos ag sin ag cos p(A+27)) sin A —sin az sin g(A+27) cos A = 0

15



2.4. CONVEXITY CONDITION

Let
f(A) = (sin ay cos az + cos o sin ag cos (A + 27)) sin A — sin ag sin (A + 27) cos A

To find the roots A of f(A), we resort to the Newton-Raphson method, namely, for

initial guess Ay,

f(Ai1)
Ay =0y — = 2.9
LA (29)
where
f(A) = (cosoysinazsinAsin (A + 27) + sin ag cos A cos p(A + 2m)) ¢’ (A + 27)
+ (sin a1 cos ag + cos aj sin ag cos ¢(A + 27)) cos A (2.10)

+ sin ag sin (A + 27) sin A

This procedure stops when ||A; — A;_;|| <, for a prescribed tolerance e. Once
the value of A is found, the cam profile is closed, with ¥, = —A and Y0, = 27 + A,
ie.,

_A:¢m1n§¢s¢mam=277+A

and hence, 9 takes on values in the interval [—-A, 27 + A].

2.4. Convexity Condition

The conic contact surface of a cam profile shows a concavity if the geodetic
curvature of the pitch curve I' changes its sign, which happens when the numerator
of the geodetic curvature vanishes.The condition for a conver cam profile is, therefore,

that the numerator of the geodetic curvature do not change its positive sign, i.e.,
e’(e' xe’)>0 (2.11)
To obtain an expression for the convexity condition we substitute the unit vector
of the pitch curve e, into eq.(2.11), the first and second derivatives of this vector

16



2.4. CONVEXITY CONDITION

being found with computer algebra, which yields the expression
F() = Acos® ¢+ Beos> ¢+ Ccos¢p+ D > 0 (2.12)

where

3 3

A = sin® aqsin® ag
= 3sin? oy cosas (¢ sin? g + cos oy cos® az + cos )
_ : . /2 1 3 2.2
= sina;sinaz ¢(1 — 3sin” a3)
. . ’ .
+3cosa; sina; sinag ¢ (2 sin? a3 — 1)
+ sina; sinag (3 cos® oy cos? a3 — 1)

2 oz cos ag ¢’

D = sin¢gsina;sinas ¢” —sin
+ 3 a2 12
cos o sin” a3 cos g ¢

+ cosa; cosaz (1 — cos® oy cos® az)

We call eq.(2.12) the convezity condition for spherical cams. This expression is

apparently given in terms of the cosine of the input-output function ¢(v).

A cam contact surface is thus convez if and only if F(¢) of eq.(2.12) is non-

negative for any real value of 1.

2.4.1. Concavity-Occurrence in the Cam Profile If the geodetic curva-
ture of the cam vanishes and a change in sign is produced, then a concavity in the
cam profile arises. To find the value of ¢ at which the concavity occurs, we need the
roots of F'(v), with F(¢) = 0 defined in the convexity condition eq.(2.12), thereby

deriving a cubic polynomial equation in cos ¢, namely,
F() = Acos® ¢+ Beos* ¢+ Ccos¢p+ D =0

17



2.4. CONVEXITY CONDITION

To find the roots of the above equation, let cos ¢ = x which yields

Az*+B2*°+Cz+D=0 (2.13)

From eq.(2.12) it is apparent that the coefficient A never vanishes because the
values of a; and a3 are bounded as: 0 < a; < 90° and 0 < a3 < 90°; therefore, we

can safely normalize eq.(2.13) upon dividing its two sides by A, thus obtaining

f(x)za:?’-i—-g-xz—l-%w—l—%zo (2.14)

There can be up to three real roots for this polynomial, each root defining two
values of 1. The real roots of the polynomial lie in the interval [—1,1]. To find the
number of real roots of a polynomial in a given interval we recall Sturm’s theorem

(Merlet, 1993): Let fo(z) = 0 be a polynomial of degree n in x

n
fo(z) = Zaixi =0
0
Considering the first derivative of this polynomial with respect to z,

fi(z) = folz)

the number of real roots of the equation f(x) = 0 in the interval [z1, z5] is obtained as
the number of sign changes in the sequence fi(z1), fiv1(z1), i€ [0,n — 1] minus the

number of sign changes in the sequence fi(z2), fir1(z2), i€ [0,n —1].

Figure 2.6a shows the synthesized cam profile of a Speed-o-Cam mechanism with
o1 = 90°% a3 = 80° and V = 8. For those values, the cam profile exhibits a concavity
in the interval 151.74° < ¢ < 208.26°. From Fig. 2.6b we can see that the geodetic

curvature vanishes and changes its sign.

Figure 2.7a shows the synthesized cam profile of a Speed-o-Cam mechanism with

o1 = 90° oz = 73° and NV = 8. For those values the cam profile is fully convex. In

18



2.4. CONVEXITY CONDITION
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FIGURE 2.6. Synthesized concave cam (a) and its geodetic curvature (b)

Fig. 2.6b we can see that the geodetic curvature of the convex cam profile does not

vanish.

08k ! 2BF - e
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FIGURE 2.7. Synthesized convex cam (a) and its geodetic curvature (b)

From Figures 2.6b and 2.7b we can observe that the concave cam profile has a
higher change of curvature with a peak-to-peak value of 33.79, vs. 0.95 for the convex

cam profile.
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2.4. CONVEXITY CONDITION

F(w)
F(y)

180 200 250 300 350 o 50 100 150 200
PSl(degrees) PSl(degrees)

(a) (b)

FIGURE 2.8. Convexity condition F'(¢) vs. ¢: (a) for the concave cam; and
(b) for the convex cam

Figure 2.8 shows the plots of the convexity condition F'(¢) vs. ¥ of the synthesized
concave and convex cams. From Fig. 2.8a notice that F(1) reaches negative values,

which indicates the concavity in the profile.

Figure 2.9 shows the cam profile generated in PRO/ENGINEER for the convex
profile.

FIGURE 2.9. Convex cam profile
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CHAPTER 3

The Optimum Synthesis of a Spherical

Stephenson Mechanism

In order to avoid the use of two conjugate cams mounted on the same shaft of the
epicyclic transmission of Fig. 1.3, we develop here an alternative mechanism. This
mechanism is intended to replace the hub that carries the conjugate-cam subassem-
blies of that epicyclic transmission. The layout of the alternative mechanism is shown
in Fig. 1.5. This mechanism consists of two pairs of spherical Stephenson mechanisms,
one pair being the main mechanism (M), the other its mirror image (I). From Fig. 1.5
we can see that the two output links of the two main mechanisms are connected to
the corresponding output links of the mirror-image mechanisms in order to transmit
the same motion at the same angular velocity. This arrangement has the peculiar-
ity that the input shafts of the two main mechanisms rotate with the same angular
velocity but in a direction opposite that of the input shafts of the two mirror-image
mechanisms. |

To create a symmetric layout, the input shaft of each of the two pairs of mechanisms
makes an angle of 135° with respect to each of their output shafts.

Using this layout, the design of the mechanism will simplify: Instead of designing four
spherical Stephenson mechanisms, we design only one mechanism; its mirror image

is used for the second pair.



3.1. THE SPHERICAL STEPHENSON MECHANISM

FIGURE 3.1. Spherical Stephenson mechanism

In order to design the spherical Stephenson mechanism of interest, we resort to the
synthesis equations of its four- and five-bar loops; then, we proceed finding a single
input-output (I0) equation that contains the input and the two output angles as well

as the mechanism link dimensions. This procedure is reported in the sections below.

3.1. The Spherical Stephenson Mechanism

The classical Stephenson mechanism is a six-bar planar linkage that was originally
designed to control the motion of a steam engine (Primrose, Freudenstein and Roth,
1967). The kinematic chain of a spherical Stephenson mechanism is illustrated in
Fig. 3.1. This mechanism comprises six links connected by seven revolute joints; laid
out in two loops, the four-bar loop (left-hand side) and the five-bar loop (right-hand

side) are coupled by means of a ternary link. This mechanism is known to have a
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3.1. THE SPHERICAL STEPHENSON MECHANISM

single degree of freedom, hence, one single input joint drives the mechanism. For the
sake of conciseness, we refer to the various binary links by the labels of the arcs that
define every such link. Due to our design requirements, we chose the link oy as the

input link and the links as and ag as the output links.

For the layout shown in Fig. 1.5, the four spherical Stephenson mechanisms make
up a total of 24 links, but we need to consider that four of the links are counted twice,
and that the fixed link is common to all four mechanisms, the total number of links
then being

[=4(6)—-4-3=17

For the same layout, we have a total of 28 revolute joints, but four of these are

counted twice, the total number of joints then being

j=4(7)—4=24

Using the Chebyshev-Gribler-Kutzbach (CGK) formula (Hervé, 1978; Angeles,
2003), to find the degree-of-freedom (dof) f of the layout, we have,

=617 1) — 5(24) = 24

However, the above result is wrong, for it predicts a hyperstatic structure, while
the mechanism moves with a dof f = 1. To prove this, we recall, the double Cardan

joint or double universal joint used in terrestrial vehicles, as illustrated in Fig. 3.2.

The double Cardan joint is used to transmit motion from the motor of the vehicle
to the differential gear train, located in Fig. 3.2 inside the “load” block. As is well
known, the entire mechanism depicted in Fig. 3.2 has a dof f = 1, which can be

shown by resorting to group theory, as proposed by Hervé (1978).

In his 1978 paper, Hervé proposed a classification of mechanisms, for purposes of

dof-determination, based on group theory. The concepts in this breakthrough paper
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3.1. THE SPHERICAL STEPHENSON MECHANISM

Chain # 1

Motor j@
i0 | Chain #2
]

Cardan shaft

FI1GURE 3.2. Double Cardan joint used in vehicles

have, unfortunately, remained unnoticed in the mechanisms community, probably

because it was written in French. Hervé’s classification is outlined in (Angeles, 1982).

Accordingly, mechanisms are classified into

(a)

Trivial, when the mechanism links are all constrained to move with dis-
placements belonging to one single displacement subgroup out of the 12
subgroups of the displacement group. These subgroups are the six gener-
ated by the corresponding lower kinematic pairs (Hartenberg and Denavit,
1964)—revolute, prismatic, screw, cylindrical, planar and spherical-—plus
other six resulting as combinations of the former: the planar translation;
the spatial translation; the translating screw; the Schonflies subgroup; the
identity subgroup; and the displacement subgroup itself.

Exceptional, when the mechanism links are all constrained to move with
displacements (i) not belonging to one single proper subgroup®, but rather
to a set of subgroups}, and (47) the intersection of these subgroups is a sub-
group. The dof of the mechanism, then, is the dimension of the intersection

subgroup.

1A proper subgroup of a group G is any subgroup of G, excluding G itself.
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3.1. THE SPHERICAL STEPHENSON MECHANISM

(c) Paradozical, when the mechanism links are all constrained to move with
displacements including at least one subset that is not a subgroup. Exam-
ples of this class abound in the literature, namely, the Bennett linkage, the
Bricard mechanism, the planar double-parallelogram linkage, etc. These

mechanisms are sometimes referred to as maverick or overconstrained.

Under the above classification, it is now a simple matter to realize that the links
of the double universal joint of Fig. 3.2 are constrained to move with displacements
of two subgroups: the spherical subgroups with centres at O and P, respectively.
The intersection of these two subgroups is that generated by the revolute of axis OP,
whose dimension is unity, hence, under Hervé’s classification, this is an exceptional

mechanism. The double universal joint thus has a dof f = 1.

Following the same procedure as above, in order to find the dof of the layout of
Fig. 1.5, we proceed first by separating the mechanism of the same figure into two
chains, as shown in Fig. 3.3, chain # 2 being the mirror-image of chain # 1 with
respect to a plane perpendicular to axes As and A4, passing through the point of
intersection of axes A; and A,. Chain # 1 contains a main spherical Stephenson
mechanism M, interconnected to its mirror-image mechanism I via shaft 5;. Since
each spherical Stephenson mechanism has a dof f = 1 and the two are interconnected
by the common shaft S;, chain # 1 has also a dof f = 1. The same occurs for
chain # 2, which is the mirror-image of chain # 1, and is formed also by two spherical

Stephenson mechanisms interconnected via shaft Ss.

Now, each of the two subchains produced by the above cut having a single dof,
it can be driven by one single input, namely, the angular velocity 1 of its camshaft,
of axis A,. This subchain, then, has three outputs, those of A;, A3 and A4. The two
outputs about shaft A4 are 4, those about A3 are —. As a result, the two shaft pairs
of axis Az and those of axis A4 can be interconnected, for each pair is compatible.
As a result, the interconnected mechanism of Fig. 1.5 is endowed with a single dof,

and hence, can be driven with one single motor, driving either of the two shafts of
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3.2. LOOP EQUATION

W(Ij"l

FIGURE 3.3. The layout of the alternative mechanism separated in two chains

axis A;. As a matter of fact, in the pitch-roll wrist under design, these two shafts
are driven by means of motions impinged to their cams by the rollers in contact with

them and carried by the plates driven by the two wrist motors.

Below we explain the procedure used to obtain the equations of the four-bar and

five-bar loops of this alternative mechanism.

3.2. Loop Equation

In order to find the four and five-bar loop equations, we resort to the method
introduced by Wampler (2004). In this method, the first step is to define a set of

coordinate axes at each joint aligning the z-axis with the axis of rotation of the joint.
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3.2. LOOP EQUATION

The z and y axes can be given any orientation normal to 2, so as to form a right-
handed orthbgonal coordinate system. The assumption that the links are rigid implies
that the relative orientation between any two coordinate systems fixed to the same
link is constant. Such rotations are called “side rotations” of the link. The z-axis is
taken as the axis of rotation for the side rotations. In traversing a loop of a spherical
mechanism, two types of rotations are found joint rotations, which are variable, and

side rotations, which are constant. A typical loop matrix equation has the form
7151728 .. Zy 1Sk 1ZxSk = 1 (3.1)
where Z; is a joint rotation about the z-axis, through angle 6;, namely,

cosf; —sinb; 0-

Z;= | sinf; cosf; O

0 0 1

in link-fixed coordinates. Further, S; is a side rotation about the z-axis, through

angle oy, namely,

Si=| 0 cosa; —sing;

0 sinoa; cosq;

and 1 is the 3 x 3 identity matrix.

3.2.1. Rotation-Matrix Formulation The second step in Wampler’s method
is to eliminate the two joint rotations Z; and Zj; from the loop equation matrix,

eq.(3.1), to end up with a single trigonometric loop equation.

Letting z; = [0 0 1]7, we observe that 27Z; = 2T and Z;z; = z, where z =
[0 0 1]T. Thus, we can eliminate the two joint rotations, Z; and Zj; from eq.(3.1)

upon multiplying its two sides by STz, and then multiplying the equation thus
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3.3. THE FOUR-BAR LOOP

resulting from the left by zT, namely,
277.81Z5S; . .. Zy_ 1Sk 1212k = 7] S} 7
which can be readily simplified to yield
2781755, ... Zy_1Sk_12 = 71 Sizk (3.2)
the right-hand side being the (3,3) entry of Si.

Equation (3.2) is the loop equation in trigonometric form.

3.3. The Four-Bar Loop

FIGURE 3.4. The four-bar loop

To find the four-bar loop equation based on Wampler’s method we proceed by
defining the coordinate axes at each joint, as shown in Fig. 3.4. To end up with a

loop equation in trigonometric form as a function only of the input and output angles
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3.3. THE FOUR-BAR LOOP

~ and v, respectively, we chose the loop equation so as to eliminate the two other

joint angles. Hence, the loop equation is taken as

where ) )
cosy —siny 0
Z,=| siny cosyy O
| 0 0 1
[ cosf3 —sinf3 0
Zs= | sinf; cosf; O
| 0 0 1

Z4S4Z181Z282Z3Sg =1

—cosy —siny 0
siny —cosvy 0
0 0 1

cosfy —sind, OT

sinfy cosfs O

0 0 1

Wampler’s method uses exterior angles at each vertex, instead of interior angles,

matrix Zs being a function of the interior angle v. Moreover,

1

Si=10

Ss

Il
o

0
CoS Qp

sin oy

COS i3

sin a3

0

—sinay

Cos oy

— sin ag

COS (3

S, =

Sy =

1 0 0

0 cosay —sinag
0 sinay cosay
1 0 0

0 cosay —sinay
0 sinag  cosay
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3.4. THE FIVE-BAR LOOP

We eliminate the joint matrices Z3 and Z, from eq.(3.3) to have the loop equation

in terms of the input and output angles alone. We do this by means of the relation
25 7.4847,8,Z58:Z323 = 7, S 73
whence the loop equation is obtained as

zTS42181Z282z = ZIS?Z;} (34)

Equation (3.4) yields the loop-equation of the four-bar loop in trigonometric form,

namely,
f(v, ;) = sinagsinaysinysiny + cos a; sin a; sin oy cosy cos P
+ sin o Sin ag cos oy cos f — sin oy €os ag sin ay COS Y
+ cos ] COS Qg COS g — cos g = 0 (3.5)
in which
a = [a) ag az ay) (3.6)

Equation (3.5) is the input-output (10) equation of the four-bar linkage.

3.4. The Five-Bar Loop

Figure 3.5 shows the coordinate axes at each joint, of the five-bar loop. For
this loop we also want to end up with a loop-equation in trigonometric form that
contains the input and output angles ¥ and ¢ only, and no other joint angle of the
loop. From Fig. 3.5 we can see that now we have five joints, from which we can
eliminate only two by their respective joint rotations, so that the trigonometric form
of the loop equation, besides the input and output angles, will contain an extra joint
angle. Hence, we chose the loop equation in a form that allows us to eliminate the

joint rotations Zs and Zgy, and keep the joint rotations Zg and Z7 that represent the
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3.4. THE FIVE-BAR LOOP

FIGURE 3.5. The five-bar loop

output and input angles as well as the joint rotation Zg; the latter is common to both

the four-bar and the five-bar loops of the spherical Stephenson mechanism.

Thus, the loop-equation that we choose is

where

cos O5

sin 95

—sin @y
cos 05

0

0

0

Zg =

ZgSngSgZ7S7ZGSGZ5S5 =1

cos¢ —sing O’—
sing cos¢ O

0 0 1

(3.7)
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3.4. THE FIVE-BAR LOOP

—costY —siny O ] —cosfy —sinfg 0
Z;=| siny —cosy O |, Zg=| sinfly —cosfs O
|0 0 1] o 0 1]

cosfy —sinfy O

Zy = | sinfy cosfy O

0 0 1

Matrices Z7 and Zg are formulated to involve the internal angles ¥ and g, re-

spectively. Moreover,

1 0 0 1 0 0
Ss=|0 cosas —sinas [, Se= | 0 cosag —sinag
| 0 sinay  cosas | | 0 sinag  cosag
(1 0 0o | (1 0 0 |
S7=10 cosa; —sinay |, Ss= | 0 cosay —sinay
i 0 sinay; cosar | i 0 sinag cosay
(1 0 0 |
So= | 0 cosaj - sinaj
| 0 sinaj  cosaj

In order to eliminate the joint rotations Zs and Zg we resort to the relation

ZngSgZSng7S7ZGSGZ5Z5 = ZgSgZLr,
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3.4. THE FIVE-BAR LOOP

which simplifies to
27 Sy ZsSsZ7S7Z6Sez = 72 St 75 (3.8)

Furthermore, to eliminate the undesired angle fg, we express both cosfg and

sin fg using what is known as the tan-half formulas, namely,

cos B = f:g sin 0 — 12Jf8t§, ts = tan(ds/2) (3.9)
With these substitutions, we define Zg as
[ —(1—1t3) -2t 0o |
Zs = 2ty  —(1—t2) 0
|0 0 (1+13) |
Thus, eq.(3.8) becomes
27'S9ZsSs77S7Z6S6z = 72 St 75(1 + 13) (3.10)

Equation (3.10) yields the five-bar loop equation in trigonometric form, namely,

g(ts;, ¢;&) = Ata + Btg+C =0 (3.11)

where
a=lof a4 a5 ag o]’ (3.12)
Ay, ¢; &) = — sin i sin ¢ sin ¢ sin a3 cos oy — €OS (g — Sin (g €S ¢ sin oy sin g sin ay

— sin g COS ¢ oS a7 COS P Sin ag COS (g — Sin g COS ¢ sin a7 COS ag COS Q4
. . . A . .

-+ sin o sin ¢ sin Y cos /5 sin oy + sin ag €os ¢ cos air cos P €os ag sin ay

~+ COoS g Sin a7 cos P cos ag sin a4 + cos ag cos vy sin ag sin ay

+ COS 0y COS vy COS (Y COS (g — COS (g SN Cry COS P Sin (g COS Yy
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3.5. THE 10 EQUATION OF THE SPHERICAL STEPHENSON MECHANISM

B(1, ¢; &) = 2 sin o co8s ¢ cos a7 Sin aig sin ¢ — 2 sin ag sin @ sin o cos ¥
+ 2 cos o sin ary sin o sin ¥
C (v, ¢; &) = — sin ag cos ¢ sin a7 cos aig COS (4 + SIn (g COS P COS (v7 COS P COS Oy Sin Ay
+ oS oy sin vy cos 1 sin oy cos auy + sin o Sin ¢ sin ¢ sin g cos oy
+ sin o sin ¢ sin ¢ cos o sin ay + sin ag cos ¢ sin a7 sin o sin oy
— COS (g COS (ry SiN Y SiN (ug + COS (g COS QU7 COS (g COS g

+ sin ag €OS ¢ COS vy COS P sin (g COS ay

3.5. The 10 Equation of the Spherical Stephenson Mechanism

The subject of this section is the derivation of a single IO equation for the spherical

Stephenson mechanism that includes only the input angle 1 and the two output angles

~ and ¢.

We can also have eq.(3.5) as a function of 5. From Fig. 3.1 we notice that

i+ B+ 0g = 2m; from the same figure we can find an equation for angle i, namely,

COS (¥] COS (tg — COS (¥ COS (g + Sin (g sin arg cos 7y

Cos jt = : , (3.13)
sin a3 sin oy
whence an expression for cos~ is readily derived:
sin a3 sin ay COS (4 — COS ¥y COS Qig + COS (¥3 COS Oy
cosy = (3.14)

sin o sin o

Substituting u = 27 — (3 + 6s) into eq.(3.14) we have a new expression for cosy,

namely,

sin g sin ay(cos 5 cos B — sin Fsin g) — cos a; cos @ + COS a3 COS Qg

cosy = (3.15)

sin av sin o

The foregoing expression is now substituted into eq.(3.5), while cosfg and sin g

are expressed using the tang-half-angle formulas, eqs.(3.9). Hence the four-bar loop
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3.5. THE 10 EQUATION OF THE SPHERICAL STEPHENSON MECHANISM

equation in trigonometric form is now
f(ts;,v; e, ) = Dtz + Etg + F =0 (3.16)
where

D(%,v; ¢, ) = cos 9 cos o sin a3 cos [ cos ai + sin ay cos 1 coS ary COS (3 COS iy
+ sin g sin a4 sin v sin «y sin a; — cos ¥ cos a sin a3 cos 3
— COS (v4 SIn o sin az sin a4 cos 3 + cos ai sin ovp cos a3
— COS (g SN (yg COS 1P — COS (v3 Sin oy
E(2,v; @, B) = —2 cos 1 cos a; sin a3 sin 8 + 2 cos 1) cos o sin a3 sin 3 cos o]
—2 €os ay sin o sin a3 sin ay sin 3
F(1,v; a, 3) = cos 1 cos a; sin a3 cos 3 — cos 1 cos oy sin a cos (3 cos a2
— COS (rg Sin (yy COS Y + Sin (yy COS P COS Qry COS vz COS iy
+ sin arg Sin oy sin ¢ sin vy sin @y + cos ai sin oy cos a3

— COS (r3 SIn (v1 + COS (g sin < sin a3 8in oy cos
3.5.1. Elimination Procedure To obtain the 10 equation for the spherical

Stephenson mechanism, we have to eliminate tg from eqs.(3.11 & 3.16). This can be

done by means of dialytic elimination (Salmon, 1885), as discussed below.
We recall here egs.(3.11) and (3.16) for quick reference:
gts;, ;&) = Atz + Btg +C =0 (3.17a)

flts; b, 7@, 8) = Dtz + Etg + F =0 (3.17b)

In order to eliminate ¢3 from the above two equations, we proceed to deriving two
additional equations from egs.(3.17a & b). We do this by multiplying the two sides of

each of these equations by tg, thereby obtaining a total of four polynomial equations
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3.5. THE 10 EQUATION OF THE SPHERICAL STEPHENSON MECHANISM
in tg, namely,

Aty + Bt; + Ctg=0
D3+ Et; + Ftg=0
At:+ Btg +C =0

Dtz + Etg+ F=0
Now we write the above four equations in linear homogeneous form, namely,
Mts = 0 (3.18)

where the 4 x 4 matrix M and the 4-dimensional vector tg are defined as

A B C 0 t3

D E F 0 t%
M = )t8:

0 A B C ts

0 D E F 1

From eq.(3.18) it is apparent that a nontrivial solution is possible if and only if M is
singular. Hence, the desired IO equation for the spherical Stephenson mechanism is

derived from the singularity condition of M, i.e.,
a(¥,7, ¢; &, B) = det(M) = 0 (3.19)
with,

&= [0y ag a3 o ag as ag aq]T (3.20)

det(M) = AEBF — ACE? — A’F?> + 2 ADFC — DB?F + DBCE — D*C? (3.21)
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3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

3.6. Dimensional Synthesis of the Spherical Stephenson Mech-

anism

Equation (3.19) expresses the relationship among all link dimensions and the
angles 9, v and ¢, with ¢ as the input, the others as output. This equation can be
used for either the analysis of the spherical Stephenson mechanism with a given set

of linkage dimensions or its dimensional synthesis.

To synthesize the spherical Stephenson mechanism, we define first the design
vector y as

y = lo1 ap a3 o aq as ag a7 B)F (3.22)

If the desired motion of a spherical Stephenson mechanism is specified by m
input-output triads {ty,v;, ¢;},, with m > 9, the dimension of y, then a problem

of approximate synthesis is formulated.

Substituting {1, vi, ¢; }1*, into eq.(3.19), we obtain
g = q(di;y) = det(M;) =0 (3.23)

where d; = [¢; v; ¢i]7, for i = 1,...,m, and M; is a function of the ith input-output
triad.

For the input-output triads we change the location of the zeros to consider in the
synthesis the initial position of the mechanism. To this end, we rewrite the input and

output angles in an incremental form, in terms of {AY;, Ay, Ad}R,, Lee.,

Y =P + At
Yi=" + Ay
b= do + Ad;
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3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

where 10, 70 and ¢ are the reference angles that are now grouped in an 12-dimensional

design vector y:

¥ =[on as az a3 ag as ag a7 B Yo do ¥olT
Then, eq.(3.19) takes the form
q(Ad;y) =0

where

Adi = [A’QZJ, A’)/, A¢i]T, 1= ]., oo,

Using the tan-half formulas, let

zr;=tan(oy/2), i=1,...,7 (3.24a)
zg = tan(aj/2) (3.24b)
zo =tan(3/2) (3.24c)
10 = tan(1o/2) (3.24d)
z11 = tan(vyo/2) (3.24e)
z12 = tan(¢go/2) (3.24f)

and
cos o = 1 ;zzz sina; = %, i=1.. (3.25a)
cosaf = 1 _T_ zg sinaf = 12_—:523— (3.25b)
cos 8= 1 _|__ zg sin 8 = 1?13 (3.25¢)
cos oy = 1 ~ ﬁz sinp = 119”;?%0 (3.25d)
cosyy = 1 -I_- i% sinyp = l?f;lfl (3.25€)
cos ¢ = 1 _—}—_ﬁz sin ¢g = 1?;2%2 (3.251)



3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

thereby defining a system of m > 12 nonlinear equations in 12 unknowns, namely,
qx) =0

where x = [z1,...,%12)7. This is an overdetermined system of nonlinear equations
whose least square approximation yields the optimum linkage sought. The associated

unconstrained nonlinear least-square problem is thus

1
#(x) = 5 4"Wq - min

where W is an m X m positive-definite weighting matrix. When all the m nonlinear
equations of vector q are considered with the same weight, the weighting matrix W

can be defined as a multiple of the m x m identity matrix, namely,

1
W=—1
m

In order to reduce vibrations, the input link and the two output links should be
capable of a full rotation. We define first the pairs of angles {1;,v;}2; from the
corresponding four-bar linkage with input and output cranks. Below we explain how

this linkage is found.

3.6.1. Spherical Drag-Link Mechanism We need a four-bar spherical link-
age of the drag-link type, i.e., of the crank-crank type, with a good transmission
quality, i.e., a good force transmission by avoiding large absolute values of the cosine

of the transmission angle (Angeles and Bernier, 1987).

For the design of this spherical drag-link mechanism we resort to the concept of
zero-mean linkages, as proposed by Zanganeh and Angeles (1994). This concept is

described in the subsection below.

Zero-Mean Linkages. From Fig. 3.6 and eq.(3.5), the IO equation of the spher-

ical four-bar linkage, expressed in terms of Freudenstein parameters is written as
f(8,0,k) = ky — kycoso + kscos§ + kycosdcoso + sindsineg = 0 (3.26)
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F1GURE 3.6. The 4 bar mechanism

where k = [k, ko, k3, k4]T is the Freudenstein-parameter vector, with the definitions

below:

COS (¥1 COS (g COS (xqg — COS (i3
S1I1 (g S1N Oiyg

sin vy cos oy

fy = SR01C0502 (3.27b)
SN ey

iy = S C1 008 O (3.27¢)
sin oy

k4= cos oy (3.27d)

For this mechanism, the cosine of the transmission angle p is given by

COS (v COS Qg — COS (3 COS (g + Sin o sin ap cos &
cos = (3.28)

sin g sin ay

As introduced in (Gosselin and Angeles, 1989) the transmission quality of a four-

bar mechanism is

1 2w
Q=5 /O sin? p d§ (3.29)
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3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

its complement being the transmission defect, defined as:

1 2m
D=— cos? p d§ (3.30)
27 0
Hence,
Q+D=1

It is apparent that the transmission quality is maximized if the transmission

defect is minimized.

From eq.(3.28) the cosine of the transmission angle can be written as

Cos it = ¢ + c2 086 (3.31)
where

COS (¥1 COS (xg — COS (¥3 COS (Y4
T = - - (3328.)
sin o3 Sin Gy

o = nMEDo2 (3.32b)

sin oz sin ay

Thus, D becomes, for an input crank,

L
D=c+ 5 cz (3.33)

where ¢? and c2 are positive-semidefinite and positive-definite quantities, respectively,

i.e.,

c2>0, ¢2>0

Thus, the second term of the right-hand side of eq.(3.33) cannot vanish, whereas
the first one can. This leads to the definition of a specific class of linkages, called
zero-mean linkages, for which ¢; = 0. From eq.(3.31) it is apparent that ¢; and 1/2 c2

are, in fact, the expected value and the variance of the cosine of the transmission
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3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

angle i.e.,

c5 = Var(cos p)

DN | b=

c1 = E(cos p);

When substituting cos o; and sin o; in terms of the Freudenstein parameters k;,

fori=1,...,4, in eq.(3.32a), with ¢; equated to zero, we obtain
koks + k1ks =0 (3.34)

as the zero-mean condition for spherical four-bar linkages (Gosselin and Angeles,

1989).

The expression for D under the zero-mean condition becomes

1,  (I=7)A
D=se=mrm-®

(3.35)
where

T = [koksks — k1 (1 — E)][1 + k2 — k2)N]V/2

A=1+k} -k}
Mobility Conditions. The general mobility conditions for a spherical four-bar

linkage (Zanganeh and Angeles, 1994) for the input link are in terms of the Freudestein

parameters,

(k3 -+ k1)2 S (k4 - k2)2 (336&)

(ks — k1)? < (kg + k2)? (3.36Db)

The corresponding conditions for the output link are
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3.6. DIMENSIONAL SYNTHESIS OF THE SPHERICAL STEPHENSON MECHANISM

(ky — k2)? < (ks + ky)? (3.36¢)

(ky + k)2 < (k3 + ky)? (3.36d)

For drag-link spherical linkages the inequalities (3.36a—d) must be satisfied simul-
taneously. Thus, using the zero-mean condition, the general mobility conditions can

be simplified as (Zanganeh and Angeles, 1994)

k2 < k3 (3.37a)
k2 <k? (3.37b)
K2 <k2 (3.37c)
k2<1 (3.37d)

Constrained Optimization with Arbitrary Objective Function. The soft-
ware library ODA, developed by ChinPun Teng in 1999 at McGill University, was
used to obtain the optimum design of the spherical drag-link mechanism. This li-
brary is based on the Orthogonal-Decomposition Algorithm (Teng and Angeles, 2001).
ODA can handle several classes of optimization problems, such as unconstrained lin-
ear least-square problems (over-, under-, or determined system of equations), con-
strained linear least-square problems, unconstrained nonlinear least-square problems,
constrained nonlinear least-square problems, and constrained problems with an arbi-

trary objective function. In our case, we formulate the problem as
z=Dk) — mkin

subject the nonlinear equality constraints of eq.(3.34) and the nonlinear inequality

constraints of eqs.(3.37a—d). The latter were converted to equality constraints by
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means of slack variables {s;}3, taking the vector k of Freudestein parameters as the

design vector.

Notice that due to the features of our design, we already know the value oy = 135°,
which yields k4 from eq.(3.27d). This value was substituted in our formulation, thus
reducing the dimension of the design vector by one and eliminating the nonlinear

inequality constraint (3.37d).

The problem is now formulated as an equality-constrained optimization problem,

namely,
z = D(x) — min
subject to
gl(X) = k2k4 + k1k3 =0 (338&)
g(X)=ki —ki+si=0 (3.38b)
gs(x)=kj —ki+s5=0 (3.38¢)
ga(x)=ki —ki+s5=0 (3.38d)
In this formulation, the design vector is redifined as
X = [k‘l k?z k3 S1 89 Sg]T
but only the Freudestein parameters occur in z(x).
The solution obtained by the ODA package is
Zmin = 0.124764, x = [—0.007829 0.000125 0.002269] (3.39)

with s; = 0.707634, s; = —0.007828 and s3 = 0.707063.
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From eq.(3.39) we can see that the minimum linkage defect is about 12.48%;
hence, the mechanism has a transmission quality of 87.52%, which is acceptable?. A
transmission quality of 100% is unreachable because the transmission angle u changes

as the input angle changes.

Substituting the foregoing optimum values of the Freudestein parameters, with

ks = —0.707107, into eq.(3.27b—d) and solving for the link dimensions, we have:

oy = 135°, ap =89.99°, a3 =89.55°, w4 = 89.82°

These values are close to those of the universal joint (UJ), whose link dimensions

o, a3 and a4 take the value of 90°, with input and output axes at an angle of 45°

(180° — o).

Figure 3.7 shows the plots of the output angle ¢ vs. the input angle § of the main
mechanism and its conjugate. From the same figure we can see that the input and

output links are cranks.

Figure 3.8 shows the plot of the transmission angle u vs. the input angle é of
the main mechanism. We can see from this figure that the maximum and minimum
values of the transmission angle are 135° and 45°, respectively, these two values being
the sugested maximum and minimum allowed values of the transmission angle of
a four-bar linkage (Norton, 2001). The average of the transmission angle u of the
universal joint with input and output shaft axes at an angle of 45° is 90°, which is

the desired value for a good transmission quality.

At this point, we can conclude that the foregoing universal joint garantees both
a full rotation of the input and output angles and a good transmission quality, for the

given value of angle between input and output shaft axes.

20f course, what is acceptable is subjective. As a guideline, we looked at McGill University’s marking
scheme, under which the highest grade is A, that corresponds to a student’s performance ranging
from 85% to 100%.
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dvs o (UJ)
300 T T T T T T T

2001 ~ -

100 S o 1

o (degrees)
o

~100 « Main Mech.

-200

_300 1 1 1 1 1 1 1
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3 (degrees)

FIGURE 3.7. o vs. § for the main mechanism and its conjugate

3.6.2. Optimum Synthesis of the Spherical Stephenson Mechanism In
our design we have the freedom to choose any 10 function with the sole condition
that the input and output links be cranks. According to the linkage configurations
shown in Figs. 3.1 and 3.6, we make the pairs {1;,7;}]Z; equal to the pairs {03, & }12,
of the universal joint. In order to form the IO triads {¢s, v, ¢}, of the mechanism
under synthesis we make the set {¢;}", equal to {4;}", because this set corresponds

to a drag-link mechanism. Hence,
{5, %, ds}ims = {03, i, 8: 1y

Changing the zeros of the Input and Outputs Triads. We can take m = 360
in order to produce 360 triads {1, Vi, $:}2%, then substitute them into eq.(3.19) to
generate a vector q of dimension 360, whose ith component is F'(v;,y;, ¢i, &, 8). It
is also convenient to allow for the optimum location of the zeros of the input and
output triads (Liu and Angeles, 1993). This can be done if we regard the original IO
pairs as a set of input and output angle increments { A, Ay;, Ad 1. If 1o, vo and
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¢o represent the location of the zeros of the three foregoing angles, we then have

i =Y+ A, vi=v+ A%, ¢i=¢o+ Ag;

Geometrically, this means that we move all the points of the set {t;,v;, ;i }2%9
to an optimum relocation under a pure translation in the ¥-v-¢ space, given by the

values g, 7o and ¢o. Then, eq.(3.19) takes the form

F(o + Ay, yo + Ay, do + Ay, &, 3) = det(M) =0 (3.40)

Thus, from the above equation, we can formulate the synthesis problem at hand

as an unconstrained nonlinear least-square optimization problem.

Unconstrained Nonlinear Least-Square Problem. The synthesis problem is

defined as: Find an aproximate solution to the overdeterminated system of nonlinear

equations

q(x) =0

The transmission angle p vs 8 (UJ)

140 T T

T T T T T

130

120

110

100

0
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40 ) ) ) 1 1 i
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3 (degrees)

FIGURE 3.8. The transmission angle p vs 4.
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with the least-square error, where q and x are m- and n-dimensional vectors, respec-
tively, with m > n. The problem is described as

_ =T

26) = 5

Wq — min
X

with W defined as an m X m positive-definite weighting matrix, to be determined

according to problem needs.

From the features of our design, as explained in Chapter 1, we know that both
oq and oy are equal to 135°. These values are substituted into eq.(3.40); for the
remaining link dimensions, their cosine and sine function are then expressed in terms

of tan-half angle formulas, as shown below

COS Q1 = 1;—22 ,  Sinaie; = %, 1=1,2 (3.41a)
cos oy = 1;—22 , sinog= 12_}?‘;% (3.41b)
cosai=;z§ , sinaz—lixi?, i=4,56 (3.41c)
cos 3 = 1 _—;zz , sinf= 1?;% (3.41d)

The angles g, v and ¢y, are also

mulas, namely,

1— a2

cos iy =
1+ z2
1—x2

COSYp =
14232

Ccos g =
%0 1+ z2,

expressed in terms of the tan-half angle for-

2
. singp = rx; (3.41e)
8
) 2z
,  sinyo =g +;3 (3.41f)
) 2z
,  singg = g ;)%0 (3.41g)

Thus, the design vector x is 10-dimensional.

Therefore, substituing egs.(3.41a-g) into eq.(3.40), vector q is now expressed as

a function of the design vector x of the input and output angle increments, as shown
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below:

360

Thus, the unconstrained nonlinear least-square problem is

22(X)

2aqT
2

Wq — min
X

(3.42)

If all the 360 components of vector q were considered with the same weight,

the weighting matrix W is defined as a multiple of the 360 x 360 identity matrix.

Moreover, if that multiple is given by 1/m, where m is the dimension of the design

vector, then z, is half the square of the rms error of the approximation of the m

nonlinear equations. In our case, m = 360.

The numerical solution obtained is

Xopt = [0.6814 0.8022 0.0181 0.8934 0.8036 0.9555 0.2313 0.0658 0.0652 0.0243]T

which yields e, = 2.24 x 1076,

Substituing X, into egs.(3.41a..d) we obtain the link dimensions of the mecha-

nism, namely,

831

8%

Q3

/
Qg3

Gy

Qs

Og

(8%

B

135°

68.54°

77.48°

2.07°

83.55°

77.57°

87.39°

135°

26.05°

while the locations of the zeros of the input and output angles are

Yo

Y0

o

7.53°

7.46°

2.78°

From the link dimensions we can see that the value of a3 is too small to be

practical. We can increase this value by forcing of to be close to 90°. This is done

by adjoining

/ —
COS Qg =

1—3:3_
1+22

2
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or

1-22=0 (3.43)

to the components of vector q. The dimension of q being now 361. Thus, the 361st

component of q is

2
gs61 = 1 — 35

We formulated the new optimization problem as an unconstrained weighted non-
linear least-square problem, taking the weighting matrix W as a 361 x 361 diagonal
matrix, namely,

W = diag(wi, wy, . . . , W3so, W3e1)

for normalized weights w; obeying
Z w; =1 (3.44)

The new optimization problem is thus

1
z3(x) = 5 q*Wq — min (3.45)
Taking into account eq.(3.44) for the numerical solution, we assign the same

weight to the first 360 equations, and a different weight to the 361st equation.
Table 3.1 shows the optimum solution for different weights chosen.

From Table 3.1 we can see that the numerical solution with the minimum e,
found was for

1= w2 = = 360—“3607

W3gl = 0.1
with
erms = 1.32 x 107°

For the these weights, the link dimensions are

03] Qg a3 Oé% 871 Ols Qg 844 B
135° | 84.75° | 70.25° | 88.99° | 86.08° | 76.99° | 83.23° | 135° | 56.85°
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Weights Qo o3 ol oy o la 08 Erms

w; = 0.9/360

waey = 0.1 | 84.75° | 70.25° | 88.99° | 86.08° | 76.99° | 83.23° | 56.85° | 1.32 x 10~°
w; = 0.8/360

wser = 0.2 | 85.32° | 70.85° | 89.19° | 87.24° | 76.56° | 83.81° | 59.62° | 2.14 x 10~*
w; = 0.7/360

waer = 0.3 | 85.25° | 70.72° | 89.50° | 87.27° | 76.51° | 83.69° | 59.37° | 3.22 x 10~*
w; = 0.6/360

waer = 0.4 | 86.29° | 71.78° | 89.99° | 90.63° | 74.85° | 84.46° | 64.90° | 3.14 x 1074
w; = 0.5/360

waer = 0.5 | 85.98° [ 70.84° | 89.99° | 90.51° | 74.68° | 83.91° | 63.53° | 1.89 x 10~*
w; = 0.4/360 :

wser = 0.6 | 85.67° | 71.12° | 89.99° | 90.27° | 75.16° | 84.17° | 63.16° | 4.91 x 10
w; = 0.3/360

wag = 0.7 | 84.82° | 70.19° | 90° |89.27° | 74.42° | 87.26° | 61.86° | 5.67 x 1073
w; = 0.2/360

wigr = 0.8 [ 85.08° | 70.32° | - 90° 90° |75.33° | 83.55° | 61.32° | 7.25 x 1073
w; = 0.1/360

wsg = 0.9 |85.06° [ 71.71° | 90° | 89.06° | 76.48° | 87.09° | 64.23° | 6.68 x 103

TABLE 3.1. Numerical results of the weighted nonlinear least-square optimization
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CHAPTER 4

Design Embodiment

The synthesized dimensions were adjusted to values that are practical to avoid large
manufacturing errors. Table 4.1 shows both the synthesized and the adjusted dimen-

sions of the spherical Stephenson mechanism.

We validate these results using PRO/ENGINEER, a CAD software package for
mechanical design and analysis, and its module PRO/MECHANICA, that provides

motion analysis, simulation and animation of complex mechanisms.

4.1. Input-Output Relations

It is noted that the change from the synthesized dimensions to the adjusted di-
mensions should affect the motion of the mechanism. Fig. 4.1 shows that there is a
small difference between the output angles of the synthesized and adjusted mecha-

nisms.

Mechanism || oy Qg O3 oy Qy Qs Qg g Js)
Synthesized || 135° | 84.75° | 70.25° | 88.99° | 86.08° | 76.99° | 83.23° | 135° | 56.85°
Adjusted || 135°| 85° 70° 90° 85° 75° 85° |135°| b55°
TABLE 4.1. Synthesized and adjusted dimensions of the spherical Stephen-

son mechanism '




4.1. INPUT-OUTPUT RELATIONS
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FIGURE 4.1. Output angles vs. 1 of the synthesized and adjusted mechanisms

From Fig. 4.1 we can see that the angles v and 1 attain values corresponding to
full mobility of the input and output links of the four-bar loop for the optimum values
of as and oy, as required. However, from the same Figure, the plot of the output
angle ¢, shows that the corresponding link a works as a rocker, with mobility within

the interval [205°, 318°].

In the optimization problem we expected a full rotatability of the above-mentioned
output link, but we did not impose any constraint on full rotatability. We could not
find such constraint in the literature and neither the rotatability of Spherical Stephen-
son mechanisms nor that of spherical five-bar linkages. The only information that we
have are theorems and corollaries of rotatability criteria of spherical five-bar linkages,

as reported by Kolhi and Khonji (1994).

We adopted the rocker output as a solution because it can also transmit the
motion from the main mechanism to its mirror image without changing the kinematics

of the whole system.
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4.3. THE VIRTUAL PROTOTYPE

The spherical Stephenson mechanism with the adjusted link dimensions is of the
crank-crank-rocker type.

4.2. Transmission Angles

Figures 4.2 and 4.3 show the plot of the transmission angles n and v, respec-
tively, of the Stephenson mechanism of Fig. 3.1. Angle n attains the maximum value
of 148.23° and a minimum of 49.1°, with an average of 98.66°. Angle v attains a
maximum value of 122.36° and a minimum of 37.89°, with an average of 80.12°. This

implies a deadlock-free transmission and a good transmission quality.

The transmission angle n vs y {4-BAR LOOP)
160 T

1 {degrees)

0 i i i i
[+] 50 100 150 200 250 300
.y (degrees)

FIGURE 4.2. Transmission angle n vs. ¥

4.3. The Virtual Prototype

Figure 4.4 shows the kinematic chain of the Stephenson mechanism, whose coupler
is a ternary link with the shape of a spherical triangle. This chain should be embodied

in such a way that interferences be avoided, while attending manufacturability and
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Transmission angle v vs v, (5-BAR LOOP)
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FIGURE 4.3. Transmission angle v vs. ¥

assemblability issues; for this reason, we shaped the coupler in a convinient form,

thereby obtaining the preliminary embodiment shown in Fig. 4.5.

FIGURE 4.4. Rendering of the kinematic chain of the optimum spherical
Stephenson mechanism
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W

FIGURE 4.5. Spherical Stephenson mechanism with a streamlined coupler link

Figure 4.6 shows the mirror image of the mechanism of Fig. 4.5; the reflected
mechanism was obtained as the mirror image of the given one with respect to the
plane passing through the centre of the mechanism and parallel to the unit vectors u

and v. The images of u, v and w are u’, v/ and w’, respectively.

FIGURE 4.6. Mirror image of the optimum spherical Stephenson mechanism
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Figure 4.7 shows the layout of the four mechanisms assembled.

>

FI1GURE 4.7. The four Stephenson mechanisms upon assembly

Figure 4.8 shows the final embodiment, in which the coupler link was designed
based on the standard cross of a commercial universal joint, and the input link was

shaped as a yoke, as displayed in Fig. 4.9.

FIGURE 4.8. Final embodiment of the solution mechanism
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4.3. THE VIRTUAL PROTOTYPE

FIGURE 4.9. Embodiment of the spherical Stephenson mechanism

More specifically, the coupler link was designed using the cross element of an
off-the-shelf universal joint, namely, the 302-0400 cross and bearing of G & G Manu-
facturing Co. of Omaha, Nebraska, to which a link on its end was added, along with
two housing-bearing caps, as shown in Fig. 4.10. We selected needle bearings, of SKF

RNAO 12 x 22 x 12 TN. The coupler will be assembled to the yoke by press-fitting.

FIGURE 4.10. The shaping of the coupler link

Below we outline the design of the structure supporting the chain of Stephenson

mechanisms.
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4.4. THE DESIGN OF THE MECHANISM MOUNTING

4.4. The Design of the Mechanism Mounting

FIGURE 4.11. Preliminary concept of the structure that will support the
four Stephenson mechanisms

Figure 4.11 shows a preliminary conceptual design for the structure supporting
the four Stephenson mechanisms upon assembly. This structure is built upon two
X-shaped elements, called the X-elements, each made up of two identical beams
intersecting each other at the midpoints of their axes. Each element, moreover, has
a cylindrical bore of axis normal to the common midplane of the pair of beams.
The bore is needed to lodge the}bearings that support the central element carrying
the four output shafts of the Stephenson mechanisms. We can anticipate a high
stress concentration occuring on the sharp corners of the X-elements, as predicted by
the theory of elasticity (Neuber 1961; Timoshenko and Woinowsky-Krieger, 1959).
Additionally, this structure needs four beams joining the X-elements, with a reduced
contact area to allow for a robust assembly; not only this, the preliminary concept
of Fig. 4.11 is unpleasant to the eye. In order to improve the design, we decided to

first round the corners of the X-element, to produce a low change in curvature, that
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would reduce the stress concentration, while providing for a flat surface on the sides
of the structure to receive the input-shaft bearings of the Stephenson mechanisms.
To this end, we can design the structure using conventional circular rounding in the
corners; however, since the blending of a circular arc with a line along a tangent
of the arc is continuous to the first order only (C'-continuity), we will have stress
concentration due to the curvature discontinuity at the points of the edges where
the circular rounding and the flat surface blend (Neuber 1961). Hence, we resort to
Lamé curves, that are C?-continuous. These curves were discovered by the French
mathematician Gabriel Lamé in the 1800’s and later used by the Danish inventor Piet
Heins, who called them superellipses (Gardiner, 1965). Lamé curves lie between the
ellipse and the rectangle. Just to mention one pertinent design application, the Lamé
curves or superellipses were used in the design of the Olympic Stadium in Mexico

City. The Lamé curves are recalled below.

The canonical form of the equation of the ellipse is,

)+ G- ()

Changing the exponents of eq.(4.1) to a more generic value p, we obtain the

equations of the Lamé curves, namely,

a

x|P P
[+ =1 (4.2)

b
in which increasing the integer exponent p, the curve looks more and more like a

rectangle. In the limit, as p — oo, the Lamé curve becomes a rectangle.

Lamé curves for p = 1, 2, 3, 4, 5 and 6 are shown Fig. 4.12 for a = 200 and
b = 100.

Figure 4.13 shows the curvature distribution « for each of the foregoing Lamé
curves, plotted in the interval [—200,0]. From the same figure, we can see that the

plots start from a value close to zero, to end with a value close to zero as well, that
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100
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FIGURE 4.12. Lamé curves forp=1, 2, 3, 4, 5 and 6

corresponds to the flat regions of the Lamé curves. The curve that has the highest

change in curvature is that for which p = 6.
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FIGURE 4.13. Curvature x vs. x for Lamé curves with exponents
p=1,2 3,4, 5and 6

61



4.4, THE DESIGN OF THE MECHANISM MOUNTING

To design the structure, that we call the cover, we select the Lamé curve for p = 4
for its inside surface, which gives us a reasonable change in curvature. For the outside

surface we select the Lamé curve for p = 6 that gives a pleasing appearence.

Now, the structure must enclose the chain of Stephenson linkages to support
them, but the structure must allow the assembly of the whole mechanism. Hence, a
structure made of one single part is out of the question. Apparently, the preliminary
design of Fig. 4.11 is composed of six parts, the two cross elements and the four
beams joining them. We should aim at a simpler design, i.e., one with fewer parts.
We decided to use four parts: two identical parts formed by (i) cutting the whole
structure into two identical halves and (ii) removing rectangular portions from each
half, which would be used to join the two halves upon assembly of the mechanism,

thereby ending up with a total of four parts for the structure.

Figure 4.14 shows the side view of the cover.

FIGURE 4.14. Side view of the designed cover based on Lamé curves

The assembly of the four parts of the structure, with the Stephenson mechanisms

removed, is shown in Fig. 4.15.
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FIGURE 4.15. The assembly of the cover

The assembly of the Stephenson mechanisms with their supporting structure,
the cover, the two conjugate spherical cams, the gripper and the counterweight are

displayed in Fig. 4.16.

FIGURE 4.16. Final embodiment with the design of the cover

The assembly of the final embodiment of the pitch-roll wrist that comprises the

two cams, the gripper, the counterweight and the roller-carrying disks is illustrated
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in Fig. 4.17. The two-dof pitch-roll wrist is to be actuated by two face-to-face motors

driving the two shafts mounted on the two supporting brackets.

FIGURE 4.17. Embodiment of the complete pitch-roll wrist
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CHAPTER 5

Concluding Remarks

5.1. Conclusions

The optimum design of a spherical epicyclic transmission based on the concept
of Speed-o-Cam reducers is the major subject of this thesis. This transmission is
intended to compete with its current counterpart based on bevel gears, and used
to produce the pitch and roll motions of a robotic gripper, what is called a pitch-
roll wrist. A previous design of the epicyclic transmission comprises three pairs of
conjugate-cam subassemblies that are virtually impossible to machine out of a sin-
gle blank, as needed for maximum accuracy. An alternative transmission, based on
spherical Stephenson mechanisms, was developed, as reported here, to replace the
previous design. The new transmission comprises two pairs of spherical Stephenson
mechanisms; one of each pair, is the main mechanism, the other its mirror image.
The assembled layout was explained in Chapter 1. Out of the two distinct spherical
mechanisms, we designed only one; the second was designed as the mirror image of

the main mechanism.

In order to improve the machining accuracy of the spherical cams, we introduced

in Chapter 2 a convexity condition that leads to a convex cam.



5.2. RECOMMENDATIONS FOR FUTURE RESEARCH

We described the design procedure of the spherical Stephenson mechanism in
Chapter 3. We proceeded by first deriving the synthesis equations of the four and five-
bar loops of the Stephenson mechanism using Wampler’s rotation-matrix formulation.
Then, we worked with the optimization of the four-bar loop using its loop equation and
the zero-mean condition to find the link dimensions that lead to a drag-link mechanism
with optimum transmission quality. The optimum mechanism has a transmission
angle with a symmetric distribution throughout a full rotation of the input link. By
dyalitic elimination, using the four and five-bar loop equations, we derived a single
equation involving the input and the two output angles of the Stephenson mechanism.
Taking into account the input-output pairs of the four-bar loop and the single equation
of the whole mechanism, we prescribed a set of 360 input-output triads to be met
with the synthesis equations. These were met approximately by means of least-square
optimization, to obtain the link dimensions of the optimum mechanism. The results
of the optimization were validated with a PRO/ENGINEER virtual prototype, as
reported in Chapter 4. |

5.2. Recommendations for Future Research

Future work expanding that reported here should include:

(i) A dynamical analysis of the mechanism.

(#4) The design of an inertially isotropic coupler of the spherical Stephenson
mechanism, in order to avoid shaking forces and moments on the device.

(443) A suitable geometric modeling of spherical mechanisms, as explained below.
PRO/ENGINEER is a CAD software that was not intended to model spher-
ical mechanisms, which are overconstrained versions of their spatial counter-
parts. The rounding error produced during the assembly of links whose di-
mensions and locations are not defined by integer values is a cause of major
alignment problems. The default assembly-tolerance in PRO/ENGINEER

does not allow for too much error. Generally, the problems of alignment
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start with the last links to assembly. In order to help the joint axes of those
links intersect at the centre of the mechanism, it is necessary to play with
the number of decimals and rounding-off of the numerical values of the last
links to assembly. The number of those decimals that we chose was four.
(iv) A design of the spherical linkages robust against manufacturing errors, pos-

sibly replacing some revolutes by cylindrical joints.

Last, but no means least, the designer should recognize the practical aspect of
designing spherical mechanisms. Manufacturing and assembly errors are bound to
make it extremely difficult to actually produce a highly overconstrained mechanism.
How to design robustly such mechanisms at an affordable cost is a challenging research

task that should be undertaken in the future.
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