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ABSTRACT 

Prostate-specifie antigens (PSA) help monitor the post-therapy course of prostate 

cancer. If radiotherapy is successful, levels reach a nadir, and remain low or possibly 

rise very slowly. A sustained steep increase indicates biochemical failure. 

SeriaI PSA measurements are rarely perfectly monotonie. The Ameriean So­

ciety for Therapeutic Radiology and Oncology (ASTRO) consensus panel defines 

biochemieal failure as three consecutive PSA increases. 1 examined the sensitivity 

and specificity of the ASTRO criterion using simulations of realistic, sophisticated 

data sets, that accurately reflect the systematic and random variations observed in 

PSA series. 

ln a preliminary analysis, 1 estimated the underlying PSA trajectories in a cohort 

of 470 men treated with radiotherapy for localized prostate cancer. 1 exploited the 

flexibility of Bayesian hierarchical regression models to describe the individual PSA 

series, each with its own changepoint, and non-constant variance. 

The estimates provided by the hierarchical model allowed me to simulate a large 

set of true PSA series. From these, 1 generated observed PSA series: each underly­

ing PSA value was distorted by adding a realistic amount of 'noise'. To evaluate the 

performance of mIes for biochemical failure, including the ASTRO criterion, 1 then 

compared the generated observed PSA series to the underlying true PSA series. My 

results suggest that another rule might outperform ASTRO. This simulation-based 

approach can be applied to evaluate other mIes that purport to rapidly and accu­

rately detect up (down) turns in noisy series, such as in other medical data, and in 

data series used to monitor economic trends. 

Finally, 1 present a practical charting paper for physicians to record post-treatment 

PSA values of individual patients. The plotted seriaI values provide rapid and accu­

rate estimates of the PSA doubling time, without any difficult computations. 
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ABRÉGÉ 

L'Antigène Prostatique Spécifique ou PSA (Prostate Specifie Antigen en anglais), 

permet de suivre l'évolution du cancer de la prostate une fois qu'un traitement est 

initié. Si la radiothérapie est un succès, la concentration des PSA diminue, puis se 

stabilise à des concentrations faibles, avec éventuellement un léger taux de croissance. 

En revanche, une augmentation soutenue des niveaux de PSA indique généralement 

un échec biochimique. 

Les séries de données PSA sont rarement parfaitement monotones. Le critère 

ASTRO définit l'échec biochimique par trois augmentations successives des concen­

trations de PSA. J'étudie la sensibilité et spécificité de ce critère en simulant des 

jeux de données réalistes et sophistiqués, qui reflètent les variations systématiques et 

aléatoires généralement observées dans les séries de PSA. 

Dans une analyse préliminaire, j'estime les trajectoires des PSA dans une co­

horte de 470 hommes atteints du cancer de la prostate, et traités par radiothérapie. 

J'exploite la flexibilité des modèles bayésiens hiérarchiques, afin d'estimer les 470 

trajectoires, chacune ayant son propre point de jonction. De plus, je modélise la 

variance des observations en fonction de la concentration des PSA. 

A l'aide du modèle hiérarchique, j'obtiens des estimés que j'utilise afin de simuler 

un nombre important de vraies séries de PSA. Grâce à elles, je génère des séries de 

PSA observées: chacune de ces trajectoires est générée à partir de l'une des 470 

trajectoires estimées précédemment. En effet, chaque trajectoire estimée est altérée 

par l'ajout de variabilité, telle qu'estimée dans le groupe des 470 séries. Je compare 

ensuite les séries observées aux séries réelles, afin d'estimer la sensibilité et spécificité 

de deux critères, incluant le critère ASTRO, en fonction de la fréquence des mesures 

de PSA, ainsi que du temps de doublement de PSA. Mes résultats suggèrent qu'une 

autre règle a de meilleures performances que le critère ASTRO. 
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Cette technique d'estimation basée sur la simulation de trajectoires réelles peut­

être facilement appliquée à d'autres règles basées sur la détection rapide de change­

ment de direction dans des séries de données médicales, ou même économiques, su­

jettes à une importante variabilité. 

Finalement, je propose aux médecins de noter les valeurs de PSA de leurs pa­

tients sur un graphique que j'ai conçu. Les données de PSA ainsi tracées permettent 

d'estimer facilement et rapidement leur temps de doublement. 
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PREFACE 

Contributions of Authors 

This thesis is the continuation of a research project undertaken by Dr. Albertsen 

and Dr. Hanley, who were initially interested in post-treatment outcomes in men 

treated for prostate cancer. After 1 started the literature review, Dr. Hanley and 1 

determined statistical questions that could be answered in this research project. 

1 was responsible for the literature review, the statistical analysis and modeling, 

and the simulation study. 1 wrote the thesis, including each of the three manuscripts. 

Dr. Hanley had responsibility for day to day supervision: he provided advice with 

regard to the research questions, the statistical analysis, and the interpretation of 

the results. Dr. Joseph offered his statistical expertise in hierarchical modeling, 

including the practical implementation of the models. Both Dr. Hanley and Dr. 

Joseph offered support during the editing of this thesis. Dr. Albertsen supplied the 

original data set and provided support with regard to medical issues. 

Statement of Originality 

The doctoral thesis consists of three manuscripts. In the first manuscript, 1 

estimate post-radiotherapy trajectories of prostate-specifie antigens (PSA) using hi­

erarchial modeling. Similar models have been used for the last two decades; however 

1 emphasize their flexibility. Besides accounting for the multiple characteristics of 

longitudinal data, the models accommodate the piecewise-linear pattern of the data, 

which consists of four random parameters, including a changepoint. In addition, 

the hierarchical models allow us to model the PSA variability as a function of the 

true PSA concentration. The second manuscript evaluates the performance of a rule 

for biochemical failure. Today, this rule is widely used by the medical community; 

however, only rough empirical evidence is available as to its performance. To my 
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knowledge, this thesis reports the first formaI statistical evaluation of the perfor­

mance of this mIe. Finally, the third manuscript is aimed at a medical audience, and 

presents a simple tool that will help in the monitoring of their patients. Although 

the technique is simple, it had not been formally presented as such in the medical 

literature. 

Notes to the reader 

As part of the muiti-disciplinary Department of Epidemiology and Biostatistics, l 

have included sufficient statistical material, so that most of the thesis can be under­

stood by both statisticians and epidemiologists. The thesis includes a comprehensive 

literature review of both statistical and medical concepts. For that reason, this chap­

ter may be considered longer than a traditionalliterature review. In addition, given 

the manuscript-based format of the thesis, sorne background material is covered in 

this literature review, but also in the introduction of sorne manuscripts. Finally, l 

wrote the three manuscript chapters using 'we', and chose '1' throughout the other 

chapters. 
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1.1 Rationale 

CHAPTER 1 
Introduction 

Prostate cancer is the number one cancer threat to Canadian men. In 2005, an 

estimated 19,000 new cases of prostate cancer will be diagnosed, and 4,300 men 

will die from the disease [1]. The options for the management of prostate cancer 

include watchful waiting, potentially curative treatment (radiotherapy or surgery), 

or palliation (hormone therapy or chemotherapy). 

Prostate-Specific Antigen (PSA) is a protease naturally produced by the prostate, 

and by the tumor in men with prostate cancer. N ormally this antigen is at a very low 

level in the blood stream, but it can be persistently elevated in men with prostate 

cancer or recurrence of the cancer. The PSA test is used for screening and monitoring 

of the diseas~. The higher the PSA level the more likely is the presence or recurrence 

of prostate cancer. Following treatment, a rapid PSA doubling time is prognostic of 

clinical failure, usually defined as local recurrence, incidence of metastases, or death. 

However, independently of tumor recurrence, an observed rise in PSA may sim ply be 

due to random fluctuations, and a seemingly stable series may hide a true increase. 

A study conducted in healthy men, showed for example, that nearly half of the men 

who had one abnormal PSA level subsequently had a normal level [2]. 

In this research thesis, 1 focus on PSA series following radiation treatment in 

men treated for localized prostate cancer. If radiotherapy is successful, PSA levels 

decrease substantially to a nadir value, and remain at low levels with possibly a very 

slow increase. A subsequent steeper increase usually indicates treatment failure, 

and depending on the man's wishes, his physician may start hormone-withdrawal 
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therapy. The best timing of any secondary treatment is a compromise between 

wishing to delay the onset of clinicaIly evident metastases, the si de effects of the 

hormones, the possibility that the cancer will eventually become resistant, and that 

the man may die of another disease before these would become bothersome. It is 

therefore important to detect true treatment failure as quickly as possible, with few 

false positive and false negative results. 

Biochemical failure is defined as a recurrence of the cancer, detected by rising 

PSA levels. In 1996 the American Society for Therapeutic Radiology and Oncology 

(ASTRO) consensus panel proposed guidelines to unify the scientific community on 

the use of a single definition that would standardize the reporting and comparison of 

treatments and end results. The ASTRO rule defines three consecutive rises in PSA 

as biochemical failure. This rule is widely used but has undergone limited formaI 

evaluation. Past studies focused on its clinical validation, and its capability to predict 

a clinical outcome. However, a fundamental point, before one considers how weIl even 

a perfectly measured PSA trajectory correlates with clinical outcomes, is how good 

the ASTRO rule is at correctly (and quickly) identifying a PSA trajectory that is 

truly rising, and how often it can recognize a series that is truly stable, or rising only 

slowly, for what it is. To the best of my knowledge, such numerical, or statistical, 

evaluation has not been examined yet. 

In 2003, McMuIlen et al. reported that only two thirds of the peer-reviewed 

English published articles in 1999-2000 used the ASTRO definition [3]. Recognizing 

the controversy surrounding the use of the ASTRO dejinition, the authors were not 

surprised to find that a significant minority of investigators chose not to use the 

ASTRO definition. This lack of enthusiasm for the use of a common criterion might 

be explained by the lack of a formal evaluation of the ASTRO criterion, and the 

possibility that other rules might outperform it. It is surprising that there has not 

been a statistical evaluation of the ASTRO criterion, given that several statistical 
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analyses have successfully described post-radiotherapy profiles, in particular, for the 

prediction of time to prostate cancer recurrence. 1 believe that there is a need for 

a formal evaluation of the ASTRO criterion, which is amenable using real data, ap­

propriate statistical modeling, and simulations. 

1.2 Objectives 

My thesis will address three issues, whose results are of interest to both statisti­

cians and clinicians; each issue is presented as a separate manuscript. 

The first part of the thesis focuses on the precise estimation of post-radiotherapy 

PSA profiles. 1 demonstrate the considerable flexibility of a Bayesian hierarchical 

model to estimate longitudinal PSA profiles. The essence of hierarchical modeling is 

the simultaneous estimation of the individual and population PSA profiles, allowing 

for the borrowing of strength; the information provided by the entire set of PSA series 

is used to strengthen the estimation of any individual profile. The hierarchical model 

accurately estimates both individual and population PSA profiles, by simultaneously 

accounting for between and within individual variability. In addition, the model 

allows me to express the PSA variance as a function of the PSA concentration, 

a feature which is particularly appropriate given that the variability is known to 

be higher at lower concentrations. Finally, this approach permits the modeling of 

complex patterns over time, such as the typical piecewise linear pattern of the post­

radiotherapy PSA series. Following radiotherapy, the PSA levels decrease to a nadir 

level, and then increase again. 1 can estimate the four random parameters of the 

post-radiotherapy PSA profiles at both the individual and population levels: the 

post-radiotherapy PSA nadir, the timing of the nadir, the number of PSA halvings 

preceding the PSA nadir, and the number of PSA doublings following the PSA nadir. 

1 illustrate the practicality of such a Bayesian hierarchical model, by estimating PSA 

trajectories following radiotherapy in a cohort of 470 men with localized prostate 
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cancer. 1 then use these estimates to investigate possible associations with patients' 

pre-treatment characteristics. 

ln the second and most original topic of this thesis, 1 evaluate the properties of 

the ASTRO mIe, as well as an alternative mIe that has been suggested to outper­

form it. Up to date, studies investigating the performance of the ASTRO criterion 

examined its clinical validation, and thus focussed on the capabilities of the criterion 

to predict a distant clinical outcome. Instead, 1 focused on the numerical validation 

of the mIe, and present the first assessment of its short-term performance in tmly 

identifying PSA rises (sensitivity) , and in reassuring those whose PSA is tmly not 

rising, or rising so slowly as to not cause trouble within the man's life expectancy 

(specificity). The originality of the approach relies on the simulation of a realistic, 

sophisticated data set, by first fitting an appropriate model to real PSA series, and 

then simulating new data from these models. Data are simulated using the results 

of the first manuscript, specifically using the outputs provided by the hierarchical 

n:wdeling of the serial PSA's in the cohort of the 470 men. These 'empirically-based 

simulations' are particularly flexible and allow me to evaluate any mIe that relies on 

PSA profiles, and any schedule of measurements. 

The motivation for the last manuscript arose while 1 was exploring the medical 

literature related to the monitoring of treatment outcome. It appeared to me, that 

often, clinicians estimate the PSA doubling time using only the last two PSA values. 

1 present a simple and practical tool that clinicians can use to monitor PSA levels over 

time, to compute doubling times without requiring a calculator or formula. While the 

rest of the thesis focusses on PSA values following radiation treatment only, 1 show 

that this recording technique applies not only to post-radiotherapy series, but also 

even more naturally to post-surgery PSA series, and series under watchful waiting. 
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1 begin this thesis with a literature review of the clinical and statistical themes 

of this thesis. Each objective is then addressed in a separate manuscript. Sorne 

manuscripts are followed by a technical chapter, providing additional details not 

included in the manuscript, but relevant for the thesis. Finally, 1 give a general 

conclusion, and discuss the clinical and statistical implications of this research. 
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CHAPTER 2 
Literature Review 

This literature review covers medical and statistical materials. In section 2.1, 1 

present basic medical concepts. 1 describe prostate cancer, prostate-specifie antigens 

(PSA), and PSA failure. The next sections coyer statistical issues that will be dealt 

with in the thesis: Bayesian inference (section 2.2), hierarchial modeling (section 

2.3) and changepoint modeling in a Bayesian framework (section 2.4). In section 

2.5, 1 present an overview of longitudinal studies of prostate-specific antigens in the 

literature. 

2.1 Prostate-specifie antigen 

2.1.1 Prostate cancer 

The prostate is a roughly spherical gland in men about the size of a walnut. It 

is located below the bladder and in front of the rectum, and surrounds part of the 

urethra, the tube carrying urine from the bladder. The prostate produces sorne of 

the fluid for semen, which transports sperm during the male orgasm. Prostate cancer 

develops from cells of the prostate gland, and is usually a slow-growing disease. A 

localized cancer can take many years before the disease becomes life threatening 

without treatment. On the other hand, sorne prostate cancers can grow and spread 

quickly with few, if any, symptoms in the early stages. 

ln general, cancer cells have two characteristics: uncontrolled growth and a loss 

of differentiation. The loss of growth regulation can mean that cells are dividing too 
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Table 2-1: Incidence and mortality rates for three most common cancers 

Region Incidence ASR Mortality ASR 
North America 
Prostate 119.9 15.9 
Lung 61.2 48.7 
Colon and rectum 44.4 15.3 
Western Europe 
Prostate 61.6 17.5 
Lung 50.9 46.2 
Colon and rectum 42.9 19.0 

ASR: Age standardized (World) rates, per 100,000. Source: lARe [4]. 

quickly, or that too few of them are dying as a normal part of the cell cycle of life. 

The term 'loss of differentiation' indicates that the cellioses its normal structure and 

function. Prostate cancer begins as a few abnormal cells, and grows over the years. 

It becomes clinically detectable by rectal examination when it is the size of a sugar 

cube. 

Prostate cancer is the second most deadly form of cancer in Northern America 

after lung cancer, and the third one in Western Europe after lung cancer, and cancers 

of the colon and the rectum (see table 2-1). It is the most common form of cancer 

by incidence in both regions before lung cancer. Although prostate cancer is more 

common than lung cancer, the potential years of life lost due to prostate cancer are 

four times lower than for lung cancer, reflecting lower mortality rates for prostate 

cancer and the older ages at which men develop and die from this disease. The 

mortality rates for prostate cancer are close across the two regions (15.9/100,000 in 

North America, and 17.5/100,000 in Western Europe), however, the incidence rates 

are very different (119.9/100,000 in North America, and 61.6/100,000 in Western 

Europe). These discrepancies are partly explained by the differing screening pro ce-

dures across regions, which tend to be more aggressive in North America, especially 

in the United States. In Canada, an estimated 19,000 new cases will be diagnosed 

in 2005 and 4,300 men will die from the disease [1]. 
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Prostate cancer incidence increases almost exponentially with age and most cases 

are diagnosed in men 65 years or older. Other risk factors inc1ude family history, 

high levels of testosterone, and ethnicity (highest rates are in African-American, and 

lowest rates in Eastern Asian). Modifiable risk factors such as smoking status, socio­

economic status and di et have shown discordant findings, and are still under study, 

as are obesity and inactivity [5]. 

Screening and diagnosis 

PSA is a protease naturally produced by the prostate and by the tumor in men 

with prostate cancer. Normally this glycoprotein is at a very low level in the blood 

stream. The PSA concentration will naturally ri se with age and increasing prostate 

size, which occurs with prostate diseases, such as prostate cancer. Other common 

prostate problems are inflammation (prostatitis), and prostate enlargement, also 

called benign prostatic hyperplasia (BPH). 

The PSA concentration is measured by a simple blood test called a PSA test. 

The PSA level is recognized as an important marker for prostate cancer [6][7], and 

is commonly used as a screening tool for the disease. In general, PSA levels between 

a and 4 ng/ml are considered normal; levels between 4 and 10 ng/ml may lead to an 

ultrasound and biopsy to determine the reason for the increase; levels greater than 

la ng/ml are usually suggestive of cancer. There is no limit to how high a PSA 

concentration Can rise. 

A digital rectal examination (DRE) is also used as a tool for screening and di­

agnosis. Because the prostate lies in front of the rectum, the physician can feel the 

prostate by inserting a finger into the rectum; it allows the physician to determine 

whether the prostate is enlarged or has lumps or other types of abnormal texture. 
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At present, there is disagreement as to the appropriateness of the PSA test for 

routine screening in the population, essentially because of the low classification per­

formance of the PSA blood test (low sensitivity, and low specificity). As a result, 

guidelines for screening in North-America are very different [5]. For example, the 

Canadian Urological Society does not recommend any screening program, but rather 

that the PSA test should be performed only at the request of the patient. On the 

other hand, according to the American Cancer Society, men aged 50 and older, and 

those over the age of 45 who are in high-risk groups, such as African-American men 

and men with a family history of prostate cancer, should have a PSA blood test once 

every year. 

Early prostate cancer usually does not cause any symptoms. As the tumor grows, 

the cancer may spread from the prostate to surrounding areas; in such cases, change 

in urination, including increased frequency, hesitancy or dribbling of urine may be 

experienced. These symptoms are also common to other prostate disorders, such as 

BPH. Determining prostate cancer involves a series of tests and exams, including a 

DRE, a PSA blood test and a biopsy. The DRE and PSA blood test are performed in 

the first steps of the diagnosis process, and used as indicators of prostatic disorders. 

Only a biopsy will definitely confirm prostate cancer. A biopsy is the removal of a 

sample of tissue, which is then examined under a microscope to check for cancerous 

changes. 

When prostate cancer is diagnosed, the tumor is histologically graded with the 

Gleason score, which refers to the aggressiveness of the cancer; that is, the likelihood 

ofits spreading [8J. The Gleason score consists ofthe sum oftwo scores, each between 

1 and 5. A score is assigned to the two areas that make up most of the cancer, and 

these two scores are added together; the higher the sum, the more aggressive the 

tumor. 

9 



Table 2-2: T-stage classification of prostate cancer. 

T-Stage Tumor 
TX Cannot be assessed 
TO No evidence 
Tl Clinically unapparent, not palpable or visible by imaging 

Tla incident al histologie finding in :s: 5 % of resected tissue 
Tlb incident al histologie finding in > 5 % of resected tissue 
TIc identified by needle biopsy (e.g., because of elevated PSA values) 

but not palpable or visible by imaging) 
T2 Confined to the prostate 

T2a involves half a lobe or less 
T2b involves more than half a lobe, but not both 
T2c involves both lobes 

T3 Extends through the prostatic tissue 
T3a extends unilaterally 
T3a extends bilaterally 
T3a invades seminal vesicle( s) 

T4 Fixed or invades adjacent structures other than seminal vesicles 
T4a invades bladder neck, external sphincter or rectum 
T4b invades levator muscles or is fixed to pelvic wall (or both) 

Source: NeI [9] 

As any cancer, prostate cancer is also classified according to its anatomie stage. 

Staging is the pro cess of gathering information about the cancer from certain tests to 

determine if it has already spread or how widespread it is. It is an important factor 

in choosing treatment options and predicting a patient's prognosis. Several tests and 

procedures can be used for the staging process: assessment of the PSA concentrations 

and Gleason score, digital rectal exams (DRE), computed tomography imaging scans, 

magnetic-resonance imaging scans (MRI) or bone scans. Four categories describe the 

primary tumor's T stage, as detailed in table 2-2. 

Finally, nomograms are predictive instruments that use a set of input data (base-

line PSA, Gleason, stage) to make predictions about clinical states, such as the patho­

logical stage of the cancer and other pathological features. For example, Partin et al. 

have predicted specifie pathological tumor stages (organ-confined diseases, isolated 
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capsular penetration, seminal vesicle involvement, or pelvic lymph node involvement) 

using the PSA concentration, the clinical stage, and the Gleason score [10]. 

Treaimenis 

The options for managing prostate cancer include watchful waiting, potentially 

curative treatment (surgery or radiotherapy), and palliation (hormone therapy or 

chemotherapy) [6]. Watchful waiting is considered more appropriate for men with a 

life expectancy of less than ten years who have a low-stage cancer; in this case the 

cancer is growing so slowly that the subjects willlikely die from another cause. In 

men with clinically localized prostate cancer (confined to the prostate), whose life 

expectancy is ten years or more, the goal of the treatment is to eradicate the disease. 

Radical prostatectomy is commonly used when the cancer is localized. Radiation 

therapy is used to treat cancer that is still confined within the prostate gland, or 

that has spread to nearby tissue only; it has been used preferentially in older, less 

healthy patients, Le. not suit able candidates for surgery, or by man's preference. 

Radiation therapy uses high-energy rays and particles to kill cancer cells. There 

are two main forms of radiotherapy: brachytherapy and external beam radiation 

therapy, usually simply referred as radiotherapy. Brachytherapy involves implanting 

radioactive material (seeds) into the prostate via thin needles, while external beam 

radiation therapy is focused from a source outside the body on the areas affected by 

the cancer. High energy-radiations from X rays, 'Y rays, neutrons and other sources 

are used to kill cancer cells and thus shrink the tumor. The radiation damages one or 

both strands of the DNA inside the cells, thereby preventing the cells from growing 

and dividing further. Although normal cells are also sometimes damaged by the 

radiotherapy, they can repair themselves more effectively. Radiotherapy is normally 

given as a series of short daily treatments over a period of six to seven weeks. 
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When cancer has spread to other parts of the body or has returned after treat­

ment, hormone-withdrawal therapy is available. The goal of this therapy, also called 

androgen-deprivation therapy, is to lower the levels of the male hormones (andro­

gens), including testosterone, which are produced mainly in the testicles and cause 

prostate cancer cells to grow. This therapy can lower androgen levels, thereby mak­

ing prostate cancers shrink and grow more slowly. Although not a cure, this type of 

treatment can increase life span and keep the disease under control for sorne time. 

Chemotherapy is used when prostate cancer has spread outside of the prostate 

gland and hormone-withdrawal therapy has failed; it may slow tumor growth but it 

is not expected to destroy all the cancer cells. 

These active treatments have serious side effects. Impotence is very frequent 

and urinary incontinence corn mon with surgery and radiotherapy; erectile dysfunc­

tion is almost certain and hot flashes are common when hormonal treatments are 

used; gastrointestinal disorders, hair loss and immunosuppression are expected with 

chemotherapy. 

The choice of the treatment is complex and depends on the spread of the can­

cer, the age and general medical condition of the patient, as weIl as his personal 

preferences (sorne may not be willing to accept adverse effects of sorne therapies). 

It is possible to estimate the probability of specifie treatment out cornes before any 

therapy is initiated. Baseline characteristics, such as the initial PSA concentration, 

are used to predict metastasis or recurrence of the cancer under specifie treatments, 

using nomograms and risk groups [11]. For example, using the baseline PSA level 

and the Gleason score, Shipley et al. identified four subgroups of men for which the 

risk of radiotherapy failure was similar [12]. Men were divided into four categories: 

PSA levels below 9.2 ng/ml, PSA levels between 9.2 ng/ml and 19.7 ng/ml, PSA 

level above 19.7 ng/ml and a Gleason score of 7 or above. Their respective five-year 

rates of survival free of biochemical failure were 81%, 69%, 47% and 29% (see later 
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for a definition of biochemical failure). Sorne of these nomograms have even become 

available on the internet; for example, the patients and/or physicians can specify 

pre-treatment information to obtain an estimated 5-year progression free probability 

under different treatment options [13]. 

ln 1992, the V.S National Cancer Institute reported that among cases with local­

ized and regional disease, the proportions of men undergoing surgery, radiotherapy, 

hormonal treatment and watchful waiting were respectively 37%,32%,8% and 23%. 

1 could not find this information for the entire Canadian population, however, for 

the province of Alberta, these proportions were approximatively, 40%, 30%, 20% 

and 10%, for respectively surgery, radiotherapy, hormonal treatment and watchful 

waiting. These data are from the Alberta Cancer Registry and were personally com­

municated by Dr Penny Brasher, biostatistician at the Alberta Cancer Board; they 

concern aU men diagnosed with invasive prostate cancer living in Alberta at the time 

of diagnosis (years 1996-2001). There may well be differences between the Canadian 

provinces, but 1 do not expect wide variations. 

2.1. 2 Prostate-specifie antigen (PSA) 

Variability of the Prostate-specifie antigens 

PSA concentrations provide valuable information about disease progress; unfor­

tunately they are subject to considerable intra- and inter-individual variations due 

to measurement and biological factors. The PSA concentrations can be affected by 

different sources of variability. For example, there might have been errors in the 

measurement pro cess or during data collection (errors in reporting the date or the 

PSA level), a change in the laboratory practice or a different laboratory might have 

been used. There are other known and unknown sources of variation such as recent 

prostate manipulations [14][15], recent sexual activity [16][17] or recent physical ex­

ercise [18]. Results of Nixon et al. suggest that an increase between two consecutive 
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PSA levels between 20% to 46% might be due to biological and analytical variation 

only [19]. Omstein et al. obtained serum on three different occasions, two weeks 

apart, for 92 healthy men and reported a mean variation of 15% [20]. Eastham et al. 

evaluated year-to-year fluctuations in PSA, and concluded that nearly half of men 

who had one abnormal PSA level subsequently had a normallevel, suggesting that 

PSA level fluctuations may result in many false elevations [2]. These studies relate 

to cohorts free of prostate cancer, and it is likely that the coefficients of variation 

(defined as the ratio of the standard deviation to the mean) obtained in these studies 

are lower than in men with prostate cancer, since post-treatment PSA series are also 

subject to the treatment effect, both on the tumor and the normal prostatic tissue. 

Finally, different laboratory assays have different coefficients of variation. For ex­

ample, at mean concentrations 0.7 ng/ml, 2.8 ng/ml, and 17.9 ng/ml, the assay used 

by Eastham et al. had coefficients of variation of 3.1%, 2.9% and 0.6% respectively 

[2]. On the other hand, Carter et al. reported coefficients of variation of 7.5%, 4% 

and 4%, at mean concentrations of 0.84 ng/ml, 2.9 ng/ml, and 40 ng/ml [21]. 

Monitoring PSA after radiation therapy 

PSA concentrations are proportional to the tumor volume, and thus help de­

tect residual and early recurrence of tumor, and monitor responses to radiotherapy 

[22] [23]. In the past 15 years, PSA has become an important tool in the monitoring 

of prostate cancer after treatment. If radiation therapy is successful, the PSA con­

centration decreases substantially to a nadir value, and remains at low levels with 

possibly a very slow increase. A subsequent steeper increase would indicate treat­

ment failure, and depending on the man's wishes, his physician may st art hormone­

withdrawal therapy. The initial logPSA de cline rate and the post-nadir logPSA 

growth rate vary across men, but are reasonably constant within-men, suggesting 

exponential PSA patterns before and after the nadir [23][24]. For this reason, the 
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PSA series are frequently plotted on the log scale to obtain a piecewise linear tra­

jectory. The base e is often used, but the base 2 is sometimes selected since the 

reciprocal of the post-nadir slope on this new scale corresponds to the PSA doubling 

time. 

Figure 2-1 illustrates PSA profiles for eight men following radiotherapy (page 

16). These men were selected from a cohort of 470 men, part of a larger study 

described by Albertsen et al. [25]; 1 will describe this cohort more extensively in 

the next chapters. Note that the data were plotted on the lOg2 scale and the first 

measurement is taken before the treatment in initiated (time zero). This subset of 

data allows us to illustrate the general characteristics of PSA series. First, we observe 

the considerable within-subject variability. For example, the sixth and eighth series 

appear to stabilize after a few years, however, the PSA levels continue to depict sorne 

non-negligible variations over time. Second, between-men variability of the rates of 

change before and after the nadir are important. The lOg2PSA concentrations decline 

very steeply for the first man, while the de cline rate is much shallower for the sixth 

man. Similarly, the observed growth rates for the three first men are much steeper 

than for the last five men. The nadir can be reached at various points in time; for 

example, the lowest PSA measurement is reached within the first year for the first 

two men, while it still has not been reached after four years for men 4 and 5. Note 

finally, that unlike in a controlled clinical trial, the number of PSA measurements, 

the length of follow-up and the interval between measurements are naturalistic, and 

vary extensively between the series subjects. 

Prognostic role of the post-treatment PSA concentrations 

Several studies have investigated the role and distribution of the parameters of 

the lOg2 PSA profiles: the initial decline rate, the nadir, the timing of the nadir and 

the subsequent growth rate. Most studies have focussed on the PSA growth rate and 
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Figure 2-1: lOg2PSA concentrations over time for eight men 
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the PSA nadir. The lOg2PSA growth rate or its reciprocal, the PSA doubling time, 

has been shown to be an important predictor of disease progression and survival 

[25][26][27][28], and its distribution was often reported. Pollack et al. followed 427 

men treated with radiotherapy for T1-T4 cancers of the prostate [26]. The patients 

were scored as having a rising PSA profile when the values obtained at two or more 

follow-up visits were rising and when at least one value was greater than 1ng/ml. 

Based on this definition, 100 men had a rising PSA profile and enough data to 

compute the PSA doubling time. The reported mean and median doubling time 

were 13.5 months (SD=11.6 months) and 10.3 months respectively. Zagars et al. 

estimated the PSA doubling time for 154 men treated for radiotherapy [29]. Of 

these, 37 men had two or more consecutive rising PSA values, and were therefore 

considered as having an increasing post-nadir profile. The reported mean and median 

doubling time were 12.5 months and 8.8 months respectively. 

The value of the PSA nadir has been shown to be associated with clinical out-
, 

cornes such as local failure [30], distant failure [30][31], and progression free survival 

[32][31]. Based on 655 men, Kaminsky et al. reported a mean PSA nadir, median 

and range of 1.17 ng/ml, 0.50 ng/ml and 0 to 98.7 ng/ml respectively [33]. Hanlon 

et al. reported the distribution of the nadir from 615 men treated with radiotherapy 

[31]. The mean nadir was 1.8 ng/ml, its median was 0.6 ng/ml, and it ranged from 

o to 177 ng/ml. The nadir was reached on average 36 months after the initial day 

of radiotherapy, with a median time of 32 months and a range of 2 to 114 months. 

Both studies used the ASTRO criterion to define the PSA nadir (see section 2.1.3). 

The rate of de cline before the PSA nadir has not been evaluated as extensively 

and results are contradictory. Meek et al. concluded that a longer half life was 

associated with subsequent disease progression [24], but Zagars found no association, 

and the PSA rate of fall following treatment did not provide any clinical information 

[29]. Meek et al. reported a mean half life of 43 days (SD=l1); note, however, that 
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the authors restricted their analysis to PSA measurements during radiation therapy 

only. Zagars et al. reported a mean half life of 1.9 months, and a range of 0.5 to 9.2 

months [29]. 

The association between the parameters of the PSA profile and pre-treatment 

characteristics has been investigated in a few studies. In particular, a shorter PSA 

doubling time has been shown to be associated with a higher pretreatment Gleason 

score [23][26][29][34] and higher pretreatment PSA concentrations [26]. Similarly, an 

association has been shown between the PSA nadir and the pretreatment PSA level, 

but none with the Gleason score. Results do not suggest any significant association 

between the PSA half life and pretreatment characteristics [29]. 

The studies described in this section estimated the parameters of the PSA tra­

jectories without accounting for the considerable variability of the PSA observations: 

the PSA data were taken at their face values. The PSA doubling time was estimated 

from PSA series that appeared to be rising, i.e., from series satisfying sorne arbitrary 

definition (for exarnple, at least two consecutive PSA rises). Similarly, the lowest ob­

served PSA concentration was used at the PSA nadir. Thus, these estimates should 

be handled with care, since they are likely to be biased. In order to capture, and es­

timate, both the within- and between- PSA series variability, appropriate statistical 

modeling is necessary. 

2.1.3 The ASTRO criterion for biochemical failure following radiotherapy 

If radiotherapy fails, a secondary treatment can be initiated, usually hormone­

withdrawal therapy. The best timing of this secondary treatment is a compromise 

between wishing to delay the onset of clinically evident metastases, the side effects of 

hormone deprivation, the possibility that the cancer will eventually become resistant 

to the hormone manipulation, and that the man may die of another disease before 
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the cancer could become symptomatic. It is therefore essential to detect treatment 

failure as quickly as possible. 

Biochemical failure is defined as a recurrence of the cancer, detected by a rising 

PSA. There is an ongoing debate as to a firm definition of a rising PSA pattern. 

Clearly, for validity, any measure should be strongly correlated with the probability 

of developing symptomatic metastases and death from prostate cancer. Before 1996, 

several definitions of a significant PSA increase had been used, however, the use 

of various definitions rendered the comparison of studies difficult [35] [36]. In 1996, 

the American Society for Therapeutic Radiology and Oncology consensus panel pro­

posed guidelines to unify the scientific community on the use of a single definition 

that would standardize the reporting and comparison of treatment outcomes; these 

guidelines are reported below (cited from [37]): 

The panel agreed on four guidelines: 

• Biochemical failure is not justification per se to initiate additional treatment. 

It is not equivalent to clinical failure. ft is, however, an appropriate early 

endpoint for clinical trials. 

• Three consecutive increases in PSA is a reasonable definition of biochemical 

failure after radiation therapy. For clinical trials, the date of failure should be 

the midpoint between the postirradiation nadir PSA and the first of the three 

consecutive rises. 

The use of three, rather than two, consecutive values reduces the risk of falsely 

declaring biochemical failure due to "bouncing" PSAs. This phenomenon re­

sults when sequential PSA determinations show one or two ris es followed by a 

fall and a subsequent failure to rise again. 

• No definition of PSA failure, has yet, been shown to be a surrogate for clinical 

progression or survival. 
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• Nadir PSA is a strong prognostic factor, but no absolute level is a valid cut point 

for separating successful and unsuccessful treatments. Nadir PSA is similar in 

prognostic value to pretreatment prognostic variables. 

This ruIe, which 1 will refer to as the ASTRO rule, is commonly used and widely 

discussed in the literature. However, how weIl it classifies individuals (its sensitivity 

and specificity) has undergone only limited formaI evaluation. Thus far, evaluations 

that have been carried out are limited to correlations with clinical out cornes , and in 

specific case series. Horwitz et al. reported that the ASTRO definition correlated weIl 

with clinical out cornes such as distant metastases, disease free survival and cause­

specific survival [38]; they concluded further that this measure of biochemical failure 

may be a valid endpoint for separating successful versus unsuccessful treatment. 

Hanlon et aL, reported that the ASTRO definition was robust to inclusion of patients 

with sorne extreme characteristics (recurrence with a very slow rise) [39]. 

Several authors have criticized the ASTRO criterion, in particular regarding the 

date of failure. In the case of a successful surgery, the PSA concentrations drop to 

negligible values. If there is a recurrence of the cancer, PSA concentrations start to 

increase, and the date of failure is the point in time when PSA become detectable. 

After radiotherapy, the date of failure is not as obvious. The remaining (healthy) 

prostatic tissue continues to produce PSA, and therefore, the post-radiotherapy PSA 

concentrations will eventually rise again, whether or not the subject is cured. To fa­

cilitate comparisons with surgery series, the decision was made to backdate the time 

of failure to the point in time when the PSA begin to rise again. This decision is 

controversial, and several studies have pointed out the ambiguity of this procedure. 

This problem is particular to reeently rising PSA values, which are difficult to inter­

pret sinee the patient may have recurred but does not have sufficient PSA data to 

be scored as a failure [40]. 
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Although the ASTRO criterion is used in the majority of the recent publications 

[3], alternative definitions have been proposed. Definitions incorporating the PSA 

nadir and/or rises from the nadir may have a better correlation with clinical failure 

than the ASTRO definition [41] and may even better identify failures and rises other­

wise misclassified [42]. For example, based on 727 subjects treated with radiotherapy 

alone, Vicini et al. reported that the ASTRO definition had 73% sensitivity and 76% 

specificity, both lower than other definitions including a fixed PSA level [41]. Simi­

larly, using 688 subjects treated, Taylor et al. reported that the ASTRO definition 

had 44% sensitivity and 88% specificity, again lower than other definitions including 

fixed PSA level [43]. Finally, Thames et al. have recently reported results form a 

large study aimed at evaluating the ASTRO criterion ; based on data from nearly 

5000 patients treated with radiotherapy, the authors reported a 61 % sensitivity and 

a 80% specificity, again lower than sorne definitions that included the PSA nadir [44]. 

2.1.4 The ASTRO criterion, PSA series, and statistical modeling 

As of the time 1 planned this thesis, studies investigating the performance of the 

ASTRO criterion focussed on its capabilities to predict distant clinical outcomes. 

These studies provided discordant findings, but were also very difficult to compare, 

since the findings were functions of specific features related to the data collection: dif­

ferent institutions, different inclusion criteria, different intensity of PSA surveillance, 

and different lengths of follow-up. , Given the discordant findings of these clinical 

validation studies, as well as the important proportion of studies not relying on the 

ASTRO criterion, an investigation of the more short-term performance of the AS­

TRO rule appears necessary. Indeed, a fundamental point, before one considers how 

weIl even a perfectly measured PSA trajectory correlat es with clinical out cornes , is 

how good the ASTRO rule is at correctly (and quickly) identifying a PSA trajectory 

that is truly rising and how often it can recognize a series that is truly stable, or rising 
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only slowly, for what it is. This numerical validation involves comparing observed 

PSA series to the underlying true PSA trajectories. It is surprising that this first­

stage issue has not been evaluated, given that statistical methods have successfully 

described longitudinal changes in PSA to predict either the onset of prostate cancer 

[45][46][47], or the recurrence of the disease following treatment [48][49]. Based on 

these successful statistical analyses, a numerical evaluation of the ASTRO criterion 

using modeling of PSA post-treatment series appears feasible. This validation study 

is the core of this research thesis, and will be presented in the next chapters. 

The analysis of longitudinal PSA data should account for the several characteris­

tics of the PSA series, including the piecewise-linear pattern of the post-radiotherapy 

PSA profiles on both sides of the man's specifie changepoint, and the important 

within and between series variability. In addition, the model should permit the 

modeling of the PSA variance as a function of the PSA concentration, since it is 

suspected that the variability of the PSA measurements is more important at lower 

levels [2][21]. Finally, the model should adequately handle unbalanced data, since 

PSA series typically have differing number and frequency of observations, and differ­

ing follow-up lengths. Given that both the individual and population PSA profiles 

are of interest, a random-effects model is particularly appropriate to accommodate 

this multi-Ievel structure. In addition, a Bayesian approach appears computationally 

more flexible than the maximum-likelihood approach, given the multiple features of 

the longitudinal PSA data. Specifically, Bayesian hierarchical models easily handle 

the presence of a random changepoint, non-constant variance, and the small number 

of PSA observations for sorne men cornpared to the large nurnber of pararneters to 

estimate. 

1 have chosen a Bayesian hierarchical changepoint model with a random change­

point to estimate post-radiotherapy PSA series. In the next sections, 1 review the 
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characteristics of this model. 1 first describe the general principles of Bayesian in­

ference in section 2.2; 1 do not compare the Bayesian philosophy to the frequentist 

approach, but rather emphasize the practicality of this approach. In section 2.3, 1 

focus on the random-effect models, or hierarchial models, in the Bayesian framework. 

ln section 2.4, 1 describe the hierarchical changepoint model which allows the mod­

eling of piecewise-linear patterns. 

2.2 Bayesian inference 

2.2.1 Principles 

In frequentist inference, the parameters of a statistical model are usually esti­

mated using the maximum likelihood principle. The likelihood function expresses 

the probability of observing the data, as a function of the unknown parameters of 

the model, and a point estimate is obtained by maximizing the likelihood function. 

Confidence intervals can be constructed for each population parameter, and are based 

on the concept of repeated sampling. If the same population is sampled indefinitely, 

and 95% interval estimates are made on each occasion, then 95% of these intervals 

will contain the population parameter. 

ln contrast, the Bayesian approach views the unknown parameter as a random 

variable, and speaks directly about the parameter of interest. Bayesian inference 

makes 'explicit use of probability for quantifying uncertainty in inferences based on 

statistical data analysis' [50], and inferences are in terms of posterior probability 

distributions, and credible intervals. Summary statistics of the parameter's distribu­

tion (or uncertainty) , such as its mean or median, can be estimated. A 95% credible 

interval provides an estimated range of values which is likely to include the unknown 

parameter, Le., it has 95% probability of containing the true parameter. 

Bayesian analysis is based on Bayes rule, and relies on three components: the 

prior distribution, the likelihood of the data, and the posterior distribution. Assume 
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that we observe sorne data Y = (YI, Y2 , .•. , Yn ), n ~ 1, and we are interested in 

estimating a set of parameters from a model 8 = (BI, B2' ... , Bk)' k ~ 1. For ease of 

exposition, 1 assume that both the data and the parameters are continuous, and that 

both the data and the set of parameters are multidimensional. 

The prior distribution, p( 8), refiects the state of knowledge about the parame-

ter(s) before one has seen the data. If one has much information available, then 

a sharp distribution is assigned to the prior distribution of the parameter. On the 

other hand, if little is known about the parameter, then one assigns a noninformative 

(or fiat, diffuse) prior distribution: Le., the parameter is assigned a distribution with 

equal probability for each possible value. 

The likelihood function, C(yI8), represents the probability of observing the data 

Y, given the parameter 8. 

The posterior distribution, p(8Iy), refiects the state of our knowledge, after com­

bining the information provided by the prior distribution, p( 8), and the observed 

data C(yI8); mathematically, these two distributions are combined using Bayes rule: 

p(8Iy) = p(8, y) = C(YI8)p(8). 
p(y) p(y) 

(2.1) 

Note that p(y) = J C(yI8)p(8)d8 can be interpreted as an average of the likelihood 

with respect to the uncertainty about 8. In addition, p(y) is independent of 8, and 

can be considered as constant for fixed y. We can rewrite equation (2.1) as: 

p(8Iy) <X C(yI8)p(8). 

Bayes rule uses the information provided by the data to update prior beliefs about the 

parameters. If little is known beforehand about 8, a noninformative prior distribution 

p( 8) is selected, and the posterior distribution is mainly determined by the data 
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Often, the integral required to obtain p(y) can be difficult to calculate, and 

p(Oly) may not be available in a closed analytical form. In such case, algorithms 

such as Markov Chain Monte Carlo techniques allow one to draw samples from the 

posterior distribution, and thus provide summary statistics (mean, median, etc ... ) 

for the parameters of interest. Sorne of these algorithms are discussed in section 2.2.2. 

2.2.2 Posterior simulations 

Posterior distributions difficult to solve analytically can be estimated using com­

putational algorithms that generate sequences of samples from the distributions of 

interest. Any summary statistics of the parameter can then be estimated from the 

generated samples. These algorithms, such as the Gibbs Sampler, are based on 

Markov Chain Monte Carlo (MCMC) methods, which sample from the probability 

distribution by constructing a Markov chain which converges to the distribution of 

interest. 1 st art by reviewing the general principles of the MCMC methods, and then 

describe specifie algorithms, including the Gibbs Sampler, the Metropolis, and the 

Metropolis-Hastings algorithms. These algorithms will be used in the next chapters 

to estimate PSA trajectories. 

Markov Chain Monte Carlo methods 

A first-order Markov chain is defined as a sequence of simulated random variables 

Xl, ... , X n , where the value Xi is called the state of the pro cess at time i. If the 

probability of sampling the next state X HI depends only on the current state Xi, i.e., 

p(Xi+lIXi ) = P(XHIIXi, Xi-l, ... , Xd, then we say that the sequence Xl, ... , X n forms 

a first-order Markov chain, with transition distribution p(Xi+lIXi ). The Markov 

chain is aperiodic if there is no state to which the pro cess will continually return 

with a fixed time period. If the Markov chain is aperiodic, and if the expected return 

time is finite for every state, then the Markov chain converges to sorne stationary 
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distribution 11"0. If in addition, the Markov chain is irreducible, i.e., every state i is 

accessible from every other state, then this stationary distribution is unique. 

Monte Carlo algorithms are computational algorithms that simulate the behavior 

of complex functions. This is particularly useful in Bayesian inference, where sorne 

distributions of interest require complex multidimensional integrations. These algo-

rithms use sequences of (approximately) random numbers, such as the ones generated 

by Markov chains. 

Given a complex function of interest f(.), and a Markov chain Xl, ... , X n with 

stationary distribution 11"(.), Markov Chain Monte Carlo (MCMC) uses the simula­

tions of the Markov chain to approximate the expectation J-l of the function f(.) with 

respect to 11": 

by a sample average of the Markov chain simulations: 

1 n 

/in = - L f(X i ). 
n 

i=l 

ln general, there is a bum in period to allow for convergence of the Markov chain, 

and the first m iterations are discarded. The expectation is then estimated as, for 

example: 
n 

EWn = 1 L f(Xt ). 
n-m 

(2.2) 
t=m+l 

Several algorithms use MCMC techniques; 1 describe two of them. 

The Gibbs sampler 

Thc objective of Bayesian inference is the estimation of the posterior distribution 

C(yIO)p(O) 
p(Oly) = J C(yIO)p(O)dO' 
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where 0 = (BI, B2' ... , Bk) is the set of parameters of interest. The denominator of 

equation 2.3 is often intractable and thus, p(Oly) is not available analytically. The 

Gibbs sampler uses MCMC methods to generate a sequence of samples from the full 

conditional distribution p(Oly), and was formally introduced by Geman and Geman 

[51]. It is applicable if the conditional distribution of each variable is available 

explicitly, i.e., the full set of conditional distributions: 

(2.4) 

must be available to sam pIe from, where (J -i represents aIl the components of the 

vector 0, except the ith element, Bi. A Markov chain is generated by successively 

sampling values from the conditional distributions p(BiIO-i , y). Each component of 

o is updated conditional on the current values of the other variables. If we let t 

denote the iteration step, then the algorithm proceeds as follows: 

1. For t = 0, select a starting point 0(0) = (BiO), B~O) , ... , BkO)), 

2. For t=l, 2, ... : 

( ) S 1 n(t+l) fr (f) If)(t) n(t) f)(t)) a ampeu l ompUlu2 'U3 ' ... 'Uk ,y, 

(b) S 1 n(t+1) fr (f) 1f)(t+1) f)(t) f)(t)) 
ampe U2 omp U2 Ul 'U3 ' ... 'Uk ,y, 

( ) S 1 f)(t+1) fr (f) 1f)(t+1) f)(t+ l) f)(t)) 
C ampeu3 ompU3ul 'U2 ' ... 'Uk ,y, 

(d) 

(e) S 1 f)(t+1) fr (f) If)(t+l) f)(t+l) f)(t+1) f)(t+l)) 
amp e Uk om P Uk Ul 'U2 'U3 , ... , Uk-l ,y . 

At each iteration t, the Gibbs sampler generates a sequence of vectors, 0(1), 0(2) ... , 

where each vector (J(t) depends only on the previous iteration O(t-l). The resulting 

sequence forms a Markov chain whose stationary distribution is the requested distri-

bution p(Oly) [50]. Once convergence is reached, usually following an initial burn-in 

period of m iterations, the set of vectors o(m+l), ... , o(n) is considered as a sample 

from the joint distribution p( Oly). 
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Often, the interest is in the individual components of 0, and thus in the marginal 

posterior distributions: 

P(Oi), i = 1, ... , k. 

Geman and Geman showed that, in the limit, the distribution of the simulated 

elements Oi, i = 1, ... , k will tend to the marginal distribution P(Oi) [51]: 

Statistics about the marginal distribution P(Oi) can be calculated using the sets of 

replicates O}m+l) , ... , O}n). For example, following equation 2.2, the mean of P(Oi) can 

be estimated using ~ 2:7=m+l o;j) . Credible intervals are obtained using the per­

centiles. In this thesis, for example, 1 will report 95% credible intervals which are 

constructed using the 2.5th and 97.5th percentiles. 

The Metropolis and the Metropolis-Hastings algorithms 

The Gibbs sampler requires sorne knowledge of the full conditional distributions, 

and uses every simulated value. An alternative, more general, updating scheme is a 

form of acceptancejrejection sampling, where values are first drawn from an arbitrary 

distribution, and corrected so that, asymptotically, they behave as random observa-

tions from the target distribution. This is the motivation behind algorithms such as 

the Metropolis [52], and its generalization, the Metropolis-Hastings algorithm [53]. 

Let p(.) and t denote the joint distribution, and the iteration number respectively, 

then the Metropolis-Hastings algorithm proceeds as follows: 

1. Select the proposaI distribution qet ) (0* IOet
-

1
)) (or jumping distribution), that 

will be used to select candidates at each new step t. This distribution might be 

dependent on the current state oet) (for example a normal distribution centered 

at the current iteration). 

F 1 .. OeO) (OeO) OeO) OeO)) 2. or t = 0, se ect a startmg pomt = l' 2 , ... , k , 

28 



3. For t=l, 2, ... , 

(a) Sample a candidate ()* from the proposaI distribution q(t) ((}(*) I(}(t-l)). 

(b) Calculate the Hastings ratio r, where 

(c) Set 

with probability min(r, 1) 

with probability 1 - min(r, 1) 

The Hastings ratio can be rewritten as: 

p((}(*)ly) q(t)((}(*)I(}(t-l)) p(yl(}(*))p((}*) q(t)((}(*)I(}(t-l)) 

r = p((}(t-l)ly) X q(t)((}(t-l)I(}(*)) = p(yl(}(t-l))p((}(t-l)) x q(t)((}(t-l)I(}C*))' (2.5) 

Just like the Gibbs sampler, the Metropolis Hastings algorithm can aIso be applied 

component by component. In such case, the Hastings ratios are given by: 

Given the form of the Hastings ratio (equation 2.5), the full conditional distrib-

utions are not needed, and basically any proposaI distribution can be used. A good 

proposaI distribution should be easy to sample from, and should allow to easily ob-

tain the Hastings ratio. For faster convergence, the candidates should be selected 

from a reasonable distance from the last draw, and the refusaI rate should not be too 

elevated. As mentioned in Gelman et al., the ideal proposaI distribution is simply 

the target distribution, i.e., q((}(*) I(}(t-l)) = p((}(*) Iy) [50]. Thus, the Hastings ratio 

is always 1, and candidates are aIways accepted. In this speciaI setting, and if the 

Metropolis Hastings aIgorithm is applied component by component, the Metropolis-

Hastings is equivalent to the Gibbs sampler. 

Similarly, the Metropolis aIgorithm is also a special case of the Metropolis-

Hastings algorithm. The proposaI distribution is simply selected to be symmetric, 

29 



two conditional densities: 

Monitoring convergence 

Before drawing final inferences, it is essential to ensure that the resulting Markov 

chain has converged to the desired stationary distribution; if the simulation has not 

proceeded long enough, the sequence may not yet be representative of the target 

distribution. For each parameter, it is often recommended to run multiple sequences 

simultaneously, using several sets of overdispersed starting values. Several techniques 

are available to monitor convergence, using either single or multiple chains; I describe 

two common methods, both of which were used in this thesis. 

The Raftery and Lewis convergence criterion applies to single chains, and uses 

the within-chain correlation [54]. It is intended to detect convergence to the target 

distribution, and to provide bounds for the accuracy of the estimated quantile of 

functions of variables of interest. Given a specific quantile, a degree of accuracy, 

and the probability of attaining this degree of accuracy, the criterion evaluates the 

minimum number of iterations needed to accurately estimate the quantile. This 

number is calculated assuming that the iterates are independent, and using the 

binomial variance. If enough iterates are generated, the Raftery and Lewis criterion 

calculates the total number of iterations needed to reach convergence, as weIl as the 

thinning interval, using the lag autocorrelations of the generated sequence. If the 

iterates are highly correlated, the thinning interval, and thus the length of the chain, 

are increased. 

The Gelman-Rubin statistic can be used when multiple chains of iterates have 

been generated. The statistic relies on the comparison of the the within-chain and 
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between-chain variabilities using a classical analysis of variance [50J. At the start 

of the simulation process, the between-sequence variability will be greater than the 

within-sequence one, but as the chains approximate the target distribution, the two 

(or more) variabilities should beeome closer. As convergence is approached, the 

between-sequence variability approaches zero, and thus the Gelman-Rubin statistic 

beeomes closer to 1. 

WinBUGS 

WinBUGS is an interactive Windows version of the BUGS program for Bayesian 

analysis of eomplex statistieal models using Markov chain Monte Carlo (MCMC) 

techniques [55J. The user has to specify the model, namely the likelihood of the 

data, as weIl as the prior distributions, and initial values of all the parameters of the 

models. Then, WinBugs proceeds with MCMC sampling to estimate the unknown 

parameters of the model. Depending on the form of the distribution, different sam­

pling methods can be used, including the Metropolis algorithm, Gibbs sampling, 

rejection sampling [56], or slice sampling [57J. The statistical analysis carried out in 

this thesis was performed using this software (version 1.4), whieh is available on the 

public domain. 

2.3 Hierarchial models in a Bayesian framework 

2.3.1 Introductory example 

Hierarehical models are useful when both individual and population parameters 

are of interest. In the next ehapters, one of the parameters 1 will be interested in, 

is the post-radiotherapy PSA nadir in men treated for prostate cancer. This nadir 

can be affeeted by the treatment and/or by specifie eharacteristies of the patients. 

Thus, two questions arise: 

What is the average post-radiotherapy PSA nadir? 
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What are the individual post-radiotherapy PSA nadirs? 

The classical analysis of variance would not aUow me to answer these two questions 

simultaneously. lndeed, 1 could either assess the average PSA nadir by pooling aU 

individual nadirs, or, separately estimate each individual nadir. Hierarchical mod-

eling permits to estimate the individu al and population nadirs simultaneously by 

regarding the individual true PSA nadirs ()j as being connected to each other; more 

specifically, they are assumed to have a common model. 1 review the principles of 

hierarchical modeling more formally in the next section. 

2.3.2 Principles 

Consider a set of observations Y = (YI, 112, ... , Yn ), n 2: 1. Each observation is 

associated with sorne true effect ()j, and thus the individuallikelihoods are given by 

p(Yjl()j). The individual effects ()j are viewed as a sample from a common population 

of effects, with unknown parameter(s) (jJ: ()j rv p(()jl4», where j = 1, ... , n. 4> is often 

called the hyperparameter, and has distribution p(</». The objective is to estimate 

the posterior distributions of the individual effects ()j, as well as the population effects 

4>. 

A major assumption is the exchangeability of the individual parameters ()l, ... , 

()n, i.e., the joint prior distribution P(()l, ... , ()n) is invariant for any permutation of 

the indices: 
n 

P(()l, ()2, ... , ()nl4» = II p(()jl4» (2.6) 
j=l 

The joint prior distribution, p( (), 4», is obtained using conditional probability: 

p((},4» = p((}I4»p(4»· 
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Applying Bayes mIe, we obtain the joint posterior distribution p((J, <Ply): 

p((J, cply) ex p((J, cp)p(yl(J, cp) 

= p((J, cp)p(yl(J), 

sinee the sampling distribution, p(yI6, <p), depends only on 6, and <P affects y only 

through (J. The posterior distributions for 6 and cp can then be estimated using 

simulation techniques, as described earlier in section 2.2.2. 

2.3.3 A particular example: the normal hierarchical model 

1 illustrate the princip les of hierarchical modeling using the normal hierarchical 

model. As an example, assume that we observe a PSA nadir Yj, for a group of n 

men, where j = 1, ... , n. In the simplest case, one could assume that this nadir is 

corn mon to aU men, and thus the observed nadirs Yj are normaUy distributed with 

sorne common unknown mean 0 and known variance (J2: 

The unknown average PSA nadir 0 is then assigned a normal prior distribution, 

with known parameters /-la and Tg: 0 r>..J N(/-la, Tg). The objective is to estimate 

the posterior distribution of 0, P(OIYl' ... , Yn). This distribution is obtained using 

condition al distribution: 

n 

= p( 0) II P(Yi 10) 
j=l 

n 

= N(/-la, Tg) II N(O, (J2) 
j=1 
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where, using sorne algebra, and given y = Li~l Yi : 

and 
1 1 n 
-=-+-
f2 7,2 0'2· o 

However, in several situations, the individual effects ()j are known to vary across 

subjects. It is then common to assume that each man j, has its own PSA nadir ()j: 

where the individual variances a] might be known. The individual true effects ()j are 

then linked to each other through a common normal distribution: 

The hyperparameters J.-l and T2 correspond respectively to the mean PSA nadir, and 

to the between nadir variability, and have to be estim~ted. We denote by p(p" T
2

), 

p(J.-lIT2
), and p(T2

), the joint distribution of the hyperparameters, the conditional 

distribution of J.-l given T2
, and the marginal distribution of T2 . Conditional on the 

hyperparameters, the distribution of the true nadirs, ()j, is given by: 

n 

P(()l, ()2, ... , ()nlJ.-l, T2
) = IIp(()jlJ.-l, T2

). 

j=l 

Thus, their joint distribution is simply: 

P(()l' ()2, ... , ()n) = J ftp(()jlJ.-l,T 2 )P(P"T2 )dp,dT2 

j=l 

= J ft p( ()j IJ.-l, T2 )p(J.-lIT2 )p( T2 )dJ.-ldT2
. 

j=l 

The joint prior distribution is given by: 
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FinaIly, the joint posterior distribution is then provided by: 

p((}, jJ-, T2 1y) ex: p(yl(}, jJ-, T2 )p((}IjJ-, T2 )p(jJ-IT2 )p(T2
) 

(Ù p(ylB;, p., T') p( 0; 1 p., T')) p(p.1 T')p( T') 

(Ù p(ylB;)p(O; Ip., T')) p(P.IT2)p( T'). 

Then, in order to obtain the marginal distributions p(jJ-), p(T2
), and p(Oj) for j = 

1, ... , n, one could integrate out the joint posterior distribution. If the integrals are 

intractable analytically, MC MC algorithms can be applied to obtain estimates of 

the posterior distributions of interest. Similarly, if the individual variances a} are 

unknown, they can be estimated using these same algorithms. 

One of my objectives is the estimation of the post-radiotherapy PSA profile over 

time, rather than a single parameter, such as the PSA nadir. The PSA levels are 

known to decrease until they reach a PSA nadir, and then increase subsequently. The 

problem is complex, given that the timing of the nadir, also called the changepoint, 

is unknown. The estimation of this changepoint, as weIl as the other parameters of 

the PSA profile require special care; 1 describe one of the available techniques below. 

2.4 Changepoint problems in a Bayesian framework 

2.4.1 Introduction 

As a simple example, assume that a vaccine for a specific disease X requires sorne 

unknown time to become effective. Once inoculated, one might be interested in the 

changepoint, i.e., the unknown time at which the vaccine becomes effective, as well 

as the risk of infection, before and after the changepoint. 
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Several approaches are available to estimate the changepoint as weIl as the dis­

tribution of the parameters of the model for the data, before and after the change­

point: non-parametric methods [58], maximum likelihood estimation [59][60], and 

fully Bayesian methods [61][62]. Hierarchical Bayes models readily accommodate 

changepoint problems, as they allow the changepoint to vary across subjects; the 

other approaches cannot handle it so easily. In addition, they allow interpretation 

of the posterior distribution of the changepoint, as the probability that the change­

point has occurred in any given location. These models have successfully described 

various biomarker series; the changepoint corresponds to the timing of a change in 

the biomarker distribution, usually equivalent to a change in a clinical state, such 

as disease onset or recurrence. For example, these models have described longitudi­

nal CD4 cell counts, to predict the timing of HIV viral rebound following treatment 

[63]. Similarly, longitudinal PSA series have been analyzed to predict prostate cancer 

onset [45][64], and the timing of prostate cancer recurrence [48][49]. 

ln the next section, 1 review the discrete-time changepoint problem as presented, 

for example, by Carlin et al. [61]. 1 then review the continuous case, as described by 

Stephens [62]. 

2.4.2 The discrete-time changepoint problem 

Suppose that a set oflongitudinal data YI, }2, ... , Yn are observed at discrete times 

tl, t2 , ... , tn. Assume two densities f and 9 with respective unknown parameters () 

and 'fJ. The discrete-time changepoint model is given by: 

Yi '" j(YIO), i = 1,2, ... ,8, 

Yi '" g(YI'fJ), i = 8 + 1, ... , n, 

where 8 corresponds to the unknown changepoint, i.e., the timing of the change of 

the data distribution. The interest is the estimation of the discrete changepoint 8, 
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as weIl as e and 'T}, the unknown parameters of the two distributions. The likelihood 

of the data Y = (YI, ... , Yn ) is given by: 

8 n 

L(YIb', e, 'T}) = II f(Yile) II g(YiI'T})· 
i=l i=8+1 

The joint distribution of the data and the parameters is therefore: 

p(Y, b', e, 'T}) = L(YIb', e, 'T})7r(e, 'T}, b'), (2.7) 

where 7r(e, 'T}, b') is the joint prior distribution on e, 'T} and b'. The joint posterior 

distribution of the parameters given the data is proportional to the joint distribution 

of the data and the parameters, therefore: 

p(b', e, 'T}IY) ex: L(YIb', e, 'T})7r(e, 'T}, b'). (2.8) 

The three full conditional distributions of interest p( b'IY, e, 'T}), p(eIY, b', 1]), and p('T}IY, b', e) 

are proportional to the joint distribution (equation 2.7). They often require complex 

integration, but algorithms using MCMC algorithms can provide approximations to 

the marginal posterior distributions of interest. 

Special case: conJugacy 

Carlin et al. showed that in the case of conjugate families, it is possible to obtain 

the full conditional distributions in closed analytical forms [61]. Suppose that e, 'T}, 

and b' are independent, and have prior distributions given by À(e), 1('T}) , and T(b') 

respectively. Then 7r(e, 'T}, b') = À(eh('T})T(b'). If one assumes conjugacy between 

À(.) and f(.) as well as 1(.) and g(.) then elY, b', 'T} is independent of 'T}, and is the 

prior distribution À(.) updated by the data. Similarly, 'T}IY, 6, (J is independent of (J, 

and is 1(.) updated by the data. À(.) and 1(.) have a standard parametric form, 

and it is therefore easy to sam pie from the full posterior conditional distributions. 

One can extend this set up to a more general hierarchical model. One still assumes 
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independence of 0, T) and 6, but now adds another level to the hierarchical model, by 

assuming a parametric family for ° and T) so that: ° l'V ,(Ola) and T) l'V ,(T)I,8) with 

respective conjugate prior distributions p( a) and 4>(,8). The joint distribution of the 

data is now expressed as follows: 

p(Y, 6, 0, T), a,,8) = L(YI6, 0, T))T(6)À(Ola)p(a),(T)I,8)4>(,8) (2.9) 

Therefore: 

• 61Y, 0, T), a,,8 is independent of a and ,8 and more specifically because of the 

discrete form of the prior density of the changepoint: 

L(YI6, 0, T))T(6) 
p(6IY, 0, T), a,,8) = En L(YI6 ° ) (6) 

8=1 , ,T) T 
(2.10) 

• 0IY, 6, T), a,,8 is independent of T) and ,8, and its distribution is the prior À(.) 

updated by the data YI to Y8, 

• T)IY, 6, 0, a,,8 is independent of ° and a, and its distribution is the prior ,(.) 

updated by the data Y8+1 to Yn , 

• alY, 6, 0, T),,8 is independent of Y, 6, T) and ,8, and its distribution is the hyper-

prior p(.) updated by 0, 

• ,8IY, 6, 0, T), a is independent of Y, 6, ° and a, and its distribution is the hyper-

prior 4>(.) updated by T), 

For conjugate families, the Gibbs sampler easily estimates the set of marginal proba-

bili ty distributions. Instead of marginalizing the joint posterior distribution p( 6, 0, T), a, ,8 1 Y) , 

the problem is simplified into a series of easier calculations requiring simple (univari-

ate) posterior conditional distributions. 

2.4.3 The continuous changepoint problem 

It may be reasonable to assume that the data have sorne continuous distribution 

over time, and thus a continuous changepoint must be incorporated into the model. 
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Stephens extended the work by Carlin et al. to the continuous-time changepoint 

problem [62]. The problem is rewritten as follows: 

The likelihood is given by: 

yt rv j(Yle), b ::; t, 

yt rv g(YI7]), b > t. 

L(Ylb, e, 7]) = II j(ytle) II g(YiI7])· 
li9 li>t 

Similar to the discrete-time changepoint model, once the prior distributions are spec-

ified, the joint distribution (equation 2.8) of the data and the parameters is obtained 

as the product of the likelihood function and the joint prior distribution. Again, 

MCMC algorithms can provide estimation for the posterior distributions of the pa-

rameter of the model. 

2.5 Longitudinal studies of post-radiotherapy PSA series 

Post-radiotherapy PSA series provide valuable information when monitoring treat-

ment outcome; for this reason, sever al studies have examined the PSA profiles, in 

particular the PSA nadir and the PSA doubling time. The authors usually estimated 

these parameters, and then correlated them with clinical outcomes. 1 have presented 

the results of sorne of these studies, when describing the properties of the PSA data. 

1 focuss now on the statistical methods used by these studies. 

ln section 2.1, 1 emphasized the considerable variations of the PSA observations. 

However, in most studies investigating the post-radiotherapy characteristics of the 

PSA series, this variability was not adequately accounted for. The PSA nadir, for ex-

ample, was defined as the lowest observed PSA concentration following radiotherapy 

[31][32][33][65]. By taking the observations at their face value, the analysis ignored 

the PSA variations, and the resulting estimates were likely to be biased. 
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The PSA doubling time was estimated using various approaches, including ex­

ponential models [26][29][66][67][68], and splines [69]. Again, the estimation of the 

parameters of the PSA profiles did not adequately account for the variability of the 

PSA observations. First, the PSA measurements were again taken at their face val­

ues: the authors visually identified PSA series they believed were rising using sorne 

arbitrary definition (based on specific number of rising PSA concentrations), and 

then fitted the exponential model only to these specific rising profiles [26][29][66][68]. 

However, as discussed in the literature review, it is common to observe rising PSA 

patterns, while the underlying PSA are actually stable, and vice-versa. Second, all 

the models, except the model by Hanlon et al. [68], were fitted separately to each 

series. As a result, the average doubling time was estimated by pooling the indi­

vidually estimated doubling times, without regard to the varying variabilities of the 

individual PSA series. In addition, by estimating each PSA profile independently, 

the estimation process ignored the information provided by the other series. Hanlon 

et al. fitted a classical exponential model based to their entire cohort [68]. However, 

their model do es not appear to have adequately accounted for the characteristics 

of the PSA series. Although the authors called their model a random effect model, 

the most relevant parameters of the model seem to have been considered as fixed, 

and thus not allowed to vary across subjects. In particular, the changepoint was 

held fixed, at 20 months. In addition, the authors applied their model to rising PSA 

profiles only (defined as PSA rising on two consecutive occasions to a level greater 

than 1 ng/ml, or three consecutive rises). 

Splines provided good individual fits [69], but had the inconvenience of not ac­

counting for the natural monotonicity of the PSA history. In addition, splines were 

fitted separately for each man, ignoring information provided by the rest of the co­

hort. 
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Longitudinal hierarchical models appear the most appropriate models to describe 

post-radiotherapy PSA series. These models were used by Slate and Cronin [49], 

and Pauler and Finkelstein [48], and their objective was the prediction of cancer 

recurrence. These two models were more sophisticated, and adequately accounted 

for the multiple characteristics of the PSA series. 

Slate and Cronin were interested in the early detection of cancer recurrence us­

ing rules for biochemical failure, and proposed two distinct models. The first model 

included a single changepoint, representing the onset of the recurrence of the cancer, 

and the second model used two changepoints, where one changepoint represented the 

end of the transient effect of radiotherapy, and the second the onset of recurrence. 

The single changepoint model did not adequately capture the initial decline rate. 

However, the authors only included observations with the first measurements not 

exceeding 4 ng/ml. PSA concentrations tend to be much higher at the start of the 

treatment; by leaving out the first observations greater than 4 ng/ml, valuable infor­

mation for the fitting might have been lost. The two changepoints model included 

three post-radiotherapy slopes: an initial slope until the end of the transient effect 

of radiotherapy, a second slope between the two changepoints, and a third slope 

after the recurrence of the cancer. Because of the high correlation between the two 

changepoints, convergence was much slower than for the single changepoint model. 

These changepoint models allowed the authors to obtain a posterior distribution re­

fiecting the probability that there was a recurrence of the cancer. At the time of the 

test, the posterior probability that the changepoint had occurred was computed; if 

the probability exceeded sorne specified cutoff, then a positive result was indicated. 

Pauler and Finkelstein used a two-stage model to predict time to cancer recur­

rence [48]. Similarly to Slate and Cronin, the authors used a hierarchical single 

changepoint model to describe post-radiotherapy PSA series. In addition, they used 

a Bayesian version of the Cox model to model the time to cancer recurrence as a 
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function of the parameters of the longitudinal model, such as whether or not the 

changepoint has occurred, and the recent PSA level. The authors compared their 

approach to traditional rules for biochemical failure, including the ASTRO criterion, 

and a time varying indicator of whether each of the rule has occurred was added 

to the Cox model. The authors concluded that the longitudinal model for PSA 

contributed significantly to the Cox model, and that no additional information was 

gained from any of these rules. 

2.6 Summary 

Slate and Cronin, and Pauler and Finkelstein have shown that the Bayesian hi­

erarchical changepoint model appropriately accounts for the PSA variability. Given 

its flexibility, and ease of implementation, this model could easily incorporate addi­

tional complex features of the PSA data. For example, given the lower precision of 

the measurement tools, it would be interesting to express the PSA variability as a 

function of the PSA concentration. 

Studies that examined criteria for biochemical failure, such as the ASTRO crite­

rion, focused on their clinical validation, rather than their numerical validation. The 

interest was in the prediction capabilities of the rules, rather than their capacities to 

detect a specific signal, such as an increase in the PSA concentrations. A fundamen­

tal point, before one considers how weIl even a perfectly measured PSA trajectory 

correlates with clinical outcomes, is how good the rules are at correctly (and quickly) 

identifying a PSA trajectory that is truly rising, and how often it can recognize a 

series that is truly stable, or rising only slowly, for what it is. Such numerical valida­

tion involves comparing observed PSA series to the underlying true PSA trajectories. 

Given the flexibility and the sophistication of the hierarchical models, l will show 

that underlying PSA profiles can be appropriately estimated. Furthermore, l will 

show that the models easily allow ones to express the PSA variability as a function 
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of the PSA concentrations. Based on my estimates, 1 will then propose the first 

numerical validation study of mIes for biochemical failure. 
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Preamble to Manuscript 1 

The principal objective of this thesis is the evaluation of the classification prop­

erties of the ASTRO criterion. 1 will create a theoretical model, from which 1 will be 

able to predict how the ASTRO system performs, as a function of the true trajectory, 

and other variables. The purpose of this first manuscript is to provide these realistic 

'true' trajectories, and the amount of variation encountered in reallife. 1 estimate 

these inputs by taking the values from a set of 470 weIl-documented PSA series in 

actual patients. If radiotherapy is successful, PSA levels reach a nadir, and remain 

low or possibly rise very slowly. A sustained steep increase indicates biochemical 

failure. 1 use a Bayesian hierarchical changepoint model to estimate the individual 

and population PSA profiles, as weIl as the variability of the PSA series. 

The Bayesian hierarchical changepoint model is particularly flexible and accom­

modates the multiple eomplex characteristics of the PSA series: the within-series 

correlation, the within- and between- variability, the piecewise linear pattern on 

both sides of the man-specifie ehangepoint, the unbalanced format of the data, as 

weIl as the non-constant variance. 

Thanks to its flexibility and ease of implementation, the Bayesian hierarchieal 

models easily aceommodate longitudinal data, and should be applicable to the study 

of other marker series in other diseases. 

This manuscript has been submitted to the American Journal of Epidemiology, 

and foIlows the submission guidelines of this journal. The references are included in 

the global thesis bibliography. 
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Abstract 

Biomarkers provide valuable information when monitoring disease onset or pro­

gression; examples include bone mineraI density (osteoporosis), cholesterol (coronary 

artery diseases), and prostate-specifie antigens (PSA, prostate cancer). The analy­

sis of marker series has to incorporate the within-series correlation, the within- and 

between-series variability, the possibly complex pattern of the series over time, and 

the unbalanced format of the data. 

We illustrate the practicality of the Bayesian hierarchical model, by describing 

individual post-radiotherapy series from 470 men with prostate cancer. We estimate 

the four parameters of the series at both the individual and group levels: the PSA 

nadir, its timing, the PSA half-life preceding the nadir, and the subsequent PSA 

doubling time. Given the lower detection levels at lower PSA concentration, we 

also estimate the variability of the PSA observations as a function of the concentra­

tion. Compared to most earlier studies, our estimates were more precise, and results 

indicate that the PSA nadir was reached earlier. 

We emphasize the fiexibility of hierarchical models. They accommodate the mul­

tiple complex features of longitudinal PSA series, and we show that they easily permit 

to more realistically model the variability of the PSA concentration. These models 

are applicable to the study of other marker series in other diseases. 
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3.1 Introduction 

A biomarker is an objective laboratory measure of a biological parameter that 

can act as an indicator of a disease state. Examples include bone miner al density (os­

teoporosis), cholesterol (coronary artery diseases), CD4 T -cells count (HIV / AIDS), 

or prostate-specifie antigens (prostate cancer). Biomarkers are extensively used, and 

the analysis of a long series can provide valuable information when monitoring disease 

or treatment outcome. 

The analysis of biomarker series requires special care since it has to accommo­

date multiple characteristics of longitudinal data. First, repeated observations are 

usually available on each individual, and thus are likely to be correlated. Second, 

apart from changes in the true biomarker level, measurement errors and short term 

biologie al variations create within-series variability. Data collection, and laboratory 

measurement procedures are important sources of variability, such as for example 

cholesterol or PSA concentrations [2] [70]. In addition, measurement tools can have 

varying measuring precisions; for example, laboratory tests are often less precise at 

low PSA concentrations [2][21]. Biological variations are usually less controllable 

than the measurement variability since not aIl the causes of variations are known. 

Third, biomarker concentrations may not have constant growth rates, and traditional 

linear regression techniques cannot be applied. Suitable transformations may sim­

plify the overall pattern; the square root of the CD4 T cells number has been shown 

to be piecewise linear following seroconversion [63], and similarly for lOg2PSA series 

following radiotherapy [23]. Piecewise-linear patterns require special attention, since 

specifie techniques are needed to estimate the changepoint, the point of intersection 

of the two lines. Finally, marker data may not have been obtained in the context 

of a controlled study; the length of follow-up, the number, and the frequency of the 

measurements can vary considerably from subject to subject. 
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Various statistical models have been used to estimate individual and population 

marker profiles. The classical random-effect model [71] has been applied for the 

modeling of CD4 ceIl counts during HIV infection [72][73], and natural history of 

PSA progression in prostate cancer screening [47]. Bayesian hierarchical models are 

particularly appropriate in the presence of a random changepoint. They have been 

successfully applied to describe series of the square root of CD4 T -cell counts for 

the progression of HIV infection [63], and log2PSA series to monitor radiotherapy 

outcomes in men with prostate cancer [49]. An advantage of the Bayesian approach 

is the ability to obtain a direct estimation of the probability that the changepoint, 

and thus disease onset or recurrence, has occurred. 

The objective of this article is to take advantage of the fiexibility and accuracy 

of hierarchical changepoint models to describe post-radiotherapy PSA series. Our 

analysis included an important feature not accounted for in past studies using this 

type of model: we have modeled the variance of the PSA observations as a function 

of the PSA concentrations. This is particularly appropriate, given the known lower 

levels of detection of the PSA measurement tools at lower PSA concentrations [2][21]. 

We emphasize that this model provides much more accurate estimates than a naive 

(and common) approach that ignores the PSA variability. 

We apply our model to a set of 470 longitudinal PSA series from men treated 

with radiotherapy for prostate cancer. If radiotherapy is successful, PSA levels reach 

a nadir, and remain low or possibly rise very slowly. A sustained steep increase 

indicates biochemical failure. We provide estimates for the parameters of the profiles 

(the PSA nadir, its timing or changepoint, the PSA decline rate before the nadir, 

and the subsequent PSA growth rate), as weIl as their variability. 

Our model could bring important clinical insights. First, it has been suggested 

that the PSA growth rates, and the PSA nadir indicate cancer recurrence. However, 
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most of the published results were based on statistical methods that were not opti­

mal, as most studies ignored the random-variability of the PSA measurements. For 

example, linear regression analysis was applied independently to each PSA series, 

taking each PSA observation at their face value, and the PSA growth rate was esti­

mated from PSA series that appeared to be rising, i.e., from series satisfying sorne 

arbitrary definition (for example, at least two consecutive PSA rises) [26][27][29]. 

Similarly, the lowest observed PSA concentration was used as an estimate of the 

PSA nadir [32][33]. Our model will provide more precise estimates of these para­

meters, and allow one to more accurately evaluate their associations with clinical 

variables. Second, a sharp PSA increase usually indicates biochemical (or PSA) 

failure. As of today, evaluations of the performance of mIes for biochemical failure 

reported discordant findings, essentially because the PSA variability was ignored, or 

not adequately captured. A precise estimation of PSA series and their variability 

will provide new tools to evaluate the performance of such mIes. 

Our paper proceeds as follows. In section 3.2, we describe post-radiotherapy PSA 

series from 470 men treated for prostate cancer in Connecticut. We then describe 

two statistical methods used for the estimation of the individual and group PSA 

profiles. In a preliminary analysis, we estimated each PSA profile independently, 

and pooled the estimates using a simple average. Although this approach is obvi­

ously far from optimal, it has often been used to estimate the post-radiotherapy PSA 

doubling time, and illustrates the consequences of ignoring the PSA variability. We 

then analyzed the data using a more complex (but also time consuming) method, 

and fitted a Bayesian hierarchical changepoint model. Wc detail the model which 

allows for individual changepoints, and the variance to be a function of the PSA 

concentrations. In section 3.3, we present results of the two statistical methods for 
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the Connecticut data set. We then use the estimates of the parameters of the hi­

erarchical model to investigate associations of the PSA profile with pre-treatment 

patient characteristics, such as age at diagnosis, initial Gleason score of the tumor, 

and initial PSA concentration. We discuss our findings in section 3.4. 

3.2 Materials and methods 

3.2.1 The Connecticut PSA data set 

The data were initially collected for an earlier study aimed at linking rising PSA 

profiles following treatment (surgery or radiotherapy) of prostate cancer to ten-year 

outcomes [25]. The data were assembled retrospectively, on a population based co­

hort identified by the Connecticut Tumor Registry. The men were aged 75 years or 

younger, and residents of Connecticut when diagnosed with localized cancer between 

1990 and 1992. Men with advanced disease or initial PSA higher than 50 ng/ml 

were excluded. PSA values were recorded from the ambulatory records located pri­

marily in urologists' offices, but also from ambulatory records located in the offices 

of radiation oncologists, medical oncologists, the Connecticut Tumor Registry, and 

inpatient records. More details are available in Albertsen et al. [25]. In sorne cases, 

men can receive a subsequent treatment, usually in the form of hormones. For the 

purposes of this study, we have excluded any PSA measurements under a hormonal 

therapy. FinaIly, we required each PSA series to have at least one pre-treatment PSA 

measurement as weIl as two post-treatment PSA measurements; 470 series satisfied 

our conditions. 

Men with a secondary treatment reach their PSA nadir much sooner, with a 

steeper post-nadir PSA growth rate, than men without such treatment. For this 

reason, we decided to split the men into two subgroups. One subgroup consisted of 

the 139 men who subsequently received secondary treatment; the second subgroup 

included the remaining 331 men. This somewhat arbitrary division allowed us to 
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obtain two subgroups, each with relatively homogeneous patterns, and thus to speed 

up the computational phase of the analysis using the hierarchical model. Two analy­

ses were therefore performed independently, and results are reported separately for 

each subgroup. 

3.2.2 Statistical methods 

Figure 3~ 1 shows post-radiotherapy PSA series over time for eight men, plotted 

on the l092 sCale (page 62). The time axis st arts at the initiation of the treatment. 

Notice the typical V-shape of the l092PSA series: following the st art of the treatment, 

the levels drop to sorne nadir level, and then increase again at various rates. We can 

also observe the important variations between and within series. 

Figure 3~2 illustrates a prototypic PSA profile plotted on the l092 sCale, for a 

specifie man i (page 63). We denote by 4>li, 4>2i, 4>3i and 4>4i the l092PSA nadir, the 

changepoint (or location of the nadir), the 1092PSA decline rate prior to the PSA 

nadir (the slope of the first line), and the post-nadir l092PSA growth rate (the slope 

of the second line). We will estimate these four parameters, as well as the PSA 

variability. 

We have used the logarithm on the base 2 of the PSA level, 1092PSA, as the 

response variable. This transformation has several advantages. First, it allows one to 

obtain a piecewise linear pattern. Second, the series tend to be smoother than when 

plotted on the natural scale. Finally, when the unit oftime is the year, the post-nadir 

l092PSA growth rate is equivalent to the number of PSA doublings per year, and its 

reciprocal corresponds to the PSA doubling time, a variable of particular interest to 

clinicians. Similarly, the l092PSA decline rate before the nadir is equivalent to the 

number of PSA halvings per year, and its reciprocal corresponds to the PSA half life. 

We have preferred to perform the statistical analysis based on the rates (slopes), in 

accord with classicalleast-squares regression. 
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Preliminary analysis 

For comparison purposes, we performed a preliminary naive analysis. We took 

the PSA data at their face value, and thus ignored any measurement errors or short­

term biological variations. We refer to this approach as the simplistic approach. 

For each man, we visually identified the lowest observed log2PSA observation, and 

considered it as the log2PSA nadir. Similarly, the observed timing of the PSA nadir 

corresponded to the timing of the lowest lOg2PSA observation. The rate of lOg2PSA 

dedine for each man was estimated by the slope of the least squares regression line 

fit to the lOg2PSA values versus time in years, for PSA values from pre-treatment up 

until and exduding the PSA nadir. Similarly, log2PSA growth rate was estimated 

by the slope of the regression li ne fit to log2PSA values from and induding the 

log2PSA nadir to the last log2PSA observations available. The mean parameters 

were obtained using a simple average of the individual estimates, and we reported 

the 95% reference range using the 2.5th and 97.5th percentiles. 

Bayesian hierarchical changepoint model 

The principal analysis of this paper consists of a Bayesian hierarchical model with 

a changepoint. This model provided estimates for the four parameters of the lOg2PSA 

profile at both the individual and aggregate levels. The term hierarchical is employed 

since this approach models the data as severallevels, which is appropriate when there 

are wide between-subject variations in the parameters [50]. At the first level, the 

log2PSA profile is described using the data distribution, or likelihood function. We 

let log2PSAij be the PSA concentration on the log2 scale, for the ph measurement for 

the i th man, and assume that the observations log2PSAij are normally distributed, 

with mean J-lij and variance a~: 

(3.1) 
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For every observation log2PSAij, the expected log2PSA value, J1-ij, is related to the 

timing of the measurement t ij through a regression function describing the expected 

profile before and after the changepoint 4>2i: 

In addition, because, the interassay coefficients of variation tend to be larger at lower 

PSA levels [2] [21], therefore, we have expressed the logarithm of the precision ~ as 
(Fij 

a linear function of the PSA levels: 

1 
log ,...2 .. = (h + ()2 1og2 PSAij . 

v tJ 
(3.2) 

At the second level, the individual parameters are viewed as a random sample 

from a common population. For ease of exposition, consider the slope prior to the 

nadir; the same principles apply to the other three parameters. During this initial 

phase, the individual PSA concentrations vary with different rates, as illustrated by 

figure 3-3 (page 63). The hierarchical model assumes that these individual slopes 

4>3i have been randomly selected from a common population of slopes, with common 

mean and variance. In particular, we selected this hierarchical distribution to be 

normal, 4>3i ,....., N(J1-<P3' (J~3)· We chose the normal distribution, since the estimates 

of the slopes as provided by the preliminary analysis looked close to normal. The 

parameters J1-<P3 and (J~3 correspond respectively to the population slope and the 

between-men variability of the slopes. The essence of hierarchical modeling is the 

simultaneous inference of the individual (4)3i) and the population parameters (J1-<P3' 

(J~3)' allowing for the borrowing of strength. The individu al slopes are estimated 

using what is effectively a weighed average of the observed slope and the population 

slope, where the weights are the corresponding precisions. As a result, the individual 
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slopes are pulled toward the population slope: the less the precision of the indi­

vidual data compared to the precision of the population estimates, the more they 

will be pulled. Similarly, we assigned a normal distribution to the PSA nadir, and 

the post-nadir slope. The distribution of the changepoint was specified using a dif­

fuse continuous uniform distribution; we used a range of five and ten years, for the 

subgroups respectively with and without a secondary treatment. 

At the third level, the parameters of the second level hierarchical distributions, 

such as J-lr/>3 and (T~3' are also assigned distribution functions. The nadir, the slope 

before, and the slope after the nadir were assigned diffuse normal means and diffuse 

uniform standard deviations, as follows: 

<Pl,ilJ-lr/>ll (T~1 rv N(J-lr/>ll (T~J, J-lr/>1 rv N(O, 100), (Tr/>1 rv U(0,4), 

<P3,i 1J-lr/>3' (T~3 rv N (J-lr/>3' (T~3), J-lr/>3 rv N (0, 100), (T r/>3 rv U (0,4), 

<P4,i 1J-lr/>4' (T~4 rv N(J-lr/>4' (T~J, J-lr/>4 rv N(O, 100), (Tr/>4 rv U(0,4). 

We also assigned diffuse normal priors to the parameters of the PSA variation: 

(JI '" N(0,100), and (J2 rv N(O, 100). The statistical analysis was implemented in 

Winbugs, a statistical software package that uses Markov Chain Monte Carlo tech­

niques to generate the posterior distributions [55]. Point estimates of parameters 

were estimated using the mean of the posterior distribution, and 95% credible in­

tervals (CI) were reported based on the 2.5th and 97.5th percentiles of the posterior 

distribution. For each model, we generated three chains with distinct sets of initial 

values. For each chain, we ran an initial bum-in period of 2,000 iterations, and an 

additional set of 10,000 iterations. After assessing convergence using the Raftery and 

Lewis criterion [54], we pooled the three chains, and used the 30,000 iterations to 

estimate the posterior distributions for each parameter. 

Finally, we investigated the associations of the individuallevel parameters of the 

PSA profile with baseline characteristics. We constructed four independent Bayesian 
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multiple linear regression models; the dependent variable was one of the four para­

meters of the PSA profile. The independent variables were the age at diagnosis of 

the cancer, the pre-treatment PSA concentration, and the pre-treatment Gleason 

score. The Gleason score refers to the aggressiveness of the cancer, and ranges from 

2 to 10; the higher the number, the more aggressive the tumor [8]. For the purposes 

of this analysis, we merged the two subgroups of men, by using aIl the output from 

both analyses. We also investigated possible associations between the four estimated 

parameters, again using four independent Bayesian multiple regression analysis. 

3.3 Results 

The short est and longest PSA series had three and 36 measurements respectively, 

with an average of nine PSA readings per series. The short est and longest durations 

of follow-up were respectively four months and 12 years long, with a mean follow-up 

duration of 5.7 years following the initiation of radiotherapy. 

Descriptive statistics for the three pre-treatment covariates are given in table 3-

1 (page 64). Men who underwent subsequent treatment were about the same age 

as those who did not, but tended to have higher PSA level and Gleason score at 

baseline. 

3.3.1 Estimation of the lOg2PSA profiles 

Preliminary analysis 

Summary statistics for the four parameters of the PSA profile using the simplis­

tic approach are provided in table 3-2 (page 65). Histograms are given in the first 

columns of figures 3-4 and 3-5 for, respectively, the subgroup of men who under­

went secondary treatment and those who did not (pages 66 and 67). We excluded 

three series from the analysis of the number of PSA halvings in the first phase. The 
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first observation of these series corresponded to the lowest observed PSA measure­

ment, and thus no regression line could be drawn in the initial phase. Based on 

136 men, the average lOg2PSA decline rate was -3.37/year, corresponding to an av­

erage of 3.37 PSA halvings per year. The median number of PSA halvings per year 

was 2.57, corresponding to a median half-life of 0.39 years. The 139 mean had an 

average post-nadir lOg2PSA growth rate of 1.51, and thus an average of 1.51 PSA 

doublings per year. The estimated median number of PSA doublings per year was 

1.05, corresponding to a median doubling time of 0.95 years. 

The average lOg2PSA decline rate for the 31 men without a secondary treatment 

was -2.22, corresponding to an average of 2.22 PSA halvings per year. The median 

number of PSA halvings per year was 1.72, corresponding to a median half-life of 

0.58 years. The average post-nadir lOg2PSA growth rate, or yearly number of PSA 

doublings, was 0.42. This average included 55 men with an estimated negative growth 

rate, and 16 with a null growth rate. The PSA doubling time was estimated from 

the 315 men with an estimated growth rate that was greater or equal to zero; in such 

case, estimated median number of PSA doublings per year was 0.32, corresponding 

to a median doubling time of 3.12 years. 

Bayesesian hierarchical changepoint model 

Summary statistics for the estimates of the parameters of the hierarchical model 

are provided in the second half of table 3-2 (page 65), and histograms are given in 

the second columns of figures 3-4 and 3-5 (pages 66 and 67). We estimated the four 

parameters, including the numbers of PSA halvings and doublings, for each series. In 

particular, in the subgroup with a subsequent treatment, the estimate of the median 

number of halvings per year was 3.50, corresponding to a median half life of 0.29 

years. The estimated median number of doublings per year was 1.66, corresponding 

to a median doubling time of 0.60 years. For the 331 men without a secondary 
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treatment, the median number of halvings per year was 3.29, corresponding to a 

median half life of 0.30 years. The median number of doublings per year was 0.28, 

corresponding to a median doubling time of 3.57 years. 

The variance parameters (JI and (J2 were similar for the two subgroups. In addi­

tion, the estimate of (J2 was positive, suggesting, as expected, that the variance of 

the PSA observations decreased at higher concentrations. Modeling the variability 

was particularly appropriate given the wide discrepancies between lower and higher 

concentrations. Indeed, for example, at mean l092PSA concentrations of 1 and 4 

(and thus PSA levels of 2 ng/ml and 16 ng/ml), the l092PSA variability estimate 

was respectively 0.36 and 0.14, corresponding to coefficients of variation of 60% and 

10%. 

Comparisons of the two models 

The PSA nadir was estimated to occur much earlier using the hierarchial model. 

This is particularly true for the subgroup of men without a second treatment; in 

this case, the nadir was reached about one year earlier using the hierarchical model, 

as compared with the simple model. Overall, the other parameter point estimates 

were relatively close when comparing the two analysis, but the credible intervals were 

systematically much tighter using the hierarchical model. This is also weIl illustrated 

by the spreads of the histograms. 

In figure 3-6, we plotted the estimated l092PSA profiles for eight men using both 

methods (page 68). In the simplistic method, the profiles are estimated indepen­

dently from each other, and the random-variation is ignored. The fitted lines tend 

to follow the observations very closely, including the outlying ones, which are also 

taken as true. On the other hand, the hierarchical model allows for the borrowing 

of strength. By simultaneously estimating the individu al and group profiles, the 
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model 'learnt' from the rest of the data set, and 'guessed' that the extreme observa­

tions were more likely due to random variability than true changes in the PSA levels 

(see, for example, the second series). When averaging the individu al and group pro­

files, the hierarchical model put less weight to these outlying observations, while 

more weight was given to the population profile; extreme observations were shrunk 

towards the population average profile. 

3.3.2 Association of PSA model features with baseline characteristics 

We investigated the associations of each of the four individuallevel parameters of 

the PSA profile with baseline characteristics. We performed four independent linear 

regression models, where the dependent variable was one of the four parameters as 

estimated by the hierarchical model. Estimates for the parameters of the regression 

analysis are reported in table 3-3 (page 69). Each Hne of the table corresponds to one 

independent multiple regression analysis, with the three columns as the independent 

variables (age of the patient at diagnosis, pretreatment PSA level, and Gleason 

score). A higher initial PSA level was found to be associated with more PSA halvings 

per year (longer half-life), a higher PSA nadir, and more PSA doubings per year 

(shorter doubling time). A higher initial Gleason score was associated with more 

PSA doubings per year (shorter doubling time). 

Table 3-4 shows the results of the regression analysis used for the assessment 

of association within the four parameters of the PSA profile (page 69).Each line of 

the table corresponds to one independent multiple regression analysis, with the three 

columns as the independent variables; foe this reason the table is not symmetrical (as 

a correlation table). A stecpcr decline rate was associatcd with a lower PSA nadir, 

and a shorter time to the nadir. Finally, there was a positive association between 

the PSA nadir and the log2PSA growth rate. 
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3.4 Discussion 

We have proposed a hierarchical changepoint model that adequately describes 

marker series, such as post-radiotherapy PSA series. This model easily accommo­

dates the usual characteristics of longitudinal data series. In addition, we have shown 

that the model aUowed us to model the variance as a function of the marker con­

centration. Being able to include this feature is particularly appropriate, given that 

measurement tools are known to have varying precisions depending on the marker 

level [2][21]. The estimation ofthese PSA series could be further improved by includ­

ing additional covariates in the hierarchical model, such as the baseline PSA level 

and tumor stage, which have been shown to predict tumor growth. 

Our cohort may not be perfectly representative of the general population or of 

other cohorts investigated in past studies. However, we can compare the two sub­

groups of men with respect to the secondary treatment within our study. In partic­

ular, men who received a secondary treatment, and thus those who tend to be the 

more severe cases, had a much shorter PSA doubling time, and reached the PSA 

nadir much sooner. In addition, the PSA nadir was higher for these men, than those 

who did not get any additional treatment. 

The fundamental message conveyed by our analysis is the considerable improve­

ment in precision aUowed by the hierarchical model. First, unless appropriate weight­

ing is used to adequately reflect the precision of each individual series, regression 

techniques such as our simplistic approach, are particularly misleading. When esti­

mating population average profiles, long and rich series, should not be given the same 

weight as short and less informative series. Second, PSA series should not be ana­

lyzed independently from each other, as aU the series provide valuable information. 

Each of the series provides sorne information about the other ones, and vice-versa. 

The hierarchical model accounts for the varying precision of the individual series, and 

allows us to borrow strength from aU series when estimating individual profiles. The 
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individual profiles are estimated using what is effectively a weighed average of the 

observed profile and the population profile, where the weights are the correspond­

ing precisions. As a result, the individual profiles are pulled toward the population 

profile: the less the precision of the individual data compared to the precision of the 

population estimates, the more they will be pulled. As a result, inference is strength­

ened, and credible intervals are much tighter than the ones obtained using a naive 

approach. This is particularly striking with regard to the PSA changepoint, that 

we estimated to occur around 18 months in men without a second treatment. The 

simplistic approach estimated that this nadir occured about one year later. Very few 

studies reported estimates of the changepoint, and estimates were highly variable. 

However, Hanlon et al. estimated that the PSA nadir was reached on average 36 

months after the initial day of radiotherapy, with a range of 2 to 114 months, again 

much later than our estimate [31]. 

Our model provided more precise estimates of individual post-radiotherapy tra­

jectories. As a result, the estimated features of the PSA profiles, such as the nadir, 

or the PSA doubling time, can be used as input data in subsequent analysis. We 

used our estimates to investigate associations with pre-treatment variables. Simi­

larly, Pauler and Finkelstein modeled the time to cancer recurrence as a function of 

the parameters of the PSA profiles, also estimated using a hierarchical model [48]. 

Our results provide valuable information for the monitoring of treatment out­

come, based on biochemical failure, which is defined as a recurrence of the cancer 

detected by rising PSA levels. The American Society for Therapeutic Radiology and 

Oncology (ASTRO) consensus panel considers three consecutive PSA ris es as an ap­

propriate definition of biochemical failure following radiation therapy [37]. However, 

this criterion has undergone limited formaI evaluation. Thus far, evaluations have 

ignored the PSA variability, and were limited to correlations with clinical outcomes. 

A fundamental point, before one cons id ers how weIl even a perfectly measured PSA 
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trajectory correlates with clinical outcomes, is how good the ASTRO rule is at cor­

rectly (and quickly) identifying a PSA trajectory that is truly rising and how often 

it can recognize a series that is truly stable, or rising only slowly, for what it is. This 

numerical validation involves comparing observed PSA series to the underlying true 

PSA trajectories, and appears feasible using our precise estimates. 

Finally, specifie characteristics of the PSA profiles could be used to propose new 

rules for biochemical failure. For example, Slate and Cronin proposed a rule for 

biochemical failure based only on the estimation of the changepoint, which represents 

the onset of the recurrence of the cancer [49]. At the time of the test for a specifie 

subject, they estimated the probability that the changepoint had already occurred; 

the performance of the rule was assessed by estimating its sensitivity and specificity 

in men with and without recurrence respectively. Similarly, we Can easily imagine 

rules for biochemical failure that would be based on the probability that the post­

nadir PSA growth rate is greater than sorne specifie threshold. 

Thanks to its flexibility and ease of implementation, the Bayesian hierarchical 

changepoint model easily accommodat es features of longitudinal PSA series, and 

should be applicable to the study of other marker series in other diseases. 

3.5 Tables and figures 
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Figure 3-1: Post-radiotherapy lOg2PSA concentrations over time for eight men 
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Figure 3-2: Individual piecewise linear model, with the four individual parameters. 
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Table 3-1: Pre-treatment characteristics of the 470 men and their tumours 

139 men who 331 men who 
subsequently underwent did not undergo 

secondary treatment secondary treatment 
Age at diagnosis (years) 
average 69.4 70.4 
median 70.3 71.3 
range (53.2; 75.9) (49.2; 76.0) 
Pre-treatment PSA level in ng/mll 
0-3.9 2% (3) 9% (30) 
4-9.9 24% (34) 45% (149) 
10-19.9 34% (47) 31% (102) 
20-50 40% (55) 15% (50) 
Pre-treatment Gleason scorel 

2-4 2% (3) 2% (7) 
5 4% (5) 6% (21) 
6 30% (42) 51% (168) 
7 35% (48) 24% (78) 
8-10 25% (35) 17% (56) 
missing 4% (6) 0% (1) 

1 Proportions and counts (in parenthesis) are provided. 
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Table 3-2: Estimates for parameters obtained using the simplistic and the hierarchi­
cal models. 

139 men with a secondary treatment 
Parameter Simplistic model1 

lOg2PSA decline rate (-PSA halvings)3 -3.37 (-9.18; -0.65) 
lOg2PSA growth rate (PSA doublings)4 1.51 (0.11; 5.97) 
PSA nadir in ng/ml 3.48 (0.03; 16.8) 
Timing of the nadir in years 1.17 (0.17; 3.07) 
()l (variance parameter5) 

()2 (variance parameter5) 

331 men without a secondary treatment 
Parameter Simplistic modell 

lOg2PSA decline rate (-PSA halvings)3 -2.22 (-8.26; -0.24) 
lOg2PSA growth rate (PSA doublings)4 0.42 (-0.01; 1.85) 
PSA nadir in ng/ml 1.07 (0.03; 3.8) 
Timing of the nadir in years 2.58 (0.48; 7.17) 
()l (variance parameter5) 

()2 (variance parameter5) 

1 The interval was estimated using the 2.5th and 97.5th percentiles. 
2 The 95% credible intervals are reported. 
3 Before the PSA nadir is reached. 
4 After the PSA nadir is reached. 
5 As given by equation 3.2. 
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Hierarchical model2 

-3.50 (-3.89; -3.12) 
1.66 (1.38; 1.95) 
3.01 (2.75; 3.38) 
1.08 (1.00; 1.17) 
0.72 (0.55; 0.87) 
0.31 (0.27; 0.36) 

Hierarchical modefl 
-3.29 (-3.60; -2.99) 
0.28 (0.23; 0.33) 
1.25 (1.17; 1.35) 
1.41 (1.29; 1.53) 
0.68 (0.62; 0.75) 
0.27 (0.24; 0.29) 



Figure 3-4: Estimates for parameters obtained from the simplistic (Ieft) and hierar­
chic al (right) approaches, for the 139 men who underwent secondary therapy. 
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Figure 3-5: Estimates for parameters obtained from the simp1istic (1eft) and hierar­
chica1 (right) approaches, for the 331 men who did not undergo secondary therapy. 
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Figure 3-6: Post-radiotherapy PSA observations (dots) for eight men, with profile 
estimated by the simple (dashed line) and the hierarchical (straight line) models. 
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Table 3-3: Regression parameters from four independent analyses of associations 
between the parameters of the PSA profile and pre-treatment characteristics. 

Covariates 
Dependent Initial Gleason Age 
variable PSA level score at diagnosis 
[Og2PSA decline ratel -0.04 (-0.05; -0.03) 0.04 (-0.07; 0.15) -0.03 (-0.06; 0.00) 
[Og2PSA growth rate2 0.02 (0.01; 0.03) 0.22 (0.14; 0.30) 0.00(-0.02; 0.02) 
[Og2PSA nadir 0.05 (0.04; 0.06) 0.09 (-0.01; 0.18) -0.02 (-0.04; 0.01) 
Timing of the nadir3 0.00 (-0.01; 0.00) -0.04 (-0.10; 0.03) 0.00 (-0.02; 0.02) 

1 Before the PSA nadir is reached. It is equivalent to the negative of the number of PSA halvings. 
2. After the PSA nadir is reached. It is equivalent to the number of PSA doublings. 
3 In years 
Each row corresponds to one independent regression analysis. For example, given a man with initial 
PSA level of 2 ng/ml (i.e. l092PSA = 1), Gleason score of 2, and age 70 years, the estimated post­
nadir PSA doublings per year is 0.02 * 1 + 0.22 * 2 + 0 * 70 = 0.46. For a man with initial PSA 
level of 2 ng/ml (Le. l092PSA = 1), Gleason score of 10, and age 70 years, the estimated number 
of post-nadir PSA doublings per year is 0.02 * 1 + 0.22 * 10 + 0 * 70 = 2.2. 

Table 3-4: Regression parameters from four independent analyses of associations 
between the parameters of the PSA profile and pre-treatment characteristics. 

Covariates 
Dependent Decline Growth PSA Timing 
variable ratel rate2 nadir 
Decline ratel - -0.04 (-0.13; 0.05) 0.36 (0.28; 0.43) 1.07 (0.96; 1.17) 
G rowth rate2 -0.04 (-0.12; 0.05) - 0.22 (0.15; 0.30) -0.08 (-0.22; 0.05) 
Nadir 0.46 (0.36; 0.55) 0.31 (0.20; 0.41) - -0.52 (-0.68; -0.36) 
Timing 0.42 (0.38; 0.47) -0.04 (-0.09; 0.02) -0.16 (-0.21; -0.11) 

1 l092PSA decline rate before the PSA nadir. It is equivalent to the negative of the number of PSA 
halvings. 
2 l092PSA growth rate after the PSA nadir. It is equivalent to the number of PSA doublings. 
Each row corresponds to one independent regression analysis. 
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CHAPTER4 
Additional material for manuscript 1 - Technical chapter 

This chapter contains additional information for the hierarchical model used in 

the previous manuscript. In sections 4.1 and 4.2, 1 provide details for the conditional 

and prior distributions. 1 describe the practical implementation of the model in sec-

tion 4.3, and provide the computer code and outputs in section 4.4. 

4.1 Notation and Likelihood function 

1 have split the data into two subgroups depending on whether the men subse-

quently received a secondary treatment; two analyses were performed independently. 

Let i and j be indices for the i th man and the lh measurement. Let NI and 

N2 be the number of men, respectively, with and without a secondary treatment, so 

that NI = 139 and N2 = 331. The next steps are performed independently for each 

subgroup and we use N generically for NI or N2 . 

Let mi be the total number of PSA measurements for man i and let "Ii(<P2,i) be 

the total number of PSA measurements during the decline period. 

Let <PI,i be the nadir for man i, and <P2,i be its index time. <P2,i corresponds to a 

latent changepoint, and is allowed to occur any time, even after the follow-up period 

has ended for the given subject. 

Let <P2,i, <P3,i and <P4,i be respectively the decline rate between the treatment 

initiation, the changepoint, and the growth rate following the changepoint. 

Let l'ij and t ij be the lOg2PSA concentration and its index time for man i on its 

lh measurement. Let a;j be the variance of the lOg2PSA measurement. 1 suspected 

that the variability was decreased at higher PSA levels, and specified a regression 
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model for (J'ij . Sinee a simple linear regression eould lead to negative estimates of 

(J';j' 1 have modeled the logarithm of the precision (the inverse of the variance): 

log )2 = ()l + ()21og2 PSAij . Therefore: 
') 

Yij '" N (cPI,i + cP3,i (tij - cP2,i) , (J'ij ) for tij:S; cP2,i, 

Yij '" N(cPl,i + cP4,i(tij - cP2,i) , (J'ij ) for tij > cP2,i. 

The eonditional likelihood for man i is therefore: 

II ( b) exp (- 2~~. [Yij - cPl,i - cP3,i(tij - cP2,i)]2) 
tij 5.4>2,i V 27r(J'ij tJ 

x II ( 1 2) exp ( - 2~~. [Yij - cPl,i - cP4,i(tij - cP2,i)]2) 
tij >4>2,i ...j 27r(J'ij tJ 

II (J27re-~(h+02Y;j)) exp ( - 2e-(lh~02Y;j) [Yij - cPl,i - cP3,i(tij - cP2,i)]2) 
tij 5.4>2,i 

(4.1) 

x II (J27re-~Ol+02Y;j)) exp ( - 2e-(Ol~02Y;j) [Yij - cPl,i - cP4,i(tij - cP2,i)]2) 
tij >4>2,i 

ex C ~ W,~" Yi;) ) '" ("",,) exp ( - 2e~ (":,, Yi;) ,;;~" [Yi; - <P", - <P3,' (ti; - </>2,i)]') 

X C~W'~"Yi,) ) m,~(.,("",,)) exp (- 2e-(Ol~02Yij) L [Yij - cPl,i - cP4,i(tij - cP2,i)]2) 
tij >4>2,i 

( 
1 )mi 

- e-~(Ol+02Yij) 

xexp (--2e--""--(O-1~-02-Yi--:-j) ( L [Yij - cPl,i - cP3,i(tij - cP2,i)]2 + L [Yij - cPl,i - cP4,i(tij - cP2,i 
tij 5.4>2,i tij ></>2,i 
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Let Y be the vector of the N sets of individual observations. The fulllikelihood is 

obtained by multiplying the individual likelihoods over the whole subgroup: 

N 

.L:(YI<P2,i, <PI,i, <P3,i, <P4,i, (JI, (J2) = II .L:(YiI<P2,i, <PI,i, <P3,i, <P4,i, (JI, (J2) 
i=l 

4.2 Prior distributions 

1 assumed that the four key parameters were a priori independent. 1 selected a 

continuous uniform prior distribution for the changepoint, with ranges of five and ten 

years respectively for the subgroup treated subsequently with hormones, and for the 

other group. The range was selected according to biological background; secondary 

treatment is usually initiated when it is suspected that radiotherapy failed, which 

occurs within a couple of years. Eventually, PSA levels increase even if the treatment 

is a success, for that reason, 1 selected a ten year range. 

Normal hierarchical models were selected for the nadir, and the two slopes. 1 

initially visually checked histograms of slopes and nadir estimates; 1 plotted the 

lowest lOg2PSA measurement for each man, as well as the observed slopes as discussed 

in section 3.3. The histograms looked approximately normal, although the slopes 

were a little skewed towards null values. 1 used the normal and uniform distributions 

for the means and variances of these three parameters. 1 selected normal distributions 

for (JI and (J2' In summary the prior distributions were : 

<P2,i rv U[a, b], 

(Jk rv U(Ck, dk ) 

(Jz rv N(vz,wl) 
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4.3 Practical implementation 

4.3.1 Posterior simulation 

The Bayesian model was implemented in WinBUGS, the interactive Windows 

version of BUGS (Bayesian Analysis Using Gibbs Sampling, version 1.4) [55]. The 

program performs Bayesian analysis of complex statistical models using MCMC tech­

niques, as described in details in section 2.2.2. 

4.3.2 Convergence 

1 ran two independent analyses, and assessed convergence separately for each 

model using the Raftery and Lewis criterion [54]. For each analysis, 1 ran three 

chains simultaneously, with overdispersed starting values. After an initial burn-in 

period of 2,000 iterations, 1 applied the diagnostic test to the next 10,000 iterations, 

separately for each chain. Under the default set up (2.5% quantile with precision of 

± 0.005 at 95%) the required number of iterations was between 10,000 and 20,000 

for the group parameters (J-ll,aî, J-l2, a~, J-l3, a~), as weIl as the variance parameters 

((}l and (}2), but sorne of thern required about 30,000 iterations. The default set up 

is highly conservative, and 1 thus modified the precision to 0.01. With this new set 

up, 10,000 iterations or less were required for the group parameters, as weIl as the 

majority of the individu al parameters. Using the Raftery and Lewis outputs, the 

Gelman-Rubin statistic, the history plots, and my observation of the distributions 

of the group and individual parameters, 1 concluded that convergence was reached. 

ln each subgroup, 1 pooled the three sets of 10,000 iterations, and estimated the 

posterior distributions of the parameters of interest using the 30,000 replicates. 
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4.4 BUGS codes 

4.4.1 Hierarchical model 

Below is the code for the modeling of the subgroup of men with a secondary 

treatment. The model was similar for the second subgroup, except for the prior dis-

tribution of the changepoint that was uniformly distributed over five and ten years 

for the subgroups of men with and without secondary treatment respectively. 1 first 

provide a list of the names used in the coding. See equations 3.1 and 3.2, for a 

complete description of the model. 

Table 4-1: Codes for the variables used in the WinBugs code 

N ame in the code Definition 
i log2nadir[i] lOg2PSA nadir for the ith man (<Pli) 
change[i] Changepoint for the ith man (<P2i) 
before[i] lOg2PSA decline rate before the nadir for the ith man (<P3i) 
after[i] lOg2PSA growth rate after the nadir for the ith man (<P4i) 
log2nadir .mu Population lOg2PSA nadir (J.L</>1 ) 
change. mu Population changepoint (J.L</>2) 
before.mu Population lOg2PSA decline rate before the nadir (J.L</>3) 
after.mu Population lOg2PSA growth rate after the nadir (J.L</>4) 
log2nadir. var Variance of the individual lOg2PSA nadirs (O'~J 
var. change Variance of the individual changepoints (0'~2) 
before.var Variance of the individuallog2PSA decline rates before the nadir (O'~J 
after.var Variance of the individuallog2PSA growth rates after the nadir (O'~J 
nadir[i] PSA nadir on the natural sc ale for the ith man 
mean.nadir Population PSA nadir on the natural scale 
var. nadir Variance of the individual PSA nadirs on the natural scale 
mean.dt Population PSA doubling time 
mean.hl Population PSA half life 
theta Variance parameter (01 ) 

phi Variance parameter (02) 
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MODEL { forCi in 1 : N) { 

log2psa[i] - dnorm(mu[i] ,prec[i] ) 

mu[i]<- log2nadir[id[i]] + beta[i]*newtime[i] 

newtime[i]<-time[i]-change[id[i]] 

indic[i]<-step(newtime[i]) 

beta[i]<-before[id[i]]*(l-indic[i])+after[id[i]]*indicCi] 

log(prec[i]) <- theta + phi * log2psa[i] } 

# PRIORS FOR FIXED EFFECTS: 

theta - dnorm(O.O, 0.01) 

phi -dnorm(O.O, 0.01) 

# PRIORS FOR RANDOM EFFECTS: 

for (i in 1 : M) { 

change[i] - dunif(0,5) 

log2nadir[i] - dnorm(log2nadir.mu,log2nadir.prec) 

before[i] - dnorm(before.mu,before.prec) 

after[i] - dnorm(after.mu,after.prec) 

nadir[i]<-pow(2,log2nadir[i])} 

# HYPER PRIORS 

log2nadir.mu - dnorm(O,O.Ol) 

before.mu - dnorm(O.O,O.Ol) 

after.mu - dnorm(O.O,O.Ol) 

before.prec <- l/before.var 

before.var <- pow(before.sd,2) 

before.sd- dunif(0,4) 

after.prec<-l/after.var 
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after.var <- pow(after.sd,2) 

after.sd-dunif(O,4) 

log2nadir.prec <- 1/log2nadir.var 

log2nadir.var <- pow(log2nadir.sd,2) 

log2nadir.sd - dunif(O,4) 

sd.change<-sd(change[]) 

var.change<-pow(sd(change[]),2) 

mean.nadir<-mean(nadir[]) 

var.nadir<-pow(sd(nadir[]),2) 

sd.nadir<-sd(nadir[]) 

mean.after<-mean(after[]) 

mean.dt<-l/mean.after 

mean.before<-mean(before[]) 

mean.hl<-l/mean.before } 

4.4.2 Multiple linear regression models 

Once the hierarchical model was fitted, the four estimated parameters were saved 

for each series. They were then used in turn as dependent variables in four separate 

multivariate analysis. The explanatory variables were the age at diagnosis, the initial 

lOg2PSA level, and the initial Gleason score. 

model { fore i in 1 : N ) { 

before[i] - norm(mu.before[i] ,tau.before) 

mu.before[i]<-bO.before+b2.before.age*agel[i] 

+b3.before.glea*gleal[i] +b4.before.log2psa*psaOl[i] 

after[i] - dnorm(mu.after[i],tau.after) 
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mu.after[i]<-bO.after+b2.after.age*age2[i]+ b3.after.glea*glea2[i] 

+b4.after.log2psa*psa02[i] log2nadir[i] -

dnorm(mu.log2nadir[i] ,tau.log2nadir) 

mu.log2nadir[i]<-bO.log2nadir+b2.1og2nadir.age*age3[i] 

+b3.1og2nadir.glea*glea3[i] +b4.1og2nadir.log2psa*psa03[i] 

change[i] - dnorm(mu.change[i] ,tau. change) 

mu. change [i]<-bO. change+b2. change.age*age4[i] 

+b3.change.glea*glea4[i] +b4.change.log2psa*psa04[i] } 

#PRIORS 

bO.before- dnorm(O.O, 0.0001) 

b2.before.age- dnorm(O.O, 0.0001) 

b3.before.glea- dnorm(O.O, 0.0001) 

b4.before.log2psa- dnorm(O.O, 0.0001) 

tau.before<-1/var.before 

var.before<-pow(sd.before,2) 

sd.before-dunif(0,5) 

bO.after- dnorm(O.O, 0.0001) 

b2.after.age- dnorm(O.O, 0.0001) 

b3.after.glea- dnorm(O.O, 0.0001) 

b4.after.log2psa- dnorm(0.0,0.0001) 

tau.after<-1/var.after 

var. after<-pow(sd.after, 2) 

sd.after-dunif(0,5) 

bO.log2nadir- dnorm(O.O, 0.0001) 

b2.1og2nadir.age- dnorm(O.O, 0.0001) 

b3.1og2nadir.glea- dnorm(O.O, 0.0001) 
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b4.1og2nadir.log2psa- dnorm(O.O, 0.0001) 

tau. log2nadir<-1/var. log2nadir 

var. log2nadir<-poy(sd.log2nadir, 2) 

sd.log2nadir-dunif(0,5) 

bO.change- dnorm(O.O, 0.0001) 

b2.change.age- dnorm(O.O, 0.0001) 

b3.change.glea- dnorm(O.O, 0.0001) 

b4.change.log2psa- dnorm(O.O, 0.0001) 

tau. change<-1/var. change 

var. change<-poy(sd. change, 2) 

sd.change-dunif(0,5) } 

4.5 Inference using the outputs from the MeMe algorithms 

Three chains were used in the MeMe estimation process. Once convergence was 

reached, 1 pooled the three chains; the overall estimates were shown in table 3-2, 

page 65. Below are the estimates for the parameters of the hierarchical model, as 

provided by each chain, before the pooling, and after convergence was reached. 
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4.5.1 Summary statistics for the subgroup who received secondary treatment 

CHAIN 1 Mean SD 0.025 0.975 

after.mu 1.6586116 0.14764291 1.3759750 1.9560000 

after.sd 1.5463882 0.13005325 1.2990000 1.8160000 

before.mu -3.5115960 0.19880467 -3.9150250 -3.1320000 

before.sd 1.6610438 0.16875512 1.3469750 2.0170000 

log2nadir.mu 0.7561532 0.13695806 0.4864975 1.0270000 

log2nadir.sd 1.4894563 0.10421223 1.3020000 1.7100000 

theta1 0.7164148 0.08368749 0.5458975 0.8754025 

theta2 0.3141198 0.02454568 0.2670975 0.3624025 

dt 0.6034155 0.02232287 0.5604000 0.6478025 

hl -0.2852755 0.01143283 -0.3086000 -0.2633000 

mean. change 1.0812962 0.04251550 1.0010000 1.1700000 

mean.nadir 3.0130848 0.15197405 2.7500000 3.3660000 

var. change 0.5586769 0.09336875 0.3930975 0.7536125 

var.nadir 27.690782 14.72249995 16.7100000 59.0110000 

CHAIN 2 Mean SD 0.025 0.975 

after.mu 1.6556686 0.14394975 1.3779750 1.9380000 

after.sd 1.5470824 0.13317460 1.3030000 1.8240000 

before.mu -3.4958449 0.19489616 -3.8760000 -3.1159750 

before.sd 1.6500339 0.16502979 1.3500000 1. 9910250 

log2nadir.mu 0.7526957 0.14013010 0.4798900 1.0260000 

log2nadir.sd 1.4967171 0.10693893 1.3070000 1.7310000 

theta1 0.7172615 0.08059577 0.5546000 0.8724025 

theta2 0.3120555 0.02331956 0.2673975 0.3583000 

dt 0.6046310 0.02237225 0.56320 0.6512025 
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hl -0.2862984 0.01123988 -0.30960 -0.2659000 

mean.change 1.0845825 0.04248087 1.00500 1.1680000 

mean.nadir 3.0224475 0.16421914 2.76600 3.4060000 

var. change 0.5628162 0.09643483 0.40120 0.7641050 

var.nadir 28.403154 15.27464061 16.93975 65.1500000 

CHAIN 3 Mean SD 0.025 0.975 

after.mu 1.6603680 0.14492363 1.3820000 1.9530 

after.sd 1.5479436 0.13328310 1.3050000 1.8280 

before.mu -3.4869220 0.19413482 -3.8780000 -3.1170 

before.sd 1.6467105 0.16066348 1.3570000 1.9870 

log2nadir.mu 0.7490921 0.13719704 0.4802000 1.0180 

log2nadir.sd 1.4896081 0.10519854 1.2960000 1.7110 

theta1 0.7170486 0.07818849 0.5608950 0.8685 

theta2 0.3119343 0.02289185 0.2667975 0.3573 

dt 0.6028889 0.02196408 0.5602000 0.6461 

hl -0.2872009 0.01127074 -0.3103000 -0.2868 

mean. change 1.0895908 0.04114699 1.0100000 1.0890 

mean.nadir 2.9996391 0.17763244 2.7370000 2.9820 

var. change 0.5655563 0.08504158 0.4106875 0.5631 

var.nadir 29.270223 28.03964340 16.6197500 24.7300 
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4.5.2 Summary statistics for the subgroup who did not receive secondary treatment 

CHAIN 1 Mean SD 0.025 0.975 

after.mu 0.2813794 0.02546580 0.2314975 0.33080250 

after.sd 0.3743906 0.02256343 0.3325000 0.42080250 

before.mu -3.2908883 0.15535209 -3.6060000 -2.99797500 

before.sd 2.0021615 0.12531991 1.7600000 2.24600000 

log2nadir.mu -0.2567505 0.08231129 -0.4202050 -0.09335875 

log2nadir.sd 1.2927791 0.06465787 1.1720000 1.42700000 

theta1 0.6846694 0.03312022 0.6197000 0.75030250 

theta2 0.2679680 0.01234011 0.2431000 0.29170000 

dt 3.5701327 0.19333029 3.222000 3.9860000 

hl -0.3042417 0.01015532 -0.324100 -0.2848975 

mean. change 1.4118572 0.05950837 1.295000 1.5280000 

mean.nadir 1.2629858 0.04749968 1.176975 1.3630000 

var. change 1.9244957 0.30296348 1.376975 2.5590000 

var.nadir 2.6222261 0.71744754 1.596975 4.3270750 

CHAIN 2 Mean SD 0.025 0.975 

after.mu 0.2803973 0.02561997 0.2301950 0.3304050 

after.sd 0.3749433 0.02227293 0.3333975 0.4210000 

before.mu -3.2834199 0.15554784 -3.5970000 -2.9899750 

before.sd 2.0096231 0.13137688 1.7670000 2.2770250 

log2nadir.mu -0.2595304 0.08245708 -0.4264025 -0.1012975 

log2nadir.sd 1.2919511 0.0006660908 0.0018732 1.1670000 

theta1 0.6847597 0.03270984 0.6195975 0.7475000 

theta2 0.2674351 0.01285369 0.2422000 0.2923000 

dt 3.5755157 0.19529808 3.219000 3.984025 
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hl -0.3046514 0.01017459 -0.325300 -0.285300 

mean.change 1.4111155 0.05950166 1.297000 1.527000 

mean.nadir 1.2549980 0.04519230 1.171000 1.347000 

var. change 1.9044374 0.29093421 1.371975 2.510000 

var.nadir 2.4673449 0.60648859 1.568975 3.919075 

CHAIN 3 Mean SD 0.025 0.975 

after.mu 0.2821356 0.02533348 0.23210 0.3309000 

after.sd 0.3720399 0.02237768 0.33010 0.4187000 

before.mu -3.2815673 0.15163218 -3.58600 -2.9960000 

before.sd 1.9932755 0.12974811 1. 74500 2.2550250 

log2nadir.mu -0.2651456 0.08328143 -0.42911 -0.0992755 

log2nadir.sd 1.2850562 0.06635509 1.16100 1.4200000 

theta1 0.6806468 0.03298656 0.61600 0.7455025 

theta2 0.2673895 0.01264005 0.24210 0.2921025 

dt 3.5581844 0.19151490 3.211000 3.955000 

hl -0.3050761 0.01001095 -0.325100 -0.285700 

mean. change 1.4138736 0.06533431 1. 281000 1.544000 

mean.nadir 1.2464734 0.04709868 1.161000 1.347000 

var. change 1.9434053 0.31893973 1.358975 2.603025 

var.nadir 2.4621183 0.66070100 1.544950 4.063025 
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Preamble to Manuscript II 

ln this second manuscript, 1 address the main focus of this research project: the 

evaluation of the ASTRO criterion for biochemical failure. 

Biochemical failure is defined as a proxy for the recurrence of the cancer, as indi­

cated by rising PSA levels. The ASTRO definition considers three consecutive ris es 

in PSA levels as an appropriate definition of biochemical failure following radiation 

therapy [37]. This rule is widely used but only rough empirical evidence is available 

as to its short-term classification performance in truly identifying PSA rises, and in 

reassuring those whose PSA is truly not rising, or rising so slowly as to not cause 

trouble within the man's life exp ect ancy. 

ln the next article, 1 present the first formal evaluation of the ASTRO criterion. 1 

evaluate the sensitivity and specificity of the criterion, as well as an alternative rule, 

as a function of the underlying true PSA trajectory, the number, and timing of the 

PSA measurements, and the amount of measurement and biological fluctuations. 1 

generate a large number of data series: the features of the underlying trajectories are 

taken as known, having been estimated using the hierarchical model, applied to the 

470 data series in the first manuscript. Each underlying PSA value is then distorted 

by adding the amounts of 'noise' seen in the actual data. Rules for biochemical 

failure are applied to each simulated data series, and their sensitivity and specificity 

described as a function of the schedule and the true doubling time. 

This 'rule of three', to detect an up (down) turn is also informally used in other 

fields, again albeit without a formaI evaluation. The approach presented here could 
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be used to evaluate its performance in these other settings, such as trends in eco­

nomic data. 

This article has been submitted to the journal Statistics in Medicine, and follows 

the submission guidelines of this journal. The references are included in the global 

thesis bibliography. 
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Manuscript II - Detecting trends in noisy data series: application to the 
detection of PSA failure, defined as three consecutive PSA rises in men 

treated for prostate cancer. 

Carine A. BelleraI, James A. Hanleyl, Lawrence Joseph1 and Peter C. Albertsen2 

1 Department of Epidemiology, Biostatistics, and Occupational Health, McGill Uni-

versity, Montreal, Qc. 
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Abstract 

When studying longitudinal data, it is common to define an event based on a 

sustained rise (or decline) of the observations. Often, these data are subject to 

variability independent of the event of interest. Appropriate statistical methods are 

necessary to account for these extraneous variations, in order to correctly determine 

whether a specifie outcome occurred. We propose a method to evaluate rules that 

define events based on consecutive increases (or decreases) of observations, given 

the presence of extra-variability. We illustrate our approach using post-radiotherapy 

series of prostate-specific antigen (PSA). 

PSA is used as a monitoring tool for prostate cancer recurrence foIlowing radio­

therapy. If radiotherapy is successful, PSA levels decrease substantially to a nadir 

value, and remain at low levels. A permanent subsequent steeper increase indicates 

treatment failure. The ASTRO criterion defines biochemical failure as three consecu­

tive PSA increases. Although this 'rule of three' is widely used, it has been criticized 

for its low levels of sensitivity and specificity. 

We carried out a numerical validation study of the ASTRO criterion, and ex­

amined its short-term performance in correctly identifying a PSA trajectory that is 

truly rising (sensitivity) , and how often it can recognize a series that is truly stable 

for what it is (specificity). Our method relies on the simulation of realistic, sophis­

ticated data sets, that accurately reftect the systematic and random variations that 

can be observed in such series. To do so, we first fitted an appropriate model to real 

PSA series, and then simulated new data from this model. These 'empirically based 

simulations' were particularly flexible, and aIlowed us to evaluate any rule that relied 

on the marker concentration, as weIl as any schedule of measurements. The approach 

can also be applied to evaluate other rules that purport to rapidly and accurately 

detect up (down) turns in noisy series, such as in other medical data, and in data 

series used to monitor economic trends. 
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5.1 Introduction 

Prostate-specifie antigen (PSA) is a glycoprotein naturally produced by the prostate 

and by cancer cells. The observed PSA concentration is an amalgam of the unobserv­

able tme PSA concentration and random variation (measurement errors and short­

term biological variations unrelated to tumor size). In men with prostate cancer, 

the cancer's contribution to the PSA concentration is approximately proportional 

to the tumor volume, and thus the PSA level help detect residual and early recur­

rence of tumors when monitoring response to radiotherapy [22] [23]. If radiotherapy 

is successful, the PSA level de creas es substantially to a nadir value during the first 

two years, and remains at low levels with possibly a very slow increase. A subse­

quent ongoing steeper increase would indicate treatment failure, and depending on 

the man's wishes, his physician may start hormone-withdrawal therapy. Treatment 

success does not necessarily imply a fiat PSA curve or equivalently an infinite PSA 

doubling time. Indeed, PSA are not only produced by the tumor, but also by the 

remaining healthy prostate cells; thus, the PSA concentrations will rise eventually, 

even if the patient is cured. 

Biochemical failure is defined as a recurrence of the cancer, detected by rising PSA 

levels. The American Society for Therapeutic Radiology and Oncology (ASTRO) 

consensus panel considers three consecutive PSA rises as an appropriate definition 

of biochemical failure following radiation therapy, and the date of failure should 

be the midpoint between the post-irradiation nadir PSA, and the first of the three 

consecutive rises [37]. We will refer to this criterion as the ASTRO mIe. Several 

studics have shown that this critcrion is a robust measure that correlates well with 

various clinical endpoints [38][39][74]; however, criticisms of the ASTRO definition 

have emerged since it was proposed in 1996. First, the ASTRO rule has undergone 

limited formal evaluation. Studies investigating the performance of the ASTRO 
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criterion focussed on its clinical validation, that is, on its ability to predict distant 

clinical outcomes. The sensitivity was estimated by assessing whether observed PSA 

trajectories satisfied the ASTRO rule, and results were reported according to various 

clinical outcomes, such as evidence of distant metastases or death from prostate 

cancer. Similarly, the specificity was estimated as the proportion of men with PSA 

series not satisfying the criterion, given that they did not undergo a recurrence of the 

cancer (defined as no metastases, or still alive at a certain point in time). Given the 

different endpoints, inclusion criteria, and schedules of measurements, these studies 

are difficult to compare to each other. In addition, sorne studies also suggested that 

alternative definitions of biochemical failures incorporating the PSA nadir and/or 

the post-nadir profile, may outperform the ASTRO definition [41][42][43][44]. 

Second, the ASTRO criterion was examined without accounting for the PSA 

variability. The observed PSA values were taken at their face values, and thus 

analyzed as if they represented the true PSA concentrations. 

Third, the ASTRO definition considers the date of PSA failure as the midpoint 

between the last non-rising and first rising PSA. This pro cess , referred to as back­

dating, poses problem with recently rising PSA values, and makes the value difficult 

to interpret. 

In 2003, McMullen et al. reported that only two thirds of the peer-reviewed 

English published articles in 1999-2000 used the ASTRO definition [3]. Recognizing 

the controversy surrounding the use of the ASTRO definition, the authors were not 

surprised to find that a significant minority (35%) of investigators chose not to use 

the ASTRO definition or used sorne modification of it. Given the discordant find­

ings of the published clinical validation studies, as weIl as the important proportion 

of studies relying on the ASTRO criterion, an investigation of the more short-term 

performance of this criterion appears necessary. Indeed, a fundamental point, before 

one considers how weIl even a perfectly measured PSA trajectory correlates with 
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clinical outcomes, is how good the ASTRO rule is at correctly (and quickly) identi­

fying a PSA trajectory that is truly rising, and how often it can recognize a series 

that is truly stable, or rising only slowly, for what it is. This numerical validation 

involves comparing observed PSA series with the underlying true PSA trajectories. 

It is surprising that this first-stage issue has not been evaluated, given that statistical 

methods have successfully described longitudinal changes in PSA to predict either 

the onset of prostate cancer [45][46][47], or the recurrence of the disease following 

treatment [48][49]. 

We carried out a numerical evaluation of the ASTRO rule; we assessed both its 

short-term performance in truly identifying PSA ris es (sensitivity), and in reassuring 

those whose PSA is truly not rising, or rising so slowly as to not cause trouble within 

the man's life expectancy (specificity). Unlike the clinical validation where a clinical 

out come was used as the final endpoint, we used the underlying true PSA curve as 

the gold-standard. More specifically, we evaluated the sensitivity as the proportion of 

observed PSA series satisfying the ASTRO mIe, given that the underlying post-nadir 

true curve is indeed rising, and thus as a function of the underlying PSA doubling 

time. Similarly, the specificity was the probability of not satisfying the criterion, 

given that the underlying PSA trend was fiat, or rising very slowly. We evaluated 

this mIe using a set of simulated post-radiotherapy PSA trajectories. In order for 

our simulated series to have the most-likely shapes of typical post-radiotherapy PSA 

curves, we based our simulation pro cess on a cohort of 470 men treated for localized 

prostate cancer with radiotherapy only. This rich data set allowed us to estimate 

underlying realistic error-free trajectories, and the variability of the PSA measure­

ments. We then simulated realistic post-radiotherapy PSA curves using the estimates 

provided by the Markov Chain Monte Carlo outputs. The fiexibility of the simulated 
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data set allowed us to examine the ASTRO mIe for different lengths of follow-up and 

frequencies of measurements. 

The use of consecutive rises (declines) of a specifie marker is not specifie to PSA 

data. Because of the flexibility of the statistical model and the simulation pro cess , 

our approach can be applied to other mIes that purport to accurately detect up 

(down) turns in other noisy series. 

In addition, we evaluated the Houston mIe, which has been suggested to outper­

form the ASTRO criterion [44][41]. This criterion defines biochemical failure as any 

increase of 2 ng/ml above the PSA nadir (defined as the lowest PSA measurement 

of the follow-up). 

Our paper proceeds as follows. In section 5.2, we present the Connecticut cohort 

of 470 men treated for prostate cancer with radiotherapy. We then fitted a hierarchi­

cal model to this data set, and obtained estimates for each individual PSA error-free 

PSA profiles, as well as for the variability of the PSA measurements. In section 5.3, 

we describe the simulation pro cess , and in section 5.4, we detail the estimation of 

the sensitivity and specificity. In section 5.5, we present results for the ASTRO and 

Houston criteria. We discuss our findings in section 5.6. 

5.2 Preliminary analysis: Estimation of real PSA trajectories 

We describe the data set, and the Bayesian hierarchical changepoint model that 

was fitted to these PSA series. 

5.2.1 The Connecticut data 

The data were initially collected for a previous study aimed at linking rising PSA 

trajectories following treatment of prostate cancer (surgery or radiotherapy) to ten­

year outcomes [25]. The data were assembled retrospectively, on a population based 

cohort identified by the Connecticut Tumor Registry. The men were aged 75 years 
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or less and residents of Connecticut when diagnosed with localized cancer between 

1990 and 1992. More details are available in Albertsen et al. [25]. We base our study 

on the 647 men diagnosed with a localized cancer of the prostate and treated with 

radiotherapy without any hormonal pre-treatment. Men with advanced disease or 

an initial PSA higher than 50 ng/ml were excluded. In addition, we required each 

PSA series to have at least a baseline PSA measurement as weIl as two subsequent 

PSA measurements; thus 470 men were included in our analysis. The short est and 

longest series had three and 36 measurements respectively; there were nine PSA 

measurements on average, and the mean follow-up time was 5.7 years. 

5.2.2 The Bayesian hierarchical changepoint model 

Figure 5-1 provides post-radiotherapy log2PSA series for four men of the Con­

necticut data set, with the time axis starting at the initiation of the treatment (page 

98). Notice the typical V-shape of these series: following the start of the treatment, 

the PSA levels drop to sorne nadir level, and then increase again at various rates. 

The logPSA decline and growth rates vary across men but are reasonably constant 

within-men, suggesting exponential patterns before and after the nadir [23][24]. As 

a result, the log2PSA series follow approximately a piecewise linear pattern, as sum­

marized by the prototypic PSA trajectory provided in figure 5-2 (page 99). Note 

that the log2 sc ale allows one to obtain directly the PSA doubling time, which is 

simply the reciprocal of the post-nadir log2PSA growth rate. 

We used a Bayesian hierarchical model with a random changepoint to estimate the 

log2PSA trajectories, and their variability. Let log2PSAij be the PSA concentration 

on the l092 scale, for the ph measurement for the i th man. Wc assumed that the 

observations log2PSAij were normally distributed, with mean !1ij and variance al{ 
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For every observation l092PSAij, the expected l092PSA value, !-Lij, was related to the 

timing of the measurement t ij through a regression function describing the expected 

profile: 

(5.1) 

wherc <Pli, <P2i' <P3i and <P4i correspond respectively to the l092 PSA nadir, the change-

point (Le., the timing of the nadir), the l092PSA decline rate prior to the PSA nadir, 

and the post-nadir l092PSA growth rate for man i. The reported interassay coeffi-

cients of variation tend to be larger at lower PSA levels [2] [21], therefore, we expressed 

the precision as a linear function of the PSA levels, i.e. log * = (JI + (J2!-Lij, and thus: 
'J 

(5.2) 

where !-Lij is given by equation 5.1. 

We split the data into two subgroups. One subgroup consisted of 139 men who 

subsequently received a secondary treatment; the second subgroup included the re-

maining 331 men. Note that we are not in the context of a clinical trial, and the 

assignment of a secondary treatment is based on the decision of the physicians, as 

weIl as the patients. This somewhat arbitrary division was performed for two reasons 

related to the estimation pro cess of the hierarchical parameters. First, men who Ull-

dergo secondary treatment are those for whom radiotherapy appears to have failed. 

These men tend to reach a PSA nadir much sooner, with a steeper post-nadir PSA 

growth rate. By splitting the data, we therefore obtained two subgroups with similar 

patterns that would satisfy the distributional assumptions of the hierarchical model. 

Second, homogeneous groups allow one to speed up the computational phase of the 

estimation process. Two analysis were therefore performed independently. The two 
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hierarchical models were implemented in WinBUGS, a statistical software that uses 

MeMe techniques to generate the distributions of the parameters of interest [55J. 

5.3 Generation of simulated realistic PSA series 

To generate several independent realizations of a man's PSA series, one needs 

to first estimate the man's true PSA profile, as weIl as the variability of the PSA 

measurements. These estimates are obtained from the MeMe outputs provided after 

fitting our hierarchical model, and foIlowing convergence. 

In section 5.2.2, we described how we fitted our hierarchical model to the 470 

lOg2PSA series, and obtained estimates (}l and (}2, for the variance parameters (}l 

and (}2, as defined by equation 5.2. Thus, for a true lOg2PSA concentration /-lij, the 

estimated variance was given by: 

(5.3) 

In addition, each iteration of the MeMe process generated one quartet of estimates 

(J;li' J;2i' J;3i' J;4i) for every man i, and thus the ith man's error-free PSA concentration, 

'jiij, at every time point j, as given by the model 5.1. To generate a simulated realistic 

PSA concentration, we added the corresponding amount of variability. Thus, at each 

iteration, for every man i, at every time point j, a simulated realistic lOg2PSA con­

centration, lOg2PSAij, was generated by drawing a value from a normal distribution 

centered at the estimated true concentration: 

where Cilj is given by equation 5.3. Thus, each iteration of the MCMC pro cess was 

used to generate a separate realistic simulated lOg2PSA curve for each of the 470 men. 

We used several iterations from each man to obtain a set of profiles representative 

of each individuals predictive distribution. 
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In order to obtain these parameters, one hierarchical model was fitted to each of 

the two subgroups of PSA series. For each model, we ran three sequences of iter­

ates, each beginning with a different set of initial values. We ran an initial burn-in 

period of 2,000 iterates, and performed 10,000 additional iterations. We then se­

lected a sample of independent simulated realizations. For each man, we kept the 

last 2,500 randomly generated quartets of each chain. To ensure independence, we 

retained only sequences generated at every fiftieth iteration; this distance was more 

conservative than the dependence factor suggested by the Raftery and Lewis method 

[54]. Therefore, each chain provided a set of 50 approximately independent quartets 

for each man. As a result, a total 150 independent quartets (4)li, 4>2i' 4>3i, 4>4i) were 

available from each man, where i = 1, ... ,470. 

5.4 Estimation of sensitivity and specificity 

For each man i of the Connecticut data set, the hierarchical model 5.1 provided 

an estimate of the PSA doubling time, the reciprocal of the post nadir log2PSA 

growth rate, 4>4i. A fast PSA doubling time is usually a sign of radiotherapy failure, 

therefore we estimated the sensitivity as a function of this variable. 

The sensitivity of each criterion was estimated in men with estimated short PSA 

doubling times (less than ten years). We classified the men according to their esti­

mated doubling time (less than one year, one to two years, two to five years, and five 

to ten years). In each of this subgroup, we estimated the sensitivity of the ASTRO 

criterion as the proportion of simulated series with three consecutive PSA increases. 

Similarly for the Houston mIe, we first identified the lowest observation of the gen­

erated profile, and the sensitivity was then expressed as the proportion of generated 

series with at least one PSA measurement 2 ng/ml above (and after) this nadir. 

The specificity was estimated from men with an estimated doubling time greater 

than ten years. In such cases, the post-nadir PSA curves are almost fiat, that men 
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can be clinically considered as cured. We estimated the specificity of each criterion 

as the proportion of series not satisfying the rule. 

Notice that we did not evaluate the ASTRO criterion when the follow-up dura­

tion was one year, and when measurements were done every six months. In such 

cases, only three observations were available, and thus the ASTRO criterion which 

uses three consecutive PSA increases could not be assessed. Finally, the PSA nadir 

is reached on average at the second year after radiotherapy, and the PSA curve is 

therefore decreasing over this period. For this reason, we will ignore the first two 

years of follow-up. 

5.5 Results 

We sorted the 470 x 150 = 70, 500 simulated PSA trajectories according to the 

man's estimated doubling time (table 5-1, page 99). Note that 41 men had a nega­

tive estimated post-nadir growth rate, varying between -0.4 and O. Thus, the PSA 

doubling time was assumed to be infinite for the corresponding 41 x 150 = 6, 150 

series. The mean PSA doubling time was finite for 429 men, and shorter than ten 

years for 377 men. We estimated the sensitivity from these 377 men, and thus using 

the 377 x 150 = 56,050 corresponding series. The specificity was estimated from the 

other 52 men with a finite doubling time greater than ten years, and thus using the 

52 x 150 = 7,800 series. 

Tables 5-2 and 5-3 report sensitivity and specificity for the ASTRO and Houston 

criteria, for various follow-up durations and frequencies of measurements (pages 100 

and 101). For both rules, the sensitivity was improved for longer follow-up periods, 

and shorter intervals of follow-up. Conversely, the specificity decreased with longer 

follow-up, and increased wh en intervals between measurements were extended. 

In the table for the Houston criterion, we show in bold when the Houston rule had 

a better sensitivity, or specificity than the ASTRO criterion (table 5-3, page 101). 
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In most situations, the Houston criterion appeared to outperform the ASTRO crite­

rion. Indeed, the specificity was systematically better for the Houston mIe, except 

at three year follow-up, for an interval between measurements of six months. In this 

case only, the specificity of the ASTRO criterion appeared slightly better (91.4% for 

the ASTRO criterion, and 88.3% for the Houston criterion). We also estimated that 

the Houston criterion had a better sensitivity than the ASTRO criterion, however, 

results difIered slightly depending on the PSA doubling time. When the PSA dou­

bling time was shorter than five years, the sensitivity of the Houston criterion was 

systematicaIly better, whatever the foIlow-up durations and intervals between mea­

surements. For series with a longer time to PSA failure, the sensitivities provided by 

both rules were very close, without a systematicaIly better rule. For illustration, we 

constructed a type of receiver operating (ROC) curve to compare both rules (page 

102). We selected a three-month interval measurements, and foIlow-up durations be­

tween three and seven years. As illustrated by the curve in figure 5-3, the Houston 

rule performed better in these specifie settings. 

5.6 Discussion 

Rules based on marker progression have been used to assess biochemical failure, 

and by extension treatment failure. Because of the important within-subject vari­

ability of the concentration of biomarkers, the evaluation of these rules is complex. 

We have proposed a method that utilizes the underlying biomarker trajectory as the 

gold standard, and expresses the sensitivity and specificity of the biochemical failure 

rules as a function of the marker rate of growth, and the schedule of measurements. 

Such a short-term numerical validation is essential, before one considers how weIl 

a perfectly measured marker series correlates with a more distant clinical out come , 

and given that clinical evaluations have suggested that the rule might not perform 

as weIl as hoped for, possibly because of censoring due to deaths from other causes. 
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We applied our method to evaluate the classification performances of biochemical 

failure rules in men treated with radiotherapy for prostate cancer, and expressed our 

results as a function of the PSA doubling time. By using an appropriate statistical 

model, we could generate simulated PSA series representative of typical observed 

PSA series. The estimation of these PSA series could be further improved by includ­

ing additional covariates in the hierarchical model, such as the baseline PSA level 

and tumor stage, factors which have been shown to predict tumor growth. 

We focussed on two specifie rules, the popular and controversial ASTRO crite­

rion, and the Houston rule, which had been suggested to outperform ASTRO. The 

PSA nadir is reached on average at the second year after radiotherapy, and the 

PSA curve is therefore decreasing over this period. This biological pro cess explains 

the low sensitivities observed for the two rules in this initial period, and similarly 

their high specificities. When focussing on longer follow-up durations, we observed 

that although the superiority of the Houston rule was not systematic for the various 

schedules of measurements investigated, its estimated sensitivity and specificity were 

higher than the ASTRO criterion in most situations. However, it is not possible 

to compare our findings to earlier results, since earlier studies have focussed on the 

clinical validation of the ASTRO rule, and thus used clinical outcomes as gold stan­

dards. The hierarchical model and the simulation pro cess were particularly flexible, 

and it is obvious that our method could easily be extended to the evaluation of other 

rules, and schedules of measurements. 

Finally, the use of consecutive rises, or decreases, for a specifie marker is not 

specifie to medical data, and our approach can be applied to evaluate other mIes 

that purport to accurately detect up (down) turns in noisy series, such as in other 

medical data, and in data series used to monitor economic situations. For example, 

in economics, expansion (or recession) phases are defined as periods when economic 

activity tends to trend up (down); these periods are identified when consecutive rises 
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(or declines) of sorne specifie indicators, such as employment rates are observed [75]. 

In addition, if the underlying pattern of the series is known to be stable, it is possible 

to calculate exactly the probability of observing consecutive rises (or decreases) using 

tests for randomness, as described by Olmstead [76], and Levene and Wolfowitz [77]. 

5.7 Tables and figures 

Figure 5~ 1: l092 PSA concentrations over time for four men 
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Figure 5-2: Individual piecewise linear model, with the four individual parameters. 
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Table 5-1: Distribution of the 470 estimated doubling times and the corresponding 
lOg2PSA growth rates (;f;4i), using the hierarchical Bayes model. 

Doubling time ( CP4i) count (%) 
o to 1 year (~ 1) 92 (19.6%) 
1 to 2 years (0.5 to 1) 86 (18.3%) 
2 to 5 years (0.2 to 0.5) 157 (33.4%) 
5 to 10 years (0.1 to 0.2) 42 (8.9%) 
more than 10 years (0 to 0.1) 52 (11.1%) 
- (~ 0 ) 41 (8.7%) 
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Table 5-2: Sensitivity and specificity of the ASTRO criterion. 

Sensitivity, given an interval of three months between PSA measurements. 
Duration of follow-up (years) 

Doubling time 1 2 3 4 5 6 7 
o to 1 year 7.9% 50.8% 80.8% 93.2% 97.5% 98.7% 99.1% 
1 to 2 years 1.1% 19.0% 45.2% 66.1% 80.3% 89.6% 94.4% 
2 to 5 years 0.8% 11.2% 27.1% 42.9% 56.0% 66.7% 75.3% 
5 to 10 years 0.7% 8.0% 20.6% 32.8% 43.7% 52.6% 61.2% 

Sensitivity, given an interval of six months between PSA measurements. 
Duration of follow-up (years) 

Doubling time 1 2 3 4 5 6 7 
o to 1 year - 24.0% 75.2% 90.5% 96.7% 98.2% 98.8% 
1 to 2 years - 6.7% 34.0% 58.9% 76.0% 86.9% 92.9% 
2 to 5 years - 2.2% 14.2% 28.1% 41.4% 53.6% 63.4% 
5 to 10 years - 1.1% 8.0% 15.6% 23.9% 32.1% 39.3% 

Specificity, given three and six month interval between PSA measurements. 
Duration of follow-up (years) 

Interval 1 2 3 4 5 6 7 
every 3 months 99.1% 90.6% 78.2% 67.1% 57.2% 48.3% 41.2% 
every 6 months - 98.0% 91.4% 84.1% 76.3% 69.3% 63.2% 
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Table 5-3: Sensitivity and specificity of the Houston criterion. 

Sensitivity, given an interval of three months between PSA measurements. 
Duration of follow-up (years) 

Doubling time 1 2 3 4 5 6 7 
o to 1 year 24.7% 66.1% 87.1% 94.0% 98.8% 99.6% 99.6% 
1 to 2 years 11.3% 37.2% 61.8% 78.3% 88.1% 92.8% 96.5% 
2 to 5 years 4.0% 15.4% 29.6% 43.6% 56.6% 67.4% 75.3% 
5 to 10 years 5.0% 13.3% 21.1% 28.2% 35.4% 41.5% 47.2% 

Sensitivity, given an interval of six months between PSA measurements. 
Duration of follow-up (years) 

Doubling time 1 2 3 4 5 6 7 
o to 1 year 18.9% 61.1% 85.5% 93.3% 98.6% 99.5% 99.6% 
1 to 2 years 5.7% 27.2% 53.2% 73.6% 85.9% 91.6% 95.8% 
2 to 5 years 1.6% 8.5% 19.2% 32.6% 46.4% 59.3% 69.0% 
5 to 10 years 2.2% 6.9% 12.3% 18.2% 25.0% 32.0% 38.3% 

Specificity, given three and six month interval between PSA measurements. 
Duration of follow-up (years) 

Interval 1 2 3 4 5 6 7 
every 3 months 93.5% 87.2% 82.0% 77.1% 71.9% 68.1% 63.6% 
every 6 months 96.4% 91.9% 88.3% 84.9% 80.5% 76.8% 72.8% 

The values in bold indicate when the Houston rule has a higher sensitivity or specificity than the 
ASTRO criterion, for the given setting. 
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Figure 5~3: ROC curve ta illustrate the performances of the ASTRO and Houston 
criteria 
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The five black circles represent the performance of the ASTRO rule when the duration of the follow­
up varies from three (leftmost circle) to seven years (rightmost circle). The interval between PSA 
measurements was three months. Similarly, the performance of the Houston rule is shown using 
the grey squares. 
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Preamble to Manuscript III 

The options for the management of prostate cancer include watchful waiting, 

or potentially curative treatment (radiotherapy or surgery). The success of these 

treatments is carefully monitored through a frequent measurement of a patient's 

PSA concentrations, and more specifically, through the PSA doubling time. 

Following treatment, the PSA levels tend to follow a close to exponential pattern, 

as a result, their logarithms are approximately linear. Furthermore, if the base 2 is 

selected, the PSA doubling time is simply the reciprocal of the slope of the lOg2 

transformed data. This property is well known in the scientific community. When 

reviewing the clinical literature, 1 found however, that most methods used for the 

estimation of the PSA doubling time were either not accurate, or accurate, but 

eventually too time consuming. In general, the authors plot the rough PSA data 

on their natural scale, and then visually evaluate the doubling time. Although this 

approach is very simple, it is far from appropriate: first, the post-treatment PSA 

measurements are highly variable, and second, they do not follow a linear pattern. 

Given the underlying exponential pattern of post-treatment PSA series, other authors 

transformed the data using a logarithmic scale, and then estimated the slope of the 

resulting line. This second approach is more appropriate, but when a physician has 

to meet several patients per day, he might not find the time to perform a regression 

analysis to fit a slope for each of them! 

Instead of plotting transformed data, and thus first calculating the logarithm of 

each data point, 1 suggest sim ply plotting the actual PSA data on a graph that 

already accounts for the logarithm scale. Since the resulting plot is approximately 

linear, it is then much easier to fit a straight line by eye, and thus estimate its 
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slope, the PSA doubling time. Although this approach sounds straightforward, to 

my knowledge, no publication has ever mentioned it. Therefore, 1 wrote this last 

article for a clinical audience, and specifically for those medical specialists who use 

PSA doubling times, but cannot afford to spend much time on this calculation. 1 

show how one can easily record seriaI PSA values over time on a graph sheet in order 

to quickly and easily obtain accurate estimates of the doubling time, without any 

difficult computations. 

This manuscript has been submitted to the International Journal of Radiation 

Oncology*Biology*Physics, and follows the submission guidelines of this journal. The 

references are included in the global thesis bibliography. 
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CHAPTER 6 
Manuscript III - A tool for monitoring PSA patterns after treatment for 

prostate cancer 

Carine A. BelleraI, James A. Hanleyl, Lawrence Joseph1 and Peter C. Albertsen2 

1 Department of Epidemiology, Biostatistics, and Occupational Health, McGill Uni-

versity, Montreal, Qc. 

2 Division of Urology, University of Connecticut Health Center, Farmington, CT. 
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Abstract 

Purpose Prostate-specifie antigen (PSA) is used to monitor the treatment out come 

in men with prostate cancer. The PSA doubling time appears to be an im­

portant predictor of treatment outcome, and thus essential to monitor over 

time. 

Methods and Materials PSA observations are recorded over time using a loga­

rithm (log) graph. The log graph avoids the calculation of the logarithm of 

each PSA observation by changing the scale in the graph. 

Results Recording post-treatment PSA series on a log sheet provides approxi­

mately linear trajectories, with less variation than when using the natural sc ale 

(ng/ml). Using these properties, we show how one can record a series of PSA 

values over time on a graph sheet in order to quickly and easily obtain accurate 

estimates of the doubling time, without any difficult computations. In addi­

tion, given the considerable PSA variability, we emphasize that all available 

PSA measurements should be used to obtain precise estimates, rather than 

only the last two observations. 

Conclusion Our recording technique particularly applies to post-surgery PSA mea­

surements, but also to post-radiotherapy series following the PSA nadir, and 

series under watchful waiting. For convenience, we have provided a blank log 

sheet that can be used to record individual PSA series, and to estimate the 

PSA doubling time. 
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6.1 Introduction 

Prostate-specific antigen (PSA) is produced by both normal prostate tissue and 

tumor cells in men with prostate cancer; it is used in monitoring of treatment out­

come for men with prostate cancer. The clinical usefulness of the post-treatment 

PSA doubling time was made clear in the early 1990s [23][66]. A rapid PSA dou­

bling time is highly prognostic of clinical failure (defined as incidence of metastatic 

disease, local recurrence, or prostate cancer death) in men treated with radiotherapy 

[25] [27] [28] [78], radical prostatectomy [25] [28] [79] [80], or watchful waiting [81] [82]. 

The left-hand column of figure 6-1 represents PSA series for five men treated for 

prostate cancer for the first time (page 114). The first two men were treated with 

surgery, the next two men with radiotherapy, and the last man was under watchful 

waiting. These data are part of a large study, described in more details in Albertsen 

et al. [25]. In short, the data were assembled on a retrospective population-based 

cohort of men, diagnosed with localized cancer; all post-treatment PSA values and 

the one immediately before therapy were recorded. In addition, men who received 

hormones concurrently are excluded from this analysis. The time axis starts at the 

first day of the treatment. In the case of surgery, the first PSA measure is taken 

right before the procedure; it is therefore excluded when computing the PSA doubling 

time. For radiotherapy, any PSA reading preceding the PSA nadir is excluded. Dots 

in light gray represent the PSA measurements excluded from the computation of the 

doubling time. 

The plots allow us to make several observations. First, we recognize the typical 

post-treatment PSA patterns. PSA levels drop to negligible values in the case of 

surgery and then ri se slowly again with an exponential pattern. After radiotherapy, 

the PSA levels decrease first, and start to rise again. The logPSA decline and 

growth rates vary across men, but are reasonably constant within-men, suggesting 
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exponential PSA patterns before and after the nadir. In the case of watchful waiting 

there is variability in PSA levels over time, but a generally increasing pattern. 

Second, although we observe underlying exponential trends, patient-specifie PSA 

measurements do not fall exactly on the same curve because of the within-patient 

variability in the PSA measurements. For example, patient C depicts an unusual 

jump in PSA concentration at 4.5 years, and this is even more obvious for patient E 

who had a high PSA level measured at one year and a half. These outlying values 

may be due to factors unrelated to the disease and the treatment. For example, there 

might have been errors in the measurement pro cess or during data collection (errors 

in reporting the date or the PSA level), or a change in the laboratory practice or 

a different laboratory might have been used. There may also be other (known or 

unknown) sources of variation such as recent prostate manipulations [14][15], recent 

sexual activity [16] [17] or recent physical exercise [18]. This occasionallarge variabil­

ity in PSA concentrations has been frequently reported [2][19][20]; it should not be 

ignored when analyzing an individual PSA series, and in particular, when estimating 

its doubling time. Given such noise, it is inaccurate to estimate the PSA doubling 

time using only the current and immediately previous observations. However, the 

considerable variability and the non-linearity of the PSA measurements do not allow 

us to easily visualize (Le., fit by eye) the underlying profile to entire set of relevant 

data points, and thus to accurately estimate the doubling time. 

Finally, if we apply a logarithmic transformation to an exponential trajectory, 

such as an individual PSA series, then apart from the random fluctuations, the 

resulting profile is linear (or piecewise linear, in the case of post-radiotherapy PSA 

series). Furthermore, if we transform using the logarithm with base 2, then the slope 

of this resulting line has an immediate interpretation as the reciprocal of the PSA 

doubling time. Thus, the PSA doubling time is a valid summary of the complete 

PSA profile (or post-nadir profile in the case of radiotherapy). 

108 



Our primary objective is to show how one can use a simple data recording tech­

nique to quickly and easily obtain an accurate estimate of the PSA doubling time. To 

our knowledge, there is no study reviewing how PSA levels are presented to clinicians 

and by the laboratories reporting them. From an informaI sur vey of a small number 

of urologists, it appears that there is no standard practice. Laboratory reports con­

tain different amounts of data (the last PSA measurement or the PSA history can be 

provided) and have different formats (data can be listed or plotted); it is up to the 

physician to analyze the results and estimate the PSA doubling time. In addition, 

we also emphasize that simply comparing the current PSA measurement with the 

one immediately prior to it, will provide a less precise estimate than one based on 

all available relevant measurements. 

6.2 Methods and Materials 

The individual PSA profiles in the left-hand column of figure 6-1 are plotted on 

the natural scale (ng/ml, page 114). Because of the usual variations in the PSA 

concentrations, the individual data points do not aIl fall exactly on the underlying 

approximately exponential curve. Observe now the second column of the same fig­

ure. These are the same data, but now plotted on a logarithm (log) scale. If one 

applies a logarithm transformation to exponential data, then the resulting profile is 

linear. Plotting the data on the supplied graph (see figure 6-2, page 115) is very 

simple, and is equivalent to the pro cess of applying a log transformation to each 

PSA measurement, a step which can be time consuming. Basically, we replace the 

need for calculation with a change in sc ale to the y-axis of the graph, as shown by 

the y-axis of the graphs. As a result of this new presentation of the data, the PSA 

profiles have now two interesting properties. First, the data provide approximately 

linear trajectories (or piecewise linear in the case of radiotherapy). Second, because 

taking logarithms tends to shrink extreme and overly influential values, the trends 
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have been 'smoothed', depicting less variation. The outliers observed earlier are of 

course still present, but appear as less extreme on this scale. 

6.3 Results 

The linearity and the reduction of random fluctuations allow us to visually fit 

a straight line to the post-surgery data, and to the post-nadir data in the specifie 

case of radiotherapy. The base 2 selected for the scale leads to another valuable 

advantage: the PSA doubling time is directly available from the graph sheet. For 

each patient, we can keep the same recording sheet, and add PSA information as 

more data become available, i.e. we only need to count how many horizontal (time) 

units on average are required to jump by one vertical (l092) unit. In the case of 

radiotherapy, the doubling time is estimated using the same pro cess , but focusing 

only on the post-nadir data. 

We illustrate our procedure using the data for patient B. These data suggest nine 

doublings (Le. nine vertical units) over the 4.5 years of follow-up (Le. 4.5 horizon­

tal units) , therefore the doubling time is 4.5/9 = 0.5 year, or approximately two 

doublings per year. Note finally, that if we base our computations only on the last 

two measurements, the estimated doubling time is about 0.2 years ((1/3)/1.5), much 

faster than the doubling time obtained from the complete series. This discrepancy is 

explained by the fact that, if we fit a line by eye through the data, the penultimate 

observation appears below the fitted line, lower than expected when compared to the 

overall trend. Therefore, the gap between the last two observations is unusually high, 

leading to a faster doubling time. Estimates based on longer series will provide more 

accurate estimates, since the impact of unusually high (or low) PSA measurements 

will tend to be attenuated as more data are used in the estimation process. 
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6.4 Discussion 

We have shown how one can easily record seriaI PSA values over time on a graph 

sheet in order to quickly and easily obtain accurate estimates of the doubling time, 

without any difficult computations. The log scale (base 2 or e) has been used for 

more than ten years for radiotherapy [34][66], surgery [80], or watchful waiting [23]. 

Our discussion particularly applies to post-surgery PSA measurements; once the 

prostate is removed, the only source of PSA production is the tumor cells, which 

are commonly assumed to follow an exponential growth. Because of their V-shape, 

post-radiotherapy PSA data are more complex. PSA are produced by both tumor 

cells and remaining healthy cells; while tumor cells increase exponentially, the PSA 

production rate in healthy cells is constant and much sm aller [83]. Because of the 

negligible production rate of benign cells as compared to tumor cells, and from our 

experience with handling data transformation after radiotherapy, the transformation 

approach still appears valuable, especially well beyond the nadir; the PSA profiles 

on the log scale look more linear, allowing us to estimate the PSA doubling time. 

Although the exponential pattern of the PSA series under watchful waiting is not so 

pronounced, plotting data on a log sheet allows us to attenuate the extra variation. 

Finally, estimates of the doubling time are more accurate when more data are used; 

relying only on the last two measurements should be avoided. 

It has been suggested that the post-treatment PSA doubling time might not be 

constant over time, such as in [80]. However, in this study the PSA doubling time was 

estimated using only two measurements, without accounting for the PSA variations. 

Given the considerable variability of the PSA observations, any estimate of the slope 

or doubling time based on only two measurements is not as reliable. Thus, we feel 

that these findings do not contradict our results. 

PC and Palm-pilot based tools that calculate the PSA doubling time have re­

cently become available to physicians. We propose a tool that does not require any 
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such calculators, and the graph sheet can be kept in the patient file for quick ref­

erences. For convenience, we have provided a blank log sheet that can be used to 

record individual PSA series (figure 6-2, page 115). Clinicians could keep a copy of 

this sheet with their patient 's chart to estimate the PSA doubling time; PSA mea­

surements can be recorded as new data accumulate, and estimates of the doubling 

time can be revised. 
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6.5 Figures 

Figure 6-1: PSA history for five men on the natural (ng/ml, left) and lOg2 (right) 

scales. The first two patients were treated by surgery, the next two by radiotherapy, 

and the last one received no treatment. Dots in light gray represent PSA measure­

ments excluded from the computation of the doubling time. In the case of surgery, 

the PSA measurement preceding the treatment is excluded; PSA measurements in 

the decline phase of radiotherapy are also excluded from computation of the doubling 

time. 

Figure 6-2: Proposed PSA recording sheet for estimating the doubling time. One 

can use this graph to record PSA levels over time and visually compute the doubling 

time. One major horizontal unit corresponds to one year with minor units for the 

months, and one major vertical unit represents one PSA doubling in a year. It is 

recommended not to join the PSA measurements directly, but rather to fit a line by 

eye to the observations. The PSA doubling time is the reciprocal of the slope of the 

fitted line: Le., the doubling time is the number of horizontal units (years) required 

to jump by one vertical unit (doubling). 
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Figure 6-1: PSA history for five men on the natural (ng/ml, left) and lOg2 (right) 
scales 
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6.6 Appendix 

The following discussion applies to post-surgery PSA series, post-nadir PSA series 

in the case of radiotherapy, and PSA data under watchful waiting. We briefly show 

that, when the PSA levels are reported using the lOg2 sc ale , then the PSA doubling 

time is equal to the inverse of the slope of the line fitted to these series. 

lOg2PSA is the number such that 2lo92PSA = PSA. It is a one-to-one increasing 

function that applies only to numbers strictly positive. Given its mathematical 

properties, the lOg2 function is suit able for PSA values and the transformed data 

cover a tighter range based on this new seale. 

Assume that a treatment is initiated and we observe PSA levels in a given man 

(PSA 1, PSA2, ... , PSAn) at several time intervals (timel' time2, ... , timen). Because 

of the exponential shape of the PSA trajectory, we apply the lOg2 transformation and 

obtain a set of transformed data (lOg2PSA1' lOg2PSA2, ... , Zog2PSAn) that follows 

a linear pattern. We can now compute the slope of this line. The ZOg2PSA trajectory 

as a function of time can be expressed as follows: 

(6.1) 

where Cl and {3 are the intercept and slope of the line (constant over time). To 

estimate the doubling time PSADT , we select time points timel and time2 such that 

PSA2 = 2 * PSA1 and the doubling time is thus time2 - timel = PSADT . After 

applying the lOg2 transformation, equation (6.1) provides two equations: 

{

Z092PSA(time1) = a + (3 * timel 

log2PSA(time2) = Cl + {3 * time2 
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Subtracting one equation from the other, we obtain: 

(3 = 
lOg2PSA2 - lOg2 PSAl 

time2 - timel 
lOg2(2 * PSAd - lOg2PSAl 

PSADT 

log 2*PSAl 
2 PSA1 

PSADT 

lOg22 

PSADT 

l/PSADT 

Therefore, the PSA doubling time is equal to the inverse of the slope when the PSA 

levels are reported using the lOg2 scale. 
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CHAPTER 7 
Conclusion 

Although each manuscript contains its own discussion, 1 end this thesis by provid-

ing sorne overaU conclusions. 1 recaU the findings of each manuscript, propose sorne 

possible statistical refinements, and discuss the clinical implications of this work. 

7.1 Results 

ln the first manuscript, 1 demonstrated and took advantage of the fiexibility of the 

Bayesian hierarchical model to estimate post-radiotherapy PSA trajectories. Each 

individual PSA trajectory was estimated using not orny the information provided by 

the relevant series, but from aU the PSA series; this borrowing of strength pro cess 

has permitted me to strengthen the inference. In addition, the model incorporated 

the multiple complex characteristics of the longitudinal PSA data: the within and 

between-series variability, the piecewise-linear pattern over time, the presence of a 

random changepoint, and the non-constant variance. Because of the several advan-

tages of this statistical model, including the borrowing of strength, flexibility and 

ease of implementation, it should be applicable to the study of other markers series 

in other diseases. 

The second manuscript reported the results of the first numerical validation of the 

ASTRO criterion. The originality of the statistical approach relied on the simulation 

of a realistic, sophisticated data set, by fitting an appropriate statistical model, to 

a rich set of real PSA data. These empirically based simulations were particularly 

flexible, and aUowed me to evaluate the ASTRO criterion, as weU as the Houston 

mIe. My results suggested that in most of the situations investigated, the ASTRO 
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criterion was outperformed by the Houston rule. FinaIly, the use of consecutive rises, 

or decrèases, is not specifie to PSA data. This approach can be applied to evaluate 

other rules that purport to rapidly and accurately detect up (down) turns in noisy 

series, such as in other medical data, and in data series used to monitor economic 

situations. 

The last manuscript was directed to physicians, whose task involves the foIlow-up 

of patients treated for prostate cancer. 1 proposed that physicians chart PSA values 

using a practical charting paper, to obtain a rapid and relatively accurate estimate 

of the PSA doubling time, without any difficult computations. 

7.2 Possible statistical refinements 

The Bayesian hierarchical model of the first manuscript could be improved by 

incorporating additional features of the PSA series. 1 expressed the PSA trajectory 

as a function of four parameters: the nadir, the changepoint, the number of PSA 

halvings before the nadir, and the number of PSA doublings after the nadir. Several 

variables, such as pre-treatment PSA concentration, or pre-treatment tumor grade 

have been shown to correlate weIl with features of the PSA profile, in particular, the 

PSA doubling time and the PSA nadir. Thus, these covariates could be added to 

the model to improve estimation. 

The assays used to measure the PSA concentrations are less precise at lower 

PSA levels. In the PSA data set, sorne concentrations were recorded as 0 ng/ml. 

Unlike surgery, where the prostate is removed, the prostate keeps producing PSA 

after radiotherapy, and thus the concentrations should not be null. For this rea­

son, 1 deliberately assigned a concentration of 0.03125 ng/ml to these observations 

(corresponding to a lOg2PSA value of -5). This procedure affected 81 of the 4667 

PSA observations (1.7%). Given this small proportion, my priority was to ensure 

that the other complex characteristics of the PSA data were adequately accounted 
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for. 1 therefore performed the analysis without treating these values as left-censored. 

Although handling these data as left-censored is unlikely to change the estimates, ad­

ditional manipulations of the model could be performed in order to properly describe 

these censored data. Just as the other complex features of the data, left-censoring 

can be easily handled in WinBugs. 

Post-radiotherapy trajectories are more complicated to fit than post-surgery se­

ries. In the case of surgery, the prostate is removed, and if any PSA is produced, it is 

due to cancer tumors only. In the case of radiotherapy, the prostate is not removed, 

and PSA are produced by both the remaining prostatic tissue, and possibly by the 

tumor. In further research, one could attempt to account for these remaining healthy 

cells. This step might be complex however, given that the PSA produced by these 

cells tend to follow an exponential pattern. Thus, one could model the sum of two 

exponential PSA curves. This problem has already been addressed by Fitzgerald et 

al. to model HIV viral rebound following antiretroviral therapy [73]. In their cases, 

the viralload was assumed to be the sum of two distinct components, one of which 

declines in response to therapy, and the other may either decline or increase. The 

viral model was fitted using a non-linear mixed effect model, and expressed as the 

logarithm of the sum of two exponential components. The same approach could 

be investigated using a Bayesian model, but my suspicion, based on a very limited 

investigation, is that the precision of the measurements is not sufficient to clearly 

estimate the two separate components. 

ln the second manuscript, 1 evaluated the probability of observing three consec­

utive PSA rises, for different underlying PSA growth rates. When the underlying 

pattern is flat, this probability can be estimated exactly using non-parametric mns 

tests, or tests of randomness. These tests were initially proposed to assess whether 

the fluctuations exhibited by a series of observations are random. In the context of 
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PSA series, a run up (down) is defined as a succession of PSA increases (decreases), 

preceded and possibly followed by a PSA decrease (increase). The randomness of 

such series can be statistically tested using the theory of runs; both the number and 

the lengths of the mns, which are interrelated, should refiect the existence of sorne 

sort of pattern. Tables of exact probabilities of at least r runs of length p or more 

were given for up to 14 observations by Olmstead [76]. For example, Olmstead's 

results tell us that if a man has an underlying fiat PSA curve, and if ten serial PSA 

measurements are taken, then by chance alone, there is 21% probability of observing 

at least three consecutive PSA rises, and thus a 21 % probability that at sorne stage 

the ASTRO criterion will be satisfied, corresponding to a specificity of 79%. On the 

other hand, if the alternative hypothesis assumes a rising (or declining) pattern, ex­

act methods are particularly difficult to derive analytically, since they imply complex 

multiple integrations. My approach, based on simulations, allows one to estimate 

the probability of observing a certain number of consecutive increases (or decline), 

for various underlying slopes. 

Finally, in the last manuscript, 1 proposed that physicians estimate the PSA 

doubling time by fitting a line to the lOg2 PSA observations. In an empirical study, 

Mosteller et al. showed that lines fitted by eyes tended to be consistently steeper 

or shallower than the corresponding least-square regression lines [84]. One possible 

explanation is that sorne people tend to minimize the sum of the squares of perpen­

dicular rather than vertical distances. It would be interesting to compare the lines 

fitted by eye to the lOg2PSA data, with the corresponding least squares regression 

Hnes, as weIl as with the Hnes obtained by minimizing the sum of the perpendicular 

distances of the points from the line. 
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7.3 Research implications 

My evaluation of the ASTRO criterion for PSA failure was numerical, rather than 

clinical; 1 assessed its short-term, tather than its long-term classification properties. 

Following PSA failure, there may be several years before one observes sorne specifie 

clinical outcomes, such as death from prostate cancer. Given that both numerical and 

clinical evaluations are now available, it would be particularly interesting to analyze 

them simultaneously. Pauler and Finkelstein, for example, evaluated whether sorne 

rules for biochemical failure, including the ASTRO criterion, were good predictors of 

time to clinical progression [48]. They fitted a Cox model using the post-treatment 

parameters of the PSA profile (PSA nadir, growth rate ... ), as weIl as time vary­

ing indicators of whether the rules were satisfied. The authors concluded that the 

longitudinal model for PSA contributed significantly to the Cox model, and no ad­

ditional information was gained from any of the rules tested. Further such analysis 

are needed to evaluate the effect of biochemical failure on clinical failure. 

The Connecticut data set may not be representative of the general population 

of men treated for prostate cancer with radiotherapy. Therefore, the estimates pro­

vided in this thesis should not be used directly for health research. However, these 

estimates bring new insights regarding the parameters of the PSA profile, in par­

ticular the changepoint. 1 estimated that the changepoint occurred about one year 

earlier than in other published studies, and in addition, my results were far more 

precise, essentially because of the borrowing of strength allowed by the model. Given 

the clinical implications of the PSA changepoint, it would be interesting to obtain 

additional data sets, with more data available around the estimated timing of the 

changepoint, Le. measured at shorter intervals. 

The method used for the evaluation of rules for biochemical failure was very flex­

ible, and may bring new information regarding the ongoing debate on the validity of 

the ASTRO rule. 1 have shown that although not systematic, the Houston criterion 
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often outperformed the ASTRO criterion. Although my analysis was restricted to 

specific measurement schedules, other lengths of follow-up or frequencies of measure­

ments could be investigated easily. In addition, many other rules for biochemical 

failure have been proposed in the literature; again, these could be evaluated easily, 

given the fiexibility of the estimation process. 

One advantage of the Bayesian approach is the ability to obtain direct proba­

bility statements about the parameters of the PSA trajectory. As a result, specific 

characteristics, such as the timing of the PSA nadir, or the post-nadir PSA doubling 

time can be used to propose new definitions for biochemical failure. For example, 

Slate and Cronin proposed a rule for biochemical failure based on the probability 

that the PSA changepoint is reached after a specific period of time [49]. Similarly, 

a rule could use the probability that the post-nadir PSA growth rate, and thus the 

PSA doubling time, is greater than sorne specific threshold. 

Finally, the estimates of the sensitivity and specificity of the ASTRO rule are 

'after the fact' in theoretical scenarios, and pertain to the behavior in a group of 

men with known error-free trajectories. Given that estimates of the true (error­

free) series are now available, it would also be of interest to address the more 'real­

time' predictive value question. Specifically, given that the PSA have been measured 

at the times they have up to now for a particular man, and given these observed val­

ues, what is the probability that the man's PSA series is truly rising, i.e., what is 

the probability that the slope of the post-nadir PSA profile is rising? Credible inter­

vals could be obtained for the parameters of the individu al PSA profile, such as the 

doubling time for this man's PSA. One could approach this problem, by dynamically 

refitting the model described in this thesis. This might be computationally inten­

sive, given that the model would have to be constantly refitted; however, it appears 

feasible if one uses the same approach based on an appropriate model and fitting. 
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Appendix 2 : Waivers 

Enclosed are the signed waivers from the co-authors of the manuscripts Dr 

James Hanley, Dr Lawrence Joseph and Dr Peter Albertsen. 
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