
INFORMATION TO USERS

This manuscript has been reproduced trem the miaofilm master. UMI films the

text direetly from the original or copy submilted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quality of this ...production is dependent upon the qu.11ty of the copy

submittecl. Broken or indistinct print, colorecl or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthoriZed copyright

material had ta be removed, a note will indieate the deletion.

Qversize materials (e.g., rnaps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand camer and continuing from left ta

right in equal sections with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality e- x 9" black and white photographie

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly ta arder.

Bell &Howell Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48108-1348 USA

UMI
S

800-521-0600

•

•

DEVELOPMENT OF TESTS FOR THE ATM SIGNALING PROTOCOL
by

Dionis Hristov

School of Computer Scienl:e
McGili University, Montreal

April, 1Y9M

A Thesis is submitted to the Fa«.:ulty of Graduate Studies and Research in partial fultillment of the
requirements for the degree of Master of Science

Alexandre Petrenko and Guang Gao, supervisors

Copyright © 1998 by Dionis Hristov

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
canada

Out file Notlfl 'eterenœ

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada ta
reproduce, laan, distnbute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts frOID it
may be printed or otherwise
reproduced without the author's
permISSion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-44184-9

Oma<m

•

•

Abstract

The wark presented here addresses the problem of the development of a conformance test suite

and an interoperability test suite for the ATM Signaling protocol based on the finite state machine

model (FSM).

The experimental tools developed at the University of Montreal are used to partially automate the

pro<.:ess of test development. Toois use the underlying FSM mode!. Development of a

conforman<.:e test suite stans tram a complete SOL specification of the Signaling protocai. The

specification is developed from the standard do<.:ument prior ta test develapment. Using the tool

chain~ the FSM model from the SDL specification is extracted, and, based on an FSM test

generation method, a test suite from the FSM model is produced. Test cases for the data part of

the protacol are derived directly from the text in the standard,. The obtained test suite is validated

in the SDL environment against the SDL specification.

The interoperability testing assumes a system of two implementations of the Signaling protocol

t:onnected via a network. Tests are represented in terms of protocol services. Test development

pro<.:ess is also based on the FSM testing. The behavior of the <.:omplete system is represented bya

global FSM, and a test suite is developed form the obtained FSM.

•

•

Résume

Le travail présenté dans ce document montre les problèmes liés au développement des suites de

tests de conformité et des suites de tests d'intéropérabilité pour le protocole de signalisation ATM

basé sur le modèle FSM (machines à états finis).

Des outils expérimentales développés à l'université de Montréal ont été utilisés pour automatiser

partiellement le processus de développement de test. Ces outils utilisent le modèle FSM. Une suite

de tests de conformité est développée à partir d 'une spécification complète SDL du protocole de

signalisation. La spécification st développé à partir du document standard avant le développement

du test. En utilisant la chaîne d'outils. le modèle FSM est extrait à partir de la spécification SDL,

et basé sur une méthode de génération de test FSM. une suite de test est produite à partir du

modèle FSM. Les l:as de tests de la partie données du protocole est dérivée directement du texte

dans le standard. La suite de test ainsi obtenue est validée à l'aide d'un environnement SDL contre

la spécification SOL.

Le test d'intéropérabilité suppose qu'un système possède deux implantations du protocole de

signalisation l:onnectés via un réseau. Les tests sont représentés comme des services de

protocoles. Le pro<.:essus de développement des tests est également basé sur une méthode de test

FSM. Le comportement du système complet est représenté par un FSM global, et une suite de

tests est développée à partir du FSM obtenu.

•

•

Dedicated to rny parents who inspired my urge for knowledge

•

•

Acknowledgment

[would like ta express my gratitude ta my supervisors Alexandre Petrenko and Guang Gao. [am

deeply grateful ta Alexandre Petrenko, for his expertise in the area and his competent advice

during the research and the preparation of the text. His suggestions and, especially, l..TÎticisms have

been of invaIuable help. Without ms cornmitment to supervision, this work would have required

longer rime ta complete.

[am grateful to Guang Gao for bis brilliant lec.:tures in computer architecture, trom which [gained

technicai knowledge and deep understanding of the professional world.

My spedaI thanks go to Greogor v. Boc.:hmann who gave me an opponunity to jaïn tus EPAC

group. and do my research project under his team lead. His original ideas, fruitful discussions. and

moral support contributed to this thesis. AIso. [thank other members of the EPAC team, Roxana

Marcoc.:ci. Jean Zaidan. Omar Bellal and Daniel Oulniet. who have discussed this work during

different stages.

My graduate studies would be much less enjoyable and inspiring without my friends from Ml:Gill.

[n spite of originating from different parts of the world. we share the same ideas and attitudes and

we aU struggle for the same goal: a meaningfullife. Namely. [thank Marcia. Shereen. Madalina.

Taha. Darek. Bora and all my dear friends from McGill for the nice atmosphere that we shared

together. Also. many thanks ta Stefan for the long, inspiring discussions; Saso, Snezana. Gligor

and Bena for the immeasurable help and friendship. AIso. special thanks to my parents, sister,

brother-in-Iaw and Helena for their unwavering suppon during my graduate studies.

This work was supported by a grant from consonium EPAC (EICON Technologies, Positron

Fiber Systems, AIKS and CRIM).

• CONTENT

CHAPTER 1: INTRODUCTION .•.....•........•...................•.•.•....•..........•...•.......•..................4

CHAPTER 2: PROTOCOL LIFE CyCLE 8

2.1 (JS1 Reference !\tlodel 8

2.2 ProtllC'ollire cycle ••.•• 13
2.2.1 Protocol ~llecification. L4
2.1.2 Pru(ocol iInplementation.......•...•...........................••....................... 15
2.2.3 Protocol testing••.........................•......................•... L5
2.2.4 Fonnal description techniques (FDT) ~md protocol devdopment 16

2.3 Conrormance testing 19
2.3.1 Points of control and observation and test methods•...11
2.3.2 Test proc~dure ov~rview•...15
2.3.3 Development of a test suite 26

2.4 Interoperability testing 29

CHAPTER 3: FORMAL METHOOS AND TOOLS FOR PROTOCOL TESTING 31

3.1 FSM·based testing 32
3.1.1 Finite State Machine 32
3.1.2 The FSM confonnance testing 33
3.1.3 Test genenltion mcthods•......................................•.......•...35

3.2 Metbods for aulomalic test development from SDL specification 37

3.3 Uo~onlreallool cbain for automatic test development 39
3.3.1 Overview uf the tools ..•.................•............•...39
3_1.2 FEX tool 40
3.3.3 TAG tool 41

CHAPTER 4: THE ATM SIGNALING PROTOCOL AND Ils SPECIFICATION.........•. 47

4.1 ATM" prot04.:ol architecture 47

4.2 An overview of tbe Signaling protocol ••••••••••.•.••.••••••.••••••••••••••••••••.••••••••.•••••••••••••.••••.•••••••••••••.••••.•••••.••••••49
4.1.1 Messages 50
42.2 Abstraet Service Primitives 52
4.2.3 Protocol behavior....................•..................•.••......•...•...53

4.3 SDL specification or the protocol 57
4.3.1 Stale table 57
4.3.2 SDL syslem structure•••••••.........••••.••.•..••....•.•....•••....••.•.•..•.••...•••.•.....••.......•...•.•.........•..••••....•..•........•••..58
4.3.3 Dam type declaraùons •••••....••....•.•.......••.•..•....•.••••.••••.•..•.•.••....................•.....•..............•........................59•

•

•

CHAPTER 5: DEVELOPMENT OF A CONFORMANCE TEST SUiTE 62

5.1 ()verview.......•...•..••••.•...••..••••••••.•••••.•••••••.••.•••••••••••••••••••••••••••••••••••••.•••••.••••••..•.....•.•••••••..••..••••.••••..••.•....•.••62

5.2 Extrcacting an FSM model from tbe SDL specification ••••••••••••••.••••••••••••••••.••••••••.•••••••••.••.••••.••••..••••••••••••63

5.J Test metbod ..•.•••..••••••••••••••••••.•••••••••••••••••••.•••••.•••••••••••••••••••.•••••••••••••••••••••••••••••••••.•••••••••••••••.•••••••••••.•••.•.••65

5.4 Identification of test purposes for tbe control part of the protocol.•••••••••••••••••••.•••••••••••...•••..••..••••..•....••••65

5.5 Application of the tool cbain •••••.•••••••••••••••.••••.••••••••••.•.••••••..••••.••••.••••.••••••••••••••...•..•••.••....•••••••••...••.....••..••67

5.6 Test purposes and tests for the data part 72

5.7 Validation of the conformance test suite 76
5.7.1 Objectives of validation 76
5.7.2 SDL validation systern 7~

5.7.3 Results of the verification 7X

5.8 Test grouping••••••••••••••.•.••••••••••••.••••••••••••••••••.•••••.•••••••••••••••.•••••.•.•••••••.•••.•••.••.•••••••••••••••••••••••.•••••.••••••.••.••••79

5.9 Conclusion ••••••.••••••.••••..••••••••••••••••••••••••••.•••••.••••••.••••••••••••••••..••.••..•••••.•••.•••.•••••••••••••.••••••••••••.•••••••••••••••..•••81

CHAPTER 6: DEVELOPMENT OF AN INTEROPERABILITY TEST SUITE•.•..••. 83

6.1 Test configuration 83

6.2 The test development process 85
6.2.1 Composing (Wo FSMs 85
62.2 A global FSM for intt:ropembility t~ting Jn
6.2.3 Applying th~ TAG tool to th~ global FS M 90
62.4 Test c~lSt:S for the data pan 91

6.3 Validation of the interoperability test suite •.••..•.•••••••••••.••••••••••••••••••.••••••••••.••••.•••.••••••.•••.••••••••••••••..••.••••••92

6.4 Conclusion •••••.•••..•••••.•••.•••.••..••••••••...•••..•••..•••.•.••••••••••••••••••••••••.••.••••••93

CHAPTER 7: CONCLUSiON•...•••.•.•..•.•.....•.•.•.•••••••..••••••.•••.......•..•.•.••••.••.....•..••..•..•.....• 94

REFERENCES.••.•..•••.........•.......•....•..•..•.......•••••...•...•••....••••••.......•..•••....••••.•••..••.•••••..•.•96

APPENDIX A: THE FSM MODEL.•.•..•..•••.•••••••..••••...•••....•••..•...••..•.•••.••.....•.•.•......••••.•• 100

APPENDIX B: COORDINATOR TRANSITIONS AND TESTS FOR COHERENT
TRANSiTIONS•..•••.•.••.•••..••••.•.•••••.•...••.••.•.••.•.•..•.•.••.•••..•..•••••••..••..•.••••••••••••••.•.•••.•.•.•••. 1os.

APPENDIX C: TEST CASES FOR CONFORMANCE TESTING 112

2

•

•

APPENDIX 0: EXAMPLE OF THE DATA PART TESTlNG 114

APPENDIX E: EXAMPLE TEST CASES FROM THE INTEROPERABILITY TEST
SUiTE•.....•.••.••..•••••....••.....•.........•••..•..............•........••..•........•..•............••••......•..••.........117

3

•

Chapter 1

Introduction

Computer networks offer a number of new~ previously unknawn services ta the residential and

business users such as electronic mail~ file transfer~ video conferencing, electronic conunerce~ etc.

Furthermore. with the appearance of the B-ISDN~ which defines a variety of possible broadband

services over the Ïntegrated network for voice and data transfer~ the market for telecammunication

praducts has been growing aggressively, and computer networks have become an important

infrastructure for society, bringing immediate conunercial potentials.

Recognizing the technaiagy and market potentia1s~ computer and telecommunication vendors have

developed and deployed a myriad of different communication solutions and standards. However, it

was recagnized early (llJ7ti) that standards for networks of heterogeneous system; were urgently

required in arder ta ensure interworking of different praducts. [n 1983, the Open System

[nterconnection (OSI) Reference Madel became the international standard and from then on was

used as a framework for the development of the OSI communication standards. The idea behind

the OSI is the need for global networking solutions to corrununicate requirements in a multi-

• vendor environment[Davi89]. To achieve this, the core element is to have the developrnent of the

4

•

•

OSI standards and their acceptance as a relevant specification for products by the vendors.

However, today, it is widely agreed that to achieve the OSI goals, conformance testing of the

product to the standard must be an integral part of the OS1efforts.

Conformance testing is a process of assessment whether or not the implementation conforms to

the requirements of the standard. There are two reasons for the need for conformance testing: in

spite of the best efforts, standards may be undear in stating the requirements and lead to different

implementations: and. since implementations that confonn to standards are more Likely to

interoperate, conformance testing increases the confidence in building complex, multi-vendor

networks. A majority of the work in testing networks is related to the protocoI testing, as

protocoIs are an essential part of the communication systems.

Protocols are sets of rules that govern the interaction of concurrent processes in distributed

communication systems. and they are part of the OSI standards. Similar to any other software

prodw.:t. protocol development goes through three phases (also called the protocoI life cyde):

protocoI specification, protocoI implementation and protocol testing. A protocoI specification is

typically broken into its control and data portion, where the control portion is usually modeled by

a finite state machine. Most of the formaI work on conformance testing addresses the problem of

testing the control portion and is based on the well-defined problem of the FSM conformance

testing [LeYaY61. However, in practice a protocol specification includes variables and operations

based on the variable values: l'pure" FS Ms are not pcwerful enough in a succinct way to model the

protocols. Extended finite state machines (EFSMs), which are finite state machines with variables.

are used to specify protocols. An EFSM with fmite variable domains can he looked at as a

I\;ompact" representation of an FSM. Thus, testing of the EFSM can he reduced ta testing of the

"pure" FSM by expanding the EFSM in an equivalent FSM. However, for many protocols, this

would lead to the weil known problem of flstate explosion".

The interest in FSM and EFSM conformance testing grows with the use of FormaI Description

Techniques (FOn for protocol development and standardization of fonnal languages such as

SDL. Sînce the FDTs specify protocols in a precise and machine processable form and model the

5

•

•

protocol with a precise mathematical mode!, communicating EFSMs~ they pave the way to

automated implementation generation and conformance testing. A number of tools have been

developed in recent years to aid the protocol specification and testing.

The topic of this work is test development tram the SDL specification of the ATM Signaling

protocol. The experimental cools developed at the University of Montreal are used ta partially

automate the process of test development. Most tools use the underlying FSM mode!, that is~ the

behavior of the system ta he tested is expressed in terms of states and inputs. and the outputs and

state transitions produced by the arrivai of a given input in a given state.

The goal of this work is twofold:

(1) to develop a conformance test suite and an interoperability test suite for the ATM Signaling

protocol using an experimental tool chain developed at UotM;

(2) to evaluate the effectiveness of the experimental tool chain for test derivation on a real-life

protocol and ta identify problems and possible areas for its improvement.

The ATM Signaling protocol is a part of the higher layer protocols in the Control plane of the

ATM stack. lt is responsible for establishing and maintaining a switched connection between the

ATM users. The standard specifying the Signaling protocol is ATM Forum UNl 3.1 document

[UNI3.11. For parts of the protocol we also rnake use of Q2931 [Q293 1] document. The protoco(

L'i spedfied in the UNI 3.1 document with <) states and ~ basic messages. However. the behavior of

the protocol is described using plain English texl.

Development of a conformance test suite starts from a complete SDL specitication of the

Signaling protocol. Sînce trus work is a part of a bigger EPAC project in wrnch the complete

protol:ol engineering of the ATM Signaling protocol is done, the specification is developed from

the standard document prior ta the test development. Using the tool chain~ the FSM model from

the SDL specification is extracted, and, based on an FSM test generation method~ a test suite from

the FSM model is produced. Test cases for the data part of the protocol are derived directly tram

6

•

•

the text Ù1 the standard. The 0 btained test suite is validated in the SDL enviromnent against the

SDL specification.

As a part of the requirements of the project. an interoperability test suite is aIso developed. The

interoperability testing assumes a system of two implementations of the Signaling protocol

connected via a network. Tests are represented in terms of protocol services. Test development

process is aIso based on the FSM testing. The behavior of the complete system is represented by a

global FSM. and a test suite is developed from the obtained FSM.

This document is organized in seven chapters. Chapter 2 discusses the protocol life c.:yde and in

particular. conformance testing and interoperability testing trom the OS 1 standards point of view.

Chapter 3 presents the fonnal work related ta finite state machine testing and the impact of FDTs

on the automation of the test development. AIso. the experimental tool chain of UotM L"i explained

in this chapter. ATM Signaling protocol and its SDL specification are described in Chapter 4. [n

Chapter 5. the experience in developing and validating the conformance test suite is shared. AIso.

comments related ta the evaluation of the tool chain are presented. Chapter 6 explains the

development of the interoperablity test suite. Evaluation of the tool chain in terms of advantages

and difficulties encountered using it are given in Chapter 7.

7

•

Chapter 2

Protocollife cycle

2. 1 OSI Reference Model

A proto<.:ol is a set of mIes governing the ex<.:hange of messages between entities in a ~omputer

l:ommunication network. Protocols are key components of distributed systems and are generally

l:omplex. They must work corre<.:t1y for a system to provide expected services [SiCh~91.

The Reference Model for Open System Intercannection (OS 1), now an International Standard

published by the International Organization for Standardizatian (ISO) [1507498] and the ITU-T

(formerly. CCITI) [CCITI831, has evolved over the past years as an architectural framework for

the development of communication services and pratacol standards. These "OSI standards" are

intended to facilitate the interconnectian of computer systems considered ta he '~open" by virtue of

their mutual adherence to the standards.

The OSI Reference Model (OSI-RM) consists of seven hierarchical layers, each built on its

predecessor layer, as shawn on Figure 2.1. The numher of layers implemented in a given system

• may vary depending on the fonction that the system is intended ta perfonn At the layer N, the

8

•

•

purpose of an (N) - entity is to provide a set of services (called (N) - services) ta its upper-layer

entity (that is, (N+ L) - entity). SimilarLy, an (N-l) - entity pravides (N-l) - services of an (N) ­

entity. These two (N) - entities are peer entities, aperating in the two end systems that

cammunicate.

Application -- Laver 7 orotocol -- Application- -
"

,r
Presentation -- Laver 6 orotocol -- Presentation-- --

" "
Session -- Laver 5 orotocol -- Session- ...

'r
"

Transport ~ Layer 4 orotocol -- Transport.....- ...

" "__ Laver 3 orotocol _ ...- Laver 3 orotocol __Network Network......- - ~

" "
Datalink

__ Laver 2 orotocol _ Communication ...- Laver 2 orotocol __ Datalink-- --...- network

,r ,r
Physkal

__ Laver 1orotocol _ ...- Laver 1orotocol __
PhysicaJ.....- - ~ -....

Figure 2.1: Layered ~1ructure of the OSI • RM

An (N)-entity provides (N)-services for its user entity by using and enhancing the services of the

adjacent lawer layer entity. ln trus model, an (N+I }-entity receives services from an (N)-entity, but

the implementation details and the services of the (N-l)-entity are completely isolated frOID the

(N+ 1)-entity. For an (N+1)-entity, alilower-layer eotities are referred ta as (N)-service providers.

9

• An (N)-function is a part of the activity of an (N)-entity. Aow control, sequendng, data

transformation are aU examples of (N)-functions. Cooperation among (N)-entities is govemed by

one or more (N)-protocols. An (N)-protocol is the set of rules and formats which govem the

c.:ommunÏl:ation between (N)-entities performing the (N)-functions in different end systems. Peer

(N)-entities communicate with each other by exchanging (N)-protocol data units «N)-PDUs).

Figure 2.2 illustrates the interactions of an (N)-entity with its adjacent upper and lower entities

that are defined at (N)- and (N-l)-service access points, respectively. An (N)-service access point

(abbreviated as (N)-SAP) is a logical interface between (N)- and (N+ 1)- entities by which service

request"i and responses are made.

(N+ 1) - entity (N+ 1) - entity

(N) - entity-.........eN) - entity

(N) - SAP J~ (N) - ASPs (N) - service provider (N) - ASPs ~ ~ (N) - SAP

I------~------------------------------------- ~------
: ,. "
1 (N) - PDUs
1

1

1

1

J~

(N-I) - ASPs
,r

(N-l) - service provider

~~

(N-I)-ASPs

"

1

1

1

!

1

1
1,
1

1
1 1___ 1

Figure 2.2: Configuration or the (N) .. service provider

The {N)-services are offered to the (N+l)-entities at the (N)-SAPs. An (N+I)-entity

c.:ommunicates with an (N)-entity in the same system through an (N)-SAP. An (N)-SAP cao he

served by only one (N)-entity and used by only one (N+l)-entity, but one (N)-entity can serve

severa! (N)-SAPs and one (N+I)-entity can use severa! (N)-SAPs (Figure 2.3).

•
10

•
<N) - s~rvices-' -----<

(N-L) - st:rvkes --. ---...c

~ (N+l) - ~ntiti~s

..... (N)-SAPs

~ (N) - t:ntiti~s

r..---- (N-l) - SAPs

•

Figure 2.3: Entities. service access points and protocols

The OSI-RM spans from the physical media (layer 1) up [0 application protocols (layer 7). It

accommodates a broad spectrum of media at the bottom (point-to-point such as twisted pair. tiber.

and coaxial cable) switched circuits and broadcast media (such as radio. satellite. and coaxial

buses). These may be integrated into local. metropolitan. and wide area networks (LAN. MAN.

and WAN) by Datalink and Network Layer protocols. Each layer masks the characteristi<.;s of

lower layer components and leads to composite services employed by successively higher layers.

which are largely independent of the characteristics of lower layer components.

However. the OS[-RM does not define details of protacols or services. Details of services and

protacols are detïned in separate standards for each layer. The OSI-RM does not detine

programming interfaces ta layer services nor does it address issues local to an implementation of a

protocol in a particular environment. At present. the OSI-RM does not address broadcast or

rnultipeer services and protocols. However, OSI -RM is not a static entity. Sînce its adoption as a

standard in 1983. the OSI-RM has been the subject of questions raised by working groups within

ISO and CCITT, with a set of interpretations and answers published as "final answers to

questions:' Based on a five-year maintenance cycle established by ISO for its standards. the OS[­

RM is due to be reissued with revisions and extensions.

The distinction between services and protocols are fundamental to the OSI-RM. At an (N)-SAP,

an (N)-entity interacts with an (N+1)-entity by exchanging (N)-abstract service primitives. At the

II

• l:oncepruallevel., exchange of service primitives is an indivisible event. As shown ifiigure 2.4~

service primitives are categorized as follows:

- Request: a primitive issued by an (N)-service user to invake a particular functian (for

example, connection establishment~ data transfer, eonnection tennination).

- [ndication: A primitive issued by the service provider «N)-layer protocal entity) indkating

that the peer (N)-service user has requested a specifie service or function (for example,

t:onnection establishment. data delivery. connection terminatian).

- Response: A primitive issued by an (N)-servke user cantïrming that a service fun'tian

previously requested by its peer (N)-service user and signaled by a service indication may

proceed ta campletian (for example, cannectian establishment).

- Cantïnn: A service primitive issued by a service provider ta (N)-layer protocal entity

indicating that servkes previausly requested by the (N)-service user have been completed

or established (far example. eannectian establishment).

Requ

(N+l) - PDUs

(N+1) - entity (N+ 1) - entity.....

~~ ~~

est Cantïnn Reply [ndi
,r

"

(N) - service provider

cation

•

Figure 2.4: Service primitives

Typically, these categories are prefixed by a oame denoting the funetional aspects of the service

(for example, cannect request, connect re~1Janse, connect confirtn data request, data indication).

During the service dialog, the underlying pratocol entities are respansible for exchange of PDUs

to realize the service requests. Conceptually, protocol entities are driven by service requests and

responses fram adjacent upper layer users and by data indications from the (N-l)-service provider.

As discussed earlier in this sectian~ the (N)-layer protocal entities respand ta these stimuli by

exchanging PDUs via the (N-1)-service pravider ta corrununicate with each ather and realize the

12

•

•

(N)-service. They deliver infonnation exchanged hetween peer (N)- entities to an adjacent upper

layer via indil:ation and contirm service primitives. Assumptions and rules governing the dynamic

exchanges of messages between peer protocoL entities are dependent on the functions assigned to

the layer. Service primitives and service access points need not he realized~ as such, in an

implementation of a protocol; i.e., they are conceptua! entities which are optional in a product.

Thus, their realization is outside the scope of standardization.

A common service offered by ail layers consists of providing associations between peer SAPs

which can be used in particular to transfer data (as weil as for other purposes such as to

synl:hronize the served entities participating in the association). More precisely, the (N) - layer

offers (N) - connections between (N) - SAPs as part of the (N) - services. The most usual type of

conne<.:tion is the point-ta-point connection, but there are aIso multi-endpoint connections which

l:orrespond to multiple associations between entities. The end of an (N)-connection at an (N)-SAP

is called an (N)-connection endpoint or (N)-CEP, for short. Severa! connections may coexist

between the same pair (or n-tuple) of SAPs. If SAP only services a single (N+1)-connection at one

tune. then the SAP may serve as the connection endpoint identifier. However~ if the tN)-layer

protocol provides multiplexing of data from more than one (N+ l)-entity for each (N)-Iayer

connection. then a connection endpoint identifier is associated with each (N+ 1)-connection. and

the (N)-Iayer protocol must be able to bind each (N+ l)-connection to a l:onnection endpoint

identifier within the (N)-SAP. In other words. logically. a SAP is an addressable unit, and

l:onnection endpoint identifiers allow distinction between PDUs destined for different users of the

same SAP.

ln sununary~ the OSI-RM has defined a conceptual framework for discussion, design.

spedfication~ implementation, and testing of protocols. We use the terminology and concepts of

the OSI-RM for specifying and testing the ATM Signaling protocol.

2.2 Protaco/lite cycle

Activities related ta a protocol development are basically partitioned into tbree groups:

~1>ecification~ implementation and testing.

13

•

•

2.2.1 Protocol specification

The foUowing two activities may he distinguished within the specification development phase

[Boch87-1]:

(1) Specification creation: These are the activities of creating and updating the representation of

the protacol specifications~ wruch may be in the torm of text~ graphie representations and/or

formaI language code;

(2) Protocol verification: The goal of protocol verification is to ensure that a protocol spe<.:ification

is free of design errors before it is implernented. As mentioned in Section 2.1. a <.:omplete

specification of a protocol layer consists of a protocol service specification and a specitication of

protocol entities in that layer. The protacal service specification foons the standard against which

a protm,,:al is verified. The input and output behaviars of a protocol visible at a SAP consist of

sequem;es af events oc<.:uning at this SAP. These sequences cao he campared ta thase generated

fraln the pratacal entity-to-entity interactions to verify that a protacol is consistent with its service

specification. [n general~ protocai verification involves proving l:ertain general protocol praperties

such as completeness. deadlock freeness~ termination. cyclic behavior. and boundness.

Completeness means that a protocaI accepts all possible inputs in each system state. Deadlol:k

freeness means that a protocol never gets into a system state where no more transitions are

possible and it stays in that state indefinitely. For a terminating protocal. terminatian means that a

protocol always reaches the final state when it started from the initial state. A non-terminating

protocol should have the property of a cyclic behavior~ which means that the protocol can

progress indefinitely. Boundness refers to the property that the total number of messages in the

channel is always less than sorne tïxed number [SiCh~TI.

14

• 2.2.2 Protocol Implementation

A protocol spedfication can he very abstract or quite detailed with respect to a possible

implementation of the protocol in a high levellanguage. An abstract specification generally hides

many implementation levei details of a system behavior. A specification of the protocol usually

consist of two parts~ namely machine-independent and machine-dependent parts. The machine­

independent part of the specification inciudes the rules according to which protoco1 entities

interact in response to incoming communication events and other changes in a system state. This

part can be fully specified for a protocol and implemented as a high level programming language

source l:ode. This can either he done manually or cao he automated if the gap between a

specifil:ation description and actual implementation is not that large. The machine-dependent part

of the implementation includes such things as the mechanisms for causing and detel:ting events. the

means of communication between adjacent protocol layers. and memory management. This part

cannat he completely specified for a protocol because it is tied to the machine architecture and the

host operating system. However. once the code is written for this part of a protocol. much of it

can be reused for another protocol running on the same computer system [SiCh~71.

2.2.3 Protocol tlsting

After the implementation phase of a protoco!. a given proto(;ol implementation. usually called an

'implementation under test" (rUT)~ is checked against the protocol specification in order to certify

that the [UT conforms to the protocol specification~ which acts as a reference. [n the conformanl:e

testing [BoehM?-1 L the [UT is stimulated by test inputs which are generated by one or severa! test

modules. The output generated by the rUT in response to the test input must he observed and

l:ompared with the protocol specification in arder to determine whether the observed output is a

possible one according to the specification,

Sînce the topic of trus work is the development of tests. we will discuss the conl:epts and

framework of the conformance testing in more detail in the following sections, The eonformance

proof is a necessary but not sufficient condition to guarantee interworking capability of a proto(;ol

implementation (SiCh87]. Therefore~ interoperability testing is often performed to determine

whether two conforming implementations cao interoperate. lnteroperability testing is discussed in

• Section 2.4.

15

•

•

2.2.4 Formai description techniques (FOT) and protocol development

2.2.4.1 Impact ofthe FDT on the protoeol development

The introduction of a new communication protocol, for proprietary systems. as weil as for OS1.

requires careful analysis of the proposed protocols and much effort in the development and testing

of the new protocol implementations. [n this context, the use of the formai methods for the

specification of communication protocols and services has received much attention; such methods

allow a more systematic approach to protocol validation. implementation and testing, as compared

ta the traditional use of the protocol specification given in a naturallanguage [BochM7-1]. FDTs

have been developed with essentially [wo objectives [BoPeYT):

(1) encouraging the development of precise specifications which do not allow any ambiguities. A

major advantage of using FDTs for protocol specification is that the resulting specifications cao be

rigorously analyzed for <.:ompleteness and consistency;

(2) allowing the partial automation of the protocol development activities:

- Verification and evaluation of the protocol specification: FDTs form the basis for formai

verification of the protacol specification. Verification techniques can generaIly be classified into

two approaches, synthesis and analysis. The synthesis approach is used when a protocol is

constructed from its informal spedfication by the application of certain design rules. The analysis

approach is used when the specification of a communication protocol is given and we analyze the

protocol to prove that it satisfies <.:ertain desirable properties. State space exploration (aIso called

reachability analysis) and program proving are two comman techniques in this approach [SîCh89].

- Implementation process: Semi-automatic code generation for a protacol specification cao

provide an increased assurance for correct protocol implementations. A suitably defined

transformation technique can translate a large portion of formaI specification (i.e. the machine­

independent part) of a protocol iota sorne high - levellanguage code. Semi - automatic generation

has been an active research area (SiB190, PoSm82, Nash831<t look for sorne mùr~ rel:enr ~x.'lmples

- Test development process: FormaI methods exist for generating protocol test cases

directly from a formaI specification of a protocoL [f a formai test generation technique is

16

•

•

automated, tests with a certain fault detection capability can he generated economically from a

protocol specification. ln Chapter 3, we will focus on the problem of developing test cases

automatically trom the fonnal specification, and we will provide a detailed description of the

automated test selection process.

Realizing the advantages of using FDT for protocol development, organizations such as ISO and

IUT-T have developed standards for three formaI specification languages: SDL [CCITIHX J,

ESTELLE [1S90741, and LOTOS [IS88071. Also, a number of commercially available tools

(predominantly for SOL) have been developed, supporting the protocol development process

using FDTs. [n the foUowing section we desl.nbe SOL because it is used in this project to spedfy

the Signaling protoco!. An overview of the SOL tools used is also given.

2.2.4.2 Specification and Description Language (SDL)

SOL is a standard language for the specification and description of systems. The most recent

standard document is SDL - lJ2 [CCITI921, which is an extension of SDL - XX in the area of

abject orientation.

SOL has been developed for use in telecommunication systems. including data communications.

but actually it cao he used in aU real-time systems. It has been designed for the specification and

description of the behavior of such a system, i.e. the interworking of the system and its

environment. It is also intended for the desl..Tiption of the internai structure of a system so that the

system can be developed one pan at a time.

The underlying model of an SDL specification is an Extended Finite State Machine (EFSM).

EFSMs. which are FSMs extended with variables~ have emerged from the design and analysis of

sequentiaI circuits and ~ommunication protocols. Its most generai form has not only internaI

(l:ontext) variables, but also input parameters such that a transition can ooly be executed if its

enabling condition (usually in the form of a predicate depending on input parameters and state

variables) is satisfied.

17

• The behavior of the SDL system is constituted by a combmed behavior of a number of processes

in the system. A prol:ess is an EFSM, that works autonomously and coneurrently with other

proeesses. The cooperation between the processes is performed asynchronously by dis(,.Tete

messages, called signaIs. A process can aIso send signals to and receive signaIs from the

environment of the system. [t is assumed that the environment aets in an SOL-lïke fashion, and it

must ohey the constraints given by the system description. The behavior of a process is

deterministÏl:: it reaets to external stimuli (in the faon of signais) in accordam.:e with its

description. A process has a memory of its own for the storage of variables in addition to the ~tate

information, whk:h is not accessible for the user of SDL. A proeess cannot write in the variables of

an other process. A process has an infinite input llueue, where incoming signais are queued. A

process is either in a waiting state or it performs a transitions between two states. A transition is

initiated by the fust signa! in the input queue. When a signal has initiated a transition, it is removed

from the input queue (and is said to he consumed). [n a transition, variables can he manipulated, a

decision can he made, a new process l:an he l.Teated, signaIs <,;an he sent (to other processes or to

the proeess itself). etc.

Data types in the SOL are realized as Abstract Data Types. That means that ail data types

(predefined and user defined) are defmed in an implementation-independent way in terros of their

propenies. The definition of ADT has tbree components: a set of values, a set of operations on

these values. and a set ofaxioms detïning the operations.

An SDL system can he represented in a graphical and textua! forro. SDL/GR is a standardized

graphical representation of the system that is used to give a graphical overview. SOL elements

such as signais, processes etc. are drawn using standardized symbols. The graphical representation

is augmented with text for concepts that cannot he represented with graphies (such as ADTs).

SDLIPR is a textual phrase representation of the SDL syste~ in other words, it is an SDL Hsource

~ode" [BeH088).

2.2.4.3 SDL tools

SOL connnercial tools, such as SDT[SDT] Uand GEOO[GEOO][], provide integrated graphica!

• environments for developing an SDL system. Tools consist of a number of functional components:

18

• (1) Graphic.:al editor for creating and ediring the SDL system;

(2) SOL l:hecker that fmds syntax and starie semantic eITors in the SDL l:ode;

(3) SOL simulator that simulates the system in the graphical environment;

(4) SOL tools that provide a C code builder that automatically generates a C/C++ l:ode from the

SDL ~;pecification for different target platforms.

SDL tools (in particular GEOO and SDT) were extensively used in this work for the specifil:ation

of the Signaling protocol. and validation of the test suite was developed using the taols presented

in Section 3.3. Since the GEOD SDL simulator was employed for test validation~ in the following

paragrc.lph we give a more detailed description of its capabilities.

The GEOD SDL simulator can run in three simulation modes: interactive~ random. and exhaustive.

These three modes may he mixed during the same simulation session. For each of these modes. the

simulator generates scenarios containing the results of the verification (deadlock detection etc).

These scenarios can he replayed in interactive mode and expressed graphically in the form of

Message Sequen<.:e Chans (MSCs) [MSC94). The three simulation modes are discussed below:

(1) The interactive or step-by-step mode provides a fine-grained simulation. The user is free to

dedde which parts of the design to exel:ute and to move up and down the simulation process with

the Undo and Redo l:ommands. Like l:onventional debuggers~ the simulation offers a graphical

view of the design being executed~ indicates the current position in the l:orresponding MSC. and

produces resultloi in real-time. This mode was used for the test validation;

(2) The random simulation mode derives a pattern from a number of patterns provided by the

developer to explore sorne of the possible application behaviors;

(3) The exhaustive mode requires the simulator to explore all behavioral paths.

[n thLloi mode, the simulator checks all verification properties. If a violation is detected~ a scenario is

l:reated. which describes how ta get ta the faulty condition.

2.3 Conformance testlng

The objective of the OSI is ta enable heterogeneous systems~ implemented in different and

independent ways, to interwork with one another [Knig87]. If this objective is to be met, two

• issues are of great importance: standards that define the systems should he written in a precise and

19

• unambiguous way, and the user should have a certain guarantee that the pracured system complies

with the standard requirements that the system vendor daims ta satisfy. Here we are concemed

with the secand issue: haw ta test a protocol implementatian in order to determine its

conformance to the protocol specification.

As dis(;ussed in Section 2.2.3. conformance testing is a third phase of the protocol life cycle.

Realizing the importance af the (;onformance testing for the objectives of the OSI, ISO worked on

the standardization of the testing rnethods and concepts. Standardization efforts. which resulted in

a five-part standard [[509646], identit)r the issues regarding the conformance testing process. [n

the rest of this section. concepts and framework of the confarmance testing are introdu<.:ed as they

are detïned by ISO.

A standard document defines a protocol by a set of requirements that should be met by a

confonning pratocol implementation. Canfannance requirements fall into two groups [Rayn~71:

(1) Static (;onformance requirements are thase that define the allowed minimum capabilities of an

implementation in order ta facilitate interworking;

(2) Dynamic requirements are all thase requirements (and aptions) which determine what

observable behavior is permitted by the relevant OSI protocol standard(s) in instances of

communication.

Before the test laboratary may proceed with the confarmance testing of the pratoco!. the client (in

the OSI terminology a vendor of the implementation is a client for the test laboratary performing

the testing) should pravide or complete two documents. The Protocal Implementation

Conformance Statement (PICS) is a statement made by the supplier of an OSI implementation

stating the capabilities and options which have been implemented, and any features which have

been omitted. ft is needed so that the implementation can be tested for conformance against

relevant requirements. and against those requirements anly [Rayn87]. PICS is a document that

should accompany the protocol implementatian. [n order ta provide more information about the

particular implementation, the client should supply the Protocol Implementation Extra Information

for Testing (PIXIT). PlXIT provides information about the execution environment, addressing

• information. identification of the implementation, and other information necessary to run the tests.

20

•

•

2.3.1 Points of control and observation and test methods

ln the c.:onformance testing of communication protocols, the implementation under test (IUT) is

tested as a black box. That is, the implementation details of the ruT are invisible to the external

tester. leaving the implementator a freedom to dedde about the internaI design. As explained in

Section 2.1. the OS 1 protocol standards define allowed behavior of a protocol entity in terms of

the PDUs and the ASPs both ubave and below the entity. Thus the behavior of an (N)-entity is

defined in terms of the (N)-ASPs and (N-l)-ASPs (the latter including the (N)-PDUs) [Rayn871.

These ASPs define the externally controllable and observable behavior of the protocol

implementation. Therefore. c.:onformance testing of the protocol implemented in the (N) - layer is

performed by applying the ASPs that are defined as inputs and observing the ASPs that are detined

as outputs at the (N) - and (N-l) - SAPs.

The points where the exc.:hange of the (N)-PDUs. (N)-ASPs. and (N-l)-ASPs l:an he observed and

c.:ontrolled are c.:al1ed points of c.:ontrol and observation (PCO). ln sorne instances. ASPs above the

protoc.:ol are neither accessible nor c.:ontrollable. directly or indirectly. It is assumed that (N-l)­

ASPs are directly or indirectly controllable and observable by the tester. In the cases when (N-l)­

ASPs are not directly controllable, conformance testing assumes that (N-I) - ASPs are suffidently

reliable to perform the testing remotely. The c.:onformance test rnethods that are defined by ISù

are based on the availability of PCOs in a given protocollUT [IS09646}.

Conceptually, test rnethods are realized by a lower and an upper tester. The lower tester (LTI

provides c.:ontrol and observation of the (N-l) - ASPs that are exchanged at the local lower [UT

interface or at the remote interface of the service provider. The upper tester (Un provides control

and observation of the (N) - ASPs that are exchanged at the upper rUT interface. [f LT and UT

are realized as distributed entities, a test coordination procedure (TCP) governs the cooperation of

the LT and UT during the testing.

Test methods c.:an he grouped mto two classes: a local test rnethod that aets on the PCOs that are

immediately abave and below the lUT, and an extemal test rnethod that acts on the PCOs that are

remote from the IUT. for example, on the other side of the service provider. For single layer

21

• testing, there is only one local test method and three external test methods: distributed test

method. coordinated test method and remote test method, defmed as follows [Linn90):

- local test method: This method defines the peos as being at the service boundaries above

and below the (N) - entity under test. The test events are specified in terms of (N) - ASPs

above the IUT and (N-l) - ASPs and (N) - PDUs below the IUT, as shawn in Figure 2.5;

Upper
tester

Lower
tester

(N) - ASPs

(N) - PDUs

•

Figure 2.5: Local test method

- distributed test method: the IUT does not have an a(;cessible peo at the lower interfa(;e.

This method dermes the peos as being at the service boundaries above the (N) - entity

under test and at the opposite side of the (N-l) - service provider lRayn87]. (N·l) - ASPs

and (N) - PDUs are controlled and observed at the remote end of the (N-l) service

provider. LT and UT are realized as separate processes (Figure 2.6);

22

• .. Test coordination ..

------y!Q~Q~~~-----

Lower
tester

(N) - PDUs

(N-L) - ASPs

(N-l) - service provider

Upper
tester

IUT

(N) - ASPs

•

Figure 2.6: Distributed test method

- l:oardinated test methad: this method is similar ta the distributed test method. lt is

distinguished by two features from the distributed test method: no exposed upper interfal:e

is necessary within the IUT; and a standardized test management protol:al and test

management protocol data units are used to automate test management and l:oordination

procedures. Exchange of the test management data units may be in-band~ through the same

channel as the protol:ol being tested~ or out-band. through a reliable independent channel

(Figure 2.7);

23

... Test coordination II-
------y!q~Q~~~-----•

Lower
tester

...

(N-l) - ASPs

(N) - PDUs

Upper
tester

(N-l) - service provider

Figure 2.7: Coordinated test method

- remote test method: this method defines the PCO as being on the opposite side of the (N­

I) - service provider foon the (N) - entity under test [RaynH71. The [UT does not have any

exposed upper PCO and the Tep is used. The LT and UT are synchronized by the

protocoi being tested (Figure 2.H).

-------------------f - - --
... Test coordination .. 1 Upper 1

______ jJ!qc~Ql!.1"~s ~ tester 1

Lower
tester ... (N) - PDUs

•

------------------- [UT

(N-I) - ASPs

(N-1) - service provider

Figure 2.8: ReDlote test method

24

• 2.3.2 Test procedure overview

The test procedure (aIso called conformance assessment process [ATMF94]) is given in ISOIIEC

Y646-1 [1509646]. It can he summarized in the tlowchart shown in Figure 2.9. There are five

main steps in this procedure [Rayn87].

Dynamic
requirements

Static
reqWrements

PICS
for IUT

PlXIT
for IUT

Final Confol1IlaOce Review
Test Report Production

Figure 2.9: Overview or the test process

1- - - - - - --,
1 Protocol 1

Standards
1

1

1

1

1

1

1

1

•
The first step is the analysis of the PICS accompanying the IUT. The PICS will be analyzed for its

own consisteney and for its consistency with the statie conformance requirements specified in the

relevant standard(s).

25

• The second step is test selection. During the test selection, the PICS and PIXIT are used to select

the appropriate abstract test cases from the existing conformance test suite and to parameterize

them using the PooT infonnation. An abstract test case is a test case that defines the sequence of

the test events in a form that is independent of the target implementation platform. During the

second step, abstract test cases are converted into corresponding executable test cases suitable for

the intended rea! tester. This conversion can he done before or after the selection and

parameterization. The result of conversion, selection and parameterizatian is called a

parameterized executable test suite, whieh is the actual test suite to be run.

The third step is the execution of the parameterized test suite.

The forth step is the analysis of the results. This may in faet be interleaved with the execution of

different groups of test cases, but it is easiest ta think: of it as coming after the test execution step

is over. The observed outcome is the series of events which occurred during execution of a test

case. The foreseen outcomes are identified and defined by the abstrat.:t test case ~"pecification taken

in conjunction with the protocol standard. A verdict is a statement of pass. fail or inconclusive to

be associated with every foreseen outcome in the abstract test suite specification. The analysis of

results is performed by comparing the observed outcomes with foreseen outcomes. and a

statement of verdict is passed.

The fifth step is the final conformance review. which involves a synthesis of the results of the

behavior tests with what has been learned fonn the analysis of the PICS. The conclusion on the

conformance of the rUT to the requirements of the standards(s) can be reached, and results are

recorded in standardized Conformance Test Reports [RaynH71.

2.3.3 Development of atest suite

A test suite is the collection of test cases that have narrowly defined purposes.. such as to verify

that the IUT has a cenain required capability Ce.g. the ability to suppon certain packet sizes) or

exhibit a cenain required behavior (e.g. behaves as required when a particular event occurs in a

particular state) [Rayn87]. A test case consists of a sequence of test events.. where a test event is

an automatic interaction between the ruT and the LT or UT, including the expiration of timer. A

• test case specifies the input sequence that is "1"ed" by the UT or LT to the [UT and the expected

26

• output sequence that should he observed by the testers. [f an ruT produces the expected

sequence. it is said that the [UT passed the test case.

A test purpose descrihes the objective of the corresponding test case. A test purpose cao he

derived directly by studying the relevant protocol standard. or. as in the cases of the automatie test

selection process. test purposes can he associated with the transitions of the FSM model of the

protocol.

A test suite is often organized in the collection of nested test groups. Each test group consists of a

numher of test cases that are related ta the same logical grouping of protocol functions. For

example. test cases that correspond to the connection establishment funl:tions of the protocol

should belong to one test group. A test group l:an he refined into an unlimited numher of nested

subgroups which relate ta different subsets of a protocol function. Test groups may be used to aid

planning. development. understanding and execution of test cases [Rayn871 figure 2.10).

Test suite

-r--------~I---------_,.----

•

Test groups

Test cases

ril rn-
Test steps

Test events

Figure 2.10: Test groupiog

27

•

•

Standardized test suites are usually expressed in the fonn of an abstract test suite. An abstract test

case may consist of three camponents:

(1) Test prearnble defines necessary events to bring the IUT into the desired starting state ta

achieve the purpase of the test case;

(2) Test body defines test events that are needed ta achieve the test purpose (in the case when the

test purpose corresponds ta a transition from the state table~ the corresponding transition is

realized by the test body) and;

(3) Test postamble that is used ta put the IUT into the starting state from where the next test case

will start. Sorne test development methods require a protocol to have a reliable reset function chat

will bring the protocol to the initial state.

ISO and ITU-T have developed the Tree and Tabular Combined Notation~ TICN. [TICNI as a

standardized test notation. It was originally designed for human readability~ with the ability to

define aU the relevant paths through test case and assign verdicts ta each. An abstract test suite

can be written aIso using formaI languages or sorne ""ad hoc'~ techniques. A number of tools exist

for translation from one of these "informai" test notations ta a TICN.

The goal of test suite development (called aIso test suite production [RaYn87l) is to generate a test

suite for a particular proto<.:ol standard. In Figure 2.9. trus pro<.:ess is represented as an edge from

the protocol ~llecification to the conformance test suite. The process of test suite development is

not standardized by ISO. A test development process is often a manual derivation of a test suite

tram the standard document. However~ automated tools exist today that help the test developer in

developing tests. [n general, a test development pro<.:ess starts with the study of the relevant

standards ta determine the conformance requirements. Often~ the test develaper derives the state

table of the protocol as a base for the generation of test sequences. The test developer decides

which test groups will he needed ta achieve the appropriate coverage of the conformance

reqllîrements and refines the test groups into sets of test purposes. Afterwards~ tests are derived

using sorne test develapment method., or~ still a conunon practice., the test developer derives tests

28

•

•

based on lùs/her knowledge about the protocol and experience in testing. The result is a test suite

used for confonnance testing of the protocal implementations.

[n conformance testing, an [UT that fails one of the test cases from the test suite is not conforming

to the standard. If, however, the IUT passes ail of the test cases, we still cannot claim the

conformam;e unless we are confident that the conformance test suite used cavers ail possible faults

in the [UT. The objective of the test developrnent process is to generate a test suite that will have

a complete or almost complete coverage of all possible errors in rUTs. ft is obvious that this

objective is not easy ta realize. as the size of a test suite could be tao big to be used in practice. A

more pragmatic solution is to perform so-called interoperability testing in addition to conformance

œsting.

2.4 Interoperability testing

The prablem of interoperability arises when end - users need ta interconnect equipment from

different manufacturers and to have a certain confidence that these pieces of equipment can

interoperate [ATMFY4). The purpose of interoperablity testing is to confirm the degree of

interoperability.

[nteroperability testing is a process supplementary to conformance testing. While conformance

testing involves testing of only one [UT. interoperability testing considers a system under test

(SUT) of two or more interconnected rUTs. From the point of view of the OSI - RM.

interoperability testing determines the functionality of a service provider that consists of two or

more connected rUTs with a corrununÎl;ation network between them. The generic testing

configuration [ATM94] is given in Figure 2.11. The availability of the Monitor points is not

guaranteed for every test configuration. Sorne test configurations may have access to Monitor

points C and E. For ··third-partY' testing, the connections between the two ruTs may be a physical

communication lîne, and, consequently, accessing the Monitor point 0 would be practically

difficuIt or untèasible. However, specialized testing equipment may help to make ail three pOÛlts

accessible.

29

•
MonitorC

Tester A

IUT

Monitor 0

Figure 2.11: (jeneric testing confagurdtion

[UT

Tester B

Monitor E

•

Designers of the OSI model claim that OSI protocols are constructed in such a way that

,-=onformanl:e implies interoperability [[5074981. On the other hand. practical experience has

shawn that pieces of equipment from different manufacturers. which are daimed to confonn ta the

same protocol standard. may nevenheless be unable to communicate with each other [ArPhY21.

For two IUTs to interoperate. twa situations can be observed which can impact their ability ta do

so:

(1) The two rUTs implement the same mandatory teatures/functions. but differ in regard ta

optional and unspecified ones. [n chis case. even two canforming IUTs may nat interaperate

bel:ause their ability ta interoperate depends on the optional and/or unspecified features;

(2) The two IUTs implement different mandatory features/functians. It is obviaus that these rUTs

are not conforming ta a standard. but if there is sufficient overlap. the twa rUTs may still be able

ta interoperate.

[nteraperability testing does not include assessment of the perfarmance. rabustness, or reliability

of an implementation. The interoperability testing is of great importance for the user of the ruTs

that are realizing the (N) - service provider. The user is interested in the expected behaviar af the

underlying service pravider and not sa much in the conformance of the individual implernentations

of the (N) - protocai entities. However, canformance of the ruTs ta the standard will in('Tease the

likelihoad that they can interoperate.

30

•

•

Chapter 3

Formai melhods and 10015 for protocol lesling

lt is widely recognized that a test develo~ment process should be based on a weLl-founded

theoretical tTamework in order to produce a test suite of a satisfactory quality. [n the previous 10

years.. there was an extensive research work related to the process of test development. ~tost of

this work was based on the FSM model-based testing, a topic rooted in problems related ta state

identification and tault detection for sequential circuits [Henn64). More recently, the extended

FSM model was used for protol:ol development.. verüication.. and testing. Actually.. the use of

formal specifications of protocols opens the possibility for automatic or semi-automatic

development of a test suite from a protocol specification. A number of different techniques have

been proposed for automatic development of tests from the protocol ~'Pecification expressed in one

of the formallanguages. Test development methods based on the FS M and the use of FDT in test

development are discussed in more detail in the next section, followed by a description of the test

development method used in this work.

31

•

•

3. 1 FSM-based testing

3.1.1 Finite State Machine

A finite state machine is an abstract model for the description of the behavior of a system as a

sequence of events that occur at disçrete instants. designated t = 1. 2. 3•... Let us consider a

mal:hine M that has been receiving input signaIs and has been responding by produl:ing output

signais. [f now. at time t. we were ta apply an input signal XCt) to M. its response Y(t) would

depend on X(t), as well as on past inputs to M. Since a given machine M might have an infinite

variety of possible histories, it would need an infinite capaçity ta store them and. l:onsequently,

mal:hine M might need an infinite number of states to describe the behavior of the system.

However. the past histories of a system described by a finite state machine can affect its future

behavior in only a finite number of ways. [n other words. a finite state maçhine can distinguish

among a finite number of dasses of input histories referred to as the internal states (or simply

states) of the machine. Every finite state machine, therefore, contains a finite number of memory

devices, which store the information regarding the past input history. The forma! definition of a

tinite state maçhine. often simply called a machine. is given as follows:

A tinite state maçhine M is a 7-tuple, denoted as M =<X. Y. S. St, D, 8, Iv, where

X is a tïnite set of input symbols;

y is a finite set of output symbols;

S is a tinite set of (internaI) states;

Sl E S lS the initial state;

D c S x X is a specifh;ation domain;

cS: 0 --> S lS the transfer function (also called the next state function);

À: 0 --> Y is the output function.

lntuitively, the input symbol set X represents aU the possible input values that an input signal X(t)

can take at disc..Tete time instants, while the output set Y includes aU the possible output values that

an output signal Y(t} can take at discrete tÙTle instants. The state set S represents all the internaI

states that the FS M may experience.

32

•

•

The transtèr function Ô and the output function À. together characterize the behavior of the FSM.

As 8 and À. are required ta be functions, the FSM model defined is deterministic. More specifically,

for each (Si, x) E D, there should exist exactly one state Sj E Sand exactly one output symbol y E

Y su<.:h that Ô(Si, x) =Sj and À.(sj, x) =y. [n this case, it is said that there is a specified transition

from state Si ta Sj with input x and output y. Such a transition is usually written as Si -x/y-> Sj.

Usually, Si is called the head (or starting) state and Sj is called the tail (or ending) state of the

transition.

It should also he noted that if the specification domain D =S x X, then the transfer function Ô and

the output function À. are defined for ail the state-input combinations and accordingly the FSM is

said ta be completely specified (or completely detined). On the other hand, if the specification

domain 0 c S x X, then there shouJd he sorne state-input combinations for which the transfer

function Ô and the output function À. are not defined and consequently the FSM is said ta he

partially specified (or partially defined).

An FSM can he given in the forro of a state table. States and input symbols are used ta narne the

rows and columns, respectively. A state/output pair s/Yt appeared at the location of row Si and

column x.. implies that there is a transition Si -xJYt-> Sj_ The symbol '._" is used to denote that the

transtèr function or the output function is not defined. Accordingly, the pair '._/-" is used ta

represent the case that neither the transfer function nor the output function is defined. A more

commonly used approach is ta desl.TÎbe an FSM as a directed graph called the state diagraIn with

the states and transitions of the FSM represented by the venices and arcs of the graph,

respectively.

3.1.2 The FSM conformance tlsting

[n the FSM conformance testing, we have complete information about the specification machine

A; we have its state transition and output functions in the form of a transition diagram or state

table. The implementation machine Bisa "'black box" that cao be observed only through its 1/0

behavior. The goal of the FS M conformance testing is to design a test that will determine whether

Bisa correct implementation of A (B is equivalent to A) by applying the test sequence and

33

• abserving the outputs [LeYa96]. Obviously, without certain assumptions the problem cannat he

solved; for any test sequence we can easily construct a machine B, whkh is not equivalent to A

but produl:es the same outputs as A for the given test sequence. There is a number of natura!

assumptions about the specification and implementation FSMs [LeYa961.

Assumptions that are made about the specification machine A (which is detenninistic by default)

are basically about its following structural properties:

(1) completeness: if A is completely or partially specified;

(2) connef.:tedness: if A is strongly or initially f.:onnected;

(3) redu<.:ibility: if A is reduced or non-reduced.

Another class of assumptions is about the types of faults (i.e. the fault model [Boch92, MoreYOD

that can he present in an implementation. lmplementing a system modeled by the given

spel:ification machine A l:an he l:onsidered as a process during which the developer makes various

changes to the ~-pecification machine A. Such changes may introduce undesired behavior of the

system and make the system invalid. For the FS M model presented in Section 3.1.1, we have in

general the following four types of l:hanges that <.:an be made by a developer:

Type 1: change the tail state of a transition;

Type 2: change the output of a transition:

Type 3: add a transition; and

Type 4: add an extra state.

Without imposing any restriction on the types of faults.. the number of all possible invalid

implementations of the given specification A is întinite. A finite set of mutant FSMs which can be

constructed by introducing a number of changes (Types 1-4) is called a fault mode!. A test suite is

said ta have a complete fauIt coverage for a given fault model if it gives the fail verdict for any

nonconfonning implementation from the fault model.

The existing test generation rnethods, discussed later~ are based on the assumptions concerning the

~llec.:ification machine A; a particular test generation method is applicable only to the dass of the

specification machines that satisfy the assumptions. SirrùIarly, given an implernentation machine 8,

• a particular test generation method should usually he capable of detecting errors in the

34

•

•

implementation that can he modeled with one or severa! of the fault types introduced above.

However. sorne of the existing rnethods detect aU four types of errors.

3.1.3 Test generation methods

ln the following. we give an informal description of five fundamental test generation rnethods.

Today, a number of modifications, improvements and optirnizations for these five methods exist in

the literature. For a more complete, updated description of test generation methods.. the reader

should refer to [PeBoYa961.

Most of the existing test generation methods are based on a certain kind of state identification

facility. State identification facilities are certain input/output behaviors that <.:an distinguish a given

state from the other states in an F5M at hand. The key point of FSM-based testing is how to use

sorne state identification facility derived from the spe<.:ification ma<.:hine A ta identify the different

states in the irnplementatian machine B.

Most of the rnethods perform the testing in two phases. ln the first phase. the state identitication

facility derived from the specification maL:hine A shouId be applied to the implementation tna<.:hine

B to check if it can aIso properly identify the states in the ùnplementation. [f the implementation

<.:annot pass the fust phase of testing, then the implementation does not confonn to the

specitic.:ation and accordingly no funher test is required. On the other hand. if the implementation

passes the tïrst phase of testing, then it cm be cancluded that:

(1) the state identification facility is capable of identifying the state in the implementation; and

(2) eac.:h state in the implementation corre~'Ponds to a state in the specification.

On<.:e the implementation passes the fust phase. the second phase tests if the output and next state

of ~ach transition is c,;orrectly implemented. In particular, the correctness of the next state of a

transition can he verified with the state identification facility as it has already been checked in the

first phase that the facility can properly identify ail the states in the implementation.

A number of test development rnethods have been proposed for protocols that are specified with

the FSM model. These rnethods are classified as the Transition Tour method (T - method)

35

•

•

[NaTs811, UIOv-method [Vuon89], D-method [Gone70], W-method [Chow78], and HS [-method

[PeuY 11.

The T-method is relatively simple; the test sequence produced by this method is a transition tour

of the F5M for a protocol. This method only requires that the specification machine is initially

connected. This method aims at detecting ail the output faults in the absence of any transfer faults.

Al:l:ordingly~ it l:annot provide complete fault coverage.

The other methads are more sophisticated and implement the two-phase testing approach. They

nat only l.:heck the implemented output of eal:h transition, but aIso verify whether the tail state of

each transition is l:orrect or not. The state is verified using state identifil:atian sequenl.:es. These

are a distinguishing sequence (DS), unique [/0 sequence (UIO), charal:terization set W. and

harmonized state identifier (HSI) for the D-method, UIOv-method, W-method, and HSI-methad

respectively. [f the corresponding state identification exists for a given FSM. aU methods can

provide complete fauit coverage.

The D-method assumes that the IDal:hine is minimal, strongly connected. completely specified and

possesses a distinguishing sequence (DS). An input string ex is said to he a distinguishing sequence

of a machine A if the output string produced by A in response to ex is different for each starting

state. D-method is resnicted to thase FSMs that have a DS.

The U[Ov - method aIso assumes that a machine is minimal, strongly connected, and completely

~'Pecified. [t involves deriving a unique input/output (UIO) sequence for each state of A. A UlO

sequenl:e for a state of A is an 1/0 behavior that is not exhibited by any other state of a machine A.

The W-method is based on a W-set for state identification. A W-set is a characterization set that

consists of input sequences that can distinguish between the behaviors of every pair of states in the

FSM (Chow78]. The original version of W-method [Vasi73] assumes that the specification

machine A is minimal, deterministic~ initially connected and completely specified. The W-set exists

for any minimal and completely specified FSM.

36

• The HS[-method [Petr91] uses a harmonized state identification facility (HSI) that exists aIso for

partially specified machines that are minimal. An HS l, written as H =< Hh H2••••• Hn> satisfies the

following:

(1) Hk is a set of permissible sequences for the specification machine A;

(2) For uny two state identifiers Hi and Hj, there exist two sequences, one from Hi and the other

from Hj , which have a common pretïx that distinguishes state $from state Sj.

HS 1 is the most general state identification facility and indudes as ~llecial cases DS, UIC and W ­

sequences. Apparently, if HI =H2 == ••• =Hlh then HSI is a W-set. If. in addition. all H sets consist

of one sequence. then HS[is a OS. When a set Hi consists of only one sequence. it is a UIC.

The above rnethods are tocused on testing FSMs. An FSM models only the control part of a

protocol (also called the F5M part). In reality. protocoL'i often have variables and actions that are

based on the variable values. FormaI techniques. based on EFSM. have emerged as more powerful

tools to model the protocols. and, consequently, to facilitate the protocol testing.

3.2 Methods for automatic test development from SDL specification

A formaI specification, such as an SDL specification, can he used for the foUowing activities

[BoPelJ7}:

(1) Test suite deveIopment: Semi - automatic deveIopment of test purposes, an abstract test suite

(written in TIeN, SDL or sorne ad hoc notation, possibly induding sequenL:es of API caUs) and

their automatÎC translation inta executable tests;

(2) Test suite validation: The specification cao he used as a ··referem.:e implementation" to <.:heck

the correctness of newly developed test cases using a simulated execution environment provided

by existing SDL tooIs.

Test suite validation cao he performed using the commercial SDL tools. However, there is no

general solution for automated test developmeot. [n the following paragraph, we concentrate on

the problem of automated derivation of tests from a given SDL specification, and present the

• alternative approaches to the problem.

37

• It is a well-known difficult problem to derive a parameterized input sequence which either

transtèrs an EFSM to u desired state or which distinguishes a pair of states [BoPe9?]. Compared

with the dassical FSM model~ the EFSM model may provide a very compressed behavioral

description of the systetn but at the same time~ it is much less tractable for verification and test

derivation purposes. If certain Limiting assumptions are made about the form of the predicates and

actions~ the analysis of the behavior of the specification and systematic test selection remains

deddeable [HigaY41~ but in general~ Ù1 particular when the actions may in<.:lude loops~ the question

of deciding which input parameters should he used ta force the execution of a partü.:uIar transition

bel:omes undeddeable~ like the question of deciding the executability of a given bran<.:h of a

program in software testing.

One possible approa<.:h to deriving tests from the EFSM is to employ the datatlow analysis.

Al:<.:ording to this approach~ a control tlow graph and data tlow graph are constructed from the

EFSM. Test sequences are generated by l:onstru<.:ting subtours of the l:ontrol flow graph. Ta make

test sequences executable~ information from the data tlow graph is used ta parameterize inputs and

to initiaIize the context variables [SaBo~71.

An alternative approach is to view an EFS M as a l:ampressed notation of an FS M. The intention

behind this approach is to retain the appli<.:ubility of the FSM-based methods [0 generate tests

[BoPeY?J. With this approa<.:h, at least three solutions exist ta obtain a more tractable state­

oriented specification:

(1) to derive a pure FSM by ignoring ail the extensions (parameters~ predicates~ and actions) to the

basic FSM model;

(2) to unfold the EFSM into an FSM byexpanding the values of the input parameters and context

variables;

(3) ta extract an FSM bya partial unfolding of variables of enumerated types~ while using enabLing

l:onditions as a part of the corresponding FS M inputs.

The main drawback of the fust option is that aIl the tests derived from the obtained FSM should he

verified for exel:utability. The second option~ a straightforward unfolding of an EFSM~ easily Ieads

• to an explosion of the number of states and inputs.

38

• The test selection process used in this work is based on the approach that views an EFSM as a

compressed notation of an FSM. More precisely, we approx.imate the behavior of the SOL

spel:ifil:ation by an FSM (ca1led an approximating machine), where an input of the FSM

corresponds ta the pair of an input signal and an enabling condition (if any), while states of the

FSM mostly correspond to the control states of the SDL specification, except for unfolded states,

which are control states augmented with values of enumerative variables [BoPe971. This approach

is implemented in an experimental test derivation tool developed at University of Montreal.

3.3 UofAfontreal tool chain for automatic test development

3.3.1 Overview of the tools

A number of different experimental tools [BoPe971 have been developed at the University of

Montreal for partially automating the test development process. Most tools use the underlying

FS M model, that is. the behavior of the system ta he tested is expressed in terms of a number of

states and inputs as weil as and the outputs and state transitions produced by the arrivaI of a given

input in a given state. These rools are therefore useful for systems that can he characterized by

FSM-oriented specifications. such as communication protocols.

[n the following section. we focus on a chain of tools for the development of test cases from SOL

spe..:itïcations. as shawn inFigure 3.1 .

•
39

Test suite
(mnemonic fonn or SDL

skeleton)

•

Completed Test
Cases (SOL)

TAG
(Automatic Test

Generation)

""'.------..SDL Validator
(commercial too1)

•

Figure 3.1: Test suite development rrom SOL specifications

The middle l:olumn in Figure 3.1 shows the description of objects leading from the formaI

specification in SDL ta the parameterized~ SDL executable test cases. On the left and on the right.

the tools shown that can be used during the test development process.

3.3.2 FEX 1001

The tirst tool, called FEX (FSM Extractor), extracts from the SDL specification a partial view of

the behavior represented in the forro of an FSM (an approximating machine). At the same time.

files containing SOL declarations of interactions (cal1ed "signais") and channels are (;reated which

<.:an luter be used to obtain complete test cases written in SDL. The FEX tool generates an FSM

transition for each branch of each SOL transition in the specification; thus ea<;h branch

corresponding to a particular input and particular conditions of the input pararneters gives rise ta a

separate transition (for each state of the specification). We note that the resulting FSM modeI is

quite sinùlar ta the "test rnatrix" which is commonly used for the manual development of protocol

<.:onforman<;e test suites.

40

•

•

3.3.3 TAG tool

3.3.3./ Overview

The TAG (Automatic Test Generation) tool [Tan961 is a generic tool for test suite development

based on FSM ~lJecifications. The TAG tool implernents the HSI rnethod [Petr911, discussed in

Section 3.1.3. It accepts as input a partially specified, deterministic FS M and generates test cases

ael:ording to the options provided by the test designer. The options include the following:

(1) Autolnatic generation of a complete test suite with guaranteed coverage of output and transfer

faults (assuming that the number of states of the implementation under test (IUT) is not lurger than

the number of states of the specification);

(2) Generation of tests for a specifie transition (correspanding ta a given "test purpose") selected

by the test designer;

(3) The use of state identification sequences for chec.:king transfer faults is optional;

(4) Separate generation of test preambles. postambles and state identification sequences;

(5) Generation of tests for grouped transitions (c;orresponding ta a single SDL transition having

severa! starting states. or severa! input signais. further discussed in Section3.3.3.2);

(fi) G~neratian of tests related to timers (setting, resetting and time-out transitions, further

disl:ussed in Section 3.3.3.3).

The TAG tool supports severa! output formats for the generated test cases:

(1) 1/0 sequences (mnemank form): The mnemonic forrn represents a test I.:ase as a sequence of

input and output events trom the tester. Each event is represented with a descriptive name and is

written in a new line. The output of the tester is distinguished with the prefix sign ~ in front of the

event name. while the expected input is prefixed with the sign '!. This format is easy to read and

relatively l.:ondensed.

(2) SDL skeletons: The generated SOL skeletons represent test c;ases (preambles. postambles and

state identification sequences). They are complete SDL procedures, except that the details

c.:onceming the signal parameters are not included. (Note: [f the SDL signais of the ~"pecification

have no parameters. the generated SOL skeletons are complete SDL procedures).

41

• (3) TTCN-MP skeletons: The generated skeletons represent test cases, preambles~ postambles and

state identification sequences. They are complete TICN dynamic behavior trees, except that the

details concerning the signal parameters are not included.

The generated test suite (in SDL or in TICN) must often be completed by the test developer in

order to add the information concerning the signal parameters. Often, when a signal is received by

the tester, input parameters have to he checked for correct values. AIso. before a signal is send

from the tester, ~orrect values of the output paranleter have to bt: dt:terminèd.

The final development step shown in Figure 3.1 is the validation of the obtained test cases against

the original SOL spedfication~ using an existing SOL development environment. This step is not

automated by the experimental tools and requires manual modifications of the test cases by the test

developer. More details about this step and testing of the data part of the protocol will he given

when we discuss conformance testing of the Signaling protocol (Chapter 5).

3.3.3.2 Coherent transitions resulting from SDL specifications

[n spite of the fact that state/transition explosion does not usually occur when an approximating

machine is derived from an SOL specification, the number of transitions specified in the obtained

machine r.:an yet he very high. As a result, the totallength of tests derived by means of the TAG

tool r.:ould be quite large as weil. This often happens when a single transition of the given

specification yields in the resulting machine multiple similar transitions having the same output.

The basic idea is to test only one (or a few) transition among a set of similar ones.

lt is well known that a single statement in SOL may be used to desl.TÎbe multiple transitions. For

example, the fragment

state * (si, s2, s3);

input il, il;

output 0;

nextstate s4;

•
42

• corresponds to many transitions from ail states~ except si, s2, s3~ under input il or Ï2. Each of

these transitions has the same output 0 and leads to the same next state s4. We l:all such a group

of transitions l:onvergent transitions. If the next state is specified as "_" (meaning to remain in the

same state)~ then the statement describes the set of transitions which we c.:all a group of looping

transitions. [n addition. the symbol "*" may be used to describe the whole set of inputs.

ln general. we call a group of convergent or looping transitions a group of l:oherent transitions.

These groups can be distinguished aCl:ording to the sets of starting states and/or the sets of inputs~

aU transitions of a group have the same output. The information about l:oherent transitions may

either be deduc.:ed automatically from a given SDL specification or given by the test designer in the

forro of a list of c.:oherent groups (in addition to the list of individual transitions).

The extended TAG [MainY61 tests a single representative among l:onvergent transitions. ln

particular. it is assumed that if a single transition has a fault then all c.:oherent transitions in the

group are faulty~ aU of them have a wrong output and/or wrong tail state. Testing just one among

the group would he sufficient. Theoretic.:ally speaking, fault detec.:tion power of the resulting test

suite may not always l:orrespond to what is often c.:alled '''complete fault coverage" [BochY41.

However. deriving tests only for selected transitions gives a good tradeoff between the length of

tests and the fault c.:overage.

3.3.3.3 HandUng timers and related counters

Error-recovery functions of l:ommunication protoc.:ols often rely on timers which invoke limited

retransmission of PDUs. At the expiration of a timer. a spec.:ific output is sent and the timer is

restarted if the maximum number of retransmissions is not yet attained. If the maximum number is

reached~ usually a different transition with a different output L'i taken~ for example. ta release the

c.:urrent connection. Certain input messages may stop a running rimer.

The dassical model of an FSM has no notion of time, yet it is quite common ta use. in

state-oriented ~'Pedfications. a dummy input T ta represent a silent time period which leads ta the

expiration of timer T. Ta model the behavior triggered by timers and related counters~ one typically

augments FSM transitions between (control) states by internai actions stan T, stop T and adds

• transitions guarded by timer expirations (timeouts), as shawn in Figure 3.2.

43

• T&C<maxl
o6,start T

i3103
r~-------_~

i1/o1, start T

i2/o2, stop T
i5/o5

•

Figure 3.2: The frdgment of a machine witb the timer

Here. C represents a l.:ounter used by the protocol entity to ensure that the number of timer

expirations never exceeds a given limit max.

A specifil:ution of the timer-regulated behavior should he consistent. in the sense that the presence

of a timer should influence the observable behavior of the protocol and should be detectable byan

~xternal observer. ln particular. as the abave fragment shows. if timer T can be ac.:tive in state s

there should be at least one incoming transition labeled with start T as weil as at least one outgoing

transition labeled with stop T. Once max is reached. a time-out should cause an output different

trom the one produced by the previous time-outs. Le. 06*07 and. in genera!. a transition to a next

state. [n addition. ta he consistent. a ~1Jecification should. in case that severa! timers can be active

at the same state. have no transition simultaneously starting severa! timers.

Potential ÙTIplementation errors related to timers may either change the expected behavior or cause

a new. unexpected behavior. Faults of the former group may oecur in

- transitions labeled withstart T (expected start)

- transitions labeled withT and [C=max] (expected max)

- transitions labeled withstop T (expected stop).

Faults of the latter group may '-'Teate unexpected actions with timers~ such as

- new transitions labeled withstart T (unexpected start).

44

•

•

- new transitions labeled withstop T (unexpected stop).

In the following paragraph, we discuss the structure of test cases which are needed ta c.:heck the

above transitions, using the example shown in Figure 3.2.

Expected start: To check whether or not the input il sets the timer T, we use the test sequences

defined by the following expression:

a[,.]. iL T. WIs],

where a[rl is a preamble to bring the machine tram the initial state to the state r, T indic.:ates that

the tester should have time-aut T, w[sl is a set of identification sequences for the state S (optional.

in c.:ase we wish ta canfinn the tail state of the transition caused by the fust expiration of the timer).

Once the [UT passes aU these tests, the follawing tests cauld be applied.

Expected max: To check whether or nat the implemented counter reaches the ~llecified limit max.

we use the test sequences defined by the following expression:

a[rl. il. T(l). T(2) T(max). W[p l,

where max consecutive signais T indicate that the tester should have its time-out T expired max

times observing repeated output 0 l followed by 02. An earlier reception of 02 indicates that either

the related counter was nat properly initialized or the implemented value is less than max. [n the

l:ase when a timer shauld expire ooly once (no c.:ounter is used), an additional time-out may he

induded in the test ta verify if any unforeseen counter is implemented for this rimer.

Expected stop: To check whether or not the input i4 arrived after il stops the titner T, we use the

test sequences defined by the following expression:

arr]. il. i4. T. W[tJ,

where the use of the state identifier w[sl is optional. Any output produced by the rUT during the

rime-out period indicates that the input i2 did not stop the timer T.

Unexpected start: Ta check whether the input i3, for example, sets the timer Ton, we use the test

sequences defined by the following expression:

45

•

•

Cl[r). ;3. T. W[s) .

Any output produced by the [UT during the time-out period indicates that the input ;3

unexpectedly set the timer T. Tests of this type applied to aIl states at which the specification has

no a'tive timers would reveal an unforeseen timer. Assuming that~ in the implementation under

test. aIl timers are placed at the correct states~ one may skip many tests related ta unexpe'ted

start.

Unexpected stop: Ta check whether or not the input i5 stops the timer T~ we use the test

sequences defined by the following expression:

Cl[rl. il. ;5. T. WIsl.

The IUT is expected to produce the output 01 after the time-out T: the failure ta do so signals an

error. [n Chapter 5, we present the results of using the presented tool chain for test derivation

from the ATM Signaling proto<.:ol.

46

,

Chapter 4

The ATM Signaling protocol and its specification

4. 1 ATM protocol architecture

Asyn~hronousTranster Mode (ATM) is a teleeommunications concept defined by ANSI and [TU

standards for carriage of a complete range of user traffle. including voice. data and video signaIs.

on any User-to-Network Interface (UNI). An ATM user represents any device that makes use of

an ATM network via an ATM UNI (Figure 4.1).

Figure 4.1: Implementations of tbe ATM UNI•
Private
UNI

Private
ATM

Switch

Public
UNI

47

• The ATM protocol reference model uses a layered architecture divided into multiples planes

(Figure 4.2).

ATM Layer

Physical Layer

Figure 4.2: ATM protocol stack

The User plane (U-plane) provides services for the tran~fer of user applkation information. The

Control plane (C-plane) protocols deaI with calI establishment. release and other connection

control functions necessary for providing switched virtuai circuits (SVC). The Management plane

(M-plane) provides management functions and the capability to exchange information between U­

and C-planes.

The UNI specification involves those protocols which are either terminated or manipulated at the

user-network interfaces. The protocols that are defined by the UNI specification belong to the

PhysicaI and ATM layers. C-plane higher protocollayers for SVC and other protocols required for

UNI management. The ATM UNI Signaling protocol. which is one of the UNI protocols. ~"pecifies

the procedures for dynamically establishing, maintaining and clearing ATM connections at the

UNI. It resides in the C-plane and uses the Signaling ATM Adaptation Layer (SAAL) services for

message exchange with the peer entity.. The formaI specification and testing of this protoeai in this

work is based on the ATM Forum UNI specification. version 3.1 .

•
4H

•

•

4.2 An overview of the Signaling protocol

The initial deployment of the ATM technology anticipated only permanent virtual connections

(PVC). PVC are connections between the communicating parties that are established via

provisioning (usually by the network configuration) at the time of setup of the network. They

generally remain established for long periods of time and shouId automatically be re-established in

the event of the network fallure. The further deployment of ATM required switched virtual circuits

(SVC). SVCs are dynamically established in a real time using signaling procedures. Establishing

the ATM sve is analogue to dialing the telephone number and getting the connection. SVCs are

aIso referred to as '"l:onnection on demand'·.

The Signaling protocol. as defined in ATM Forum UNI 3.1. specifies the procedures for

dynamicalIy establishing, maintaining and clearing the sve at UNI. The Signaling protocol

specification. as is the case with most communication protocols. is divided into two parts:

pro<.:erlures and data. The control part of the protocot as defined in the ATM Forum UNI 3.1.

c.:onsists of l) states and X messages (PDUs) for point-to-point calls. AdditionaI 4 messages are

detined for point-to-muitipoint calls. The data part defines the type. structure. fields.. and values of

the messages and the information elements used to characterize the ATM c.:onnection. The

messages aiso indude information that defines the <.:haracteristics of the connection (peak cell rate.

timing. quality of service. etc.).

The end-point (ATM user) that originates the request for connection is the calling party. The end­

party that a<.:cepts the connection request is the caIIed party. The ATM network identifies the

called party by the ATM address in the caU request. Ea~h ATM end-point has a unique ATM

address. however. more that one connection is possible between two ATM end-points. Each

~onnection is assigned a local unique CalI Reference (CR) number. CR is unique inside the local

end-point: it is not for the entire ATM network. [n our work. we consider proto~ol functions

required for managing point-ta-point <.:alls at the user side.

49

•

•

4.2.1 Messages

Messages are exchanged between two peer protocol entities that want to establish or have

established a connection. The Signaling protocol mak.es use of the services of the underLying

protocol SAAL for reliable~ in-order transpon of the messages. The procedures of the ATM UNI

Signaling protocol are defined in tenus of the following messages (PDUs):

(l) SETUP: initiates a caU establishment;

(2) CALL PROCEEDING (CALL_PRO): indicates that the l:all request arrived at the local UN);

(3) CONNECT (CONN): indicates to the calling party that the cali is accepted by the called user:

(4) CONNECT ACKNOWLEDGE (CON_ACK): acknowledges a CONNEcr message;

(5) RELEASE: requests the l:learing of a calI;

(6) RELEASE COMPLETE (REL_COM): confmns the clearing of a calI;

(7) STATUS ENQUIRY (STATUS_ENQ): is send at any time ta solicit a STATUS message

from the peer entity;

(X) STATUS: is send in response to a STATUS ENQU[RY message or at any time to repon

certain error conditions.

[n the foUowing text the teon PDUs and messages are used interchangeably to reter ta the same

concept. The message structure l:onsists of a general part (common for ail messages) and a

sequence of information elements (lE) that convey the data associated with the particular message.

The comman part of the messages shall always be present, while the [Es are specifie to eal:h

message type (they may be absent tao). Within the ATM Signaling protocol. every message

l:onsists of the following four common fields~ seeFigure 4.3:

(1) protocol discriminator: distinguishes messages for user-network Signaling protocol from other

protocols;

(2) CalI Reference (CR): identities the connection ta whieh a message applies;

(3) message type: each message has a specifie message type identifier~

(4) message length: specifies the length of the message content;

(5) variable length IEs: a sequence of one or more lEs that characterize the ATM connection and

ensure the interoperability.

50

• Protoc. Diser.

CR

Message type

Message length

IE

lE

1

Variable length
lEs

1

lE identifier

IE instruction id

Length of IE

Content of
lE

•

Figure 4.3: nenerdl message format

The presen<.:e of an lE within a message may he mandatory or optional. For ea<.:h message. the

standard defmes the lEs that are mandatory and lEs that are optional as weil as the <.:onditions

under which a particular lE may he present in the message. By itself. lEs are organized as a

sequem:e of octets (we l:all them fields) with a defined data type and the range of values. A field of

an lE may be:

(1) always present. present only !Il combination with a value or with the presence of another part

of the lE. For example, in the Cause lE. the Value field is always present. while the Diagnosti<.:

field is present only for specifie values of the Value field (96. 101 etc.);

(2) optionally present, not penaining to another field or depending on the value or the presence of

another field of the lE. Examples: 1. The ATM adaptation parameters lE may contain or not Error

<.:orrection method field; 2. ln Broadband bearer capability lE. Timing Type and Timing

Requirements fields may only be present if Bearer Class X is indicated; 3. In B_LLI lE, Packet

Window Size field may ooly be present if Default Packet Size field is present.

The Signaling protocol entity may receive a message with an invalid content. The standard defines

five types of possible errors related to a content of lEs in the messages. For each type of error,

51

•

•

~;pecific Error Handling procedures are defined by the standard. The message may have the

following errors:

(1) Mandatory IE Missing (MIEM) if one or more Mandatory lEs are not present in the message;

(2) Mandatory lE Content Error (MIECE) when one or more of the mandatory lEs has an invalid

content value (for example, out-of-range value or a wrong value combination);

(3) Unrecognized lE (UIE), if ail mandatory IEs are found and there is an lE that cannot he

recognized as a valid lE;

(4) Non Mandatory lE Content Error. when the optional lE has an invalid content value:

(5) Rel:ognized unexpel:ted lE (RUlE), when the lE is correctly recognized (decoded) but is not

needed according the standard in that particular message.

4.2.2 Abstract Service Primitives

It should he emphasized that ATM Forum UNI 3.1 does not explicitly specify the Signaling

protocol using the ASPs at the upper SAP of the Signaling protocoL lt is left to the

implementation ta complete the protocol in a particular way and to define its interaction with the

upper layer. The goal is to standardize the protocol in terms of interworking capabilities between

two instances of the protocal and to leave sufficient flexibility for different implementatians.

However. the FSM model of the protocol without messages on the upper interface would not he

complete and sorne of the protocol states as defined in the standard would not be reachable. The

states that are entered by the transitions which are driven by the request or response from the

upper layer (as request for the CalI Setup) cannot he reached if interactions with the upper layer

are not included in the FSM modeL To obtain a complete FSM specification of the protocol.. we

use diagrams from the Q.293 1document [Q2931], which uses bath PDUs and ASPs.

Table 4.1 shows messages and corresponding ASPs used to specify the Signaling protocol in this

work. ln the left part of the table, primitives received from the upper layer are presented and the

corre~1>onding messages that are sent in the direction from the protocol to the network. In the

right part of the table, messages that are received from the network are presented and the

corresponding primitives that are sent ta the upper layer.

52

•

•

Primitives from Messages Messages Primitives
upper laver user->network direction network->user direction ta upper laver
:cawSet111f' '"

, ':, ,:'": ::: '::':"'::":::":":, ':',.":::> ':: :,: ':' ,,.: ',' ',": ,', :,:,

" ,',""',.','" ':',:::::
':, HGS :~>< ~~::,:: ":,' 'C:

' .:,"",

Setup_req SETUP SETUP Serup_ind

Proceeding_req CALL-PROCEEDlNG CALL- PROCEEDING Proceeding_ind

Setup_resp CONNECT CONNECf Serup_conf

CONNECf_ACK Serup_complele_ind

'cau'Cleari.rig
',' ,",. ,,:

::CallcJeatirig
,:':: ','" :

Relensc_req RELEASE RELEASE Release_ind

Rele4lSc_resp RELEASE_COMPLETE RELEASE_COMPLETE Rdc4asc_conf

Table 4.1: Messages and primitives defined for the Signalmg protocol

A simplified version of the resulting FS M is presented irFigure 4.4.

4.2.3 Protocol behavior

The FSM of the Signaling protocol uses Y states (Figure 4.4). States are named according to the

ATM document [UN1311:

(1) UO: Null state~ no connection is in progress or active:

(2) U1: Call lnitiated~ the ATM user requested the connel:tion establishment:

(3) U3: Call Waiting, the ATht user waits for acceptance of the calI from the <:alled party:

(4) U 10: Call Active~ calI is active and data transfer is allowed:

(5) Un: CalI lndication, a request for calI establishment is received;

(6) UX: CalI Accepted, the <:alled party accepts the calL and waits for lo<.:al confirmation ta transfer

ta U 10:

(7) UY: CalI Proceeding, the called pany proceeds with the calI;

(7) UIl: CalI Release requested, the ATM user requested to release the calI: and

(<}) U 12: CalI Release indication, the ATM user is infonned that the peer entity requested CalI

Clearing.

53

•

REL_ OM or RELEA5E 1
Re/aa a_conf

T3081
RELEA5E

Re/ease_respl
REL_COM

Figure .J.4: Simplified state diagrdm of the Signaling Protocol

The Signaling protocol supports the following basic functions at the UNI: Connection/CaH Setup,

Connection/Call Clearing, and Error Handling procedures.

4.2.3./ Cali Setup

The Call Setup is a functionality of the protocol that supports the establishment of connection/call

between two different parties. ft includes two functions: Connection/Call Request and

Connection/Call Answer. (1) Call Request: allows an originating party (calling party) to request

the establishment of a connection/call ta a certain destination. [n tbis request, the originating party

may provide information related to the connection/call. A CalI Request is initiated by the primitive

• Setup_req in UO state (Figure 4.4). A unique identifier, Call Reference (CR), of the call is

54

• generated. and a SETUP message is transferred on the signaling virtual channel across the

interface. Timer T303 is started. The SETUP message shall contain all the information required by

the network to process the cali. [f no response to the SETUP message is received by the user

before the tirst expiration of the timer T303. the SETUP message will be retransmitted and timer

T3U3 restarted. The second expiration of T303 initiates the clearing of the call. [f the network can

determine that the access ta the requested service is authorized and available. the network may

send a CALL_PRO message as a response ta the SETUP message, indicating that the calI is being

processed. The user which receives a CALL_PRO message reports it ta the upper layer by the

primitive Proceeding_ind, stops timer T303. starts T310 and waits for the CONN or RELEASE

message. If timer T310 expires before the arrivaI of the CONN. the cali is cleared. The arrivai of a

CONNECT message, reported ta the upper layer by the Setup_camplete_ind primitive, indicates

ta the calling user that a connection has been established through the network. [t will stop the

timer T303 or T310 and send a CON_ACK message ta the netwark. The connection is established

and the protocol is in state U lO ready for data transfer <that actually happens in the U-plane);

(2) Connection/Call Answer: allows the destination party (called user) ta respond ta an incoming

connection/call request. The destination party may include information related to the

connection/call. Reje<.:ting the conne<.:tion/call request is considered as part of the Connection/Call

Clearing function. At the destination. the network indicates the arrivai of a caU at the UNI by a

SETUP message wrnch is reported to the upper layer by the primitive Setup_ind. The user which

accepts the ïncoming cali responds with a CONN message generated by Setup_resp primitive. The

user that wants to prolong the acceptance of the call (because it is busy or bel:ause it needs more

processing time) eventually sends a CALL_PRO generated by Proceed_req primitive. Upon

sending the CONNECf message. the user stans timer T313 waiting for a CON_ACK which

indicates the completion of the ATM <.:onne<.:tian establishment for the interface and stops the

timer. The cannection is established and the protocol is in state U lO ready for data transfer. The

expire of the timer T313 initiates the clearing.

4.2.3.2 Connection/Call Clearing

This function allows any party involved in a cannection/call ta initiate its removal from an aJready

established connection/call. If the connection/call is between twa parties ooly, then the whole

• connection is removed. The call clearing is initiated by the Release_req primitive which initiates

55

• the sending of a RELEASE message and the stan of the timer T308. The receipt of the

REL_COM message indicates the release of alI resources and stops the timer T30S. If the timer

expires for the first tm the user retransmits the RELEASE message. A sel:ond expiration initiates

an implementation dependent recovery, like restart prol:edures, which are not l:onsidered in chis

work. This function aIso allows a destination party to rejel:t its inclusion in a l:onnection/call. The

network or the user rejel:ts a calI by sending a REL_COM message at the originating user-network

interfal:e.

4.2.3.3 E"or Handling procedures

AlI messages which use the protocol discrirninator "Q2931 user - network call control message"

must pass the checks desL.TÎbed in the standard. Error Handling procedures are defined for each

type of error that l:an oc.:l:ur in the mandatory part of the message or lEs, as anticipated by the

standard. The prol:edures are detïned for the following error conditions:

(1) Protacol disr...nI1Ùnator error: a message with a protocol discriminator other than "Q2931 user­

network calI c.:ontrol message" is received:

(2) Message too shon: a message with the length shorter than the minimum message length (the

comman part of the message must be present);

(3) CalI Reference Error: a number of CR errars are defined related to the invalid CR value, CR

value indicaùng inacùve caU, CR with a global CR value, etc.;

(4) Message type or message sequence errors: a message with undetined type is received or an

inopportune message is received in sorne state:

(5) MIEM Error: a message with the MIEM is received (see the previous section);

(fi) MIECE Error: a message with the MIECE is received:

(7) VIE Error: a message with the UIE is rec.:eived;

(8) NMIECE Error: a message with the NMIECE is received;

(9) RUlE Error: a message with the RUlE is received.

The Error Handling procedures depend on the type of error condition, state in which the error

o<.:<.:urred and type of message. When a message with the error types (5) or (6) is received., a

typical Error Handling procedure is ta respond ta a peer party with STATUS message having the

• Cause lE value equal to 99 or 101 respectively. In the case of error conditions (7), (8), and (9), in

56

• general~ the protocol should ignore the error and try to process the message using the l:orre<.:([Es.

The protol:ol should process error conditions in the order of precedence: error conditions higher in

the list have a higher priaritYthan subsequent conditions. Therefore~ when a message with more

than one error type is received, only the Error procedure l:orresponding to an error l:ondition with

the highest priority is executed.

4.3 SOL specification of the protocol

The Signaling protocol specification in SDL was developed in two steps:

(l) [n the tirst step, we have constructed a state table based on the standard document. The state

table des<.:ribes~ for each state: the valid inputs; the verification made on the input parameters; and

depending on the result of verification, the actions to be taken and the next state of the transition;

(2) From a state table, in the second step~ an SDL specification is obtained by developing an SDL

system. [n addition to the FSM part~ the SDL system includes appropriate data structures~ input

parameters. and parameter checking procedures. To obtain a l:omplete SDL specification, the

system was enhanl:ed to support multiple l:onnections. Developments in this step were done

independently fram this work and are explained in more detail in [Marc9T).

4.3.1 Stale table

ln the process of state table development~ the following assumptions were made:

(1) An assured mode signaling AAL conne<.:tion is already established between the user and the

network prior to the stan of sending the Signaling messages. The underlying SAAL layer is

assumed to he reLiable and no malfun<.:tioning is experienced during the proto<.:ol fun<.:tioning

be<.:uuse of the lost SAAL connection;

(2) STATUS ENQUIRY message is initiated by Initiate Status Enquiry SAAL primitive: lt is used

ta siffiulate the Status inquiry procedure, ariginally started by the SAAL layer malfunction;

(3) Restart pro<.:edures are not included;

(4) Onlya point-ta-point connection is cansidered.

The resulting state table has 56 rows and 9 calumns. Sïnce the state table is used as a starting

point for the design of the SOL system and nat for test derivation~ we did not include the state

table in this text.

57

• 4.3.2 SOL system structure

The SDL system representing the Signaling protocol contains one block with two processes: Proe,

whieh models the behavior of a eonnection and Coord, which manages calls and routes messages

and primitives to the corresponding Prae process (Figure 4.5).

[(primitives) 1

1

1

1

1

1

1

----------------- 1

.........c_o_o_rd_.....-__- c:J
1------
1

1

1

[message1

Figure 4.5: Signaling protocol implemented as SDL system

•

The purpose of the Coord proeess is to multiplex a number of connections realized with one or

more Pree processes. For each initiated incaming or outgoing <.:all, Coordinator assigns a lo<.:aUy

uni4ue CR. and creates an instance of the Proc pro<.:ess. An incoming calI has a CR already

assigned (the tlag, a field in the CR, identifies whether the call is incoming or outgoing). The

Coordinator realizes fum;tions that are common for all pratocal instances. When the Coordinator

accepts a call, it ~Teates an instance of the Prae praeess and associates the newly created process

with the CR of the calI. When a POU from the SAAL or ASP from the upper SAP arrives, the

Coordinator finds the protocal instance to wlUch PDU or ASP should he sent using the association

between the process identifiers and the eonnection CR. [n performing its funetion, the Coordinator

ooly inspects the first four common fields of the message. The fields are checked for errors and if

theyare correct, ooly the CR and the variable length information elements are forwarded ta the

carrespanding Proc process. The prinùtives are redirected fram the Coordinatar ta a

carrespanding pracess instance withaut any processing.

58

•

•

The Proc process realizes the majority of the Signaling protocol functions. Compared with the

Coord process~ whieh is a single state FSM~ Proc comprises 9 states (UO,U 1,U3,U lO~U6,UH, UC).

U 11, U 12). [n addition to executing the protoeol~ Proc verifies each message it receives. ft checks

for any of the Error types defined in Section 4.2.1 and performs the required procedures if any of

the error conditions from the Section 4.2.3.3 are met.

4.3.3 Data type declarations

The message content is represented by a set of complex data types. The complexity cornes from

the number of lEs and their fields as weil as the combination that data types shouJd mode!. In spite

of this. data types cannat he dedared as statie data types because the size and the structure of the

messages and lEs are unknown at the "compile" time. For example.. since the size and structure of

the SETUP message may vary depeoding 00 the information that it conveys (sorne lEs may be

absent.. other have flexible structure)~ the corre~1Jonding data types will have ta he dynamically

modified. [n our approach, we defined a IgeneraJ" message that is a superset of all possible

messages. Using the Boolean fields as flags~ we indude or excIude fields (lEs or parts of the [Es)

from the "general" message ta represent the message we want. However~ since thL~ "general"

message is decIared statically, each message that is constructed from it will contain all lEs (even

lEs that it does not need), which makes it long and difficult to manipulate.

The messages exchanged at the lower SAP between the Coordinator and the adjacent layer are

represented with a signal message. The parameter of the signal message is a structure realizing the

"general" message. It contains four fields: the first three are the conunon message fields and the

fourth is a strul:ture representing the sequence of lEs~ see Example 4.1. The ie_type data type by

itself is a structure that cantains ail possible lEs. Each lE is represented by a data type that has an

assodated Boolean flag field that indicates whether the lE is present or absent. When an lE is

absent.. the Baolean flag field has a value True~ and.. consequent1y~ when lE is absent, the Boolean

flag has a value False.

59

•

•

Example 4.1: Definition of the signal message and declaration of the "ge neral"
message structure:

SIGN~L message(message_content_type)

NEWTYPE message_content_type STRUCT
pr_dis protocole_descrimator_type;
CR call_reference_type;
message_type octet:
ie ie_type;

ENDNEWTYPE;

For each lE, we dedare a data structure with fields from corresponding data types. as defined by

the standard. The optional fields are dedared as structures with a Baolean field indicating the

presen<.:e or absence of the field in the lE, see Example 4.2.

Example4~: Connection identifier TE has one optional field class_options and
is declared as:

NEWTYPE B_BC_type STRUCT
presence boolean:
coding_standard natural:
class natural
class_options class_options_type;
clipping natural;
user-plane natural;

ENDNEWTYPE;

NEWTYPE class_options_type STRUCT
presence boolean
traffic_type natural;
timing_req natural;

ENDNEWTYPE;

The lEs that may he repeated within a message are declared as a structure containing two fields

(see Example 4.3):

(1) the tirst one indicates the number of occurrences of the lE within the message;

(2) the second is an array of that lE.

60

•

•

Example 4.3: Broadband low layer information lE may have at maximum three
occurrences within the same message. Thus, it is declared as:

NEWTYPE B_LLl_type STRUCT
nb_occ max_occ_B_LLI;
occ B_BLLI_table;

ENDNEWTYPE;

NEWTYPE B_LLI_table
array(max_occ_B_LLI, B_LLl_ie);

ENDNEWTYPE;

SYNTYPE max_occ_B_LLI = NATURAL
CONST.~S 0: 3

ENDSYNTYPE;

NEWTYPE B_LLI_ie STRUCT
cading_standard inc_2;

info_layer_l opcional_value_type;
info_layer_2 layer_2_type;
info_layer_3 layer_3_type;

ENDNEWTYPE;

The parameters of the primitives exchanged with the upper layer are CR (except for Setup_req)

and a structure containing the [Es of the corresponding message. For example~ since the oruy

information element allowed in a RELEASE message is Cause. Release_req and Release_ind have

as parameters the CR identifying the cali and a structure containing only one field: the Cause lE.

The constructed SDL specification of the Signaling protocol consists of almost 10 000 lines of

SDL code [Man:971. The data declaration part by itself is almost 70% of the code. As explained in

Sec.:tion 2.2.1. a protocol specification should be veritied against the service specification of the

protacoi layer. The UNI 3.1 does not have a protocol service specification~ and. therefore. the

SDL specification could not he verified in this sense. However. as discussed in Section 5.7. the

specification and the test suite developed later are validated ta a cenain extent one against the

other.

61

•

•

Chapter 5

Development of a conformance test suite

5. 1 Overview

[n this work. we use the experirnental tool chain of UdeM (Section 3.3) to automate the

development of a conformance test suite. A complete SDL ~'Peci.fication of the Signaling protocol

has been developed from the standard document prior ta the test development. ln a first step. the

FEX tool is used to extract the FSM model from the SOL specification. The FSM model is

described in the form readable by the TAG tool. ln a second step. the TAG too1 is used to

generate a test suite from the FSM model. The output of the tool is a test suite in a mnemonic or

SDL skeleton format. ln a third step. in order ta produce SDL executable test cases. test cases are

manually completed with parameters. ln this step, PDUs for parameter variation are also

constructed and used ta complete the corre~'P0nding test cases. The obtained test suite is validated

in the SOL environment against the SOL specification. The validated test suite is an abstract test

suite; it can be used for deriving C executable test cases.

62

•

•

5.2 Extracting an FSM model 'rom the SDL specification

The FSM model of the Signaling protocol used for test development is produced by the FEX tool

trom the SDL specification. Before we take a doser look at the application of the tooll:hain~ we

explain the process of unfolding inputs in the obtained FSM model by the FEX tool. Ac<.:ording to

the standard~ the Signaling protocol has 8 inputs~ 8 outputs and l) states. However~ the prodm;ed

FSM mode1 has 56 inputs. 45 outputs. and 9 states. The main reason for the in<.:rease in the

number of input/output events is due ta the partial unfolding of input messages ac<.:ording ta their

parameters.

Example 5.1 shows a typical <.:ase of generating FSM transitions. The SDL code in the example is

translated by the FEX tool inta the FSM transitions readable by the TAG tool. The transition ua
?SETUP ~ Setup_ind >U6; means that when the ~"pecification receives the input SETUP in

state un, it sends the output Setup_ind (which is a primitive to the upper layer) and goes to state

Un. In state UO the SDL spedfication may also re<.:eive the input Setup_req (which is a primitive

from the upper layer). [n this case it sends the output SETUP and transits ta state U1: this

generates the second transition in the FSM.

Example 5.1:

SOL specification:
state UO;

input SETUP;
output Setup_ind;
nextstate U6;

input Setup_req;
output SETUP;
nextstate U1;

FSM transitions generated:
UO ?SETUP ~Setup_ind >U6;
UO ?Setup req !SETUP >U1;

Receiving the SETUP message in UO stale may result in different protocal behavior depending on

the content of the SETUP message (or more precisely. the value of the SETUP parameters). If a

SETUP message has valid values of the parameters (a valid SETUP message)~ the protocol should

proceed with a Setup_ind to the upper layer. [n the case when SETUP message has an invalid

content (as explained in Section 4.2.1), the protocol should determine the error category (MIEM.

MIECE, etc.) and perform the correct action as prescribed by the standard document. As Example

63

•

•

5.2 shows. in the SDL specification this behavior is realized using the checking procedure and a

dedsion statement. The check_setup procedure checks the content of the SETUP parameter

setup_dara and returns the result in the variable error_code. In the FSM model. trus SDL code is

represented by a number of different transitions. where the inputs are conditioned by a predicate

related to the message content. The input SETUP was partially unfolded according ta its input

parameter values in four distinct inputs: SETUP with a valid content (written simply as SETUP).

SETUP with a MIEM (written as SETUP(Mie=l». SETUP with MIECE (SETUP(Mie=2». and

SETUP with VIT. NMIECE.. or RUlE <SETUP(NMie=l 1 Nmie=2 1 Nmie=3)) (see Section

4.2.1).

TAG treats these inputs as four different inputs. and. consequently. in the derived test cases. they

are considered as different test events. Later. when the TAO produces the test cases. the test

developer is required ta complete test cases in the SOL skeleton forro with the corresponding

values for the SETUP message. Since test events are conditioned with the predicates. the test

developer should determine the values of the parameters that will produce the intended behavior.

since the required parameter values are not produced by the tools.

Example 5.2

SOL ~'P~dticmion:

state ua;
input SETUP{setup_data);
check_setup(setup_data, error_cede)
decisien errer_code;

(MIEM): output REL_COM(96);
nextstate ua;

tMIECE): output REL_COM(lOO);
nextstate ua;

(UIE,RUIE,NMIECE): output Setup_ind(setup_datal;
nextstate 06;

(OK): output Setup_ind;
nextstate U6;

enddecision;

input Setup_req;
output SETUP;
nextstate U1;

FSM tmnsitions generated:
ua ?SETUP lSetup_ind >U6;
ua ?SETUP(Mie=l) tREL_COM(ca=96) >UO;
ua ?SETUP(Mie=2) tREL_COM(ca=lOl) >UO;
ua ?SETUP(NMie=l 1 Nmie=2 1 NMie=3) tSetup_ind >UO;

64

• The abave pracess of unfolding is applicable ta every input message. The extracted FS M model of

the protocol is given in Appendix A.

5.3 Test method

The test development process used in this work assumes a local test methad. The UT has l:ontrol

over the upper PCO. The test events exchanged between UT and IUT on the upper PCO are

prùnitives defined in the previous L:hapter. LT has control over the lower PCO. The test events

exchanged between the tester and the [UT are messages (POUs) as detïned in Table 4.1.

The local test method is the mast appropriate architecture for the test development methad

implemented by the tool chain. Sïnce the test development starts from the SOL specification.

which describes the protocol behaviar using the events at the lo<.:al interfaces (immediately abave

and below the Signaling protocol). derived test cases are realized with the same events. Therefore.

the tester that implements such a test suite must have access to the upper and lawer PCO; in other

words. it has to be a local tester.

Because a test suite for the local test method requires control over lOl:al peos that are not always

accessible. the local test methad is mostly applicable for in-house testing. [n this project. we derive

tests for this test method since. according ta the technical requirements of the project. tests should

be mainly used during the development of an ATM card for PCs.

5.4 Identification of test purposes for the control part of the protocol

To have proper fault l:overage. a test suite should check as many properties of a protocol as

possible. To test the ul:ontrol" properties of the Signaling protocol, we assign a test purpose ta

each transition of the l:orresponding FSM mode!. Test purposes are represented by transitions

l:overing the control part of the protocoL Test purposes for the data part of the protocol are

identified according ta the textual description in the standard.

Figure 5.1 shows an example test purpose expressed as a transition of the FSM as weil as the

l:orresponding test case in mnemonic and SDL skeleton form. The mnemonic faon represents the

test case as a sequence of the input/output events. Events with the ~ sign in front of their names

• are outputs fram the tester; events with the '! sign are expected inputs to the tester. A test L:ase

65

•

•

consists of a preamble that leads from the initial state to the head state of a transition (in the

example in Figure 5.1 ~ there is no need for any preamble because the head state is the initial state)~

transition under test~ and postamble~ driving the IUT back to the initial state. State identification of

the tail state is optional~ once used it provides identification of the tail state and guaranteed fau!t

coverage.

The SDL skeleton is the SDL code representation of the mnemonic form of a test case. The

verdicts in the SDL skeleton are generated by the TAO tool. The fail verdict is assigned if the

tester does not receive the expected output from the IUT. For the example in Figure 5.1. if on

output Setup_req in state wait_Setup_in_UO. the tester receives a signal different trom SETUP. it

will give a fail verdi<.:t. However. if the tester never reaches the faillabel~ the result of the test run

is a pass verdi<.:t. To he used as an executable SDL test case. the SDL skeleton in Figure 5.1 has to

he extended with procedures for parameter checking and timers that limits a tester waiting time on

the [UT output. [ntroducing procedures and timers~ the test developer aIso augments the test cases

with appropriate verdict assignments. A corresponding complete test case in SDL is shawn in

Figure 5.4.

66

• Tt:s t purpose:

UO '!Setup_req !SETUP >U1:

Test cast: in mnemonic form:

UU on input Setup_req */
!Setup_n:q:
'!SETUP:PDU:
/* Transiùon under test in state

/* Identifying U1state ""/
!STATUS_ENQ:PDU:
'!STATUS(ca=30. cs= 1):PDU:

/* Postambh: from Ul Stale */
!REL_COM:PDU:
'!Rd_conf:

Figure 5.1: A test purpose and test case in mnemonic and SDL skeleton form

5.5 Application of the tool chain

Ideally. it should be possible ta derive tests in a completely automatÎl: way using a tool. While.

with the existing tool chain at UdeM. we derived the majority of tests automatically, a totally

automated process is not yet possible because manual modifications were necessary ta the

intennediate results. In this section~ we present our results of appLying the tooll:hain ta the SDL

specification of the SignaJing protoco!.

Bya direct application of the tool chain we mean an automated test derivation process where the

output of one tool is supplied unchanged by the test developer ta the input of another. In this

process, there is no manual modification to the SDL specification or to any intermediate results.

The goal is to praduce a test suite directly fram the SDL specification. The direct application

follows the methods described in Chapter 3. In this process~ the FEX tool is applied to the SDL

specification to extract the FSM model of the protocol. Using the extracted fSM, TAG derives

• preambles and postambuJes for each state. A complete test suite is developed with the TAG option

67

•

•

for complete test suite generation. The resulting test suite - calIed a basic test suite - has lY7 test

cases. The derived basit: test suite was incomplete in the sense that certain aspects of the protocol

were not tested with the test suite derived.

[ts incompleteness cornes from taallimitations. Three problems have been identified.

(1) The output signaIs that have parameters in the SOL specification are translated ta FSM output

events without parameters; in other words, output events of the same type with different

parameters are not distinguished in the FSM. While this is not related to any protocol property. it

makes states of the protocol indistinguishable and TAO l:annot find a state identifier. Astate

identification sequeOl;e for the Signaling protocol is STATUS ENQ message: on input of a

STATUS ENQ, protocol replies with a STATUS message whose parameter identifies the current

state of the protoco!. If the parameter that identifies the current state is not part of the FSM

output. no state can be recognized.

(2) FEX does ~ot include timers in the FSM model in the format understandable by TAO. so. no

test cases were generated for timers;

(3) FEX al:cepts an SDL ~'Pecification that consists ooly of one process. However, as explained in

the previous chapter, our SOL system consists of two processes, Coord and Prae. Since the

majority of protacal func;tions were irnplemented in the Proc process. FEX was applied ta the

SDL system consisting of trus process only. As a result, the FSM model did not include the

Coordinator transitions. therefore. no test cases were generated for them by TAG. As well.

without the Coordinator, UO state cannat be distinguished from other states. The input of

STATUS ENQ in UO L~ prot:essed by the Coordinator, and~ therefore, it is an un~'Pedfied input in

the FS M model composed oruy of the Proc functions. The basic test suite does nat use astate

identification facility. To complete the basic test suite, manual modifications are necessary.

The previous problems are solved by modifying the FSM model produced by the FEX tooL Ta

avoid manual development of tests, we model as much of the missing protacol behavior as

possible with the FSM and use the capabilities of the TAO ta develop test cases. However, we are

still forced ta develap a small number of test cases manually.

68

• FEX does not include timer actions in the FSM model. Since TAO is capable (with sorne

restrictions) ta generate test cases for the timer actions~ timer transitions have been added ta the

FSM. Ta test timers~ transitions representing start, stop, and final expiration of the timers were

added to the FSM. Table 5.1 shows the number of starting and stopping transitions per timer.

Each timer has one transition representing the final expiration of the timer. Test cases for each

timer were generated using the selective test generation option of TAG, giving in total 100

additional test cases for omers.

Timer # starting # stopping
transitions transitions

TI03 1 21
TIIO 3 23
TII3 2 18
TIOX 44 Il
T322 9 9
Total 50 73

Table S.I: Timers

When the number of transitions from Table S.l is compared with the number of newly generated

test cases. it is obvious that there are more transitions than test cases generated. TAO tool does

not produce test cases for transition that is starting transition for one limer and stopping transition

for another timer at the same time. For example. Figure S.2 represents a transition that is a

stopping transition for timer T303 and a starting transition for rimer T310. When a CalI_Pro

message is received in U1 state. T303 is stopped. and~ at the same time. T3IO is started. [n this

case. TAG tool generates a test case for the start of T3IO. but there is no test case for the stop of

T303. This missing test has ta be developed manually. In the protocol, there are 26 transitions that

are transitions with [wo timers. and consequentJy. 26 test cases have to be written manually.

Ul '! Call_Pro !Proceedin~ind > U3~ stop T3D3. start T310

Figure 5.2: Transition witb two limer actions

When tests for timers are developed, TAG assumes that there is only one active timer per state and

that the starting transition of the timer is not a looping transition. However~ for timer T322 both of

these assumptions are violated. T322 is active during the Status Enquiry procedure that can be

• initiated in any state even when another rimer is active. Also, when Status Enquiry message is sent,

69

•

•

T322 is started and the starting transition loops once because the protocol remains in the same

stute. [n the Signaling protocol, there are 27 transitions related ta T322 timer (since T322 may be

active in any state it has 9 transitions related ta the final expiration), and we could not use tools ta

develop test cases for them. We have manually designed test cases for T322 only in states where

no other timer is active (UO, U10, U6, U9. U12). Altogether. for 53 transitions out of 153 related

to timers, TAG does not produce test cases. and test cases related to sorne of these transitions are

designed manually (26 for transitions with two timers and 15 for T322). Appendix C shows

example test cases for timers.

Coordinator transitions, as mentioned previously, cannot be produced by the FEX. From the point

of view of the SDL ~'Pecification, Coordinator is considered as a separate module. The functions it

provides are common to ail states and all proto«.:ol instances. To produ«.:e a single FSM that

includes the Coordinator. the FS M model of the Coord proeess is eomposed manually with the

FSM of the Proe proeess. lf a reliable SAAL connection is assumed, Coordinator is a single state

machine. This corre~'P0nds to composing two FSMs iota a global machine. Sînce the Coordinator

FS M has one state. it is redueed to specifying a few transitions in the Proe FS M which were

previously undefined C·don 't care transitions"). We call these transitions Coordinator transitions.

As a result. the augmented FSM has 570 transitions instead of 196 transitions.

Since Coordinator transitions are coherent transitions, it is naturai to try ta group them and to

redw.:e the number of generated test cases. There are 12 types of Coordinator transitions, and,

after grouping, the 374 Coordinator transitions are represented with 12 coherent transitions.

Figure 5.3 shows an example of a coherent Coordinator transition. lf messages CONN.

CON_ACK, CALL_PRO, or RELEASE are received with CR related to an inactive ~all

(parameter ge=4 represents the condition of having CR that refers to a non-active call) in any

state, REL_COM with the cause lE value equal to 81 should be returned, and the protocol

remains in the same state.

70

•

•

* '! (CONN(ge=4), CON_ACK(ge=4), CALL_PRO(ge=4), RELEASE(ge=4)) ~

REL_COM(ca=81) > _

Figure 5.3: A coherent transition

Twenty four test cases for the coherent transitions have been developed using the TAG selective

test derivation option. Coherent Coordinator transitions and corresponding test l:ases are shown in

Appendix B.

When the Coordinator transitions are added to the protocol FSM, ua becomes distinguishable

from other states. and a test suite with state identification cao be produced. Using the global FSM

model, T AG is used to generate a new test suite with the state identification facility. The existence

of the STATUS ENQ message in the protocol helps the testing of the protocol and enhances the

fault detection power of the test suite without significantly increasing the cost of the testing. Since

the state identification facility is of length one, the test suite has 320 test cases. the same number

as the previous one. The complete test suite, together with the test cases for T322 and transitions

with two timers that have been developed manually, has in total 320 + 26 + 15= 361 test cases.

An analysis of the obtained FSM has shown that an additional optimization of the test suite length

is possible by grouping certain transitions. A number of transitions related to the Setup [nquiry and

CalI Clearing phase are l:oherent transitions. For example. when the STATUS message is received

in any state with the vaiue of the message parameter CUITent State equal ta ua. the protocol

should release the connection. and transfer ta UO state. [f these transitions are represented as

coherent transitions. the resulting alternative test suite has 274 + 26 +15 =315 test cases.

[n sununary, by the direct application of the tool chain, a test suite with 196 test cases is generated

automatically. When timer and Coordinator transitions are added to the FSM, 124 additional test

cases are developed using the TAG tooL Finally, 26 test cases related to transitions with [WO

timers and 15 test cases for T322 are developed manually. The resulting conformance test suite

has a complete fault coverage in terms of the FSM modeL The test suite is represented in

mnemonic as weil as SDL skeleton fonn (See Appendix C for an example test case in the

mnemonic foon).

71

•

•

5.6 Test purposes and tests for the data part

Test suites represented in the SDL skeleton fonn do not have parameters. The need to complete

them with parameters is twofold: to produce SOL executable tests and to test the data pan of the

protol:ol. The data part of the Signaling proto<:ol specifies the POU structure and valid values for

the POU fields (parameters). An implementation should accept PDUs with parameters with valid

values and should have <:orrect error handling behavior for a POU with invalid parameters. The

exhaustive testing of the data part of the protocol would require generation of all possible valid

PDUs and aIl possible invalid ones. The number of parameters in the ATM Signaling pretocol is

quite large. Additionally, the parameter value and its existence in a message may depend on the

value of other parameters. Therefore, exhaustive testing of the data part of the Signaling protocol

is not feasible.

To test the data part. we use an alternative approach by choosing only a representative set of

values of parameters induding both valid and invalid values. In this respect, [WO kinds of problem..~

are addressed. The first is related to the generation of sets of representative values from

determined data types; the second involves the organization of these sets of values into value

tuples (actually PDUs). whi<:h <:an be used in a single test case.

Representative valid and invalid values are determined for each parameter. Parameters that are

integers or a range of sorne data type are represented with three values: minimum. maximum and

sorne random value from the range. Representative invalid values are values immediately outside

the range [15096461. Parameters from this type are usually defined as l6-bit or 4-bit integers in

the ATM UNI 3.1 document. Parameters that are defined by enumeration (have a set of disl:rete

values) are represented using an of their defined values. Representative invalid values are sorne

random values outside the set of defined values. Most of the parameters in the ATM UNI 3.l are

of the second type.

The second problem is ta organize parameters in tuples (POUs). The question is which kind of

PDUs we want to use for testing. Sffice we cannot test aIl possible PDUs. we need a ~Titerion

according to which we determine the type of PDUs important to test. In our approach. we divide

the dornain space of alI possible PDUs ioto equivalence classes and try to cover each of the

72

•

•

equivalent dasses with a number of representative PDUs. The equivalence dass is a set of PDUs

that have sorne common properties (they are ail valid, or have the same type of error) [Myer791.

We divide the domain space inta six dasses: valid PDUs, PDUs with MIEM, PDUs with MIECE,

PDUs with UIE. PDUs with NMIECE, and PDUs with RUlE. For each of theses dasses, a

number of PDUs are canstructed that are used ta test the ruT.

Ta represent valid P

DUs. a number of PDUs with correct values are constructed. These PDUs are constructed to

coyer al1 correct values of the parameters, determined in the previous step. The set of generated

PDUs contains an representative values. [n order to reduce the number of required PDUs, the

values of the parameters are varied in parallel. For example, the ATM Traffic Descriptor

(ATMTraft) consists of the following parameters:

Parameter Parameter Full Name Values # representative values
FWD PCRO Forward Peak Cell Rate with 0 INTEGER 0 - 2"24 3
FWD PCR1 Forward Peak Cell Rate with 1 INTEGER 0 - 2"24 3
BWD PCRO Backward Peak Cell Rate with a INTEGER 0 - 2"24 3
BWD PCR1 Backward Peak Cell Rate with 1 INTEGER 0 - 2"24 3
FWD SCRO Forward Sustainable Cell Rate with 0 INTEGER 0 - 2"24 3
FWD SCR1 Forward Sustainable Cell Rate with 1 INTEGER 0 - 2"24 3
BAK SCRO Backward Sustainable Cell Rate with 0 INTEGER a-2"24 3
BAK SCR1 Backward Sustainable Cell Rate with 1 INTEGER 0 - 2"24 3
FWD MBSO Forward Maximum Cell Rate with 0 INTEGER 0- 2"24 3
FWD MBS1 Forward Maximum Cell Rate with 1 INTEGER 0- 2"24 3
BAK MBSO Backward Maximum Cell Rate with 0 INTEGER 0- 2"24 3
BAK MBS1 Backward Maximum Cell Rate with 1 INTEGER a-2"24 3
BEST EFFORT Best Effor Tao 1 1
FWD TAG Forward Taaoina aor 1 2
BWD TAG Backward Taggina aor 1 2

Table S.I: Paramelers or the ATM Trame lE

The standard prescribes the allowed combinations of the parameters. The allowed combinations in

the forward direction (they are same for the backward direction) are:

Combi 1 Comb. 2 Comb. 3 Comb. 4 Comb. 5 Comb 6
FWD PCRO FWD PCRO FWD PCR1 FWD PCR1 FWD peRO FWD PCR1
FWD PCR1 FWD PCR1 FWD SCRO FWD PCR1 FWD SCRO

FWD TAG FWD MeRo FWD TAG FWD MCRO
FWD TAG

Table 5.3: AUowed ATM Trame lE eombmations in the rorward direction

73

•

•

The representative valid values for FWO_PCRO and FWO_PCRI are (O~ 2"8~ 2"24). To test valid

values for parameters FWO_PCRO and FWO_PCRL the parameters of the ATMTraff lE may he

initialized like in Table 5.4. AIl other parameters that are not shawn in Table 5.4 are missing from

the lE (they do not e:<ist in the lE). The parameters are varied in parallel, i.e. they are initialized

independently. If one of the parameters has more values~ the others are initialized with sorne

default values (for example~ they retain the value from the last combination).

Parameter ATMTraff 1 ATMTraff ATMTraff 3
2

FWD PCRO 0 2"'8 2"24
FWD PCR1 0 2"'8 2"24
BWD PCRO 0 2"'8 2"24
BWD PCR1 0 2"'8 2"24

Table 5.4: Three ATM Trame instatiations covering values (or FWD_PRCO and FWD_peRl

Ta test aIl representative values in ATMTraff we need:

{} (combinations) X 3 (maximum number of representative values for any çombinatian)

=1X (instantiations of ATMTraff lE)

Sinl:e ATMTraff is part 0 f the message, 18 SETUP PD Us are l:0nstructed ta indude 1X

ATMTraff instantiations.

PDUs with invalid parameters are construl:ted according ta the following rules:

(l) PDUs with MIEM: For each message type. PDUs with one missing mandatory lE are

generated. For example~ a SETUP message has four mandatory lEs, thus four SETUP PDUs are

generated with a single mandatory lE missing at a time;

(2) PDUs with MIECE: The representative PDUs from this class have one erroneous parameter at

a time. Parameters with invalid values are not varied in parallel. If one parameter in the POU has

l:ontent error, all other parameters in the POU should have valid values. This approach helps us to

avoid l:anfusion as ta which error value has caused such a behavior;

(3) PDUs with VIE: For each message type, a message with one unrecagnized lE is generated;

(4) PDUs with NMIECE: These POUs are generated in the same way as PDUs with MIECE. The

differenl:e is that the lEs having the content error are non mandatory for the message;

(5) PDUs with RUIE: For each message type~ a message with one extra valid lE is generdted.

We have constructed 25 PDUs ta test the ability of an IUT ta recognize valid POUs and l L5

PDUs ta test the ability of IUT ta detect an error in POUs and the type of the error. Table 5.5

74

•

•

groups the 115 PDUs by the type of message and error. Appendix 0 contains SDL examples of

SETUP message with valid values, with MIEM, and with MICE.

Message MIEM MIECE VIE NMIECE RUlE

SETUP 4 15+2+2+5=24 1 13+2+14+2=31 1
CONN 1 2 1 13+2=15 1
CONN ACK 1 1 1 0 1
CALL PRO 1 2 1 2 1
RELEASE 1 2 1 0 1
REL COM 1 2 1 2 1
STATUSENQ 1 1 1 0 1
STATUS 2 2+1=3 1 0 1
Tota1:(l15) 12 37 8 50 8

Table 5.S: Number of messages representing the rive classes of invalid PDUs

Test l:ases for the data pan are constructed by selecting the appropriate test cases from the test

suite and <:ompleting them with the PDUs from the representative sets. [n general. this requires the

same test case ta he repeated with different values for its parameters. An example of a l:omplete

test l:ase is given in Figure 5.4.

75

•

Figure 5.4: A complete test case for tbe SDL skeleton in Figure S.l

S.7 Validation of the conformance test suite

5.7.1 Objectives of validation

The last step in the test development process is validation of the developed test suite. The

objective of the validation shouJd first be clarified. [n the validation process, the complete test

suite in SOL is executed against the protocol SOL specification in an SOL simulation

environment. This activity is simiJar to the conformance testing procedure. Instead of having a

··black boxu ruT, we use the SOL protocol specification as an IUT, and, instead of a real tester,

we have an SOL realization of the local tester that implements the test suite as a set of SOL

• procedures. The Uexecution" activity is performed by an SDL simulation tool, firing the SDL

76

transitions one by one. For this purpose~ we used commercial SDL tools SDT and Geode. A

• properly designed test suite complete with parameters test suite should give a pass verdict for the

specification. [n this case. we consider the test suite as validated (or correct). While the objective

of the validation process is ta check the correctness of the test suite. it may discover sorne errors

in the SOL specitÏ<:ation as weil. Therefore~ the validation process <:an be considered as a mutual

assessment of the correctness of the test suite and the SOL specifkation.

Two problems <:on<:eming the test validation pro<:ess have to be addressed:

(1) When a test case gives the fail verdict. we have to determine where the error is: in the test suite

or in the SDL specification. In the case when the SDL spe<:ifi<:ation can be trusted to be error

free. the conclusion is that there is a mistake in the test suite. When problems are detected. errors

are located by proofreading the SDL code of the specification as weil as the test suite SOL code.

and the code or the test case is corre<:ted. The SDL graphical environment provides an excellent

means to lo<:ate and to resolve these problems.

(2) Error dete<:ting c.:apabilities of the validation process: The test suite is based on the FSM model

derived from the SOL specification. If there is an errer in the l:entro(part (FSM part) of the SDL

specificatien~ the same errer will he in the test suite. and. consequently. it will never he discovered

by the validation process. Using the test development pro<:ess introduced in chis work. we cannat

detect such errers in the test suite. [n our project. the correctness of the SDL spet.:ification is

ensured by checking the equivaJence of the twa FSMs: the one. manually derived dire<:tly from the

ATM document (see Section 4.3.1) and the other. obtained by the FEX tool (see Section 5.2).

The validation process mayalso detect errors in the data part of the protoco!. PDUs for paraJ11eter

variation are generated frem the standard document~ and procedures for constructmg PDUs and

checking POU parameters in the SOL specification are developed independently. Besides errors in

the data part. there are other errors than could he discovered during the validation process. The

SDL specification contains code that performs integration of the Coord process and protocol

instances~ such as support of multiple connections. ~...reating and terminating new Proc instances (as

new connections are opened and closed), dispatching primitives and messages fronv'to the Coord

•
77

•

•

proçess and protocol instances, etc. These functions are not part of the standard but are necessary

in arder to have a complete functional specification of the Signaling protocol.

5.7.2 SDL validation system

The SOL system used for the validation process is shown in Figure 5.5. It cansists of a Tester

bloçk and a Q2931 black (the Signaling protocol specification). They are connected by four

c.:hannels.

The Tester proçess integrates the UT and the LT in a single SOL proçess TestSuite. Test <:ases,

inside TestSuite are realized as pro<:edures. The completed example test case from Section 5.1 is

shown in Figure 5.4. A timer T is added to limit the maximum waiting time of the Tester. For

example, if the specification does not reply at aH, the Tester will rime-out, and send a fail verdic.:t.

5.7.3 Resu"s of the verification

Ouring the validation pro<:ess, errors in earlier versions of the SDL specification as well sorne

errors in the test cases were discovered. Most of the discovered errors are related ta the data part

of the protocol (procedures tor checking the content of the PDUs). There were few errors in the

Coordinator (e.g. one related ta Call Reference assigrunent) and in the integration of the

Coordinator and the protocol instances. No error was found in the FSM part of the protoçoL

Errors that were found during the validation were Iocated and çorrected by proofreading the çode

of the tester and the SDL specifi<:ation.

78

•

•

[(primitives)]

" "

Q2931 Tester

~~ ~l

[message)

Figure S.S: Test validation architecture

5.8 Test grouping

[t is common practke ta organize a test suite in the hieran:hicat tree-Lîke structure. Usually. a test

suite is organized around the protocol functions or phases in arder ta facilitate maintaining the test

suite and selecting test cases (Section 2.3.3). The test suite produced with the TAG tool is not

grouped or strw.:tured. It is generated as a ··tlat" sequence of test cases following the ruJes of

FSM-based testing, as explained in Section 3.1.3. In order to produce a hierarchical structure, test

cases are manually grouped in the test groups. Test groups are identified according to the protocol

property they focus on.

The test suite structure is shown in Figure 5.4. The leaves and nodes represent the test groups.

The numbers in brackets represent the number of test cases in the corresponding group. The test

suite is divided into two main groups: Valid and lnvalid behavior tests. As explained in Section

4.2.3, the Signaling protocol valid behavior is classified in the following phases: Call Request, CalI

Answer, CalI Clearing. Test cases that test transitions from one of these phases are grouped inta

corresponding test groups: Call Request test group, CaIl Answer test group and CalI Clearing test

79

• group. Together with tests for tÙTlers and Status Enquiry Procedure, these tests form the Valid

Behavior test group.

Test l:ases that form the Invalid Behavior test group are composed of cases that test the Error

Handling procedures (Section 4.2.3.3). They are organized in groups according to the Error

pro«.:edures they test. The General Error group consists of cases that test the IUT behavior when

one of the error conditions occurs: a message is re«.:eived with a protocol discriminator error, it has

a message length error, or it has a CR error. These procedures are part of the Error Handling, but

sin«.:e procedures associated with these errOfS are realized by the Coordinator, they are organized

as a separate group.

Parameter variations (25+ 115)

GeneralError(24)

MessageSequenceError(27)

-{

MandaroryŒMissing(19)
MandarorylEError

MandatoryŒComentError((9)

-[

UnrecognizedŒ(22)

NonMandaroryŒ NonMandatoryIEComentError(4)-- Error

RecognizedUnexpectedIE(14)

CaIIRequest (2)

Valid CaIIAnswer(7)

CalIClearing(20)

Timers((26)

StatusEnquiry(62)

lnvaIid

SignaIing
protocol
test suite

•
Figure 5.6: Test suite structure

ft is wonh noting that the test grouping (Figure 5.6) matches the test categories recommended by

(lS09646].

80

•

•

The foUowing table gives th~ outline of the test ~ategories required by ISO 9646 and the test

groups from the test suite that \.:orresponds ta them.

5.9 Conclusion

[n this chapter. we used the experimental tool chain ta develop a conformance test suite for the

Signaling protocol. Starting from the SOL specification of the protocol, the FSM model was

extracted by the FEX tooL Using the TAG tool, a number of the test cases for the control part of

the protocol was developed in an automated way from the FSM mode!. For protocol properties

that could not be tested with the test cases developed by the tool.. additional tests were developed

manually. The resulting test suite has 320 test cases and complete fault coverage in terms of the

FSM mode!. The test suite has tests for each major protocol function.

Tests for the data part of the protocol were developed manually directly from the standard

document. A set of PDUs with different parameter values was constructed.. and corresponding test

cases were completed with these PDUs. Test cases and the PDUs are represented in SOL. There

are 25 test cases checking the protocol behavior on input of valid POUs and 115 test t.:ases for

invalid POUs.

The SOL specification and the test suite in SDL were validated one against the other in an SOL

executable environment. A number of errors were discovered and corrected in the data part of the

protocol while no error was found in the control pan. To help maïntaïn of the test suite. test cases

were organized into test groups.

Our experience with the Signaling protocol has shown that the standard in sorne places is

ambiguous. It is sametimes difficult to determine the confarmance requirernents from the plain text

and few possible interpretations are possible. For example, when receiving STATUS with Cause

equal ta 30, the standard says that an "appropriate action shall be taken". while not explicitly

explaining tbis Itappropriate action". Ideally, the standard should he written using formaI rnethods

to avoid any dis('Tepancy. Unfortunately, tbis was not the case with the UNI 3.1. The Q293 1 has

SDL diagrams, but at the time of this work it was still a ciraft version. The results of the test

development process are as accurate as the modeling of the protocol with the FSM. Aspects of the

81

•

•

protocol that cannat he represented with the FSM transitions have ta he tested in addition ta the

FSM testing. Since the main pornt of the test development method used is the fact that we can rely

on methods for FSMs which have a proven fault coverage and precise rnathematical foundation for

generating tests for protocols~ developing a relevant FSM model for the protocol is crudal.

Therefore~ specifying protocol standards using FDTs would be a good practice.

82

•

•

Chapter 6

Development of an interoperability test suite

6. 1 Test configuration

The l:onformance test suite developed in the previous section c.:an be used to detennine whether or

not an implementation of the Signaling protol:ol confonns ta the spel:ification. As disl:ussed in

Sel:tion 2.4. there is still no guarantee that any twa l:onforming implementations will interoperate.

[nteraperabillty testing assumes the test l:onfiguration of Figure 6.1. [n Figure 6.1. only the

Signaling protocol entities are shown. The rest of the ATM protocol stack is not presented (the

lower lever protoco1s: SAAL, ATM layer, etc.). The system under test (SUT) consists of [wa

Signaling protocol IUTs connected through a network (or a switch). The behavior of the system is

modeled using the ASPs that are exchanged at the upper protocol interface of the rUTs. Each of

the IUTs is modeled by the F5M of the Signaling protocol developed far canfarmance testing. We

assume that the netwark is reliable (hnull" network): there are no errors introduced by the

network.. and there is no loss of PDUs.

83

•

•

Sïnce the goal is ta test a single point-ta-point connection~ one IUT is defined as Sender and the

other IUT as Receiver. Sender initiates the caU and Receiver answers the call. Assigning the roIe

of Sender to one rUT implies that it consists of the part of the FSM that is responsibIe for the CalI

Request phase (states UO~ U1, U3, U10, Ul1, U12). Apparently, Receiver consists of the FSM

part responsible for CalI Answer (states UO, U6, U8, U9, U10, UIl, U12). [f the IUT that was

tested as Rel:eiver has to he tested as Sender, the raie of the rUTs shauld he switched, and the test

suite will he reapplied. lf bath rUTs are allowed to initiate the calI, the ASPs received will refer to

twu diffeTent connections, since each connection is represented by a different instance of the

protocol (FS M).

[n this test contiguration. it is assumed that there is no test equipment that monitors the tlow of the

PDUs between the two IUTs: the ooly points of observation and control are at upper layer peGs

of the Sender and Receiver. [t is obvious from the configuration that:

(1) The internai communication between the two FSMs cannat he observed. Therefore. it is

impossible to direct!y check outputs of the IUT which are inputs to the otheT IUT;

(2) Sorne transitions of the IUT always initiate other transitions of the other IUT. These transitions

cannat be checked in isolation.

However. in the interoperability testing we are oot interested in the internal communication of the

IUTs. We are concemed with the services that are offered to the user. and since they are

observable only on the upper layer peos. monitoring the message exchange between the IUTs

reveals no additional information.

84

• ASPs

SUT

ATM
switch

ASPs

Recelver
IUT

•

Figure 6.1: SUT used ror the Interoperability Testing

6.2 The test development process

The process used ta derive an interoperability test suite is similar ta that used for c.:anfarrnance

testing. The test develapment pracess explained in the conformance testing stans with the

standard document of the protocoL However. for the interoperability testing there is no doc.:ument

that specifies the behavior of the system shown in Figure 6.1. The global FSM model for the SUT

has ta he derived manually from the FSMs of the IUTs. by combining the two FSMs. The global

FSM is used as input for the TAO tool ta generate test cases. Tests for the data part of the

pratocol are developed from the PDUs construc.:ted in the conformanc.:e testing and test cases

generated from the global FSM. The crucial point is the generation of the global FSM for the

SUT. The Sender and Receiver FSMs are communicating FSMs that exc.:hange messages between

eac.:h other and the enviranment. We are required ta build a global FSM that represents the

c.:ompased behavior of the two FSMs. The method used is given in the fallowing section.

6.2.1 Composing two FSMs

The goal of c.:ompasmg twa FSMs is ta produce a glabal FSM that desl.Tibes the joint behavior of

the c.:onstituent FSMs. Twa FSMs that we want ta c.:ambine are FSMs of the Signaling pratocal

c.:ommunicating between each other. They are shown inFigure 6.2.

85

• Il

Il cr 13 = Is

I2 cr 14 = Ir [2

03 14

Sender Receiver
Ml M2

13 04

01 cr 03 = Os

01
02 u 04 Or 02=

Figure 6.2: Two communicating FSMs

The global FSM has the input set Ig= II u [2 and output set Og=01u02. The events that belong

to 03 and 04 are exchanged between Ml and M2 and are not visible at the outputs of the global

FS M. The definition of the combining operator of two FS Ms and the corresponding method are

given in [DaKl891. [n the following, we give an infonnal explanation of the method.

•

We detine machine Ml.. M2 and global FSM, gFSM, as: Ml = (ILO., St, Sol, Dt, Ô., À.,l, M2 =

(1:1,01, S1, S{I:!, 01, Ô1, À.:! Land gFSM = (Ig, Og, 5g, Sug, Dg, Ôg, À.g l. A state of the global FSM M is

the ordered pair of states of machine Ml and machine M2 (Sg = SI X 52). The global FSM is

constructed by applying inputs i E Ig to Ml and M2, and observing the outputs 0 E Dg. The

output and the next state of the global FSM for the input i in the state (s" s:lJ are determined

according to the following two rules:

(1) [f i is an input for machine Ml (i E Il), and an output 0 = À.1 (i, sIl E 01, the output of the

global FSM on input i is: À.g(i, (Sh S2» =À.l(i, sd, and the next global state is: 8g(i, (S., S2» =(81(i,

sd, S2). In this case, the output 0 is sent ta the environment and no new transition is fired before

the input from the environment is applied. The procedure is identical for an input to machine M2;

(2) [f i is an input for machine Ml Ci E Il), and an output a = ÀlCi, sd E 03. the output 0 is sent

ta M2. The FSMs will relay events between them as long as no output is sent to the environment

86

•

•

(we assume that trus process will eventually terminate; in other words, that there is no livelock).

During trus process, a number of events may he exchanged between the machines, and they may

transfer through the number of states. The output of the global FSM is the last event in the

sequence of the exchanged events and the next global state is the pair of states in which Ml and

M2 rested. As in (1), Ml and M2 will remain in these states as long as there is no input from the

environment (i E [g).

Using the above two roles, for each global state (SI, s:!) transitions are determined for ail inputs i E

[go There are states of the global FSM that can be visited during a proper communication at the

start state, as weIl as states that cannat he visited during such a communication. However, sorne of

the visited states are not stable. i.e. the combined FSM will spontaneously transit trom those states

(without external inputs). Summarizing, we have reachable and non-reachable states of which the

reachable states can be divided into stable and non-stable states. We are particularly interested in

the stable reachable states because these are states of the global FS M.

6.2.2 Aglobal FSM for interoperability tlstlng

The global FSM for the interoperability testing is derived tram the Sender and Receiver FSMs.

The Sender FSM has 6 states, and Receiver FSM has 7 states (see Section 6.1). Sender and

Receiver inputs and outputs are given inTable 6.1:

InpUl (llJ2) # Output (01.02) # Input(13.14)
OutDUl(03.04)

Scndcr Setup_reCLs 1 Setup_conf_s 21 a11 PDUs
Setup_reCLs(Mie=l} 2 Release_conf_s 22
Setup_reCLs(Mie=2} 3 Release_conf_s(ca=96) 23
Setup_reCLS(NMie=2) 4 Release_conf_s(ca=lOO) 24
Release_re~s S Release_conf_s(ca=31) 25
Release_re~s{Mie=l) 6 Proceeding_ind_s 26
Release_re~s(Mie=2) "7

1

Release_conf-s 8

Recdvcr Release_resp_r Il Setup_ind_r 31 all PDUs
Release_resp_r(Mie=l) 12 Setup_cornp_ind_r 32
Releasê_resp_r(Mie=2) 13 Release_ind_r 33
Proceeding_reCl-r 14 Release_ind_r(ca=31) 34
Proceeding_reCl-r(Mie=l) 15 Null 3S
Setup_resp_r 16
Setup_ resp_ r(NMie=2} 17

Table 6.1: Inputs and outputs for Sender and Receiver FSMs

87

Using the method from the previous section~ the global FSM with 6 reachable stable states

• A=(O,O), 8=(1,6), C=(3,9)~ D=(10,10), and E=(11,12) is obtained (Figure 6.3).

1135 11135 14135

141'':' ~

11314/31

11/22

Figure 6.3: The interoperability FSM state diagram

[n the fallowing paragraph, an example of a valid call request and error Handling procedure is

used to illustrate the exchange of messages in the SUT and explain the transitions in the

corresponding global FSM.

ln the starting global state A, Sender and Receiver are in Null (UO) state. When Setup_req is

received, the Sender initiates the caIl request by sending a SETUP message and transfers ta Ul

state. If the network is responding with the CALL_PRO, the Sender will he in the U3 stare. If the

network does not respand with the CALL_PRO, Sender will remain in the Ul state. The SETUP

is received by the Receiver, Setup_ind is sent at the Receiver peo and the Receiver rransfers to

•
88

• U6 state. At this moment. the global FSM is in B state. The corresponding exchange of the

messages is shown inFigure 6.4.

The error Handling pro<:edure is explained below. When the SETUP is received with an error (for

example MIEM). the Receiver will respond with the REL_COM (actually the network at the

Sender side will respond with the REL_COM but since in our system we are not modeling the

network functionality. it will he done by the Receiver) and connection will he cleared. Sender and

Ret.:eiver will he in UO and system will remain in A state. The <:orresponding exchange of the

messages is shown in Figure 6.4.

Sender

Network

SETUP
(connID)

Receiver

CALL_PRO
(cormID)

Pnlceeding_ind_s

Serup_req_s
(Mie=l)

REL_COM
(ca=96)

SETUP
(Mie=l)

Proceeding_req_r

~

•
Figure 6.4: CaU request and MIEM procedure for the SETUP message

89

•

•

6.2.3 Applying the TAG tool to the global FSM

The global FSM desc.:ribed in a TAG format is used to derive tests with the tooi. A l:omplete test

suite is generated by the TAG tool; however. the TAG tool cannat find the state identifil:ation

facility for the global FSM and the test suite has no cheeking sequences because the FSM has no

distinguishable states.

As already disl.:ussed. the FSM model is not completely spedfied for ASPs. As discussed in

Set.:tion 4.3.1. we interpret the unspecified inputs as "don't l:are" transitions. This did not pose any

problem tor the test development in conformance testing because the existing state identification

facility makes no use of any ASP. However. for the global FSM, an HSI set does not exist that

will distinguish the states. The possible solution ta this problem is to relinquish the interpretation

of the unspecified inputs using "don't ..:are" transitions. A ~ommon approal.:h is to ..:omplete the

behavior for the unspecified inputs with looping transitions having no output.. sa called Null

transitions. We add Null transitions for as many ASPs as required to distinguish the states. The

state identification facility produced by TAG is as follows:

State identification sequences:
:>lA= {Setup_re<Ls}
TNB=(Setup_re<Ls.Release_resp_r, Proceeding_re~r}

WC=(Setup_re<Ls.Release_resp_r.setup_resp_r}
WO=(Setup_re<Ls.Release_resp_r.Setup_resp_r}
WE=(Setup_re<Ls.Release_resp_r, Proceeding_re~r}

The generated interoperability test suite has 44 test cases. Example test l:ases are given in

Appendix E.

As disc.:ussed in Section 6. L the test ..:onfiguration in Figure 6.1 has certain limitations. Sorne

protocol propenies cannat he tested because communication between the Sender and Receiver is

not visible and some transitions are ··ceupled". The following procedures of the Signaling protocel

cannat be tested with the interoperability test suite:

(1) Error Handling procedures for Messages type and Message sequence errors (see Section

4.2.3.3): using only ASPs. we cannot generate any message in any state or a wrong message;

(2) Status Inquiry procedure: this procedure is initiated only by the STATUS ENQ message that is

sent upon indication of the SAAL fallure. ln the conformance testing (Section 4.3.1), we modeled

the Status Inquiry procedure with the prûnitive from SAAL, lnitiateStatus Enquiry; the STATUS

90

•

•

ENQ is sent when lnitiateStatusEnquiry is received on the lower PCG. Since we do not have

access to the lower PCG, we cannot test trus procedure in the interoperability testing;

(3) Coordinator functions: the previous two cases are related to the limitations of the test

configuration. The ability to test the Coordinator functions depends on the availability of the

common message parameters that trigger the Coordinator functions (Protocol discriminator,

message length or CR). Since we assume that these parameters are not associated with the ASPs

(as explained in the next section), we cannot produce tests for the Coardinator functions.

However, the previous fum.:tians and procedures are assumed to be tested with the conformance

test suite.

6.2.4 Test cases for the data part

[n conformance testing, the tester has access to the lower interface and is able ta send PDUs with

vaJid or erroneous content ta the IUT. The tester cao aIsa examine the content of the PDUs

received from the IUT. In interoperability testîng. the data part of the protol:al is tested indirectly

using the ASPs. At the peos (Sender or Receiver). there is one-to-one mappÛlg between the

ASPs and the messages. It tS assumed that an ASP has the same parameters (lEs) as the

correspanding message but has none of the common message fields (Parameter discriminator,

message length, and CR). Comman message fields (pararneters) are considered 10<.:aI ta the

protocol and should not be a<.:cessible by the upper layer protocol. Commerdal ATM API

(WinSock2 [WINS2]), which we use for realization of the test execution environment. justifies our

assumptian since it does not provide read or write a<.:cess to these parameters in its function calls.

We can set the parameters of the messages sent by the Sender or Receiver by setting parameters

of the corresponding ASPs. The intention is ta reuse the sets of representative PDUs constructed

far parameter variation in the confonnance testing, and to use them to test the data part with the

interoperability test suite. Test cases from the interaperability test suite are instantiated USÛlg the

corresponding PDU values developed for the data part in the conformance testing.

91

•

•

6.3 Validation of the interoperability test suite

A test suite may he validated in the SDL enviranment using the system shown in Figure 6.5. SDL

specifications are directly cannected without any netwark madel in between. The tester is realized

as a single black and the test suite is implemented as a sequence af SOL procedures. Sïnce there is

no module representing the network, a small number of changes ta the SDL specification are

necessary ta make the SDL configuratian executable. When a SETUP message is sent by the

proto<.:ol ta the netwark. Connectian Identifier [E (CannID) is not mandatary. while in anather

direction this lE is mandatory. Sînce the Receiver is expecting SETUP with the ConnID present.

we have to <.:hange the Sender spe<.:Îfication to generate a SETUP message with ConnID. Similar

change ta the Receiver is required for CONN and CONN_ACK message. They have mandatary

ConnID lE in network to user direction, while in user ta netwark ConnID is optional. [n trus case.

it is a responsibility af Receiver to play the role of a network and ta generate the ConnID in

c.:orrespanding message.

[n building the SDL system we wanted ta use the same SOL specification for the two blo«,;ks.

Sender and Receiver. However, instead af initializing these black instances with the same

detïnitions, we were forced by the commercial tool ta copy the whole definitions and ta treat the

blo«,;k as a different one. Even then. we could not share common procedures. for example.

pro<.:edures for <.:hecking parameters. and it was necessary ta rename pra<.:edures in arder ta avaid

the name l:ontlict. Hawever. this would he impracticaJ when the specifi<.:ation consists af 10 000

lînes. We were still unable ta solve the problem even after contacts with tool specialists.

Spedalists from the tool supplier were unable to offer any better solution. For this reason.

validation of the interoperability test suite was not performed as planned. [t might be possible.

however. ta use other SDL-based tools ta validate interoperability tests.

92

•
IUT

Tester

IUT

•

PDUs

SOL Environment

Figure 6.5: Validation or the ioteroperability test suite

6.4 Conclusion

An interoperability test suite is needed ta test the interoperability of the implementatians in a rea!

system configuration. [nstead of testing each implementation in isolation" the functional system

consisting of properly interconnected implementatians is <.:onfigured" and its services to the user

are tested. In this chapter" system under test (SUT) is defined as consisting of two Signaling

protocol entities connected via a network. We assumed that there are no errors introduced by the

network. and there is no loss of the POUs. To develop tests for interoperability of the Signaling

protocols. the SUT is modeled by a global FSM representing the behavior of ail components. The

global FSM was obtained by combining the two FSM models of the Signaling protocol and its

behavior was defined in terms of AS Ps.

Using the global FSM to model the system test cases for the control part were developed using

the TAG tool. After <.:ompleting the FSM with looping null transitions for un~llecified primitives. a

test suite with state identification sequences was obtained. The resulting test suite consists of 44

test cases. Assuming that an ASP has the same parameters (lEs) as the corresponding message"

test cases for the data part were constructed using the PDU values developed in the conformance

testing. An SOL system for validating the test suite was proposed.

93

•

Chapter 7

Conclusion

As stated in the Introduction, the objective of this worle was twofold. The tirst goal was ta

develop l:onformance and interoperability test suites for the ATM Signaling protocol using the

tool chain. Part of the conformam.:e test suite was developed for the control part of the ATM

Signaling protocol using the tools. Additional test cases for pararneter variation and certain timers

were derived manually. The interoperability test suite was developed by considering a system of

two signaling protocol entities connected through a durnrny network model. The obtained tests

could be used in practice during the development process of ATM cards.

The sel.:ond goal was ta evaluate the experîmental tool chain developed at UofM. Our impressions

of the UdeM tool chain are:

(1) The majority of test cases for the control part of the protocol can he developed automatically;

(2) Test suites developed using the FSM test generation method have complete fault coverage in

tenns of the FSM model of the protocol (provided that the FSM is reduced);

(3) Test cases for the data part could he validated using the SOL specification as a reference.

• Sïnce PDUs for parameter variations were developed manuallyand independently from the SDL

94

•

•

specification. validation against the SDL specification provides an increased confidence in the

quality of the test cases.

(4) The automated tools give a possibility for multiple iterations through the development process.

The changes (if needed) in the SDL specification or the intermediate FSM model could he made

more easily because the test developer could regenerate the test case in a few steps. Consequently~

the test developer could gradually retine the SDL ~lleci:fication. FSM model and test suite, starting

from a less elaborated SDL specification and gradually extending it with additional features.

As a result this work a number of possible improvements ta the UofM tools cao be suggested:

(1) The FEX tool could he enhanced to make use of the TAO options ta test timers. Currently.

FEX does not translate the timer transitions from the SDL ~'Pecification ta the FSM timer

transitions~

(2) The TAG tool could he improved to produce test cases for transitions with [WO timers. AIso.

the restriction on the starting transition not being a looping transition could be removed since the

tool cannat handle protocols like Signaling protocol:

(3) Managing a test suite of more than one hundred test cases manually is a difficult and error

prone task. If tools indude sorne facility that helps group test cases. manipulate them. and search

for a partkular test case. the test manipulation process could proceed more efficient1y~

(4) Usually. SOL specifications are composed of severa! processes. Therefore. to obtain the global

behavior of the ~'Pecification. The FEX tool shauld be able ta extract an FSM from each pracess

and combine them inta a single global FSM.

These improvements can be areas of future work.

95

•

•

References

[ATMFlJ4) ATM Forum ~~ Introduction to ATM Forum Test Specifications~" af-test-0022.000~

Oecember. (lJ94

[CCITTH31 CCITT Draft Recomrnendation X.200~ ;,~Reference model of open systems

interconnection for CCITI applications," June 1983

[CCITT921 CCITI. eOM X-R. 17-E~ Geneva~ March 1992: Recommendation Z.100 - CeITI

Specification and Description Language (SDL) and Annex A ta the Recommendation

[CCITTXXI CCITT Recommendations Z.10 l-Z.104 (Blue Book Series), SDL. eCrIT, IlJ~X

[GEOD1Geod is product of VERILOG SA~ France. http:\\www.verilog.fr\

[IS074YKI [Sa International Standard 7498, H[nformation processing systems - Open Systems

Interconnection - Basic Reference ModeI." Oct. 1yg3

[ISY0741 "Estelle: A Formal Description Technique Based on an Extended State Transition

Modet" [nt. Organization for Standardization, [S lJ074. 19XX

[ISXX(7) "[nformation processing systems-Open System Interconnection-LOTOS-A FormaI

Desl:ription Tel:hnique Based on Temporal Ordering of Observed Behavior:~ Int. Organization for

Standardization. IS H~07, 1988

[IS096461 Information Processing Systems - aS[conformance testing Methodology and

framework, [SO/lEC 1TC 1, [S9646, 1991

[1.3111 ITU-T: Recomendation 1.311, "B-ISDN Service A~'Pel:ts~ " Rev. 1, Geneva, 1993

[MSC94] Z.120 (1Y93), Message Sequence Chan (MSC), IUT-T. September 1994

[Q2Y311 ITU-T: Draft Recommendation Q.2931. "B-ISDN User-Network Interface Laer 3

Protos.:oI,., Geneva, 1993

[SOT] SDT is product of Telelogic AB, Sweden~ http:\\www.tele[ogic.com\

[TTCNI [SOrrCY7/SC21~ ~The ttee and tabular combined notation, H Annex E of Part 2

[IS09646], edited by A. Wiles~ December L987

96

•

•

[UNI31] ATM Foru~ ""ATM User-Network Interface Specification Version 3.1,~~ September,

lYY4

[WINS21 Windows Sockets 2 Application Programnùng Interface, An Interface for Transparent

Network Programming Under Microsoft Windows, revision 2.1.0. January 22, 1996,

[ArPh921 N. Arakawa, M. Phalippou, N. Risser, T. Soneoka, HCombination of conformance and

interoperability testing," FORTE, 1992

[Boch7XI G. v. Bochmann, "Finite state description of communication protocols," Computer

Networks, North Holland. 1l)7~

[Boch~71 G. v. Bochmann, "'Semiautomatic implementation of communication protocols" IEEE

Transactions on Software Engineering. SE-l3(l)), Sept. lY~7

[BochM7-11 G. v. Bochmann. '~Usage of protocol development tools: the resuJt of a survey."

Protocol specification. Testing, and Verification. VlI. H. Rudin, C.H. West. Elsevier Science

Publishers B.V. lFIP 1Y~7

[BaPe(7) G. v. Bochmann, A. Petrenko, O. BellaI, S. Maguiraga, "Automating the Process of

Test Derivation from SOL Specification:' SOL - Forum. 1997

[BeHoX9) F. Selina and D. Hogrefe, "The eCrIT ~"pecification and description language SOL."

Networks and [SDN Systems. 16, North-Holland.l988/89

[BernY41 P. 1. Bernhard. "A Reduced Test Suite for Protocol Conformance Testing:' ACM

Transaction on Software Engineering and Methodology, Vol 3 N03. July 1994

[Chow7Xl T. S. Chow. ""Testing software design modeled by finite state machines:' IEEE Trans.

on Softw. Eng. SE-4, 3 (May), 1978

[OaKlYI) H. van Dam. H. KIoosterman, E. Kwast, 'Test derivation for standardized test

methods," 4 th International Workshop on Protocol Test Systems, 1Y91

[Gone70) G. Gonee. '~A method for the design of fault detection experiments,H [EEE Trans.

Comput. C-19,6(1une), 1970

[Henn641 F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits, " Proc. Of 5th

Annual Symposium on Switching Circuit Theory and Logical Design, Princeton, NJ 1964

97

•

•

[HigaY41 T. Higashino and G. v. Bochmann~ HAutomatic Analysis and Test Derivation for a

Restrkted Class of LOTOS Expressions with Data Parameters." IEEE Trans.• SE-2U. No. 1.

lYt)4.

[Knig871 K. G. Knighston. Terry Knowles. John Larmouth. "Standards for Open System

lnten.:onnection." McGraw Hill~ 1987

[Koh781 Z. Kohavi~ '~Switching and Finite Automata theory:' McGraw Hill~ New York. N.Y..

lY78

[LeYaYol D. Lee. M. Yannakakis. '~Principles and Methods of Testing FSM - A Survey:~ IEEE

Prol:eedings. vo1.84. No.X. August 1996

[LinnYOI R. J. Linn. "Conformance Testing for OSI Protocols, "Computer Networks & ISDN

Systems, Vol. 18, lyg9/90

[Main961 W. Mainvis. "Intégration de nouvelles fonctionnalités dans un outil de dérivation de tests

pour les protocoles". DEA Thesis. Université de Montréal (in collaboration with CRIN. Nancy.

France). August 19Y6.

[Man.:Y71 R. Marcocci, .. Implementation of the ATM Signaling Protocol :~ Master Thesis in

progress. University of MontreaL 1997

[More9ül L. 1. Moreil. "A Theory of Fault - Based Testing..• :. [EEE Trans. on Softw. Eng. SE­

16. 8 (August), 1990

[Myer7YI G. J. Myers, 'The Art of Software Testing, .• Wiley-Interscience publication. lohn Wiley

& Sons. (lJ79. 177p.

[Nash831 S. C. Nash. "Automated implementation of SNA communication protocols." [n Proc.

IEEE International Conference on Communications," lune 9-22., 1983

[NaTsH 11 S. Nito~ M. Tsunoyt'l'a '·Fault detection for sequential machines by transition tours:'

IEEE Fault Tolerant Computing Conference., IEE , New York. 1981

[Rayn871 D. Rayner, ··OSI Confonnance Testing," Computer Networks and ISDN Systems, Vol.

14~ 1987

98

•

•

[Petr911 A. Petrenko~ '4.Checking ex-periments with protocol machines~ " in Proceedings of the [AP

4th [nternational Workshop on Protocol Test Systems (IWPTS 91)~ the Netherlands~ 1991 ~ pp. ~3­

94.

[PoSm~21 O. P. Pozefsky~ F. D. Smith~ "A meta-implementation for system network

an;hitel:ture." [EE transactions on Communications. COM - 30: 1348-1355~ June 1982

[SaB0871 B. Sarikaya. G. v. Boc.;hmann~ Eduard Cemy~ "A Test Design Methodology for Protocol

Testing." IEEE Trans. Software Eng.• Vol. SE - 13~ No. 5, May 1987

[SaDa8X] K. K. Sabnani~ A.T. Dahbura. "A Protocol Test Generation Procedure," Computer

Networks and [SDN Systems~ Vol. 15, No. 4, 19~8

[SiChX71 D. Sidhu. A. Chung. "Experience with FormaI Methods in Protoc.;ol Development,"

FORTE'X9. 1Y8<.J

[SiBIYOI o. Sidhu~ T. P. Blumer, "Semi-automatic implementation of OS[protoc.;ols:' Computer

networks and [SDN systems, January 1990

[TanLJ61 Q. M. Tan, A. Petrenko, and G. v. Bochmann, ··A test generation tool for specifications in

the forro of state machines.'" in Proc.;eedings of the International Communications Conference

([CC) LJ6. Texas. June 1996, pp.225-229.

[Vasi731 M. P. Vasilevski, "Failure Diagnosis of Automatu. " translated from Kibernetika. No.4.

July-August. IlJ73

[Vuon8lJl S. T. Vuong , '(he U[Ov-method for Protocol Test Sequence Generation, ., Proc. Of

the 2nd [nt. Workshop on Protocol Test Systems, Berlin, Germany, Oetober 3- 6, 1989

[YaoLJ61 M. Yao~ ··On the Development of Conformance Test Suites in View of their Fault

Coverage," PhD thesis, University of Montreal, 1996

99

•

•

Appendix A: The FSM model

The FS M madel is represented using the TAG format. The Prac FS M daes nat include the

caardinator transitions. The FSM is arganized in three sections: variables, states, inputs.

outputs and transitions. Variables are used to condition and, therefore, unfold the inputs.

Meaning of the variables and their values are explained in comments in the same line. For

example, the value of the variable Mi e indicates which type of error the input message

should have. When the relation "!=" is used. it means that the message or primitive may he

initialized with any value or the pararneter not equal to one indicated. Consequently, the

test l:ase may be completed in severa! different ways. When the value of incamp variables

is 1 (used only with the STATUS), it indicates that the current state in STATUS message

must be inl:ompatible with the state where message is rel:eived.

Messages in the input and output sel:tions are marked with PDU. Transitions are grouped

by the starting state. Comments #CR, ICA, #CC. #SE, #MS, #MIEM, #MIECE, #UIE.

#NMIECE. #RUfE next ta transitions determine their function. For example, Transitions

that realize the Call Request function of the protocol have comment #CR. Luter, these

l:omments are used to group the corresponding test l:ases in test groups.

~ Q2931 Fsm specification: Proc FSM (no coordinator functions) *,
*--------------------------------------~

'la.riables :
rs integer; !* Reason for rejection *1

cs integer; /* Current state */
ca. integer; / * Cause '/alue * i

incomp integeri /* O=compatible states 1= incompatible states 'Ir/
Mie integer; /* l=MIEM; 2=MIECE 'Ir!
NMie integeri/* 1=UIE; 2=NMIECE; 3= RUIE*/

:*---*/
States:
ua: initial;
U1;U3; /* CalI Request */
U6;U8;U9; /* CalI Answer *;
U10; /* CalI Active */
U11;U12; /* CalI Clearing *1
/*---*/
Inputs:

Setup :PDU;
Setup(Mie=l) :PDU; /* mandatory and non-mandatory*j
Setup(Mie=2) :PDU;

100

:PDUi
:PDU;
:PDUi
:PDUi
:PDUi
:PDUi

• Setup(NMie=l) :PDU;
Setup(NMie=2) :PDU;
Setup(NMie=3) :PDU;
Conn :PDUi /* saroe */
Conn (Mie=l) :PDUi
Conn (Mie=2) :PDUi
Conn (NMie=l) :PDUi
Conn (NMie=2) :PDUi
Conn (NMie=3) :PDUi
Conn_Ack :PDUi
Conn_Ack(NMie=l) :PDUi /* no lE */
Conn_Ack(NMie=3) :PDUi
call_Pro :PDUi
CalI_Pro (Mie=1) :PDUi
Call_Pro(Mie=2) :POUi
Call_ProCNMie=11 :PDU; * only non-mandatory ..
CalI_Pro (NMie=2) :POUi
Call_Pro(NMie=3) :PDUi
Rel :POUi
Rel (Mie=1) : POU i ,' .. only mandatory ft i

Rel (Mie=2) :PDUi
Rel (NMie=1) :PDUi
Rel (NMie=3) :PDUi
Rel_Corn :PDUi
Rel_Com(Mie=l) :PDUi;* mandatory and non-rnandacory .. '
Rel_Com(Mie=2) :PDU;
Rel_Com(NMie=1) :PDU:
Rel_Com(NMie=2) :POU:
Rel_Com(NMie=3) :PDU:
Status(cs=O) :PDU:
Status(cs!=O,incomp=l) :PDU;
Status(cs!=O,ca=96,incomp=O)
StatuS(Csl=O,ca=97,incomp=O)
Status(cs~=O,ca=99,incomp=O)

Stacus(cs~=O,ca=lOO,incomp=O)

Status(cs:=O,ca=lOl,incomp=O)
Status(cs!=O,ca=30,incomp=O)
Status(cs!=O) :PDU;
SCatus (Mie=1) : POU;
Status(Mie=2) :PDU:
Status_enq :PDU:
Stacus_enq (NMie=l) : POU;
Init_stac_enq :PDU;
Setup_resi
Secup_req;
Rel_reqi
Rel_resp:
Rel_resp(ca=88)i
Rel_resp(ca=lï}i
Rel_resp(ca=21} i
Rel_resp(ca=23) i
proceeding_req:
Unrecognizedi

* cimers "/rI
T313 timer;
T30a timer;
T310 timer;
T303 timeri
T322 timer;

/*---*/

• Outpucs:
Conn :PDU;

LOI

• Conn_Ack :POUi
CalI_Pro :POUi
Setup : POUi
status(ca=lOl)
Status(ca=96)
Status(ca=97)
Status(ca=lOO)

:PDUi
:PDUi
:PDUi
:PDUi

:POU;
:POU;
:POUi
:POU;
:PDU;
:POU;
:POU;
:PDUi
:PDU;

:PDUi
:PDU;
:PDU;

:PDU;
:PDU;
:PDU;
:PDUi
:PDU;

Status(cs=0,ca=30)
Status(cs=1,ca=30)
status(cs=3,ca=30)
Status(cs=ô,ca=30)
Status(cs=8,ca=30)
Statuslcs=9,ca=30)
Status(cs=lO,ca=30)
Statusfcs=11,ca=30\
Statuslcs=12,ca=30}
Status_enq :PDUi
Rel(ca=16) :PDUi
Rel(ca=102) :PDUi
Rel(ca=96) :PDUi
Rel(ca=97) :PDUi
Rel(ca=99) :POU;
Rel(ca=lOO) :PDU;
Rel(ca=lOl) :POU;
Rel_Corn
Rel_Corn(ca=96)
Rel_Corn(ca=lOO}
Rel_Corn(ca=lOl)
Rel_Corn(ca=88)
Rel_Com(ca=17)
Rel_Com(ca=21)
Rel_Com(ca=.23)

combl:Rel_cam:PDU,Rel_canf;
comb2:Conn_Ack:PDU,Setup_conf;
comb3:Rel_Com(ca=96) :PDU,Rel_confi
comb4:Rel_Com(ca=100) :PDU,Rel_conf;
comb5:Rel_Com(ca=41l :PDU,Rel_confi
Setup_ind;
Setup_conf;
Setup_comp_ind;
Rel_confi
Rel_conf(ca=31);
Rel_ind;
Rel_ind(ca==3l} ;
Praceeding_ind;

;*---*;
Transitions:

'*UO: Null state*!
ua ?Setup
ua ?Setup_req

!Setup_inà
!Setup

:.U6i/*#CR*/
~Ul, start T303i:*#CR*(

~Rel_Com(ca==96)

~Rel_Com(ca=lOO)

!Setup_ind >U6i
!Setup_ind >U6;
~Setup_ind >U6;•

* unexpected messages are nat received in UO,
coordinator i5 filtering them */

,'lit Unexpected Msg 'lit,!

* IE Miss/Err */
UO ?Setup(Mie=l)
ua ?Setup(Mie=2)
UO ?Setup(NMie=l)
UO ?Setup(NMie=2)
UO ?Setup(NMie=3)

>UO; 1'IIt MIEM * /
>UO; /* MIECE */
1* UIE */
/* NMIECE */
/* RUlE */

102

'*#MS*

/1(#SE1(/

:~#SE*':

(1(#SE*/

stop T303;=-UO,

. * ~UIE "ft 1

,1(#RUIE*/

>U3, stop T303, start T3l0;

·Ul, start T303;

·Ul; ,. *"MS*';'
·UO, stop T303;

"ua;
-uo;

~cornb2

~Rel_conf

!Status(ca,=lOl}
!combi

!Proceeding_ind

?Rel_Corn(NMie=l) !Rel_conf ~UO, stop T303i /1(#UIE1(/
?Rel_Corn(NMie=3) !Rel_conf >UO, stop T303; /*RUIE~!

?Status_Enq (NMie=l) !Status (cs=l, ca=3 0) >U1; / *#UIE*/
?Status (Mie=l) !Sta.tus (ca=96) >U1; '1(MIEM */
?Status(Mie=2) !Status(ca=lOO) >Ul; /1(MIEt:E */

?Conn
?Rel_Corn

Ul

Ul

Ul

Ul

Ul

Ul

Ul

Ul

Ul

Ul

U1
U1
Ul

~U10, stop T303; I*#CA*!
=-UO, stop T3 03 ;

/*#cc first clearing mess. *1
?Status_enq lStatus(cs=1,ca=30) =-U1; /*#SE*/
?Status(cs=O) !Rel_conf >UO, stop T303; /*#SE*/
?Status(cs!=O, incornp=l) lRel(ca=101)

=-U11, stop T303, start T308;
?Status(csl=O,ca=96,incomp=O) lRel{ca=96)

:>U11, stop T303, start T308;
?Status(csl=0,ca=97,incomp=0) lRel(ca=97)

~Ul1, stop T303, start T308;
?Status(csl=O,ca=99,incomp=O) !Rel(ca~~~\

~Ul1, stop T303, start T308; :*ijSE*!
?StatuS(Csl=O,ca=100,incomp=OI lRel{ca=100)

:.U11, stop T303, start T308; I*#SE*'
?Status(csl=O,ca=lOl,incornp=O) lRel{ca=lOl)

~Ull, stop T303, start T308; /*#SE~,

U1 ?Init_stat_enq lStdtus_enq >U1,start T322;
#5E/

Ul ?5tatus(csl=O,ca=30,incornp=O) !Null ~ U1, stop T322;
Ul ?Rel_req lRel(ca=161 :.Ul1, stop T303, start T308;
/*#CC*I
Ul ?T303/[#..:1] lSetup
Ul ?T303/[#=1] !Rel_conf
Ul ?T322/[#=Ol lcomb5

* Unexpected Msg */
Ul ?Conn_Ack
Ul ?Rel

* IE Miss/Err */
Ul ?Call_Pro(Mie=l) lStatus Ica=96) ·Ul;

1(M1EM, response to SETUP *,
?Call_Pro(Mie=2) !Status (ca=lOO) "U1;

1(MIECE, response to SETUP *;
?Call_Pro(NMie=l) !proceedinq_ind

-U3, stop T303, start T310;
?Call_Pro(NMie=3) !Proceedinq_ind

~U3, stop T303, start T310;
?Conn (Mie= 1) l Status (ca=9 6) ~Ul;

1(MIEM, response to SETUP ...
?Conn (Mie=2) 1Status (ca= la 0) ..Ul;

11(MIECE, response to SETUP *!
?Conn(NMie=l) !comb2 ·U10, stop T303; /1(#U1E*/
?Conn (NMie=2) ! comb2 -U10, stop T3 03; .' 1(#NMIECE ... :,
?Conn(NMie=3) !comb2 ~U10, stop T303; *#RUIE*/
?Rel_Corn(Mie=l) !Rel_conf(ca=311 JUO, stop T303;

Ul
Ul
Ul
Ul

/r'fMIEM*i
U1

, 1f lfMIECE1(/
U1
U1
U1
U1
U1

I*U1: CalI 1nitiated*1
U1 ?Call_Pro

I*#CA*/
U1
U1•

/*U3: Outgoing CalI Proceding*/
U3 ?Conn !comb2 >U10, stop T310; ;1(#CA1(/
U3 ?Rel !Rel_ind >U12, stop T310; /*#CC*/
U3 ?Rel_com!Rel_conf >UO, stop T310; /*'#CC first clearing mess.

•
*/

U3
U3

?Status_enq !Status (cs=3 , ca=3 0) ,>U3 ;
?Status (cs=O) ! Rel_conf '=-UO, stop T310;

/*#SE*/
/*#SE*/

103

?Rel_Com (NMie=l) !Rel_cont-UO, stop T310; , *#UIE*:
?Rel_com (NMie=3) !Rel_conf -UO, stop T310; ,*#RUIE*
?Status_Enq(NMie=l) !Status(cs=3,ca.=30)·U3; ,.*~U E*;
?Status(Mie=l} !Status(ca=96) :-U3; ,*# MIEM
?Status(Mie=2) !Status(ca=100)-U3; *q MIECE *.

j*#SE*/

/*#SE*!

/*#SE*!

!*#5E*/

/*#UIE'III'i
#NMIECE/

" *#RUIE*/
T310; /*#HIEM*I
T310; / '* #MIECE*,
'*#UIE*I
*~RUIE*1

stop T310;

stop T322:
start T308;

'-UO, stop T310:

!*#MS*/
:*#MS*j

>U11, stop T310, start T308:

>U3 ;
>U3 ;

!Status(ca=101)
!Status(ca=101)

?Status(cs!=O,incomp=l) !Rel(ca=101)
~U11, stop T310, start T308;

?Status(cs!=0,ca=96,incomp=O) !Rel(ca=96)
>U11, stop T310, start T308; /*#SE*/

?Status(cs!=O,ca=97,incomp=O) !Rel(ca=97)
>U11, stop T310, start T308:

?Status(cs!=O,ca=99,incomp=0) !Rel{ca=99)
>U11, stop T310, start T308:

?Status{cs!=O,ca=100,incomp=O) !Rel{ca=100)
~U11, stop T310, start T308;

?Status(cs!=O,ca=101,incomp=0) !Rel(ca=lOl)
>U11, stop T310, start T308; ;*#SE*!

?Init_stat_enq !Status_enq >U3,start T322;

U3

U3

U3

U3

U3

U3

U3
#SE!

U3 ?Status(cs!=0,ca=30,incomp=OJ !Null ~ U3,
U3 ?Rel_req !Rel(ca=16) ~Ull, stop T310,
i'lrJfCC'Ir/

U3 ?T310/ [#=01 !Rel (ca=102j
U3 ?T322/ [#=0 l ! combS --Uo;

.* Unexpected Msg */
U3 ?Conn_.~ck

U3 ?Call_Pro
;* TE Miss/Err */

U3 ?Conn(NMie=lJ !comb2 >U10, stop T310;
U3 ?Conn(NMie=2) !comb2 ~UI0, stop T310;
U3 ?ConntNMie=3j !comb2 ~UIO, stop T310;
U3 ?Rel (Mie=l) !Rel_ind (ca=31) 'UI2, stop
U3 ?Rel(Mie=2) !Rel_ind(ca=31) >U12, stop
U3 ?Rel(NMie=1) !Rel_ind '>UI2, stop T310;
U3 ?Rel(NMie=3) !Rel_ind -U12, stop T310:
U3 ?Rel_Com(Mie=l) !Rel_cont(ca=31) -UO,

a;MIEM·
:13

#MIECE
U3
U3
U3
U3
U3

•

/*#SE*/
~ U6, stop T322;

T313; /*#CA*/
/*#CA*/
T308; /*#CC*/
>00; / *#CC* /
.>UO; / *#CC* /
>UO; ;' *#CC* /

*U6: CalI
U6
U6
U6
U6

U6

U6

U6

U6

U6

U6
U6
U6
U6
U6
U6

• U6
U6

Present .,'
?Rel !Rel_ind -U12;' *#CC* ,.
?Status_enq !Status(cs=6,ca=30j -U6;
?Sta.tus (cs=O) ! Rel_conf·UO; ; *#SE'III'
?Status(cs!=O,incomp=lj tRel(ca=lOl)

~Ull, start T308; !*#SE*!
?Status(csl=O,ca=96,incomp=O) !Rel(ca=96)

~U11, start T308; jT#SE*/
?Status(cs!=O,ca=97,incomp=O) tRel(ca=97)

~Ul1, sCart T308; /*#SE*/
?Status(cs!=O,ca=99,incomp=O) !Rel{cd=99)

>U11, start T308; /*#SE*/
?Status(cst=O,ca=lOO,incomp=O) !Rel(ca.=lOO)

>U11, start T308; /*#SE*/
?Status(csl=O,ca=lOl,incomp=O) !Rel(ca=lOl)

>U11, start T308; /*#SE*/
?Init_stat_enqtStatus_enq >U6;
?Status(csl=O,ca=30,incomp=0) !Null
?Setup_res!conn >U8, start
?Proceeding_req !Call_Pro ~U9;

?Rel_req !Rel(ca=16) >U11, start
?Rel_resp(ca=88) !Rel_Com(ca=88)
?Rel_resp(ca=17) !Rel_Com(ca=17)
?Rel_resp(ca=21) !Rel_Com(ca=21)

104

/*#CC*/>UO;

:>U6; /*#MS* 1
>U6; / *#MS* /
/*#MS*/
>U6; 1 *#MS* /

lStatus(ca=lOl)
lStatus(ca=101)
1Rel_conf >UO;
lStatus(ca=lOl)

U6 ?Rel_resp(ca=23) !Rel_Com(ca=23)
U6 ?T322/ [#=0] !comb5 >UO;

;'* Unexpected Msg */
U6 ?Conn
U6 ?Conn_Ack
U6 ?Rel_Com
U6 ?Call_Pro

* TE Miss/Err */
U6 ?Rel(Mie=l) !Rel_ind(ca=31) >U12; I*#MIEM*/
U6 ?Rel(Mie=2) !Rel_ind(ca=31) >U12; I*#MIECE*/
U6 ?Rel(NMie=l} !Rel_ind ~U12; /*#UIE*/
U6 ?Rel(NMie=3} !Rel ind ~U12; /*#RUIE*/
U6 ?Stacus_Enq (NMie=1) ! Status (cs=6, cd=3 0) :>U6; / *#UIE*.'
U6 ?Status (Mie=l) l Status (ca=96)~U6; : * MIEM •
U6 ?Status (Mie=2) !Status (Cd= 10 0) :·U6; .' * MIECE *

•

-U10, stop T313;

:.U10, stop T313;

-Ull, stop T3l3, start T308;
·UO;

!Status(ca=lOl) -U8; ,·#MS*,
!Status(ca=10l) ·U8; l*qMS*:
!Rel_conf ·UO, stop T313; - *#MS* ;

?Rel(Mie:::l) 1Rel_ind(ca=31) "U12, stop T313; /*#MIEM*!
?Rel(Mie=2) 1Rel_ind(ca=31) >U12, stop T313; !*#MIECE*!
?Rel(NMie=l) 1Rel ind :>U12, stop T313; /*#UIE*/
?Rel(NMie=3) 1Rel_ind >U12, stop T3l3; I*#RUIE*/
?Status_Enq (NMie=1) !Status (cs=8, ca=3 0) >U8;,/ *#UIE'*'.'
? Status (Mie=l) lStatus (ca=9 6) >U8; / * MIEM 1t 1

? Status (Mie=2) 1Status (ca=1 00) >U8; /"Jr MIECE *;

ua

ua

U8

U8

U8

,*U8: Connect Request*/
U8 ?Conn_Ack !Setup_cornp_ind ;oU10, stop T3l3; .:*qCA*/
U8 ?Rel !Rel ind -U12, stop T313; I*_CC*:
ua ?Status_enq lstatus(cs=8,ca=30) ~U8; ;*#SE*!
U8 ?Status{cs=O) !Rel_conf '>UO, stop T313;
;*ISE*/
ua ?Status(csl=O,incornp=l) lRel(ca=lOl)

:>U11, stop T313, start T30a; ;*#SE*!
?Status(csl=O,ca=96,incomp=O) !Rel(ca=96)

>U1l, stop T313, start T308; /*#SE*'
?Status{cs!=0,ca=9ï,incomp=O) !Rel(ca=9ï)

>U11, stop T313, start T308; '*ISE*;
?Status(cs!=O,ca=99,incomp=0) !Rel(ca=99)

-U11, stop T313, start T308; i*~SE*

?Status(cs!=O,ca=lOO,incomp=O) !Rel{ca=lOO)
-U1l, stop T313, start T308; !*~SE*

?Status(cs!=O,ca=lOl,incomp=O) !Rel(ca=lOl)
>U11, stop T313, start T308; I*#SE*!

U8 ?Init_stat_enq !Status_enq,start T322'U8; i*#SE*/
U8 ?StatuS(csl=0,ca=30,incomp=O} !Null ;0 U8, stop T322;
ua ?Rel_req lRel(ca=lô} ~Ull, stop T313, start T308;

#CC
ua ?T313;[#=0] lRel(ca=102)
ua ?T322/ [#=01 lcomb5

* Unexpected Msg *1
ua ?Conn
U8 ?Call_Pro
U8 ?Rel_Corn

* lE Miss/Err .;
U8 ?Conn_Ack{NMie=l) !Setup_cornp_ind

-qUIE*!
ua

-*:tRUIE*!
ua
ua
ua
ua
ua
ua
ua

•
/*U9: Incoming Call Proceeding */

U9 ?Rel lRel_ind >U12; 1*#CC'*' 1
U9 ?Status_enq lStatus(cs=9,ca:::30) :>U9; /*#SE*/
U9 ?Status (cs=O) lRel_conf >UO; / *#SE* /
U9 ?Status(csl:::O,incomp:::l} !Rel(ca:::101)

>Ul1, start T308; /*#SE*/
U9 ?Status{csl=O,ca=96,incomp=0) lRel{ca=96)

105

!Status (ca=l01) ·U9; J' *#MS* /
!Status{ca=101) >U9; !*#MS*/
!Status(ca=101) -U9; /*#MS7(
!Rel_conf :.UO; / *#MS* /

U9

U9

U9

U9

>U11, start T308; /*#SE*/
?Status(cs~=0,ca=97,incomp=0)~Rel(ca=97)

>U11, start T308; /*#SE*/
?Status(csl=O,ca=99,incomp=0) ~Rel(ca=99)

~U11, start T308; /*#SE*!
?Status(cs~=O,ca=lOO,incomp=O)~Rel(ca=100)

>U11, start T308; /*#SE*/
?status(cs!=O,ca=lOI,incomp=O) ~Rel(cd=lOl)

~U11, start T308; I*#SE*/
U9 ?Init_stat_enq !Status_enq >U9,start T322; /*#SE*/
U9 ?Status(cs~=0,ca=30,incomp=0) !Null ~ U9, stop T322;
U9 ?Setup_res !Conn >US, start T313; ;*#CA*/
U9 ?Rel_req !Rel(ca=16) >U11, start T30S; !*#CC*!
U9 ?T322i[#=0] ~combS >UO;

* Unexpected Msg *!
U9 ?Conn
U9 ?Conn_Ack
U9 ?Call_Pro
U9 ?Rel_Com

:* lE Miss/Err *!
U9 ?Rel (Mie=l) !Rel_ind(ca=31) -UI2; *#MIEM* /
U9 ?Rel (Mie=2) !Rel_ind (ca=31) -·UI2;,' *#MIECE* 1

U9 ?Rel (NMie=l) ~ Rel ind >UI2; / *#UIE* /
U9 ?Rel (NMie=3) ~ Rel ind >U12;.' *#RUIE* ;'
09 ?Status_Enq (NNie=l) !Status (cs=9, ca=30) >U9; / *#UIE* ,-
U9 ;StatustMie=l) !Status(ca=96) ·U9; * MIEM •
U9 ?StatuslMie=2) ~Status(ca=100) --U9; ,* MIECE •

•

-U10; ./ *#MS* /
,U10; / *#MS* /
"U10; / 'W#MS*'/
/*#MS'Wj

tStatus(ca=lOl)
iStatus(ca=lOl)
iStatus(ca=lOI)
iRel_conf >UO;

Release Request*/
?Rel !Rel_conf >UO, stop T30S; /*#CC*/

UI0

UI0

UI0

UI0

U10

*U10:
U10
U10
U10
U10

Active State*1
?Rel ~Rel ind >U12; :*#CC*/
?Status_enq ~Status{cs=10,ca=30) -U10; !*#SE*!
?Status{cs=O) !Rel_conf >UO; I*#SE*I
?Status(cs!=O,incomp=l) !Rel(ca=lOl)

·U11, start T3 08; ! *#SE*'
?Status(cs!=O,ca=96,incomp=0) !Rel(ca=96)

·Ul1, start T308; i*#SE*i
?Status(cs!=O,ca=97,incomp=0) !Rellca=9Î)

·Ul1, start T3 08; ,. 1r#SE*,I
?Status(cs!=0,ca=99,incomp=0) !Rellca=99J

>Ul1, start T308; !*#SE*
?Statu5(cs!=O,ca=100,incomp=O) !Rel(ca=lOO)

>U11, start T308; ;'*#SE'Wl
?StatuS(Csi=O,ca=lOI,incomp=O) iRel{ca=lOl)

>U11, start T308; ,'*#SE*/
U10 ?Init_stat_enq ~Status_enq >UI0,start T322; ,'W#SE*!
U10 ?Status{csi=0,ca=30,incomp=0) !Null > U10, stop T322;
U10 ?Rel_req !Rel{ca=16) >U11, start T308; /*#CC*j
U10 ?T322i[#=0] ~combS >UO;

* Unexpected Msg *1
U10 ?Conn
U10 ?Conn_Ack
U10 ?Call Pro
U10 ?Rel_Com

,* IE Miss/Err */
U10 ?Rel(Mie=l) iRel_ind{ca=31) ;,U12; j*#MIEM*/
U10 ?Rel{Mie=2) !Rel_ind{ca=31) >U12; /*#MIECE*/
UI0 ?Rel{NMie=l) !Rel_ind >U12; /*#UIE*/
U10 ?Rel{NMie=3) !Rel ind >U12; !*#RUIE*/
U10 ?Status_Enq(NMie=l) lStatus{cs=10,ca=30) >U10; 1*#UIE*j
U10 ?Status(Mie=l) !Status(ca=96) >U10; /* MIEM */
U10 ?Status(Mie=2} iStatus(ca=100} >U10; j'W MIECE */

/*U11:
U11•

106

#MIEM'
'*#MIECE*:,
/*:tUIE""/
/*:tRUlE*!
,*#UlE*/
... *#NMlECE*:
/*#RUlE"'/
..Ulli /*#UlE* 1

('ft MIEM ",
,'* MlECE .:'

/*#M5*/
/*#MS*/
/*#MS*;

·U11 ;
-U11 ;
;.Ull;

~Status(ca=101)

!Status(ca=101)
tStatus(ca=101)

Ull ?Rel_Com ~Rel_conf >UO, stop T308; /*#CC*/
U11 ?Status_enq !Status(cs=11,ca=30) ,U11; I*#SE*I
U11 ?Status(cs=O} ~Rel conf >UO, stop T30S; /*#SE*/
Ull ?Status(cs~=O) !Null >Ul1; /*#SE*I
Ul1 ?lnit_stat_enq !Status_enq,start T322 ::.Ul1; I*#SE*/
Ul1 ?Status(cs~=O,ca=30,incomp=0)~Null > Ul1, stop T322;
Ull ?T30S/ [#<.1] !Rel (ca=102) >U11, start T30S;
U11 ?T30S/[#=1] !Rel_conf'>UO, stop T308;
Ull ?T322/[#=0] !comb5 >UO;

,* Unexpected Msg *!
U11 ?Conn
U11 ?Conn_.~ck

U11 ?Call_pro
* lE r-liss /Err *!

Ull ?Rel (Mie=l) !Rel_conf (ca=3l) ·UO, stop T308;
Ull ?ReltMie=2) !Rel_conflca=31l -,UO, stop T308;
Ul1 ?Rel{~Mie=l) !Rel_conf ,UO, stop T308;
Ull ?Rel{NMie=3; !Rel_conf ~UO, stop T308;
U11 ?Rel_Com lNMie= l) : Rel_conf ·UO, stop T3 08;
U11 ?Rel_Com (NMie=2) !Rel_cont .UO, stop T3 08;
U11 ?Rel_Com(NMie=3) ~Rel conf >UO, stop T308;
Ul1 ?Status_Enq(NMie=l) !Status(cs=11,ca=30)
U11 ?Status (Mie=l) !Status (ca=96) '>Ul1;
U11 ?Status (Mie=2) ~ Status (ca= l 0 0) ..Ul1 ;

•

-U12; 1f tfUIE'"
Ir MIEM *
* MIECE 'If

.U12; / ",:tMS'" (
~U12; /*#MS*i
-UI2; l 'ft ifMS'" /
*:tMS'" "
*#MS'"

lStatus(cs=12,ca=30)
~Stacus(ca=96) -UI2;
~ Status (ca=lOO) -U12;

!Status(ca=lOl)
~Status(ca=lOl)

~Status(ca=lOl)

~Null ~U12;

~Null ~U12;

;*U12: Release Indicator*!
U12 ?Status_enq! Status (cs=l2, ca=) 0)·U12; ,'*#5E*,
U12 ?5tatus (cs=O) !Rel_conf .UO; '*#5E""
U12 ?Status(cs!=O) ~Null .U12; *#5E*1
U12 ?lnit_stat_enq !Status_~nq .U12,start T322; ,*#SE*
U12 ?Status(cs~=O,ca=30,incomp=O) !Null U12, stop T322;
U12 ?Rel_resp !Rel_Corn "ua;" -#CC-:
Tl12 ?T322/[#=OI !comb5 -uo;

.. Unexpected Msg *,'
U12 ?Conn
U12 ?Conn_Ack
U12 ?Call_Pro
U12 ?Rel
U12 ?Rel_Com

'0\" lE Miss/Err *1
U12 ?Status_Enq{NMie=l}
U12 ?Status(Mie=l)
U12 ?Status(Mie=2)

'If .,

ë>nd;

•
107

• Appendix B: Coordinator transitions and tests for coherent

transitions

ln this appendix we show variables~ inputs~ and coherent transitions that are added to the

Proc FS M after combining it with the Coordinator FS M. Coordinator functions are

explained in the comments next to the coherent transitions. AlI coherent transitions belong

to a function group #GE (General Error). ln the coherent transitions. when starting state is

written as *. it means for ail states. When the ending state is written as _ . it means the

same as the starting state. The list of the inputs that lead to same output and ending sture

are given in brackets.

variables
ge integer; ;* error condition:

1= Protocol discriminator error
2= Message length tao short
3= CR format error
4= CR not related to an active calI
5= globa.l CR ",J

inputs:
~ inputs processed by the coordinator *;

Setup{ge=l) :PDU;
Setup(ge=2) :PDU;
Setup(ge=3} :PDU;
Setup(ge=4, fla.g=l) :PDU; • CR is OK but flag is for outgoing call

Setuptgel=4) :PDU;
progress *,

SetuPlge=5) :PDU;
Setuplge=ô) :PDU;

* CR relates ta active calI or calI in

Conn l ge:: 1)
conntge=2)
Connlge=3)
Conn (ge=4)
Connlge=S)
Conn (ge::6)

:PDU;
:PDU;
:PDU;
:PDU;
:PDU;
:PDU;

•

CalI_Pro (ge=l) :PDU;
Call_Pro(ge=2) :PDUi
CalI_Pro (ge=3) :PDUi
CalI_Pro (ge=4) :PDU;
Call_Prolge=5) :PDUi
CalI_Pro (ge::6) :PDU;

Conn_Ack(ge=l) :PDU;
Conn_Ack(ge=2) :PDUi
Conn_Acklge=3) :PDUi
Conn_Ack(ge=4) :PDUi
Conn_Ack(ge=5) :PDUi
Conn_Ack(ge=6) :PDU;

Rel (ge=l) :PDU;
Rel (ge=2) :PDUi

LOK

• Rel(ge=3) :PDUi
Rel{ge=4) :PDUi
Rel{ge=S) :PDUi
Rel (ge=6) :PDUi

Rel_Com(ge=l) :PDUi
Rel_com<ge=2) :PDUi
Rel_Com(ge=3) :PDUi
Rel_Com{ge=4) :PDUi
Rel_Com{ge=S) :PDUi
Rel_corn (ge=ô) :PDUi

Status_enq(ge=l) :PDUi
Status_enq(ge=2) :PDUi
Status_enq(ge=3) :PDUi
Status_enq(ge=4) :PDU;
Status_~nq(ge=S) :PDUi
Status_enqlge=ô) :PDU;

Status(ge;l) :PDU;
Status(ge=2) :PDU;
Status(ge=3) :PDU;
Status(ge=4,cs=O) :PDU;
Status{ge=4,cs~=O) :PDU;
Status(ge=S) :PDUi
Status(ge=ô) :PDUi

!il' end of inputs processed by the coordinator *1

transitions:

coherent Coordinator transitions 1r,

?{setuptge=l) ,conn{ge;l),Conn_AcK(ge=I), CalI_Pro (ge=l) ,Rel(ge=l).
Rel_Com(ge=IJ ,Status_enqlge=l), Statuslge=l)}
!Null· _i '*#GE*I * protocol discrirninator error *1

:{Setup(ge=2) ,conntge=2) ,Conn_Ack\ge=2) ,Call_prolge=2) ,Reltge=2),
Rel_Com{ge=2) ,Status_enq{ge=2), Status{ge=2)}
!Null· _; /*sfGE*1 :* message tao short *:

? {Setup tge=3) , Conn (ge=3) , Conn_.;ck (ge=3) , CalI_Pro (ge=]) , Rel (ga=3) ,
Rel_corntge=3) ,Status_enqtge=3), Status(ge=3)}
!Null· _i ;' ... sFGE* ! ,. * calI reference format error "','

?(Conn{ge=4) ,Conn_Ack(ge=4) ,Call_pro{ge=4) ,Rellge=4)}
~Rel_Com{ca=al) '_i i *sFGE* ' * CR not related to an active cdll

?Rel_Com(ge=4) ~Null "_i/*~GE*//* CR not related to active calI */

?Setup(ge=4,flag=1) ~Null " UO; /*#:GE*/
1* CR not related to an active calI, but flag has d
value for outgoing calI *j

?(Setup(ge=S},Conn(ge=5) ,Conn_Ack(ge=5) ,CalI_pro (ge=S) ,Rel(ge=5),
Rel_Com{ge=S},Status_enq(ge=5)}
!Null ~ _; /*#GE*/ /* global CR *j

{Ul,U3,U6,U8,U9,UlO,Ull,U12} ?Status(ge=4,cs=O) ~Null

/*#GE*//* Status not related to active calI -J

{Ul,U3,U6,U8,U9,UlO,Ull,U12} ?Setup !Null > _; /*#GE*/
1* Setup is unexpected, related to active call*!

• ?Unrecognized !Status(ca=97)

> •-,

109

•

•

/* Message not recognized */

(Ul,U3,U6,U8,U9,UlO,Ull,U12} ?Status{ge=4,cs~=O) ~Rel_Com(ca=lOl)~_;

/*#GE*/
/* Status not related to an active call and with incompatible current
state * /

{Ul,U3,U6,ua,U9,UlO,Ull,U12} ?Status_enq(ge=4) !Status(cs=0,ca=30)
~; /*#GE*/!* Status Enq not related to active calI *!

Two out of the 24 test cases that are developed for testing the coherent transitions are

shown below. For each coherent transitions two test cases are generated. [f a more retïned

testing is necessary, the test developer may reduce the input lists in the coherent

transitions.

* Test cases derived from q2931.fsm */

DCL id INTEGER;
DCL rs INTEGER;
DCL cs INTEGER;
DCL ca INTEGER:
DCL incomp INTEGER;
DCL CR INTEGER:
DeL Mie INTEGER;
DCL NMie INTEGER;
DeL PD rNTEGER;

lfTestças~ 1:
* Test purpose: verify the transition in state ua in input Conn(ge=2)

*.
* This test case tests a coherent transition*!

. * transitions in set are: *;

tUa, Ul, U3, U6, ua, U9, UlO, Ull, U12 } ?(setup(ge=2), Conn{ge=2),
Conn_Acklge=2J, Call_Pro(ge=2), Rel (ge=2) , Rel_Com(ge=2),
Status_enq(ge=2), Statuslge=2) } !NULL ~_;trr'

* Transition Under Test in state ua on input Conn (ge=21 : *!

!Conn(ge=2) :PDU;
* Identifying ua state: *1

!Status_enq:PDU;
?Status(ca=30,cs=O) :PDU;

.* No postamble needed */

#:Testcase 2:
,* Test purpose: verify the transition in state U1 in input
Conn_Ack(ge=4) *!
:* This test case tests a coherent transition*!
i* transitions in set are: *1
/*
{ ua, Ul, U3, Ub, U8, U9, U10, U11, U12 } ?(Conn(ge=4), Conn_Ack(ge=4),
Call_Pro(ge=4), Rel (ge=4) } ~Rel_Com ~_;*I

r'* Prearnble to Ul state: Ir!
~Setup_req;

?Setup:PDU;
/* Transition Under Test in state U1 on input Conn_Ack(ge=4) */

~Conn_Ack(ge=4):PDU;
?Rel_Com(ca=81) :PDU;

/* Identifying Ul state: */

110

•

•

!Status_enq:PDUj
?Status(ca=30,cs=1) :PDU;

* Postarnble from U1 state: *!
!Setup(flag=1,ge=4) :PDU;

III

•

•

Appendix C: Test cases for conformance testing

~Testcase 1:
1* Test purpose: verify the transition in state ua in input Setup *i
/* Transition Under Test in state ua on input Setup : */

tSetup:PDU;
?Setup_ind;

* Postamble fram U6 state: *1

tRel_Com:PDU;
?Rel_conf;

#Testcase 2:
/* Test purpose: verify the transition in state U10 in input Conn Ir!

!* Preamble ta U10 state: */
:s..;tup_r..;q;
?Setup:PDU:
tConn(NMie=3) :PDU;
?Conn_Ack:PDU;Setup_conf;

* Transition Under Test in state U10 on input Conn *!

tConn:PDU;
?Status(ca=lOl) :PDU;

Ir Postamble fram U10 state: */
tRel_Corn:PDU;
?Rel_conf;

Testing timers:
ifTestCase 3:

* Test purpose: verity if the timer T303 starts in state U1 on input
Setup_req */
i* No Prearnble for ua state */

* Part under test for timer T303 ~i

!Setup_req;
?Setup:PDU, Starc T303;
?Setup:PDU, Stop T303;

~ Postamble fram U1 state: *,
tRel:PDU;
?Rel_Corn:PDU,Rel_conf;

ifTestCase 4:
.. Ir Test purpose: verify if the timer T303 tires ma.."(cimes in state U1

,* No Preamble for ua state *
* Part under test for timer T303 *1

tSetup_req;
?Setup:PDU, Start T303;
?Setup:PDU[l];
?Rel_conf, Stop T303;

;* No postamble needed */

#TestCase 5:
* Test purpose: verify if the timer T303 stops after input Conn in

state Ul */
1* No Preamble for ua state */
i* Part under test for timer T303 */

tSetup_req;
?Setup:PDU:
tConn:PDU;
?Conn_Ack:PDU,Setup_conf, Start T303;
?Tlmeout(T303) ;

/* Postamble from U10 state: */
tRel_Com:PDU;
?Rel_conf;

112

•

•

Transitions with two ttmers:
1* Test purpose: verify if the timer T313 stops aiter
input Rel_req in state ua */

/* Preambule ta U8 */
~Setup:PDU;

?Setup_ind;
!Setup_res;
?Conn:PDU, Start T313;
?Tirneout(max(O,T313-T308));

1* Part under test for timer T313*!
!Rel_req;
?Rel(ca=16) :PDU;
?Tirneout(minlT313,T308»;

~ Identify state U11 */
!Setup_~nq:PDU;

?Status{ca=30,cs=11) ;
.-" Postamble from U11: */

!Rel:PDU;
?Rel_conf;

Testing T322:
1 * Test purpose: 'lerify if the timer T322 starts after
input InitiateStatusEnquiry in state U6 *
-.. preambule ta U6 */

!Setup:PDU;
?Setup_ind;

... Part under test tor timer T322*!
!InitStatusEnquirj, start T322
;Status_enq:POU
;Rel_Com(ca=41) :POU,Rel_cont;

... Idnetifying state UO *1
! Status_Enq: POU;
?Status{cs=O/ca=30) ;

... No postamble needed *1

... Test purpose: verity Lt the timer T322 stops after
input Status in state U6 *
... Preambule ta U6 *

!Setup:PDU;
:Setup_ind;

... Part under test for timer T322
!InitStatusEnquiry, start T322
?Status_enq:POU
!Status(cs!=O,ca=30,incomp=1} :PDU;
?Timeout{T322) ;

-.. Idnetifying state U6*/
!Status_Enq: POU;
?Status(cs=6,ca=30) ;

/* Postamble tram U6 *1
!Rel_Com:PDU;
?Rel_conf;

li3

•

•

Appendix 0: Example of the data part testing

ln the foLlowing, an example of the initialization of the SETUP message for data part

testing is given. The message_content_type is a type of a general message, while

ie_type is a type of generallE. The pdu is a data of the signal message (see Figure 5.4).

First, an example of SETUP with valid values is given. SETUP with MIEM and SETUP

with MIECE use an SDL procedure defaul t_setup that sets the values of the SETUP ta

valid default values.

NEWTYPE message_contEnt_type STRUCT
pr_disc protocol_discrirninator_type;
CR call_reference_type; /* size 4 bytes */

message_type octet; /* size 2 bytes *l
ie ie_type;

ENDNEWTYPE;

NEWTYPE ie_type STRUCT
cause cause_type;
call_state call_state_type;
~;L-pararn .;AL-param_type;
ATM_traffic_desc ATM_traffic_desc_type;
connection_id connection_id_type;
QoS Qos_type;
B_HLI B_HLI_type;
B_BC B_SC_type;
B_LLI B_LLI_type;
B_sending_cornplete B_sending_cornplece_cype;
B_repeat_indic B_repeat_indic_type;
calling_nb calling_nb_type;
calling_subaddress subaddress_type;
called_nb called_nb_type;
called_subaddress subaddress_type;
transit_network_selection transit_network_selection_cipe;

ENDNEWTYPE;

SETOP with valid data:
DeL pdu message_content_type;

TASK pdu!pr_disc := 9;
T.Z\SK pdu l CR t f lag : = 0; / * incoming calI *.:
TASK pdutCRtvalue := 1;
TASK pdu!message_type := SETUP;

* ATMPara IE values */
TASK pdu!ietATM-param!presence := true;
TASK pdu!ietATM-param!coding_standard := 0;
TASK pdu!ie!ATM-param!AAL_type := 5;
TASK pdu!ie!ATM-param!forward_mdX_size!presence := true;
TASK pdu!ie!ATM-param~forward_max_sizetvalue := 1024;
TASK pdu!ie!ATM-paramtbackward_max_sizetpresence := true;
TASK pdu!ie!ATM-paramtbackward_max_sizetvalue := 1024;
TASK pdu!ietATM-param~SSCS_type!presence := true;
TASK pdu~ie!ATM-param!SsCS_type!value .- ASSURED;
/* ATMTraf IE values */
TASK pdu!ie!ATM_traffic_desctpresence := true;

114

•

•

TASK pdu~ie~ATM_traffic_desc~fpcr_O_l~presence .- true;
TASK pdu~ie~ATM_traffic_desc~fpcr_O_l~value := 0;
TASK pdu~ie~ATM_traffic_desc~bpcr_O_l~presence .- true;
TASK pdu~ie~ATM_traffic_desc~bpcr_O_l~value .- 0;
/tr B_BC lE values tri
TASK pdutietB_Bc~presence := true;
TASK pduiietB_BC!coding_standard := 0;
TASK pdu~ietB_BC!class natural := 0;
TASK pdu!ietB_BCtclipping := 0;
TASK pdu!ietB_BC~user-plane := 0;
:tr B_LLl lE values */
TASK pdutietB_LLlinb_occ := 1;
TASK pdutietB_LLI!occ(l) ~presence : = crue;
TASK pdu~ie~B_LLI!occ(l) !coding_standard := 0;
TASK pdu~ie~B_LLI!occ(l) ~info_layer_l!presence := falsE;
TASK pdu~ie~B_LLI~occ(l) !info_layer_2!presence : true;
TASK pdu~ie~B_LLI!occ(l) ~info_layer_2~value := 6;
TASK pdu~ie~B_LLI~occ(l) !info_layer_2~codings!presEnce .- true;
TASK pdu!ie~B_LLI!occ(l) !info_layer_2!codings!mode := 0;
TASK pdu!ie!B_LLI!occ(l) !info_layer_2!codings!Q933 := 0;
TASK pdu~ie!B_LLIiocc(l) !info_layer_2!window_size := 1;
TASK pdu~ietB_LLI!occ(l) tinfo_layer_3tpresence := crUE;
TASK pdu!ie~B_LLliocc(l) !info_layer_3tvaluE := 0;
TASK pdu!ie~B_LLIiocc(l) !info_layer_3~mode!presence := true;
TASK pdu!ie~B_LLI!occ(l) !info_layer_3~mode~value := 1;
TASK pdu~ie!B_LLI!occ(l) !înfo_layer_3!default-packec_size!presence .­

crue;
TASK pdu!ie!B_LLI~occtl) !info_layer_3!default-packet_size~value := 4;
TASK pdu!ie!B_LLI~occ(l) ~info_layer_3!packet_window_size!presence .­

crUE;
TASK pdu~ie!B_LLl!occ(l) !info_layer_3!packet_window_size!value .- 1;

tr B_HLI IE values tri

TASK pdu!ie!B_HLI!presence := crue;
TASK pdu!iE~B_HLlihl_type := 0;
TASK pdu!ie!B_HLI!hl_info~nb_occ .- 2;
TASK pdu!ie!B_HLlihl_info!occ(l) .- 1;
TASK pdu!ie!B_HLI!hl_info!occ(2) .- 2;

tr QoS lE values *1
TASK pdu!ie!QoS!presence := true;
TASK pdu!ie!QoS!coding_standard := 0:
TASK pdu!ie!QoStclass_forward := 0;
TASK pdu!ie!QoS~class_bdckwdrd := 0;

... CalledNum lE values "'/
TASK pdu!ie!called_nb~presence := crue;
TASK pdu!ie!called_nb~coding_standard .- 0;
TASK pdu!ie!called_nb!nb_cype := 1;
TASK pdu!ieiCalled_nb!plan_id := 1:
TASK pdu!ie!called_nb!address~nb_occ .- 5;
~ASK pduiieicalled_nbtaddress!occ(l) .- 3;
TASK pdu!ieiCalled_nbtaddress!occ(2) .- 2;
TASK pdu!ie!called_nb!address~occ(3) .- 3;
TASK pdu!ie!called_nb!addresstocc(4) .- 4;
TASK pdu!ie!called_nb!address~occ(5) .- 9;
/tr Connld lE values */
TASK pdutietconnection_idipresence := crue;
TASK pdu!ie~connection_id~coding_standard .- 0:
TASK pdu!ie!connection_id!VPAS := 1;
TASK pduiie~connection_id!pref_excl := 0;
TASK pdu~ietconnection_id~VPCI := 0;
TASK pdu!ietconnection_idiVCr := 32;

SBTUP wiht HIBII:
CALL default_setup(pdu);
TASK pdu!ie!ATM_traffic_desc!presence .- false;

115

•

•

/* ATMTraff lE is rnandatory lE */

SBTUP wiht XXECS:
CALL default_setup(pdu);
TASK pdu!ie!ATM_traffic_desc!fpcr_O_l!presence .- false;

/* fpcr_O_l must be present in the ATM Traff lE */

116

• Appendix E: Example test cases from the interoperability test

suite

ITestcase 1:
1* Test purpose: verify the transition in state A in input Setup_re~s

*/
:,"Ir Transition Under Test in state .; on input Setup_reCLs : "Ir 1

~Setup_re~s;

?Setup_ind_r;
;* Identifying B state: */

~Setup_reCLs;

~Release_resp_r;

?Release_conf_s;
!* No postamble needed */

ITestcase 2:
/* Test purpose: verify the transition in state A in input
Setup_reCLs(Mie=l) *1
f· Transition Under Test in state A on input Setup_re~s{Mie;:l) *,

~Setup_re~s(Mie=l);
?Release_conf_s(ca=96) ;

• Identifying Astate: *:
~Setup_reCLs;

?Setup_ind_r;
* Postamble from B state: *1

!Release_resp_r;
?Release_conf_s;

ITestcase 3:
'. Test purpose: verlty the transition in state A in input
Setup_reCLs(Mie=2) *!
.* Transition Under Test in state A on input Setup_re~s(Mie=2) *:

!Setup_re~s(Mie=2);
?Release_conf_s(ca=100);

"ft Identifying Astate: "ft 1

~Setup_reCL.s;

?Setup_ind_r;
"Ir Pastarnble from B state: "ft,

~Reledse_resp_r;

?Release_conf_s;

ITestcase 4:
,. Test purpose: verify the transition in state A in input
Setup_reer-s (NMie=2) *,!

." Transition Under Test in state A on input setup_reCLS(NMie=2)
!Setup_reCLs(NMie=2);
?Setup_ind_r,Proceeding_ind_s;

* Identifying B state: first characterizing sequence*.!
!Setup_reCL.s;
~Reledse_resp_r;

?Release_conf_s;
,"Ir No postamble needed *;'

•
ITeatCase 8:
!* Test purpose: verity the transition in state A in input
setup_re~s(NMie=2} */
/* Transition Under Test in state A on input Setup_req,..,s(NMie=2)

~Setup_re~s(NMie=2);

?Setup_ind_r,Proceeding_ind_si
/* Identifying B state: second characterizing sequence*/

~proceeding_re~r;

*/

Ll7

•

?Proceeding_ind_s;
1* Postamble from C: *j

!Release_re<L.s ;
!Release_resp_r;
?Release_conf_s;

118

