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Abstract

The advent of single-cell technologies has revolutionized genomics by enabling the anal-

ysis of genetic material at the resolution of individual cells, offering a granular perspec-

tive essential for understanding cellular diversity and function in both health and disease.

Single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq)

provide a precise, cell-specific view of genomic and epigenomic landscapes. These tech-

niques are particularly valuable for studying gene regulatory networks (GRNs), which

consist of transcription factors (TFs), regulatory elements (REs), and target genes that

control biological processes within cells. At the forefront of single-cell multi-omics re-

search, the challenge of elucidating intricate GRNs at a cellular level remains paramount

due to single-cell data’s high-dimensional, noisy, and sparse nature. To address this chal-

lenge, we present Single Cell Graph Network Embedded Topic Model (scGraphETM),

building upon the previously published single-cell Embedded Topic Model (scETM). The

approach leverages the advantages of topic modeling, graph neural networks, and multi-

modal data integration techniques to unravel the complexities of cell-specific GRNs from

multi-omics single-cell sequencing data. This structure adeptly captures the dynamic

regulatory interplay within cells while uniquely incorporating both universal and cell-

specific features. This dual approach enables the model to generalize across cell popu-

lations while also identifying unique regulatory dynamics within individual cells. Our

comprehensive evaluation demonstrates that scGraphETM surpasses existing method-

ologies in accurately modeling cell-type clustering, cross-modality imputation, and cell-

specific TF-RE relationship prediction.
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Abrégé

L’avènement des technologies à cellule unique a révolutionné la génomique en permet-

tant l’analyse du matériel génétique à la résolution de cellules individuelles, offrant une

perspective granulaire essentielle pour comprendre la diversité et la fonction cellulaires,

tant en bonne santé qu’en maladie. Le séquençage de l’ARN unicellulaire (scRNA-seq) et

le séquençage ATAC unicellulaire (scATAC-seq) fournissent une vue précise et spécifique

au type cellulaire des paysages génomiques et épigénomiques. Ces techniques sont par-

ticulièrement précieuses pour étudier les réseaux de régulation génique (GRNs), qui se

composent de facteurs de transcription (TFs), d’éléments régulateurs (REs) et de gènes

cibles qui contrôlent les processus biologiques au sein des cellules. À l’avant-garde de

la recherche multi-omique unicellulaire, le défi d’élucider les GRNs complexes au niveau

cellulaire reste primordial en raison de la nature hautement dimensionnelle, bruitée et

éparse des données unicellulaires. Pour relever ce défi, nous présentons scGraphETM,

une nouvelle approche computationnelle visant à démêler les complexités des GRNs

spécifiques aux cellules à partir de données de séquençage multi-omiques unicellulaires.

Le modèle combine de manière innovante un framework d’auto-encodeur variation-

nel avec un réseau neuronal de graphe, conceptualisant les TFs, les gènes et les REs

comme des nœuds, et leurs interactions régulatrices comme des arêtes. Cette structure

capture adroitement l’interaction régulatrice dynamique au sein des cellules tout en in-

corporant de manière unique des caractéristiques universelles et spécifiques aux cellules.

Cette double approche permet au modèle de généraliser à travers les populations cel-

lulaires tout en identifiant également les dynamiques régulatrices uniques au sein de
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cellules individuelles. Notre évaluation complète démontre que scGraphETM surpasse

les méthodologies existantes dans la modélisation précise du clustering de types cellu-

laires, l’imputation inter-modalité et la prédiction des relations TF-RE spécifiques aux

cellulaires.
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Chapter 1

Introduction

The inference of gene regulatory networks (GRNs) represents one of the most signifi-

cant challenges in computational biology. These networks model the complex interplay

between transcription factors (TFs), chromatin accessibility, and target genes that collec-

tively establish, maintain, and potentially disrupt cellular identity. Understanding GRNs

has critical implications for engineering cell fate and disease prevention.

Historically, GRN reconstruction has relied on experimentally validated regulation

events compiled in databases (Garcia-Alonso et al., 2019; Han et al., 2018) or inferred de

novo from gene co-expression patterns in bulk transcriptomics data (Huynh-Thu et al.,

2010; Langfelder and Horvath, 2008) However, these approaches face significant limi-

tations. Transcriptomics data alone fail to capture many underlying regulatory mecha-

nisms, such as TF protein abundance, DNA binding events, cooperation between TFs and

cofactors, alternative transcript splicing, post-translational modifications, and the accessi-

bility and structure of the genome. Whereas bulk profiling provides mixed measurements

across different cell types within a tissue sample, preventing the disentanglement of reg-

ulatory programs specific to particular cell types (Cha and Lee, 2020; Fiers et al., 2018).

This limitation has been addressed by the advent of single-cell technologies (Klein et al.,

2015), which allow for more refined GRN inference across different cell types.
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The introduction of multimodal profiling technologies, which simultaneously mea-

sure different molecular modalities such as gene expression and chromatin accessibility

from the same cell (Chen et al., 2019; Liu et al., 2019; Ma et al., 2020), has led to the de-

velopment of novel computational methods that can leverage multi-modal data to infer

GRNs at unprecedented resolution. These advances provide new opportunities to model

gene regulation more accurately, but also present new challenges in data integration, com-

putational scalability, and biological interpretation.

The goal of this thesis is to explore a scalable and interpretable model that integrates

established genomic interaction data and known biological relationships. We propose

a graph-augmented single-cell embedded topic model that extends the previously pub-

lished single-cell Embedded Topic Model (Zhao et al., 2021). This enhanced framework

offers three interconnected modules that collectively improve GRN inference. Cell-type

annotation through multi-omics data integration, which provides the cellular context nec-

essary for identifying cell-type-specific regulatory relationships; missing modalities im-

putation, which addresses the technical challenge of sparse multi-modal measurements

and enables more complete regulatory network reconstruction; and inference of cell-

specific gene regulatory networks, which is the ultimate goal of our approach.

1.1 Contribution of Authors

Dr. Yue Li conceived the project concept and provided comprehensive supervision through-

out its development, offering critical feedback on model design and conducting weekly

progress meetings. Manqi Zhou contributed to downstream analysis approaches and

manuscript preparation. Vicky Dong and Boyu Han collaborated on the implementation

of the scGraphETM model. Vicky Dong was responsible for performing the experiments

and conducting the analyses presented in this thesis.

2



Chapter 2

Background and Related Works

2.1 Transcriptomics Data

Transcriptomics data explores the geneomc RNA transcripts and reveals how gene ex-

pression patterns change in response to developmental processes, environmental stimuli,

or disease states (Wang et al., 2009). Bulk RNA-seq typically involves extracting total

RNA from a tissue sample or cell population. The sequencing reads are then mapped to

a reference genome or transcriptome, allowing quantification of known transcripts and

discovery of novel ones (Conesa et al., 2016). Despite its advantages, bulk RNA-seq still

faces several challenges: it obscures cell-to-cell variability and potentially misses rare but

functionally important cell populations as it measures the average expression across thou-

sands or millions of cells (Stegle et al., 2015). Additionally, technical variations between

library preparation batches or sequencing runs can introduce confounding factors that

complicate data interpretation (Leek et al., 2010).

Increasingly granular analyses can now capture expression profiles at the level of in-

dividual cells. This evolution has been driven by technological advancements that have

increased throughput, reduced costs, and improved resolution, enabling researchers to

address increasingly complex biological questions (Stark et al., 2019).
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2.1.1 Single Cell Sequencing

The recognition of bulk RNA-seq limitations drove the development of single-cell RNA

sequencing (scRNA-seq), which characterizes transcriptomes at individual cell resolu-

tion. Following Tang et al. (2009)’s pioneering work, the field expanded dramatically

with droplet-based methods such as Drop-seq (Macosko et al., 2015) and commercial

platforms such as 10x Genomics (10x Genomics, 2019), enabling simultaneous profiling

of thousands to millions of cells. Despite these advances, scRNA-seq data remains chal-

lenging to analyze due to its sparsity, high dimensionality, and susceptibility to technical

variations (Haghverdi et al., 2018; Luecken and Theis, 2019).

Complementing transcriptomic analysis, single-cell Assay for Transposase-Accessible

Chromatin sequencing (scATAC-seq) profiles chromatin accessibility patterns by lever-

aging Tn5 transposase to insert sequencing adapters into open chromatin regions (Buen-

rostro et al., 2015). This technique maps the regulatory landscape across diverse cell types,

identifying regulatory regions where transcription factors can bind to influence gene ex-

pression (Cusanovich et al., 2015).

Multi-omic approaches now enable simultaneous profiling of transcriptomes along-

side other molecular features such as chromatin accessibility in the same cells (Zhu et al.,

2020). Current multi-omic methods typically profile fewer cells than single-modality ap-

proaches, often restricting their application to smaller-scale studies.

The explosive growth of single-cell technologies has led to the establishment of valu-

able data repositories and resources. The Human Cell Atlas (Regev et al., 2017) aims to

create comprehensive reference maps of all human cells, while databases like the Sin-

gle Cell Portal (Broad Institute), Gene Expression Omnibus (GEO), and cellxgene (Megill

et al., 2021) facilitate data sharing and reuse. Furthermore, specialized databases like

scATLAS (Franzén and Björkegren, 2019) and CellMarker (Zhang et al., 2019) provide

curated collections of cell type-specific markers. These resources, alongside consortium-

driven efforts like the NIH Human Biomolecular Atlas Program (HuBMAP) (Consortium,

2019), have dramatically accelerated our understanding of cellular heterogeneity in health
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and disease, enabling the identification of previously unknown cell types and states, re-

construction of developmental trajectories, and characterization of cellular responses to

perturbations at unprecedented resolution.

2.2 Graph Neural Networks

Graph Neural Networks (GNN) represent a widely used class of deep learning architec-

tures specifically designed to work with graph-structured data. Unlike traditional neural

networks that operate on sequences, GNNs’ ability to model complex relationships makes

them particularly well-suited for domains where interactions between entities are central

to the problem.

GNNs have demonstrated remarkable effectiveness in diverse genomic applications.

In gene regulatory network inference, GNNs model transcription factors as nodes con-

nected to target genes via existing databases, enabling the reconstruction of complex

regulatory circuits that control gene expression patterns (Chen et al., 2021; Dutil et al.,

2018). Single-cell genomics benefits from GNNs by modeling cells as nodes in a high-

dimensional feature space connected by similarity-based edges, facilitating cell type iden-

tification, trajectory inference, and gene-gene correlation analysis that captures develop-

mental processes with unprecedented resolution (Wagner et al., 2020; Zeisel et al., 2022).

Protein structure prediction has been revolutionized by Graph Neural Networks (GNNs),

which represent amino acids as nodes connected by chemical and spatial proximity edges,

modeling complex folding patterns and predicting structural features from sequence data

alone (Gainza et al., 2022; Jumper et al., 2021). Cancer genomics applications utilize GNNs

to model tumor heterogeneity by constructing patient similarity networks based on multi-

omics data, stratifying patients into clinically relevant subtypes and identifying molecular

signatures associated with treatment response (Chaudhary et al., 2022; Wang et al., 2021b)

Early work by Scarselli et al. (2009) proposed the original Graph Neural Network

framework, which learned node representations through recursive neighborhood aggre-
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gation. The field experienced a renaissance with the development of Graph Convolu-

tional Networks (GCN) by Kipf and Welling (2017), which simplified earlier approaches

and enabled efficient training on large-scale graph data. Their spectral-based approach

provided a tractable approximation that balanced expressivity with computational effi-

ciency. Subsequent innovations included GraphSAGE by Hamilton et al. (2017b), which

introduced inductive learning capabilities for previously unseen nodes, and Graph At-

tention Networks (GAT) by Veličković et al. (2018), which incorporated attention mecha-

nisms to weight neighbor contributions according to their connections.

GNNs operate on the principle of message passing between nodes in a graph. The key

intuition is that a node’s representation should incorporate information from its neigh-

borhood. This process typically involves neighborhood aggregation, where each node

collects feature information from its neighbors and updates its representation based on

its current features and the aggregated neighborhood information. This process repeats

across multiple layers, allowing information to propagate through the graph and allow-

ing nodes to capture increasingly broader contextual information.

The general update equation for a node v at layer l can be expressed as:

h(l+1)
v = UPDATE(h(l)v ,AGGREGATE({h(l)u : u ∈ N (v)}))

where h(l)v is the node representation at layer l, N(v) represents the neighbors of node v,

and AGGREGATE and UPDATE are differentiable functions. Different GNN variants im-

plement these functions in various ways, leading to architectures with distinct inductive

powers and computational properties.

2.2.1 Graph Convolution Network

Graph Convolutional Networks (GCNs) provide an efficient approximation of spectral

graph convolutions. The key innovation of GCNs is their layer-wise propagation rule.
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For a given graph with adjacency matrix A and node feature matrix X, the layer-wise

propagation rule of GCN can be written as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(2.1)

where H(l) is the matrix of node features at layer l (with H(0) = X). Ã = A + I is the

adjacency matrix with added self-connections. D̃ is the degree matrix of Ã, D̃ii =
∑

j Ãij .

W(l) is the layer-specific trainable weight matrix. σ is a non-linear activation function,

such as Rectified Linear Unit (ReLU)(Glorot et al., 2011).

The term D̃− 1
2 ÃD̃− 1

2 performs symmetric normalization of the adjacency matrix, pre-

venting numerical instabilities and exploding or vanishing gradients. The normaliza-

tion ensures the convolution operation averages features from a node’s neighborhood,

weighted by the inverse square root of the node degrees.

Per node updates of GCN can be expressed as:

h(l+1)
v = σ

W(l)
∑

u∈N (v)∪{v}

1√
d̃vd̃u

h(l)
u

 (2.2)

where N (v) represents the neighbors of node v, and d̃v is the degree of node v in the

graph with self-connections.

2.2.2 GraphSAGE

Graph SAmple and aggreGatE (GraphSAGE) introduces an inductive framework that en-

ables generating embeddings for previously unseen nodes (Hamilton et al., 2017c). Un-

like GCN, which operates on the entire graph simultaneously, GraphSAGE employs a

neighborhood sampling strategy that makes it more scalable for large graphs. It learns

a function that generates embeddings by sampling and aggregating features from the lo-

cal neighborhood of the current node. The general update rule for GraphSAGE can be

described as such:
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h(l+1)
v = σ

(
W(l) · CONCAT

(
h(l)
v ,AGGREGATE(l)

(
{h(l)

u , ∀u ∈ N (v)}
)))

(2.3)

where h
(l+1)
v is the feature vector of node v at layer l + 1. W(l) is the trainable weight

matrix for layer l that transforms the concatenated vector into the output embedding

space. h
(l)
v is the current feature vector of node v at layer l. {h(l)

u ,∀u ∈ N (v)} is the set

of feature vectors from all neighbors u of node v. N (v) represents the neighborhood of

node v. σ is the non-linear activation function, such as ReLU. AGGREGATE(l) is a differ-

entiable, learnable function that combines the feature vectors from the node’s neighbors

into a single vector.

Mean Aggregator The mean aggregator takes the element-wise mean of the feature vec-

tors of all neighboring nodes.

AGGREGATE(l)
mean =

1

|N (v)|
∑

u∈N (v)

h(l)
u (2.4)

LSTM Aggregator The LSTM aggregator applies a Long Short-Term Memory neural

network to the neighbors’ feature vectors (Hochreiter and Schmidhuber, 1997). Com-

pared to the mean aggregator, this approach can capture more complex neighborhood

patterns and dependencies.

AGGREGATE(l)
LSTM = LSTM

(
{h(l)

u ,∀u ∈ π(N (v))}
)

(2.5)

where π denotes a random permutation of the neighbors.

Pooling Aggregator The pooling aggregator applies an element-wise max-pooling op-

eration to the neighborhood features after a non-linear transformation.

AGGREGATE(l)
pool = max

(
{σ(Wpoolh

(l)
u + b),∀u ∈ N (v)}

)
(2.6)

8



where max is applied element-wise across all transformed neighbor features.

After each aggregation step, GraphSAGE normalizes the resulting embeddings:

h(l+1)
v ← h

(l+1)
v

∥h(l+1)
v ∥2

(2.7)

L2 normalization applied helps to prevent numerical instabilities during training.

2.2.3 Graph Attention Network

Graph Attention Networks (GATs), introduced by Veličković et al. (2018), incorporate at-

tention mechanisms into GNNs, allowing the model to focus on the most relevant parts

of the neighborhood when aggregating information. Unlike GCN, which weights neigh-

bors based on graph structure alone, GAT learns to assign different importances to differ-

ent neighbors, while they may have the same structural relationship to the target node.

The attention mechanism framework popularized by Transformer architectures (Vaswani

et al., 2017) is applied in GAT:

Qv = WQhv (transformed features of the target node) (2.8)

Ku = WKhu (transformed features of the neighbor node) (2.9)

Vu = WV hu (transformed features to be aggregated) (2.10)

where WQ, WK , and WV are learnable parameter matrices.

The attention score between a target node v and its neighbor u is computed as:

evu =
QT
vKu√
d

(2.11)

where d is the dimension of the key vectors and serves as a scaling factor. This dot

product measures how well the query matches the key.
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The attention coefficient is obtained by normalizing across all neighbors using the

softmax function:

αvu = softmaxu(evu) =
exp(evu)∑

k∈N (v) exp(evk)
(2.12)

The final output feature vector for node v is calculated as a weighted sum of the value

vectors:

h′
v =

∑
u∈N (v)

αvuVu (2.13)

In practice, GATs typically employ multi-head attention where K independent atten-

tion mechanisms are computed in parallel:

h′
v = ∥Kk=1σ

 ∑
u∈N (v)

αkvuW
khu

 (2.14)

where ∥ represents concatenation and αkvu is the attention coefficient from the k-th

attention head.

Despite their success, GNNs face several challenges. Scalability remains a significant

concern when processing large-scale graphs with billions of nodes and edges, requiring

efficient sampling and partitioning strategies that balance computational efficiency with

representational accuracy (Hu et al., 2020a). Heterogeneity presents another challenge, as

real-world graphs often contain different types of nodes and edges with varying proper-

ties and semantics, necessitating model architectures that can accommodate this diversity

without losing structural information (Hu et al., 2020b).

2.3 Topic Models

Topic models have emerged as unsupervised techniques for discovering hidden thematic

structures in large document collections. These models operate on the principle that doc-
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uments are mixtures of topics, where each topic is characterized by a probability dis-

tribution over words. The primary aim of topic modeling is to discover these latent

semantic patterns automatically. Topics serve as underlying hidden variables that gen-

erate the observed word distributions in documents, creating a probabilistic framework

for understanding document content. They provide great interpretability and demon-

strate remarkable versatility in successful applications across diverse domains, including

single-cell genomics (Zhao et al., 2021).

2.3.1 Latent Dirichlet Allocation (LDA)

Introduced by Blei et al. (2003), Latent Dirichlet Allocation (LDA) is a generative prob-

abilistic model that represents documents as random mixtures over latent topics, where

each topic is characterized by a distribution over words.

Algorithm 1: Latent Dirichlet Allocation (LDA) Pseudocode
Input: Document corpus D, number of topics K, hyperparameters α and β

Output: Topic-word distributions ϕ, document-topic distributions θ

LDA Generative Process: for each topic k = 1 to K do

Sample topic-word distribution ϕk ∼ Dirichlet(β);

end

for each document d in corpus do

Sample document-topic distribution θd ∼ Dirichlet(α);

for each word position i in document d do

Sample topic zdi ∼Multinomial(θd);

Sample word wdi ∼Multinomial(ϕzdi);

end

end

In Latent Dirichlet Allocation, model’s behavior is governed by Dirichlet and Multi-

nomial distribution:
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The topic-word distribution ϕk represents the probability of each word in the vocabu-

lary occurring in topic k. Mathematically, each ϕk is a multinomial distribution over the

vocabulary, where ϕk,w represents the probability of word w appearing in topic k. These

distributions characterize what each topic is “about”.

In the generative process, each topic-word distribution is drawn from a Dirichlet prior

with hyperparameter β:

ϕk ∼ Dirichlet(β) (2.15)

The Dirichlet prior encourages sparsity in the distribution when β < 1, which aligns

with the intuition that each topic should focus on a subset of the vocabulary rather than

uniformly distributing probability across all words. Typically, β is set to a small value to

encourage sparsity.

The document-topic distribution θd represents the mixture of topics present in doc-

ument d. Similarly, each θd is a multinomial distribution over the K topics, where θd,k

represents the proportion of document d that belongs to topic k which captures the intu-

ition that documents typically cover multiple topics in varying proportions.

In the generative process, each document-topic distribution is drawn from a Dirichlet

prior with hyperparameter α:

θd ∼ Dirichlet(α) (2.16)

A small hyperparameter α encourages documents to focus on a few dominant topics,

while a larger α allows for more uniform topic mixtures. The choice of α reflects assump-

tions about how topics are distributed within documents in the corpus.

2.3.2 Collapsed Gibbs Sampling for LDA

Collapsed Gibbs sampling is an efficient Markov Chain Monte Carlo (MCMC) method for

inferring the latent topic assignments in LDA (Porteous et al., 2008). The algorithm begins

by randomly assigning topics to each word occurrence in the corpus and iteratively cal-

culates the conditional probability of assigning each possible topic to the word and then
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updating count statistics. After many iterations, the Markov chain approaches its station-

ary distribution, which approximates the true posterior distribution of topic assignments

given the observed words.

The power of Gibbs sampling lies in its ability to explore the complex posterior distri-

bution of topic assignments without having to directly compute this distribution.
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Algorithm 2: Collapsed Gibbs Sampling
LDA Inference via Collapsed Gibbs Sampling:

Initialize topic assignments zdi randomly for all words in all documents;

repeat

for each document d in corpus do

for each word position i in document d do

Remove current topic assignment zdi from counts;

Calculate P (zdi = k|all other z, w) ∝ n−di
d,k +α

n−di
d +Kα

·
n−di
k,wdi

+β

n−di
k +V β

;

Sample new topic zdi ∼ P (zdi = k|all other z, w);

Update counts based on new zdi;

end

end

until convergence or maximum iterations reached;

for each topic k = 1 to K do

for each word w in vocabulary do

ϕk,w =
nk,w+β

nk+V β
;

end

end

for each document d in corpus do

for each topic k = 1 to K do

θd,k =
nd,k+α

nd+Kα
;

end

end

return ϕ, θ;

2.3.3 Embedded Topic Model (ETM)

The Embedded Topic Model (ETM), proposed by Dieng et al. (2020), addresses several

limitations of traditional topic models by incorporating word embeddings. ETM rep-
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resents each topic as topic embeddings, leveraging the semantic relationships captured

by pre-trained word embeddings. ETM demonstrates improved performance on short

documents by utilizing semantic information beyond simple co-occurrence. Its use of

amortized variational inference enables faster computation than traditional sampling ap-

proaches.

Algorithm 3: Embedded Topic Model (ETM)
Input: Document corpus D, number of topics K, hyperparameter α, embedding

dimension L, word embeddings ρ ∈ RV×L

Output: Topic embeddings α, document-topic distributions θ

for each topic k = 1 to K do

Define topic embedding αk ∈ RL;

end

for each document d in corpus do

Sample document-topic distribution θd ∼ Dirichlet(α);

for each word position i in document d do

Sample topic zdi ∼Multinomial(θd);

Sample word wdi with probability ∝ exp(ρTwαzdi);

end

end
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Algorithm 4: ETM Inference via Variational Method

Initialize neural network parameters ϕenc for encoder network;

Initialize topic embeddings αk ∈ RL for each topic k;

for each iteration do

Sample a batch of documents Dbatch;

for each document d ∈ Dbatch do

(µd, log σ
2
d) = Encoderϕenc(d);

ϵ ∼ N (0, I);

ηd = µd + σd ⊙ ϵ;

θd = softmax(ηd);

for each topic k = 1 to K do

for each word w in vocabulary do

βkw = exp(ρTwαk)∑
w′ exp(ρTw′αk)

;

end

end

Ld = Eq(θd)[log p(wd|θd, α, ρ)]− KL(q(θd)||p(θd));

end

end

for each document d do

Compute (µd, log σ
2
d) = Encoderϕenc(d);

Set document-topic distribution θd = softmax(µd);

end

return α, θ;

In ETM, each topic k is represented as an embedding vector αk. The probability of

word w under topic k is defined as:

βkw =
exp(ρTwαk)∑
w′ exp(ρTw′αk)

(2.17)

16



where ρw is the embedding of word w. The document-topic distributions are inferred

using an encoder network that maps a document to the parameters of a variational distri-

bution over the document-topic proportions. The goal of inference is to estimate the pos-

terior distribution p(θ|w), the distribution of topic proportions given the observed words.

Since this posterior is intractable, ETM approximates it with a variational distribution

q(θ|w).

In ETM, this variational distribution is parameterized by a neural network (the en-

coder), which takes a document as input and outputs the parameters of a logistic normal

distribution µd and log σ2
d. These parameters define a normal distribution in a transformed

space and the topic proportions θd are obtained by applying the softmax function. The

training objective in ETM is to maximize the Evidence Lower Bound (ELBO):

ELBO = E[log p(w|θ, α, ρ)]− KL(q(θ) ∥ p(θ)) (2.18)

The Expected log-likelihood, E[log p(w|θ, α, ρ)] measures how well the model recon-

structs the observed words given the inferred topics. For each word, the probability is

computed as:

p(w|θ) =
∑
k

p(w|topic k)× p(topic k|θ) =
∑
k

βkw × θk (2.19)

Where the topic-word distribution is defined using word embeddings (ρ) and topic em-

beddings (α):

βkw =
exp(ρ⊤wαk)∑
w′ exp(ρ⊤w′αk)

(2.20)

The KL divergence, KL(q(θ) ∥ p(θ)) is a regularization term that penalizes the varia-

tional distribution for being too far from the prior, which is typically a Dirichlet distribu-

tion, and prevents the model from overfitting.
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2.4 Related Works

2.4.1 Embedded Topic Models in Single Cell Application

The Single-cell Embedded Topic Model (scETM) method introduces a neural-network-

based embedded topic modeling approach specifically designed for single-cell RNA se-

quencing data analysis (Zhao et al., 2021). The model assumes that each cell possesses a

topic mixture following a logistic-normal distribution. scETM employs an encoder neural

network that maps normalized gene expression to parameters of a Gaussian distribution

in latent space, which is then transformed via softmax to obtain the cell’s topic mixture.

Prior to modeling, highly variable genes are selected to improve computational efficiency

and focus the model on biologically informative signals.

2.4.2 Muti-Omics Integration Methods

The emergence of single-cell multimodal assays has created a powerful means of ex-

amining multiple facets of cellular states. A major challenge in analyzing these data is

devising effective strategies to integrate information from different modalities (Li et al.,

2025). Data integration encompasses three primary approaches: horizontal, vertical, and

diagonal integration. Horizontal integration uses genomic features as the anchor when

merging the same data modality from different cells, for instance, combining scRNA-

seq datasets across multiple experimental batches. In vertical integration, cells serve as

the anchor when multiple modalities are measured from the same individual cells, such

as simultaneously profiling RNA expression and chromatin accessibility within a single

cellular sample. Diagonal integration bridges individual scRNA-seq and scATAC-seq ex-

periments where both cells and features exhibit significant variations between datasets,

presenting the most complex integration challenge (Argelaguet et al., 2020b). The choice

of integration strategy significantly impacts downstream analyses and the biological in-

sights that can be derived from the data.
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Mutual Nearest Neighbors (MNN), introduced by Haghverdi et al. (2018), represented

a significant advancement in addressing batch effects in single-cell RNA sequencing data.

MNN performs horizontal integration via identifying pairs of cells that are mutual near-

est neighbors in a low-dimensional space by principal components. The algorithm then

computes batch correction vectors for each MNN pair and applies them locally, preserv-

ing biological heterogeneity while removing technical variation. This local correction ap-

proach maintains the underlying biological structure and is particularly useful when cell

type proportions vary between batches. A key drawback of MNN is its susceptibility

to overcorrection when datasets lack common biological states, potentially forcing align-

ment where none should exist.

Seurat v3 is an anchor-based integration method that leverages canonical correlation

analysis (CCA) to align datasets across batches (Stuart et al., 2019). Seurat v3 identifies

anchors as mutual nearest neighbors in CCA space, representing pairs of cells in different

datasets that likely originate from the same biological state. These anchors then guide

a weighted transformation process that corrects each cell’s expression values based on

multiple relevant anchors. The method incorporates anchor scoring to filter potentially

incorrect pairs and provides corrected expression values for downstream analysis. In

comparative benchmarking by Luecken et al. (2022), Seurat v3 consistently ranks among

the top performers for scRNA-seq integration.

Seurat v4 extended the framework to address multimodal single-cell data integration

(Hao et al., 2021b). The core innovation was the Weighted Nearest Neighbor (WNN)

analysis, which provides a strategy for vertical integration. Unlike previous approaches

that created a single integrated representation, Seurat v4 preserves modality-specific in-

formation while enabling joint analysis. WNN maintains separate low-dimensional em-

beddings for each data modality and constructs a weighted cell-cell similarity graph

that combines information across modalities. The method dynamically learns modality

weights. A key drawback of WNN is its requirement for matched measurements across

modalities, limiting its application to vertical integration tasks.
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Lopez et al. (2018a) introduced scVI to address horizontal integration through a prob-

abilistic formulation that explicitly accounts for batch-specific variation. The model uti-

lizes a VAE architecture to learn a nonlinear embedding of the data where batch effects

are removed while preserving biological signal. scVI employs a zero-inflated negative

binomial (ZINB) distribution for its underlying generative process to model the sparsity

nature of single-cell data.

Harmony is an iterative and linear clustering method operating in principal compo-

nent analysis (PCA) space for single-cell data integration (Korsunsky et al., 2019). Har-

mony employs a mixture model clustering approach with a diversity penalty that encour-

ages clusters to contain cells from all batches, followed by a linear correction of PC coordi-

nates within each cluster. The method alternates between these clustering and correction

steps until convergence to a harmonized embedding. Harmony demonstrates excellent

computational efficiency, scaling linearly with cell number and enabling integration of

millions of cells within minutes. A key drawback of Harmony is its inability to correct

the full gene expression matrix directly, limiting certain downstream analyses that require

corrected expression values.

Multi-Omics Factor Analysis+ (MOFA+) is an unsupervised Bayesian framework for

integrating multimodal single-cell data (Argelaguet et al., 2020a). MOFA+ employs a ma-

trix factorization approach that decomposes multiple data matrices into a set of latent fac-

tors and modality-specific weights, capturing both shared and modality-specific sources

of variation. The method utilizes structured sparsity priors to identify which factors are

active in which data modalities, providing interpretable outputs. MOFA+ handles miss-

ing data naively and accommodates different likelihood models appropriate for diverse

data types. In applications to multimodal data from mouse gastrulation, MOFA+ suc-

cessfully identified coordinated epigenetic and transcriptional changes associated with

lineage commitment. A key drawback of MOFA+ is its assumption of linear relationships

between latent factors and observed features.
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Multi-Omics Embedded Topic Model (moETM) is a probabilistic framework for inte-

grating multiple single-cell modalities that builds upon topic modeling concepts (Zhou

et al., 2023). moETM uses a hierarchical Bayesian approach where cells are represented as

mixtures of topics, and each topic represents a distribution over features in each modality.

The method employs a negative binomial distribution for RNA counts and a logistic nor-

mal distribution for chromatin accessibility, linked through a shared latent space. Infor-

mation from different modalities is combined through a product-of-experts formulation.

Figure 2.1: MoETM Model Overview (Zhou et al., 2023)

2.4.3 Cross-Modality Imputation Methods

Simultaneous profiling of multiple molecular modalities within a single cell represents

one of the most formidable challenges in modern genomics (Wu et al., 2021). This ap-

proach faces several fundamental obstacles such as molecular incompatibility, where mea-

surement techniques for different modalities may be mutually exclusive or compounded

technical noise and dropout effects that compromise data quality. Single-cell cross-modality

imputation methods have emerged as a critical solution to the challenge of simultaneous

multimodal profiling. By leveraging the inherent relationships between different omics,

imputation methods can computationally predict unmeasured modalities from measured

ones (Li et al., 2025).
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BABEL is a deep learning framework designed to enable cross-modality translation

between scRNA-seq and scATAC-seq data (Wu et al., 2021). The method employs a

variational autoencode (VAE) architecture. BABEL consists of four modular neural net-

works, an RNA encoder that projects RNA expression profiles into a shared latent space,

an ATAC encoder that projects ATAC accessibility profiles into the same shared latent

space, an RNA decoder that infers RNA expression from the input latent representation

and an ATAC decoder that infers ATAC accessibility from the input latent representa-

tion. For the RNA-to-ATAC translation, the encoder maps RNA expression data xRNA to

a latent representation z through a probabilistic encoding:

qϕ(z|xRNA) = N (z|µϕ(xRNA), σ
2
ϕ(xRNA)) (2.21)

Where µϕ and σ2
ϕ are neural networks parameterized by ϕ that predict the mean and

variance of the latent distribution.

The decoder then reconstructs ATAC accessibility data from this latent representation:

pθ(xATAC|z) = Bern(xATAC|πθ(z)) (2.22)

Where πθ is a neural network parameterized by θ that outputs the probability of each

genomic region being accessible.

Similarly, for ATAC-to-RNA translation, the encoding process is:

qψ(z|xATAC) = N (z|µψ(xATAC), σ
2
ψ(xATAC)) (2.23)

And the decoding to RNA expression is modeled as:

pω(xRNA|z) = NB(xRNA|µω(z), θω(z)) (2.24)

Where NB represents a negative binomial distribution with mean µω and dispersion

θω, both functions of the latent representation z.
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BABEL’s training objective comprises four components, encompassing all possible

encoder-decoder combinations:

L = LNB(r, rRNA) + βLBCE(a, aATAC) + βLBCE(a, aRNA) + LNB(r, rATAC) (2.25)

Where LNB is the negative binomial loss for RNA predictions. LBCE is the binary

cross-entropy loss for ATAC predictions. β is a balancing constant.

The negative binomial loss, previously shown useful in Lopez et al. (2018b) is defined

as:

LNB(y; ŷ, θ) = −θ(log(θ + ϵ)− log(θ + ŷ))− y(log(ŷ + ϵ)− log(θ + ŷ))

− log Γ(y + θ) + log Γ(y + 1) + log Γ(θ + ϵ) (2.26)

Where ϵ is a small constant for numerical stability.

The binary cross-entropy loss for ATAC predictions is (Xiong et al., 2019):

LBCE(x; x̂) = −(x log x̂+ (1− x) log(1− x̂)) (2.27)

Where x represents the measured ATAC signal and x̂ is the model’s prediction.

Figure 2.2: Babel Loss Overview
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BABEL was trained on cells from peripheral blood mononuclear cells (PBMCs), colon

adenocarcinoma cells, and colorectal adenocarcinoma cells (10x Genomics, 2019). While

it can generalize to new contexts once trained, BABEL requires substantial amounts of

paired multimodal data for training.

MultiVI also builds on (VAE) architectures to integrate different single-cell modali-

ties (Ashuach et al., 2023). Similar to BABEL, RNA-seq data is modeled using a negative

binomial distribution, ATAC-seq data is modeled with a Bernoulli distribution, but ad-

ditionally protein expression is modeled as a mixture of negative binomial distributions.

Initially, each modality is assigned its own latent representation, an isotropic multivariate

normal distribution. These are combined to create a unified representation via the default

approach by taking the average or learnable cell-specific weights across modalities.

Using the variational approximation, the evidence lower bound is computed and op-

timized. To enforce the similarity between chromatin and transcription latent represen-

tations, the model penalized the distance between representations using a symmetric Jef-

frey’s divergence between distributions:

d(ZA
c , Z

R
c ) = symmKL(q(zAc ), q(z

R
c )) = KL(q(zAc ), q(z

R
c )) + KL(q(zRc ), q(z

A
c )). (2.28)

In the case of three or more distributions:

d(ZA
c , Z

R
c , Z

P
c ) =symmKL(q(zRc ), q(z

A
c )) + symmKL(q(zRc ), q(z

P
c ))+

symmKL(q(zAc ), q(z
P
c )). (2.29)

2.4.4 Gene Regulatory Network Inference Methods

The complex interactions among chromatin structure, transcription factors, and genetic

elements create intricate regulatory systems named Gene Regulatory Network (GRN).

These networks provide valuable insights into the mechanisms that establish, maintain,

and potentially disrupt cellular identity during disease. The recent advancement of single-
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cell multi-omics technologies has revolutionized GRN inference methodologies which

were traditionally constructed using either published literature or bulk omics experimen-

tal data (Badia-i Mompel et al., 2023). These novel computational approaches simulta-

neously analyze genomic sequences, transcriptional activity, and chromatin accessibility

patterns.

Typical GRN inference workflow involves rigorous pre-processing of expression data

to construct comprehensive interaction matrices, identifying known transcription factors

(TF), and employing advanced predictive modeling techniques to elucidate potential TF-

gene interactions to synthesize a comprehensive network representation that captures the

complex regulatory relationships governing gene expression. For chromatin accessibility

data, the approach involves pre-processing to create accessibility matrices, associating cis-

regulatory elements (CREs) with nearby genes, predicting TF binding to CREs using motif

databases, generating TF-CRE-gene triplets. When utilizing multi-omics data, transcrip-

tomics and chromatin accessibility are first preprocessed separately, and then integrated

to simultaneously build a more complete GRN as shown in fig.2.3.

The GEne Network Inference with Ensemble of trees (GENIE3) algorithm has emerged

as a powerful approach for GRN inference, winning the DREAM4 In Silico Multifactorial

network inference challenge (Huynh-Thu et al., 2010). GENIE3 employs random for-

est models to predict the expression of each gene in the dataset using the expression of

transcription factors as input. For each gene j, GENIE3 attempts to identify which tran-

scription factor genes are the most important for predicting its expression with the the

ensemble of trees aiming to minimize the following error:

N∑
k=1

(xkj − fj(xk−j))2 (2.30)

For a single tree, the importance of an input variable gene i is computed as:

I(N) = #S · Var(S)−#St · Var(St)−#Sf · Var(Sf ) (2.31)
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Figure 2.3: Flow chart of methods for GRN inference (Badia-i Mompel et al., 2023)

where N is a node in the tree where gene i is used for splitting. S is the set of samples

that reach node N . St and Sf are the subsets of samples for which the test at node N is

true or false, respectively.# denotes the cardinality of a set, and Var(·) is the variance of

the output values in a set. The overall importance of gene i in predicting the expression

of gene j is computed by summing the I values over all tree nodes where gene i is used

for splitting, and averaging over all trees in the ensemble. Regulatory links are ranked

according to these importance scores.

Single-Cell Regulatory Network Inference and Clustering (SCENIC) aims to solve

the gene regulatory network reconstruction problem along with cell state identification

through a three-stage workflow (Aibar et al., 2017). The first step uses GENIE3 to iden-

tify potential transcription factor (TF) targets based on co-expression patterns. For larger

datasets, SCENIC implements GRNBoost as a scalable alternative to GENIE3. GRNBoost

uses gradient boosting machines instead of random forests. In the second step, RcisTar-
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get performs motif enrichment analysis on previously identified co-expression modules

to distinguish direct binding targets from indirect relationships (Herrmann et al., 2012).

SCENIC finally calculates cell level regulon activatity via AUCell. The output of the AU-

Cell step is a matrix containing the AUC score for each regulon in each cell representing

the proportion of expressed genes in the regulon and their relative expression compared

to other genes within the cell. This activity matrix served as the input for cell clustering

based on shared regulatory network activity rather than raw gene expression.

SCENIC+ integrates chromatin accessibility data alongside gene expression measure-

ments to construct more comprehensive enhancer-driven gene regulatory networks (eGRNs)

(Bravo González-Blas et al., 2023). The SCENIC+ workflow also follows a three step pro-

cess. First, it identifies candidate enhancers by analyzing cell-specific chromatin accessi-

bility patterns using pycisTopic, which detects both differentially accessible regions and

sets of co-accessible regions. Second, pycisTarget predicts transcription factor binding

sites within these accessible regions using an extensive collection of over 30,000 motifs

that have been carefully curated and clustered (Imrichová et al., 2015). Finally, SCENIC+

employs GRNBoost2 to quantify the importance of both transcription factors and en-

hancer regions for target genes combined with motif enrichment analysis to determine

the optimal transcription factor for each set of motifs (Moerman et al., 2019).

Graph-Linked Unified Embedding (GLUE) is a knowledge- guided Bayesian frame-

work designed for integrating unpaired single-cell multi-omics data and inferring gene

regulatory networks (Cao and Gao, 2022). GLUE addresses the challenge of diagonal inte-

gration by learning feature embeddings refined to reconstruct both a guidance graph and

the single-cell multi-omics data simultaneously. The cosine similarities between these fea-

ture embeddings are then used as regulatory scores that reflect the strength of regulatory

relationships.

Assuming that there are K different omics layers to be integrated, each with a distinct

feature set Vk, k = 1, 2, . . . , K. For instance, in scRNA-seq, Vk is the set of genes, while in

scATAC-seq, Vk is the set of accessible chromatin regions.
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Figure 2.4: GLUE Model Overview (Cao and Gao, 2022)

The data spaces of different omics layers are denoted as Xk ⊆ R|Vk| with varying di-

mensionalities. We use x(n)k ∈ Xk, n = 1, 2, . . . , Nk to denote cells from the k-th omics

layer, and x(n)ki , i ∈ Vk to denote the observed value of feature i of the k-th layer in the n-th

cell. Notably, the cells from different omics layers are unpaired and can have different

sample sizes. GLUE modeled the observed data from different omics layers as generated

by a low-dimensional latent variable, cell embedding u ∈ Rm:

p(xk; θk) =

∫
p(xk|u; θk)p(u)du (2.32)

where p(u) is the prior Gaussian distribution of the latent variable. p(xk|u; θk) are

learnable generative distributions in the data decoders. θk denotes learnable parameters

in the decoders. The cell latent variable u is shared across different omics layers, repre-

senting the common cell states.
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GLUE uses a guidance graph G = (V,E), which incorporates prior knowledge about

regulatory interactions between features across the omics to link different feature spaces.

Each edge is associated with signs and weights, denoted as sij and wij , respectively, wij ∈

(0, 1] represents interaction credibility and sij ∈ {−1, 1} specifies the sign of the regulatory

interaction. The guidance graph is treated as an observed variable and is modeled as

generated by low-dimensional feature latent variables vi ∈ Rm, i ∈ V . The combined

feature embeddings matrix is denoted as V ∈ Rm×|V |. The GLUE framework employs

factorized variational inference, where the joint posterior of cell and feature embeddings

is approximated as the product of a data-specific encoder and a GCN encoder.

To properly align the various omics layers, GLUE uses adversarial alignment strategy.

A discriminator D with a K-dimensional softmax output predicts the omics layers of

cells based on their embeddings u with cell-specific weights w(n) incorporated to handle

imbalanced cell type compositions.

LD(ϕ, ψ) = −
1

K

K∑
k=1

1

Wk

Nk∑
n=1

w(n) · E
u∼q(u|x(n)

k ;ϕk)
logDk(u;ψ) (2.33)

where Dk represents the k-th dimension of the discriminator output, and ψ represents

learnable parameters in the discriminator.

At last, the overall training objective of GLUE consists of:

min
ψ
λD · LD(ϕ, ψ) (2.34)

max
θ,ϕ

λD · LD(ϕ, ψ) + λGK · LG(θG, ϕG) +
K∑
k=1

LXk
(θk, ϕk, ϕG) (2.35)

where λD scales the contribution of adversarial alignment and λG scales the contribu-

tion of graph-based feature embedding. Training is performed using stochastic gradient

descent with the discriminator being updated according to Equation 2.34. Then the en-

coders and decoders are updated according to Equation 2.35.
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Lifelong neural network for gene regulation (LINGER) is a deep learning framework

that utilizes atlas-scale external bulk data across diverse cellular contexts and prior knowl-

edge of TF motifs to improve GRN inference accuracy (Yuan and Duren, 2024). LINGER

first pretrains on paired 201 samples of bulk RNA-seq and ATAC-seq data obtained from

the ENCODE project (Consortium et al., 2012). For each gene, a neural network predicts

the gene expression based on TF expression and chromatin accessibility within 1 Mb of

the transcription starter site (TSS). The method undergoes comprehensive validation to

assess different aspects of its regulatory predictions using groundtruth data including

Chromatin Immunoprecipitation sequencing (ChIP-seq) data for trans-regulatory inter-

actions and expression Quantitative Trait Loci (eQTL) data for cis-regulatory predictions.

Figure 2.5: LINGER Model Overview (Yuan and Duren, 2024)

The complete LINGER loss function consists of four components:

LLINGER = λ1LMSE + λ2LL1 + λ3LLaplace + λ4LEWC (2.36)
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The mean squared error (MSE) quantifies how accurately the model predicts target

gene expression. L1 regularization helps identify the most relevant transcription factors

and regulatory elements influencing the target gene expression, while eliminating noise

from less important features. The Laplacian loss (Manifold Regularization) incorporates

TF-RE motif matching knowledge by encouraging parameters in the first hidden layer to

form regulatory modules that align with biological knowledge.

LLaplace(ETF, O,Ei,·, θl) = tr((θ(1)l )TLNormθ
(1)
l ) (2.37)

where LNorm is the normalized Laplacian matrix based on TF-RE binding affinity, and

θ
(1)
l are the parameters of the first hidden layer.

The elastic weight consolidation (EWC) Loss penalizes large deviations from previ-

ously learned bulk data, preserving lifelong learning. The Fisher information matrix as-

signs higher importance to influential parameters in the bulk model.

LEWC(ETF, O,Ei,·, θl) =
1

(NTF +NRE)× 64

NTF+NRE∑
i=1

∑
j

Fij(θ
(1)
l )i,j(θ

(1)
b )i,j (2.38)

where F is the Fisher information matrix measuring parameter importance.

At population level, LINGER determines the overall regulatory dynamics across the

cell population by identifying cis-regulatory strengths, the average of absolute Shapley

values and trans-regulatory strengths, the Pearson Correlation Coefficient (PCC) between

the TF and RE embeddings.

For each cell type, the TF-RE regulatory potential is computed by summing TF binding

affinities and cis-regulatory potential:

TRPki = γki
∑
j∈Si

TFBkjCRPij (2.39)
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TFBkj = Ckjsk(ETF)kOj(αkj +Bkj) (2.40)

Where Ckj is the correlation, sk the importance score, Oj the chromatin accessibility, and

Bkj the binding affinity.

CRPij = βijOjEie
−

dij
d0 (2.41)

The cell type-specific cis-regulatory (CRPij) and trans-regulatory potentials (TRPki)

are calculated to assess the influence of REs and TFs on TGs based on their proximities

and interactions.

Multimodal integration is essential for GRN inference as it provides a more com-

prehensive view of regulatory mechanisms by combining complementary information

from different molecular layers. Methods such as SCENIC+ and GLUE explicitly address

this integration challenge, with SCENIC+ incorporating chromatin accessibility alongside

gene expression to construct enhancer-driven regulatory networks, and GLUE employ-

ing a graph-linked unified embedding approach to integrate unpaired multi-omics data.

Similarly, the challenge of missing data in single-cell measurements has been addressed

by approaches like GLUE, which can handle unpaired data through its latent space align-

ment strategy, implicitly performing cross-modality imputation. LINGER further demon-

strates the power of integration by leveraging atlas-scale external data to enhance predic-

tion accuracy. This synergy between integration and imputation creates a more robust

foundation for GRN inference, allowing for the detection of subtle regulatory interactions

that might be overlooked when analyzing incomplete or single-modality datasets

Despite these advances, significant challenges remain in GRN inference. Current

methods rely heavily on TF binding motif databases and genomic distance cutoffs, which

may not accurately capture the complex three-dimensional organization of the genome

or cell type-specific binding preferences.
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Chapter 3

Manuscript

3.1 Abstract

In the forefront of single-cell multi-omics research, the challenge of elucidating intricate

gene regulatory networks (GRNs) at a cellular level is paramount. This study introduces

the Single Cell Graph Network Embedded Topic Model (scGraphETM), a novel com-

putational approach aimed at unraveling the complexities of cell-specific GRNs from

multi-omics single-cell sequencing data. Central to our investigation is the integration

of single-cell RNA sequencing and single-cell ATAC sequencing data, leveraging the

strengths of both to uncover the underpinnings of cellular regulation. The scGraphETM

model innovatively combines a variational autoencoder framework with a graph neural

network. By conceptualizing transcription factors (TFs), genes, and regulatory elements

(RE) as nodes, and their regulatory interactions as edges, the model adeptly captures the

dynamic regulatory interplay within cells. It uniquely incorporates both universal and

cell-specific features, enabling the model to generalize across cell populations while also

identifying unique regulatory dynamics within individual cells. Our results reveal that

scGraphETM surpasses existing methodologies in accurately modeling cell-type cluster-

ing, cross-modality imputation and cell-type specific TF-RE relationships.
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3.2 Introduction

The advent of single-cell technologies has revolutionized genomics by enabling the anal-

ysis of genetic material at the resolution of individual cells, offering a granular perspec-

tive essential for understanding cellular diversity and function in both health and dis-

ease (Poulin et al., 2016; Stubbington et al., 2017). While traditional bulk sequencing

approaches often obscure crucial cellular differences by averaging signals across many

cells, multi-omics single-cell sequencing techniques—such as single-cell RNA sequenc-

ing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) provide a precise, cell

type-specific view of genomic and epigenomic landscapes (Tsoucas et al., 2019).

These techniques are particularly valuable for studying gene regulatory networks

(GRNs), which consist of transcription factors (TF), regulatory elements (RE) and tar-

get genes that control biological processes within cells (Bravo González-Blas et al., 2023).

GRNs play a central role in understanding how cells interpret and respond to internal

and external signals, providing insights into fundamental biological processes and dis-

ease mechanisms (Singh et al., 2018; Unger Avila et al., 2024). However, challenges remain

in accurately modeling these networks due to the high-dimensional, noisy, and sparse na-

ture of single-cell data, requiring sophisticated computational methods to extract mean-

ingful insights (Fiers et al., 2018).

Recent advances in deep learning, particularly in embedded topic models (ETMs) (Di-

eng et al., 2020) and graph neural networks (GNNs) (Wu et al., 2020), offer promising ap-

proaches for analyzing complex single-cell multi-omics data (Cao and Gao, 2022; Wang

et al., 2021; Zhao et al., 2021; Zhou et al., 2023). Existing methods, such as Seurat’s inte-

gration tool, utilize the weighted nearest neighbor algorithm to merge multimodal single-

cell data (Hao et al., 2021). MultiVI integrates scRNA and scATAC data via variational

autoencoder (VAE) frameworks (Ashuach et al., 2023). BABEL pioneered cross-modality

translation at single-cell resolution, enabling the prediction of one modality from another

(Wu et al., 2021). moETM, a unified deep learning model, integrates single-cell multi-
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omics data into a common topic mixture representation and uses a linear decoder design

to enhance interpretability while uncovering biologically significant patterns (Zhou et al.,

2023). For regulatory network inference, LINGER demonstrated the power of incorporat-

ing atlas-scale external data to infer gene regulatory networks from single-cell multiome

data, highlighting the importance of prior biological knowledge (Yuan and Duren, 2024).

The GLUE framework introduced graph-linked embedding for multi-omics integration,

leveraging the relationships between molecular measurements through graph represen-

tations (Cao and Gao, 2022). Although these methods show promising performance, they

often require compromises in scalability, interpretability, and flexibility. Furthermore,

many approaches focus on isolated tasks—such as integration, imputation, or GRN infer-

ence—and cannot address all of these tasks simultaneously. Additionally, they typically

lack the ability to perform cell-type-specific inference, limiting their capacity to fully ex-

ploit the high resolution of single-cell data to capture cellular heterogeneity (Cha and Lee,

2020; Fiers et al., 2018).

Here, we present the Single Cell Graph Network Embedding Topic Model (scGraphETM),

which combines the strengths of Embedded Topic Models and Graph Neural Networks to

unravel cell type-specific gene regulatory networks. scGraphETM employs a dual ETM

architecture, utilizing modality-specific encoders and decoders data to preserve the dis-

tinct biological information inherent in each modality. Additionally, the use of a linear de-

coder design enhances the interpretability of our model, ensuring that biologically signif-

icant patterns can be uncovered. To further enrich the GRN dynamics, we incorporate ex-

ternal biological knowledge from the cisTarget databases (Delgado et al., 2023; Imrichová

et al., 2015), which helps model the intricate relationships between transcription factors,

target genes, and regulatory elements across different cell types. Moreover, the frame-

work’s GNN-based neighborhood aggregation strategy ensures scalability, allowing the

model to handle large datasets efficiently. scGraphETM is designed to perform three key

tasks: (1) clustering cells into biologically meaningful groups to identify cell types, (2)

imputing one omics modality using another, and (3) identifying cell type-specific tran-
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scription factor-regulatory element relationships. Through comprehensive experiments

on three single-cell multimodal datasets, we demonstrate scGraphETM’s superior perfor-

mance in comparison to six state-of-the-art methods.

3.3 Material and Methods

3.3.1 scGraphETM model overview

scGraphETM integrates single-cell multimodal data across different experiments using

interpretable latent embeddings and external GRN databases (Fig. 3.1). Building upon the

widely used variational autoencoder, it combines multi-modal data integration with gene

regulatory network to incorporate prior biological information. To tailor the framework

for cell type-specific inference, we made three key contributions.

First, we adapted the xTrimoGene (Gong et al., 2023; Hao et al., 2024) approach to gen-

erate cell-specific embeddings. Initially, we used node2vec (Grover and Leskovec, 2016)

to generate embeddings that reflect gene regulatory connectivity within the network, pro-

viding a macroscopic view based on random walk-derived patterns. These pre-trained

node2vec embeddings are then integrated into the cell-specific embeddings computed

previously (Fig. 3.1a.). The final gene embeddings combine both cell-specific embeddings

and node2vec embeddings, enriching node features with both immediate data-driven in-

sights and broader network context. Second, we adapted the neighborhood aggregation

strategy from GraphSAGE (Hamilton et al., 2017) to reduce computational burden and

efficiently scale to large datasets without sacrificing performance. Traditional graph at-

tention mechanisms require pairwise attention calculations, which are computationally

expensive, especially when dealing with single-cell data containing 10K+ genes and over

1 million peaks. GraphSAGE addresses this by sampling neighboring nodes, aggregat-

ing their feature information, and using this aggregation to predict graph context and

labels. Third, we employed an embedding topic model as the linear encoder to enhance

interpretability (Dieng et al., 2020). Building on our previous work (Zhao et al., 2021;
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Figure 3.1: scGraphETM overview

a. The overall framework of scGraphETM. Model consists of a GNN, modality-specific

encoder-decoders. Trained end to end. b. Cell clustering based on topic distributions. c.

Cross-modality imputation. d. Cell type-specific TF-RE relationship inference using the

feature embedding outputted by the GNN.

Zhou et al., 2023), scGraphETM uses linear matrix factorization to reconstruct normal-

ized count vectors from the cell embeddings. We hypothesize that by creating a linearly

separable space, the encoder enables the decoder to achieve accurate reconstruction when

the two networks are trained end-to-end.
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3.3.2 Gene regulatory network construction

Multimodal GRN inference methods use an extended framework to that used by single-

modality methods to reconstruct GRNs. For example, they may predict gene expression

from TF gene expression, they assign TFs to accessible CREs using binding motif infor-

mation (Yuan and Duren, 2024), and they associate CREs with target genes constrained

by genomic distance. For the prediction of TF binding events, different methods use

different, highly heterogeneous TF binding motif databases and prediction algorithms.

Our approach to constructing gene regulatory networks involves representing transcrip-

tion factor genes (TFs), non-transcription factor genes, and REs as nodes within a graph

framework. Edges between these nodes represent regulatory interactions, which are ini-

tially identified based on transcription start site (TSS) proximity derived from the EN-

CODE database (Consortium et al., 2012). We employ a TSS distance threshold of 1 Mbp

(Delgado et al., 2023) to determine relevant interactions, ensuring that only regulatory

elements within this predefined proximity to the TSS of a gene are considered for net-

work construction. While proximity-based approaches may have limitations in capturing

long-range interactions, in future work, we plan to integrate chromosome conformation

capture data such as Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014) to more accu-

rately map regulatory element-gene interactions based on their actual three-dimensional

proximity rather than linear genomic distance (Fulco et al., 2019; Gasperini et al., 2020).

We incorporate motif information from the cisTarget database. CisTarget identifies tran-

scription factors likely to bind specific motifs found within these regulatory elements,

offering additional insights into potential regulatory mechanisms.

Specifically, TFs, genes, and REs, often referred to as peaks as these accessible regions

show significantly higher read density than surrounding closed chromatin regions. We

treat each ATAC-seq measured region as a RE. These entities are represented as nodes

within a graph G = (V,E), where V denotes the set of nodes and E represents the set of

edges connecting these nodes. Each edge eij ∈ E reflects a regulatory interaction between

two nodes vi, vj ∈ V .
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For a gene g and a peak p, an edge egp is added if the peak p lies within a predefined

threshold distance 1 Mbp dTSS, from the TSS of g, upstream or downstream. Mathemati-

cally, this condition is represented as:

egp ∈ E if dist(TSSg, p) ≤ dTSS,

where dist(TSSg, p) denotes the linear genomic distance between the TSS of gene g and

the start of peak p.

For a transcription factor t and a peak p, an edge etp is established if cisTarget identifies

binding motifs within p that are likely targets of t. This can be expressed as:

etp ∈ E if MotifMatch(t, p) = 1,

where we define MotifMatch(t, p) to be a binary function that indicates whether cisTarget

predicts a binding motif for t in p.

The resulting adjacency matrix A of the graph G has dimensions (M × M), where

M =
∑n

i=1mi represents the total number of feature across the n modalities. The off-

diagonal elements of A capture the cross-modality interactions, while the diagonal blocks

corresponding to gene-gene and peak-peak interactions remain unpopulated. We focus

on interactions between distinct genomic entities since self-regulation can be difficult to

distinguish, and the inclusion of self-loops could diminish the impact of other regulatory

relationships (Pratapa et al., 2020).

3.3.3 Cell-specific dynamic node features for the GRN

For the initial node feature embedding, we first train a node2vec model to capture the

global structural properties of the GRN. Specifically, node2vec generates embeddings that

reflect node connectivity within the network, providing a macroscopic view based on ran-

dom walk-derived patterns. These pre-trained node2vec embeddings are integrated with
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the cell-specific embeddings following the implementation of xTrimoGene (Gong et al.,

2023; Hao et al., 2024). When generating these gene and peak embeddings, an attention

mechanism refines them based on current expression inputs, adjusting their importance

dynamically. Importantly, xTrimoGene transforms each gene expression scalar value xi

into a latent vector ti of dimension d, which effectively discretizes expression levels into

distinct categories. Specifically, this is done as follows:

1. Project the scalar value xinput
i ∈ R onto score vector hi ∈ Rb with an FFN:

ai = leakyReLU(x
input
i ×w1), zi = aiw2 + αai (3.1)

where w1 ∈ R1×b, w2 ∈ Rb×b, and α are learnable parameters. The vector ai ∈ Rb,

and zi ∈ Rb.

2. Normalize zi with softmax to produce vector γi ∈ Rb:

γi,j =
exp(zi,j)∑b
j=1 exp(zi,j)

(3.2)

3. The value embedding is a weighted sum of all b embeddings from the learnable

embedding codebook T ∈ Rb×d:

ti = γiT (3.3)

where ti ∈ Rd.

4. Zeros are encoded with t0 ∈ Rd.

5. The final input embedding for gene i is:

V
input
i = ti + zGi (3.4)

where {zGi }Gi=1 = ZG ∈ RG×d denotes node2vec embedding for all G genes, and

V
input
i ∈ Rd.
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In the context of token embedding in NLP, the gene-independent and value-dependent

latent vector ti can be considered as the “position embedding” and the gene-specific and

value-independent node2vec embeddings zGi are the “word embeddings”. The process

culminates with the final gene embeddings being a combination of attention-adjusted fea-

tures and node2vec embeddings, thus enriching the node features with both data-driven

insights and broader network context.

3.3.4 Graph neural network component

We employed a neighborhood aggregation strategy inherited from GraphSAGE (Hamil-

ton et al., 2017). GraphSAGE works by sampling and aggregating features from a node’s

immediate neighbors, thus reducing the computational load when handling large datasets.

The core functionality of GraphSAGE is defined by its update rules, which specify how

node representations are updated based on their neighborhoods:

h(k)v = σ
(
W (k) ·MEAN

(
{h(k−1)

u : u ∈ N (v)} ∪ {h(k−1)
v }

))
Here, h(k)v represents the feature vector of node v at layer k,N (v) denotes the set of neigh-

bors of v, and W (k) are the trainable parameters at layer k. The function σ is a non-linear

activation function such as the ReLU. This recursive update rule allows GraphSAGE to ef-

ficiently aggregate and update node features across multiple layers, enabling the learning

of powerful representations that reflect both the local structure and node-specific infor-

mation.

3.3.5 Embedded Topic Model component

The Embedded Topic Model (ETM) leverages an encoder-decoder framework where the

encoder maps high-dimensional data to a lower-dimensional topic space, and the decoder

reconstructs the original data from this topic representation, facilitating the discovery of

underlying biological themes.
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Encoder The encoder of the scGraphETM model is structured as a two-layer fully con-

nected neural network, tasked with inferring topic proportions from normalized count

vectors of multi-omics data for individual cells. It processes each cell’s multi-omics data

through its layers to generate parameters that define a logistic normal distribution for

each omics type. These distributions are assumed to capture the latent representation

of the respective omics data, where each dimension corresponds to a potential topic or

underlying biological factor. The primary goal of the encoder is to effectively synthesize

these independent logistic normal distributions into a cohesive joint distribution that rep-

resents the comprehensive latent profile of the multi-omics data. This synthesis allows the

model to capture the complex interdependencies and unique contributions of each omics

layer.

The encoder is described by:

µ∗, logσ∗ = Encoder(x) (3.5)

A reparameterization trick enables stochastic gradient descent through sampling:

z = µ∗ + exp

(
logσ∗

2

)
⊙ ϵ (3.6)

where ϵ is sampled from a standard normal distribution. Latent topic mixture are mod-

eled as:

θk = softmax(z)k =
exp(zk)∑
k exp(zk)

(3.7)

Decoder In the scGraphETM model, the decoder is intricately designed to leverage the

embeddings produced by a GNN to reconstruct the input data from the topic embeddings

and the node embeddings.
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x̂ = θβ (3.8)

log p(x|x̂) =
∑
g

xg log x̂g (3.9)

where βk,g =
exp(αkρg)∑
g′ exp(αkρg′ )

and ρg is the refined feature from the GNN component.

The optimization with respect to the encoder and decoder maximizes an evidence lower

bound (ELBO):

Eq(z|x)[log p(x|z)]−KL[q(z|x)||p(z)], (3.10)

where Eq(z|x)[log p(x|z)] = 1
S
log p(x|ẑs) are approximated by Monte Carlo sampling and

KL[q(z|x)||p(z)] = Eq(z)[log q(z|x)]− Eq(z)[log p(z)] =
∑

k−
1
2
[log{σ∗

k}2 − {µ∗
k}2 − {σ∗

k}2 + 1]

has closed-form expression.

Model training and inference

The scGraphETM model employs an end-to-end training approach where the encoder,

decoder, and GNN are optimized simultaneously. The training is guided by a compos-

ite loss function that includes Average Negative Log-Likelihood (NLL), which assesses

the fidelity of the reconstructed data; Kullback-Leibler (KL) divergence, which provides

regularization by ensuring the latent variable distributions remain plausible; and Graph

Reconstruction Loss, which ensures that the model accurately captures the biological in-

teractions within gene regulatory networks. The overall loss function is formulated as:

Ltotal = λ1LNLL + λ2LKL + λ3LGR, (3.11)

LNLL = −
m∑
i=1

1

NiMi

xi log(x̂i), (3.12)

LKL =
∑
k

−1

2

[
log(σ∗

k)
2 − (µ∗

k)
2 − (σ∗

k)
2 + 1

]
, (3.13)
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LGR = − 1

|E|
∑

(i,j)∈E

[
Aij log σ(Âij) + (1− Aij) log(1− σ(Âij))

]
. (3.14)

where A ∈ RM×M is the adjacency matrix of the graph G, V ∈ RM×D is the node

embedding, and Â = VVT ∈ RM×M , and σ(·) is the sigmoid function.

λ1, λ2, and λ3 are dynamic weight values calculated during training based on the cur-

rent epoch to balance the importance of different loss components over time.

3.3.6 Single-cell multi-omic benchmark data

1. Peripheral Blood Mononuclear Cells (PBMC) from 10X Genomics, consisting of 9,631

cells, 29,095 genes, and 112,975 peaks across 19 cell types.

2. Multiome bone marrow mononuclear cells (BMMC) dataset from the 2021 NeurIPS

challenge, consisting of 69,249 cells, 13,403 genes and 110,359 peaks with 22 cell

types from 10 donors across 4 sites

3. Human Cortex dataset from BRAIN Initiative (Li et al., 2023; Siletti et al., 2023),

consisting of 45,549 cells, 30,033 genes, 262,997 peaks with 13 cell types.

All datasets were processed into the format of samples-by-features matrices. Initially, the

read count for each gene and peak were first normalized per cell by total counts of 1e4

within the same omic using scanpy.pp.normalize total function in the scanpy. Next, log1p

transformation was applied. Lastly, scanpy.pp.highly variable genes was used to select

highly variable genes or peaks.We selected top 3000 highly variable genes for the HVG

scenarios.

3.3.7 Evaluation metrics

Using the cell topic distribution θ as input, the Louvain algorithm assigns cells to clus-

ters (Blondel et al., 2008).For the cell type clustering task, we employed four evaluation

metrics to assess performance:
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1. Adjusted Rand Index (ARI) (Hubert and Arabie, 1985): quantifies the similarity be-

tween two clusterings while correcting for the chance that pairs of objects might be

randomly assigned to the same clusters.

2. Normalized Mutual Information (NMI) (Danon et al., 2005): measures the amount

of information shared between two clusterings, normalized by the average entropy

of the clusterings.

3. kBET Büttner et al. (2019): tests whether batch labels are distributed differently

across cells using Pearson’s chi-square test.

4. GC: evaluates whether cells of the same type from different batches are close in the

embedding space by constructing a k-nearest neighbor graph.

For the cross-modality imputation task, we compute the Pearson correlation coeffi-

cients (PCC) and Spearman correlation between the predicted and observed signals. For

the cell-type-specific GRN inference task, we used the Area Under the Precision-Recall

Curve (AUPRC) Spackman (1989) as the evaluation metric to assess accuracy, as the PR

curve illustrates the trade-off between precision and recall at various decision thresholds.

For the first two tasks, experiments were conducted on both highly variable genes

and coding genes, while for gene regulatory network inference, highly variable genes

were used.

3.4 Results

3.4.1 scGraphETM accurately integrates multimodal data for cell type

clustering

We evaluated the integrated low-dimensional representation of scGraphETM by compar-

ing it with three state-of-the-art multi-omics integration methods (moETM (Zhou et al.,
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2023), multiVI (Ashuach et al., 2023), and Seurat V4 (Hao et al., 2021)) across three pub-

lished datasets. The performance of the multi-omics integration task was assessed using

both biological conservation metrics—ARI and NMI—and batch removal metrics, includ-

ing the kBET and GC. To ensure a comprehensive comparison, we performed 80/20 ran-

dom split for training and testing and repeated 10 times.

Overall, scGraphETM outperformed the other methods on average across the three

datasets, achieving the best overall performance in three out of four evaluation met-

rics (Fig. 3.2, Table S3). Specifically, scGraphETM achieved an ARI of 0.774, an NMI

of 0.8215, and a GC of 0.9381. For kBET, scGraphETM ranked second with a score of

0.236. For individual datasets, scGraphETM was the top performer or second-best in

all of the 3 datasets, demonstrating its robustness across different data sources. We hy-

pothesize that scGraphETM’s superior integration performance can be attributed to its

GRN component and the use of highly variable genes (HVGs). To test this, we cre-

ated two variants: scGraphETM noGraph, which excluded the GRN component, and

scGraphETM allCodingGenes, which included all coding genes based on the BioMart

database (Durinck et al., 2009). As expected, scGraphETM noGraph consistently under-

performed compared to scGraphETM across all datasets and evaluation metrics, further

highlighting the importance of the GRN component. Additionally, scGraphETM allCodingGenes

performed better than scGraphETM noGraph but slightly worse, which is expected since

most non-HVGs are cell-type markers.

We also validated the clustering performance by visualizing the cell topic mixture em-

beddings using Uniform Manifold Approximation and Projection (UMAP) McInnes et al.

(2018). For instance, ’CD16+ Mono’ cells were tightly clustered together by scGraphETM,

whereas MoETM and MultiVI split them into two smaller clusters, as highlighted by the

red box in Fig.??c. In contrast, ’B1 B’ cells were clearly separated from their neighbor-

ing cells using scGraphETM, while MoETM showed some overlap with ’Naive CD20+ B’

cells. Additionally, MultiVI exhibited overlap between neighboring ’Naive CD20+ B’ cells
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Figure 3.2: Methods comparison based on cell clustering.

a Individual performance of each method on each dataset, as well as the averaged val-

ues across all datasets. Each row corresponds to a different evaluation metric. Since the

PBMC dataset consists of only one batch, the batch effect removal evaluation metrics, GC

and kBET, were not applicable and are therefore left blank for the PBMC dataset. b Per-

formance of scGraphETM with its ablated versions. c UMAP visualization on the BMMC

dataset and distinguishable cell types clusterings.

and ’Plasma celles’, as highlighted by the orange box in Fig. ??c. These results indicate

that scGraphETM improves cell clustering by incorporating the GRN component.

3.4.2 scGraphETM enhances interpretability through embedding topic

model

By incorporating the embedding topic model as the linear encoder, we were able to inter-

pret latent embedding by associating specific topics with cell types, thereby uncovering

distinct cell-type signatures. Specifically, using the learned latent topic mixture cells-by-
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Figure 3.3: Methods comparison based on cross-modality imputation.

The upper panel displays performance on the ATAC2RNA imputation task, while the

lower panel shows performance on the RNA2ATAC imputation task. a, b Pearson corre-

lation for each method and scGraphETM’s ablated versions on each dataset, along with

the average Pearson correlation values across all datasets. c, d Spearman correlation for

each method and scGraphETM’s ablated versions on each dataset, along with the aver-

age values across all datasets. e Scatterplot of original versus imputed values, with the

diagonal line shown in blue.

topics matrix θ, we linked each topic to the cell type exhibiting the highest average topic

score across cells and explored top features from the topics-by-genes matrix β.

For example, topic 28 and topic 88 were primarily associated with monocytes, while

topic 93 was enriched for B cells (Fig. 3.4). These associations were clearly reflected in

the topic mixture probabilities across individual cells. For each cell-type-enriched topic,

we observed that some top genes played key roles in the biological processes of the cor-

responding cell types, as supported by the literature. For instance, HECTD2, associated

with topic 28 monocytes, has been shown in previous studies to promote monocyte in-

filtration while inhibiting the infiltration of other cell types, such as activated mast cells

(Gong et al., 2024). Additionally, IPCEF1, which is associated with topic 93 B cells, has

been shown in prior research to exhibit a positive correlation between its expression level

and B cells (Yin et al., 2024).
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Figure 3.4: Topic analysis on the PBMC dataset

a Topic intensity of cells from the PBMC dataset. Each row represents a topic and each

column represents a cell. b Top 10 genes per selected topics.

3.4.3 scGraphETM enables accurate cross-modality imputation

The ETM approach represents both RNA and ATAC modalities in a shared topic space.

During training, the joint reconstruction loss combines the reconstruction errors from

both RNA and ATAC modalities, ensuring that the shared topic space captures infor-

mation that is relevant for both data types. The linear decoders then reconstruct the

input data to designated modality using these learned topic representations. We eval-

uated the imputation accuracy of scGraphETM of gene expression from chromatin acces-

sibility (ATAC2RNA) and vice versa (RNA2ATAC). To enhance its imputation ability, we

fine-tuned scGraphETM with imputation loss, resulting in the scGraphETM impute. We

evaluated the imputed values by comparing them with three state-of-the-art imputation

models (moETM, multiVI, BABEL) across three datasets. Performance was assessed us-

ing Pearson and Spearman correlations. Experiments were repeated 10 times each with

80/20 random training/test splits.
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scGraphETM impute outperformed the other methods across all the datasets and eval-

uation metrics. Specifically, when predicting gene expression from chromatin accessibil-

ity data, scGraphETM impute achieved the best performance, with an average Pearson

correlation of 0.73 (Spearman 0.40) (Fig. 3.3, Table S2). Predicting chromatin accessi-

bility from gene expression presents a greater challenge, as it requires predicting from

a lower-dimensional to a higher-dimensional space. Nonetheless, scGraphETM impute

performed best in this task, achieving a Pearson value of 0.57 and a Spearman value of

0.35. We hypothesize that our superior imputation performance arises from the incor-

poration of the imputation loss and the use of HVGs. To validate this, we conducted

an ablation study and created three variants of the original scGraphETM model: sc-

GraphETM impute (with added imputation loss), scGraphETM allCodingGene, and sc-

GraphETM allCodingGene impute (with added imputation loss). Indeed, we observed

lower correlation values when using all coding genes in the ATAC2RNA task, and com-

parable performances in the RNA2ATAC imputation. This is likely because non-variable

genes do not provide additional useful information for high-to-low dimensional impu-

tation tasks but may contribute more for low-to-high dimensional tasks. In our ablation

study on imputation loss (comparing scGraphETM with scGraphETM impute, and sc-

GraphETM allCodingGenes with scGraphETM allCodingGenes impute), we found that

adding imputation loss consistently improved performance when using all coding genes.

For HVGs, the addition of imputation loss enhanced performance in the ATAC2RNA task

and yielded comparable results in the more challenging RNA2ATAC task. Qualitatively,

the imputed gene expression values and chromatin accessibility peaks displayed consis-

tent patterns and strong linear correlations with the observed data, further validating the

model’s accuracy (Fig. 3.3c).
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Figure 3.5: Methods comparison based on cell-type-specific GRN. a. Comparison across

different cell types, TFs, and methods on the task of TF-RE binding potential inference.

The x-axis represents transcription factors, and the y-axis represents AUPRC values. b.

B cell-specific BCL6-RE predicted signals, compared with ChIP-Seq Atlas ground truth.

The x-axis represents peaks on chr3, and y-axis shows the TF-RE binding potential score.

3.4.4 scGraphETM reveals cell-type-specific transcription factor-regulatory

element relationships

To assess the cell-type-specific TF–RE binding potential, we first calculated the dot prod-

uct of the cell-specific graph embeddings for the TF and the regulatory region: ri,g,p =

(ρTFi,g )
⊤ · ρREi,p for TF g and peak p in cell i; we then took the average across the cells for the

same cell type: rt,g,p = 1
|St|

∑
i∈St

ri,g,p, where St denotes the set of cells of cell type t. We

evaluated scGraphETM’s cell-type-specific GRN inference using PBMC single-cell multi-

ome data. Since most regions for each TF are negative examples, we used the AUPRC as

the evaluation metric to focus on accurately identifying positive cases. An independent

database, ChIP-seq Atlas (Zou et al., 2024), was used as the ground truth. ChIP-seq Atlas
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Cell Type TF ScGraphETM LINGER GLUE
CD4 T cell FOS 0.610 0.620 0.640
CD4 T cell IRF4 0.620 0.601 0.630
CD4 T cell BCL6 0.652 0.521 0.618
CD4 T cell FOXP3 0.557 0.581 0.562
CD4 T cell FOSL1 0.578 0.592 0.586
CD4 T cell BATF 0.637 0.597 0.590
CD4 T cell GATA3 0.566 0.622 0.593
CD4 T cell RUNX1 0.634 0.623 0.627
CD4 T cell ETS1 0.618 0.628 0.608
CD4 T cell average 0.608 0.598 0.606

B cell MEF2B 0.585 0.524 0.556
B cell EBF1 0.580 0.561 0.598
B cell BCL6 0.649 0.582 0.622
B cell IRF4 0.632 0.600 0.624
B cell BACH2 0.589 0.593 0.603
B cell CTCF 0.621 0.625 0.625
B cell average 0.609 0.581 0.605

Memory B cell IRF4 0.621 0.614 0.607

Table 3.1: AUPRC Results for TF-RE prediction

(a) AUPRC for cell type-specifc TF-RE prediction on the PBMC dataset.For each cell type, the

values are averaged across TFs, with the best performance highlighted in bold.

contains identified regions of significant enrichment for a specific TF binding in a specific

tissue. The database provides a collection of ChIP-seq experiments that identify where

particular transcription factors bind to DNA in 33368 specific cell types or tissues. We

compared scGraphETM’s performance with LINGER and GLUE.

scGraphETM achieved an average AUPRC of 0.613 across all 14 TFs and 3 cell types

with ground truth data from the ChIP-seq Atlas database (Fig. 3.5, Table 3.1a). In compar-

ison, LINGER attained an average AUPRC of 0.599, and GLUE achieved 0.606. Specifi-

cally, for CD4 T cells, scGraphETM reached 0.608, while LINGER scored 0.598 and GLUE

achieved 0.606. In B cells, scGraphETM outperformed both with a score of 0.609, com-

pared to LINGER’s 0.583 and GLUE’s 0.605. On memory B cells, scGraphETM delivered

the highest score of 0.6213, while LINGER averaged 0.6144 and GLUE achieved 0.6073.

These results underscore scGraphETM’s ability to consistently outperform other meth-
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ods across multiple cell types and TFs. While LINGER requires bulk data and TF-specific

training, limiting its ability to predict all TFs in a single model, GLUE is limited by its

inability to handle large graph sizes, necessitating subsampling when graph features be-

come too extensive. In contrast, scGraphETM excels by predicting TF–RE relationships

within a single, unified framework. Additionally, scGraphETM boasts faster training

speeds, completing an epoch within 30 seconds with a batch size of 32, outpacing GLUE,

which takes 40 seconds, in terms of training efficiency in the same setting.

To further assess our predictions, we visualized the predicted potential scores and

compared them to the ground truth signals. For instance, for the B cell type, scGraphETM

achieved a score of 0.649 for the transcription factor BCL6, whereas LINGER scored 0.581.

As shown in Fig. 3.5b, scGraphETM produced higher prediction scores in regions bound

by the TF, as highlighted by the blue box; it also conferred higher specificity than LINGER

in the true negative regions as highlighted by the orange boxes.

3.5 Conclusions and Discussion

Inferring cell-specific GRN becomes possible with the advent of single-cell multi-omic

technologies. However, existing methods are limited in accurate GRN inference at the

single-cell resolution. To tackle this challenge, the proposed scGraphETM in this study

leverages graph-based representation learning to infer cell-specific GRNs from single-

cell multiomic data by incorporating prior regulatory knowledge graph and cell-specific

dynamic embedding technique. Compared to existing tools, scGraphETM achieves sub-

stantially better performance across multiple tasks, including cell-type clustering, cross-

modality imputation, and GRN inference – all within a unified framework. scGraphETM

has three key novel contributions: a GNN component based on xTrimoGene to incorpo-

rate cell-specific expression and chromatin accessibility into the graph, a neighborhood

aggregation strategy via GraphSAGE to handle large-scale nodes and GRN relationships,

and a linear encoder using embedding topic modeling to enhance interpretability.
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As future work, we plan to explore several directions. First, we will explore transformer-

based graph convolution to uncover de novo regulatory interactions not captured in exist-

ing GRN graph databases. Second, other omics data types such as single-cell proteomics

could further improve downstream interpretability. This can be done in a mosaic data

integration. Third, we will extend scGraphETM to model spatial transcriptomic data by

identifying spatiotemporal-specific regulatory circuits and cell-cell communications via

ligand-receptor interaction network Raghavan et al. (2023).

3.6 Data Availability

All datasets used in this study are publicly available and were obtained from established

data repositories.The single-cell multimodal datasets used in this study are as follows: the

PBMC dataset is available at 10X Genomics, the BMMC dataset and the Cerebral Cortex

dataset can be found on Gene Expression Omnibus under series numbers GSE194122 and

GSE204684, respectively. For the gene regulatory network databases, cisTarget is avail-

able at https://resources.aertslab.org/cistarget/, and the ChIP-seq Atlas

is accessible at https://chip-atlas.org/.

3.7 Code Availability

All original code has been deposited at https://github.com/li-lab-mcgill/scGraphETM.
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3.9 Appendix

The hyperparameters presented in Tables S4 and S5 were selected through grid search

optimization. We performed a systematic grid search over embedding dimensions (128,

256, 512), learning rates (1e-4, 5e-4, 1e-3, 5e-3), and batch sizes (32, 64, 128, 256), similarly

for the Node2Vec hyperparameters. The number of topics was determined by balancing

computational efficiency with the biological requirement for capturing sufficient cellular

heterogeneity,
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Hyperparameter Values Selected Value

Learning Rate {1e-3, 1e-4, 1e-5 } 1e-4
Embedding Size {128, 256, 512} 512
Topic Number {20, 40, 60, 80, 100} 100
TSS Threshold {150e3, 250e3, 1e6} 1e6
HVG {2000, 3000, 4000, 5000} 3000
Latent Size {10, 50, 100} 100

Table S4: scGraphETM Hyperparameters and Training Settings

Hyperparameter Values Selected Value

Learning Rate {1e-2, 1e-3, 1e-4 } 1e-2
Embedding Size {128, 256, 512} 512
p {0.25, 0.5, 0.75, 1.0} 0.5
q {1.0, 2.0, 3.0, 4.0} 2.0
Walk Length {10, 20, 40, 80} 20
Number of Walks {10, 20, 30, 50} 30
Window Size {5, 10, 15, 20} 10
Iterations {5, 10, 20, 50} 10

Table S5: Node2Vec Hyperparameters and Training Settings
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Chapter 4

Discussion

The aim of this thesis is to explore the application of graph neural networks and Embed-

ded Topic Models (ETMs) in the construction and analysis of cell-specific gene regulatory

networks from single-cell multi-omic data. The necessity of the unified and interpretable

deep learning framework scGraphETM arises from the complex and multifaceted nature

of gene regulation, which cannot be fully captured through a single-omic approach. sc-

GraphETM elucidates cellular regulation at the single cell level. Our technical contribu-

tions are threefold. First, scGraphETM employs a scalable graph encoder to effectively

connect existing biological data and disparate omic data sources into a unified frame-

work. This encoder projects the diverse data onto a common latent topic mixture repre-

sentation, enabling a cohesive analysis of the intertwined molecular pathways that gov-

ern cellular behavior. Second, the model utilizes a linear decoder pivotal for extracting

multi-omic signatures from the integrated data. These signatures represent the most in-

fluential features within each latent topic, revealing critical marker genes and phenotypic

markers. Third, scGraphETM has enhanced capability of inferring cell-specific gene reg-

ulatory networks (GRNs) that contextualizes transcription factor binding events within

specific cellular states. By incorporating prior knowledge from cisTarget databases and

leveraging chromatin accessibility data alongside gene expression profiles, our model

captures the dynamic regulatory interactions that vary across different cell types. Com-
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prehensive evaluations on three datasets demonstrate that scGraphETM consistently out-

performs state-of-the-art methods in cell clustering, cross-modality imputation, and cell

type-specific TF-RE relationship identification.

4.1 Clustering and Cell Type Annotation

The evaluation of scGraphETM’s performance in cell type clustering demonstrates its

superior ability to identify biologically meaningful cell groups across multiple datasets.

As shown in Table S3, scGraphETM consistently achieves the highest Adjusted Rand In-

dex (ARI) scores among all tested methods, with values of 0.900, 0.733, and 0.689 for

the PBMC, BMMC, and Cerebral Cortex datasets, respectively. These results represent

a substantial improvement over existing methods such as multiVI, Seurat, and moETM.

The high Normalized Mutual Information (NMI) scores further validate scGraphETM’s

clustering accuracy, indicating strong concordance with known cell type annotations.

When compared to Seurat’s weighted nearest neighbor approach, which relies primar-

ily on pairwise similarities between cells, scGraphETM benefits from modeling the shared

latent topic space that captures co-expression patterns across modalities. Unlike multiVI’s

variational autoencoder architecture that treats the integration task independently from

biological prior knowledge, scGraphETM incorporates known regulatory relationships

through its graph neural network component, leading to more biologically informed em-

beddings. The performance gap between scGraphETM and scGraphETM noGraph (Ta-

ble S3) further confirms that the integration of regulatory knowledge significantly en-

hances clustering accuracy.

The UMAP visualization in Figure 3.2c provides qualitative evidence of scGraphETM’s

ability to generate well-separated clusters that correspond to distinct cell types. Notably,

for the BMMC dataset, scGraphETM effectively distinguishes between closely related cell

types such as CD16+ Monocytes and B1 B cells, which other methods struggled to sep-

arate. While moETM similarly employs a topic modeling approach, it lacks the graph-
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based feature refinement that allows scGraphETM to better capture the regulatory rela-

tionships distinguishing closely related cell types.

The batch effect removal metrics (GC and kBET) further highlight scGraphETM’s abil-

ity to integrate data from different experimental batches while preserving biological vari-

ation. With an average GC score of 0.938 across multiple datasets, scGraphETM effec-

tively ensures that cells of the same type from different batches remain proximal in the

embedding space, facilitating accurate cell type annotation in heterogeneous samples.

4.2 Cross Modality Imputation

The cross-modality imputation results demonstrate scGraphETM’s remarkable ability to

predict unmeasured modalities from measured ones, a critical capability for compre-

hensive multi-omic analysis. As detailed in Table S2, the scGraphETM impute variant

achieves the highest performance in predicting gene expression from chromatin accessi-

bility (ATAC2RNA), with an average Pearson correlation of 0.73 across all datasets. This

represents a significant improvement over specialized imputation tools such as BABEL

(Wu et al., 2021), highlighting the advantage of this integrated approach.

Unlike BABEL, which employs separate encoder-decoder paths for each modality

transition, scGraphETM benefits from a unified latent space that simultaneously captures

relationships between all modalities. The incorporation of the graph neural network layer

provides scGraphETM with explicit modeling of TF-RE relationships, which are crucial

for accurately translating between chromatin accessibility and gene expression. This is

particularly evident in the performance improvement over multiVI (?), which relies on a

more general variational framework without specific regulatory modeling.

The imputation task from RNA to ATAC (RNA2ATAC) presents a greater challenge

due to predicting from a lower-dimensional to a higher-dimensional space. Nevertheless,

scGraphETM impute achieves competitive performance with an average Pearson corre-

lation of 0.57, outperforming other methods. The scatterplot in Figure 3.3 provides visual
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confirmation of the strong correlation between original and imputed values, demonstrat-

ing minimal systematic bias in the predictions.

The ablation study comparing scGraphETM with and without imputation loss demon-

strates the critical role of this component for enhancing prediction accuracy. Unlike moETM,

which relies solely on shared topic spaces for imputation, scGraphETM’s dedicated im-

putation loss function optimizes specifically for this task. The comparison with

scGraphETM allCodingGene variants reveals that focusing on highly variable genes sig-

nificantly improves performance for high-to-low dimensional imputation tasks (ATAC2RNA),

while showing comparable results for the more challenging RNA2ATAC task (Table S2).

This finding suggests that non-variable genes contribute limited useful information for

certain imputation directions, guiding future model development and application.

The comparison with scGraphETM allCodingGene variants reveals that focusing on

highly variable genes significantly improves performance for high-to-low dimensional

imputation tasks (ATAC2RNA), while showing comparable results for the more challeng-

ing RNA2ATAC task (Table S2). Highly variable genes, by definition, contain more in-

formation about cellular states and differentiation processes than stably expressed house-

keeping genes. When predicting gene expression from chromatin accessibility (ATAC2RNA),

these highly variable genes serve as strong discriminative features that effectively capture

cell type-specific regulatory patterns. The model benefits from focusing computational re-

sources on these information-rich features rather than diluting its learning capacity across

thousands of relatively less informative genes. Additionally, the dimensionality reduction

inherent in the high-to-low dimensional task (ATAC2RNA) amplifies the importance of

feature selection. With fewer output dimensions to predict, the model can leverage the

concentrated signal in highly variable genes to achieve more accurate predictions.
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4.3 GRN Inference

Table 3.1a summarizes the AUPRC scores for predicting TF-RE relationships across dif-

ferent cell types in the PBMC dataset. scGraphETM achieves an average AUPRC of 0.613

across all tested transcription factors and cell types, outperforming both LINGER (0.599)

and GLUE (0.606). This performance is particularly noteworthy for B cells, where sc-

GraphETM reaches an AUPRC of 0.609 compared to LINGER’s 0.581 and GLUE’s 0.605.

The superior performance of scGraphETM in cellular GRN inference can be attributed

to several key innovations compared to existing approaches. Unlike LINGER, which re-

quires bulk RNA-seq and ATAC-seq data for pretraining and employs TF-specific models,

scGraphETM learns all TF-RE relationships simultaneously within a unified framework,

enabling more efficient detection of shared regulatory patterns. While GLUE similarly

employs a graph-based approach, its standard graph attention mechanism faces com-

putational limitations with large-scale networks, whereas scGraphETM’s GraphSAGE-

inspired neighborhood aggregation strategy provides better scalability for the regulatory

networks typically with millions of interactions in genomic data.

Figure 3.5b provides a detailed visualization of scGraphETM’s predicted binding po-

tential for BCL6 in B cells, compared against ChIP-seq ground truth from the ChIP-seq

Atlas database. The figure clearly illustrates that scGraphETM achieves higher predic-

tion scores in regions truly bound by BCL6 (blue box) while maintaining higher speci-

ficity in true negative regions (orange boxes) compared to LINGER. This fine-grained dis-

criminative ability stems from scGraphETM’s cell-specific dynamic node features, which

integrate both global network properties via node2vec embedding and local expression

patterns via xTrimoGene encoding (Gong et al., 2023).

Recent approaches such as SCENIC+ rely on separate steps for motif enrichment and

co-expression analysis, potentially missing complex regulatory interactions that span these

different data types. In contrast, scGraphETM’s end-to-end training approach allows the

model to leverage information flow between the graph neural network and the embed-
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ded topic model components, leading to more coherent and accurate regulatory network

predictions. The cell-specific nature of the inferred network provides insights into the

regulatory dynamics that drive cellular identity. This cell-type resolution is particularly

valuable for understanding complex tissues where different cell types employ unique

regulatory programs despite sharing the same genome. By delineating these cell-specific

regulatory landscapes, scGraphETM enables the identification of master regulators that

maintain cell identity and reveals differential regulatory mechanisms. In disease contexts,

these cell-specific GRNs can pinpoint which regulatory circuits are dysregulated and in

which cell populations, allowing for a more nuanced understanding of pathogenesis

4.4 Model Limitations

A significant biological limitation of the current scGraphETM framework is its reliance on

linear genomic distances for associating regulatory elements with potential target genes.

The model primarily considers proximity-based connections, where regulatory elements

are linked to genes based on their distance from transcription start sites, typically using

a threshold of 1 Mbp as implemented in this study. This approach may fail to capture

the complex three-dimensional organization of chromatin that enables distal regulatory

elements.

The second limitation concerns the computational scalability of scGraphETM’s graph

neural network component when applied to datasets with extensive features or large

numbers of potential regulatory interactions. While the model employs a GraphSAGE-

inspired neighborhood aggregation strategy in contrast to the more computationally in-

tensive graph attention mechanisms, memory constraints still become significant when

modeling comprehensive genomic datasets.

In practical applications involving full transcriptomes (20,000+ genes) and genome-

wide chromatin accessibility regions (100,000+ peaks), the resulting graph can contain

millions of nodes and edges. The computational burden primarily stems from the mem-
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ory required to store the full adjacency matrix and node features and the computational

cost of message passing across multiple layers of the graph neural network. Leveraging

distributed computing frameworks enabling parallel processing of large-scale datasets

across multiple compute nodes would extend scGraphETM’s applicability to atlas-scale

datasets containing millions of cells.
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Chapter 5

Conclusion and Future Work

This thesis has presented scGraphETM, a novel graph-based deep learning approach for

unraveling cell specific gene regulatory networks from single-cell multi-omics data. The

systematic comparison with state-of-the-art methods across multiple datasets confirms

scGraphETM’s superior performance in identifying cell types, predicting unmeasured

modalities, and reconstructing regulatory networks. Particularly, the ablation studies fur-

ther validate the importance of the graph neural network component and the selection of

highly variable genes for optimal performance.

Future works include incorporating three-dimensional chromatin interaction data from

Hi-C Belton et al. (2012) or similar technologies to enable more accurate modeling of distal

regulatory interactions that play crucial roles in gene regulation. Additional approaches

for improving the computational scalability of the graph encoder to facilitate analysis of

increasingly large single-cell atlases such as more efficient graph sampling techniques or

implementing distributed computing frameworks would be beneficial. As new single-

cell technologies for measuring additional molecular modalities become more accessible,

extending scGraphETM to incorporate protein expression, DNA methylation, or other

epigenetic modifications would provide an even more comprehensive view of cellular

regulation. The modular design of scGraphETM’s architecture makes it well-suited for

such extensions.
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