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ABSTRACT

The ability of data assimilation to correct for initial conditions depends on the presence of a usable signal in

the variables observed as well as on the capability of instruments to detect that signal. In Part I, the nature,

properties, and limits in the usability of signals in model variables were investigated. Here, the focus is on

studying the skill of measurements to pull out a useful signal for data assimilation systems to use. Using model

runs of the evolution of convective storms in the Great Plains over an active 6-day period, simulated mea-

surements from a variety of instruments are evaluated in terms of their ability to detect various initial con-

dition errors and to provide a signal above and beyond measurement errors. The usability of the signal for

data assimilation is also investigated. Imaging remote sensing systems targeting cloud and precipitation

properties such as radars and thermal IR imagers provided both the strongest signals and the hardest ones to

assimilate to recover fields other than clouds and precipitation because of the nonlinear behavior of the

sensors combined with the limited predictability of the signal observed. The performance of other sensors was

also evaluated, leading to several unexpected results. If used with caution, these findings can help determine

assimilation priorities for improving mesoscale forecasting.

1. Detecting initial condition errors

For data assimilation to succeed, the presence of

a usable signal in data, an accurate model, and a prop-

erly functioning data assimilation system are all re-

quired. Much effort is being put on improving the

mathematics and mechanics of data assimilation systems

(e.g., Talagrand 1997; Kalnay 2003). Improving numer-

ical models and their ability to simulate observations is

the subject of even more work. The triad data–model–

assimilation is evaluated either in specific case studies

(e.g., Gao et al. 1999; Montmerle et al. 2002; Sun 2005)

or in simulations of the usefulness of observing systems

(e.g., Sokolovskiy et al. 2005; Tong and Xue 2005). But

to the author’s knowledge, nothing has been done to

systematically study the occurrence of a measurable and

usable signal in the data itself, at least in the context of

the mesoscale forecasting of convection.

Both measurability and usability are important. Mea-

surability refers both to the presence of a signal in the

fields observed as well as the possibility of pulling a signal

out of measurement noise. Usability deals with the ability

of a data assimilation system to take that signal and use it

to retrieve the error in initial conditions that caused the

signal observed. This, in turn, depends on both on the

mathematical ability of the assimilation system to go

from the effect to the cause as well as whether the signal

observed may have multiple causes or not.

To constrain all model variables everywhere, each

possible type of initial condition error must cause an un-

expected signal in the observations to be assimilated. In

Fabry and Sun (2010, hereafter Part I) it was established

that at the mesoscale, most initial condition errors in one

variable started to contaminate other variables within

15 min, and that by 3 h, there had been enough inter-

actions that one could not determine the origin of the

initial condition errors simply by looking at the relative

magnitude of errors in each variable. This is good news

because it means that many types of sensors can get a

signal from any particular initial condition error; however,

it raises the question of our ability to determine what the

origin of any discrepancy between expected measure-

ments and observations is. A second important finding of

Part I was that the response of a modeled atmosphere was

not always linearly proportional to the magnitude of the
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initial condition error. Though this result is not a surprise

per se, the relatively short time over which the model

behaved linearly given typical initial condition errors may

limit our ability to assimilate data over long enough pe-

riods to constrain larger-scale and slower-evolving pat-

terns. Because while on one hand, one would prefer to

assimilate data for as long as possible to constrain patterns

at all scales, the complex evolution of convective weather

limited the time period over which different model vari-

ables could be usefully constrained. With a simulation

made at 4-km resolution, moderate nonlinearities were

seen after 90 min in winds, temperature, and humidity

fields, while similar nonlinearities could be seen in clouds

and precipitation fields in 15–30 min.

The conclusions of Part I were based on the assump-

tion that one is perfectly measuring the model variables.

When measurements from actual instruments are con-

sidered, new complications arise. Measurements have

errors. The link between measurements and model var-

iables is sometimes complex. The signal from instruments

may have properties that make their assimilation more

difficult. And some instruments measure more than one

field, each of which has their own peculiarities.

It takes a considerable time to add a new type of mea-

surements in a data assimilation system. The choice of

where to focus data assimilation efforts is often a difficult

one, as even observational system simulation experiments

require much effort. But a great deal can be learned at

much lower costs by limiting oneself to evaluating the

strength and optimum usability of a dataset by a simulation

experiment. For example, there would be no point in trying

to assimilate a dataset that fails to deliver a usable signal.

Furthermore, an analysis of the strength of the signal pro-

vided by different instruments is useful to determine the

potential that their data has to correct for initial condition

errors. In this work, the framework established by Part I for

idealized model fields is used to study the properties and

the detectability of the signal caused by initial condition

errors in observations from a variety of sensors.

2. Determining signal strength

Ideally, one would like to know what is the skill or the

ability of using data from an instrument in a data as-

similation system to improve forecasts. In this work,

however, the focus will be strictly on determining the

presence of a signal and study some its properties, spe-

cifically how linear is the signal’s response to changes in

initial condition errors.

How much signal of the initial condition errors is there

in observations? The answer depends on the nature and

strength of initial condition errors, on the variable(s)

measured by a given instrument, on the duration over

which the observation is made, and on the extent with

which the initial condition errors make their way on the

variable(s) observed. The signal strength also depends

on the expected magnitude of the changes in the ob-

servations y compared with the uncertainty s(y) in these

observations. Finally, it is also a function of the ability of

the model and data assimilation to use the variables

observed.

Given an atmospheric state x, and a perfect model

whose initial conditions are in error by Dx at an initial

time, one can compute what would be the time evolution

of the error-free true observations y(x) coming from the

atmosphere as well as the error-free observations y(x 1

Dx) expected if the perturbed initial conditions were

true. The strength S of the observational signal from

a dataset yi at a time T after the initial time is hence

a result of the variance of the difference between the

expected and true observations, normalized by the ex-

pected uncertainties in the observations:
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where runs with reduced perturbations (k 5 1/8) are also

used in the calculations.

Part I used 16 summertime runs centered in the

southern Great Plains to study the effect of perturbing

initial conditions in 10 different variables and levels:

low-level winds, midlevel winds, high-level winds, low-

level temperatures, midlevel temperatures, high-level

temperatures, low-level moisture, midlevel moisture,

whole-atmosphere condensates, and soil moisture at all

depths. The fields generated by these runs will now be
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used to simulate what different sensors would have

observed.

In this work, we have chosen to focus on in situ in-

struments and ground-based remote sensors: surface

stations, rain gauges, radiosondes, radars, wind profilers,

radiometers, and global positioning satellite (GPS) re-

ceivers at the surface. The only satellite-borne sensor

considered was the thermal IR imager. To properly

compute the skill of an instrument, one must simulate its

measurement accurately, determine the number of in-

dependent measurements N per unit time, and agree on

the uncertainty s of each measurement.

3. The quest for Ns and ss

The mismatch between model-simulated and actual

measurements depends on the physics of the measure-

ment process, on the number of measurements available

to a real-time or a postfacto user, and on the ability of

the model and of the data assimilation system to prop-

erly simulate the measurements. For example, let us

consider radar reflectivity Z, one of the variables simu-

lated in this work that is the least directly related to

a model variable. If the model microphysics is truly ca-

pable of simulating reflectivity such as with Szyrmer

et al. (2005), then the data can be used fully and the skill

calculation should only depend on true measurement

accuracy. But if the model microphysics only simulates

mass and/or number concentration, and then derives

reflectivity, then the uncertainty should also include the

uncertainty in the conversion between mass and Z. In

that case, what would be a 1-dB (25%) measurement

error suddenly becomes a 3-dB equivalent (100%) in-

terpretation and measurement error based on years of

experience measuring drop-size distributions. This di-

minishes the skill of Z measurements by a factor of 10.

Furthermore, the spatial and temporal correlation

structure of that uncertainty should also enter into the

picture. Since the focus of this work is on data, we chose

to exclude considerations about model limitations from

our analysis, but these should be kept in mind in any real

situation as the effective ability of a measurement to be

used to detect initialization errors also depends on them.

Table 1 summarizes the values used for the number of

independent measurements and measurement accuracy

for most of the instruments studied. In all cases, when

TABLE 1. Number of independent measurements N per hour per instrument and their uncertainty s for each type of

measurement simulated.

Instrument or platform Variable measured N (h21) Error s Notes and references

GPS receiver Zenith wet delay (ZWD) 2 1 kg m22 ILW

equivalent

Braun et al. (2003)

Martin et al. (2006)

Surface pressure (P) 2 0.5 hPa See surface station

Microwave radiometer Integrated vapor (IWV) 24 1 kg m22 Martin et al. (2006)

Integrated liquid (ILW) 24 0.1 kg m22 s: Educated guess

Radar, long range

(r 5 230 km)

Doppler velocity (yDOP) See text and Fig. 1 1 m s21 Standard s used

Reflectivity (Z) See text and Fig. 1 1 dB

Radar, short range

(r 5 50 km)

Refractivity (N) 2120; 1 point every 4 3

4 km2 up to 30-km

range, 12 times

2 s: Educated guess

Radiosonde Humidity (RH) 60 5% Uncertainties based on those of

the Vaisala

RS92 radiosonde

Temperature (T) 60 0.58C

Winds (u) 60 1 m s21

Rain gauge 15-min rain (R) 4 0.2 mm Tipping-bucket uncertainty used

Satellite-borne

IR imager

Brightness

temperature (TBB)

4 every 4 3 4 km2 18C Menzel and Purdom (1994)

Surface station Humidity (RH) 12 3% Uncertainties based

on those of the Vaisala WXT510

weather transmitter

(see online at www.vaisala.com)

Pressure (P) 12 0.5 hPa

Temperature (T ) 12 0.38C

Winds (u) 12 0.3 m s21

Wind profiler Winds (u) 2 every 0.25 km up

to 15-km height

1 m s21 For noninterferometric profilers

Virtual temperature (Ty) 2 every 0.25 km up

to 3-km height

18C May et al. (1989)
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a choice was available between values estimated in a real-

time context and a research one, the real-time numbers

were preferred. For instruments with different uncertainty

and data availability characteristics than those simulated,

it is an easy matter to scale the results that will follow using

(1) as a guide. Because of the complex sampling strategy

of radars, the values of N chosen for reflectivity and

Doppler velocity deserve some explanations.

The Weather Surveillance Radar-1988 Doppler

(WSR-88D) radars were designed to have accuracies of

1 dB in reflectivity and 1 m s21 in Doppler velocities at

resolutions of 1 km in range and 18 in azimuth. These

values were used for s. The total number of samples

available and its height distribution depend on the vol-

ume coverage pattern (VCP) used to scan the atmo-

sphere. For this test, the VCP-12 pattern was assumed

(Fig. 1a). Given a maximum range, the height distribu-

tion of the number of samples per hour for reflectivity

can be computed (Fig. 1b). Two maximum ranges were

considered: 230 km for long-range WSR-88D radars,

and 50 km for short-range radars such as those de-

veloped by the Center for Collaborative Adaptive

Sensing of the Atmosphere (CASA; McLaughlin et al.

2005). The number of samples for Doppler velocity de-

pends on the presence of targets to scatter the radar

waves. Targets were assumed present in precipitation

(at least 10 dBZ of equivalent reflectivity due to snow,

graupel, and rain), and in conditions where insect echoes

would be likely, chosen to be everywhere in the tropo-

sphere where the temperature exceeded 108C. A final

Doppler velocity scenario was considered for short-range

radars lacking the sensitivity to detect insects. In the case

of short-range radars, no additional skill was attributed

to the potential gains adaptive scanning could provide.

4. Results from each sensor

We took from Part I the control runs and the runs

perturbed by different plausible initial condition errors.

We then computed the signal observed in (1) by all the

sensors simulated. The strength of the signal for each

sensor depends on the nature of the perturbation or initial

condition error, the time since the original perturbation,

and the measurement capabilities of the sensor. Fur-

thermore, the nonlinearity issues that were discussed in

Part I apply to measurements in the same way as they did

with model variables; we therefore also computed the

nonlinearity index of each variable measured using (2).

Figure 2 shows the sum of all the signal strengths re-

sulting from all the initial condition errors. The signal

strength plotted is the strength per sensor and per hour

of data collected. Because of the large amount of in-

formation in Fig. 2, the results are discussed instrument

by instrument. But first, a few words on the inter-

pretation of signal strength. Instruments or datasets

providing signal strengths that largely exceed 1 when

integrated over the assimilation period can be used to

detect the presence of initial condition errors. That be-

ing said, these initial condition errors are often spread

among many variables and several tens or hundreds of

thousands of model grid points. As a result, the greater

the signal strength, the more useful a dataset will be to

quantify the effect of such errors. This does not neces-

sarily imply improved ability to determine where such

errors originated from, but a stronger signal should help.

a. Wind profilers and RASS

For the wind profiler and the radio acoustic sounding

system (RASS), a good system capable of providing

FIG. 1. (a) Altitude sampled by the WSR-88D VCP-12 with its

14 elevation angles as a function of range. (b) Resulting average

number of reflectivity samples per hour and per kilometer of alti-

tude as a function of height for a long- and short-range radar.
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winds up to 15 km and virtual temperature up to 3 km at

all times was assumed. At the initial time, the signal

caused by expected errors in all variables was 20 times

larger than measurement noise per hour of wind profiler

data collected, and twice the measurement noise per

hour of RASS data collected. Though the signal is weak

compared to other imaging sensors, it is not strongly

nonlinear up to 80 min. The RASS signal is dominated

by low-level temperature errors at all times while the

wind profiler signal is first due to wind errors at the

initial time, and then to a combination of winds, tem-

perature, and midlevel humidity errors after half an

hour, the latter being responsible for the buildup in the

nonlinearity of the signal. This pattern will repeat for

other instruments: after a certain amount of time, dif-

ferences due to midlevel humidity errors end up both

dominating the signal and causing most of the non-

linearities, the pace at which it occurs depending on how

quickly humidity errors make their way into the fields

observed by the instrument considered. For instruments

measuring winds and ironically humidity, this happens

more slowly. For others that sample fields directly im-

pacted by humidity changes such as instruments mea-

suring clouds or precipitation like radars or satellite

imagers, this will occur within the first 15 min.

b. Radars

As can be seen by the computed strength of the signals,

radar data are extremely sensitive to changes in the initial

conditions. Signal strength of reflectivity and velocity data

are comparable at the initial time, at least if the velocity

data from insects can be used. But because of the rapid

divergence in time of precipitation patterns between the

perturbed and the control runs, the reflectivity signal

rapidly becomes 10 times stronger than the velocity one.

Unfortunately that rapid divergence becomes strongly

nonlinear beyond 10 min, severely limiting the assimila-

tion of reflectivity over long time intervals. As a result, by

the time errors in variables other than condensate amounts

can propagate to radar reflectivity differences, mainly

from all midlevel fields, the reflectivity signal becomes

hard to use. Velocity data remain more linear, especially

outside storm regions. But even in storm regions, velocity

data can be assimilated for longer periods than reflectivity

data, as illustrated by the 45-min linearity time obtained

for Doppler velocity from storms only; here too, errors in

all midlevel fields give the strongest signal. Refractivity

data give the weakest signal of all, but it is linear up to 2 h;

by the nature of the measurement, its signal at all times is

dominated by low-level humidity and temperature errors.

FIG. 2. Variance of the difference between observations in the perturbed runs and those in the control runs,

normalized to the variance of measurement uncertainty, as a function of time for each sensor simulated. Lines are

solid if the nonlinearity index (NLI) is less than 0.5, dashed if the NLI is less than 0.9, and dotted beyond. To help

clarify the plot, sensors were split in two groups, imaging remote sensors to the left, and all other sensors to the right.

Thin lines were used on the left plot for short-range radar results and on the right plot for the results for surface

weather stations.
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The signal strength from short-range radars is obvi-

ously weaker than for longer-range ones because of their

smaller spatial coverage, but the linearity characteristics

are similar. If one contrasts the curves with and without

insect echoes, one will note that 90% of the signal

computed for the velocity data from short-range radars

at the initial time comes from insect returns, with that

number somewhat diminishing to 70% after an hour.

Hence, for short-range radars too insensitive to detect

Doppler returns from insects, velocity data loses a large

part of its appeal.

A final word of caution: because of the massive

amounts of data collected by radar per unit time, it does

not take much of a difference in the observed fields to

result into huge computed signals. A single storm that is

a bit larger or smaller than expected will cause hundreds

of radar pixels to be altered, and a mean change of 10 dB

on the reflectivity of these pixels will result in signal

strength in the tens of thousands. So even though large

signals are detected, they do not necessarily translate

into major changes in the fields observed by the naked

eye. Also, in practice, inaccuracies in modeling radar

reflectivity may well dwarf the signal caused by initial

condition errors.

c. Thermal IR imagers

Because of their high sampling frequency (4 times an

hour) and their complete coverage of the domain, sat-

ellite imagers provide data that are extremely sensitive

to any change in the soil temperature or in the cloud-top

temperature and coverage. In fact, it is the only sensor

that provides any information on errors in soil proper-

ties at the initial time. But the greatest signal comes

from changes in midlevel moisture in saturated or near-

saturated air, resulting in the disappearance or appear-

ance of clouds. Keep in mind that here and elsewhere,

‘‘midlevel’’ is defined as the lower troposphere above

the boundary layer (e.g., from about 1 km AGL to half-

way between the ground and the tropopause). The at-

mosphere is conditionally unstable in many regions

where air is humid enough that a 20% change in relative

humidity will result in the appearance or disappearance

of clouds. In these regions, a change in moisture results

in a step-function change in buoyancy; a parcel that

was unstable may then become stable, or vice versa.

This then results in a completely different forecast out-

come. Furthermore, the observed brightness tempera-

ture changes suddenly with the appearance of clouds,

and then much more slowly as the clouds become

denser. The combination of the nonlinear change in IR

brightness temperature change with cloud water con-

tent, coupled with the step-function trigger or disap-

pearance of free convection, makes ›TBB/›x, the change

in IR signal with respect to atmospheric conditions,

fluctuate wildly with small changes in x. The thermal IR

signal is hence extremely nonlinear at the initial time

and even more so at latter times, much worse than the

data of any other sensor considered here. As a result, the

direct assimilation of time sequences of TBB data may

prove challenging if one uses minimization techniques

relying on linear assumptions. Even though it is gener-

ally better to assimilate the rawest data possible, in this

particular case, one should explore the possibility of

assimilating a derived quantity q instead of TBB such

that ›q/›x is a more continuous function than ›TBB/›x.

In the case of TBB data from the IR window, it is not

clear what such a quantity q could be: a TBB only

available in cloud-free regions is a possibility, but such

a dataset would lose of a lot of its usefulness. Note that

this issue also applies to radiometric sounding mea-

surements made in more opaque regions of the IR, even

though measurements at these wavelengths are less af-

fected by cloud appearance and disappearance.

d. Microwave radiometers

It was assumed here that microwave radiometers

measured without bias errors both integrated liquid

water (ILW) and integrated water vapor (IWV) and

only those fields. Good signal of the diverging runs was

observed on both variables. The ILW signal is stronger

and less linear because of the nonlinear behavior of

clouds in the simulations, the linearity of the signal being

comparable to that of radar reflectivity. The IWV mea-

surement is good at detecting humidity errors at all

times and can sense a weaker signal associated with

initial condition perturbations in midlevel temperatures

and winds after half an hour. The overall signal is also

one of the most linear of the sensors considered.

e. Ground-based GPS receivers

Here, we chose to consider ground-based GPS re-

ceivers, not satellite-based ones. And although GPS

receivers measure properties similar to those of the

microwave radiometer IWV, the signal strength is much

weaker because of the smaller frequency of measure-

ment and the larger sampling errors. In fact, given the

magnitude in the perturbations in initial conditions

considered here, a GPS receiver cannot observe a signal

comparable to measurement noise after averaging 1 h of

data, the lowest signal of all the sensors in this study.

That may change somewhat as the accuracy of GPS

measurements of IWV increase.

f. Radiosondes

The interpretation of the radiosonde scores is some-

what more complicated because of the short-lived
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nature of the instrument and the multiple fields mea-

sured. Here, scores are considered in terms of radio-

sonde hours. To obtain the scores mentioned, one would

have to have one radiosonde in the air at all times col-

lecting data, a new radiosonde replacing immediately

a dead one typically every 30 min or so. Hence, if only

one radiosonde was used, the integrated score over

30 min should be considered with the starting time being

how long after the beginning of the assimilation window

the radiosonde was launched.

Winds and humidity data give the strongest signal,

followed by temperature about 3 times weaker. All

three signals are linear enough to be easily assimilated

for 90 min. And with three sensors, radiosondes can

detect signals from all initial condition errors except soil

moisture and, to a lesser extent, condensates.

g. Surface stations

Surface station scores were penalized compared to the

radiosonde scores on the grounds that typically, data

frequency is much smaller: except in research networks,

most stations report in real time at best every 5 min, if

not once an hour. Measurement accuracy is somewhat

higher, but since our knowledge of the magnitude of

fields at the surface is generally better than aloft except

for temperatures, signals of discrepancies between ex-

pected and measured values are weaker. The result is

then that the greatest signal observed from surface sta-

tions is by far from wind errors, followed by low-level

temperature, pressure, relative humidity, and finally rain

gauges. At the surface, the relative humidity signal was

associated with both low-level humidity and to a lesser

extent soil moisture errors, pressure perturbations with

midlevel winds and low-level humidity errors, temper-

ature signal with low-level temperature errors, and wind

signal with low-level wind and temperature errors. More

than for any other sensor, one should take the results

from surface stations with caution: they are based on the

assumption that models are perfectly capable of simu-

lating reality 2 m above ground level, a feat that is far

from assured in reality.

h. Reducing initialization errors

To reduce initialization errors, one must hence focus

on the fields whose errors affect forecast performance

the most, and then chose instruments and datasets that

give the strongest and easiest signal to assimilate on

these errors. For example, in Part I, we identified in-

accuracies in midlevel moisture as the dominant cause of

forecast errors, especially for short lead time forecasts.

In that case, assimilating measurements sensitive to

humidity errors would bear the most fruits. Many sen-

sors measured signals associated with midlevel humidity

errors, but most of these may be difficult to assimilate

because of the nonlinearity of their signal. Of the data-

sets considered in this study, the best to minimize these

errors appear to be IWV from microwave radiometers,

and RH from radiosondes for periods longer than an

hour, and Doppler velocity from radar for periods of tens

of minutes. The first two should be easier to assimilate

because of the direct link between their data and mid-

level humidity, while Doppler velocity differences are

much less directly linked to humidity and a good model is

required to take full advantage of that data.

5. How to use and not misuse these results

I shudder with terror at the thought that infrastructure

administrators could exploit the results from Fig. 2 to

make cost-effectiveness calculations in an attempt to

determine which types of instruments should be pre-

ferred over others. While this study provides some

unique information on how well different sensors are

able to detect the presence of initial condition errors, it

also has limits that are important to remember:

1) This work focused on determining the presence of an

observable signal and somewhat on the linearity of

that signal. It did not begin to touch the issue of how

well assimilation systems are able to use the signal

especially when the field measured is related in-

directly or in a complex manner to model variables.

For example, a signal in the surface pressure data was

observed for almost all initialization errors, but it is

not clear that one could use that signal to determine

the nature and magnitude of the initialization error.

2) The issue of the complementarities of the infor-

mation between different sensors, or the lack of it,

was not looked at. Different sensors may be sensitive

to a particular field, say humidity, but depending on

the technology used or the heights sampled, the in-

formation from these sensors may be highly re-

dundant or not.

3) This study focused on the forecast of convective

weather of the central Great Plains variety at meso-

scale time and space scales only.

4) Its results are based on our best estimates of what

errors currently exist in both model fields and mea-

surements. As instruments and model initialization

improve, these results will change.

5) They are also based on the assumption that the 4-km

resolution runs used in our identical-twin simulations

are realistic enough not to miss crucial effects or

phenomena that would significantly alter forecast

outcomes.
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In the end, the most valuable aspect of this study is the

approach we used and what information it can provide,

but the exercise needs to be repeated in the appropriate

context to be most useful. The results presented here are

more intended to be used as a guide for assimilation

efforts: which model variables seem to be the most critical

to constrain, over what duration, and which technologies

or datasets show the most promises.

In this context, what have we learned? A first question

we had was how well can one use time series data from

a sensor whose data are sensitive to changes in one

model field to constrain other model fields. This is only

possible if the errors introduced in one model field

propagate quickly enough to other fields that its signal

can be observed. Another crucial aspect, the linearity

assumption, is whether the signal strength is pro-

portional enough to the magnitude of the initialization

error to be assimilated effectively. While initialization

errors in one field quickly propagate to all other atmo-

spheric variables, they do not always result in an as-

similable signal. In particular, uncertainties in midlevel

humidity, the ones that caused the largest forecast er-

rors, also give the least linear signals on other fields. As

a result, measurements from imaging sensors targeting

properties of condensates like those of brightness tem-

peratures from satellite imagers and reflectivity from

radars provide a signal that cannot be easily assimilated

over long periods. These will be useful to assess the lo-

cation of clouds and precipitation at the initial time and

constrain some of the other fields to have values com-

patible with the presence of clouds and precipitation;

but one will have difficulties to use a time sequence of

data over long periods to retrieve the forcing processes

of the observed clouds and precipitation. The net result

of this exercise is that to improve forecasts, one has little

choice but to constrain midlevel humidity as much as

possible with data from instruments sensitive to mid-

level humidity such as radiosondes and radiometers or

possibly a very large number of GPS sensors. If our as-

sumptions on typical errors are correct, we found that

errors on other variables have smaller effects and have

a more linear response than those from moisture. Fur-

thermore, temperature and winds are dynamically re-

lated, easing the retrieval of one knowing the other. For

those, a variety of sensors can be used with radar mea-

surements of Doppler velocity heading the list of the

instruments considered, followed by in situ measure-

ments by radiosondes and surface stations. In the end,

one can see that at the mesoscale, there is no magic

bullet: to be successful, one must assimilate data from

a variety of sources to properly initialize models.

Another conclusion one can draw from this exercise is

that there exist considerable opportunities for other sen-

sors. In Part I, we found that the greatest current source of

forecast errors are due to 1) uncertainties in midlevel

moisture and 2) uncertainties in low- and midlevel tem-

perature, low-level humidity, and midlevel winds. Given

this result, one should first consider the performance of

other sensors or techniques such as satellite-borne re-

trieval of temperature and humidity by profiling in the IR

(Hayden and Schmit 1994) or by GPS receivers in space

(Ware et al. 1996). But given that the first does not work

in cloudy areas and that mesoscale coverage of GPS-

based soundings would only be feasible in a distant future,

one should consider developing new instruments target-

ing the variables listed above, ideally in that order.

6. In brief

The work of Part I was extended by testing the ability

of various common meteorological sensors to detect

a signal of initial condition errors. Scanning (radar) and

framing (imagers) sensors gave the strongest signals. But

these sensors generally measure quantities sensitive to

properties of condensates, such as radar reflectivity or

brightness temperature; these data cannot be assimi-

lated easily for long periods because of the nonlinear

response of these quantities to perturbations in humid-

ity, the variable whose uncertainty introduces the

greatest forecast error. Datasets that lend themselves to

be assimilated over a longer time window are Doppler

wind measurements and data from humidity-measuring

instruments. But given the looser dynamical relation-

ships between thermodynamics and dynamics at the

mesoscale than at larger scales, one should strive to

measure all fields or risk missing important information.
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