
Reinforcement learning in partially observed
and multi-agent systems

Jayakumar Subramanian

Center for Intelligent Machines
Electrical & Computer Engineering

McGill University
Montreal, Canada

April 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy.

c© 2020 Jayakumar Subramanian

i

Abstract

In this thesis we investigate the problem of reinforcement learning in partially observed
and multi-agent systems. The belief state, which is the most common information state
used in planning for partially observed systems, is not directly applicable in reinforcement
learning (RL). This is because one does not know the observation likelihood in order to
recursively compute the belief state from the observations in RL. We define an approximate
information state (AIS), which can be learned from observational data alone and hence is
useful for RL. We present two variants of AIS—one that is sufficient for prediction of the
per-step reward and next AIS distribution, and one that evolves in a state-like manner and
is sufficient for predicting the per-step reward and the next observation distribution. For all
variants, we derive error bounds in using AIS and also some existing approximation results
in literature using the AIS concept. We present a (deep) RL algorithm that uses AIS, prove
its convergence under standard technical assumptions and demonstrate its performance
versus one of the state of the art approaches in four toy examples.

We then extend this concept of AIS to develop an RL algorithm for a class of large
population cooperative multi-agent systems called mean-field teams. A contemporaneous
result in literature is that the performance bound for such mean-field teams when using an
infinite population assumption is O(1√

n
). We derive this bound in terms of the AIS concept.

Depending on the nature of the simulator available for RL, i.e, a complete system-level
simulator or an agent-level simulator, we present two (deep) RL algorithms and demonstrate
their performance using two examples.

Next, we consider (deep) RL in another class of large population systems called stationary
mean-field games. The planning solution for such systems has been presented in literature.
We present (deep) RL algorithms for these systems and also define two generalizations of the
original equilibrium solution concepts for reinforcement learning. We prove the convergence
of the algorithms and also demonstrate their performance using two examples.

Finally, we present an RL algorithm based on using concepts from renewal theory
called Renewal Monte Carlo. We theoretically prove the convergence of this algorithm and
numerically demonstrate its efficiency in problems with renewals. Though we have presented
results for a single agent case, these can be extended to policy evaluation (as a low bias and
low variance alternative to Monte Carlo and temporal difference (TD(λ) methods) in any
dynamic programming decomposition that has this renewal structure.

ii

Résumé

Dans cette thèse, nous étudions le problème d’apprentissage par renforcement dans les sys-
tèmes partiellement observés et multi-agents. L’état de croyance, qui est l’état d’information
le plus couramment utilisé dans la planification de systèmes partiellement observés, n’est
pas directement applicable dans l’apprentissage par renforcement (RL). En effet, on ne
connaît pas la probabilité d’observation afin de calculer récursivement l’état de croyance à
partir des observations dans RL. Nous définissons un état d’information approximatif (AIS),
qui peut être appris à partir de données d’observation uniquement et est donc utile pour RL.
Nous présentons deux variantes d’AIS — une qui est suffisante pour prédire la récompense
par étape et la prochaine distribution AIS, et une qui évolue de manière semblable à un
état et est suffisante pour prédire la récompense par étape et la distribution de la prochaine
observation. Pour toutes les variantes, nous dérivons des limites d’erreur en utilisant AIS
et également certains résultats d’approximation existants dans la littérature utilisant le
concept de AIS. Nous présentons un algorithme RL (profond) qui utilise AIS, prouvons sa
convergence sous des présomptions classiques et démontrons ses performances par rapport à
l’une des approches de pointe sur quatre tâches.

Nous étendons ensuite ce concept d’AIS pour développer un algorithme RL pour une
classe de systèmes multi-agents coopératifs à grande population appelés équipes de champ
moyen. Un résultat contemporain dans la littérature est que la performance liée à de telles
équipes de champ moyen lors de l’utilisation d’une hypothèse de population infinie est
O(1√

n
). Nous dérivons cette limite en termes de concept AIS. Selon la nature du simulateur

disponible pour RL, c’est-à-dire un simulateur complet au niveau système ou un simulateur
au niveau agent, nous présentons deux algorithmes RL (profonds) et démontrons leurs
performances à l’aide de deux exemples.

Ensuite, nous considérons le RL (profond) dans une autre classe de systèmes à grande
population appelés jeux stationnaires à champ moyen. La solution de planification pour
de tels systèmes a été présentée dans la littérature. Nous présentons des algorithmes RL
(profonds) pour ces systèmes et définissons également deux généralisations des concepts
de solution d’équilibre originaux pour l’apprentissage par renforcement. Nous prouvons la
convergence des algorithmes et démontrons également leurs performances à l’aide de deux
exemples.

Finalement, nous présentons un algorithme RL basé sur l’utilisation de concepts de la

iii

théorie du renouvellement appelés Renewal Monte Carlo. Nous prouvons théoriquement la
convergence de cet algorithme et démontrons numériquement son efficacité dans les problèmes
de renouvellement. Bien que nous ayons présenté des résultats pour un cas d’agent unique,
ceux-ci peuvent être étendus à l’évaluation des politiques (comme alternative à faible biais et
faible variance à Monte Carlo et à la différence temporelle (méthodes TD(λ)) dans n’importe
quelle décomposition de programmation dynamique qui a cette structure de renouvellement.

iv

Acknowledgments

I first wish to thank my supervisor, Prof. Aditya Mahajan, for all the guidance, support,
inspiration and encouragement that he has given me during my stint at McGill University.
I re-entered academia after around 10 years of completion of my post graduate studies, and
this has been a wonderful journey of four years thanks primarily to Prof. Mahajan. Both as
an instructor for the course on stochastic control that I attended and as my supervisor, his
enthusiasm for the subject, desire for precision and clear communication have made a huge
impact on my thinking. I am extremely grateful to him for his belief in me and his patience
with me throughout the course of my study. It has been my great honor and privilege to
have worked under his guidance.

I wish to thank my friend Dr. Aditya Paranjape for encouraging me to pursue doctoral
studies and also introducing me to Prof. Aditya Mahajan and McGill. His advice and
research collaboration have been very valuable to me. I wish to thank my professors at
IIT Bombay, especially Prof. Mandal and Prof. Shimpi, for their continued support and
guidance.

I would like to take this opportunity to thank McGill University for the excellent research
atmosphere and also the financial support extended to me through the McGill Engineering
Doctoral Award. I am also grateful for the excellent computational facilities available at
McGill and those provided by Calcul Quebec, Compute Canada etc. Montreal’s attractive
and multi-cultural environment, while being one of the world’s leading centers of machine
learning, definitely contributed a lot to my experience.

At McGill, it has been my good fortune to learn from Prof. Peter Caines, who taught
me a course on filtering and prediction for stochastic systems and was also part of my
supervisory committee. The various formal and informal discussions I have had with him
will remain forever invaluable to me. Prof. Joelle Pineau has also been a great source of
research support and encouragement. As part of my supervisory committee, I have gained
a lot from her advice and suggestions in improving my work, especially in the work on use
of renewal theory in reinforcement learning.

I wish to thank all the students in the Systems and Control lab at McGill for being
great friends throughout the course of my studies. Specifically, I wish to acknowledge the
research discussions and support I received from Jhelum Chakravorty and Mohammad
Afshari. In addition, they formed a key part of my social life in Montreal along with Ali

v

Pakniyat, Shuang Gao and Hamed Layeghi. I wish to thank Raihan Seraj for being an
excellent collaborator and friend. I remember fondly our many discussions and time spent
in coding examples and revising articles. Debarshi Ghoshal (Gogol) has been a great friend
and confidant and the long discussions with him on various topics have enriched my stay in
Montreal. I am also very grateful to my apartment mate Gandharv Patil for varied research
discussions and collaborations and also for teaching me some handy cooking skills! I wish
to thank Amit Sinha for discussions on approximate information state and am grateful
to him for providing me with some of the numerical results for my thesis. I also wish to
thank all my other friends from my lab and from the RL lab at McGill—Pierre-Luc Bacon,
Riashat Islam, Sameen Yeasar Arnob, Nima Akbarzadeh, Borna Sayedana, Kushal Arora,
Khimya Khetarpal, Shagun Sodhani, Thang Long Doan, Bogdan Mazoure, Fatih Gurturk
for providing a very friendly and intellectually stimulating work environment. I am grateful
to Bogdan for helping me with the French translation of my abstract. I am greatly indebted
to Shagun for both the research and general conversations that we have had. Interacting
with him has been a great pleasure and my only regret is that we met fairly late in the
course of my study. Harm van Seijen and Mehdi Fatemi from Microsoft Research Montreal
also taught me several aspects of research both from an academic and industrial research
perspective and I am very thankful to them. I also with to thank Prof. Doina Precup, Prof.
Mike Rabbat and Prof. Akshat Kumar for sparing the time for several research discussions
and for exploring potential collaboration topics.

I have tried to recollect and acknowledge all the people who have helped me in my
doctoral studies. I am sure I may have inadvertently missed a few names and for that I
apologize in advance. Though I may have forgotten to mention their names, I have not
forgotten their contribution to my study and will be grateful for that.

Finally I would like to thank my family—my parents, my sister Kaveri, my brother-in-law
Venkat and my nieces Sindhuja and Shailaja for being there for me always. Without their
support, my doctoral study would not have been possible. Their belief in me and the belief
and support of my friends and former colleagues Sridhar Vaidyanath, Supratim Banerjee
and Shalini Banerjee have helped me persevere through several difficult situations in my
study. Though they probably know this, I wish to thank them again from the bottom of
my heart.

This page is intentionally left blank.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 An overview of multi-agent reinforcement learning (Multi-agent reinforcement

learning (MARL)) . 2
1.2.1 Multi-agent systems Multi-agent systems (MAS) 2
1.2.2 Multi-agent reinforcement learning (MARL) 3

1.3 Previous work . 5
1.3.1 Previous work on Reinforcement learning (RL) in Partially observable

Markov decision processes (POMDP)s 5
1.3.2 Previous work on MARL . 6

1.4 Scope of this thesis . 7
1.4.1 POMDPs . 7
1.4.2 Mean-field teams . 8
1.4.3 Stationary mean-field games . 8
1.4.4 MDPs with renewal . 8

1.5 Claims of originality and publications . 9
1.5.1 Claims of originality . 9
1.5.2 List of publications . 10
1.5.3 Contributions of co-authors . 12

2 Approximate dynamic programming and RL for POMDPs 13
2.1 Information state . 14

2.1.1 Model . 15
2.1.2 A dynamic programming decomposition 16

viii Contents

2.1.3 Information state and a simplified dynamic program 18
2.2 Approximate information state (Approximate information state (AIS)) . . . 21
2.3 Stochastic AIS . 26
2.4 Extension to infinite horizon . 29

2.4.1 Information state for infinite horizon 29
2.4.2 Approximate information state for infinite horizon 31

2.5 Comparison with existing results in literature 33
2.5.1 Relation with state compression . 33
2.5.2 Relation with action compression . 34
2.5.3 Relation with observation compression (world models) 37
2.5.4 Relation with predictive state representations (PSRs) 40
2.5.5 Relation with bisimulation . 40
2.5.6 Relation with Deep MDPs . 41
2.5.7 Relation with other approaches for POMDPs 41

2.6 Reinforcement learning for POMDPs using AIS 42
2.6.1 Constructing an approximate information state 42
2.6.2 Reinforcement learning . 44

2.7 Numerical examples . 48
2.8 Conclusion . 51

3 RL using AIS for mean-field teams 53
3.1 Introduction . 53

3.1.1 Notation . 54
3.2 System model and problem formulation . 55
3.3 Planning solution for Problem 1 . 57
3.4 Mean-field limits . 58

3.4.1 Model and problem formulation . 58
3.5 Approximation bounds . 60

3.5.1 Preliminaries on Lipschitz continuity 60
3.5.2 Lipschitz continuity of the reward R, transition function Pḡt and the

value function V̄ . 61
3.5.3 Relation between the solutions of Problems 1 and 2 67

Contents ix

3.5.4 Relation between the solutions of Problem 1 with different number of
agents . 69

3.5.5 Extension to infinite horizon . 70
3.6 Mean-field team reinforcement learning (MFT-RL) 71

3.6.1 Restriction to parameterized policies 72
3.7 Numerical experiments . 73

3.7.1 Benchmark domains . 73
3.7.2 Simulation results . 74

3.8 Conclusion . 77

4 RL in Stationary Mean-field Games 79
4.1 Introduction . 79
4.2 Background . 81

4.2.1 Mean-field games (MFG) . 81
4.2.2 Stationary MFG . 82
4.2.3 Solution concepts . 83
4.2.4 Local solution concepts . 84

4.3 RL for stationary MFG . 86
4.3.1 RL algorithm for learning LSMFE . 87
4.3.2 RL algorithm for learning LSMF-SO 91
4.3.3 Simultaneous perturbation based gradient estimation 92

4.4 Numerical experiment . 94
4.4.1 Example 1: Malware spread . 94
4.4.2 Example 2: Investments in product quality 97

4.5 Discussion . 99
4.5.1 Finite vs. infinite populations . 99
4.5.2 Difference between MFG and stationary MFG models 99
4.5.3 Related work . 100
4.5.4 Remarks on the generality of the model 101

5 Renewal Monte Carlo: Renewal theory based RL 103
5.1 Introduction . 103
5.2 RMC Algorithm . 105

x Contents

5.2.1 Likelihood ratio based gradient estimator 109
5.2.2 Simultaneous perturbation based gradient estimator 112
5.2.3 Remark on average reward setup 113

5.3 RMC for Post-Decision State Model . 114
5.4 Approximate RMC . 115
5.5 Numerical Experiments . 118

5.5.1 Randomized MDP (GARNET) . 118
5.5.2 Event-Triggered Communication . 120
5.5.3 Inventory Control . 122

5.6 Conclusions . 124

6 Conclusion 125
6.1 Summary . 126

6.1.1 AIS for POMDPs . 126
6.1.2 RL in mean-field teams . 126
6.1.3 RL in stationary mean-field games 127
6.1.4 Renewal Monte Carlo . 128

6.2 Future work . 128
6.3 Final thoughts . 129

A Background of neural network architectures 131
A.1 Layer and activation . 132
A.2 Feed-forward neural network . 134
A.3 Recurrent neural network (RNN) . 135

A.3.1 Long short-term memory (LSTM) 136
A.3.2 Gated recurrent unit (GRU) . 138

A.4 Conclusion . 139

References 141

xi

List of Figures

2.1 A stochastic input-output system . 15
2.2 The timing diagram of the input-output system. 15
2.3 Neural network based function approximators for RL using AIS. 44
2.4 Performance versus samples for all the problems. The solid line shows the

median value and the shaded region shows the region between the first and
third quartiles over 10 runs. 49

3.1 Performance of different variants of MFT-RL for demand response domain
(25 independent runs). 75

3.2 Performance of different variants of MFT-RL for malware spread domain (15
independent runs). 75

3.3 Performance of different variants of MFT-RL for demand response domain
(25 independent runs). 76

3.4 Performance of policy obtained in mean-field limit system and 100-agent
system in systems with larger number of agents. 76

4.1 Performance versus steps: RL algorithm converging to LSMFE or LSMF-SO
for the malware spread example. The solid line shows the median value and
the shaded region shows the region between the first and third quartiles over
100 runs. 96

4.2 Performance versus steps: RL algorithm converging to LSMFE for the product
quality investments example. The solid line shows the median value and the
shaded region shows the region between the first and third quartiles over 100
runs. 98

xii List of Figures

5.1 GARNET: Comparison of RMC with other state of the art algorithms. The
solid lines show the median values and the shaded area shows the region
between the first and third quartiles. 118

5.2 Event-Triggered communication: Comparison of RMC with other state of
the art algorithms. The solid lines show the median values and the shaded
area shows the region between the first and third quartiles. 120

5.3 Inventory control: Comparison of RMC with other state of the art algorithms.
The solid lines show the median values and the shaded area shows the region
between the first and third quartiles. 122

A.1 A fully connected neural network with 3 hidden layers. 134
A.2 A convolutional neural network with 4 hidden layers. 134
A.3 Diagram showing unrolling of a recurrent neural network (RNN). 135
A.4 Block diagram of a long short-term (LSTM) cell. 137

xiii

List of Acronyms

MAS Multi-agent systems

RL Reinforcement learning

TD Temporal difference

MARL Multi-agent reinforcement learning

MDP Markov decision processes

MFT Mean-field teams

POMDP Partially observable Markov decision processes

Dec-POMDP Decentralized partially observable Markov decision processes

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

AIS Approximate information state

RMC Renewal Monte Carlo

DP Dynamic programming

ADP Approximate dynamic programming

IPM Integral probability metric

This page is intentionally left blank.

1

Chapter 1

Introduction

1.1 Motivation

With the recent advances in machine learning and automation, we increasingly find ourselves
immersed in a world with multiple agents that learn continuously and adapt autonomously
to the environment to achieve their objectives. Examples of such multi-agent systems
(MAS) include Internet of Things, self-driving cars, swarm robotics, teams of personalized
recommenders, smart grids, among others. The objective of each agent in such systems is
to choose a policy to make sequential decisions to maximize some objective over time. A
fundamental question in such systems is the following: how should agents be designed so
that they achieve optimal results? It is known in the literature that learning algorithms for
single agent systems do not work in multi-agent settings. The reason is that in a multi-agent
system, each agent is operating in an environment which depends on the behavior of other
agents. The presence of multiple agents with potentially conflicting objectives renders
finding an optimal policy for each agent in a MAS a difficult problem.

Examples of works in literature that address the problem of an agent learning to act
optimally in a multi-agent system include [87,89] among others. These works assume that
the agents have complete knowledge of the system, i.e., each agent knows the dynamical
evolution of the system and the reward function/utilities of all the agents in the system.
We refer to these problems as planning in multi-agent systems. As opposed to this, in this
thesis, we consider the problem of agents learning to act optimally in a multi-agent system,
where the agents do not know the system dynamics nor the reward functions/utilities of
themselves or the other agents. We refer to this problem as reinforcement learning (RL) in

2 Introduction

multi-agent systems, often referred to in literature as multi-agent reinforcement learning
(MARL). An overview of several approaches for MARL can be found in [17,21,46,141]

In several modern multi-agent systems, especially the ones that involve human interaction,
one does not know the system dynamics or the reward functions. Hence, finding an optimal
policy in such systems is a problem of reinforcement learning in multi-agent systems rather
than planning in multi-agent systems. In this thesis, we study reinforcement learning for
specific classes of multi-agent systems, identify the key problems and present reinforcement
learning algorithms for these classes of systems. In the process, we also address the related
issues of reinforcement learning in single agent systems with partial observability and in
fully observed systems which exhibit renewal/regenerative behavior.

The structure of the rest of this chapter is as follows. In the next section, we provide
an overview of MARL. We start by describing MAS along with their salient features. We
then discuss MARL and two specific problems in MARL—partial observability and agent
coupling in the following two sub-sections. Subsequently we describe three classes of systems
(single and multi-agent) that we study in this thesis. In the following two sections we provide
the scope and organization of the remainder of this thesis. We finally discuss the claims of
originality, publications and contribution of co-authors in the work described in this thesis.

1.2 An overview of multi-agent reinforcement learning (MARL)

1.2.1 Multi-agent systems MAS

As the name suggests, multi-agent systems are systems that have more than one agent
or decision maker. Since, in general, each agent has a personal objective, the resulting
optimization problem, from a centralized perspective, is one with a vector objective. A
key characteristic of MAS is that all agents affect each other directly or indirectly. Hence,
different elements of this vector objective cannot be optimized independently, thus making
MAS different from multi single-agent systems.

There are two broad approaches (also called solution concepts) to optimizing this vector
objective:

1. Find an equilibrium (i.e. a set of policies for all agents) where all agents’ policies are
such that no agent can achieve a better objective by unilateral deviation from the
equilibrium.

1.2 An overview of multi-agent reinforcement learning (MARL) 3

2. Find an optimum (i.e. a set of policies for all agents) using a scalar objective formed
by a (weighted) sum of the various elements of the vector objective.

The above two approaches leading to two different solution concepts also define two classes
of MAS – games (where all agents are strategic, hence correspond to the first solution
concept) and teams (where all agents are altruistic and hence correspond to the second
solution concept). In general, in the case of teams, all agents receive an identical reward
and this reward need not be the summation of any individual reward functions. In a case
where all agents receive an identical reward, the scalar objective would just be this global
reward. A special sub-class of teams and games can be considered where all agents behave
in an identical manner, called swarms. This additional symmetry between agents can lead
to further simplifications in finding an optimal policy for all agents. In this work, we restrict
attention to games and teams.

Another important concept in MAS, in addition to the solution concept, is the concept
of information structure. An information structure represents which agent knows what and
when. Different information structures lead to different solutions for the MAS. In the sequel
we describe information structures in more detail and also provide different examples.

1.2.2 Multi-agent reinforcement learning (MARL)

As described earlier, in MARL, the agents have to learn an optimal policy without knowing
the system dynamics and the reward functions of any agent. The temporal sequence of
interaction of each agent with the environment can be described as follows. At each point
in time, each agent receives some observation from the environment, it takes an action, the
environment evolves as a result of the actions of all agents and each agent then receives a
scalar reward and the next observation. In general, the observations and the scalar rewards
received by each agent are random variables. Each agent has to learn to act optimally using
this history of observations and rewards obtained by interacting with the environment which
includes other agents as well. In this thesis we assume that all agents act simultaneously.
Extension of the algorithms to environments where agents act in a sequential manner can
be done in a straightforward manner by carefully identifying the information structure of
the problem.

We deconstruct this problem by comparing it with standard single agent RL problems.
In a fully observed single agent RL problem, the agent’s interaction with its environment

4 Introduction

is as follows: the agent receives an observation (which is the state of the system) from
the environment, it then takes an action, the environment evolves, the agent receives a
reward from the environment and an observation, which is the next state of the system.
This problem is modeled using the framework of Markov Decision Processes (Markov
decision processes (MDP)s). There are several RL algorithms that have been developed and
successfully used for different kinds of MDPs.

We can relax some of the requirements of MDPs to yield formalisms that can capture the
features of MAS. The first requirement to be relaxed is full observability as in most MAS,
each agent receives only a partial observation of the state of the system. Hence, we study
RL in single agent partially observable Markov decision processes (POMDPs) to develop
MARL algorithms. These can be extended to the multi-agent cooperative setting using the
framework of Decentralized partially observable Markov decision processes (Dec-POMDP)s.
The common paradigm used in RL for MAS is centralized learning with decentralized
execution. In this setting, from the perspective of the centralized (meta-) agent, the
Dec-POMDP becomes an RL problem in an associated centralized single agent POMDP.
In this single agent POMDP, the centralized agent receives observations from all the agents,
but only learns admissible policies for each agent, which are mappings from each agent’s
local observations to its local actions. Hence, RL in single agent POMDPs can provide
a basis to design (decentralized) MARL algorithms for Dec-POMDPs. In this thesis, we
present a novel single agent RL algorithm for POMDPs and extend the same to an MARL
algorithm for a class of Dec-POMDPs called mean-field teams.

The second requirement that needs to be relaxed when moving from single agent systems
to MAS is the assumption of stationarity (or time-homogeneity) of the environment. In
almost all single agent RL problems, the environment is assumed to be stationary. Even in
situations where the environment is considered to be non-stationary, it is assumed to change
at a much larger timescale (i.e., at a much slower rate) than the timescale at which the
agent operates in the environment. In MAS, for each agent, the other learning agents form
a part of the environment and hence for each agent the environment is non-stationary. This
non-stationarity is due to the dynamical and reward coupling between all agents. Hence,
for each agent to learn, we must find some way to decouple the agent from the rest of the
agents. In other words, each agent should be able to determine sensitivity of its performance
objective, despite the unknown influence of the other agents. Various approaches to address
this are presented in the literature. All these can be thought of as using what may be

1.3 Previous work 5

viewed as a decoupling object, that conditionally decouples the performance of each agent
from the rest of the agents in the system. For instance, some of the decoupling objects used
in literature are opponent models, centralized critics, etc. In this thesis, we present two
additional decoupling objects—one for teams and one for games.

Furthermore, MARL can also be broadly divided into two types – centralized and
decentralized. A popular paradigm adopted in literature for developing provably convergent
MARL algorithms is that of centralized learning and decentralized execution, where as the
name suggests, RL is done in a centralized manner even though the actual execution in
the real world has to be done in a decentralized manner. Thus, the conditions assumed
during learning and execution are different in this paradigm. In contrast to this, we present
fully decentralized learning algorithms with provable convergence guarantees in this thesis.
Furthermore, the design of learning algorithms is also influenced by the type of MAS being
considered—hence, we study games and teams separately for developing MARL algorithms.

1.3 Previous work

1.3.1 Previous work on RL in POMDPs

Exact and approximate planning in POMDPs is done in literature using the concept of
information states. Informal definition of information state was used by [69] for adaptive
control systems. Formal definitions for linear control systems were given by [18] for discrete
time systems and by [31] for continuous time systems. An information state is a compression
of the history of observations and actions that is sufficient for dynamic programming.
A trivial information state is the entire history. One of the most popular information
states used in planning in POMDPs is the belief state, which can be found in work such
as [23, 108,110] among others. Algorithms have been developed for planning using exact
belief state evolution and also their particle filter like variants called point based methods.
These methods are surveyed in [103]. Dynamical updates of belief states require knowledge
of the transition kernel of the system as well as as the observation likelihood kernel. In
RL problems, since the system dynamics are unknown, we cannot evaluate the belief state
evolution. Hence, belief states are not a useful information state for RL.

There are two broad approaches that have been used in literature for RL in POMDPs:

1. Use of the entire history of observations and actions as an information state, i.e.,

6 Introduction

the entire history is used as an input for the policy function and/or the (action-
)value function. This is typically done using Recurrent Neural Network (RNN)s
or their variants such as Long Short-Term Memory (LSTM)s or Gated Recurrent
Unit (GRU)s as function approximators. An example of this approach is recurrent
policy gradient [130]

2. Use of predictive state representations [78], i.e., compressions of history that are suffi-
cient to predict future observations given future actions. These are sufficient statistics
for uncontrolled processes and generally not sufficient for Dynamic programming (DP).
They also involve use of RNNs with LSTMs or GRUs as function approximators. An
example of this approach can be found in [45] and a variant that generalizes predictive
state representations to causal state representations can be found in [140].

In this thesis, we present an alternative notion of an approximate information state and
show how it can be constructed using the history of observation and action data. We then
demonstrate the use of this approximate information state for RL in POMDPs and provide
bounds for the resultant approximation error.

1.3.2 Previous work on MARL

A thorough overview of algorithms for MARL can be found in [21]. Some of the earliest
works in MARL involved defining a framework for such problems [75] and algorithms for
relatively simple MAS such as two player games, zero-sum games etc. [76, 77]. Some of
the more recent approaches to MARL involve the paradigm of centralized learning and
decentralized execution. Some popular algorithms that fall in this class include BICNET [90],
MADDPG [79], and COMA [34]. A critique of the generic approaches in MARL can be
found in [104,105]. More recent reviews of MARL that complement [21] are [17,46, 141].

Mean-field games (MFG) and mean-field teams (MFT) are classes of large population
systems where the dynamics and rewards of each agent are decoupled from all other agents
given the empirical distribution of the agents’ states and/or actions [3, 5, 54–56,70, 125, 126].
Some of the works that cover RL in such MAS include a model based adaptive control
algorithm for MFG [66], a Q-learning based algorithm for MFG control of coupled oscillators
[139], model-free Q-learning and actor critic algorithms for MFG [85, 138], a mean-field
based solution for inverse RL [137].

1.4 Scope of this thesis 7

1.4 Scope of this thesis

In this thesis we present RL algorithms for different single and multi-agent systems. This
thesis is structured as follows:

1.4.1 POMDPs

In Chapter 2, we consider partially observable single agent systems and formally define the
concept of an information state in such systems. This chapter is an extended version of the
publications (C1) and (UJ1), given in Section 1.5.2. In this chapter, we provide two alternate
characterizations leading to two different information states, both of which we prove are
sufficient for dynamic programming. The first characterization involves predicting the
expected reward and the next distribution of information state given the current information
state and current action. The second characterization involves predicting the distribution
of the next observation instead of the next information state, while ensuring that the
information state evolves in a state-like manner. We show that the second characterization
is a stricter requirement and it is a finer partition of the history compared to the first. We
verify that entire history and belief states used in planning satisfy the conditions of an
information state. But the dimension of the history increases with time, thus rendering RL
using this difficult. The belief state cannot be used in RL as the the system dynamics and
observation models are needed to determine its evolution. As an alternative to these, we
present the concept of an Approximate information state (AIS) as a compression of history
that is useful in approximately predicting the next expected reward and approximately
predicting the next distribution of either the AIS or the observation while ensuring state-like
evolution of the AIS similar to the two alternatives in the exact case. We bound the error
in the value function obtained using AIS in terms of the approximation errors of the AIS in
predicting the next expected reward and next distribution of AIS or observation as the case
may be. We then demonstrate a method to learn an AIS from data obtained by sequential
interaction with an environment. Finally we present a provably convergent RL algorithm
that uses this learned AIS. We demonstrate the performance of this algorithm on a few
numerical examples and show that it performs favorably when compared with one of the
state-of-the-art POMDP RL algorithms.

8 Introduction

1.4.2 Mean-field teams

In Chapter 3, we extend the above concept of AIS for a class of coooperative large population
systems called mean-field teams. This is an extended version of the publications (UJ2),
(W3) and (W4), given in 1.5.2, In this chapter, we present an AIS based interpretation of
the mean-field limit and finite-agent approximations used in literature for mean-field teams
and also bound the approximation error in terms of the AIS error. We verify that this is
consistent with the results in literature [4]. We then develop an RL algorithm for mean-field
teams and prove its convergence to a locally optimal solution. We demonstrate the empirical
performance of our MARL algorithm for mean-field teams using two numerical examples.

1.4.3 Stationary mean-field games

In Chapter 4, we consider a different variant of large population MAS called stationary
mean-field games. This chapter covers work presented in publication (SCJ1), given in
Section 1.5.2. In this chapter, we define two new local solution concepts for stationary
mean-field games and develop two RL algorithms. We prove the convergence of these two
RL algorithms to the two newly defined solution concepts. We illustrate the performance of
both these algorithms using two numerical examples.

1.4.4 MDPs with renewal

Chapter 5 covers work presented in publication (SCJ2), given in Section 1.5.2. In this chapter,
we present a novel policy gradient based algorithm, called Renewal Monte Carlo (RMC),
for single agent fully observed systems with a renewal/regenerative property. We extend
this algorithm to systems with renewal in terms of post-decision states, i.e., we split the
transition into two parts – a controlled one and an uncontrolled one and exploit the renewal
property only in terms of the controlled transitions. Finally we present an approximate
version of RMC, where the approximation error in the resultant value function is bounded
(under some technical conditions) in terms of the approximation error in the definition of
the renewal event. We empirically demonstrate the performance of RMC for each of these
three cases.

In Chapter 6 we present our discussions, conclusions and scope for future work.

1.5 Claims of originality and publications 9

1.5 Claims of originality and publications

1.5.1 Claims of originality

The following are the original contributions presented in this thesis:

1. Definition of an alternative concept of information states sufficient for dynamic
programming and that of approximate information states (AIS) for partially observed
systems.

2. Derivation of approximation error bound in performance due to the use of AIS (under
appropriate technical conditions) in terms of the approximation errors in the AIS
definition.

3. Design of an algorithm for learning AIS from data obtained by interacting with an
environment.

4. Development of an RL algorithm for POMDPs in terms of AIS with proof of conver-
gence and demonstration of its empirical performance on some numerical examples.

5. Analysis of the approximation error of standard mean-field limit and finite-population
approximations for mean-field teams using the AIS framework and verification of these
results with literature.

6. Development of RL algorithms for mean-field teams using the AIS concept.

7. Definition of two new solution concepts for for stationary mean-field games.

8. Development of two RL algorithms for stationary mean-field games with proof of
convergence to the above defined solution concepts.

9. Development of a novel policy gradient based algorithm called RMC for single agent
fully observed systems with a renewal/regenerative property.

10. Extension of RMC algorithm to systems with renewal in terms of post-decision states,
i.e., we split the transition into two parts – a controlled one and an uncontrolled one
and exploit the renewal property only in terms of the controlled transitions.

10 Introduction

11. Development of an approximate version of RMC, where the approximation error in
the resultant value function is bounded (under some technical conditions) in terms of
the approximation error in the definition of the renewal event.

1.5.2 List of publications

The following are the publications resulting from the work presented in this thesis:

Peer-reviewed publications in selective conferences and journals

(SCJ1) Subramanian J., and Mahajan A., “Reinforcement learning in stationary mean-field
games”, International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Montreal, Canada, 13-17 May, 2019.

(SCJ2) Subramanian J., and Mahajan, A., “Renewal Monte Carlo: Renewal theory based
reinforcement learning”, IEEE Transactions on Automatic Control, Aug 2020 (in
print).

Peer reviewed conference publications

(C1) Subramanian J., and Mahajan, A., “Approximate information state for partially
observed systems”, IEEE Conference on Decision and Control (CDC), Nice, France,
Dec 11-13, 2019.

(C2) Subramanian J., and Mahajan, A., “Renewal Monte Carlo: Renewal theory based
reinforcement learning”, IEEE Conference on Decision and Control (CDC), Miami,
Florida, Dec 17-19, 2018.

(C3) Chakravorty, J., Subramanian, J. and Mahajan, A., “Stochastic approximation based
methods for computing the optimal thresholds in remote-state estimation with packet
drops”, American Control Conference (ACC), Seattle, WA, May 24-26, 2017.

Under preparation journal publications

(UJ1) Subramanian J., and Mahajan, A., “Approximate Information State for Partially
Observed Systems”, to be submitted to Journal of Machine Learning Research, 2020.

1.5 Claims of originality and publications 11

(UJ2) Subramanian J., Seraj, R., and Mahajan, A., “Reinforcement learning using approxi-
mate information states for mean-field teams”, under preparation.

Workshop and non-archival publications

(W1) Subramanian J., and Mahajan A., “Approximate information state for partially
observed systems”, NeurIPS 2019 Workshop on Optimization Foundation for Rein-
forcement Learning, Vancouver, British Columbia, Dec 8-14, 2019.

(W2) Subramanian J., and Mahajan A., “Approximate information state for partially
observed systems”, The Multi-disciplinary Conference on Reinforcement Learning and
Decision Making (RLDM), Montreal, Canada, Jul 7-10, 2019.

(W3) Subramanian J., Seraj, R., and Mahajan, A., “Reinforcement learning for mean-field
teams”, The Multi-disciplinary Conference on Reinforcement Learning and Decision
Making (RLDM), Montreal, Canada, Jul 7-10, 2019.

(W4) Subramanian J., Seraj, R., and Mahajan, A., “Reinforcement learning for mean-field
teams”, AAMAS Workshop on Adaptive and Learning Agents, Montreal Canada,
13-17 May, 2019.

(W5) Subramanian J., and Mahajan A., “A policy gradient algorithm to compute boundedly
rational stationary mean field equilibria”, Proceedings of the ICML/IJCAI/AAMAS
Workshop on Planning and Learning (PAL-18), Stockholm, Sweden, July 15, 2018.

Other scientific outreach

(O1) Subramanian J., and Mahajan A., “Approximate dynamic programming and rein-
forcement learning for partially observed systems”, poster presented at Montreal AI
Symposium, Montreal, Quebec, Sep 6, 2019.

(O2) Subramanian J., and Mahajan A., “Approximate information state for partially
observed systems”, poster presented at Colloque REPARTI Workshop, Montreal,
Quebec, Jun 13, 2019.

12 Introduction

(O3) Subramanian J., “Multi-agent reinforcement learning: Stationary Mean Field Games”,
Graduation Day talk at Information Theory and Applications Workshop, San Diego,
California, Feb 12, 2019.

(O4) Subramanian J., and Mahajan, A., “A new policy based RL algorithm with reduced
bias and variance”, poster presented at Montreal AI Symposium, Montreal, Quebec,
Sep 26, 2017.

1.5.3 Contributions of co-authors

In all papers except (C3), (UJ2), (W3) and (W4), J. Subramanian and A. Mahajan
contributed equally to model formulation and the analysis, while J. Subramanian was
primarily responsible for derivations, programming the algorithms for producing numerical
results and writing of the papers. In (C3), all three authors contributed equally while
J. Chakravorty was primarily responsible for writing the paper. In (UJ2), (W3) and
(W4), all three authors contributed equally to model formulation and the analysis, while
J. Subramanian and R. Seraj were primarily responsible for derivations, programming the
algorithms for producing numerical results and writing of the papers. We are grateful to
Raihan Seraj for providing planning and RPG solutions for the examples in Chapter 2. We
are grateful to Amit Sinha for providing numerical examples for the examples using AIS in
Chapter 2. We are grateful to Joelle Pineau for useful feedback and for suggesting the idea
of approximate RMC in Chapter 5. We are also grateful to the anonymous reviewers for
suggestions that led to an improved exposition and more detailed numerical experiments
for the work presented in Chapter 5.

13

Chapter 2

Approximate dynamic programming
and RL for POMDPs

The theory of Markov decision processes focuses primarily on systems with full state
observation. The focus of this thesis is on single and multi-agent systems with partial
observations. Therefore, we begin by considering single-agent systems with partial state
observations in this chapter. Though the chapter title only specifies POMDPs, we consider
the more general case of partially observed input-output systems for the most of this chapter.
For most of this chapter we restrict attention to partially observable single agent systems
and we provide extension to a class of multi-agent cooperative systems, called mean-field
teams, in the next chapter.

Generally, in planning problems, when systems with partial state observations are
considered, they are converted to systems with full state observations by considering the
belief state (which is the posterior belief on the state of the system given the history of
observations and actions). Although this leads to an explosion in the size of the state
space, the resulting value function has a nice property—it is piecewise linear and convex
in the belief state [108]—which is exploited to develop efficient algorithms to compute the
optimal policy [60, 103]. Thus, for planning, there is little value in studying alternative
characterizations of partially observed models.

However, the belief state formulation is not as nice a fit for online reinforcement learning.
Part of the difficulty is that the construction of the belief state depends on the system
model. So, when the system model is unknown, the belief state cannot be constructed using

14 Approximate dynamic programming and RL for POMDPs

the observations. Therefore, critic based methods are not directly applicable. There are
some results that circumvent this difficulty [10, 45, 78]. However, many of the recent results
suggest that using RNNs (Recurrent Neural Networks [99]) or LSTMs (Long Short-Term
Memories [49]) for modeling the policy function (actor) and/or the action-value function
(critic) works for reinforcement learning in partially observed systems [8, 9, 43, 44, 130,131].
In this chapter, we present a rigorous theory for planning and learning in partially observed
models using the notions of information state and approximate information state. We then
present numerical experiments that show that the approximate information state based
approach works well on benchmark models.

This chapter is organized as follows. We first begin by defining states sufficient for
optimal control (dynamic programming) for an input-output system with per-step rewards.
This system has controlled as well as stochastic inputs, where the stochastic inputs are
not observed. This forms the base model for planning as well as reinforcement learning
in single agent POMDPs. For such systems, we present two versions of states sufficient
for optimal control, which are called information states. We then present the notion of
an Approximate information state (AIS), define two versions of it and derive performance
(error) bounds when using AIS instead of the exact information state. Following this, we
compare our approximation approach with other approaches in literature. We then present
an RL algorithm that uses AIS, prove its convergence and demonstrate its performance by
comparison with results from one of the state of the art methods for POMDPs.

2.1 Information state

Consider an input-output system with a reward process where the objective is to maximize
the expected cumulative sum of the rewards obtained during the operation of the system.
Informally, in such a system, a state sufficient for optimal control is a state sufficient for
dynamic programming in this system. A state sufficient for dynamic programming is one
such that using this state instead of the entire history is without loss of optimality. Such
a state is called an information state for the system. We show that an information state
only needs to be sufficient to predict the current reward and next state or observation
distribution, rather than multi-step future outputs.

2.1 Information state 15

System
Stochastic input Wt

Controlled input At

Output Yt

Fig. 2.1: A stochastic input-output system

A1W1

Y1

A2W2

Y2

AtWt

Yt

Fig. 2.2: The timing diagram of the input-
output system.

2.1.1 Model

Consider a stochastic input-output system as shown in Fig. 2.1. The system operates in
discrete time for a horizon T . At time t, the system has two inputs: a control input At ∈ A
and a stochastic input Wt ∈ W ; and the system generates an output Yt ∈ Y and a reward
Rt ∈ R. The order of inputs and outputs is shown in Fig. 2.2.

In general, the output and reward at time t are functions of all the (controlled and
stochastic) inputs until time t, i.e.,

Yt = ft(A1:t,W1:t) and Rt = rt(A1:t,W1:t).

where {ft : At ×W t → Y}Tt=1 are called the system output functions and {rt : At ×W t →
R}Tt=1 are called the system reward functions.

For the ease of exposition, we assume that {A}t≥1, {W}t≥1, and {Y}t ≥ 1 are finite sets.
The results extend to general spaces under appropriate technical conditions.

We assume thatW1:T are independent random variables defined on a common probability
space (Ω,F ,P). Thus, if the control inputs A1:T are specified, then the output Y1:T are
random variables on (Ω,F ,P).

In the rest of the exposition we interchangeably use the term actions to refer to control
inputs.

An agent observes the history Ht = (A1:t−1, Y1:t−1) of control inputs and observations
until time t, with Ht ∈ Ht, the space of all histories at time t, and chooses the control input

At = πt(Ht)

according to some history dependent policy π := {πt}Tt=1. The performance of policy π is

16 Approximate dynamic programming and RL for POMDPs

given by

J(π) = Eπ
[T∑
t=1

Rt

]
. (2.1)

The objective of the agent is to choose a policy π to maximize the expected total reward
J(π).

2.1.2 A dynamic programming decomposition

In this section, we present a dynamic program for (2.1) which uses the history of observations
and actions as state. Such a dynamic program is not efficient for computing the optimal
policy but it will serve as a reference for the rest of the analysis.

First consider the dynamic program for computing the value of any policy π. In particular,
define the reward-to-go function as

V π
t (ht) := Eπ

[T∑
s=t

Rs

∣∣∣∣ Ht = ht

]
. (2.2)

From definitions in (2.1) and (2.2), we have

J1(h1; π) = E[V π
1 (h1)].

Let JT+1(hT+1; π) := 0. Then, the reward to go functions can be computed recursively
as follows:

Jt(ht; π)
(a)
= Eπ

[
Rt + E

[T∑
s=t+1

Rs

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
= Eπ

[
Rt + Jt+1(Ht+1; π)

∣∣ Ht = ht
]
, (2.3)

where (a) follows from the tower property of conditional expectation and the fact that
Ht ⊆ Ht+1. Note that Jt(ht; π) only depends on the future policy (πt, . . . , πT) and not on
the past policy (π1, . . . , πt−1). Thus, the dynamic program (2.3) gives a recursive method
to compute J(π).

Now, recursively define the following value functions. VT+1(hT+1) := 0 and for t ∈

2.1 Information state 17

{T, . . . , 1}:
Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at] (2.4)

and
Vt(ht) = max

at∈A
Qt(ht, at). (2.5)

Theorem 2.1.1 A policy π = (π1, . . . , πT) is optimal if and only if it satisfies

πt(ht) ∈ arg max
at∈A

Qt(ht, at). (2.6)

Proof To prove this, we need to show the following:

(C) At any time t, Jt(ht, π) ≤ Vt(ht), with equality if and only if (πt, πt+1, . . . , πT) sat-
isfy (2.6).

We prove this using backward induction. At t = T + 1, (C) is satisfied by definition and
this forms the basis of induction. We assume that (C) holds for time t + 1, which is the
induction hypothesis. Then, for time t, we have from (2.3),

Jt(ht; π) = Eπ
[
Rt + Jt+1(Ht+1; π)

∣∣ Ht = ht
]

(a)

≤ Eπ
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht
]

(b)

≤ Vt(ht),

where (a) follows from the induction hypothesis and (b) follows from the definition of the
value function (2.5) and (2.4). From the induction hypothesis, the equality in (a) is achieved
if and only if {πs}s>t satisfy (2.6). From (2.5), we see that the equality in (b) is achieved if
and only if πt(ht) ∈ arg maxa∈AQt(ht, a), i.e., πt satisfies (2.6). Hence, (C) holds at time
t. �

Remark 2.1.1 Traditionally the value function is defined as:

Vt(ht) = sup
π
Jt(ht; π),

and it can be shown that this value function satisfies the dynamic programmming recursion

18 Approximate dynamic programming and RL for POMDPs

of (2.4) and (2.5). Our definition of the value function is different, but it is easy to see that
the two definitions are equivalent. 2

2.1.3 Information state and a simplified dynamic program

Let Ft = σ(Ht) denote the filtration generated by the history of observations and control
actions.

Definition 2.1.1 An information state {Zt}t≥1, Zt ∈ Z , is an Ft adapted process (therefore,
there exist functions {ϑt}Tt=1 such that Zt = ϑt(Ht)) that satisfies the following properties:

(P1) Sufficient for performance evaluation, i.e.,

E[Rt | Ht = ht, At = at] = E[Rt | Zt = ϑt(ht), At = at].

(P2) Sufficient to predict itself, i.e., for any Borel measurable subset B of Z,

P(Zt+1 ∈ B | Ht = ht, At = at) = P(Zt+1 ∈ B | Zt = ϑt(ht), At = at). 2

There is no restriction on the space Z, although an information state is useful only
when the space Z is “small” in an appropriate sense. We have assumed that the space Z
is time-homogeneous for convenience. In some situations, it may be more convenient to
construct an information state which takes values in spaces that are changing with time.

For some models, instead of (P2), it is easier to verify the following stronger conditions:

(P2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕt}Tt=1

such that
Zt+1 = ϕt(Zt, Yt, At).

(P2b) Is sufficient for predicting future observations, i.e., for any subset B of Y ,

P(Yt ∈ B | Ht = ht, At = at) = P(Yt ∈ B | Zt = ϑt(ht), At = at).

Proposition 2.1.1 (P2a) and (P2b) imply (P2).

2.1 Information state 19

Proof For any Borel measurable subset B of Z, we have

P(Zt+1 ∈ B |Ht = ht, At = at)
(a)
=

∑
yt+1∈Y

P(Yt = yt, Zt+1 ∈ B | Ht = ht, At = at)

(b)
=
∑
yt∈Y

1{ϕt(ϑt(ht), yt, at) ∈ B} × P(Yt = yt | Ht = ht, At = at)

(c)
=
∑
yt∈Y

1{ϕt(ϑt(ht), yt, at) ∈ B} × P(Yt = yt | Zt = ϑt(ht), At = at)

(d)
= P(Zt+1 ∈ B | Zt = ϑt(ht), At = at)

where (a) follows from the law of total probability, (b) follows from (P2a), (c) follows from
(P2b) and (d) from the law of total probability. �

Note that Zt = Ht is always an information state, so an information state always
exists. It is straight-forward to show that if we construct a state space model for the above
input-output model, then the belief on the state given the history of observations and control
inputs is an information state. Below we present an example of a non-trivial information
state that is much simpler than the belief state.

Example 1 (Machine Maintenance) Consider a machine which can be in one of n
ordered states where the first state is the best and the last state is the worst. The
production cost increases with the state of the machine. The state evolves in a Markovian
manner. At each time, an agent has the option to either run the machine or stop and inspect
it for a cost. After inspection, the agent may either repair it (at a cost that depends on the
state) or replace it (at a fixed cost). The objective is to identify a maintenance policy to
minimize the cost of production, inspection, repair, and replacement.

Let τ denote the time of last inspection and Sτ denote the state of the machine after
inspection, repair, or replacement. Then, it can be shown that (Sτ , t− τ) is an information
state for the system. 2

The main feature of an information state is that one can always write a dynamic program
based on an information state.

Theorem 2.1.2 Let {Zt}Tt=1 be an information state. Recursively define value functions

20 Approximate dynamic programming and RL for POMDPs

{Ṽt}T+1
t=1 , where Ṽt : Zt 7→ R as follows: ṼT+1(zT+1) = 0 and for t ∈ {T, . . . , 1}:

Q̃t(zt, at) = E[Rt + Ṽt+1(Zt+1) | Zt = zt, At = at]

Ṽt(zt) = max
at∈A

Q̃t(zt, at). (2.7)

Then, we have the following:

Qt(ht, at) = Q̃t(ϑt(ht), at) and Vt(ht) = Ṽt(ϑt(ht)). (2.8)

Proof We prove the result by backward induction. By construction, (2.8) is true at time
T + 1. This forms the basis of induction. Assume that (2.8) is true at time t + 1 and
consider the system at time t. Then,

Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at]

(a)
= E[Rt + Ṽt+1(ϑt+1(Ht+1)) | Ht = ht, At = at]

(b)
= E[Rt + Ṽt+1(Zt+1) | Zt = ϑt(ht), At = at]

(c)
= Q̃t(ϑt(ht), at),

where (a) follows from the induction hypothesis, (b) follows from the properties of information
state, and (c) follows from the definition of Q̃. This shows that the action-value functions
are equal. By maximizing over the actions, we get that the value functions are also equal.�

Remark 2.1.2 In light of Theorem 2.1.2, an information state may be viewed as a general-
ization of the traditional notion of state [88,134]. Traditionally, the state of an input-output
system is sufficient for input-output mapping. In contrast, the information state is sufficient
for dynamic programming.

The notion of information state is also related to sufficient statistics for optimal con-
trol [112]. However, in contrast to [112], we do not assume a state space model for the
underlying system so it is easier to develop reinforcement learning algorithms using our
notion of an information state. 2

Informal definition of information state was used by [69] for adaptive control systems.
Formal definitions for linear control systems were given by [18] for discrete time systems

2.2 Approximate information state (AIS) 21

and by [31] for continuous time systems.
Coming back to Example 1, Theorem 2.1.2 shows that we can write a dynamic program

for that model using the information state (Sτ , t − τ), which takes values in a countable
set. This countable state dynamic program is considerably simpler than the standard belief
state dynamic program typically used for that model. Another feature of the information
state formulation is that the information state (Sτ , t− τ) does not depend on the transition
probability of the state of the machine or the cost of inspection or repair. Thus, if these
model parameters were unknown, we can use a standard reinforcement learning algorithm
to find an optimal policy which maps (Sτ , t− τ) to current action.

Given these benefits of a good information state, it is natural to consider a data-driven
approach to identify an information state. An information state identified from data will
not be exact and it is important to understand what is the loss in performance when using
an approximate information state. In the next section, we present a notion of approximate
information state and bound the approximation error.

2.2 Approximate information state (AIS)

Roughly speaking, a compression of the history is an approximate information state if it
approximately satisfies (P1) and (P2). This intuition can be made precise as follows. Prior
to defining an AIS, we state the definition of an Integral probability metric (IPM) [86]:

Definition 2.2.1 Let P denote the set of probability measures on a measurable space
(X ,G). Given a class F of real-valued uniformly bounded measurable functions on (X ,G),
the Integral probability metric (IPM) between two probability distributions µ, ν ∈ P is
given by:

dF(µ, ν) = sup
f∈F

∣∣∣∣∣
∫
X
fdµ−

∫
X
fdν

∣∣∣∣∣.
2

Examples of IPM are:

• If F = {f : ‖f‖∞ ≤ 1}, then dF is the total variation distance.

• If F = {f : |f |L ≤ 1}, i.e, the function f ∈ F is Lipschitz with Lipschitz constant ≤ 1,
then dF is the Wasserstein distance. This follows from the Kantorovich-Rubinstein
duality [124].

22 Approximate dynamic programming and RL for POMDPs

• If F = {f : ‖f‖∞ + |f |L ≤ 1}, then dF is the Dudley metric.

We say a function f has a F-constant K if f/K ∈ F. We now define an AIS:

Definition 2.2.2 Given a function class F, positive numbers {(εt, δt)}Tt=1, Polish spaces
{Ẑt}Tt=1 and compression functions {ϑ̂t : Ht → Ẑt}Tt=1, the process {Ẑt}Tt=1, Ẑt = ϑ̂t(Ht), is
called an {(εt, δt)}Tt=1-approximate information state if there exist a transition approximation
function p̂t : Ẑt ×At → ∆(Ẑt+1) and a reward approximation function r̂t : Ẑt ×At → R
that satisfy:

(AP1) Sufficient for approximate performance evaluation, i.e.,

∣∣E[Rt | Ht = ht, At = at]− r̂t(ϑ̂t(ht), at)
∣∣ ≤ εt.

(AP2) Sufficient to predict itself approximately. For any Borel subset B of Ẑ define,

µt(B) = P(Ẑt+1 ∈ B | Ht = ht, At = at) and

νt(B) = p̂t(B | ϑ̂t(ht), at).

Then, dF(µt, νt) ≤ δt.

We call the tuple {ϑ̂t, r̂t, p̂t}Tt=1 as an {(εt, δt)}Tt=1-AIS generator. 2

Our main result of this section is to identify an approximate dynamic program based on
an approximate information state.

Theorem 2.2.1 Given a function class F, let {Ẑt}Tt=1, Ẑt ∈ Ẑt be an {(εt, δt)}Tt=1-approximate
information state with generator {(ϑ̂t, r̂t, p̂t)}Tt=1. Recursively define value functions {V̂t :

Ẑt → R}T+1
t=1 as follows: V̂T+1(ẑT+1) = 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, at) = E[Rt + V̂t+1(Ẑt+1) | Ẑt = ẑt, At = at]

V̂t(ẑt) = max
at∈A

Q̂t(ẑt, at). (2.9)

Suppose V̂t has an F-constant Kt. Then for any time t and any history ht, we have the
following:

|Qt(ht, at)− Q̂t(ϑ̂t(ht), at)| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1)

2.2 Approximate information state (AIS) 23

|Vt(ht)− V̂t(ϑ̂t(ht))| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1). (2.10)

Furthermore, let policy π̂ = (π̂1, . . . , π̂T) be any policy such that:

π̂t(ẑt) ∈ arg max
a∈A

(Q̂t(ẑt, a)), (2.11)

and, define policy π = (π1, . . . , πT) as πt = π̂t ◦ ϑ̂t. Then, we have the following:

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]

|Vt(ht)− V π
t (ht)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]. (2.12)

Proof We prove (2.10) by backward induction. By construction, (2.10) is true at time
T + 1. This forms the basis of induction. Assume that (2.10) is true at time t + 1 and

consider the system at time t. Let C = εt+1 +
T∑

s=t+2

(εs +Ks−1δs−1). Then,

Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at]

(a)

≤ E[Rt + V̂t+1(ϑ̂t+1(Ht+1)) | Ht = ht, At = at] + C

(b)

≤
(
r̂t(ϑ̂t(ht), at) + εt

)
+
(
E[V̂t+1(Ẑt+1) | Ẑt = ϑ̂t(ht), At = at] +Ktδt

)
+ C

= Q̂t(ϑ̂t(ht), at) + εt +
T∑

s=t+1

(εs +Ks−1δs−1).

where (a) follows from the induction hypothesis and (b) follows from (AP1) and the definition
of an IPM (See Def. 2.2.1). The reverse inequality in (2.10) can be proven using a similar
argument. By maximizing over actions, we get the relationship between the value functions
in (2.10). This completes the induction step and hence (2.10) holds by induction.

To prove (2.12), we note that V̂ π̂
t is the value of the performance of policy π̂. By

definition, since π̂t is an optimal policy in the system using the approximate information

24 Approximate dynamic programming and RL for POMDPs

state, we have that:

Q̂π̂
t (ẑt, at) = Q̂t(ẑt, at) (2.13)

V̂ π̂
t (ẑt) = V̂t(ẑt) (2.14)

Then, by using the triangle inequality we get:

|Qt(ht, at)−Qπ
t (ht, at)| ≤ |Qt(ht, at)− Q̂π̂

t (ϑ̂t(ht), at)|+ |Q̂π̂
t (ϑ̂t(ht), at)−Qπ

t (ht, at)|. (2.15)

The first term on the RHS of (2.15) can be bounded using (2.10) as:

|Qt(ht, at)−Q̂π̂
t (ϑ̂t(ht), at)| = |Qt(ht, at)−Q̂t(ϑ̂t(ht), at)| ≤ εt+

T∑
s=t+1

(εs+Ks−1δs−1). (2.16)

Similarly, the second term on the RHS of (2.15) can be bounded using an almost identical
argument as (2.10)by backward induction as follows. We first note that:

V π
t (ht) = Qπ

t (ht, πt(ht)). (2.17)

We now need to prove:

|Q̂π̂
t (ϑ̂t(ht), at)−Qπ

t (ht, at)| ≤
T∑

s=t+1

(εs +Ks−1δs−1), (2.18)

|V̂ π̂
t (ϑ̂t(ht))− V π

t (ht)| ≤
T∑

s=t+1

(εs +Ks−1δs−1). (2.19)

By construction, (2.19) is true at time T + 1. This forms the basis of induction.
Assume that (2.19) is true at time t + 1 and consider the system at time t. Let C =

εt+1 +
T∑

s=t+2

(εs +Ks−1δs−1). Then,

Qπ
t (ht, at) = E[Rt + V π

t+1(Ht+1) | Ht = ht, At = at]

(a)

≤ E[Rt + V̂ π̂
t+1(ϑ̂t+1(Ht+1)) | Ht = ht, At = at] + C

(b)

≤
(
r̂t(ϑ̂t(ht), at) + εt

)

2.2 Approximate information state (AIS) 25

+
(
E[V̂ π̂

t+1(Ẑt+1) | Ẑt = ϑ̂t(ht), At = at] +Ktδt

)
+ C

= Q̂π̂
t (ϑ̂t(ht), at) + εt +

T∑
s=t+1

(εs +Ks−1δs−1).

where (a) follows from the induction hypothesis and (b) follows from (AP1), the fact that
V̂ π̂
t = V̂t and so has F-constant Kt, and the definition of an IPM. The reverse inequality

in (2.18) can be proven using a similar argument. By (2.17), we get the relationship between
the value functions in (2.19).

Combining (2.15), (2.16) and (2.18), we get (2.12). �

Corollary 2.2.1 Given a function class F, suppose {Zt}Tt=1 is an information state and
{Ẑt}Tt=1, Ẑt ∈ Ẑt is an {(εt, δt)}Tt=1-approximate information state with generator {(ϑ̂t, r̂t, p̂t)}Tt=1.
Then for any realization ht of Ht, we have the following:

|Qt(ϑt(ht), at)− Q̂t(ϑ̂t(ht), at)| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1)

|Vt(ϑt(ht))− V̂t(ϑ̂t(ht))| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1). (2.20)
2

Proof The result follows from Theorems 2.1.2 and 2.2.1. �

Based on Prop. 2.1.1, we provide an alternative characterization of an approximate
information state. We can replace (AP2) with the following stronger conditions:

(AP2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕ̂t}Tt=1

such that Ẑt+1 = ϕ̂t(Ẑt, Yt, At). Moreover, these functions have an F-constant Mt with
respect to Yt.

(AP2b) Is sufficient for predicting future observations approximately. For any
Borel subset B of Y define, µt(B) = P(Yt ∈ B | Ht = ht, At = at) and νt(B) = P(Yt ∈
B | Ẑt = ϑ̂t(ht), At = at) = p̂t(B|ϑ̂t(ht), at), where p̂t : Ẑt × At 7→ ∆(Yt+1). Then,
dF(µt, νt) ≤ δ,

Proposition 2.2.1 If (AP2) is replaced by (AP2a) and (AP2b), the result of Theorem 2.2.1
holds with Kt replaced by MtKt.

26 Approximate dynamic programming and RL for POMDPs

Proof If (AP2) is replaced by (AP2a) and (AP2b), the IPM definition holds with Kt

replaced by MtKt. Using this in Theorem 2.2.1 gives the desired result. �

2.3 Stochastic AIS

A compression of the history for an approximate information state need not be deterministic.
A stochastic variant of AIS can be written as follows.

Definition 2.3.1 Given a function class F, positive numbers {(εt, δt)}Tt=1, Polish spaces
{Ẑt}Tt=1 and compression functions {ϑ̂st : Ht → ∆(Ẑt)}Tt=1, the process {Ẑs

t }Tt=1, Ẑs
t ∼ ϑ̂t(Ht),

is called an {(εt, δt)}Tt=1-stochastic approximate information state if there exist a transition
approximation function p̂t : Ẑt × At → ∆(Ẑt+1) and a reward approximation function
r̂t : Ẑt ×At → R that satisfy:

(APS1) Sufficient for approximate performance evaluation, i.e.,

∣∣E[Rt | Ht = ht, At = at]− EẐst∼ϑ̂st (ht)[r̂t(Ẑ
s
t , at)]

∣∣ ≤ εt.

(APS2) Sufficient to predict itself approximately. For any Borel subset B of Ẑs
define,

µt(B) = P(Ẑs
t+1 ∈ B | Ht = ht, At = at) and

νt(B) = EẐst∼ϑ̂st (ht)[p̂t(B|Ẑ
s
t , at)].

Then, dF(µt, νt) ≤ δt. 2

We call the tuple {ϑ̂st , r̂t, p̂t}Tt=1 as an {(εt, δt)}Tt=1-stochastic AIS generator.

We then have the following result.

Theorem 2.3.1 Given a function class F, let {Ẑt}Tt=1, Ẑs
t ∈ Ẑt, be an {(εt, δt)}Tt=1-

approximate information state with generator {(ϑ̂st , r̂t, p̂t)}Tt=1. Recursively define value
functions {V̂t : Ẑt → R}T+1

t=1 as follows: V̂T+1(ẑsT+1) = 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑ
s
t , at) = E[Rt + V̂t+1(Ẑs

t+1) | Ẑs
t = ẑst , At = at]

V̂t(ẑ
s
t) = max

at∈A
Q̂t(ẑ

s
t , at). (2.21)

2.3 Stochastic AIS 27

Suppose V̂t has an F-constant Kt. Then for any time t and any history ht, we have the
following:

|Qt(ht, at)− EẐst∼ϑ̂t(ht)[Q̂t(Ẑ
s
t , at)]| ≤ εt +

T∑
s=t+1

(εs +Ks−1δs−1)

|Vt(ht)− EẐst∼ϑ̂t(ht)[V̂t(Ẑ
s
t)]| ≤ εt +

T∑
s=t+1

(εs +Ks−1δs−1). (2.22)

Furthermore, let policy π̂ = (π̂1, . . . , π̂T) be any policy such that:

π̂t(ẑ
s
t) ∈ arg max

a∈A
(Q̂t(ẑ

s
t , a)), (2.23)

and, define policy π = (π1, . . . , πT) as πt = π̂t ◦ ϑ̂st . Then, we have the following:

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]

|Vt(ht)− V π
t (ht)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]. (2.24)

Proof The proof is very similar to the proof for Thm. 2.2.1, with the difference being
that for the value and action-value functions of the stochastic approximation state, we
take an additional expectation over the stochastic AIS. Again we prove the result by
backward induction. By construction, (2.22) is true at time T + 1. This forms the basis of
induction. Assume that (2.22) is true at time t+ 1 and consider the system at time t. Let

C = εt+1 +
T∑

s=t+2

(εs +Ks−1δs−1). Then,

Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at]

(a)

≤ E[Rt + EẐst+1∼ϑ̂st+1(ht+1)[V̂t+1(Ẑs
t+1)] | Ht = ht, At = at] + C

(b)

≤
(
EẐst∼ϑ̂st (ht)[r̂t(Ẑ

s
t , at)] + εt

)
+
(
EẐst∼ϑ̂st (ht)[EẐst+1∼p̂(Ẑst ,at)

[V̂t+1(Ẑs
t+1)] +Ktδt

)
+ C

28 Approximate dynamic programming and RL for POMDPs

= EẐst∼ϑ̂st (ht)[Q̂t(Ẑ
s
t , at)] + εt +

T∑
s=t+1

(εs +Ks−1δs−1).

where (a) follows from the induction hypothesis and (b) follows from (AP1) and the definition
of an IPM. The reverse inequality can be proven using a similar argument. By maximizing
over actions, we get the relationship between the value functions.

To prove (2.24), we note that V̂ π̂
t is the value of the performance of policy π̂. By

definition, since π̂t is an optimal policy in the system using the stochastic approximate
information state, we have that:

Q̂π̂
t (ẑst , at) = Q̂t(ẑ

s
t , at) (2.25)

V̂ π̂
t (ẑst) = V̂t(ẑ

s
t) (2.26)

Furthermore, we have:

V π̂
t (ht) = EẐst∼ϑ̂st (ht)[Q

π̂
t (ht, π̂t(Ẑ

s
t))].

Then, by using the triangle inequality we get:

|Qt(ht, at)−Qπ
t (ht, at)| ≤ |Qt(ht, at)− EẐst∼ϑ̂st (ht)[Q

π̂
t (Ẑs

t , at)]|
+ |EẐst∼ϑ̂st (ht)[Q

π̂
t (Ẑs

t , at)]−Qπ
t (ht, at)|. (2.27)

The first term on the RHS of (2.27) can be bounded using (2.22) as:

|Qt(ht, at)− EẐst∼ϑ̂st (ht)[Q
π̂
t (Ẑs

t , at)]| = |Qt(ht, at)− EẐst∼ϑ̂st (ht)[Q̂t(Ẑ
s
t , at)]|

≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1). (2.28)

Similarly, the second term on the RHS of (2.15) can be bounded using an almost identical
argument as (2.22) as:

|EẐst∼ϑ̂st (ht)[Q
π̂
t (Ẑs

t , at)]−Qπ
t (ht, at)| ≤ εt +

T∑
s=t+1

(εs +Ks−1δs−1). (2.29)

2.4 Extension to infinite horizon 29

Combining (2.27), (2.28) and (2.29), we get (2.24). �

It is important to note that the error term δt defined in (APS2), is an expectation over
all possible Ẑs

t and hence, the above bounds for performance may seem tighter than they
actually are.

2.4 Extension to infinite horizon

In this section, we extend the definition of AIS for the infinite horizon case. To do this, we
first look at the definition of an information state for infinite horizon and then define a
corresponding AIS.

2.4.1 Information state for infinite horizon

Definition 2.4.1 An Ft-adapted process {Zt}t≥1, where Zt ∈ Z (which is time-homogeneous),
is an information state for infinite horizon if, in addition to satisfying (P1) and (P2), it
satisfies the following:

(S) The expectation E[Rt|Zt = ϑt(Ht), At = at] and the transition kernel P(Zt+1 ∈ B|Zt =

ϑt(Ht), At = at) are time-homogeneous.

We refer to such a process as time-homogeneous information state. 2

In time-homogeneous infinite horizon POMDPs, the belief state is an information state
because it satisfies (P1) and (P2) and also satisfies (S).

For any time-homogeneous information state, define the Bellman operator B : [Z →
R]→ [Z → R] as follows: for any uniformly bounded function V : Z → R

[BV](z) = max
a∈A

E[Rt + γV (Zt+1) | Zt = z, At = a], (2.30)

where γ ∈ (0, 1) is the discount factor. Because of (S), the expectation on the right hand
side does not depend on time. Due to discounting, the operator B is a contraction and
therefore, if the rewards are uniformly bounded, the following fixed point equation has a
unique bounded solution:

V = BV. (2.31)

30 Approximate dynamic programming and RL for POMDPs

Let V ∗ be the fixed point and π∗ be any policy such that π∗(z) achieves the arg max in
the right hand side of (2.30) for [BV ∗](z). Is is easy to see that V ∗ is the performance of
the time homogeneous policy (π∗, π∗, . . .). However, it is not obvious that V ∗ equals to the
optimal performance Jopt (defined below), because the proof of Theorem 2.1.2 relies on
backward induction and is not applicable to infinite horizon models. So, we present an
alternative proof below.

Theorem 2.4.1 Let {Zt}t≥1 be a time-homogeneous information state process. Suppose the
rewards are uniformly bounded and lie in the interval [0,M]. Let V ∗ be the unique bounded
fixed point of the Bellman operator B. Fix a starting time s and let Jopt

s denote the optimal
performance from time s onwards, i.e.,

Jopt
s (hs) := max

π
Eπ
[∞∑
t=s

γt−s−1Rt

∣∣∣ Hs = hs

]
, (2.32)

where the maximum is over all (possibly randomized) history dependent policies. Then,
Jopt
s (hs) = V ∗(ϑs(hs)).

Proof Fix a time T > s and let

Jopt
s,T (hs) := max

π
Eπ
[T∑
t=s

γt−s−1Rt

∣∣∣ Hs = hs

]
be the optimal performance for the time interval [s, T]. Note that Jopt

s,∞ = Jopt
s .

Let V (0) = 0 and iteratively define V (n+1) = BV (n). From Theorem 2.1.1, we know that
Jopt
s,T (hs) = V (T−s)(ϑs(hs)). Now, we consider two directions:

• We first derive a lower bound on Jopt
s,∞ . Note that

Jopt
s,∞ (hs) = max

π
E
[∞∑
t=s

γt−s−1Rt

∣∣∣∣ Hs = hs

]

≥ max
π

E
[T∑
t=s

γt−s−1Rt

∣∣∣∣ Hs = hs

]
= Jopt

s,T (hs) = V (T−s)(ϑs(hs)). (2.33)

2.4 Extension to infinite horizon 31

• Next, we derive an upper bound on Jopt
s,∞ . Note that

Jopt
s,∞ (hs) = max

π
E
[∞∑
t=s

γt−s−1Rt

∣∣∣∣ Hs = hs

]

≤ max
π

E
[T∑
t=s

γt−s−1Rt

∣∣∣∣ Hs = hs

]
+
∞∑

t=T+1

γt−s−1M

= Jopt
s,T (hs) +

γT

1− γM

= V (T−s)(ϑs(hs)) +
γT

1− γM. (2.34)

Combining (2.33) and (2.34), we get

V (T−s)(ϑs(hs)) ≤ Jopt
s,T (hs) ≤ V (T−s)(ϑs(hs)) +

γT

1− γM. (2.35)

Recall that B is a contraction. Therefore, limT→∞ V
(T−s) = V ∗. Hence, the result follows

from (2.35) by taking the limit T →∞. �

2.4.2 Approximate information state for infinite horizon

Definition 2.4.2 Given a function class F, positive numbers (ε, δ), a Polish space Ẑ and
compression functions {ϑ̂t : Ht → Ẑ}t≥1, the process {Ẑt}t≥1, Ẑt = ϑ̂t(Ht), is called an
(ε, δ)-time-homogeneous approximate information state for infinite horizon, if there exist
a time-homogeneous transition approximation function p̂ : Ẑ × A → ∆(Ẑ) and a time-
homogeneous reward approximation function r̂ : Ẑ × A → R that satisfy (AP1) and (AP2)
for all t. 2

As before, define the Bellman operator B̂ : [Ẑ → R] → [Ẑ → R] as follows: for any
uniformly bounded function V : Ẑ → R,

[B̂V](ẑ) = max
a∈A

EẐt+1∼p̂(ẑ,a)[Rt + γV (Ẑt+1)|Ẑt = ẑ, At = a]. (2.36)

Because of (AS), the expectation on the right hand side does not depend on time. Then,
similar to Theorem 2.4.1, we can establish the following.

32 Approximate dynamic programming and RL for POMDPs

Theorem 2.4.2 Given a function class F, let {Ẑt}∞t=1 be a time-homogeneous (ε, δ)-approximate
information state with generator ({ϑ̂t}t>1, r̂, p̂), with the system having a time-homogeneous
information state Zt = ϑt(Ht), let Ẑt = ϑ̂t(Ht), and let the rewards be uniformly bounded.
Let V̂ ∗ be the unique bounded fixed point of V = B̂V . Suppose V̂ ∗ has an F-constant K.
Then,

|Jopt
s (hs)− V̂ ∗(ϑ̂t(hs))| ≤

ε+ γKδ

1− γ . (2.37)

Furthermore, let policy π̂ = (π̂1, . . . , π̂T) be any policy such that:

π̂(ẑ) ∈ arg max
a∈A

(Q̂(ẑ, a)), (2.38)

where Q̂(ẑ, a) = E[Rt + γV (Ẑt+1)|Ẑt = ẑ, At = a] and, define policy π as πt = π̂t ◦ ϑ̂t. Then,
we have:

|Jopt
s (hs)− Jπ(ϑ̂s(hs))| ≤

2(ε+ γKδ)

1− γ , (2.39)

Proof The proof follows by combining ideas from Theorems 2.2.1 and 2.4.1. Let V̂ (0) = 0

and iteratively define V̂ (n+1) = B̂V̂ (n). We first prove

|V (T−t)(ϑt(ht))− V̂ (T−t)(ϑ̂t(ht))| ≤ εt +
T∑

s=t+1

γs−t(εs +Kδs−1). (2.40)

We prove this result by backward induction. By construction, (2.40) is true at time T + 1.
This forms the basis of induction. Assume that (2.40) is true at time t+ 1 and consider the

system at time t. Let C = εt+1 +
T∑

s=t+2

γs−t−1(εs +Kδs−1). Then,

Q(T−t)(ϑt(ht), at) = E[Rt + γV (T−t−1)(ϑt+1(Ht+1)) | Ht = ht, At = at]

(a)

≤ E[Rt + γV̂ (T−t−1)(ϑ̂t+1(Ht+1)) | Ht = ht, At = at] + γC

(b)

≤
(
E[Rt | Ẑt = ϑ̂t(ht), At = at] + εt

)
+ γ
(
E[V̂ (T−t−1)(Ẑt+1) | Ẑt = ϑ̂t(ht), At = at] +Kδt

)
+ γC

= Q̂(T−t)(ϑ̂t(ht), at) + εt +
T∑

s=t+1

γs−t(εs +Kδs−1).

2.5 Comparison with existing results in literature 33

where (a) follows from the induction hypothesis and (b) follows from (AP1) and the
definition of an IPM. The reverse inequality can be proven using a similar argument. By
maximizing over actions, we get (2.40). Furthermore, using the fact that {(εt, δt)}Tt=1 are
time-homogeneous with values (ε, δ), and taking limits as T →∞ in (2.40), we get:

|V ∗(ϑ(ht))− V̂ ∗(ϑ̂t(ht))| ≤ lim
T→∞

[
ε+

T∑
s=1

γs(ε+Kδ)
]

= ε+
γ(ε+Kδ)

1− γ =
ε+ γKδ

1− γ . (2.41)

Then using (2.35) and (2.41), we get (2.37).
For proving (2.39), we consider the following triangle inequality:

|V ∗(ϑt(ht))− V π(ϑt(ht))| ≤ |V ∗(ϑt(zt))− V̂ π̂(ϑ̂(ht))|+ |V̂ π̂(ϑ̂(ht))− V π(ϑt(ht))|. (2.42)

The first term on the RHS of (2.42) can be bounded using (2.37) as:

|V ∗(ϑt(ht))− V̂ π̂(ϑ̂(zt))| = |V ∗(ϑt(ht))− V̂ (ϑ̂(ht))| ≤
ε+ γKδ

1− γ . (2.43)

Similarly, the second term on the RHS of (2.42) can be bounded using an almost identical
argument as (2.37) to get:

|V̂ π̂(ϑ̂(ht))− V π(ϑt(ht))| ≤
ε+ γKδ

1− γ . (2.44)

Combining (2.42), (2.43) and (2.44), we get (2.39). �

2.5 Comparison with existing results in literature

2.5.1 Relation with state compression

Suppose the approximate information state is a compression of an information state Zt, rather
than the history Ht. In particular, given a function class F, positive numbers {(εt, δt)}Tt=1,
Polish spaces {Ẑt}Tt=1 (or these can also be discrete sets) and compression functions {ϑ̂t :

Zt → Ẑt}Tt=1, the process {Ẑt}Tt=1, Ẑt = ϑ̂t(Zt), is called an {(εt, δt)}Tt=1-approximate
information state if there exist a transition approximation function p̂t : Ẑt ×At → ∆(Ẑt+1)

34 Approximate dynamic programming and RL for POMDPs

and a reward approximation function r̂t : Ẑt ×At → R that satisfy:

1.
∣∣E[Rt | Zt = zt, At = at]− r̂(ϑ̂(zt, at))

∣∣ ≤ εt.

2. Let µt(B) = P(Ẑt+1 ∈ B | Zt = zt, At = at) and νt(B) = p̂(ϑ̂t(zt), at). Then
dF(µt, νt) ≤ δt.

Then, similar to Theorem 2.2.1, we can show that:

|Qt(ẑt, at)− Q̂t(ϑ̃t(ẑt), at)| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1)

|Vt(ẑt)− V̂t(ϑ̃t(ẑt))| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1).

These bounds are similar to bounds for aggregating Markov decision processes obtained
in [13].

2.5.2 Relation with action compression

In this subsection, we consider the effect of transforming the action space. For instance,
one might wish to transform a continuous action space problem to a quantized action
space problem, such that the difference between the value functions in the two problems is
bounded. An example of action space discretization can be found in [120]. Using an AIS
like analysis, we can provide a theoretical error bound for such approaches as follows.

Definition 2.5.1 Consider an input-output process with history Ht, having an information
state process Zt. Let Â be any set and ϑ̂a : A → Â be an action compression. Given a
function class F, define positive numbers {(εt, δt)}Tt=1, such that:

∣∣E[Rt | Zt = zt, At = at]− E[Rt | Zt = zt, Ât = ϑ̂a(at)]
∣∣ ≤ εt,

and for any Borel subset B of Z define,

µt(B) = P(Zt+1 ∈ B | Zt = zt, At = at) and

νt(B) = P(Zt+1 ∈ B | Zt = zt, Ât = ϑ̂a(at)).

Then, dF(µt, νt) ≤ δt, where dF is an IPM. 2

2.5 Comparison with existing results in literature 35

We then have:

Theorem 2.5.1 Given a function class F, let Ât = ϑ̂a(At) ∈ Â be an {(εt, δt)}Tt=1-action
compression, such that Â ⊂ A. Recursively define value functions {V̂t}T+1

t=1 , where V̂t : Zt 7→
R as follows: V̂T+1(zT+1) = 0 and for t ∈ {T, . . . , 1}:

Q̂t(zt, ât) = E[Rt + V̂t+1(Zt+1) | Zt = zt, Ât = ât]

V̂t(zt) = max
ât∈Â

Q̂t(zt, ât). (2.45)

Suppose V̂t has F-constant Kt. Then, we have the following:

|Qt(zt, at)− Q̂t(zt, ϑ̂
a(at))| ≤ εt +

T∑
s=t+1

(εs +Ks−1δs−1)

|Vt(zt)− V̂t(zt)| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1). (2.46)

Furthermore, let policy π̂ = (π̂1, . . . , π̂T) be any policy such that:

π̂t(zt) ∈ arg max
a∈Â

(Q̂t(ẑt, a)), (2.47)

Then, we have the following:

|Qt(zt, at)−Qπ̂
t (zt, at)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]

|Vt(zt)− V π̂
t (zt)| ≤ 2[εt +

T∑
s=t+1

(εs +Ks−1δs−1)]. (2.48)

Proof The proof is very similar to the proof for Thm. 2.2.1. We prove the result by
backward induction. By construction, (2.46) is true at time T + 1. This forms the basis of
induction. Assume that (2.46) is true at time t+ 1 and consider the system at time t. Let

C = εt+1 +
T∑

s=t+2

(εs +Ks−1δs−1). Then,

Qt(zt, at) = E[Rt + Vt+1(Zt+1) | Zt = zt, At = at]

36 Approximate dynamic programming and RL for POMDPs

(a)

≤ E[Rt + V̂t+1(Zt+1) | Zt = zt, At = at] + C

(b)

≤
(
E[Rt | Zt = zt, Ât = ϑ̂a(at)] + εt

)
+
(
E[V̂t+1(Zt+1) | Zt = zt, Ât = ϑ̂a(at)] +Ktδt

)
+ C

= Q̂t(zt, ât) + εt +
T∑

s=t+1

(εs +Ks−1δs−1).

where (a) follows from the induction hypothesis and (b) follows from Def. 2.5.1 and the
definition of an IPM. The reverse inequality can be proven using a similar argument. By
maximizing over actions, we get the relationship between the value functions.

To prove 2.48, we consider the following triangle inequality:

|Qt(zt, at)−Qπ̂
t (zt, at)| ≤ |Qt(zt, at)− Q̂π̂

t (zt, ϑ̂
s
t(at))|+ |Q̂π̂

t (zt, ϑ̂
a
t (at))−Qπ̂

t (zt, at)|. (2.49)

The first term in (2.49) can be bounded using (2.46) as:

|Qt(zt, at)−Q̂π̂
t (zt, ϑ̂

s
t(at))| = |Qt(zt, at)−Q̂t(zt, ϑ̂

s
t(at))| ≤ εt+

T∑
s=t+1

(εs+Ks−1δs−1). (2.50)

Similarly, the second term on the RHS of (2.49) can be bounded using an almost identical
argument as (2.46) by backward induction as follows. We first note that:

V π̂
t (zt) = Qπ̂

t (zt, π̂t(zt)). (2.51)

We now need to prove:

|Q̂π̂
t (zt, ϑ̂

a(at))−Qπ̂
t (zt, at)| ≤

T∑
s=t+1

(εs +Ks−1δs−1), (2.52)

|V̂ π̂
t (zt)− V π̂

t (zt)| ≤
T∑

s=t+1

(εs +Ks−1δs−1). (2.53)

By construction, (2.53) is true at time T + 1. This forms the basis of induction.
Assume that (2.53) is true at time t + 1 and consider the system at time t. Let C =

2.5 Comparison with existing results in literature 37

εt+1 +
T∑

s=t+2

(εs +Ks−1δs−1). Then,

Qπ̂
t(zt, at) = E[Rt + V π̂

t+1(Zt+1) | Zt = zt, At = at]

(a)

≤ E[Rt + V̂ π̂
t+1(Zt+1) | Zt = zt, At = at] + C

(b)

≤
(
E[Rt | Zt = zt, At = ϑ̂at (at)] + εt

)
+
(
E[V̂ π̂

t+1(Zt+1) | Zt = zt, At = ϑ̂at (at)] +Ktδt

)
+ C

= Q̂π̂
t (zt, ϑ̂

a
t (at)) + εt +

T∑
s=t+1

(εs +Ks−1δs−1).

where (a) follows from the induction hypothesis and (b) follows from Def. 2.5.1, the fact that
V̂ π̂
t = V̂t and so has F-constant Kt, and the definition of an IPM. The reverse inequality

in (2.52) can be proven using a similar argument. By (2.51), we get the relationship between
the value functions in (2.53).

Combining (2.49), (2.50) and (2.52), we get (2.48). �

2.5.3 Relation with observation compression (world models)

In this subsection, we consider the effect of spatial compression of the observations. This
is relevant in vision based RL problems, where each observation is a 2D or 3D image.
One way of doing this spatial compresssion is to use an autoencoder [39] to compress the
observations. These compressed obervation representations could then be used to construct
an AIS. Formally an AIS using this approach can be defined as:

Definition 2.5.2 Given a function class F, positive numbers {(εt, δt)}Tt=1, Polish spaces
{Ẑt}Tt=1 and compression functions {ϑ̂t : Ht → Ẑt}Tt=1, the process {Ẑt}Tt=1, Ẑt = ϑ̂t(Ht) =

[Ŷt, Ȳt], is an {(εt, δt)}Tt=1-approximate information state with generator {(ϑ̂t, r̂t, p̂t)}Tt=1 that
satisfy:

(AP0) History compression:

ϑ̂t(Ht) = [ϑ̂1,t(Yt), ϑ̂2,t(Ht))],

where ϑ̂1,t is the spatial observation compression function (e.g. an autoencoder) and

38 Approximate dynamic programming and RL for POMDPs

ϑ̂2,t is the temporal compression function.

(AP1) Sufficient for approximate performance evaluation, i.e.,

∣∣E[Rt | Ht = ht, At = at]− r̂t(ϑ̂t(ht), at)
∣∣ ≤ εt.

(AP2) Sufficient to predict itself approximately. For any Borel subset B of Ẑ define,

µt(B) = P(Ẑt+1 ∈ B | Ht = ht, At = at) and

νt(B) = p̂t(B | ϑ̂t(ht), at).

Then, dF(µt, νt) ≤ δt. 2

Using this AIS, we get the following performance bound:

Corollary 2.5.1 Given a function class F, suppose {Ẑt = [Ŷt, Ȳt]}Tt=1, Ẑt ∈ Ẑt is an
{(εt, δt)}Tt=1-approximate information state with generator {(ϑ̂t, r̂t, p̂t)}Tt=1 as defined in
Defintion 2.5.2. Then for any realization ht of Ht, we have the following:

|Qt(ϑt(ht), at)− Q̂t(ϑ̂t(ht), at)| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1)

|Vt(ϑt(ht))− V̂t(ϑ̂t(ht))| ≤ εt +
T∑

s=t+1

(εs +Ks−1δs−1). (2.54)
2

Proof The proof follows from Theorem 2.2.1 with the AIS and generators defined as per
Definition 2.5.2. �

A similar model was proposed in world models paper [42] without any bounds. In this
problem, the agent receives a 2D image as an observation Yt at each time t, which is part of
a video sequence. The agent has to choose an action At at time t and on taking this action,
the agent receives a reward Rt and the next image observation Yt+1. This problem is a
POMDP with a very large observation space. Hence, it is not easy to directly use any of the
standard POMDP approaches in this case. In [42], the authors present an approach whereby
an agent learns a world model, i.e., a generative dynamical model that approximates the
environment using spatial and temporal compressions of the 2D image observations. These

2.5 Comparison with existing results in literature 39

compressed representations then serve as an input to the policy function of an RL agent.
This dual compression—compression in observation space as well as compression in time is
described below.

Specifically, the world model approach consists of three components:

1. Vision - Spatial compression: The vision component outputs a compressed vector
representation of each observation, i.e, each 2D image in a video sequence is compressed
into a vector. This is done in [42] using a Variational Autoencoder. Let Ŷt denote this
compressed observation, defined as a latent vector in [42]. This is given by:

Ŷt = M1(Yt), (2.55)

where M1 denotes the vision autoencoder.

2. Memory - Temporal compression: The memory component is used for temporal
compression of the observation sequence. Specifically, at time t, the memory component
outputs a distribution of the next latent vector given the entire history of latent vectors
and actions. This is done in [42] using an RNN (denoted by M2), where Ȳt is the
hidden state of this RNN. Ȳt is the compressed representation of the latent vectors and
actions at time t. Furthermore, let µt = P(Ŷt+1|Ht, At) and νt = P(Ŷt+1|Ȳt, Ŷt, At) =:

M2(Ŷ1:t, A1:t). M2 is trained in such a way so as to minimize the distance between
the distributions µt, νt. In [42], M2 outputs a mixture of Gaussian distributions to
approximate the distribution of the next latent vector Ŷt+1. This approach used in [42]
is called the Mixture Density Network - RNN approach or the MDN-RNN approach.

3. Controller: The controller component is the policy function that uses the compressed
outputs of the vision and memory components to generate an action At for time t.
In [42], this component is a simple linear model that maps (Ŷt, Ȳt) to an action At as:

At = Wc[Ŷt, Ȳt] + bc, (2.56)

where Wc is matrix of appropriate dimensions and bc is a vector of appropriate
dimensions.

In [42], the authors only present empirical results and do not show any theoretical
error bounds. If we define the AIS as Ẑt = [Ŷt, Ȳt] and the functions ϑ̂1,t(Ŷt) = M1(Yt),

40 Approximate dynamic programming and RL for POMDPs

ϑ̂2,t = Hidden state(M2(Ȳt, Ŷt, At)) and modify the definitions of µt and νt as follows:

µt = P(Ŷt+1, Ȳt+1|Ht, At),

νt = P(Ŷt+1, Ȳt+1|Ȳt, Ŷt, At),

then we get the performance bounds for world models using Corollary 2.5.1.

2.5.4 Relation with predictive state representations (PSRs)

The notion of approximate information state is related to predictive state representation
(PSR) [78], which predicts a distribution on the future observations given the current history
and future actions. Thus, PSR is a state sufficient for input-output models. However,
PSR does not predict future rewards, so it is not sufficient for performance evaluation, and
therefore, for dynamic programming.

Predictive state representations (PSRs) predict a distribution of future observations
conditioned on [45,78,97,107,115,135] history and future actions [45,78]. In other words, in
these models, the predictive state is a sufficient statistic to predict future observations given
history and future actions. Thus, it provides an alternative for a belief state in POMDPs. In
RL using PSRs, one approach is to recursively predict a predictive state and use a reactive
policy that depends on this predictive state. This is very similar to our approach for using
AIS in RL as presented in Sec. 2.6. The key difference between our approach and some of the
recent approaches for RL using PSR as in [45], is that the predictive state in [45] does not
involve prediction of rewards. In contrast, our definition of approximate information state
involves predicting both the next approximate information state (we could also use next
observations (AP2a, AP2b)) and reward. However, we predict both these only for a single
step, whereas the PSR models predict the conditional observations for the next k steps. Our
comparison with PSRs also extends to methods using causal state representations, which
are generalizations of PSRs using non-linear function approximations [140].

2.5.5 Relation with bisimulation

The notion of information state is also related to bisimulation based equivalence [24], which
constructs an equivalence in the belief state that is sufficient for dynamic programming. In
principle, the bisimulation equivalence may be relaxed using bisumulation metrics [33] to

2.5 Comparison with existing results in literature 41

obtain an approximate information state. The key difference in our definition of information
state is that we do not assume a state space model. So, an approximate information state is
a compression of the history and not just a compression of the beliefs. Therefore, it is easier
to develop reinforcement learning algorithms based on approximate information state.

Bisimulation constructs an equivalence relationship on the state space that is sufficient to
keep track of the states and the rewards. Bisimulation metric is a relaxation of bisimulation.
Bisimulation metric based state aggregation procedures for MDPs are proposed in [1, 29,
30, 33]. These are used to propose a bisimulation based state aggregation in [24]. This
aggregation is done in the belief space and while it does reduce the complexity of finding the
planning solution, it does not help in learning. In contrast, our definition of approximate
information state does not assume a state space model, but constructs a state space model
from data (as explained in the next section). Therefore, it is applicable to learning models
as well.

2.5.6 Relation with Deep MDPs

A similar state abstraction procedure for MDPs has been presented in [36] at almost the
same time. Though the analysis and error bounds are similar, the motivation is very different
and their results do not apply to POMDPs.

2.5.7 Relation with other approaches for POMDPs

A reinforcement learning algorithm based on properties very similar to our definition of
approximate information state was presented in [8]. However, that paper did not include
an approximation result similar to Theorem 2.2.1 and, therefore, did not provide any
performance guarantees.

An alternate generalization of an information state called an Incrementally Expanding
Representation (IER) has been presented in [3]. An IER is a countable sequence of finite
sets that can be used as an information state. A restriction of this countable sequence to a
finite sequence yields an approximation with bounded error. The IER approach requires
choice of functions specifying the dynamical evolution of the representation. Our AIS
approach learns a continuous, finite dimensional compression of history based on data.
Furthermore, the analysis in the IER approach utilizes concepts of reachability and the
contraction effect due to discounting, whereas, in the AIS approach, we use the error in

42 Approximate dynamic programming and RL for POMDPs

predicting the rewards and dynamics to derive an approximation error bound.

2.6 Reinforcement learning for POMDPs using AIS

In this section, we use an approximate information state to design reinforcement learning
algorithms for infinite horizon POMDPs. We split our approach into two steps—a data-
driven approach to construct an approximate information state and reinforcement learning
using this approximate information state.

2.6.1 Constructing an approximate information state

The definition of approximate information state suggests two ways to construct an informa-
tion state from data: either use ϑ̂(ht) to determine an approximate information state that
satisfies conditions (AP1) and (AP2) or conditions (AP1), (AP2a), and (AP2b). The first
approach is more efficient, but the second is easier to understand. So we first describe the
latter and then the former.

Note that training a network requires the control inputs {At}t≥1. In this section, we
assume that the control and the observations have been generated according to a pure
exploration policy. In the next section, we will consider the case when policy is being learned
along with the approximate information state.

Construction based on (AP1), (AP2a) and (AP2b)

We use two function approximators:

• A recurrent neural network (RNN) or its refinements such as LSTM (Long Short-Term
Memory) [49] or GRU (Gated Recurrent Unit) [28] with state Ct−1 = Ẑt−1, inputs
(At−1, Yt−1) and output Ẑt. We denote this function approximator by ρ.

• A feed forward network with inputs (Ẑt, At) and output (R̃t, ν̃t+1), where R̃t is a
prediction of the expected reward and ν̃t+1 is the prediction of νt+1, the distribution of
the next observation Yt. We parameterize ν̃t+1 as multi-variate Gaussain. We denote
this function approximator as ψ.

2.6 Reinforcement learning for POMDPs using AIS 43

By construction ρ satisfies (AP2a). To minimize the ε in (AP1), we define the loss functions

LR =
1

B

B∑
t=1

smoothL1(R̃t −Rt),

where B is the batch size and

smoothL1(x) =

1
2
x2 if |x| < 1

|x| − 1
2

otherwise,

is the standard smooth approximation for L1 loss. To minimize the δ in (AP2), we define
the loss function

Lν = −
B−1∑
t=1

log(ν̃t+1(Yt)),

which is the negative log likelihood loss for ν̃t and thus approximates the KL-divergence
between µt and νt. We use the KL-divergence as a surrogate for the Wasserstein distance
because: (i) Wasserstein distance is computationally expensive to compute; and (ii) KL-
divergence upper bounds the total variation (due to Pinsker’s inequality), which in turn
upper bounds Wasserstein distance for metric spaces with bounded diameter. To train the
networks ρ and ψ, we use a weighted combination of these losses to get a single scalar loss:

Lρ,ψ = λLR + (1− λ)Lν (2.57)

where λ ∈ [0, 1] is a hyperparameter.

Construction based on (AP1) and (AP2)

We use two function approximators:

• A recurrent neural network (RNN) or its refinements such as LSTM (Long Short-Term
Memory) [49] or GRU (Gated Recurrent Unit) [28] with state Ct−1, inputs (At−1, Yt−1)

and output Ẑt. We denote this function approximator by ρ.

• A feed forward network as in the previous case, except that ν̃t+1 is the prediction of
νt+1, the distribution of the next approximate information state Ẑt+1. We denote this
function approximator as ψ.

44 Approximate dynamic programming and RL for POMDPs

RNN: 𝜌
NN: 𝜋𝜃, 𝑄𝜑

NN: 𝜓 (𝑟, �̂�)

State: 𝐶𝑡−1

𝑌𝑡−1

𝐴𝑡−1

�̂�𝑡

𝐴𝑡

To environment

�̃�𝑡

�̃�𝑡+1

Fig. 2.3: Neural network based function approximators for RL using AIS.

Note that we do not require Ct−1 = Ẑt−1 in this case. This is because to satisfy (AP2), the
approximate information state just needs to be a function of the history, and not necessarily
evolve in a state-like manner. To minimize ε and δ, we train the networks ρ and ψ using
the loss function Lρ,ψ defined in (2.57), where LR is as before and

Lν = −
B−1∑
t=1

log(ν̃t+1(Ẑt+1)). (2.58)

2.6.2 Reinforcement learning

In this section, we present an approach to use the approximate information state for
reinforcement learning. We propose the following RL architecture with three components.
In this case, we learn the AIS along with the optimal policy, but the AIS loss is as defined
before. For completeness, we restate the AIS component below.

1. State approximator, which consists of two parts: The first is an AIS encoder (ρ)
which is an RNN/LSTM with with state Ct−1, inputs (At−1, Yt−1) and output Ẑt. The
RNN/LSTM can be represented as:

Ẑt, Ct = ρ(Yt−1, At−1, Ct−1),

where Ct is the state of the RNN/LSTM at time t and this state is randomly initialized at
t = 1. For the purpose of analysis, an RNN can be unrolled into a sequence of feedforward
networks. Each of these networks has the same architecture as the RNN and have as an
input the previous state of the RNN. Any such network can be expanded into multiple

2.6 Reinforcement learning for POMDPs using AIS 45

layers with each layer acting on the output of the previous layer. For any layer l, if
the vector x is its input, its output is given by fl(Wlx + bl), where Wl is a matrix of
appropriate dimensions and bl is a vector of appropriate dimension and fl is an activation
function, which is typically a non-linear function. The output of the tth network has
the Ẑt as well as the RNN state Ct. Since this process of unrolling creates long chains
of function applications, the process of backpropagation to compute gradients suffers
from the problem of exploding or vanishing gradients. To overcome this problem, long
short-term memory (LSTM) or gated recurrent unit (GRU) based architectures have
been developed that have additional gates/state variables at each level of unrolling that
determine what part of the history needs to be retained in future computations. Most
current RNN implementations use either LSTMs or GRUs for this reason.

The second part is a feedforward NN (ψ) with inputs (Ẑt, At) and outputs (R̃t, ν̃t+1).
This can be represented as:

R̃t, ν̃t+1) = ψ(Ẑt, At),

where the function ψ network can be expanded into multiple layers with each layer acting
on the output of the previous layer. For any layer l, if the vector x is its input, its output
is given by fl(Wlx + bl), where Wl is a matrix of appropriate dimensions and bl is a
vector of appropriate dimension and fl is an activation function, which is typically a
non-linear function. For an overview of neural network architectures used here, please see
Appendix A.

We use the smooth L1 loss between the predicted R̃t and the observed reward Rt to
minimize the ε parameter of (AP1) and use the negative log likelihood loss1 of νt+1

to minimize the parameter δ of (AP2). Thus, the overall loss function for the state
approximator is LAIS = λLR + (1 − λ)Lν , where λ ∈ (0, 1) is a hyper-parameter and,
given a batch size of B,

LR =
1

B

B−1∑
t=0

smoothL1(R̃t −Rt),

Lν = −
B−2∑
t=0

log(νt+1(Ẑt+1)).

Let ξ denote the combined parameters of the AIS encoder and predictor, which are updated

1The negative log likelihood loss approximates KL-divergence.

46 Approximate dynamic programming and RL for POMDPs

using stochastic gradient ascent

ξk+1 = ξk + ak∇ξLAIS(ξk), (2.59)

where the learning rate {ak}k≥0 satisfies the standard conditions
∑
ak =∞ and

∑
a2
k <∞.

2. Critic, which is a function approximator (Qϕ) (may be a linear function approximator, or a
feedforward neural network) with the AIS Ẑt and action At as input and Q(Ẑt, At) as output.
Let ϕ denote the parameters of this function approximator, which are updated using batch
temporal-difference (TD):

ϕk+1 = ϕk + bk∇ϕLTD(ξk, ϕk, θk), (2.60)

where,

LTD(ξk, ϕk, θk) :=
1

B

B−1∑
t=0

smoothL1(Qϕk(Ẑt, At), Rt + γQϕk(Ẑt+1, At+1)) (2.61)

and θk are the parameters of the of the actor (explained below) and the learning rate {bk}k≥0 satis-
fies the standard conditions

∑
bk =∞ and

∑
b2k <∞. In addition, we require, limk→∞ bk/ak = 0

to ensure that the state approximator converges faster. Instead of the TD(1) update in (2.60),
we can also use TD(λ) update with eligibility traces to reduce variance [117].

3. Actor, πθ : Ẑ 7→ ∆(A), which is a function approximator (again a linear function approximator
or a feedforward neural network) with AIS Ẑt as input and a distribution on actions parameters
∆(At) as output. Let θ denote the parameters of the this policy function approximator. The
parameter θ is updated using the policy gradient theorem [67,118]:

θk+1 = θk + ck∇θJ(ξk, ϕk, θk), (2.62)

where the policy gradient is given by

∇θJ(ξk, ϕk, θk) =
1

B

B−1∑
t=0

Qϕk(Ẑt, At)∇θ log πθk(Ẑt, At)

and the learning rate {ck}k≥0 satisfies
∑
ck = ∞ and

∑
c2
k < ∞. In addition, we require

limk→∞ ck/bk = 0 to ensure that the critic learns faster.

The choice of the learning rates implies that there is a separation of timescales between

2.6 Reinforcement learning for POMDPs using AIS 47

the updates at the state approximator, the critic, and the actor. Thus, we can show
convergence of the algorithm using ideas from [20]. We impose the following standard
technical assumptions:

Assumption (A) 1. All network parameters (ξk, ϕk, θk) lie in convex and bounded subsets
of Euclidean spaces.

2. The gradient of the loss function ∇ξLAIS(ξk) of the state approximator is Lipschitz in ξk,
the gradient of the TD loss ∇ϕLTD(ξk, ϕk, θk) and the policy gradient ∇θkJ(ξk, ϕk, θk) is
Lipschitz in (ξk, ϕk, θk) in terms of the sup norm.

3. All the gradients—∇ξLAIS(ξk) at the state approximator; ∇ϕLTD(ξk, ϕk, θk) at the critic;
and ∇θkJ(ξk, ϕk, θk) at the actor—are unbiased with bounded variance. Furthermore, the
critic and the actor function approximators are compatible as given in [118], i.e.,

∂Qϕk(Ẑt, At)

∂ϕ
=

1

πθk(Ẑt, At)

∂πθk(Ẑt, At)

∂θ
.

4. The learning rates are sequences of positive numbers {ak}k≥0, {bk}k≥0, {ck}k≥0 that satisfy:∑
ak =∞, and

∑
a2
k <∞,∑

bk =∞,
∑

b2
k <∞, and lim

k→∞
bk/ak = 0,∑

ck =∞,
∑

c2
k <∞, and lim

k→∞
ck/bk = 0.

The proposed RL framework has the following convergence guarantees.

Theorem 2.6.1 Suppose in addition to Assumption 1 the following regularity conditions
hold: the ODE corresponding to (2.62) is locally asymptotically stable and the ODEs corre-
sponding to (2.59) and (2.60) are globally asymptotically stable with the ODE corresponding
to (2.60) having a fixed point which is Lipschitz continuous in θ. Then, along any sam-
ple path, almost surely we have: (a) iteration (2.59) converges to a state estimator that
minimizes the loss function LAIS; (b) iteration (2.60) converges to a critic that minimizes
the error with respect to the true Q-function; and (c) iteration (2.62) converges to a local
maximum of the performance J(ξ∗, ϕ∗, θ).

48 Approximate dynamic programming and RL for POMDPs

Proof The assumptions satisfy all the four conditions stated in [72, page 35], [20, Theorem
23]. The proof follows in a straightforward manner from combining this two-time scale
algorithm proof with the fastest third time-scale of learning the state representation. Due
to the specific choice of learning rates, the state representation algorithm sees a stationary
actor and critic, while the actor and critic in turn see a converged state approximator
ietration due to its faster learning rate. The convergence of the state approximator follows
from [19, Theorem 2.2] and the fact that the model satisfies conditions (A1)–(A4) of [19, pg 10–
11]. The Martinagle difference condition (A3) in this reference is satisfied by the unbiasedness
assumption for the state approximator. The result then follows from by combining the
theorem given in [72, page 35], [20, Theorem 23] along with [19, Theorem 2.2] and using a
third fastest time scale for the state apparoximator. �

The convergence guarantees of Theorem 5.2.1 provides the following approximation
bounds.

Theorem 2.6.2 At convergence, let ε and δ be the error constants in (AP1) and (AP2),
and let κ = ‖Vϕ − V̂ ‖∞ where Vϕ is the converged value function at the critic and V̂ is the
solution of (2.45). Then, by the triangle inequality, we have for any realization of history
Ht, ∣∣V (Ht)− Vϕ(ϑt(Ht))

∣∣ ≤ κ+
ε+ γLV δ

1− γ .

2.7 Numerical examples

In this section, we use the approximate information state based reinforcement learning for
four small dimensional POMDP benchmarks: voicemail [132], tiger [60], 4× 4 grid [23],
and cheese maze [83]. See [102] for the details of the environments. The results for these
numerical examples were provided by Amit Sinha. For these numerical experiments, we use
Actor only methods, i.e, the Critic is replaced with a Monte Carlo return estimator. We use
the approach described in Sec. 2.6.2, with the following choices for the networks:

• The ρ network is a two layer recurrent neural network, where the input is one-hot

2.7 Numerical examples 49

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples ×106

−100

−80

−60

−40

−20

0

20

40

P
er
fo
rm

an
ce

Planning solution

RPG

AIS

(a) Voicemail

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples ×106

−40

−30

−20

−10

0

10

20

P
er

fo
rm

an
ce

Planning solution

RPG

AIS

(b) Tiger

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples ×106

0

1

2

3

4

5

P
er

fo
rm

an
ce

Planning solution

RPG

AIS

(c) 4× 4 grid

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

fo
rm

an
ce

Planning solution

RPG

AIS

(d) Cheese maze

Fig. 2.4: Performance versus samples for all the problems. The solid line shows the median
value and the shaded region shows the region between the first and third quartiles over 10
runs.

50 Approximate dynamic programming and RL for POMDPs

encoded2, the first layer is a fully connected layer with 40 neurons and tanh activation
and the second layer is an LSTM layer with 40 neurons. This network outputs Ẑt as
the state of the LSTM cell.

• The ψ network has two parts—one for R̃t and one for ν̃t+1. Both these parts are two
layer feedforward neural networks, where the input is an approximate information state
and one-hot encoded action, the first layer for both these parts is a fully connected
layer with 20 neurons and relu activation and the second layer is a fully connected
layer with a single neuron for R̃t and neurons equal to the observation dimension
(|Y|) with softmax activation for ν̃t+1. This network outputs R̃t and a discrete
probability distribution for ν̃t+1, which represents the probability distribution of the
next observation.

• The policy network πθ is a two layer feedforward neural network, where the input is
an approximate information state, the first layer is a fully connected layer with 40

neurons and relu activation and the second layer is a fully connected layer with |A|
neurons. The output of this network are the parameters of a |A| dimensional softmax
distribution.

We train these networks for γ = 0.95 (except for cheese maze, where γ = 0.7), λ = 0.1,
B = 300 and {ak}k≥1 and {bk}k≥1 chosen according to ADAM(0.005) and ADAM(0.003) [65]
respectively. The performance gradients are estimated using REINFORCE [133]. The plots
for 5000 iterations of the algorithm for all 4 problems are shown in Figure 2.4. These figures
show the performance plots for our algorithm labelled AIS, the planning solution and one
of the state-of-the-art Actor only algorithms for POMDPs called recurrent policy gradient
(RPG) [131] for all four examples. The data for RPG is taken from [102]. The experiments
with RPG used a two layer RNN for the policy function, where the first layer is a recurrent
LSTM layer with 20 neurons and the second layer is a fully connected layer with 20 neurons.
This outputs parameters for the softmax function to obtain distributions over actions. The
RPG implementation also included a history dependent baseline for variance reduction.
This was a two layer RNN where the first layer is a recurrent LSTM layer with 20 neurons

2In one-hot encoding an input belonging to a finite indexed set of cardinality N is converted into an
N -dimensional vector representation. Suppose i is the index of the input. Then the output vector v has
all elements as zero except for v[i], which has the value 1. Hence, only one element of this vector has a
non-zero value (i.e. v[i] = 1) and hence this is called a one-hot encoding.

2.8 Conclusion 51

and the second layer is a fully connected layer with a single neuron. In all three examples,
our algorithm performed better than or as good as RPG.

2.8 Conclusion

In this chapter, we present two notions of information states for partially observed systems.
We show that both these information states are sufficient for dynamic programming, with the
second information state definition being a refinement of the more general first information
state definition. We then relax the definition to describe an Approximate information
state (AIS) that can be used to identify an approximately optimal policy. We also present
an extension of the concept of AIS to stochastic compressions of history.

We compare the AIS concept with various approximation approaches in literature
including approaches such as state compression, action compression, observation compression
(world models), predictive state representations, bisimulation based approaches, deep MDPs.

The approximate information state is defined in terms of properties that can be estimated
from data, so it can be used to develop sampling based reinforcement learning algorithms.
We present an RL algorithm that learns an AIS from data and uses it for learning an optimal
policy. We state and prove the convergence of this algorithm and also demonstrate its
performance versus one of the state of the art RL algorithms for POMDPs called recurrent
policy gradient (RPG) in four toy problems.

This page is intentionally left blank.

53

Chapter 3

RL using AIS for mean-field teams

3.1 Introduction

In this chapter, we develop reinforcement learning (RL) algorithms for a class of multi-agent
systems called mean-field teams (MFT). Teams are multi-agent systems where agents have
a common goal and receive a common reward at each time step. The team objective is to
maximize the expected cumulative reward over a finite horizon or the expected cumulative
discounted reward over an infinite horizon. Mean-field teams (MFT)s are teams with
homogeneous, anonymous agents such that the agents are coupled in their dynamics and
rewards only through the mean-field of the system (i.e., empirical distribution of the agents’
state). In our work, we consider MFTs with a mean-field sharing information structure, i.e.,
each agent knows its local state and the empirical mean-field at each time step as described
in [3, 5].

The planning solution for this problem was presented in [3, 5] in which a dynamic
programming (DP) decomposition for MFTs is obtained using a decomposition approach
from literature called the common information approach, which splits the decision making
process into a centralized coordination rule that yields prescriptions to be followed by each
agent based on their local information. Using the concept of approximate information state
(AIS), we relate the solution of this finite agent problem to the solution of the corresponding
mean-field limit problem, where we assume that the number of agents is infinite. Under
certain regularity conditions, we show that the use of the mean-field limit solution in the
finite population system results in bounded sub-optimality. Using this relation, we also
bound the sub-optimality in using the solution obtained using an m agent system in a system

54 RL using AIS for mean-field teams

with n agents. We develop two RL approaches for MFTs using the AIS approach under the
assumption of parametrized prescriptions based on the availability of either a system-level
simulator or an agent-level simulator. In the former case, the AIS is the statistical mean-field,
and in the latter it is the empirical mean-field of a system with possibly a different number
of agents, which we refer to as an approxmate empirical mean-field. In addition to using the
statistical or an approximate empirical mean-field as an AIS, we consider the parameters as
actions and use conventional RL algorithms to solve the DP. We show that the performance
sub-optimality of using the two proposed AIS processes are bounded and of the order of

O(
1√
n

), where n is the number of agents. A similar result was recently presented in [4] for

planning in MFTs.
Having presented an RL algorithm and the associated performance analysis, we illustrate

their empirical performance through two examples based on stylized models of the demand
response problem in smart grids and malware spread in networks. For the demand response
example, we compute the planning solution as given in [3, 5] for comparison with the RL
solutions. For variants of this problem with different numbers of agents ranging from 100
to 1000, we also numerically estimate the sub-optimality of using a mean-field limit RL
solution and the sub-optimality of using an RL solution for the 100-agent system in the
systems with varying number of agents.

3.1.1 Notation

Random variables are denoted by uppercase letters, their realization by the corresponding
lowercase letter and their state spaces are denoted by corresponding calligraphic letters.
Subscripts are used to index time while superscripts are used to index agents. S1:t is a
shorthand for the vector (S1, . . . , St). P(·) denotes probability of an event, E[·] denotes
expectation of a random variable, and 1{·} denotes the indicator function of a statement.

Given a finite set S, ∆(S) denotes the set of all probability mass functions on S. For
a positive integer n, ∆(n)(S) denotes the probability mass functions on S which can be
normalized to a denominator of n, i.e.,

∆(n)(S) = {z ∈ ∆(S) : for all s ∈ S, nzs ∈ Z≥0}

Given a vector s = (s1 . . . sn) ∈ Sn of size n, ξ(s) =
(∑

i∈n δsi
)
/n ∈ ∆(n)(S) denotes the

empirical mean-field of s. Given a mean-field z ∈ ∆(n)(S), Ξ(n)(z) = {s ∈ Sn : ξ(s) = z}.

3.2 System model and problem formulation 55

denotes all vectors s of size n with empirical mean-field z.

3.2 System model and problem formulation

Consider a multi-agent team with n agents, indexed by the set N = {1, . . . , n}. The team
operates in discrete time for a infinite horizon T . Let Sit ∈ S and Ait ∈ A denote the state and
action of agent i ∈ N at time t. Let St = (S1

t , . . . , S
n
t) ∈ Sn and At = (A1

t , . . . , A
n
t) ∈ An

denote the state and action of all agents. Let Zt = ξ(St) denote the empirical mean-field of
the team at time t. The state space S and action space A are finite sets and are the same
for all agents.

The initial states of all agents are independent, i.e., for any realization s0 = (s1
0, . . . , s

n
0) ∈

Sn, we have
P(S0 = s0) =

∏
i∈N

P(Si0 = si0) =:
∏
i∈N

P0(si0),

where P0 denotes the initial state distribution of agents.
The global state evolves in a controlled Markov manner and the agents are exchangeable,

so the evolution of a generic agent depends on the states and actions of other agents only
through the empirical mean-field of the state, i.e., for any realizations {st}t≥0 and {at}t≥0

of {St}t≥0 and {At}t≥0, we have

P(St+1 = st+1 | S0:t = s1:t,A0:t = a0:t)

= P(St+1 = st+1 | St = st,At = at)

=
∏
i∈N

P(Sit+1 = sit+1 | Sit = sit, A
i
t = ait, Zt = ξ(st))

=:
∏
i∈N

p(sit+1 | sit, ait, ξ(st)), (3.1)

where p : S ×A×∆(S)→ ∆(S) denotes the controlled transition matrix.
The system has mean-field sharing information-structure, i.e., the information available

to agent i is given by:
I it = {Sit , Zt}. (3.2)

Agents use identical1 (stochastic) control law πt : S ×∆(S)→ ∆(A) to choose the control
1In general, restricting attention to identical policies may lead to a loss of optimality. See [5] for an

56 RL using AIS for mean-field teams

action at time t, i.e.,
Ait ∼ πt(S

i
t , Zt). (3.3)

We also use the notation πt(ait|sit, zt) to denote the probability of choosing action ait in state
(sit, zt) when following policy πt.

The team receives a per-step reward given by

Rteam(St,At) =
1

n

∑
i∈N

r(Sit , A
i
t, ξ(St)), (3.4)

where r : S ×A×∆(S)→ R≥0 is the per-agent reward function.
Given a policy π = (π0, π1, . . . , πT) for the entire horizon, the expected total reward

incurred by the team is given by

J(π) = Eπ
[T∑
t=0

Rteam(St,At)

]
, (3.5)

We are interested in the following optimization problem.

Problem 1 Given the sets S and A, the number n of agents, the initial distribution P0, the
controlled transition matrix p and the reward function r, choose a policy π∗ = (π∗0, π

∗
1, . . . , π

∗
T)

to maximize the performance J(π) given by (3.5), i.e.,

J∗ = J(π∗) = max
π

J(π), (3.6)

where the maximum is over all policies of the form 3.3.

Problem 1 is a decentralized control problem with a non-clssical information structure.
A planning solution for this problem was proposed in [3, 5], which we describe in the next
section. We then define the corresponding mean-field limit problem, where we assume that
the number of agents n→∞ and also describe its planning solution. We then relate the
solutions of these two problems by proposing that the transition and reward functions of
the mean-field limit problem be used in the generator for an AIS process for the finite agent
problem, Problem 1

example. Nonetheless, identical policies are attractive for reasons of fairness, simplicity, and robustness.

3.3 Planning solution for Problem 1 57

3.3 Planning solution for Problem 1

In this section we describe the planning solution for Problem 1 presented in [3, 5].
Given any policy π = (π0, π1, . . . , πT) and any realization, z = (z0, z1, . . . , zT) of the

mean-field, define prescriptions gt : S → ∆(A) given by

gt(s) = πt(s, zt), ∀s ∈ S.

When the mean field trajectory is a random process, the prescription gt is a random function
which we denote Gt. The results of [3, 5] rely on the following two key properties. Let
(z0:t+1, g1:t) denote any realization of (Z0:t+1, G0:t). Then, we have:

1. [5, Lemma 4] {Zt}Tt=0 is a controlled Markov process with control action Gt i.e.,

Pπ(Zt+1 = zt+1 | Z0:t = z0:t, G0:t = g0:t)

= P(Zt+1 = zt+1 | Zt = zt, Gt = gt)

=: P (zt+1 | zt, gt). (3.7)

Furthermore, we can show that for any st = (s1
t , . . . , s

n
t) ∈ Ξ(zt), we have

P (zt+1 | zt, gt) =∑
st+1∈Ξ(zt+1)

∏
i∈N

∑
a∈A

p(sit+1|sit, a, zt)gt(a|sit), (3.8)

where gt(a|sit) = P(At = a|gt, sit) denotes the probability of taking action a given a
prescription gt and local state sit, which is a slight abuse of notation.

2. [5, Lemma 3] The expected per-step reward simplifies as follows.

E[Rteam(St,At) | Z0:t = z0:t, G0:t = g0:t]

= E[Rteam(St,At) | Zt = zt, Gt = gt]

=
∑
s∈S

∑
a∈A

r(s, a, z)g(a|s)z(s)

=: R(zt, gt). (3.9)

58 RL using AIS for mean-field teams

As shown in [5, Theorem 1], these two properties imply that the optimal policy π∗ can be
identified via the following dynamic program.

Theorem 3.3.1 Define value function {Vt : Z → R}T+1
t=0 as follows: VT+1(z) = 0 and for

t ∈ {T, T − 1, . . . , 0}, we have

Vt(z) := max
g : S→∆(A)

E
[
R(z, g) + Vt+1(Zt+1) | Zt = z,Gt = g

]
. (3.10)

Let ψ̃∗t (z) denote an arg max of the right hand side of (3.10). Then the policy, π∗ =

(π∗1, . . . , π
∗
T), where

π∗t (s, z) = ψ̃∗t (z)(s), (3.11)

is optimal for Problem 1, i.e., it maximizes (3.6).

3.4 Mean-field limits

Problem 1 can be computationally simplified by assuming an infinite population system,
i.e., the mean-field limit system which has a deterministic evolution. This mean-field limit
assumption is also useful when the agents do not know the exact number of agents in the
team.

3.4.1 Model and problem formulation

We now consider the infinite-population mean-field limit of the controlled Markov process
given by (3.7) and (3.9). In this case, the information available to agent i can be written
as:

Ī it = {Sit , z̄t} (3.12)

where z̄t ∈ Z̄ is the statistical mean-field at time t. In this problem as well, the agents use
identical stochastic control laws π̄t : S ×∆(S)→ ∆(A) to choose the control action at time
t, i.e.,

Ait ∼ π̄t(S
i
t , Z̄t). (3.13)

Let π̄ = (π̄0, π̄1, . . . , π̄T) denote the team policy for all time. As before, we define prescriptions
as:

ḡt(s) = π̄t(s, z̄t), ∀s ∈ S.

3.4 Mean-field limits 59

For any presciption ḡ : S → ∆(A), define an operator Pḡ : ∆(S)→ ∆(S) as follows: for any
z̄ ∈ ∆(S) and any s′ ∈ S,

[Pḡz̄](s′) =
∑
s∈S

z̄(s)p(s′ | s, ḡ, z̄).

The mean-field limit of the controlled Markov process given by (3.7) and (3.9) is a
distribution valued controlled Markov process {z̄t}Tt=0. The initial state z̄0 of the process
is P0. At any time t ≥ 0 and a choice ḡt : S → ∆(A), the state evolves in a deterministic
manner as

z̄t+1 = Pḡt z̄t. (3.14)

and the system receives a reward R(z̄t, ḡ). Given any policy ψ̄ = (ψ̄0, . . . , ψ̄T), where

ḡt = ψ̄t(z̄t), (3.15)

the expected total reward obtained by the system is given by

J̄(π̄) =
T∑
t=0

R(z̄t, ḡ). (3.16)

The mean-field limit optimization problem is the following.

Problem 2 Given the sets S and A, the initial distribution P0, the controlled transition
matrix p, and the reward function R, choose a policy π̄∗ = (π̄∗0, π̄

∗
1, . . . , π̄

∗
T) to maximize the

performance J̄(π̄) given by (3.16), i.e,

J̄∗ = J̄(π̄∗) = max
π̄

J̄(π̄), (3.17)

where the maximum is over all policies of the form (3.15).

Problem 2 is a deterministic control problem whose solution is given as follows.

Theorem 3.4.1 Define value function {V̄t : Z → R}T+1
t=0 as follows: V̄T+1(z) = 0 and for

t ∈ {T, T − 1, . . . , 0}, we have

V̄t(z) := max
ḡ : S→∆(A)

{R̃(z, ḡ) + V̄t+1(Pḡz)}. (3.18)

60 RL using AIS for mean-field teams

Let ψ̄∗t (z) denote an arg max of the right hand side of (3.18). Then the policy, ψ̄∗ =

(ψ̄∗1, . . . , ψ̄
∗
T) is optimal for Problem 2, i.e., it maximizes (3.17).

The relation between the value functions of these two problems is given in the next
sub-section. This is followed by a theorem relating the performance of an optimal policy for
Problem 2 in the system defined in Problem 1.

3.5 Approximation bounds

3.5.1 Preliminaries on Lipschitz continuity

Our results in the sequel will be based on Lipschitz continuity, Wasserstein distance and the
Kantorovich-Rubinstein duality. Hence, in this section we give state some basic definitions
and results.

Let z̄1, z̄2 ∈ ∆(S) be two distributions with a finite support S. We assume that the space
S is a metric space (and denote the metric by ds) and equip the probability space ∆(S)

with the Wasserstein metric, which we denote by dz̄. In particular, for any z̄1, z̄2 ∈ ∆(S),

dz̄(z̄1, z̄2) = inf
λ∈Λ(z̄1,z̄2)

∑
s1,s2∈S

λ(s1, s2)ds(s1, s2),

where Λ(z̄1, z̄2) denotes the collection of probability mass functions on S ×S with marginals
z̄1 and z̄2 on the first and the second factors, respectively. Then the Kantorovich-Rubinstein
duality [124] can be stated as:

dz̄(z̄1, z̄2) = sup
f

{∣∣∣∫
s∈S

f(s)dz̄1(s)−
∫
s∈S

f(s)dz̄2(s)
∣∣∣}, (3.19)

where the supremum is taken over all Lipschitz continuous functions f with a Lipschitz
constant Lf ≤ 1. When the space S is discrete, the Kantorovich-Rubinstein duality reduces
to:

dz̄(z̄1, z̄2) = sup
f

{∣∣∣∑
s∈S

f(s)z̄1(s)−
∑
s∈S

f(s)z̄2(s)
∣∣∣}, (3.20)

which can be written as:∣∣∣∑
s∈S

f(s)z̄1(s)−
∑
s∈S

f(s)z̄2(s)
∣∣∣ ≤ dz̄(z̄1, z̄2). (3.21)

3.5 Approximation bounds 61

Furthermore, we can extend the above inequality to Lipschitz continuous functions that
have a Lipschitz constant L as:∣∣∣∑

s∈S

f(s)z̄1(s)−
∑
s∈S

f(s)z̄2(s)
∣∣∣ ≤ Ldz̄(z̄1, z̄2), (3.22)

where f is a Lipschitz continuous function with Lipschitz constant L. Another extension of
the above inequality to functions of more than one variable can be given by:∣∣∣∑

s∈S

f(s, y)z̄1(s)−
∑
s∈S

f(s, y)z̄2(s)
∣∣∣ ≤ Ldz̄(z̄1, z̄2), (3.23)

where f is a Lipschitz continuous function in its first variable (s) for any given y, with
Lipschitz constant L. A final extension of this inequality that we will use in our proofs is an
extension to a function f of multiple arguments and conditional distributions z̄(s|y1), z̄(s|y2)

given by: ∣∣∣∑
s∈S

f(s, y)z̄(s|y1)−
∑
s∈S

f(s, y)z̄(s|y2)
∣∣∣ ≤ Ldz̄(z̄(s|y1), z̄(s|y2)), (3.24)

where f is a Lipschitz continuous function in its first variable (s) for any given y, with
Lipschitz constant L.

3.5.2 Lipschitz continuity of the reward R, transition function Pḡt and the
value function V̄

In order to derive approximation bounds, we impose certain technical assumptions on the
model. We assume that the state space S is a metric space (and denote the metric by ds)
and equip the probability space ∆(S) with the Wasserstein metric, which we denote by dz̄.

We also assume that the action space A is a metric space (and denote the metric by da)
and equip the probability space ∆(A) with the Wasserstein metric, which we denote by dḡ.
We say that a prescription ḡ : S → ∆(A) is Lipschitz continuous with Lipschitz constant Lḡ
if for any s1, s2 ∈ S,

dḡ(ḡ(·|s1), ḡ(·|s2)) ≤ Lḡds(s1, s2).

Since S is a finite set, all prescriptions are Lipschitz continuous with some Lipschitz constant.
We make the following assumptions on the model.

62 RL using AIS for mean-field teams

(A1) The per-step reward function r is uniformly bounded between 0 and Rmax.2

(A2) For any z̄ ∈ ∆(S) and a ∈ A, the function r(·, a, z̄) : S → R is Lipschitz continuous
with Lipschitz constant Lsr.

(A3) For any s ∈ S and z̄ ∈ ∆(S), the function r(s, ·, z̄) : A → R is Lipschitz continuous
with Lipschitz constant Lar.

(A4) For any s ∈ S and a ∈ A, the function r(s, a, ·) : ∆(S)→ R is Lipschitz continuous
with Lipschitz constant Lz̄r.

(A5) For any z̄ ∈ ∆(S) and a ∈ A, the function P (S+|·, a, z̄) : S → ∆(S) is Lipschitz
continuous with Lipschitz constant LsP with respect to the Wasserstein metric, i.e.,
for any s1, s2 ∈ S, we have:

K(P (S+|s1, a, z̄), P (S+|s2, a, z̄)) ≤ LsPds(s1, s2), (3.25)

where K(µ, ν) denotes the Wasserstein distance between distributions µ and ν.

(A6) For any s ∈ S and z̄ ∈ ∆(S), the function P (S+|s, ·, z̄) : A → ∆(S) is Lipschitz
continuous with Lipschitz constant LaP with respect to the Wasserstein metric, i.e.,
for any a1, a2 ∈ A, we have:

K(P (S+|s, a1, z̄), P (S+|s, a2, z̄)) ≤ LaPda(a1, a2). (3.26)

(A7) For any s ∈ S and a ∈ A, the function P (S+|s, a, ·) : ∆(S) → ∆(S) is Lipschitz
continuous with Lipschitz constant Lz̄P with respect to the Wasserstein metric, i.e.,
for any z̄1, z̄2 ∈ ∆(S), we have:

K(P (S+|s, a, z̄1), P (S+|s, a, z̄2)) ≤ Lz̄Pdz̄(z̄1, z̄2). (3.27)

For ease of notation, we define the following: a transition kernel p̄ : S × [S → ∆(A)]×
2Note that any bounded reward function with negative rewards can be translated into this form without

affecting the optimal policy.

3.5 Approximation bounds 63

∆(S)→ ∆(S), which is given as follows: for any s, s+ ∈ S, ḡ : S×∆(S)→ A, and z ∈ ∆(S),

p̄(s+|s, ḡ, z) =
∑
a∈A

p(s+|s, a, z)ḡ(a|s);

and a function r̄ : S × [S → ∆(A)]×∆(S)→ R≥0, which is given as follows: for any s ∈ S,
ḡ : S → A, and z ∈ ∆(S),

r̄(s, ḡ, z) =
∑
a∈A

r(s, a, z)ḡ(a|s).

where we use ḡ(a | s) to denote P(a|s; ḡ), which is a slight abuse of notation.

Lemma 3.5.1 For any Lipschitz continuous prescription ḡ : S → ∆(A) with Lipschitz
constant Lḡ and any z̄ ∈ ∆(S), the function r̄(·, ḡ, z̄) : S → R is Lipschitz continuous with
Lipschitz constant Lsr + LarLḡ. 2

Proof Consider s1, s2 ∈ S. From the triangle inequality, we have

∣∣r̄(s1, ḡ, z̄)− r̄(s2, ḡ, z̄)
∣∣

=
∣∣∣∑
a∈A

r(s1, a, z̄)ḡ(a | s1)−
∑
a∈A

r(s2, a, z̄)ḡ(a | s2)
∣∣∣

≤
∣∣∣∑
a∈A

r(s1, a, z̄)ḡ(a | s1)−
∑
a∈A

r(s2, a, z̄)ḡ(a | s1)
∣∣∣

+
∣∣∣∑
a∈A

r(s2, a, z̄)ḡ(a | s1)−
∑
a∈A

r(s2, a, z̄)ḡ(a | s2)
∣∣∣

(a)

≤ Lsrds(s1, s2) + Lardḡ(ḡ(a | s1), ḡ(a | s2))

(b)

≤ Lsrds(s1, s2) + LarLḡds(s1, s2),

where the second term in (a) follows from Kantorovich-Rubinstein duality given by (3.24),
as r(s2, a, z̄) is Lipschitz continuous with respect to a for any s2 and z̄ with Lipschitz
constant Lar as per assumption (A3) and the second term in (b) follows from the fact that
the prescription is Lipschitz continuous. �

Now, consider the function R defined in (3.9), which can be written as R(z̄, ḡ) =∑
s∈S

z̄(s)r̄(s, ḡ, z̄).

64 RL using AIS for mean-field teams

Lemma 3.5.2 For any Lipschitz continuous prescription ḡ with Lipschitz constant Lḡ,
the function R(·, ḡ) given by (3.9) is Lipschitz continuous with Lipschitz constant LR =

Lz̄r + Lsr + LarLḡ. 2

Proof Consider any z̄1, z̄2 ∈ ∆(S). From the triangle inequality, we have

∣∣R(z̄1, ḡ)−R(z̄2, ḡ)
∣∣

=
∣∣∑
s∈S

z̄1(s)r̄(s, ḡ, z̄1)−
∑
s∈S

z̄2(s)r̄(s, ḡ, z̄2)
∣∣

≤
∣∣∑
s∈S

z̄1(s)r̄(s, ḡ, z̄1)−
∑
s∈S

z̄1(s)r̄(s, ḡ, z̄2)
∣∣+
∣∣∑
s∈S

z̄1(s)r̄(s, ḡ, z̄2)−
∑
s∈S

z̄2(s)r̄(s, ḡ, z̄2)
∣∣

≤
∑
s∈S

z̄1(s)
∣∣r̄(s, ḡ, z̄1)− r̄(s, ḡ, z̄2)

∣∣+
∣∣∑
s∈S

z̄1(s)r̄(s, ḡ, z̄2)−
∑
s∈S

z̄2(s)r̄(s, ḡ, z̄2)
∣∣

(a)

≤ Lz̄rdz̄(z̄1, z̄2) + (Lsr + LarLḡ)dz̄(z̄1, z̄2),

where the first term in (a) follows from the Lipschitz continuity of r with respect to its third
argument z̄ (assumption A4) and the second term follows from the Kantorovich-Rubinstein
duality given by (3.23), where we use the fact that r̄(s, ḡ, z̄2) is Lipschitz continuous in its
first parameter with Lipschitz constant Lsr + LarLḡ from Lemma 3.5.1. �

Lemma 3.5.3 For any Lipschitz continuous prescription ḡ : S → ∆(A) with Lipschitz
constant Lḡ, any s+ ∈ S and any z̄ ∈ ∆(S), the function p̄(s+|·, ḡ, z̄) : S → [0, 1] is Lipschitz
continuous with Lipschitz constant LsP + LaPLḡ. 2

Proof Consider s1, s2 ∈ S. From the triangle inequality, we have

∣∣p̄(s+|s1, ḡ, z̄)− p̄(s+|s2, ḡ, z̄)
∣∣

=
∣∣∣∑
a∈A

p(s+|s1, a, z̄)ḡ(a | s1)−
∑
a∈A

p(s+|s2, a, z̄)ḡ(a | s2)
∣∣∣

≤
∣∣∣∑
a∈A

p(s+|s1, a, z̄)ḡ(a | s1)−
∑
a∈A

p(s+|s2, a, z̄)ḡ(a | s1)
∣∣∣

+
∣∣∣∑
a∈A

p(s+|s2, a, z̄)ḡ(a | s1)−
∑
a∈A

p(s+|s2, a, z̄)ḡ(a | s2)
∣∣∣

(a)

≤ LsPds(s1, s2) + LaPds(ḡ(a | s1), ḡ(a | s2))

3.5 Approximation bounds 65

(b)

≤ LsPds(s1, s2) + LaPLḡds(s1, s2),

where the first term in (a) follows from the Lipschitz continuity of p(s+|s, a, z̄) with respect
to its first argument as per assumption (A5) and and the second term follows from the
Kantorovich-Rubinstein duality (3.24) and the fact that p(s+|s2, a, z̄) is Lipschitz continuous
in its second argument with Lipschitz constant LaP from assumption (A6), and the second
term in (b) follows from the fact that the prescription is Lipschitz continuous. �

Lemma 3.5.4 For any Lipschitz continuous prescription ḡ with Lipschitz constant Lḡ, the
function Pḡz̄ given by (3.14) is Lipschitz continuous with Lipschitz constant LP̄ , i.e.,

dz̄(Pḡz̄1,Pḡz̄2) ≤ LP̄dz̄(z̄1, z̄2),

where LP̄ = diam(S)|S|
2

(Lz̄P + LsP + LaPLḡ). 2

Proof We first consider the total divergence distance between these distributions:

dTV (Pḡz̄1,Pḡz̄2)
(a)
=

1

2

∑
s+∈S

[∣∣∣∑
s∈S

[z̄1(s)p̄(s+|s, ḡ, z̄1)]−
∑
s∈S

[z̄2(s)p̄(s+|s, ḡ, z̄2)]
∣∣∣]

(b)

≤ 1

2

∑
s+∈S

[∣∣∣∑
s∈S

[z̄1(s)p̄(s+|s, ḡ, z̄1)]−
∑
s∈S

[z̄1(s)p̄(s+|s, ḡ, z̄2)]
∣∣∣

+
∣∣∣∑
s∈S

[z̄1(s)p̄(s+|s, ḡ, z̄2)]−
∑
s∈S

[z̄2(s)p̄(s+|s, ḡ, z̄2)]
∣∣∣]

(c)

≤ 1

2

∑
s+∈S

[∣∣∣Lz̄Pdz̄(z̄1, z̄2) + (LsP + LaPLḡ)dz̄(z̄1, z̄2)

]
(d)
=
|S|
2

(Lz̄P + LsP + LaPLḡ)dz̄(z̄1, z̄2), (3.28)

where (a) follows from the definition of p̄, (b) from adding and subtracting the same term,
the first term in (c) from the Lipschitz continuity of p̄ with respect to z̄ (since p̄ is a convex
combination of Lipschitz continuous functions of z̄, with the constants being independent
of z̄) and the second term in (c) from the Kantorovich-Rubinstein duality given by (3.23),
where we use the fact that p̄(s+|s, ḡ, z̄2) is Lipschitz continuous in s with Lipschitz constant
LsP + LaPLḡ from Lemma 3.5.3, and (d) follows from the fact that the summands do not

66 RL using AIS for mean-field teams

depend on s+. Then, we have:

dz̄(z̄
+
1 , z̄

+
2) ≤ diam(S)dTV (z̄+

1 , z̄
+
2)

≤ diam(S)|S|
2

(Lz̄P + LsP + LaPLḡ)dz̄(z̄1, z̄2).

Thus, we get the desired Lipschitz continuity of the transition probabilities in terms of the
Kantorovic metric. �

We now consider the Lipschitz continuity of the value functions.

Lemma 3.5.5 Recursively define value functions for Problem 2 as V̄T+1(z̄) = 0 and for
t ∈ [0, T]:

V̄t(z̄) = max
ḡ∈Ḡ

Q̄t(z̄, ḡ)

Q̄t(z̄, ḡ) = R̄(z̄, ḡ) + V̄t+1(z̄+) = R(z̄, ḡ) + V̄t+1(Pḡz̄). (3.29)

For any Lipschitz continuous policy ψ : ∆(S) → [S → ∆(A)] with Lipschitz constant
Lψ, the value function V̄t : ∆(S) → R is Lipschitz continuous with Lipschitz constant
LV = LR̄

∑T−t
s=0 L

s
P̄
. 2

Proof We follow the approach given in [94] modified for the finite horizon case. We first
note that the MDP given by Problem 2 is a Lipschitz MDP as defined in [94] since both the
reward and transition functions are Lipschitz (from Lemmas 3.5.2, 3.5.4).

We prove the claim by using backward induction.

Basis of induction For t = T , any z̄1, z̄2 ∈ ∆(S), and any ḡ ∈ Ḡ,

|QT (z̄1, ḡ)−QT (z̄2, ḡ)| = |R(z̄1, ḡ)−R(z̄2, ḡ)| ≤ LRdz̄(z̄1, z̄2) = LR

0∑
s=0

LsP̄dz̄(z̄1, z̄2),

which follows from Lemma 3.5.2. We see that this satisfies the induction hypothesis.
Consequently,

|VT (z̄1)− VT (z̄1)| = |max
ḡ
QT (z̄1, ḡ)−max

ḡ
QT (z̄2, ḡ)| ≤ max

ḡ
|(QT (z̄1, ḡ)−QT (z̄2, ḡ))|

≤ LRdz̄(z̄1, z̄2).

3.5 Approximation bounds 67

Induction hypothesis For time t+ 1, we have:

|Qt+1(z̄1, ḡ)−Qt+1(z̄2, ḡ)| ≤ LR

T−t−1∑
s=0

LsP̄ ,

and

|Vt+1(z̄1)− Vt+1(z̄2)| ≤ LR

T−t−1∑
s=0

LsP̄ ,

Induction step For time t:

|Qt(z̄1, ḡ)−Qt(z̄1, ḡ)| (a)
= |R(z̄1, ḡ) + Vt+1(z̄+

1)−R(z̄2, ḡ) + Vt+1(z̄+
2)|

(b)

≤ |R(z̄1, ḡ)−R(z̄2, ḡ)|+ |Vt+1(z̄+
1)− Vt+1(z̄+

2)|
(c)

≤ LRdz̄(z̄1, z̄2) + LR

T−t−1∑
s=0

LsP̄dz̄(z̄
+
1 , z̄

+
2)

(d)

≤ LRdz̄(z̄1, z̄2) + LP̄LR

T−t−1∑
s=0

LsP̄dz̄(z̄1, z̄2)

= LR

T−t∑
s=0

LsP̄dz̄(z̄1, z̄2),

where (a) follows from the fact that this model has deterministic transitions, (b) follows
from the triangle inequality, the first term of (c) follows from Lemma 3.5.2 and the second
term from the induction hypothesis, and (d) follows from Lemma 3.5.4. We now get:

|Vt(z̄1)− Vt(z̄2)| = |max
ḡ
Qt(z̄1, ḡ)−max

ḡ
Qt(z̄2, ḡ)| ≤ max

ḡ
|(Qt(z̄1, ḡ)−Qt(z̄2, ḡ))|

≤ LR̄

T−t∑
s=0

LsP̄dz̄(z̄1, z̄2). �

3.5.3 Relation between the solutions of Problems 1 and 2

We define an AIS process for Problem 1 in terms of Problem 2 as follows.

68 RL using AIS for mean-field teams

Theorem 3.5.1 Consider the following AIS generators {(ϑ̂t, r̂t, p̂t)}Tt=1 given by:

z̄t = ϑ̂t(z1:t, g1:t) = zt (3.30)

r̂t(z̄t, gt) = R(z̄t, gt) = R(zt, gt) (3.31)

p̂t(z̄t, gt) = Pgt z̄t = Pgtzt. (3.32)

Then, {Z̄t}Tt=1, Z̄t ∈ ∆(St) is an {(εt, δt)}Tt=1-approximate information state for Problem 1
with the error bounds given by:

εt = 0 (3.33)

δt ≤
K√
n
, (3.34)

where K is a constant that depends on the state space S and the metric ds. Note that the
transition dynamics and reward functions in the AIS generator are identical to the transition
dynamics and reward functions of Problem 2. Hence, the system with these AIS generators
has the same DP as Problem 2.

Proof We have:∣∣∣E[Rt|Zt = zt, Gt = gt]− r̂t(z̄t, gt)
∣∣∣ (a)

=
∣∣∣R(zt, gt)−R(zt, gt)

∣∣∣ = 0 =: εt, (3.35)

where (a) follows from (3.9) and (3.31). Furthermore, we have:

dz̄(P(Z̄t+1|Zt = zt, Gt = gt), p̂(z̄t, gt))
(a)
= dz̄(P (zt+1 | zt, gt),Pgtzt)

(b)

≤ K√
n

=: δt, (3.36)

where (a) follows from (3.7) and (3.32), and (b) from [109], where K is a constant that
depends on the state space S and the metric ds. �

We now relate the performance of an optimal policy for Problem 2, in Problem 1. This
relation can be stated as follows.

Corollary 3.5.1 Let π̄∗(·, z̄) = ψ̄∗(z̄) denote an optimal policy for Problem 2. Then, we
have:

|J̄∗ − J∗] ≤ TLV
K√
n

=
K̄√
n
, (3.37)

3.5 Approximation bounds 69

and
J̃∗ − J(π̄∗) ≤ 2TLV

K√
n

= 2
K̄√
n
, (3.38)

where K̄ = TLVK. 2

Proof The results given by (3.37) and (3.38) follow from the definition of the performances
as:

J̃ = EZ0 [Ṽ0(Z0)], and J̄ = EZ̄0
[V̄0(Z̄0)],

Theorem 3.5.1, and Theorem 2.2.1 from Chapter 2, where LV is the Lipschitz constant of
the value function, denoted by Ks in Theorem 2.2.1. �

3.5.4 Relation between the solutions of Problem 1 with different number of
agents

In this section, we bound the sub-optimality due to the use of a solution of an m− agent
system as defined in Problem 1 and an n− agent system as defined in Problem 1. In order
to do this, we use the relation between both these systems and the corresponding mean-field
limit system as given below.

Corollary 3.5.2 The performance error due to using an m− agent optimal policy, denoted
by π̂∗(·), where ẑ denotes the empirical mean-field in the m− agent system, in the original
n− agent system can be given as:

|J∗ − J(π̂∗)| ≤ 2K̄(
1√
n

+
1√
m

). (3.39)
2

Proof The proof follows by using the following triangle inequality:

|J∗ − J(π̂∗)| ≤ |J∗ − J(π̄∗)|+ |J(π̂∗)− J(π̄∗)|, (3.40)

where each of the two terms on the RHS can be bounded by the error given in (3.38). Thus,
we get the desired result. �

70 RL using AIS for mean-field teams

3.5.5 Extension to infinite horizon

The approximation results developed for mean-field teams in the previous sections can be
extended to the infinite horizon case in a fairly straightforward manner. In order to do so, we
first consider the Lipschitz continuity of the infinite horizon value function as follows. In this
case, the transition functions and the reward functions are assumed to be time-homogeneous
and we consider a disount factor of γ ∈ (0, 1). This is proven in [94, Theorem 1], which we
state below:

Lemma 3.5.6 [94, Theorem 1] Define the value function for the infinite horizon version
of Problem 2 as V̄ (z̄) that satisfies:

V̄ (z̄) = max
ḡ∈Ḡ

Q̄(z̄, ḡ)

Q̄(z̄, ḡ) = R(z̄, ḡ) +
∑

z̄+∈∆(S)

P(z̄+|z̄, ḡ)V̄ (z̄+). (3.41)

For any Lipschitz continuous stationary policy ψ : ∆(S) → [S → ∆(A)] with Lipschitz
constant Lψ, if γLP̄ (1 + Lψ) < 1, then the value function V̄ : ∆(S) → R is Lipschitz
continuous with Lipschitz constant L∞V = LR̄

1−γLP̄ (1+Lψ)
. 2

We now get the following approximation error in the infinite horizon case.

Lemma 3.5.7 Consider the infinite horizon extensions of Problems 1 and 2 with time-
homogeneous transition and reward functions and a discount factor of γ ∈ (0, 1). Let
V : ∆(S) → R and V̄ : ∆(S) → R denote their respective value functions and J, J̄ their
respective performances. We then have:

|J∗ − J(π̄∗)| ≤ 2K̄∞√
n
, (3.42)

where γ ∈ (0, 1) is the discount factor, K̄∞ =
γL∞V K

(1−γ)
and L∞V is as per Lemma 3.5.6 2

Proof This result follows from Lemma 3.5.6 and Theorem 2.4.2 from Chapter 2. �

3.6 Mean-field team reinforcement learning (MFT-RL) 71

3.6 Mean-field team reinforcement learning (MFT-RL)

In principle, the dynamic program of Theorem 3.3.1 provides a computational algorithm to
identify the optimal policy, but it suffers from several computational challenges. The state
space Z of the dynamic program is the set of all empirical distributions with denominator
n. Although this set is finite and bounded by (n+ 1)|S|, it can grow quickly with the size
of the state space S. Furthermore, the prescriptions are functions from a finite set to a
simplex. For example, if |S| = |A| = 4 and n = 1000, then zt takes approximately 1012

values and gt takes values in (∆4)4, where ∆4 denotes the simplex in R4. Carrying out exact
dynamic programming with such state and action spaces is computationally challenging.
In this section, we propose a reinforcement learning framework for computing the optimal
policy for the above model. In the sequel, we restrict attention to the infinite horizon case,
as is common in the reinforcement learning literature.

For RL, we need access to a simulator (or environment) to get data. For mean-field
teams, we consider two different types of simulators and propose two different RL algorithms.
The two types of simulators are—a system level simulator that generates the next statistical
mean-field given the current mean-field, z̄t, and prescription, ḡt, i.e., we get z̄t+1 = Pḡz̄t
or an agent-level simulator, where we get a sample of the next state of the agent, given
the current state, action and mean-field, i.e, we get Sit+1 ∼ P(Sit+1|Sit = sit, A

i
t ∼ Gt(S

i
t), Zt)

for each agent i ∈ N . By using trajectories generated using this simulator for n agents in
parallel, we get the evolution of the empirical mean-field Zt. In both cases, we assume that
the initial state Z̄0 or Z0, as the case may be, is known.

In the first case, when we have access to a system level simulator, the problem reduces to
a standard RL in MDP problem as we have access to the (approximate) information state
Z̄t. Hence, we can use any standard MDP RL algorithm such as TRPO [100], PPO [101],
NAFDQN [41] etc. to solve this problem. Under appropriate conditions these algorithms
will converge to a policy which is optimal for the model [117] and Theorem 3.5.1 gives the
error between this solution and the optimal solution.

In the second case, where we have access only to an agent-level simulator, we can
construct an approximate system level simulator by simulating several agents in parallel.
Then, we can use the same approach for RL as the first case. If the number of parallel
simulations equals the number of agents in the system, then using RL, we can get a
simulation based solution for Problem 1. Note that this simulation can, in principle, be done

72 RL using AIS for mean-field teams

by each agent independently. When either n is too large or each agent does not know the
total number of agents in the system, we could consider simulating m < n parallel agents.
Under appropriate conditions any standard RL algorithm will converge to a policy which is
optimal for the model [117] and Corollary 3.5.2 gives the error between this solution and
the optimal solution.

We thus have two variants of RL based on having access to a system-level simulator
or an agent level simulator. These RL solutions can be used in Problem 1 with bounded
sub-optimality. In the sequel, we demonstrate the numerical performance of these algorithms.
For the agent-level simulator, we demonstrate performance using a stylized version of the
demand-response problem and a stylized version of the malware spread problem. In order
to demonstrate the sub-optimality in using a mean-field limit policy or a policy learned in a
system with different number of agents, we compute both the mean-field limit solution using
a system-level simulator and a 100-agent solution using an agent-level simulator, and we
evaluate the performance of these learned polciies in systems with number of agents varying
from 100 to 1000. We also compare these values with the respective planning solutions from
literature [3, 5].

The key step that enables us to use standard RL algorithms for both these types of
simulators is given in the following section.

3.6.1 Restriction to parameterized policies

The action space G of the above dynamic program is all functions from S to ∆(A). We
assume that G is approximated by some family of parametrized functions GΦ = {gφ}φ∈Φ

(where Φ is a compact and convex set) such as Gibbs/Boltzmann functions or neural networks.
With such a parametrization, the dynamic program of (3.18) may be approximated as:

V (z) = max
φ∈Φ

E[R(z, gφ) + γV (Zt+1) | Zt = z,Gt = gφ]. (3.43)

Let ψ̃∗(z) be an arg max of the right hand side of (3.43). Then the policy,

π(s, z) = gψ̃∗(z)(s), (3.44)

is the best policy for (3.6) when gt(·, zt) is restricted to belong to GΦ.

3.7 Numerical experiments 73

3.7 Numerical experiments

In this section, we first describe the two benchmark problems—demand response in smart
grids and malware spread in networks. We first illustrate that TRPO, PPO and NAFDQN
converge to an approximate solution in the agent-level simulator based approach for these
two problems. Subsequent to this we only consider the demand response problem. For
this example, we then show the convergence to an approximate solution in the system-level
simulator case (mean-field limit case) using TRPO, PPO and NAFDQN. Following this,
we compare the performance of the solution obtained using the mean-field limit model in
finite population models with different agent populations. We also compare the performance
of the solution obtained using the agent level simulator with n = 100 agents in systems
with different agent populations. For clarity of exposition, we only show solutions obtained
using TRPO for these comparisons. For both these cases, as expected we see that the
sub-optimality in performance is bounded. For the RL implementations in this section, we
have used the Chainer RL code base [25,122].

3.7.1 Benchmark domains

We consider the following domains to illustrate different decentralized reinforcement learning
algorithms.

Demand response in smart grids

This is a stylized model for demand response in smart grids [5]. The system consists of n
agents, where S = {0, 1}, A = {∅, 0, 1}, the dynamics are given by:

P (· | ·, ∅, z) = M (3.45)

P (· | ·, 0, z) = (1− ε1) [1 0
1 0] + ε1M (3.46)

P (· | ·, 1, z) = (1− ε2) [0 1
0 1] + ε2M, (3.47)

where M denotes the “natural” dynamics of the systems and ε1 and ε2 are small positive
constants.

74 RL using AIS for mean-field teams

The per-step reward is given by:

Rt = −
(

1

n

∑
i∈N

(
c01{Ait=0} + c11{Ait=1}

)
+KL(zt‖ζ)

)
, (3.48)

where c0 and c1 are costs for taking actions 0 and 1 respectively, ζ is a given target
distribution and KL(zt‖ζ) denotes the Kullback-Leibler divergence between zt and ζ.

In our experiments, we consider we consider a system with n = 100 agents, initial state
distribution P0 = [1/3, 2/3], M = [0.25 0.75

0.375 0.625], c0 = 0.1, c1 = 0.2, ζ = [0.7, 0.3], ε1 = ε2 = 0.2

and discount factor γ = 0.9.

Malware spread in networks

This is a stylized model for malware spread in networks [51–53]. The system consists of n
agents where S = [0, 1], A = {0, 1}. The dynamics are given by:

Sit+1 =

Sit + (1− Sit)ωt, for At = 0,

0 for At = 1,

where ωt ∼ Uniform[0, 1]. The per-step reward is given by:

Rt = −
(1

n

∑
i∈N

(k + 〈zt〉)Sit + λAit

)
,

where 〈zt〉 denotes the average of Zt, and λ is the cost of taking action 1.
In our experiments, we consider k = 0.2, initial state distribution P0 = Uniform(S),

λ = 0.5 and discount factor γ = 0.9. For the simulation, we discretize the state space into
11 bins—0, 0.1, . . . , 1.

3.7.2 Simulation results

We first present the results for the agent based simulator for both the benchmark problems.
We consider three RL algorithms—TRPO, PPO and NAFDQN. Figure 3.1 shows the result
for the demand response domain and Figure 3.2 shows the result for the malware spread
domain. For each of these, the dark line shows the median performance and the shaded
region shows the region between the first and third quartiles across multiple independent

3.7 Numerical experiments 75

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps ×105

−3.0

−2.5

−2.0

−1.5

−1.0

R
et

ur
ns

Smart Grid - 100 Agents

VI

NAFDQN

PPO

TRPO

Fig. 3.1: Performance of different variants of MFT-RL for demand response domain (25
independent runs).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps ×105

−4.6

−4.4

−4.2

−4.0

R
et

ur
ns

Malware Spread - 100 Agents

NAFDQN

PPO

TRPO

Fig. 3.2: Performance of different variants of MFT-RL for malware spread domain (15
independent runs).

runs. For the demand response domain we also show the optimal performance obtained
using the value iteration algorithm presented in [3, 5].

76 RL using AIS for mean-field teams

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps ×105

−5

−4

−3

−2

−1

R
et

ur
ns

Smart Grid - Infinite Agents

VI

NAFDQN

PPO

TRPO

Fig. 3.3: Performance of different variants of MFT-RL for demand response domain (25
independent runs).

Fig. 3.4: Performance of policy obtained in mean-field limit system and 100-agent system
in systems with larger number of agents.

For the system based simulator, we only consider the demand response problem. Fig-
ure 3.3 shows that TRPO, PPO and NAFDQN algorithms converge to solutions with
performance close to the optimal performance.

3.8 Conclusion 77

Finally, in Figure 3.4, we compare the performance of the policies obtained using PPO
in the agent-level simulator (labeled as ‘PPO_100_Agents’) and the system-level simulator
(labeled as ‘PPO_MF_Limit’) in systems with different agent populations. We see that the
sub-optimality in using either of these solutions is bounded by comparing with the planning
solution from literature obtained using value iteration (labeled as ‘VI’).

3.8 Conclusion

In this chapter, we related the solutions of a mean-field team problem with a finite number
of agents to the solution of the correspoding mean-field limit problem. We showed using the
theory of approximate information state (AIS) that the sub-optimality of using the solution
obtained in the mean field limit system in the original n-agent system is bounded and of the
order of O(1√

n
) as expected from results in literature [4]. Furthermore, using this relation,

we bound the sub-optimality of using the solution obtained using an m-agent system in
an n-agent system and show that this is of the order of O(1√

n
+ 1√

m
). We then present an

approach for RL in such systems using parametrized prescriptions. Specifically we cover two
case—where we have access to a system-level simulator (equivalent to the mean-field limit
problem, Problem 2) and where we have access to an agent-level simulator (equivalent to
the n-agent problem, Problem 1). We illustrate the performance of our algorithms using two
exmaples which are stylized models of the demand response and malware spread problems.
For the demand response problem, we also show the sub-optimality in performance otained
in using a mean-field limit RL solution and an m-agent RL solution in systems with varying
number of agents ranging from 100 to 1000. Thus, using our approach, we can obtain RL or
ADP solutions to any arbitrary population mean-field team problem with mean-field sharing
solutions using approaches with finite complexity (mean-field limit or a fixed population
solution) and bounded sub-optimality.

This page is intentionally left blank.

79

Chapter 4

RL in Stationary Mean-field Games

4.1 Introduction

In this chapter, we present an MARL algorithm for a special class of mean-field systems,
where the agents can be non-cooperative, play stationary strategies and the mean-field also
becomes stationary. These systems are called stationary mean-field games. As discussed
earlier, in such multi-agent systems, the presence of other agents makes MARL different
from traditional single agent RL. When we view the MARL setup from the point of view
of a particular agent, say agent i, all other agents are part of the environment. Since
these agents are also learning and changing their policies, the environment faced by agent i
changes with time. Due to this perception of non-stationary environment, traditional single
agent RL algorithms cannot be used in MARL.

Another feature of MARL is that the agents may be strategic (i.e., selfish) and wish to
maximize their individual reward or they might be cooperative and wish to maximize their
team reward. Depending on the case, the learning process in MARL should converge to a
variation of Nash equilibrium or of social-welfare optimal (or team optimal) solution.

There is a rich literature on MARL which models the multi-agent interaction using the
framework of stochastic dynamic games starting with [75], where a Q-learning algorithm
that converges to a minimax solution of a zero-sum game was proposed. This was extended
to an algorithm that converges to the Nash equilibrium of a general sum game (under some
conditions) in [50]. Several other variations have been proposed in the literature and we
refer the reader to [17,46,141] for a detailed survey.

In recent years, there has been considerable interest in using deep neural networks in

80 RL in Stationary Mean-field Games

MARL. Most papers adopt the paradigm of centralized training with decentralized execution
in which a centralized critic estimates the Q-function and decentralized actors optimize the
policy of the agents. Examples include BICNET [90], MADDPG [79], and COMA [34].

These approaches, in general, do not scale with the number of agents. In the literature
on planning for multi-agent systems, various frameworks have been proposed which easily
scale to thousands of homogeneous agents. These include swarm based models [57], mean-
field games (MFG) [55, 70, 125], mean-field teams [3, 5, 6], and cooperative multi-agent
systems [5,56,57,70]. The central theme in all these approaches is the idea of mean-field
(MF) approximation from statistical physics [128].

Motivated by the success of the planning frameworks, there have been several approaches
which use mean-field approximation for reinforcement learning. The earliest of these is [66],
which proposed a model based adaptive control algorithm for mean-field games. A Q-learning
based algorithm for MFG control of coupled oscillators is proposed in [139]. Model-free
Q-learning and actor critic algorithms for mean-field games have been proposed in [85, 138].
A detailed description of these papers is presented in Sec. 4.5.3. Another related work
is [137], which proposed a mean-field based solution for inverse RL. Mean-field games are
related to the notion of anonymous games, which considers static games with large number
of anonymous agents [12, 59]. A learning framework for such games was presented in [63].

In the last decade, mean-field models have been successfully used in many planning
problems in control engineering, network economics, and finance, but these results haven’t
been translated to the learning setup. A remarkable feature of mean-field models is that as
the number of agents becomes large, the non-stationarity problem has negligible impact on
the solution. In a mean-field model, agents are homogeneous and coupled only through the
mean-field. Agents impact each other only through the mean-field distribution and once
this is fixed, the agents are decoupled. Thus, MF models circumvent the non-stationarity
problem by changing the solution concept. It has been shown that under appropriate
conditions, the mean-field equilibrium is also a ε-Nash equilibrium, where ε is O(1/

√
n).

In this chapter, we present reinforcement learning algorithms for stationary mean-field
games. In the game theory and stochastic control literature, there are two very closely
related modeling frameworks that are referred to as mean-field games and stationary
mean-field games. We highlight the difference between these two modeling frameworks in
Sec. 4.5.2. The current literature on using mean-field ideas in MARL focuses on computing
Nash equilibrium of mean-field games. We propose reinforcement learning algorithms that

4.2 Background 81

compute stationary mean-field equilibrium and social-welfare optimal solution of stationary
mean-field games. Both the modeling framework and the solution concepts are different
from what has previously appeared in the MARL literature. Our main contribution is
to obtain RL algorithms for stationary MF models. Most existing works for RL for MF
assumes non-stationary solution concept.

4.2 Background

4.2.1 Mean-field games (MFG)

Consider a mean-field game with n homogeneous agents, indexed by the set N = {1, 2, . . . , n}.
Each agent has the same state and action spaces, which we denote by S and A respectively.
Both S and A are finite sets. At any time t, Sit ∈ S and Ait ∈ A denote the state and
action of agent i ∈ N . In a MFG, the dynamical evolution and the reward of each agent
are decoupled from the rest of the agents given the mean-field, where the mean-field or the
empirical distribution of the system is given by:

zt(x) =
1

n

∑
i∈N

1{Sit = x}, ∀x ∈ S. (4.1)

Note that zt ∈ ∆(S), the space of probability mass functions on S. The state of agent i
evolves according to:

Sit+1 ∼ P (Sit , A
i
t, zt), (4.2)

where P (x, a, z) ∈ ∆(S) is the transition probability distribution given the state x, action
a and mean-field z. With a slight abuse of notation, we use P (y|x, a, z) to denote the
probability that the next state is y given that the current state, action and mean-field are
x, a and z respectively. The per-step reward for each agent i ∈ N is given by:

Rit = r(Sit , A
i
t, zt, S

i
t+1). (4.3)

The utility or the expected total reward for agent i ∈ N is given by:

U i = E
[∞∑
t=0

γtRit

]
, (4.4)

82 RL in Stationary Mean-field Games

where γ ∈ (0, 1) is the discount factor.
The main idea of mean-field games is to approximate the above finite population system

by an infinite population system, where the empirical mean-field almost surely converges to
the statistical mean-field due to the strong law of large numbers. Thus the agents assume
that:

zt(x) ≈ 1

n

∑
i∈N

P(Sit = x). (4.5)

In addition, it is assumed that agents use an identical time varying policy (π1, π2, . . .),
where πt : S → ∆(A) is the stochastic policy at time t and Ait ∼ πt(S

i
t). When all agents

follow policy (π1, π2, . . .), the statistical mean-field evolves according to the discrete time
McKean Vlasov equation:

zt+1(y) =
∑
x∈S

∑
a∈A

zt(x)πt(a|x)P (y|x, a, zt), ∀y ∈ S, (4.6)

which we denote as:
zt+1 = Φ(zt, πt). (4.7)

4.2.2 Stationary MFG

In stationary MFG, the following additional assumptions are made [2, 125,126].

(A1) Time homogeneous policy: All agents follow a time-homogeneous, stochastic
policy, πt = π : S → ∆(A) for all t, i.e., each agent chooses an action given by
Ait ∼ π(Sit). With a slight abuse of notation, we use π(a|x) to denote the probability
of choosing action a in state x under policy π. Let Π denote the space of all such
policies.

(A2) Stationarity of mean-field: When all agents follow a policy π ∈ Π, the mean-field
of states {Zt}t≥0 converges almost surely to a constant limit z, which we call the
stationary mean-field. Note that the stationary mean-field satisfies:

z = Φ(z, π). (4.8)

(A3) Agent’s performance evaluation: Agents evaluate their performance by assuming
that the population is infinite and the corresponding mean-field takes its stationary

4.2 Background 83

value at all times. In particular, given a policy π ∈ Π and a candidate stationary
mean-field distribution z ∈ ∆(S), agent i evaluates its performance starting from
initial state x ∈ S as:

Vπ,z(x) = E Ait∼π(Xi
t)

Xi
t+1∼P (Xi

t ,A
i
t,z)

[∞∑
t=0

γtr(X i
t , A

i
t, z,X

i
t+1)

∣∣∣∣X i
0 = x

]
.

Such a mean-field approximation may be written as the solution of the following
Bellman fixed-point equation.

Vπ,z(x) =
∑
a∈A

π(a|x)
[∑
y∈X

P (y|x, a, z)×
[
r(x, a, z, y) + γVπ,z(y)

]]
.

4.2.3 Solution concepts

When agents are strategic (non-cooperative), the following refinement of Markov perfect
equilibrium (MPE) is used as a solution concept [2].

Definition 4.2.1 (Stationary mean-field equilibrium (SMFE)) A stationary mean-
field equilibrium (SMFE) is a pair of policy π ∈ Π and mean-field z ∈ ∆(S) which satisfies
the following two properties:

1. Sequential rationality: For any other policy π′,

Vπ,z(x) ≥ Vπ′,z(x), ∀x ∈ X .

2. Consistency: The mean-field z is stationary under policy π, i.e.,

z = Φ(z, π).
2

The sufficient conditions for the existence of an SMFE are given in [2].
When agents are cooperative, the following refinement of social welfare optimal solution

is used as a solution concept.

Definition 4.2.2 (Stationary mean-field social-welfare optimal policy (SMF-SO))
A policy π ∈ Π is stationary mean-field social welfare optimal (SMF-SO) if it satisfies the
following property:

84 RL in Stationary Mean-field Games

• Optimality: For any other policy π′ ∈ Π,

Vπ,z(x) ≥ Vπ′,z′(x), ∀x ∈ S,

where z and z′ are the stationary mean-field distributions corresponding to π and π′,
respectively, i.e., satisfy

z = Φ(z, π) and z′ = Φ(z′, π′).
2

If the model satisfies sufficient conditions such that each policy has an associated stationary
distribution, then SMF-SO is the policy which yields the best performance. In our case,
since there are only a finite number of policies due to the finiteness of the state and action
spaces, an SMF-SO always exists.

Comparison of the two solution concepts

The definitions of sequential rationality and optimality are different. In particular, sequential
rationality is defined with respect to the mean-field z; while considering the performance
of an alternative policy π′ ∈ Π it is assumed that the mean-field does not change. In
contrast, optimality is a property of a policy; while considering the performance of an
alternative policy π′ ∈ Π, the mean-field approximation of the performance is with respect
to the stationary mean-field corresponding to π′. Thus, in general, SMFE and SMF-SO are
different.

4.2.4 Local solution concepts

Both the solution concepts described in Sec. 4.2.3 are global concepts, i.e., they are defined
over all possible policies π ∈ Π. They are difficult to verify by agents with bounded
rationality or limited computational resources. So, we define local variations of these
solution concepts that are easier to verify. It is worth highlighting that when these local
solution concepts are unique (as is the case in many examples), they coincide with the the
global ones. To define these local solution concepts, we make two assumptions:

1. The initial states of all agents are independent and identically distributed according

4.2 Background 85

to ξ0 ∈ ∆(S). Thus, the performance of any policy π ∈ Π is given by:

Jπ,z = EX∼ξ0 [Vπ,z(X)] =
∑
x∈S

Vπ,z(x)ξ0(x).

2. The policy π ∈ Π is parametrized by θ ∈ Θ, where Θ is a convex and closed subset of
a Euclidean space. We denote the policy parametrized by θ ∈ Θ as πθ. Examples of
such parametrizations include Gibbs/Boltzmann distribution and neural networks.

Both these assumptions are standard in the reinforcement learning literature on policy
gradient methods [118]. Based on these assumptions, we define the following local variants
of SMFE and SMF-SO.

Definition 4.2.3 (Local stationary mean-field equilibrium (LSMFE)) A local sta-
tionary mean-field equilibrium (LSMFE) is a pair of policy πθ ∈ Π and mean-field z ∈ ∆(S)

which satisfies the following two properties:

1. Local sequential rationality: ∂Jπθ,z/∂θ = 0.

2. Consistency: z = Φ(z, πθ). 2

Definition 4.2.4 (Local stationary mean-field social welfare optimal policy (LSMF-
SO)) A policy πθ ∈ Π is local stationary mean-field social welfare optimal (LSMF-SO) if it
satisfies the following property:

• Local optimality: dJπθ,zθ/dθ = 0, where zθ is the stationary mean-field distribution
corresponding to πθ, i.e., satisfies zθ = Φ(zθ, πθ). 2

Comparison of the two local solution concepts

From the chain rule of derivatives, we have

dJπ,z(x)

dθ
=
∂Jπ,z(x)

∂π

∂π

∂θ
+
∂Jπ,z(x)

∂z

∂z

∂θ
.

The first term is equal to ∂Jπθ,z(x)/∂θ. In general, ∂Jπ,z(x)/∂z 6= 0 and ∂z/∂θ 6= 0.
Thus, local optimality is not the same as local sequential rationality. This is also illustrated
by the numerical results presented in Sec. 4.4.

86 RL in Stationary Mean-field Games

Comparison of global and local solution concepts

Local variants of Nash equilibrium have been studied in the literature [96]. An interesting
feature for MFG is that uniqueness of SMFE does not imply that LSMFE is same as SMFE.
This is because unlike standard Nash equilibrium, SMFE and LSMFE are a collection of a
strategy profile and stationary distribution. Sufficient conditions for LSMFE to be unique
(and agree with the SMFE) are:

1. SMFE is unique.

2. The value function is concave in the policy parameters for every value of mean-field.

If an SMFE exists for a problem and the policy parametrization is such that it covers the
entire space of policies, then this parametrized SMFE satisfies the conditions of an LSMFE.
Hence, we can conclude that there is at least one LSMFE solution. Furthermore, concavity
of value function in terms of policy parameters guarantees a unique optimum and hence
unique best-response for every value of the stationary mean-field. This property, along
with the uniqueness of the SMFE, ensure uniqueness of the LSMFE and its equivalence
with the SMFE. If an SMF-SO exists for a problem and the policy parametrization is such
that it covers the entire space of policies, then this parametrized SMF-SO satisfies the
conditions of an LSMF-SO. Hence, we can conclude that there is at least one LSMF-SO
solution. Furthermore, if the SMF-SO is unique, and if the value function evaluated at
the corresponding stationary mean-field is concave with respect to the policy parameters,
then the LSMF-SO is unique and agrees with the SMF-SO. Conditions for unique local
equilibrium are satisfied for the malware spread model presented in Sec. 4.4 [51–53].

4.3 RL for stationary MFG

In this section we propose two RL algorithms corresponding to each of the local solution
concepts defined in Sec. 4.2.4. For both cases we assume that the agent has access to a
simulator that yields the next state and the per-step reward for an agent, given the agent’s
current local state, current action and the current mean-field.

4.3 RL for stationary MFG 87

4.3.1 RL algorithm for learning LSMFE

The key idea behind the RL algorithm to learn an LSMFE is as follows. Suppose Gθ,z is
an unbiased estimator of ∂Jπθ,z/∂θ. Then, we can start with an initial guess θ0 ∈ Θ and
z0 ∈ ∆(X) and at each step of the iteration, update the guess (θk, zk) using two-timescale
stochastic gradient ascent [20]:

zk+1 = zk + βk
[
Φ̂(zk, πθk)− zk

]
, (4.9a)

θk+1 =
[
θk + αkGθk,zk

]
Θ
, (4.9b)

where [·]Θ denotes projection on to the set Θ and Φ̂(z, π) is an unbiased approximation of
Φ(z, π) which is generated as follows: generate a mini-batch of m samples (Xj, Aj, Y j)mj=1

where Xj ∼ z, Aj ∼ π(·|Xj), and Y j ∼ P (Xj, Aj, z) and set

Φ̂(z, π)(y) =
1

m

m∑
j=1

1{Y j = y}.

The learning rates {αk, βk}k≥0 are chosen according to the standard conditions for two-
timescale algorithms:

∑
αk =∞,

∑
βk =∞,

∑
(α2

k + β2
k) <∞, lim

k→∞
αk = 0 , lim

k→∞
βk = 0

and lim
k→∞

αk/βk = 0. Then, we have the following:

Proposition 4.3.1 If the following conditions are satisfied:

1. Φ(z, πθ), ∂Jπθ,z/∂θ are Lipschitz in θ, z.

2. Φ̂(z, π) and Gθ,z are unbiased estimators of of Φ(z, π) and ∂Jπθ,z/∂θ. Moreover, the
estimation error Gθ,z − ∂Jπθ,z/∂θ has bounded variance.

3. For all θ ∈ Θ, the ODE corresponding to (4.9a), i.e.,

ż = Φ(z, πθ)− z

has a unique globally asymptotically stable equilibrium point, which we denote by f(θ).

4. f(θ) is Lipschitz in θ.

Then, almost surely:

88 RL in Stationary Mean-field Games

1. ‖zn − f(θn)‖ → 0 as n→∞.

2. Suitable continuous time interpolation of {θn} is an asymptotic pseudotrajectory of
the semiflow induced by the ODE corresponding to (4.9b) for θ, i.e,

θ̇ = ∂Jπθ,z/∂θ.

3. The iteration (4.9) converges to a LSMFE.

Proof Note that, because the image space of Φ is bounded, the estimation error Φ̂(z, π)−
Φ(z, π) is uniformly bounded. Thus, the conditions stated in the proposition along with
the learning rate conditions specified for iteration (4.9) satisfy all the conditions (B1) to
(B4) stated in [72, page 35], [20, Theorem 23]. Specifically condition (B1) in [72, page 35]
is satisfied as we have assumed that both θ and z line in compact metric spaces. (B2) is
satisfied by assumption (1) in the proposition. (B3) and (B4) are satisfied by the learning
rate conditions for iteration (4.9) and assumptions 2,3 and 4 in the proposition. Thus,
all the 4 conditions are satisfied and the result then follows from the application of the
theorem given in [72, page 35], [20, Theorem 23]. Consequently, iteration (4.9) almost surely
converges to a limit (θ∗, z∗) such that:

∂Jπθ∗ ,z∗/∂θ = 0 and z∗ = f(θ∗),

which implies (πθ∗ , z
∗) is a LSMFE. �

In theory, two-timescale algorithms are nice because they are amenable to a proof of
convergence. However, in practice, two-time scale algorithms converge slowly because there
are no good methods to adapt the learning rates. So, rather than running a two-timescale
algorithm, it is often better to run a large but fixed number of iterations of variable running
at the faster timescale for every iteration of variable running at the slower timescale. For
iteration (4.9) this is equivalent to running multiple iterations of (4.9a) (with a fixed learning
rate β) for every iteration of (4.9b). In the sequel, we run B iterations of (4.9b) with
βk = 1, which is shown in Algorithm 1 and is equivalent to a particle based Monte Carlo
computation of the generated mean-field of the system.

4.3 RL for stationary MFG 89

Algorithm 1: Stationary_MF
input : θ : Policy parameter, ξ0 : Initial state distribution

B : Iteration count, m : Batch size
output : z : Final mean-field
for j = 1 : m do

for i ∈ N do
Sample X i,j

0 ∼ ξ0

zj0 = ξ0

for t = 0 : B do
for i ∈ N do

Sample Ai,jt ∼ π(X i,j
t)

Sample X i,j
t+1 ∼ P (X i,j

t , A
i,j
t , z

j
t)

for x ∈ X do
zjt+1(x) = 1

n

∑
i∈N 1{X i,j

t+1 = x}

z = 1
m

∑m
j=1 z

j
B+1

return z

To convert iteration (4.9) to a complete algorithm, we need an algorithm that computes
an unbiased estimator Gθ,z for ∂Jπθ,z/∂θ for a given z. Since z is fixed, ∂Jπθ,z/∂θ may be
computed using any of the standard policy gradient based approaches for reinforcement
learning: likelihood ratio based gradient estimators [67,118] or simultaneous perturbation
based gradient estimators [16,64,82,111].

Likelihood ratio based gradient estimation

One approach to estimate the performance gradient is to use likelihood ratio based esti-
mates [38, 98, 133]. Suppose the policy πθ(S) is differentiable with respect to θ. For any
time t, define the likelihood function Λt

θ = ∇θ log[πθ(At | St)]. Then from [10,118,133] we
know that:

∂Vθ,z(x)

∂θ
= EAt∼πθ(St)

[∞∑
t=0

γtΛt
θVπθ,z(Xt)

∣∣∣ X0 = x
]
.

Thus,
∂Jθ,z
∂θ

= EX∼ξ0
[
∂Vθ,z(X)

∂θ

]
.

An algorithm to compute LSMFE based on the likelihood ratio approach is given in

90 RL in Stationary Mean-field Games

Algorithm 2: Likelihood ratio based algorithm to compute LSMFE
input : θ0 : Initial policy, z0 : Initial mean-field

ξ0 : Initial state distribution
K : Iteration count
B : Iterations for mean-field update
m : Batch size for mean-field update

output : (θ∗, z∗) : Estimated LSMFE solution
for iterations k = 0 : K do

zk+1 = Stationary_MF(θk, ξ0, B,m)
Gθk,zk+1

= PolicyGradient(θk, ξ0, zk+1)
θk+1 = [θk + αkGθk,zk+1

]Θ

return θK+1

Algorithm 2. The PolicyGradient function in Algorithm 2 can be obtained by an actor
only method such as Monte Carlo [116] or Renewal Monte Carlo [113] or using an actor
critic method such as SARSA [116]. Additionally, variance reduction techniques such as
subtracting a baseline or using mini-batch averaging may also be used.

Simultaneous perturbation based gradient estimation

Another approach to estimate the performance gradient is to use simultaneous perturbation
based methods [16,64,82,111]. This approach is useful when the policy πθ is not differentiable
with respect to its parameters θ. Now, given any distribution ξ0, we can estimate Jπθ,z using
Vπθ,z as:

Jπθ,z = EX∼ξ0 [Vπθ,z(X)].

To generate the two-sided form of simultaneous perturbation based estimate, we generate
two random parameters θ+ = θ + c η and θ− = θ − c η, where η is a random variable with
the same dimension as θ and c is a small constant. Let π+ = πθ+ and π− = πθ− . Then, the
two-sided simultaneous perturbation estimate is given by

Gθ,z =
η

2c
(Jπ+,z − Jπ−,z).

When ηi ∼ Rademacher(±1), the above method is called simultaneous perturbation stochas-
tic approximation (SPSA) [82,111]; when ηi ∼ Normal(0, I) it is called smoothed functional
stochastic approximation (SFSA) [16,64].

4.3 RL for stationary MFG 91

Algorithm 3: Simultaneous perturbation based algorithm to compute LSMFE
input : θ0 : Initial policy, z0 : Initial mean-field

ξ0 : Initial state distribution
K : Iteration count, c : Perturbation size
B : Iterations for mean-field update
m : Batch size for mean-field update

output : (θ∗, z∗) : Estimated LSMFE solution
for iterations k = 1 : K do

zk+1 = Stationary_MF(θk, ξ0, B,m)
Let η ∼ Rademacher(±1) or η ∼ N (0, 1)
θ+
k = θk + ηβ and θ−k = θk − ηβ.
Ĵ+
k = PolicyEvaluation(θ+

k , ξ0, zk+1)

Ĵ−k = PolicyEvaluation(θ−k , ξ0, zk+1)

Gθk,zk+1
= η

2c
(Ĵ+
k − Ĵ−k)

θk+1 = [θk + αkGθk,zk+1
]Θ

return θK+1

An algorithm to compute LSMFE using the simultaneous perturbation approach is given
in Algorithm 3. As in the case of the likelihood ratio based approach, the PolicyEvaluation
function in Algorithm 3 may be obtained by an actor only method such as Monte Carlo [116]
or Renewal Monte Carlo [113] or using an actor critic method such as SARSA [116].

4.3.2 RL algorithm for learning LSMF-SO

The key idea behind the RL algorithm to learn an LSMF-SO is as follows. Suppose Tθ is
an unbiased estimator for dJπθ,zθ/dθ, where zθ is the fixed point of z = Φ(z, πθ). Then, we
start with an initial guess θ0 ∈ Θ, and at each step of the iteration, update the guess using
stochastic gradient ascent:

θk+1 =
[
θk + αkTθk

]
Θ
, (4.10)

where {αk}k≥0 is a sequence of learning rates that satisfies the standard conditions:
∑
αk =

∞ and
∑
α2
k <∞. Then, we have the following:

Proposition 4.3.2 If the following conditions are satisfied:

1. dJπθ,zθ/dθ is Lipschitz continuous in θ.

92 RL in Stationary Mean-field Games

2. Tθ is an unbiased estimator of dJπθ,zθ/dθ and the error Tθ − dJπθ,zθ/dθ has bounded
variance.

3. The ODE for θ, i.e,
θ̇ = dJπθ,zθ/dθ,

has isolated limit points that are locally asymptotically stable.

Then, almost surely:

1. Suitable continuous time interpolation of {θn} is an asymptotic pseudotrajectory of
the semiflow induced by the ODE for θ.

2. The iteration converges to a LSMF-SO.

Proof The conditions stated above and the learning rate conditions satisfy the standard
stochastic approximation convergence conditions as given in [19, 68]. Specifically, the model
satisfies all the conditions (A1)–(A4) of [19, pg 10–11] Condition (A1) is satisfied by the
first condition of the proposition, (A2) is satisfied by the choice of learning rates in (4.10),
(A3) is satisfied by the second condition in the proposition and (A4) is satisfied due to
projection of the iterates in (4.10) to Θ. Hence, the iteration (4.10) converges almost surely
to a limit θ∗ such that:

dJπθ,zθ/dθ = 0,

which implies (πθ∗ , z
∗) is a LSMF-SO, where z∗ = Φ̂(z∗, πθ∗). �

To convert iteration (4.10) to a complete algorithm, we need an algorithm that computes
an unbiased estimator Tθ,z of dJπθ,zθ/dθ. Likelihood ratio based gradient estimators do not
work in this case because, in order to compute dE[r(X i

t , A
i
t, zθ)]/dθ, we need to compute

dzθ/dθ and there are no good methods to do so. There are some results in the literature on
the sensitivity of the stationary distribution of a Markov chain to its transition probability
(e.g., [35] and references therein), but these results only provide loose bounds on dzθ/dθ.
However, it is possible to adapt simultaneous perturbation based methods to generate
estimators of dJπθ,zθ/dθ. We present one such estimator in the next section.

4.3.3 Simultaneous perturbation based gradient estimation

We first consider estimating zθ for a given πθ. Under (A2), when each agent follows policy
πθ, the mean-field converges to the stationary distribution zθ. Then, we can estimate zθ by

4.3 RL for stationary MFG 93

Algorithm 4: Simultaneous perturbation based algorithm to compute LSMF-SO
input : θ0 : Initial policy

ξ0 : Initial state distribution
K : Iteration count, c : Perturbation size
B : Iterations for mean-field update
m : Batch size for mean-field update

output : θ∗ : Estimated LSMF-SO solution
for iterations k = 1 : K do

Let η ∼ Rademacher(±1) or η ∼ N (0, 1)
θ+
k = θk + ηβ and θ−k = θk − ηβ.
z+
k = Stationary_MF(θ+, ξ0, B,m)
z−k = Stationary_MF(θ−, ξ0, B,m)

Ĵ+
k = PolicyEvaluation(θ+

k , ξ0, z
+
k)

Ĵ−k = PolicyEvaluation(θ−k , ξ0, z
−
k)

Tθk = η
2c

(Ĵ+
k − Ĵ−k)

θk+1 = [θk + αkTθk]Θ
return θK+1

simply running the system for a sufficiently long time. An algorithm based on this idea is
shown in Algorithm 1.

Then, to generate the two-sided simultaneous perturbation based estimate of dJπθ,zθ/dθ,
we generate two random parameters θ+ = θ + c η and θ− = θ − c η, where η and c are
as in Sec. 4.3.1. Let π+ = πθ+ and π− = πθ− . Generate z+ = zπ+ and z− = zπ− using
Algorithm 1. Then, the two-sided simultaneous perturbation estimate is given by

Tθ =
η

2c

(
Jπ+,z+ − Jπ−,z−

)
.

An algorithm to compute LSMF-SO using simultaneous perturbation approach is given
in Algorithm 4. As was the case for Algorithm 3, the PolicyEvaluation function in
Algorithm 4 may be obtained by an actor only method such as Monte Carlo [116] or
Renewal Monte Carlo [113] or using an actor critic method such as SARSA [116].

94 RL in Stationary Mean-field Games

4.4 Numerical experiment

4.4.1 Example 1: Malware spread

Environment

We consider the malware spread model presented in [51–53,58]. This model is representative
of several problems with positive externalities. Examples of such models include flue
vaccination, economic models involving entry and exit of firms, collusion among firms,
mergers, advertising, investment, network effects, durable goods, consumer learning etc.
Hence, we consider the malware spread problem as a representative problem where an
analytical solution is available. In this model, let X ∈ [0, 1] denote the state (level of
infection) of agent i, where where X i

t = 0 is the most healthy state and X i
t = 1 is the least

healthy state. The action space A = {0, 1}, where Ait = 0 implies do nothing and Ait = 1

implies repair. The dynamics are given by

X i
t+1 =

X i
t + (1−X i

t)ωt, for Ait = 0,

0, for Ait = 1,

where {ωt}t≥1 is a [0, 1]-valued i.i.d. process with probability density f . The above dynamics
imply that if the agent takes the do nothing action, then its state deteriorates to a worse
condition in the interval [1 − X i

t , 1]; if the agent takes the repair action, then its state
resets to the most healthy state.

The rewards are coupled through the mean 〈Zt〉 of the mean field Zt (i.e., 〈Zt〉 >=∫ 1

0
xZt(x)dx). Each agent incurs a cost (k + 〈Zt〉)X i

t , which captures the risk of getting
infected, and an additional cost of λ for taking the repair action, i.e.,

r(X i
t , A

i
t, Zt) = −(k + 〈Zt〉)X i

t − λAit.

For this example, the existence of an SMFE is proven in [51–53]. Furthermore, it is
shown in [51–53] that every policy has a stationary distribution. Hence, the SMF-SO exists.

4.4 Numerical experiment 95

Model and policy parameters

We consider n = 1000 agents, f = Uniform[0, 1], k = 0.2, λ = 0.5 and γ = 0.9. The
continuous state space X = [0, 1] is discretized into 101 uniformly sized cells {0, 0.01, . . . , 1}.
We consider two different policy parametrizations:

1. Threshold based policy: We consider threshold-based policies parametrized by
θ ∈ [0, 1] such that1:

πθ(x) =

0, if x < θ,

1, if x ≥ θ.
(4.11)

We use this policy parametrization to estimate both LSMFE and LSMF-SO. The
parameterized policies of the form (4.11) are not differentiable with respect to θ, so we
estimate the gradient using simultaneous perturbation methods (Algorithms 3 and 4)
with c = 0.1, η ∼ Rademacher(±1), initial value of the threshold chosen uniformly at
random, i.e., θ0 ∼ Uniform[0, 1] . In both algorithms, policy evaluation is done using
Monte Carlo with m = 1000 trajectories of length H = 200.

2. Neural network (NN) based policy: We consider a neural network policy with
two hidden layers with 5 neurons and tanh activation. We estimate the gradient using
the likelihood ratio method. We use REINFORCE [133] to compute the performance
gradient and backpropagate this gradient over the NN to compute Gθ,z. Policy gradient
estimation is done using Monte Carlo (actor only) with m = 10 and H = 200. Since we
have a likelihood ratio based gradient estimation approach only for the RL algorithm
for LSMFE (Sec. 4.3.1), we use this policy parametrization only to estimate LSMFE
(Algorithm 2).

For both the policy parametrizations, z0 = ξ0 = Uniform(X), B = 200 and K = 200.
We choose the learning rate using ADAM [65].2 We repeat the experiment 100 times for
both the policy parametrizations.

96 RL in Stationary Mean-field Games

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

−4.6

−4.4

−4.2

−4.0

−3.8

P
er

fo
rm

an
ce

SMFE (Exact)

LSMFE:Threshold

LSMFE:NN

SMF-SO (Exact)

LSMF-SO:Threshold

Fig. 4.1: Performance versus steps: RL algorithm converging to LSMFE or LSMF-SO for
the malware spread example. The solid line shows the median value and the shaded region
shows the region between the first and third quartiles over 100 runs.

Results

The performance J for LSMFE (using both parameterizations) and LSMF-SO (using
threshold based policies) are shown in Fig. 4.1. For the threshold based policy, J and 〈z∗〉
were evaluated using exact policy evaluation. For the neural network policy, they were
estimated using 10 Monte Carlo evaluation runs.

For comparison, the exact SMF-SO and SMFE solutions are also plotted. The SMF-SO
solution is computed by a brute force search over all θ ∈ [0, 1]. The SMFE solution is
computed using the method described in [51]. These exact solutions are also shown in
Fig. 4.1. The plots show that the convergence of the SPSA based RL algorithm is fairly
fast and the variation across multiple runs is small. It is worth highlighting that LSMFE
and LSMF-SO are different.

1It is shown in [51,53] that such a parametrization is without loss of optimality.
2The α parameter of ADAM is set equal to 0.01 for the threshold based policy and 0.1 for the NN policy.

All other ADAM parameters are equal to their default values.

4.4 Numerical experiment 97

4.4.2 Example 2: Investments in product quality

Environment

We consider the investment decisions of firms in a fragmented market with a large number
of firms. This model is adapted from [127]. In this model, each firm produces np products.
The state of each firm Sit is represented by a np vector with each element Si,jt ∈ [0, 1],
j ∈ {1, . . . , np} denoting the normalized product quality for product j for firm i. At each
time step, each firm i ∈ N has to choose whether or not to invest in improving the quality
of each of its products j ∈ {1, . . . , np}. Investment decisions are binary for each product.
Thus the action space for firm i is Ai = {0, 1}np , with |Ai| = 2np . When agent i decides
to invest in product j, the quality of product j manufactured by i increases uniformly at
random from its current value to the maximum value of 1, if the average mean-field for that
product is below a particular threshold q. If this average mean-field value is above q, then
the agent gets only half of the product quality improvement as compared to the former
case. This implies that when the average quality of product j in the economy is below q,
it is easier for each agent to improve its quality for product j. When the agent does not
invest any amount in product j, its product quality for product j remains unchanged. This
is given as:

Si,jt+1 =

ωt(1− Si,jt), if 〈zj〉 < q and Ai,jt = 1,

0.5ωt(1− Si,jt), if 〈zj〉 ≥ q and Ai,jt = 1,

Si,jt , if Ai,jt = 0,

(4.12)

where ωt is a [0, 1]-valued i.i.d. process with probability density f and 〈Zj
t 〉 is the mean of

Zj
t (i.e., equal to

∫ 1

0
xZj

t (x)dx, j ∈ {1, . . . , np}).
At each step, each agent i incurs a cost due to its investment and earns a positive reward

due to its own product quality for each product j ∈ {1, . . . , np} and a negative reward due
to the average product quality for product i, i.e., 〈zjt 〉. This per-step reward accumulated
over all products is given as:

r(Sit , A
i
t, Z

i
t) =

np∑
j=1

[
djSi,jt − cj〈zjt 〉 − λAi,jt

]
(4.13)

This example is adapted from a model in [127] for which they prove existence of SMFE.

98 RL in Stationary Mean-field Games

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P
er

fo
rm

an
ce

LSMFE:NN-C1 (52%)

LSMFE:NN-C2 (42%)

Fig. 4.2: Performance versus steps: RL algorithm converging to LSMFE for the product
quality investments example. The solid line shows the median value and the shaded region
shows the region between the first and third quartiles over 100 runs.

Model and policy parameters

We consider n = 100 agents, f = Uniform[0, 1], np = 3, q = 0.4, c = [0.21, 0.22, 0.23],
d = [0.31, 0.32, 0.33], λ = [0.2, 0.21, 0.22], B = 200, K = 200, X i,j

0 ∼ Uniform[0, 1] and
γ = 0.9. The policy is parametrizd using a two layer neural network with 8 and 16 neurons
respectively with a tanh activation function for all hidden units. We use ADAM with
learning rate of 0.1.

Results

In this example, we only demonstrate the computation of LSMFE using a neural network
policy. We performed 100 independent runs for this example. We then clustered the tails
(last 10 iterations) of these 100 trajectories and found that there are multiple LSMFE for
this example. In Fig. 4.2, we plot the median, and the region between the first and third
quantiles for the trajectories corresponding to the two most populated clusters. These two
clusters, named C1 and C2 in Fig. 4.2, comprise of 52% and 42% of the total number of

4.5 Discussion 99

trajectories respectively.

4.5 Discussion

4.5.1 Finite vs. infinite populations

In both MFG and stationary MFG, the finite population system is approximated by an
infinite population system. The infinite population system has two features: (i) each agent
has an infinitesimal impact on the evolution of the mean-field which can be ignored; and (ii)
the empirical mean-field can be approximated by the statistical mean-field, which evolves in
a deterministic manner for a given policy. Thus, the strategic interactions between agents
in a general n-player game is replaced by two consistency requirements: the policy is a
best-response to the mean-field and the mean-field is consistent with the policy. As a result,
the n-agent learning problem is reduced to optimality and consistency between a single
generic (or canonical) agent and the mean-field.

However, since we are approximating the finite population system by an infinite popula-
tion system, the approximation is meaningful only if the corresponding approximation error
is small. There are several results in the mean-field games literature that show that under
various (generally mild) technical conditions, the infinite population result is a O(1/

√
n)

or a O(1/n) approximation of the corresponding finite population result [56, 125]. These
conditions are often model specific, so we don’t list them here. What is important to note
from the point of view of learning is that under these conditions, the learning algorithms pro-
posed in this chapter converge to O(1/

√
n) or O(1/n) of the corresponding finite population

solution.

4.5.2 Difference between MFG and stationary MFG models

MFG and stationary MFG are closely related but there is a fundamental difference between
them. In MFG, assumptions (A1)–(A3) are not imposed. Thus the policy π̃ = (π̃1, π̃2, . . .),
π̃t : S → ∆(A), is, in general, a time-varying policy (we denote the space of all such policies
as Π̃) and it is not assumed that the mean-field trajectory z = (z1, z2, . . .) converges to a
limit. Thus, given a mean-field trajectory z, the performance of a policy π̃ ∈ Π̃ is given by:

Ṽπ̃,z(x) = E
[∞∑
t=0

γtr(X i
t , A

i
t, zt, X

i
t+1)

∣∣∣ X i
0 = x

]
.

100 RL in Stationary Mean-field Games

Note that even though the mean-field trajectory is fixed, the environment and rewards
perceived by a generic agent are time-varying. Therefore, one cannot write a fixed-point
Bellman equation for Ṽπ̃,z. Nonetheless, a time-varying Bellman equation can be written
and, it is for this reason that, most of the literature on MFG apart from the special case of
linear dynamics and quadratic cost considers finite horizon systems.

The commonly used solution concept for MFG is the following:

Definition 4.5.1 (NE-MFG) A Nash equilibrium for MFG is a pair of time-varying
policy π̃ = (π̃1, π̃2, . . .) ∈ Π̃ and a trajectory of mean-fields z = (z1, z2, . . .) which satisfies
the following two conditions:

1. Sequential rationality: For any other policy π̃′ = (π̃′1, π̃
′
2, . . .), we have:

Vπ̃,z(x) ≥ Vπ̃′,z(x), ∀x ∈ X .

2. Consistency: The mean-field z evoles as:

zt+1 = Φ(zt, π̃t), ∀t.
2

It is worth highlighting that NE-MFG is a pair of a trajectory of time-varying policy and
time-varying mean-field. In contrast, SMFE is a pair of single policy and a single mean-field.
Thus, SMFE is considerably easier to compute and implement as compared to NE-MFG.
This simplicity comes at the cost of generality. The conditions for existence of SMFE are
generally stricter than those for NE-MFG.

4.5.3 Related work

In view of the above discussion, we revisit the related work on mean-field approximation in
MARL.

In [66], a model based adaptive control algorithm for computing NE-MFG of linear
quadratic systems is considered. It is assumed that the parameter set of the system is a
specified compact subset of Euclidean space. Agents use maximum likelihood estimation to
estimate the most likely dynamics and use certainty equivalent control laws corresponding
to the estimated model. The results of [66] are difficult to generalize beyond the linear
quadratic model.

4.5 Discussion 101

In [139], a Q-learning algorithm for computing NE-MFG for a family of coupled oscillators
is considered. The mean-field approximation is used to develop an approximate dynamic
program (ADP) for the best-response equation and the ADP is solved using Q-learning.
The approximation used for the ADP is specific for the model considered in [139] and does
not apply to general models.

In [138], a Q-learning algorithm for computing NE-MFG for a stochastic game is presented.
It is assumed that all agents observe the global state ((x1, x2, . . . , xn) in our model) and
choose policies that map global state to local actions. The mean-field approximation is
used to simplify the Q-function of the best-response and the simplified Q function is solved
using Q-learning or DPG. When each agent has a local state (as is the case in the models
presented in this chapter), the global state is n-dimensional and it is impractical to assume
that all agents know the global state. For example, in the malware example presented
earlier, it will mean that all agents know the state of health of all agents in the system.
Even if the global state were known, searching over policies π : (x1, x2, . . . , xn) 7→ ∆(Ai)

will suffer from the curse of dimensionality.
In [85], a fictitious play based learning algorithm for computing NE-MFG of finite

horizon common interest MFG is presented.3 In this algorithm, one starts with a guess for
the mean-field trajectory and the policy and improves them using actor critic functions.
The proof of convergence relies on a technical property for NE-MFG for finite horizon MFGs
proved in [22] and it is not immediately clear how that technical property can be extended
to infinite horizon stationary MFG.

It is worth highlighting that all the previous work on mean-field based learning algorithms
for MARL compute NE-MFG. As far as we are aware, this is the first work to propose
mean-field based learning algorithms to compute SMFE and SMF-SO for stationary MFGs.

4.5.4 Remarks on the generality of the model

For simplicity of exposition, we presented our results for the simplest model of stationary
MFG. The results presented for this model continue to hold for the following generalizations.

• The coupling in the dynamics and reward is through the mean-field of states and
actions rather than mean-field of just the states. In this case, the argument presented
in this chapter continues to work with minor changes because mean-field of states

3In [85], it is claimed that all MFGs are common interest games, but that is, in general, not the case.

102 RL in Stationary Mean-field Games

and actions is a function of the policy and the mean-field of states. In particular, if z̄
denotes the mean-field of states and actions, then, in the infinite population limit

z̄t(x, a) = z̄t(x)πt(a|x), ∀x ∈ S, a ∈ A. (4.14)

• The states and/or actions are continuous rather than discrete. In this case, the
arguments hold under the standard conditions on measurability of dynamics, upper
semi-continuity of the rewards, compactness of the action space, and the growth con-
ditions on the rewards to ensure that value functions are well defined. An appropriate
parametrization of the policy using a sufficiently rich family of function approximators
such as radial basis functions or neural networks is also needed.

• There is a heterogeneous population consisting of multiple sub-populations of homo-
geneous agents. Such a model can be converted to a homogeneous population model
by considering the type of the agent as a component of the state.

103

Chapter 5

Renewal Monte Carlo: Renewal theory
based RL

5.1 Introduction

In recent years, reinforcement learning [14,61,116,119] has emerged as an effective framework
for learning how to act optimally in unknown environments. Policy gradient methods [62,
67,100,101,106,118] have played a prominent role in the success of reinforcement learning.
Such methods have two critical components: policy evaluation and policy improvement. In
policy evaluation, the performance of a parameterized policy is evaluated while in policy
improvement, the policy parameters are updated using stochastic gradient ascent.

Policy gradient methods may be broadly classified as Monte Carlo methods and temporal
difference methods. In Monte Carlo methods, performance of a policy is estimated using
the discounted return of one or more sample paths; in temporal difference methods, an
initial estimate for the (action-) value function is chosen arbitrarily and then improved
iteratively using temporal differences. Monte Carlo methods are attractive because they
have zero bias, are simple and easy to implement, and work for both discounted and average
reward setups as well as for models with continuous state and action spaces. However, they
suffer from various drawbacks. First, they have a high variance because a single sample
path is used to estimate performance. Second, in Monte Carlo methods it is implicitly
assumed that the model is episodic (i.e., there is an end state and the system stops when
it reaches the end state). To use these methods for infinite horizon models, the trajectory

104 Renewal Monte Carlo: Renewal theory based RL

is arbitrarily truncated to treat the model as an episodic model. For that reason, the
resultant policy is not asymptotically optimal. Third, the policy improvement step cannot
be carried out in tandem with policy evaluation. One must wait until the end of the episode
to estimate the performance and only then can the policy parameters be updated. For these
reasons the literature on policy gradient methods largely ignores Monte Carlo methods
and almost exclusively focuses on temporal difference methods such as actor-critic with
eligibility traces [116].

In this chapter an online reinforcement learning algorithm called Renewal Monte Carlo
(RMC) is presented. RMC works for infinite horizon Markov decision processes with a
designated start state. RMC is a Monte Carlo algorithm that retains the key advantages of
Monte Carlo—viz., simplicity, ease of implementation, and low bias—while circumventing the
main drawbacks of Monte Carlo—viz., high variance and delayed updates. The key intuition
behind RMC is that, under any reasonable policy, the reward process is ergodic. Therefore,
using ideas from renewal theory, it can be shown that the performance of any parameterized
policy πθ is proportional to Rθ/Tθ, where Rθ and Tθ are the expected discounted reward
and the expected discounted time of the reward process over a regenerative cycle. Hence,
the performance gradient is proportional to Hθ = ∇RθTθ −Rθ∇Tθ. Hence, any policy for
which Hθ is zero is locally optimal.

In RMC,Rθ and Tθ are estimated fromMonte Carlo evaluations over multiple regenerative
cycles; ∇Rθ and ∇Tθ are estimated using either likelihood ratio or simultaneous perturbation
based estimators; and the root of Hθ is obtained using stochastic approximation. We show
that under mild technical conditions, RMC converges to a locally optimal policy.

The RMC algorithm is generalized to post-decision state models, where regenerative
cycle is defined as successive visits to an initial post-decision state.

An approximate RMC algorithm is proposed where successive visits to a pre-specified
“renewal set” is viewed as a regenerative cycle. We show that if the value function for
the system is locally Lipschitz continuous on the renewal set, then RMC converges to
approximate locally optimal policy.

The effectiveness of RMC is illustrated on three examples: randomly generated Markov
decision processes, event-driven communication, and inventory control. The last two
examples have continuous state space and show that RMC works well for continuous state
models as well.

Although renewal theory is commonly used to estimate performance of stochastic

5.2 RMC Algorithm 105

systems [37,38], those methods assume that the probability law of the primitive random
variables and its weak derivative are known, which is not the case in reinforcement learning.
Renewal theory is also commonly used in queuing theory and Markov decision processes
(MDPs) with average reward criteria and a known system model. There is some prior work
on using renewal theory for reinforcement learning [80, 81], where renewal theory based
estimators for the average return and differential value function for average reward MDPs
are developed. In RMC, renewal theory is used in a different manner for discounted reward
MDPs (and the results generalize to average cost MDPs).

5.2 RMC Algorithm

Consider a Markov decision process (MDP) with state St ∈ S and action At ∈ A. The
system starts in an initial state s0 ∈ S and at each time t there is a controlled transition
from St to St+1 according to a transition kernel P (At). At each time t, a per-step reward
Rt = r(St, At, St+1) is received.

A (time-homogeneous and Markov) policy π maps the current state to a distribution on
actions, i.e., At ∼ π(St). We use π(a|s) to denote P(At = a|St = s). The performance of a
policy π is given by

Jπ = EAt∼π(St)

[∞∑
t=0

γtRt

∣∣∣∣ S0 = s0

]
, (5.1)

where γ ∈ (0, 1) is the discount factor. We are interested in identifying an optimal policy,
i.e., a policy that maximizes the performance. When S and A are Borel spaces, we assume
that the model satisfies the standard regularity conditions under which time-homogeneous
Markov policies are optimal [47].

Suppose policies are parameterized by a closed and convex subset Θ of the Euclidean
space.1 Given θ ∈ Θ, we use πθ to denote the policy parameterized by θ and Jθ to denote
Jπθ . We assume that for all policies πθ, θ ∈ Θ, the designated start state s0 is positive
recurrent.

The typical approach for policy gradient based reinforcement learning is to start with an
initial choice θ0 ∈ Θ and iteratively update it using stochastic gradient ascent. In particular,

1Examples of such parametized policies include the weights of a Gibbs soft-max policy, the weights of a
deep neural network, or the thresholds in a control limit policy, and so on.

106 Renewal Monte Carlo: Renewal theory based RL

let ∇̂Jθm be an unbiased estimator of ∇θJθ
∣∣
θ=θm

, then update

θm+1 =
[
θm + αm∇̂Jθm

]
Θ

(5.2)

where [θ]Θ denotes the projection of θ onto Θ, and {αm}m≥1 are learning rates that satisfy
the standard assumptions:

∞∑
m=1

αm =∞ and
∞∑
m=1

α2
m <∞. (5.3)

Under standard technical conditions [19], which include the assumption that ∇Jθ is Lipschitz
conitnuous with respect to θ the above iteration converges to a θ∗ that is locally optimal,
i.e., ∇θJθ

∣∣
θ=θ∗

= 0. In RMC, we approximate ∇θJθ by a renewal theory based estimator as
explained below.

Let τ (n) denote the stopping time when the system returns to the start state s0 for the
n-th time. In particular, let τ (0) = 0 and for n ≥ 1 define τ (n) = min{t > τ (n−1) : st = s0}.
We call the sequence of (St, At, Rt) from τ (n−1) to τ (n) − 1 as the n-th regenerative cycle.
Let R(n) and T(n) denote the total discounted reward and total discounted time of the n-th
regenerative cycle, i.e.,

R(n) = Γ(n)

τ (n)−1∑
t=τ (n−1)

γtRt and T(n) = Γ(n)

τ (n)−1∑
t=τ (n−1)

γt, (5.4)

where Γ(n) = γ−τ
(n−1) . By the strong Markov property [84], {R(n)}n≥1 and {T(n)}n≥1 are

i.i.d. sequences. Let Rθ and Tθ denote E[R(n)] and E[T(n)], respectively. Define

R̂ =
1

N

N∑
n=1

R(n) and T̂ =
1

N

N∑
n=1

T(n), (5.5)

where N is an arbitrarily chosen number of cycles. Then, R̂ and T̂ are unbiased and
asymptotically consistent estimators of Rθ and Tθ.

From ideas of renewal theory [32], we have the following.

5.2 RMC Algorithm 107

Proposition 5.2.1 (Renewal Relationship) The performance of policy πθ is given by:

Jθ =
Rθ

(1− γ)Tθ
. (5.6)

Proof Consider the performance:

Jθ = EAt∼πθ(St)

[τ (1)−1∑
t=0

γtRt + γτ
(1)
∞∑

t=τ (1)

γt−τ
(1)

Rt

∣∣∣∣ S0 = s0

]
(a)
= Rθ + EAt∼πθ(St)[γ

τ (1)

] Jθ (5.7)

where the second expression in (a) uses the independence of random variables from (0, τ (1)−1)

to those from τ (1) onwards due to the strong Markov property [84].
Now, by definition, Tθ = (1 − EAt∼πθ(St)[γ

τ (1)
])/(1 − γ). Rearranging terms, we get

EAt∼πθ(St)[γ
τ (1)

] = 1 − (1 − γ)Tθ. Substituting this in (5.7), we get the result of the
proposition. �

Differentiating both sides of (5.6) with respect to θ, we get

∇θJθ =
Hθ

T2
θ(1− γ)

, where Hθ = Tθ∇θRθ − Rθ∇θTθ. (5.8)

Therefore, instead of using stochastic gradient ascent to find a local maximum of Jθ, we
can use stochastic approximation to find a root of Hθ.

Theorem 5.2.1 Consider the sequence {θm}m≥1 where the initial θ0 ∈ Θ is chosen arbi-
trarily, and for m > 0,

θm+1 =
[
θm + αmĤm

]
Θ
, (5.9)

where {αm}m≥1 satisfies (5.3) and Ĥm is an unbiased estimator of Hθm. Then, the sequence
{θm}m≥1 converges almost surely and

lim
m→∞

∇θJθ
∣∣
θm

= 0.

108 Renewal Monte Carlo: Renewal theory based RL

Algorithm 5: RMC Algorithm with likelihood ratio based gradient estimates.
input : Intial policy θ0, discount factor γ, initial state s0, number of regenerative

cycles N
for iteration m = 0, 1, . . . do

for regenerative cycle n1 = 1 to N do
Generate n1-th regenerative cycle using policy πθm .
Compute R(n1) and T(n1) using (5.4).

Set R̂m = mean(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = mean(T(n1) : n1 ∈ {1, . . . , N}).
for regenerative cycle n2 = N + 1 to 2N do

Generate n2-th regenerative cycle using policy πθm .
Compute R

(n2)
σ , T(n2)

σ and Λσ for all σ using (5.12).
Set R̂(n2) =

∑τn2−1
σ=τn2−1 R

(n2)
σ Λσ.

Set T̂(n2) =
∑τn2−1

σ=τn2−1 T
(n2)
σ Λσ.

Set ∇̂Rm = mean(R̂(n2) : n2 ∈ {N + 1, . . . , 2N})
Set ∇̂Tm = mean(T̂(n2) : n2 ∈ {N + 1, . . . , 2N})
Set Ĥm = T̂m∇̂Rm − R̂m∇̂Tm.
Update θm+1 =

[
θm + αmĤm

]
Θ
.

Proof The convergence of the {θm}m≥1 follows from [19, Theorem 2.2] and the fact that
the model satisfies conditions (A1)–(A4) of [19, pg 10–11] Condition (A1) is satisfied as we
assume ∇Jθ is Lipschitz continuous with respect to θ and hence Hθ is Lipschitz continuous
with respect to θ, (A2) is satisfied by the choice of learning rates (5.3), (A3) is satisfied as
we assume Ĥm is an unbiased estimator of Hθm and (A4) is satisfied due to projection of
the iterates to Θ . �

Proposition 5.2.2 Let R̂m, T̂m, ∇̂Rm and ∇̂Tm be unbiased estimators of Rθm, Tθm,
∇θRθm, and ∇θTθm, respectively such that T̂m ⊥ ∇̂Rm and R̂m ⊥ ∇̂Tm.2 Then,

Ĥm = T̂m∇̂Rm − R̂m∇̂Tm (5.10)

is an unbiased estimator of Hθm. Furthermore, assume that

1. Hθ is continuous,
2X ⊥ Y denotes that random variables X and Y are independent.

5.2 RMC Algorithm 109

2. the estimate Ĥm has bounded variance,

3. The differential equation dθ/dt = Hθ has isolated limit points that are locally asymp-
totically stable.

Then, the sequence {θm}m≥1 generated by (5.9) converges almost surely and

lim
m→∞

∇θJθ
∣∣
θm

= 0.

Proof The independence assumption implies that Ĥm is unbiased. The model satisfies
conditions (A2.1)–(A2.6) of [68, pg. 126]. (A2.1) is satisfied as Ĥm is assumed to gave a
bounded variance, (A2.2) is satisfied as Ĥm is an unbiased estimator of Hθ, (A2,3) is satisfied
as we assume Hθ is continuous, (A2.4) and (A2.5) are satisfied as we assume that Ĥm is
an unbiased estimator of Hθ and hence the terms in these conditions do not arise in our
iterations and finally since Hθ is derived from a gradient (A2.6) is satisfied. Hence [68, Thm
2.1] implies that {θm}m≥1 converges. The convergence to a local maximum follows from the
discussion in [68, Sec. 5.8]. �

We can estimate Rθ and Tθ using (5.5). We present two methods to estimate the
gradients of Rθ and Tθ: (i) a likelihood ratio based gradient estimator which works when
the policy is differentiable with respect to the policy parameters; and (ii) is a simultaneous
perturbation based gradient estimator that uses finite differences, which is useful when the
policy is not differentiable with respect to the policy parameters.

5.2.1 Likelihood ratio based gradient estimator

One approach to estimate the performance gradient is to use likelihood radio based esti-
mates [38,98,133]. Suppose the policy πθ(a|s) is differentiable with respect to θ. For any
time t, define the likelihood function

Λt = ∇θ log[πθ(At | St)], (5.11)

110 Renewal Monte Carlo: Renewal theory based RL

and for σ ∈ {τ (n−1), . . . , τ (n) − 1}, define

R(n)
σ = Γ(n)

τ (n)−1∑
t=σ

γtRt and T(n)
σ = Γ(n)

τ (n)−1∑
t=σ

γt. (5.12)

In this notation R(n) = R
(n)

τ (n−1) and T(n) = T
(n)

τ (n−1) . Then, define the following estimators for
∇θRθ and ∇θTθ:

∇̂R =
1

N

N∑
n=1

τ (n)−1∑
σ=τ (n−1)

R(n)
σ Λσ, (5.13)

∇̂T =
1

N

N∑
n=1

τ (n)−1∑
σ=τ (n−1)

T(n)
σ Λσ, (5.14)

where N is an arbitrarily chosen number.

Proposition 5.2.3 ∇̂R and ∇̂T defined above are unbiased and asymptotically consistent
estimators of ∇θRθ and ∇θTθ.

Proof Let Pθ denote the probability induced on the sample paths when the system
is following policy πθ. For t ∈ {τ (n−1), . . . , τ (n) − 1}, let D(n)

t denote the sample path
(Ss, As, Ss+1)t

s=τ (n−1) for the n-th regenerative cycle until time t. Then,

Pθ(D
(n)
t) =

t∏
s=τ (n−1)

πθ(As|Ss)P(Ss+1|Ss, As)

Therefore,

∇θ logPθ(D
(n)
t) =

t∑
s=τ (n−1)

∇θ log πθ(As|Ss) =
t∑

s=τ (n−1)

Λs. (5.15)

Note that Rθ can be written as:

Rθ = Γ(n)

τ (n)−1∑
t=τ (n−1)

γtEAt∼πθ(St)[Rt].

5.2 RMC Algorithm 111

Using the log derivative trick,3 we get

∇θRθ = Γ(n)

τ (n)−1∑
t=τ (n−1)

γt EAt∼πθ(St)[Rt∇θ logPθ(D
(n)
t)]

(a)
= Γ(n)EAt∼πθ(St)

[τ (n)−1∑
t=τ (n−1)

[
γtRt

t∑
σ=τ (n−1)

Λσ

]]
(b)
= EAt∼πθ(St)

[τ (n)−1∑
σ=τ (n−1)

Λσ

[
Γ(n)

τ (n)−1∑
t=σ

γtRt

]]
(c)
= EAt∼πθ(St)

[τ (n)−1∑
σ=τ (n−1)

R(n)
σ Λσ

]
(5.16)

where (a) follows from (5.15), (b) follows from changing the order of summations, and (c)

follows from the definition of R(n)
σ in (5.12). ∇̂R is an unbiased and asymptotically consistent

estimator of the right hand side of the last equation in (5.16). The result for ∇̂T follows
from a similar argument. �

Algorithm 5 combines the above estimates with the stochastic gradient ascent iteration
of Theorem 5.2.1. An immediate consequence of Proposition 5.2.2 and Theorem 5.2.1 is the
following.

Corollary 5.2.1 The sequence {θm}m≥1 generated by Algorithm 5 converges to a local
maximum. 2

Remark 5.2.1 Algorithm 5 is presented in its simplest form. It is possible to use standard
variance reduction techniques such as subtracting a baseline [40,91,133] to reduce variance.2

Remark 5.2.2 In Algorithm 5, we use two separate runs to compute (R̂m, T̂m) and
(∇R̂m,∇T̂m) to ensure that the independence condition of Proposition 5.2.2 is satisfied. In
practice, we found that using a single run to compute both (R̂m, T̂m) and (∇R̂m,∇T̂m) has
negligible effect on the accuracy of convergence (but speeds up convergence by a factor of
two). 2

3Log-derivative trick: For any distribution p(x|θ) and any function f ,

∇θEX∼p(X|θ)[f(X)] = EX∼p(X|θ)[f(X)∇θ log p(X|θ)].

112 Renewal Monte Carlo: Renewal theory based RL

Remark 5.2.3 It has been reported in the literature [121] that using a biased estimate of
the gradient given by:

R(n)
σ = Γ(n)

τ (n)−1∑
t=σ

γt−σRt, (5.17)

(and a similar expression for T (n)
σ) leads to faster convergence. We call this variant RMC

with biased gradients and, in our experiments, found that it does converge faster than
RMC. 2

5.2.2 Simultaneous perturbation based gradient estimator

Another approach to estimate performance gradient is to use simultaneous perturbation
based estimates [16,64,82,111]. The general one-sided form of such estimates is

∇̂Rθ = δ(R̂θ+cδ − R̂θ)/c

where δ is a random variable with the same dimension as θ and c is a small constant. The ex-
pression for ∇̂Tθ is similar. When δi ∼ Rademacher(±1), the above method corresponds to si-
multaneous perturbation stochastic approximation (SPSA) [82,111]; when δ ∼ Normal(0, I),
it corresponds to smoothed function stochastic approximation (SFSA) [16,64].

Substituting these estimates in (5.10) and simplifying, we get

Ĥθ = δ(T̂θR̂θ+cδ − R̂θT̂θ+cδ)/c.

The complete algorithm in shown in Algorithm 6. Since (R̂θ, T̂θ) and (R̂θ+cδ, T̂θ+cδ) are
estimated from separate sample paths, Ĥθ defined above is an unbiased estimator of Hθ.
Then, an immediate consequence of Proposition 5.2.2 and Theorem 5.2.1 is the following.

Corollary 5.2.2 The sequence {θm}m≥1 generated by Algorithm 6 converges to a local
maximum. 2

5.2 RMC Algorithm 113

Algorithm 6: RMC Algorithm with simultaneous perturbation based gradient esti-
mates.
input : Intial policy θ0, discount factor γ, initial state s0, number of regenerative

cycles N , constant c, perturbation distribution ∆
for iteration m = 0, 1, . . . do

for regenerative cycle n1 = 1 to N do
Generate n1-th regenerative cycle using policy πθm .
Compute R(n1) and T(n1) using (5.4).

Set R̂m = mean(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = mean(T(n1) : n1 ∈ {1, . . . , N}).
Sample δ ∼ ∆.
Set θ′m = θm + cδ.
for regenerative cycle n2 = N + 1 to 2N do

Generate n2-th regenerative cycle using policy πθm .
Compute R(n2) and T(n2) using (5.4).

Set R̂′m = mean(R(n2) : n2 ∈ {N + 1, . . . , 2N}).
Set T̂′m = mean(T(n2) : n2 ∈ {N + 1, . . . , 2N}).
Set Ĥm = δ(T̂mR̂

′
m − R̂mT̂

′
m)/c.

Update θm+1 =
[
θm + αmĤm

]
Θ
.

5.2.3 Remark on average reward setup

The results presented above also apply to average reward models where the objective is to
maximize

Jπ = lim
th→∞

1

th
EAt∼π(St)

[th−1∑
t=0

Rt

∣∣∣∣ S0 = s0

]
. (5.18)

Let the stopping times τ (n) be defined as before. Define the total reward R(n) and duration
T(n) of the n-th regenerative cycle as

R(n) =
τ (n)−1∑
t=τ (n−1)

Rt and T(n) = τ (n) − τ (n−1).

Let Rθ and Tθ denote the expected values of R(n) and T(n) under policy πθ. Then from
standard renewal theory we have that the performance Jθ is equal to Rθ/Tθ and, therefore
∇θJθ = Hθ/T

2
θ , where Hθ is defined as in (5.8). We can use both variants of RMC presented

114 Renewal Monte Carlo: Renewal theory based RL

above to obtain estimates of Hθ and use these to update the policy parameters using (5.9).

5.3 RMC for Post-Decision State Model

In many models, the state dynamics can be split into two parts: a controlled evolution
followed by an uncontrolled evolution. For example, many continuous state models have
dynamics of the form St+1 = f(St, At) +Nt, where {Nt}t≥0 is an independent noise process.
For other examples, see the inventory control and event-triggered communication models
in Sec. 5.5. Such models can be written in terms of a post-decision state model described
below.

Consider a post-decision state MDP with pre-decision state S−t ∈ S−, post-decision state
S+
t ∈ S+, action At ∈ A. The system starts at an initial state s+

0 ∈ S+ and at time t:

1. there is a controlled transition from S−t to S+
t according to a transition kernel P−(At);

2. there is an uncontrolled transition from S+
t to S−t+1 according to a transition kernel

P+;

3. a per-step reward Rt = r(S−t , At, S
+
t) is received.

Remark 5.3.1 When S+ = S− and P+ is identity, then the above model reduces to the
standard MDP model, considered in Sec. 5.2. When P+ is a deterministic transition, the
model reduces to a standard MDP model with post decision states [93,123]. 2

As in Sec. 5.2, we choose a (time-homogeneous and Markov) policy π that maps the
current pre-decision state S− to a distribution on actions, i.e., At ∼ π(S−t). We use π(a|s−)

to denote P(At = a|S−t = s−).
The performance when the system starts in post-decision state s+

0 ∈ S+ and follows
policy π is given by

Jπ = EAt∼π(St)

[∞∑
t=0

γtRt

∣∣∣∣ S+
0 = s+

0

]
, (5.19)

where γ ∈ (0, 1) is the discount factor. As before, we are interested in identifying an optimal
policy, i.e., a policy that maximizes the performance. When S and A are Borel spaces, we
assume that the model satisfies the standard conditions under which time-homogeneous

5.4 Approximate RMC 115

Markov policies are optimal [47]. Let τ (n) denote the stopping times such that τ (0) = 0 and
for n ≥ 1,

τ (n) = min{t > τ (n−1) : s+
t−1 = s+

0 }.

The slightly unusual definition (using s+
t−1 = s+

0 rather than the more natural s+
t = s+

0) is to
ensure that the formulas for R(n) and T(n) used in Sec. 5.2 remain valid for the post-decision
state model as well. Thus, using arguments similar to Sec. 5.2, we can show that both
variants of RMC presented in Sec. 5.2 converge to a locally optimal parameter θ for the
post-decision state model as well.

5.4 Approximate RMC

In this section, we present a variant of RMC that trades off accuracy with the speed of
convergence. One potential limitation of RMC is that the system may take a long time to
revisit the initial state. We can circumvent this limitation by considering a “renewal set” B
around the start state and pretending that a renewal takes place whenever the state enters
B. Doing so, results in a loss in accuracy. Since each regenerative cycles does not start in
the same state, the renewal relationship of Proposition 5.2.1 is no longer valid. Nonetheless,
in this section, we show that if the model has sufficient regularity so that the value function
is locally Lipschitz in the renewal set, the error due to this approximation is bounded.

Suppose that the state and action spaces S and A are separable metric spaces (with
metrics dS and dA). Given a “renewal set” B containing the start state s0 and let ρB =

sups∈B dS(s, s0) denote the radius of B with respect to s0. Given a policy π, let τ (n) denote
the stopping times for successive visits to B, i.e., τ (0) = 0 and for n ≥ 1,

τ (n) = min{t > τ (n−1) : st ∈ B}.

Define R(n) and T(n) as in (5.4) and let RBθ and TBθ denote the expected values of R(n) and
T(n), respectively. Define

JBθ =
RBθ

(1− γ)TBθ
.

Theorem 5.4.1 Given a policy πθ, let Vθ denote the value function and T
B

θ = EAt∼πθ(St)[γ
τ (1) |S0 =

s0] (which is always less than γ). Suppose the following condition is satisfied:

116 Renewal Monte Carlo: Renewal theory based RL

(C) The value function Vθ is locally Lipschitz in B, i.e., there exists a Lθ such that for
any s, s′ ∈ B,

|Vθ(s)− Vθ(s′)| ≤ LθdS(s, s′).

Then ∣∣Jθ − JBθ ∣∣ ≤ LθT
B

θ

(1− γ)TBθ
ρB ≤ γ

(1− γ)
Lθρ

B. (5.20)

Proof We follow an argument similar to Proposition 5.2.1.

Jθ = Vθ(s0) = EAt∼πθ(St)

[τ (1)−1∑
t=0

γtRt

+ γτ
(1)

∞∑
t=τ (1)

γt−τ
(1)

Rt

∣∣∣∣ S0 = sτ (1)

]
(a)
= RBθ + EAt∼πθ(St)[γ

τ (1) |S0 = s0]Vθ(sτ (1)) (5.21)

where (a) uses the strong Markov property [84]. Since Vθ is locally Lipschitz with constant
Lθ and sτ (1) ∈ B, we have that

|Jθ − Vθ(sτ (1))| = |Vθ(s0)− Vθ(sτ (1))| ≤ Lθρ
B.

Substituting the above in (5.21) gives

Jθ ≤ RBθ + T
B

θ (Jθ + Lθρ
B).

Substituting TBθ = (1− T
B

θ)/(1− γ) and rearranging the terms, we get

Jθ ≤ JBθ +
LθT

B

θ

(1− γ)TBθ
ρB.

The proof for the other direction is similar. The second inequality in (5.20) follows from
T
B

θ ≤ γ and TBθ ≥ 1. �

Based on Theorem 5.4.1, a policy that minimizes JBθ is approximately optimal. Such a
policy can be identified by modifying both variants of RMC to declare a renewal whenever
the state lies in B.

5.4 Approximate RMC 117

Local Lipschitz continuity of value functions can be verified for specific models (e.g., the
model presented in Sec. 5.5.3). Sufficient conditions for global Lipschitz continuity have
been identified in [48, Theorem 4.1], [95, Lemma 1, Theorem 1], and [92, Lemma 1]). We
state these conditions below.

Proposition 5.4.1 Let Vθ denote the value function for any policy πθ. Suppose the model
satisfies the following conditions:

1. The transition kernel P is Lipschitz, i.e., there exists a constant LP such that for all
s, s′ ∈ S and a, a′ ∈ A,

K(P (·|s, a), P (·|s′, a′)) ≤ LP
[
dS(s, s′) + dA(a, a′)

]
,

where K is the Kantorovich metric (also called the Wasserstein distance) between
probability measures.

2. The per-step reward r is Lipschitz, i.e., there exists a constant Lr such that for all
s, s′, s+ ∈ S and a, a′ ∈ A,

|r(s, a, s+)− r(s′, a′, s+)| ≤ Lr
[
dS(s, s′) + dA(a, a′)

]
.

In addition, suppose the policy satisfies the following:

3. The policy πθ is Lipschitz, i.e., there exists a constant Lπθ such that for any s, s′ ∈ S,

K(πθ(·|s), πθ(·|s′)) ≤ Lπθ dS(s, s′).

4. γLP (1 + Lπθ) < 1.

5. The value function Vθ exists and is finite.

Then, Vθ is globally Lipschitz. In particular, for any s, s′ ∈ S,

|Vθ(s)− Vθ(s′)| ≤ LθdS(s, s′),

where Lθ = Lr(1 + Lπθ)/
(
1− γLP (1 + Lπθ)

)
.

118 Renewal Monte Carlo: Renewal theory based RL

5.5 Numerical Experiments

We present three experiments to evaluate the performance of RMC: a randomly generated
MDP, event-triggered communication, and inventory management. The code for all the
experiments is available at [114].

5.5.1 Randomized MDP (GARNET)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Samples ×105

0

50

100

150

200

250

300

P
er

fo
rm

an
ce

Exact TRPO PPO AC-0 AC-1 AC-0.5 RMC RMC-B

Fig. 5.1: GARNET: Comparison of RMC with other state of the art algorithms. The solid
lines show the median values and the shaded area shows the region between the first and
third quartiles.

In this experiment, we study a randomly generated GARNET(100, 10, 50) model [15],
which is an MDP with 100 states, 10 actions, and a branching factor of 50 (which means
that each row of all transition matrices has 50 non-zero elements, chosen Unif[0, 1] and
normalized to add to 1). For each state-action pair, with probability p = 0.05, the reward is
chosen Unif[10, 100], and with probability 1−p, the reward is 0. The discount factor γ = 0.9.
The first state is chosen as start state. The policy is parameterized by a Gibbs soft-max
distribution (which has states × actions = 100 × 10 parameters) where each parameter
belongs to the interval [−10, 10] and the temperature is kept constant and equal to 1.

We compare the performance of the following algorithms:

5.5 Numerical Experiments 119

1. RMC with likelihood ratio based gradient estimator (see Sec. 5.2.1) where the gradient
is estimated using a single run (see Remark 5.2.2 in Sec. 5.2). The policy parameters
are updated after N = 4 renewals and the learning is adapted using ADAM(0.05)4 [65].

2. RMC with biased gradient denoted by RMC-B (see Remark 5.2.2) where all parameters
are same as in RMC.

3. Actor critic with eligibility traces for the critic [116], which we refer to as AC-λ with
λ ∈ {0, 0.5, 1}, where the learning rate for the actor is adapted using ADAM(0.1) [65].

4. TPRO [100] and PPO [101], which are two state of the art policy gradient based RL
algorithms for models with discrete action spaces, where we use the default architecture
and parameters from ChainerRL [25].

We run each algorithm for 2× 105 samples and repeat this experiment 100 times. To
compare the performance of these algorithms, we periodically evaluate the performance of
πθm for each trajectory using Monte Carlo evaluation (over 200 samples averaged over 10
independent runs). The median, first quartile, and third quartile across 100 runs are shown
in Fig. 5.1. The optimal performance (which is computed using value iteration and the
knowledge of the model) is also shown.

We observe that AC-λ, TRPO, and PPO learn faster (which is expected because the
critic is keeping track of the entire value function) and have variance comparable to RMC
and RMC-B. AC-λ gets stuck in a local minimum while RMC, RMC-B, TRPO, and PPO
do not. Policy gradient algorithms only guarantee convergence to a local optimum. We are
not sure why AC-λ converges to a different local maximum from RMC, RMC-B, TRPO and
PPO. We also observe that RMC-B (which is RMC with biased evaluation of the gradient)
learns faster than RMC.

It is worth highlighting that although TRPO/PPO converge in fewer number of samples
compared to RMC/RMC-B, they require significantly more computational resources. In
our experiments, each run of TRPO took ≈ 10 minutes (wall clock time), PPO took ≈ 16

minutes, AC-λ took ≈ 1 minute, whereas RMC/RMC-B took ≈ 40 seconds.

120 Renewal Monte Carlo: Renewal theory based RL

0.2 0.4 0.6 0.8 1.0
Samples ×106

60

80

100

120

140

160

180

200

T
ot

al
C

os
t

Exact PPO TRPO RMC

Fig. 5.2: Event-Triggered communication: Comparison of RMC with other state of the art
algorithms. The solid lines show the median values and the shaded area shows the region
between the first and third quartiles.

5.5.2 Event-Triggered Communication

In this experiment, we study an event-triggered communication problem that arises in
networked control systems [27, 74]. A transmitter observes a first-order autoregressive
process {Xt}t≥1, i.e., Xt+1 = αXt + Wt, where α,Xt,Wt ∈ R, and {Wt}t≥1 is an i.i.d.
process. At each time, the transmitter uses an event-triggered policy (explained below)
to determine whether to transmit or not (denoted by At = 1 and At = 0, respectively).
Transmission takes place over an i.i.d. erasure channel with erasure probability pd. Let
S−t and S+

t denote the “error” between the source realization and its reconstruction at a
receiver. It can be shown that S−t and S+

t evolve as follows [27,74]: when At = 0, S+
t = S−t ;

when At = 1, S+
t = 0 if the transmission is successful (w.p. (1 − pd)) and S+

t = S−t if
the transmission is not successful (w.p. pd); and S−t+1 = αS+

t + Wt. Note that this is a
post-decision state model, where the post-decision state resets to zero after every successful
transmission.5

4We use ADAM(α) to denote the choice of the α parameter of ADAM. All other parameters have their
default value.

5Had we used the standard MDP model instead of the post-decision state model, this restart would not
have always resulted in a renewal.

5.5 Numerical Experiments 121

The per-step cost has two components: a communication cost of λAt, where λ ∈ R>0

and an estimation error (S+
t)2. The objective is to minimize the expected discounted cost.

An event-triggered policy is a threshold policy that chooses At = 1 whenever |S−t | ≥ θ,
where θ is a design choice. Under certain conditions, such an event-triggered policy is known
to be optimal [27,74]. When the system model is known, algorithms to compute the optimal
θ are presented in [26,136]. In this section, we use RMC to identify the optimal policy when
the model parameters are not known.

In our experiment we consider an event-triggered model with α = 1, λ = 500, pd = 0.0,
Wt ∼ N (0, 1), γ = 0.9.

We compare the performance for the following algorithms:

1. RMC with simultaneous perturbation based gradient estimate (see Sec. 5.2.2)6, where
the policy is parameterized by the threshold θ. We choose c = 0.3, N = 1 and
∆ = N (0, 1) in Algorithm 6. The learning rate is adapted using ADAM(0.01) [65].

2. TPRO [100] and PPO [101], which are two state of the art policy gradient based RL
algorithms for models with discrete action spaces, where we use the default architecture
and parameters from ChainerRL [25].

We run each algorithm for 2 × 106 samples and repeat this experiment 100 times for
RMC and 10 times for TRPO and PPO. To compare the performance of these algorithms,
we periodically evaluate the performance of πθm for each trajectory using Monte Carlo
evaluation (over 200 samples averaged over 10 independent runs). The median, first quartile,
and third quartile across the runs are shown in Fig. 5.2. The optimal total cost computed
using [26] and the knowledge of the model is also shown in Fig. 5.2.

We observe that all three algorithms converge to the optimal values. TRPO and PPO
converge in fewer number of samples (which is expected because the critic is keeping track
of the entire value function), but require significantly more computational resources. In our
experiments, each run of TRPO took ≈ 1.4 hours (wall clock time), PPO took ≈ 2.7 hours
whereas RMC took ≈ 0.5 seconds.

6An event-triggered policy is a parametric policy but πθ(a|s−) is not differentiable in θ. Therefore, the
likelihood ratio method cannot be used to estimate performance gradient.

122 Renewal Monte Carlo: Renewal theory based RL

5.5.3 Inventory Control

In this experiment, we study an inventory management problem that arises in operations
research [7, 11]. Let St ∈ R denote the volume of goods stored in a warehouse, At ∈ R≥0

denote the amount of goods ordered, and Dt denotes the demand. The state evolves
according to St+1 = St + At −Dt+1.

We work with the normalized cost function:

C(s) = aps(1− γ)/γ + ahs1{s≥0} − abs1{s<0},

where ap is the procurement cost, ah is the holding cost, and ab is the backlog cost
(see [129, Chapter 13] for details).

0 1 2 3 4
Samples ×106

180

200

220

240

260

280

T
ot

al
C

os
t

Exact DDPG RMC

Fig. 5.3: Inventory control: Comparison of RMC with other state of the art algorithms.
The solid lines show the median values and the shaded area shows the region between the
first and third quartiles.

It is known that there exists a threshold θ such that the optimal policy is a base stock
policy with threshold θ (i.e., whenever the current stock level falls below θ, one orders up
to θ). Furthermore, for s ≤ θ, we have that [129, Sec. 13.2]

Vθ(s) = C(s) +
γ

(1− γ)
E[C(θ −D)]. (5.22)

5.5 Numerical Experiments 123

So for B ⊂ (0, θ), the value function is locally Lipschitz in B with

Lθ =

(
ah +

1− γ
γ

ap

)
.

So, we can use approximate RMC to learn the optimal policy.
In our experiments, we consider an inventory management model with ah = 1, ab = 1,

ap = 1.5, Dt ∼ Exp(λ) with λ = 0.025, start state s0 = 1, discount factor γ = 0.9.
We compare the performance for the following algorithms:

1. RMC with simultaneous perturbation based gradient (see Sec. 5.2.2), where the policy
is parameterized by the threshold θ. We choose c = 3.0, N = 100, and ∆ = N (0, 1)

in Algorithm 6 and choose B = (0, 1) for approximate RMC. The learning rate is
adapted using ADAM(0.25) [65].

2. DDPG [73], which is of one of state of the art RL algorithms for models with
continuous action spaces, where we use the default architecture and implementation
from ChainerRL [25].

We run each algorithm for ≈ 5× 106 samples and repeat this experiment 100 times for
RMC and 10 times for DDPG. To compare the performance of these algorithms, we use
Monte Carlo evaluation (over 200 samples averaged over 100 independent runs for RMC
and 10 independent runs for DDPG) periodically to evaluate the performance of πθm for
each trajectory. The median, first quartile and third quartile across the runs are shown in
Fig. 5.3. The optimal performance computed using [129, Sec. 13.2]7 is also shown.

We observe that DDPG learns in fewer number of samples but it takes more time. In our
experiments each run of DDPG took ≈ 10 hours (wall clock time) whereas RMC took ≈ 30

seconds. In addition, RMC converges smoothly to an approximately optimal parameter
value with total cost within the bound predicted in Theorem 5.4.1. The grey rectangular
region in Fig. 5.3 shows this bound.

7For Exp(λ) demand, the optimal threshold is (see [129, Sec. 13.2])

θ∗ =
1

λ
log

(
ah + ab

ah + ap(1− γ)/γ)

)
.

124 Renewal Monte Carlo: Renewal theory based RL

5.6 Conclusions

We present a renewal theory based reinforcement learning algorithm called Renewal Monte
Carlo (RMC). RMC retains the key advantages of Monte Carlo methods and has low bias,
is simple and easy to implement, and works for models with continuous state and action
spaces. In addition, due to the averaging over multiple renewals, RMC has low variance.
We generalize the RMC algorithm to post-decision state models and present a variant that
converges faster to an approximately optimal policy, where the renewal state is replaced
by a renewal set. The error in using such an approximation is bounded by the size of the
renewal set.

In certain models, one is interested in the performance at a reference state that is not the
start state. In such models, we can start with an arbitrary policy and ignore the trajectory
until the reference state is visited for the first time and use RMC from that time onwards
(assuming that the reference state is the new start state).

125

Chapter 6

Conclusion

In this thesis we studied reinforcement learning in certain classes of multi-agent systems. In
order to do so, we first relaxed two requirements of MDPs, which are the most common
mathematical fraework for single agent reinforcement learning. The first requirement that we
relaxed is that of full observabililty and the second is that of stationarity (time homogeneity)
of the environment.

Relaxation of the requirement of full observability led us to the problem of reinforcement
learning in POMDPs, for which we developed a novel RL approach. We extended this
approach to present an RL algorithm for a class of large population cooperative systems
called mean-field teams.

Relaxation of the stationarity requirement, led us to the problem of decoupling the
learning of each agent from the other agents. Several approaches for such decoupling
between agents have been proposed in literature for various classes of MAS. In this thesis,
we presented an RL algorithm for a class of large population systems called stationary
mean-field games, where the decoupling is achieved by the mean-field (empirical distribution
of the states and/or actions) of the system.

We also studied single agent RL in problems where the system had a renewal/regenerative
property. For such systems, we developed a policy gradient based algorithm which is much
simpler than conventional RL algorithms as it exploits the renewal property.

126 Conclusion

6.1 Summary

6.1.1 AIS for POMDPs

In the first technical chapter of this thesis, we studied RL in POMDPs, motivated by the
fact that partial observability is an essential characteristic in most multi-agent systems.
We provided two different definitions of information state, i.e., state sufficient for dynamic
programming in partially observable Markov decision processes. We then relaxed the
conditions to be satisfied by an information state process to yield two different definitions for
approximate information states (AIS) along with the associated generators for the AIS. We
showed that planning using AIS instead of an information state has bounded sub-optimality,
where this bound is derived in terms of the approximation quantities that are used in the
definition of the AIS. We also bounded the loss in performance when a policy learned using
an AIS is used in the original system.

We showed that AIS can be learned from data and thus is useful for RL in systems
where the transition and observation likelihood models are not known. We proposed an
RL algorithm that learns an AIS along with learning an optimal policy for the AIS based
system. We proved the convergence of this algorithm under standard technical conditions
using the multi-time scale stochastic approximation theory. We also presented an recurrent
neural network based function approximation architecture for implementation of this RL
algorithm and demonstrated its numerical performance on four toy problems. In all these
four cases, our proposed algorithm performed favorably when compared with one of the
state of the art algorithms for RL in POMDPs.

6.1.2 RL in mean-field teams

The first multi-agent model in which we studied RL in this thesis is the mean-field team
model. Mean-field teams are cooperative multi-agent systems with a large number of agents
that have negligible individual impact on the system, and where the agents are coupled
with each other only through the empirical distribution of their states and/or actions. The
solution concept in such systems is defined as team optimality, where all agents act to
optimize the cumulative team reward. It has been shown in literature that such systems can
be modeled as decentralized POMDPs. Furthermore, using a decomposition approach from
literature, called the common information approach, such systems can be converted into

6.1 Summary 127

POMDPs. Having used such a reduction to a POMDP, we first showed that considering a
mean-field limit model, i.e., a model where the number of agents is assumed to be infinite,
can be seen as using an AIS with a generator comprised of an identity mapping for the AIS
and the infinite population deterministic transition and reward functions for the generator’s
transition and reward functions. Using this, we bounded the sub-optimality of using this
mean-field limit system to derive an optimal policy for the finite population system. Then,
using the mean-field limit system based AIS, we related the relation between the performance
of an m-population system’s optimal policy in an n-population system.

We defined two RL approaches based on access to either a system-level simulator or
an agent-level simulator. We demonstrated the performance of RL using an agent-level
simulator for two problems—which are stylized models of the demand response problem and
the malware spread problem. Furthermore, for the demand response problem, we showed
that the optimal performance of our RL algorithm matches very closely with the optimal
planning solution from literature. For this problem, we also numerically illustrate the
sub-optimality of using a mean-field limit solution (obtained using a system-level simulator)
and a 100-agent system solution (obtained using an agent-level simulator) in systems with
populations ranging from 100 to 1000.

6.1.3 RL in stationary mean-field games

The second multi-agent model in which we studied RL in this thesis is the stationary
mean-field game model. Mean-field games are non-cooperative multi-agent systems with a
large number of agents that have negligible individual impact on the system, and where the
agents are coupled with each other only through the empirical distribution of their states
and/or actions. Stationary mean-field games are mean-field games where all agents play
identical stationary policies and the resultant mean-field becomes stationary. Typically
two solution concepts—stationary mean-field equilibrium, sand stationary mean-field social
welfare optimal policy. We defined localized extensions of these two solution concepts
and presented two RL algorithms that provably converge to these two solution concepts
under standard technical conditions. We numerically demonstrated the performance of these
algorithms on two stylized models and for one, where a planning based solution was available
from literature, we showed convergence to a policy with close to optimal performance.

128 Conclusion

6.1.4 Renewal Monte Carlo

In the last technical chapter of this thesis, we studied single-agent systems which have a
renewal or regenerative structure. We showed that in such systems, we can use renewal
theory to estimate the infinite horizon performance of a policy using a finite length trajectory
that covers a single renewal cycle. Using the gradients of the renewal cycle discounted
cumulative reward and renewal cycle discounted cumulative time with respect to the policy
parameters, we defined a policy gradient theorem. We proved the convergence of the RL
algorithm that uses this gradient formulation. We extended this policy gradient theorem to
systems where renewals are defined in terms of post-decision states. We also defined the
concept of an approximate renewal and extended our renewal theory based policy gradient
theorem to such systems. We theoretically bounded the error due to this approximation
in terms of the approximation radius used in defining this approximate renewal. For all
three variants of our algorithm, called Renewal Monte Carlo (RMC), we demonstrated the
performance on three problems respectively and also showed that RMC performs better or
as good as some of the more complex RL algorithms in problems with renewal/regenerative
property.

6.2 Future work

We believe that our proposed frameworks of AIS and RL in mean-field systems can be
extended to other models as well. For instance, for single agent POMDPs, an AIS and
its associated generator can serve as a model for model-based RL. This approach can be
combined with the RL approach presented in Chapter 2 to develop a Dyna Q [117] like
algorithm for POMDPs. This combined model-free and model-based RL approach can be
extended to mean-field teams in a straightforward manner. Furthermore, using the common
information approach for dynamic programming decomposition for teams, we can extend the
AIS based RL algorithm for a class of cooperative multi-agent systems. The differentiating
characteristic here is that this approach permits using a decentralized critic in addition to
a decentralized actor and thus will be a fully decentralized learning algorithm. This is in
contrast to the most popular learning framework in multi-agent systems—centralized learning
and decentralized execution, or the variant where decentralized learning is accomplished
using inter-agent communication that is only available during learning and not execution.

6.3 Final thoughts 129

Another extension of our mean-field RL algorithm could be in models representing games
between mean-field teams.

Our RMC approach can also be used as an alternative algorithm for MARL in systems
with renewal. Furthermore, it can also be combined with other conventional TD algorithms
as an added estimate in states where approximate renewals occur, albeit at a loss of the
simplicity of the RMC algorithm. RMC in MARL

6.3 Final thoughts

In this thesis, we attempted to address the problem of RL in multi-agent systems. Multi-
agent systems is a vast field with various sub-areas that have very different characteristics.
While are nowhere close to arriving at a generic RL algorithm that can address this entire
gamut of sub-areas, we believe we have developed some tools—AIS and simulation based
RL, that will prove useful in several of these sub-areas.

Out of the two key problems in MARL—partial observability and non-stationarity of
environment, we have been able to address the first one to a considerable extent using
the AIS approach. This approach not only provides a theoretical framework to analyze
RL in POMDPs, but also provides a practical algorithm for the same. Though we have
only illustrated this algorithm using recurrent neural networks, newer approaches to handle
temporal sequences such as transformers show significant promise. This is based on their
successes in problems in natural language processing, which also have a significant temporally
extended behavior.

For the non-stationarity problem, we chose to follow a model-specific approach— we
restricted attention to mean-field systems where the mean-field decouples the agents from
each other and conditioned on the mean-field the environment becomes stationary. Almost
all other theoretical approaches to MARL in literature can be considered as using some
kind of decoupling object such as knowledge of the opponent’s reward in zero-sum games,
centralized critic in MADDPG, COMA etc. It would be interesting to see if a more general
decoupling scheme that extends beyond specific models or centralized training frameworks
can be derived for MARL.

This page is intentionally left blank.

131

Appendix A

Background of neural network
architectures

In this appendix, we present a brief overview of the various (artificial) neural network
architectures and terminologies that have been used in this thesis. We begin by describing
a layer in neural networks, activation functions and then describe architectures built using
these layers and activation functions—primarily feed-forward neural networks and recurrent
neural networks. There have been several challenges in training recurrent neural networks
and two ways to overcome these have been presented in literature. These are long short-term
memory (LSTM) and gated recurrent units (GRU), which are then detailed in two following
subsections. Most of the explanations in this appendix are based on the text book [39]. The
original references for the various concepts mentioned here and the history can be found
in [39].

The process of computing an output using a neural network involves sequential trans-
formations of the input using the layers and activation functions and this step is called
forward-propagation. The various parameters used in these layers and activation functions
are called parameters or weights of the neural network. Neural networks are trained using
a gradient based update rule to update their parameters or weights, that minimizes some
pre-defined loss function of the output of the neural network. The gradient of this loss
function with respect to the weights is computed using chain rule of differentiation. This
process of gradient computation is called back-propagation or backprop. The following

132 Background of neural network architectures

equation represents a generic backprop operation:

∂u(n)

∂u(j)
=

∑
i:j∈Pa(u(i))

∂u(n)

∂u(i)

∂u(i)

∂u(j)
,

where u(n) is the nth neuron (i.e. parameters or weights corresponding to that neuron) or
could be the final loss function, u(j) is one of the parents of u(n), i.e., one of the nodes
that feeds into u(n). The set of parents of any node u(i) is denoted by Pa(u(i)). A detailed
algorithm to for backprop is given in [39, Algorithm 6.2]. Therefore, if we can compute the
gradient of one neuron or layer with respect to its immediately preceding (input) neuron or
layer, we can use the above chain rule to compute the gradient of the loss with respect to
all the weights of the neural network. The gradients of different layers with respect to their
inputs and the gradients of the various activation functions are given below.

A.1 Layer and activation

A layer in a neural network is a set of neurons that process input in parallel. A layer can be
thought of as a transformation function that transforms an input x into an output y. There
are various types of layers used in neural networks, thought the only one used in this thesis
is the fully connected layer. Some common layer types are:

1. Fully connected/Dense layer: Here all the elements of the input vector (x) affect
all the elements of the output vector (y). Let m be the dimension of the input vector
and n be the number of neurons in this layer. Then a fully connected transformation
function is represented by an m × n matrix W and an n-dimensional vector called
bias and the transformation function is given as:

y = Wx+ b.

This is one of the most common transformation functions and this is the only one used
in this thesis. The gradient of the output of this layer with respect to its parameter
W is x and with respect to b is 1 (of appropriate dimension).

2. Convolutional layer: Typically, convolutional layers are used to process image
inputs. Here the input x is 2 or 3 dimensional. For illustration, we consider a 2D

A.1 Layer and activation 133

image of size m× n. A convolutional layer has a kernel K, usually a square kernel of
size k×k and stride s, which is usually 1. In this case, the output is also 2-dimensional
and its (i, j)th term is given by :

yi,j = (x ∗K)i,j =
∑
a

∑
b

xa,bKi−a,j−b.

For further details on choosing different strides and different edge and corner paddings
and multiple convolution channels, please see [39]. The convolutional layer has
parameters equal to the kernel size and the gradients with respect to these parameters
can be computed using the above linear equation. Each parameter in the kernel would
receive gradient input from more than one output neuron based on the kernel size
and stride length and the final gradient with respect to that parameter would be the
addition of all these gradients.

3. Pooling layer: A pooling layer, also typically used for multi-dimensional inputs,
compresses the input elements in a region into a single value which depends on the
pooling function. Common pooling functions are max, min, mean etc. For instance,
if the input is a 2-dimensional one and the pooling layer has a k × k square region
with a max pooling function, then it compresses each k × k region of the input to the
maximum of these k × k values. For a pooling layer, the gradient is only propagated
from the output to all the neurons that are used in computing the output of the
pooling layer. For example, if a max pooling layer is used, the the gradient is only
passed to the input neuron with the maximum value in the pooling region and all
other neurons in this region get a zero gradient.

An activation function is typically a non-linear function that acts on the output of
the layer to yield an output of the same dimension. Often the transformation function
is non-linear and squashes the layer output onto some predefined range. Some common
activation functions are:

1. Sigmoid: y = σ(x) := 1
1+e−x

, gradient: σ(x)(1− σ(x)).

2. Tanh: y = tanh(x), gradient: 1− tanh2(x).

3. ReLU: This is called a rectified linear unit: y = max(0, x), (sub-)gradient: 1 if x > 0,
else 0.

134 Background of neural network architectures

Fig. A.1: A fully connected neural network with 3 hidden layers.

Fig. A.2: A convolutional neural network with 4 hidden layers.

A.2 Feed-forward neural network

A feed-forward neural network is constructed using a sequence of layers and activation
functions. The first layer is the input itself and the last layer is called the output layer. All
layers between the input and the output are called hidden layers. If there are more than 2
hidden layers, the neural network is considered deep. The following two figures given an
example of a 3 hidden layer fully connected neural network (Fig. A.1), where each node
represents a neuron and a 4 hidden layer convolutional neural network (Fig. A.2). Both
these figures are generated using the tool given in [71]. The backprop for a feed-forward
neural network is done using chain rule as mentioned earlier, where the gradient for each
layer and activation function is as given in Sec. A.1.

A.3 Recurrent neural network (RNN) 135

Fig. A.3: Diagram showing unrolling of a recurrent neural network (RNN).

A.3 Recurrent neural network (RNN)

A feed-forward network, though powerful, cannot capture temporal dependencies in data.
For this purpose, recurrent neural networks are used. They have an architecture similar
to a feed-forward network. However, they also have a hidden state that represents the
sequence length processed thus far. Conceptually a recurrent neural network can be viewed
as a time unrolled feed-forward neural network, where at each time t, the current unrolled
feed-forward network uses a (hidden) state h(t) and the current element of the input sequence
x(t) to yield an output o(t) and the next state h(t+1). This can be written as:

o(t), ht+1 = f(x(t), h(t)),

where f represents the unrolled feed-forward neural network. This is given in Fig. A.3,
which is taken from [39].

The gradient for a recurrent neural network is computed using back-propagation through
time, which is similar to the backprop for feed-forward neural network now applied to the
unrolled network.

136 Background of neural network architectures

These recurrent neural networks can process sequences of arbitrary length. In deep
learning, networks are trained using backpropagation, which involves using chain rule to
compute gradients of a loss function with respect to the parameters of the network. In
the case of recurrent neural networks the sequence of chain rule applications and thus the
number of product terms in the gradient computation increases with the input sequence
length. Hence, when processing large sequences of inputs, we often face the problem of
vanishing or exploding gradients. In order to address this issue, two approaches have been
proposed in literature, which in effect break these long sequences by defining additional
functions called gates to compute and update the RNN state. These are described in the
following subsections.

A.3.1 Long short-term memory (LSTM)

The block diagram for an LSTM is given in Fig. A.4, which is taken from [39]. In an LSTM,
there are three additional gates associated with the hidden state. These gates are functions
given below. This entire network of gates and hidden state is called an LSTM cell. It is
important to note that the LSTM cell has an internal recurrence in addition to the external
recurrence of the RNN. This internal recurrence introduces a self-loop that generates paths
where gradients can persist for a longer time. This is the key idea behind an LSTM. A
more detailed explanation can be found in [39].

1. Forget gate: The forget gate function is given by:

f
(t)
i = σ

(
bfi +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
,

where σ is the sigmoid function, bf , U f ,W f are the biases, input weights and recurrent
weights for the forget gate.

2. (External) Input gate: The input gate function is given by:

g
(t)
i = σ

(
bgi +

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j

)
,

where σ is the sigmoid function, bg, U g,W g are the biases, input weights and recurrent
weights for the input gate.

A.3 Recurrent neural network (RNN) 137

Fig. A.4: Block diagram of a long short-term (LSTM) cell.

3. Output gate: The output gate function is given by:

q
(t)
i = σ

(
boi +

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

)
,

where σ is the sigmoid function, bo, U o,W o are the biases, input weights and recurrent
weights for the output gate.

4. LSTM cell state update: The update equation for the hidden state of the LSTM
cell, denoted by s(t) is given by:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ
(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j

)
,

where b, U,W denote the biases, input weights and recurrent weights for the LSTM
cell.

138 Background of neural network architectures

The output of the LSTM cell is then computed as:

h
(t)
i = tanh(s

(t)
i)q

(t)
i

The gradient with respect to all the above gates and output can be computed using chain
rule in a straightforward manner as they only involve a sigmoid or tanh function and a
linear transformation (dense layer). The gradients of these are given in Sec. A.1.

A.3.2 Gated recurrent unit (GRU)

Another gated RNN architecture is the GRU. The main difference between a GRU and an
LSTM is that in a GRU there is a single gate that controls the forget and LSTM cell state
update part. Thus a GRU has two gates given by:

1. Update gate:
u

(t)
i = σ

(
bui +

∑
j

Uu
i,jx

(t)
j +

∑
j

W u
i,jh

(t−1)
j

)
,

where σ is the sigmoid function, bu, Uu,W u are the biases, input weights and recurrent
weights for the update gate.

2. Reset gate:
r

(t)
i = σ

(
bri +

∑
j

U r
i,jx

(t)
j +

∑
j

W r
i,jh

(t−1)
j

)
,

where σ is the sigmoid function, br, U r,W r are the biases, input weights and recurrent
weights for the reset gate.

The output of the GRU is computed as:

h
(t)
i = u

(t−1)
i h

(t−1)
i + (1− u(t−1)

i)σ
(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j

)
,

where σ is the sigmoid function, b, U,W are the biases, input weights and recurrent weights
for the GRU output.

The gradient with respect to all the above gates and output can be computed using
chain rule in a straightforward manner as they only involve a sigmoid function and a linear
transformation (dense layer). The gradients of these are given in Sec. A.1.

A.4 Conclusion 139

A.4 Conclusion

The purpose of this appendix is to give the reader a brief overview of neural network
architectures. More detail regarding architectures, training algorithms for neural networks,
original references, as well as history of development can be found in [39].

This page is intentionally left blank.

141

References

[1] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. Near optimal behavior
via approximate state abstraction. arXiv:1701.04113, 2017.

[2] Sachin Adlakha, Ramesh Johari, and Gabriel Y Weintraub. Equilibria of dynamic
games with many players: Existence, approximation, and market structure. Journal
of Economic Theory, 156:269–316, 2015.

[3] Jalal Arabneydi. New Concepts in Team Theory: Mean Field Teams and Reinforcement
Learning. PhD thesis, McGill University, 2016.

[4] Jalal Arabneydi and Amir G. Aghdam. A certainty equivalence result in team-optimal
control of mean-field coupled markov chains. In 56th IEEE Annual Conference on
Decision and Control, CDC 2017, Melbourne, Australia, December 12-15, 2017, pages
3125–3130, 2017.

[5] Jalal Arabneydi and Aditya Mahajan. Team optimal control of coupled subsystems
with mean-field sharing. In IEEE Conference on Decision and Control, pages 1669–
1674. IEEE, 2014.

[6] Jalal Arabneydi and Aditya Mahajan. Linear Quadratic Mean Field Teams: Optimal
and Approximately Optimal Decentralized Solutions. ArXiv e-prints, August 2016.

[7] Kenneth J Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy.
Econometrica: Journal of the Econometric Society, pages 250–272, 1951.

[8] Andrea Baisero and Christopher Amato. Learning internal state models in partially ob-
servable environments;. Reinforcement Learning under Partial Observability, NeurIPS
Workshop, 2018.

[9] Bram Bakker. Reinforcement learning with long short-term memory. In NIPS, 2002.

[10] Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation.
JAIR, 15:319–350, 2001.

142 References

[11] Richard Bellman, Irving Glicksberg, and Oliver Gross. On the optimal inventory
equation. Management Science, 2(1):83–104, 1955.

[12] James Bergin and Dan Bernhardt. Anonymous sequential games: existence and
characterization of equilibria. Economic Theory, 5(3):461–489, 1995.

[13] D Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Trans. Autom. Control, 20(3):415–419, 1975.

[14] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Anthropological
Field Studies. Athena Scientific, 1996.

[15] S Bhatnagar, R.S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic
algorithms. Technical report, Dept. of Computing Science, University of Alberta,
Canada, 2009.

[16] Shalabh Bhatnagar, HL Prasad, and LA Prashanth. Stochastic Recursive Algorithms
for Optimization: Simultaneous Perturbation Methods, volume 434. Springer, 2013.

[17] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. Evolutionary
dynamics of multi-agent learning: A survey. Journal of Artificial Intelligence Research,
53:659–697, 2015.

[18] T. Bohlin. Information pattern for linear discrete-time models with stochastic coeffi-
cients. IEEE Transactions on Automatic Control, 15(1):104–106, Feb 1970.

[19] Vivek Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge
University Press, 2008.

[20] Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control
Letters, 29(5):291–294, 1997.

[21] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement
learning: An overview. In Innovations in multi-agent systems and applications-1,
pages 183–221. Springer, 2010.

[22] Pierre Cardaliaguet and Saeed Hadikhanloo. Learning in mean field games: the
fictitious play. ESAIM: Control, Optimisation and Calculus of Variations, 23(2):569–
591, 2017.

[23] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally
in partially observable stochastic domains. In AAAI, 1994.

[24] Pablo Samuel Castro, Prakash Panangaden, and Doina Precup. Equivalence relations
in fully and partially observable markov decision processes. In IJCAI, 2009.

References 143

[25] ChainerRLRepository. https://github.com/chainer/chainerrl.

[26] Jhelum Chakravorty and Aditya Mahajan. Fundamental limits of remote estimation
of Markov processes under communication constraints. IEEE Trans. Autom. Control,
62(3):1109–1124, March 2017.

[27] Jhelum Chakravorty, Jayakumar Subramanian, and Aditya Mahajan. Stochastic
approximation based methods for computing the optimal thresholds in remote-state
estimation with packet drops. In Proc. American Control Conference, pages 462–467,
Seattle, WA, May 2017.

[28] Kyunghyun Cho, Bart van Merriënboer Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.

[29] Gheorghe Comanici and Doina Precup. Basis function discovery using spectral
clustering and bisimulation metrics. In AAAI, 2011.

[30] Gheorghe Comanici, Doina Precup, and Prakash Panangaden. Basis refinement
strategies for linear value function approximation in MDPs. In NIPS, 2015.

[31] M.H.A Davis and P.P Varaiya. Information states for linear stochastic systems.
Journal of Mathematical Analysis and Applications, 37(2):384–402, feb 1972.

[32] William Feller. An Introduction to Probability Theory and its Applications, volume 1.
John Wiley and Sons, 1966.

[33] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov
decision processes. In UAI, 2004.

[34] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. Counterfactual multi-agent policy gradients. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, pages 2974–2982, 2018.

[35] R.E. Funderlic and C.D. Meyer. Sensitivity of the stationary distribution vector for
an ergodic markov chain. Linear Algebra and its Applications, 76:1 – 17, 1986.

[36] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare.
Deepmdp: Learning continuous latent space models for representation learning. CoRR,
2019.

[37] Peter Glynn. Optimization of stochastic systems. In Proc. Winter Simulation Confer-
ence, pages 52–59, Dec. 1986.

144 References

[38] Peter Glynn. Likelihood ratio gradient estimation for stochastic systems. Communi-
cations of the ACM, 33:75–84, 1990.

[39] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[40] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction tech-
niques for gradient estimates in reinforcement learning. Journal of Machine Learning
Research, 5(Nov):1471–1530, 2004.

[41] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
q-learning with model-based acceleration. In International Conference on Machine
Learning, 2016.

[42] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

[43] Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially
observable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[44] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based
control with recurrent neural networks. arXiv:1512.04455, 2015.

[45] Ahmed Hefny, Zita Marinho, Wen Sun, Siddhartha Srinivasa, and Geoffrey Gordon.
Recurrent predictive state policy networks. arXiv:1803.01489, 2018.

[46] P. Hernandez-Leal, B. Kartal, and M. E. Taylor. Is multiagent deep reinforcement
learning the answer or the question? A brief survey. ArXiv e-prints, October 2018.

[47] Onésimo Hernández-Lerma and Jean Bernard Lasserre. Discrete-time Markov Control
Processes: Basic Optimality Criteria, volume 30. Springer, 1996.

[48] K. Hinderer. Lipschitz continuity of value functions in Markovian decision processes.
Mathematical Methods of Operations Research, 62(1):3–22, Sep 2005.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[50] Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games.
Journal of machine learning research, 4(Nov):1039–1069, 2003.

[51] M. Huang and Y. Ma. Mean field stochastic games: Monotone costs and threshold
policies. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages
7105–7110, Dec 2016.

References 145

[52] M. Huang and Y. Ma. Mean field stochastic games with binary action spaces and
monotone costs. ArXiv e-prints, January 2017.

[53] M. Huang and Y. Ma. Mean field stochastic games with binary actions: Stationary
threshold policies. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 27–32, Dec 2017.

[54] Minyi Huang, Peter E Caines, and Roland P Malhamé. Large-population cost-coupled
LQG problems with nonuniform agents: individual-mass behavior and decentralized
epsilon-Nash equilibria. IEEE Transactions on Automatic Control, 52(9):1560–1571,
2007.

[55] Minyi Huang, Peter E. Caines, and Roland P. Malhamé. The Nash certainty equivalence
principle and Mckean-Vlasov systems: An invariance principle and entry adaptation.
In IEEE Conference on Decision and Control, 2007.

[56] Minyi Huang, Roland P Malhamé, and Peter E Caines. Large population stochastic dy-
namic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence
principle. Communications in Information & Systems, 6(3):221–252, 2006.

[57] M. Hüttenrauch, A. Šošić, and G. Neumann. Deep Reinforcement Learning for Swarm
Systems. ArXiv e-prints, July 2018.

[58] Libin Jiang, Venkat Anantharam, and Jean Walrand. How bad are selfish investments
in network security? IEEE/ACM Transactions on Networking (TON), 19(2):549–560,
2011.

[59] Boyan Jovanovic and Robert W. Rosenthal. Anonymous sequential games. Journal
of Mathematical Economics, 17(1):77 – 87, 1988.

[60] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):99–
134, 1998.

[61] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[62] Sham M Kakade. A natural policy gradient. In Advances in Neural Information
Processing Systems, pages 1531–1538, Dec. 2002.

[63] Ian A Kash, Eric J Friedman, and Joseph Y Halpern. Multiagent learning in large
anonymous games. Journal of Artificial Intelligence Research, 40:571–598, 2011.

[64] V. Katkovnik and Y. Kulchitsky. Convergence of a class of random search algorithms.
Automation and Remote Control, 33(8):1321–1326, 1972.

146 References

[65] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[66] Arman C Kizilkale and Peter E Caines. Mean field stochastic adaptive control. IEEE
Transactions on Automatic Control, 58(4):905–920, 2013.

[67] Vijay R Konda and John N Tsitsiklis. On actor-critic algorithms. SIAM Journal on
Control and Optimization, 42(4):1143–1166, 2003.

[68] Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms
and applications, volume 35. Springer Science & Business Media, 2003.

[69] H. Kwakernaak. Theory of Self-Adaptive Control Systems, chapter Admissible Adaptive
Control, pages 14–18. Springer, 1965.

[70] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of
Mathematics, 2(1):229–260, 2007.

[71] Alexander Lenail. http://alexlenail.me/NN-SVG/index.html.

[72] D. S. Leslie. Reinforcement learning in games. PhD thesis, The University of Bristol,
2004.

[73] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. In International Conference on Learning Representations, San
Juan, Puerto Rico, May 2-4, 2016.

[74] G. M. Lipsa and Nuno Martins. Remote state estimation with communication costs
for first-order LTI systems. IEEE Trans. Autom. Control, 56(9):2013–2025, September
2011.

[75] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning., 1994.

[76] Michael L. Littman. Friend-or-foe q-learning in general-sum games. In International
Conference on Machine Learning., 2001.

[77] Michael L Littman. Value-function reinforcement learning in markov games. Cognitive
Systems Research, 2(1):55–66, 2001.

[78] Michael L Littman, Richard S Sutton, and Satinder P Singh. Predictive representations
of state. In NIPS, 2002.

References 147

[79] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Neural
Information Processing Systems (NIPS), 2017.

[80] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of Markov reward
processes. IEEE Trans. Autom. Control, 46(2):191–209, Feb 2001.

[81] P. Marbach and J. N. Tsitsiklis. Approximate gradient methods in policy-space opti-
mization of Markov reward processes,. Discrete Event Dynamical Systems, 13(2):111–
148, 2003.

[82] John L Maryak and Daniel C Chin. Global random optimization by simultaneous
perturbation stochastic approximation. IEEE Trans. Autom. Control, 53(3):780–783,
April 2008.

[83] R. Andrew McCallum. Overcoming incomplete perception with utile distinction
memory. In ICML, 1993.

[84] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer,
2012.

[85] David Mguni, Joel Jennings, and Enrique Munoz de Cote. Decentralised learning in
systems with many, many strategic agents. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pages 4686–4693, 2018.

[86] Alfred Müller. Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29(2):429–443, 1997.

[87] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentralized
stochastic control with partial history sharing: A common information approach.
IEEE Transactions on Automatic Control, 58(7):1644–1658, 2013.

[88] A. Nerode. Linear automaton transformations. Proceedings of American Mathematical
Society, 9:541–544, 1958.

[89] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized
POMDPs, volume 1. Springer, 2015.

[90] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long, and
Jun Wang. Multiagent bidirectionally-coordinated nets: Emergence of human-level co-
ordination in learning to play starcraft combat games. arXiv preprint arXiv:1703.10069,
2017.

148 References

[91] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In International
Conference on Intelligent Robots and Systems, 2006 IEEE/RSJ, pages 2219–2225.
IEEE, Oct. 2006.

[92] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in Lipschitz
Markov decision processes. Machine Learning, 100(2):255–283, Sep 2015.

[93] Warren B Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. John Wiley & Sons, second edition, 2011.

[94] Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination
in sequential decision making. In International Symposium on Artificial Intelligence
and Mathematics, ISAIM 2010, Fort Lauderdale, Florida, USA, January 6-8, 2010,
2010.

[95] Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination
in sequential decision making. In International Symposium on Artificial Intelligence
and Mathematics, Fort Lauderdale, US, Jan. 2010.

[96] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. On the characterization of
local nash equilibria in continuous games. IEEE Transactions on Automatic Control,
61(8):2301–2307, 2016.

[97] Matthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. Learning low dimensional
predictive representations. In ICML, 2004.

[98] Reuven Y Rubinstein. Sensitivity analysis and performance extrapolation for computer
simulation models. Operations Research, 37(1):72–81, 1989.

[99] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning represen-
tations by back-propagating errors. Nature, 323(9):533–536, 1986.

[100] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
June 2015.

[101] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[102] Raihan Seraj. Learning in the presence of partial observability and concept drifts.
Master’s thesis, McGill University, 2019.

[103] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP
solvers. AAMAS, 2013.

References 149

[104] Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent reinforcement learning:
a critical survey. Technical report, Stanford University, 2003.

[105] Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is the answer,
what is the question? Artificial Intelligence, 171(7):365–377, 2007.

[106] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
others Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[107] Satinder P Singh, Michael L Littman, Nicholas K Jong, David Pardoe, and Peter
Stone. Learning predictive state representations. In ICML, 2003.

[108] Richard D Smallwood and Edward J Sondik. The optimal control of partially observ-
able markov processes over a finite horizon. Operations research, 21(5):1071–1088,
1973.

[109] Max Sommerfeld, Jörn Schrieber, Yoav Zemel, and Axel Munk. Optimal transport:
Fast probabilistic approximation with exact solvers. Journal of Machine Learning
Research, 20(105):1–23, 2019.

[110] Edward J Sondik. The optimal control of partially observable markov processes over
the infinite horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

[111] James C Spall. Multivariate stochastic approximation using a simultaneous perturba-
tion gradient approximation. IEEE Transactions on Automatic Control, 37(3):332–341,
1992.

[112] Charlotte Striebel. Sufficient statistics in the optimal control of stochastic systems.
Journal of Mathematical Analysis and Applications, 12:576–592, 1965.

[113] Jayakumar Subramanian and Aditya Mahajan. Renewal monte carlo: Renewal theory
based reinforcement learning. In 2018 IEEE Conference on Decision and Control
(CDC), pages 5759–5764. IEEE, 2018.

[114] Jayakumar Subramanian and Aditya Mahajan. Renewal Monte Carlo.
https://codeocean.com/capsule/027c3bab-27cf-4f47-8153-6533c2bfc1e5, Aug. 2019.

[115] Wen Sun, Arun Venkatraman, Byron Boots, and J. Andrew Bagnell. Learning to
filter with predictive state inference machines. In ICML, 2016.

[116] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 1998.

150 References

[117] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018.

[118] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In NIPS,
pages 1057–1063, Nov. 2000.

[119] Csaba Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool Pub-
lishers, 2010.

[120] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy
optimization. CoRR, abs/1901.10500, 2019.

[121] Philip Thomas. Bias in natural actor-critic algorithms. In International Conference
on Machine Learning, pages 441–448, June 2014.

[122] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation
open source framework for deep learning. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in Conference on Neural Information Processing
Systems, 2015.

[123] Benjamin Van Roy, Dimitri P Bertsekas, Yuchun Lee, and John N Tsitsiklis. A
neuro-dynamic programming approach to retailer inventory management. In 36th
IEEE Conference on Decision and Control, 1997, volume 4, pages 4052–4057, Dec.
1997.

[124] Cédric Villani. Optimal transport: Old and New. Springer, 2008.

[125] Gabriel Y. Weintraub, C. Lanier Benkard, and Benjamin Van Roy. Oblivious Equilib-
rium: A Mean Field Approximation for Large-Scale Dynamic Games. In Advances in
Neural Information Processing Systems, pages 1489–1496, December 2005.

[126] Gabriel Y Weintraub, C Lanier Benkard, and Benjamin Van Roy. Markov perfect
industry dynamics with many firms. Econometrica, 76(6):1375–1411, 2008.

[127] Gabriel Y Weintraub, C Lanier Benkard, and Benjamin Van Roy. Computational
methods for oblivious equilibrium. Operations research, 58(4-part-2):1247–1265, 2010.

[128] Pierre Weiss. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J.
Phys. Theor. Appl., 6(1):661–690, 1907.

[129] Peter Whittle. Optimization Over Time: Dynamic Programming and Optimal Control.
John Wiley and Sons, Ltd., 1982.

References 151

[130] Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solving
deep memory POMDPs with recurrent policy gradients. In International Conference
on Artificial Neural Networks, 2007.

[131] Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent
policy gradients. Logic Journal of the IGPL, 18(5):620–634, 2010.

[132] Jason D Williams and Steve Young. Partially observable markov decision processes
for spoken dialog systems. Computer Speech & Language, 21(2):393–422, 2007.

[133] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[134] Hans S. Witsenhausen. Some remarks on the concept of state. In Y. C. Ho and S. K.
Mitter, editors, Directions in Large-Scale Systems, pages 69–75. Plenum, 1976.

[135] Britton Wolfe, Michael R James, and Satinder Singh. Learning predictive state
representations in dynamical systems without reset. In ICML, 2005.

[136] Y. Xu and J. P. Hespanha. Optimal communication logics in networked control
systems. In 43rd IEEE Conference on Decision and Control, pages 3527–3532, Dec.
2004.

[137] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. Deep mean
field games for learning optimal behavior policy of large populations. In International
Conference on Learning Representations, 2018.

[138] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean
field multi-agent reinforcement learning. In International Conference on Machine
Learning, 2018.

[139] H. Yin, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag. Learning in mean-field games.
IEEE Transactions on Automatic Control, 59(3):629–644, March 2014.

[140] Amy Zhang, Zachary C. Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anand-
kumar, Laurent Itti, Joelle Pineau, and Tommaso Furlanello. Learning causal state
representations of partially observable environments. CoRR, abs/1906.10437, 2019.

[141] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning:
A selective overview of theories and algorithms. arXiv preprint arXiv:1911.10635,
2019.

	Introduction
	Motivation
	An overview of multi-agent reinforcement learning (MARL)
	Multi-agent systems MAS
	Multi-agent reinforcement learning (MARL)

	Previous work
	Previous work on RL in POMDPs
	Previous work on MARL

	Scope of this thesis
	POMDPs
	Mean-field teams
	Stationary mean-field games
	MDPs with renewal

	Claims of originality and publications
	Claims of originality
	List of publications
	Contributions of co-authors

	Approximate dynamic programming and RL for POMDPs
	Information state
	Model
	A dynamic programming decomposition
	Information state and a simplified dynamic program

	Approximate information state (AIS)
	Stochastic AIS
	Extension to infinite horizon
	Information state for infinite horizon
	Approximate information state for infinite horizon

	Comparison with existing results in literature
	Relation with state compression
	Relation with action compression
	Relation with observation compression (world models)
	Relation with predictive state representations (PSRs)
	Relation with bisimulation
	Relation with Deep MDPs
	Relation with other approaches for POMDPs

	Reinforcement learning for POMDPs using AIS
	Constructing an approximate information state
	Reinforcement learning

	Numerical examples
	Conclusion

	RL using AIS for mean-field teams
	Introduction
	Notation

	System model and problem formulation
	Planning solution for Problem 1
	Mean-field limits
	Model and problem formulation

	Approximation bounds
	Preliminaries on Lipschitz continuity
	Lipschitz continuity of the reward R, transition function Pt and the value function
	Relation between the solutions of Problems 1 and 2
	Relation between the solutions of Problem 1 with different number of agents
	Extension to infinite horizon

	Mean-field team reinforcement learning (MFT-RL)
	Restriction to parameterized policies

	Numerical experiments
	Benchmark domains
	Simulation results

	Conclusion

	RL in Stationary Mean-field Games
	Introduction
	Background
	Mean-field games (MFG)
	Stationary MFG
	Solution concepts
	Local solution concepts

	RL for stationary MFG
	RL algorithm for learning LSMFE
	RL algorithm for learning LSMF-SO
	Simultaneous perturbation based gradient estimation

	Numerical experiment
	Example 1: Malware spread
	Example 2: Investments in product quality

	Discussion
	Finite vs. infinite populations
	Difference between MFG and stationary MFG models
	Related work
	Remarks on the generality of the model

	Renewal Monte Carlo: Renewal theory based RL
	Introduction
	RMC Algorithm
	Likelihood ratio based gradient estimator
	Simultaneous perturbation based gradient estimator
	Remark on average reward setup

	RMC for Post-Decision State Model
	Approximate RMC
	Numerical Experiments
	Randomized MDP (GARNET)
	Event-Triggered Communication
	Inventory Control

	Conclusions

	Conclusion
	Summary
	AIS for POMDPs
	RL in mean-field teams
	RL in stationary mean-field games
	Renewal Monte Carlo

	Future work
	Final thoughts

	Background of neural network architectures
	Layer and activation
	Feed-forward neural network
	Recurrent neural network (RNN)
	Long short-term memory (LSTM)
	Gated recurrent unit (GRU)

	Conclusion

	References

