INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

DEVELOPMENT OF TESTS FOR THE ATM SIGNALING PROTOCOL
by
Dionis Hristov

School of Computer Science
McGill University, Montreal

April, 1998

A Thesis is submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science

Alexandre Petrenko and Guang Gao, supervisors

Copyright © 1998 by Dionis Hristov

i~}

National Library

Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your hie Votre reference
Our file Noire reference
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-44184-9

Canada

Abstract

The work presented here addresses the problem of the development of a conformance test suite
and an interoperability test suite for the ATM Signaling protocol based on the finite state machine
model (FSM).

The experimental tools developed at the University of Montreal are used to partially automate the
process of test development. Tools use the underlying FSM model. Development of a
conformance test suite starts trom a complete SDL specitfication of the Signaling protocol. The
specification is developed from the standard document prior to test development. Using the tool
chain, the FSM model from the SDL specification is extracted, and, based on an FSM test
generation method, a test suite from the FSM model is produced. Test cases for the data part of
the protocol are derived directly from the text in the standard,. The obtained test suite is validated

in the SDL environment against the SDL specification.

The interoperability testing assumes a system of two implementations ot the Signaling protocol
connected via a network. Tests are represented in terms of protocol services. Test development
process is also based on the FSM testing. The behavior of the complete system is represented by a

global FSM, and a test suite is developed form the obtained FSM.

Résume

Le travail présenté dans ce document montre les problémes li€s au développement des suites de
tests de conformité et des suites de tests d’intéropérabilité pour le protocole de signalisation ATM

basé sur le modeéle FSM (machines i états finis).

Des outils expérimentales développés a ['université de Montréal ont été utilisés pour automatiser
partiellement le processus de développement de test. Ces outils utilisent le modele FSM. Une suite
de tests de conformité est développée a partir d’une spécification compléte SDL du protocole de
signalisation. La spécification st développé a partir du document standard avant le développement
du test. En utilisant la chaine d’outils, le modele FSM est extrait a partir de la spécification SDL,
et basé sur une méthode de génération de test FSM, une suite de test est produite a partir du
modele FSM. Les cas de tests de la partie données du protocole est dérivée directement du texte
dans le standard. La suite de test ainsi obtenue est validée a I’aide d’un environnement SDL contre

la spécification SDL.

Le test d’intéropérabilité suppose qu'un systeme posséde deux implantations du protocole de
signalisation connectés via un réseau. Les tests sont représentés comme des services de
protocoles. Le processus de développement des tests est également basé sur une méthode de test
FSM. Le comportement du systéme complet est représenté par un FSM global, et une suite de

tests est développée i partir du FSM obtenu.

Dedicated to my parents who inspired my urge for knowledge

Acknowledgment

[would like to express my gratitude to my supervisors Alexandre Petrenko and Guang Gao. [am
deeply grateful to Alexandre Petrenko, for his expertise in the area and his competent advice
during the research and the preparation of the text. His suggestions and, especially, criticisms have
been of invaluable help. Without his commitment to supervision, this work would have required

longer time to complete.

[am grateful to Guang Gao for his brilliant lectures in computer architecture, from which [gained

technical knowledge and deep understanding of the professional world.

My special thanks go to Greogor v. Bochmann who gave me an opportunity to join his EPAC
group, and do my research project under his team lead. His original ideas, fruitful discussions, and
moral support contributed to this thesis. Also, [thank other members of the EPAC team, Roxana
Marcocci, Jean Zaidan, Omar Bellal and Daniel Oumiet, who have discussed this work during

different stages.

My graduate studies would be much less enjoyable and inspiring without my friends from McGill.
[n spite of originating from different parts of the world, we share the same ideas and attitudes and
we all struggle for the same goal: a meaningful life. Namely, [thank Marcia, Shereen, Madalina,
Taha, Darek. Bora and all my dear friends from McGill for the nice atmosphere that we shared
together. Also, many thanks to Stefan for the long, inspiring discussions; Saso, Snezana, Gligor
and Berta for the immeasurable help and friendship. Also, special thanks to my parents, sister,

brother-in-law and Helena for their unwavering support during my graduate studies.

This work was supported by a grant from consortium EPAC (EICON Technologies, Positron
Fiber Systems, AIKS and CRIM).

CONTENT
CHAPTER 1: INTRODUCTIONccoceeveerrcrnrscnccrccsacens teverasassesesnuntesasnas vesessnnnreeessrnnne 4
CHAPTER 2: PROTOCOL LIFE CYCLE.......ccccccicuirinnicsenenmrassssssissssssisssssnessssssssosssensane 8
2.1 OSI Reference Model 8
2.2 Protocot life cycle 13
2.2.1 ProtoCOI SPECIFICAION. c...oveeeerreceereetiretrcss st cenescn st crtsssstertssnersessssssassrisassssssnsnssssesessasssssnensrnssans 14
2.2.2 Protocol implementation.. - - o &
2.2.3 PrOtOCOL LESHNBcoverrreeeenerreeserseenssesarassensssstnsscsnssssassesamsassnescerssrrerbrssssstsssnsessssssssossssenmmnnsrnrarssssessens L5
2.2.4 Formal description techniques (FDT) and protocol development..........coveiveiimcmicecncrneinniierccnneens 16
2.3 Conformance testing 19
1.3.1 Points of control and observation and test MENOSveveecvemeervecrvcrrerrerressresveerssereness 21
2.3.2 TESE PrOCCULIE OVETVIEW ...occvmnnrirerreriressreresressnassesssserssressasseressesessacesessoosasmsncsssamsassessasessestesserasanesessses o)
2.3.3 DeVEIOPMENE OF (IESE SUIEc.vverreneirrereesseerersensersesseseeresesersssarssssssorasessssssorsasssnsssassssosassssssonssnssssnssnsns 26
2.4 Interoperability testing 29
CHAPTER 3: FORMAL METHODS AND TOOLS FOR PROTOCOL TESTING 31
3.1 FSM-based testing 32
3.1.1 Finite State Machine.................. . vrerennneannennes 32
3.1.2 The FSM confOrmance teStngcoeeeeeereeraserconeeneraesens SRRRRRRRIORIR X,
3.1.3 Test generation MELhOASeoveereceeeeeesieseesecesisnssssensesesssesssesssseseeses crrerresssessseneesne 3D
3.2 Methods for automatic test development from SDL specification 37
3.3 UofMontreal tool chain for automatic test development 39
3.3, OVErVIEW OF tNE L000S. et eeserrsssesssssrnsaessesasse s sssssssessssssssessssssmsossssssssassasesensassresssoes 39
B 3.2 FEX 00l uuncuiiericrrervercereessscsressornacsessesssssssasrsesssssssesssssassssessaressrsesssssnntsassssssstesessssrsosssssensesasssesensrsassnsass 40
F.I 3 TAG H00Leurrrreriresaeristesissensnresssaresssseseasssssssesssesesssesessssssssssrsssssassessoserassssessossssssunasasnssassestsrssassesasasssass 41
CHAPTER 4: THE ATM SIGNALING PROTOCOL AND ITS SPECIFICATION........ .. 47
4.1 ATM protocol architecture 47
4.2 An overview of the Signaling protocol 49
42,1 MESSAEES ...ceeerreceecrneesiissctrvrrsresssecsessssssssssssereens 50
4.2.2 Abstract Service Primitives rreresbessesstisaesbte bt e e s s s b s e sr s e RS se bbb e b b s et 52
4.2.3 Protocol behavior. 53
4.3 SDL specification of the protocol 57
4.3.1 State wable....... . 57
4.3.2 SDL SYSIEM SIHUCIUIE...c.vecneeecnrereeeerisseressesessersrasssscsaressseosessesessssenssssnsssessesesensesnses 58
4.3.3 Data type declarations59

CHAPTER 5: DEVELOPMENT OF A CONFORMANCE TEST SUITE................... eeen 62

5.1 Overview 62
5.2 Extracting an FSM model from the SDL specification 63
5.3 Test method 65
5.4 Identification of test purposes for the control part of the protocol 65
5.5 Application of the tool chain 67
5.6 Test purposes and tests for the data part 72
5.7 Validation of the conformance test suite 76
5.7.1 ObJectives OF VALIUALONcevereecrverrereeereererreesnsessaressessesssessrsessssssssssassessostessassssssssssossssosserssessssnssans 76
5.7.2 SDL VAlIdAtORN SYSIEIML..cvuvenrririeresessiseseresusnsesseseresserssseresssssressssesssssasassassersstsmssssssessssesssasstsssnssesessssssonss 78
5.7.3 ReSUltS Of the VETIICAIONcvveerveeceeeeereeenreseietesceereeeanesessessssssasssssesssessersessesersossessessssersensonsersssasssssssnes 78
5.8 Test grouping 79
5.9 Conclusion 81
CHAPTER 6: DEVELOPMENT OF AN INTEROPERABILITY TEST SUITE................. 83
6.1 Test configuration 83
6.2 The test development process 85
6.2.1 Composing two FSMs heseeesiesisseesesbetesreeteserbesntateasesaeastesbaarsenttentensanes 85
6.2.2 A global FSM for interoperability tESUNEcoeveereverrrrerneereeserectssesiserersstestnsessernsesessresnesassssesssssssessrnes 37
6.2.3 Applying the TAG 100} to the globil FSMoeereeeeeeeeeeeeeee e eeree e neas90
6.2.4 TeSt CaSES FOr the AL PALT.......c.coinvereenceceisriesinsessuereresssroressssesesssssaresesesssrsasssansssssssasersasesesessssssasesans 91
6.3 Validation of the interoperability test suite 92
6.4 Conclusion 93
CHAPTER 7: CONCLUSION.........ccccorerererirnniisnnnressnnassansssanns rereeessessitenesssenestrssssenaanss 94
REFERENCES..............ccccccecrrreernnee cesanenens vereenssnesesecnnes rersesesasnissens ceereereeseres cressssesessenns 96
APPENDIX A: THE FSM MODEL............cccerueernee S cersrrseanesissanranaane vevessnnnrene ... 100
APPENDIX B: COORDINATOR TRANSITIONS AND TESTS FOR COHERENT
TRANSITIONS............ccccennrercmrearenann. cerementessnsansnanns veasesasessnsesessnesssnnsassennnnnnes R [1
APPENDIX C: TEST CASES FOR CONFORMANCE TESTING.ccceceeveerercnennn. 112

[£S]

APPENDIX D: EXAMPLE OF THE DATA PART TESTING.........ccccoeererrncrunnrnsicnanns

APPENDIX E: EXAMPLE TEST CASES FROM THE INTEROPERABILITY TEST

Chapter 1

Introduction

Computer networks offer a number of new, previously unknown services to the residential and
business users such as electronic mail, tile transfer, video conferencing, electronic commerce, etc.
Furthermore, with the appearance of the B-ISDN, which defines a variety of possible broadband
services over the integrated network for voice and data transfer, the market for telecommunication
products has been growing aggressively, and computer networks have become an important

infrastructure for society, bringing immediate commercial potentials.

Recognizing the technology and market potentials, computer and telecommunication vendors have
developed and deployed a myriad of different communication solutions and standards. However, it
was recognized early (1978) that standards for networks of heterogeneous systems were urgently
required in order to ensure interworking of different products. In 1983, the Open System
[nterconnection (OSI) Reference Model became the international standard and from then on was
used as a framework for the development of the OSI communication standards. The idea behind
the OSI is the need for global networking solutions to communicate requirements in a multi-

vendor environment{Davi89]. To achieve this, the core element is to have the development of the

OSI standards and their acceptance as a relevant specification for products by the vendors.
However, today, it is widely agreed that to achieve the OSI goals, conformance testing of the

product to the standard must be an integral part of the OSI efforts.

Conformance testing is a process of assessment whether or not the implementation conforms to
the requirements of the standard. There are two reasons for the need for conformance testing: in
spite of the best ettorts, standards may be unclear in stating the requirements and lead to different
implementations: and. since implementations that conform to standards are more likely to
interoperate, conformance testing increases the confidence in building complex, multi-vendor
networks. A majority of the work in testing networks is related to the protocol testing, as

protocols are an essential part of the communication systems.

Protocols are sets of rules that govern the interaction of concurrent processes in distributed
communication systems. and they are part of the OSI standards. Similar to any other software
product, protocol development goes through three phases (also called the protocol life cycle):
protocol specification, protocol implementation and protocol testing. A protocol specification is
typically broken into its control and data portion, where the control portion is usually modeled by
a finite state machine. Most of the formal work on conformance testing addresses the problem of
testing the control portion and is based on the well-defined problem of the FSM conformance
testing [LeYa96]. However, in practice a protocol specification includes variables and operations
based on the variable values: "pure” FSMs ure not pcwertul enough in a succinct way to model the
protocols. Extended finite state machines (EFSMs), which are finite state machines with variables.
are used to specify protocols. An EFSM with finite variable domains can be looked at as a
"compact” representation of an FSM. Thus, testing of the EFSM can be reduced to testing of the
"pure” FSM by expanding the EFSM in an equivalent FSM. However, for many protocols, this

would lead to the well known problem of "state explosion".

The interest in FSM and EFSM conformance testing grows with the use of Formal Description
Techniques (FDT) for protocol development and standardization of formal languages such as

SDL. Since the FDTs specify protocols in a precise and machine processable form and model the

(W)

protocol with a precise mathematical model, communicating EFSMs, they pave the way to
automated implementation generation and conformance testing. A number of tools have been

developed in recent years to aid the protocol specification and testing.

The topic of this work is test development from the SDL specification of the ATM Signaling
protocol. The experimental tools developed at the University of Montreal are used to partially
automate the process of test development. Most tools use the underlying FSM model, that is, the
behavior of the system to be tested is expressed in terms of states and inputs. and the outputs and

state transitions produced by the arrival of a given input in a given state.

The goal of this work is twofold:

(1) to develop a conformance test suite and an interoperability test suite for the ATM Signaling
protocol using an experimental tool chain developed at UotM:;

(2) to evaluate the effectiveness of the experimental tool chain for test derivation on a real-life

protocol and to identify problems and possible areas for its improvement.

The ATM Signaling protocol is a part of the higher layer protocols in the Control plane of the
ATM stack. [t is responsible for establishing and maintaining a switched connection between the
ATM users. The standard specifying the Signaling protocol is ATM Forum UNI 3.1 document
[UNI3.1]. For parts of the protocol we also make use of Q2931[Q2931] document. The protocol
is specitied in the UNI 3.1 document with 9 states and 8 basic messages. However, the behavior of

the protocol is described using plain English text.

Development of a conformance test suite starts from a complete SDL specification of the
Signaling protocol. Since this work is a part of a bigger EPAC project in which the complete
protocol engineering of the ATM Signaling protocol is done, the specification is developed tfrom
the standard document prior to the test development. Using the tool chain, the FSM model from
the SDL specification is extracted, and, based on an FSM test generation method, a test suite from

the FSM model is produced. Test cases for the data part of the protocol are derived directly from

the text in the standard. The obtained test suite is validated in the SDL environment against the

SDL specification.

As a part of the requirements of the project, an interoperability test suite is also developed. The
interoperability testing assumes a system of two implementations of the Signaling protocol
connected via a network. Tests are represented in terms of protocol services. Test development
process is also based on the FSM testing. The behavior of the complete system is represented by a

global FSM. and a test suite is developed from the obtained FSM.

This document is organized in seven chapters. Chapter 2 discusses the protocol life cycle and in
particular, conformance testing and interoperability testing from the OSI standards point of view.
Chapter 3 presents the formal work related to finite state machine testing and the impact of FDTs
on the automation of the test development. Also, the experimental tool chain of UofM is explained
in this chapter. ATM Signaling protocol and its SDL specification are described in Chapter 4. In
Chapter 5, the experience in developing and validating the conformance test suite is shared. Also.
comments related to the evaluation of the tool chain are presented. Chapter 6 explains the
development of the interoperablity test suite. Evaluation of the tool chain in terms of advantages

and difficulties encountered using it are given in Chapter 7.

Chapter 2

Protocol life cycle

2.1 OSI Reference Model

A protocol is a set of rules governing the exchange of messages between entities in a computer
communication network. Protocols are key components of distributed systems and are generally

complex. They must work correctly for a system to provide expected services [SiCh89].

The Reference Model for Open System Interconnection (OSI), now an I[nternational Standard
published by the International Organization for Standardization (ISO) [1SO7498] and the [TU-T
(formerly, CCITT) [CCITT83], has evolved over the past years as an architectural framework for
the development of communication services and protocol standards. These “OSI standards™ are
intended to facilitate the interconnection of computer systems considered to be “open” by virtue of

their mutual adherence to the standards.

The OSI Reference Model (OSI-RM) consists of seven hierarchical layers, each built on its
predecessor layer, as shown on Figure 2.1. The number of layers implemented in a given system

may vary depending on the function that the system is intended to perform. At the layer N, the

purpose of an (N) - entity is to provide a set of services (called (N) - services) to its upper-layer
entity (that is, (N+1) - entity). Similarly, an (N-1) - entity provides (N-1) - services of an (N) -
entity. These two (N) - entities are peer entities, operating in the two end systems that

communicate.

Layer 7 protocol >

Application |- Application

' '

Layer 6 protocol >

Presentation

Presentation (g
Session @ Layer 5 protocol >

' '

Session

Transport (<= Layer 4 protocol | Transport
Network 4Layer 3 protocol > < Layer 3 protocol | Network

. 9 . soeati 9 .
Datalink ¢L.xycr 2 protocol > Cnn:lrzlt‘:l:;;tlon < Layer 2 protocol | Datalink

' '

Physical ‘quer | protocol > tLgler l pro[ocol) Physical

Figure 2.1: Layered structure of the OSI - RM

An (N)-entity provides (N)-services for its user entity by using and enhancing the services of the
adjacent lower layer entity. [n this model, an (N+1)-entity receives services from an (N)-entity, but
the implementation details and the services of the (N-1)-entity are completely isolated from the

(N+1)-entity. For an (N+1)-entity, all lower-layer entities are referred to as (N)-service providers.

An (N)-function is a part of the activity of an (N)-entity. Flow control, sequencing, data
transformation are all examples of (N)-functions. Cooperation among (N)-entities is governed by
one or more (N)-protocols. An (N)-protocol is the set of rules and formats which govern the
communication between (N)-entities performing the (N)-functions in different end systems. Peer

(N)-entities communicate with each other by exchanging (N)-protocol data units ((N)-PDUs).

Figure 2.2 illustrates the interactions of an (N)-entity with its adjacent upper and lower entities
that are defined at (N)- and (N-1)-service access points, respectively. An (N)-service access point
(abbreviated as (N)-SAP) is a logical interface between (N)- and (N+1)- entities by which service

requests and responses are made.

(N+1) - entity (N+1) - entity

(N) - SAP (N) - ASPs (N) - service provider (N) - ASPs (N) - SAP
\ /

! (N) - PDUs
(N) - entity |- ﬂ (N) - entity

(N-1) - service provider

(N-1) - ASPs (N-1) - ASPs ﬁ

Figure 2.2: Configuration of the (N) - service provider
The (N)-services are offered to the (N+1)-entities at the (N)-SAPs. An (N+1)-entity
communicates with an (N)-entity in the same system through an (N)-SAP. An (N)-SAP can be
served by only one (N)-entity and used by only one (N+1)-entity, but one (N)-entity can serve
several (N)-SAPs and one (N+1)-entity can use several (N)-SAPs Figure 2.3).

10

<@ (N+1) - entities

(N) - services— ™ <& (N)- SAPs

@ (N) - entitics

(N-1) - services — <@ (N-1)- SAPs

Figure 2.3: Entities, service access points and protocols
The OSI-RM spans from the physical media (layer 1) up to application protocols (layer 7). It
accommodates a broad spectrum of media at the bottom (point-to-point such as twisted pair, fiber,
and coaxial cable) switched circuits and broadcast media (such as radio, satellite, and coaxial
buses). These may be integrated into local, metropolitan, and wide area networks (LAN, MAN,
and WAN) by Datalink and Network Layer protocols. Each layer masks the characteristics of
lower layer components and leads to composite services employed by successively higher layers,

which are largely independent of the characteristics of lower layer components.

However, the OSI-RM does not define details of protocols or services. Details of services and
protocols are defined in separate standards for each layer. The OSI-RM does not define
programming interfaces to layer services nor does it address issues local to an implementation of a
protocol in a particular environment. At present, the OSI-RM does not address broadcast or
multipeer services and protocols. However, OSI -RM is not a static entity. Since its adoption as a
standard in 1983, the OSI-RM has been the subject of questions raised by working groups within
ISO and CCITT, with a set of interpretations and answers published as “final answers to
questions.” Based on a five-year maintenance cycle established by ISO for its standards, the OSI-

RM is due to be reissued with revisions and extensions.

The distinction between services and protocols are fundamental to the OSI-RM. At an (N)-SAP,

an (N)-entity interacts with an (N+1)-entity by exchanging (N)-abstract service primitives. At the

11

. conceptual level, exchange of service primitives is an indivisible event. As shown ihigure 2.4,

service primitives are categorized as follows:

- Request: a primitive issued by an (N)-service user to invoke a particular function (for
example, connection establishment, data transfer, connection termination).

- Indication: A primitive issued by the service provider ((N)-layer protocol entity) indicating
that the peer (N)-service user has requested a specific service or function {for example,
connection establishment, data delivery. connection termination).

- Response: A primitive issued by an (N)-service user confirming that a service function
previously requested by its peer (N)-service user and signaled by a service indication may
proceed to completion (for example, connection establishment).

- Confirm: A service primitive issued by a service provider to (N)-layer protocol entity
indicating that services previously requested by the (N)-service user have been completed

or established (for example, connection establishment).

(N+1) - PDUs
(N+1) - entity |- 1 (N+1) - entity

Request Confirm Reply Indication

(N) - service provider

Figure 2.4: Service primitives
Typically, these categories are prefixed by a name denoting the functional aspects of the service
(for example, connect request, connect response, connect confirm, data request, data indication).
During the service dialog, the underlying protocol entities are responsible for exchange of PDUs
to realize the service requests. Conceptually, protocol entities are driven by service requests and
responses from adjacent upper layer users and by data indications from the (N-1)-service provider.
As discussed earlier in this section, the (N)-layer protocol entities respond to these stimuli by

’ exchanging PDUs via the (N-1)-service provider to communicate with each other and realize the

12

(N)-service. They deliver information exchanged between peer (N)- entities to an adjacent upper
layer via indication and confirm service primitives. Assumptions and rules governing the dynamic
exchanges of messages between peer protocol entities are dependent on the functions assigned to
the layer. Service primitives and service access points need not be realized, as such, in an
implementation of a protocol; i.e., they are conceptual entities which are optional in a product.

Thus, their realization is outside the scope of standardization.

A common service offered by all layers consists of providing associations between peer SAPs
which can be used in particular to transfer data (as well as for other purposes such as to
synchronize the served entities participating in the association). More precisely, the (N) - layer
offers (N) - connections between (N) - SAPs as part of the (N) - services. The most usual type of
connection is the point-to-point connection, but there are also multi-endpoint connections which
correspond to multiple associations between entities. The end of an (N)-connection at an (N)-SAP
is called an (N)-connection endpoint or (N)-CEP, for short. Several connections may coexist
between the same pair (or n-tuple) of SAPs. If SAP only services a single (N+1)-connection at one
time, then the SAP may serve as the connection endpoint identifier. However, if the (N)-layer
protocol provides multiplexing of data from more than one (N+I)-entity for each (N)-layer
connection, then a connection endpoint identifier is associated with each (N+1)-connection, and
the (N)-layer protocol must be able to bind each (N+1)-connection to a connection endpoint
identitier within the (N)-SAP. In other words, logically, a SAP is an addressable unit, and
connection endpoint identifiers allow distinction between PDUs destined for different users of the

same SAP.

In summary. the OSI-RM has defined a conceptual framework for discussion, design.
specification, implementation, and testing of protocols. We use the terminology and concepts of

the OSI-RM for specifying and testing the ATM Signaling protocol.

2.2 Protocol life cycle

Activities related to a protocol development are basically partitioned into three groups:

specification, implementation and testing.

K]

2.2.1 Protocol specification

The following two activities may be distinguished within the specification development phase
[Boch87-1]:

(1) Specification creation: These are the activities of creating and updating the representation of
the protocol specifications, which may be in the form of text, graphic representations and/or

formal language code;

(2) Protocol verification: The goal of protocol verification is to ensure that a protocol specification
is free of design errors before it is implemented. As mentioned in Section 2.1, a complete
specification of a protocol layer consists of a protocol service specification and a specification of
protocol entities in that layer. The protocol service specification forms the standard against which
a protocol is verified. The input and output behaviors of a protocol visible at a SAP consist of
sequences of events occurring at this SAP. These sequences can be compared to those generated
from the protocol entity-to-entity interactions to verify that a protocol is consistent with its service
specification. [n general, protocol verification involves proving certain general protocol properties
such uas completeness, deadlock freeness, termination, cyclic behavior, and boundness.
Completeness means that a protocol accepts all possible inputs in each system state. Deadlock
freeness means that a protocol never gets into a system state where no more transitions are
possible and it stays in that state indefinitely. For a terminating protocol, termination means that a
protocol always reaches the final state when it started from the initial state. A non-terminating
protocol should have the property of a cyclic behavior, which means that the protocol can
progress indefinitely. Boundness refers to the property that the total number of messages in the

channel is always less than some fixed number [SiCh&7].

14

2.2.2 Protocol implementation

A protocol specification can be very abstract or quite detailed with respect to a possible
implementation of the protocol in a high level language. An abstract specification generally hides
many implementation level details of a system behavior. A specification of the protocol usually
consist of two parts, namely machine-independent and machine-dependent parts. The machine-
independent part of the specification includes the rules according to which protocol entities
interact in response to incoming communication events and other changes in a system state. This
part can be fully specified for a protocol and implemented as a high level programming language
source code. This can either be done manually or can be automated if the gap between a
specification description and actual implementation is not that large. The machine-dependent part
of the implementation includes such things as the mechanisms for causing and detecting events, the
means of communication between adjacent protocol layers, and memory management. This part
cannot be completely specified for a protocol because it is tied to the machine architecture and the
host operating system. However, once the code is written for this part of a protocol. much of it

can be reused for another protocol running on the same computer system [SiCh87].

2.2.3 Protocol testing

After the implementation phase of a protocol, a given protocol implementation, usually called an
“implementation under test” (IUT), is checked against the protocol specification in order to certify
that the [UT conforms to the protocol specification, which acts as a reference. In the conformance
testing [Boch&7-1], the IUT is stimulated by test inputs which are generated by one or several test
modules. The output generated by the [UT in response to the test input must be observed and
compared with the protocol specification in order to determine whether the observed output is a

possible one according to the specification.

Since the topic of this work is the development of tests, we will discuss the concepts and
framework of the conformance testing in more detail in the following sections. The conformance
proof is a4 necessary but not sufficient condition to guarantee interworking capability of a protocol
implementation [SiCh87]. Therefore, interoperability testing is often performed to determine
whether two conforming implementations can interoperate. [nteroperability testing is discussed in

Section 2.4.

15

2.24 Formal description techniques (FDT) and protocol development

2.2.4.1 Impact of the FDT on the protocol development

The introduction of a new communication protocol, for proprietary systems, as well as for OSI,
requires careful analysis of the proposed protocols and much effort in the development and testing
of the new protocol implementations. [n this context, the use of the formal methods for the
specification of communication protocols and services has received much attention; such methods
allow a more systematic approach to protocol validation, implementation and testing, as compared
to the traditional use of the protocol specification given in a natural language [Boch&7-1]. FDTs

have been developed with essentially two objectives [BoPeY7]:

(1) encouraging the development of precise specifications which do not allow any ambiguities. A
major advantage of using FDTs for protocol specification is that the resulting specifications can be

rigorously analyzed for completeness and consistency:

(2) allowing the partial automation of the protocol development activities:

- Verification and evaluation of the protocol specification: FDTs form the basis for formal
verification of the protocol specification. Verification techniques can generally be classified into
two approaches, synthesis and analysis. The synthesis approach is used when a protocol is
constructed from its informal specification by the application of certain design rules. The analysis
approach is used when the specification of a communication protocol is given and we analyze the
protocol to prove that it satisfies certain desirable properties. State space exploration (also called
reachability analysis) and program proving are two common techniques in this approach [SiCh&9].

- Implementation process: Semi-automatic code generation for a protocol specification can
provide an increased assurance for correct protocol implementations. A suitably defined
transformation technique can translate a large portion of formal specification (i.e. the machine-
independent part) of a protocol into some high - level language code. Semi - automatic generation
has been an active research area [SiBI190, PoSm82, Nash83], look for some more recent examples

- Test development process: Formal methods exist for generating protocol test cases

directly from a formal specification of a protocol. If a formal test generation technique is

16

automated, tests with a certain fault detection capability can be generated economically from a
protocol specification. In Chapter 3, we will focus on the problem of developing test cases
automatically from the formal specification, and we will provide a detailed description of the

automated test selection process.

Realizing the advantages of using FDT for protocol development, organizations such as ISO and
[UT-T have developed standards for three formal specification languages: SDL [CCITT33],
ESTELLE [IS9074], and LOTOS [IS8807]. Also, a number of commercially available tools
(predominantly for SDL) have been developed, supporting the protocol development process
using FDTs. In the following section we describe SDL because it is used in this project to specify

the Signaling protocol. An overview of the SDL tools used is also given.

2.2.4.2 Specification and Description Language (SDL)
SDL is a standard language for the specification and description of systems. The most recent
standard document is SDL - 92 [CCITT92], which is an extension of SDL - 8% in the area of

object orientation.

SDL has been developed for use in telecommunication systems, including data communications,
but actually it can be used in all real-time systems. [t has been designed for the specification and
description of the behavior of such a system, ie. the interworking of the system and its
environment. It is also intended for the description of the internal structure of a system so that the

system can be developed one part at a time.

The underlying model of an SDL specification is an Extended Finite State Machine (EFSM).
EFSMs, which are FSMs extended with variables, have emerged from the design and analysis of
sequential circuits and communication protocols. Its most general form has not only internal
(context) variables, but also input parameters such that a transition can only be executed if its
enabling condition (usually in the form of a predicate depending on input parameters and state

variables) is satisfied.

17

The behavior of the SDL system is constituted by a combined behavior of a number of processes
in the system. A process is an EFSM, that works autonomously and concurrently with other
processes. The cooperation between the processes is performed asynchronously by discrete
messages, called signals. A process can also send signals to and receive signals from the
environment of the system. It is assumed that the environment acts in an SDL-like fashion, and it
must obey the constraints given by the system description. The behavior of a process is
deterministic: it reacts to external stimuli (in the form of signals) in accordance with its
description. A process has a memory of its own for the storage of variables in addition to the state
information, which is not accessible for the user of SDL. A process cannot write in the variables of
an other process. A process has an infinite input queue, where incoming signals are queued. A
process is either in a waiting state or it performs a transitions between two states. A transition is
initiated by the first signal in the input queue. When a signal has initiated a transition, it is removed
from the input queue (and is said to be consumed). [n a transition, variables can be manipulated, a
decision can be made, a new process can be created, signals can be sent (to other processes or to

the process itself), etc.

Data types in the SDL are realized as Abstract Data Types. That means that all data types
(predefined and user defined) are defined in an implementation-independent way in terms of their
properties. The definition of ADT has three components: a set of values, a set of operations on

these values, and a set of axioms defining the operations.

An SDL system can be represented in a graphical and textual form. SDL/GR is a standardized
graphical representation of the system that is used to give a graphical overview. SDL elements
such as signals, processes etc. are drawn using standardized symbols. The graphical representation
is augmented with text for concepts that cannot be represented with graphics (such as ADTs).
SDL/PR is a textual phrase representation of the SDL system; in other words, it is an SDL “source
code” [BeHo88].

2.2.4.3 SDL tools
SDL commercial tools, such as SDT[SDT] {} and GEOD[GEODY]{], provide integrated graphical

environments for developing an SDL system. Tools consist of a number of functional components:

18

(1) Graphical editor for creating and editing the SDL system;

(2) SDL checker that finds syntax and static semantic errors in the SDL code;

(3) SDL simulator that simulates the system in the graphical environment;

(4) SDL tools that provide a C code builder that automatically generates a C/C++ code from the

SDL specification for different target platforms.

SDL tools (in particular GEOD and SDT) were extensively used in this work for the specification
of the Signaling protocol, and validation of the test suite was developed using the tools presented
in Section 3.3. Since the GEOD SDL simulator was employed for test validation, in the following

paragraph we give a more detailed description of its capabilities.

The GEOD SDL simulator can run in three simulation modes: interactive, random, and exhaustive.
These three modes may be mixed during the same simulation session. For each of these modes, the
simulator generates scenarios containing the results of the verification (deadlock detection etc).
These scenarios can be replayed in interactive mode and expressed graphically in the form of
Message Sequence Charts (MSCs) [MSCY4]. The three simulation modes are discussed below:
(1) The interactive or step-by-step mode provides a fine-grained simulation. The user is free to
decide which parts of the design to execute and to move up and down the simulation process with
the Undo and Redo commands. Like conventional debuggers, the simulation offers a graphical
view of the design being executed, indicates the current position in the corresponding MSC, and
produces results in real-time. This mode was used for the test validation;

(2) The random simulation mode derives a pattern from a number of patterns provided by the
developer to explore some of the possibie application behaviors;

(3) The exhaustive mode requires the simulator to explore all behavioral paths.
[n this mode, the simulator checks all verification properties. If a violation is detected, a scenario is

created, which describes how to get to the faulty condition.

2.3 Conformance testing

The objective of the OSI is to enable heterogeneous systems, implemented in different and
independent ways, to interwork with one another [Knig87]. If this objective is to be met, two

issues are of great importance: standards that define the systems should be written in a precise and

19

unambiguous way, and the user should have a certain guarantee that the procured system complies
with the standard requirements that the system vendor claims to satisfy. Here we are concerned
with the second issue: how to test a protocol implementation in order to determine its

conformance to the protocol specification.

As discussed in Section 2.2.3, conformance testing is a third phase of the protocol life cycle.
Realizing the importance of the conformance testing for the objectives of the OSI, ISO worked on
the standardization of the testing methods and concepts. Standardization efforts, which resulted in
a five-part standard [[SO9646], identify the issues regarding the conformance testing process. In
the rest of this section, concepts and framework of the conformance testing are introduced as they

are defined by [SO.

A standard document defines a protocol by a set of requirements that should be met by a
conforming protocol implementation. Conformance requirements fall into two groups [Rayn¥7]:
(1) Static conformance requirements are those that define the allowed minimum capabilities of an
implementation in order to facilitate interworking;

(2) Dynamic requirements are all those requirements (and options) which determine what
observable behavior is permitted by the relevant OSI protocol standard(s) in instances of

communication.

Before the test laboratory may proceed with the conformance testing of the protocol. the client (in
the OSI terminology a vendor of the implementation is a client for the test laboratory performing
the testing) should provide or complete two documents. The Protocol Implementation
Conformance Statement (PICS) is a statement made by the supplier of an OSI implementation
stating the capabilities and options which have been implemented, and any features which have
been omitted. It is needed so that the implementation can be tested for conformance against
relevant requirements, and against those requirements only [Rayn87]. PICS is a document that
should accompany the protocol implementation. In order to provide more information about the
particular implementation, the client should supply the Protocol [mplementation Extra Information
for Testing (PIXIT). PIXIT provides information about the execution environment, addressing

information, identification of the implementation, and other information necessary to run the tests.

20

2.3.1 Points of control and observation and test methods

In the conformance testing of communication protocols, the implementation under test (IUT) is
tested as a black box. That is, the implementation details of the [UT are invisible to the external
tester, leaving the implementator a freedom to decide about the internal design. As explained in
Section 2.1, the OSI protocol standards define allowed behavior of a protocol entity in terms of
the PDUs and the ASPs both above and below the entity. Thus the behavior of an (N)-entity is
defined in terms of the (N)-ASPs and (N-1)-ASPs (the latter including the (N)-PDUs) [Rayn&7].
These ASPs define the externally controllable and observable behavior of the protocol
implementation. Therefore, conformance testing of the protocol implemented in the (N) - layer is
pertormed by applying the ASPs that are defined as inputs and observing the ASPs that are defined
as outputs at the (N) - and (N-1) - SAPs.

The points where the exchange of the (N)-PDUs, (N)-ASPs, and (N-1)-ASPs can be observed and
controlled are called points of control and observation (PCO). In some instances, ASPs above the
protocol are neither accessible nor controllable. directly or indirectly. It is assumed that (N-1)-
ASPs are directly or indirectly controllable and observable by the tester. In the cases when (N-1)-
ASPs are not directly controllable, conformance testing assumes that (N-1) - ASPs are sufficiently
reliable to perform the testing remotely. The conformance test methods that are defined by ISO

are based on the availability of PCOs in a given protocol [UT [ISO9646].

Conceptually, test methods are realized by a lower and an upper tester. The lower tester (LT)
provides control and observation of the (N-1) - ASPs that are exchanged at the local lower [UT
interface or at the remote interface of the service provider. The upper tester (UT) provides control
and observation of the (N) - ASPs that are exchanged at the upper [UT interface. If LT and UT
are realized as distributed entities, a test coordination procedure (TCP) governs the cooperation of

the LT and UT during the testing.
Test methods can be grouped into two classes: a local test method that acts on the PCOs that are

immediately above and below the [UT, and an external test method that acts on the PCOs that are

remote from the IUT, for example, on the other side of the service provider. For single layer

21

testing, there is only one local test method and three external test methods: distributed test

method, coordinated test method and remote test method, defined as follows [Linn90j:

- local test method: This method defines the PCOs as being at the service boundaries above
and below the (N) - entity under test. The test events are specified in terms of (N) - ASPs
above the IUT and (N-1) - ASPs and (N) - PDUs below the [UT, as shown in Figure 2.5;

Upper

tester (N) - ASPs
Lower @

tester (N) - PDUs

Figure 2.5: Local test method

- distributed test method: the [UT does not have an accessible PCO at the lower interface.
This method defines the PCOs as being at the service boundaries above the (N) - entity
under test and at the opposite side of the (N-1) - service provider {Rayn87]. (N-1) - ASPs
and (N) - PDUs are controlled and observed at the remote end of the (N-1) service

provider. LT and UT are realized as separate processes (Figure 2.6);

Test coordination Upper
_procedures tester

Lower (N) - ASPs
tester

e

(N-1) - ASPs

(N-1) - service provider

Figure 2.6: Distributed test method
- coordinated test method: this method is similar to the distributed test method. It is

distinguished by two features from the distributed test method: no exposed upper intertace
is necessary within the [UT; and a standardized test management protocol and test
management protocol data units are used to automate test management and coordination
procedures. Exchange of the test management data units may be in-band, through the same
channel as the protocol being tested. or out-band, through a reliable independent channel

(Figure 2.7):

""""""""""""" Upper

tester
Lower

tester

Ryt e T

(N-1) - ASPs

(N-1) - service provider

Figure 2.7: Coordinated test method

- remote test method: this method defines the PCO as being on the opposite side of the (N-
1) - service provider form the (N) - entity under test [Rayn87]. The [UT does not have any
exposed upper PCO and the TCP is used. The LT and UT are synchronized by the

protocol being tested (Figure 2.8).

—_— — —

b = - - - - e - - - - m - - m - -

Test coordination , Upper |
_______ _procedures | tester |

Lower F--—-----------------/
tester <¢4—— (N)-PDUs —p

--------------------- IUT
(o]

(N-1) - ASPs

(N-1) - service provider

Figure 2.8: Remote test method

2.3.2 Test procedure overview

The test procedure (also called conformance assessment process [ATMF94]) is given in [SO/IEC
9646-1 [ISO9646]. It can be summarized in the flowchart shown in Figure 2.9. There are five

main steps in this procedure [Rayn87].

Protocol
Standards

PICS .
for [UT =1 Analysis of PICS j-@-

I

I

J

|

i Static
| requirements
i

|

!

|

Dynamic
requirements

PIXIT . Y {

for [UT | | Testsclection fel— Conformance test suite

Y

Conformance testing

v

Analysis ot Results jall—

Y

Final Contormance Review
Test Report Production

Figure 2.9: Overview of the test process

The first step is the analysis of the PICS accompanying the [UT. The PICS will be analyzed for its
own consistency and for its consistency with the static conformance requirements specified in the

relevant standard(s).

The second step is test selection. During the test selection, the PICS and PIXIT are used to select
the appropriate abstract test cases from the existing conformance test suite and to parameterize
them using the PIXIT information. An abstract test case is a test case that defines the sequence of
the test events in a form that is independent of the target implementation platform. During the
second step, abstract test cases are converted into corresponding executable test cases suitable for
the intended real tester. This conversion can be done before or after the selection and
parameterization. The result of conversion, selection and parameterization is called a

parameterized executable test suite, which is the actual test suite to be run.

The third step is the execution of the parameterized test suite.

The forth step is the analysis of the results. This may in fact be interleaved with the execution of
different groups of test cases, but it is easiest to think of it as coming after the test execution step
is over. The observed outcome is the series of events which occurred during execution of a test
case. The foreseen outcomes are identified and defined by the abstract test case specification taken
in conjunction with the protocol standard. A verdict is a statement of pass, fail or inconclusive to
be associated with every foreseen outcome in the abstract test suite specification. The analysis of
results is performed by comparing the observed outcomes with foreseen outcomes, and a

statement ot verdict is passed.

The fitth step is the final conformance review, which involves a synthesis of the results of the
behavior tests with what has been learned form the analysis of the PICS. The conclusion on the
conformance of the [UT to the requirements of the standards(s) can be reached, and results are

recorded in standardized Conformance Test Reports [Rayn¥7].

2.3.3 Development of a test suite

A test suite is the collection of test cases that have narrowly defined purposes, such as to verify
that the IUT has a certain required capability (e.g. the ability to support certain packet sizes) or
exhibit a certain required behavior (e.g. behaves as required when a particular event occurs in a
particular state) [Rayn87]. A test case consists of a sequence of test events, where a test event is
an automatic interaction between the [UT and the LT or UT, including the expiration of timer. A

test case specifies the input sequence that is “fed” by the UT or LT to the [UT and the expected

26

output sequence that should be observed by the testers. If an [UT produces the expected

sequence, it is said that the [UT passed the test case.

A test purpose describes the objective of the corresponding test case. A test purpose can be
derived directly by studying the relevant protocol standard, or, as in the cases of the automatic test
selection process, test purposes can be associated with the transitions of the FSM model of the

protocol.

A test suite is often organized in the collection of nested test groups. Each test group consists of a
number of test cases that are related to the same logical grouping of protocol functions. For
example, test cases that correspond to the connection establishment functions of the protocol
should belong to one test group. A test group can be refined into an unlimited number of nested
subgroups which relate to different subsets of a protocol function. Test groups may be used to aid

planning, development, understanding and execution of test cases [Rayn&87] Figure 2.10).

Test suite
T oo
Test groups
Test cases
(T1T T1T 7T
Test steps
Test events

Figure 2.10: Test grouping

Standardized test suites are usually expressed in the form of an abstract test suite. An abstract test

case may consist of three components:

(1) Test preamble defines necessary events to bring the IUT into the desired starting state to
achieve the purpose of the test case;

(2) Test body defines test events that are needed to achieve the test purpose (in the case when the
test purpose corresponds to a transition from the state table, the corresponding transition is
realized by the test body) and;

(3) Test postamble that is used to put the [UT into the starting state from where the next test case
will start. Some test development methods require a protocol to have a reliable reset function that

will bring the protocol to the initial state.

[SO and [TU-T have developed the Tree and Tabular Combined Notation, TTCN, [TTCN} as a
standardized test notation. It was originally designed for human readability, with the ability to
detine all the relevant paths through test case and assign verdicts to each. An abstract test suite
can be written also using formal languages or some “ad hoc™ techniques. A number of tools exist

for ranslation from one of these “informal” test notations to a TTCN.

The goal of test suite development (called also test suite production [Rayn87]) is to generate a test
suite for a particular protocol standard. In Figure 2.9, this process is represented as an edge from
the protocol specitfication to the conformance test suite. The process of test suite development is
not standardized by ISO. A test development process is often a manual derivation of a test suite
trom the standard document. However, automated tools exist today that help the test developer in
developing tests. [n general, a test development process starts with the study of the relevant
standards to determine the conformance requirements. Often, the test developer derives the state
table of the protocol as a base for the generation of test sequences. The test developer decides
which test groups will be needed to achieve the appropriate coverage of the conformance
requirements and refines the test groups into sets of test purposes. Afterwards, tests are derived

using some test development method, or, still a common practice, the test developer derives tests

based on his/her knowledge about the protocol and experience in testing. The result is a test suite

used for conformance testing of the protocol implementations.

[n conformance testing, an [UT that fails one of the test cases from the test suite is not conforming
to the standard. If, however, the IUT passes all of the test cases, we still cannot claim the
conformance unless we are confident that the conformance test suite used covers all possible faults
in the [UT. The objective of the test development process is to generate a test suite that will have
a complete or almost complete coverage of all possible errors in [UTs. It is obvious that this
objective is not easy to realize, as the size of a test suite could be too big to be used in practice. A
more pragmatic solution is to perform so-called interoperability testing in addition to conformance

testing.

2.4 Interoperability testing

The problem of interoperability arises when end - users need to interconnect equipment trom
different manufacturers and to have a certain confidence that these pieces of equipment can
interoperate [ATMFY4]. The purpose of interoperablity testing is to confirm the degree of

interoperability.

Interoperability testing is a process supplementary to conformance testing. While conformance
testing involves testing of only one [UT, interoperability testing considers a system under test
(SUT) of two or more interconnected [UTs. From the point of view of the OSI - RM,
interoperability testing determines the functionality of a service provider that consists of two or
more connected [UTs with a communication network between them. The generic testing
configuration [ATMY4] is given in Figure 2.11. The availability of the Monitor points is not
guaranteed for every test configuration. Some test configurations may have access to Monitor
points C and E. For “third-party” testing, the connections between the two [UTs may be a physical
communication line, and, consequently, accessing the Monitor point D would be practically
difficult or unfeasible. However, specialized testing equipment may help to make all three points

accessible.

Tester A Tester B

R N
Monitor C T | T Monitor E

Monitor D

Figure 2.11: Generic testing configuration

Designers of the OSI model claim that OSI protocols are constructed in such a way that
conformance implies interoperability [[SO7498]. On the other hand, practical experience has
shown that pieces of equipment from different manufacturers, which are claimed to conform to the
same protocol standard, may nevertheless be unable to communicate with each other [ArPh92|.
For two [UTSs to interoperate, two situations can be observed which can impact their ability to do

SO.

(1) The two IUTs implement the same mandatory features/functions, but differ in regard to
optional and unspecified ones. In this case, even two conforming [UTs may not interoperate
because their ability to interoperate depends on the optional and/or unspecified features;

(2) The two [UTs implement different mandatory features/functions. [t is obvious that these [UTs
are not conforming to a standard, but if there is sufficient overlap, the two [UTs may still be able

to interoperate.

[nteroperability testing does not include assessment of the performance, robustness, or reliability
of an implementation. The interoperability testing is of great importance for the user of the [UTs
that are realizing the (N) - service provider. The user is interested in the expected behavior of the
underlying service provider and not so much in the conformance of the individual implementations
of the (N) - protocol entities. However, conformance of the [UTs to the standard will increase the

likelihood that they can interoperate.

30

Chapter 3

Formal methods and tools for protocol testing

It is widely recognized that a test develonment process should be based on a well-founded
theoretical tramework in order to produce a test suite of a satisfactory quality. In the previous [0
years, there was an extensive research work related to the process of test development. Most of
this work was based on the FSM model-based testing, a topic rooted in problems related to state
identification and fault detection for sequential circuits [Henn64|. More recently, the extended
FSM model was used for protocol development, verification, and testing. Actually, the use of
formal specifications of protocols opens the possibility for automatic or semi-automatic
development of a test suite from a protocol specification. A number of different techniques have
been proposed for automatic development of tests from the protocol specification expressed in one
of the formal languages. Test development methods based on the FSM and the use of FDT in test
development are discussed in more detail in the next section, followed by a description of the test

development method used in this work.

31

3.1 FSM-based testing

3.1.1 Finite State Machine

A finite state machine is an abstract model for the description of the behavior of a system as a
sequence of events that occur at discrete instants, designated t = I, 2, 3, ... Let us consider
machine M that has been receiving input signals and has been responding by producing output
signals. If now, at time t, we were to apply an input signal X(t) to M, its response Y(t) would
depend on X(t), as well as on past inputs to M. Since a given machine M might have an infinite
variety of possible histories, it would need an infinite capacity to store them and, consequently,
machine M might need an infinite number of states to describe the behavior of the system.
However, the past histories of a system described by a finite state machine can affect its future
behavior in only a finite number of ways. In other words, a finite state machine can distinguish
among a finite number of classes of input histories referred to as the internal states (or simply
states) of the machine. Every finite state machine, therefore, contains a finite number of memory
devices, which store the information regarding the past input history. The formal definition of a

tinite state machine, often simply called a machine, is given as follows:

A finite state machine M is a 7-tuple, denoted as M =<X. Y, S, 5, D, 8, A>, where
X is u finite set of input symbols;

Y iy a finite set of output symbols;

S is a finite set of (internal) states;

s; € S is the initial state;

D ¢ S x X is a specification domain;

d: D --> S is the transfer function (also called the next state function);

A: D --> Y is the output function.

[ntuitively, the input symbol set X represents all the possible input values that an input signal X(t)
can take at discrete time instants, while the output set Y includes all the possible output values that
an output signal Y(t) can take at discrete time instants. The state set S represents all the internal

states that the FSM may experience.

The transfer function § and the output function A together characterize the behavior of the FSM.
As & and A are required to be functions, the FSM model defined is deterministic. More specifically,
for each (s, x) € D, there should exist exactly one state s; € S and exactly one output symbol y €
Y such that 8(s;, Xx) = s; and A(s;, X) = y. In this case, it is said that there is a specified transition
from state s; to s; with input x and output y. Such a transition is usually written as s; -x/y-> sj.
Usually, s is called the head (or starting) state and s; is called the tail (or ending) state of the

transition.

[t should also be noted that if the specification domain D = S x X, then the transfer function & and
the output function A are defined for all the state-input combinations and accordingly the FSM is
said to be completely specified (or completely defined). On the other hand, if the specification
domain D < S x X, then there should be some state-input combinations for which the transfer
function & and the output function A are not defined and consequently the FSM is said to be

partially specified (or partially defined).

An FSM can be given in the form of a state table. States and input symbols are used to name the
rows and columns, respectively. A state/output pair iy, appeared at the location of row s; and
column x, implies that there is a transition s; -xi/yi-> s;. The symbol *-" is used to denote that the
transfer function or the output function is not defined. Accordingly, the pair *-/-" is used to
represent the case that neither the transfer function nor the output function is defined. A more
commonly used approach is to describe an FSM as a directed graph called the state diagram, with
the states and transitions of the FSM represented by the vertices and arcs of the graph,

respectively.

3.1.2 The FSM conformance testing

[n the FSM conformance testing, we have complete information about the specification machine
A; we have its state transition and output functions in the form of a transition diagram or state
table. The implementation machine B is a “black box” that can be observed only through its I/O
behavior. The goal of the FSM conformance testing is to design a test that will determine whether

B is a correct implementation of A (B is equivalent to A) by applying the test sequence and

33

observing the outputs {LeYa96]. Obviously, without certain assumptions the problem cannot be
solved; for any test sequence we can easily construct a machine B, which is not equivalent to A
but produces the same outputs as A for the given test sequence. There is a number of natural

assumptions about the specification and implementation FSMs [LeYa96].

Assumptions that are made about the specification machine A (which is deterministic by default)
are basically about its following structural properties:

(1) completeness: if A is completely or partially specified;

(2) connectedness: if A is strongly or initally connected;

(3) reducibility: if A is reduced or non-reduced.

Another class of assumptions is about the types of faults (i.e. the fault model [Boch92, More9Y0|)
that can be present in an implementation. Implementing a system modeled by the given
specification machine A can be considered as a process during which the developer makes various
changes to the specification machine A. Such changes may introduce undesired behavior of the
system and make the system invalid. For the FSM model presented in Section 3.1.1, we have in
general the following four types ot changes that can be made by a developer:

Type I: change the tail state of a transition;

Type 2: change the output of a transition;

Type 3: add a wansition; and

Type 4: add an extra state.

Without imposing any restriction on the types of faults, the number of all possible invalid
implementations of the given specification A is infinite. A finite set of mutant FSMs which can be
constructed by introducing a number of changes (Types 1-4) is called a fault model. A test suite is
said to have a complete fault coverage for a given fault model if it gives the fail verdict for any

nonconforming implementation from the fault model.

The existing test generation methods, discussed later, are based on the assumptions concerning the
specification machine A; a particular test generation method is applicable only to the class of the
specification machines that satisfy the assumptions. Similarly, given an implementation machine B,

a particular test generation method should usually be capable of detecting errors in the

34

implementation that can be modeled with one or several of the fault types introduced above.

However, some of the existing methods detect all four types of errors.

3.1.3 Test generation methods

In the following, we give an informal description of five fundamental test generation methods.
Today, a number of modifications, improvements and optimizations for these five methods exist in
the literature. For a more complete, updated description of test generation methods, the reader

should refer to [PeBoYaYy6].

Most of the existing test generation methods are based on a certain kind of state identification
facility. State identification facilities are certain input/output behaviors that can distinguish a given
state trom the other states in an FSM at hand. The key point ot FSM-based testing is how to use
some state identification facility derived from the specification machine A to identify the different

states in the implementation machine B.

Most of the methods perform the testing in two phases. [n the first phase, the state identification
facility derived from the specification machine A should be applied to the implementation machine
B to check if it can also properly identify the states in the implementation. If the implementation
cannot pass the first phase of testing, then the implementation does not conform to the
specification and accordingly no further test is required. On the other hand. if the implementation
passes the first phase of testing, then it can be concluded that:

(1) the state identification facility is capable of identifying the state in the implementation; and

(2) each state in the implementation corresponds to a state in the specification.

Once the implementation passes the first phase, the second phase tests if the output and next state
of each transition is correctly implemented. In particular, the correctness of the next state of a
transition can be verified with the state identification facility as it has already been checked in the

first phase that the facility can properly identify all the states in the implementation.

A number of test development methods have been proposed for protocols that are specified with

the FSM model. These methods are classified as the Transition Tour method (T - method)

35

[NaTs81], UTOv-method [Vuon89], D-method [Gone70], W-method [Chow78], and HS[-method
[Petr91].

The T-method is relatively simple; the test sequence produced by this method is a transition tour
of the FSM for a protocol. This method only requires that the specification machine is initially
connected. This method aims at detecting all the output faults in the absence of any transfer faults.

Accordingly, it cannot provide complete fault coverage.

The other methods are more sophisticated and implement the two-phase testing approach. They
not only check the implemented output of each transition, but also verify whether the tail state of
each transition is correct or not. The state is verified using state identification sequences. These
are a distinguishing sequence (DS), unique [/O sequence (UlO), characterization set W, and
harmonized state identifier (HSI) for the D-method, UIOv-method, W-method, and HSI-method
respectively. [f the corresponding state identification exists for a given FSM, all methods can

provide complete fault coverage.

The D-method assumes that the machine is minimal, strongly connected. completely specified and
possesses a distinguishing sequence (DS). An input string o is said to be a distinguishing sequence
of a machine A if the output string produced by A in response to a is different for each starting

state. D-method is restricted to those FSMs that have a DS.

The UIOv - method also assumes that a machine is minimal, strongly connected, and completely
specified. [t involves deriving a unique input/output (UIO) sequence for each state of A. A UIO

sequence for a state of A is an I/O behavior that is not exhibited by any other state of a machine A.

The W-method is based on a W-set for state identification. A W-set is a characterization set that
consists of input sequences that can distinguish between the behaviors of every pair of states in the
FSM [Chow78]. The original version of W-method [Vasi73] assumes that the specification
machine A is minimal, deterministic, initially connected and completely specified. The W-set exists

for any minimal and completely specified FSM.

36

The HSI-method [Petr91] uses a harmonized state identification facility (HSI) that exists also for
partially specified machines that are minimal. An HSI, written as H = < Hy, Ha, ..., Hy> satisfies the
following:

(1) Hi is a set of permissible sequences for the specification machine A;

(2) For any two state identifiers H; and H;, there exist two sequences, one from H; and the other
from H;, which have a common prefix that distinguishes state sfrom state s;.

HSI is the most general state identification facility and includes as special cases DS, UIO and W -
sequences. Apparently, if H; = Ha = ... = H,, then HSI is a W-set. [f, in addition, all H sets consist

of one sequence, then HSI is a DS. When a set H; consists of only one sequence, it is a UIO.

The above methods are focused on testing FSMs. An FSM models only the control part of a
protocol (also called the FSM part). In reality, protocols often have variables and actions that are
based on the variable values. Formal techniques, based on EFSM. have emerged as more powertul

tools to model the protocols, and, consequently, to tacilitate the protocol testing.

3.2 Methods for automatic test development from SDL specification
A formal specification, such as an SDL specification, can be used for the following activities

[BoPeY7]:

(1) Test suite development: Semi - automatic development of test purposes, an abstract test suite
(written in TTCN, SDL or some ad hoc notation, possibly including sequences of API calls) and

their automatic translation into executable tests;

(2) Test suite validation: The specification can be used as a “reference implementation” to check
the correctness of newly developed test cases using a simulated execution environment provided

by existing SDL tools.

Test suite validation can be performed using the commercial SDL tools. However, there is no
general solution for automated test development. In the following paragraph, we concentrate on
the problem of automated derivation of tests from a given SDL specification, and present the

alternative approaches to the problem.

37

[t is a well-known difficult problem to derive a parameterized input sequence which either
transfers an EFSM to a desired state or which distinguishes a pair of states [BoPe97]. Compared
with the classical FSM model, the EFSM model may provide a very compressed behavioral
description of the system, but at the same time, it is much less tractable for verification and test
derivation purposes. If certain limiting assumptions are made about the form of the predicates and
actions, the analysis of the behavior of the specification and systematic test selection remains
decideable [Higa94], but in general, in particular when the actions may include loops, the question
of deciding which input parameters should be used to force the execution of a particular transition
becomes undecideable, like the question of deciding the executability of a given branch of a

program in software testing.

One possible approach to deriving tests from the EFSM is to employ the dataflow analysis.
According to this approach, a control tlow graph and data flow graph are constructed from the
EFSM. Test sequences are generated by constructing subtours of the control flow graph. To make
test sequences executable, information from the data flow graph is used to parameterize inputs and

to initialize the context variables [SaBo87].

An alternative approach is to view an EFSM as a compressed notation of an FSM. The intention
behind this approach is to retain the applicability of the FSM-based methods to generate tests
[BoPe97]. With this approach, at least three solutions exist to obtain a more tractable state-
oriented specification:

(1) to derive a pure FSM by ignoring all the extensions (parameters, predicates, and actions) to the
basic FSM model;

(2) to unfold the EFSM into an FSM by expanding the values of the input parameters and context
variables;

(3) to extract an FSM by a partial unfolding of variables of enumerated types, while using enabling

conditions as a part of the corresponding FSM inputs.

The main drawback of the first option is that all the tests derived from the obtained FSM should be
verified for executability. The second option, a straightforward unfolding of an EFSM, easily leads

to an explosion of the number of states and inputs.

38

The test selection process used in this work is based on the approach that views an EFSM as a
compressed notation of an FSM. More precisely, we approximate the behavior of the SDL
specification by an FSM (called an approximating machine), where an input of the FSM
corresponds to the pair of an input signal and an enabling condition (if any), while states of the
FSM mostly correspond to the control states of the SDL specification, except for unfolded states.
which are control states augmented with values of enumerative variables [BoPe97]. This approach

is implemented in an experimental test derivation tool developed at University of Montreal.

3.3 UofMontreal tool chain for automatic test development

3.3.1 Overview of the tools

A number of different experimental tools [BoPe97] have been developed at the University of
Montreal for partially automating the test development process. Most tools use the underlying
FSM model, that is, the behavior of the system to be tested is expressed in terms of a number of
states and inputs as well as and the outputs and state transitions produced by the arrival of a given
input in a given state. These tools are therefore useful for systems that can be characterized by

FSM-oriented specifications. such as communication protocols.

In the following section, we focus on a chain of tools for the development of test cases trom SDL

specifications, as shown inFigure 3.1.

39

SDL
/ Specification Document
%/
FEX @ /

\ FSM model

TAG
{Automatic Test
@/ Generation)

- Test suite
(mnemonic form or SDL

@ skeleton)

Completed Test
Cases (SDL)

a

Figure 3.1: Test suite development from SDL specifications

SDL Validator
(commercial tool)

The middle column in Figure 3.1 shows the description of objects leading trom the formal
specification in SDL to the parameterized, SDL executable test cases. On the left and on the right.

the tools shown that can be used during the test development process.

3.3.2 FEXtool

The first tool, called FEX (FSM Extractor), extracts trom the SDL specification a partial view of
the behavior represented in the form of an FSM (an approximating machine). At the same time,
files containing SDL declarations of interactions (called "signals") and channels are created which
can later be used to obtain complete test cases written in SDL. The FEX tool generates an FSM
transition for each branch of each SDL transition in the specification; thus each branch
corresponding to a particular input and particular conditions of the input parameters gives rise to a
separate transition (for each state of the specification). We note that the resulting FSM model is
quite similar to the "test matrix" which is commonly used for the manual development of protocol

conformance test suites.

40

3.3.3 TAG tool

3.3.3.1 Overview

The TAG (Automatic Test Generation) tool [Tan96] is a generic tool for test suite development
based on FSM specifications. The TAG tool implements the HSI method [Petr91], discussed in
Section 3.1.3. It accepts as input a partially specified, deterministic FSM and generates test cases
according to the options provided by the test designer. The options include the tollowing:

(1) Automatic generation of a complete test suite with guaranteed coverage of output and transfer
faults (assuming that the number of states of the implementation under test (IUT) is not larger than
the number of states of the specification);

(2) Generation of tests for a specific transition (corresponding to a given "test purpose”) selected
by the test designer;

(3) The use of state identification sequences for checking transfer faults is optional;

(4) Separate generation of test preambles, postambles and state identification sequences;

(5) Generation of tests for grouped transitions (corresponding to a single SDL transition having
several starting states. or several input signals, further discussed in Section3.3.3.2);

(6) Generation of tests related to timers (setting, resetting and time-out transitions, further

discussed in Section 3.3.3.3).
The TAG tool supports several output formats for the generated test cases:

(1) /O sequences (mnemonic form): The mnemonic form represents a test case as a sequence of
input and output events trom the tester. Each event is represented with a descriptive name and is
written in a new line. The output of the tester is distinguished with the prefix sign ! in front of the
event name, while the expected input is prefixed with the sign ?. This format is easy to read and

relatively condensed.

(2) SDL skeletons: The generated SDL skeletons represent test cases (preambles, postambles and
state identification sequences). They are complete SDL procedures, except that the details
concerning the signal parameters are not included. (Note: If the SDL signals of the specification

have no parameters, the generated SDL skeletons are complete SDL procedures).

41

(3) TTCN-MP skeletons: The generated skeletons represent test cases, preambles, postambles and
state identification sequences. They are complete TTCN dynamic behavior trees, except that the

details concerning the signal parameters are not included.

The generated test suite (in SDL or in TTCN) must often be completed by the test developer in
order to add the information concerning the signal parameters. Often, when a signal is received by
the tester, input parameters have to be checked for correct values. Also, before a signal is send

from the tester, correct values of the output parameter have to be determined.

The final development step shown in Figure 3.1 is the validation of the obtained test cases against
the original SDL specification, using an existing SDL development environment. This step is not
automated by the experimental tools and requires manual modifications of the test cases by the test
developer. More details about this step and testing of the data part of the protocol will be given

when we discuss conformance testing of the Signaling protocol (Chapter 5).

3.3.3.2 Coherent transitions resulting from SDL specifications

In spite of the fact that state/transition explosion does not usually occur when an approximating
machine is derived from an SDL specification, the number of transitions specified in the obtained
machine can yet be very high. As a result, the total length of tests derived by means of the TAG
tool could be quite large as well. This often happens when a single transition of the given
specification yields in the resulting machine multiple similar transitions having the same output.

The basic idea is to test only one (or a few) transition among a set of similar ones.

[t is well known that a single statement in SDL may be used to describe multiple transitions. For
example, the fragment
state * (s1, s2, s3);
input il, i2;
output o;

nextstate s4;

corresponds to many transitions from all states, except sl, s2, s3, under input il or i2. Each of
these transitions has the same output 0 and leads to the same next state s4. We call such a group

"o

of transitions convergent transitions. If the next state is specified as "-" (meaning to remain in the
same state), then the statement describes the set of transitions which we call a group of looping

transitions. [n addition, the symbol "*" may be used to describe the whole set of inputs.

In general, we call a group of convergent or looping transitions a group of coherent transitions.
These groups can be distinguished according to the sets of starting states and/or the sets of inputs;
all transitions of a group have the same output. The information about coherent transitions may
either be deduced automatically from a given SDL specification or given by the test designer in the

form of a list of coherent groups (in addition to the list of individual transitions).

The extended TAG [Main96] tests a single representative among convergent transitions. In
particular, it is assumed that if a single transition has a fault then all coherent transitions in the
group are faulty: all of them have a wrong output and/or wrong tail state. Testing just one among
the group would be sutficient. Theoretically speaking, fault detection power of the resulting test
suite may not always correspond to what is often called “complete fault coverage™ [BochY4|.
However, deriving tests only for selected transitions gives a good tradeoff between the length of

tests and the fault coverage.

3.3.3.3 Handling timers and related counters

Error-recovery functions of communication protocols often rely on timers which invoke limited
retransmission of PDUs. At the expiration of a timer, a specific output is sent and the timer is
restarted if the maximum number of retransmissions is not yet attained. If the maximum number is
reached, usually a different transition with a different output is taken, for example, to release the

current connection. Certain input messages may stop a running timer.

The classical model of an FSM has no notion of time, yet it is quite common to use, in
state-oriented specifications, a dummy input T to represent a silent time period which leads to the
expiration of timer T. To model the behavior triggered by timers and related counters, one typically
augments FSM transitions between (control) states by internal actions start T, stop T and adds

transitions guarded by timer expirations (timeouts), as shown in Figure 3.2.

43

T&C<max/ T&C=max/o7

o6,start T

i3/03 i4/04, stop T
r
i1/o1, stant T
i2/02,stop T
i5/05

Figure 3.2: The fragment of 2 machine with the timer

Here. C represents a counter used by the protocol entity to ensure that the number of timer

expirations never exceeds a given limit max.

A specification of the timer-regulated behavior should be consistent, in the sense that the presence
of a timer should influence the observable behavior of the protocol and should be detectable by an
external observer. [n particular, as the above fragment shows, if timer T can be active in state s
there should be at least one incoming transition labeled with start T as well as at least one outgoing
transition labeled with stop T. Once max is reached, a time-out should cause an output different
from the one produced by the previous time-outs, i.e. 0s#07 and, in general, a transition to a next
state. [n addition, to be consistent, a specification should, in case that several timers can be active

at the same state, have no transition simultaneously starting several timers.

Potential implementation errors related to timers may either change the expected behavior or cause
a new, unexpected behavior. Faults of the former group may occur in

- transitions labeled withstart T (expected start)

- transitions labeled withT and [C=max] (expected max)

- transitions labeled withstop T (expected stop).
Faults of the latter group may create unexpected actions with timers, such as

- new transitions labeled withstart T (unexpected start).

- new transitions labeled withstop T (unexpected stop).

In the following paragraph, we discuss the structure of test cases which are needed to check the

above transitions, using the example shown in Figure 3.2.

Expected start: To check whether or not the input i1 sets the timer T, we use the test sequences
defined by the following expression:

alr]. it. T. W[s],
where a[r| is a preamble to bring the machine from the initial state to the state r; T indicates that
the tester should have time-out 7, W[s] is a set of identification sequences for the state s (optional,
in case we wish to confirm the tail state of the transition caused by the first expiration of the timer).

Once the [UT passes all these tests, the following tests could be applied.

Expected max: To check whether or not the implemented counter reaches the specified limit max,
we use the test sequences defined by the following expression:

afr]. il. T(1). T(2). ... T(max). W[p],
where max consecutive signals T indicate that the tester should have its time-out T expired max
times observing repeated output ol followed by 02. An earlier reception of 02 indicates that either
the related counter was not properly initialized or the implemented value is less than max. In the
case when a timer should expire only once (no counter is used), an additional time-out may be

included in the test to verify if any unforeseen counter is implemented for this timer.

Expected stop: To check whether or not the input i4 arrived after i1 stops the timer 7, we use the
test sequences defined by the following expression:

afr]. il. 4. T. W[,
where the use of the state identifier W[s]| is optional. Any output produced by the [UT during the

time-out period indicates that the inputi2 did not stop the timer 7.

Unexpected start: To check whether the input i3, for example, sets the timer T on, we use the test

sequences defined by the following expression:

45

afr]. i3. T. Wls].
Any output produced by the [UT during the time-out period indicates that the input i3
unexpectedly set the timer T. Tests of this type applied to all states at which the specification has
no active timers would reveal an unforeseen timer. Assuming that, in the implementation under
test, all timers are placed at the correct states, one may skip many tests related to unexpected

start.

Unexpected stop: To check whether or not the input {5 stops the timer T, we use the test
sequences defined by the following expression:

afr]. il.i5. T. W[s].
The IUT is expected to produce the output ol after the time-out T the failure to do so signals an
error. In Chapter 5, we present the results of using the presented tool chain for test derivation

from the ATM Signaling protocol.

46

Chapter 4
The ATM Signaling protocol and its specification

4.1 ATM protocol architecture

Asynchronous Transfer Mode (ATM) is a telecommunications concept defined by ANSI and ITU
standards for carriage of a complete range of user traffic, including voice, data and video signals.
on any User-to-Network Interface (UNI). An ATM user represents any device that makes use of
an ATM network via an ATM UNI (Figure 4.1).

w \
. Publi
o ATM
vate etwork
ol 1,
Switch
w Private Public
UNI UNI

Figure 4.1: Implementations of the ATM UNI

47

The ATM protocol reference model uses a layered architecture divided into multiples planes

(Figure 4.2).

Plane Management

[aver Management
Control plane User Plane
——

Higherl].ayers

NN

ATM AdaTtation Layer

ATM Layer /

Physical Layer

Figure 4.2: ATM protocol stack

The User plane (U-plane) provides services for the transfer of user application information. The
Control plane (C-plane) protocols deal with call establishment, release and other connection
control functions necessary for providing switched virtual circuits (SVC). The Management plane
(M-plane) provides management functions and the capability to exchange information between U-

and C-planes.

The UNI specification involves those protocols which are either terminated or manipulated at the
user-network interfaces. The protocols that are defined by the UNI specification belong to the
Physical and ATM layers, C-plane higher protocol layers for SVC and other protocols required for
UNI management. The ATM UNI Signaling protocol, which is one of the UNI protocols, specifies
the procedures for dynamically establishing, maintaining and clearing ATM connections at the
UNIL. It resides in the C-plane and uses the Signaling ATM Adaptation Layer (SAAL) services for
message exchange with the peer entity. The formal specification and testing of this protocol in this

work is based on the ATM Forum UNI specification, version 3.1.

48

4.2 An overview of the Signaling protocol

The initial deployment of the ATM technology anticipated only permanent virtual connections
(PVC). PVC are connections between the communicating parties that are established via
provisioning (usually by the network configuration) at the time of setup of the network. They
generally remain established for long periods of time and should automatically be re-established in
the event of the network failure. The further deployment of ATM required switched virtual circuits
(SVC). SVCs are dynamically established in a real time using signaling procedures. Establishing
the ATM SVC is analogue to dialing the telephone number and getting the connection. SVCs are

also referred to as “connection on demand’.

The Signaling protocol, as defined in ATM Forum UNI 3.1, specifies the procedures for
dynamically establishing, maintaining and clearing the SVC at UNI. The Signaling protocol
specification, as is the case with most communication protocols, is divided into two parts:
procedures and data. The control part of the protocol. as detined in the ATM Forum UNI 3.1,
consists of Y states and 8 messages (PDUs) for point-to-point calls. Additional 4 messages are
detined for point-to-multipoint calls. The data part defines the type, structure, fields, and values of
the messages and the information elements used to characterize the ATM connection. The
messages also include information that defines the characteristics of the connection (peak cell rate,

timing, quality of service, etc.).

The end-point (ATM user) that originates the request for connection is the calling party. The end-
party that accepts the connection request is the called party. The ATM network identifies the
called party by the ATM address in the call request. Each ATM end-point has a unique ATM
address, however, more that one connection is possible between two ATM end-points. Each
connection is assigned a local unique Call Reference (CR) number. CR is unique inside the local
end-point: it is not for the entire ATM network. [n our work, we consider protocol functions

required for managing point-to-point calls at the user side.

49

4.2.1 Messages

Messages are exchanged between two peer protocol entities that want to establish or have
established a connection. The Signaling protocol makes use of the services of the underlying
protocol SAAL for reliable, in-order transport of the messages. The procedures of the ATM UNI
Signaling protocol are defined in terms of the following messages (PDUs):

(1) SETUP: initiates a call establishment;

(2) CALL PROCEEDING (CALL_PRO): indicates that the call request arrived at the local UNI;
(3) CONNECT (CONN): indicates to the calling party that the call is accepted by the called user;
(4) CONNECT ACKNOWLEDGE (CON_ACK): acknowledges a CONNECT message;

(5) RELEASE: requests the clearing of a call;

(6) RELEASE COMPLETE (REL_COM): confirms the clearing of a call;

(7) STATUS ENQUIRY (STATUS_ENQ): is send at any time to solicit a STATUS message
trom the peer entity;

(8) STATUS: is send in response to a STATUS ENQUIRY message or at any time to report

certain error conditions.

In the following text, the term PDUs and messages are used interchangeably to refer to the same
concept. The message structure consists of a general part (common for all messages) and a
sequence of information elements (IE) that convey the data associated with the particular message.
The common part of the messages shall ailways be present, while the IEs are specific to each
message type (they may be absent too). Within the ATM Signaling protocol. every message
consists of the following four common fields, seeFigure 4.3:

(1) protocol discriminator: distinguishes messages for user-network Signaling protocol from other
protocols;

(2) Call Reference (CR): identifies the connection to which a message applies;

(3) message type: each message has a specific message type identifier;

(4) message length: specifies the length of the message content;

(5) variable length IEs: a sequence of one or more IEs that characterize the ATM connection and

ensure the interoperability.

Protoc. Discr. [E identifier
CR [E instruction id
Message type Length of [E
Message length
[E
[E
Content of
| E
Variable length
[Es
|

Figure 4.3: General message format

The presence of an [E within a message may be mandatory or optional. For each message, the
standard defines the [Es that are mandatory and [Es that are optional as well as the conditions
under which a particular [E may be present in the message. By itself, [Es are organized as a
sequence of octets (we call them fields) with a defined data type and the range of values. A field of
an [E may be:

(1) always present, present only in combination with a value or with the presence of another part
of the [E. For example, in the Cause IE, the Value field is always present, while the Diagnostic
field is present only for specific values of the Value field (96, 101 etc.);

(2) optionally present, not pertaining to another field or depending on the value or the presence of
another field of the [E. Examples: |. The ATM adaptation parameters [E may contain or not Error
correction method field; 2. In Broadband bearer capability [E, Timing Type and Timing
Requirements fields may only be present if Bearer Class X is indicated; 3. In B_LLI [E, Packet

Window Size field may only be present if Default Packet Size field is present.

The Signaling protocol entity may receive a message with an invalid content. The standard defines

five types of possible errors related to a content of IEs in the messages. For each type of error,

specific Error Handling procedures are defined by the standard. The message may have the
tollowing errors:

(1) Mandatory [E Missing (MIEM) if one or more Mandatory [Es are not present in the message;
(2) Mandatory [E Content Error (MIECE) when one or more of the mandatory [Es has an invalid
content value (for example, out-of-range value or a wrong value combination);

(3) Unrecognized [E (UIE), if all mandatory IEs are found and there is an IE that cannot be
recognized as a valid [E;

(4) Non Mandatory [E Content Error. when the optional [E has an invalid content value:

(5) Recognized unexpected IE (RUIE), when the IE is correctly recognized (decoded) but is not

needed according the standard in that particular message.

4.2.2 Abstract Service Primitives

[t should be emphasized that ATM Forum UNI 3.1 does not explicitly specify the Signaling
protocol using the ASPs at the upper SAP of the Signaling protocol. It is left to the
implementation to complete the protocol in a particular way and to define its interaction with the
upper layer. The goal is to standardize the protocol in terms of interworking capabilities between
two instances of the protocol and to leave sufficient flexibility for different implementations.
However, the FSM model of the protocol without messages on the upper interface would not be
complete and some of the protocol states as defined in the standard would not be reachable. The
states that are entered by the transitions which are driven by the request or response from the
upper layer (as request for the Call Setup) cannot be reached if interactions with the upper layer
are not included in the FSM model. To obtain a complete FSM specification of the protocol, we

use diagrams from the Q.2931 document [Q2931], which uses both PDUs and ASPs.

Table 4.1 shows messages and corresponding ASPs used to specify the Signaling protocol in this
work. [n the left part of the table, primitives received from the upper layer are presented and the
corresponding messages that are sent in the direction from the protocol to the network. In the
right part of the table, messages that are received from the network are presented and the

corresponding primitives that are sent to the upper layer.

()
)

Primitives from | Messages Messages Primitives
upper layer user->network direction || network->user direction to upper layer

Setup_req SETUP SETUP Sewp_ind
Proceeding_reqy |CALL_PROCEEDING | CALL_PROCEEDING Proceeding_ind

Setup_resp CONNECT CONNECT Setup_conf
CONNECT_ACK Setup_complete_ind
.Rclczlsé_rcq RELEASE | | VREI.‘.EAS”E Rclcasc_ind

Release_resp RELEASE_COMPLETE |[RELEASE_COMPLETE |[Release_conf

Table 4.1: Messages and primitives defined for the Signaling protocol
A simplified version of the resulting FSM is presented irFigure 4.4.

4.2.3 Protocol behavior

The FSM of the Signaling protocol uses 9 states (Figure 4.4). States are named according to the
ATM document {UNI31|:

(1) UO: Null state, no connection is in progress or active;

(2) Ul: Call Initiated, the ATM user requested the connection establishment;

(3) U3: Cull Waiting, the ATM user waits for acceptance of the call from the called party:

(4) UL0: Call Active, call is active and data transfer is allowed:

(5) U6: Call Indication, a request for call establishment is received;

(6) UK: Call Accepted, the called party accepts the call. and waits for local confirmation to transter
to U10:

(7) UY: Call Proceeding, the called party proceeds with the call;

(7) Ul l: Call Release requested, the ATM user requested to release the call; and

(9) U12: Call Release indication, the ATM user is informed that the peer entity requested Cail

Clearing.

U0o:Null
T30

Iga Setup_re
Relgase_conf p_req/ SETUP/

SETUP :
etup_ind
T303/
SETUP™ U1 -Call initiated U6:Call present gfffjgg‘g-i”"’

CALL_PRCO/

CONN/
P ding ihd Setyp_res/
roceeding. Setdp_conf, ool Us-Incoming Call
COM ACK proceeding
U3: Qutgoing Call
Proceeding Setup_resp/
REL_}OM or RELEASE / @B:Cmmm request ONN
Releade_cont
CONNECT/
T308 Setup_dont, CON_AC)
Relea}e_conf T310/ | coN_AQ Setup_gémp_ind
RELEASE
Ca i 1313/
hese
Release_resp/
REL_COM
Rejéase_req/ RELEASE/
RELEASE Release_ind
T308/ U11:Release request) U12:Release indicatioD
RELEASE

Figure 4.4: Simplified state diagram of the Signaling Protocol

The Signaling protocol supports the following basic functions at the UNI: Connection/Call Setup,

Connection/Call Clearing, and Error Handling procedures.

4.2.3.1 Call Setup

The Call Setup is a functionality of the protocol that supports the establishment of connection/cail
between two different parties. [t includes two functions: Connection/Call Request and
Connection/Call Answer. (1) Call Request: allows an originating party (calling party) to request
the establishment of a connection/call to a certain destination. In this request, the originating party
may provide information related to the connection/call. A Call Request is initiated by the primitive

Setup_req in UQ state (Figure 4.4). A unique identifier, Call Reference (CR), of the call is

54

generated, and a SETUP message is transferred on the signaling virtual channel across the
interface. Timer T303 is started. The SETUP message shall contain all the information required by
the network to process the call. If no response to the SETUP message is received by the user
before the first expiration of the timer T303, the SETUP message will be retransmitted and timer
T303 restarted. The second expiration of T303 initiates the clearing of the call. [f the network can
determine that the access to the requested service is authorized and available, the network may
send a CALL_PRO message as a response to the SETUP message, indicating that the call is being
processed. The user which receives a CALL_PRO message reports it to the upper layer by the
primitive Proceeding_ind, stops timer T303, starts T310 and waits for the CONN or RELEASE
message. If timer T310 expires before the arrival of the CONN, the call is cleared. The arrival of a
CONNECT message, reported to the upper layer by the Setup_complete_ind primitive, indicates
to the calling user that a connection has been established through the network. It will stop the
timer T303 or T310 and send a CON_ACK message to the network. The connection is established
and the protocol is in state U10 ready for data transfer (that actually happens in the U-plane);

(2) Connection/Call Answer: allows the destination party (called user) to respond to an incoming
connection/call request. The destination party may include information related to the
connection/call. Rejecting the connection/call request is considered as part of the Connection/Call
Clearing function. At the destination, the network indicates the arrival of a call at the UNI by a
SETUP message which is reported to the upper layer by the primitive Setup_ind. The user which
aceepts the incoming call responds with a CONN message generated by Setup_resp primitive. The
user that wants to prolong the acceptance of the call (because it is busy or because it needs more
processing time) eventually sends a CALL_PRO generated by Proceed_req primitive. Upon
sending the CONNECT message, the user starts timer T313 waiting for a CON_ACK which
indicates the completion of the ATM connection establishment for the interface and stops the
timer. The connection is established and the protocol is in state U10 ready for data transfer. The

expire of the timer T313 initiates the clearing.

4.2.3.2 Connection/Call Clearing

This function allows any party involved in a connection/call to initiate its removal from an already
established connection/call. If the connection/call is between two parties only, then the whole

connection is removed. The call clearing is initiated by the Release_req primitive which initiates

i
wy

the sending of a RELEASE message and the start of the timer T308. The receipt of the
REL_COM message indicates the release of all resources and stops the timer T308. If the timer
expires for the first time the user retransmits the RELEASE message. A second expiration initiates
an implementation dependent recovery, like restart procedures, which are not considered in this
work. This function also allows a destination party to reject its inclusion in a connection/call. The
network or the user rejects a call by sending a REL_COM message at the originating user-network

interface.

4.2.3.3 Error Handling procedures

All messages which use the protocol discriminator "Q2931 user - network call control message”
must pass the checks described in the standard. Error Handling procedures are detined for each
type of error that can occur in the mandatory part of the message or [Es. as anticipated by the
standard. The procedures are defined for the following error conditions:

(1) Protocol discriminator error: a message with a protocol discriminator other than "Q2931 user -
network call control message” is received:

(2) Message too short: a message with the length shorter than the minimum message length (the
common part of the message must be present);

(3) Call Reference Error: a number of CR errors are defined related to the invalid CR value, CR
value indicating inactive call, CR with a global CR value, etc.;

(4) Message type or message sequence errors: 4 message with undefined type is received or an
inopportune message is received in some state;

(5) MIEM Error: 4 message with the MIEM is received (see the previous section);

(6) MIECE Error: a message with the MIECE is received;

(7) UIE Error: a message with the UIE is received;

(8) NMIECE Error: a message with the NMIECE is received;

(9) RUIE Error: a message with the RUIE is received.

The Error Handling procedures depend on the type of error condition, state in which the error
occurred and type of message. When a message with the error types (5) or (6) is received, a
typical Error Handling procedure is to respond to a peer party with STATUS message having the

Cause [E value equal to 99 or 101 respectively. [n the case of error conditions (7), (8), and (9), in

56

general, the protocol should ignore the error and try to process the message using the correct [Es.
The protocol should process error conditions in the order of precedence: error conditions higher in
the list have a higher priority than subsequent conditions. Therefore, when a message with more
than one error type is received, only the Error procedure corresponding to an error condition with

the highest priority is executed.

4.3 SDL specification of the protocol

The Signaling protocol specification in SDL was developed in two steps:

(1) In the first step, we have constructed a state table based on the standard document. The state
table describes, for each state: the valid inputs; the verification made on the input parameters; and
depending on the result of verification, the actions to be taken and the next state of the transition;
(2) From a state table, in the second step, an SDL specification is obtained by developing an SDL
system. [n addition to the FSM part, the SDL system includes appropriate data structures, input
parameters, and parameter checking procedures. To obtain a complete SDL specification, the
system was enhanced to support multiple connections. Developments in this step were done

independently from this work and are explained in more detail in [Marc97].

4.3.1 State table

In the process of state table development, the following assumptions were made:

(1) An assured mode signaling AAL connection is already established between the user and the
network prior to the start of sending the Signaling messages. The underlying SAAL layer is
assumed to be reliable and no malfunctioning is experienced during the protocol functioning
because of the lost SAAL connection;

(2) STATUS ENQUIRY message is initiated by [nitiate Status Enquiry SAAL primitive: It is used
to simulate the Status inquiry procedure, originally started by the SAAL layer malfunction;

(3) Restart procedures are not included;

(4) Only a point-to-point connection is considered.
The resulting state table has 56 rows and 9 columns. Since the state table is used as a starting
point for the design of the SDL system and not for test derivation, we did not include the state

table in this text.

57

4.3.2 SDL system structure
The SDL system representing the Signaling protocol contains one block with two processes: Proc,
which models the behavior of a connection and Coord, which manages calls and routes messages

and primitives to the corresponding Proc process (Figure 4.5).

[(primitives)]
; i
: > i
! Coord Proc :
, D |
!
R HNN NN :
[message|

Figure 4.5: Signaling protocol implemented as SDL system

The purpose of the Coord process is to multiplex a number of connections realized with one or
more Proc processes. For each initiated incoming or outgoing call, Coordinator assigns a locally
uniyue CR, and creates an instance of the Proc process. An incoming call has a CR already
assigned (the flag, a field in the CR, identifies whether the call is incoming or outgoing). The
Coordinator realizes functions that are common for all protocol instances. When the Coordinator
aceepts a call, it creates an instance of the Proc process and associates the newly created process
with the CR of the call. When a PDU from the SAAL or ASP from the upper SAP arrives, the
Coordinator finds the protocol instance to which PDU or ASP should be sent using the association
between the process identifiers and the connection CR. In performing its function, the Coordinator
only inspects the first four common fields of the message. The fields are checked for errors and if
they are correct, only the CR and the variable length information elements are forwarded to the
corresponding Proc process. The primitives are redirected from the Coordinator to a

corresponding process instance without any processing.

58

The Proc process realizes the majority of the Signaling protocol functions. Compared with the
Coord process, which is a single state FSM, Proc comprises 9 states (UO,UL,U3,U10,U6,U8, U9,
Ull, U12). In addition to executing the protocol, Proc verifies each message it receives. [t checks
for any of the Error types defined in Section 4.2.1 and performs the required procedures if any of

the error conditions from the Section 4.2.3.3 are met.

4.3.3 Data type declarations

The message content is represented by a set of complex data types. The complexity comes from
the number of [Es and their fields as well as the combination that data types should model. [n spite
of this, data types cannot be declared as static data types because the size and the structure of the
messages and [Es are unknown at the “compile” time. For example, since the size and structure of
the SETUP message may vary depending on the information that it conveys (some IEs may be
absent, other have flexible structure), the corresponding data types will have to be dynamically
moditied. In our approach, we defined a "general” message that is a superset of all possible
messages. Using the Boolean fields as tlags, we include or exclude fields (IEs or parts of the IEs)

"

from the "general" message to represent the message we want. However, since this "general”
message is declared statically, each message that is constructed from it will contain all [Es (even

[Es that it does not need), which makes it long and difficult to manipulate.

The messages exchanged at the lower SAP between the Coordinator and the adjacent layer are
represented with a signal message. The parameter of the signal message is a structure realizing the
"general” message. [t contains four fields: the first three are the common message fields and the
fourth is a structure representing the sequence of [Es, see Example 4.1. The ie_type data type by
itself is a structure that contains all possible [Es. Each [E is represented by a data type that has an
associated Boolean flag field that indicates whether the IE is present or absent. When an IE is
absent, the Boolean flag field has a value True, and, consequently, when IE is absent, the Boolean

flag has a value False.

59

Exampled.l: Definition of the signal message and declaration of the "general"
message structure:

SIGNAL message (message_content_type)

NEWTYPE message_content_type STRUCT
pr_dis protocole_descrimator_type;
CR call_reference_type;
message_type octet;
ie ie_type;

ENDNEWTYPE;

For each [E, we declare a data structure with fields from corresponding data types, as defined by
the standard. The optional fields are declared as structures with a Boolean field indicating the

presence or absence of the field in the IE, see Example 4.2.

Exampled.2: Connection identifier IE has one optional field class_options and
is declared as:

NEWTYPE B_BC_type STRUCT
presence boolean;
coding_standard natural;
class natural
class_options class_options_type;
clipping natural;
user_plane natural;
ENDNEWTYPE;

NEWTYPE class_options_type STRUCT
presence boolean
tratfic_type natural;
timing_req natural;

ENDNEWTYPE;

The [Es that may be repeated within a message are declared as a structure containing two tields
(see Example 4.3):
(1) the first one indicates the number of occurrences of the [E within the message:;

(2) the second is an array of that [E.

Example 4.3: Broadband low layer information IE may have at maximum three
occurrences within the same message. Thus, it is declared as:

NEWTYPE B_LLI_type STRUCT
nb_occ max_occ_B_LLI;
occ B_BLLI_tabkle;

ENDNEWTYPE;

NEWTYPE B_LLI_table
array (max_occ_B_LLI, B_LLI_ie);
ENDNEWTYPE;

SYNTYPE max_occ_B_LLI = NATURAL
CONSTANTS 0:3
ENDSYNTYPE;

NEWTYPE B_LLI_ie STRUCT
coding_standard inc_2;
info_layer_1l optional_value_type;
info_layer_2 layer_2_type;
info_layer_3 layer_3_type;
ENDNEWTYPE;

The parameters of the primitives exchanged with the upper layer are CR (except for Setup_req)
and a structure containing the [Es of the corresponding message. For example, since the only
information element allowed in a RELEASE message is Cause, Release_req and Release_ind have

as parameters the CR identifying the call and a structure containing only one field: the Cause IE.

The constructed SDL specification of the Signaling protocol consists of almost 10 000 lines of
SDL code [Marc97]. The data declaration part by itself is almost 70% of the code. As explained in
Section 2.2.1, a protocol specification should be verified against the service specification of the
protocol layer. The UNI 3.1 does not have a protocol service specification, and, therefore, the
SDL specification could not be verified in this sense. However, as discussed in Section 5.7, the
specification and the test suite developed later are validated to a certain extent one against the

other.

61

Chapter 5

Development of a conformance test suite

5.1 Overview

In this work, we use the experimental tool chain of UdeM (Section 3.3) to automate the
development of a conformance test suite. A complete SDL specification of the Signaling protocol
has been developed from the standard document prior to the test development. In a first step, the
FEX tool is used to extract the FSM model from the SDL specification. The FSM model is
described in the form readable by the TAG tool. In a second step, the TAG tool is used to
generate a test suite from the FSM model. The output of the tool is a test suite in a mnemonic or
SDL skeleton format. In a third step, in order to produce SDL executabie test cases, test cases are
manually completed with parameters. In this step, PDUs for parameter variation are also
constructed and used to complete the corresponding test cases. The obtained test suite is validated
in the SDL environment against the SDL specification. The validated test suite is an abstract test

suite; it can be used for deriving C executable test cases.

62

5.2 Extracting an FSM model from the SDL specification
The FSM model of the Signaling protocol used for test development is produced by the FEX tool

from the SDL specification. Before we take a closer look at the application of the tool chain, we
explain the process of unfolding inputs in the obtained FSM model by the FEX tool. According to
the standard, the Signaling protocol has 8 inputs, 8 outputs and 9 states. However, the produced
FSM model has 56 inputs. 45 outputs, and 9 states. The main reason for the increase in the
number of input/output events is due to the partial unfolding of input messages according to their

parameters.

Example 5.1 shows a typical case of generating FSM transitions. The SDL code in the example is
translated by the FEX tool into the FSM transitions readable by the TAG tool. The transition U0
?SETUP !Setup_ind >Ué6; means that when the specification receives the input SETUP in
state U0, it sends the output Setup_ind (which is a primitive to the upper layer) and goes to state
U6. In state U0 the SDL specification may also receive the input Setup_req (which is a primitive
from the upper layer). [n this case it sends the output SETUP and transits to state Ul: this

generates the second transition in the FSM.

Example 5.1:

SDL specification:
state UQ;
input SETUP;
output Setup_ind;
nextstate U6;

input Setup_req;
output SETUP;
nextstate Ul;

FSM transitions generated:
U0 ?2?SETUP !'Setup_ind »U6;
U0 ?Setup_req !SETUP »Ul;

Receiving the SETUP message in UO state may result in different protocol behavior depending on
the content of the SETUP message (or more precisely, the value of the SETUP parameters). If a
SETUP message has valid values of the parameters (a valid SETUP message), the protocol should
proceed with a Setup_ind to the upper layer. In the case when SETUP message has an invalid
content (as explained in Section 4.2.1), the protocol should determine the error category (MIEM,

MIECE, etc.) and perform the correct action as prescribed by the standard document. As Example

63

5.2 shows, in the SDL specification this behavior is realized using the checking procedure and a
decision statement. The check_setup procedure checks the content of the SETUP parameter
setup_data and returns the result in the variable error_code. In the FSM model, this SDL code is
represented by a number of different transitions, where the inputs are conditioned by a predicate
related to the message content. The input SETUP was partially unfolded according to its input
parameter values in four distinct inputs: SETUP with a valid content (written simply as SETUP),
SETUP with a MIEM (written as SETUP(Mie=1)), SETUP with MIECE (SETUP(Mie=2)), and
SETUP with UIT. NMIECE. or RUIE (SETUP(NMie=1 | Nmie=2 | Nmie=3)) (see Section
4.2.1).

TAG treats these inputs as four different inputs, and, consequently, in the derived test cases, they
are considered as different test events. Later, when the TAG produces the test cases, the test
developer is required to complete test cases in the SDL skeleton form with the corresponding
values for the SETUP message. Since test events are conditioned with the predicates, the test
developer should determine the values of the parameters that will produce the intended behavior,

since the required parameter values are not produced by the tools.

Example 5.2

SDL specitication:
state UQ;
input SETUP{setup_data});
check_setup(setup_data, error_code)
decision error_code;
{MIEM) : output REL_COM(96);
nextstate UQ;
(MIECE): output REL_COM(100);
nextstate UQ;
(UIE,RUIE,NMIECE): cutput Setup_ind(setup_data);
nextstate U6;
(OK} : output Setup_ind;
nextstate Uq;
enddecisian;

input Setup_req;
output SETUP;
nexctstate Ul;

FSM trunsitions generated:

U0 ?SETUP !Setup_ind -U6;

U0 ?SETUP (Mie=1) !REL_COM(ca=9¢) >UQ;

U0 ?SETUP (Mie=2) !'REL_COM(ca=1Q1l) >U0;

U0 ?SETUP (NMie=1 | Nmie=2 | NMie=3) !Setup_ind »UOQ;

The above process of unfolding is applicable to every input message. The extracted FSM model of

the protocol is given in Appendix A.

5.3 Test method

The test development process used in this work assumes a local test method. The UT has control
over the upper PCO. The test events exchanged between UT and IUT on the upper PCO are
primitives defined in the previous chapter. LT has control over the lower PCO. The test events

exchanged between the tester and the [UT are messages (PDUs) as defined in Table 4.1.

The local test method is the most appropriate architecture for the test development method
implemented by the tool chain. Since the test development starts from the SDL specification,
which describes the protocol behavior using the events at the local interfaces (immediately above
and below the Signaling protocol), derived test cases are realized with the same events. Therefore,
the tester that implements such a test suite must have access to the upper and lower PCO:; in other

words, it has to be a local tester.

Because a test suite for the local test method requires control over local PCOs that are not always
accessible, the local test method is mostly applicable for in-house testing. In this project, we derive
tests for this test method since, according to the technical requirements of the project, tests should

be mainly used during the development of an ATM card for PCs.

5.4 Identification of test purposes for the control part of the protocol

To have proper fault coverage, a test suite should check as many properties of a protocol as
possible. To test the “control” properties of the Signaling protocol, we assign a test purpose to
each transition of the corresponding FSM model. Test purposes are represented by transitions
covering the control part of the protocol. Test purposes for the data part of the protocol are

identified according to the textual description in the standard.

Figure 5.1 shows an example test purpose expressed as a transition of the FSM as well as the
corresponding test case in mnemonic and SDL skeleton form. The mnemonic form represents the
test case as a sequence of the input/output events. Events with the ! sign in front of their names

are outputs from the tester; events with the ? sign are expected inputs to the tester. A test case

65

consists of a preamble that leads from the initial state to the head state of a transition (in the
example in Figure 5.1, there is no need for any preamble because the head state is the initial state),
transition under test, and postamble, driving the [UT back to the initial state. State identification of
the tail state is optional, once used it provides identification of the tail state and guaranteed fault

coverage.

The SDL skeleton is the SDL code representation of the mnemonic form of a test case. The
verdicts in the SDL skeleton are generated by the TAG tool. The fail verdict is assigned if the
tester does not receive the expected output trom the IUT. For the example in Figure 5.1, if on
output Setup_req in state wait_Setup_in_UQ, the tester receives a signal different from SETUP, it
will give a fail verdict. However, if the tester never reaches the fail label, the result of the test run
is a pass verdict. To be used as an executable SDL test case, the SDL skeleton in Figure 5.1 has to
be extended with procedures for parameter checking and timers that limits a tester waiting time on
the [UT output. [ntroducing procedures and timers, the test developer also augments the test cases
with appropriate verdict assignments. A corresponding complete test case in SDL is shown in

Figure 5.4.

66

Gtag

Test purpose:
U0 ?Sctup_req 'SETUP >Ul;

Setup_req

Rel_con

Test case in mpemonic torm:

U0 on input Setup_req */
!Setup_req:

’SETUP:PDU:

/* Transition under test in state
/* ldentifying U1 state */
'STATUS_ENQ:PDU:
ISTATUS(ca=30. cs=1):PDU;

/* Postamble from Ul State */
'REL_COM:PDU:;

) RC]_COI'lf: REL_CO» fail

Figure 5.1: A test purpose and test case in mnemonic and SDL skeleton form

5.5 Application of the tool chain

[deally, it should be possible to derive tests in a completely automatic way using a tool. While.
with the existing tool chain at UdeM, we derived the majority of tests automatically, a totally
automated process is not yet possible because manual modifications were necessary to the
intermediate results. In this section, we present our results of applying the tool chain to the SDL

specification of the Signaling protocol.

By a direct application of the tool chain we mean an automated test derivation process where the
output of one tool is supplied unchanged by the test developer to the input of another. In this
process, there is no manual modification to the SDL specification or to any intermediate resuits.
The goal is to produce a test suite directly from the SDL specification. The direct application
follows the methods described in Chapter 3. In this process, the FEX tool is applied to the SDL
specification to extract the FSM model of the protocol. Using the extracted FSM, TAG derives

preambles and postambules for each state. A complete test suite is developed with the TAG option

67

for complete test suite generation. The resulting test suite - called a basic test suite - has 197 test
cases. The derived basic test suite was incomplete in the sense that certain aspects of the protocol

were not tested with the test suite derived.

[ts incompleteness comes from tool limitations. Three problems have been identified.

(1) The output signals that have parameters in the SDL specification are translated to FSM output
events without parameters; in other words, output events of the same type with different
parameters are not distinguished in the FSM. While this is not related to any protocol property, it
makes states of the protocol indistinguishable and TAG cannot find a state identifier. A state
identification sequence for the Signaling protocol is STATUS ENQ message: on input of a
STATUS ENQ, protocol replies with a STATUS message whose parameter identifies the current
state of the protocol. If the parameter that identifies the current state is not part of the FSM
output, no state can be recognized.

(2) FEX does not include timers in the FSM model in the format understandable by TAG. so. no
test cases were generated for timers;

(3) FEX accepts an SDL specification that consists only of one process. However, as explained in
the previous chapter, our SDL systemn consists of two processes, Coord and Proc. Since the
majority of protocol functions were implemented in the Proc process, FEX was applied to the
SDL system consisting of this process only. As a result, the FSM model did not include the
Coordinator transitions, therefore, no test cases were generated for them by TAG. As well,
without the Coordinator, U(Q state cannot be distinguished from other states. The input of
STATUS ENQ in UQ) is processed by the Coordinator, and, therefore, it is an unspecified input in
the FSM model composed only of the Proc functions. The basic test suite does not use a state

identification facility. To complete the basic test suite, manual modifications are necessary.

The previous problems are solved by modifying the FSM model produced by the FEX tool. To
avoid manual development of tests, we model as much of the missing protocol behavior as
possible with the FSM and use the capabilities of the TAG to develop test cases. However, we are

still forced to develop a small number of test cases manually.

68

FEX does not include timer actions in the FSM model. Since TAG is capable (with some
restrictions) to generate test cases for the timer actions, timer transitions have been added to the
FSM. To test timers, transitions representing start, stop, and final expiration of the timers were
added to the FSM. Table 5.1 shows the number of starting and stopping transitions per timer.
Each timer has one transition representing the final expiration of the timer. Test cases for each
timer were generated using the selective test generation option of TAG, giving in total 100

additional test cases for timers.

Timer # starting # stopping
transitions transitions
T303 I 21
T310 3 23
T313 2 B.]
T308 44 11
T322 9 9
Total 50 73
Table §.1: Timers

When the number of transitions from Table 5.1 is compared with the number of newly generated
test cases, it is obvious that there are more transitions than test cases generated. TAG tool does
not produce test cases for transition that is starting transition for one timer and stopping transition
for another timer at the same time. For example, Figure 5.2 represents a transition that is a
stopping transition for timer T303 and a starting transition for timer T310. When a Call_Pro
message is received in Ul state, T303 is stopped, and, at the same time, T310 is started. In this
case, TAG tool generates a test case for the start of T310, but there is no test case for the stop of
T303. This missing test has to be developed manually. In the protocol, there are 26 transitions that

are transitions with two timers, and consequently, 26 test cases have to be written manuaily.

U1 ! Call_Pro !Proceeding_ind > U3, stop T303, start T310

Figure 5.2: Transition with two timer actions

When tests for timers are developed, TAG assumes that there is only one active timer per state and
that the starting transition of the timer is not a looping transition. However, for timer T322 both of
these assumptions are violated. T322 is active during the Status Enquiry procedure that can be

initiated in any state even when another timer is active. Also, when Status Enquiry message is sent,

69

T322 is started and the starting transition loops once because the protocol remains in the same
state. [n the Signaling protocol, there are 27 transitions related to T322 timer (since T322 may be
active in any state it has 9 transitions related to the final expiration), and we could not use tools to
develop test cases for them. We have manually designed test cases for T322 only in states where
no other timer is active (U0, U10, U6, U9, U12). Altogether, for 53 transitions out of 153 related
to timers, TAG does not produce test cases, and test cases related to some of these transitions are
designed manually (26 for transitions with two timers and 15 for T322). Appendix C shows

example test cases for timers.

Coordinator transitions, as mentioned previously, cannot be produced by the FEX. From the point
of view of the SDL specification, Coordinator is considered as a separate module. The functions it
provides are common to all states and all protocol instances. To produce a single FSM that
includes the Coordinator, the FSM model of the Coord process is composed manually with the
FSM of the Proc process. If a reliable SAAL connection is assumed, Coordinator is a single state
machine. This corresponds to composing two FSMs into a global machine. Since the Coordinator
FSM has one state, it is reduced to specifying a tew transitions in the Proc FSM which were
previously undefined (“don’t care transitions”). We call these transitions Coordinator transitions.

As a result, the augmented FSM has 570 transitions instead of 196 transitions.

Since Coordinator transitions are coherent transitions, it is natural to try to group them and to
reduce the number of generated test cases. There are 12 types of Coordinator transitions, and,
after grouping, the 374 Coordinator transitions are represented with 12 coherent transitions.
Figure 5.3 shows an example of a coherent Coordinator transition. If messages CONN.,
CON_ACK, CALL_PRO, or RELEASE are received with CR related to an inactive call
(parameter ge=4 represents the condition of having CR that refers to a non-active call) in any
state, REL_COM with the cause I[E value equal to 81 should be returned, and the protocol

remains in the same state.

70

* 7 {CONN(ge=4), CON_ACK(ge=4), CALL_PRO(ge=4), RELEASE(ge=4)}!
REL_COM(ca=81) > _

Figure 5.3: A coherent transition

Twenty four test cases for the coherent transitions have been developed using the TAG selective
test derivation option. Coherent Coordinator transitions and corresponding test cases are shown in

Appendix B.

When the Coordinator transitions are added to the protocol FSM, UO becomes distinguishable
from other states, and a test suite with state identification can be produced. Using the global FSM
model, TAG is used to generate a new test suite with the state identification facility. The existence
of the STATUS ENQ message in the protocol helps the testing of the protocol and enhances the
fault detection power of the test suite without significantly increasing the cost of the testing. Since
the state identification facility is of length one, the test suite has 320 test cases, the same number
as the previous one. The complete test suite, together with the test cases for T322 and transitions

with two timers that have been developed manually, has in total 320 + 26 + 15= 361 test cases.

An analysis of the obtained FSM has shown that an additional optimization of the test suite length
is possible by grouping certain transitions. A number of transitions related to the Setup Inquiry and
Call Clearing phase are coherent transitions. For example, when the STATUS message is received
in any state with the value of the message parameter Current State equal to UO, the protocol
should release the connection, and transfer to UO state. If these transitions are represented as

coherent transitions, the resulting alternative test suite has 274 + 26 +15 = 315 test cases.

In summary, by the direct application of the tool chain, a test suite with 196 test cases is generated
automatically. When timer and Coordinator transitions are added to the FSM, 124 additional test
cases are developed using the TAG tool Finally, 26 test cases related to transitions with two
timers and (35 test cases for T322 are developed manually. The resulting conformance test suite
has a complete fault coverage in terms of the FSM model. The test suite is represented in
mnemonic as well as SDL skeleton form (See Appendix C for an example test case in the

mnemonic form).

71

5.6 Test purposes and tests for the data part

Test suites represented in the SDL skeleton form do not have parameters. The need to complete
them with parameters is twofold: to produce SDL executable tests and to test the data part of the
protocol. The data part of the Signaling protocol specifies the PDU structure and valid values for
the PDU fields (parameters). An implementation should accept PDUs with parameters with valid
values and should have correct error handling behavior for a PDU with invalid parameters. The
exhaustive testing of the data part of the protocol would require generation of all possible valid
PDUs and all possible invalid ones. The number of parameters in the ATM Signaling protocol is
quite large. Additionally, the parameter value and its existence in a2 message may depend on the
value ot other parameters. Therefore, exhaustive testing of the data part of the Signaling protocol

is not feasible.

To test the data part, we use an alternative approach by choosing only a representative set of
values of parameters including both valid and invalid values. In this respect, two kinds of problems
are addressed. The first is related to the generation of sets of representative values from
determined data types; the second involves the organization of these sets of values into value

tuples (actually PDUs), which can be used in a single test case.

Representative valid and invalid values are determined for each parameter. Parameters that are
integers or a range of some data type are represented with three values: minimum, maximum and
some random value from the range. Representative invalid values are values immediately outside
the range [[SOY646]. Parameters from this type are usually defined as 16-bit or 4-bit integers in
the ATM UNI 3.1 document. Parameters that are defined by enumeration (have a set of discrete
values) are represented using all of their defined values. Representative invalid values are some
random values outside the set of defined values. Most of the parameters in the ATM UNI 3.1 are

of the second type.

The second problem is to organize parameters in tuples (PDUs). The question is which kind of
PDUs we want to use for testing. Since we cannot test all possible PDUs, we need a criterion
according to which we determine the type of PDUs important to test. In our approach, we divide

the domain space of all possible PDUs into equivalence classes and try to cover each of the

72

equivalent classes with a number of representative PDUs. The equivalence class is a set of PDUs
that have some common properties (they are all valid, or have the same type of error) [Myer79].
We divide the domain space into six classes: valid PDUs, PDUs with MIEM, PDUs with MIECE,
PDUs with UIE, PDUs with NMIECE, and PDUs with RUIE. For each of theses classes, a

number of PDUs are constructed that are used to test the [UT.

To represent valid P

DUs, a number of PDUs with correct values are constructed. These PDUs are constructed to
cover all correct values of the parameters, determined in the previous step. The set of generated
PDUs contains all representative values. In order to reduce the number of required PDUs, the
values of the parameters are varied in parallel. For example, the ATM Traffic Descriptor

(ATMTraff) consists of the following parameters:

Parameter Parameter Full Name Values # representative values
FWD PCRO Forward Peak Ceil Rate with 0 INTEGER 0 - 2724 3
FWD PCR1 Forward Peak Cell Rate with 1 INTEGER 0 - 2724 3
BWD PCR0O Backward Peak Cell Rate with 0 INTEGER 0 - 2124 3
BWD PCR1 Backward Peak Cell Rate with 1 INTEGER 0 - 224 3
FWD_SCR0 Forward Sustainabie Cell Rate with 0 | INTEGER 0 - 2*24 3
FWD SCR1 Forward Sustainable Celi Rate with 1 INTEGER 0 - 2°24 3
BAK SCRO Backward Sustainable Cell Rate with 0 | INTEGER 0 - 2°24 3
BAK SCR1 Backward Sustainable Cell Rate with 1 | INTEGER 0 - 2°24 3
FWD MBSO Forward Maximum Cell Rate with 0 INTEGER 0 - 2724 3
FWD MBSH1 Forward Maximum Cell Rate with 1 INTEGER 0 - 2224 3
BAK MBSO Backward Maximum Ceil Rate with 0 INTEGER 0 - 2724 3
BAK MBSt Backward Maximum Cell Rate with 1 INTEGER 0 - 224 3
BEST_EFFORT | Best Effor Tag 1 1
FWD_TAG Forward Tagging Oor1 2
BWD TAG Backward Tagging Qor1 2

Table 5.2: Parameters of the ATM Traffic {E

The standard prescribes the allowed combinations of the parameters. The allowed combinations in

the forward direction (they are same for the backward direction) are:

Combi 1 Comb. 2 Comb. 3 Comb. 4 Comb. 5 Comb 6
FWD_PCRO | FWD PCRO | FWD PCR1 |[FWD PCR1 | FWD PCRO | FWD PCR1
FWD _PCR1 | FWD PCR1 | FWD SCRO0 FWD PCR1 | FWD SCRO0
FWD TAG FWD MCRO0 FWD TAG | FWD MCRO
FWD TAG

Table 5.3: Allowed ATM Traffic IE combinations in the forward direction

73

The representative valid values for FWD_PCRO and FWD_PCRI1 are (0, 278, 2424). To test valid
values for parameters FWD_PCRO and FWD_PCRI, the parameters of the ATMTraff [E may be
initialized like in Table 5.4. All other parameters that are not shown in Table 5.4 are missing trom
the IE (they do not exist in the [E). The parameters are varied in parallel, i.e. they are initialized
independently. If one of the parameters has more values, the others are initialized with some

detault values (for example, they retain the value from the last combination).

Parameter ATMTraff 1 | ATMTraff | ATMTraff 3
2

FWD PCRO 0 248 2/24

FWD PCR1 0 28 2724

BWD PCRO 0 28 2024

BWD PCR1 0 28 224

Table 5.4: Three ATM Traffic instatiations covering values for FWD_PRCO and FWD_PCRI1

To test all representative values in ATMTraff we need:

6 (combinations) X 3 (maximum number of representative values for any combination)

= |¥ (instantiations of ATMTraff [E)

Since ATMTraff is part of the message, 18 SETUP PDUs are constructed to include I8
ATMTraff instantiations.

PDUs with invalid parameters are constructed according to the following rules:

(1) PDUs with MIEM: For each message type. PDUs with one missing mandatory [E are
generated. For example, a SETUP message has four mandatory [Es, thus four SETUP PDUs are
generated with a single mandatory [E missing at a time;

(2) PDUs with MIECE: The representative PDUs from this class have one erroneous parameter at
a time. Parameters with invalid values are not varied in parallel. If one parameter in the PDU has
content error, all other parameters in the PDU should have valid values. This approach helps us to
avoid confusion as to which error value has caused such a behavior;

(3) PDUs with UIE: For each message type, a message with one unrecognized [E is generated;

(4) PDUs with NMIECE: These PDUs are generated in the same way as PDUs with MIECE. The
difference is that the [Es having the content error are non mandatory for the message;

(3) PDUs with RUIE: For each message type, a message with one extra valid IE is generated.

We have constructed 25 PDUs to test the ability of an IUT to recognize valid PDUs and 115
PDUs to test the ability of IUT to detect an error in PDUs and the type of the error. Table 5.5

74

groups the 115 PDUs by the type of message and error. Appendix D contains SDL examples of
SETUP message with valid values, with MIEM, and with MICE.

Message MIEM MIECE UIE | NMIECE RUIE
SETUP 4 15+2+2+5=24 l 1342+14+2=31 | |
CONN 1 2 1 1342=15 l
CONN_ACK | 1 1 0 1
CALL_PRO 1 2 1 2 1
RELEASE 1 2 1 0 1
REL_COM 1 2 1 2 1
STATUSENQ |1 | 1 0 1
STATUS 2 2+1=3 1 0 1
Total:(115) 12 37 8 50 8

Table 5.5: Number of messages representing the five classes of invalid PDUs
Test cases for the data part are constructed by selecting the appropriate test cases from the test
suite and completing them with the PDUs from the representative sets. In general, this requires the
same test case to be repeated with different values for its parameters. An example of a complete

test case is given in Figure 5.4.

15

Jean_pdulpdy)

l

Hefault _setups
(pdu)

Twait

Serup)
tpedu) via
from,

set(tjow+d _wait, Tvait)

£ _nl_comlp+

L5 message
(@du) via fpdu) via
fpmS rom\

1

settfow+d _wat, Tdait)

setiqow+d_wait, Tjvai)

O " l l
wait_Status
Rel “|:DI'< Twait <

['7 Ee

fanl("test 28™)

=

Figure 5.4: A complete test case for the SDL skeleton in Figure 5.1

5.7 Validation of the conformance test suite

5.7.1 Objectives of validation

The last step in the test development process is validation of the developed test suite. The
objective of the validation should first be clarified. [n the validation process, the complete test
suite in SDL is executed against the protocol SDL specification in an SDL simulation
environment. This activity is similar to the conformance testing procedure. Instead of having a
“black box™ [UT, we use the SDL protocol specification as an [UT, and, instead of a real tester,
we have an SDL realization of the local tester that implements the test suite as a set of SDL

procedures. The ‘“‘execution” activity is performed by an SDL simulation tool, firing the SDL

76

transitions one by one. For this purpose, we used commercial SDL tools SDT and Geode. A
properly designed test suite complete with parameters test suite should give a pass verdict for the
specification. In this case, we consider the test suite as validated (or correct). While the objective
of the validation process is to check the correctness of the test suite, it may discover some errors
in the SDL specification as well. Therefore, the validation process can be considered as a mutual

assessment of the correctness of the test suite and the SDL specification.

Two problems concerning the test validation process have to be addressed:

(1)} When a test case gives the fail verdict, we have to determine where the error is: in the test suite
or in the SDL specification. In the case when the SDL specification can be trusted to be error
tree, the conclusion is that there is a mistake in the test suite. When problems are detected, errors
are located by proofreading the SDL code of the specification as well as the test suite SDL code,
and the code or the test case is corrected. The SDL graphical environment provides an excellent

means to locate and to resolve these problems.

(2) Error detecting capabilities of the validation process: The test suite is based on the FSM model
derived from the SDL specification. If there is an error in the control part (FSM part) ot the SDL
specification, the same error will be in the test suite, and, consequently, it will never be discovered
by the validation process. Using the test development process introduced in this work, we cannot
detect such errors in the test suite. In our project, the correctness of the SDL specification is
ensured by checking the equivalence of the two FSMs: the one, manually derived directly from the

ATM document (see Section 4.3.1) and the other, obtained by the FEX tool (see Section 5.2).

The validation process may also detect errors in the data part of the protocol. PDUs for parameter
variation are generated from the standard document, and procedures for constructing PDUs and
checking PDU parameters in the SDL specification are developed independently. Besides errors in
the data part, there are other errors than could be discovered during the validation process. The
SDL specification contains code that performs integration of the Coord process and protocol
instances, such as support of multiple connections, creating and terminating new Proc instances (as

new connections are opened and closed), dispatching primitives and messages fromyto the Coord

7

process and protocol instances, etc. These functions are not part of the standard but are necessary

in order to have a complete functional specification of the Signaling protocol.

5.7.2 SDL validation system

The SDL system used for the validation process is shown in Figure 5.5. It consists of a Tester
block and a Q2931 block (the Signaling protocol specification). They are connected by four

channels.

The Tester process integrates the UT and the LT in a single SDL process TestSuite. Test cases,
inside TestSuite are realized as procedures. The completed example test case from Section 5.1 is
shown in Figure 5.4. A timer T is added to limit the maximum waiting time of the Tester. For

example, if the specification does not reply at all, the Tester will time-out, and send a fail verdict.

5.7.3 Resulits of the verification

During the validation process. errors in earlier versions of the SDL specification as well some
errors in the test cases were discovered. Most of the discovered errors are related to the data part
of the protocol (procedures for checking the content of the PDUs). There were few errors in the
Coordinator (e.g. one related to Call Reference assignment) and in the integration of the
Coordinator and the protocol instances. No error was found in the FSM part of the protocol.
Errors that were found during the validation were located and corrected by proofreading the code

of the tester and the SDL specification.

78

[(primitives)]

Q2931 Tester

[message]

Figure 5.5: Test validation architecture

5.8 Test grouping

It is common practice to organize a test suite in the hierarchical, tree-like structure. Usually, a test
suite is organized around the protocol functions or phases in order to facilitate maintaining the test
suite and selecting test cases (Section 2.3.3). The test suite produced with the TAG tool is not
grouped or structured. It is generated as a “flat” sequence of test cases following the rules of
FSM-bused testing, as explained in Section 3.1.3. In order to produce a hierarchical structure, test
cases are manually grouped in the test groups. Test groups are identified according to the protocol

property they focus on.

The test suite structure is shown in Figure 5.4. The leaves and nodes represent the test groups.
The numbers in brackets represent the number of test cases in the corresponding group. The test
suite is divided into two main groups: Valid and Invalid behavior tests. As explained in Section
4.2.3, the Signaling protocol valid behavior is classified in the following phases: Call Request, Call
Answer, Call Clearing. Test cases that test transitions from one of these phases are grouped into

corresponding test groups: Call Request test group, Call Answer test group and Call Clearing test

79

group. Together with tests for timers and Status Enquiry Procedure, these tests form the Valid

Behavior test group.

Test cases that form the Invalid Behavior test group are composed of cases that test the Error
Handling procedures (Section 4.2.3.3). They are organized in groups according to the Error
procedures they test. The General Error group consists of cases that test the [UT behavior when
one of the error conditions occurs: a message is received with a protocol discriminator error, it has
a message length error, or it has a CR error. These procedures are part of the Error Handling, but
since procedures associated with these errors are realized by the Coordinator, they are organized
as A separate group.

r—— GeneralError(24)

— CullRequest (2)
Valid — CallAnswer(7)

—— CallClearing(20)

— Timers(126)
— StatusEnquiry(62)

Mandatoryl[EMissing(19)
— MandatorylEError —[
MaundatorylEContentError(19)

Signaling .
protocol ~— — UnrecognizedlE(22)
test suite — Invalid ——o NonMandatory[E NonMandatory[EContentError(4)

Error

— RecognizedUnexpected[E(14)

|

MessageSequenceErmmor(27)

= Parameter variations (25+115)

Figure 5.6: Test suite structure
It is worth noting that the test grouping (Figure 5.6) matches the test categories recommended by
[ISO9646].

80

The following table gives the outline of the test categories required by ISO 9646 und the test

groups from the test suite that corresponds to them.

5.9 Conclusion

[n this chapter, we used the experimental tool chain to develop a conformance test suite for the
Signaling protocol. Starting from the SDL specification of the protocol, the FSM model was
extracted by the FEX tool. Using the TAG tool, a number of the test cases for the control part of
the protocol was developed in an automated way from the FSM model. For protocol properties
that could not be tested with the test cases developed by the tool, additional tests were developed
manually. The resulting test suite has 320 test cases and complete fault coverage in terms of the

FSM model. The test suite has tests for each major protocol function.

Tests for the data part of the protocol were developed manually directly from the standard
document. A set of PDUs with different parameter values was constructed, and corresponding test
cases were completed with these PDUs. Test cases and the PDUs are represented in SDL. There
are 25 test cases checking the protocol behavior on input of valid PDUs and 115 test cases for

invalid PDUs.

The SDL specification and the test suite in SDL were validated one against the other in an SDL
executable environment. A number of errors were discovered and corrected in the data part of the
protocol while no error was found in the control part. To help maintain of the test suite. test cases

were organized into test groups.

Our experience with the Signaling protocol has shown that the standard in some places is
ambiguous. It is sometimes difficult to determine the conformance requirements from the plain text
and few possible interpretations are possible. For example, when receiving STATUS with Cause
equal to 30, the standard says that an "appropriate action shall be taken”., while not explicitly
explaining this "appropriate action”. Ideally, the standard should be written using formal methods
to avoid any discrepancy. Unfortunately, this was not the case with the UNI 3.1. The Q2931 has
SDL diagrams, but at the time of this work it was still a draft version. The results of the test

development process are as accurate as the modeling of the protocol with the FSM. Aspects of the

81

protocol that cannot be represented with the FSM transitions have to be tested in addition to the
FSM testing. Since the main point of the test development method used is the fact that we can rely
on methods for FSMs which have a proven fault coverage and precise mathematical foundation for
generating tests tor protocols, developing a relevant FSM model for the protocol is crucial.

Therefore, specifying protocol standards using FDTs would be a good practice.

82

Chapter 6

Development of an interoperability test suite

6.1 Test configuration

The conformance test suite developed in the previous section can be used to determine whether or
not an implementation of the Signaling protocol conforms to the specification. As discussed in

Section 2.4, there is still no guarantee that any two conforming implementations will interoperate.

[nteroperability testing assumes the test configuration of Figure 6.1. In Figure 6.1, only the
Signaling protocol entities are shown. The rest of the ATM protocol stack is not presented (the
lower lever protocols: SAAL, ATM layer, etc.). The system under test (SUT) consists of two
Signaling protocol [UTs connected through a network (or a switch). The behavior of the system is
modeled using the ASPs that are exchanged at the upper protocol interface of the [UTs. Each of
the IUTSs is modeled by the FSM of the Signaling protocol developed for conformance testing. We
assume that the network is reliable (“null” network): there are no errors introduced by the

network. and there is no loss of PDUs.

83

Since the goal is to test a single point-to-point connection, one IUT is defined as Sender and the
other IUT as Receiver. Sender initiates the call and Receiver answers the call. Assigning the role
of Sender to one [UT implies that it consists of the part of the FSM that is responsible for the Call
Request phase (states UO, UL, U3, U10, Ull, Ul12). Apparently, Receiver consists of the FSM
part responsible for Call Answer (states U0, U6, U8, U9, U10, Ull, Ul2). If the [UT that was
tested as Receiver has to be tested as Sender, the role of the [UTs should be switched, and the test
suite will be reapplied. If both [UTs are allowed to initiate the call, the ASPs received will refer to
twu different connections, since each connection is represented by a different instance of the

protocol (FSM).

[n this test configuration, it is assumed that there is no test equipment that monitors the tlow of the
PDUs between the two [UTs: the only points of observation and control are at upper layer PCOs
of the Sender and Receiver. It is obvious from the configuration that:

(1) The internal communication between the two FSMs cannot be observed. Therefore. it is
impossible to directly check outputs of the [UT which are inputs to the other [UT:

(2) Some transitions of the [UT always initiate other transitions of the other [UT. These transitions
cannot be checked in isolation.

However, in the interoperability testing we are not interested in the internal communication of the
IUTs. We are concerned with the services that are offered to the user, and since they are
observable only on the upper layer PCOs, monitoring the message exchange between the [UTs

reveals no additional information.

ASPs ASPs

St?rﬁér Re&i’ver
T IUT
ATM /
switch

SUT

Figure 6.1: SUT used for the Interoperability Testing

6.2 The test development process

The process used to derive an interoperability test suite is similar to that used for conformance
testing. The test development process explained in the conformance testing starts with the
standard document of the protocol. However, for the interoperability testing there is no document
that specifies the behavior of the system shown in Figure 6.1. The global FSM model for the SUT
has to be derived manually from the FSMs of the IUTs. by combining the two FSMs. The global
FSM is used as input for the TAG tool to generate test cases. Tests for the data part of the
protocol are developed from the PDUs constructed in the conformance testing and test cases
generated from the global FSM. The crucial point is the generation of the global FSM for the
SUT. The Sender and Receiver FSMs are communicating FSMs that exchange messages between
each other and the environment. We are required to build a global FSM that represents the

composed behavior of the two FSMs. The method used is given in the following section.

6.2.1 Composing two FSMs
The goal of composing two FSMs is to produce a global FSM that describes the joint behavior of

the constituent FSMs. Two FSMs that we want to combine are FSMs of the Signaling protocol

communicating between each other. They are shown inFigure 6.2.

I1 U I3

Is

I2 U I4 Ir

2

Ve w3

Sender :> Receiver
N s
! ! I3 04 ! !
0l U QO3 Os

Ol 02 U 04 Or 02

Figure 6.2: Two communicating FSMs

The global FSM has the input set [g=[1 U [2 and output set Og=01U02. The events that belong
to O3 and O4 are exchanged between M1 and M2 and are not visible at the outputs of the global
FSM. The definition of the combining operator of two FSMs and the corresponding method are

given in [DaKI8Y|. In the following, we give an informal explanation of the method.

We detine machine M1, M2 and global FSM, gFSM, as : M1 = {I; Oy, Sy, soi, D1, &, A}, M2 =
{12, 04, S2, Sz, Da, 82, A2}, and gFSM = {1, Oy, S;, Sog Dy, 8, A,). A state of the global FSM M is
the ordered pair of states of machine M1 and machine M2 (§, = §; X Sz). The global FSM is
constructed by applying inputs i € [, to M1 and M2, and observing the outputs o € O,. The
output and the next state of the global FSM for the input i in the state (s;, s2) are determined

according to the following two rules:

(1) If i is an input for machine M1 (i € I1), and an output 0 = A; (i, 5;) € Ol, the output of the
global FSM on input i is: Ag(i, (81, 82)) = A,(i, 51), and the next global state is: 8,(i, (si, 52)) = (&1(i.
s1), s2). In this case, the output o is sent to the environment and no new transition is fired before
the input from the environment is applied. The procedure is identical for an input to machine M2;
(2) If i is an input for machine M1 (i € I1), and an output 0 = A,(i, 5;) € O3, the output o is sent

to M2. The FSMs will relay events between them as long as no output is sent to the environment

86

(we assume that this process will eventually terminate; in other words, that there is no livelock).
During this process, a number of events may be exchanged between the machines, and they may
transfer through the number of states. The output of the global FSM is the last event in the
sequence of the exchanged events and the next global state is the pair of states in which M1 and
M2 rested. As in (1), M1 and M2 will remain in these states as long as there is no input from the

environment (i€ [,).

Using the above two rules, for each global state (sy, s») transitions are determined for all inputs i €
[g. There are states of the global FSM that can be visited during a proper communication at the
start state, as well as states that cannot be visited during such a communication. However, some of
the visited states are not stable, i.e. the combined FSM will spontaneously transit from those states
(without external inputs). Summarizing, we have reachable and non-reachable states of which the
reachable states can be divided into stable and non-stable states. We are particularly interested in

the stable reachable states because these are states of the global FSM.

6.2.2 Aglobal FSM for interoperability testing

The global FSM for the interoperability testing is derived from the Sender and Receiver FSMs.
The Sender FSM has 6 states, and Receiver FSM has 7 states (see Section 6.1). Sender and

Receiver inputs and outputs are given inTable 6.1:

Input ([1.12) # | Output (O1.02) # | Input(I3.14)
Qutpu(03.04)
Sender | Setup_req_s 1 Setup_conf_s 21 |all PDUs
Setup_req_s (Mie=l) 2 Release_conf_s 22
Setup_req_s (Mie=2) 3 Release_coni_s (ca=96) |23
Setup_req_s (NMie=2) 4 Release_conf_s (ca=100) | 24
Release_req_s 5 Release_conf_s (ca=31) 25
Release_req_s (Mie=1) 6 Proceeding_ind_s 26
Release_req s (Mie=2) 7
Release_conf_s 8
Receiver | Release_resp_r 11 {Setup_ind_r 31 |all PDUs
Release_resp_r (Mie=1) 12 | Setup_comp_ind_r 32
Release_resp_r (Mie=2) 13 [Release_ind_r 33
Proceeding_req_r 14 |Release_ind_r(ca=31) 34
Proceeding_req_r (Mie=1) |15 |Null 3
Setup_resp_r L6
Setup_resp_r (NMie=2) 17

Table 6.1: Inputs and outputs for Sender and Receiver FSMs

87

Using the method from the previous section, the global FSM with 6 reachable stable states
A=(0,0), B=(1,6), C=(3,9), D=(10,10), and E=(11,12) is obtained (Figure 6.3).

1/35 11735 14/35

16/21.32

o 17/21.32

2123 324 1/35 135 11735 14735

1731 4/31 16/21,32 17/21,32

11/22 12725 13725

1/35 14/35
Figure 6.3: The interoperability FSM state diagram

In the tollowing paragraph, an example of a valid call request and error Handling procedure is
used to illustrate the exchange of messages in the SUT and explain the transitions in the

corresponding global FSM.

In the starting global state A, Sender and Receiver are in Null (UO) state. When Setup_req is
received, the Sender initiates the call request by sending a SETUP message and transfers to Ul
state. [f the network is responding with the CALL_PRO, the Sender will be in the U3 state. If the
network does not respond with the CALL_PRO, Sender will remain in the U1 state. The SETUP

is received by the Receiver, Setup_ind is sent at the Receiver PCO and the Receiver transfers to

88

U6 state. At this moment, the global FSM is in B state. The corresponding exchange of the

messages is shown inFigure 6.4.

The error Handling procedure is explained below. When the SETUP is received with an error (for
example MIEM), the Receiver will respond with the REL_COM (actually the network at the
Sender side will respond with the REL_COM but since in our system we are not modeling the
network functionality, it will be done by the Receiver) and connection will be cleared, Sender and
Receiver will be in UQ and system will remain in A state. The corresponding exchange of the

messages is shown inFigure 6.4.

Sender Receiver

Network
Setup_req_s

SETUP SETUP

.| (conniD) Setup_ind_r

Proceeding_rey_r

CALL_PRO -

Proceeding_ind_s

Setup_req_»
(Mie=1) SETUP
T | (Mie=1) SETUP
\ (Mie=1)
REL_COM
REL_COM (ca= 96)

(ca=96) |

Release_conf ‘/ T
-

Figure 6.4: Call request and MIEM procedure for the SETUP message

39

6.2.3 Applying the TAG tool to the global FSM

The global FSM described in a TAG format is used to derive tests with the tool. A complete test
suite is generated by the TAG tool; however, the TAG tool cannot find the state identification
facility for the global FSM and the test suite has no checking sequences because the FSM has no

distinguishable states.

As already discussed, the FSM model is not completely specified for ASPs. As discussed in
Section 4.3.1, we interpret the unspecified inputs as “don’t care” transitions. This did not pose any
problem for the test development in conformance testing because the existing state identification
facility makes no use of any ASP. However, for the global FSM, an HSI set does not exist that
will distinguish the states. The possible solution to this problem is to relinquish the interpretation
of the unspecified inputs using “don’t care” transitions. A common approach is to complete the
behavior for the unspecified inputs with looping transitions having no output, so called Null
transitions. We add Null transitions for as many ASPs as required to distinguish the states. The
state identification facility produced by TAG is as follows:

State identification sequences:

WA= {Setup_req_s}

WB={Setup_req_s.Release_resp_r, Proceeding_req r}
WC={Setup_req_s.Release_resp_r.Setup_resp_r}

WD={Setup_req s.Release_resp_r.Setup_resp_r}

WE=(Setup_req_s.Release_resp_r, Proceeding_req r}

The generated interoperability test suite has 44 test cases. Example test cases are given in
Appendix E.

As discussed in Section 6.1, the test configuration in Figure 6.1 has certain limitations. Some
protocol properties cannot be tested because communication between the Sender and Receiver is
not visible and some transitions are “coupled”. The following procedures of the Signaling protocol
cannot be tested with the interoperability test suite:

(1) Error Handling procedures for Messages type and Message sequence errors (see Section
4.2.3.3): using only ASPs, we cannot generate any message in any state or a wrong message;

(2) Status [nquiry procedure: this procedure is initiated only by the STATUS ENQ message that is
sent upon indication of the SAAL failure. In the conformance testing (Section 4.3.1), we modeled

the Status Inquiry procedure with the primitive from SAAL, InitiateStatus Enquiry; the STATUS

90

ENQ is sent when InitiateStatusEnquiry is received on the lower PCO. Since we do not have
access to the lower PCO, we cannot test this procedure in the interoperability testing;

(3) Coordinator functions: the previous two cases are related to the limitations of the test
configuration. The ability to test the Coordinator functions depends on the availability of the
common message parameters that trigger the Coordinator functions (Protocol discriminator,
message length or CR). Since we assume that these parameters are not associated with the ASPs

(as explained in the next section), we cannot produce tests for the Coordinator functions.

However, the previous functions and procedures are assumed to be tested with the conformance

test suite.

6.2.4 Test cases for the data part

[n conformance testing, the tester has access to the lower interface and is able to send PDUs with
valid or erroneous content to the IUT. The tester can also examine the content of the PDUs
received from the [UT. In interoperability testing, the data part of the protocol is tested indirectly
using the ASPs. At the PCOs (Sender or Receiver), there is one-to-one mapping between the
ASPs and the messages. It is assumed that an ASP has the same parameters (IEs) as the
corresponding message but has none of the common message fields (Parameter discriminator,
message length, and CR). Common message fields (parameters) are considered local to the
protocol and should not be accessible by the upper layer protocol. Commercial ATM API
(WinSock2 [WINS2]), which we use for realization of the test execution environment, justifies our

assumption since it does not provide read or write access to these parameters in its function calls.

We can set the parameters of the messages sent by the Sender or Receiver by setting parameters
of the corresponding ASPs. The intention is to reuse the sets of representative PDUs constructed
for parameter variation in the conformance testing, and to use them to test the data part with the
interoperability test suite. Test cases from the interoperability test suite are instantiated using the

corresponding PDU values developed for the data part in the conformance testing.

91

6.3 Validation of the interoperability test suite

A test suite may be validated in the SDL environment using the system shown in Figure 6.5. SDL
specifications are directly connected without any network model in between. The tester is realized
as a single block and the test suite is implemented as a sequence of SDL procedures. Since there is
no module representing the network, a small number of changes to the SDL specification are
necessary to make the SDL configuration executable. When a SETUP message is sent by the
protocol to the network, Connection Identifier [E (ConnID) is not mandatory, while in another
direction this [E is mandatory. Since the Receiver is expecting SETUP with the ConnID present,
we have to change the Sender specification to generate a SETUP message with ConnID. Similar
change to the Receiver is required for CONN and CONN_ACK message. They have mandatory
ConnID [E in network to user direction, while in user to network ConnlD is optional. In this case,
it is a responsibility of Receiver to play the role of a network and to generate the ConnID in

corresponding message.

[n building the SDL system, we wanted to use the sume SDL specification for the two blocks,
Sender and Receiver. However, instead of initializing these block instances with the same
definitions, we were forced by the commercial tool to copy the whole definitions and to treat the
block as a different one. Even then, we could not share common procedures, for example,
procedures for checking parameters, and it was necessary to rename procedures in order to avoid
the name conflict. However, this would be impractical when the specification consists of 10 000
lines. We were still unable to solve the problem even after contacts with tool specialists.
Specialists from the tool supplier were unable to offer any better solution. For this reason,
validation of the interoperability test suite was not performed as planned. It might be possible,

however, to use other SDL-based tools to validate interoperability tests.

92

Tester

ASP ASP

IuT < » [t
PDUs

SDL Environment

Figure 6.3: Validation of the interoperability test suite

6.4 Conclusion

An interoperability test suite is needed to test the interoperability of the implementations in a real
system configuration. Instead of testing each implementation in isolation, the functional system
consisting of properly interconnected implementations is configured, and its services to the user
are tested. [n this chapter, system under test (SUT) is defined as consisting of two Signaling
protocol entities connected via a network. We assumed that there are no errors introduced by the
network. and there is no loss of the PDUs. To develop tests for interoperability of the Signaling
protocols, the SUT is modeled by a global FSM representing the behavior of all components. The
global FSM was obtained by combining the two FSM models of the Signaling protocol and its

behavior was defined in terms of ASPs.

Using the global FSM to model the system, test cases for the control part were developed using
the TAG tool. After completing the FSM with looping null transitions for unspecified primitives, a
test suite with state identification sequences was obtained. The resulting test suite consists of 44
test cases. Assuming that an ASP has the same parameters (IEs) as the corresponding message,
test cases for the data part were constructed using the PDU values developed in the conformance

testing. An SDL system for validating the test suite was proposed.

93

Chapter 7

Conclusion
.~~~]

As stated in the Introduction, the objective of this work was twofold. The first goal was to
develop conformance and interoperability test suites for the ATM Signaling protocol using the
tool chain. Part of the conformance test suite was developed for the control part of the ATM
Signaling protocol using the tools. Additional test cases for parameter variation and certain timers
were derived manually. The interoperability test suite was developed by considering a system of
two signaling protocol entities connected through a dummy network model. The obtained tests

could be used in practice during the development process of ATM cards.

The second goal was to evaluate the experimental tool chain developed at UofM. Qur impressions
of the UdeM tool chain are:

(1) The majority of test cases for the control part of the protocol can be developed automatically;
(2) Test suites developed using the FSM test generation method have complete fault coverage in
terms of the FSM model of the protocol (provided that the FSM is reduced);

(3) Test cases for the data part could be validated using the SDL specification as a reference.

Since PDUs for parameter variations were developed manually and independently from the SDL

94

specification, validation against the SDL specification provides an increased confidence in the
quality of the test cases.

(4) The automated tools give a possibility for multiple iterations through the development process.
The changes (if needed) in the SDL specification or the intermediate FSM model could be made
more easily because the test developer could regenerate the test case in a few steps. Consequently,
the test developer could gradually refine the SDL specification, FSM model and test suite, starting

from a less elaborated SDL specification and gradually extending it with additional features.

As a result this work 4 number of possible improvements to the UofM tools can be suggested:

(1) The FEX tool could be enhanced to make use of the TAG options to test timers. Currently,
FEX does not translate the timer transitions from the SDL specification to the FSM timer
transitions;

(2) The TAG tool could be improved to produce test cases for transitions with two timers. Also,
the restriction on the starting transition not being a looping transition could be removed since the
tool cannot handle protocols like Signaling protocol:

(3) Managing a test suite of more than one hundred test cases manually is a difficult and error
prone task. If tools include some facility that helps group test cases, manipulate them, and search
for a particular test case, the test manipulation process could proceed more efficiently;

(4) Usually, SDL specifications are composed of several processes. Therefore, to obtain the global
behavior of the specification, The FEX tool should be able to extract an FSM from each process
and combine them into a single global FSM.

These improvements can be areas of future work.

References

[ATMF94] ATM Forum, ** Introduction to ATM Forum Test Specifications,” af-test-0022.000,
December, 1994

[CCITT83] CCITT Draft Recommendation X.200, “Reference model of open systems

interconnection for CCITT applications,” June 1983

[CCITTY2] CCITT, COM X-R, 17-E, Geneva, March 1992: Recommendation Z.100 - CCITT

Specification and Description Language (SDL) and Annex A to the Recommendation
[CCITTS&| CCITT Recommendations Z.101-Z.104 (Blue Book Series), SDL, CCITT, 1988
[GEOD]| Geod is product of VERILOG SA, France, http\www.verilog.fr\

[ISO7498] ISO International Standard 7498, “‘Information processing systems - Open Systems

Interconnection - Basic Reference Model,” Oct. 1983

[ISY074] “Estelle: A Formal Description Technique Based on an Extended State Transition
Model.” Int. Organization for Standardization, [S 9074, 1988

[IS8807] “Information processing systems-Open System Interconnection-LOTOS-A Formal
Description Technique Based on Temporal Ordering of Observed Behavior,” Int. Organization for

Standardization, IS 8807, 1988

[ISOY646] Information Processing Systems - OSI conformance testing Methodology and
framework, [SO/IEC JTC 1, [S9646, 1991

[L.311} ITU-T: Recomendation 1.311, "B-ISDN Service Aspects, " Rev. |, Geneva, 1993
[MSCY4] Z.120 (1993), Message Sequence Chart (MSC), IUT-T, September 1994

[Q2931] ITU-T: Draft Recommendation Q.2931, “B-ISDN User-Network Interface Laer 3
Protocol,” Geneva, 1993

{SDT] SDT is preduct of Telelogic AB, Sweden, http:\www.telelogic.com\

[TTCN] ISO/TCY7/SC21, “The wee and tabular combined notation, ” Annex E of Part 2
[1SOY646], edited by A. Wiles, December 1987

96

[UNI31] ATM Forum, “ATM User-Network I[nterface Specification Version 3.1," September,
1994

[WINS2] Windows Sockets 2 Application Programming Interface, An Interface for Transparent
Network Programming Under Microsoft Windows, revision 2.1.0, January 22, 1996,

[ArPh92] N. Arakawa, M. Phalippou, N. Risser, T. Soneoka, “Combination of conformance and
interoperability testing,” FORTE, 1992

[Boch78] G. v. Bochmann, “Finite state description of communication protocols,” Computer

Networks, North Holland, 1978

[Boch87] G. v. Bochmann, “*Semiautomatic implementation of communication protocols” [EEE

Transactions on Software Engineering. SE-13(9), Sept. 1987

[Boch¥7-1] G. v. Bochmann, “Usage of protocol development tools: the result of a survey,”
Protocol specification, Testing, and Verification, VII, H. Rudin, C.H. West, Elsevier Science
Publishers B.V. IFIP 1987

[(BoPe97] G. v. Bochmann, A. Petrenko, O. Bellal, S. Maguiraga, “*‘Automating the Process of
Test Derivation from SDL Specification,” SDL - Forum , 1997

[BeHo&Y| F. Belina and D. Hogrefe, “The CCITT specification and description language SDL.”
Networks and [SDN Systems, 16, North-Holland, 1988/89

[BernY4| P. J. Bernhard, “A Reduced Test Suite tor Protocol Conformance Testing,” ACM
Transaction on Software Engineering and Methodology, Vol 3 No3, July 1994

[Chow78] T. S. Chow, “Testing software design modeled by finite state machines,” [EEE Trans.
on Softw. Eng. SE-4, 3 (May), 1978

[DaKI91| H. van Dam, H. Kloosterman, E. Kwast, "Test derivation for standardized test

methods,” 4 th [nternational Workshop on Protocol Test Systems, 1991

[Gone70] G. Gonec, “A method for the design of fault detection experiments,” [EEE Trans.
Comput. C-19,6(June), 1970

[Henn64] F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits, " Proc. Of 5th

Annual Symposium on Switching Circuit Theory and Logical Design, Princeton, NJ 1964

97

[Higa94] T. Higashino and G. v. Bochmann, “Automatic Analysis and Test Derivation for a
Restricted Class of LOTOS Expressions with Data Parameters,” [EEE Trans., SE-20, No. I,
1994,

[Knig&7] K. G. Knighston, Terry Knowles, John Larmouth, “Standards for Open System

Interconnection,” McGraw Hill, 1987

[Koh78] Z. Kohavi, “Switching and Finite Automata theory,” McGraw Hill, New York, N.Y.,
1978

[LeYay6| D. Lee, M. Yannakakis, "Principles and Methods of Testing FSM - A Survey,” [EEE
Proceedings, vol.84. No.8, August 1996

[Linn90| R. J. Linn, “Conformance Testing for OSI Protocols, "Computer Networks & [SDN
Systems, Vol. 18, 1989/90

[MainY6] W. Mainvis, “Intégration de nouvelles fonctionnalités dans un outil de dérivation de tests
pour les protocoles”, DEA Thesis, Université de Montréal (in collaboration with CRIN, Nancy,

France), August 1996.

[Marcy7] R. Marcoccei, * Implementation of the ATM Signaling Protocol .” Master Thesis in

progress, University of Montreal, 1997

[Morev0| L. J. Morell, “A Theory of Fault - Based Testing, " .” [EEE Trans. on Softw. Eng. SE-
16. 8 (August), 1990
[Myer79] G. J. Myers, “The Art of Software Testing, " Wiley-Interscience publication, John Wiley
& Sons, 1979, 177p.
[Nash&3] S. C. Nash, “Automated implementation of SNA communication protocols,” In Proc.

IEEE International Conference on Communications,” June 9-22, 1983

[NaTsg1] S. Nito, M. Tsunoyma, “Fault detection for sequential machines by transition tours.”
IEEE Fault Tolerant Computing Conference, [EE , New York, 1981

[Rayn87] D. Rayner, “OSI Conformance Testing,” Computer Networks and ISDN Systems, Vol.
14, 1987

98

[Petr91] A. Petrenko, “‘Checking experiments with protocol machines, ” in Proceedings of the [FIP
4th International Workshop on Protocol Test Systems (IWPTS 91), the Netherlands, 1991, pp. 83-
94.

[PoSm&2] D. P. Pozetsky, F. D. Smith, “A meta-implementation for system network

architecture,” [EE transactions on Communications, COM - 30:1348-1355, June 1982

[SaBo87] B. Sarikaya, G. v. Bochmann, Eduard Cerny, “A Test Design Methodology for Protocol
Testing.” [EEE Trans. Software Eng., Vol. SE - 13, No. §, May 1987

[SaDa88] K. K. Sabnani, A.T. Dahbura. “A Protocol Test Generation Procedure,” Computer
Networks and [SDN Systems, Vol. 15, No. 4, 1988

[SiCh¥7] D. Sidhu, A. Chung, “Experience with Formal Methods in Protocol Development,”
FORTE'8Y, 1989

[SiBIYO} D. Sidhu, T. P. Blumer, “*Semi-automatic implementation of OSI protocols,” Computer

networks and I[SDN systems, January 1990

[Tan96] Q. M. Tan, A. Petrenko, and G. v. Bochmann, “A test generation tool for specifications in
the tform of state machines,” in Proceedings of the International Communications Conference
(ICC) Y6. Texas. June 1996, pp.225-229.

[Vasi73] M. P. Vasilevski, “Failure Diagnosis of Automata, " translated from Kibernetika, No.4,
July-August, 1973

[Vuong9| S. T. Vuong , *“The UIOv-method for Protocol Test Sequence Generation, ” Proc. Of

the 2nd Int. Workshop on Protocol Test Systems, Berlin, Germany, October 3- 6, 1989

[Yuo96] M. Yao, “On the Development of Conformance Test Suites in View of their Fault

Coverage,” PhD thesis, University ot Montreal, 1996

99

Appendix A: The FSM model

The FSM model is represented using the TAG format. The Proc FSM does not include the
coordinator transitions. The FSM is organized in three sections: variables, states, inputs,
outputs and transitions. Variables are used to condition and, therefore, unfold the inputs.
Meaning of the variables and their values are explained in comments in the same line. For
example, the value of the variable Mie indicates which type of error the input message
should have. When the relation "'=" is used, it means that the message or primitive may be
initialized with any value or the parameter not equal to one indicated. Consequently, the
test case may be completed in several different ways. When the value of incomp variables
is 1 (used only with the STATUS), it indicates that the current state in STATUS message

must be incompatible with the state where message is received.

Messages in the input and output sections are marked with PDU. Transitions are grouped
by the starting state. Comments #CR, #CA, #CC, #SE, #MS, #MIEM, #MIECE, #UIE,
#NMIECE., #RUIE next to transitions determine their function. For example, Transitions
that realize the Call Request function of the protocol have comment #CR. Later, these

comments are used to group the corresponding test cases in test groups.

* Q2931 Fsm specification: Proc FSM (no coordinator functions) *-

U S U UM S S *

variables

rs integer; /* Reason for rejection *’/
¢s integer; /* Current state */

ca integer; /* Cause value */

incomp integer; ;* O=compatible states l= incompatible states */
Mie integer; /* 1=MIEM; 2=MIECE */
NMie integer;/* 1=UIE; 2=NMIECE ; 3= RUIE*/
‘,* ___ 1’/
States:
U0: initial;
Ul;u0s3; /* Call Request */
Ue;U8;U9; /* Call Answer */
Ul1o0; /* Call Active =*/
Ull;ul2; /* Call Clearing */
i e e e e e e . */
Inputs:
Setup :PDU;

Setup (Mie=1) :PDU; /* mandatory and non-mandatory*/
Setup (Mie=2) : PDU;

100

Setup (NMie=1) :PDU;

. Setup (NMie=2) : PDU;
Setup (NMie=3) : PDU;
Conn :PDU; /* same */
Conn (Mie=1) :PDU;
Conn(Mie=2) :PDU;

Conn (NMie=1) : PDU;

Conn(NMie=2) : PDU;

Conn (NMie=3) : PDU;

Conn_Ack :PDU;

Conn_Ack(NMie=l} :PDU; /* no IE */
Conn_Ack (NMie=3} :PDU;

Call_Pro :PDU;

Call_Pro(Mie=1l) :PDU;

Call_Pro(Mie=2) :PDU;

Call_Pro(NMie=1) :PDU; .* only non-mandatory *-
Call_Pro(NMie=2) :PDU;

Call_Pro(NMie=3) :PDU;

Rel :PDU;

Rel (Mie=1) :PDU; -* only mandatory =*-

Rel (Mie=2) :PDU;

Rel (NMie=1l) :PDU;
Rel (NMie=3) :PDU;

Rel_Com :PDU;

Rel_Com(Mie=1) :PDU; /* mandatory and non-mandatory *-
Rel_Com(Mie=2) :PDU;

Rel_Com(NMie=1l) :PDU;

Rel_Com(NMie=2) :PDU;

Rel_Com(NMie=3) :PDU;

status (cs=0) : PDU;

status(cs!=0, incomp=1) :PDU;

3tatus(cs!=0,ca=%6, incomp=0) :PDU;

status(csi=0,ca=97, incomp=0) :PDU;

Status(cst=0,ca=99, incomp=0) :PDU;
Status(cs!=0,ca=100, incomp=0) :PDU;
Status(csi=0,ca=101, incomp=0) :PDU;

status(cs!=0,ca=30, incomp=0) :PDU;
Status(cs'i=0) :PDU;
Status (Mie=1) :PDU;
Status (Mie=2) : PDU;

status_eng :PDU;
status_engq(NMie=l) :PDU;
Init_stat_eng :PDU;
Setup_res;

Setup_req;

Rel_req;

Rel_resp;
Rel_resp(ca=838};
Rel_resp(ca=17};
Rel_resp(ca=21);
Rel_resp(ca=23);
Proceeding_req;
Unrecognized;

/* timers */
T313 : timer;
T308 : timer;

T310 : timer;
T303 : timer;
T322 : timer;
/t ___ */

Qutputs:
Conn :PDU;

101

Conn_Ack :PDU;
Call_Pro :PDU;
Setup :PDU;
Status(ca=101)
Status(ca=96)
status(ca=97)

status(ca=100)

Status (cs=0,ca=30)
status(cs=1,ca=30)
status (cs=3,ca=30)
status (cs=6,ca=30)
Status (¢s=8,ca=30)
Status (cs=9,ca=30)
status (cs=10,ca=30)
sStatctus(cs=11,ca=30)
status{cs=12,ca=30)
status_enqg
Rel{ca=16)
Rel(ca=102)
Rel(ca=96)
Rel (ca=%87)
Rel (ca=99)
Rel (ca=100}
Rel (ca=101}
Rel_Com
Rel_Com(ca=56)
Rel_Com(ca=100)
Rel_Com{ca=101)
Rel_Com{ca=388)
Rel_Com(cas=Ll7)
Rel_Com{ca=21)
Rel_Com(ca=23)

:PDU;
:PDU;
:PDU;
:PDU;
:PDU;

:PDU;
:PDU;
:PDU;
:PDU;

:PDU;
:PDU;
:PDU;

:PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;

:PDU;
:PDU;
: PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;

combl:Rel_Com:PDU,Rel_cont;
comb2:Conn_Ack:PDU, Setup_cont;
comb3:Rel_Com(ca=96) :PDU, Rel_cont;

comb4 :Rel_Com(ca=100) :PDU,Rel_cont;

combS:Rel_Com(ca=41) :PDU,Rel_cont;

Setup_ind;
Setup_conf;
Setup_comp_ind;
Rel_cont;
Rel_conf (ca=31);
Rel_ind;
Rel_ind(ca=31l};
Proceeding_ind;

X o e e e e e *

Transitions:

«*J0: Null statex*/
ug 2Setup
uo ?Setup_req

. * unexpected messages are not received in U0,

!Setup

!Setup_ind

coordinator is filtering them */

+* Unexpected Msg */

;/* IE Miss/Err */

uo ?Setup (Mie=1)
o0} ?Setup (Mie=2)
uo 2Setup (NMie=1)
U0 2Setup (NMie=2)
uo ?5etup (NMie=3)

»UG; / *8#CR*/

-Ul,

‘Rel_Com(ca=96)
tRel_Com(ca=100)

tSetup_ind
tSetup_ind
! Setup_ind

>U6;
>U6;
>U6;

start T303;;*#CR*~

>00; /* MIEM */
>U0; /* MIECE */
/* UIE */

/* NMIECE =*/

/* RUIE */

102

/*Ul: Call Initiated*/
Ul ?2Call_Pro 'Proceeding_ind >U3, stop T303, start T314;
/*#CA*/
ul 2Conn ' comb2 »Ul0, stop T303; /*#CA*/
Ul ?Rel_Com 'Rel_conft >U0, stop T303;
/*#CC first clearing mess. */
Ul 7Status_enqg !Status(cs=1,ca=30) >Ul; /*#SE*/
Ul ?status(cs=0) ‘Rel_conf >U0, stop T303; /*#SE*/
Ul ?Status(cs!{=0, incomp=1l) !Rel(ca=101)
>Ull, stop T303, start T308; /*3SE*/
Ul ?Status(cs!=0,ca=96, incomp=0) !Rel(ca=96)
>Ull, stop T303, start T308; /*BSE*/
Ul ?Status (cs!=0,ca=97, incomp=0) !Rel (ca=97)
s:Ull, stop T303, start T308; /*RSE*
Ul ?Status(cs!=0,ca=99, incomp=0) !Rel(ca=8%}
»Ull, stop T303, start T308; - *3SE™*,
Ul ?28tatus(cs!=0,ca=100, incomp=0) ‘Rel (ca=100)
-Ull, stop T303, start T303; ;*BSE* /
Ul ?8tatus(cs!=0,ca=101, incomp=0) 'Rel {ca=101)
~-Ull, stop T303, start T308; /*BSE*/
Ul 2Init_stat_eng !Status_enq -Ul,start T322;
T*HSE*/
Ul ?Status (cs!=0,ca=30, incomp=0}!Null - Ul, stop T322;
Ul ?Rel_req 'Rel (ca=16) .Ull, stop T303, start T308;
s hd #CC" ;
Ul 2T303/[#<1] !Setup 2Ul, start T303;
Ul 2T303/(#=1l) !'Rel_cont ~UJ0;
Ul ?2T322/[#=0] !combS -J0;
. * Unexpected Msg *~
Ul ?Conn_Ack 'status(ca=101) Ul; - *gMS*/
Ul 2Rel tcombl ~U0, stop T303; - *gMS*
* IE Miss/Err */
Ul 2Call_Pro(Mie=l) !Status (ca=9%6) Ul;
. * MIEM, response to SETUP *:
ul ?Call_Pro(Mie=2) !Status(ca=100) -Ul;
* MIECE, response to SETUP ~*/
Ul 7Call_Pro(NMie=l) !Proceeding_ind
U3, stop T303, start T310; - *3UIE *-
Il 7Call_Pro(NMie=3) !Proceeding_ind
U3, stop T303, start T310; ;*BRUIE™> /
Ul ?Conn(Mie=1) !Status (ca=96) ~UL;
'* MIEM, response to SETUP *-
Ul 7Conn (Mie=2) !Status(ca=100) -Ul;
'* MIECE, response to SETUP */
Ul 2Conn (NMie=1l) ! comb2 »UlQ, stop T303; /*#UIE*/
Ul ?Conn (NMie=2) ! comb2 -Ul0, stop T303; /*#NMIECE */
Ul ?Conn (NMie=3) ! comb2 -Ul0, stop T303; . *#RUIE*/
Ul ?Rel_Com{(Mie=1l)!Rel_conf(ca=31) -U0, stop T303;
“sMIEM* /
Ul ?Rel_Com(Mie=2) !Rel_conf(ca=31) U0, stop T303;
' *$MIECE™*/
Ul ?Rel_Com(NMie=1l) !Rel_cont >J0, stop T303; /*#UIE*/
Ul ?Rel_Com(NMie=3) !Rel_conf >U0, stop T303; /*RUIE*/
Ul ?Status_Eng (NMie=l) !Status(cs=1,ca=30) -Ul; /*8UIE*/
Ul ?Status (Mie=1) !Status (ca=96) >Ul; /* MIEM */
Ul ?s5tatus (Mie=2) tstatus(ca=100) >Ul; ,* MIECE */
/*U3: outgoing Call Proceding*/
U3 ?Conn !comb2 >Ul0, stop T310; /*#CA*/
U3 ?Rel !'Rel_ind >Ul2, stop T310; /*#CC*/
U3 ?Rel_Com!Rel_conf >U0, stop T310; /*#CC first clearing mess.
*/
U3 ?Status_enqg !Status({cs=3,ca=30) >U3; /*#SE*/
U3 2Status (cs=0) Rel_conf »UQd, stop T310; /*RSE*/

103

U3

?Status (cs!=0, incomp=1) !Rel(ca=101)
-011, stop T210, start T308; /*#BSE*/

U3 ?Status (cs!=0,ca=96, incomp=0) !Rel (ca=96)
>Ull, stop T310, start T308; /*#SE*/
U3 ?Status (cs!=0,ca=9%97, incomp=0) !Rel (ca=97)
>Ull, stop T310, start T308; /*8§SE*/
U3 ?Status (cs!=0,ca=99, incomp=0) !Rel{ca=99)
>Ull, stop T310, start T308; /*HSE*/
U3 ?Status(cs!=0,ca=100, incomp=0) !Rel {(ca=100)
~Ull, stop T310, start T308; /*#SE*/
U3 ?5tatus{cs!=0,ca=101, incomp=0) !Rel (ca=101}
-Ull, stop T310, start T308; / *#SE*/
us ?Init_stat_eng {Status_eng -U3,start T322;
- *gSE*/
u3 ?Status(cs!=0,ca=30,incomp=0} !Null - U3, stop T322;
u3 ?Rel_req 'Rel (ca=16) -~Ull, stop T310, startc T308;
F*RCCT
u3 ?2T310/[8=0] 'Rel{ca=102) -Ull, stop T310, start T308;
U3 2T322/[#=0] !'comb5 -U0;
‘* Unexpected Msg */
U3 ?Conn_Ack iStatus (ca=101) >U3; /s *§MS*/
U3 2Call_Pro tStatus(ca=101) >U3; s *gMS*/
/* IE Miss/Exr =*/
u3 2Conn(NMie=1) !comb2 »U1Q, stop T310; /*#UIE*/
us3 2Conn (NMie=2) ! comb2 -ULQ, stop T310; - *#NMIECE*’
U3 2Conn (NMie=3) ! comb2 -UlQ, stop T310; . *#RUIE*/
U3 ?Rel (Mie=1l) !'Rel_ind(ca=31) -Ul2, stop T310; /*8MIEM~*,
U3 ?Rel (Mie=2) !'Rel_ind(ca=3l) »Ul2, stop T310; ,*8MIECE*.
73 ?Rel (NMie=l)!Rel_ind ~Ul2, stop T310; '*#UIE*/
I3 ?Rel (NMie=3) !Rel_ind -Ul2, stop T310; - *sRUIE*~
u3 ?Rel_Com(Mie=l) !Rel_cont (ca=31) U0, stop T310;
gMIEM™ .
J3 ?Rel_Com(Mie=2) !Rel_conf (ca=31}) -U0, stop T310;
*3MIECE™ .
u3 ?Rel_Com(NMie=1l) !Rel_cont -U0, stop T310; - *&#UIE*-
U3 ?Rel_Com{NMie=3) !Rel_cont ‘U0, stop T310; . *sRULE*/
U3 ?status_Enqg(NMie=1) !Status (cs=3,ca=30) -U3; ;*sUIE*-
U3 ?status (Mie=1) istatus (ca=96) U3; . *#% MIEM *~
U3 2status (Mie=2) 'status (ca=100) -U3; *4 MIECE ~.
‘*UJ6: Call Present =~/
ue ?Rel 'Rel_ind Ul2; - *3CC*
[8]9) 28tatus_enqg !Status(cs=6,ca=30) Ue; . *3SE*/
us ?status (¢s=0) tRel_cont -UQ; I*ESEX .
Us ?2Status (cs!=0, incomp=1l) !Rel (ca=101)
~Ull, start T308; :*#SE*/
ueé ?2Status(cs!=0,ca=96, incomp=0) !Rel (ca=9%)
-Ull, start T308; /~4SE*/
8] ?2status{cst=0,ca=97, incomp=0) !Rel (ca=97)
>Ull, start T308; /*#SE*/
Us 2status (csi=0,ca=99, incomp=0) !Rel(ca=99)
>Ull, start T308; /*#SE*/
use ?status (csi=0,ca=100, incomp=0) !Rel{(ca=100)
>Ul1l, start T308; /*§#SE*/
use ?Status (cs!=0,ca=101, incomp=0) !Rel (ca=101)
»Ull, start T308; /*#SE*/
ue ?2Init_stat_eng!Status_eng >U6; /i *BRSE*/
ue 2status (cs!=0,ca=30, incomp=40} !Null > U6, stop T322;
ué ?Setup_res!Conn >U8, start T313; /*#CA*/
ue ?Proceeding_req tCall_Pro >US; /*#CA*/
[8[9) 2Rel_req 'Rel(ca=16) »>Ull, start T308; /*#CC*/
U6 ?Rel_resp(ca=88)!Rel_Com(ca=88) >U0; /*#CC*/
ue ?Rel_resp(ca=17){Rel_Com(ca=17) >U0; /*#CC*/
ue ?Rel_resp(ca=21l) !Rel_Com{ca=21) >UQ; /*#CC*/

104

815) ?Rel_resp(ca=23) !Rel_Com(ca=23) >UQ; /*#CC*/

ue 2T322/{#=0] !combS >U0;
;/* Unexpected Msg */
Ue 2Conn !Status (ca=101) >U6; /*#MS*/
ue ?Conn_Ack lstatus (ca=101) >U6; /*#MS*/
us ?Rel_Com 'Rel_conf >U0; /*#MS*/
Us ?Call_Pro !Status (ca=101) >U6; /*#MS*/
;* IE Miss/Brr */
Ué ?Rel (Mie=1) !Rel_ind(ca=31) >U12; /*#MIEM*/
ue ?Rel (Mie=2) !Rel_ind(ca=31) >Ul2; /*#MIECE*/
U6 ?Rel (NMie=1) 'Rel_ind »Ul2; /*#UIE*/
use ?Rel (NMie=3) 'Rel_ind -012; /*#RUILE*/
ue 2Status_Enqg(NMie=1) tStatus (cs=6,ca=30) >Us; /*®UIE™,
ue ?Status (Mie=1) tstatus (ca=96) U6; -* MIEM *.
ueé ?Status (Mie=2) tStatus(ca=100) -U6; .* MIECE *
- *UJ8: Connect Request*/
us ?Conn_Ack ! Setup_comp_ind -Ul0, stop T313; - *%CA*/
us ?Rel 'Rel_ind .U12, stop T313; ;*ECCH
us ?Status_enq !Status{cs=8,ca=30) -U8; ,*#SE*/
us ?2Status (cs=0) 1Rel_cont -U0, stop T313;
F "ESEX/
us ?Status(cs!=0, incomp=1) !Rel(ca=101)
>U1l, stop T313, start T308; /*#SE*/
U8 ?Status(cs!=0,ca=96, incomp=0) !Rel (ca=96)
»Ull, stop T313, start T308; /*#SE*’
us ?8tatus(cs!=0,ca=97, incomp=0) !Rel (ca=97)
>Ull, stop T313, start T308; /*#SE*’
usg ?Status (cs!=0,ca=99, incomp=0) !Rel(ca=99)
»Ull, stop T313, start T303; -*8SE~*
ug ?Status(cs!=0,ca=100, incomp=0) !Rel (ca=100)
Ull, stop T313, start T308; /*sSE*:
us ?status(cst!=0,ca=101, incomp=0) !Rel(ca=101)
>Ull, stop T313, start T308; /*#SE*/
ua ?Init_stat_eng IStatus_enq,start T322 -U8; ,*#SE*/
us 7status(cst=0,ca=30, incomp=0} !Null - U8, stop T322;
us ?Rel_req IRel (ca=16) -Ull, stop T313, start T308;
t#cc* i
us ?2T313,/[4=0] !Rel(ca=102) 11, stop T313, start T308;
U8 ?T322/(#=0] !combS Uo;
* Unexpected Msg */
ua 2Conn !Status (ca=101) -U8; - *#MS*.
us ?2Call_Pro !Status (ca=101) U8; *sMS*.
us ?Rel_Com 'Rel_cont ~U0, stop T313; - *#MS*/
* IE Miss/Err =~
us 2Conn_Ack (NMie=1) !Setup_comp_ind »Ul10, stop T313;
*3UIE™/
us 2Conn_Ack (NMie=3) !Setup_comp_ind -U10, stop T313;
. *3RUIE* /
U8 ?Rel (Mie=1) !Rel_ind(ca=31) -U12, stop T313; /*sMIEM*/
8] ?Rel (Mie=2) !Rel_ind(ca=31) >Ul2, stop T313; ./ *#MIECE*/
U8 ?Rel (NMie=1) !Rel_ind »Ul2, stop T313; ,*&UIE*/
us ?Rel (NMie=3) !Rel_ind -Ul2, stop T313; /*#RUIE*/
us ?Status_Eng(NMie=1) !Status(cs=8,ca=30) -U8; ,;*#UIE*/
us ?Status (Mie=1) !Status(ca=9%6) ->U8; ,* MIEM */
us ?Status (Mie=2) !Status (ca=100) -U8; /= MIECE */
/*U9: Incoming Call Proceeding */
U9 ?Rel ‘Rel_ind >Ul2; /*#CC*/
U9 ?Status_eng !Status(cs=9,ca=30) >U9; /*8#SE*/
U9 ?2Status {(cs=0) tRel_cont >U0; /*#SE*/
us ?8tatus (cs!=0, incomp=1} !Rel{(ca=101)
>Ull, start T308; /*&SE*/
us ?status (csti=0,ca=96, incomp=0) !Rel (ca=96)

105

>Ull, start T308; /*#SE*/

u9 ?Status (cst!=0,ca=97, incomp=0) !'Rel (ca=97)
>Ull, start T308; /*&#SE*/
U9 ?Status (cs!=0,ca=99, incomp=0) 'Rel (ca=99)
»Ull, start T308; /*#SE*/
e ?Status (cs'!=0,ca=100, incomp=0) !Rel (ca=100)
»Ull, start T308; /*#SE*/
012] ?Status(cs!=0,ca=101, incomp=0) !Rel {(ca=101)
~Ull, start T308; /*#SE*/
U9 ?Init_stat_eng !Status_enqg -U%,start T322; s *#SE*/
U9 ?status (cs!=0,ca=30, incomp=0) !Null > U9, stop T322;
Ug ?Setup_res !Conn ~U8, start T313; ,*#CaA*/
U9 ?Rel_req 'Rel (ca=16) -Ull, start T308; /*&CC*/
Uo ?T322/[#=0] !comb5S >U0;
- * Unexpected Msg */
ug 2Conn 1Status (ca=101) ~Ug9; [*E#MS*/
us 2Conn_Ack !Status (ca=101) >U9; /*#MS*/
U9 ?Call_Pro !Status (ca=101} -U9; /*&MS*/
u9 ?Rel_Com 'Rel_conf 2UQ; /*#MS*,
:* IE Miss/Err */
ue ?Rel (Mie=l) !Rel_ind(ca=31) Ul2; /*sMIEM™*/
us ?Rel (Mie=2} !Rel_ind(ca=31} -Ul2; . *#MIECE*/
gs ?Rel (NMie=1l) 'Rel_ind ~Ul2; *sUIE*/
us 7Rel (NMie=3) tRel_ind >Ul2; /*#RUIE*/
us ?Status_Eng(NMie=1l) 1Status (cs=9,ca=30} >US; , *#UIE™*
ue 7Status (Mie=1) IStatus(ca=96) -U9; . * MIEM ~
us ?5tacus (Mie=2} !Status(ca=100) -U%; -* MIECE ~
-*UlLlo: Active state*/
ulo ?Rel !Rel_ind >Ul2; *&CC*/
Uig ?S8tatus_enq !Status(cs=10,ca=30) 2J10; /*#SE~*,
ulad ?8tatus (cs=0) 'Rel_cont ~UQ; /*8SE*/

Ula ?Status (cst=0, incomp=1) !Rel(ca=101)
-Ull, start T308; /*&SE*~

Ul ?Status (cs!i=0,ca=96, incomp=0) !Rel (ca=96}
-Ull, start T308; /*&SE*/

ulo ?Status (cs!=0,ca=9%7, incomp=0) {Rel(ca=9%7)
{Ull, start T308; /*#SE~*/

Ulo0 ?status (cs!=0,ca=99, incomp=0) !Rel(ca=99)
-Ull, start T308; . *sSE*-

ulao ?stacus (cs!=0,¢ca=100, incomp=0) !Rel (ca=100)
-Ull, start T308; ,*8SE*/

Ulo ?Status (cs!=0,ca=101, incomp=0) !Rel (ca=101)
»Ull, start T308; ,*#SE*/

Ula ?Init_stat_eng !Status_enq »U10,start T322; ., *8#SE*/
Ula ?Status (cs!=0,ca=30, incomp=0) !Null - UlQ, stop T322;
ulo 7Rel_req 'Rel (ca=16) »>Ull, start T308; /*8CC*/
ulo 2T322/[#4=0] !'comb% >U0;
. * Unexpected Msg */
Ulo 2Conn !status (ca=101) -Ul0; /*4§MS*/
Ul0 2Conn_Ack !Status (ca=101) -Ul10; /*#MS*/
Ulg 2Call_Pro 1Status (ca=101) ~Ul0; /*#MS*/
Ulo ?Rel_Com ‘Rel_conf >U0; /*8MS*/
+* IE Miss/Err */
Ulo ?Rel (Mie=1) !Rel_ind(ca=31) 2U12; /*8#MIEM™/
Ul0 ?Rel (Mie=2) !Rel_ind(ca=31) >Ul2; /*#MIECE™*/
Ulo0 ?Rel (NMie=1) tRel_ind >Ul2; /*#UIE*/
Ulo0 ?Rel (NMie=3) tRel_ind >Ul2; /*#RUIE*/
Ulio ?Status_Eng(NMie=1) tstatus(cs=10,ca=30) >UlQ; /*#UIE™*/
ulo ?8tatus (Mie=1) tstatus (ca=96) >Ul10; /* MIEM */
Ulo ?8tatus (Mie=2} 'Status(ca=100) >Ul0; /* MIECE */
/*Ull: Release Request*/

Ull ?Rel !Rel_conf >UQ, stop T308; /*#CC*/

106

Uil ?Rel_Com 'Rel_conft >U0, stop T308; /*#CC*/
Ull ?Status_enqg !Status(cs=ll,ca=30) »Ull; /*#SE*/
Ull ?Status (cs=0) tRel_conf >UQ, stop T308; /*E$SE*/
Ull 2Status (cs! =0} '‘Null -Ull; /*#SE*/
Ull ?2Init_stat_eng tStatus_eng,start T322 >Ull; /*8SE*/
Ull ?S8tatus (cs!=0,ca=30, incomp=0) !Null > Ull, stop T322;
Ull 2T308/[#<1] !Rel(ca=102) >Ull, start T308;
Ull ?2T7308/[#=1] !Rel_conf -J0, stop T308;
Ull 27322/ [#=0] !comb5 >U0;
+* Unexpected Msg */
Ull 2Conn !Status (ca=101) SUll; /*#MS*/
Uil 2Conn_Ack !Status (ca=101) ~Ull; /*8MS*/
Uil 2Call_Pro tStatus (ca=101) SUll; /*#MS*,
* IE Miss/Err */
Ull ?Rel (Mie=1) !Rel_conf(ca=31) ‘U0, stop T308; . *3#MIEM~*-
uUll 7Rel (Mie=2) !Rel_cont(ca=31l) -UQ, staop T308; :*sMIECE*:
ull ?Rel (MMie=1) ‘Rel_cont >UQ0, stop T308; /*#UIE™/
Uli 7Rel (NMie=3) 'Rel_cont sU0, stop T3C3; /*#RUIE*/
Ull ?Rel_Com(NMie=1l) iRel_cont -U0, stop T308; :*s#UIE*~/
Uli ?Rel_Com(NMie=2) !Rel_cont U0, stop T308; . *8NMIECE~*.
Ull ?Rel_Com(NMie=3) !Rel_cont -U0, stop T308; ,*#RUIE*/
Ull ?Status_Eng (NMie=1) '1status(cs=11,ca=30) ~Ull; /*4UIE*,
Ull ?8tatus (Mie=1) !Status (ca=96) »Ull; /= MIEM *~
Ull ?Status (Mie=2) 'Status (ca=100) -~Ull; -* MIECE *~
0Ll2: Release Indicator’
Ulz2 25tatus_enq !Status(cs=12,ca=30) 2Ul2; *#SE*.
gl2 ?Status (cs=0) 'Rel_cont .Uo; *RSE* ¢
Uiz ?status(cst=0) 'Null Ul2; *#SE~*,
ulz ?Inic_stat_eng tStatus_enqg -Ul2,start T322; . *sSE*
12 78tatus(cs!=0,ca=30, incomp=0} !Null = Ul2, stop T322;
Uiz ?Rel_resp !Rel_Com »J0; - *8CC*;
1712 ?T322/(#=0] icombbS ~UG;
* UnexXrected Msg ~*«
ul2 2Conn '!Status(ca=10a1) 2ULl2; /*84MS*/
ul2 2Conn_Ack 'Status (ca=101) >UL2; /*8MS~*/
Ul2 2Call_Pro tStatus(ca=101) ~Ul2; . *&MgS*/
712 ?Rel ‘Null -Ul2; . *#MS*/
ui2 ?Rel_Com ‘Null »Ul2; . *#MS~
* IE Miss/Err *-
712 ?Status_Eng(NMie=!l) tStatus(cs=12,ca=30) Jl2; *sUIE~*
ui2 ?8tatus (Mie=1) 18tatus(ca=96) J12; - * MIEM *-
Ul2 ?5tatus (Mie=2 tsStactus(ca=100) .Ul2; - * MIECE *

107

Appendix B: Coordinator transitions and tests for coherent

transitions

[n this appendix we show variables, inputs, and coherent transitions that are added to the
Proc FSM after combining it with the Coordinator FSM. Coordinator functions are
explained in the comments next to the coherent transitions. All coherent transitions belong
to a function group #GE (General Error). In the coherent transitions, when starting state is
written as *, it means for all states. When the ending state is written as _ , it means the
same as the starting state. The list of the inputs that lead to same output and ending state
are given in brackets.

variables
ge integer;

*

error condition :

Protocol discriminator error
Message length too short

CR format error

CR not related to an acrtive call
global CR =/

U e s 0D e -
i n u nn

inputs:
* inputs processed by the coordinator *-
Setup{ge=Ll} :PDU;
Setupige=2} :PDU;
Setupige=3)} :PDU;
Setup(ge=4, flag=1l):PDU; ,* CR is OK but flag is for outgoing call

Setupige!=4) :PDU; * CR relates to active call or call in
progress *-

Setup(ge=5) :PDU;

setupige=9) :PDU;

Conn(ge=1l) :PDU;
Conn!(ge=2) :PDU;
Conn (ge=3) :PDU;
Conn(ge=4) :PDU;
Conn(ge=5) :PDU;
Conn(ge=6) :PDU;

Call_Pro(ge=l) :PDU;
Call_Pro(ge=2) :PDU;
Call_Pro(ge=3) :PDU;
Call_Pro(ge=4) : PDU;
Call_Pro(ge=5) :PDU;
Call_Pro(ge=6) :PDU;

Conn_Ack (ge=1) :PDU;
Conn_Ack (ge=2) :PDU;
Conn_Ack (ge=3) :PDU;
Conn_Ack (ge=4) :PDU;
Conn_Ack(ge=5) :PDU;
Conn_Ack (ge=6) :PDU;

Rel (ge=1) : PDU;
Rel (ge=2) : PDU;

108

Rel (ge=3) : PDU;
Rel (ge=4) : PDU;
Rel (ge=5) : PDU;
Rel (ge=6) : PDU;

Rel_Com(ge=1) : PDU;
Rel_Com(ge=2) : PDU;
Rel_Com(ge=3) : PDU;
Rel_Com(ge=4) : PDU;
Rel_Com(ge=5) : PDU;
Rel_Com(ge=6) : PDU;

status_eng(ge=1) : PDU;
Status_enqg(ge=2) : PDU;
Status_eng(ge=3) :PDU;
Status_enqg(ge=4) : PDU;
Status_eng (ge=%) : PDU;
status_enqlge=6) : PDU;

Status (ge=1) :PDU;
Status (ge=2) : PDU;
status (ge=3) : PDU;
Status (ge=4,cs=0) : PDU;
Status (ge=4,cs!=0) : PDU;
Status (ge=5) : PDU;
Status (ge=6) : PDU;
.* end of inputs processed by the coordinator *-

transitions:
* coherent Coordinator transitions =*-

* ?{Setuptige=1l),Conn{ge=1l),Conn_Ack(ge=l), Call_Pro(ge=1l),Relige=i),
Rel_Com{ge=1),Status_eng(ge=1), Status(ge=l)}
‘Null - _; *#GE*. - * protocol discriminator error */
* ?{Setup(ge=2),Conn{ge=2),Conn_Ack(ge=2),Call_Pro(ge=2),Rel (ge=2),
Rel_Com(ge=2),Status_enqg{ge=2), Status{ge=2)}
'Null - _; /*8GE*/ . * message too short *-
* 7{Setup(ge=3),Conn(ge=3),Conn_Ack (ge=3),Call_Pro(ge=3),Rel (ge=3)},
Rel_Com(ge=3),Status_eng(ge=3), 3tatus(ge=3)}
'Null - _; /*8GE*/ /* call reference format error *:
* ?{Conn(ge=4),Conn_Ack(ge=4),Call_Pro(ge=4},Rel (ge=4)}
!Rel_Com(ca=381}) -_; '*8GE* - * CR not related to an active call *:
- ?Rel_Com(ge=4) !Null -_;/*#GE*//* CR not related to active call */
. ?Setup(ge=4,flag=1) !Null . UQ; /*&#GE*/

/* CR not related to an active call, but flag has a
value for outgoing call */

* ?(Setup (ge=5},Conn(ge=5),Conn_Ack(ge=5),Call_Pro(ge=5),Rel (ge=5),
Rel_Com(ge=5}, Status_enqg{ge=5)}
'{Null > _; /*#GE*/ /* global CR */

-t

(U1,U3,U6,U8,U9,U10,UlL,U12}) ?Setup !Null > _; /*#GE*/
/* Setup is unexpected, related to active call*/

(U1,U3,U6,U8,U9,U10Q0,U11,U12} ?2Status(ge=4,cs=0) !Null »_;
/*BGE*//* Status not related to active call */

* ?2Unrecognized tStatus (ca=97) >_: /*#GE*/

109

/* Message not recognized */

{Ul1,uU3,U6,U8,U9,U10,Ull,Ul2}) 2Status(ge=4,cs!=0) !Rel_Com(ca=101)-_;
/*BGE*/
/* Status not related to an active call and with incompatible current
state */

{Ui,uU3,U6,U8,U9,U10,U11,U1l2}) 2Status_eng(ge=4) !Status(cs=0,ca=30)
i /*8#GE*//* Status Eng not related to active call *~

)

Two out of the 24 test cases that are developed for testing the coherent transitions are
shown below. For each coherent transitions two test cases are generated. If a more refined
testing is necessary, the test developer may reduce the input lists in the coherent

trinsitions.

/* Test cases derived from g2931.fsm *~/
DCL id INTEGER;

DCL rs INTEGER;

DCL cs INTEGER;

DpCL ca INTEGER;

DCL incomp INTEGER;

DCL CR INTEGER;

DCL Mie INTEGER;

DCL NMie INTEGER;

DCL PD INTEGER;

gTestcase l:
* Test purpose: verify the transition in state U0 in input Conn(ge=2)
'* This test case tests a coherent transition*’
‘* transitions in set are : */
{ Uo, uUl, U3, Us, U3, U9, ULO, ULL, UL2) ?{ Setup(ge=2), Connige=2),
Conn_3Ack(ge=2), Call_Pro(ge=2), Rel(ge=2), Rel_Com(ge=2),
Status_enqg{ge=2), Status(ge=2) } !NULL -_;*/
* Transition Under Test in state U0 on input Conn(ge=2) : */
‘Conn(ge=2) : PDU;
-* Identifying UQO state: =~/
iStatus_enqg:PDU;
?status (ca=30,cs=0) : PDU;
-* No postamble needed */

#Testcase 2:
‘* Test purpose: verify the transition in state Ul in input
Conn_Ack (ge=4) */
/* This test case tests a coherent transition*/
/* transitions in set are : */
S
{ uo, Ui, U3, Ue, U8, U9, UlQ, Ull, Ul2 } ?(Conn(ge=4), Conn_Ack(ge=4),
Call_Pro(ge=4), Rel(ge=4) } !(Rel_Com -_;*/
/* Preamble to Ul state: */
!Setup_req;
2Setup:PDU;
/* Transition Under Test in state Ul on input Conn_Ack(ge=4) : */
!Conn_Ack (ge=4) : PDU;
?Rel_Com(ca=81) : PDU;
/* Identifying Ul state: */

[10

tStatus_enq:PDU;
?8tatus (ca=30,c¢cs=1) : PDU;

/* pPostamble from Ul state: */

tSetup(flag=1,ge=4) : PDU;

11

Appendix C: Test cases for conformance testing

#Testcase 1:
/* Test purpose: verify the transition in state U0 in input Setup */
/* Transition Under Test in state UQ on input Setup : */
!Setup:PDU;
?Setup_ind;
/* Postamble from U6 state: */
‘Rel_Com:PDU;
?2Rel_cont;

gTestcase 2:
/* Test purpose: verify the transition in state Ul0 in input Conn ~*-
/* Preamble to Ul0 state: */
L Setup_reg;
?Setup:PDU;
!Conn{(NMie=3) :PDU;
?2Conn_Ack:PDU, Setup_cont;
;* Transition Under Test in state Ul0 on input Conn : */
Conn:PDU;
?S8tatus (ca=101) : PDU;
* Postampble from UlQ state: */
'Rel_Com:PDU;
7Rel_cont;

Testing timers:
#TestCase 3:
'* Test purpose: verify if the timer T303 starts in state Ul on input
Setup_req */
* No Preamble for UQ state </
‘* Part under test for timer T303 =~/
!Setup_req;
?Setup:PDU, Start T303;
?Setup:PDU, Stop T303;
* Postamble from Ul state: *.
'Rel:PDU;
?Rel_Com:PDU,Rel_cont;

#TestCase 4:
:* Test purpose: verify if the timer T303 fires max times in state Ul
:* No Preamble for U0 state *:
;* Part under test for timer T303 =
!Setup_req;
?Setup:PDU, Start T303;
?Setup:PDU[1];
?Rel_conf, Stop T303;
;* No postamble needed */

#TestCase S:
‘* Test purpose: verify if the timer T303 stops after input Conn in

state UL */

/* No Preamble for UQ state */

/* Part under test for timer T303 */
tSetup_req;
?Setup:PDU;
tConn:PDU;
?Conn_Ack:PDU, Setup_conf, Start T303;
?Timeout (T303) ;

/* Postamble from UlQ0 state: */
!Rel_Com:PDU;
?Rel_conf;

112

Transitions with two timers:

/* Test purpose: verify if the timer T313 stops after
input Rel_req in state U8 */

/* Preambule to U8 */

!Setup:PDU;
?Setup_ind;
1Setup_res;
?Conn:PDU,

start T313;

?Timeout (max(0,T313-T7308));
;* Part under test for timer T313~*;

‘Rel_req;
?Rel (ca=186)

: PDU;

?Timeocut (min(T313,T308));
+* Identify state Ull */

1Setup_eng:

?5tatus (ca=

PDU;
30,cs=11);

-* postamble from Ull: */

'Rel :PDU;
?Rel_conft;

Testing T322:

,* Test purpose: verify if the timer T322 starts after

input InitiatesStatusEnquiry in state U6 *.
. * Preambule to Us */

!Setup: PDU;
?5etup_ind;

-* part under test for timer T322~*~
!InitScatusEnquiry, start T322
2Status_enq:PDU
7Rel_Com(ca=41l) :PDU,Rel_cont;

* Idnetifying state U0 */
'status_Eng:pPDU;

5catus (¢s=

* No postamble

* Test purpose:
input Status in

0,ca=30);
needed *-

verify if the timer T322 stops after
state U6 ~

* Preambule to Us *-

!Setup:PDU;
JSetup_ind;

¢ part under test for timer T322 ~.
tInitstatusEnquiry, start T322
?Status_enqg: PDU

istatus{cs!
?Timeout (T3

=0,ca=30, incomp=1) : PDU;
22}

-* Idnetitfying state U6*/
t{Status_Enq:PDU;

?8tatus(cs=

6,ca=30) ;

* Postamble from U6 */
'Rel_Com:PDU;

?Rel_conf;

L3

Appendix D: Example of the data part testing

In the following, an example of the initialization of the SETUP message for data part
testing is given. The message_content_type is a type of a general message, while
ie_type is a type of general IE. The pdu is a data of the signal message (see Figure 5.4).
First, an example of SETUP with valid values is given. SETUP with MIEM and SETUP
with MIECE use an SDL procedure default_setup that sets the values of the SETUP to
valid default values.

NEWTYPE message_content_type STRUCT
pr_disc protocol_discriminator_type;
CR call_reference_type; /* size 4 bytes */
message_type octet; /* size 2 bytes */
ie ie_type;
ENDNEWTYPE;

MEWTYPE ie_type STRUCT
cause cause_type;
call_state call_state_type;
AAL_param AAL_param_type;
ATM_traffic_desc ATM_traffic_desc_type;
connection_id connection_id_type;
QoS Qos_type;
B_HLI B_HLI_Ctype;
B_BC B_BC_type;
B_LLI B_LLI_type;
B_sending_complete B_sending_complete_type;
B_repeat_indic B_repeat_indic_type;
calling_nb calling_nb_type;
calling_subaddress subaddress_type;
called_nb called_nb_type;
called_subaddress subaddress_type;
transit_networK_selection transit_network_selection_type;

ENDNEWTYPE;

SETUP with valid data:
DCL pdu message_content_type;

TASK pdu'!pr_disc H

TASK pdu!CR!flag ; /* incoming call *-
TASK pdu!CR!value := 1;

TASK pdu'!message_type := SETUP;

/* ATMPara IE values */

TASK pdu!ie!ATM_param!presence := true;
TASK pdu!ie!ATM_ param!coding_standard := 0;
TASK pdu!ie!ATM_param!AAL_type := 5;

o

TASK pdu!ie!ATM_param!forward_max_size!presence := true;
TASK pdu!ie!ATM_param!forward_max_size!value := 1024;
TASK pdutie!ATM_param!backward_max_size!presence := true;

TASK pdu!ie!ATM_param!backward_max_size!value := 1024;
TASK pdu!ie!ATM_param!SSCS_type!presence := Crue;
TASK pdu!ie!ATM_param!SSCS_type!value := ASSURED;

/* ATMTraf IE values */

TASK pdu!ie!ATM_traffic_desc!presence := true;

114

TASK pdu!ie!ATM_traffic_desc!fpcr_0_l!presence := true;
TASK pdu!ie!ATM_traffic_desc!fpcr_0_livalue := 0;

TASK pdu!ie!ATM_traffic_desc!bpcr_0_l!presence := true;
TASK pdu!ie!ATM_traffic_desc!bpcr_0_l!value := 0;

/* B_BC IE values */

TASK pdutie!B_BC!presence := true;

TASK pduilie!B_BC!coding_standard := 0;

TASK pdu!ie!B_BC!class natural := 0;

TASK pdu!ie!B_BC!clipping := 0;

TASK pdutlie!B_BC!user_plane := Q;

/* B_LLI IE values */

TASK pdutie!B_LLI!nb_occ := 1;

TASK pdutie!B_LLI!occ(l) !presence : = true;

TASK pdutie!B_LLI'!'occ(l) !coding_standard := 0;

TASK pdut!ie!B_LLI!occ(l)!info_layer_l'!presence := false;
TASK pdutie!B_LLI'occ(l)!info_laver_ 2!presence : true;
TASK pdu!ie!B_LLI!occ(l)!info_layer_2!'value := 6;

TASK pdut!ie!B_LLI'!occ(l)!info_layer_2!codings!presence := true;
TASK pdu!ie!B_LLI!occ(l)!info_layer_2!codingsimode := 0;
TASK pdu!ie!B_LLI!occ(1l)!info_layer_2!codings!Q933 := 0;
TASK pdut!ie!B_LLI!occ(l)!info_layer_2!window_size := 1;
TASK pdu!ie!B_LLI'!occ(l)!info_layer_3'!'presence := Crue;
TASK pdu!ie!B_LLI!occ(l)!info_layer_3!value := §;

TASK pdut!ie!B_LLI!occ(l)!info_layer_3!mode!presence := true;

TASK pdu'!ie!B_LLI!occ(l) !info_layer_3!mode!value := 1;

TASK pdutie!B_LLI!occ(l)!info_layer_3'!default_packet_size!presence :=
crue;

TASK pdutlie!B_LLI!occ(l)!info_layer_3!default_packet_size!value := 4;
TASK pdu!ie!B_LLI!occ(l)iinfo_layer_3'!packet_window_size!presence :=
true;

TASK pdutlie!B_LLI!occ(l)!info_layer_3!pacKet_window_sizeivalue := l;
-* B_HLI IE values */
TASK pdu!ie!B_HLI!presence := true;

TASK pdu'!ie!B_HLI'hl_type := 0Q;
TASK pdu'!ie!B_HLI'hl_info!nb_occ
TASK pdu!ie!B_HLI!'hl_infol!occ(l)
TASK pdu!ie!B_HLI'!hl_infolocc(2)
-* QoS IE values *’
TASK pdu!ie!QoS!presence := true;
TASK pdu!ie!QoS!coding_standard :=
TASK pdu!lie!QoSiclass_forward := 0;
TASK pdu!ieiQoSiclass_backward := 0;

* CalledNum IE values */
TASK pdu!ie!called_nbipresence := true;
TASK pdu!lelcalled_nb!coding_standard := Q;
TASK pdu!lie!called_nb!nb_type := L;
TASK pdutie!called_nb!plan_id := L;
TASK pdu!ie!called_nbk!address!nb_occ
TASK pdut!ietlcalled_nb!address'!occ(1l)
TASK pdutie!called_nb!address'!occ(2)
TASK pdul!ie!called_nb!address!occ(3)
TASK pdu!ie!called_nb!address!occ(4)
TASK pdu!ieicalled_nb!address!occ(5)
/* ConnId IE values */
TASK pdu'!ie!connection_idipresence := true;
TASK pdutie!connection_id!coding_standard := 0;
TASK pdu!ie!connection_id!VPAS := 1;
TASK pdutie!connection_id!pref_excl := 0;
TASK pdutie!connection_id!VPCI := Q;
TASK pdu!ie!connection_id!VCI := 32;

(LI}
O — b
.~ ~e e

0;

e Ne wr o wy Ny w

wonononn
WO e W0 W

SETUP wiht MIEM:
CALL default_setup(pdu) ;
TASK pdu!ie!ATM traffic_desc!presence := false;

L5

/* ATMTraff IE 1s mandatory IE */

SETUP wiht MIECE:

CALL default_setup (pdu) ;

TASK pdu!ie!ATM_traffic_desc!fpcr_0_l!presence := false;
/* fpcr_0_1 must be present in the ATM Traff IE */

116

Appendix E: Example test cases from the interoperability test

suite

#Testcage 1:
/* Test purpose: verify the transition in state A in input Setup_req_ s
*/
/* Transition Under Test in state A on input Setup_req s : */
|Setup_req_s;
?Setup_ind_r;
/* Identifying B state: */
'Setup_req_s;
'Release_resp_r;
?Release_conf_s;
/* No postamble needed */

#Testcage 2:
/* Test purpose: verify the transition in state A in input
Setup_req_s (Mie=l) */
/* Pransition Under Test in state A on input Setup_req_s(Mie=l) : *:
!Setup_reqg_s (Mie=l);
?Release_coni_s(ca=96);
'* Identifying A state: *'
!Setup_req_s;
?Setup_ind_r;
* Postamble from B state: */
'Release_resp_r;
?Release_conf_s;

#Testcase 3:
‘* Test purpose: verify the transition in state A in input
Setup_req_s (Mie=2) */
-* Transition Under Test in state A on input Setup_req s (Mie=2) : <+
!Setup_req_ s (Mie=2);
?Release_conf_s(ca=100};
-* Identifying A state: *’/
!Setup_req_s;
?Setup_ind_r;
* Postamble from B state: */
‘Release_resp_r;
?Release_conf_s;

#Testcase 4:
‘* Test purpose: verify the transition in state A in input
Setup_req_s (NMie=2) */
. * Transition Under Test in state A on input Setup_req_ s (NMiez2) : *~
!Setup_req_s (NMie=2});
?Setup_ind_r, Proceeding_ind_s;
. * Identifying B state: first characterizing sequence*:
!Setup_req_s;
!Release_resp_r;
?Release_conf_s;
+* No postamble needed */

#TestCage 8:

/* Test purpose: verify the transition in state A in input

Setup_reqg_s (NMie=2} */

/* Transition Under Test in state A on input Setup_req s(NMie=2) : */
!Setup_req_ s (NMie=2);
?Setup_ind_r,Proceeding_ind_s;

/* Identifying B state: second characterizing sequence*/
!Proceeding_req_ r;

117

?Proceeding_ind_s;
/* Postamble from C: */
'Release_req_s;
\Release_resp_r;
?Release_conf_s;

118

