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Abstract

In this thesis, we address the problem of following scuba divers with an au-

tonomous underwater vehicle (AUV). Our primary objective is to enhance

underwater human-robot collaboration by enabling AUVs to track and follow

scuba divers robustly in the open ocean. We design a custom visual servoing

system that directly controls the motion of our AUV using visual feedback

from an onboard camera. To comprehensively address the perception and

control challenges involved in autonomously following scuba divers, we in-

clude distinct modules for each component. For perception, we develop a

vision-based system that integrates a state-of-the-art object detector with a

multi-object tracker. This system reliably detects and tracks scuba divers in

the image plane while handling challenges such as missing and false detec-

tions. In addition to accuracy, we evaluate our vision system using second-

order temporal stability metrics, which are crucial in visual servoing where

perception and control are tightly intertwined. For control, we explore both

traditional and learning-based paradigms. We design Proportional-Integral-

Derivative (PID) controllers to control our AUV solely using visual feedback

and demonstrate their effectiveness through deployments in the open ocean.
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To address the inherent limitations of PID control, we investigate the poten-

tial for a learning-based controller that can encode complex behaviors and

autonomously adapt to changes in the system and environment. Through a

series of experiments, we compare traditional PID controllers with learning-

based approaches, providing valuable insights for real-world deployments.

Our findings contribute not only to the specific application of scuba diver

following but also to the broader field of visual servoing in marine robotics.

Our framework can be easily generalized to a wide range of underwater tasks,

advancing methods for underwater human-robot collaboration and auton-

omy.
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Abrégé

Dans cette thèse, nous adressons le problème du suivi de plongeurs à l’aide de

drones sous-marins autonomes (AUV). Notre objectif principal est d’améliorer

la collaboration entre homme et robot en milieu sous-marin en permettant

aux AUVs de détecter et suivre les plongeurs en eau libre. Nous con-

cevons un système d’asservissement visuel qui contrôle directement les mou-

vements de notre AUV grâce au retour visuel d’une caméra à bord. Afin de

complètement adresser les défis de perception et de contrôle qui s’impliquent

dans le suivi en autonomie de plongeurs, notre solution inclut un module

distinct pour chaque composant. Pour la perception, nous développons un

système visuel qui intègre un détecteur d’objets de pointe avec un tracker

multi-objet. Ce système détecte et traque les plongeurs dans le plan im-

age tout en étant robustes aux défis tels que les détections manquantes et les

fausses détections. En plus de la précision, nous évaluons notre système visuel

au travers de métriques de stabilité temporelle du deuxième ordre, qui sont

cruciaux au servoing visuel, où la perception et le contrôle sont étroitement

liés. Pour le contrôle, nous explorons aussi bien les approches tradition-

nelles que les approches basées sur l’apprentissage. Nous développons des
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contrôleurs Proportionnel-Intégral-Dérivés (PID) pour contrôler notre AUV

à l’aide du retour visuel uniquement, et montrons leur efficacité au travers

de déploiements en eau libres, dans l’océan. Afin de remédier aux limita-

tions innées du contrôle PID, nous étudions aussi le potentiel d’un contrôleur

basé sur l’apprentissage, qui est capable de comportements complexes et de

s’adapter en autonomie aux changements du système et de l’environnement.

Par une série d’expériences, nous comparons les contrôleurs traditionnels PID

avec les contrôleurs basés sur l’apprentissage, fournissant des renseignements

utiles aux fins du déploiement dans le monde réel. Nos résultats contribuent

non seulement à l’application spécifique qu’est le suivi des plongeurs sous-

marins, mais aussi plus largement au domaine de l’asservissement visuel en

robotique marine. Notre système peut être facilement généralisé à une grande

variété de tâches sous-marines, faisant progresser les méthodes pour la col-

laboration sous-marine entre robots et humains.
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Contributions

This thesis presents a visual servoing framework for following scuba divers

with an autonomous underwater vehicle. The author is a primary contributor

to the following:

� Developing a lightweight vision module combining You Only Look Once

version 7 (YOLOv7) for diver detection with Simple Online and Real-

time Tracking (SORT) for diver tracking.

� Collecting and annotating a novel dataset for use in simulation exper-

iments.

� Investigating the effect of SORT on detection accuracy and temporal

stability when combined with YOLOv7.

� Proposing improvements to existing temporal stability metrics to bet-

ter capture frame-to-frame stability, which is crucial in visual servoing

applications.

� Designing and tuning Proportional-Integral-Derivative (PID) controllers

to autonomously follow a scuba diver using visual feedback.
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� Developing a spiral search mechanism to quickly recover scuba divers

after losing visual contact.

� Conducting open ocean experiments to validate the feasibility and per-

formance of the presented framework.

� Formulating scuba diver following as a Markov decision process (MDP)

and utilizing reinforcement learning (RL) to learn a control policy.

� Analyzing the strengths and limitations of traditional versus learning-

based control paradigms.

� Open-sourcing all code used in this research at github.com/khalilv/aqua mrl.
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1
Introduction

Scuba diving in the open ocean offers a unique way to observe and explore

the marine world. Despite its appeal, limited visibility, strong currents, and

the challenges of movement in all directions make scuba diving an inherently

complex and risky activity. Standard diving protocols require all dives to be

planned and executed in pairs of divers, emphasizing the importance of fre-

quently monitoring one another and staying close for reliable communication

and safety [77].

Staying together not only makes the diving experience more enjoyable,

but it is also pivotal because underwater, divers are unable to verbally com-

municate. Instead, they rely on communicating via hand signals, which re-

quire close visual contact for both sending and receiving messages. Besides

routine communication, divers need to stay together to identify and quickly
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respond to emergencies, such as equipment malfunctions, air shortages, or

injuries.

During dives, scuba divers are often required to navigate and survey along

a predefined route. In these scenarios, maintaining awareness of their part-

ner is key to avoid separation or getting lost. It is remarkably easy to be-

come distracted or disoriented underwater, especially in unfamiliar regions.

Introductory diver training rigorously emphasizes the importance of staying

together during dives and quickly recovering from extended separation. Stan-

dard safety protocols dictate that losing sight of a partner for more than a

minute requires divers to ascend to the surface to regroup, potentially ending

the dive prematurely [77].

Underwater human-robot collaboration is a promising area of research

within the robotics community. Given their advanced sensing capabilities,

the idea of autonomous underwater vehicles (AUVs) working alongside scuba

divers is encouraging for tasks like underwater mapping and oceanic moni-

toring. However, for AUVs to operate effectively as scuba diver companions,

they must first be capable of tracking and following their fellow divers. In

communication scenarios, an AUV must maintain close visual contact for

hand signal or gesture recognition. In emergency situations, an AUV must be

within range to identify the problem and provide assistance. During under-

water navigation, an AUV must reliably follow a team to reach a workspace

or inspection site.

While scuba divers can naturally monitor and follow each other through-
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out a dive, devising an autonomous diver following system for an AUV re-

quires careful design and consideration. In particular, diver following with

an AUV is a task that combines both perception and control. First, the AUV

must accurately perceive a diver and determine its relative location. Diver

perception using sonar and by detecting flipper oscillations in the frequency

domain are approaches that have been explored [25, 59, 80]; however, these

have been vastly outnumbered by vision-based methods using an onboard

camera [2, 14, 37, 83, 98]. Vision-based diver perception is popular because

of its cost-effectiveness over alternative sensing mechanisms, its general ap-

plicability in a variety of underwater conditions and tasks, and its ability to

integrate advanced computer vision techniques to extract high-dimensional

information from images.

Second, for an AUV to autonomously follow a diver in the open ocean,

it must incorporate a robust control system. Unlike diver perception mech-

anisms that generalize well for use on any AUV, control systems need to be

carefully designed for the dynamics and intricacies of the particular platform.

Proportional-Integral-Derivative (PID) controllers, which require an explicit

error definition to minimize, are widely used for AUV control and can be

precisely tuned to achieve the desired behavior [37, 39, 53, 62, 82, 83]. With

the rise of deep reinforcement learning in robotics, there has also been recent

work in using neural networks for AUV control [13, 67]. These controllers can

execute complex behavior and are not limited to minimizing a concrete error

signal. Although, as data-driven methods, they require substantial data to
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learn an effective control policy.

In this thesis, we explore the problem of diver following with an AUV.

Inspired by recent advancements in vision-based diver perception, we directly

control the motion of our AUV using visual feedback from an onboard cam-

era, a technique known as visual servoing [51]. Following this technique, we

modularize our system, separating it into distinct vision and control mod-

ules. The vision module processes the incoming images and perceives the

relative location of the diver in the field of view (FOV). We do not use fidu-

cial markers, beacons, or other tools to aid tracking, maintaining a general

problem formulation. Taking input from the vision module, the control mod-

ule is responsible for taking actions to keep the diver within the FOV despite

dynamic diver movements and external disturbances.

In an alternative approach, we could have bypassed the vision module and

adopted an end-to-end framework where the controller would take actions di-

rectly from the incoming images. This approach would allow full flexibility

to implicitly construct or learn a control policy without requiring feature

extraction or a precise error signal definition. However, it would struggle

to generalize since minor changes in diver appearance or modifications to

the control system would necessitate replanning or retraining of the entire

system. In our modular approach, we can modify the vision or control mod-

ules without significant changes to the other. This allows us to consider and

evaluate different diver detection and control paradigms. It also provides a

flexible formulation that enables us to extend our system to other visual ser-
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voing tasks, beyond the scope of diver following. The main disadvantage of

having separated vision and control modules is their explicit dependency on

each other. Weaknesses in the one module will be propagated to the other.

To realize our autonomous diver following system in practice, we deploy

both our vision and control modules onboard an AUV named Aqua [31, 38].

Aqua, shown in Figure 1.1, is a highly maneuverable hexapod robot with six

fins mounted alongside its body. By strategically moving its fins, Aqua can

quickly change its pitch, yaw, and roll angles as well as its linear velocity.

Although highly maneuverable, Aqua exhibits complex dynamics due to its

hexapod design with interdependent fins. It can be challenging to control

in underwater environments compared to other AUVs that use propellers or

rudders for motion.

For perception, Aqua is equipped with a front-facing monocular camera

and an NVIDIA Jetson Xavier NX board to extract and process images

from its surrounding environment. For control, Aqua includes a low-level

control module that receives high-level user commands and interfaces with

hardware elements to achieve the desired behavior. The high-level commands

are unitless values within the range [−1, 1] for pitch, roll, and yaw, and [0, 1]

for linear velocity. Working with the high-level commands and considering

our problem of diver following, we send pitch rates to have Aqua swim up or

down, yaw rates to swim left or right, and linear velocity rates to swim faster

or slower. To avoid variations in the roll angle that are not required for our

problem and could result in undesired behavior, such as flipping upside down,
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Figure 1.1: Aqua, a hexapod robot used in our autonomous scuba diver
following experiments.

we integrate a simple yet effective roll stabilizer into our control module.

To conduct controlled and repeatable experiments, we use a commercial

underwater simulator [52] based on the Unity game engine [90]. The simula-

tor, shown in Figure 1.2, mirrors the hardware control stack used in practice

and approximately models the complex dynamics of Aqua, including thrust

generated from fin movement and hydrodynamic drag [40]. It models buoy-

ancy, allowing us to construct realistic scenarios where Aqua operates as

positively or negatively buoyant in its environment. Additionally, it mod-

els currents and wave motions, allowing us to apply external forces to Aqua

during operation.
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Figure 1.2: Our Unity-based simulation environment used for development
and controlled experiments.

1.1 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we in-

troduce our vision module to robustly detect and track scuba divers. We

explicitly address scenarios such as missing and false detections, which can

be catastrophic in a robotic visual servoing system. In Chapter 3, we explore

control paradigms, starting with traditional PID controllers, then extending

to the potential for a learning-based controller within the context of diver

following. Finally, we conclude this thesis in Chapter 4 with a comprehensive

discussion on our findings and identify avenues for future research.
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2
Vision module

Implementing a modular visual servoing strategy for diver following requires

designing a robust, stable, and efficient vision module. Integrated directly

into the control loop, this module must ensure that predicted diver locations

are not only precise but also temporally stable across frames. Fluctuations

in diver visibility and inconsistent predictions can severely impede the con-

troller’s ability to function in such unstable scenarios. In this chapter, we

introduce our vision module, which combines a state-of-the-art deep learning-

based model for diver detection with a lightweight filtering algorithm for

tracking. To begin, we explore relevant work in object detection and track-

ing, presenting an overview of both traditional and data-driven methods

tailored to underwater applications. Next, we discuss our detection module,

where we analyze and benchmark the performance of seven object detection
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algorithms and develop a dataset of simulated divers for use in simulation

studies. Finally, we assess the temporal stability benefits of integrating a

multi-object tracking algorithm alongside our detection module. We demon-

strate that existing metrics for evaluating temporal stability are inadequate

for real-time deployment scenarios and propose necessary adjustments.

2.1 Related work

In the computer vision community, the pursuit of robust object detection and

tracking methods has been a cornerstone of research and development. Ob-

ject detection, which includes both classification and localization, has seen

a rich history of methodologies, ranging from traditional algorithmic tech-

niques to deep learning and data-driven approaches commonly seen in mod-

ern day applications. The availability of large-scale, annotated datasets has

propelled the advancement of deep learning-based object detection models,

enabling them to learn rich representations that can transfer and generalize

to a multitude of scenarios. Object tracking encompasses detection across

multiple frames, focusing on methods to maintain object identities and es-

timate motion. In this section, we explore the general landscape of object

detection and object tracking, with a particular focus on our application of

scuba diver tracking.
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2.1.1 Object detection

Object detection is a fundamental task in computer vision, involving both

object classification and localization within an image. This task answers two

main questions: what is the object and where is it located within an image.

Classification answers the what question by identifying the object from a

predefined list of classes. Localization answers the where question, typically

by providing bounding box coordinates around the detected object. Object

detection has been extensively studied [104], with methods dating back well

before the prevalence of deep learning and data-driven approaches. These

traditional methods typically split an input image into cells and perform

feature extraction and classification within each cell. Viola and Jones [92]

proposed a framework combining Haar-like feature descriptors with cascad-

ing classifiers for face detection. These cascading classifiers form a sequence

of increasingly complex image classifiers. Image cells pass through each clas-

sifier, as shown in Figure 2.1, only continuing if positively classified. This

enables high-speed face detection, as negative cells can be quickly discarded

by the weak classifiers. Dalal and Triggs [21] combined Histogram of Oriented

Gradients (HOG) feature descriptors with a linear support vector machine

(SVM) for human detection. HOG feature descriptors capture the distribu-

tion of gradient orientations within image cells and can robustly describe an

object’s shape and boundaries. Lowe [66] introduced Scale Invariant Feature

Transform (SIFT) features for object detection. SIFT features, by construc-
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tion, are invariant to scale, translation, and rotation. Unlike dense HOG

features, SIFT features are local and sparse and can be used as robust key-

points for object detection.

Figure 2.1: A diagram of cascading classifiers used by Viola and Jones [92] for
high-speed face detection. Image cells or sub-windows pass through a series
of classifiers, only continuing if positively classified. The initial classifiers
can eliminate a large number of negative cells with minimal processing time.
Reprinted from [92].

In the past decade, deep learning-based object detectors have gained enor-

mous traction and are widely considered the standard for modern-day object

detection [104]. These data-driven approaches employ neural networks for

both classification and localization subtasks and have outperformed tradi-

tional methods on many benchmark datasets. The family of deep learning-

based object detectors can be categorized into one-stage and two-stage de-

tectors. One-stage detectors directly perform classification and localization

from extracted features, achieving remarkable inference speeds suitable for
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real-time deployment. Two-stage detectors incorporate an additional region

proposal layer between feature extraction and classification and localization

steps. This region proposal layer helps improve detection accuracy, at the

cost of having slower inference speeds.

Convolutional Neural Networks (CNNs) are commonly employed as fea-

ture extractors in both one-stage and two-stage detectors. These networks

learn complex patterns and structures within images through successive con-

volutional layers with learned filters, non-linear activation functions, and

pooling layers to aggregate information across local regions. You Only Look

Once (YOLO) detectors are a family of one-shot CNN-based architectures

that have been widely adopted for real-time object detection tasks. YOLO

was introduced in 2016 by Redmon et al. [74] and since then has had frequent

version updates [88], the most recent being YOLOv9 [94]. Figure 2.2 shows a

timeline of YOLO version updates from 2015 to 2023. The Single-Shot Multi-

Box Detector (SSD) [65] is another popular one-shot object detection algo-

rithm that is commonly combined with a MobileNet CNN backbone [50] for

optimized real-time detection on embedded devices. In the two-stage realm,

Region-Based Convolutional Neural Networks (R-CNN) [42] have been pro-

posed, with iterations Fast R-CNN [41] and Faster R-CNN [76] introduced

to improve inference speeds.

Aside from CNN-based architectures, there has been a recent surge in

applying the transformer architecture [91], originally proposed for natural

language processing, to object detection and other computer vision tasks.
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Figure 2.2: Evolution of the YOLO object detection algorithm. Reprinted
from [88].

Rather than processing raw pixels directly, these architectures partition im-

ages into patches, treating each patch as a token. They utilize self-attention

mechanisms, rather than pooling layers, to capture global context by consid-

ering relationships among all patches. The Vision Transformer (ViT) model

[28], introduced in 2020, has opened the door for popular models such as the

Detection Transformer (DETR) [12] and the Pooling-based Vision Trans-

former (PiT) [49], which both use the transformer architecture for object

detection.

In the marine robotics community, both traditional and deep learning-

based methods have been proposed for scuba diver detection. Sattar and

Dudek [80] introduced an algorithm for diver detection by identifying periodic

motion associated with kicking. This method divides an image into cells

and analyzes each cell in the frequency domain to detect flipper oscillations.

Several improvements have been proposed, including the use of a flipper

color prior to prune the search space [54] and extending to detect motion
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in multiple directions [81]. Chavez et al. [14] proposed an algorithm for

diver detection using a modified random forest classifier on image cells. This

algorithm is optimized to minimize memory and performance issues when

scaling the number of features used for classification.

Exploring the potential of deep learning-based methods, Xia and Sattar

[98] used Faster R-CNN to detect divers and subsequently extracted features

from each detection for diver identification. Although this method achieved

impressive results on collected datasets, the computational load of a two-

stage detector with additional feature extraction remains significant, and its

feasibility in real-time applications was not fully explored. In contrast, Is-

lam et al. [53] designed a custom CNN-based architecture optimized for single

diver detection, achieving inference speeds suitable for real-time deployment.

Fulton et al. [37] proposed an algorithm to approach scuba divers with an au-

tonomous underwater vehicle (AUV), utilizing YOLOv4 [8] for the detection

component. Expanding the scope to the broader task of underwater object

detection, Shkurti et al. [83] developed a vision-based framework for an un-

derwater multi-robot convoy, as shown in Figure 2.3. This method leveraged

a modified version of YOLOv2 [75] to detect and track robots in the image

plane.

2.1.2 Datasets

A critical factor in the performance of deep learning-based object detectors

is the quantity and quality of the data they are trained on. Insufficient and
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Figure 2.3: An underwater multi-robot convoy using a modified version of
YOLOv2 for robot detection. Reprinted from [83].

repetitive data can lead to poor generalization and overfitting of the models

to the training set. Fortunately, there continues to be a considerable growth

in the amount of available image data, allowing for the coalition of large,

diverse datasets for data-driven methods to leverage. The PASCAL Visual

Object Classes (VOC) challenges, particularly the 2007 [33] and 2012 [34]

challenges introduced two benchmark datasets for object detection. Both

datasets contain annotations for 20 objects commonly seen in everyday life.

The VOC2007 dataset includes close to 10,000 images, while the VOC2012

dataset includes over 17,000 images.

In 2009, ImageNet [26], a large-scale visual database, was introduced
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for image classification and object detection tasks. It currently contains

over 1 million images with bounding box annotations. Subsets of ImageNet

have been used in the ImageNet Large Scale Visual Recognition Challenges

(ILSVRC) [79], serving as popular benchmarks in image classification and ob-

ject detection. The Microsoft Common Objects in Context (MS COCO) [64]

dataset, introduced in 2014, currently contains over 200,000 labeled images.

Although smaller in terms of the number of images compared to ImageNet,

it includes a notable 1.5 million object instances across 80 categories within

those images.

The compilation of these datasets has revolutionized transfer learning and

fine-tuning approaches in deep learning-based object detection. Training on

diverse, large-scale datasets such as ImageNet or MS COCO allows models

to extract rich, generalizable information from images. These learned rep-

resentations can be used in transfer learning schemes, serving as a feature

extractor for training custom detection modules. They can also serve as a

strong starting point that can be fine-tuned for target applications.

Utilizing these learned representations can significantly reduce training

time and computational requirements as less data is required in the tar-

get domain to achieve strong performance. Additionally, transfer learning

and fine-tuning approaches have been shown to outperform training from

scratch, showing enhanced performance and better generalization to out-of-

distribution samples [15, 86]. Consequently, they have become practical and

preferred approaches for training deep learning-based object detectors.
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Figure 2.4: Sample images from SCUBAnet, a dataset of scuba divers tailored
for hand signal and body language recognition. Reprinted from [19].

In the context of underwater diver detection, recent efforts have focused

on compiling large datasets of scuba divers in both pool and ocean environ-

ments. Perhaps the most significant contribution in this domain is the Video

Diver Detection (VDD-C) dataset [60], containing over 100,000 labeled im-

ages of divers captured in oceanic and indoor pool settings. The dataset

is extracted from video sequences, enabling the evaluation of second-order

temporal stability metrics alongside accuracy. Codd-Downey and Jenkin

[19] introduced SCUBAnet, a dataset featuring over 1,000 images of divers

in freshwater and saltwater environments. This dataset provides annotations

for each diver’s body, head, and hands, as shown in Figure 2.4. It is tai-

lored to advance diver-robot communication methods through hand signal

and body language recognition [20].
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Further contributing to the field of diver-robot interaction, the Cogni-

tive Autonomous Diving Buddy (CADDY) project has produced two notable

datasets [43]. The first, the CADDY Underwater Diver Pose dataset, con-

tains 12,000 images of divers annotated with heading measurements. The

second, the CADDY Underwater Gestures dataset, includes 10,000 images

of divers displaying various hand signals.

2.1.3 Object tracking

Unlike object detection, which aims to classify and localize objects within a

single frame, object tracking involves the sequential identification and motion

estimation of an object across multiple frames. Object tracking algorithms

complement object detection modules by removing false detections, estimat-

ing missed detections, and smoothing detections between consecutive frames.

These algorithms broadly fall into two categories: single-object trackers and

multi-object trackers.

Single-object trackers focus on tracking a single target throughout a video

sequence, maintaining its identity and estimating its motion over time. They

address challenges such as changes in appearance, scale variations, and occlu-

sions. The Kernelized Correlation Filter (KCF) [48] is a well-known single-

object tracker, utilizing correlation filters to learn a mapping between input

image features and target locations. Notably, it uses the kernel trick to han-

dle non-linearities in data, and Fourier transforms for efficient computation in

the frequency domain. Other popular single-object tracking methods based
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on correlation filters include the Discriminative Scale Space Tracker (DSST)

[22] and the Minimum Output Sum of Squared Error (MOSSE) tracker [9].

In recent years, deep learning-based single-object trackers have gained

attention due to their ability to learn robust feature representations and

generalize well to changes in object appearance or background environments.

These algorithms often employ Siamese networks to learn similarity metrics

between pairs of inputs [6, 45, 87], facilitating robust matching between the

target object and candidate image patches during tracking.

In contrast, multi-object trackers simultaneously track multiple objects

within a video sequence. They face similar challenges to single-object track-

ers, but must also address the complex data association problem of matching

incoming detections with the correct objects and maintaining consistent iden-

tities over time. Multi-object trackers can be categorized into batch-based

and online algorithms. Batch-based algorithms [17, 27, 100] process video

sequences in batches of frames and are suited for offline tracking, where

both future and previous frames are available. Online algorithms assume the

tracker only has access to detections in the current and previous frames, mak-

ing them suitable for real-time object tracking. Simple Online and Realtime

Tracking (SORT) [7] is a widely used multi-object tracker that uses Inter-

section over Union (IoU) similarity for data association, and a Kalman filter

for motion estimation. Due to its simple data association metric, SORT can

process incoming detections with minimal computational overhead, making

it a desirable choice for real-time tracking.
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Recent iterations of SORT such as DeepSORT [97], StrongSORT [29], and

BoT-SORT [3], integrate object appearance in addition to location similarity

for improved data association. These iterations incorporate neural networks

for feature extraction, resulting in improved tracking performance and fewer

identity switches between closely located objects. However, they come with

the additional computational cost of deep learning-based feature extraction.

Scuba divers swimming in the open ocean are highly dynamic objects with

erratic movements. Visually tracking these divers requires concrete steps to

ensure temporal stability and accurate motion estimation. Sattar and Dudek

[81] utilized an unscented Kalman filter (UKF) to estimate and track diver

motion once detected in the image plane. Langis and Sattar [61] investi-

gated the application of DeepSORT for diver tracking and re-identification,

analyzing its performance on offline video sequences. Agarwal et al. [2] used

Long Short-Term Memory (LSTM) networks to predict and stabilize diver

trajectories from the VDD-C dataset. Additionally, in a multi-robot con-

voy application, Shkurti et al. [83] designed a custom LSTM architecture to

enhance the temporal stability of incoming detections and reduce tracking

failure rates.

2.2 Detection module

Following recent advancements in deep learning-based object detection, we

explore the potential of seven deep architectures for diver detection. Previous

work in underwater object and diver detection has predominantly leaned
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towards YOLO models, with Langis et al. [60] recommending them over

alternative one-shot detectors for real-time inference. At the time of this

study, YOLOv4 [8] was the most recent YOLO version used in prior work for

scuba diver detection. It was used in a system by Fulton et al. [37] designed

to autonomously approach scuba divers. Building upon this, we assess the

potential of newer YOLO versions, namely YOLOv5 [55] and YOLOv7 [93],

which was the latest version available at the time of this study.

In response to the emerging interest in using vision transformers for object

detection, we are intrigued by how these models compare with CNN-based

architectures. Thus, we also explore the potential of the Detection Trans-

former (DETR) model. The DETR model comprises a CNN backbone for

feature extraction, an encoder-decoder transformer, and four feed-forward

networks, which are 3-layer perceptrons responsible for generating the final

predictions. In our investigation, we consider the base DETR model, as well

as the DETR-DC5 variant, which incorporates dilation in the final stage of

the backbone to increase resolution for detecting small objects. For both

models, we consider the use of both ResNet50 (R50) and ResNet101 (R101)

as the CNN backbone [47].

2.2.1 Evaluation metrics

Keeping in mind the real-time requirements of our system, our evaluation

encompasses both the accuracy and inference speed of each object detection

model. For accuracy assessment, we employ the widely used mean average
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precision (mAP) metric. This metric calculates the average precision (AP)

for each object class and averages them together to yield the final result. In

our application we detect only a single object class, namely a scuba diver,

thus mAP simplifies to AP. In terms of inference speed, we measure the

frames processed per second (FPS) during inference.

Deriving the AP metric requires a clear understanding of both detection

confidence and Intersection over Union (IoU). Detection confidence is a mea-

sure of prediction certainty, represented as a probability attached to each

bounding box prediction. Setting a threshold on detection confidence allows

low-confidence detections to be filtered out. IoU quantifies the alignment

between predicted and ground truth bounding boxes. IoU values range from

0 to 1, where 0 signifies no overlap between a prediction and the ground

truth, and 1 signifies perfect alignment. IoU thresholds are used to derive

true positive (TP), false positive (FP), and false negative (FN) rates. A pre-

diction is categorized as a true positive if its overlap with the ground truth

exceeds the IoU threshold; otherwise, it is considered a false positive. If no

prediction surpasses the IoU threshold for a ground truth bounding box, the

false negative rate increases.

By setting IoU and detection confidence thresholds, we can derive pre-

cision and recall values. Precision, defined in Equation 2.1, measures how

accurately the model detects target objects. Increasing the confidence thresh-

old results in higher precision as the model only outputs its most confident

and accurate predictions. Recall, defined in Equation 2.2, measures the abil-
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ity of the model to find all target objects. Increasing the confidence threshold

results in lower recall as many low confidence detections get filtered out.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

Taking an IoU threshold as input, we calculate AP by first computing pre-

cision and recall values across multiple confidence thresholds. An ideal object

detection model achieves both high precision and high recall across a range

of confidence thresholds. To gauge this balance, we plot a precision-recall

(PR) curve, taking the area under the curve as APt, the average precision

at the IoU threshold t. A larger AP signifies strength in both precision and

recall.

2.2.2 Datasets

To train our selected models for diver detection, we adopt a supervised learn-

ing approach where our models learn to map input images to bounding box

coordinates of detected divers using annotated data. Following this approach,

we require a diverse dataset comprising images of scuba divers along with

their respective locations in the image plane. The VDD-C dataset [60] is

a natural candidate, offering a substantial collection of 104,838 labeled im-
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ages of scuba divers. This dataset not only boasts a large quantity of divers

but also exhibits considerable variation, featuring divers at diverse locations,

depths, and orientations.

The VDD-C dataset includes rich scenarios, containing images with a

single diver, multiple divers, as well as images with no divers. A sample image

containing three divers is presented in Figure 2.5. The dataset encompasses

both oceanic and indoor pool settings, reflecting real-world conditions and

enabling generalization across different environments. As an added benefit,

the oceanic segment was gathered off the west coast of Barbados, roughly in

the same region where we conduct our field experiments.

Figure 2.5: A sample annotated image from the VDD-C dataset.

For consistent evaluation and comparison of diver detection models, the

VDD-C dataset comes pre-split into training, testing, and validation sets.
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Table 2.1 provides a detailed breakdown of these splits. Each set contains

images extracted from video sequences, simulating the practical scenario of

images incoming from a video stream. This setup enables the evaluation of

not only accuracy but also temporal stability, which is a crucial consideration

for real-world deployment.

Figure 2.6: A sample annotated image from the SDD dataset.

To conduct insightful simulation studies, we adopt a mirrored pipeline for

diver detection in simulation. In particular, we utilize an object detection

module to extract the location of the diver, rather than projecting the ground

truth location of the diver, which is available in the simulation, into the

image plane. In our setup, we introduce a basic swimming character, shown
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in Figure 2.6, positioned within our simulated underwater environment. As

the optics of our simulated diver differ significantly from real-world divers,

we collected and labeled a custom dataset, which we refer to as the Simulated

Diver Detection (SDD) dataset, for use in our simulation experiments.

Training Validation Test Total

VDD-C 71,591 14,475 18,772 104,838
SDD 1,331 110 162 1,603

Table 2.1: A breakdown of the training, testing, and validation splits in the
VDD-C and SDD datasets.

We collected the SDD dataset by setting random velocities for the sim-

ulated diver and manually controlling Aqua to capture photos. As depicted

in Table 2.1, the SDD dataset contains 1,603 images, each annotated with

a bounding box around the simulated diver. To explore the diversity of our

collected dataset, we analyze the distribution of diver locations and sizes.

Figure 2.7 illustrates that the diver is located across various locations in the

image plane, with a bias towards the center. This bias likely results from

our efforts to keep the diver stable in the image during data collection. Fig-

ure 2.8 reveals that the diver area primarily occupies less than 10% of the

image plane, indicating a shortage of images with the diver in close proximity

in our collected dataset.

To further enhance the diversity of the SDD dataset, we perform data

augmentation on the training set. Data augmentation involves generating

modified samples from existing samples to artificially increase training data.
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Figure 2.7: Diver location distribution in the SDD dataset, showcasing di-
versity across the image plane.

Common augmentation techniques in image processing include horizontal

and vertical flipping, random rotations, brightness and color adjustments,

and blurring. Not only does data augmentation expand the dataset size, but

it facilitates learning generalizable information and helps prevent overfitting

by exposing the model to a diverse range of samples. For the SDD dataset,

we perform random flips, rotations, crops, blurs, as well as brightness, sat-

uration, and hue adjustments. These data augmentation techniques result

in a training set of 3,993 images for the SDD dataset, approximately three

times the original size.
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Figure 2.8: Diver size distribution in the SDD dataset, revealing a shortage
of images with the simulated diver in close proximity.

2.2.3 Training

Deep learning-based object detectors typically release pretrained models,

trained on extensive datasets such as ImageNet or MS COCO. In particular,

our selected YOLO and DETR models are available pretrained on the MS

COCO dataset. Leveraging these pretrained models, and their learned rep-

resentations, can significantly reduce data and computational requirements

while improving performance and generalization compared to training from

scratch. Thus, to utilize these pretrained models, we consider fine-tuning or

transfer learning techniques to train our selected models for diver detection.
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In transfer learning, the pretrained model acts as a feature extractor,

with the foundational layers frozen and only the detection head or the final

layers being trained. This approach proves beneficial in cases where data in

the target domain is limited, as only a subset of the model’s layers need to

be trained. However, given the ample data available in our scenario through

the VDD-C dataset, we opt for a fine-tuning approach, allowing all layers of

the model to be updated during training.

Our training procedure adheres to standard supervised learning practices.

We fine-tune each selected model on the training set, utilizing the validation

set for hyperparameter tuning and early stopping to prevent overfitting. Sim-

ilar to Shkurti et al. [83], we resize input images to 416 x 416 pixels to reduce

the computational load during image processing. Evaluation is performed on

a held-out test set, ensuring unseen data is used for assessment. Each se-

lected model undergoes fine-tuning on the VDD-C dataset, with performance

evaluated based on both inference speed and accuracy.

An important note is that we exclusively use the VDD-C dataset, not

the SDD dataset, for training and comparison of our selected diver detection

models. After analyzing the results and selecting an architecture to deploy

in practice, we then fine-tune the chosen architecture on the SDD dataset.

This decision ensures the simulated pipeline mirrors the real-world pipeline,

facilitating seamless integration of code and unbiased simulation studies.
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2.2.4 Comparison study

The results of our comparison study are presented in Table 2.2. In terms of

accuracy, we compute AP at IoU thresholds of 0.5 (AP0.5), 0.75 (AP0.75), and

an average of 10 thresholds evenly spaced between 0.5 and 0.95 (AP0.5:0.95).

Higher IoU thresholds present a stricter criterion for classifying true pos-

itives; thus, AP decreases as the IoU threshold increases. AP0.5:0.95 offers

insights into detection performance across a spectrum of IoU thresholds. In

terms of inference speed, we measure the FPS during inference using a single

NVIDIA GeForce GTX 1080 Ti GPU. Note that this GPU is significantly

more powerful than the NVIDIA Jetson Xavier NX board equipped on Aqua.

Thus, although all models in Table 2.2 showcase strong inference speeds, it is

important to consider their relative performance as we anticipate a noticeable

drop in performance when deployed on the Jetson Xavier NX.

Our first observation from this study is the strength of transformer-based

architectures. The DETR models, in particular the DETR-DC5-R101 model,

provides competing performance with YOLO. However, a notable trade-off

emerges as the DETR models struggle to maintain inference speeds compa-

rable to YOLOv5 and YOLOv7. The DETR-DC5 models, which include

dilation in the final stage of the CNN backbone, exhibit sightly slower infer-

ence speeds compared to their respective counterparts. Additionally, models

utilizing a ResNet101 backbone exhibit longer inference times than those with

a ResNet50 backbone, aligning with the expected computational overhead of
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a larger backbone.

Within the YOLO family of models, noteworthy improvements are ob-

served, with YOLOv4 surpassing the previously reported AP values in the

VDD-C benchmark [60]. Subsequent iterations demonstrate further advance-

ments, as YOLOv5 outperforms YOLOv4, and YOLOv7 outperforms YOLOv5

across all IoU thresholds.

Among all considered detection models, YOLOv7 achieves the highest AP

across all IoU thresholds while maintaining the second highest FPS, surpassed

only by its predecessor, YOLOv5. Factoring in both accuracy and inference

speed, we opt to integrate YOLOv7, trained on the VDD-C dataset, as our

diver detection module.

AP0.5 AP0.75 AP0.5:0.95 FPS

DETR-R50 0.904 0.507 0.508 40
DETR-DC5-R50 0.887 0.476 0.487 38

DETR-R101 0.903 0.487 0.496 27
DETR-DC5-R101 0.911 0.499 0.505 26

YOLOv4 0.898 0.431 0.468 29
YOLOv5 0.894 0.578 0.538 107
YOLOv7 0.931 0.615 0.566 70

Table 2.2: Evaluation of seven deep learning-based object detection models
on the VDD-C dataset.

After selecting YOLOv7 as our diver detection module for deployment

in practice, we fine-tune it on our augmented SDD dataset to ensure a mir-

rored pipeline in simulation. The results are summarized in Table 2.3. No-

tably, YOLOv7 demonstrates near perfect performance across the chosen IoU
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thresholds, and achieves inference speeds similar to those observed during the

processing of real-world images. These findings suggest that our diver detec-

tion task in simulation is easier than in practice. Thus, we should anticipate

a drop in performance when deploying our system and consider techniques

to handle cases of missing and false detections.

AP0.5 AP0.75 AP0.5:0.95 FPS

YOLOv7 0.995 0.985 0.890 75

Table 2.3: Evaluation of YOLOv7 on the SDD dataset.

2.3 Tracking module

To improve the temporal stability of our vision module, and explicitly ad-

dress missing and false detections, we integrate the Simple Online and Real-

time Tracking (SORT) algorithm alongside YOLOv7. SORT is a lightweight

multi-object tracking algorithm, proficient at tracking objects across frames

with minimal computational burden. The algorithm follows a two-step pro-

cess of data association and filtering. During data association, detections in

the current frame are matched with tracked objects. SORT accomplishes this

by first computing an assignment matrix of pairwise IoU similarities between

the predicted locations of each tracked object, and the incoming detections.

Then, SORT efficiently obtains the optimal assignment using the Hungarian

algorithm [58]. In the subsequent filtering step, SORT uses a Kalman filter

with a constant velocity model to update tracked objects with the matched

detections. This enables detections in the current frame to be updated based
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on corresponding detections from previous frames.

We chose SORT instead of single-object tracking algorithms to easily scale

to applications that involve tracking multiple divers. Given the composition

of the VDD-C dataset, which includes frames with multiple divers, selecting

a multi-object tracking algorithm with an explicit data association mecha-

nism seemed a natural choice. Among multi-object tracking algorithms, we

did not consider batch-based trackers because of their lack of real-time track-

ing capabilities. Considering online trackers, SORT emerged as the preferred

choice over its successors, DeepSORT and BoT-SORT, which incorporate

object appearance during data association. This decision was primarily in-

fluenced by the fact that SORT uses only IoU similarity for data association,

rather than a deep association metric, enabling tracking with minimal com-

putational overhead. Considering our practical deployment goals, we did not

want to introduce any additional computational load unless necessary. Fur-

thermore, our current focus does not lie in diver identification or mitigating

identity switches between closely located divers; thus, directly scaling to a

deep association metric seemed unnecessary.

2.3.1 Effects on detection accuracy

Two hyperparameters of particular importance in SORT are min hits and

max age. The min hits hyperparameter filters out false detections by requir-

ing an object to be detected in min hits consecutive frames before initializing

a tracker for the object. The max age parameter helps to fill in missed detec-
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tions by outputting the tracked object’s predicted location for a maximum

of max age consecutive frames without detection.

Both min hits and max age hyperparameters are promising tools for im-

proving the temporal stability of our vision module. However, it is important

to first explore their effect on detection accuracy. In our system, we combine

vision and control, meaning that the output of our vision module can directly

impact the performance of our controller. Thus, we need to ensure a balance

of both accuracy and temporal stability. To evaluate the effect of these hy-

perparameters on detection accuracy, we perform an ablation study over 25

hyperparameter combinations, computing the average AP0.5:0.95 across each

of the eight video sequences included in the VDD-C test set. The results are

presented in Table 2.4

min hits

max age

1 5 10 20 30

1 0.585 0.571 0.549 0.500 0.458
5 0.577 0.572 0.565 0.542 0.517
10 0.576 0.572 0.565 0.544 0.520
20 0.574 0.572 0.566 0.549 0.531
30 0.572 0.571 0.565 0.552 0.536

Table 2.4: An ablation study over two important hyperparameters in SORT.
The metric presented is AP0.5:0.95 averaged over eight video sequences from
the VDD-C dataset.

We observe for all hyperparameter combinations, detection accuracy is

not significantly reduced by having SORT smooth detections between frames.

In fact, for some combinations, AP is higher than the standalone YOLOv7
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model because SORT can incorporate information from previous frames to

yield better estimates and fill in missed detections. For a given value of

max age, we observe that increasing min hits reduces AP. This is not sur-

prising because SORT filters out objects with less than min hits consecutive

detections. Thus, objects entering the field of view (FOV) take longer to be

recognized. For a given value of min hits, we observe that increasing max age

results in two opposing behaviors. The first behavior occurs when min hits

is 1, where increasing max age leads to a decrease in AP. This is due to

SORT preserving any false positive in a single frame for max age frames.

The second behavior occurs when min hits is greater than 1, where increas-

ing max age generally leads to an increase in AP, especially for higher values

of min hits. This is due to SORT correctly filling in missed detections on

tracked objects, while requiring a minimum consecutive detection count to

remove false positives.

From the results of this ablation study, we present two recommendations

for tuning min hits and max age in practice. First, min hits should be ini-

tialized to a low value to have a minimal impact on accuracy. If many false

detections occur, min hits can be gradually increased to filter them out. Sec-

ond, max age should be set based on the strength of the object detector in

the environment. If objects are often missed and recaptured, max age should

be set to the average number of missed frames between detections. However,

it is important to note that the larger max age is, the longer SORT will

output a tracked object’s predicted location without a detection, potentially
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providing a false track for the controller to follow. For reference, in our open

ocean experiments, we used a min hits of 4 and a max age of 7.

2.3.2 Effects on temporal stability

Our primary motivation behind integrating SORT is to improve the temporal

stability of our detection module. However, commonly used metrics such as

AP, used to evaluate object detection modules, are not sufficient to assess

temporal stability since they only consider detections within a single frame.

To address this, Langis et al. [60] and Zhang and Wang [102] proposed three

metrics to evaluate the temporal stability of object detectors: fragmentation

error, scale and aspect ratio error, and translation error. In the following

sections, we define each of these metrics and compute them for the eight

video sequences in the VDD-C test set. A note before continuing, we use the

term tracklet to refer to a sequential list of detections of a particular diver

across a video sequence. An example of two tracklets is shown in Figure 2.9.

Fragmentation error

Fragmentation error concerns the temporal consistency of detections. If a

diver is frequently detected in one frame but missed in the next, the frag-

mentation error increases. Conversely, if a diver is consistently detected (or

consistently ignored) across frames, the fragmentation error decreases. We

define fragmentation error in Equation 2.3. For each ground truth tracklet k

in a video sequence with N tracklets, the fragmentation error is the average

number of fragments per tracklet, normalized by the tracklet length lk. A
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Figure 2.9: An illustration of two tracklets from a video sequence in the
VDD-C dataset. A tracklet is a sequential list of detections of a particular
diver across a video sequence. Each tracklet in the figure is shown in a
different color, and we limit the size of the tracklets to 10 frames for clarity.

fragment fk denotes the number of times a tracklet’s status changes from

detected to undetected, or vice versa.

1

N

N∑
k=1

fk
lk − 1

(2.3)

Scale and aspect ratio error

Scale and aspect ratio error concerns the stability of both scale and aspect

ratio within a tracklet. If a diver is detected with inconsistent errors relative

to the ground truth, the resulting scale and aspect ratio error will be high.
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Conversely, the scale and aspect ratio error will be minimal if a diver is

detected with consistent errors across the video sequence.

This metric, outlined in Equation 2.6, is computed for each video se-

quence by averaging the combined scale error and aspect ratio error of each

tracklet. The scale error, es(k), computes the standard deviation of the ratio

of detected areas to ground truth areas for each detection d within tracklet k.

The aspect ratio error, er(k), similarly calculates the standard deviation of

the ratio between the detected aspect ratio and the ground truth aspect ratio.

In both Equation 2.4 and Equation 2.5, wd and hd represent the width and

height of a detected bounding box, respectively, while wg and hg represent

the width and height of the ground truth bounding box, respectively.

es(k) = σ

(√
wdhd

wghg

)
, ∀d ∈ k (2.4)

er(k) = σ

(
wd

hd

/
wg

hg

)
, ∀d ∈ k (2.5)

1

N

N∑
k=1

(es(k) + er(k)) (2.6)
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Translation error

Translation error measures the stability of center position errors within a

tracklet. In cases where a diver is detected with inconsistent center position

errors compared to the ground truth, the resulting translation error will be

high. If divers exhibit consistent center position errors across frames, the re-

sulting translation error will be minimal. To compute the translation error,

we average the combined center position errors along both the x and y di-

mensions, denoted as ex(k) and ey(k), respectively. We compute these center

position errors using the standard deviation of the differences between the

detected centers and the ground truth centers, in the dimension of interest.

Equation 2.7 outlines our calculation of ex(k), and Equation 2.8 outlines our

calculation of ey(k). In both equations, the subscript d refers to a detected

bounding box, while the subscript g refers to a ground truth bounding box.

The overall translation error is presented in Equation 2.9.

ex(k) = σ (xd − xg) , ∀d ∈ k (2.7)

ey(k) = σ (yd − yg) , ∀d ∈ k (2.8)
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1

N

N∑
k=1

(ex(k) + ey(k)) (2.9)

Results

Computing the above metrics requires access to ground truth tracklets and

a method to associate detections with these tracklets in each frame. The

VDD-C dataset lacks ground truth tracklets in its annotation set; therefore,

we computationally generate them using a method proposed by Chen et al.

[16], using IoU as the similarity metric. To associate output detections from

our vision module to ground truth tracklets, we also employ IoU similarity.

For each ground truth tracklet, in each frame, we pair the diver with the

detection having the highest IoU similarity exceeding a threshold τ . If no

detection is matched, this impacts the fragmentation error but not the scale,

aspect ratio, and translation errors, as they only consider matched detections

within a tracklet. In our computations, we set τ to 0.25.

We evaluate the temporal stability of our proposed YOLOv7+SORT

model against the standalone YOLOv7 model. The evaluation is conducted

across each video in the VDD-C test set, using the metrics defined above.

For YOLOv7+SORT, we average the results over the 25 combinations of

min hits and max age hyperparameters presented in Table 2.4, reporting

both the mean and standard deviation.

The fragmentation errors for each video sequence are displayed in Fig-

ure 2.10. Across all sequences, we observe a substantial reduction in errors
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Figure 2.10: The fragmentation errors for each video sequence in the VDD-
C test set, revealing a significant reduction when SORT is combined with
YOLOv7.

when YOLOv7 is combined with SORT, with sequences 6 and 7 showing

the most pronounced reductions. Upon closer examination of these two se-

quences, we observe particularly challenging conditions, including a blurred

camera lens, severe camera instability, and frequent obstructions to the FOV

from bubbles. In these scenarios, SORT’s ability to incorporate temporal

information and compensate for missed detections with predictions from the

Kalman filter is key to maintaining consistent detections.

When analyzing the translation and scale and aspect ratio errors pre-

sented in Figure 2.11, the combination of YOLOv7 with SORT appears to

decrease temporal stability with respect to these metrics. Although initially
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(a) (b)

Figure 2.11: The translation errors (a) and scale and aspect ratio errors
(b) for each video sequence in the VDD-C test set. Integrating SORT with
YOLOv7 results in slightly larger errors when these metrics are computed
with respect to the ground truth.

surprising, these results in fact align with the expected behavior of integrat-

ing SORT with YOLOv7. The reasoning behind this is that SORT performs

temporal smoothing of detections in the current frame with respect to pre-

vious frames, not the ground truth. Thus, when translation and scale and

aspect ratio errors are computed with respect to the ground truth, it is ex-

pected that SORT will produce inconsistencies and larger errors.

An example to illustrate this point is shown in Figure 2.12, which con-

tains two consecutive samples from the VDD-C test set. The ground truth

annotations are presented in black, the predicted locations by YOLOv7 in

red, and the predicted locations by YOLOv7+SORT in green. The predic-

tion errors of YOLOv7 in these sequential frames are consistent with respect

to the ground truth, resulting in low translation and scale and aspect ratio
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errors. On the other hand, the prediction errors of YOLOv7+SORT are con-

sistent with respect to previous frames, resulting in larger translation and

scale and aspect ratio errors when compared to the ground truth.

Figure 2.12: Two consecutive frames taken from the VDD-C dataset, high-
lighting the ability of SORT to smooth detections between frames. The
ground truth annotations are presented in black, the YOLOv7 predictions in
red, and the YOLOv7+SORT predictions in green.

Frame-to-frame stability

When considering a vision module integrated within a control system, both

the stability of information with respect to the ground truth and the sta-

bility of information between frames are crucial for effective control. During

deployment, the control system relies on stable sequential inputs for accurate

motion and trajectory estimation. While metrics such as translation, scale,

and aspect ratio error capture stability with respect to the ground truth and

provide valuable insights when comparing temporal stability across object

detection models, they fail to capture this notion of frame-to-frame stabil-

ity. As a result, these metrics alone cannot highlight the significance of

incorporating a tracking module alongside a detection module for real-world
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applications.

To measure frame-to-frame temporal stability, we propose an adjustment

to both the translation and scale and aspect ratio error definitions. Instead

of calculating these errors with respect to the ground truth, we can replace

the ground truth with detections from the previous frame. For each video

sequence, we calculate the frame-to-frame translation error and the frame-

to-frame scale and aspect ratio error using the same calculations presented in

Equation 2.9 and Equation 2.6, respectively, but replacing the ground truth

with the detection from the previous frame.

Using these metrics, we assess the frame-to-frame temporal stability of

YOLOv7+SORT compared to both the standalone YOLOv7 model and the

ground truth annotations. Our evaluation is again conducted across each

video sequence in the VDD-C test set, and for YOLOv7+SORT, we average

the results over 25 combinations of min hits and max age hyperparameters.

The frame-to-frame scale and aspect ratio errors are presented in Fig-

ure 2.13b. We observe that YOLOv7+SORT consistently yields the smallest

errors across all video sequences. This highlights the ability of SORT to inte-

grate prior predictions with current detections to produce temporally stable

outputs that are even smoother than ground truth annotations. In contrast,

the standalone YOLOv7 model frequently demonstrates high frame-to-frame

scale and aspect ratio errors as it lacks mechanisms to stabilize outputs be-

tween frames.

The frame-to-frame translation errors are presented in Figure 2.13a. Sim-
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Figure 2.13: The frame-to-frame translation errors (a), and scale and aspect
ratio errors (b), computed for each video sequence in the VDD-C test set.
SORT integrated with YOLOv7 exhibits improved frame-to-frame stability
by using a Kalman filter to smooth detections between consecutive frames.

ilar to the scale and aspect ratio errors, YOLOv7+SORT consistently yields

the lowest errors across all video sequences, with the exception of sequences 6

and 7. We note that these are the same two challenging sequences discussed

previously and observe a significant reduction in the average track length of

the standalone YOLOv7 model compared to YOLOv7+SORT. This is further

supported by Figure 2.10, where YOLOv7 displays notably higher fragmenta-

tion errors in these same two sequences. Calculating frame-to-frame metrics

over numerous small sequences, as opposed to fewer, larger sequences, can

skew the results toward smaller values due to limited data availability for

accurate variance estimates.
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2.4 Conclusions

In this chapter we presented our vision module, which integrates YOLOv7

for diver detection and SORT for tracking. After evaluating seven state-of-

the-art object detection models on the VDD-C dataset, YOLOv7 emerged as

the top performer, achieving the highest accuracies while maintaining infer-

ence speeds suitable for deployment onboard Aqua’s hardware. We explored

the benefits and trade-offs of integrating SORT with YOLOv7 and provided

guidelines for tuning SORT in practice. During our evaluation of temporal

stability, we identified shortcomings in existing metrics, which do not ade-

quately account for practical deployment scenarios where detections need to

be stable relative to previous frames, in addition to the ground truth. To

address this, we proposed adjustments to these metrics to capture frame-to-

frame stability. We demonstrated that SORT can enhance frame-to-frame

stability while still maintaining accurate and stable detections when com-

pared against the ground truth.

Looking forward, there are several interesting avenues for future research.

In our detection module, we evaluated selected models on the VDD-C dataset

in an out-of-the-box fashion with minimal modifications. While this approach

was useful for assessing baseline strengths and recent developments, fur-

ther exploration into custom modifications or incorporating domain-specific

knowledge could yield improved results [53, 83]. Future investigations might

also explore alternative training schemes, such as transfer learning or training
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from scratch, to provide valuable insights into the advantages and disadvan-

tages of each method compared to fine-tuning.

In our tracking module, we plan to refine our proposed frame-to-frame

stability metrics by incorporating a weighting mechanism based on tracklet

length. We hypothesize that this refinement will offer further insights into

the effectiveness of SORT to improve frame-to-frame temporal stability, and

emphasize its importance alongside a detection framework. We are also inter-

ested in the feasibility of using DeepSORT for real-time tracking. Previous

work has shown promising results using DeepSORT for diver identification

and re-identification in offline datasets [61]. Building on this, we are curious

if this algorithm, with its deep association metric, can be deployed on an

AUV to robustly identify and track specific divers.
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3
Control module

In a visual servoing system, vision and control are tightly intertwined. Visual

inputs directly drive control commands, which shape future visual inputs,

and thus future control commands. Designing a robust control module is

critical for visual servoing, particularly in challenging marine environments.

In this chapter, we explore control paradigms for autonomous underwater

vehicles (AUVs) within the context of diver following. We begin by examin-

ing traditional methods, specifically Proportional-Integral-Derivative (PID)

controllers, which have long been the conventional approach for AUV con-

trol. We demonstrate their effectiveness through open ocean experiments and

also explore some of their inherent limitations. Following this, we discuss

the potential for a reinforcement learning (RL) controller that can encode

complex behaviors and autonomously adapt to changes in the system and
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environment. Through a series of simulation experiments, we compare the

performance of our RL controller with our PID controllers, addressing the

strengths and limitations of each approach.

3.1 Background and related work

Designing a control system for an AUV requires careful planning to handle

the challenges of dynamic marine environments. In this section, we explore

existing paradigms for AUV control systems. We begin by discussing tradi-

tional approaches, followed by reinforcement learning and its application to

AUV control systems.

3.1.1 Traditional AUV control

Proportional-Integral-Derivative (PID) controllers [10] have long been the

conventional approach for AUV control systems [30]. These feedback con-

trollers continuously work to minimize an error signal between a desired set-

point and the current measurement. By considering proportional, integral,

and derivative error terms, PID controllers can, when tuned appropriately,

apply precise and responsive control outputs to achieve the desired behavior.

PID controllers are popular for AUV control systems due to their relative

simplicity, understandability, and ease of implementation. They rely only on

the response of the current measurement and can operate without a precise

model of the underlying process dynamics. This is particularly beneficial

in AUV control systems, which exhibit complex dynamics that can change
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when operating in different bodies of water or at varying depths.

Regulated by a set of gains, PID controllers require precise tuning to op-

erate effectively. While popular tuning methods such as the Ziegler-Nichols

method [103] exist, tuning these controllers in practice is often a time-

consuming and tedious process. Once these gains are set, PID controllers

are inherently not adaptable and cannot address changes in the environment

or underlying process dynamics without retuning. This can be problematic

in constantly changing marine environments and may require manual inter-

vention for long-term missions.

Control systems based on PID control have been implemented in a broad

spectrum of AUV platforms. Lensgraf et al. [62] used PID controllers onboard

a custom BlueROV2 for precise control in underwater construction tasks.

Jung et al. [56] implemented PID controllers for path-following on a fish-like

AUV, which moves via actuations to a compliant tail. Fittery et al. [35] used

PD controllers onboard a highly maneuverable egg-shaped AUV named the

Omni-Egg.

As with other platforms, PID controllers have long been the preferred

control paradigm for Aqua. Giguere et al. [39] designed a multi-speed au-

topilot system for Aqua using PID controllers to achieve desired setpoints.

Shkurti et al. [83] used PID controllers in a robot convoy application where

two Aqua units visually tracked and followed each other in the ocean. Fulton

et al. [37] employed PID controllers to have Aqua autonomously approach

scuba divers.
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Aside from PID controllers, other traditional AUV control strategies have

been explored [101]. Yoerger and Slotine [99] designed a sliding mode con-

troller to deal with nonlinear dynamics and imprecise system models. Smith

et al. [84] used a fuzzy logic controller in an autonomous AUV docking al-

gorithm to handle uncertainties in state estimation. Combing both sliding

mode and fuzzy logic, Guo et al. [44] developed a sliding mode fuzzy con-

troller for an AUV to maintain a desired heading angle.

3.1.2 Reinforcement learning

Reinforcement learning (RL) algorithms enable robots to learn control poli-

cies through interaction with their environment [85]. The formal framework

for RL is centered around sequential decision-making in a Markov decision

process (MDP), a mathematical model that describes the environment in

which a robot or agent operates. An MDP is defined by a set of states S, a

set of actions A, a transition probability function P : S × A × S → R that

specifies the probability of transitioning from one state to another given an

action, and a reward function r : S → R that specifies the immediate reward

obtained in a given state.

A solution to an MDP can be a deterministic policy π : S → A that maps

states to actions, or a stochastic policy π : S × A → R that maps states

and actions to execution probabilities. The optimal solution to an MDP

is a policy π∗ that maximizes return, which is some cumulative function of

rewards over time.
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Environments modeled as MDPs are assumed to obey the Markov prop-

erty. This property states that the next state and reward depend only on the

current state and action, and not on any prior history. While this assumption

is helpful when analyzing and developing algorithms to solve MDPs, it does

not need to strictly hold to learn an effective control policy in practice.

In RL, the objective is to solve an MDP through interaction with the

environment. By exploring the state-action space and receiving feedback

via a reward signal, RL algorithms learn and adjust a control policy π to

maximize return. Since they learn solely from data and experience, RL

algorithms are capable of improvement and adaptation over time.

RL algorithms can be categorized as model-free or model-based. Model-

based algorithms such as Probabilistic Inference for Learning Control (PILCO)

[24] and Probabilistic Ensembles with Trajectory Sampling (PETS) [18] learn

an explicit model of the environment for planning and sequential decision-

making. Model-free algorithms, on the other hand, operate without explicit

modeling of the environment. They directly learn a policy through interac-

tion and by observing the consequences of actions. Although less sample-

efficient than model-based methods [23], model-free methods show promise

in complex environments that are challenging to accurately model.

Model-free algorithms can be further divided into value-based and policy-

based methods. In value-based RL, collected experience is used to learn a

state value function V (s) or a state-action value function Q(s, a). The state

value function V (s) represents the expected return of being in state s, while
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the state-action value function Q(s, a) represents the expected return of tak-

ing action a in state s. Once learned, a control policy can be derived by acting

greedily with regards to these value functions. Examples of value-based meth-

ods include Q-learning [95] and State–Action–Reward–State–Action (SARSA)

[78].

Policy-based methods such as REINFORCE [96] use collected experience

to directly learn a control policy, bypassing the need for explicit value func-

tion estimation. These methods are beneficial in high-dimensional state and

action spaces where it is challenging to feasibly explore and learn a value

function. Policy-based methods can also learn stochastic policies, whereas

value-based methods are limited to deterministic policies. However, since

policy-based methods directly learn a control policy, they tend to exhibit slow

convergence times and are prone to getting stuck in local optima. Actor-critic

methods, such as Deep Deterministic Policy Gradient (DDPG) [63] and Twin

Delayed DDPG (TD3) [36], combine both value-based and policy-based ap-

proaches. Figure 3.1 presents a visualization of the family of RL algorithms.

Note that this figure is non-exhaustive but provides useful classifications for

understanding various approaches in RL.

Tabular RL algorithms represent the policy or value function in a ta-

ble, explicitly storing values for each state or state-action pair. To scale to

high-dimensional or continuous state and action spaces, deep RL leverages

neural networks as high-capacity function approximators. Instead of learn-

ing a policy or a value function for each state or state-action pair, deep RL
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Figure 3.1: A taxonomy of reinforcement learning algorithms. Reprinted
from [1].

approximates this using a neural network with weights θ, which are updated

based on collected experience. Deep Q-Networks (DQN) [69] and Double

DQN (DDQN) [46] are popular examples of value-based deep RL methods.

By using a neural network as a function approximator, deep RL methods

can generalize across similar states and actions in the MDP. They can cap-

ture intricate patterns and structures within the data, allowing them to learn

complex control policies. Although task dependent, deep RL methods often

require significant time and computational resources to train. The training

process can be unstable and sensitive to hyperparameter choices. Addition-

ally, the integration of a neural network can result in a lack of interpretability

of the resulting control policy.

In recent years, RL algorithms have shown impressive results in control
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tasks such as robotic manipulation [72], offroad navigation [57], and naviga-

tion with underactuated systems [5]. In the underwater domain, the adoption

of RL for AUV control has been limited due to challenges such as safely ex-

ploring and collecting large amounts of data underwater, and dealing with

complex AUV dynamics. Despite these challenges, there have been notable

efforts to apply RL and neural networks to AUV control tasks. El-Fakdi

and Carreras [32] used an actor-critic algorithm in a vision-based underwa-

ter cable inspection system, showcasing results both in simulation and pool

environments. Carlucho et al. [13] explored the use of deep RL to output

continuous actuator commands for an AUV to maintain a desired reference

state.

Specific to Aqua, Meger et al. [68] implemented PILCO to learn closed-

loop maneuvers such as U-turns and corkscrews in pool environments. Man-

derson et al. [67] proposed a neural network controller for a vision-based

underwater navigation system that avoids obstacles and explores regions of

interest. Rather than reinforcement learning, they followed a behavioral

cloning approach for training.

3.2 PID control module

Continuing with a modular visual servoing approach, we directly control

the movement of Aqua based on the output from our vision module. As

discussed in Chapter 2, our vision module handles the task of diver detection

and tracking within the image plane. It outputs bounding box coordinates of
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the detected diver, which we use to extract the diver’s center coordinates and

area. Note that in this work, we do not address multi-diver following and do

not explicitly experiment with multiple divers in the field of view (FOV). In

cases where our vision module detects two or more divers, we simply select the

detection with the highest confidence to feed into our control module. While

this is a relatively naive approach, it proved sufficient for our experiments.

Taking the output from our vision module, we normalize the center co-

ordinates in each dimension to the range [−1, 1], representing the relative

distance of the diver to the center of the FOV. Similarly, we normalize the

area to the range [0, 1], representing the relative size of the detected diver

in the FOV. If no diver is detected by our vision module, we consider this a

tracking failure and terminate the tracking sequence.

In this section, we outline our PID control module for diver following.

We present the results of our open ocean experiments and introduce a simple

yet effective mechanism to recover the diver after tracking failures.

3.2.1 Design

When a diver is detected by our vision module, we obtain the normalized

center coordinates and area of the detected diver. From these, we define

three error signals and employ three separate PID controllers to correct them.

The first two controllers receive ex and ey, which are the differences between

the detected center and the center of the FOV in the x and y dimensions,

respectively. These controllers apply yaw and pitch commands to correct the
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errors and keep the diver stable in the center of the FOV. An illustration of

ex and ey is presented in Figure 3.2.

Figure 3.2: Error definitions ex and ey used in our PID control module.

The third PID controller receives ea, which is the difference between the

detected area and some target area. It applies linear velocity commands to

maintain a preferred distance from the diver. It is worth noting that using the

detected area as an indicator of distance can be noisy. Changes in the diver’s

orientation can cause changes in the detected area without an underlying

change in distance. Nevertheless, it provides a weak signal of proximity to

avoid crashing into the diver or falling far behind.

The standard PID control law used in our system is defined in Equa-

tion 3.1, and a block diagram is presented in Figure 3.3. The resulting control

command u(t) at time t for each PID controller is regulated by proportional,
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integral, and derivative error terms. The proportional term considers and

corrects the current error e(t). The derivative term considers the rate of

change of e(t) and outputs commands to avoid overshooting and oscillating

around the target. The integral term considers the sum of errors over time

and corrects for steady-state errors present in the system.

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
(3.1)

Figure 3.3: A block diagram of a PID control system. The error e(t) rep-
resents the difference between the measured process variable y(t) and the
desired setpoint r(t). The control output u(t) is determined by the propor-
tional, integral, and derivative error terms. Reprinted from [10].

The proportional, integral, and derivative terms are weighted by gains

Kp, Ki, and Kd, respectively. These gains determine how aggressively the
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controller responds to each error term, and different weightings can result

in significantly different behavior. There are helpful tuning procedures, such

as the Ziegler-Nichols method [103], but in practice, tuning these controllers

is a time-consuming process and changes to system dynamics will likely ne-

cessitate retuning. In our experiments, we spent significant efforts tuning

these controllers in the ocean, and system modifications, such as ballasting

adjustments, required us to retune.

To avoid variations in the roll angle, which we do not explicitly cover in

our visual servoing controller and which could result in unwanted behavior

such as flipping over, we integrate a roll stabilizer into our control module.

While the pitch, yaw, and linear velocity controllers receive input from our

vision module, the roll stabilizer receives the current roll angle reading from

an inertial measurement unit (IMU). It follows the same PID control law to

stabilize the roll angle at 0◦. We tuned this controller in a similar fashion to

the others, but it was by far the quickest to tune using consistent feedback

from the IMU.

3.2.2 Recovery

To avoid manual resets between tracking sequences, we implement a simple

recovery mechanism to handle cases when no diver is detected by our vi-

sion module. This mechanism is based on a spiral search algorithm, which

searches sequentially in different directions using exponentially increasing

excursions away from the starting point [4, 11]. In our application, this cor-
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responds to sequentially searching left, right, up, and down for the diver with

increasingly longer durations. To enhance this method and quickly recover

the lost diver, we initialize the search with the diver’s last known location in

the image plane. Figure 3.4 shows an example of our recovery mechanism in

action.

Although perhaps not the most sophisticated recovery mechanism, it

proved remarkably useful in handling failures from the vision module and

allowing us to switch to the next tracking sequence without requiring manual

intervention. Only when Aqua was clearly lost and unambiguously swimming

away from the diver did we manually intervene and reset.

Figure 3.4: An example of our recovery mechanism autonomously recovering
a diver after losing visual contact. When our vision module can no longer
detect a diver, we employ a spiral search algorithm to sequentially search
in different directions for the lost diver. We initialize the search with the
diver’s last known location for efficient recovery. In this example, the diver
was last detected on the left side of the image plane, prompting us to initiate
the search by yawing left.

3.2.3 Results

We conducted our open ocean experiments off the west coast of Barbados at

the McGill Bellairs Research Institute. These open ocean conditions, with

strong currents, provided a challenging environment to test and evaluate our
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system. Once tuned, we deployed our PID controllers to autonomously follow

a diver using inputs from our vision module. The entire pipeline, from RGB

image acquisition to control action, ran at a frequency of 8 Hz onboard Aqua.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Average Duration 236.8 287.6 153.5 273.4 259.5 358.33 271.5 269.16 425.66 259.66 206.16 265.33 263.0 208.4
Max Duration 442 417 204 573 359 783 451 464 627 451 689 518 668 376

Table 3.1: The average and maximum durations of tracking sequences
recorded in 14 open ocean trials. The metric presented is the number of
frames.

Our experiments consisted of 68 tracking sequences across 14 trials, com-

prising a total of 43,710 frames. Table 3.1 highlights the average and max-

imum durations of the tracking sequences recorded in each trial, reported

in frame numbers. Our pipeline achieved an average duration of 267 frames

(33.38 seconds), with a maximum of 783 frames (97.88 seconds). Although

these numbers may seem modest, it is important to remember our defini-

tion of a tracking sequence is relatively strict, terminating after a missed

detection for only a single frame. In practice, we observed Aqua success-

fully following the diver for much longer without intervention, utilizing our

recovery mechanism to quickly recover the diver between tracking sequences.

Figure 3.5 shows sample frames from a tracking sequence showcasing Aqua

robustly following a diver despite dynamic movements.

3.2.4 Limitations

In our experiments discussed in Subsection 3.2.3, our PID controllers demon-

strated strong performance, even in challenging open water conditions. This
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Figure 3.5: Aqua robustly following a diver in the open ocean.

traditional control approach offered simplicity and ease of implementation,

while ensuring transparency in the control process. In particular, with our

PID controllers, we could precisely calculate the control response based on

the diver’s location within the FOV. For example, if the diver appeared in

the top left of the FOV, we could reliably anticipate that Aqua would yaw

left and pitch up. Similarly, if the diver swam far away, we could be certain

that Aqua would increase its linear velocity to close the distance.

While simplicity and understandability in the control system are desirable

for underwater human-robot collaboration, our PID controllers suffer from
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three limitations. First, they require precise manual tuning, which proved

to be a time-consuming and tedious process. They are not self-adaptable,

necessitating frequent retuning due to changes in ballasting or environmental

conditions. For example, on days with strong currents, we had to adjust the

controllers to deliver more aggressive responses, whereas on calm days, we

had to revert to a more neutral setting.

Second, PID controllers lack the capability to learn and coordinate with

the strengths and weaknesses of our vision module. In scenarios where our

vision module performed poorly in regions of the image plane due to factors

like sand or debris on the camera lens, our PID controllers lacked a mecha-

nism to compensate. They struggled to adapt and keep the diver centered

in regions where our vision module excelled.

Third, by employing separate controllers for yaw, pitch, and linear ve-

locity, our PID controllers fail to address interdependencies between these

control variables. In general, applying pitch rates causes changes to the

pitch angle, and applying yaw rates causes changes to the yaw angle. How-

ever, due to the complex dynamics of Aqua, these control commands are not

always independent. Notably, when the roll angle deviates from zero, pitch

rates affect the yaw angle, and yaw rates affect the pitch angle. These effects

become more pronounced with larger roll deviations and when traveling at

higher speeds.

Although we incorporated a roll stabilizer to mitigate these interdepen-

dencies, deploying in open water conditions with strong currents often re-
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sulted in deviations from the ideal roll angle of 0◦. In these situations, our

separated PID controllers, responsible for independently applying pitch and

yaw rates, were constantly in conflict. While these conflicts were not signif-

icant enough to prevent our controllers from effectively following the diver,

employing separated PID controllers in these cases is a suboptimal control

approach, potentially increasing energy consumption and the likelihood of

failures.

3.3 Reinforcement learning control module

Inspired by the shortcomings of our PID control module described in Sub-

section 3.2.4, in this section we investigate the use of an RL-based controller

for diver following. We first frame the problem as an MDP, carefully de-

signing components such as the state space, action space, and reward signal.

We then employ Double Deep Q-Networks (DDQN) to solve the MDP and

learn a control policy. We present results from our simulated environment

and compare them with our PID control module. We also explore whether

our learning-based controller can address some of the shortcomings of our

PID controllers, namely coordinating with our vision module and adapting

to changing environmental conditions.

3.3.1 Diver following as a Markov decision process

To develop our learning-based controller, we first formulate the diver follow-

ing problem as an MDP. This requires defining components such as the state
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space S, action space A, reward function r : S → R, initial state, and termi-

nation conditions. For the transition probability function P : S×A×S → R,

we assume it is provided by the environment and can only be sampled through

interaction.

State space

Receiving the output from our vision module, we define the state vector at

time t as st = [xt, yt, at, dt]. Here, [xt, yt, at] represents the normalized diver

center coordinates and area, while dt is a binary flag indicating the presence

or absence of a diver in the current frame. This binary flag is included for

scenarios where our vision module fails to detect a diver in the FOV. In such

cases, the state vector includes the last known diver state and an indicator

that no diver was detected, giving Aqua the required information to recover

after a tracking failure.

Providing Aqua solely with information about the current state vector st

presents a significant challenge due to the diver following task being partially

observable. Aqua cannot fully observe the internal state of the environment,

but can only observe the state vector st provided by our vision module.

This state vector alone lacks vital details concerning diver movement, Aqua’s

movement, and external disturbances, leading to many internal states in the

system being perceptually aliased. This adds a layer of complexity, as the

information provided by st is insufficient to comprehensively understand the

situation and make optimal decisions.
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For example, if the diver is located on the left side of the FOV, the optimal

control action could differ significantly based on the diver’s velocity. Another

example is if Aqua is yawing left yet the diver remains on the left side of

the FOV. This situation could be due to the diver swimming left at an equal

velocity, or a current pushing Aqua in the opposing direction. To address this,

we augment st with a history of state vectors and previously taken actions,

a commonly used technique in reinforcement learning algorithms [69, 73].

Equation 3.2 outlines our augmented state vector, s+t , with a history of size

h. This historical context reduces the number of perceptually aliased states

and provides Aqua with the required information to learn the consequences of

its actions and make optimal decisions. In our experiments we use a history

size of 10.

s+t = [st, at−1, st−1, at−2, ..., at−h+1, st−h+1] (3.2)

Action space

We illustrate our proposed neural network architecture in Figure 3.6. The

augmented state vector is input to a sequence of three shared fully connected

layers, each followed by a Rectified Linear Unit (ReLU) activation function.

Inspired by Manderson et al. [67], we adopt a three-headed architecture where

each head predicts state-action values for discretized pitch, yaw, or linear

velocity rates. Each head considers seven evenly spaced rates within specified
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Figure 3.6: Our three-headed neural network architecture for diver following.
The network includes three shared fully connected layers, each followed by
a ReLU activation function. Each output head is responsible for predicting
Q-values for discretized pitch, yaw, or linear velocity rates. The input to
our network, s+t , represents our augmented state vector, which encompasses
a history of diver detections and previously taken actions.

ranges: [−0.075, 0.075] for pitch, [−0.75, 0.75] for yaw, and [0.25, 1.0] for

linear velocity. Our initial experiments involving diver following via manual

control revealed that these seven rates per head were sufficient for robust

tracking while maintaining a manageable action set for a machine learning

model to learn.

A multi-headed architecture with discretized actions offers several advan-

tages over single-headed or continuous action space architectures. Discretiz-

ing the action space and limiting the number of possible actions reduces

problem complexity and enhances the data efficiency of our learning pipeline.

Additionally, by partitioning pitch, yaw, and linear velocity rates into sep-

arate heads, we further simplify the action space, as each head only needs
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to consider actions within a single control dimension. This is in contrast to

a single-headed architecture, which would need to handle all possible com-

binations of the selected actions. This design choice facilitates scalability,

allowing additional rates to be considered without causing the action space

to explode.

In our design process, we also considered three fully separated networks.

In this approach, each network would receive only the relevant information

from the state vector and output control commands in a single dimension.

For instance, the pitch network would receive a history of y center coordinates

and previously taken pitch rates, and would be responsible for only predicting

pitch state-action values. While this isolated approach might converge faster

by omitting the shared layers and further breaking down the problem, it

cannot handle the interdependencies between control variables, which was a

core motivation for exploring beyond traditional separated PID controllers.

By including shared layers, which comprise the majority of the network, our

multi-headed architecture can learn interactions between control variables

and manage them to maximize a common reward signal.

However, our multi-headed architecture with discretized actions has some

limitations. By only considering a finite number of rates, we potentially lose

the precise control that a continuous action space could provide. Addition-

ally, a single-headed architecture may be better equipped to handle inter-

dependencies among control variables. While our multi-headed architecture

can manage these interdependencies through shared layers and optimization
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to maximize a common reward signal, a single-headed architecture that out-

puts pitch, yaw, and linear velocity rates may deliver superior performance

at the cost of having a larger action space to explore.

Reward signal

Reward signal design plays a pivotal role in the learning dynamics of RL.

Poorly crafted signals can result in inefficient learning and suboptimal con-

trol policies. Sparse reward signals, which are infrequently presented to the

robot or agent during training, are often easy to define and allow the agent

full flexibility to learn and discover novel strategies. Sparse rewards can be

temporally sparse, spatially sparse, or both.

Spatially sparse reward signals are presented only at specific states within

the environment. For example, in the context of diver following, a spatially

sparse reward signal might be given only when the diver is located in the

center of the FOV. Temporally sparse reward functions are presented at

infrequent periods based on the duration of the task. In diver following,

a temporally sparse reward signal could be achieved only after successfully

following the diver for a given duration.

Sparse reward signals provide the agent with limited guidance, often re-

quiring longer training horizons and more data to converge to an effective

control policy. In contrast, dense reward signals are presented to the agent

frequently throughout the learning process, offering rich intermediate feed-

back allowing the agent to quickly learn the consequences of its actions. De-
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signing dense reward signals can be challenging, especially for applications

where the value of intermediate states is ambiguous. Dense rewards may

also inadvertently constrain exploration, steering the agent towards policies

that align closely with the dense reward signal and potentially inhibiting the

discovery of novel strategies.

In our application of diver following, the primary objective is to maximize

the duration the diver remains in the FOV. This naturally suggests a sparse

reward definition where the agent is simply rewarded a constant value when

the diver is present in the FOV. While this reward signal holds promise,

it overlooks the rich spatial information available in the state vector. The

agent receives the same reward whether the diver is detected at the center

or the edge of the FOV, disregarding the fact that a diver near the edge is

more susceptible to being lost. This reward signal also does not encode a

measure of proximity, and the agent would receive the same reward regardless

of the detected area of the diver. The agent would have to learn these spatial

relationships, which could significantly prolong training time.

Instead, we propose a dense reward signal rt outlined in Equation 3.3,

where Aqua is rewarded based on the diver’s proximity to the center of

the FOV and the target area which we set to 0.02. If a diver is detected,

the reward is computed using a Gaussian distribution with σ1 = 0.5 pixels

based on the distance between the diver and the center of the FOV. The

reward is scaled based on the difference between the detected area and the

target area, again using a Gaussian distribution with σ2 = 0.025. We omit
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the normalization factors to ensure rewards remain within the range [0, 1],

regardless of the chosen sigma values. If no diver is detected, the agent

receives a penalty of −1.

rt(s
+
t ) =


exp

(
−x2

t+y2t
2σ2

1

)
× exp

(
− (at−0.02)2

2σ2
2

)
if dt = 1,

−1 if dt = 0

(3.3)

Figure 3.7 shows slices of our reward signal at various detected areas.

By considering both x and y coordinates in the distance calculation, the

resulting reward signal exhibits radial symmetry in the image plane. By

scaling based on the detected area, the reward signal also encodes a measure

of preferred distance. This design choice facilitates a common reward signal

for pitch, yaw, and linear velocity actions, enabling Aqua to learn interactions

between control variables and manage them to keep the diver stable in the

FOV while maintaining proximity.

Initial and terminal states

We adopt an episodic approach for training, treating each tracking sequence

as a distinct episode. To initialize, we position the simulated diver directly

in front of Aqua, aligning with the center of its FOV. Aqua then swims for-

ward at a constant rate until the augmented state vector is populated before

applying pitch, yaw, and linear velocity commands. We model diver move-

ment with random velocity changes every 5 seconds to reflect the frequent
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Figure 3.7: Slices of our reward signal in the image plane when Aqua is close
to the diver (left), maintaining the preferred distance from the diver (center),
and lagging behind the diver (right).

changes in movement divers make throughout a dive. Additionally, we bound

the diver’s maximum speed to ensure Aqua can reliably follow the diver if

appropriate control commands are selected.

We consider two terminal states for an episode. The first occurs when the

vision module does not detect the diver for 25 consecutive frames. In this

case, we assume the diver is lost and cannot be recovered, and we end the

episode in failure. The second occurs when the tracking sequence exceeds

3000 frames. In this scenario, Aqua has successfully followed the diver for

over 5 minutes, and we end the episode in success. We found that our

framework is not sensitive to the choice of these two hyperparameters; thus,

they can be adjusted to place emphasis on recovery or long-term tracking.

3.3.2 Training

To solve our formulated MDP and learn a control policy for diver following,

we employ Double Deep Q-Networks (DDQN) [46]. DDQN is a value-based
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deep RL algorithm that estimates the optimal state-action value function

Q∗(st, at) using a neural network with weights θ. This function Q∗(st, at)

represents the maximum expected return after taking action at in state st,

following any control policy. In our problem, we define return as the dis-

counted sum of rewards over an infinite horizon
∑∞

t′=t γ
t′−trt, where γ is set

to 0.9. It is important to note that although we end episodes and reset the

environment after 3000 frames, Aqua is trained to maximize expected return

over an infinite horizon. Following Pardo et al. [70], we use the maximum du-

ration solely to run multiple trials and experiments, without allowing Aqua

to experience transitions causing an environmental reset due to reaching the

maximum duration.

The optimal state-action value function Q∗(st, at) obeys the Bellman

equation, shown in Equation 3.4. This recursive equation states that Q∗(st, at)

is equal to the immediate reward obtained plus the maximum discounted

state-action value over possible actions in the next state st+1. Following

this equation, we can define a loss function based on the difference between

the current estimate Q(st, at; θ) and the target rt+1 + γmaxa′ Q(st+1, a
′; θ).

We can then iteratively train a neural network to minimize this loss using

collected experience.

Q∗(st, at) = rt+1 + γmax
a′

Q∗(st+1, a
′) (3.4)
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The DDQN algorithm builds on this idea by including an identical but

slower-moving target network with weights θ− to stabilize training and pre-

vent overestimation of Q-values. The target computation used in DDQN is

defined in Equation 3.5.

rt+1 + γQ(st+1, argmax
a′

Q(st+1, a
′; θ); θ−) (3.5)

In our training procedure, we use our architecture in Figure 3.6 to define

an ϵ-greedy policy network with ϵ decreasing exponentially from 0.9 to 0.1

over the first 250,000 timesteps. At each timestep t, Aqua receives s+t from

our vision module, saves a transition (s+t−1, at−1, s
+
t , rt) to a list of collected

experiences, takes an action according to the policy network, then performs

one optimization step and one soft-update step. An optimization step in-

volves randomly sampling a batch of transitions, computing the Smooth L1

loss [41] between the current Q-values and the DDQN target, then backprop-

agating the loss through the policy network. The soft-update step, defined

in Equation 3.6, moves the target network’s weights θ− closer to the policy

network’s weights θ at a rate regulated by τ . In our experiments, we set

τ = 0.0025 to ensure our target network is slow-moving. This helps maintain

consistent target values during training, promoting stability and preventing

oscillations in Q-values.
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θ− = τθ + (1− τ)θ− (3.6)

To periodically evaluate the performance of our system, after every five

training episodes with the ϵ-greedy policy network, we conduct an evalua-

tion episode where actions are greedily selected from the target network. The

resulting control policy can be expressed as π(s+t ) = argmaxa Q(s+t , a; θ
−)

for each head. We record the total reward obtained during the episode and

the duration in frames. Figure 3.8 illustrates how Aqua learns to success-

fully follow the diver in one of our experiments through interactions with its

environment.

To ensure our simulation pipeline mimics real-world scenarios, we reduce

the frequency of incoming images to our vision module to 10 Hz. With

the processing time of both our vision and control modules, our simulation

pipeline, from RGB image to control action, operates at a speed of approxi-

mately 8 Hz, matching our real-world implementation. Note that we do not

make any changes to the rate at which the simulation environment updates;

we simply try to mimic the processing speed when our system is deployed

onboard Aqua.

3.3.3 Results

Once our target network with weights θ− converges on an estimation of the

optimal state-action value function, we conduct our evaluation studies. Dur-
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(a) (b)

Figure 3.8: An example of how our DDQN control policy learns to follow a
diver through interactions with the environment. After every five training
episodes, we conduct an evaluation episode where actions are greedily selected
from the target network. We present the evaluation durations (a) and total
rewards (b) throughout the training process. The results are smoothed using
a moving average with a window size of five episodes.

ing these studies, we freeze the weights and select actions greedily from the

target network over 10 evaluation episodes. We record both the episode

duration and the total reward obtained.

We compare the performance of our trained DDQN control policy with

our PID control policy, which we precisely tune for our simulation environ-

ment. Recall that our PID controllers output continuous pitch, yaw, and

linear velocity rates, while our DDQN control policy is restricted to dis-

cretized rates. We use the same termination conditions for both policies:

terminating after no detections for 25 consecutive frames or upon reaching

the maximum duration of 3000 frames.
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Duration Total Reward

PID 3000.0 ± 0.0 2903.2 ± 8.4
DDQN 2912.4 ± 205.8 2491.2 ± 294.5

Table 3.2: A comparison between our DDQN and PID control policies.
During evaluation, we record the duration in frames and total reward ob-
tained for each policy over 10 episodes, reporting the mean and standard
deviation. While both policies demonstrate strong performance, our well-
tuned PID control policy delivers superior results in diver following.

Table 3.2 displays the duration and total reward obtained for both our

DDQN and PID control policies, averaged over 10 evaluation episodes. From

these results, we observe that both policies can effectively follow the diver,

yet well-tuned PID controllers are capable of delivering superior performance.

This is reinforced by Figure 3.9a and Figure 3.9b, which show how our PID

controllers can maintain a preferred distance from the diver and precisely

keep it stable in the center of the FOV. This enables our PID control policy to

consistently reach the maximum duration in each of the evaluation episodes

and obtain rewards close to the maximum in each frame.

Our DDQN control policy can also effectively follow the diver, but it

cannot achieve the same consistency and stability as our PID controllers. As

shown in Figure 3.9c and Figure 3.9d, our DDQN control policy can maintain

a preferred distance and keep the diver in the center of the FOV, but with

higher variance. Additionally, in one of the evaluation episodes, our DDQN

policy takes an action that causes the diver to be lost before reaching the

maximum duration. Dealing with a policy dictated by a neural network, we

have limited visibility on why this particular behavior occurs and the reasons
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behind this modest performance. Possible factors include our reward signal

design, our choice to discretize the action space, and our decision to use a

multi-headed architecture.

(a) (b)

(c) (d)

Figure 3.9: An analysis of our PID and DDQN control policies across 10
evaluation episodes. Among all the detected diver locations and areas, our
PID control policy effectively keeps the diver stable in the center of the FOV
(a) and maintains the desired distance (b). Our DDQN control policy also
keeps the diver stable (c) and maintains the desired distance (d), but with
higher variance.
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Coordinating with the vision module

In Subsection 3.3.3, we compared our DDQN control policy with our PID con-

trol policy, which we precisely tuned for our simulation environment. While

this comparison highlighted the strengths of well-tuned PID controllers and

reinforced their widespread adoption for AUV control, a more intriguing

study is to explore how these control policies adapt to changes in the system

and environment.

When deploying in constantly changing underwater environments, robust

and adaptive control systems are essential. PID controllers, while effective,

are inherently not adaptable and require manual tuning or modifications to

adjust to new conditions. In contrast, one of the core benefits of an RL-

based controller is its ability to learn and self-adapt from experience. This

adaptability makes RL-based controllers a promising direction for marine

applications where environmental conditions can change rapidly.

To investigate this adaptability, we conduct two studies where we intro-

duce variations in the system and environment. We assess how both control

policies respond to these changes, focusing on their ability to maintain effec-

tive diver following under altered conditions.

In the first study, we recreate a practical scenario observed during our

real-world deployments where debris partially obscures the camera lens, mak-

ing it difficult to detect divers in those regions. As shown in Figure 3.10, we

intentionally blur a large section of the FOV, causing our vision module to
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Figure 3.10: To explore the adaptability of our control policies, we intention-
ally blur a large region of the image plane, making it extremely difficult for
our vision module to detect a scuba diver in that area.

perform poorly in that area.

Consistent with the study in Subsection 3.3.3, we compare our trained

DDQN control policy with our PID control policy, recording key metrics such

as episode duration and total reward. However, in this study, we allow online

optimization, meaning we permit the weights of the DDQN control policy

to be updated based on collected experience. No other changes, such as

modifications to the reward signal or diver movement patterns, were made.

We conduct three experiments starting from the same trained DDQN

weights and investigate how our DDQN and PID control policies adapt to

our weakened vision module. Figure 3.11 presents the results of this study,

including the mean and standard deviation across the three experiments.

Initially, we observe poor performance from both policies as they attempt
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(a) (b)

Figure 3.11: A comparison of how our DDQN and PID control policies adapt
to a weakness in our vision module. Initially, both policies struggle to follow
the diver. However, through interaction with the environment, our DDQN
control policy learns the weakness and adjusts to effectively follow the diver.
Our PID controllers cannot adapt without manual intervention. We perform
three experiments starting with the same initialization and present the mean
and standard deviation of the episode durations (a) and total rewards (b).

to keep the diver centered in the image plane, where it is more susceptible

to becoming lost. However, through interactions with the environment, the

DDQN control policy learns this complex situation and shifts the diver to-

wards areas of the image plane where the vision module can reliably detect

it. It understands that the diver can no longer be reliably detected in the

center of the image plane, and adjusts by settling for decreased rewards on

the left side of the image plane as shown in Figure 3.12. Our PID control

policy, on the other hand, lacks a mechanism to adapt. It naively tries to

keep the diver centered in the FOV, where the vision module struggles to

detect it.
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Figure 3.12: Diver location distribution from an evaluation episode with our
DDQN control policy. The policy understands that our vision module is
weaker on the right side of the FOV and takes actions to keep the diver
stable on the left side, despite receiving smaller rewards.

Adapting to changes in the environment

In this second study, rather than investigating how our control policies adapt

to weaknesses in our vision module, we explore their adaptability to changes

in the surrounding environment. Specifically, we drastically reduce the wa-

ter density in our simulation environment, causing control actions to become

much more aggressive. This scenario simulates real-word deployments in dif-

ferent bodies of water, where the same control command can have drastically

different effects. Ideally, a robust control system should be capable of adapt-

ing to these changes without requiring extensive remodeling or retuning.

Similar to our weakened vision module study, we conduct three exper-
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iments starting with our trained DDQN weights and investigate how our

DDQN and PID control policies adapt to this environmental change. We

permit our DDQN control policy to update its weights based on newly col-

lected experience but do not make any other modifications to the problem

setup.

The results of this study are presented in Figure 3.13. We see initially,

both policies struggle due to the control actions becoming much more ag-

gressive. However, through interactions with the environment, our DDQN

control policy learns this dynamics change and consistently avoids taking

aggressive actions which would cause the diver to quickly become lost. Our

static PID controllers have no mechanism to adapt and would likely need

significant manual retuning to handle this change in water density.

3.3.4 Limitations

In our experiments discussed in Subsection 3.3.3, our DDQN control pol-

icy demonstrated strong performance and the ability to adapt to complex

changes in both the system and the surrounding environment. While these

properties are desirable for robust AUV control systems, our DDQN control

policy suffers from two major limitations.

First, using a control policy dictated by a neural network offers limited

visibility into the underlying control process. This lack of transparency makes

it difficult to predict future control actions and provides limited guidance

when suboptimal actions are taken. With our PID control policy, we can
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(a) (b)

Figure 3.13: A comparison of how our DDQN and PID control policies adapt
to a reduction in water density. Both policies initially struggle to follow
the diver due to control actions becoming much more aggressive. However,
through interaction, our DDQN control policy learns this dynamics change
and consistently chooses low magnitude actions to keep the diver stable in
the FOV. Our PID controllers cannot adapt without manual retuning. We
perform three experiments starting from the same initialization and present
the mean and standard deviation of episode durations (a) and total rewards
(b) for both policies.

be certain of the resulting control action given the diver’s state, ensuring

predictable and understandable behavior. Our DDQN control policy lacks

these guarantees, which can be problematic in real-world scenarios where

transparency in the control system is vital for human-robot collaboration.

Second, our DDQN control policy requires a substantial amount of data

and experience to learn an effective control strategy. Despite discretizing the

action space and using a multi-headed architecture, training from scratch

demands approximately 400,000 interaction steps to converge, equating to

almost 13 hours of interaction with the environment at 8 Hz. In challenging
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underwater environments, this process is likely to take much longer, and

acquiring such data is expensive, time-consuming, and potentially dangerous.

Additionally, during the training process, the nature of our DDQN control

policy necessitates exploration, often resulting in the diver becoming lost as

it learns to avoid these situations in the future. This can be undesirable,

especially when PID controllers can quickly provide solutions for each part

of the state space without an extensive need for exploration.

Focusing on adaptability, while our DDQN control policy can autonomously

adapt, it still requires time and experience to do so. For instance, in both the

weakened vision module and reduced water density experiments, our DDQN

control policy needed over 50,000 interaction steps to adapt, equating to al-

most 2 hours of interaction with the environment at 8 Hz. This introduces

a tradeoff between retuning PID controllers for out-of-distribution scenarios

and allowing an RL-based controller to self-adapt through trial and error.

Each approach has its own set of challenges and time requirements.

3.4 Conclusions

In this chapter we explored the design and implementation of two AUV con-

trol paradigms within the context of diver following. In particular, we ana-

lyzed traditional, widely adopted PID controllers and an RL-based controller

trained using Double Deep Q-Networks (DDQN).

Our open ocean experiments revealed that PID controllers, while simple

and easy to implement, can be highly effective when appropriately tuned.
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They produce predictable and responsive control actions, without requiring

a model of the underlying process dynamics. However, PID controllers re-

quire precise manual tuning, and are limited to minimizing a concrete error

signal. They cannot handle interdependencies between control variables, and

lack the ability to adapt to changes in the system or environment. These lim-

itations can pose significant challenges, especially for long-term deployments

in marine settings.

Through extensive simulation experiments, our RL-based controller demon-

strated a remarkable ability to autonomously adapt to complex changes in

the system and environment. Adaptability is a desirable property when de-

ploying in marine settings where conditions can drastically change. Our

RL-based controller can also learn and manage interactions between con-

trol variables through shared network layers and optimization to maximize

a common reward signal. Despite these advantages, our RL-based controller

requires substantial data and experience to learn an effective control policy,

which can be a limiting factor for practical deployments. The inherent lack

of transparency in neural network-based control policies also raises concerns

regarding predictability and stability.

Balancing the immediate effectiveness and transparency of PID controllers

with the learning capabilities and adaptability of RL-based controllers re-

mains an open challenge. In future research, we would like to focus on hy-

brid approaches that combine PID control for initial deployments and safety

with the adaptability of RL for long-term improvement. Additionally, we
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would like to focus on methods to improve the efficiency and robustness of

our RL-based control policy for practical deployments. This could involve

extensive hyperparameter tuning, modifications to the MDP model, or alter-

native learning schemes. It could also involve exploring Sim2Real techniques,

which leverage simulation environments to develop robust policies that can

be transferred to real-world applications [71, 89].
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4
Discussion and future work

Underwater human-robot collaboration is a promising area within the robotics

community. Given their advanced sensing capabilities, autonomous underwa-

ter vehicles (AUVs) working alongside scuba divers can significantly enhance

underwater safety and tasks related to oceanic monitoring and mapping.

However, for AUVs to operate effectively as scuba diver companions, they

must be capable of reliably tracking and following scuba divers. In this the-

sis, we tackled the problem of diver following with an AUV from two key

perspectives: perception and control. For perception, we developed a vision-

based module to autonomously detect and track divers within the image

plane. For control, we investigated both traditional and deep learning-based

paradigms for diver following in challenging marine environments. Notably,

our framework operates without requiring a system dynamics model, which
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is often difficult to obtain for complex AUV systems. In this final chapter,

we review our findings and discuss their broader implications. We evaluate

the strengths and limitations of our approach and identify avenues for future

research in underwater autonomy.

4.1 Discussion

Inspired by the effectiveness and versatility of vision-based sensing, we adopted

a visual servoing approach for diver following, directly controlling Aqua’s

movement using feedback from an onboard camera. We chose to modular-

ize our system into distinct vision and control modules. This allowed us to

modify each module without significant changes to the other and provided

a general framework that can easily extend to track and follow other un-

derwater targets. However, this modular approach also introduced a strong

dependency between our vision and control modules, necessitating concrete

steps to ensure robustness on both ends of the problem. In this section, we

review our proposed system for diver following, discussing both our vision

and control modules.

4.1.1 Vision module

In Chapter 2, we introduced our vision module for diver detection and track-

ing. For diver detection, we fine-tuned seven deep learning-based object

detectors on the Video Diver Detection (VDD-C) dataset, evaluating both

accuracy and inference speed. Among these detectors, You Only Look Once
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version 7 (YOLOv7) achieved the highest accuracy and the second-highest

inference speed, making it the preferred choice for integration into our vision

module.

To conduct mirrored experiments in simulation, we collected the Simu-

lated Diver Detection (SDD) dataset, consisting of 1,603 images of a sim-

ulated diver. We analyzed the diversity of this dataset and enhanced it

through data augmentation techniques. Upon evaluating YOLOv7 on the

SDD dataset, we found that the diver detection task in simulation was easier

than in real-world conditions. While this result was not surprising, it moti-

vated us to explore techniques to handle cases of missing and false detections,

and also to improve the temporal stability of our vision module.

For diver tracking, we integrated the Simple Online and Realtime Track-

ing (SORT) algorithm alongside YOLOv7. We demonstrated the effect of

SORT on detection accuracy through an ablation study on two hyperparam-

eters that help fill in missed detections and filter out false detections. From

this study, we found that detection accuracy was not significantly reduced by

using SORT to smooth detections between frames; in fact, for certain hyper-

parameter combinations, SORT improved detection accuracy by leveraging

information from previous frames. Based on these findings, we provided

guidelines for tuning SORT in practical applications.

When examining temporal stability, we evaluated the impact of SORT on

key stability metrics such as fragmentation error, scale and aspect ratio error,

and translation error. We identified a shortcoming in existing metrics, as
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they fail to address frame-to-frame stability, where detections need to remain

consistent relative to previous frames, rather than solely to the ground truth.

We proposed adjustments to these metrics to better capture frame-to-frame

stability and demonstrated that SORT significantly enhances frame-to-frame

stability while maintaining strong detection accuracy.

The integration of YOLOv7 with SORT in our vision module presents

several notable strengths and limitations. By utilizing explicit mechanisms

for object detection and tracking, our vision module leverages the state-of-

the-art detection capabilities of YOLOv7 and enhances them with an explicit

tracking algorithm for temporal stability. One of the key strengths of this

approach is flexibility; we can easily update the module, for example, by up-

grading to the latest YOLOv9 or exploring alternative tracking algorithms,

without significant changes to the overall pipeline. The combination of a

single-shot object detector with a lightweight tracker also enables our vi-

sion module to achieve inference speeds suitable for real-time deployment.

Unlike previous work that primarily focused on offline datasets [98], our vi-

sion module is carefully designed for computational efficiency, ensuring that

both components are lightweight and practical for deployment on embedded

systems.

Despite these strengths, our vision module also has certain limitations.

Apart from fine-tuning on the VDD-C dataset, we did not make any domain-

specific modifications to YOLOv7, relying instead on its out-of-the-box ca-

pabilities for diver detection. While this allowed us to maintain a general
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problem formulation, it is likely that custom modifications or incorporating

domain-specific knowledge would yield improved results. Considering our

multi-object tracker, SORT does not consider object appearance during its

data association step. Although this helps our module achieve fast process-

ing times, it also means that it struggles to differentiate between two closely

located divers. In this thesis, we did not conduct experiments to track mul-

tiple divers and thus did not directly encounter this issue, but it is likely

that future extensions of this work will require a more robust mechanism to

address this limitation.

4.1.2 Control module

In Chapter 3, we explored two paradigms for AUV control within the context

of diver following. First, we investigated Proportional-Integral-Derivative

(PID) controllers, a conventional approach for AUV control systems. We

designed three separate PID controllers to output pitch, yaw, and linear

velocity commands solely from visual input. Additionally, we developed a

PID controller to stabilize Aqua’s roll angle using an inertial measurement

unit (IMU) and a spiral search mechanism to recover a scuba diver after

losing visual contact. We deployed both our vision and PID control modules

in the ocean off the west coast of Barbados, achieving a frequency of 8 Hz

from image acquisition to control output. Across 68 tracking sequences, our

system successfully followed a diver for an average duration of 267 frames

(33.38 seconds) with a maximum of 783 frames (97.88 seconds). Our recovery
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mechanism was also able to quickly recover the diver between failures without

requiring manual intervention.

Despite the success of our PID control module, it suffered from three sig-

nificant limitations. First, it required precise manual tuning, which proved to

be a time-consuming and sensitive process. Second, it lacked self-adaptability,

requiring manual adjustments to handle changes in system dynamics or the

surrounding environment. Third, it had no mechanism to handle the inter-

dependencies between control variables, resulting in controllers that often

conflicted with each other during deployments.

To address these limitations and explore the potential of learning-based

control, we implemented a control policy for diver following using reinforce-

ment learning (RL). We started by framing the diver following problem as a

Markov decision process (MDP), carefully designing components such as the

state space, action space, reward signal, and network architecture. We then

employed Double Deep Q-Networks (DDQN) to solve the MDP and learn a

control policy.

Through simulation experiments, we demonstrated that well-tuned PID

controllers could outperform our RL-based controller in the task of diver

following. However, in terms of adaptability and generalizability, our RL-

based controller proved superior. It autonomously adapted and learned to

handle changes in the system and environment. Specifically, in scenarios

where debris obstructed part of the camera lens or the water density changed,

our RL-based controller adapted successfully while our PID controllers could
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not without manual intervention.

One significant limitation of our RL-based control module is its need for

a substantial amount of data to learn a control policy and adapt to changes.

This can be problematic for real-world deployment, where it can be expensive,

time-consuming, and dangerous to acquire such extensive data. A notable

trade-off emerges between retuning PID controllers for out-of-distribution

settings and allowing an RL-based controller to self-adapt through interac-

tion.

Another significant limitation arises from our RL-based control policy

being dictated by a neural network and offering limited transparency in the

underlying control process. While our PID control module allowed precise

calculation of the control output given the diver’s state, our RL-based control

module lacked such guarantees. This made it difficult to understand when

seemingly suboptimal control commands were selected, raising concerns for

stability and effectiveness in underwater human-robot collaboration.

Beyond the inherent limitations of our proposed control paradigms, there

are three notable areas for improvement in this work. First, our assumption

that a tracking sequence ends after a single missed detection is unnecessarily

strict. In practice, Aqua followed the diver for much longer periods, switching

between successful tracking and autonomous recovery. This behavior aligns

more naturally with how scuba divers follow each other in the open ocean,

frequently checking on their partner rather than continuously keeping them

in view. Relaxing the assumption that a tracking sequence ends after a
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single missed detection and instead measuring the duration without manual

intervention, or quantifying the balance between tracking and recovery, would

have been beneficial.

Second, throughout this thesis, we discussed the inability of separate PID

controllers to handle the interdependencies between control variables, and

how our RL-based controller can potentially manage them through shared

network layers and a common reward signal. While we examined this concept

from a theoretical and optimal control standpoint, we did not conduct ex-

periments to specifically evaluate this trade-off. It remains unclear whether

our RL-based controller truly learned to manage these interdependencies or

if these interdependencies were significant enough to hinder the performance

of our PID controllers.

Third, experiments regarding our RL-based controller were conducted

solely in simulation. While these simulations were helpful in exploring the

benefits and potential of learning-based control, reinforcing these ideas with

practical deployments would have been ideal. Our initial attempts to deploy

our RL-based controller in practice faced significant barriers such as the need

for extensive data and limited transparency in the control process. During

our initial deployments, Aqua frequently lost the diver when using our DDQN

control policy. It was unclear whether this behavior resulted from a lack of

data and experience, instability in the training process, an issue with our

problem design, or Aqua converging to suboptimal behavior.
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4.2 Future work

In addition to directly addressing the limitations of this work discussed in

Section 4.1, there are two intriguing directions for future work. The first is

to focus on methods to safely and effectively deploy an RL-based controller

in practice. While this thesis has primarily explored whether an RL-based

controller can learn to follow a diver and adapt to system and environmental

changes, it has not extensively addressed how quickly or efficiently it can

achieve this.

One approach to facilitate the deployment of RL-based control is to adopt

a shared control scheme. In this scheme, tuned PID controllers would be used

to safely explore the state-action space and stabilize the training process.

For example, in diver following, PID controllers could be activated when the

diver is located in the outer regions of the image plane to ensure stability and

minimize failures. The RL-based controller would be activated in the inner

parts of the image plane, where it could explore suboptimal actions without

losing visual contact with the diver. As training progresses, this inner region

could be gradually expanded, allowing the RL-based controller to take control

over larger parts of the image plane. Our initial simulation experiments with

this approach revealed that while overall training time was not significantly

reduced, the number of failures and resets drastically decreased. Thus, this

approach could be a promising direction for safely learning control policies

in practice with reduced manual intervention.
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Another promising direction to leverage the benefits of RL while mitigat-

ing the data-scarcity problem in the real world is to transfer a control policy

learned in simulation to the real world. Large amounts of training data can

be collected in simulation at a relatively low cost. The learned policy can

then be transferred in a zero-shot approach, where it is directly used for eval-

uation, or in a few-shot approach, where it serves as a robust starting point,

requiring much less data in the real world to achieve suitable performance.

However, control policies learned in simulation often fail to generalize to

the real world due to the large distribution shift between the two environ-

ments. Physics in simulation are only approximations of the real world, and

accurately simulating real-world dynamics is challenging. To successfully

transfer a control policy learned in simulation to the real world, steps must

be taken to ensure the policy is robust to modeling errors in both the system

dynamics and the environment.

Domain Randomization is a common technique used to bridge the distri-

bution gap between simulation and reality [89]. By injecting random varia-

tions and disturbances into the simulated environment, the agent is exposed

to a wide range of variations during training, which helps prevent overfitting

and enables the policy to generalize well to different evaluation environments.

Robust Adversarial Reinforcement Learning (RARL) is another popular tech-

nique for learning robust control policies [71]. This model-agnostic technique

involves adding an adversarial agent that strategically applies disturbances

during training. Through this approach, the adversary agent learns to op-
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Figure 4.1: An extension of our work to autonomously inspect a pipeline on
the seafloor using visual feedback.

timally apply disturbances, while the protagonist learns to accomplish the

specified task despite these disturbances. The resulting policies have been

shown to be robust to parameter variations and environmental changes dur-

ing evaluation. Investigating these methods further for the task of diver

following could be beneficial in developing a control policy capable of being

transferred to the real world.

The second interesting direction is to generalize our framework to other

underwater visual servoing tasks. For example, one direction we are currently

pursuing, shown in Figure 4.1, is autonomously inspecting a subsea pipeline

with Aqua. While there are differences in the nuances of the problem, the
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general theme of controlling Aqua’s movement from visual input remains

consistent. Instead of using a front-facing camera, we can use a downward-

facing camera to detect and segment the pipeline in the image plane. We

can then take control actions to progress along the pipeline for inspection.

By building on this work and exploring these two directions, we can en-

hance the robustness and efficiency of AUVs in visual servoing applications.

This will work towards advancing methods for underwater human-robot col-

laboration and autonomy.
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Acronyms

� AP: Average Precision

� AUV: Autonomous Underwater Vehicle

� CNN: Convolutional Neural Network

� DDQN: Double Deep Q-Networks

� DETR: DEtection TRansformer

� FOV: Field Of View

� FPS: Frames Per Second

� GPU: Graphics Processing Unit

� IMU: Inertial Measurement Unit

� IoU: Intersection over Union

� MDP: Markov Decision Process

� PID: Proportional-Integral-Derivative

� RL: Reinforcement Learning

� SDD: Simulated Diver Detection

� SORT: Simple Online and Realtime Tracking

� VDD-C: Video Diver Detection

� YOLO: You Only Look Once
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