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Abstract 

This work addresses the problem of robust stabilization and robust H= control of uncertain time-delay 

systems. The time-delays are considered to be present in the states and/or the outputs, and the uncertainties 

in the system representation are of the parametric norm-bounded type. Both cases of actuators, with and 

without saturation are studied, and the state-feedback and output-feedback control designs are presented. 

Two methods for analysis and synthesis of controllers are used: The first is based on the transfer function, 

and the second on the use of functionals. 

In the context of the design method based on transfer functions, the problem of H= output feedback design 

for a c1ass of un certain linear continuous-time or discrete-time systems, with delayed states and/or outputs 

(only for the continuous-time case), and norm-bounded parametric uncertainties is considered. The 

objective is to design a linear output feedback controller such that, for the unknown state and output time­

delays and all admissible norm-bounded parameter uncertainties, the feedback system remains robustly 

stable and the transfer function from the exogenous disturbances to the state-error outputs meets the 

prescribed H = norm upper-bound constraint. The output feedback structure does not depend on the time­

delay. The conditions for the existence of the desired robust H= output feedback and the analytical 

expression of these controllers, are then characterized in terms of matrix Riccati-type inequalities. In the 

continuous-time context, both the time-invariant and the time-varying cases are treated. Finally, examples 

are presented to demonstrate the validity and the solvability of the proposed design methods. 

In the context ofthe design method based on the use offunctionals, the state-feedback H= control problem 

is first presented for continuous-time, finite-horizon, time-varying linear neutral systems with parametric 

uncertainties entering aU the matrices of the system representation. The controller is given as the solution to 
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a set of differential matrix inequalities by employing a descriptor model transformation of the system and a 

least conservative Lyapunov-Krasovskii functional. The conditions that guarantee robust H~ control are 

dependent on the value of the time-delay and its rate of change. In the infinite-horizon case, the solution of 

the robust H~ control problem is obtained in terms of linear matrix inequalities. Numerical examples are 

presented and illustrate the effectiveness of the proposed approach and the reduction in conservatism as 

compared to previous results in the literature. 

Still in the same context, the state-feedback robust stabilization problem for neutral systems with time­

varying delays and saturating actuators is addressed. The systems considered are continuous-time, with 

parametric uncertainties entering all the matrices in the system representation. The model used for the 

representation of actuator saturations is that of differential inclusions. A saturating controllaw is designed 

and a region of initial conditions is specified within which local asymptotic stability of the closed-Ioop 

system is ensured. The least conservative approach, which employs the Lyapunov-Krasovskii functional, is 

adopted to ensure stabilization. The controller is dependent on the time-delay and its rate of change. It is 

constructed in terms of the solution to a set of matrix inequalities. Numerical examples illustrate the 

increase in the baIl of initial conditions over previous results in the literature. 

Finally, the robust output-feedback stabilization problem for state-delayed systems with time-varying 

delays and saturating actuators is addressed. The systems considered are again continuous-time, with 

parametric uncertainties entering all the matrices in the system representation. Two models are used for the 

representation of actuator saturations: sector modeling and differential inclusions. Saturating control laws 

are designed, and in the case of differential inclusions, a region of initial conditions is specified within 

which local asymptotic stability of the closed-loop system is ensured. The designed controllers are 

dependent on the time-delay and its rate of change. The controllers are constructed in terms of the solution 

to a set of matrix inequalities. Numerical examples are presented and illustrate the effectiveness of the 

proposed designs, and in the case of differential inclusions, the increase in the ball of initial conditions over 

previous results in the literature. 
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Résumé 

Cette thèse aborde le problème de la stabilisation robuste et de la commande robuste en H = des systèmes 

incertains à retard. Les retards sont présents dans les états et/ou dans les sorties, et les incertitudes dans la 

représentation du système sont du type à norme limitée. Les deux cas d'actionneurs avec ou sans saturation 

sont traités, et les conceptions pour l'asservissement d'états ou de sorties sont présentés. Deux méthodes 

pour l'analyse et la synthèse des contrôleurs sont utilisées: La première méthode est basée sur la fonction 

de transfert, et la seconde est basée sur l'utilisation des fonctionnelles. 

Dans le contexte de la méthode de conception basée sur la fonction de transfert, le problème de conception 

de l'asservissement de sortie en H~ est présenté pour une classe de systèmes incertains continus ou 

discrets, avec des retards dans les états et/ou dans les sorties Uuste dans le cas continu), et avec des 

incertitudes paramétriques à norme limitée. L'objectif est de concevoir un contrôleur à asservissement de 

sorties de façon que, pour les retards inconnus dans l'état et la sortie, et pour toutes les incertitudes 

paramétriques admissibles à norme limitée, le système asservi reste stable et robuste, et la fonction de 

transfert liant le bruit extérieur à l'erreur dans l'état répond à une limite supérieure choisie dans le sens de 

la norme H= . La structure de l'asservissement de sortie ne dépend pas du retard. Les conditions pour 

l'existence de l'asservissement robuste de sortie en H= et l'expression analytique de ces contrôleurs, sont 

caractérisées en fonction d'inégalités matricielles du type Riccati. Dans le contexte du temps continu, les 

cas d'invariance et de variance dans le temps sont traités. Finalement, des exemples sont présentés pour 

démontrer la validité et la solvabilité des méthodes de conceptions proposées. 

Dans le contexte de la méthode de conception basée sur l'utilisation des fonctionnelles, le problème de 

commande en H= par asservissement d'état est d'abord présenté pour les systèmes neutres à temps 
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continu, horizon fini, et variance dans le temps, avec des incertitudes dans toutes les matrices du système. 

Le contrôleur est donné comme la solution d'inégalité matricielle linéaire, en utilisent une transformation 

du système de modèle descripteur, et la fonctionnelle la moins conservatrice de type Lyapunov-Krasovskii. 

Les conditions garantissant la commande robuste en H 00 dépendent de la valeur du retard et de sa vitesse 

de changement. Dans le cas de l'horizon infini, la solution du problème de commande robuste en Hoo est 

obtenue en fonction d'inégalités matricielles linéaires. Des exemples numériques sont présentés, et illustre 

l'efficacité de l'approche proposée, et la réduction du conservatisme en comparaison avec les résultats 

antérieurs dans la littérature. 

Toujours dans le même contexte, le problème de stabilisation robuste en Hoo pour les systèmes neutres 

avec des retards variables dans le temps et des saturations dans les actionneurs est étudié. Les systèmes 

considérés sont continus, avec des incertitudes paramétriques incluses dans toutes les matrices du système. 

Le modèle utilisé pour la représentation des saturations des actionneurs est celui des inclusions 

différentielles. Une loi de contrôle à saturation est conçue, et une région de conditions initiales est spécifiée 

dans laquelle la stabilité locale asymptotique de la boucle fermée est assurée. La moins conservatrice des 

approches, employant la fonctionnelle de type Lyapunov-Krasovskii, est adoptée pour assurer la 

stabilisation. Le contrôleur est dépendant du retard et de sa vitesse de changement. Il est construit en 

fonction de la solution d'un groupe d'inégalités matricielles. Des exemples numériques illustrent 

l'élargissement de la boule de conditions initiales en comparaison avec les résultats antérieurs dans la 

littérature. 

Finalement, le problème de stabilisation robuste en asservissement de sortie pour des systèmes retardés 

avec des retards variables dans le temps, et avec des saturations dans les actuateurs est traité. Les systèmes 

considérés sont encore continus, avec des incertitudes dans toutes les matrices du système. Deux modèles 

sont utilisés pour la représentation des saturations dans les actuateurs: le modèle sectoriel et les inclusions 

différentielles. Des lois de contrôle saturées sont conçues, et dans le cas des inclusions différentielles une 

région de conditions initiales est spécifiée dans laquelle la stabilité locale asymptotique du système en 

boucle est assurée. Les contrôleurs sont dépendants du retard et sa vitesse de changement. Ils sont 

construits en fonction de la solution à un groupe d'inégalités matricielles. Des exemples numériques sont 
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présentés, et illustrent l'efficacité de l'approche proposée, et dans le cas des inclusions différentielles, 

démontrent l'élargissement de la boule conditions initiales en comparaison avec les résultats ultérieures 

dans la literature. 

Vlll 



Claims of Originality 

The following novel contributions are made in this dissertation: 

• The development of a delay-independent solution for robust H 00 output feedback control of linear 

un certain retarded systems. Both the continuous and discrete-time [P2] cases are treated . The 

structure of the observer is such that it allows for the separation of the controller and observer 

design. The value of the controller gain is chosen by solving a Riccati type inequality independent 

of the observer gain. The observer gain is then obtained from a second Riccati inequality in which 

the a priori selected value of the controller gain is used. 

• The development of a delay-dependent finite-horizon time-varying solution for robust Hoo state 

feedback control of linear un certain neutral systems with time-varying delays, using the least 

conservative model transformation and Lyapunov functional [P3]. The design is presented as the 

solution to Linear Matrix Inequalities (LMI) even for the finite horizon time-varying case, which 

is not found in the literature of previous work. 

• The development of a delay-dependent solution for robust H 00 state feedback control of un certain 

neutral systems with time-varying delays and actuators saturations, using the least conservative 

model transformation and Lyapunov functional and saturation model (differential inclusions) [P4, 

P5]. Previous work had only dealt with the nominal case (no uncertainties) and constant time­

delays. The solution presented as compared to previous work for the nominal case achieves a 

larger set of initial conditions guaranteeing local asymptotic stability. 

• The development of a delay-dependent solution for robust Hoo output feedback control of 

uncertain retarded systems with time-varying delays and actuators saturations, using the least 
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conservative model transformation and Lyapunov functional. The model used for actuator 

saturation is that of sector modeling. The proposed design is less conservative than the only 

previous paper in the literature dealing with the same problem [72]. Also the system treated in the 

present thesis includes uncertainties in the control and in the output, and an extra uncertain 

feedforward term in the output as compared to [72]. 

• The development of a delay-dependent solution for robust H= output feedback control of 

uncertain retarded systems with time-varying delays and actuators saturations, using the least 

conservative model transformation and Lyapunov functional and saturation model (differential 

inclusions) [P6, P7]. Previous work using differential inclusions had only dealt with delay-free 

systems. The solution presented as compared to previous work for the delay-free case achieves a 

larger set of initial conditions guaranteeing local asymptotic stability. 

This research work has been partially reported in the following publications: 
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CHAPTERI 

Introduction 

ln recent years, much work has been devoted to the analysis and synthesis of controllers for state-de1ayed 

systems with or without parametric uncertainties [9, 10, 12-14,22,37,49,50,69]. This interest is strongly 

motivated by the fact that delays and uncertainties, are the two most important causes of instability. 

Furthermore, both delays and uncertainties occur frequently in the chemical and in the process industries, 

which provides another reason for the study of new and less conservative stability conditions and the 

synthesis of high performance controllers. 

Many methods exist for the stabilization and control of time-delay systems: C. -plane roots, Matrix pencils, 

Norm measure, 1 st Lyapunov, Krasovskii, Razumikhin, Comparison techniques, LaSalle Invariance, Smith 

Predictor, Sliding Mode control, Linear Parameter Variation, f.J -synthesis, etc. (see [65] for a recent 

review). In this thesis, two major methods are used for the analysis and synthesis of controllaws for time­

delay systems: The first is based on the bounding ofthe Hoo -norm of the closed-Ioop transfer function, and 

the second is based on the use of a cost function and of functionals. 

ln the context of the design method based on transfer functions used in the first part (Chapters 2 and 3) of 

this thesis, most work has been directed towards the study of state feedback controller design [21, 23, 25, 

26,91,92], and state observer design [15,48,63,64,80,85,86,92], as separate issues. Very little effort 

has so far been put into the design and analysis of systems using output-feedback [66]. The latter is 

however of greatest practical relevance as usually the states of the system are not directly available for 

measurement. AIso, the output feedback control case needs special attention when uncertainties are present. 

As an example, for the general form of uncertainties, the separation principle does not hold, and the 

observer design is no longer the dual of the controller design. Furthermore, most of the previous work 
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involving output feedback is concerned with continuous-time systems. Very little attention has been given 

to the discrete-time case. 

In [86], a continuous-time observer for state-delayed systems with parametric uncertainties has been 

deve1oped. In this thesis, a robust H~ output feedback controUer which complements the observer design 

of [86] is proposed in order to main tain robust stability of the combined system. The design procedure and 

the resulting c10sed loop system properties are delay-independent. Although more conservative than delay­

dependent methods, especiaUy for smaU time-delays, the conservatism in the proposed procedure can be 

considerably reduced by using optimization algorithms as in [89]. The time-delays are inc1uded in the state 

and in the output equations, and uncertainties are added to aU the state matrices, making the design very 

general and applicable to a very large c1ass of problems. Both the time-invariant and time-varying cases are 

presented. 

Similarly, a discrete-time observer for state-de1ayed systems with parametric uncertainties has been 

deve10ped in [85]. In this context, the contribution of this thesis is the development of a discrete-time 

robust H~ output feedback controUer which complements the observer design of [85], in such a way as to 

maintain robust stability of the combined system. Furthermore, uncertainty in the delayed state matrix is 

taken into account as an improvement over the observer design in [85]. 

More specificaUy, using the methodology based on the transfer function, the aim is to design observer and 

controUer gains for both cases of continuous and discrete-time systems such that, for aU admissible 

parameter uncertainties, the output feedback system remains robustly stable and the transfer function from 

the exogenous disturbances to the state error output meets a prescribed H~ -norm upper bound constraint, 

independently of the time delay. The parameter uncertainties are norm-bounded and appear in the state, the 

output and the control input matrices. A penalty is considered on both the state output error and the control 

input. A simple algebraic parameterized approach is exploited, which enables us to derive the existence 

conditions for the observer and con troUer gains and to characterize the set of robust H ~ output feedback 

controllers in terms of sever al free design parameters. These free parameters, that appear in the observer 

and controller gains, offer addition al design freedom and can be utilized to account for addition al 

performance constraints. 
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The design formulation of our H = output feedback control problem requires the solution of two Riccati 

matrix inequalities which is not a difficult task. The computation al feasibility of our approach is 

demonstrated by examples. 

As seen above, the second major method for the design of controllers for time-delay systems is based on 

the use of functionals, which is the method used in the second part (Chapters 4-7) of this thesis. 

ln this context, most of the previous results related to robust control design for time-delayed systems refer 

to simple retarded type systems. Delay-independent stability conditions for such systems were obtained in 

terms of linear matrix inequalities (LMIs) or Riccati equations [53, 83], while delay-dependent stability 

conditions were derived in [19,36]. 

The control design for the general case ofneutral (descriptor) systems, in which the time-delays can appear 

both in the state and its derivative, has so far obtained relatively little attention [54, 67]. Unlike simple 

retarded systems, neutral systems are particularly sensitive to delays and can be easily destabilized [29, 52]. 

Most H= design approaches for retarded systems refer to the infinite-horizon case while, to our 

knowledge, the more challenging finite-horizon time-varying case has only been discussed in [67]. 

It is the choice of an appropriate Lyapunov-Krasovskii functional, needed in the derivation of the bounded 

real criterion (see [19, 24, 42] for examples of such functionals), that is the deciding factor in the particular 

type of time-delay dependency of the resulting controllaw. The most general form of this functional leads 

to a complicated system of Riccati type partial differential equations [1] or inequalities [22]. Sorne special 

forms of Lyapunov-Krasovskii functionals lead to simpler, delay-independent controllaws [59, 60], while 

other forms lead to less conservative, delay-dependent controllaws [12, 24]. 

Sorne authors [12], construct controllaws which are dependent on the actual value ofthe time-delay which 

is thus assumed known, while others [40], construct laws which are dependent on the rate of the time-delay. 

Both, the value and the rate of the time-delay, are used in [39]. 

The choice of the descriptor model transformation used and the choice of the Lyapunov-Krasovskii 

functional should be such that the resulting control law is least conservative. The descriptor model 

transformation employed in [12, 36, 67] does not result in full equivalence of the transformed and the 

original systems (see [8] for a proof of this fact), and sorne of the bounds resulting from the choice of the 
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Lyapunov-Krasovskii functional, are redundant. Recently a better descriptor model transformation was 

introduced in [19] and was applied in [24] to significantly reduce the conservatism of the design. The 

bounds used in the bounded real lemma were further tightened in [20] using a recent idea introduced in 

[62]. However, the result in [20] applies only to the infinite-horizon time-invariant case without norm 

bounded parametric uncertainties. 

Concerning the subject of constrained control of linear systems, a great effort has been made during the last 

decade to take into account saturating controls in linear systems control design. In fact, this is an important 

practical constraint usually disregarded in classical control design methods, despite the fact that no practical 

system can deliver unlimited control input as can be occasionally requested by the controller; see, for 

example, the two special issues [4], [71] and the references therein for an overview on this subject. 

In [27], the authors compared the different control saturation models used in the literature, concluding that 

the differential inclusions modelleads to the least conservative design. 

In the context of continuous-time systems with both time-delays and saturating controls, sorne delay­

independent results addressing local as well as global stabilization via memoryless feedback control laws 

have been proposed [61, 76]. 

To the author's best knowledge, stabilization of neutral systems with actuator saturation has only been 

studied in [77]. However, the controller designed in [77] is delay-independent (which is relatively 

conservative), and the system representation includes no uncertainties, while the delays are considered 

known and time-invariant. 

The majority of the design procedures known to date and applicable to time-delayed systems assume 

perfect availability of the state measurement. However, it is well known that such an assumption is rarely 

realistic in practical situations, be it only for the reason of excessive cost of full state measurements. Output 

feedback then imposes itself as the most practical solution for achieving a realistic implementation of a 

control design. The reason for which the state feedback has so far been treated more extensively is that it 

lends itself to simpler analysis as compared to the output feedback case. To the author's best knowledge, 

the issue of output feedback stabilization of uncertain state-delayed systems with saturating control was 

only addressed in [72]. The control design presented in [72] is delay-independent and so relatively 

conservative. Uncertainties are only included in the state and delayed-state system matrices. The remaining, 
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control and output system matrices are assumed to be known exactly. Furthermore, the time-delay is 

considered time-invariant. As shown in [27], the control saturation model used in [72] is more conservative 

than the differential inclusions model used in the present thesis. Furthermore, the design procedure 

proposed by [72] is also characterized by overly strong conservatism of the design introduced by the 

specific bounding techniques used. 

Having enumerated sorne of the issues that are still not treated in the subject of robust stabilization and 

control of time-delay systems with the use of functionals, the objective in this thesis is to present solutions 

to sorne of these problems. More specifically, the problems treated here are: 

• Finite-horizon time-varying robust H~ state-feedback control of parametric norm-bounded 

un certain neutral systems with time-varying delays. 

• Robust state-feedback stabilization of parametric norm-bounded uncertain neutral systems with 

time-varying delays, and actuator saturations represented by differential inclusions. 

• Robust output feedback stabilization of parametric norm-bounded un certain retarded systems with 

time-varying delays, and actuators saturations represented by sector modeling. 

• Robust output feedback stabilization of parametric norm-bounded un certain retarded systems with 

time-varying delays, and actuators saturations represented by differential inclusions. 

1.1. Notation 

The following notation is adopted. For any matrix A, the expressions AT and diag { A} den ote the 

transpose of A and the diagonal of A, respectively. The notation col{vp v2 , ••• , vJ is used for the column 

vector formed by stacking column vectors vI' v2 , ••• ,vn • ~n is the n dimensional Euc1idean space with 

vector norm Il.11, ~nxm is the set of all nXm real matrices, and for any matrix PE ~nxn , the inequality 

P > 0, signifies that P is positive definite. The symbols Àmax (p) and Âmin (p) den ote the maximal and 

minimal eigenvalue of a matrix P, respectively. The standard notation of ~ [a, b] is adopted for the space 

of aU functions f: ~ ~ ~q which are Lebesque integrable in the square over the interval [a, b] , with the 
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standard norm II· IlL, . The symbol Cd,n =C([-d,o],~n) den otes the Banach space ofcontinuous vector 

functions mapping the interval [-d, 0] into ~n with the topology of uniform convergence; i.e. 

11911c ~ sup 119(t)11 is defined as the norm for 9E Cd,n' The subset C:'n c Cd,n is defined by 
-d~'$O 

C;n ~{9E Cd,n; 11911c < w}' where w is a positive real number. For any two vectors v ~ [v1".vmr E ~m 

and U ~ [Ut ",um r E ~m such that ~ > 0, i = 1, ... , m, the saturation function sat is defined by: 

denote the function defined by: x, (1fI') = x(t + 1fI') , for an IfI'E [-d, 0] . 

1.2. System Description 

This work addresses the problem of robust H ~ control and stabilizing feedback designs for uncertain 

neutral and retarded time-delay systems. The state space representation for a neutral time-delay system (a 

retarded time-delay system being a special case) is: 

x(t)- Ag (t)i(t- g (t)) = A(t)x(t) + Ah (t )x(t-h(t)) + BI (t)w(t) + B (t)u(t) (1.1) 

y(t) = C(t)x(t)+Ch (t)x(t-h(t))+B2 (t)w(t)+D(t)u(t). (1.2) 

The initial condition for system (1.1)-(1.2) is: 

(1.3) 

In system (1.1)-(1.3), X(t)E Rn is the system state vector, WE ~[O,T] is the exogenous disturbance 

signal with T E ~+ denoting the control time horizon, u (t) E ~m is the control input, and y(t) E ~p is the 

system output. The system delays h (t) > 0 and g (t ) > 0 are assumed to be sorne unknown functions of 

time. Delay dmax is defined as dmax ~max(g(t),h(t)), for an tE [O,T]. The initial value 9(t) for x(t) 

is a smooth vector-valued continuous function defined in the Banach space en [-dm• x ,0] of smooth 

functions 1fI': [-dmax,O]~~n with 111fI'11~~ sup 111fI'(-r)ll. 
-d~.~,~O 
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Matrices BI (t)E ~nxq and B
2 
(t)E ~pxq are exactly known, while matrices Ag (t)E ~nxn, A(t)E ~nxn, 

Ah (t)E ~nxn, B(t)E ~nxm, C(t)E ~pxn, Ch (t)E ~pxn and D(t)E ~pxm are assumed to be uncertain. 

The uncertainties are represented by the widely used [12, 49, 69] norm-bounded parametric uncertainty 

model, as follows: 

Ag(t)=Ag(t)+Mg(t), A(t)=A(t)+M(t), Ah(t)=Ah(t)+Mh(t), B(t)=B(t)+AB(t), 

C(t) = C(t)+AC(t), Ch (t) = Ch (t)+ACh (t), D(t) = D(t)+AD(t) (lA) 

The matrices Ag(t), A(t), Ah(t), B(t), BJ(t), B2 (t), C(t), Ch(t) and D(t) arebounded,real,and 

time-varying, with continuous entries over [O,T], and are assumed to be known exactly. The matrices 

Mg(t), M(t), Mh(t), AB(t), AC(t), ACh(t) and AD(t) are real-valued, represent the norm-

bounded parameter uncertainties, and are assumed to be of the following form: 

Mg (t) = Hg (t)Fg (t)Eg (t), 

AB(t) = HB (t)FB (t)EB (t), 

M ( t) = HA (t ) FA (t ) E A (t) , 

AC (t ) = H C (t) Fc (t) Ec (t) , 

Mh (t) = Hh (t)Fh (t)Eh (t), 

ACh(t)=Hch (t)FCh (t)ECh (t), 

Fv (t) E ~iDXjD are real, uncertain, time-varying matrices with Lebesgue measurable entries which, 

additionally, meet the following requirements: Fg(t)F:(t)~I, FA(t)F:(t)~I, F,,(t)F,~(t)~I, 

FB (t ) F; (t ) ~ 1 , Fc (t ) F~ (t ) ~ 1 , FCh (t) Ff. (t) ~ 1 and Fv (t ) F~ (t) ~ I. The matrices Hg (t ), HA (t ), 

Hh(t), HB(t), Hc(t), HCh(t), Hv(t), Eg(t), EA(t). E,,(t), EB(t), Ec(t), ECh(t) and Ev(t) 

are known, real, time-varying, with piece-wise continuous entries over [O,T], and characterize the way in 

which the uncertain parameters of Fg (t ), FA (t), Fh (t ), FB (t), Fc (t), FCh (t) and Fv (t) enter the 

nominal matrices Ag (t), A(t), Ah (t), B(t), C(t), Ch (t) and D(t). 
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1.3. Motivation 

The motivation to this research is provided by the following: 

• The existence of very few studies treating the output feedback control of time delay systems. 

• The state feedback control of time-delay systems presented in the literature deals very often with 

the uncertainty-free case. 

• There is work to do in terms of decreasing the conservatism of the controller design presented in 

the literature, especially for the robust treatment, where uncertainties are present in the system. 

• The rate of change of the time-delay is rarely taken into account in the design of controllers for 

time-delay systems, thus rendering the design often unrealistic, and that is because if the time­

delay is varying in time in the actual plant, any design made with the assumption that the time­

delay is time-invariant might lead to an unstable closed-Ioop system when actually implemented. 

• The case of state-feedback control of time-delay systems with actuator saturation is almost always 

treated for the nominal system. Thus a robust treatment where uncertainties in the system are 

considered is needed. 

• The robust output feedback control of time-delay systems with actuator saturation is treated only 

in [72] in a very conservative approach. 

1.4. Functional DifferentiaI Equations 

Prior to giving real examples about time-delay models, it is necessary to put time-delay systems into their 

theoretical context. Time-delay systems are part of what is known as systems represented by functional 

differential equations (FDEs) [41], which makes it necessary at this point to have an overview ofthis major 

mathematical class. 

As is well known, an ordinary differential equation (ODE) is an equation connecting the values of an 

unknown function and sorne of its derivatives for one and the same argument value. For example, the 

equation f(t,x,dxldt,d 2xldt2 )=O may be written as f(t,x(t),i(t),x(t))=O, where dots indicate 

derivatives: i(t) = dxl dt. 
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A functional equation (FE) is an equation involving an unknown function for different argument values. 

The equations x (2t ) + 2x (3t ) = 1, x (t ) = t2 
X (t + 1) - [ x (t - 2) J, x ( x (t ) ) = x (t ) + l , etc. are examples of 

FEs. The differences between the argument values of an unknown function and t in an FE are caIled 

argument deviations. If aIl argument deviations are constant (as in the second example above), then the FE 

is caIled a difference equation. 

Combining the notions of differential and functional equations, we obtain the notion of functional 

differential equation (FDE), or, equivalently, differential equation with deviating argument. Thus, this is an 

equation connecting the unknown function and sorne of its derivatives for, in general, different argument 

values. Here also' the argument values can be discrete, continuous or mixed. Correspondingly one 

introduces the notions of differential-difference equation (DDE), integro-differential equation (IDE), etc. A 

FDE is caIled autonomous if it is invariant under the change t ~ t + T for aIl T E ~ . 

The order of a FDE is the order of the highest derivative of the unknown function entering in the equation. 

So, a FE may be regarded as a FDE of order zero. Hence the notion of FDE generalizes aIl equations of 

mathematical analysis for function of a continuous argument. A similar assertion holds for functions 

depending on several arguments. Therefore the creation of a sufficiently substantial theory of FDEs is 

possible only for certain reasonably restricted classes of FDEs. Most of these classes are chosen guided by 

applications. 

As will be seen in the examples below, FDEs with aftereffect arise when modeling biological, physical, 

etc., processes whose rate of change of state at any moment of time t is determined not only by the present 

state, but also by past states. 

First we restrict ourselves to the case when there are finitely many discrete argument deviations whose 

dependence on t is known. Then we obtain the equation of general form 

x(m) (t) = f(t,x(mtl (t-~ (t)), ... ,x(m.) (t-h
k 
(t))). (1.6) 

Here x(t) E ~n , aIl mi ~ 0 and represent the order of the derivative, hi (t) ~ 0, i.e. aIl argument deviations 

are nonnegative. In (1.6) the function f and delays hi are given, and x is the unknown function of t . 
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According to a now universally accepted proposaI of Go Kamenskii, (106) is called a functional differential 

equation of retarded type, or retarded functional differential equation (RDE) if max {fI'lt, 000' mk } < m; a 

functional differential equation of neutral type (NDE) if max { fI'lt ' 000' mk } = m ; and a functional differential 

equation of advanced type (ADE) if max {fI'lt ' 000' mk } > m 0 

Experience in mathematical modeling has shown that the evolution equations of actual processes with 

aftereffect are almost exclusively RDEs and NDEso On the other hand, the investigation of various 

problems for these equations has revealed that RDEs and NDEs have many 'nice' mathematical propertieso 

As for ODEs, we can transform the equation (1.6) to a tirst order equation by taking as new unknown 

functions the lower derivatives of x 0 Preserving the notation x for the new unknown function and f for 

the new right-hand side, we can write an RDE as 

x(t) = f(t,x(t-~ (t)),ooo,X(t-hk (t))), (1.7) 

and an NDE as 

x(t) = f(t,x(t-~ (t)),ooo,X(t-hk (t)),x(t- gl (t)),ooo,x(t- g/ (t))) 0 (1.8) 

Note that any FDE is equivalent to a hybrid system of ODEs and functional equations, in particular, 

difference equationso For example (1.8) is equivalent to the following hybrid system: 

x(t)= y(t) } 
y(t) = f(t,x(t-~ (t)),ooo,x(t-hk (t)), y(t- gl (t)),ooo,y(t- g/ (t)))o 

Equation (1.7) is the most widely used type of nonlinear RDEs, which can be written as a general RDE in 

the form 

x(t) = F(t,x,)o (1.9) 

Here x(t) E ~n and x, (for a given t) is the function detined by 

X, (B) = x(t +B), BE J, ~(-oo,O]. 

where J, is a given interval [ -h (t), - g (t) ] or (-00, - g (t) ] 0 The transition from X to x, for J = [-h, 0] 

is shown in Figure lolo Note that x, may be treated as the fragment of the function X at the left of the point 
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t, observed from this point. The right-hand side of (1.9) is a function of t, and a functional of x, ' i.e. to 

any t and any function If/: l, ~ Rn in sorne class of functions corresponds a vector f (t, If/) E IRn. It is to 

note that for FDEs, the function x, is the actual state of the system. Vector x (t) is the solution at time t . 

However, it is the custom in the literature to use the word "state" for vector x(t), which is also adopted in 

this thesis. 

------~----------

- -- - % 19 - --
--..L-----f.t ---

1 1 
o __ ~~----+_----~o~--~~~--~----~ ..• 

i -11, B 

Figure 1.1. Geometrical interpretation of the transition from x to x, 

Similarly, the general NDE can be written as 

(1.10) 

Note that if l, does not reduce to a point, then formally the right-hand side of (1.10) can be written as 

ft' (t,x,) , because by giving a function we also give its derivative. Of course, this does not mean that there 

are no principal distinctions between RDEs and NDEs, sin ce the conditions natural for RDEs are usually 

not satisfied by ft' . Roughly speaking, for variable t the right-hand side of an RDE must define a bounded 

operator on an appropriate space, and the right-hand side of a 'true' NDE, an unbounded operator. 

In recent years certain authors preferred another general form of NDEs: 

d 
-[ x(t )-G(t,x,)] = F (t,x,). 
dt 
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In general, (1.10) and (1.11) cannot be reduced to each other. However, the main distinctions between these 

forms of NDEs usually vanish in simple cases, provided the solution concept is reasonably modified. 

1.5. Examples of Delay Systems 

Delay systems find their way into the representation of many real world applications. The examples seem 

to touch almost every field of science. The li st of examples given in the following is far from being 

exhaustive but it gives a good idea about the importance of delays. For a more thorough coverage of delay 

examples in all fields of sciences, one can refer to [41]. 

1.5.1. Nuclear Reactors 

FDEs are widely used to model the dynamics of nuclear reactors. The physical reasons for the appearance 

of delays are various: transportation delays caused by finiteness of time of heat transport along different 

elements of the circulation contours (can be represented by corresponding ODEs or PDEs); warming up 

time of the reactor; snapping time of the control system; etc. 

In [28] the following model was used: 

x(t)=[ a.x(t)+bY(t-h)][1+X(t)],} 
Ht) = x(t)- y(t); 

x(t) = [~(x(t -~)) + Yf( y(t-~)) J[ 1 +x(t) J,} 
Y(t)=x(t)-y(t); 

x (t ) = [ a/Ji (t) + a/}2 (t )] [ 1 + x (t )] - a3 [ x (t ) - y (t) ] , 
y(t) = a4 [x(t) - y(t )], 

~I (t) = (I -a )x(t )-b[ 81 (t) -82 (t) J, 
82 (t ) = a82 (t - h) - 82 (t ) + ax ( t ) + b [ 81 (t ) - 82 ( t ) ] . 

(1.12) 

Here, x(t) is the relative change of neutron density, y(t), 81 (t), 82 (t) are proportion al to the relative 

change in temperature ofthe reactor, fuel and de-acceleration device, respectively. The first two models do 

not take into account the delayed neutrons, but (1.12) does. In (1.12), the delay h is the time of liquid fuel 

transportation along a circular contour. 
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1.5.2. Models of Lasers 

FDEs are widely used to model the dynamics properties of lasers. E.g., the following equations were 

introduced in [70]: 

x[ (t) =v~ (t)[ x2 (t)-l-m-amx[ (t-h)]+VUo,} 

x2 (t) = Ko - K(t)[ ~ (t)+l], 

where ~ (t) is the radiation density and x2 (t) the amplification coefficient. The other parameters are 

constants depending on the properties ofthe laser. 

1.5.3. Combustion in Rocket Motor Chambers [88] 

We consider a liquid monopropellant rocket motor with a pressure feeding system. Assuming nonsteady 

flow and taking non-uniform lag into account, a linearized model ofthe feeding system and the combustion 

chamber equations has been obtained by [11, 18, 94]. Their model is: 

where the entries Xj(t), i=I, ... ,3 of the state vector are, respectively, the relative deviations of the 

instantaneous combustion chamber pressure, the instantaneous mass flow upstream of the capacitance and 

the instantaneous mass rate of the injected propellant from their steady values, and x4 (t) is the ratio 

between the deviation of the instantaneous pressure in a special place in the feeding line from its value in 

steady operation and twice the injector pressure drop in steadyoperation. 

The model matrices are: 

p-l 0 0 0 

0 0 0 
-1 P 1 

0 - 0 
Ç1 d d 

Ao= -0.5 P 1 1 A =0, A - 0 0 0 0 
0 d -

(I-Ç)1 (I-Ç)1 (I-Ç)1 0 0 0 0 

1 0 0 0 0 
0 0 

Ee Ee 
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where ç is the fractionallength for pressure supply, J is the line inertia, Ee is the line elasticity parameter, 

p is the ratio of steady-state pressure and steady-state in je ct or pressure drop and p is the pressure of the 

combustion process. 

1.5.4. Paper Coloring Process [33] 

The paper coloring process uses three colour dyes. Desired paper colour shade is obtained as a mixture of 

the three basic dye concentrations [ounces of dye/ton of fiber], which are used as inputs to the process and 

are denoted by ul ' U z and u3 • The basic dyes are black, and two other dyes chosen from the set of yellow, 

blue, and red. The basic dye concentrations are initially injected in the so called "wet-end process" which 

can be modeled as a first order low pass filter with a transport delay. The three wet basic dye 

concentrations are then mixed to produce a desired shade of a given colour which is measured by a Xenon-

based spectrophotometer as the reflectance spectrum data vector, denoted by V = [X Y Zr, where X , 

Y and Z are normalized by their maximum values according to the CIELAB standard. The measured 

reflectance spectrum data vector V = [X Y Zr, is output by the spectrometer in the form of "colour 

space values" L*, a*, and b* , (called the CIELAB coordinates) calculated using the following non-linear 

transformations: 

L* = 116yl/3 - 16 

a* = 500(X1/3 _ y1/3) 

h* = 200(y1/3 _ Z1/3) 

The CIELAB coordinates are familiar to the process operators and end-users and are the colour process 

output variables to be controlled. 

Assuming that the three dyes are ofthe same type (acid-type or base-type) with similar fixing dynamics, or 

that the dyes fix to the pulp fibers so rapidly that the dye dynamics are the same as that of the pulp (the 

color literature consistently makes this assumption [5]), then the model of the coloring process is captured 

by the following equations: 
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where the kij 's represent DC gains which depend on the selected combination of the 3 basic dyes, and can 

be determined either by identification using step responses or analytically using the reflectances of the 

added dyes, h is the plant delay, 'r is the time constant, ~ V ~ V - Vo = [!lX ~y .12'], with Vo being a 

constant initial value for V giving the initial reflectances of the un-dyed paper measured by the sensor. 

1.5.5. Infeed Grinding and Cutting 

To describe processes of infeed grinding and cutting, many mathematical models with delay were proposed 

[17,44-46,57,68,81]. 

Figure 1.2. A simplified cutting scheme 

Consider the simplified cutting scheme in Figure 1.2, where m is the mass of the cutter, a the viscosity 

coefficient, and c the elasticity coefficient. Let Vo be the velocity of shaving relative to the cutter, f ( vo) 

the friction coefficient, do the desirable cutting depth, and x(t) the position of the cutter. For the deviation 
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z (t) = x (t) - Xo from the statie rest position Xo = f ( vo) qdoc-1 
, where the coefficient q depends on the 

geometry of the cutter and the width of the layer under consideration, we obtain 

mz(t)+ai(t)+cz(t)+ f(vo)q[ z(t)-z(t-h)] =-q[f(vo +i(t))- f(vo)J[do +z(t)-z(t-h)]. 

In this model, the time delay h arises due to the dependence of the cutting process on the surface state at 

the previous rotation. A detailed stability analysis of this model was given in [81]. 

One of the most important problems connected with cutting is oscillation of the cutter. Such oscillation can 

be described byan RDE with delays depending on the unknown solution [81]: 

x(t )+a1x1 (t )+a2x(t) + a3vx(t -~ (X, y, v)) = O,} 
Y(t)+ Ay(t)+ P2y(t)+ P3X(t-~ (y, v)) =0. 

Here ai and Pi are constants, v is the rate of cutting, and the delays hi are given by 

~(X y v)=~+ a5 

" v+ y v+x+ y' 

1.5.6. Technological Delay 

~ (y,v) = a4 
•• 

v+y 

Physical and chemical processes in reactors are characterized by their complexity. Changes in the amount 

of liquid entering the system happen to cause a change in the amount of liquid leaving the system only 

during a time h. In reality there is also certain time needed to mix the liquids in the vessel, for chemieal 

reaction, and for transportation of liquid from one part of the reactor to another. 

The feedback control loops in integrated communication and control systems are subject to network-

induced delays, in addition to the delays incurred in digital sampling and data processing [51]. 

Such type of delay is called technological delay, and occurs if it is necessary to take into account the 

finiteness of the time needed to complete a technologieal process. 

E.g., processes in an absorbing column with recyc1ing have been described by the following equation [56] 

(after transition to dimensionless variables and substitution of concrete numerical values for the 

parameters): 

x(t)=3.2[ -x(t}+x(t-h)]+u(t-O.62Sh} , 
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where x (t) is a value of circulating mixture and u (t) a control. 

Another type of delay is connected with energy or signal transmission. Hereditary phenomena are 

especially important when controlling objects with high velocity (e.g., airplanes, rockets), and creating long 

distance control devices. Delays may occur in the automatic regulation landing system of an airplane, 

because ofthe finiteness oftime of the propulsion reaction on a deviation of the control lever of the engine. 

It is also essential to take into account delays when treating the control aerodynamic rudder 

servomechanisms. 

1.5.7. Car Chasing [3,7,16,32] 

Consider n ~ 2 identical cars, one following the other without passing possibility. It is assumed that 

acceleration at time t of the second car is proportional to the relative velocity of the two cars at time t - h , 

and inversely proportional to the distance between them at this moment t - h, where h is the driver 

reaction time. Let m be the mass of a car, X j (t}(i =l, ... ,n) the position of car i at time 

t (t H- xn (t) is a given function) . Then the system of dynamic equations of motion is: 

m.x(t)[ xj (t-h) -xi+\ (t -h) ] = a[ x(t-h) -xi+\ (t -h) ] (i=l, ... ,n-l), 

where a is the constant sensitivity coefficient of the driver. 

1.5.8. Control Problems in Microbiology 

Certain delay models are used to control processes of microbiological growth of cells and production of a 

useful product. We will consider one of them, describing the continuous reproduction of micro-organisms, 

the production of ferments, the degradation of wastes, etc. The process here discussed is as follows (Figure 

1.3). 
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Figure 1.3. Biological reactor 

Bacteria are introduced into a vessel with an entrance for nourishing substances and an entrance for 

extraction of resulting products. The bacteria consume the nourishing substances, re-product, and produce 

at a certain moment of time sorne quantity of the resulting product. 

This process can be described by the bilinear delay model [43] 

j; (t) = r(t)x[ (t) -u(t )x[ (t) - f3x[ (t -h) ,} 
x2 (t) = r(t )a-[x[ (t) -u (t )X2 (t) +hu (t). 

(1.13) 

The tirst equation is the balance equation of biological substrate, the second equation characterizes the 

production of resulting mass by the bacteria. Here, 

-'1 (t) is the volume of microbiological substrate; 

x2 (t) is the volume of the resulting product; 

u (t) is the volume of nourishing environment in the vessel; 

r( t) is the rate of biological growth; 

-'1 (t - h) accounts for the loss of bacteria of great vitality during a tinite time h ; 
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f3 and b are constants in the model; 

a is the rate of growth of the useful product. 

Models like (1.13) can be used in the process of biological clearance of sewage, when dirty water goes into 

a vessel with active substances that come to react with the contaminator. The rates of suppl y of dirty water 

and active substances are controlled. As a result of the reaction we obtain clean water, and a residue of 

biopolymers. The values of the delays in this model depends on the rate of mixing, temperature, density, 

etc. 

1.6. Stability of FDE 

One of the most important aspects in control is stability, which is the first issue to look at before thinking of 

the performance of the control design. Many methods were used in the literature for the analysis of time-

delay systems [65] as shown in Table 1.1. 

Methods LTI, const. delay Nonlin. Varying delays Neutral 

C -plane, roots Low dimension No No Yes 

Matrix pen cils Low dimension No No ? 

Norm, measure Yes Yes Yes Yes 

1 st Lyapunov Obvious Yes Yes ? 

Krasovskii Yes Yes dh <1 Yes 

dt 

Razumikhin Yes Yes h< 00 Yes 

Comparison tech. Yes Yes Yes Yes 

LaSalle invar. Yes Yes ? ? 

Table 1.1. Different methods for stability analysis of time-delay systems 
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In this section we present the stability theorems that were developed using Lyapunov-Krasovskii 

functionals. As shown in Section 1.4, functional differential equations are classified into two major types: 

retarded and neutral. The stability theorems will be presented for both types. 

1.6.1. Retarded Type Functional Differentiai Equations (RDE) [31] 

We consider the stability problem for RDEs of the form: 

x (t ) = f (t, xt ) , t ~o (1.14) 

Assume that f: IRx Cd,n -7 IRn is continuous and Lipschitzian (Appendix A) in the second variable, and 

f(t,o) = 0, '\It, then we have the following theorem: 

Theorem 1.1. [31] Suppose f: IRxCd,n -7 IRn takes IRx (bounded sets of Cd,n) into bounded sets of IRn , 

and u, v, w:IR+ -7IR+ arecontinuousnon-decreasingfunctions, u(s) and v(s) are positive for s>O, 

and u (0) = v (0) = 0 . If there is a continuous functional V : IR x C d,n -7 IR such that 

u (119 ( 0)11) ~ V(t,9) ~ v(1191Ic)' '\1 B e [-1",0] 

V(t,x,) ~ -w(llx(t)11) 

then the solution x = 0 of equation (1.14) is uniformly stable. If w ( s ) > 0 for s > 0, the solution x = 0 is 

uniformly asymptotically stable. 

1.6.2. Neutral Type Functional Differentiai Equations (NDE) [41] 

1.6.2.1. Degenerate Lyapunov Functionals 

We consider the stability problem for NDEs of the form: 

d 
-[ x(t) -G(t,xt ) ] = F(t,xt)' 
dt 

'\IBe [-1",0]. 
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Here F, G: [to,oo)x C;n ~ ~n are continuous maps satisfying 

F (t,O) = G(t,O) = 0, (1.17) 

The method given below for studying stability is based on the use of positive semi-definite functionals and 

the study of the stability of the following type of functional inequalities: 

Ilz(t,y,)11 ~ f(t), (1.18) 

where z(t,y,)~y(t)-G(t,y,), and f:[to'oo)~[O,oo) isacontinuousfunction. 

Then we have the following: 

Theorem 1.2. [41] Suppose that the trivial solution of(1.18) is stable and that there exists a continuo us 

functional V: [to'oo )xC;n x~n ~ ~ such that 

u (1Iz( ql/)II) ~ V (ql/, Z (t, vr)) ~ v (1lvrllc ), (1.19) 

·"d ( ) V =-V t,x"z(t,xt ) ~ ° 
dt 

(1.20) 

for ail solutions x of equation (1.15), where u(s) and v(s) are continuous, nonnegative, and 

nondecreasing with u (s ), v ( s ) > ° for s:;t: 0, and u (s ) = v (s ) = o. Then the trivial solution of (1.15) is 

stable. If V satisfies (1.19), and 

li ~ -w(llz(t,xt )11), 

where w(s) is continuous, nonnegative, and nondecreasing with w(s) > ° for s:;t: 0, and w(O) = 0, then 

the trivial solution of (1.15) is asymptotically stable. 

1.6.2.2. The Use of Functionals Depending on Derivatives 

We consider the stability problem for NDEs of the form 

x:[to-r,oo)~~n, t:2to} 

Xt
o 
(B) = ~(B), V BE [-r,O] 

(1.21) 

Let W be the Banach space of absolutely continuous functions [-r, 0] ~ Rn with square-integrable 

derivative, with form 
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continuous function which satisfies a Lipschitz condition (Appendix A) in the second and third arguments, 

with Lipschitz constant for the third argument less than l, and f(t,O,O) = 0, the we have the following: 

Theorem 1.3. [41] If there is a continuous functional V: [to,oo )XQH X LJ-r, 0] ~ ~ satisfying the 

inequalities 

u (11\1/(0)11)::; V ~ql/,Z) ::; v (II~lw ) ,} 
V::;O, 

then the solution x( t) = ° is stable. If, moreover, we have V::; -w(llx( t )11), then the trivial solution of 

(1.21) is asymptotically stable. Here u (s), v(s) and w(s) are as defined in Theorem 1.2 above. 

1.7. Approaches Relevant to the Control of Time-Delay Systems 

As stated before, two methods are used in this thesis for the design of controllers for time-delay systems: 

the transfer function method and the functionals method. 

1.7.1. The Transfer Function Method 

1.7.1.1. The Continuous-Time Case 

This method is a frequency domain methodology, where the H~ -norm of the transfer function of the 

system is required to be less than a prescribed positive scalar. The system is assumed time-invariant 

inc1uding the uncertainty matrices F , since no transfer function is defined for the time-varying case. More 

specifically, let a continuous-time retarded system have the following state equations: 

x(t) = (A+M)x(t)+(Ah +Mh )x(t-h)+Bw(t) (1.22) 

z(t) = Cx(t) (1.23) 

with the corresponding transfer function, 
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T zw (s ) = C [ sI - ( A + M) - (Ali + Mil ) e -sil r B 

then the following lemma was presented in [47]: 

Lemma 1.1. For a given constant r> 0 and a symmetric matrix Q > 0, if there exists a symmetric matrix 

P > 0 satis.fying the inequality 

(l.24) 

for ail admissible parameter uncertainties M and Mil' then the system (1.22) and (1.23) is robustly 

asymptotically stable and Il T lW (s) II~ ~ r, independently of the time-delay h. 

1.7.1.2. The Discrete-Time Case 

As for the continuous-time case, this method is a frequency domain methodology, where the H~ -norm of 

the transfer function of the system is required to be less than a prescribed positive scalar. The system is 

time-invariant inc1uding the uncertainty matrices F . More specifically, let a discrete-time retarded system 

have the following state equations: 

x(k +1) = (A+M)x(k )+(Ah +MII)x(k -h)+ Bw(k) (1.25) 

z(k)=Cx(k) (1.26) 

M=HFE, (l.27) 

with the corresponding transfer function, 

Tzw (z) = C[ zI -(A+M)-(Ah +MII)Z-II r B (1.28) 

then we have the following lemma [69]: 

Lemma 1.2. If there exist a positive-definite matrix P and positive scalars &1 > 0, &2 > 0 and &3 > 0 

such that the following inequalities hold 

(1.29) 

(l.30) 
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then the augmented system (1.25) and (1.26) is asymptotically stable and meets the specified H~ norm 

upper-bound constraint liT zw (z)iL :5 r, independent of the positive integer state time-delay h. 

1.7.2. The Functionals Method 

Consider a simple nominal retarded system: 

x(t) = Ax(t) + Ahx(t -h) + Blw(t) 

z(t) = Cx(t)+ B2 w(t) . 

(1.31) 

(1.32) 

Using the Liebniz-Newton formula x(t-h)=x(t)-[hx(s}ds, the state equation (1.31) can be 

transformed to the equivalent descriptor form in one of two ways: 

• x(t) = (A + Ah )x(t) - AIoS
t

t

_ h x(s }ds+ BI w(t) 

• y(t) = x(t), y(t) = (A + Ah )x(t)- Ah[h y (s}ds + BI w(t) . 

(1.33) 

(1.34) 

As noticed, transformation (1.34) augments the order ofthe system to twice the order of the original system 

(1.31), and so makes the treatment more difficult, especially when uncertainties are added. Despite this 

fact, transformation (1.34) is more advantageous than transformation (1.33), as shown in [8], because it 

preserves the dynamics of the original system (1.31) in the sense that the transfer functions for systems 

(1.31) and (1.34) are identical. This is not the case for transformation (1.33), since additional poles [8] are 

introduced to the original system (1.31). In terms of control this means an increase in conservatism, since 

the controller designed by the use of transformation (1.33) controls more dynamics than the original system 

(1.33). In this thesis, transformation (1.34) will be used, since one of the main objectives is to decrease 

conservatism. This choice will be at the expense of more difficult treatment. 

Once the transformation is chosen, the methodology using functionals for the design of an H ~ controller 

for time-delay system is based on the use of a cost function of the form, 

(1.35) 

with V being a functional to be chosen. 
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Requiring J < 0 and V < 0 for aU time t and for a certain prescribed positive scalar r guarantees the 

asymptotic stability (see Section 1.6) of the system in question and the attenuation of the disturbances w 

entering the system. The choice of the functional V determines the type of controUer thus designed (delay­

independentldependent). Some examples of functionals V are: 

• V(t) = xT (t)Px(t) 

• V(t)=[hXT('Z')Sx('Z')d'Z' 

• V (t) = en., L9 xT (s )AT R3Ax( s )dsdB . 

(1.36) 

(1.37) 

(1.38) 

Functional (1.36) corresponds to the descriptor system [55, 74], and functional (1.37) corresponds to the 

delay-independent conditions with respect to delay h, while functional (1.38) corresponds to the delay­

dependent conditions with respect to delay h . In this thesis, a general functional formed by the sum of aU 

three functionals will be used. This is again to decrease conservatism, but at the expense of more difficult 

treatment and complexity of solution. 

1.8. Research Objective 

The objective of this research is to further the treatment of time-delay systems in the following: 

• Present the delay-independent and delay-dependent robust output feedback controUers for time­

delay systems with and without actuator saturation. 

• Present the time-varying finite horizon treatment ofthe robust state-feedback control oftime-delay 

systems. 

• Decrease conservatism in the control design for time-delay systems. 

• Inc1ude the rate of change of the time-delay in the proposed design. 

• Obtain as much as possible solutions in terms of Linear matrix inequalities (LMI: see Appendix B) 

or Bilinear matrix inequalities, which are easily solved using the methods proposed in [6]. 

1.9. Contributions of this Thesis 
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In relation to the research objectives stated above, the contributions of this dissertation are summarized as 

follows: 

1.9.1. The Delay-Independent Designs using Transfer Function Methodology 

• The delay-independent robust H~ output-feedback control of uncertain continuous retarded 

systems is presented in full generality, with delays and disturbances in the state and the output 

equations. The uncertainties are present in all the state equation matrices. The discrete-time case is 

also treated. 

1.9.2. The Delay-Dependent Designs using Functionals Methodology 

• The finite-horizon time-varying robust H~ control problem is addressed here for linear neutral 

systems in full generality, with norm-bounded parametric uncertainties entering all the matrices in 

the system representation. 

• The least conservative approach to the derivation of the bounded reallemma, as proposed in [19, 

20] for the uncertainty-free infinite-horizon problem, is used in this thesis. However, the approach 

of [19, 20] is modified and adapted here to suit the finite-horizon time-varying case with 

parametric uncertainties. Conservatism is reduced by the use ofthe most efficient descriptor model 

transformation and Lyapunov-Krasovskii functional. A more conservative functional was used in 

[77,79]. 

• When solved numerically, the solution to the finite-horizon time-varying case is shown to result in 

a set of linear matrix inequalities (LMI) at every discretized time. The latter can easily be solved 

using recently developed algorithms [6]. 

• The solution to the infinite horizon case which incorporates all the parametric uncertainties is also 

presented and leads to a design in terms of a set of linear matrix inequalities. 

• A delay-dependent robust state-feedback stabilization problem is addressed for neutral systems in 

full generality, inc1uding actuators constraints and norm-bounded parametric uncertainties entering 

aU the matrices in the system representation. Previous results [77], address only the nominal case. 
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• The least conservative model for the actuator saturation [27], as delivered by the differential 

inclusions approach is employed here. 

• The value of the time-delay as weIl as its rate of change are taken into account in the design 

methods presented and further permits to reduce the conservatism of the approach. This delivers a 

feedback controller that, unlike the ones presented in the previous literature, is both dependent on 

the value of the time delay as weIl as its rate of change. 

• The method developed here is applied to example systems which were previously used in [73, 78], 

and, shows that the new design yields less conservative results, in that stabilization is ensured for a 

wider range of the time-delays and a larger set of initial conditions. 

• A delay-dependent robust output feedback stabilization problem is addressed for state-delayed 

systems in full generality, including actuators constraints and norm-bounded parametric 

uncertainties entering aIl the matrices in the system representation. AIso, an additional feed­

forward term is included in the output system equation. The saturation is modeled using both 

sector modeling and differential inclusions. The main results deliver computationally verifiable 

criteria guaranteeing asymptotic robust stabilization under control saturation. In the case of 

differential inclusions a larger region of local asymptotic stability as compared to previous results 

[35, 75] is also given. 

• Employing relaxation techniques, as suggested in [77], the stabilization problem with control 

saturation considered here is reduced to a set ofLMIs (see [6] for efficient numerical algorithms). 

Despite the fact that the main results of the thesis provide seemingly complicated sufficient 

conditions for stability of the closed loop system, the last are surprisingly easy to satisfy. The LMI 

based robust stability verification procedure is very efficient as demonstrated by way of many 

examples. 

1.10. Thesis Outline 

In an attempt to make the presentation of this thesis as readable and clear as possible, the many different 

time-delay control problems that are treated are put in separate chapters, which are self contained. The 
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chapters can be read without any necessary order. Any lemmas or parts of proofs that are common to sorne 

chapters were repeated in each of them for the sake of c1arity. With this in mind, the thesis is organized as 

follows: 

• Chapter 2: Continuous-Time Delay-Independent Robust H~ Output Feedback Control of 

Uncertain Retarded Systems with Time-Delays in States and Outputs. 

This chapter presents the design for the robust H ~ output feedback control of uncertain retarded 

continuous systems using the method of transfer function. The time-delays are present in the state 

and in the output, and the parametric norm bounded uncertainties are present in aU the state 

matrices. Disturbances are inc1uded in the state and the output equations. The observer is 

presented with an additional parameter aUowing the separation in the design of the con troUer and 

the observer. The augmented system is written and the corresponding transfer function is 

formulated. The H ~ norm of the transfer function is then required to be less than a prescribed 

positive scalar. The solution thus obtained is delay-independent and is given in terms of two 

Riccati-type inequalities, and a numerical example is given to show the efficiency of the design. 

• Chapter 3: Discrete-Time Delay-Independent Robust H~ Output Feedback Control of 

Uncertain Retarded Systems. 

This chapter presents the discrete equivalent of the robust H~ output feedback control of 

uncertain retarded continuous systems presented in the previous chapter. The method used for 

solving the problem is that of the transfer function. The time-delay is present in the state, and the 

parametric norm bounded uncertainties are present in aU the state matrices except the control 

matrix. Disturbances are inc1uded in the state and the output equations. The observer is presented 

with an addition al parameter allowing the separation in the design of the controller and the 

observer. The augmented system is written and the corresponding transfer function is formulated. 

The H~ norm ofthe transfer function is then required to be less than a prescribed positive scalar. 

28 



The solution thus obtained is delay-independent and is given in terms of two Riccati-type 

inequalities, and a numerical example is given to show the efficiency of the design. 

• Chapter 4: Finite-Horizon Time-Varying H~ State-Feedback Control of Linear Neutral 

Systems with Parametric Uncertainties. 

This chapter presents the finite-horizon time-varying H~ state-feedback control of un certain 

linear neutral systems using the method of functionals. Time-delays which are assumed time­

varying are present in the state and in its time-derivative, and the parametric norm bounded 

uncertainties are present in aU the state matrices. Starting with the control free case, the H ~ 

control problem is formulated in terms of an integral cost function relating a weighted output to 

the disturbances to the system, and a Lyapunov-Krasovskii type functional is presented to solve 

the problem. In the finite horizon case, the solution thu~ obtained is delay-dependent and is 

presented in terms of a linear differential matrix inequality, in which the derivative is 

approximated by a difference scheme thus reducing the solution to a linear matrix inequality 

solved at every iteration time, once the time step is chosen. In the infinite horizon case, the time 

derivative of the Lyapunov-Krasovskii is made to be strictly negative thus ensuring the asymptotic 

stability of the origin. The solution is thus presented in terms of a linear matrix inequality and 

numerical examples are presented to show the decrease in conservatism as compared to previous 

results in the literature. 

Next, control is introduced to solve the state feedback control problem using the Bounded Real 

Lemma presented for the control free case. The solution thus obtained is nonlinear, but the use of a 

certain parametrization reduces it to a linear matrix inequality. FinaUy, a numerical example is 

presented to show the efficiency of the design. 

• Chapter 5: Delay-Dependent State-Feedback Robust Stabilization of Uncertain Neutral 

Systems with Saturating Actuators: The DifferentiaI Inclusions Model. 
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This chapter presents the robust state-feedback stabilization of uncertain neutral systems with 

actuator saturations, using the method of functionals. Time-delays which are assumed time­

varying are present in the state and in its time-derivative, and the parametric norm bounded 

uncertainties are present in aH the state matrices. The control saturation is modeled using 

differential inclusions, and a Lyapunov-Krasovskii type functional is presented to solve the 

problem. The time derivative of the Lyapunov-Krasovskii is made to be strictly negative thus 

ensuring the asymptotic stability of the origin for a convex set of initial conditions. The solution 

thus obtained is delay-dependent and is presented in terms of a set of bilinear matrix inequalities. 

Using relaxation and optimization techniques, the solution is reduced to a set of linear matrix 

inequalities and the set of initial conditions guaranteeing asymptotic stability is maximized. 

Numerical examples are presented to show the increase in the set of initial conditions and thus a 

decrease in conservatism as compared to previous results in the literature. 

• Chapter 6: Delay-Dependent Robust Output Feedback Stabilization of Uncertain State 

Delayed Systems with Time-Varying Delays and Saturating Actuators: The Sector Modeling 

ModeI. 

This chapter presents the robust output-feedback stabilization of uncertain retarded systems with 

actuator saturations, using the method of functionals. The time-delays which is assumed time­

varying is present in the state, and the parametric norm bounded uncertainties are present in aH the 

state matrices. The control saturation is modeled using sector modeling, and a Lyapunov­

Krasovskii type functional is presented to solve the problem. The time derivative of the Lyapunov­

Krasovskii is made to be strictly negative thus ensuring the asymptotic stability of the origin. The 

solution thus obtained is delay-dependent and is presented in terms of a set of bilinear matrix 

inequalities. Using relaxation techniques, the solution is reduced to a set of linear matrix 

inequalities. A numerical example is presented to show the effectiveness of the design as 

compared to previous results in the literature. 
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• Chapter 7: Robust Output Feedback Stabilization of Uncertain Time-Varying State Delayed 

Systems with Saturating Actuators: The Differentiai Inclusions Method. 

This chapter presents the robust output-feedback stabilization of uncertain retarded systems with 

actuator saturations, using the method of functionals. The time-delay which is assumed time­

varying is present in the state, and the parametric norm bounded uncertainties are present in aIl the 

state matrices. The observer-controller design is presented and the augmented system is written. 

The control saturation is modeled using differential inclusions, and a Lyapunov-Krasovskii type 

functional is presented to solve the problem. The time derivative of the Lyapunov-Krasovskii is 

made to be strictly negative thus ensuring the asymptotic stability of the origin for a convex set of 

initial conditions. The solution thus obtained is delay-dependent and is presented in terms of a set 

of bilinear matrix inequalities. Using relaxation and optimization techniques, the solution is 

reduced to a set of linear matrix inequalities and the set of initial conditions guaranteeing 

asymptotic stability is maximized. Numerical examples are presented to show the increase in the 

set of initial conditions and thus a decrease in conservatism as compared to previous results in the 

literature. 

• Chapter 8: Conclusions and Future Research. 

The last chapter concludes the thesis with a brief review of the main contributions of the research 

presented in the preceding chapters. Sorne general remarks concerning the advantages and 

potential of the proposed approaches are presented. Suggestions on issues for future research are 

given. 

Reference material which will be cited when needed, is included in several appendices for the reader's 

convenience: 

• Appendix A: Useful Theorems and Other Results. 

• Appendix B: Linear Matrix Inequality. 

1.11.0riginality of the Research Contributions 
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The proposed approaches constitute an original contribution to the control and stabilization of time-delay 

systems in that: 

1.11.1. The Delay-Independent Designs using Transfer Function Methodology 

• The robust output feedback control is presented, whereas in the literature the cases that are mostly 

presented are that of state feedback control and of observer designs. 

• The problem solved for the continuous-time case is of the most general treatment, sin ce delays are 

included in both the state and the output, and the uncertainties are included in the matrices of the 

system representation. 

• For the discrete-time case, the treatment is one of the few found in literature due to the relative 

negligence of the discrete-time treatment in the literature, partially due to the difficulty of 

treatment and to the complexity of the equations. 

• The structure of the observer allows for the separation in the design of the controller and the 

observer gains. This is not possible in general for the output feedback control with uncertainties in 

the system, since previous designs lead generally to coupled design between the control and the 

observer parts. 

1.11.2. The Delay-Dependent Designs using Functionals Methodology 

• The finite-horizon time-varying robust H~ state-feedback control of linear uncertain neutral 

systems is presented. The only paper found in the literature treating the finite-horizon case is [67], 

where the solution is given in terms ofnonlinear differential Riccati type inequalities. In this thesis 

the solution is given in the form of linear differential matrix inequalities, which are reduced to an 

LMI [6] easily solved at every iteration time. 

• The robust state-feedback stabilization of uncertain neutral systems with actuator saturation is 

presented. The only previous study [77] treating neutral systems is restricted to the nominal case 

(uncertainty free). The design presented in this thesis is shown to be less conservative in that it 

achieves a larger set of initial conditions guaranteeing asymptotic stability. 
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• The robust output feedback stabilization of un certain retarded systems with actuator saturation is 

presented. Two models for saturations are used: sector modeling and differential inclusions model. 

In the case of sector modeling, the design presented here is less conservative than the only 

previous study found in the literature [72], while for the case of differential inclusions the design 

presented in this thesis is the first in the literature. 

33 



CHAPTER2 

Continuous-Time Delay-Independent 

Robust H 00 Output Feedback Control of Uncertain Retarded Systems 

with Time-Delays in States and Outputs 

2.1. System Description 

Consider the retarded version of system (1.1)-(1.5) taken in the infinite-horizon time-invariant context, 

where the system matrices are all time-invariant. The uncertainty matrices F; are assumed to be equal 

(assumption frequently made in the literature and is not restrictive in practice) and also time-invariant. The 

time-delay h is assumed to be time-invariant and exactly known (see Remark 2.1 below). More 

specifically, the system under consideration is: 

i{t) = Ax{t) + A>{t-h) + BI w{t) + Bu{t) 

y{t) = Cx{t) + Chx{t -h) + Bl w{t) 

X ( t ) = ç> ( t ) , t E [-h, 0] 

2.2. Assumptions 

The following assumption is needed for the subsequent development: 

Assomption 2.1. Either one of the matrices H c' H Ch ' or Bl is of full rank. 
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2.3. Full Order Observer 

The proposed full-order linear and delay independent state observer with the associated feedback controller 

proposed in this chapter are assumed to take the following form: 

i(t) = Gx(t)+Ly(t)+Bu(t) 

u(t) = Kx(t) 

(2.6) 

(2.7) 

where Gand L den ote the observer gains, K den otes the controller gain, and all three gains are design 

parameters. 

Remark 2.1. Although the design presented in this chapter is delay-independent, knowledge of the value of 

the delay is still needed because as seen in (2.2) and (2.6), the observer chosen for our design depends on 

the delay h through the output y (t) , for the state estimate to be constructed. In case the value of the delay 

is not available, then the observer (2.6) can be chosen without delay in the state estimate x(t), but at the 

expense of a less accurate design. 

Defining the error state, 

e(t) ~ x(t)-x(t) 

it then follows from (2.1), (2.2), (2.6) and (2.7) that, 

x(t) = (A+M+(B+AB)K)x(t) -(B+AB)Ke(t)+(A" +M" )x(t-h)+ BJw(t) 

and 

ë(t) = (A +M-G - L( C +AC)+ABK)x(t) +( G-ABK)e(t) 

+(A" +M" -L( C" +AC,,))x(t-h)+(BJ -LBz}w(t) 

Let z (t) E RI den ote the state-error output which is assumed to be given by: 

z(t) =Me(t)+Nu(t) 

where M E R
lxn and NE Rlxq are given constant matrices. 

Using (2.7) and then (2.2), (2.11) becomes, 
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z(t) = NKx(t)+(M -NK)e(t) 

Defining 

Ç(t)~[x(t)], 
e(t) 

Â~[ A+BK -BK], 
A-LC-G G 

A à [ HA ] 
H"=H-LH' 

A Ch 

ê~[NK M-NK], 

A à [ A" 
A" = 

A" -LC" 

A A A " 

M" =H"FE" , 

and combining (2.9), (2.10) and (2.12), the foUowing augmented system is easily obtained: 

z(t) = êç(t). 

The transfer function from the disturbance w(t) to the state-error output z(t) is thus given by 

Tzw (s) = ê[ sI -( Â +M)-( Â" +M" )e-s
" r Ê . 

2.4. Problem Statement 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

In the above context, the objective is to design for the parameter values: G, Land K , in such a way that 

for aU admissible parameters uncertainties M, M", !J.B, AC and AC" ' the augmented system (2.20) and 

(2.21) is asymptoticaUy stable and the following upper bound constraint on the H~ -norm of Tzw (s) is 

simu1taneous1y guaranteed: 
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II~w(st ~r (2.23) 

for aH time-delay values and aH uncertainties of type (2.5), where 

II~w(st =SuPweRO'max[~w(JW)J with W being the frequency, O'max[T] denotes the largest singular 

value of T , and r < 1 is a given positive constant. 

2.5. Main Results 

2.5.1. Time-Invariant Case 

The foHowing lemmas, proved in [84] will be useful in the design of the robust Hoo output feedback 

controller for the uncertain linear continuous-time state delayed system (2.20) and (2.21). 

Lemma 2.1. [84] For an arbitrary scalar ë[ > 0 and a symmetric matrix P> 0, the following matrix 

inequality is valid 

(2.24) 

where H can take the value of Hl or H 2' and Ê can take the value of Êl or Ê2' respectively. 

A 1 AT 
Lemma 2.2. [84] Let a scalar ë 2 > 0 and Q > 0 be such that EhQ- Eh < ë 21 , then 

(2.25) 

Next lemma is easy to see. 

Lemma 2.3. For a given negative definite matrix Y < 0 (y E ~nxn), there always exists a matrix 

The last lemma, found in [47], will be essential to our result. 

Lemma 2.4. [47] For a given constant r> 0 and a symmetric matrix Q > 0, if there exists a symmetric 

matrix P > 0 satisfying the inequality 

(2.26) 
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for ail admissible parameter uncertainties M, Mh' /),]3, AC and ACh given in (2.5), then the system 

(2.20) and (2.21) is robustly asymptotically stable and Il Tzw (s) II_~ y, independently of the time-delay h. 

For the sake of simplicity, we introduce the following definitions prior to stating the main results of the 

chapter: 

(2.27) 

(2.28) 

(2.29) 

Â~Ji-rl(BK)T R-e-Ip-I(E K)T E K+p-I(M-NK)T NK 
- 2 132 B B 2 (2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

The following theorem off ers the theoretical basis for achieving the desired design goal. 

Theorem 2.1. Let a be a sufficiently small positive constant, QI be a positive-definite matrix, and let the 

matrices <P, Ji, Â, C, Rand S be defined as in (2.27)-(2.34). 

Let the controller gain matrix K E ~qxn be chosen such that, 

A + BK is stable. (2.35) 

Suppose there exist positive scalars e" e2 and e3 such that the following two quadratic matrix 

inequalities have positive-definite solutions ~ and Pz, respectively, 
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(2.37) 

(2.38) 

Under these conditions, if Gand L are the observer gain matrices which for some chosen orthogonal 

matrix U E RPxp (UU T = 1), satisfy: 

(2.39) 

G = A-LC (2.40) 

where Eo E ~nxp is an arbitrary matrix meeting the condition that, 

(2.41) 

and Y is defined by (2.37), then the resulting output feedback system using G, Land K will be such 

that, for ail admissible parameter uncertainties M, Mh' M, IlC and IlCh, and for ail delay values 

(1) the augmented state-delayed system (2.20) and (2.21) is asymptotically stable. 

(2) II~w(st::; r· 

Proof. By Assumption 2.1 and equation (2.33), the matrix B2 is of full rank, so R-1 exists. By virtue of 

Lemma 2.1 and Lemma 2.2, and definitions (2.13)-(2.19), (2.28)-(2.34), 

Adopting the following definitions, 

,,[F; p= 
o 0]>0, 

Pz 
Q~[QI 0 ]>0 o (JI 
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(2.44) 

the block matrices of L are easily calculated as: 

(2.45) 

(2.46) 

(2.47) 

From (2.45) and (2.36), it then follows that L 11 < 0 . 

Using (2.47), and (2.40), 

(2.48) 

Re-grouping the terms yields 
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Substituting the definitions of Rand S , (2.33) and (2.34), 

FinaIly, using (2.30), (2.34) and Lemma 2.3, gives 

which, by virtue of (2.37), clearly implies that L 22 < 0 . 

Moreover, substituting (2.40) into (2.46) we get: 

Again, re-grouping the terms and using (2.29)-(2.32), yields L 12 = o. Hence, L = [Lll 0] < 0, as o L 22 

Lll < 0 and L 22 < 0, as demonstrated above. By virtue of Lemma 2.4 and (2.44), system (2.20) and (2.21) 

is therefore robustly asymptotically stable and IIH zw (s )II~ ~ 'Y, for aIl values of time-delay hE lR.+ and for 

aIl uncertainties (2.5). QED 
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Remark 2.2. The result of Theorem 2.1 may be conservati ve because of inequalities in Lemma 2.1, Lemma 

2.2 and Lemma 2.4. However, the conservatism can be significantly reduced by the proper selection of El' 

E2 and E3 in a matrix norm sense. The relevant discussion and corresponding optimization algorithm can 

be found in [89] and references therein. 

Remark 2.3. In the case where (J' > 0, QI > 0, El > 0, E2 > 0 and E3 > 0 are fixed, the two quadratic 

matrix inequalities (2.36) and (2.37) can further be converted into two linear matrix inequalities using the 

well-known results on Shur complements of partitioned symmetric matrices [6]. In this way, the 

computational complexity of the design would be further simplified. 

Remark 2.4. The presented robust H~ output feedback control design procedure still offers much 

addition al design freedom. This freedom is retlected by the arbitrary choice of the positive-definite matrix 

Ql>O, the free gain parameter EoE~nxp (Y+EoE;<O), and the orthogonal matrix UE~pxP. 

Introducing additional performance constraints into the problem formulation (1) and (2) of Theorem 2.1, 

which would exploit this design freedom is currently under investigation. 

2.5.2. Existence of a Positive Definite Solution 

In this section, we discuss the existence of a positive-definite solution to inequalities (2.36) and (2.37). 

Starting with inequality (2.36), it is obvious that we can re-write it as an equality by adding a positive 

definite matrix ~ to obtain, 

(A+ BKf E; + E; (A + BK)+ E; (( El +E3 )HAH~ + y-2 BI Br + <1»E; 

+EI-IE~EA +E;l (EBKf EBK +(NK)T NK +QI +<\ = 0 (2.49) 

Let e be defined as, 

e~((EI +E3)HAH~ + y-2 BI Br +<1» (2.50) 

From (2.27) and (2.28), it is easy to see (Appendix A) that e can only verify e ~ 0 sin ce r must be 

positive by assumption (2.38) in Theorem 2.1. In this case, sin ce A + BK is stable as required by Theorem 

2.1, we then have the following result which can be found in [38]. 
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Corollary 2.1. For A + BK stable and e ~ 0 for sorne positive scalars 101 and 103 , and a positive definite 

rnatrix Q1' then there exists a positive-definite solution ~ to the inequality (2.36) if and only if 

(2.51) 

Finally, if e > 0, we give the following necessary conditions for the existence of a positive definite 

solution to such a parameter-dependent Riccati equation. 

Corollary 2.2. Consider the algebraic rnatrix equation (2.49) with e > o. If there exists a positive definite 

solution ~ > 0 to equation (2.49), then 

(2.52) 

Proof. Equation (2.49) can be rearranged as 

Clearly, the right-hand side of equation (2.53) must be non-negative. QED 

Remark 2.5. Corollary 2.1 and Corollary 2.2, and Remark 2.2 provide sorne guides for the selection of 

proper design parameters 101, 103 and Q1 in order to ensure the effectiveness of the proposed design 

procedure. 

A similar analysis could be done for inequality (2.37). 

2.5.3. Numerical Example 

Example 2.1. In terms of an example, consider the linear continuous uncertain time-delay system (2.1) and 

(2.2) with system matrices given by 

A _[-2 -0.5] 
0.5 -3 ' B=Gl C=[l 0], Ch = [1 1], 

M=[O.l 0.1], N =0.1, 
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H = [0.1 0.05] 
A -0.02 0.1 ' 

[
0.8 0] 

EA = ° 0.8' 

Hc =[-0.2 0.8]. 

E _[ 0.1 0.01] 
h - 0.02 0.5 ' 

Hc, = [0.3 -0.5], 

[
0.1] 

EB = 0.1 ' 

In what follows, the H ~ output feedback design procedure will aim at the satisfaction of II~w ( s t ~ y 

with y= 0.8. 

To satisfy the constraint EhQI-1 El; < ë 2! , we choose ë 2 = 0.5 and QI = ! . AIso, we select ë l = 0.1 to yield 

from (2.33), R = 4.74. Furthermore, we choose ë 3 = 0.1 and a = 1, and the controller gain K is selected 

(with A + BK stable) as K = [-0.35 0.35] , to yield a positive-definite solution to (2.36), 

_[ 3 -1] 
~- -1 5 

The matrix C is then computed from (2.32) as, C = [1.72 5.03]. Finally, the matrix li in (2.29) and the 

positive-definite solution to (2.37), are further obtained as, 

1i=[-1.17 -0.71], 
0.02 -0040 

which by (2.30) and (2.34), results in 

Â=[-1.18 -0.71], 
-0.67 -1.81 

S = [1.82 5.54] 

The matrix Eo which needs to satisfy Y + EoE~ < 0 , is selected as, 

E =[-0.7] 
o 0.2 

Finally, sin ce the dimension of the measured output is p = 1, the arbitrary orthogonal matrix U can be 

either 1 or -1. Corresponding to these two cases, the desired observer gains L, and G1 (for U = 1 ), and 4. 

and G2 (for U = -1) can be obtained from (2.39) and (2040), respectively: 

[1.32] 
L, = 2.58 ' [

-3046 -7.36] 
G1 = -5.11 -14.81 
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[1.78] 
~ = 2.86 ' [

-4.25 -9.67] 
G2 = -5.58 -16.19 

(2.55) 

Using the numerical values in this example and taking s = jW in (2.22), the expression of the transfer 

function which is in this case a vector of two entries, is obtained. The norms of both entries of the transfer 

function are then plotted in Figure 2.1 for the values (2.54) of the gains. The delay is chosen as h = 1 . 

Norm of second e 

· . · . • • l , 
______ 0 _____________ _ 

------~---------------------~-----· . • • l , · . , • • 1 · . · . . . · . · . . , · . 1 • 1 1 · . . , 
• • • 1 

• • • 1 · . · . 

· ... . 
-----~------~-------~------~-----· . . . · . . · . · . 

Figure 2.1. Nonn of the transfer function of the closed loop system vs the frequency 

for gain values I, and G1 

In Figure 2.2, the plot is repeated for the values (2.55) of the gains. 

~ ~ ~ ~ ~ ~ ~!~ ~ ~ ~ ~ ~ ~ ~ __ l ----------;-i -'-__ :"::_-'-_-'-_-'-_-;:-~ -'-__ -_-_-_-'--_ '-;-~ -= __ --'_-'-_--'_-'-_ '-;_ ~:-------'----'---'--è_ ~c=---"---'--__ 

· . . .. . , . . .. . · . . ., . · . , .. . 
• • • • l , 

------r------T------,------~-------r------r-----
• • • • l , 
• • • • • 1 · . . . . . 
1 1 • • • , · . . . . · , . . , 
------T------,------~-------r------r-----

• • • • 1 
• • • • 1 · . · . · . -----T------ --- ----~------1-------r------r-----· . . · . . . . · . . . 

-----T------,-------.-------~-
• • 1 • · . , . · . . . · . " . 

- - - - - ~ - - - - - - ~ - - - - - - -:- - - - - - -~ - - - - - - ~ - - - - - - ~ - - - - - - ~: - -:-::-::--~-- ±-:-::-::-::-::~---J::;I: · . " . , • ,. 1 . . . 

Figure 2.2. Nonn of the transfer function of the closed loop system vs the frequency 

for gain values 4 and G2 

45 



We see that the condition III:w (s t ~ r is fulfilled as in this example r = 0.8. Aiso the maximum 

amplitude of the norm will not be affected by varying the delay h. The plots above will only exhibit more 

oscillations, as the delay is found in the exponential term in the transfer function. 

Also by imposing sorne other performance restrictions (ri se time, settling time, etc.), the condition 

III:w (s t ~ r can be met more tightly. 

2.5.4. Asymptotic Stability for the Time-Varying Case 

Consider the following linear continuous un certain time-varying counterpart of system (2.1)-(2.5): 

i(t) = [ A(t) + M(t) Jx(t)+ [ Ali (t) + Mil (t) Jx(t -h)+ BI (t )w(t )+[ B(t) + AB(t) Ju (t) (2.56) 

y(t) = [ C(t) + AC(t )Jx(t)+ [ Ch (t) + ACII (t )Jx(t -hl + B2 (t) w(t) (2.57) 

z(t) =M(t)e(t)+N(t)u(t) (2.58) 

[M(t)]=[HA(t)]F(t)E (t), [Mh(t)]=H (t)F(t)[Eh(t)] , ACII(t)=Hc, (t)F(t)Ec, (t) (2.59) 
AC(t) Hc(t) A AB(t) A EB(t) 

where F (t) E ~iXj is a real uncertain time-varying matrix with Lebesgue measurable elements which meets 

the requirement that F (t) FT (t ) ~ 1 . 

The full-order linear time-varying and delay independent state observer with the associated feedback 

controller proposed in this chapter are assumed to take the following form: 

i(t) = G(t)x(t)+L(t) y(t)+B(t)u(t) (2.60) 

u(t)= K(t)x(t) (2.61) 

where G (t) and L (t) den ote the time-varying observer gains, K (t) denotes the time-varying controller 

gain, and aIl three gains are design parameters. 

Using the same definitions for e (t) and ç (t) as in (2.8) and (2.13) respectively, the following augmented 

system is easily obtained: 

~(t) = [ Â(t)+ M(t) Jç(t )+[ ÂII (t)+ Mil (t) Jç(t -h)+ Ê(t) w(t) (2.62) 
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z(t) = ê(t)q(t) (2.63) 

where Â(t), M(t), Â" (t), M" (t), ê(t) and Ê(t) are defined as in (2.14)-(2.19), with aIl quantities 

being time-varying. 

In the above context, the objective is to design for the parameter values: G (t), L( t) and K (t ) , in such a 

way that for aU admissible parameters uncertainties M (t), M" (t), DB (t ), ~C (t) and ~C" (t ) , and for 

aU time-delay values hE jR+ , the augmented system (2.62)-(2.63) is asymptoticaUy stable. 

Theorem 2.2. [87] Given a constant positive definite matrix Q > O. If the following differential Riccati 

inequality 

:t P(t)+[ Â(t)+M(t)J P(t)+P(t)[ Â(t)+M(t)] 

+P(t)[ Â" (t)+M" (t)]Q-1 [Âh (t)+Mh (t)J P+Q < 0 (2.64) 

has positive definite solution p( t) for ail admissible uncertainties, then the system (2.62)-(2.63) is 

asymptotically stable. 

For the sake of simplicity, we introduce the foUowing definitions: 

r(t) ~[Ql -ë~IE,; (t)Eh (t)] 

<t>(t) ~ Ah (t )r-l (t) AJ. (t )+ë2H A (t )H~ (t) 

Ji (t) ~ A (t) + (ël + ë3 ) HA (t ) H~ (t) ~ (t) + <t> (t ) ~ (t ) 

Â(t) ~ Ji(t)- ~-l (t)[ B(t) K(t)J ~ (t )_ë;l~-l (t)[ EH (t) K(t)J EH (t) K (t) 

V(t) ~ ëJHc (t)H~ (t)+ë2Hch (t)H~ (t)+Ch (t)r-J (t)AJ. (t) 

C(t) ~ C(t)+V(t)~ (t) 

R(t) ~ ~IH C (t )H~ (t) +~2H Ch (t)H~h (t)+ Cil (t)r-I (t )C;. (t) 

S(t) ~ C(t)+ V(t)~ (t) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

Following the same line of the proof of Theorem 2.1, we obtain the following result for the robust output 

feedback stabilization problem in the time-varying case. 
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Theorem 2.3. Let (]' be a sufficiently small positive constant, QI be a positive-definite matrix, and let the 

matrices <I>(t), Ji(t), Â(t), C(t), R(t) and S(t) bedefinedasin(2.65)-(2.72). 

Let the controller gain matrix K (t) E ~qxn be chosen such that, 

A (t ) + B (t ) K (t) is stable. (2.73) 

Suppose there exist positive scalars ë l , ë2 and ë3 such that the following two differential quadratic matrix 

inequalities have positive-definite solutions 1; (t) and Pz (t), respectively, 

~1; (t)+[ A(t)+B(t)K(t)J 1;(t)+1; (t)[ A(t)+B(t)K(t)] 
dt 

y (t) ~ :t P2 (t) + [ Ji (t) - V T (t) KI (t) C( t) J Pz (t) + Pz (t)[ Ji (t) - V T (t) R- I (t) C (t) ] 

+Pz (t)[(ël +ë3 )HA (t)H~ (t)+<I>(t)-V T (t)KI (t)V(t)JPz (t) 

(2.74) 

(2.75) 

(2.76) 

Under these conditions, if G (t) and L( t) are the observer gain matrices which for sorne chosen 

orthogonal matrix U E ~pxp (UU T = 1), satisfy: 

(2.77) 

G(t)=Â(t)-L(t)C(t) (2.78) 

where Eo E ~nxp is an arbitrary matrix meeting the condition that, 

(2.79) 
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and Y (t) is defined by (2.75), then the resulting output feedback system using G (t ), L (t) and K (t) will 

be such that, for aU admissible parameter uncertainties M (t ), M" (t), !ill (t ), !l.C (t) and !l.C" ( t ) , and 

for aU time-delay values hE jR+ , the augmented state-delayed system (2.62)-(2.63) is asymptoticaUy stable. 
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CHAPTER3 

Discrete-Time Delay-Independent Robust H 00 Output Feedback Control 

of Uncertain Retarded Systems 

3.1. System Description 

Consider the retarded version of system (1.1)-(1.5) taken in the infinite-horizon, time-invariant and 

discrete-time context, where the system matrices are all time-invariant. The uncertainty matrices F; are 

assumed to be equal (assumption frequently made in the literature and is not restrictive in practice) and also 

time-invariant. The constant time-delay h is an integer, and is assumed to be known exactly (see Remark 

3.1 below). More specifically, the system under consideration is: 

x(k + 1} = Ax(k}+ AhX(k-h}+ Bjw(k}+ Bu(k} (3.1) 

(3.2) 

k E [-h,O] (3.3) 

- -
A = A + M, Ah = Ah + M", C = C + LlC (3.4) 

(3.5) 

3.2. Assumptions 

The following assumption is needed for the subsequent development: 

Assumption 3.1. The matrix B2 or He is of full rank. 
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3.3. Full Order Observer 

In the discrete-time case, the full order linear state observer, as proposed in [85], is of the form: 

x(k + 1) = Gx(k)+ AhX(k -h)+ Ly(k) + Bu(k) (3.6) 

Remark 3.1. Although the design presented in this chapter is delay-independent, knowledge of the value of 

the delay is still needed because as seen in (3.6), the observer chosen for our design depends on the delay 

h , for the state estimate to be constructed. In case the value of the delay is not available, then the observer 

(3.6) can be chosen without delay in the state estimate x(t), but at the expense of a less accurate design. 

The controller to be designed will be assumed linear, delay-free and of the form: 

u(k)=Kx(k) (3.7) 

where Gand L are the observer gains and K is the controller gain to be determined. 

Defining the state error e( k) ~ x( k) - x( k) , it then follows from (3.1), (3.2), (3.6) and (3.7) that 

e(k +1) = Ge(k )+(A+M-L( C +AC)-G)x(k)+ Ahe(k -h)+M"x(k -h)+(B[ - LB2 )w(k) (3.8) 

Let z (k) then be the state-error output, which is assumed to be given by: 

z(k)=Me(k) 

where M E IRmxn is a given constant matrix. Defining 

Â~[ A+BK -BK] Â ~[Ah 0] 
A - LC - G G 'h 0 A 

li 

~ ~[HA] Hh - H ' 
A 

"A '" " M=HFE, 

ê~[o M] 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



and combining (3.1), (3.2), (3.5), (3.7) and (3.8), the foUowing augmented system is easily obtained: 

(3.16) 

z(k) = êç(k) (3.17) 

The transfer function from the disturbance w( k) to the state-error output z (k) is thus given by: 

T zw ( z) = ê [ zI - ( Â + M) - ( Âh + Mh ) Z -h r ÊJ (3.18) 

3.4. Problem Statement 

The objective is to design the parameters G, Land K, such that for aU admissible parameter 

uncertainties M, M h and AC, the augmented system (3.16) and (3.17) is asymptoticaUy stable and the 

foUowing upper-bound constraint on the H ~ norm of T zw (z) is simultaneously guaranteed: 

(3.19) 

for aU positive integer time-delay values hE N+, and aU uncertainties (3.5), where 

lI~w (z t = max,Je[O,2Jrj 0' max [T zw ( ejO
) ] and 0' max [T] den otes the largest singular value of T ,and r < 1 is 

a given positive constant. 

3.5. Main Result 

The foUowing lemma will play a key role in designing the robust H ~ output feedback controUer for the 

un certain linear discrete-time state delayed system (3.1) and (3.2). 

Lemma 3.1. If there exist a positive-definite matrix P and positive scalars ê l > 0, ê
2 

> 0 and ê
3 

> 0 

such that the following inequalities hold 

(3.20) 
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(3.21) 

then the augmented system (3.16) and (3.17) is asymptotically stable and meets the specified H~ norm 

upper-bound constraint IITzw (z)jL ::s; r, independent of the positive integer state time-delay h. 

Proof. It is easy to see that the system (3.16), (3.17) is asymptotically stable if and only if the following 

auxiliary system is asymptotically stable: 

(3.22) 

(3.23) 

where the state y (k) E R?n , the disturbance input w] (k ) E R. m , the system output z] (k ) E R.r , and the 

transfer functions of the systems (3.16)-(3.17) and (3.22)-(3.23) have the same H~ -norm values. Then, 

based on the auxiliary system (3.22)-(3.23), the proof of this lemma is completely similar to that of 

Theorem 2 in [69] and is thus omitted. QED 

For the sake of simplicity, the following definitions are introduced prior to stating the main results of the 

chapter: 

(3.24) 

(3.25) 

(3.26) 

where Ec E R.nxn is an invertible matrix and Uc E R.nxn is an arbitrary chosen orthogonal matrix 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

The following theorem provides the theoretical basis for achieving the desired design goal. 

Theorem 3.1. Let the matrices <P" fi, 8" 8 2 , r" Se' Re' Sa and Ra be defined as in (3.24)-(3.33). 

Suppose there exist positive scalars ë" ë 2 and ë 3 , an invertible matrix Ee E ~nxn, and a matrix 

Eo E ~nxp such that thefollowing Riccati-type matrix inequalities 

(3.36) 

(3.37) 

along side with the corresponding matrix inequality constraints 

(3.38) 

(3.39) 

have symmetric positive-definite solutions ~ and ~ respectively. 

Under these conditions, if G, Land K are gain matrices which for some chosen orthogonal matrices 

BK = ST R-1 + E U R-l/2 
ccc c c (3.40) 

L = ST R-1 + E U R-1/2 
o 0 0 0 0 ' 

(3.41) 

(3.42) 
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then the resulting output feedback system using G, Land K will be such that, for ail admissible 

parameter uncertainties M, M h and ilC, and for ail positive integer time-delay values h, 

(1) the augmented state-delayed system (3.16) and (3.17) is asymptotically stable. 

Proof. By virtue of Lemma 3.1, the validity of (3.20) and (3.21) needs to be shown. To this end, defining, 

I>.[~ 0] p= >0 
o ~ 

(3.43) 

and considering the definitions (3.11)-(3.15) and (3.24)-(3.33), it is easy to see that inequality (3.20) 

follows from inequalities (3.38) and (3.39). Also, for simplicity of notation, define the left-hand side of 

(3.21) by L, where 

(3.44) 

Substituting (3.43) into (3.21) yields: 

(3.45) 

(3.46) 

(3.47) 

It follows from the matrix inversion Lemma, 

and the definitions of el and e2 given in (3.30), that 

<1> = P + pel/ 2 (1 _ el/ 2 pel/2 )-1 el/2 P 
1 1 1 1 1 1 1 1 1 (3.48) 

<1> = R. + R.01/2 (1 -01/2 R.01/ 2 )-1 0 1/2 R. 
2222 22222 (3.49) 

Re-writing Lu as, 
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(3.50) 

and using the definitions of Re and Se in (3.31), while noting that Re is invertible because <p[ and <P2 are 

positive-definite (due to (3.38) and (3.39», 

Using the definition of BK in (3.40), 

so that by (3.48), 

From (3.36), Lll < 0 . 

Similarly, L 22 of (3.47) can be re-written as, 

where G has been replaced by its expression (3.42). 

Grouping the terms with respect to L, 

From (3.32) and (3.33), 

Assumption 3.1 implies that the matrix Ro defined in (3.32) is positive-definite and hence invertible, thus 

( -[ -I)H H T -II + ê2 +ê3 A A +êl 

From (3.41) for L, 
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and by (3.49), 

From (3.37), L 22 < O. 

Finally, 

Grouping the terms with respect to GT 
, 

Replacing BK by it expression (3.40) and grouping the terms with respect to L, 

Replacing G, A and t by their expressions in (3.42), (3.27) and (3.29) respectively and subsequently ri 

and r 2 by their expressions in (3.26) and (3.28) respectively, it then implies that Li2 = 0 and so, 

(3.51) 
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as LII < ° and L 22 < ° as shown above. By virtue of Lemma 3.1, the output feedback system (3.16) and 

(3.17) is robustly asymptoticaHy stable and IITzw (zt ~ r for aH values of positive integer time-delay h, 

and aH uncertainties (3.5). QED 

Remark 3.2. The invertibility of A required in [85] is not necessary in this chapter. 

Remark 3.3. The numerical solutions to (3.36) and (3.37) are easily obtained by solving two auxiliary 

Riccati-type inequalities as explained in [34]. 

Remark 3.4. The presented robust H ~ output feedback control design procedure still offers much 

additional design freedom. This freedom is reflected by the arbitrary choice of the free gains parameters 

Ec E ]R.nxn and Eo E ]R.nx
p 

, and the orthogonal matrices U c E ]R.nxn and U o E ]R.px p . Introducing addition al 

performance constraints into the problem formulation (1) and (2) of Theorem 3.1, which would exploit this 

design freedom is currently under investigation. 

3.6. Numerical Example 

Example 3.1. In terms of an example, consider the linear discrete uncertain time-delay system (3.1) and 

(3.2) with system matrices given by 

A _ [0.5 0.01] 
0.01 -0.5 ' 

H = [0.1 0.05] 
A -0.02 0.1 ' 

[0.1 A/ = 
1 ° o~ll 

B2 =[0.5 0.8], 

He =[-0.2 0.8], 

B=[~l C=[1 0], 

[0.5 0~5l M= 

° 
[0.1 0] 

EA = ° 0.1' 
E =[ 0.1 om] 

Il 0.02 0.5 

In what follows, the H ~ output feedback design procedure will aim at the satisfaction of liT zw (z)L ~ r 

with r= 0.8. 

To satisfy constraints (3.38) and (3.39), we choose 

58 



Taking Uc=-l andinvertiblematrix Ec=[l~ ~landinitialValUeSfOr ~ and ~,wecompute(3.24)-

(3.35) and (3.36)-(3.37). We then iterate in ~ and ~ until (3.36) and (3.37) are met while satisfying 

constraints (3.38)-(3.39). This yields the following values: 

p. = [1.643 
1 0.006 

0.006] 
1.132 ' 

R = [0.877 
2 0.006 

0.006] 
0.662 

- [0.280 0.009] C = [0.559 -0.054] , A= 
0.440 ' 0.006 

Ra = 1.873, Sa = [0.473 0.116] , 

R =[3.438 0.067] [ -1.005 0.007] 
2.811 ' 

S = 
c 0.067 c -0.046 0.938 

[
0.5] Finally, taking Ea = , we obtain the following values for our design parameters: 
0.4 

K = [-1.1366 -0.0947], L = [0.618] 
0.354 ' 

G = [-0.066 0.042] 
-0.193 -0.421 

This process can be done for other combinations of Uc and Ua like for instance 1 and 1. AIso, we notice 

that A + BK is stable with poles -0.224 and -1.102. 
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CHAPTER4 

Finite-Horizon Time-Varying Hoo State-Feedback Control of Linear 

Neutral Systems with Parame tric Uncertainties 

4.1. System Description 

Consider the neutral system (1.1) taken in the finite-horizon time-varying context, where the system 

matrices are aU time-varying. More specificaUy, the system under consideration is: 

x(t)- Ag (t)x(t - g (t)) = A(t )x(t) + Ah (t )x(t -h(t)) + BI (t) w(t) + B (t)u (t) (4.1) 

with initial condition, 

x(t)=O, 'v't:S;O (4.2) 

Also, we define an auxiliary output Z (t ) E ~ P to be attenuated, 

z(t) = col {Co (t )x(t) + B2 (t )w(t), C] (t-h(t) )x(t -h(t)), C2 (t- g (t) )x(t - g (t)), D(t)u (t)} (4.3) 

with, 

(4.4) 

The uncertainties are: 

(4.5) 

4.2. Assumptions 

60 



The delays h and g in the system are functions of time and are assumed to be continuously differentiable, 

with their respective amplitudes and rates of change bounded as foHows: 

for tE [O,T] (4.6) 

O:=:;h(t):=:;a<1, O:=:;g(t):=:;,8<1, for tE [O,T] (4.7) 

where hm•x ' a and ,8 are given positive constants. 

Also, Ah (t) is bounded as foHows (see Remark 4.1 below): 

(4.8) 

where Ah,m.x (t) is a continuously differentiable given matrix for aH tE [0, T] . 

4.3. Problem Statement 

The robust H~ control problem (RCP): 

For any scalar r> 0 , let the foHowing performance index be defined: 

(4.9) 

where ~T is a given weighting matrix for the terminal state x(T). 

The robust H~ control design problem with disturbance attenuation level r can now be translated into 

finding a stabilizing control law for system (4.1) and (4.3) which yields J < 0, for aH disturbances 

WE ~ [O,T], subject to the usual assumption that x(t) = 0, for aH t:=:; 0, and w(t) = 0, for aH t < O. 

4.4. Preliminaries 

The foHowing lemmas will prove helpful in the sequel: 

Lemma 4.1. [39] Let thefunction v(t) = Jb(l) J' f(s)dsdO. Then v(t) is a solution of the differential 
a(l) I-(J 

equation, 

dv(t) ( ) (' )J,-a(,) (' )f' -= b(t)-a(t) f(t)- I-b(t) f(s)ds+ b(t)-a(t) f(s)ds. 
dt l-b(l) l-a(l) 

61 



Lemma 4.2. [12] Let A, L, E and F be real matrices (possibly time-varying) of appropriate dimensions, 

with F satisfying FFT ~ / . Then the following holds: 

2- For any matrix P> ° and any scalar e> ° such that e/ - EPET > 0, 

3- For any matrix P> ° and any scalar e> ° su ch that P - eLÉ > 0, 

Remark 4.1. Statement 3 in Lemma 4.2 as applied to Ah can be used to choose bound Ah,max of (4.8). 

Lemma 4.3. [62] Assume that a (s ) E Rn and b ( s ) E Rm are integrable over SE il. Then, for any positive 

definite matrix RE Rnxm and any matrix M E Rmxm , the following holds: 

f T r [a (s )]T [ R 
-2 n b (s)a(s)ds~ Jn b(s) MTR RM][a(s)]dS 

r b(s) 
(4.10) 

4.5. Main Results 

It is the objective of this section to derive a stabilizing control law for our robust H~ control problem 

which depends on the time-delay h, the rates of change ft and if, but not on g itself. This is to ensure 

that, any variations in g, over an infinite-time horizon, do not destabilize the system; see e.g. [36], and 

[53]. 

The following will present the main results of this chapter. 

4.5.1. Finite-Horizon Case 

4.5.1.1.The Lrgain Finite-Horizon Analysis of Linear Neutral Systems (the Bounded 

Real Lemma) 
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Following [20], the unforced system (u (t) = 0) is first considered, and equation (4.1) is written in its 

equiva1ent descriptor form: 

i( t) = y (t) , y (t) = Ag (t) Y (t - g (t)) + A (t) x (t) + A" (t) x( t - h (t)) + BI (t) w( t ) (4.11) 

Using the Liebniz-Newton formula x(t-h(t))=X(t)_J' i(s)ds permits to re-write (4.11) yet in a 
l-h(l) 

more tractable form. Introduction of the augmented state as in (4.11) and the use of the Liebnitz-Newton 

formula allows to avoid the introduction of any addition al dynamics, so that the transfer function of the 

system obtained by freezing the time-variable in the system matrices does not exhibit any additional poles; 

see [8]. This way of transforming system (4.11) is particularly useful as it allows to avoid unnecessary 

conservatism in the design that follows. 

The 1ast transformation of (4.11) yields: 

i(t)=y(t), O=-y(t)+A (t)y(t-g(t))+[A(t)+Ah(t)JX(t)-A,,(t)JI y(s)ds+BI(t)w(t) (4.12) 
g l-h(l) 

[In 0] so that for E = 0 0' the augmented system is: 

[i(t)] [0 1 ][x(t)] [ 0 ] [ 0 ]J' [ 0 ] E Ht) = A(t)+Ah(t) -1 y(t) + Ag(t) y(t-g(t))- A,,(t) '_h(,?(s)ds+ Bl(t) w(t) (4.13) 

A time-varying generalization of the Lyapunov-Krasovskii functional, introduced in [20], will be used here: 

(4.14) 

(4.15) 

v; (t) = r' xT (r)S(t)x(r)dr 
J'-h(') 

(4.16) 

(4.17) 

(4.18) 
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R3(t}=RJ(t}>0. (4.19) 

The following theorem delivers the main result ofthis section; for simplicity of notation the time parameter 

t is omitted in the entries of aH matrices. 

Theorem 4.1. (Bounded Real Lemma) Consider the system (4.1)-(4.3). For a given r> 0 and a given 

symmetric, positive-definite matra ~T' suppose that there exist nXn -matrices: ~ (t) = ~T (t) > 0 such 

that ~(T}=~T' Pz(t), ~(t), S(t)=ST(t»O with S(t)::;O, U(t)=UT(t»O with U(t}::;O, 

scalars Bi (t); i = 1...8, which satisfy thefollowing matrix inequality: 

[Q1 Q2 ]<0 (4.20) QT Q3 2 

with, 

'P1 'P2 ptB1 hm" cI> 1 -WtAh -ê4 EJ Eh P2
T Ag ë1' C6 

'PT 2 'P3 ~TB1 hmax cI> 2 -W: Ah ~T Ag 0 0 

B;P2 B;~ -fI 0 0 0 0 B~' 

hmax cI>~ hmax cI>~' 0 -hm"R 0 0 0 0 (4.21) Q1= 
-AJW3 -ê4 EJ Eh -AJW4 0 0 -(l-a)S +ê4 EJ Eh 0 0 0 

ATR g 2 A~~ 0 0 0 -{1- fJ)u + ê3E~ Eg 0 0 

C 0 0 0 0 0 -1 0 

Co 0 B2 0 0 0 0 -Ip 

lPiH
, 

PzTHh P7H W3
TH h 0 C~Hc ciHc! C~Hc 2 g 

0 , 
~THA ~THh ~THg W:Hh 0 0 0 0 

Q = (4.22) 
2 0 0 0 0 B~Hc 0 0 0 

0 

0 

(4.23) 

where, 
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Also suppose that R3 (t) satisfies the fol!owing matrix inequality, 

(4.24) 

Under these conditions, the cost function (4.9) satisfies J < 0 for al! nonzero w E ~ [0, T], and for any 

value of thepositivedelay g(t), tE [O,T] 

Proof. The performance index J of (4.9) can be written as, 

(4.25) 

Sin ce V (0) = 0, Vo (T) = xT (T)~Tx(T), and V; (T) ~ 0; i = 1...3, then J < 0 is guaranteed if, 

(4.26) 

So, the need is to compute the expression for J or more precisely an upper bound J on J which then 

can be required to verify J < J < 0 . 

. dV (t) 
In doing so, we start first by evaluating V (t) = -- . Differentiating (4.15) and using (4.13), yields, 

dt 

dVo = 2XT (t)~ (t)i(t) = 2[ xT (t) yT (t) JpT (t )[i(t)] 
dt 0 

=2[XT(t) yT (t)JpT (t{ A(t):Ah(t) ~I][:~:~]+2[XT(t) yT(t)JPT(t{ Ag~t)]y(t-g(t)) 

+2[ xT (t) yT (t) ] pT (t { Bl~ t)] w( t) + [ xT (t ) yT (t) ] pT (t { x~)] 

-2f [xT(t) yT(t)JpT(t)[_ O( )]y(S)dS 
'-hl') Ah t 

(4.27) 

A bound for the last term of (4.27) will be derived as follows: 
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(4.28) 

Using Lemma 4.3 with a( s) = [ Ah~t)] y( s), b(s) = P(t{:~:n and with il = [t -h(t ),t J, gives: 

ll(t):5, fI [xT (t) yT (t )JpT (t)( MT (t )R(t) + I)R-l (t )(M (t )R(t) + 1 )P(t )[x((t ))]dS 
l-h(l) y t 

+21' yT(s)ds[O A[(t)]R(t)M(t)P(t)[x((t))]+f' yT(S)[O A,; (t)]R(t)[- o( )]Y(S)dS 
l-h(l) y t 1-/1(1) Ah t 

:5, hmax [XT (t) yT (t)] pT (t)( MT (t)R(t) + I)W1 (t){M (t )R(t) + I) p(t {:~:~] 

+2[ xT (t)-xT (t-h(t))J[O A,; (t)]R(t)M(t)P(t{:~:~] 

+ ['\nu yT (s)[ 0 A[ (t) ]R(t { Ah~t)}( s )ds 

as R(t»O. 

Differentiating V; (t) and V2 (t) of (4.16) and (4.17) , 

dV; (t) = xT (t)S (t)x(t )_( 1- h(t) )XT (t-h(t))S (t)x(t - h(t))+ ri xT (-r) S (t )x( -r)d-r 
& J~0 

dV2 (t) = yT (t ) U ( t ) Y ( t ) - ( 1 - g ( t ) ) yT (t - g ( t ) ) U ( t ) Y ( t - g ( t ) ) + fi yT ( -r)li ( t ) Y ( -r ) d-r 
dt 1-8(1) 

and using the assumptions S (t) > 0, S (t):5, 0, U (t) > 0 and c.i (t):5, 0, and the bounds (4.7), 

dv' (t) 
_1 -:5, xT (t)S (t )x(t) -(1-a)xT (t- h(t)) S (t )x(t - h(t)) 

dt 

dv' (t) 
_2 -:5, yT (t)U (t) y(t) -(1- P) l (t- g (t ))u (t) y(t- g (t)) 

dt 

App1ying Lemma 4.1 to V3 (t) , 
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(4.32) 

If, 

~~max (t) R3 (t) A;,max (t) + A;~max (t) R; (t) Al,max (t) + Armax (t) R3 (t ) A;,max (t) < 0 (4.33) 

then, 

dV3 (t) T -T - f' T -T -
~ < hmax Y (t) Ah,max (t ) R; (t ) Ah,max (t) Y (t ) - ,_/ .. ~ Y (s) Ah,max (t) R; (t ) Ah,max (t ) Y ( s ) ds (4,34) 

Employing (4.27), (4.29), (4.30), (4.31) and (4.34), the following upper bound on V (t) is obtained: 

V(t)<2[XT(t) yT (t)]pT (t{ A(t)~Ah(t) ~1][:~:~]+2[XT(t) yT(t)]pT(t{ Ag~t)]y(t-g(t)) 

+2[ xT (t) yT (t)] pT (t { Bl~ t)] w( t) + [ xT (t) yT (t) ] pT (t { x ~t)] 

+hmax [ x
T (t) yT (t) ]pT (t)( MT (t) R(t)+ I)W1 (t){ M (t) R(t) + 1) p(t {:~:~] 

+2[ XT (t) _X
T (t - h(t)) ][0 A; (t) ]R(t)M (t) p(t {~~: ~ 1 

+ [h,.u yT (s)[o A; (t)]R(t{ Ah~t)}(S)dS 

+xT (t)S (t )x(t )-(1-a)xT (t -h(t))S (t )x(t- h(t)) 

+yT (t)U (t) y(t )-(1- fJ) yT (t - g (t))U (t) y(t- g (t)) 

Since R3 (t) > 0 and using bound (4.8), we see that the two remaining integrals in (4.35) verify, 

[/~ yT (s)[ 0 A; (t) ]R(t)[ Ah~t) }(S)dS- [11,_ yT (s) A/;'max (t )R3 (t) Ah, max (t) y(s )ds 
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= [,."" yT (S )[A: (t) Ro (t )A" (t) - ALnax (t) Ro (t ) A", max (t)] y (s )ds::; 0 

thus reducing (4.35) to, 

V(t)<2[XT(t) yT (t)]pT (t{ A(t)~Ah(t) ~1][:~:~]+2[XT(t) yT(t)]pT(t{ Ag~t)]y(t-g(t)) 

+2[ xT (t) yT (t)] pT (t{ Bl~t) ]w(t) + [XT (t) yT (t)] pT (t{ x~t)] 

Next, 

+hmax [XT (t) yT (t) ]pT (t)( MT (t) R(t) + I)R-l (t)( M (t) R(t)+ I)P(t {:~: ~] 

+2[ XT (t) - XT (t - h(t)) J[ 0 A: (t) ]R(t)M (t )P(t{:~:~] 

+xT (t)S (t )x(t) -(1- a)xT (t-h(t))S (t )x(t - h(t)) 

+/ (t)U(t) y(t)-(l- /3) yT (t- g(t))U(t) y(t- g(t)) 

f: ZT (t) z(t}dt = fJCo (t )x(t)+ B2 (t) w(t) J [Co (t)x(t)+ B2 (t) w(t) ]dt 

+([ Cl (t - h(t) )x(t -h(t)) J [Cl (t - h(t) )x(t -h(t)) Jdt 

+ f:[ C2 (t - g (t) )x( t - g (t)) J [C2 (t - g (t)) x( t - g (t)) ]dt , 

Making the change of variables l' = t - h (t) and B = t - g (t) , we can write (4.37) as, 

+fT-"(T) [Cl (1')x(1')]T [Cl (1')x(1')] : ( ) d1' 
-h(O) 1- h t 

+fT-g(T)[C2 (B)x(B)J [C2 (B)x(B)] ~ ( ) dB 
-g(O) l-g t 

Since x( t) = 0 for an t::; 0 , (4.38) is written, 
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(4.37) 

(4.38) 



+f
T
-8(T)[C2 (O)X(O)J [C2 (O)X(O)] ~ ( ) dO 

Jo . 1- g t 
(4.39) 

Also using bounds (4.7) and the fact that the integrands are positive, (4.39) is bounded as, 

f: ZT (t)z(t)dt:S; 

([co (t )x(t) + B2 (t )w(t) J [Co (t )x(t)+ B2 (t) w(t) Jdt + ([Cl (t )x(t) J [Cl (t )x(t) ] 1 ~a dt 

+JT[C2 (t)X(t)J [C2 (t)x(t)]_l_ dt . 
o 1- fJ 

and finally integrating (4.36) from time 0 to T, we obtain, 

fJ ZT (t)z(t)-fwT (t)w(t)+V(t)Jdt< 

J: {2[ xT 
(t) yT (t)]pT (t{ A(t)~Ah (t) ~I ][~~:~l+2[ xT 

(t) yT (t)]pT (t{ Ag~t)]y(t-g(t)) 

+hmax [x
T (t) yT (t)] pT (t)( MT (t )R(t)+ I)Wl (t)( M (t) R(t)+ I)P(t{~~:~] 

+2[ xT (t) _xT (t - h(t)) ][0 A[ (t) ]R(t)M (t )p(t {~~:~] 

+xT (t)S (t )x(t )-(1-a)xT (t -h(t))S (t )x(t- h(t)) 

+yT (t)U (t) y(t)-(1- fJ)yT (t- g(t))U (t) y(t- g(t)) 

+ [Co ( t ) x ( t ) + B2 (t ) w ( t ) J [ Co ( t ) x ( t ) + B2 (t ) w ( t ) ] 
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+_1_[CI (t )X(t) J [Cl (t )X(t) ] +_1_[C2 (t )X(t) J [C2 (t )X(t) J- rW
T (t) W(t )}dt (4.41) 

1-a 1-f3 

Next app1ying Lemma 4.2 to (4.41) resu1ts in a bound for J which has the following form: 

f: {[ xT 
(t) yT (t)JpT (t{ A(t):A

h 
(t) ~I ][~~:~]+[ xT 

(t) yT (t)][~ AT (t):/J. (t) ]P(t{~~:~l 

+ [ xT (t) yT (t ) ] pT (t ) [ Ag ~ t ) ] y (t - g (t ) ) + yT (t - g (t )) [ 0 A; (t ) ] p (t ) [: ~: ~ 1 

+[ xT (t) yT (t) ] pT (t) [ Bl~t)] w( t) + wT (t)[ 0 Br (t) ] p( t {~~:~] + [ xT (t) yT (t) ] pT (t) [ x~)] 

+hmax [XT (t) yT (t) JpT (t)( MT R(t) + 1) W 1 (t )(MR(t)+ 1) p(t {:~:~ 1 

+[ xT (t) yT (t)JpT (t)MT (t)R(t{ Ah~t)][ x(t)-x(t-h(t))] 

+xT (t)S (t)x(t) -(l-a)xT (t -h(t)) S(t - h(t) )x(t - h(t)) 

+yT (t)U (t) y(t)-(l- f3)yT (t- g(t))U(t- g(t)) y(t- g (t)) 

+hmax yT (t) XJ,max (t) R3 (t) ~,max (t) y (t) 
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Defining the aggregated state ç (t) as: 

x(t) 
y(t) 
w(t) 

_) [x(t)] 
ç(t)= (M+R) P y(t) 

x(t-h(t)) 

y(t-g(t)) 

C(t)x(t) 
B2 (t)w(t) 

then bound (4.42) can be written as: 

where il) (t), il2 (t) and il3 (t) are as in (4.21), (4.22) and (4.23), respectively. 

Sufficient conditions for guaranteeing that J < 0 (and so J < 0) can thus be stated as follows: 

2.) il3 (t)<O (assumptionsofLemma4.2). 
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3.) A;'max (t) R3 (t) Ah,max (t) + A;'max (t )R3 (t) Ah,max (t) + A;'max (t) ~ (t) Ah,max (t) < 0 (used for obtaining 

(4.34)). 

By the Schur complements lemma (see Appendix A), conditions 1.) and 2.) are equivalent to assumption 

(4.20) of the Theorem, and condition 3.) is assumption (4.24) of the Theorem. 

QED 

Remark 4.2. Concerning a practical numerical procedure for fin ding the solutions to the above inequalities, 

the time derivatives of ~ (t), S(t), U (t) and R3 (t) can be approximated using a backward difference 

scheme as follows: 

. ( )_ ~(k)-~(k-l) 
~ t - , 

1', 
S(t)= S(k)-S(k-l), U(t)= U(k)-U(k-l), ~(t)= R3(k)-R3(k-l) 

1',1',1', 

where 1', is the discretization step selected based on numerical considerations, and k is the discretization 

index. Once 1', is selected, inequalities (4.20) and (4.24) reduce to a set of LMIs [6] to be solved backward 

at each discretized time with terminal conditions ~ (T) = ~T' S (T) = ST' U (T) = UT and R3 (T) = R3T . 

Here, the choice of ST ' UT and R3T is arbitrary provided that the conditions of the Theorem are satisfied. 

Aiso notice that the variables ë j (t) being time-varying does not make the solution more difficult, since the 

LMI (see Appendix B) solved at each discretized time gives as solution, the value of an the variables listed 

in the Theorem ( P;, S , U , lt;, Ri and ë j ). Taking ë i (t) as time-varying allows the LMIs to be satisfied 

more easily and less conservatively at every discretized time. 

4.5.1.2.Finite-Horizon State-Feedback Control of Linear Time-Varying Neutral 

Systems 

In this section, a memoryless state-feedback gain matrix K (t ) E ~lxn will be constructed such that, 

u(t) = K(t)x(t) (4.43) 

guarantees that ] < 0 for all nonzero w (t ) E l'!z [0, T] . 

Substituting (4.43) into the system equations (4.1) and (4.3), yields, 
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x (t ) - Ag (t) X (t - g (t ) ) = Â (t ) x (t ) + Ah (t) x (t - h (t ) ) + BI (t ) w (t ) (4.44) 

z(t) = coz{êo (t )x(t) + B2 (t )W(t), Cl (t-h(t) )X(t -h(t)), C2 (t- g (t) )X(t- g (t))} (4.45) 

with, 

A) - - A() [Co(t) 1 A() [B2 (t)] A (t = A (t ) + B (t ) K (t ) , Co t = D (t) K (t ) and B2 t = 0 (4.46) 

Direct application of the BRL derived in the previous section to the above system leads to a nonlinear 

matrix inequality which involves terms pi (t) B (t) K (t) and KT (t) BT (t) i':J (t) . Instead, a different form 

of (4.20) is used, 

with, 

ip pT[~] 
[0 Bn p -r2J 

Q-1- hmax<l>T 0 

-[0 l'J [ l' Ah W - ê4EhEh oJ 0 

[0 A;]P 0 

[ Co 0] B2 

il = 2 o o o 

where, 

hmax <1> 

0 

-hmaxR 

0 

0 

0 

o 

_WT[~J_[ê4E~Eh ] 
0 

0 

-(1-a)S +ê4E~Eh 

ErReo 

o 
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0 

0 

o 

(4.47) 

pT[~J [ Ci] 
0 B~' 

0 0 

0 0 

-(1- j3)U +ê3 E;Eg 0 

0 -J
p 

(4.48) 

o o (4.49) 

(4.50) 



'P='P+ 1-a 1-/3 +W + 1 W - [C~Co +_1 C{C1 +_1 CJC2 0] T [0 0] [0 Ai] 
o 0 AI 0 0 0 

r&IE~EA +(&2 +&4)E~ Eh +(&5 +&6 +&7 _1_+&s_I_)E;Ec + l-a I-fJ 

o 
:1 (4.51) 

. [0 \li = pTE+pT 
A+Ah 

(4.52) 

W=RMP <I>=wT +pT W=[~ W2] <1>=[<1>1] R=RT =[RI R~2] 
, 'w w' <1>' RT 

3 4 2 2 

We notice that (4.20) results from (4.47) by expansion of the matrix blocks in (4.47). 

Next, (4.46) is first substituted into (4.47), and then Lemma 4.2 with a scalar parameter &9 is used to yield, 

[1\ AT 
il2 

~}o 
il3 

with, 

qJ pT[~J 
[0 Bn p -rI 

01 = hmaxcpT 0 

-[0 TJ [ l' Ah W -ê4 Eh Eh oJ 0 

[0 A;JP 0 

[ Co 0] B2 

il = 2 o o o 

hmax cp 

0 

-hmaxR 

0 

0 

0 

o 

_W
T [~]-ê4 [E;OEh] 

0 

0 

-(1-a)S +ê4E; Eh 

BJHco 

o 

0 

0 

o 

0] + W1' [0 0] + [0 A~ ] W 
o Ah 0 0 0 
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pT[~J [ Ci] 
0 BT 

2 

0 0 

0 0 

-(1-fJ)U+ê3E;Eg 0 

0 -1 
p 

o o o 



A. [0 [l+[O AT +KTB
T 

+AhTl p 'II = pTE+pT 
A+BK+Ah -[ [ -[ 

Next, a new time-varying parameters 8(t)E~ is introduced such that W(t)=8(t)P(t). By Schur 

complements (see Appendix A) as applied to (4.20), 

which in turn is equivalent to, 

-U(t)<O (4.54) 

-~ (t)_~T (t)+U(t)+~T (t)G(t)U-1 (t)GT (t)~(t) <O. (4.55) 

Since by the assumption in the BRL, U (t) > 0, (4.54) is verified and (4.55) implies that 

-~(t)_~T(t)<O andso ~(t) isnonsingular.Nowrecallthat P(t)=[~~:~ ~~t)l andthat ~(t) is 

nonsingular, hence P (t) is nonsingular. This permits to define: 

and ~~diag{Q,lq+p+27n+3J (4.56) 

and to parametrize K (t) so that 

K(t) = Y(t)QI-I (t). (4.57) 

Multiplication of (4.53) by ~T and ~, on the left and the right, respectively and the application of the 

Schur lemma to the quadratic term in Q, yields the following, 

(4.58) 
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with, 

[ A, 
A2 

~'l III = A~ A3 
AT 0 A5 4 

8 [~J hmax(OI+1) -o[ ~J-84QT [E~oEh] [ ~] [ I] QI C; 

[0 Bn -r21 0 0 0 B~ 
A -1- hmax (01 +1) 0 -hmaxR 0 0 0 

-0[0 T] [T Ah -84 Eh Eh O]Q 0 0 -(1-a)S+84E~Eh 0 0 

[0 An 0 0 0 -(1- p)u +C3 E;'Eg 0 

[co O]Q B2 0 0 0 -1 
p 

A3 = diag{-S-I ,-U-I ,-I,-hmaxR-I, -Qi ,-l, -(l-a)/,-(l- fJ)/} 

8=[ ° 1 ]Q+QT[O AT +AJ]+[ ° 0]+[0 YTB
T
]+[ ° O]Q+QT[O OAJ] 

A+Ah -1 1 -1 BY ° ° ° OA" ° ° ° 
Finally defining, S (t) = S-I (t), (j (t) = U- I (t) and li (t) = R-1 (t), and expanding the block matrices in 

(4.58), leads to the following version of the BRL for the c1osed-loop system. 
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Theorem 4.2. Consider the system (4.1)-(4.3) with a peiformance index (4.9). Given r> 0 and a 

symmetfic, positive-definite matrix J;T' suppose that for some chosen time-varying parameter 8(t)e R, 

and positive scalars ê i (t ), i = 1, ... ,9, which satisfy the following inequality, 

(4.59) 

with, 

Q2+Q~ e , 0 hmax (1 + Ô)R, hmax {1 + Ô)R2 -c4Q~ErEh 0 Q;rC~ 
eT , -QJ -Qi B, hm•x {1 + Ô)R~ hmax (1 + Ô)RJ -ÔAh Ag 0 

0 BT , -'II 0 0 0 0 B~' 

hmax (1 + Ô)R;r hmax {1 + Ô)R2 0 -hmaxR, -hmax~ 0 0 0 
A,= 

hmax {1 + Ô)R~ hm•x {1 + Ô)R; 0 -T 
-hmaxRJ 0 0 0 -hmaxR2 

-C4 Er Eh Q, -ÔAr 0 0 0 -(l-a)S + C4 Er Eh 0 0 

0 A;' 0 0 0 0 -{1- f3)U + êJE;Eg 0 

CoQ, 0 B2 0 0 0 0 -Ip 

- . {- - [R, R2] . T ( ) ( )} AJ =dzag -S,-U,-I,-hmax R~ R3 ,-Q, ,-1,- 1-a 1,- 1-{3 1 

A = [ê,Qr E~ ê2Qr ET. ê4Qr ET. êsQr E~ ê6Qr E~ ê7Qr E~ ê8Qr E~ 
4 0 
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- l:' 
0 0 0 0 QrC~He Qr Cr He 

T T 

:' j 
0 1 

QzCzHc, 

Hh Hg oHh 0 0 0 0 
TI = z 0 0 0 0 BrHeo 

0 0 0 

0 

where, S(t)=S-I(t), U(t)=U-1(t), and RI(t), R2(t) and R3(t) are the (1,1), (1,2) and (2,2) 

_( [RI (t) Rz (t)]_l 
blocks of R t) = Rr (t) R3 (t) > 0 respectively, and, 

Aiso suppose that R3 (t) satisfies the following matrix inequality, 

AT RA +AT RA +AT RA <0 
L "",max 3 l,max L ~,max 3 l,max. L ~,max 3L ""',max (4.60) 

Under these conditions, the state-feedback law given below: 

u(t) = K(t)x(t) = Y(t) QI-I (t)x(t) (4.61) 

guarantees that the cost function (4.9) satisfies J < 0 for ail nonzero w E ~ [0, T], and for any value of 

the positive delay g (t), tE [0, T] . 

4.5.2. Infinite Horizon Case 

It is useful to interpret the results derived in the previous sections as they refer to systems on an infinite-

time horizon. It is not surprising that the solution to the infinite-horizon problem can be shown to translate 

into linear matrix inequalities and hence can be solved using efficient algorithms [6], which do not require 

parameter tuning. To demonstrate this in sorne detail, it is assumed that aB the system matrices are constant 

except Fg (t ), F (t ), 0, (t) and Fc (t ) , while the time-delays g and h are still considered time-varying, 

unknown, and bounded along with their rates of change as in (4.6)-(4.7). 

The following assumption [30] is needed to en able the application of Lyapunov's second method for 

stability of neutral systems in the infinite-horizon case: 
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Assomption 4.1. The difference operator D: Cn(-oo,O]xIR.~IR.n, given by D(x"t)=x(t)-

Ag (t)x(t-g(t)), is delay-independently stable (i.e., the homogeneous difference equation Dx, =0 IS 

asymptotically stable irrespective of the delay g ). 

For any input signal w E l3z [0,00) the performance index 1 is now written as, 

(4.62) 

The theorem found below is an analog of the BRL of Theorem 4.1 which additionally provides conditions 

under which the system (4.1) is globally uniformly asymptotically stable (g.u.a.s), and under which 10 < 0, 

for all w E l3z [0, 00 ) . 

Theorem 4.3. (bounded reallemma for the infinite-horizon case) Consider the lime-invariant version of 

system (4.1)-(4.3) as defined above. For a given r> 0, suppose there exist nxn -matrices: .r: > 0, ~, ~ 

, S = ST > 0, U = UT > 0, ~, W2, W3, W4 and RI = Ri, R2' R3 = Ri > 0, and positive scalars cj ; 

i = 1...8, which satisfy the following linear matrix inequality: 

(4.63) 

where, (4.63) has the same expression as (4.20) in Theorem 4.1, except that ail entries are lime-invariant. 

Under these conditions, system (4.1) is globally uniformly asymptotically stable (g.u.a.s), and the cost 

function (4.62) salis fies 10 < 0 ,for ail nonzero w E l3z [0,00) , and for any value of the positive delay g. 

Proof. By the application of the Schur complements lemma (see Appendix A) to (4.63), it is easy to show 

that V < 0 , which along with Assumption 4.1 guarantees the global uniform asymptotic stability of system 

(4.1), and also implies that z E ~ [0,00) and that lois well defined. Close inspection of (4.24) further 

implies that this condition is redundant. The proof of 10 < 0 then follows exactly like that of Theorem 4.1. 

QED 

The next result is the equivalent of Theorem 4.2. 

Theorem 4.4. (Infinite-Horizon Case) Consider the time-invariant version of system (4.1)-(4.3) with a 

peiformance index (4.62). Given r> 0, suppose that for some chosen parameter Ô ER, there exist n x n -
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positive sea/ars ê j , i = 1 ... 9, whieh satisfy the following inequality, 

(4.64) 

with 

Q2+Q~ ê , 0 hmax (1+o)R, hmax {1 + o)R2 -ê4QrE~'Eh 0 Q;rC~ 

êT , -Q3 -Q; B, hmax {1 + o)R~ hmax (1 + O)R3 -oAh A. 0 

0 BT , _y2J 0 0 0 0 B~ 

Â,= hmax {1 + O)Rr hmax {1 + O)R2 0 -hmaxR, -hmaxR:z 0 0 0 

hmax {1 + o)R~ hmax (1 + o)R; 0 -hmaxR~ -hmaxRJ 0 0 0 

-ê4ErEhQ, -oAr 0 0 0 -(I-a)S + ê 4 Er Eh 0 0 

0 AT g 0 0 0 0 -(1- fJ)U + ê3E;E. 0 

CoQ, 0 B2 0 0 0 0 -Jp 

,-

Â = diag {-s -U -1 -h [RI R2] -1 -(l-a)1 -(l- fJ )l} 3 "'max-r-" , 
R2 R3 

. r;, 0 0 0 0 QrC~Hco QrCr HC
1 

l' T 
Q2 C2 Hc, 

Hh Hg oHh 0 0 0 0 
TI = 

2 0 0 0 0 B~Hco 0 0 0 

0 
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where, S=S-I, U=U- I
, and RI' R2 and R3 are the (1,1), (1,2) and (2,2) blocks of 

_ [RI R2]-1 
R = T > ° respectively, and, 

R2 R3 

Under these conditions, the state-feedback Law given below: 

(4.65) 

guarantees that the system (4.1) is globally uniformly asymptotically stable (g.u.a.s), and the costfunction 

(4.62) satisfies Jo < ° ,for ail nonzero WE I6 [0,00), andfor any value of the positive delay g. 

Remark 4.3. When uncertainties enter only matrices Ag , A and B , then Ah,max = Ah and inequality (4,64) 

reduces to the following LMI: 

Q2+Q~ 
eT 

1 

0 

AI = 
hmax (1 + Ô)Rr 
hmax {1 + Ô)R; 

0 

0 

COQI 

e 1 0 

-Q3 -Qi BI 

BT 
1 -rI 

hmax (1+ Ô)R2 0 

hmax {1 + Ô)R[ 0 

-ÔSAh 0 

UAT 
g 0 

0 B2 

o hmaxQ~ Ar 
o hmaxQ; Ar 

o 

hmax (1 + Ô)RI 

hm"" {1 + Ô)R; 
0 

-hm""RI 

-hmaxR; 

Q;C~ 
o 

0 

0 

0 

Q;C; 
o 

hmax (1 + Ô)R2 
hm"" (1+Ô)R3 

0 

-hmaxR2 
-hm""R3 

0 

0 

0 

- . {- - [RI A3 = dlag -S, -U , - l , -hmax RJ ~:l-I,-(1-a)I,-(1- fJ)I} 
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0 0 Qrc~ 
-ÔAhS A/J 0 

0 0 B~ 
0 0 0 

0 0 0 

-{1-a)S 0 0 

0 -{1- fJ)U 0 

0 0 -Ip 



As = diag {-e;I, -ëgI} 

with, 

For the infinite-horizon time-invariant case with no uncertainties, the results of [20] are recovered. 

4.5.3. Numerical Examples 

The following examples wère run on LMI-LAB Toolbox in MATLAB. Bound Ah,max is chosen using 

Lemma 4.2 (see Remark 4.1). Parameter ë in Lemma 4.2 is adjusted until the resulting bound Ah. max 

results in the best stability limit for hmax when the LMI of Theorem 4.3 is solved. This tuning ofparameter 

ë is actually relatively easy because of the bell-like relation between hmax and ë. The results presented 

below are more competitive than any other result presented in the literature thus far. 

Example 4.1. Consider the uncertain time-delay system (4.1 )-(4.3) with: 

[-2 0] 
A= ° -0.9' 

_[-0.5] BI -
1 ' 

Co =[1 0], HA = H" = diag{0.2,0.2} and 

EA = E" =diag{I,I} 

and assume that aH the other matrices in (4.1)-(4.3) are zero. The same example was used in [12] to 

compare the method developed there with previous results while using hmax = 0.4437 . 

The application of Theorem 4.3 with a = ° and fJ = ° while varying parameter ë used in the selection of 

AIi,max reveals a bell-like relation between hmax and ë as shown in Figure 4.1. The maximum delay for 

which robust stability is guaranteed is hmax = 1.4657 , proving that the approach adopted here is mu ch less 
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conservative than [12] despite the presence of parametric uncertainties. The corresponding ê and Ah,max 

are 

- [-1.6072 -0.4877] . 
ë = 6.2 , and A, max = 

1, -0.4877 -1.1195 

, , , 
1 " 1 -----t------1-------:--, , , --~- --- -- -: - - - - - -: - - - - - - -:- - - - - - -: - - - - - -: - - - --

, , 1 1 1 l , 1 
l , l , , , , , 1 1 1 l , 1 
1 1 1 l , 1 

, 1 1 • 1 1 1 -- -:- - - - - - -; - - - - - - ~ ------~ ------ -:- - - - - - -; - -----~ -----
1 lIt " 
, , " 1 1 
l , 1 1 1 1 

l , , 1 • l , 1 

, 1 1 1 1 1 1 1 
1 - - - - - - -:- - - - - - -;-- - - - - ~ - - - - - - ~--- - - - -:- - - - - - -; - - - - - -; - - - --

l , , , • , l , 

, 1 l , lIt 1 

l , l " " 
1 l , 1 1 " 
l , , 1 1 1 1 1 

----,-------,------- .. ------T------,------.,------- .. ------r-----
, , , , , 1 

1 1 " 1 

1 1 '" 
1 1 1 1 1 

1 1 " 1 

• 1 l , " " __ • ______ 01 _______ , _______ .. ______ + ______ .. ______ ... _______ .. ______ .. ____ _ 

l , 1 1 1 l , , 
l , , 1 1 1 l , 

1 1 1 1 1 1 1 1 
l , l , 1 1 l , 

l , , , 1 1 1 1 

Figure 4.1. Maximum delay hmax guaranteeing robust stability vs tuning parameter ê : Example 4.1 

Finally, for a de1ay h = 0.7, a = 0 and f3 = 0, Figure 4.2 shows the relation between the achieved 

disturbances attenuation rand tuning parameter ë. 
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o 0 _______ .... _________ • _______________ • ___ ---- ______ 1 ______ ---- _______ _ 

o 0 
o 0 

o 0 
o 0 

o 0 0 --------1- ---------~- --------- --------- ----------~- --------- -------
o 0 0 
o 0 0 
o 0 

--------1----------:---------- --------- ---------.,.--------- -- ----
o 0 0 
o 0 0 
o 0 
o 0 
o 0 

o 0 0 --------~ -- -- - - - - - -:- - - - ------ --------- - - - - - - - - - -:- - - -- --- ~ --------
" " 
" " 1 l " 
o 0 0 

1 l " ------,----------,---------- --------- ----------,-- ------r--------
1 1 1 1 
o 0 0 

o 0 

o 
o 0 

• 0 --,----------,---------- --------- ---- ---,----------,.-----.--
o 0 · . o 0 

• 0 o 0 · . o 0 
o 0 
o 0 

-- ----------,---------- .. --.-----
o 0 
o 0 

o 0 
o 0 

o 0 

Figure 4.2. Minimum disturbance attenuation r vs tuning parameter ê: Example 4.1 

It is seen that the best disturbances attenuation is r = 0.8377 and 1S achieved for ê = 4.1 and 

- [-1.5608 -0.4473] A = . It is noticed that the highest hmax and the lowest rare not achieved for the 
h.max -0.4473 -1.1136 

same value of parameter ê, although from Figure 4.2, it is seen that the attenuation r achieved for 

ê = 6.2 (corresponding to the highest hmax , see above) is r = 0.8601, which is very close to the lowest 

value, namely r = 0.8377 (achieved for ê = 4.1). 

Example 4.2. Consider the un certain time-delay system (4.1)-(4.3) with: 

A=[-2 0] o -1' 
Co =[1 0], 

and assume that aU the other matrices in (4.1)-(4.3) are zero. The same example was used in [39] to 

compare the method developed there with previous results while using hmax = 0.2412. 

The application of Theorem 4.3 with a = 0 and fJ = 0 while varying parameter ê used in the selection of 

Ah.max reveals a bell-like relation between hmax and ê as shown in Figure 4.3. The maximum delay for 
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which robust stability is guaranteed is h max = 0.6562, proving that the approach adopted here is much less 

conservative than [39] despite the presence of parametric uncertainties. The corresponding ê and A",max 

- [-1.5003 -0.4462] 
are ê=0.6, and A"max = . 

, -0.4462 -1.2331 
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Figure 4.3. Maximum delay hmax guaranteeing robust stability vs tuning parameter ê : Example 4.2 

In [93], for a rate of change a = 0.9 , robust stability is guaranteed with hmax = 0.1561 . Using Theorem 4.3 

with a = 0.9 , robust stability is found to be guaranteed for hmax = 0.4964. Figure 4.4 gives the values of 

the maximum time-delay h max guaranteeing robust stability in function of the rate of change a of time-

delay h. 
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Figure 4.4. Maximum delay hmax guaranteeing robust stability Vs. rate of change of h : Example 4.2 

Finally, for h = 0.4, a = 0, j3 = 0 and e = 0.6 , a minimum value of disturbance attenuation r = 0.6064 

is achieved. 

Example 4.3. Consider the un certain time-delay system (4.1 )-(4.3) with: 

A =[-2 0] 
1 -3' [ -1 0] 

Ah = -0.8 -1 ' 

and assume that aIl the other matrices in (4.1 )-(4.3) are zero. The same example was used in [39] to 

compare the method developed there with previous results while using hm", = 0.5351 . 

The application of Theorem 4.3 with a = 0 and j3 = 0 while varying parameter e used in the selection of 

Ah,max reveals a bell-like relation between hmax and e as shown in Figure 4.5. The maximum delay for 

which robust stability is guaranteed is hmax = 3.4092, proving that the approach adopted here is mu ch less 

conservative than [39] despite the presence of parametric uncertainties. The corresponding e and Ah,max 

- [-1.4420 -0.3779] 
are e = 0.9, and Ah max = . 

, -0.3779 -1.1397 
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Figure 4.5. Maximum delay hmax guaranteeing robust stability vs tuning parametere: Example 4,3 

In [93], for a rate of change a = 0,9, robust stability is guaranteed for hmax = 0.3151, Using Theorem 4,3 

with a = 0.9 , robust stability is found to be guaranteed for hmax = 0.8773 . Figure 4.6 gives the values of 

the maximum time-delay hmax guaranteeing robust stability in function of the rate of change a of time-

delay h. 
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Figure 4.6. Maximum delay hmax guaranteeing robust stability vs rate of change of h: Example 4.3 
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[
-0.8 0] Finally, for a = 0 and fJ = 0, and assuming the following value for Ag = , the system is still 
0.8 -0.1 

stable for hmax = 0.2074. For h = 0.09, a = 0, fJ = 0 and e = 0.9, a minimum value of r = 0.9272 is 

achieved. 

Example 4.4. Consider the un certain time-delay system (4.1) and (4.3) with: 

HA =diag{0.2,0.2}, EA =diag{I,I} and EB =[0.2] 
0.2 

and assume that all the other matrices in (4.1)-(4.3) are zero. 

Applying the LMI (4.66) with the parameter JI = -0.3, the c1osed-loop system IS still stable for 

hmax = 0.9297 . The corresponding controller gain matrix. is K = [47.5 -22478]. 

For h = 0.8, the minimum value of attenuation achieved is r = 0.5373 . The corresponding controller gain 

matrix is then K = [-0.2215 -327.3820]. 

When the neutral delay term is added with Ag = diag {-O. 1, -0.2} , the maximum h for which a state-

feedback controller stabilizes the system is hmax = 0.7998. The corresponding controller gain matrix is 

K =[322.3 -7193.3]. 

For h = 0.75 , the minimum value of attenuation is r = 0.4236 . The corresponding controller gain matrix is 

K=[-0.2620 -89.8172]. 
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CHAPTERS 

Delay-Dependent State-Feedback Robust Stabilization of Uncertain 

Neutral Systems with Saturating Actuators: 

The Differentiai Inclusions Model 

5.1. System Description 

Consider the neutral system (1.1) and (1.3)-(1.5) taken in the infinite-horizon context, where aIl the system 

matrices are time-invariant except the uncertainty matrices F;. More specificaIly, the system under 

consideration is: 

x (t ) - Ag (t) x (t - g (t ) ) = A (t ) x (t ) + Ah (t ) x (t - h (t ) ) + B (t ) u (t) 

x( to + VI) = ~(VI), \i VIe [-dmax , 0], (to'~) e jR+ XC:'.,.n 

Ag(t)=Ag+Mg(t), A(t)=A+M(t), Ah(t)=Ah+Mh(t), B(t)=B+LlB(t) 

5.2. Assumptions 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

The delays h and g in the system are functions of time and are assumed to be continuously differentiable, 

with their respective amplitudes and rates of change bounded as follows: 

O~h(t)~hmax' O~g(t)<oo, for all t ~ 0 

o~lÏ(t)~a<l, O~g(t)~p<1, for all t ~ 0 

where htruJ.x' a and p are given positive constants. 
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AIso, Ah (t) is assumed to be bounded as follows (see Remark 5.2 below): 

AJ (t) Ah (t) ::; ArmaxAh.max (5.7) 

where matrix Ah,max is constant and known. 

Finally, the following is assumed to hold: 

Assomption 5.1. (A + Ah' B) is stabilizable. 

Assomption 5.2. The input vector is subject to amplitude constraints, i.e. U E Uo c 1I<m , with 

(5.8) 

where vector u:è [U;, ... , um r has strictly positive entries and is given. 

The following additional assumption [30], is needed to en able the application of Lyapunov's second 

method for the stability of neutral systems: 

Assomption 5.3. The difference operator given by 

D( x"t) = x(t) - Ag (t) x( t - g (t)), is delay-independently asymptotically stable (i.e., the homogeneous 

difference equation Dx, = 0 is asymptotically stable irrespective of the delay g). 

5.3. Problem Statement 

The robust stabilization problem with saturating actuators: 

Find a matrix K E 1I<mxn and a set of initial conditions So c 11< n such that the c1osed-Ioop system: 

i (t ) - Ag (t) i (t - g (t ) ) = A (t) X (t ) + Ah (t ) X (t - h (t ) ) + B (t ) U (t ) 

with u ( t ) = sat ( Kx ( t ) ) 

is asymptotically stable. 

(5.9) 

Remark 5.1. Generally, global asymptotic stability for an open-Ioop unstable system with bounded 

con troIs cannot be achieved so only local asymptotic stability will be sought. 
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It is the objective of this chapter to derive a stabilizing controllaw which depends on the bound hmax of the 

time-delay h, the bounds f3h and f3g on the rates of change h and g , but not on the time-delay g itself. 

This is to ensure that, any variation in g does not destabilize the system; see [29, 52]. 

5.4. Preliminaries 

The following lemmas will prove helpful in the sequel: 

Lemma 5.1. [39] Let a (t) : R+ --t R, b (t) : R+ --t Rand f (s ) : R --t R be continuously differentiable 

functions. 

Let the function z (t) = Ib(t) rt 
f (s )dsdB. Then z (t) is a solution of the differential equation, 

a(t) Jt-Il 

dz(t) =(b(t)-a(t))f(t)-(l-b(t))It-a(t) f(s)ds+(b(t)-a(t)) rt 
f(s)ds. 

dt t-b(t) Jt-a(t) 

Lemma 5.2. [12] Let A, L, E and F be real matrices (possibly time-varying) of appropriate dimensions, 

with F satisfying FF T :s; 1 . Then the following ho/ds: 

1- For any scalar e > ° and any matrix P, 

2- For any matrix P> ° and any scalar e> ° such that el - EPET > 0, 

3- For any matrix P > ° and any scalar e > ° such that P - eL!! > 0, 

Remark 5.2. Statement 3 in Lemma 5.2 as applied to Ah (t) can be used to choose the bound Ah,max III 

(5.7), as follows: 

with, 
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ç > 0 a positive scalar chosen such that, (1 -ç H"HJ.) > 0 . 

Lemma 5.3. [62] Assume that a: Q ~ ~n and b: Q ~ ~n, Q c JR are integrable functions over their 

common domain Q. Then, for any positive definite matrix R E ~nxm and any matrix M E ~mxm, the 

following inequality holds: 

(5.11) 

5.5. Main Result 

A locally equivalent polytopic representation for the closed loop nonlinear system (5.9) based on the 

concept of differential inclusions [58] is used here and leads to, 

i(t) - Ag (t)i(t - g (t)) = (A(t) + B(t )r( a(x)) K)x(t) + A" (t )x(t -h(t)) (5.12) 

where r(a(x)) ~ diag{aj (x); i = 1, ... ,m} is a diagonal matrix whose diagonal elements are defined by: 

i=l, ... ,m (5.13) 

where K(i} is the i-th row of matrix K . C1early 0 < ai (x) :::; 1, i = 1, ... , m, 'v'x E ~n • The value ai (x) can 

be interpreted as an indicator of the saturation degree of the controllaw. The sm aller is ai' the farther is x 

from the region of linearity of the control u, S (il, lm) , 

(5.14) 

In an effort to estimate the size of the region of attraction for the local stabilization of the constructed 

robust controller, the following lower bound for ai (x) is introduced to correspond to any compact set 

92 



(5.15) 

so that, 

O<~i :=; ai(x):=; 1, VXE Sc' i=l, ... ,m (5.16) 

For a fixed vector ~ ~ [~l."~m r ' define the following vertex matrices: 

Aj (t) ~ A(t)+B(t)rj (~)K , j = 1, ... ,2m (5.17) 

where r j (~) is a diagonal matrix whose diagonal elements take the values 1 (no saturation) or g, 

i = 1, ... ,m (saturation). Hence, if XE SC then the velocity i must satisfy the following equation (see 

Lemma 1 in [79]): 

2m 

i(t)- Ag (t )i(t - g (t)) = LÀjAj (t )x(t)+ Ah (t )x(t-h(t)) (5.18) 
j=l 

2m 

with LÀj = 1, ~ ~ O. 
j=l 

Furthermore, it is important to note that the vector ~ allows to define a polyhedral set: 

(5.19) 

The set S(u,~) contains Sc and corresponds to the maximal set in which (5.18) equivalently represents 

system (5.9). 

In the context of the above, let Sc be a c10sed ellipsoid defined by a symmetric positive definite matrix 

~ >0, 

(5.20) 

where r is a positive scalar. 

The following theorem delivers the main result of this section: 

Theorem 5.1. Consider the closed-loop system (5.9). Suppose that there exist nX n -matrices: ~ = ~T > 0, 

93 



vector ~ E Rm , positive scalars Bi; i = 1, ... ,4, and a positive scalar r, which satisfy the following matrix 

inequalities: 

Vi =1, ... ,2m (5.21) 

Vi=l, ... ,m (5.22) 

g E (0,1], Vi=l, ... ,m (5.23) 

with, 

K(~) E Rn (i.e. K(i) is the i - th rowof K ). 

'Pll 'P2} hmax <Pl -W3
T Ah -84EJ: Eh pTA 2 g 

'P;} 'P3 hmax <P2 -W4T~ ~TAg 
A 

ni} = hmax<p; hmax <P; -hmaxR 0 0 (5.24) 

-AJ:W3 -84EJ: Eh -AJ:W4 0 -(1- fJh)S+84EJ: Eh 0 

A; Pz A;~ 0 0 -(1- fJg)U + 83E; Eg 

(5.25) 

(5.26) 

where, 
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Under these conditions, system (5.9) is locally asymptotically stable for any initial condition 9(0') in the 

bail, 

with, 

1 
0'=­

pt:2 

where, 

(5.27) 

(5.28) 

(5.29) 

Remark 5.3. In [27], a comparison between the different saturation models used in the literature was made, 

concluding that the differential inclusion method used in this chapter leads to the least conservative design. 

Remark 5.4. In [77], the proposed design is delay-independent in both the neutral and the retarded de1ays, 

while in Theorem 5.1, the presented controller is delay-independent in the neutral delay and delay-

dependent in the retarded delay. This leads to a less conservative design than that of [77]. The reason for 

choosing a delay-independent design for the neutral delay is that, unlike simple retarded systems, neutral 

systems are particularly sensitive to delays and can be easily destabilized; see [29, 52]. AIso, in [77], only a 

design for the nominal system (no uncertainties) is considered and the delays are assumed known and time-

invariant, which makes the above theorem more general. 

Remark 5.5. In [79], a delay-dependent design for retarded systems was presented. However, the 

descriptor system transformation used there introduces addition al dynamics to the original system [8], and 

thus makes the design more conservative than the one proposed in the present thesis. AIso, the bounding 

technique (see Lemma 5.3) employed in the proof of Theorem 5.1, further reduces the conservatism of the 

presented approach as compared with [79]. 

Remark 5.6. The main difficulty in the application of the design procedure as stated in terms of Theorem 

5.1 is that the inequalities (5.21) and (5.22) are nonlinear in the parameters ~, ~, ~ and K. This 

difficulty can he overcome by employing relaxation techniques, as suggested in [77, 78]. A suitable 
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relaxation technique in this case is to choose f! and K and solve for ~, ~,and then re-iterate the choice 

of f! and K. In this way inequalities (5.21) and (5.22) then reduce to linear matrix inequalities (LMIs) in 

the variables Pz, ~. The latter are easily solved using the algorithms of [6]. AIso, more sophisticated 

optimization techniques could be used to maximize the set of initial conditions <1> ( (j); see [77] for 

ex amples of such techniques. 

Proof. By virtue of condition (5.22) of the Theorem the ellipsoid defined by (5.20) is included in the set 

S(u,~) as defined by (5.19), where the vector f! verifies (5.23). Therefore, i(t) satisfies the polytopic 

system equation (5.18). 

The last can be further written in its equivalent descriptor form: 

2m 

i(t) = y(t), y(t) = Ag (t) y(t- g(t))+ ~)'jAj (t)x(t)+A" (t)x(t-h(t)) (5.30) 
j=l 

Using the Liebnitz-Newton formula x(t-h(t))=X(t)_JI i(s)ds permits to re-write (5.30), yet in a 
l-h(l) 

more tractable form. Introduction of the augmented state as in (5.30) and the use of the Liebnitz-Newton 

formula allows to avoid the introduction of any addition al dynamics, so that the transfer function of the 

system obtained by freezing the time-variable in the system matrices does not exhibit any additional poles; 

see [8]. This way of transforming system (5.30) is particularly useful as it allows to avoid unnecessary 

conservatism in the design that follows. 

The last transformation of (5.30) yields: 

i(t) = y(t), 0 = -y(t) + Ag (t) y(t- g (t)) +[~/l.jAj (t) + Ah (t) ]x(t) - Ah (t) [lItt) y( s )ds (5.31) 

so that if E é: [~ ~], then the augmented system is given by : 

(5.32) 

The following Lyapunov-Krasovskii functional is used here: 
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(5.33) 

where, 

t-;(t)=r' xT(r)Sx(r)dr (5.35) 
J,-h(,) 

V2 (t)=f' yT(r)Uy(r)dr (5.36) 
l-g(l) 

V3 (t) = r~,~ [II yT (s )Ar.max~Ah,maxY( s )dsdB = fil,., [II yT (s)[ 0 Ah,max JR[ 0 ] y( s )dsdB (5.37) 
Ah,max 

with, 

(5.38) 

Differentiating (5.34) and using (5.32), yields, 

-2I' [xT(t) yT(t)JPT[ o( )]y(S)dS 
l-h(l) Ah t 

(5.39) 

A bound for the last term of (5.39) is derived as follows: 

(5.40) 

Using Lemma 5.3 with a(s) = [ Ah~t)] y(s), b(s) = p[:~:~] and with ,Q = [t -h(t ),t ] ' gives: 
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+2J' yT (s)ds[O Ai. (t)]RMP[X((t))]+J' yT (s)[O Ai. (t)]R[AO( )]y(S)dS 
1-11(1) y t '-h(') Il t 

~ hmax [XT (t) yT (t)]pT (MT R+ I)Kl (RM + 1) p[:~~~] 

+2[ xT (t) _xT (t - h(t)) J[ 0 AT. (t) ]RMP[:~~~]+ [,,,,,, yT (S)[ 0 AT. (t)]R [ Ah~t) }(S )ds (5.41) 

as R >0. 

Differentiating V; (t) and V2 (t) of (5.35) and (5.36), yields, 

dV; (t) = xT (t ) Sx (t) - ( 1- li (t ) ) xT (t - h (t)) Sx (t - h (t) ) 
dt 

dV (t) 
_2 _ = l (t)Uy(t)-(l- g(t)) yT (t- g (t))Uy(t- g (t)) . 

dt 

Using the assumptions S > 0, U > 0, and the bounds specified by (5.6), 

dV, (t) 
_1 _ ~ xT (t) Sx(t) -(1- Ph )xT (t - h(t ))Sx(t -h(t)) 

dt 

dV (t) 
_2 _ ~ yT (t) Uy (t ) - ( 1- Pg ) yT (t - g (t )) Uy (t - g (t)) . 

dt 

Applying Lemma 5.1 to V3 (t), 

dV3 (t) T () T () f' T ( ) T ( ) --=hmaxy t AhmaxR3AhmaxY t - Y S AhmaxR3AhmaxY S ds dt "1-"-" 

(5.42) 

(5.43) 

(5.44) 

Employing (5.33), (5.39), (5.41), (5.42), (5.43) and (5.44), the following upper bound for li (t) is obtained: 
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+xT (t )SX(t )-(1- /lh )XT (t -h(t)) Sx(t-h(t)) 

+yT (t )Uy(t )-(1- /lg) yT (t - g (t ))Uy(t- g (t)) 

(5.45) 

Since ~ > 0 ,then, by virtue of the bound given by (5.7), the two remaining integrals in (5.45) satisfy the 

following inequality : 

Now, it is possible to reduce (5.45) to, 

1 ][X(t)]+2[ xT (t) 
-1 y(t) 

+hmax [XT (t) yT (t)JpT (MTR+I)W1(RM +I)p[~~:~l 

+2[ x
T 
(t)-x

T (t-h(t))J[ 0 AJ. (t)JRMP[~~:~] 

+xT (t )Sx(t )-(1- /lh )xT (t -h(t)) SX(t -h(t)) 

+yT (t)Uy(t )-(1- /lg ) yT (t - g (t) )Uy(t- g (t)) 

(5.46) 

From (5.30) and the fact that x is square integrable on [0,00), it follows that D (y, ) E l':;. [0,00) . Un der 

Assumption 5.3, the latter implies that y, E l':;. [0,00) . 

Next, the application ofl-emma 5.2 to the uncertaintyterms in Ag (t), Aj (t), Ah (t), and B(t), results in 

the following bound for li (t) : 
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with, 

+[ XT (t) yT (t) JpT [ ~] y(t- g (t))+ yT (t- g (t))[ 0 A;]p[:~:~l 

+hmax [XT (t) yT (t)JpT (MT R+I)Kl (RM +I)p[:~:~l 

+[ XT (t) yT (t) JpT MT R[ ~J[ X(t) - X(t- h(t)) ] +[ XT (t)- XT (t - h(t)) J[ 0 AnRMP[:~:~ 1 
+xT (t )SX(t )-(1- Ph )XT (t -h(t) )Sx(t-h(t)) 

+yT (t) Uy (t ) - (1- Pg ) yT (t - g (t)) Uy (t - g (t)) 

2'" 2m 2m 

+ê1-1XT (t) LÂf; HAH~Pzx(t) + ê1-1yT (t) LÂ/~T H AH~ PzX(t )+ê1-1XT (t) LÂAT H AH~ ~y (t) 
j~l j~l j~l 

ZM ZM 

+ê1-1yT (t) LÂAT HAH~~y(t)+êlXT (t) LÂj (EA +EBrj (q)Kt (EA + EBr j (q) K)x(t) 
j~ j~ 

+ê;IXT (t) PzT HgH; Pzx(t) + ê;lyT (t) ~T HgH; Pzx(t) + ê;lXT (t )p; HgH; ~y(t) 

(5.47) 
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ë j >0, i=1, ... ,4 

Defining W ~ [~ W2
] ~ RMP, and the aggregated state ; (t) by, 

W3 W4 

X(t) 
y(t) 

;(t)~ (M +R-\)p[~~:~l 
XT (t-h(t)) 

/(t-g(t)) 

the inequality of (5.47) can now simply be written as : 

2m 

(5.48) 

(5.49) 

where the matrix e in volves the summation ofterms of the form l>tj ( ... ) ; see the inequality (5.47). 
j=\ 

To guarantee that V (t) < 0, for aH t;?: 0, it is sufficient that e < o. By convexity, e < 0 is guaranteed if 

o.\j -o.2o.~\o.; < 0, for j = 1, ... , 2m
, where o.\j' 0.2 and 0.3 are given by (5.24), (5.25) and (5.26), 

respectively. 

Sufficient conditions for V (t ) < 0 can thus be summarized as foHows : 

j = 1, ... ,2m 

2.) 0.3 < 0 (assumptions (5.48) resulting from the application of Lemma 5.2 to obtain inequality (5.47)). 

By the Schur Complements Lemma, conditions 1.) and 2.) above are equivalent to assumption (5.21) of the 

Theorem. 

Thus, there exists 1r3 > 0 such that V ( XI ( 'l') = X (t + 'l') ) ::; -1r31Ix (t )112 
, so that V (XI) ::; V ( XI.) provided 

that the model (5.18) is valid, i.e., for any time t;?: to such that X (t ) E S (il, ~) . 

Furthermore, following [90], the Lyapunov functional defined in (5.33) can be shown to satisfy, 

(5.50) 

where, 
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11~llw =[11~(0)112 + CJI~(O)1I2 dO TZ 

w1 (II~( 0 )11) = lrlll~( 0)112 

W2 (11~llw ) = lr211~11~ 

(5.51) 

(5.52) 

(5.53) 

If, ~ mID+_ (p')+2 (1 ~P.) Â_ (S), 2 (I~:'P.) Â",., (S)+ (I-'P,) "'". (u)+ hm.Â~ (A;'_RA_)} 

(5.54) 

Inequality (5.50) can be shown by first noting that, 

Therefore, we choose, 

Next, recalling that dmax = max { h (t), g (t )} , and noting that for 0 ~ 0 , 

II~(O)II =II~(O)- f: ~(u)dull 

~ II~(O)II +IIJ: ~(u )dull 

~ II~(O)II + f:II~(u )11 du 
then we have that for 0 ~ 0 , 

11~(Of ~(II~(O)II+ f:II~(u)lldUr 

~ 211~(O)llz +2U:II~(u )11 du r 
~211~(0)112 +2f:II~(u)112 duf:12 du 

=211~(0)W -20f:II~(u)r du 
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where the Cauchy-Schwarz inequality is used. It then follows that, 

C(o)II~(O)I(dO~ C(o)(211~(o)112 -20J:II~(u)112 dU}iB 

~ 2h(O)II~(0)112 +2h(0) C(oJ:II~(u )112 
dudO 

=2h(0)11~(0)112 +2h(O)fo fU 11~(u)112 dOdu 
-h(O) -h(O) 

= 2h(0)11~(O)112 + 2h( 0) C(O) (u + h( 0) )11~(u )112 
du 

~2h(0)11~(O)112 +2h2(0)C(o)II~(u)W du 

From this, we obtain, 

Also, 

and sa, 

2 1 fO 2 1 fO Il 11
2 

v(~,t) ~ Âmax (1nll~(O)11 + (1- Ph) Âmax (s) _h(o)II~(-r)11 d-r+ (1- Pg) Âmax (U) -g(O) ~(-r) d-r 

+hmaxÂmax (f\~maxR3f\,max)r"",,II~(s)112 ds 
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where 1[2 is given by (5.54). 

Hence, for all ~(V')E 4>, V'E [-dmax'O] , 

(5.55) 

Therefore, for any initial condition ~ in the ball 4>(0') defined by (5.27), the system (5.9) verifies the 

conditions of the Lyapunov-Krasovskii Theorem [41] and V (XI) is a local strictly decreasing Lyapunov 

function. Therefore the asymptotic stability of system (5.9) is ensured. QED 

5.6. Numerical Examples 

The following examples were solved using the LMI (see Appendix B) tool in Matlab. 

Example 5.1. Consider the time-delay system (5.9) with no uncertainties, and with the following system 

matrices: 
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A = [1 1.5] 
0.3 -2 ' 

(5.56) 

and with aU the other matrices in (5.9) set to zero. The retarded time-delay is chosen to be equa1 to h = 1, 

and the saturation limit is imposed to be ïi = 15. The coefficient of tolerance for control saturation is 

chosen to be ~ = 0.5 . The same example was used in [78], where the authors achieved a ball of admissible 

initial conditions <l> (0') characterized by the square radius of 0' = 1791.9 . Now, employing the results of 

Theorem 5.1, the ball of admissible initial conditions <l> ( 0') is ca1cu1ated as foUows. For a fixed controUer 

gain vector K, inequalities (5.21)-(5.22) are first solved using the standard LMI package to yield a 

corresponding value of the parameter 1C2 of (5.29). The value of the parameter r is next decreased so that 

the inequality (5.22) is satisfied sharply. Repeating this procedure while iterating with respect to the 

controller gain vector K allows us to achieve a (generally local) minimum for the product '}'1C2' In this 

way, a ball of admissible initial conditions <l> ( 0') characterized by 0' = 2183. 7 ~as achieved for the above 

example, and is then 21.87 % larger than the one previously achieved in [78]. 

The corresponding solution matrices pertinent to the maximal ball <l> ( 0') are: 

R = [0.8940 -0.0167] S = [0.2763 -0.0666] R = [1.4594 0] [0.5135 0.0295] 
1 -0.0167 2.3860' -0.0666 1.1200 '3 0 0.7186' U = 0.0295 0.7201 

and the controller gain is : 

K = [-0.2770 -0.0800] 

Finally, the response of the closed loop system to example initial conditions is shown in Figure 5.1 and 

Figure 5.2. Figure 5.1 shows the state response and the corresponding control for the case without control 

saturation, while Figure 5.2 shows the state response and control for the case with control saturation. 
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Figure 5.1. Response of closed-loop system to initial condition Xo = (25,25) : no control saturation 

Figure 5.2. Response of closed-loop system to initial condition Xo = (75,75) : with control saturation 

Simulations demonstrate that the closed system stability is ensured for sorne initial states outside the 

computed ball<l> ((5') . The initial conditions used in Figure 5.2 are such an example, which implies that the 

stabilizable set of initial conditions may have a different shape than a ball and that <l> ( (5') is only an 
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interior approximation of this stabilizable set. This was to be expected as stabilizable sets seldom have the 

exact shape of a baIl. 

Example 5.2. Consider the uncertain time-delay system (5.9) with the following system matrices: 

A =[-2 0] 
1 -3' [ -1 0] 

Ah = -0.8 -1 ' [0.2 0] H -H -
A - h - ° 0.2' 

(5.57) 

with all the other matrices in (5.9) set to zero. Suppose that the saturation limit for the scalar control is 

u=l. 

Using (5.10), the matrix Ah,max in the bound (5.7) is chosen as: 

A = for = 3.6. [
-1.4362 -0.3618] 

Il,max -0.3618 -1.1468 ç 

The choice of ç and thus of Ah max is not arbitrary. The value of the maximum time-delay hmax for 

guaranteeing asymptotic stability varies in function of parameter ç in a parabolic behavior, and so ç is 

chosen at the highest hmax . 

This example was used in [73], where for a level of saturation q = 0.3, system (5.9) was found to be 

robustly stable with hmax = 4.4206 . Since the example of [73] does not take into account the rate of change 

of the time-delay h , for the purpose of fair comparison, it is assumed here that h does not vary with time, 

and so Ph =0. 

The application of the design procedure implied by Theorem 5.1 leads to a better stabilizing controller. For 

the same saturation level of q = 0.3, the solution of (5.21)-(5.22) with controller gain vector 

K = [-0.65 -0.65], provides a controller which guarantees robust stability up to hmax = 6.9152. The 

increase in the width of the stability margin is related to the decrease in the conservatism of the present 

approach as compared to that of [73]. 

As the approach developed here allows us to take account of a time-varying time-delay h in the system, 

further computations with the same example demonstrated how the upper limit hmax on the time-delay 

dh(t) 
changes with the rate -- . The curve in Figure 5.3 illustrates that robust stability margin as expressed by 

dt 
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hmax decreases very rapidly with the increase in the rate of change of the time-delay. It further amplifies 

the importance of considering the rate of change of the delay as a factor in the design, as any incorrectness 

in the assumption about this rate of change may lead to instabilities in the real closed-loop system. Figure 

5.3 also shows that for the rate of change Ph as high as 0.9 robust stability of the closed-loop system is 

still ensured with delays not exceeding hrnax = 0.7015. 

Figure 5.3. Maximum time-de/ay hfor guaranteed stability vs. rate of change of h 

A neutral system verSlOn of (5.57) with A _ [-0.3 0] 
g - 0.3 -0.1' [

0.2 0] 
Hg = ° 0.2' 

Ph = Pg = 0, is also considered. In this case, robust stability is ensured for aIl delays smaller than 

hmax = 0.8026. As before, Figure 5.4 shows the dependence between hmax and the rate of change of neutral 

time-delay dg (t) . Not surprisingly, the stability of the closed-loop system is very sensitive with respect to 
dt 

rapid time-variation in the neutral time-delay. 
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Figure 5.4. Maximum time-delay h for guaranteed stability vs. rate of change of g 
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CHAPTER6 

Delay-Dependent Robust Output Feedback Stabilization of Uncertain 

State-Delayed Systems with Time-Varying Delays and Saturating 

Actuators: 

The Sector Modeling Model 

6.1. System Description 

Consider the retarded system (1.1)-(1.5) taken in the infinite-horizon context, where al! the system matrices 

are time-invariant except the uncertainty matrices F;. More specifically the system under consideration is: 

x(t) = A(t)x(t)+Ah (t)x(t-h(t))+B(t)usat (t) 

y(t) = C(t)x(t)+D(t)usat (t) 

Usat (t) = sat (u (t)), sat (u (t)) = [sat (U1 (t)) sat (U2 (t)) ... sat (Um (t)) ] 

x (t) = ~ (t ), t E [-hmax , 0] (6.1) 

A(t) = A+M(t), Ah (t) = Ah +Mh (t), B(t) = B+AB(t), C(t) = C+AC(t), D(t)= D+AD(t) (6.2) 

(6.3) 

6.2. Assumptions 

The time-delay h is a function of time and is assumed to be continuously differentiable, with its amplitude 

and rate of change bounded as fol!ows: 
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for aU t ~ 0 (6.4) 

where hrnax and a are given positive constants. 

Finally, the following is assumed to hold: 

Assomption 6.1. (A + Ah' B) is stabilizable. 

Assomption 6.2. (C, A) is detectable. 

6.3. Preliminaries 

The foUowing lemmas will prove helpful in the sequel: 

Lemma 6.1. [39] Let a(t):~+ ~~, b(t):~+ ~~ and f(s):~~~ be continuously differentiable 

functions. 

Let the function z (t) = fb
(') J' f (s )dsd8. Then z (t) is a solution of the differential equation, 

a(') ,-e 

dz(t) ( ) (' )J,-a(,) (' )Jt -= b(t)-a(t) f(t)- I-b(t) f(s)ds+ b(t)-a(t) f(s)ds. 
dt t-b(t) ,-a(t) 

Lemma 6.2. [12, 72] Let A, L, E and F be real matrices (possibly time-varying) of appropriate 

dimensions, with F satisfying FF T :5 1 . Then the following holds: 

1- For any scalar ê > 0 and any matrix P, 

2- For any matrix P> 0 and any scalar ê > 0 such that el - EPET > 0, 

3- For any matrix P> 0 and any scalar ê > 0 such that P - eL!! > 0, 

4 - For any scalar e> 0 and any vectors X and Y, 

111 



Lemma 6.3. [62] Assume that a: Y ~ ~n and b: Y ~ ~n, y C ~ are integrable functions over their 

common domain Y. Then, for any positive definite matrix R E ~nxm and any matrix M E ~mxm, the 

following inequality holds: 

f T r [a(s)]T [R RM][a(s)] 
-2 n b (s)a(s)ds::; Jn b(s) MT R Y b(s) ds (6.5) 

6.4. The Observer-Based Dynamic Output Feedback 

The results to be presented are concerned with providing sufficient conditions for the design of an 

observer-based dynamic output feedback law for asymptotically stabilizing system (6.1). This law is 

assumed to take the following form: 

u(t)=2Kx(t) (6.6) 

i(t) = AX(t)+ Busa, (t)+ L( y(t)- Cx(t) - Dusa, (t)) (6.7) 

where X(t)E ~n is the observer state vector, KE ~mxn and LE ~nxr are the constant controller and 

observer gains, respectively. The factor 2 in (6.6) is for convenience in order to facilitate algebraic 

manipulations. 

Defining the usual observer error: 

e(t)~x(t)-i(t) (6.8) 

and using (6.1) and (6.7), permits to write, 

ë(t) = (A - LC)e(t) + (M(t)- L~C(t) )x(t) +( Ah +Mh (t) )x(t - h(t)) +(~B(t)- LW(t) ) usa' (t) (6.9) 

Employing the particular form of the control law (6.6)-(6.7) and the using the equation for the observer 

error (6.9), the augmented system representation is: 

[
x(t)] {[A+BK -BK] [M{t)+M(t)K -M(t)K ]}[X(t)] 
ë(t) = 0 A-LC + M(t)+M(t)K -L~C(t)-LW(t)K -M(t)K +LW(t)K e(t) 
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{[
Ah 0] [Mh(t) O]}[X(t-h(t))] {[B] [ AB(t) ]} 

+ Ah 0 + Mh(t) 0 e(t-h(t)) + 0 + i1B(t)-LMJ(t) 17(t) 
(6.10) 

where, 

17(t) é: sat(2Ki(t ))- Ki(t) (6.11) 

Using (6.3), 

[
x(t)] = {[A+BK 
ë(t) 0 

Pinally, introducing the following definitions, 

Âh é:[~: ~J. Mh(t)é:HhFh(t)Êh é:[~:]Fh(t)[Eh 0], Êé:[~J. 

M(t)é:HF(t)EB é:[ HA ]F(t)EB 
HA -LHc 

(6.13) 

permits to re-write equation (6.12) in yet more aggregated compact form, 

~(t) = Â(t);(t)+ Âh (t );(t- h(t)) + Ê(t )17(t) . (6.14) 

6.5. Problem Statement 

The robust output feedback stabilization problem with saturating actuators: 

Find a matrix K E ~mxn , an a matrix L E ~nxr such that there exists a Lyapunov functional V (; (t), t ) 

corresponding to the closed-loop system (6.14), that satisfies, 

(6.15) 

for sorne constant 1i > O. 
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The above will ensure the quadratic stabilizability [2] of system (6.1) via dynamic output feedback control 

law (6.6)-(6.7), and so the asymptotic stability of the closed-Ioop system formed by system (6.1) and 

controllaw (6.6)-(6.7). 

6.6. Main Result 

The following theorem provides sufficient conditions for robust output feedback stabilization of the 

uncertain time-delay system (6.14) with control saturation. 

Theorem 6.1. Consider the closed-loop system consisting of (6.1) and controller-observer pair (6.6)-(6.7). 

Suppose that there exist, nXn-matrices: F:11' F:!2' F:2!' F:22; i=I, ... ,3, ~11' ~!2' ~21' ~22; 

i=I, ... ,4, Rill' Ri12' Ri2!, Ri22 ; i=I, ... ,3, S=ST>O, an mXn matrix K and an nXr matrix L, 

which together with sorne suitable positive scalars Bi; i = 1, ... ,5, satisfy thefollowing matrix conditions: 

(6.16) 

[ R311 

~21 
R312] ° .hR T T > , wzt 311 = R311' R312 = R321 , R322 

R322 = RJ22 (6.17) 

[R'" 
Rll2 R2l1 

~" 1 RI21 R122 R221 R222 . T 
R1l2 = R!~l' RI22 = R~2 

R;ll R;2! R311 
> 0, wzth Rll! = Rlll' 

R3J2 

R;!2 R;22 ~21 R322 

(6.18) 

(6.19) 

where, 
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'l'Ill '1'112 '1'211 '1'212 hrnax (W;;I + 1;;1) hrnax (WI~I + 1;~, ) hmax (W3;1 + P~I) hm" (W3~1 + P2~1 ) -W3;IAh -W3~IAh -c4E~'Eh 

'1'122 '1' 221 '1' 222 hmax (W1;2 + 1;;2) h",,, (W;;2 + E;;2) hm .. (W3~2 + P~2 ) hmax (W3;2 + P2;2) -W;~2Ah - W;~2Ah 

'1'311 '1'312 hrnax(W~l) hmax (W2~1) hmax (W~l +~~I) hm .. (W~I+~~l) -W~lAh - W~IAh 

QI= 
'1' 322 hm", (W~2) hmax (Wii2) hmax (Wft2 + P3~2) hmax (W:;2 + P3~2) -wftA, - W;~2Ah 

-hmaxRIII -hmax RII2 -hmax R211 -hm""R212 0 

-hmax R122 -h",axRm -hmax R222 0 

-hmaxR311 -hmaxR312 0 

-hmaxR322 0 

-(1- a)S + c4E~ Eh 

(6.20) 

[P;"H' + P;', (H, -IRel P~IHh + P~IHh W~IHh + W3~IHh P~,B P~lBE~ P;',H, + P,';, (H, -IR cil 
_ ~~2HA +P2~2(HA -LHJ P~2Hh + ~~2Hh W3~2Hh + W3~Hh P~2B P~2BE! ~~2HA + pin (HA - LHc) 

Q2 - T T ( ) ~~IHh + ~~IHh W':;IHh + W4~IHh ~~,B ~~,BE!' ~~IHA +~~I(HA -LHc ) ~IIHA +~21 HA -LHc 

~~2HA +~~2(HA -LHc) ~~2Hh + ~~2Hh W':;2H h + W4~2Hh ~~2B ~~2BE! ~~2H A + ~~2 ( HA - LH c ) 

(6.21) 

(6.22) 

andwhere, 

'1' 312 = -P3l2 - ~~l 
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Under these conditions, the closed-loop system consisting of (6.1) and controller-observer pair (6.6)-(6.7) 

is asymptotically stable. 

Proof. Following [24], equation (6.14) is written in its equivalent descriptor form: 

;(t) = y(t), y(t) = Â(t)Ç(t)+Âh (t)ç(t-h(t))+Ê(t)17(t) (6.23) 

Using the Liebnitz-Newton formula ç(t-h(t))=ç(t)-fl ;(s)ds permits to re-write (6.23) yet in a 
l-d(l) 

more tractable form. Introduction of the augmented state as in (6.23) and the use of the Liebnitz-Newton 

formula allows to avoid the introduction of any additional dynamics, so that the transfer function of the 

system obtained by freezing the time-variable in the system matrices does not exhibit any additional poles 

[8]. This way of transforming system (6.23) is particularly useful as it allows to avoid unnecessary 

conservatism in the design that follows. 

The last transformation of (6.23) yields: 

;(t) = y(t), 0 = -y(t)+[Â(t)+Âh (t)JÇ(t)-Âh (t)JI y(s)ds+ Ê(t)17(t) l-h(l) (6.24) 

[

/2n 0] 
so that for E = ° 0' the augmented system is: 

[
;(t)]_[;(t)]_[ 0 [][Ç(t)] [ 0 ] 1 [ 0 ] 

E Ht) - 0 - Â(t)+Âh(t) _[ y(t) - Âh(t) LII(I)y(s)ds+ Ê(t) 17(t) (6.25) 

Then the following Lyapunov-Krasovskii functional is used here: 

(6.26) 

where, 

(6.27) 

~(t)=f' xT(t')Sx(t')dt' 
1-11(1) 

(6.28) 
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(6.29) 

. [~O] T T T T [RI R2] T wlth P = , ~ = ~ > 0, S = S > 0, R3 = R3 > 0, R = R = T > 0, RI = RI 
Pz~ R2 R3 

(6.30) 

and Âh.max is such that, 

for aU t ~ 0 (6.31) 

The bound in (6.31) can be evaluated using Lemma 6.2 as foUows: 

Let e6 > 0 be a scalar such that (/ - eJ! J!~ ) > 0 . Then 

=[A~ A~][/_e [HhH~ o 0 6 H H T 
h h 

(6.32) 

Partitioning Âh.max as follows, 

Â = [Âhll.max Âh12.max 1 
h max A A 

• Ah21.max Ah22,max 

(6.33) 

it is easy to see that, 

A AT A 

Ahll.max = A,;11.max ' Ahl2 max = 0, Ah22.max = 0 , 

and thus (6.33) is reduced to, 

A [Alli 1 max 0] . A AT 
Ah,max = à 0' Wlth Ah Il ,max = Ahll.max . (6.34) 

Differentiating (6.27) and using (6.25), yields, 

d~?) = 2qT (t)~;(t) = 2[qT (t) yT (t)]pT [;~)] 

=2[qT(t) yT(t)]PT[A ° A / ][q(t)]+2[qT(t) yT(t)]PT[BAO(t)]ll(t) 
A(t)+Ah(t) -/ y(t) 

_2 rt [qT(t) yT(t)JPT[A ° ]y(S)dS 
Jt-h(t) Ah (t) (6.35) 
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A bound for the last term of (6.35) is now derived as follows: 

(6.36) 

Using Lemma 6.3 with: 

a(s) ~ [~O ]y(s) ,b(s) ~ p[q((t))] , Y ~ [t-h(t),t ] gives: 
Ah(t) y t 

.u(t) ~ fI [qT (t) yT (t)JpT (MT R+I)KI (RM +1)p[q((t))]ds+2fl yT (s)ds[O 
1-"(1) y t 1-"(1) 

ÂT (t)]RMP[q(t)] 
Il y (t) 

+f yT (s)[ 0 ÂJ (t)]R[ ~ ]y(S)dS 
1-11(1) Ali 

~ hmax [qT (t) yT (t) ] pT (MT R + I)KI (RM + 1) p[~~: ~]+ 2[ qT (t) _qT (t - h(t)) ][0 

+L'I .. u yT (S)[ 0 ÂJ (t)JR[ Âh~t)}(S)dS 
as R>O. 

Differentiating Y; (t) of (6.28), 

dY; (t) = xT (t ) Sx (t) - ( 1-h (t ) ) xT (t - h (t)) Sx (t - h (t ) ) 
dt 

and using the assumption S > 0, as well as the bounds specified by (6.4), 

dV: (t) 
_1 _ ~ xT (t)Sx(t) -(1-a)xT (t -h (t)) Sx(t-h (t)) 

dt 

Applying Lemma 6.1 to V3 (t), 

dV2 (t) T ( ) AT A () fI T ( ) AT A ( ) 
--= hmaxy t Ah max R3Ah max Y t - Y S Ah max y Ah max Y S ds dt "1-1",-,' "3 , 

(6.37) 

(6.38) 

(6.39) 

Employing (6.26), (6.35), (6.37), (6.38) and (6.39), the following upper bound for li (t) is obtained : 

li (t) ~ 2[ qT (t) yT (t) JpT [ Â(t): Âh (t) ~I ][~~:~]+ 2[ qT (t) yT (t) JpT [ Ê~t) ]ll(t) 

+hmax [qT (t) yT (t) JpT (MT R + I)KI (RM + 1) p[~~:~] 
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+2[qT (t)_qT (t-h(t))J[ 0 Â[ (t)]RMP[:~~~] 

+ f yT ( S ) [0 ÂJ (t )] R [ A 0 ]y (s ) ds 
t-h,.,M Ah (t) 

+xT (t )SX(t) -(l-a)xT (t- h(t)) SX(t -h(t)) 

(6.40) 

Sin ce ~ > 0, then, by virtue of the bound given by (6.31), the two remaining integrals in (6.40) satisfy the 

following inequality: 

Now, it is possible to reduce (6.40) to: 

d::t) ~ *' (t) y' (t) Jp' [Â(t): Â. (t) ~J;~:~]+2[ Ç' (t) y' (t)Jp' [il~t) ]?(t) 

+hmax [qT (t) yT (t) JpT (MT R + I)W1 (RM + I)p[:~:~] 

+2[ qT (t )_çT (t - h(t)) J[ 0 ÂJ (t) ]RMP[:~:~] 
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It is easy to check that the vector 7] (t) = sat ( 2Ki (t) ) - Ki (t) has its norm bounded as follows, 

7]T (t )7]( t) ~ 2[ xT (t) KT Kx(t) + eT (t) KT Ke( t)] (6.43) 

Using (6.42) and (6.43) in (6.41), gives the following upper bound on V (t) , 

d:~t) ~ 2[ qT (t) yT (t) ]pT [ Â(t): Âh (t) ~I ][:~:~] +a1 [qT (t) yT (t) ]pT [Ê~t)][ 0 ÊT (t) Jp[:~:~] 
+hrnax [qT (t) yT (t)]pT (MTR+I)W1 (RM +I)p[:~:~] 

+2[ qT (t )_qT (t - h(t)) ][0 Â/; (t) JRMP[:~: ~] 

Next, setting e5 ~ a1-
1 and applying Lemma 6.2 to the uncertainty terms of Â(t) , Âh (t) and Ê(t) , results 

in the foUowing upper bound for V (t) : 

+e;l[qT(t) yT(t)]PT[~][O ÊTJp[:~:~] 

+e;1 [qT (t) yT (t)]pT [Ê~~ Je3I -EBE~t [0 EBÊTJp[:~:~] 

+hrnax [qT (t) yT (t) ]pT (MT R + I)W1 (RM + I)p[:~:~] 

+[xT (t) yT (t)]PTMTR[? ][x(t)-X(t-h(t))] 
Ah 
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with, 

ë j > 0, i = 1, ... ,5. 

• J;. [~ W2 ] J;. ( ) Defimng W = = RMP , and the aggregated state X t by, 
W3 W4 

ç(t) 
y(t) 

X(t)~ (M+R-1)P[Ç(t)] 
y(t) 

çT (t-h(t)) 

inequality (6.44) can now simp1y be written in the form: 

To guarantee that li (t) < ° , for all t ~ ° , it is sufficient that, 

8<0. 

Letting, 

i = 1, ... ,3 
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with, ~ll = ~~l ' ~l2 = ~;l' ~22 = ~;2 

w: :è[Will 
1 Wi21 

W;l2 J. 
W;22 

i = 1, ... ,4 

R. :è [Rill 
1 Ri2l 

Ril2 ], 
Ri 22 

i = 1, ... ,3 

with, Rlli = RI~l' R1l2 = R~I' RI22 = R~2' ~ll = R;ll' R312 = R;21' R322 = R;22 (6.48) 

and expanding aIl the matrices within 8 using the definitions (6.13) and (6.48), inequality (6.47) becomes 

,QI -,Q2,Q~1,Q; < ° where ,QI' ,Q2 and ,Q3 are given by (6.20), (6.21) and (6.22), respectively. 

Sufficient conditions for V (t) < 0 can thus be summarized as follows: 

2.) ,Q3 < ° (assumptions (6.45) resulting from the application of Lemma 6.2 to obtain inequality (6.44». 

By the Schur Complements Lemma, conditions 1.) and 2.) above are equivalent to assumption (6.19) of the 

Theorem. 

Thus, from V (t) :5: ZT (t) 8Z( t) < ° there exists :. > 0 such that the quadratic stabilization condition [2] is 

satisfied as, V (q, (1fF) = q(t + 1fF)) :5: -:.llz(t )112 
:5: -:.llq (t )112

• This implies that the closed-Ioop system 

formed by (6.1) and controllaw (6.6)-(6.7) is asymptotically stable. QED 

6.7. Numerical Example 

Example 6.1. The result presented within Theorem 6.1 involves the solution of sever al complicated matrix 

inequalities. To demonstrate its usefulness for control design processes and explain how it might be 

employed, an example is considered of an un certain time-delay system of the type (6.1), in which the 

system matrices are given by: 

A =[-2 1] 
3 -4' 

Ah =[ 1 
-2 ~l B =[~J. C =[1 2] 

=[1110] HA 0' EA = [1 1]. [1110] 
Hh = 1110 ' Eh = [0 1], He =0, Es =0 (6.49) 
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The time-delay is considered time-invariant with h = 0.3, and the control saturation level is determined by 

ïi = 1. The same example was earlier used by [72] where only the values of gains K and L were given 

without any further information about the response of the system. 

With the above values for the state matrices, an observer gain matrix for the nominal system (in the absence 

ofuncertainties and saturation) is chosen tirst using standard methods to minimize the state estimation error 

for the nominal system. The next step consists in the design of a nominal controller gain according to pre-

selected performance criteria. With reference to the above example, the following values have so proved 

suitable: 

L=[~~l K=[-O.l -0.1] (6.50) 

Theorem 6.1 was then applied to verify that (6.50) in fact yield a robust observer and controller design for 

the pre-specitied uncertainties and the given actuator saturation level. This was done as follows. The 

1 ~ [-2.5766 1.8446] 
parameters ê 3 and ê 6 were chosen tirst to be t; = ê6 = ,and the matrix Ah 11 = was 

, 1.8446 -3.9965 

computed using (6.32). It should be pointed out that the parameters ê 3 and ê 6 could be tuned further to 

reduce the overall conservatism of the design. This, however, has not been our purpose here. 

With tixed design parameters K , Land ê 3 , the matrix inequalities of Theorem 6.1 become linear in the 

remaining parameters and can be solved using the Matlab LMI toolbox, based on the methods developed by 

[6]. This was carried out to contirm that system (6.49) controlled by output feedback with observer and 

controller gains (6.50) is robustly stable with respect to the admissible uncertainties and in spite of the 

given control saturation. Thus, the control laws (6.6) and (6.7) constitute a robust output feedback 

controller for this time-delay system. 

Figure 6.1 shows the open-Ioop state response for the nominal system with initial condition XV = (2,1) . 
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Figure 6.1. Open-loop state response of the nominal system with initial condition XO=(2,l) 

Figure 6.2 shows the corresponding closed-loop state response of the nominal system with observer and 

controller gains as in (6.50). It is seen that the overshoot and the steady-state error were eliminated and that 

the settling time is smaller as compared with the open-loop system of Figure 6.1. 

, , , , 

::: 1 :-::: :::::::: :-::: r:::'::::::::: ::::: 
. . . . . . 

· . · . . _________ L ___________ .L ___________ .L ____________________ _ · . . · , , , , , , , , , 

Figure 6.2. Closed-loop state response of the nominal system with initial condition XO=(2,l) 

Figure 6.3 shows the control input to the plant corresponding to the response in Figure 6.2. No control 

saturation is seen. 
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· . · . · . . ________ L ___________ 1 ___________ .L ____________________ _ · . . · . . · . . · . . · . . · . . , . , , 
- - ~ - - - - - - - - - - - r - - - - - - - - - - - t - - - - - - - - - - - t - - - - - - - - - - - - - - - - - - - --· . . · . . 
· . , , -------r-----------r-----------,,-----------T----------- ----------· . · . · . · . · . · . 
• 1 1 1 --------- .. ----------- .. ----------- .. ----------- .. ----------- ----------
• l , 1 

• 1 1 1 
• 1 • 1 
• 1 1 1 
• 1 1 1 
• l , , 
• l , , 

---------- .. ----------- .. ----------- .. ----------- .. ----------- ----------· , , , 
• 1 l , · . · . · . · . 

Figure 6.3. Closed-loop control input to the plant in the nominal system with initial condition XO=(2, 1) 

Finally, the controller and observer are tested using a remote initial condition Xo = (10,5) ; see Figure 6.4 

for the closed-Ioop nominal system. 

, 1 l , -----------r-----------T-----------T-----------,.----------
l , 1 1 
1 l , 1 

1 1 1 1 
l , , 1 · .. · .. · .. 1 l , , 

----------_ .. _---------_ .. _---------_ ... _--------· . . · . . · . . · . · . · . · . 

Figure 6.4. Closed-loop state response of the nominal system with initial condition XO=( 10,5) 
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Figure 6.5 shows the corresponding control input to the plant where the actuator is clearly seen to saturate 

at the specified level of -1. Despite saturation, the responses of Figure 6.4 are still those of a stable system 

and the overall system performance has not been compromised excessively. 

• , , 1 1 

----------r-----------r--- ------1-----------1-----------1----------
l , l , ----------".------- - .. ----------- .. -----------.,.----------- .. ----------.. , 
" , " , 
" , , , , , , , 
, , 
, , l , _____ L ___________ .L ___________ .L ___________ L _________ _ 

, , l , , , , , . , , , 
l , , t 

, " , " , " , " 
• l , l , 

-----r_::-_:1-1--:-::>:::::01 

Figure 6.5. Closed-loop input to the plant in the nominal system with initial condition XO=( 10,5) 

Simulations were made for different constant values of the uncertainty matrices F (t) and Fh (t) , with 

initial condition Xo = [10,5] . As seen in Figure 6.6, despite uncertainties and control saturation, the closed 

loop system remains asymptotically stable. 

Figure 6.6. Closed-loop state response for uncertainties (F = 1, Fh = 1) and (F = -1, Fh = -1) , with initial 

condition XO=(10,5) 
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CHAPTER 7 

Robust Output Feedback Stabilization of Uncertain Time-Varying 

State-Delayed Systems with Saturating Actuators: 

The Differentiai Inclusions Method 

7.1. System Description 

Consider the retarded system (1.1)-(1.5) taken in the infinite-horizon context, where aIl the system matrices 

are time-invariant except the uncertainty matrices F;. More specificaIly, the system under consideration is: 

x(t) = A(t)x(t)+Ah (t)x(t-h(t))+B(t)usal (t) 

y(t) = C(t)x(t)+D(t)usal (t) 

UsaI (t) = sat (u (t)), sat (u (t)) = [sat (U j (t)) sat (U2 (t)) ... sat (Um (t)) ] 

(7.1) 

A(t)=A+M(t), Ah(t)=Ah+Mh(t), B(t)=B+L1B(t), C(t)=C+L1C(t), D(t)=D+L1D(t) (7.2) 

(7.3) 

7.2. Assumptions 

The time-delay h is a function of time and is assumed to be continuously differentiable, with its amplitude 

and rate of change bounded as follows: 

for aIl t;;:: 0 (7.4) 
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where hmax and a are given positive constants. 

Finally, the following is assumed to hold: 

Assomption 7.1. (A + Ah' B) is stabilizable. 

Assomption 7.2. (C, A) is detectable. 

Assomption 7.3. The input vector is subject to amplitude constraints, i.e., u E Uo c IRm 
, with 

(7.5) 

where vector U ~ [U; ,,,,,um r has strictly positive entries and is given. 

7.3. Preliminaries 

The following lemmas will prove helpful in the sequel: 

Lemma 7.1. [39] Let a (t): IR+ -7 IR , b (t) : ~+ -7 IR and f (s): ~ -7 IR be continuously differentiable 

functions. 

Let the function z (t) = fb(t) rt 
f (s )dsdB. Then z (t) is a solution of the differential equation, 

a(t) Jt- e 

dz(t) ( ) (' ) Jt-a(<) (' )Jt -= b(t)-a(t) f(t)- I-b(t) f(s)ds+ b(t)-a(t) f(s)ds. 
dt t-b(t) t-a(t) 

Lemma 7.2. [12] Let A, L, E and F be real matrices (possibly time-varying) of appropriate dimensions, 

with F satisfying FF T 
::; 1 . Then the following holds: 

1 - For any scalar e > 0 and any matrix P, 

2- For any matrix P> 0 and any scalar e> 0 such that el - EPET > 0, 

3- For any matrix P> 0 and any scalar e > 0 such that P - eLI! > 0, 
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Lemma 7.3. [62] Assume that a: Y ~ R.n and b: Y ~ R.n
, y c R. are integrable functions over their 

common domain Y. Then, for any positive definite matrix RE R.nxm and any matrix M E ~mxm, the 

following inequality holds: 

(7.6) 

7.4. The Observer-Based Dynarnic Output Feedback 

The results to he presented are concerned with providing sufficient conditions for the design of an 

observer-based dynamic output feedback law for system (7.1). This law is assumed to take the following 

form: 

u(t) = Kx(t) (7.7) 

~(t) = AX(t) + BUsat (t)+ L(y(t) - Cx(t) - DUsat (t)) (7.8) 

where X(t)E ~n is the observer state vector, KE ~mxn and LE R.nxr are the constant controller and 

observer gains, respectively. 

Using (7.1) and (7.8), permits to write, 

[
x(t)] {[ A 0] [M(t) O]}[X(t)] 
~(t) = LC A-LC + LL1C(t) ° x(t) 

+{[Ah O]+[Mh(t) O]}[X(t-h(t))]+{[B]+[ L1B(t) ]}u. (t) ° ° ° ° x(t-h(t)) B LW(t) ,at 

(7.9) 

Using (7.3), 

Finally, introducing the following definitions, 
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Ç(t)~[X((t))l, Â~[ A 0], M(t)~HF(t)Ê~[ HA ]F(t)[EA 0], 
.x t LC A-LC LHC 

(7.11) 

permits to re-write equation (7.10) in a yet more compact form, 

~ (t) = Â (t) ç (t) + Âh (t) ç (t - h (t)) + Ê (t) usaI (t) . (7.12) 

with Usat(t)=sat(kç(t)). 

7 .5. Problem Statement 

The robust output feedback stabilization problem with saturating actuators: 

Find a matrix K E ]Rmxn , a matrix LE ]Rnxr and a set of initial conditions So C ]R2n such that the closed-

loop system (7.12) is asymptotically stable. 

Remark 7.1. Generally, global asymptotic stability for an open-Ioop unstable system with bounded 

con troIs cannot be achieved 80 only local asymptotic stability will be sought in this chapter since no 

assumption is made concerning the stability of the open-loop system. 

7.6. Main Result 

A locally equivalent polytopic representation for the closed loop nonlinear system (7.12) based on the 

concept of differential inclusions [58], is used here and leads to, 

~(t) = (Â(t)+ Ê(t )r(a(x))k)ç(t)+ Âh (t)ç(t-h(t)) (7.13) 

where r(a(ç)) ~ diag{ai (ç); i = 1, ... ,m} is a diagonal matrix whose diagonal elements are defined by: 
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~ if K(i)q>ii; 
K(i); 

a j (;) ~ 1 if -li; ::;; K(i); ::;; li; i=l, ... ,m (7.14) 

-~ if K(j); <-li; 
K(i); 

where KU) is the i-th row of matrix K. Clearly 0 < aj (;) ::;; 1, i = 1, ... , m, V; E ~2n • The value aj (;) 

can be interpreted as an indicator of the saturation degree of the controllaw. The sm aller is a j , the farther 

is ; from the region of linearity of the control u, S (il, lm)' 

(7.15) 

In an effort to estimate the size of the region of attraction for the local stabilization of the constructed 

robust controller, the following lower bound for a j (;) is introduced to correspond to any compact set 

S c~2n 
c ' 

~ ~ min{aj (;): ;E Sol, i = 1, ... ,m (7.16) 

so that, 

(7.17) 

For a fixed vector ~ ~ [~1 '''~m r ' define the following vertex matrices: 

j = 1, ... ,2m (7.18) 

where r j ((!) is a diagonal matrix whose diagonal elements take the values (no saturation) or ~, 

i = 1, ... , m (saturation). Hence, if ; E Sc then the velocity ~ must satisfy the following equation (see 

Lemma 1 in [79]): 

2m 

~(t) = LÂjÂj (t);(t)+Â" (t);(t-h(t)) (7.19) 
j~l 

2m 

with L Âj = 1, ~;;:: 0 . 
j~l 

Furthermore, it is important to note that the vector ~ allows to define a polyhedral set: 
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(7.20) 

The set S(u,!,!) contains Sc and corresponds to the maximal set in which (7.19) equivalently represents 

system (7.12). 

In the context of the above, let Sc be a closed ellipsoid defined by a symmetric positive definite matrix 

F: > 0, 

(7.21) 

where r is a positive scalar. 

Remark 7.2. The asymptotic stability of the closed-loop system (7.19) guarantees that of the original 

c1osed-loop system (7.12). However, the reverse is not true; i.e. the stability of the original system does not 

guarantee that of system (7.19), and thus sorne unavoidable conservatism is introduced. 

The following theorem provides sufficient conditions for robust output feedback stabilization of the 

uncertain time-delay system (7.12) with control saturation. 

Theorem 7.1. Consider the system (7.12). Suppose that there exist, nX n -matrices: P;11' P;12' F;21' F;22,' 

matrix K and an n x r matrix L, and a vector !'! E ~m , and a positive scalar r, which together with 

sorne suitable positive scalars ê i ,' i = 1,. 00,3, satisfy the following matrix conditions: 

(7.22) 

[ R311 
R321 

R312] 0 . h R T R RT 
> ,wlt 311 = R311' 312 = 321' 

R322 
R322 = ~2 (7.23) 

[~U Rll2 R2l1 R,,, ] 
Rl2l RI22 R221 R222 . T 

RI12 = RI~l' RI22 = RI~2 
R;ll R;21 R311 

> 0, wzth R111 = RUI' 
R312 

RJ12 RJ22 ~21 ~22 

(7.24) 

0.2 ]<0 0. , 
3 

Vj = l,oo.,2m (7.25) 
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r
~l1 
~21 

o 

where, 

~12 

~22 '\Ii=l, ... ,m 

'\Ii = 1, ... ,m 

K(j) is the i -th rowof K, 

'Pl Il 'Pll2,i 'P2ll 'P2l2 hfMX (~;l + ~;l) 

'P122,i 'P 22l,i 'P 222,i h",ax (~;2 + ~;2) 

'PJll 'PJl2 hmaxW2~1 

nl,i = 
'Pm hmaxW!t2 

-hfMxRlll 

pi11HA +~~ILHc P~IHh W3~IHh 

Q2= 
P~2HA +~~2LHc P~2Hh W:12Hh 

~~IHA +~~ILHc ~~IHh W~lHh 
~~2HA +~~2LHc ~~2Hh W4~2Hh 

andwhere, 

hmax (~~l + ~~l) 

hmax (~~2 + ~~2 ) 

hmaxW2~1 

hmaxW2~2 
-hmaxRll2 

-hmaxR122 

T T( )T ()T T \11 211 = ~11 -~11 + A+Ah ~11 + LC ~21 +Ah W411 

T T( )T ()T T \II 212 = ~21 - ~21 + A + Ah ~12 + LC ~22 + Ah W412 
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(7.27) 

hmax(WJ~1 +~~l) (T T ) hfMX W321 + P22l -WJ~IAh - cJEr Eh 

hfMX (W;;2 + ~~2) h",ax (WJ~2 + P2~2) -W3~2Ah 

hm•x (W~l + ~;l) hmax(W4~1 +P3~1) -W~IAh 

hmax (W~2 + ~;2) hm•x (WJ;2 + PJ~2) -W4~zAh 

-hmax R211 -hmax R212 0 

-hm•xR22l -hmax Rz22 0 

-h",axRJll -hmax RJ12 0 

-hmaxRm 0 

-(1- fJ)S +êJEr Eh 

(7.28) 

(7.29) 

(7.30) 



Under these conditions, system (7.12) is locaUy asymptoticaUy stable for any initial condition f/J ( ()) in the 

baU 

(7.31) 

with, 

1 
()=- (7.32) 

'P'2 

where, 

7f = Â, [[1; Il 2 max p. 
121 

1;12]) hmax Â, (S) 3 h2 Â, (ÂT RÂ) 1;22 + (1- f3) max + 2" max max III1,max 311 III1,max (7.33) 

Remark 7.3. In [27], a comparison between the different saturation models used in the literature was made, 

concluding that the differential inclusion method used in this chapter leads to the least conservative design, 

Remark 7.4. In [72], the proposed design is delay-independent, while in Theorem 7.1 the presented 

controller is delay-dependent. This leads to a less conservative design than that of [72]. Also, the bounding 

technique (see Lemma 7.3) employed in the proof of Theorem 7.1, further reduces the conservatism of the 

presented approach as compared with [72]. Finally, the method used in this chapter takes into account the 

rate of change of the time-delay along with its amplitude. This makes the design more realistic in that it can 

be implemented on the actual plant without exhibiting instability in the case the time-delay varies in time. 

Remark 7.5. The main difficulty in the application of the design procedure as stated in terms of Theorem 

7.1 is that the inequalities (7.25) and (7.26) are nonlinear in the parameters ~, L, K and sorne of the P 

parameters (1;11' 1;12' 1;21' 1;22' i = 2,3). This difficulty can be overcome by employing relaxation 
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techniques, as suggested in [78]. A suitable relaxation technique in this case is to choose ~, Land K 

and solve for the P 's, and then re-iterate the choice of ~, Land K . In this way inequalities (7.25) and 

(7.26) then reduce to linear matrix inequalities (LMIs) in the P variables. The latter are easily solved using 

the algorithms of [6]. AIso, more sophisticated optimization techniques could be used to maximize the set 

of initial conditions <1>(0') (see [78] for examples ofsuch techniques). 

Proof. By virtue of condition (7.26) of the Theorem the ellipsoid defined by (7.21) is included in the set 

S(u,~) as defined by (7.20), where the vector ~ verifies (7.27). Therefore, q(t) satisfies the polytopic 

system equation (7.19). 

The last can be further written in its equivalent descriptor form 

2m 

q(t) = y(t), y(t) = LÂjÂj (t);(t)+Âh (t);(t-h(t)). (7.34) 
j=l 

Using the Liebnitz-Newton formula ;(t-h(t)) =;(t)- rt 

q(s)ds permits to re-write (7.34) yet in a 
Jt-d(t) 

more tractable form. Introduction of the augmented state as in (7.34) and the use of the Liebnitz-Newton 

formula allows to avoid the introduction of any additional dynamics, so that the transfer function of the 

system obtained by freezing the time-variable in the system matrices does not exhibit any additional poles 

[8]. This way of transforming system (7.34) is particularly useful as it allows to avoid unnecessary 

conservatism in the design that follows. 

The last transformation of (7.34) yields: 

(7.35) 

[

/2n 0] so that for E = 0 0' the augmented system is: 

(7.36) 

Then the following Lyapunov-Krasovskii functional is used here: 

(7.37) 
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where, 

~ (t) = r' xT (t") Sx( t")dt" 
J'-h(') 

. [ ~ 0 ] T T T T [ RI R2 ] T wlth P = , ~ = E; > 0, S = S > 0, R3 = R3 > 0, R = R = T > 0, RI = RI 
~~ R2 R3 

and Âh max is such that, 

~T ( ) ~ () ~T ~ 
Ah t Ah t S; Ah, max Ah,max , for aU t ~ 0 

The bound in (7.42) can be evaluated using Lemma 7.2 as foUows: 

Let ê4 > 0 be a scalar such that (1 -êJ1hH::) > 0 . Then, 

= Ah 1 -ê4H hH h Ah +ê4 Eh Eh 0 = ÂT Â ~ Ahll,max 

[ 

T ( T )-1 -1 T 1 [ ~ 
o 0 h,max h,max 0 

Differentiating (7.38) and using (7.36), yields, 

A bound for the last term of (7.44) is now derived as follows: 
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(7.45) 

UsingLemma7.3with a(s)~[~ 0 ]Y(S),b(S)~P[q((t))],Y~[t-h(t),tJ gives: 
Ah(t) y t 

1](t):;; [h(t) [ çT (t) yT (t) ] pT (MT R + I)R-1 (RM + 1) p[;~: ~ ]dS+ 2[h(t) yT (s )ds[ 0 ÂJ. (t) JRMP[;~: ~] 

+f yT (s)[ 0 ÂJ. (t)JR[ ~ ]y(S)dS 
t-h(t) Ah 

as R>O. 

Differentiating ~ (t) of (7.39), yields, 

d~ (t) = xT (t )Sx(t) _( 1- h(t) )XT (t -h(t)) Sx(t-h(t)) 
dt 

Using the assumption S > 0, as well as the rate bound specified by (7.4), 

dV. (t) 
_1 _::;; xT (t)Sx(t) -(1- f3)xT (t - h(t)) Sx(t- h(t)) 

dt 

Applying Lemma 7.1 to V3 (t) , 

Employing (7.37), (7.44), (7.46), (7.47) and (7.48), the following upper bound for V (t) is obtained: 
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+hmax [qT (t) yT (t)JpT (MTR+I}W1 (RM +I)p[;~:~] 

+ 2[;r (t )_qT (t - h(t)) ][0 Âi, (t) JRMP[;~:~ 1 

+['lnu yT (s)[ 0 Âi, (t)JR[ Âh~t)}(S)dS 

+xT (t )Sx(t) -(1- f3)xT (t - h(t)) Sx(t-h(t)) 

(7.49) 

Since R3 > 0 , then, by virtue of the bound given by (7.42), the two remaining integrals in (7.49) satisfy the 

following inequality: 

Now, it is possible to reduce (7.49) to: 

[ 

0 
dV(t) < T T T 2m 
-_2[q(t) y (t)Jp ~ A() A() 

dt L."ÂjAj t +A" t 
j=l 

+hmax [qT (t) yT (t) JpT (MT R + I)W1 (RM + I)p[;~:~l 

+2[ qT (t )_qT (t - h(t)) ][0 ÂJ. (t) JRMP[;~:~] 

Next, the application of Lemma 7.2 to the uncertainty terms of Âj (t), Â" (t) and B(t), results in the 

following upper bound for V (t) : 

138 



with, 

+[ qT (t) yT (t) Jro ~Àj (Â + srj (g) Kt + Â:]p[;~: ~] 
1 -1 

+hmax [qT (t) yT (t) J pT (MT R + I)R-1 (RM + I) p[;~:~] 

+ [ XT (t ) yT (t) J pT MT R [ ~ 1 [ X (t ) - X (t - h (t ) ) ] 
Ali 

+xT (t) SX(t) -(1- P)XT (t - h (t)) SX(t - h(t)) + hmax yT (t) Â,;'maxR3Â",max Y (t) 

r r r 
+El-lqT (t) LÀjpi il/fT ~X(t)+El-lyT (t) LÀAT iIiIT ~q(t)+El-lqT (t) LÀjpi iIiIT E;y(t) 

j=1 j=1 j=1 

2m 2m 

+E1-
1 yT (t) LÀjE;T iIiIT E;y(t) + E1qT (t) LÀj (Ê + EBr j (g) Kt (Ê + EBr j (g) K )q(t) 

j=1 j=1 

Ej >0, i=1, ... ,3, 

• A [~ W2 ] A ( ) Defimng W = = RMP, and the aggregated state X t by, 
W3 W4 
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ç(t) 
y(t) 

z(t) ~ (M +R-1 )p[Ç(t)] 
y(t) 

çT (t-h(t)) 

inequality (7.51) can now simply be written in the form: 

(7.53) 

2m 

where the matrix e involves the summation ofterms of the form ~>~) ( ... ) ; see the inequality (7.51). 
)=1 

To guarantee that V (t) < 0, for aH t ~ 0, it is sufficient that e < o. By convexity, e < 0 is guaranteed if 

2m 

e) < 0 , for j = 1, ... , 2m 
, in which e) is obtained by dropping L Âj from e. 

j=1 

Next, letting, 

i = 1, ... ,3 

w ~ [~ll Wi12
], i = 1, ... ,4 

1 ~21 ~22 

(7.54) 

and expanding aH the matrices within e) using the definitions (7.11) and (7.54), the condition e) < 0 , for 

(7.29) and (7.30), respectively. 

Sufficient conditions for V (t ) < 0 can thus be summarized as follows : 

j = 1, ... ,2m 

2.) il3 < 0 (assumptions (7.52) resulting from the application of Lemma 7.2 to obtain inequality (7.51)). 
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By the Schur Complements Lemma (see Appendix A), conditions 1.) and 2.) above are equivalent to 

assumption (7.25) of the Theorem. 

Thus, from V (t) :::; XT (t )8X( t) < ° there exists 1C3 > ° such that the quadratic stabilization condition (see 

[2]) is satisfied as, V (;, (Ij/) = ; (t + Ij/) ) :::; -1C3 1Ix (t )11
2 

:::; -1C311; (t )11
2 

, so that V ( ;, ) :::; V (;'0) provided that 

the model (7.19) is valid, i.e., for any time t";? to such that ; (t) E S (u,~) . 

Furthermore, the Lyapunov functional defined in (7.37) can be shown to satisfy, 

(7.55) 

(7.56) 

Substituting ~, Âh.max, and ~ by their expressions found in (7.43) and (7.54), 

(7.57) 

(7.58) 

Hence, for all ~(Ij/)E <1>, Ij/E [-hmax,O], 

;T (t)~; (t) :::; V (;,) :::; V (;tJ :::; r-\ \;ft";? to. (7.59) 

Therefore, for any initial condition ~ in the ball <1> ( a) defined by (7.31), the system (7.12) verifies the 

conditions of the Lyapunov-Krasovskii Theorem [30, 31] and V (ç,) is a local strictly decreasing 

Lyapunov function. Therefore the asymptotic stability of system (7.12) is ensured. 

QED 

7.7. Numerical Examples 

The following examples were solved using the LMI (see Appendix B) toolbox in Matlab. 

Example 7.1. Consider system (7.1) with the following state space matrices: 

141 



A=[~ ~l C=[1 0], (7.60) 

with all the other matrices being equal to zero. The time-delay in this example is assumed to be equal to 

zero. It is exactly the same example that was used previously by [75]. To the best knowledge of the author, 

the only paper that treats the robust output feedback stabilization of time-delay systems with control 

saturation is that of [72], in which, as shown in [27], the representation used for actuator saturation is more 

conservative than the differential inclusions modeling used in this chapter and in [75]. This motivates our 

choice of the example for the purpose of comparison. In [75], the authors discussed this example in the 

context of robust output feedback stabilization with control saturation in both its amplitude and its rate. The 

following values of parameters were employed: u = 10, ur = 500, !! = 0.9553 and f! = 0.9745, 

corresponding to the saturation level for the control amplitude, the saturation level for the control rate, the 

lower bound imposed on the control amplitude saturation, and the lower bound imposed on the control rate 

saturation, respectively. With these parameters, the authors achieved a maximum volume, 

Vol ~ ~det( F:-1y-l) = 1231.9, for the region of the initial conditions for which asymptotic stability is 

guaranteed. It should be noted, that the above choice of parameter ur = 500 is a reasonable approximation 

of the situation when only amplitude saturation is present, justifying our comparison. Thus, using u = 10 , 

[
11OOl !! = 0.9553, and selecting observer and controller gains L = 0.5 and K = [-2.5 -1.9] using the 

relaxation techniques proposed in [79], and assuming zero initial conditions for the state estimate x, 

Theroem 1 of this chapter delivers a maximum volume of the region of the initial conditions Vol = 3380, 

which is much larger than that achieved by [75]. Hence it is just to claim that the result presented in 

Theorem 7.1 is less conservative. 

Figure 7.1 presents the functional dependence of the volume Volon the level of control saturation U. 
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Figure 7.1. Volume of initial conditions for which asymptotic stability is guaranteed as a function of the 

control amplitude saturation Leve/. 

Example 7.2. Consider system (7.1) with the following state space matrices: 

(7.61) 

with ail the other matrices being equal to zero. The time-delay in this example is assumed to be equal to 

zero. The actuators are constrained by saturation levels u1 = 5 and u1 = 2 . It is exactly the same example 

that was used previously by [35], where the authors using relaxation techniques achieved an initial state set 

(assuming zero initial conditions for the state estimate x), 

D = x: x Zx::;; l, Z = 10 
{ 

T -{j [ 290.5 -7.966]} 
o -7.966 0.500 

(7.62) 

The corresponding volume of this set was computed as: 

log (VoL (Do)) =log(~det(Z)) = 11.61 (7.63) 

In an attempt to achieve a larger set of initial conditions guaranteeing asymptotic stability of the c1osed-

loop system, the following relaxation schemes were used in the present chapter: 
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LMIR 1: Given K, L, Q'l and Q'2' solve for aH the P matrices and r, the problem 

Min [ wTrace (~ ) + rJ, such that the LMIs of Theorem 7.1 are satisfied, where w is a column vector 

whose four entries are weights multiplying each diagonal entry of matrix ~ to form its trace. 

LMIR 2: Given aH the P matrices, K, Q'l and Q'2' solve for Land r the problem Min(r) , such that 

the LMIs of Theorem 7.1 are satisfied. 

Using the above relaxation schemes, the achieved set of initial conditions (assuming zero initial conditions 

for the state estimate x), is: 

{ 

T --{i[ 183.3 
S = x: x r~l1x~l, r~l1 =10 

c -4.396 
-4.396]} 
0.355 

(7.64) 

and the corresponding computed volume is : 

log (Vol (SJ) = log (~det (r~l1) ) = 11.90 (7.65) 

The corresponding observer and controHer gains are: 

L = [1400 -33] K = [-0.107 0.002] 
1400 -33 ' -0.002 0.002 

(7.66) 

Figure 7.2 shows the sets of initial conditions achieved in [35] and in the present chapter, where it is seen 

that there is a substantial increase in the size of the set of initial conditions guaranteeing asymptotic 

stability. 

In the use of scheme LMIR 1, the diagonal entries of matrix ~ were weighted by w1 ' w2 ' w3 and W 4 . 

This means that wTrace(ll) is to be understood as W 1Pl,11 + W 2 Pl.22 + W 3 Pl,33 + W 4 Pl,44 • The weights chosen 

for this example were: w1 = 1, w2 = 2500, w3 = 1 and w4 = 1. The objective function chosen for LMIR 1, 

namely Min(wTrace(~)+r) has proven to be an efficient method in maximizing the set of initial 

conditions with fewer iterations. 
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Figure 7.2. Set Sc of initial conditions achieved in this chapter as compared ta set Do of [35] 

Simulations were made for different constant values of the uncertainty matrix F (t) and initial condition 

Xo =[60,-500]. As seen in Figure 7.3, Figure 7.4 and Figure 7.5, despite uncertainties and control 

saturation, the c10sed loop system remains asymptotically stable. 
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Figure 7.3. State response (top) and corresponding control input (bottom)for uncertainty F=O 
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Figure 7.4. State response (top) and corresponding control input (bottom)for uncertainty F=] 
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Figure 7.5. State response (top) and corresponding control (bottom) inputfor uncertainty F=-l 
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Example 7.3. The result presented within Theorem 7.1 involves the solution of several complicated matrix 

inequalities. To demonstrate its usefulness for control design processes and explain how it might be 

employed, an example is considered of an uncertain time-delay system of the type (7.1), in which the 

system matrices are given by: 

A = [-2 1] 
3 -4' A" =[ ~2 ~l B =[~J. C =[1 2] 

= [1/10] HA 0' EA = [1 1] , [1110] 
H" = 1/10 ' E" = [0 1], He =0, EB =0 (7.67) 

The time-delay is considered time-invariant with h = 0.3, and the control saturation level is determined by 

ïi = 1 . The same example was earlier used by [72] where only the values of gains K and L were given 

without any further information about the response of the system. With the above values for the state 

matrices, an observer gain matrix for the nominal system (in the absence ofuncertainties and saturation) is 

chosen first using standard methods to minimize the state estimation error for the nominal system. The 

next step consists in the design of a nominal controller gain according to pre-selected performance criteria. 

With reference to the above example, the following values have so proved suitable: 

L=[~~J. K=[-0.2 -0.2] (7.68) 

Theorem 7.1 was then applied to verify that (7.68) in fact yield a robust observer and controller design for 

the pre-specified uncertainties and the given actuator saturation level. This was done as follows. The 

1 ~ [-1.8449 1.2675] parameter &4 was chosen first to be &4 = ,and the matrix AIllI max = was computed 
, 1.2675 -2.9129 

using (7.43). It should be pointed out that the parameters &4 could be tuned further to reduce the overall 

conservatism of the design. This, however, has not been our purpose here. The control saturation lower 

bound was chosen as a = 0.3 . 

With fixed design parameters ~, K and L, the matrix inequa1ities of Theorem 7.1 become 1inear in the 

remaining parameters and can be solved using the MatIab LMI toolbox, based on the methods developed in 

[6]. This was carried out to confirm that system (7.67) controlled by output feedback with observer and 

controller gains (7.68) is asymptotically robustly stable with respect to the admissible uncertainties and in 

149 



spite of the given control saturation. Assuming zero initial conditions for the state estimate x, the ball 

cI> ( CI) of initial conditions for the state x guaranteeing asymptotic stability thus obtained is characterized 

by CI = 17.5285 as computed from equation (7.32). Thus the controllaws (7.7) and (7.8) constitute a robust 

output feedback controller for this time-delay system. 

Figure 7.6 shows the open-Ioop state response for the nominal system with initial condition Xo = (2,1) . 

. : • : -xl 
.... oooooofooooooooooofoooooooooooioooooooooooiooooooo ooooi 0 .. 0 ..... 0 x2 

-:: :::::J:::: ::::r:::::: ::r: ::::: ::r::::: :r:::: :::-
oooooooor:::::::::::::::::::::::;:::::::::::;:::::::::::;::::::::: 

" , " , " , " , ----- ---------- -----------T---------

Figure 7.6. Open-loop state response of the nominal system with initial condition XO=(2,i) 

Figure 7.7 shows the corresponding c1osed-Ioop state response of the nominal system with observer and 

controller gains as in (7.68). It is seen that the overshoot and the steady state error were eliminated and that 

the settling time is much smaller as compared with the open-Ioop system of Figure 7.6. 

-----r-::c:--'::rr:-:: 
oooooooooorooooooooooo;ooooooooooo;ooooooooooo;ooooooo000 

, , , . . . . . . 
; 

Figure 7.7. Closed-loop state response of the nominal system with initial condition XO=(2,l) 

150 



Figure 7.8 shows the control input to the plant corresponding to the response in Figure 7.7. No control 

saturation is seen. 

. . ., . .. . _______ L ___________ .L ______________________ .1 _________ _ 

., . ., , ., . ., . 
" , ., . 

1 " , ------ --~ -----------r -----------f - - - - - - - - - - - - - - - - - - - - - - t ----------
., . ., . 
" . " . 

- - - - ---~ -----------~ ----- -- - - - -~ - ---------- ------- -- - - ~ - - - - - - -- --· " , · " , 
• 1 1 1 

• " 1 · " . 
• " 1 
• " 1 --------r----------- .. -----------T----------- -----------,.----------

· .. , ---------- .. ----------- .. ----------- .. ----------- ----------- .. ----------
1 . ' , 1 ., , 

, .' , , ., , ,. . 

Figure 7.8. Closed-loop control input to the plant in the nominal system with initial condition XO=(2,l) 

Finally, the controller and observer are tested using a remote initial condition Xo = (10,5) ; see Figure 7.9 

for the closed-Ioop nominal system. 

Figure 7.9. Closed-loop state response of the nominal system with initial condition XO=(10,5) 
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Figure 7.10 shows the corresponding control input to the plant where the actuator is clearly seen to saturate 

at the saturation level -1. Despite saturation, the responses of Figure 7.9 are still those of a stable system 

and the overall system performance has not been compromised excessively. 

. . 
, , l , 1 

::-----:::-::-:--------1...:::--1...::::1:---

Figure 7.10. Closed-loop input to the plant in the nominal system with initial condition XO=( 10,5) 

Simulations demonstrate that the c10sed loop system stability is ensured for sorne initial states outside the 

computed baIl <l> ( (J) . The initial conditions used in Figure 7.9 and Figure 7.10 are such an example, which 

implies that the stabilizable set of initial conditions may have a different shape than a baIl and that <l> ( (J) 

is only an interior approximation of this stabilizable set. This was to be expected as stabilizable sets seldom 

have the exact shape of a baIl. 
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CHAPTER8 

Conclusion and Future Research 

8.1. Conclusion 

Using a methodology based on the bounding of the H~ -norm of the closed-Ioop transfer function of the 

system, the firstpart (Chapters 2 and 3) of this thesis presents a robust, delay-independent, continuous-time 

H ~ output feedback control design procedure for linear time-delay systems with parametric uncertainties. 

The design is quite general because of the inclusion of uncertainties in aIl matrices of the state equations 

and the delay is present in the state and output equations. The conditions for solvability of the robust H~ 

output feedback control problem is characterized in terms of the existence of solutions to two algebraic 

Riccati inequalities. The analytical expressions for the resulting observer and controller gains are given. 

Both time-invariant and time-varying cases are treated. In the time-varying case, only asymptotic stability 

is guaranteed. 

Similarly, a delay-independent, discrete-time H~ output feedback control design procedure is presented. 

SpecificaIly, the conditions for solvability of the robust H~ output feedback control problem is 

characterized in terms of the existence of solutions of two algebraic Riccati inequalities. The analytical 

expressions for the resulting observer and controller gains are given. 

In the second part (Chapters 4-7) of this thesis, a methodology based on functionals, more specifically 

Lyapunov-Krasovskii functionals, is used to present delay-dependent robust stabilization and/or robust 

control designs for uncertain neutral or retarded time-delay systems, with or without actuators saturation. 

First, the time-varying finite-horizon robust H~ control of un certain neutral systems is presented. The 

problem formulation employed here is believed to be quite general with reference to the class of neutral 

systems. Such systems are highly relevant to applications in process industry and are likely to be employed 
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there. As demonstrated, the design conditions derived in this paper are less restrictive as compared with 

previous works. A major innovation of the approach adopted here is the dependence of the feedback law on 

the value of the time-delay as well as on its rate of change. 

Secondly, the robust stabilization of un certain neutral systems with control saturation is presented. The 

saturations are modeled using differential inclusions. Again, the system representation is quite general in 

that uncertainties are included in the system matrices. A major innovation of the approach adopted here is 

that the stabilizing control design is made dependent on both the value of the time-delay as well as on its 

rate of change. It was shown through numerical examples that the presented method is less conservative 

than the most recent relevant designs found in the literature in that stabilization is ensured for a larger set of 

initial conditions. Further work is concerned with the extension of the present approach to a robust Hoo 

control problem. 

Finally, the robust output feedback stabilization of uncertain retarded systems with control saturation is 

presented. The problem formulation employed here is believed to be the first and the most general 

considered so far with reference to the delay-dependent robust output feedback stabilization of state­

delayed systems with saturating actuators, using the Lypapunov-Krasovskii methodology. The problem is 

solved for both sector modeling and differential inclusions modeling for the actuator saturations. Again, a 

major innovation of the approach adopted here is that the stabilizing control design is made dependent on 

both the value of the time-delay as well as on its rate of change. For the case of sector modeling case, it was 

demonstrated. by way of an example that the presented design provides an easily verifiable criterion for 

closed-Ioop robust stability of time-delayed systems with actuator saturation. For the differential inclusions 

model, it was demonstrated by way examples that the presented design provides an easily verifiable 

criterion for closed-Ioop robust stability of output feedback of time-delayed systems with actuator 

saturation, ensuring stability for larger sets of initial conditions than previous results obtained in the 

literature. Further work is concerned with the extension of the present approach to a robust H 00 control 

problem. 
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8.2. Future Research Topics (see [65] for a very recent survey) 

8.2.1. Extension to Robust H~ Control for the Case of Actuator Saturation 

In Chapters 5-7, which dealt with time-delay systems with actuator saturation, the problem solved was that 

of robust stabilization. This work can be extended to the case of robust H ~ control using the methodology 

presented in Chapter 4 for the case without actuator saturation. However, the presence of control 

constraints leads to a more complex problem. Specifically, the inclusion of time-varying disturbances 

necessitates a careful definition of the set of equilibria for the system (see [79]). A suitable modification of 

the S-procedure of [6] is expected to be useful in computing an approximation of the basin of attraction for 

such a set of equilibria. 

8.2.2. Using the Delayed Inputs 

Many results have been published about the control of systems with state delays, but without input or 

output delays. They lead to memory-Iess controllers, which means controllaws of the form u (t) = Kx( t) , 

or to more general controllers with memory that include, nevertheless, an instantaneous feedback term (for 

But a more difficult and challenging question is to control a process without instantaneous measurement 

access to state variables, or via delayed actuators. For instance, it would be of theoretical and practical 

interest to consider systems such as: 

for which the pairs (A, B) or (A + Ah' B) are not controllable (for instance B = 0 ), which means one must 

use the Bhu (t - h) term so as to obtain an efficient control. 

8.2.3. Control Via the Delay Value 

Another open problem is to control a process in which the input is the delay itself. For instance, the 

equation 
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Y(t) = g [y(t-lu (t))] , (8.1) 

corresponds to the crushing process depicted in Figure 8.1. Here, the recycled matter flow is supposed to be 

linear or nonlinear ratio g (y) of the quantity of raw material y inside the crushing-mill, the output is the 

flow of processed material h(y) (also depending on the filling level) and the rolling band with a variable 

speed u has a total path length 1 . Apparently the control ofthis kind of equation remains an open problem, 

as no theoretical grounding was stated. 

Figure 8.1. Conveyor belts, speed u (t) 

Another example of such a control via the delay is given by a mixing tank with an impeller and a total 

recycle (Figure 8.2) in which a given quantity of salt is injected at the initial time. The salt concentration is 

measured by means of a conductivity probe which is placed at a different point. This corresponds to the 

following model: 

T(u(t))Y(t) = y(t-h(u(t)))- y(t), 

where y (t) = z (t - h) is the conductivity measured at the probe position, z (t) is the conductivity at the 

injection point, u (t) is the rate, proportion al to the rotation speed ofthe impeller, h is the time which the 

liquid, in total recycle, takes to flow from the in je ct or to the probe (then, h is inversely proportion al to u , 

and afier rescaling: h( u) = 11 u), T is the mixing time constant, inversely proportional to the flow rate: 

T(u)=1/ku. 
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Figure 8.2. Mixing tank with total recycle 

8.2.4. Collecting and Handling Information Relative to the Delay 

Obviously, one can expect that the better the knowledge on the delay is, the higher the achievable control 

performances will be. For instance, in the case of a constant delay h, the simplest and best information is 

its value. If it is not available, then guaranteeing the robustness for hE [hm' hM] will be convenient. From 

this point of view, the poorest information corresponds to the most robust case: h;::: 0 . Numerous authors, 

after proposing delay-independent stabilization results (assumption h;::: 0), concentrated on "delay-

dependent" ones, as is the case in this thesis. The ideal would be to use the actual time-varying value ofthe 

delay, which caUs more work into the identification of the delay. 

8.2.4.1. Adaptive Identification of Delays 

Even if sever al works considered the identification of either the delay or the parameters, the simultaneous 

identification remains to be done. Moreover, the real-time adaptive identification techniques of (varying) 

delays still need to improve. Works on identification of FDEs have shown the complexity of the question 

[82]. Identifying the delay is not an easy task for systems with both input and state delays, or when the 

delay is varying enough to require an adaptive identifier. 

8.2.4.2. Using Stochastic Properties of the Delay 
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Until now the stability and stabilization of differential equations with stochastic delay were investigated 

under the assumption that, for each fixed value, the corresponding deterministic system is exponentially 

stable, uniformly with respect to aIl possible delay values. In other words, the stability conditions assume 

the delay to be known at each moment. More realistic stochastic models for time-delay need to be treated. 

8.2.4.3. Delay Infonnation for Observers 

In the proposed observers in the literature the value of the delay (mainly constant) was involved in the 

realizations, which means that its measurement was assumed. In concrete applications, the delay invariance 

and delayknowledge remain assumptions coming from the identification and analysis limits than from 

technical facts. So, the robustness with regard to the delay estimation (and variation) should receive 

additional interest. 

There are presently only few results in which the observer does not assume the delay knowledge. As far as 

is known, aIl of these few results are using delay-free observers, as is the case in Chapters 6 and 7 of this 

thesis. However, the stability conditions presented in Chapters 6 and 7 ofthis thesis are delay-dependent as 

compared to the delay-independent (more conservative) stability conditions presented in the literature and 

in Chapters 2 and 3 of this thesis. 
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APPENDIXA 

Useful Theorems and Other results 

Sorne useful theorems and techniques referred to, but not original to this dissertation, are gathered in this 

particular appendix for the reader's convenience. 

A.I. Matrix Inversion Formulas 

Let A be a square matrix partitioned as follows: 

where Ali and Az2 are also square matrices. Now suppose Au is nonsingular; then A has the following 

decomposition: 

[ ~l ~2]=[ 1 0] [Ali 0][1 ~~IAI2] 
Azl Az2 Azl~~l 1 0 ~ 0 1 

with ~ ~ Az2 - Azl~~l ~2 ' and A is nonsingular iff ~ in nonsingular. Dually, if Az2 is nonsingular, then 

[AlI A12] = [1 AI2 A;i] [Li o][} 0] 
Azl Az2 0 1 0 Az2 A;2 Azl 1 

with Li ~ ~l - ~2A;i Azl' and A is nonsingular iff Li is nonsingular. The matrix il (Li) is called the Schur 

complement of Ali (Az2) in A. 

Moreover, if A is nonsingular, then 
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and 

The preceding matrix inversion formulas are particularly simple if A is block triangular: 

The following identity is also very useful. Suppose Ali and ~2 are both nonsingular matrices; then 

As a consequence of the matrix decomposition formulas mentioned previously, we can calculate the 

determinant of a matrix by using its sub-matrices. Suppose Ali is nonsingular; then 

On the other hand, if ~2 is nonsingular, then 

det A = det ~2 det ( ~ 1 - ~2 A;i ~1 ). 

In particular, for any BE emxn and CE C nxm
, we have 

det[ lm B] = det(ln + CB) = det (lm + BC) 
-C In 

and for x,yE en 

det ( ln + xy * ) = 1 + Y * x. 

A.2. The Lipschitz Condition 

Let f: R+ xRn xRn -7 Rn be a functional defined an FDE 

X( t) = f (t, X" x,), 
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Functional f is then said to satisfy a Lipschitz condition in x, if there is a piecewise continuous function 

k(.): ffi.+ ~ ffi.+ such that 

Iif (t, x" x,)- f (t, y"x, )11 ~ k (t )llx, - y, Il 

for an tE ffi.+ and for an x" Y, E ffi.n • 

A.3. The Riccati Equation: Stability 

A.3.I. The Continuous Time 

We consider the asymptotic stability of 

x(t) = (A -BW'BT P( 00) )x(t) 

where P ( 00) is the maximal nonnegative definite solution of the ARE, 

0= AT P{ 00)+ P{oo )A-P{oo ) BW1BT P{oo )+Q 

(A.I) 

(A. 2) 

Theorem A.3.1. Consider the time-invariant linear vector differential equation (A.I) representing the 

closed loop of an infinite horizon LQ controlled system, where P{ 00) is the maximal nonnegative definite 

solution, P of the ARE (A.2). 

Subject to the conditions: 

• [ A, B] is stabilizable, 

• [ A, Ql/2 ] is detectable, 

• Q~O and R>O, 

then (A.I) is exponentially asymptotically stable. 

A.3.2. The Discrete Time 

We consider the asymptotic stability of 

(A.3) 
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where P (00) is the maximal nonnegative definite solution of the ARE, 

p( 00) = AT P(oo)A _AT p( 00 )B(BT p( 00 )B+ R)-l BT p( oo)A +Q (A4) 

Theorem A.3.2. Consider the time-invariant linear vector difference equation (A3) representing the 

closed loop of an infinite horizon LQ controlled system, where P ( 00 ) is the maximal nonnegative definite 

solution, P of the ARE (A4). 

Subject to the conditions: 

• [ A, B] is stabilizable, 

• [ A, Ql/2 ] is detectable, 

• Q~O and R>O, 

then (A3) is exponentially asymptotically stable. 
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APPENDIXB 

Linear Matrix Inequality 

The goal ofthis appendix is to recall sorne important notions on linear matrix inequality (LMI). Mainly, we 

define the LMI problem and the related problems like the feasibility problem (FEAS), minimization of a 

linear objective under LMI constraints (MINCX), and the generalized eigenvalue minimization problem 

(GEVP). 

B.l. LMI Functions 

A linear matrix inequality (LMI) has the form 

F (z) ~ Fo + ! Zj F; < 0 , (B.I) 
;=1 

where Z = (Zl"'" zm) E ~m is the variable to be determined and the symmetric matrices F; E ~nxn , 

o ~ i ~ mare given. The inequality symbol III (B.I) means that F (x) is negative-definite, i.e., 

vT F (x) v < 0 for aIl nonzero v E ~n • 

For example, a linear system with the foIlowing dynamic 

i(t) = Ax(t) (B.2) 

where X(t)E ~2, AE ~2x2, is stable if and only if there exists a symmetric and positive-definite matrix 

P > 0 such that 

ATp+PA<O (B.3) 
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This problem. In fact, can be solved using the LMI toolbox. Let us now see how we can put this problem in 

[
al 

the form of (B.l). For this purpose, let A = 
a2 

are design parameters. Then, 

Therefore, (B.3) is a standard LMI feasibility problem that can be solved using the LMI toolbox. 

There are three kinds of generic LMI problems, which are shown next. 

B.2. LMI Problems 

As mentioned earlier, there exist three main LMI problems: 

• The feasibility problem 

• The linear optimization problem 

• The generalized eigenvalue minimization problem. 

B.2.1. Feasibility Problem 

The LMI feasibility Problem (FEASP) consists of determining the variable x E ~ m such that F ( x ) < 0 

holds. This problem can be solved using the function "feasp" of the LMI toolbox. A typical situation for the 

feasibility problem is the stability test for dynamical systems. In fact, based on control theory a system with 

the dynamic (B.2) is stable if and only if there exists a symmetric and positive-definite matrix P> 0 such 

that (B.3) is satisfied. The goal is then to find a matrix P> 0 such that the inequality (B.3) is satisfied. 

Another example of the feasibility problem is by considering the stabilization problem of the system 

x ( t ) = Ax ( t ) + Bu ( t ) (B.4) 

where u (t) is the control input. Using the stability result, astate feedback memoryless controller 

u (t) = Kx( t) stabilizes system (B.4) if and only if there exists a symmetric and positive-definite matrix P 

such that 

172 



P(A+BK)+(A+BKf p<o. (B.S) 

PRE- and Post-multiplying both sides of (B.S) by X = r l and letting Y = KX yields that (B.S) is 

equivalent to 

(B.6) 

B.2.2. Minimization of a Linear Objective under LMI Constraints 

Minimization of a linear objective under LMI constraints (MINCX) is another interesting problem that we 

have used extensively. The MINCX problem is stated as follows: 

s.t. F(x) < 0 

where CE IRm is a given vector. This problem can be solved using "mincx" ofLMI toolbox. 

To provide an example using "mincx", let us consider an H 2 control problem. For this purpose let us 

assume the system dynamics are given by 

{
i(t) = Ax(t)+ Bw(t) 

y(t) = Cx(t) 
(B.7) 

where w (t) is a white noise disturbance with unit covariance. Suppose that the H 2 performance is defined 

by 

IIHII~ = limE(! r' yT (s) y( S )dS). 
H= t Jo 

Then, it can be shown that the solution to this problem is given by: 

Obviously this optimization problem is equivalent to minimizing tr(Q) subject to 

(B.8) 

(B.9) 

Using the Schur complement, (B.9) is equivalent to 
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[
-Q CP] 

T <o. 
PC -P 

B.2.3. Generalized Eigenvalue Minimization Problem 

The generalized eigenvalue minimization problem (GEVP) is the third interesting problem used 

extensively. This problem is stated as follows: 

where F; (x) and F2 (x) are two matrices of form (B.I). The GEVP is quasi-convex with respect to the 

design parameters x and IL, which can be solved using "gevp" of the LMI toolbox. 

The decay rate of system (B.2) is defined as the largest r such that ~~~ e yt Ilx( t )11 = 0 . Let us consider a 

Lyapunov function candidate V (x(t)) = xT (t )Px(t) . If we can establish that 

dV(x(t)) ( ( )) --'------'- ~ -2 yV x t 
dt 

(B.IO) 

holds for aIl trajectories, then the decay rate of system (B.2) is at least r. 

Noting that (B.I 0) holds if and only if 

(B. Il) 

we conclude that the largest lower bound on the decay rate can be found by solving the GEVP in P and r 

maxr 
p>o 

s.t. (B.ll). 

To solve this optimization problem, let us rewrite (B. Il ) as 

2P~!(-PA-ATp) . 
r 
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