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Abstract

Quantum Chromodynamics is the underlying theory of hadrons and their inter­

actions. In deriving results from this theory one relies on perturbative calculations.

Sometimes indirect methods have been explored to circumvent direct calculation

of pure gluonic amplitudes. For example, it has been shawn that supersymmetric

extension of QCD along with supersymmetric Ward identities can he used to es­

tablish relations between amplitudes with the same total number of particles but

a different number of gluons. Such relations are used here to connect pure glu­

onic and pure fermionic amplitudes in the case of 4-pt and 6-pt functions. These

relations ofFer an indirect way of calculating tree level pure gluonic amplitudes

since these amplitudes are identical in supersymmetric and non-supersymmetric

QCD.The aforementioned relations however, provide no insight into the relation

between Feynman diagrams of the amplitudes involved. In this regard, we in­

vestigate the relation between individual Feynman diagrams in the Wess-Zumino

mode!.

Another calculational difficulty arises when one is concerned with high energy

scattering in QCD. In the high energy regime, because the effective coupling con­

stant is relatively large, it is necessary to sum up an infinite number of diagrams.

This is made even more difficult due ta the cancellations in certain color channels

that occurs at any perturbative order. The new non-abelian cut diagram tech­

nique provides considerable assistance by giving the result with the cancellations

already built into its rules. Sixth-order calculations are carried out to show the

efficiency of this technique. Finally, we consider the question of diagrams with

fermion loops tha.t need regularization because of their UV divergence. We find

that reguIarization leads to an enhancement in their high energy bel;tavior.
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Résumé
La chromodynamique quantique (QCD) est la théorie décrivant les hadrons ainsi

que leurs interactions. Les résultats obtenus dans le cadre de cette théorie font

appel à, des calculs perturbatifs. Afin d'éviter un calcul direct des amplitudes

purement gluoniques, des méthodes indirectes ont été développées. Par exemple,

il a été prouvé que l'extension supersymétrique de Qcrr avec une version super­

symétrique des identités de Ward peut être utilisée afin d'établir des relations entre

des amplitudes avec un nombre identique de particules mais un nombre différent

de gluons. De telles relations sont utilisées ici afin de relier des amplitudes pure­

ment gluoniques et purement fermioniques dans les cas de fonction à quatre et

six points. Ces relations nous offrent une méthode de calcul indirect des ampli­

tudes gluoniques au niveau des arbres, ces dernières étant identiques dans le cas

supersymétriques ou non. Elles ne convoient par contre aucune intuition en ce

qui concerne les diagrammes de Feynman correspondant. Nous recherchons donc

l'existence de relations au niveau des diagrammes de Feynman dans le cadre du

modèle de Wess et Zumino.

Un autre prob~ème calculatoire apparaît lorsque l'on étudie la diffusion à haute

énergie en QCD. A ces énergies, vu l'importance de la constante de couplage ef­

fective, il est nécessaire de sommer un nombre infini de diagrammes. Le problème

est de plus compliqué par l'existence d'annulation dans certains canaux de couleur

à chaque ordre de la série de perturbation. La nouvelle technique des diagrammes

non-abéliens tronqués est d'une aide précieuse car elle prend en compte automa­

tiquement ces annulations. Des calculs jusqu'au sixième ordre ont été effectué afin

de démontrer l'efficacité de cette méthode. Pour terminer, nous considérons le cas

des diagrammes avec des boucles de fermions qui nécessitent une régularisation

due à des divergences ultraviolettes. Nous trouvons que la regularization mène à

une augmentation de !n(s) dans leurs comportement à haute energie.
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Statem.ent of Original Contributions

Supersymmetric Ward identities are among the techniques used ta cal­

culate pure gluonic amplitudes more effectively at tree level. Using these

identities we present an independent derivation of the relation between pure

gluonic and pure fermionic amplitudes in the 4-pt function case. In this thesis

we also derive such a relation in the 6-pt function case which is a new re­

suIt. Such relations reduce the difficulty of perturbative calculations of pure

gluonic amplitudes at tree level to a minjmum and are of interest to QCD

practitioners. We also carry out a graphical analysis of the Supersymmetric

Ward identities in the Wess-Zumino model which show that such relations

also exist among individual Feynman diagrams. This analysis sheds light on

the inner mechanism of supersymmetric Ward identities.

In high energy near forward scattering in QCD, cancellation of leading

(and sometimes subleading) factors of logarithms of energy takes place. In

perturbative calculations this leaves us with a vanishing result in the lead­

ing log approximation. The new cut-diagram technique [22] effectively deals

with this problem. We will present a sixth-order quark-quark scattering cal­

culation [35] which will demonstrate the power of the new technique. Lastly

we will compute the high energy behavior of three of the eighth-order QCD

diagrams which contain fermion loops and were previously considered in the

context of QED [19]. The study of these diagrams is necessary in arder

ta extend the perturbative calculations beyond the well known sixth-order

results.
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Chapter 1

Introduction

The advancement of physics as an exact science occurs along two interacting

directions. The first direction is that of observation and experiment. At this

stage one makes measurements of various physical quantities relevant to a

certain phenomenon. The results of these measurements are then analyzed,

tabulated and plotted against one or more basic physical quantities. At the

second stage one faces the challenge of describing this body of data and

facts using models and theories constructed for that purpose. A model or

a theory is almost always a mathematical construct that attempts to give

a clear picture, at least in an algebraic or prescriptional way, of how the

phenomenon occurs and progresses. By its nature, the extraction of results

from theories involves calculations that are, with the exception of simple

models, complicated, and very often an exact result is simply not obtainable.

Therefore, a better understanding of a phenomenon depends on how much

calculational power, analytic or numerical, one has at one's disposaI to tackle

the theory that explains that phenomenon.

One such case is that of Quantum ChromoDynamics (QCD). This theory

is believed to be the underlying theory of hadrons and their interactions. As

with any other quantum field theory, an essential too1 for extracting results

1
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from QCD is the perturbation technique. This technique, however, is not

free of limitations. Due to the complexity of QCD, improved calculational

methods to deal with its various aspects are of prime importance.

It is the purpose of this thesis to consider the basics of two of these

techniques and ta examine examples where they can he applied. The first

technique has to do with supersymmetry. By considering the supersymmet­

rie extension of QCD along with supersymmetric Ward identities one is able

ta relate pure gluonic amplitudes ta amplitudes that have fewer numbers of

gluons and hence obtain an indirect way of determining tree-level pure glu­

onic amplitudes. This method works since tree-level pure gluonic amplitudes

are identical in supersymmetric and non-supersymmetric QCD. The ensu­

ing simplification is a result of reducing the number of gluons which have

complicated self-interaction vertices. We will derive relations connecting the

4-pt and 6-pt pure gluonic amplitudes to the 4-pt and 6-pt pure fermionic

ones. We will also address a related question regarding the relation between

individual Feynman diagrams in a supersymmetric relation among scattering

amplitudes, Le. supersymmetric Ward identities.

The second technique proves to be suitable for high energy scattering

calculations at low momentum transfer, -t« s with s the square of energy

in the center of mass system. In this energy regime the effective coupling

constant, g2 ln(s), carries an energy dependent factor and therefore is not

necessarily smal!. This compels one to sum an infinite number of Feynman

diagrams each calculated in the leading ln(s) approximation. It then turns

out that the leading contrib~tions to certain color channels at any arder

of perturbation cancel out. This obliges one to calculate each diagram to

its non-leading contribution, which is an enormous task. The technique of

non-abelian cut diagrams, introduced recently, is an improved calculational

2
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method that gives the result for the sum of diagrams at each order of pertur­

bation with ail the cancellations already built into its rules. As a result what

one calcuIates is directly the result after the cancellations have been done.

We will work out in detail the quark-quark scattering up ta sixth-order using

this new technique to demonstrate its efficiency.

In the high energy perturbative calculations, diagrams containing fermion

loops are believed to make only non-leading contributions. In the context

of QCD such diagrams suffer from UV divergences that must be hanclled

before high energy calculations can he carried out. We find that as a result

of regularization the high energy behavior of such diagrams demonstrates an

enhancement in energy dependence over similar situations in QED.

The outline of the thesis is as follows. In chapter 2 after a quick re­

view of the essentials of supersymmetry, the supersymmetric Ward identities

will be used to work out the relation between the 4-pt and 6-pt pure glu­

onic and pure fermionic amplitudes. In chapter 3 a further endeavor will

be undertaken which will result in establishing relations among individual

Feynman diagrams. Chapter 4 contains a brief review of the historical de­

velopment of the high energy scattering experiments that demonstrated the

growth of the total hadronic scattering cross section with energy along with

some of the theoretical ideas developed to explain them. In chapter 5 the

newly developed non-abelian eut diagram technique will he introduced and

applied to quark-quark scattering up to sixth-order. Finally, in chapter 6,

the high energy behavior of diagrams containing fermion loops that require

regularization will be addressed.

3



•

•

Chapter 2

SuperSYlllllletry

In this part of the thesis we will consider a particular aspect of supersymme­

try (SUSY) [1]. No doubt much can be said about mathematical construction

of SUSY, its group theoretical content, and how it has been employed fruit­

fully in various quantum field theories. Out of all that, what is of interest to

us here is how different SUSY scattering amplitudes are related and in what

ways such relations can be exploited. Before getting too specific let us have

a generallook at SUSY.

Supersymmetry is a symmetry between fermions (matter) and bosons

(carriers of interactions). Since fermions generally have half-odd-integer spin

and bosons have integer spin, SUSY must change the spin content of the fields

describing these particles. In a SUSY quantum field theory one generally

talks about a supermultiplet, Le., a set of fields with spins differing by 1/2

which transform into each other under SUSY transformations. Examples

are scalar multiplet consisting of a Majorana (self-conjugate) fermion and

a complex scalar field or a vector multiplet consisting of a spin one vector

field and a Majorana fermion. The particles (fields) transforming into each

other under SUSY are called superpartners. We will review the Wess-Zumino

model based on scalar multiplet as well as vector model in the next two

4
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sections.

Despite its great beauty, to date, SUSY remains as a model since none of

the predicted SUSY partners of the known particles have yet been abserved.

Whether or not SUSY is a true symmetry of nature, one can still benefit from

it in a different way. The reason for this inherent potential lies in the fact

that in a SUSY theory gauge bosons (relatively complicated objects with

regard ta their interactions) are related to fermions (less involved in their

interactions). Through the use of Supersymmetric Ward Identities (SWI)

[2, 3] one can establish a relation between an amplitude with external gauge

bosons and one that has some of those bosons replaced by fermions. This

is a well known technique and has been used in the calculation of primitive

color oriented gluon amplitudes [4]. In these works one pair of gluons is

replaced with a pair of gluinos (gluino is the SUSY partner of gluon). One

can, however, repeat this process in succession and replace as many gluon

pairs as possible which will proportionally reduce the amount of necessary

subsequent diagrammatic calculations. Here we consider cases where one can

find explicit relations between pure gluon and pure gluino amplitudes. These

turn out to be two special cases of the 4-pt and the 6-pt function amplitudes.

The fact that SWI relate different SUSY amplitudes does not tell how

individual diagrams are related. A natural question is whether or not one can

establish relations between individual Feynman diagrams in a quest to find

a more effective way of calculating Feynman diagrams. We will address this

question in the Wess-Zumino model in chapter 3. As will be seen, this is done

effectively by introducing a dot (to be explained later) that sits on an external

line of the diagram of interest. By moving this dot through the diagram ta

all the allowed externa1 legs one can generate a unique set of diagrams that

sum to zero. Each of the diagrams in this relation belong ta an amplitude

5



• that are altogether related by SUSY Ward identities. Establishing a similar

relation in SUSY Yang-Mills theory is more involved and is the substance for

a future work.

2.1 Supersymmetryalgebra

In order to derive SWI we would need some familiarity with SUSY itself. A

thorough discussion of the SUSY algebra will pull us away from our main

purpose so we will review only those essential elements that we will be us­

ing later. Our consideration is restricted to N = 1 supersymmetry, Le.,

the simplest case where one only has one supersymmetric generator Q as

opposed to extended supersymmetry where one has severa! generators, QA,

A = 1,···, N.

In its simplest form, SUSY is an extension of the Lie algebra of the

Poincare group to a Graded Lie Algebra (GLA) via introducing a self-conjugate

spinor l, Qco of spin ~. The (anti) commutations relations of the SUSY al­

gebra are [5, 6],

[Qa, MPV] - i (qPVQ)0: ,

[Qa, PP] - o,

{Qa, QJ3} - 2(f",)aJ3PP , (2.1.1)

•

where f.l. and 1/ are space-time and Cl! and {3 spinor indices. In these rela­

tions MPv are the generators of Lorentz boosts and pp are the generator of

translation. Because of the spinorial nature of Qa this algebra involves bath

commutators and anticommutators. By introducing a pair of anticommut­

mg parameters ~a and 1113 the last relation in (2.1.1) may be written as a

l For a list of our conventions see App. A.2.

6



• commutator relation,

(2.1.2)

This fact is related to the property that a GLA over complex numbers can

actually be converted into an ordinary Lie algebra over a Grassmann algebra

[7]

2.2 Vector Multiplet and supersymmetric Ward
identities

In this section we will focus our attention on the SUSY extension of pure

Yang-Mills (YM) gauge theory. Our aim is to extend the results of the

previous works [3, 8] and to relate the scattering amplitudes involving only

gluons to those which involve only gluinos (fermions). One can do this in

certain cases.

The SUSY extension of the classical Lagrangian for the pure YM theory

in Wess-Zumion gauge is given by [6]

1:, - _~F(a)1J1IF(a) + ~ixa'VlI1J Àa + ~DaDa
4 IJII 2 1 Il 2 1

F;v - 81JA~ - avA~ + 9 f abc
A~A~ ,

VvA - avAa + gfabcAtAC ,

(2.2.3)

(2.2.4)

•

where all spinor indices have been suppressed. The Lagrangian f:, involves the

gluon field represented by the spin-l vector A~, the gluino field represented

by the spin ~ Majorana field Aa and the auxiliary real field Da, with a the

gauge group index. Note that aIl these particles belong to the same adjoint

representation of the gauge group SU(N). The auxiliary field Da has no

observable physical effect because it has no kinetic term in 1:,. The reason for

7



• introducing it is the original desire to have unconstrained SUSY invariance.

The Lagrangian in (2.2.3) is invariant, 8,C = 0, under SUSY transformations

defined by,

oX" - -~ialW~F:" - 'Y5~D·

b"A~ - i"é'IJ)..a

b"Da - -{~11J'5Vp.)..a (2.2.5)

where ç is the infinitesimal spinor. Taking .c as describing a quantum field

theory then ô<P =i["éQ, <p] where Q is the SUSY generator and èI> stands for

any of the fields )..a, A~ or na. In order to find the SUSY relations among

on-shell scattering amplitudes we would need the transformations of on-shell

particle creation and annihilation operators. These are not difficult to find,

(see App. (A.3)) and the result is

[Q, ÂtCP)] = ±V2N±CP,k)91cp)

(Q,Â±(P)] = ±V2NT 9±(P)

[Q, glcp)] = ±V2NT (p, k)Ât(P)

(Q,9±(P)] = ~V2N±(P, k)Â±(P)

(2.2.6)

where Q= "éQ, Â± and g± are the fermion (gluino) and gluon annihilation

operators and the constants N±(P, k) are defined by

N_ = (j < kp> (2.2.7)

in which f) and (j are two anticommuting constants and2

•
These commutation relations are sufficient for us to work out supersymmet­

rie Ward identities. Consider a product of a number of on-shell creation and

2For a more thorough description of the notations see App. A.l

8



• annihilation operators. Due to the fact that the generator of supersymmetry

annihilates the supersymmetric vacuum, the commutator of Qand any com­

bination of these on-shell operators will have a vanishing vacuum expectation

value. If ~i represents any of these operators, then we abtain the follawing

Supersymmetric Ward Identity (SWI) [2, 3],

n n

0=< OI[Q, II ~i]IO >= L < 01<»1··· [Q, ~i]" '~nIO >
i=1 i=1

(2.2.8)

•

This equation is nothing but a relation among supersymmetric amplitudes.

As a warm up exercise we first go over some of the well known results. For

brevity we will drop the ..... over the operators and assume ail the particles

ta be out-going. So our notation in the following will be r(Pi) = g/=, and

similarly for other operators . Consider the following choice of operators,

+N+(P2' k)M(A[, At,···, g~) + ... + N+(Pn, k)M(A;;, gi,···, A;;) (2.2.9)

Notice the sign Bip of the SUSY factors [-N+(Pi, k)] in ail but the first term

because this factor carries the noncommuting constant () that produces a

minus sign when moved past At. Since for a massless fermion all fermion­

vector couplings are helicity conserving, all the terms on the second line will

vanish since two out-going fermions of the same helicity are equivalent to

a helicity flipped in~out pair of fermions. As a consequence the first term

having only gluons must vanish tao. This result is usually put as follows:

maximal helicity violation is forbidden. This fact holds true to any arder of

perturbation and is also true at tree level in a non-supersymmetric theory.

Let us consider another example and start from the same string of oper­

ators but with one negative helicity gluon,

o=< 01[Q, Atg2'gt'··· g~]I0 >= ...

9



• (2.2.10)

where we have dropped ail the vanishing terms possessing two fermions with

the same helicity. Here we still have the option of choosing k. If we let

k = Pl the first term will vanish and for the equality to hold the second term

must vanish also. So an amplitude with a pair of fermions and any number

of gluons with the same helicity vanishes. If we let k = P2 the second term

will vanish and therefore an ail gluon amplitude with only one nonidentical

gluon helicity will vanish.

A non-vanishing example would be the following. Let us start with the

same string of operators as (2.2.8) but with two negative helicity gluons,

+N-(P21 k)M(Ai, Aï, 93,···,9;) + N-(P3' k)M(Ai, 92' Ag,·.·, 9;)

(2.2.11)

Now if we simply let k = Ps we will 0 btain

As can he seen, a single application of (2.2.8) has the potential of relating

amplitudes with one pair of fermions to an ail-gluon amplitude. Similar

examples with different initial helicity structures can be worked out. In all

of them the pure gluonic amplitude will he related ta a SUIn of amplitudes

with one pair of gluons replaced by gluinos. What we would like to do is

to make multiple use of (2.2.8) and try to replace all gluons with fermions.

This will only be possible in amplitudes with an even number of partic1es.

We will start by considering the simplest case of four particles. In this

case it turns out that we need two initial combinations. These are

•

M( + - - + +)91 ,92 ,93 ,94 , ... , 9n =

S A++--
l = 1929394

< 32 > (A+ - - +)< 31 > Ml' A2 ,93 , ... 1 9n •

10

(2.2.12)
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• Taking the vacuum expectation value of the commutator of each of these

combinations with Q will give

(2.2.14)

where Mi are amplitudes defined by

Ml M (+ + - -)- l 91 ,g2 ,93 ,94 ,

M 2 - M2(At, gt, Ai, 94) ,

M 3 - M 3 (At,g;,gg,Ai) ,

M 4 - M4(9t, At, Ai, g4) ,

Ms - Ms(At, At, Ai, Ai) . (2.2.15)

Note that these equations have each been derived separately and thus are

independent. The two different values kl and k2 refiect this independence.

Now if we let kl = P4 and k2 = Pl we will get,

< 41 > Ml - < 43 > M 2 = 0

from which we conclude,

< 12 > M 2+ < 14 > Ms = 0 (2.2.16)

( + + _ _) < 43 > (+ + _ _)
Ml 91 , 92 , 93 ,94 = < 12 > Ms Al , A2 , As , A4 • (2.2.17)

•

A similar result has been derived in [8]. There are two conclusions we ean

draw from this result. From a ealculational point of view, it is far more

simpler to ealeulate an al.l fermion 4-point amplitude than ta ealculate one

with external gluon lines due ta the complexity of the three and four gluon

vertices. Seeondly, this result shows at a glance the gauge independence of

the amplitude Ml from the gauge dependencies of external gluons since on

the right hand side everything is explicitly gauge independent.

Il
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This result may seem like pure luck, and in general it is not a priori

c1ear that one can get such relations when more particles are involved. To

examine the possibility we have to consider six-point functions. Here again

one is seeking an equation relating an amplitude with six external gluons to

one that has six external fermions (gluinos). It turns out that this case is

quite a bit more laborious than the 4-point case. The reason for this is that in

each application of (2.2.8), one obtains a relation between amplitudes that in

general have 2m fermions and l gluons and those that have 2(m -1) fermions

and (l + 2) gluons. For m = 3 and l = 0 the ail-fermion amplitude will

appear together with the amplitudes having four fermions and two gluons.

Then it is necessary to repeat the procedure starting with a different initial

operator combination so as to get relations between (4A, 2g) and (2A, 4g) type

amplitudes. Repeating this once again finally establishes relation between

the (2A,4g) type and the (6g) amplitudes. Once these equations are laid out

one has to solve the !inear system of equations for the desired relation.

To begin, it would be better to adopt a more economical notation. From

now on the helicity index '±' will be suppressed and in order to remove the

resulting ambiguity we will assume that the first three operators from the

left have positive and the last three have negative helicities. The amplitude

with six gluons will be denoted by G and the one with six fermions by F.

A general notation for the amplitudes with two fermions (and four gluons)

will be Mij with i and j indicating the location of the two fermions, counted

from the left. A general notation for the amplitudes with two gluons (and

four fermions) will he N ij with i and j locating the two gluons within the set,

counted from the left. We will also use f to denote a fermion rather than A.

We will start by introducing the different initial operator combinations

12



• ta be used. They are

SI = Iggggg

S5=gfllff

S2 = gfgggg ; S3 = gglggg ; 84 = gggigg

S6=fgfflf; S7=flglff; S8=fffgff

89 = ffgfgg ; S10 = ffggfg· (2.2.18)

•

Using (2.2.8) we will get the following set of equations for SI, ... ,84

< kIl> G- < k14 > M 14 - < klS > }/f15- < kI 6 > M I6 0

< k22 > G- < k24 > M 24 - < k2S > M 25 - < k26 > M 26 - 0

< k3 3 > G- < k34 > M 34 - < k3S > M 3S - < k3 6 > M 36 - 0

[k4 l]M14 + [k42]M24 + [k43]M34 + [k44]G - Q2.2.19)

Sîmilarly for 85 , ••• ,S8 we will get

(q1l]F + [q14]N14 - [ql S]N15 + [q16JN16 - 0

-[q22]F + [q24]N24 - [q2SJN25 + [q26]N26 - 0

[q33]F + [q34JN34 - [q35]N35 + [q36]N36 - 0

< q4 1 > Nu - < q42 > N24+ < q43 > N 34 - < q44 > F - 0(2.2.20)

And lastly for 89 and 810

< kl > M24 - < k2 > M14 - < kS > N36 - < k6 > N35 0

< q1 > M 25 - < q2 > MlS+ < q4 > N 36 - < q6 > N 34 - 0(2.2.21)

Each set of equations in (2.2.19) and (2.2.20) contain ten variables (ampli­

tudes). By choosing two different values for each ki and qi, each set will have

eight equations. In the set corresponding ta (2.2.19), we will choose G and

M 36 as independent and will solve for the other M ii in terms of these two

amplitudes. In the set corresponding to (2.2.20), we will choose F and N 36 as

13
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•

independent and will solve for the other Nij in terms of these two. Lastly by

assigning k = 5, 6 and q = 6 in (2.2.21) we will solve for the desired relation,

i.e., G in terms of F.

The calculation, although straightforward, involves lengthy matrix com­

putations and the final result is

G = < 56 > {2[53] P6 • (Pl + P2) - [63]([51] < 16 > +[52] < 26 >)} F .
[541(56] « 51 >< 62 > - < 52 >< 61 »

(2.2.22)

It should be mentioned that the authors in [3] considered this case but did

not give the relation between the six-gluon and six-fermion amplitudes. Un­

fortunately we have not yet found a clear interpretation of the special type

of functional dependence in (2.2.22).

For higher numbers of particles one can still make multiple use of (2.2.8),

but a single relation involving F and G type amplitudes alone seems unlikely

due to the large number of variables which will eventually exceed the number

of equations.

2.3 A detailed example

In order to see the type of ealculational efficieney that relations of the form

(2.2.17) ean provide, we will work out the 4..pt pure fermionic and pure glu­

orne amplitudes. In general, instead of the whole amplitude one can consider

color-oriented subamplitudes. A color-oriented amplitude is construeted from

eolor-oriented vertices. In App. (B) we show how eolor-oriented vertices can

be derived from normal vertiees. These subamplitudes in general contain

fewer number of diagrams than the complete amplitude and yet are still

gauge invariant [9, 10]. With this brief introduction, the color-oriented di­

agrams for 4-pt pure gluonic and pure fermionic amplitudes are shown in

14
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Figure 2.1: Color-oriented 4-pt diagrams.

Fig.(2.1). The expression corresponding to each of the diagrams is given

below,

•

2

Cil -- 1:r(tGt btCtd
) 9

-2P3 . P2

X {2p3 . €+(2)(P4 - pd . €_(3)€_(4) . €+(l)

+2P2 . €-(3)(P4 + pd . €+(2)€_(4) . €+(l)

-€+(2) . €_(3)€_C4) . €+(1)(P2 + P3) . (P4 + pt)

-4€_(3) . €+(1)P3 . €+(2)Pl . €-C4)

-4€_(3) . €-c4)P3 . €+(2)P4 . €+(1)

-4€+(2) . €+(1)P2 . €-(3)Pl . €_(4)

-4€+(2) . €_(4)P2 . €-(3)P4 . €+(l)

+2€+(2) . €-(3)(P2 + P3) . €(4)P4 . €+(1)

+2€+(2) . €-(3)(P2 + P3) • €+(1)Pl . €_(4)} ,
2

Ci2 __ 1:r(tGtbtCtd ) 9
2Pl . P2

X {(Pl + P2) . (P4 - P3)€+(1) . €+(2)€_(3) . €_(4)

15
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• +2(Pl + P2) . €-(3)P3 . €_(4)€+(1) . €+(2)

-2(Pl + P2) . €-(4)P4 • €_(3)€+(1) . €+(2)

-2Pl€+(2)(P4 - P3) . €+(1)€_(3) . €_(4)

-4Pl . €+(2)P3 . €_(4)€+(1) . €_(3)

-4P2 . €+(1)P4 . €_(3)€+(2) . €_(4)

+2P2 . €+(1)(P4 - P3) . €+(2)€_(3) . €_(4)

+4p2€+(1)P3 . €_(4)€+(2) . €_(3)

+4pt' €+(2)P4' €_(3)€_(4)· €+(l)} ,

G3 - Tr(tatbtctd )g2

(2.3.24)

F =

x {2€+(1) . €_(3)€+(2) . €_(4)

-€+(l) . €_(4)€+(2) . €_(3)

-€+(l) . €+(2)€_(3) . €_(4)} , (2.3.25)
2

Tr(tatbtctd) -g < 2 + Il~13+ >< 1 + 1'YJ'14+ >(2.3.26)
-2p3 . P2

For general helicity of the polarization vectors3 (not written explicitly), straight­

forward counting shows that G1 and G2 have 14 terms each and G3 has 3

terms. The high number of terms in each diagram is due in part to the

gauge dependencies of 3g and 4g vertices. Summing up the diagrams will

bring about cancellation of gauge dependent terms and the result will be

vastly simpler than any of the individual diagrams. Using (2.2.17) however,

we can indirectly obtain the result. We will have,

G
1
+ G

2
+ G

3
_ < 43 > F

< 12 >
_ < 43 > (2[21] < 43 > )

< 12 > - [23] < 32 >
(2.3.27)

•
3See equation (A.1.16) for the spinor-helicity representation of the polarization vector.
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•

As one can clearly see, the sum of 31 terms of the gluonic diagrams on the

left hand side reduces to just one term. In the 6-pt function case, one of

course has many more color-oriented diagrams than in the 4-pt case. Here

again, by first summing the pure fermionic diagrams one calculates F and

then through (2.2.22) one can indirectly find the pure gluonic 6-pt diagram.

17
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Chapter 3

Supersymmetric relations
alllong Feynman diagrarn8

In the previous chapter we saw how swr establishes relations among scat­

tering amplitudes. The relations found have the potential to assist one in

calculating scattering amplitudes in a more efficient way. An amplitude in

the perturbative language eonsists of the sum of Feynman diagrams that grow

in complexity with the order of perturbation. The relations found using SWI

relate these perturbative sums but are silent about the possible relation be­

tween individual Feynman diagrams within each of these amplitudes. One

eould think of this as a global picture of the relation sinee the role of in­

dividual diagrams is not clear. A natural question is then whether or not

we can find a relation between individual Feynman diagrams of amplitudes

related by SWI? Our aim in this chapter is to explore the answer to this

question. For reasons that will be mentioned later such a relation is partic­

ularly difficult ta find in the case of supersymmetric Yang-Mills theory. We

have succeeded, however, in finding the relation between Feynman diagrams

in the Wess-Zumino model (WZ) [1]. The particle multiplet of the WZ model

consists of a Majorana (self-conjugate) fermion 7/1, a complex scalar field tP

and an auxiliary scalar field F. The 7/1 and cP field could both have mass m

18



• or bath be massless. In our treatment we will specialize ta the massless case.

We will begin with a brief review of this mode!.

3.1 Wess-Zumino model and basic diagram­
matie identities

The WZ model is the supersyrnmetric extension of the complex Klein Gor­

don field theory in which cjJ acquires a supersymmetric partner 7j; , a spin ~

Majorana fermion. The Lagrangian describing WZ model is [1],

.co - âpt/J{jJ't/J* + ~i"'f!'" + F F* ,

1 ­.cm - -mecjJF + cjJ*F*) - 2m7j;7j; ,

.cg -gvf2 [(cjJ2 F + </>*2F*) + 1/J(cjJPR + cjJ*PL )7/J]

where the right PR and left PL projection operators are defined by,

(3.1.1)

(3.1.2)

(3.1.3)

•

The complex scalar field F is an auxiliary field introduced to maintain uncon­

strained supersymmetry. Since it has no kinetic term it does not propagate

and thus can be removed using its equation of motion. The resulting La­

grangian containing only the physical fields will then be

.c = âpt/JâP t/J* - m
2 t/Jt/J* + ~ '"(if! - m)'" - ../2mgt/J</>*(t/J + t/J*)

-V2g'l/J[cjJPR + cjJ*PL ]7/J - 2g2 (</JifJ*)2 (3.1.4)

This Lagrangian is invariant under SUSY transformations,
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+ t ' ./>,
1 ~./ ~
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-../2gPL -V2gPR _2g2

Figure 3.1: Vertex factors of massless WZ mode!.

• +--P± u±(P) • p-++ u=t=(p)
~ ~

+--P± u=t=(P)
p-+

u±(P)• • ~ ±----+

Figure 3.2: Designation of external states.

5ifJ* v2 ~PL 'if; = v2 7j;PL ç

d'If; - -V2 [i~ + m + v2g(if;PL + ifJ*PR )] (if;PL + ifJ*PR)ç

d'If; - -V2 €(ifJPL + if;*PR ) [-i ~ +m + v2g(ifJPL + ifJ*PR )] (3.1.5)

Using a similar method to that explained in App. (A.3) we can write

down the SUSY transformations of the on-shell operators. They are

[Q, A~(P)] = +N_(k,p)at(p)

[Q, at(p)] = +N+(k,p)A~(p)

[Q, A+(p)] = -N+(k,p)a(p)

[Q, a(p)J = +N_(k,p)A+(P)

[Q, A~(P)] = -N+(k,p)bf(p) ,

[Q, bt(p)] = -N_(k,p)A~(P) ,

[Q, A_CP)] = +N_(k,p)b(P) ,

[Q, b(P)] = -N+(k,p)A_(p) , (3.1.6)

where the constants N+ and N _ are defined by

(3.1.7)

•
In (3.1.6) a(p) and b(P) are the annihilation operators of the scalar particle

and its antiparticle.
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Figure 3.3: Relation lA.

le

•

From now on we specialize to massless, m = 0, WZ model. Using the

Lagrangian (3.1.2) one can easily extract the vertex factors which are shawn

in Fig.(3.l). The dashed Une represents the boson particle. It indicates a

boson, type a, if the momentum and the arrow are parallel and an anti­

boson, type b, if they are anti-parallel. The fermion line does not carry an

arrow since it represents a Majorana fermion. In writing clown the expression

associated with a Feynman diagram however, this seems to pose an ambiguity

since one is not guided naturally ta the right arder of gamma matrices. This

ambiguity can be removed by associating an arbitrary, but fixed, direction

with the fermion line. Figure (3.2) shows the way external states will be

assigned. Since the fermion-boson vertices carry projection operators PR,L

the helicity of the states on opposite sides of the vertex must be different.

In order ta find the relation between Feynman diagrams we need ta con­

sider sorne basic relations. These relations can best be presented using the

dot convention. We place a dot on a fermion (boson) line ta indicate that

it is a supersymmetrically transformed line. Thus removing a dot from a

fermion (boson) line will change it back ta a boson (fermion). There is a

factor associated with the dot depending on where it is. These factors can

be read from the right-hand sicles of commutation relations (3.1.6). For ex­

ample, if the dot is on a positive helicity fermion line with a momentum

pointing outward (away from the vertex) it represents +N_(k, p) or a dot on

an incoming a type fermion is +N_(k,p) and is -N+(k,p) on an outgoing

21
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Figure 3.4: Relation lB.

one. With this brief introduction we can now consider the basic relations.

They are as follows:

• Relation 1.

Referring to Fig.(3.3) with Pin = P3 and Pout = Pl +P2 and following the rule

for writing the assaciated expression we have,

la - (-1) < k + Ip21Pb+ >< Pa -IPIPL153Ipc+ > ,

lb - < k + l15alpc+ >< Pa -I151PL152IPb+ > ,

le - < k+ IPIIPa+ >< Pb -!P2PLP3Ipc+ > , (3.1.8)

where aIl cornmon factors including the denominator of the propagators have

been dropped. The SUSY factor in these expressions are the ones that con­

tain k. If the boson line arrows were pointing inward as in Fig.(3.4) then

the corresponding helicities should become negative in these factors. The

momenta Pa, Pb and Pc could he any of the on-shell marnenta of the external

Unes that appear in the momentum expansion of that particular line. The

(-1) factor in la is due ta the anti-commutativity of the SUSY factor ()

(suppressed in the above relations) and appears because in factoring out it

passes by an odd number of fermion lines. Using off-shell Fierz relations, see

App. (A.l.I), it is straightforward ta see that,

Relation lA: la + lb + le = 0 . (3.1.9)

•
In case any of the three lines is an external on-shellline, say P2 for instance,

then in the above amplitudes 152 must be dropped and that has to accompany
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Figure 3.5: Relation 2A.
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Figure 3.6: Relation 2B.

a helicity flip in the corresponding state as weIl as momentum change, in this

case IPb = P2- >.

Similarly for Fig(3.4) we have

1~ - - < k -lp2IPb- >< Pa + IPIPRP31pc > ,

1~ - < k -lp3Ipc- >< Pa + /P1PR]52IPb- > ,

1~ - < k -IPIIPa >< Pb + IP2 PR]5alpc- > ,

from which it follows

(3.1.10)

Relation lB:

• Relation 2

l' + l'b + l' = 0 .a c (3.1.11)

•

This relation is depicted pictorially in Fig.(3.5). The momentum configura­

tion is Pin = Pa + P4 and Pout = Pl +P2 where all Pi can in general be off-shell.

The corresponding expressions for these diagrams, ignoring aIl common fac-

tors, are

2a
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• 2b - < k -lp2PLCPI + P2)PRP4/Pd- > ,

2c - < k -lp4IPd- > (Pl + P2)2 .

From these expressions it follows that

(3.1.12)

Relation 2A: 2a + 2b + 2c = 0 . (3.1.13)

The amplitudes given above also yield the on-shell results if ariy of the me­

menta go on-shell. For example, if aIl Pi except P4 are taken to be on-shell

then

2a - - < kl > [12] < P2 - /P4IPd- > ,

2b - - < k2 > [21] < Pl -lp4IPd- > ,

2c - < k -lp4IPd- > [12] < 21 > , (3.1.14)

which will satisfy (3.1.13) provided we write P4 = Pl + P2 - P3 and use

Fierz relations. For Fig(3.6) the corresponding amplitudes (the primed ones)

can be obtained from (3.1.12) by fiipping the helicities of the states and

changing the lable L f+ R on the projection operators. For the resulting

2~,b,c expressions it foIlows that

•

Relation 2B: 2' + 2'b - 2' = 0 .a c

24
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Figure 3.7: Relation 3A.
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Figure 3.8: Relation 3B.

• Relation 3.

Another relation that can be easily checked is depicted in Fig.(3.7). Assuming

P3 is an on-shell fermion line we have,

(3.1.16)

where again the common SUSY factor of -V2i7J has been dropped. Using

Fierz identities it follows that

Relation 3A: 3a+3b = [k, 1+2] < 1+2,3 >= [k3] < 33 >= O, (3.1.17)

•

In (3.1.16), if we change the helicity of the fermion line which should accom­

pany a change in the direction of arrow on the boson tine, only the type of

hrackets will change, i.e., [..] t-+< .. >. The resulting graphical relation is

shown in Fig(3.8).

Now let us consider how these graphical relations may he used to relate

more complex diagrams. The strategy for obtaining such relations is the

following. By joining elementary pieces together and by moving the dot

from internallines to external ones, diagrams with more externallines can
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Figure 3.9: Sewing 3-pt functions
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Figure 3.10: Moving the dot from an internaI to an externalline

be constructed. Along with constructing bigger diagrams one aIso ob~ains

relations among them. Consider the following example. We can start from

relation lA and sew on an extra piece as shown in Fig(3.9). As one can

see, the first and the third grafted diagrams are normal ones (note that in

the grafting process one has to strip off the helicity state Ipc+ > from the

cornmon line 3) but the second one looks odd. To get a sensible diagram we

first notice that line 3 has, from (3.1.8) and after attaching the extra piece,

the SUSY factor < k + IpSPR I5+ >. Ail we need to do is ta mave the dot

acrass ta the negative helicity outgoing fermion af the grafted piece which

will generate the same SUSY factor, from (3.1.16), Fig.(3.10). The last step

is ta use relation 3A ta move the dot to the external line 4. Putting all three

terms together the final result is as shawn in Fig.(3.1l). As a further check

we can directly verify the validity of the relation of Fig(3.l1). Assuming all

2; :4 J:__J: 2+LL' .
~

y y
1+ 1 1

5+ ~ __ <-_ : 5+, 1 + 0- + . - ...
A B C

Figure 3.11: A derived relation among 4-pt functions.s
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externallines are on-shell, the expressions associated with each term are,

A = [k1][12] < 25 > ; B = -[k4][12] < 45 > ; C = -[kl][21] < 15 > .

(3.1.18)

Using Fierz identities it follows that A + B + C = o. One can proceed

further and sew on more and more pieces and create complicated diagrams

and relations.

There is an even easier way to obtain such relations. This shorter tech­

nique was actually derived from considering several examples. We first ex­

plain the rule and will then give examples. We notice that there are two

types of SUSY factors, one having square brackets [..] and one having angle

brackets < .. >. With this in mind let us start from an arbitrary diagram

with on-shell external lines and choose the dot ta be on one of the external

lines. Based on the type and momentum direction of the line carrying the

dot the SUSY factor will either be square or angle brackets. As a rule the dot

can only go to those external Hnes whose resulting SUSY factor will be the

same in type as the original line. In order to reach these external Hnes one

has ta move the dot along sorne internaI fermion or boson lînes. At tree level

there is only one path to take for each destination. Passing the dot along an

internalline should bring about a particle type change from fermion++boson.

When the dot is moved along a fermionic line of the diagram between two

fermion-boson vertices, the fermion propagator shrlnks and produces a four­

boson vertex. This occurs every other time a fermion propagator is reached.

The sum of diagrams created in this way will be zero.

Our first example is shown in Fig.(3.12). The mornenta are chosen as

Pin = P3 + P4 and Pout = Pl + P2. We start with the dot on tine 1 with

negative helicity. In this case the dot can go to either 40ut or A-in particle

types which are lines 2 and 3. It is straightforward to verify the relation
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Figure 3.13: An 8-pt example

depicted in Fig.(3.l2). The expressions for the three terms are

Al = -[kl] < 14 > [23] ; BI = [k3][23] < 34 > ; Cl = -[k2][32] < 24 >

(3.1.19)

where we have again ignored aU common factors. Now using momentum

conservation we have

[k2] < 24> < +kl15214+ >

- < k + 1153 +15-15114+ >

- [k3] < 34 > - [k1] < 14 > .

•
Replacing this in Cl it foUows that Al + BI + Cl = o. As an example

illustrating shrinking of fermion propagators consider Fig(3.13). The 'in'

and 'out' momenta are Pin = Pa + P7 + P6 +Ps , Pout = Pl + P2 + P3 + P4. The

28



• expressions for the diagrams are

Al =< k1 > [12] < 2,1+3 > [1+3,2+4] < 2+4,1+3-5 > [1+3-5,7] < 78 > ,

A 2 =< k2 > [21] < 1,2+3 > [2+3, 1+4] < 1+4,2+3-5 > [2+3-5, 7] < 78 > ,

Ag =< k4 > [4,1+2+3] < 1+2+3,4-5 > [4-5,7] < 78 > (Pl+P2? ,

~ = - < k6 > [67] < 78 > (Pl+P2? (Pl+P2+P3+P4? ,

As =< k8 > (Pl +P2)2(Pl + P2 + Ps + P4)2(P7 + PS)2 .

(3.1.20)

From the Fierz identities it follows then that

Al + A2 + Ag +~ + As = 0 . (3.1.21)

•

These examples serve to illustrate that in the WZ model one is able to dig

further down from what SWI provides and find relations among individual

diagrams. A further question is whether such relations exist in other theories

such as supersymmetric Yang-Mills theory. In a (SUSY) gauge theory each

complete amplitude is a gauge invariant unit but each diagram is gauge

dependent. The complete amplitude can be split into the sa called primitive

color subamplitudes each of which contain fewer number of diagrams which

are still gauge invariant. Further gauge invariant splittings are impossible.

If one attempts to relate diagrams within subamplitudes of the same color

(coming from different processes) we will end upwith a gauge dependent

relation. As a result of the gauge dependence, physical diagrams (made up

of regular vertices) will not add up ta zero, leaving left over pieces. Therefore,

one is obliged to introduce nonphysical vertices. Sa the conclusion is that

in gauge theories, gauge invariance forces diagrams ta be split into gauge

invariant subamplitudes. Attempts to split the gauge invariant unit will

result in nonphysical vertices.
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Chapter 4

High energy scattering

Until 1972 it was a commonly held belief in the physics community that

the total scattering cross section approaches a constant as the square of the

total center of mass energy, s, tends to infinity. Around that time the ISR

[11, 12] experiments found evidence that this belief is not strictly true and

a rise in the total hadronic scattering cross section was observed. Subse­

quent analysis of the data established the growth of the total cross section

as (J'tat ex: SO.08 [13]. Since then other scattering experiments have verified this

observation. Recently, scattering experiments at HERA [14] have revealed

an even stronger growth for ,*p total cross section (jtot ex: so.s. These growths

are generally believed to be due to the exchange of a composite object, called

the pomeron, between the colliding hadrons. The gentler growth is due to

the 50 called soft or non-perturbative pomeron and the steeper one due to

the hard or perturbative pomeron.

The rise of the total cross section at high energies can be looked upon

from two different perspectives. First, according to the Froissart-Martin

[15, 16] theorem at asymptotic high energies the total cross section cannot

grow faster than (jtot ex: ln2 (s). The observed power growth is not neces­

sarily a threat since the present day energies available are believed not to
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be high enough ta meet the requirement of the theorem. One possibility is

that at yet higher energies multiple gluon exchanges will take place which

will dampen the growth. This point is not of primary concern at the mo­

ment. On the theoretical side however, the situation is different. Here there

are twa approaches. First is the Regge phenomenological approach which is

based on general unitarity, analyticity and crossing symmetry properties of

scattering amplitudes [17]. In Regge theory, based on assumptions regarding

singularities of the partial-wave amplitude, one finds the general dependence

of the scattering amplitude, A(s, t), on s. According to Regge theory the

high energy behavior of A(s, t) is dominated by the poles of the partial wave

amplitude, see section 4.1. In the simplest case one assumes that the singu­

larities of the partial wave amplitude are simple poles. Then the scattering

amplitude exhibits an asymptotic power growth, A(s, t) rv sop(t), if Q!p(t) is

the pomeron pole. The pomeron pole is one of a series of possible pales in the

complex angular momentum plane generally referred ta as Regge poles. The

pomeron pole provides the leading contribution to the total cross section.

From the optical theorem one would then have,

1
(j'tat = -!mA(s, t = 0) ex sop(O)-l •

s

As one can see, if 1 < C1!p(O) the result will violate the Froissart bound.

Nonetheless at present day energÏes, this model fits the data. From the

collected scattering results, the effective pomeron trajectory has been found

to be ap(t) = 1.08 + 0.25t [13]. There are other possibilities as weIl. These

are due ta Regge cuts. These cuts will generally produce ln(s) factors in the

amplitude.

The second approach is via the perturbative QCD calculations. In 1975

Law and Nussinov [18] proposed a perturbative model of the pomeron in
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which the poméron is simply the color-singlet component of a two-gluon ex­

change in QCD. Diagrammatic calculations in the leading log approximation

(LLA) have been carried out to substantiate this proposal [19, 20] and to

study other aspects of the high-energy near-forward scattering~ A charac­

teristic feature of these calculations is the necessity ta sum up an infinite

number of diagrams. The reason is that even if g2 « l, the effective cou­

pling at high energy is g2 ln(s) which may be of the order of unity and hence

an infinite number of diagrams must he summed up. Dealing with such a

huge number of diagrams is an enormous task and compels one to work in

LLA. This turns out not ta be sufficient. The reason is the common cancel­

lation of leading ln(s) factors which occurs in certain color channels of the

sum of diagrams at each order of perturbation. Because of this one needs the

sub-Ieading contributions of a diagram. This fact in itself is a calculational

hardship and complicates matters. Here a calculational method that would

give the leading contribution of the sum of diagrams at each order of pertur­

bation would simplify the calculations considerably. There is another point

to notice. A priori one cannat dismiss non-Ieading terms, whether they are

non-Ieading contributions of a leading diagram or leading contribution of a

non-Ieading diagram, since it is quite possible that the sum of non-leading

terms may overrun the sum of leading terms.

The result of finite order diagrammatic calculations [19] seems to indi­

cate that the high-energy near-forward scattering is governed by multiple

reggeized gluon exchanges, supplemented by elementary gluon production

from the reggeons and by s-channel unitarity [21]. The emergence of reggeon

exchange out of perturbative calculations is particularly interesting and is

consistent with the Regge theory result.

There is another important development in this area. A case where the
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leading log factors do not cancel is in the SUffi, in LLA, of a reggeized gluonic

ladder with an effective vertex for elementary gluon production. The sum

leads to the BFKL equation, see section 4.2. The color singlet solution

of this equation is the hard pomeron and the color-octet is the reggeon.

The pomeron solution results in a cross section that violates the Froissart

bound. Here there is a possibility that non-Ieading diagrams, i.e., those with

multiple gluon exchange as well as those containing fermion loops, may be

of importance.

Recently a new way of calculating suros of Feynman diagrams at a given

order of perturbation was proposed (22J. The new technique exploits non­

abelian eut diagrams as opposed ta standard Feynman diagrams. A non­

abelian eut diagram is in fact an extract of the sum of a number of standard

diagrams and as such contains a number of cancellations already built in.

This greatly simplifies the calculations. We will examine this new technique

in ehapter 5.

As was mentioned above, restoration of unitarity and fulfilling the re­

quirement of the Froissart bound would demand resummation of muti-gluon

exchange diagrams. Sorne recent studies have been conducted in this direc­

tion [23, 24]. The question of the role of fermion Ioops in the context of the

BFKL equation has aiso been the subject of sorne recent articles [25]. The

study of the contribution of diagrams containing fermion Ioops to the high

energy behavior of electron-electron scattering amplitude was pioneered by

Cheng and Wu [26J. In QED such amplitudes are free of UV divergence.

Similar diagrams accur when considering quark-quark scattering in QCD. In

QCD however, these diagrams are UV divergent and therefore regularizing

them is necessary. In chapter 6 we will examine this point and will calculate

three eighth-order diagrams containing fermion Ioops in quark-quark seat-
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• tering. We find that as a result of regularization, the high energy behavior

of such diagrams exhibits an enhancement in their energy dependence as

compared to QED diagrams.

The outline of the present chapter is as follows. The elements of Regge

theory will be reviewed in section 4.1. Section 4.2 will be a review of the

BFKL equation.

4.1 Regge theory

In 1959 Regge [27] showed the advantage of viewing the angular momentum

l as a complex variable. He showed that for a wide class of potentials the

only singularities of scattering amplitudes in the complex angular momentum

plane were poles, now known as Regge poles. If these poles occur for positive

integer values of l they correspond to bound states or resonances. Regge's

considerations were non-relativistic but it was later shown that the theory of

complex angular momentum, Regge theory, can also be used in high energy

particle physics. Below we will review the complex momentum approach as

is used in the high energy particle scattering.

Consider an elastic scattering process [28] (a): A(Pd+ B(P2)~A(PD+

B(P~) progressing in the s-channel, 0 < s, t < 0, U < 0, as shown in

Fig. (4.1). The goal is to find out how the scattering amplitude ACs, t) behaves

as s, the center of mass (CM) energy, grows very large. To this end we first

consider the crossed process (b) : B(P2)+ B(-p~) -+ A(P~) + A(-Pl). The

amplitude for (b) can be obtained from A(s, t) by analytic continuation ta

the t-channel physical region where 0 < t, s < 0, U < o. Now, using t-channel

partial waves we can expand A(s, t) as fol1ows,

•
A(s, t) = A+(s, t) + A_Cs, t) ,
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Pl

P2

t
t

Figure 4.1: Elastic scattering in s and t-channels.

1 00

A±(s,t) = 2E(2l + 1) A±l(t) [Pl (-Zt) ± F't(Zt)] , (4.1.2)
1=0

where lis the angular momentum, A±l(t) is the positive (negative) signature

(to be explained below) t-channel partial wave, Pl is the Legendre polynomial,

Zt = - cos(Bt ) with Bt the scattering angle in the CM of process (b). The

relation between Mandelstam variables in t-channel physical region are,

-t -t
s = "2 (1 - cos Bt ) U = "2 (1 + cosBt ) • (4.1.3)

Note that we can move back to s-channel physical region by allowing 1 < Iztl
and t < o. The reason for splitting A(s, t) into positive and negative sig­

nature parts as in (4.1.1) is as follows. Suppose that particle A is its own

antiparticle A A. Then the amplitude for the t-channel process (b) has

a s f-+ u symmetry. Since only l'l(Zt) with even l has such a symmetry,

Pl=even(-zt) = Pl=even(zt) , one would expect that only ]>,=even(zt) should

be present in the expansion. Equation (4.1.2) implements this requirement.

After this brief digression let us take another step and think of Pz (zt) and

A±l(t), originally defined for positive integers, as analytic functions of 1. In

this extension Pl(zt) will no longer be a polynomial but rather a hypergeo­

metrie function with a branch eut going from (-1) ta -00. The situation
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(a)

l-plane

o 0
o

z

(b)

~ Regge pales

Figure 4.2: The complex l-plane. Regge pales are indicated by dots. (a)
Contour Cl encircles the positive l axis (h) After opening the contour.

with A±l(t) is more subtle. We assume that it has only isolated singularities

and thus makes the analytic continuation in the complex l plane plausible.

Also we assume that A±l(t) dies fast enough as l increases, for a reason to

be explained later. This extension would allow for another representation of

A±(s, t) known as the Sommerfeld-Watson representation [17],

(4.1.4)

(4.1.5)

•

As shown in Fig. (4.2.a) the contour Cl encompasses aIl positive integers. The

factor sin 'trI has simple poles for integer values of l with a residue - 2i(-1)1 .

With this residue one can directly see that (4.1.2) and (4.1.4) are identical.

The next step is to open up the contour ta a straight line as in the Fig.(4.2.b).

The contribution of the hig semicircular part of the contour closing ta the

right side (not shown in the figure) vanishes because of the assumption we

made earlier. As opening the contour entails inclusion of the poles of Al

which where previously outside the contour, the contribution of these poles

must be subtracted off. Let us suppose that A,(t) has poles at l = ai(t) with

residue f3i(t)/(2ai(t) + 1). So we will have

A±(s,t) = -~ rL
+

ioo
dl(2l + l)A±z(t)Pz (Zt) :r 11(-Zt)

2z JL - ioo smlT"l
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• 7r{3i(t)- L. (t) [Pai(t) (Zt) ± Pai(t) (-zt)] .
i Sm7r~

In the above equation L must be smaller than the real part of all the ai(t)

in order to have all the poles of Az(t) included. We now move back to the

s-channel physical region with s --+ 00 by allowing Zt --+ 00. From (4.1.3) we

will have

zt --+ 00 =>

Moreover, in this limit we have

28
ztrv-.

-t
(4.1.6)

(4.1.7)

•

Now from (4.1.5) the high energy behavior of A±(8,t) is dominated by the

rightmost Regge pole. The integral part in (4.1.5) vanishes at least as fast

as 8-1/ 2 , so we will have from equations (4.1.5)-(4.1.7),

A±(8, t) --+ tr{3j(t) r(aj(t) + ~) [(2z
t
)Qj(t) ± (-2Zt)Qj(t)]

sin trajet) y'1rr(aj(t) + 1)

---+ 1r{3j(t);(aj(t~ + ~) (48) Qj(t) [1 ± eîll"Qj(t)] • (4.1.8)
sin trajet) 7rr(aj t) + 1) -t

As can be seen from this result, any simple pole of the partial wave ampli-

tude results in an amplitude which grows as a power 8. The partial wave

amplitude may in general have cuts. These in general require more elaborate

considerations and produce factors of In(s) in the amplitude.

4.2 Dispersion relations

Before we go on to the BFKL equation it is necessary to give a quick review

of the dispersion relation technique. We will also use the partial wave ex­

pansion that was used in the Regge theory. It should be mention that allof

the gluon vertices in the BFKL ladder are effective vertices and are derived

perturbatively by summing up diagrams with standard three and four gluon
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• vertices at tree level. Also, in the context of the BFKL equation we are con­

sidering solely parton production from a reggeized gluon exchanged in the

t-channel. The kinematical region for this production process is the so called

multiregge kinematical region [29]. More specifical1y in gagb -+ ga,gb'gl ..• gn

this region is characterized by Yb' ~ Yl ~ ... ~ Yn ~ Ya where Yi is the

rapidity of the ith gluon defined by Yi = t ln ;;::::: .

Consider the elastic gagb -+ ga' gb' amplitude in multiregge region. For two

gluon exchange in the t-channel, the color dependence may be decomposed

in terms of irreducible color elements of the tensor product of two adjoint

representations (8 ® 8) of SU(3) [30]

(4.2.9)

where the extraction of polarization factors indicate that at high energies

helicity is conserved. AT(s, t) are the corresponding scalar amplitudes and

Pb:' (T) are the colar projectors satisfying the orthogonality relation

Pby'(T)P:% (T') = P:d' (T)8TT, . (4.2.10)

These color projectors split into two groups, the symmetric projectors (8 ®

8)5 = 1 œ85 œ27, and the antisymmetric ones (8 ® 8)A = 8A œ10 ® 10.

Under s ~ u crossing we have

pyt,' (T) = (_1)TPby'(T)

(_1)T = {-1 for (8 ® 8)A
+1 for (8 ® 8)5 (4.2.11)

The goal here is to express AT(s, t) in terms of a dispersion relation of its

discontinuity DiscA(s, t). To this end we first decompose the scalar amplitude

ATCs, t) in terms of t-channel partial waves

•
00

AT(s, t) = L(2l + 1)AfCt).F>,(zt) ,
l=O
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• where Fl(Zt) are Legendre polynomials and Zt = - cos(/h) with Ot the scat­

tering angle in t-channel physical region. The Mandelstam invariants are

related according to

t
s - -2(1 + Zt) ,

t
u - --(1 - Zt) .

2
(4.2.13)

The invariance of the amplitude M(s, t, u) in (4.2.9) under s f-t u crossing,

along with the parity of the projectors determines the parity of the scalar

amplitude,

(4.2.14)

(4.2.15)

where from (4.2.13) under s f-t u crossing Zt t-+ -zt. The next step is to

write the scalar amplitude in terms of its singularities. If we take t to have

sorne fixed negative value then from 8 + t +u = 0 we see that in the s-channel

physical region -00 < u < 0 and -t < S < 00. Similarly, with the same

assumption in the u-channel physical region we will have -00 < S < 0 and

-t < u < 00. Using (4.2.13) the two ranges of values for scan be expressed

in terms of Zt. So in the s-channel physical region 1 < Zt < 00 and in the

u-channel physical region -00 < Zt < -1. Therefore the dispersion relation

for the scalar amplitude is

AT(s, t) = 1 ds'. AT(s', t) = 1 dz~. AT(z~, t)
ln 21r't 8 - 8' JO' 21r2 ~ - Zt

1-1 dz' DiscAT(z' t) 100 dz' DiscAT(z' t)= _t t, + _t t,

-00 21ri ~ - Zt 1 21ri ~ - zt '

where

(4.2.16)

(4.2.17)

•
The contour of integration is shown in Fig. (4.3). Using the orthogonality of

..A(zt) we can invert (4.2.12) to obtain

Aret) = ~ i~ dZtI'l(Zt)AT(Zt, t) .
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(a) (h)

Figure 4.3: Integration contour in (a) s-plane (b) Zt-plane.

Replacing for AT(Zt, t) in (4.2.17) from (4~2.15) we will get

Ar(t) = (-1 dZ~.QI(zDDiscAT(z~,t) +100 2dZ~.Ql(Z~)DiscAT(zt, t) , (4.2.18)
J-00 21TZ 1 1TZ

where Q,(Zt) is the Legendre function defined by

Q,(Z/) = ! 11
dz I1(z) .

2 -1 z' - Z
(4.2.19)

Now using the folIowing properties of the Legendre function and the dîscon­

tinuity of the amplitude

we will get

(-1)T+1DiscAT (Zt, t) ,

(-1)'+1Ql(Zt) , (4.2.20)

(4.2.21)

•

We are now almost at the end of the road. The last step before we get the

desired expression is to express the partial wave expansion in (4.2.12) using

the Sommerfeld-Watson transformation. This gives

(4.2.22)
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• where the contour C surrounds the positive reall axis in the complex l plane.

Replacing for Ar(t) in the above equation from (4.2.21) we get,

We are interested in the asymptotic form of (4.1.1) in the limit as Zt rv

-(28/t) -t 00. The asymptotic form of the Legendre function and Legendre

polynomial are (31],

.F>z(z) ~ rel + 1/2) (2z)1
-t ~ rel +1)

Ql(Z) -+ VS rel + 1) (2z)-(1+1).
rel + 3/2)

Replacing these back in (4.2.23) we will get,

(4.2.24)

•

where we have introduced the rapidity variable y by z~ = e1l . Using this equa­

tion it will be sufficient to calculate the discontinuity of the scalar amplitude.

Plugging it into this equation will get us the whole amplitude.

4.3 The BFKL equation

The expression developed in (4.2.25) will now he used to derive the BFKL

equation. As is seen from this equation one can construct the asymptotic

form of the entire amplitude from a knowledge of its discontinuity.

It was briefiy mentioned in the introduction that the hard or BFKL

pomeron is the color-singlet part of the resummation of an infinite num.­

ber of ladder diagrams of the type shown in Fig.(4.4). The incoming gluons

with momenta Pa and Pb collide head on in the center of mass frame with

total energy s assumed to be much larger the momentum transfer (-t) ~ s .
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• In this diagram the coupling between each horizontal gluon rung and the two

sides is through an effective 3g vertex called the Lipatov vertex [32] which is

expressed as

where

n+l
Sai - -2pa· k i = - L kiJ... . kjl.e-(Yi-Y;) ,

j=O

n+l
Sbi = - 2Pb • k i = - L kil. . k j 1.eYi -Yj •

j=O

(4.3.26)

(4.3.27)

The vertex factor CP(qi' qi+l) can be obtained, in the Regge kinematical

region, by summing the five 9agb --+ ga' gb'9 diagrams at tree level. An inter­

esting property of this vertex is that it is gauge invariant, Le.,

(4.3.28)

In the ladder model the gluons exchanged in t-channel are reggeized gluons.

This is based on the ansatz [32] that the leading logarithmic approximation

of the virtual radiative corrections, to all orders in as = g2/(47r), is obtained

by replacing the propagator for the ith gluon with mamentum qi by

(4.3.29)

(4.3.30)

with a(ti) given by

Jd?-kJ... 1
œ(quJ = -Ct.sNcqiJ... (27r)2 kt(qi - k)1 .

In order ta evaluate the discontinuity of the amplitude it is sufficient to

implement Cutkosky rules, Le., the propagators of the horizontal gluons must

be replaced by [33]

•
:~ -t 21r6(kO)o(k;) .,

42
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•

PI b'b ,

•

Figure 4.4: The BFKL ladder. Thin lines and thick lines represent elemen­
tary and reggeized gluons respectively.
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• Therefore the n + 1 loop integration measure will become,

(4.3.32)

(4.3.33)

In the multiregge region, using the two-dimensionallongitudinal components

of 64 function, one can perform dyo and dYn+1 integrations, giving

Now the ground is prepared and we can write the expression for the discon­

tinuity of the amplitude of Fig. (4.4),

Disc [iMaba'lI ] ~ ~! 1 d!lko.L d?kn+1.L (lIn dYifflki.L) (21r)262(~ k~ )
Pa Pb Pa.' Pb' L 28 (21r)2 (27r)2 . 41r(21r)2 ~ s.L

n=O 1=1 s=O

X (2is)20PGPa,OPbPb' (iqfadOCl ) (igfc'ldoa')

n e[a(tl+d+a(tf+l)](Yl-Yl+d
XTI-------

l=O tl+1~+1
n n

X II (igfC;d;c;+l ) (igfc';c';+ld;) IIC(qj, qi+l) . C(q - qi, q - qi+l)
;=1 i=l

(4.3.35)

•

where ~ = (q - qi)2 and q is the overall momentum transfer in the elastic

scattering. For the contraction of two Lipatov vertices we have,

_ -2 [qi - (q - qi)lq;+l.L + (q ~ qi+l)lqlL]
(qi - Qi+l).L

- -21C(qi, qi+l) . (4.3.36)
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• Now using (4.2.10), the discontinuity of the scalar amplitude, DiscAT(s, t),

can be extracted via multipling (4.2.9) by the desired projection operator,

00 n d n+1.J2
. T ~ ( 2 )n+2jII Yi II a-qj1..

OiscA (s, t) = t:o -g CT i=1 47r j=l (27r)2

n e[a(tl+d+a:(tf+l)](Yr-Yl+l) n

x2is II ~ II 2K:(qm, qm+d , (4.3.37)
1=0 t'+1 1+1 m=l

where the constant CT cornes from projecting the combination of color factors

of the diagram out using the color projectors which are in turn given by

CT = Ne for singlet CT = Ne/2 for octet. (4.3.38)

•

Note that the cP ka.!. integration has been carried out using the 82 function.

Also, we have transformed the integration variables from the transverse ma­

menta of the produced gluons to that of the gluons exchanged in t-channel.

With reference to (4.2.25), the next step is taking the Laplace transform

of (4.3.37), as in

Now the Yi 's and Y are a total of n + 1 variables. In the integrand, however,

these are entangled as n +1 differences Ui = Yi - Yi+l. Transforming from the

original variables to uï's and keeping in mind that y = Ya - Yn+l =!n(-slt)

is the overall rapidity, and s = -texp(yo - Yn+l) = -texp[Ei=o(Yi - Yi+l)],

then the integration over uï's can easily be carried out and we will end up

with
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(4.3.41)

•
This result can be written as a recursive relation

Ar(t) = -2it(41ras)2C~Jd?-(2qI)~ 2 (1 )2 ff(ql' t) ,
1r qLL q - qi .L

with the function ff (q, t) satisfying the equation

[1 -1- a(td - a(tDlfT(qù t) = 1- 2a"CTJ,p(2q2)~ Je?l' q2\2 fl(q2, t) .
1r Q2l.. q - q2 l..

e4.3.42)

In the last step we have made the replacements ti ~ -q;.L and ~1.. ~ - (q ­

qi)l. The result in (4.3.42) is the BFKL integral equation [34]. It describes

the evolution of a gluon ladder in LLA. The left side of the equation refiects

the contribution of the virtual corrections in the t-channel and the function

lC(qi - q2) on the right side refiects the effect of radiative corrections.

Solving this equation for the octet solution one obtains [30],

floct(q, t) = l _ 1 ~ a(t) ,

with the corresponding amplitude,

7ra(t) ( s ) I+a(t)ADCt(s, t) = -4'1rNc as . (1 + ei 7t'a(t») - .
SIn 'Ira (t) -t

(4.3.43)

(4.3.44)

The singlet solution is more involved. We define the new function fl(ql, q2, t)

[30] through

•

.çsing ( ) Jd?- Q2.L - ( )
JI QI, t = (2'1r)2 fI qt, q2, t .

Then in forward scattering t = 0 we can further define fl (qI' Q2) as

( ) 1 q~l.. - ( )fI qI, q2 = -82 -2- fi qI, q2, t = 0 ,
'Ir qll..
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• and replacing for trng in terms of this new function, the BFKL equation will

yield

(4.3.47)

with

A =40:';· ln2 ; B = 14((3) 0:-;. ; Vo = C-~- Ar/2
• (4.3.48)

Using this function, the total scattering cross section tums out to be

(4.3.49)

•

which obviously violates the Froiassart bound (J"tot < 1n2 (s) .
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Chapter 5

Calculating high energy
scattering amplitude using
non-abelian eut diagrallls

In this chapter we will present an introduction to the non-abelian cut diagram

[22] technique as weil as demonstrate its application to a 6th-order calculation

[35]. This calculation has been done [19, 20, 21, 34] using standard Feynman

rules. A notable but not so positive feature of using standard Feynman

rules is the prevalent cancellation of leading powers of ln(s) which takes

place among the diagrams of a certain order. This could be viewed as a

down side for snch an approach because much of the effort that is put into

the calculation eventually disappears through cancellations. Here is where

the merits of non-ahelian cut diagram technique lie. The cancellations are

prebuilt into the non-abelian cut rules so what one calculates is directly the

sum with the cancellation already built in. This feature makes higher order

calculations more feasible.

The outline of this chapter is as follows. In the next section high energy

kinematics is reviewed. In section 2 abelian cut diagrams and in section

3 non-abelian eut diagrams will he discussed. A review of the lightcone

integration method will he presented in section 4. Section 5 is devoted to a
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1

i ~ i i
1 i

!i !
!
1 2 3 n

(b)

Figure 5.1: (a) External momenta (b) An electron (quark) ~ electron (quark)
+ n photon (gluon) tree diagram

brief summary of the 6th-order calculation results. Sixth order cut diagram

calculations are the subject of section 6. Finally, in section 7, a discussion of

the results will be presented.

5.1 High energy kinematics

We will assume the colliding beams in their c.rn. system to be directed along

the z direction. In lightcone coordinates, p± = pO ± p3, the components

of a four-vec~or are labeled in the order pP' = (p+, P-; fi1.), with the two­

dimensional vector Pl. lying in the transverse x-y plane. For brevity, frOID

now on we will suppress the vector sign over transverse vectors. In this nota­

tion, the incoming fermion momenta are Pl = (VS, 0; 0) and P2 = (0, VS; 0),

in which their mass m has been neglected. The outgoing fermion momenta

are approximately given by P~ = (VS, O;~) and P~ = (0, VS; -~). See

Fig.(5.l.a). Suppose n photons are connected to the upper fermion line as

shown in Fig.(5.l.b). The initial and final fermions are on-shell but the pho-
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(5.1.1)

• tons can be off-shell, though with an amount of energy far less than .,;s. At

high energy, the numerator of the propagator can be approximated by

(7' P + m) ~ 7' P = 2m 2:U>.(Pl)Ü>.(PI) ,
-À

provided the Dirac spinors are normalized ta uÀ(P)u>.,(p) = o>'-À" With that,

the dominant CUITent Ui(Pl)7QU>.,(Pd at high energy is just its translational

part o>,>,,'PÏlm. This shows that the spin content at high energy is unimpor­

tant. Ail that it does is to enforce helicity conservation of the fermion and

to produce a factor 2PI at each vertex together with an overall normalization

factor of 1/2m. The denominator of the ith inverse propagator is

i i

(Pl + L qj? - m 2 + i€ ~ s(E Xj + Ù:)
j=l j=l

(5.1.2)

(5.1.3)

(5.1.4)

•

where Xi = qi-/VS, For a diagram of the form of Fig.(S.I) with the electron

replaced by a scalar particle (making ail the vertices scalar-scalar type), the

scalar amplitude is given by

a[12·· .n] =-21rio (s t Xi) .If i 1. .'
j=l i=l S ~i=l x, + ~€

Note that a momentum conservation o-functîon for the negative components

(together with an explicit factor -21ri) has been incorporated. In (5.1.3) the

ordering of the vertical scalar lines lines from left to right is [123··· n]. If

they are ordered differently, say [VIV2··· vn ] =V, then the corresponding

amplitude is

a[vlv2·· .vn ] =a[V] =-21rio (s tXUj) .If i 1 .'
j=l i=l S ~j=l XVi + 'lé

5.2 Abelian eut diagrams

The high energy limiting form of the propagator, (5.1.2), leads to sorne În­

teresting results. It allows computing sums of Feynman diagrams with many
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• delicate cancellations in a simple way through special rules. This can be

achieved by using the eut diagrams which we shall describe in this section

and the next. The derivation of eut diagrams relies on two exact combinato­

rial formulas for the quantity a[V] in (5.1.4), the factorization formula and

the multiple commutator formula, derived in [22]. The latter will be used in

QCD calculations. We shall discuss the former in this section, and the latter

in the next section.

Consider a total of M photon (scalar particle) Unes grouped in an ar­

bitrary way into the form {nI, n2,···, nj} such that M =2:1=1 ni- Sup­

pose further that in each group, ni, the photons have certain ordering,

[VilVi2 ... Vin,] =Vi· We shall use the notation {Vi.; Vi; -. -;Vi} to denote the

set of all orderings of the M photon lines formed by merging photons from

different groups together, provided the relative orderings of lines within each

Vi are maintained. The number of orderings in this set is given by the multi­

nominal coefficient M!j rr{=1 niL For example, if Vi = [135], lI2 = [24], then

{Vi; V2} = {135; 24} consists of the 5!/3!2! = 10 orderings [13524], [13254],

[13245], [12354], [12345], [12435], [21354], [21345], [21435], and [24135].

We shall use the notation

a{"K; V2; ... ;Vj} = L a[V]
VE{Vl;V2;···;l!j }

(5.2.5)

to denote the SUIn of aIl amplitudes for the gluon orderings in the set. The

factorization formula [22] then states that

m

a{Vi; V2; ... ;Vi} = II a[Vi].
i=l

(5.2.6)

•
In particular, if each set Vi = [Vi] consists of only one photon line labeled by

Vi, then {Vi; 112; ... ;Vm } is the set of aU orderings of the m photon lines. In

that case the factorization formula reduces to the well-known eikonal formula
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[19, 36]. Other special cases of this formula have also been discovered before

[21, 37]. Since in (5.2.6) the ordering of the factors on the right side is

immaterial we will calI (5.2.6) an abelian eut role and the corresponcling

diagrams abelian eut diagrams.

It is useful to adopt an alternative notation for the right hand side of

(5.2.6) to denote II~la[Vi] simply as a[ViIV2I' . ·IVn]. This notation is sug­

gestive hecause the vertical bar can be interpreted graphically as a eut in the

fermion propagator between the last photon line of Vi and the first photon line

of Vi+l' For a eut propagator, instead of the usuai factor (s L:;=l XVi + iE)-l,

we have - 21rit5(s :E~=l XVi)' This notation is ~so convenient because it makes

(5.2.6) deceptively simple. It now reads a{Vi; V2;' . '; Vm } = a[ViIV2I· . ·IVm]i

we simply have to change the semicolons to vertical bars.

Out propagators are not limited to tree diagrams like Fig.(5.l.b). The

off-shell photons can be connected to other diagrams to form a composite

diagram that inherits the original cuts. The cut diagrams 50 formed are

similar to, but different from, the Cutkosky eut diagrams. Similar because

we have the same factors for the eut propagators, different because the cuts

here occur only on fermion Hnes whereas in a Cutkosky diagram they can

occur on any line. Moreover, via (5.2.6), our eut diagram represents a sum

of M!/ IIft=l nj! (uncut) Feynman diagrams, with their real and imaginary

parts fully included, which is unlike the Cutkosky diagrams in which only

the imaginary part or the discontinuity is represented.

It is clear from (5.2.6) that the faetorization formula ean he thought of as

a sum rule, to represent sums of Feynman diagrams as eut diagrams. As will

be diseussed in section 6, a eut diagram is easier to compute than an uneut

diagram. In this way not only it is unnecessary ta compute the individual

diagrams first, the eut diagram representing the sum is actually easier to
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• compute than just one single Feynman diagram.

5.3 N on-abelian eut diagrams

The method of abelian cut diagrams introduced in the last section can be

directly applied to QED diagrams as was illustrated. It can also be applied

to similar QCD diagrams but with sorne extra considerations due to the color

matrix ta at each gluon-quark vertex. One can, however, use an extension of

the factorization formula, (5.2.6), known as the multiple commutator formula

to be discussed below.

In order to incorporate the color matrices we have to extend our previous

notation of (5.1.4). 'Vith reference to Fig.(5.1.b), for n gluons attached to a

quark line we adopt the following notation,

A[VIV2 ... vn] = a[VIV2 ... Vn]t[VlV2 ...Vn ] =a[V]t[V] = A[V] (5.3.7)

where t[V] = t V1 tV2 ••• tvn ' What we want is a formula for the sum of the

n! permuted gluon orderings, A = EVESn A[V]. The generalization of the

factorization formula, the multiple commutator formula is [22],

A =L a[V]t[V] = 2: a[~]t[V;].
VESn VESn

(5.3.8)

•

It expresses the sum of a[V]t[V] in terms of sums over the corresponding

eut amplitude a[~]t[V;]. Compared to the eikonal formula this looks com­

plicated; instead of a single term on the right hand side we have now a sum

over n! terms. The complication is inevitable because we are attempting to

sum up amplitudes for every color. However, we shall see that many of these

terms are actually zero, and moreover, the cut diagrams on the right are

considerably simpler to evaluate than the uncut diagrams on the left. Again

delicate cancellations williargely be incorporated automatically as before.

53



•

•

It remains to say what each factor on the right side of (5.3.8) means.

Given a V = [VlV2 .•• Vn ], start from the rightmost number Vn and proceed

leftward until one cornes to the first number less than Vn • Put a cut just to the

right of this number. Then start from this number and proceed leftward again

until one cornes to the first number that is less than this number, and another

eut is put just to the right of this new minimum number. Continue this way

until the end and we have construeted the eut diagram ~. For example, for

n = 2, the 2 cut diagrams are (12]c = [112] and [21]c = (21]. For n = 3,

the six cut diagrams are [123]c = [11213], [213]c = [2113], [312]c = [3112],

[132]c = [1132], [231]c = [231], and [321]c = [321J.

To each eut diagram we associate a spacetime eut amplitude a[~] as

deseribed in the last section. Namely, it is given by (5.1.4) exeept the prop­

agator at a eut is replaced hy - 21rio(s Lj xu; ).

The eomplementary diagram V: of a eut diagram ~ is obtained as follows.

If a eut appears between two numbers in ~, then there will he no eut between

the same two numbers in V;, and vice versa. For n = 2, the complementary

cut diagrams are [112]' = [12] and [21]' = [211]. For n = 3, the complementary

cut diagrams are [11213]' = [123], [2113]' = [2113], [3112]' = [3112], [1132]' =

[1312], [231]' = [21311], and [321]' = [31 211].

When no cut appears in V; the color factor t[V;] is simply t[VlV2" . vn ] =

t Ui t U2 ••• t un ' If a cut appears between Vi and Vi+l, then the produet t Ui tUi+l

is replaced by their commutators [tui , tui+1 ]' If two or more consecutive

cuts appears, then the corresponding product of t's is replaced by multi­

ple commutators. For example, t[2113] = [t2, tt}t3 , t[21311] = [t2' [t3, tl]]' and

t[4131 2115] = [t4' [t3, [t2' tl]]]tS.
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•

5.4 Lightcone integration

In this section we will review the technique of lightcone. integration [19, 28].

As was mentioned in section 5.1 we adopt the lightcone coordinates for the

extemal as weil as loop momenta. In terms of lightcone coordinates we have

for each loop,

i 4 = dq+dq- fflq.l.. = ~ [vsdq+] dx [fflq.l..]
(21r)4

d
q 2(21r)2 (21r)2 4?T -2?Ti (21r)2

=~ [Vq+] dx [Vq.l..] .
41r

To find the asymptotic behavior of diagram we will need to take the foUowing

steps,

1. Performing the '+' integrations using residue technique and fiow dia-

grams.

2. Performing the '-' integrations. This will lead to the appearance of

powers of Ines).

3. The q.l.. integration will he left undone.

5.4.1 The '+' integration

Aside from being suitable for describing external colliding particles, light­

cone coordinates make the implementation of the residue technique more

straightforward. 8ince a· b = (1/2) (a+b- +a-b+) - a.l..· b.l.. each denominator

of a propagator is a linear function of qt. This means that each propagator

provides a simple pole for each '+' integration. The integration contour has

a part along the real qt axis and a semicircle part that we always choose to

lie in the lower plane. The result of integration is therefore - 21ri times the
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residue of the pole summed over all the poles in the lower plane. The ques­

tion now is which poles will he in the lower plane in a diagram with many

propagators. The answer clearly depends on the sign and relative magnitude

of '-' momenta which are components of loop momenta themselves. The

fiow diagrams will provide the answer pictorially [19].

In a fiow diagram the arrow on each Hne indicates the flow of the negative

component of the momentum, i.e., p_, a quantity which we always choose to

be positive. Because of this latter specification there may be more than one

flow diagram associated with each Feynman diagram. The reason is that in a

standard Feynman diagram an arrow would indicate a momentum irrespec­

tive of its sign but in a flow diagram, by our convention, we are required to

reverse the direction of the arrow and multiply the momentum by a minus

sign when the momentum is negative. Conservation of '-' momentum at

each vertex would prevent all arrows pointing toward or away from a vertex,

Le., such diagrams are zero. Also in any loop of a flow diagram, one would

generally have some of the arrows pointing in one direction and sorne in the

opposite direction. The two groups will have their poles on opposite sides in

the complex momentum plane. By choosing qt (or -qt) as loop variable,

which ean always be done, we ean make the group with fewer members to

have poles in the lower plane. A corollary of this latter property is that a

flow diagram whose one loop has all its arrows pointing in the same direction

will be zero.

To illustrate the above explanations consider the following two examples.

Figures (5.2.a) and (5.3.a) are Feynman diagrams and (5.2.b), (5.3.b,c) are

flow diagrams. Sinee the lower Hne is always the source of negative current, at

P2 the arrow points inward and at p~ the arrow points outward. In Fig.(5.2.b)

this will leave no freedom for the other flow lines but to be the way they
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Figure 5.2: Ca) A one loop Feynman diagram (b) its fiow diagram

(b)
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ql r ql - tl2 ~ 4 3 ~tl2 + .:l

2

•

Figure 5.3: Ca) A two-loop Feynman diagram, Ch) and (c) its fiow diagrams

are drawn. In Fig.(5.3.a), hûwever, since the direction of the arrow on the

boundary of the two loops can he changed there are twû fiow diagrams.

Following the above discussion we choose the pole of line 1 (marked with

an x) to be in the lower plane which would require -Pt to be the '+' loop

momentum in (5.2.b). In C5.3.b) for the right loop we choose the pole of line

1. For the left loop there seem to be two choices (2,4) and (5, 7). We have

chosen (5, 7) . The reason is that with the approximation of (5.1.2), qt never

appears on the propagator along the top tine, so apparent pales there are

actually absent. So for the choice indicated one essentially has only one pole

per loop.

5.4.2 The '-' integration

Having completed the '+1 integrations, all positive momenta are now fixed

by their values at the poles. In the propagators not taken as poles, we have

the product of positive and negative momenta (some linear combination of
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• Xi times s) plus the transverse part. As a short hand notation let am = k~J.

when k~ is the four momentum of the line. Since all Xi are positive, by our

earlier convention, the lower limit of Xi integrations is zero, but in arder for

the approximation in (5.1.2) to he valid the lower limit cannot he zero but

rather of the order of 1l2/s which is a lower cutoff and is consistent with

the leading-Iog approximation. In leading-Iog approximation, factors of !n(s)

appear when Xi are close ta the lower cutoff. Therefore we can safely ignore

Xi compared ta 1.

Following the '+' momentum integration of Fig.(5.2.b) with the pole as

indicated we will have
+ _ al - i€ '""'J

q - 0(1 - x) - 0 ,

so the denominator D and the numerator N are approximately

(5.4.10)

D = Tld2d3d4 ~ (1- x)a2a3(sx _ a4) ; N'""'J 4 [(2Pl) . (2p2)]2 _ g4s2
- 9 (2m)2 - m 2 '

(5.4.11)

where Tl is the coefficient of q+ divided by VS. Using (5.4.9) the amplitude

is,

(
1 ) g4 S / 1 hl dxM=- - - 1)q.l..-- ~2 -

47r m 2 a2a3 =.J... x•
= _ s In(se-i 1l") 4[. (Il)

47rm2 9 2 ,

where 12 (Il) is defined as

(5.4.12)

(5.4.13)

In (5.4.12), for small values of x the denominator (sx - a4) is negative

and therefore the logarithm picks up a factor of e-i7r •

In the second example of Figs.(5.3.b) the poles are at,

•
+ a3q --­
1 - ..;sXl
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• Therefore the denominator is

as(l - X2) aS(xl - X2)
~ [(1 - xdJ[ - a2][a3][ - a4][x2J[sxd[sX2]

X2 X2

~ s2a3aSxl[x2(a4 - as) + xlaS] , (5.4.15)

and the numerator is N = (2g6s3 )/m2• So the contribution of Fig.(5.3.b) is,

liA" _ (1)2 29
6s3 fv""" 1 f dXldx2

lV.Lb - - - -- ql.l.vQ2.l.--
47r m 2 a3aS xl[xlaS + x2(a4 - as)]

(5.4.16)

where the minus sign is an overall factor. Also, each loop has an i factor and

the factor of 1/(41r) is due to (5.4.9).

In Fig.(5.3.c) we have used a slightly different momentum labeling for the

lines which can be deduced from Fig.(5.3.a) by ql ~ q2 followed by a shift

qi -+ qi + Ll. Now if we let qi.l. -+ -qi.l., we can see that the Fig.(5.3.c) and

(5.3.b) are in fact equal. Therefore the total result will be

•

The above two examples illustrate the the main features of lightcone inte­

gration technique. In the next section, we will use this method to calculate

the 0(6) cut diagrams.

5.5 Review of the sixth-order calculations

With an overview of the lightcone integration method completed, we will

now consider the leading-log calculations related to the scattering of two

quarks up to 6th-order. The energy regime of interest is -t <t: S where s is

the square of c.m. energy and t = Ll2 is the square of momentum transfer.
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Figure 5.4: Quark-quark scattering in QCD up to 6th order. The thick lines
at the top and bottom of each diagram are the q-lines, and the thin lines are
gluon lines

As was mentioned earlier in the introduction, this calculation can be done

using the standard Feynman diagrams [19, 20, 21]. We will first review the

established results. The relevant topologically distinct diagrams up to 6th­

order are shown in Fig.(5.4). The 2nd order diagram is labeled A, the 4th

arder diagrams labeled BI and B2, and the 6th order diagrams Cl to C2l.

This last labelingl is identical to the ones used in Fig.(12.7) of Ref.[19].

Under the interchange of the Mandelstam variables s = (Pl + P2)2 and

•
lNote however that for later convenience the fermion arrows in Fig.(5.4) and all subse­

quent figures are drawn from right to left, reflecting the order one writes matrices as welI
as initial and final states on a piece of paper, whereas in Ref [19] they are drawn in a more
conventional way from left to right.
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u = (Pl - p~)2, the space-time part of each of these diagrams will either

remain unchanged, or will become identical to the space-time part of another

diagram in the set. For example, A f-+ A, B2 ++ BI, C2 f-+ Cl, C15 f-+ Cl6,

C17 H C19, and C18 ++ C20, under S f-+ u. There exist other symmetries

as weil, (Pl ~ P2 and p~ ~ p~) => (s 4- s , U 4- u) and (Pl ~ p~ and P2 ~

p~) => (s -+ s, u -+ u). Because ofthese symmetries many ofthese diagrams

are equal. With the normalization of Dirac spinors as uu = 1 the results are

In these expressions In is given by (5.4.13) and Il , J2 (A) and J3 (Ll) are
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defined by

1
Il - a'

JtFq.L 1
J2 - (27r)2 qi '

2

J(3 dq2 ) 3 ln(~ )
J3 = II ( il..)2 (27r)202(2: qil.. - il) 2 2 ( ~S.L _ 2 ) (5.5.19)

i=l 21r i=l Ql.1.q31.. Q2.1. Q31..

The functions 12 , 13 , J2 , J3 are denoted respectively by l, Il, K, 12 in [19].

The infrared divergence of these integrals can be regulated by a mass, either

put in by hand or via the Higgs mechansim. This regulation, discussed in

the literature [19, 20, 21, 34], does not affect the following discussion so we

shall ignore it. There is, however, an ultraviolet divergence in the integral

defining J2 (il), but it turns out that this function disappears in the SUffi of

the sixth arder diagrams sa it will cause no trouble.

The factors G i are the basis color factors depicted in Fig.(5.5) with c =

N /2 for SUCN) colors. Although these are not independent it turns out that

they willlead ta Reggeon resummation. Color decomposition of diagrams

A - 021 can be easily carried out, see App.O, in a complete graphical manner

[19] using the pictorial equivalent of the color commutation relations and the

identities

The color decomposition of each diagram in (5.5.18) remains valid irrespec­

tive of the color content of the quark, although the G i themselves would be

different for different color of the quark.

The sum of all the terms in (5.5.18), from A ta 020, is

g2S { 1 [ ( 1 2 2 ( )] 1. 2 ( g2 C ( ))T - 2m2 - a 2 1 - a ln s) + "2a ln s . G l + 2~g 12 - -;-[3 ln s . G 2

+i:: In(s) [la - ~b.2Ii] .Ga + ~4 la . G 4 } (5.5.21)
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with
2

Q(~) = ;1r C~?12(~) . (5.5.22)

The coefficient of G I suggests the t-channel reggeized gluon te sixth­

arder. It is important ta note the various cancellations that takes place ta

make the SUffi (5.5.21) vastly simpler than the individual terms appearing in

(5.5.18). For example,

1. In the fourth arder, the leading term proportional ta In(s) is cancelled

out between BI and B2 in the color amplitude proportional to G 2 ,

though not in G l .

2. In the sixth arder, the leading ln(s) contributions ta G 4 from C15

to C20 also add up ta zero. The expressions given in (5.5.18) are

not accurate enough ta deal with the subleading terms. The term in

(5.5.21) proportional. ta G 4 is obtained separately from the eikonal

formula.

3. As a result of these cancellations, the energy dependence and the

SU(N) (or c) dependence of the G l amplitude is [g2 c ln (s)]m, and

those of G 2 , G 3 and G 4 are respectively g2 [g2 C ln(s)]m, g2 [g2 In(s)]m,

g4[g2 c ln (s)]m. These dependences can he summarized ail at once by

introducing a different notation for the color factors. We shaH use the

notation Fi,; ta denote a color factor with i paraHel vertical lines con­

necting the two fermions, and j paraHel horizontallines joining any two

of the vertical gluon lines. We shaH also write Fi,a simplyas Fi' The

relations with the color factors G i are G I = FI, G 2 = F 2 , G 3 = F 2tl ,

and G 4 = Fa. The g, c and ln(s) dependences of Fi'; in (5.5.21) are

then given by g2(i-l) [g2 c ln(s)]mc-; for a diagram of arder 2(m+i). We
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• shall refer to such dependences as Regge-like, for the Reggeization of

the scattering amplitude to be discussed later relies critically on this

feature of the scattering amplitude. Note from (5.5.18) that contri­

butions from individual diagrams are not Regge-like. Qnly the sum.

is.

4. Simplification in transverse-momentum dependences also occurs in the

sumo The simple integrals In survive, but the complicated integral J3

and the divergent integral J2 do not appear in the sumo This cancel­

lation is highly nontrivial because both of them contribute different

amounts to different color amplitudes. More specifically,

5. The function Js(~) appears in all the color amplitudes G I , G 2 , G s and

G 4 in diagrams C15 ta C20. Those in G 2 , G 3 , G 4 actually get cancelled

out in the sum, but its presence in the GI amplitude survives. However,

since this term is of arder g6 ln(s), it is negligible compared ta terms of

arder g6ln (8)8 appearing in the G I amplitudes of 02 and CIl ta C14,

it can be ignored in the leading-Iog result displayed in (5.5.21).

6. J2(~) appears in the color amplitudes G l , G 2 and G s in individual

diagrams Cl to C14 and ail these appearances get canceiled out.

As a result of these cancellations, r acquires a very simple interpretation

in terms of reggeized gluon exchanges . These exchanges are constructed in

such a way ta ensure 8-channel unitarity [19, 21].

Let us denote the reggeon propagator by

64

This reduces ta the (transverse part of the) ordinary propagator Il (A) = A-2

•
1

RI(~' 8) = Ll2 exp[-a(~) In(s)] . (5.5.23)



• for small g2 c ln(s ). Similarly, let us denote the reggeized version of In (Â) by

(5.5.24)

indicating the exchange of n reggeons. Then to order g6 in 7, we can write

7 =

(5.5.25)

•

In other words, the Ft, F 2 , F 2•1 , and Fa components looked precisely like dia­

grams A, BI, Cl, and Cl5 respectively, but with the vertical gluons replaced

by their reggeized version whose propagators are given in (5.5.23), and with

ail longitudinal-momentum integrations omitted. To interpret it this way

for R211F2,1 we need to know the Lipatov-Dickinson vertex [38, 39] describ­

ing how elementary gluons are produced and absorbed from the reggeized

gluons.

This remarkable simplicity and regularity led to the conjecture [19, 38]

that the reggeized formula (5.5.25), suitahly generalized, is the correct high

energy limit to all perturbative orders. This conjecture is very difficult to

verify on account of the sheer complexity in higher arder calculations. For

QCD in the 8th arder it is simply not manageable without simplifying as­

sumptions. If one assumes aIl cancellations occurred up to 0(g6) will also

occur in higher arders, the final result can he extracted from a relatively small

set of diagrams. It is reported that this reggeization conjecture is true to 8th

and IOth arders [38]. Even so these heroic calculations are sa lengthy and

complicated that to our knowledge the full details have never been published.
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Figure 5.5: Color basis.

5.6 Sixth-order eut diagram ealeulations

Cut diagram calculations would require that we redraw the diagrams of

Fig.(5.4) following the prescription described in section 5.3. We would there­

fore generate two new sets of diagrams, one for the spaee-time part and one

for the color part. Then straightforward calculation will be carried out on

individual elements of each set. For the sake of eut diagram calculations

the group C1-C21 will be split into four sets, 81=C1+02+021 01+C1,

82=03+C4+C7+C8+011+C12 , 83=05+C6+09+C10+C13+014 and

84=C15+C16+C17+C18+C19+020.

Due to the symmetries deseribed in section 5.5 82=83, so calculation

of 82 will be sufficient. The reason for this grouping is that the multiple­

commutator formula gives a resummation of a set whose members are ele­

ments of a permutation group.

To implement the cut technique the first step is the numbering of the

gluon lines as is required by the cutting prescription. Following the rule ex­

plained in section 5.3 we get the space-time cut-diagrams shown in Fig.(5.6).

The corresponding eolor eut-diagrams and their decomposition into the eolor

basis is shown in Fig.(5.7). The color deeomposition of the eut diagrams can

be earried out in a completely pictorial way using graphical identities of

App.(C). We now proceed to calculate the space-time cut diagrams. The

method of ealculation is similar to the uneut diagrams described in sec-
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Figure 5.6: Spaee-time eut diagrams
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•
Figure 5.7: Color eut diagrams
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• tion 5.4 with the exception that each cut propagator has to be assigned

-27ri8(q2 - m 2) ~ -27ri5(sx) rather than (ri - m2 + i€)-l, where q is the

four-momentum of the Hne and q- =sx = S Ei Xi.

5.6.1 Diagrams Ac, BIc and B2c

The first diagram, A, is quite simple. It is equal to

(5.6.26)

The flow diagrams for Ble and B2e are shown in Fig.(5.8.a,b). For Ble we

have,

therefore

< BIc>

+ al
-q = y'S(1 - x) '" 0 (5.6.27)

(5.6.28)

Note that integrating 8(x) from zero ta l has praduced a factor of (1/2)

because only half of delta function is integrated.

Next is diagram B2c. The flow path is shown in Fig.(5.8.b). From the

figure we see that again

•

and therefore

< B2c >

. al
_qT = y'S(1 _ X) '" 0 ,
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Figure 5.8: Flow diagrams
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• 5.6.2 Diagrams CIe and C2e

In diagrams Cl and C2 it is advantageous to first combine them with C21.

In so doing one achieves a cancellation of longitudinal terms before any in­

tegration is performed. Consider Fig.(5.8.c). The numerator of this diagram

is

g6 8 2
NI ~ G s 4m2[gP-(ql - 2q2)+ + gP+(q2 - 2qd- + g+-(ql + q2 - 2Ll)P]

xgPV [gv+(q2 - 2qr)- + gV-(ql - 2q2)+ + g+-(q2 + qr)V]

g6 8 2
~ Ga -2 [qïqi - (qi + q2)1. . (qi + q2 - 2~)1.] , (5.6.31)

m

where we have implemented qt ~ qi ~ 0 , since the dominant contribution

comes from this region. Next consider Fig.(5.8.d), the numerator is

g6 8 2

N2 ~ [G3 +2c G 1 ] 4m2[glJ-(ql - 2q2)+ +gp+(Q2 - 2ql)- + g+-(ql +q2 - 2Ll)P]

xgIJV [gv+(q2 - 2qr)- + gV-(ql - 2q2)+ + g+-(q2 + qr)V]

g6 8 2
~ [G3 + 2c G 1]-2[qïqi - (qt + Q2)1. . (qt + q2 - 2A).d . (5.6.32)

m

Lastly, consider the C21 diagram. The numerator of this diagram is

g6 8 2
N21 = 4m2(qi - q2)2[Gsg+-g+- + (Ga + 2c2 Gt)g+-g+-]

g68 2
~ -2[-qïqi - (qt - q2)1J[Gs + (Gs + 2cG1 )] •

m
(5.6.33)

•

Combining color factors of N21 with their counterparts from NI and N2 we

will get

(5.6.34)
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•
In the last step of (5.6.34) we have rewritten qLL • ~J... as

1 1 1 1 1 2
~. qu. = 2~· qiJ... + 2~ . qu. = 2~J... .(~- qi)J... + 2~J... . qiJ... = 2~J... .

As was previously mentioned, the longitudinal terms are cancelled out. Now

we can implement the cutting prescription and obtain the diagrams which

were shown earlier in Fig.(5.8.c,d). In this figure we have

+ al + + a4-ql = rv 0 ql - q2 = ---==------
y'S(1- Xl) VS(XI - X2)

D = (1 - xd[a2][a3](XI - X2)[ X2
a

4 + as][ X2
a

4 + as] ,
Xl - X2 Xl - X2

and the dominant contribution cornes from the region X2 «: Xl. Therefore

we will have

(5.6.36)

The calculation of C2c is similar except for the upper fermion line which is

uncnt and therefore there will be a (XIX2) factor in the denominator resulting

in a factor of ln2 (s), giving

71•
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• The flow paths relevant to these diagrams are shown in Fig.(5.8.e-j). Con­

sider, for example, C3c • With the poles taken as indicated in the figure we

will have

(5.6.38)

for which the numerator D and the denominator N are

(5.6.39)

(5.6.40)

With the dominant contributing region being X2 ~ Xl we will have,

(5.6.41)

•

Next consider diagram (5.8.f). Choosing the poles as shown, the '+' momenta

are fixed as in (5.6.38), then the denominator D and the numerator N will

be
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• The dominant contribution comes from X2 ~ Xl and we will have in this case

Next consider C7e and CBe • As one can see, because of the eut, the negative

carrent fiow is forced ta go round in the (3,4,5) loop and therefore both these

diagrams will vanish

C7c = CBc = O·

Diagrams ClIc and Cl2c can likewise be calculated with the result

968 In2(8)
ClIc = Cl2e = 327f2m 2 12J2 •

5.6.4 Diagrams C1Se - C20c

(5.6.45)

(5.6.46)

•

We now come to the last six diagrams. The first in this set is C15c ' This

diagram is a bit tricky to calculate using the method employed 50 far. The

reason is a combination of the following facts. There are two cut lines, the

relative magnitude of the small '-' fiaws matter and this produces two fiow

diagrams without poles on the lower fermion line. Ta calculate this diagram,

one cau use the factorization formula explained in section 5.2. Because of

the cuts on the top line, one can interchange the location of the lines in any

of the six possible configurations. This will now allow the application of the

factorizatian formula ta the lower fermion line. This is shown pictorially in

Fig.(5.9). We then will have

CISe ~

(5.6.47)
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Figure 5.9: Factorization formula applied ta C15c

Next is C16c • There are two flow diagrams as shown in Fig.(5.8.k,1). For the

flow diagram (5.8.k) we have

and accordingly the denominator D is

(5.6.48)

The dominant contributing regÏon is Xl ~ land X2 « 1. So we will have,

C16~ ~

(5.6.50)

The contribution of C16~ is identical to that of C16~ and therefore their sum

is equal to

•
C16c = C16~ + C16~ = 2C16~ ~
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• We continue with diagrams C17c and C18c • In these diagrams, because of

the cut the negative current is forced to flow round the loop (12345) and

consequently the diagrams will vanish. Therefore we have

C17c = C18c = 0 . (5.6.52)

Lastly, we have C19c and C20c. Diagram C20c is basically the same as the

uneut diagram and straightforward calculation gives

020c = (5.6.53)

we do not need to caleulate diagram 019c sinee its corresponding eut color

diagram vanishes.

5.6.5 A recap of the final results

Before we conclude this section it would he worthwhile to summarize the

results of the previous three subseetions. The quark-quark scattering caleu­

lations using eut diagrams of Fig.(5.6) and (5.7) led to the following results,

Ac
g28

- 2m211(Ll) . G 1 ,

BIc
ig4s

- 4m2 12 • (c G 2) ,

B2c - g48 ln(s) .z: (Ll) . ( G)
4 2 2 Cl,1T'm

C1c ig
6
8 ln(s) [!Ll2L2 _ J. J.] • G
41r 2..L 2 2 2 3 ,

C2c - g68 In(s? [.!.Ll2 L2 _ J. J.] . ( 2 G )
81T'm2 2 ..L 2 2 2 CI,

03c - i9
6
8ln(S)J.J. G

161T'm2 2 2· 3,

C4c
g6 s

- 16m2 12 J2 • (G3 - C G 2 ) ,

ClIc - 012 = 9
6
s In

2
(s) .z: J. . (-2 2 G )

c 321T'2m 2 2 2 CI,
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C16e -

C20e -

• C15e
g6

- --I3 ·G412m2 '

9
68 !ne8 ) J. . ( 2 G )
4 22 3 Cl,
1rm

i9
6
s !nes) l . ( G _ G )

8 223 C 2 3,
1r m

- CBe = C17e = C18e = C1ge = 0 . (5.6.54)

•

5. 7 Discussion

Having demonstrated the eut diagram calculations at sorne length we notice

the following:

1. In(s) factors that get cancelled in the sum of the Feynman amplitude

(see points (1) to (3) in Sec.5.5) never even appear in (5.6.54). Can­

cellations of this kind are automatically built into the eut diagram

formalisme

2. The transverse function J3 appears only in C16e in (5.6.54). This ex­

pression survives the sum but can be ignored compared to the contribu­

tion from C2e• In other words, as opposed to the Feynman amplitude

(5.5.18) where J3 appears in many places, most of them being cancelled

out at the end (see points (4) and (5) in Sec.5.5), in the eut amplitude

J3 do not appear except when it survives the sumo

3. The eut amplitude is not as suecessful in cancelIing the transverse func­

tion J2 (point (6) of Sec.5.5), although there is still an improvement

here over (5.5.18) in that J2 appears in fewer places. In fact, it appears

in C3e to C20c only when absolutely needed to cancel its previous ap­

pearance in CIe and C2e. In order for J2 to disappear completely it

is necessary to combine diagrams with triple and four gluon vertiees

together using the Lipatov-Dickinson vertex [34]. The technique of eut
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•

diagrams by itself, which deals mainly with the fermion lines, is not

sufficient for that purpose.

4. Other than the J2 complication mentioned above, the summands of

the final answer (5.5.21) appear directly in the eut amplitudes. In that

sense the eut amplitudes are as economical and as simple as they can

ever be. In particular, the Regge-like feature mentioned in point (3) of

Sec.5.5 is present already in individual eut diagrams.
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Chapter 6

Eighth-Order Diagrams with
4-point fermion loops

Leading log calculations, as were previously discussed, does not lead to the

correct asymptotic amplitude of parton scattering since the total cross sec­

tion following such calculations violate the Froissart bound. This fact is a

hint at the relative importance of non-leading contributions since the sum

of non-leading terms can in principle be comparable or even higher than the

sum of leading terms. Such contibutions come from different sources. One

such source is the same class of diagrams that has already been considered

only ta leading log approximation. Systematic improvement to subleading

contributions is very difficult ta conduct for such diagrams and so progress

along this direction faces serious problems. Another source of subleading

contributions has a more subtle nature. Current finite arder calculations

seem to support the picture that t-channel exchanged gluons fuse inta a

composite, color-octet object dubbed a 'reggeized gluon' or 'reggeon'. The

exchange of a single reggeon, therefore, will accur in the color-octet channel.

The exchange of two reggeons, however, will occur in both the octet and

singlet color channels. The color-octet contribution of two reggeon exchange

is subleading to that of a single reggeon exchange since it carries an extra
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•

factor of O!". 80, as can be seen, leading log calculations of Feynman diagrams

willlead to a multi-reggeon exchange resummed structure (verified explicitly

to sixth-order) within which one can identify leading as weil as suhleading

contributions in certain color channels. There are recent studies along this

direction[23, 24].

Another source of suhleading contributions whose study is not as exten­

sive as pure gluon exchange diagrams are diagrams with fermion loops. The

study of such diagrams goes back to the work of Cheng and Wu [19, 26] in the

context of QED. In electron-electron scattering experiments, the exchanged

photons can produce electron-positron pairs. The fact that photon-photon

scattering in QED is UV finite enables one to carry out the calculations

without need to regularize the diagrams. Performing sunHar calculations in

QCD, however, requires one to regularize the diagrams first. The purpose of

this chapter is to take this step and find the high energy behavior of three

eight-order diagrams that have been considered by Cheng and Wu in the

context of QED.

6.1 Fermion loop subdiagrams

The diagrams of interest are shawn in Fig.(6.1). In order ta calculate the

high energy behavior of snch diagrams it will he helpful to look at the similar

QED situation first. This has been extensively discussed by Cheng and

Wu [19, 26]. In their treatment, in the leading log approximation, each

of the three diagrams, similar to Fig.(6.1), tum outs ta carry quadratically

divergent factors of transverse momenta. These factors cancel out in the sum

of the three diagrams as one would naturally expect since the four photon

subamplitude is finite without any need for a counter terme

The presence of quadratically divergent factors in their calculation for
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• each diagram is a point that makes these results not suitable for the cor­

responding QCD situation. In fact the quadratic divergence is something

unexpected to begin with. By power counting the expected divergence is

just logarithmic. The reason for this inconsistency is the imposition of high

energy approximations, implemented without having dealt with the diver­

gence of the fermion loop subamplitude.

In QCD however, one is 0 bliged to deal with the UV divergence of the loop

first. So before any high energy calculation can he achieved it is necessary to

regulate the fermion loop subdiagram. Then after removing the divergence

using a 4g counter-term one can move on to the asymptotic calculation. This

is basically what we intend to do in this chapter.

In this section we will present the details of the regularization and re­

moval of the divergences of the fermion loops. Then, in the next section,

these results will he used in the calculation of the high energy behavior of

the 8th-arder diagrams. We will then see that as a result of regularization

the 8th-order diagrams demonstrate ln3(s) behavior.

First, we briefl.y write clown the the expression of the 8th-arder diagrams.

Referring ta Figs.(6.1.a,b,c) we have the following three amplitudes respec­

tively,

(6.1.1)

•

2

(M2){~ ~ (ig
4

) ;2 (Wegcd){~NI-'CTZlP / JI VPi
1=1

2

(M3){~ ~ (ig4
) ;2 (Wegcd){~Nl-'uZlP / JI VPi

1=1

VPi = d?-Pi.L dXi dpt
(21r)2 21r 21r
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(A )JJPZlU
2 ecgd

D'

(A )JJZlUP
3 ecgd

D

(6.1.2)

(6.1.3)

(6.1.4)
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Figure 6.1: 8th-order cliagrams.

(6.1.5)

(6.1.6)

~ = (-18,0;0) p~ = (0, -/$; 0) . (6.1.7)

•

In the above expressions Al, A2 and As represent the fermion loop subam­

plitudes of Figs.(6.2.a,b,c), respectively. As was mentioned at the outset we

will calculate these subamplitudes first. Starting with the amplitude of the
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• diagram of Fig.(6.2.a) we have

(6.1.8)

(6.1.9)

(6.1.10)

- rI A-++-
egcd l ,

A-++­
l

CA )-++-
1 egcd

TT (TeTgTcTd) + TT (TeTdTcTg)

Nf d4- g4Ej-q ...
f (27r)4

-TT [/-(g + ml)/+(, - 'lA + mf),+(, - fP. + mi),-(g - r/2 + mf)]

x [q2 _ m}] [(q - .6.)2 - m}] [(q - PIF - ml] [(q - P2)2 - m}J .
The reason for having only one index configuration in (6.1.8) is due to the fact

that Pa and Pb in (6.1.7) have only one nonvanishing lightcone component.

Introducing Feynman parameters ZI,Z2 and Z3 and moving ta n = 4 - 2e:

dimensions will cast the above expression into the form

Al =

j 1Jza =

(6.1.11)

(6.1.12)

where we have suppressed the upper indices of Al for brevity and we have

used

(,+)2 = (,-)2 = 0 ,~f,± = gl..,=F,± ,±g/=F = 2q±,± il.. =-ffJ...;Y.L

(6.1.13)

to simplify the numerator. Using the standard integrals, listed in App.(D)

for reference, and after sorne algebra the above expression becomes

(6.1.14)

82

-32i1r2g4J.L2e ~ j 1J [-7r-e r(e)f.L2e -(k1 + Pl)+(kl + P2)- + m]
(27r)4 7 Za (21r)-2eDi + Dl

(kr.L + kl.. . .6..1. + m})(kl + pr)+(k1 + P2)- J
+ D~

Al =

•
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Figure 6.2: Fourth-order subdiagrams
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• where ki, Mf and Dl are defined by

2 2 A2 2
- -ZlPI - Z2P2 - Zo~ + m, '

k 2 M2 .- l - 1 + 'tE •

Now u5ing

(6.1.15)

(6.1.16)

(6.1.17)

1
r(e) = - - 'Y - O(e)

ê
(6.1.18)

(6.1.19)

we will get

-32i7r2g4 f-L2e NI! [-1 -ml kî +Mf
Al = (2 )4 L 1)za -+'Y- 1 + ln[-42]+ln[ 2]

1r f ê 1rf-L m,
-(kl + Pl)+(k1 + P2)- + mJ

+ Dl +1

(k~J.. + k1J.. • ~l. + m})(k1 + pr)+(kl + P2)-]
+ D2

1

where we have added and subtracted 1 and ln(-ml/ (41rf-L2)] 50 as to make

the subtraction at zero-momentum point easier.

Next we take the diagram of Fig.(6.2.b). The propagator structure of this

diagram is similar ta that of the previous diagram. So without any further

work we can write

(A )-++-
2 ecgd

r~C9d -

r 2 A-++-
ecgd 2 A-++- - A-++-

2 - 1 , (6.1.20)

(6.1.21)

Next is the diagram of Fig.(6.2.c). By straightforward use of Feynman rules

we get

(A )-+-+ r 3 A-+-+ (6.1.22)3 ecdg - ecdg 3 ,

r;cdg - Tr (TeTcTdTg) + Tr (TeTgTdTc ) (6.1.23)

Nf d4
A-+-+ - g4 2(J(21r)4 (6.1.24)3
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• -Tr["{-(g + m,)"{+(g - rA + m,)"{-(g - rA - rh + ~ + m,)"{+(ti - rh + m,)]x .
[q2 - m}][(q - PI)2 - m}][(q - P2)2 - m}][(q - Pl - P2 + ~)2 - m}]

Introducing Feynman parameters and moving to n = 4 - 2e dimensions the

above expression will take on the form

where

A = l'(4) g4,,4(2-n/2)~ f 1Jz f r],nq N
3 fA' 7 b (27r)" D~ ,

(6.1.25)

(6.1.29)

•

N - -32 [(<Ji + mJJ2 + 2(ql. . pa)(ql. . P2l.) - P~l.(ql. . Pa)

-pi-L (q-L . P2-L)(rl + mJ) [pî-L + P~-L + PI-L . P2-L - 2q-L . (Pl + P2)-L

-~-L . (Pl + P2 - q)-L ] + (q-L . PI-L)(P2-L . ~-L)

+(ql. . P2l.)(Pa . t.l.) - (Pa . P2l.)(ql. . .t.l.)] , (6.1.26)

De; - q2 - 2q . [(1 - Zo - Z2)PI + (1 - Zo - Zdp2 - (1 - Zo - Zl - Z2)~]

+ ZIP~ + Z2P~ + (1 - Zo - Zl - Z2)(Pl + P2 - ~)2 - mJ + iE ,(6.1.27)

f 'Dzb - 101dZo 101-zo
dZ1101-zo-z1 dZ2 • (6.1.28)

Here we have used the identities in (6.1.13) and have carried out the gamma

algebra in the numerator N. Note that the upper indices of A3 have been

suppressed for conciseness. Now performing the q integration using integral

relations of App.(D) and simplifying the result we obtain

-32i7r2g4
p,2ë Nf f [27r-ëI'(e)j.L2ë ~' ~]

A3 = (27r)4 ~ 1Jzb (21f")-2ëD~ + D~ + D 3 '

where

(6.1.30)
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• Ns = -2ki.l. -[(Pl +P2)i - Lll.· (Pl +P2)1. +2m}] -2k31.·[2(Pl+P2)-Ll]1.'

(6.1.31)

where in turn

k~ (1 - Zo - Z2)Pi + (1 - Zo - zd~ - (1 - Zo - Zl - z2)Lltf3,1.32)

Mi - -zlPi - Z2P~ - (1 - Zo - Zl - Z2)(PI + P2 - Ll)2 + m} ,(6.1.33)

D k2 M,2 •
3 - - 3 - 3 + Z€ •

Using (6.1.18), the first term in (6.1.29) can be simplified to

(6.1.34)

-32i1r2g4J.L2ë N, /
A3 = (21r)4 ~ 1)zb (6.1.35)

[ 2 -ml [k~ + Mi ~' Ns]x - - 2, + 2 - In[--] - 2 ln ] + - - 1 + - - 2 .
ê 41rJ.L2 m1 D~ D3

Each of the results in equations (6.1.19),(6.1.20) and (6.1.29) carry the UV

divergent part Ile. The last diagram is the 4g counter term which will cancel

these UV divergent terms by a suitable adjustment of the constant Z4. The

amplitude of the diagram of Fig.(6.2.d) is,

(6.1.36)

(6.1.37)

•

Now by equating the sum of the divergent parts (plus constant terms) of

A I ,A2 and A 3 with~ we find Z4 to be

ig2 [1 Nf -m} ]
Z4 = 1 + - NIC - - 'Y - 1) + "ln[-] ,

121r2 e 7 41rJ.L2

which means we have subtracted the constant at Pi = ~ = I:i.lJ = 0 from

each of the three diagrams. The regularized results for the three fermion

loop subdiagrams are then

-32i1r2
g4 Nf [k~ + Mf NI Nt- M.+-}

(211")4 ~!VZa ln[ m} 1+ Dl + Dl + Df 6.1.38)
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• N k2 2 2 A21 - 1..L - ZlPl..L - Z2P2..L - ZO~..L ,

(6.1.39)

(6.1.40)

N+- -1

!I..+- -1

A3reg

where

Ns = -4ki..L + [1 - 2(zo + Zl + Z2)] (Pl + P2)i - 4ks..L . (Pl + P2)..L

+2z1Pi..L + 2Z2P~J.. + 2k3J.. . dJ.. - [3 - 4(zo + Zl + Z2)]~J.. • (Pl + P2)J..

+2(1- Zo - Zl - z2)di ,

lVt- - 2ktk3 - 2zl PtPl - 2z2P[P2"

(6.1.42)

(6.1.43)

•

In A1reg and A2reg only N l / Dl and in A 3reg only Ns/ D3 will produce leading

asymptotic terms. This is because in the other terms one either has or will

produce '±' momentum components in the numerator (as a result of having

a second degree pole). These will subsequently produce Xi factors in the

numerator which have dampening effects, i.e., they will reduce the power of

In(s). Using the result of (6.1.38), (6.1.39) and (6.1.41) in the next section

we will carry out the calculation of the asymptotic behavior of 8th-arder

diagrams.

6.2 8th-arder Calculations

In order to determine the high energy behavior of the 8th-arder diagrams it

is necessary ta carry out the integration over the '+' and '-' components of
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• momenta Pl and P2·

Starting from (6.1.1) with Al given by the NIlDl term of (6.1.38) (Dl is

given by(6.1.17) we have,

(6.2.44)

where

where in turn

(6.2.45)

X[SXI - a7] [v'S(1- xr)pi - alO]

Dl = vsptFI - vsptF2 - Tl + ie ,

(6.2.46)

(6.2.47)

(6.2.49)

Now we begin by carrying out the pt integration using the residue technique.

The denominator has poles for certain value of pt. These are

+ as 6 - iep - ---:.'-­
la - .;sXl

. + _ alO - ie
, Plb - v1S(xl - 1)

•

The location of the poles in (6.2.50) depends on the sign and magnitude of

Xl and X2. Throughout this section our convention for closing the contour

is as follows. For xl(or X2) < 0 we close the contour of pt (Pt) integration

from below and for 0 < xI(or X2) from above. Table 1. summarizes the pole

locations.
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• Xl < 0 p~ t, pil, t X2 < {31 Pt: .ij.
/31 < X2 P~t

o< Xl < 1 pt .J.. 1 pil, 11 X2 < /31 Pt: .J..
/31 < X2 Pt: 'ft

1 < Xl pt.J.. , pil, .J.. X2 < /31 Pt: .J..
{31 < X2 Pt: 'ft

Table 1.

Here {lI is defined by,

(6.2.51)

(6.2.53)

(6.2.54)

In this table and later such ones t (.J..) specify a pole residing in the upper

(lower) half plane. Also îl (.ij.) indicates that the pole is being enclosed by a

contour closing from above (below). Using this information the result of pt
integration is

[1
00

dX2 rI dXI DNI + f {OO dXI (XJ dX2 -10
dXI r/3 dX2} DN1]

-00 Jo lb l.1o J/3 -00 1-00 le

(6.2.52)

where

1::( ) [ XlalO ] [XlaiO ] [r:: + ][ 1:: + ]y S Xl - 1 1 _ Xl + aS 1 _ Xl + a6 y SX2P2 - al y SX2P2 - a2

X[SX2 - a1] [:ll~~ - vlsF2Pt - Tl] ,
- ..;sFI [..;sX2Pt - al][VSX2Pt - a2][SX2 - a7]

x[Xl (~: + vlspt~:) - as] [Xl (i + vlspt~:) - as]
x [eXl -1) (~: + vlspt~:) - a lO] .

80 we see that the pt integration has generated three terms. Next is the pt
integration. The first integral has pales for the following values of pt,

•
+ Tl - i€ aioFI

P2e = r; D + ( ) r;t ,
-y S.L'2 Xl - 1 .L'2
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• where pole locations are given in table 2.

X2 < 0 P{d t p~t

o < X2 piz .L. X2 < Xl pte 11
Xl < X2 p~ -!-

Table 2.

Here we have
hXl

F2 = 0 => Xl = X2 = /2 . (6.2.56)

As for the poles in pt of the second and third integrals, they occur at,

(6.2.57)

•

with pole locations in Table 3.

Xl < 0 X2 < {3 < 0 pt! t , p~ t , pth t
o < Xl < 1 o< {3 < X2 pt, .L. , piq .L. , pth il

1 <Xl o< {3 < X2 pt, -!- , p~ -!- , pth -!-
Table 3.

There is only one non-zero pole contribution, that ofpth' Thus pt integration

in (6.2.52) will give

where
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• Having completed the '+' momentum integrations we still have the Xi and Zi

integrations to do. As one can see Ml receives contributions from different

regions of the Xi (and Zi) integrations but enhancements come from certain

regions only. So, for the asymptotic behavior of M17 it would be sufficient

to determine those regions as 8 -+ 00. Let's consider the first integral in

(6.2.58). Inspecting the denominator D lbe , we see that at F2 = 0 and Xl = 1

it equals infinity causing the integrand to vanish. This situation occurs at

the upper bound of Xl and X2 integrations. We do not, therefore, expect a

major contribution from those points. To avoid those points let us demand

that
hXI -1/8

x2 < /2 '

which places restrictions on Xl and Zlt2 as weIl,

(6.2.60)

1
0< hXI-­

8

1
sk < Xl < 1

1
- < Z2 < 1- Zl
SZI

(6.2.61)

1 2
=> -; < Zl - Zl

Also by introducing a cutoff p we can avoid Xl = 1. Now consider values of

X2 sufficiently small such that,

(6.2.62)

•

Also Xl could be sufficiently small such that 8~ < Xl ~ 1. This is the region

of main contribution to Ml. Because of the smallness of Xl and X2 one can

actually ignore the terms proportional to Xl and X2 in the factors of the

denominator in Dlbe • In F2 , the X2 term cau now be ignored compared to Xl.

Now consider the second integral in (6.2.58). The major difference in this

integral is that X2 is bounded from below and therefore this integral will not

make a leading contribution. One can then write
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•

where ç is a small constant introduced to meet the requirement of (6.2.62).

Before performing the integrations let us define a new variable, x~ = ÇAXI

in terms of which

(6.2.65)

•

Now integration over X2 yields

X NI h 1 [ln(sx~) - i1l"]
sala2aSa6 Xl

AlI that is left is the x~ and Zi integrations. This is a long and tedious

calculation and we will spare the reader the details and simply state the final

result which is

_g88 Nf

321r4m 2 2:
f

Jrr2 'DPi.L { ln
3

( 8 ) [2 2 (P) 5 2 ]
6 -PLL - P2.L + 1 + P2 .L. ~l. + -6 Â J...

i=l ala2aSa6

. [ln
3
(8) 2 ln

2
(8) { 2 2 ) 52}] }

+~1r 6~.L + 3 Pl.L + P2.L - (Pl - P2 .L • Â.L - fi.Ll.L .

(6.2.67)
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• We now proceed to calculate the next amplitude, M 2 • As one can see from

Fig.(6.1a,b) the only difference between M 2 and Ml is in the propagator of

the upper fermion line. The calculation is then sunHar to (6.2.65). We can

thus write,

(6.2.68)

(6.2.69)

•

This integral will not develop an imaginary part. Carrying out the X2 inte-

1 Nlln(SX~)x .
s ala2aSa6

Now performing the long integrations over Xi and Zi'S we get,

g8s N,
M2 ~ 4 2" (6.2.70)

321r m LJ
f

Jrr2 VPiJ.. ln
3
(s) [2 2 (P) 5 2 ]x 6 -PlJ.. - P2.L. + 1 - P2 .L. • ~J.. + -6~.L .

i=l ala2aSa6

The last amplitude is that of (6.1.3). As was mentioned earlier only the term

Ns/ Ds of ASreg in (6.1.41) will have the leading contribution. So taking that

term we have from (6.1.3)
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• where N3 and D are given by (6.1.42) and (6.1.5) respectively, D 3 is given

by (6.1.34) which, in terms of lightcone components, is

(6.2.73)

nI - (zo + zd(l- Zo - ZI) j n2 = (zo + z2)(1 - Zo - Z2)

w - (zo + ZI)(ZO + Z2) - Zo ,

T2 - n2PîJ... + nIP~J... - 2WPIJ... • P2J... + Z(l - Z)Âl - 2Zo2 (1 - Z)PIJ... • Â.L ,

-2Zol (1 - Z)P2.L • Â1.. + m}

Z = Zo +Zl +Z2 ZOl = Zo +Zl

Like the previous case we begin by performing the pt integrations. Our

choice for closing the contour is as before, i.e., closing the contour from

above for 0 < Xl and frOID below for Xl < o. The denominator has poles at

the following values of pt,

+ aS,6 -.i€
P -

la - ,jSXl
. + _ alO - i€
, Plb - y'S(XI -1)

•

Table 4 summarizes the location of the pales for different integration regions,

1"'able 4.
· pt t ,pt, t Z2 < Vez) X2 < {3 ptt

Xl < 0 · Pra t ,P{b t O<{3 (3 < X2 e p~ -U-
pta t, pt, t Vez) < Z2 X2 < 13 f p~ -U-
p~ t, pt, t {3<O (3 < X2 pt t

a Pia .1- 1 pi;, 11 Z2 < Vez) X2 < {3 g pt 11
o < Xl < 1 b Pia .1- , pi;, 11 {3<O (3 < X2 . pt .1-

c p~ .1- , pib 11 Vez) < Z2 X2 < {3 ptc .1-
d p~ .1- 1 pt 11 o<{3 (3 < X2 h p~ 11
· p~ .1- , pt, -!. Z2 < Vez) X2 < f3 i pt 11

1 < Xl · p~ .!- , pi;, .!- f3 < 0 13 < X2 pt .1-

· p~ .1- , pi;, i Vez) < Z2 X2 < f3 . pt .1-

· p~ .1- , pi;, i o<{3 f3 < X2 j pt 11
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where f3 and V (z) are defined by,

(6.2.75)

(6.2.76)Z2 = Vez)o=w

f3 - x - n2X l- 2-
W

Vez) = ZoC! - Zo - zd .
Zo +Zl

One can now readily write down the result of pt integration,

98
S3 27I"i Nf! 2 rI r1- ZO J +

M 3 = 87I"2m2 (27r)4 ~ g'DpiJ... Jo dzo Jo dZl dp2

[{-ZO-Zl dZ2 / dX2 { dXI ~:

-10
dXI { rl-ZO-Zl dZ

2
f13 dX2 + rV(z) dZ

2
(JO dX2} ND3

-00 JV(z) J-00 Jo J{j c

+ t'XJ dXl { rV(z) dZ2 r{3 dX2 + rl-ZO-Zl dZ
2

fOC dX2} ND3 ] ,
Jo Jo J-oo JV(z) J{j e

VS(Xl - 1) [;~a:l + as] [IX~:1 + a,;] [SX2 - a7]

x [VSX2Pt - al] [y'SX2P; - a2] [H2
a

lO + VSHIPt - T2] ,
xl-l

r: [x1T2 r: +H1 ] [XIT2 r: +H1 ]De = ysH2 -- - ySXIP2 - - as -- - ySXIP2 - - a6
H 2 H 2 H 2 H 2

X[(Xl ;21
)T

2 - VS(Xl - 1)pt~~ - alol[VSX2Pt - aIl[VSX2Pt - a2l[SX2 - a7J .

Next is the pt integration. The convention for closing the contour of inte-

•

gration is as before. For the integrand N 3 / Db related to Ca) , (b) 1 (c) and

(d) entries in table 4 the pales of pt occur at,

+ al 2 - ù: + T2 - i€ H2alO
Pu= · ~ = - .

VSX2 e VSHI vIS(Xl - 1)H1

The location of the two pales in different integration regions are summarized

in Table 5.

•

Tai )le 5.
Z2 < Vez) X2 < X < 0 ptdt,ptt

X < X2 < 0 P~t,pt.ij.

o< Xl < 1 Vez) < Z2 X2 < 0 P~t,ptt

Vez) < Z2 O<X2<X pld -l- , P~ 11
0< X < X2 pld -l- 1 P~ -l-

Z2 < Vez) 0< X2 P~ -l- 1 P~ -l-
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• In Thable 5 X is defined by

Hl = 0 (6.2.77)

For the second and third integrals with integrand N 3 / De, the poles of pt

occur at

+
P2f

•

with the location of the poles summarized in table 6,

Xl < 0 Z2 < Vez) , 0 < /3 < X2 e pt! -!- , pt -!- , P1h -!- ü < H 2 , 0 < Hl
Vez) < Z2 , X2 < (3 < 0 f pt! t ,pt t ,p~ t o< H2 , Hl < 0

0< Xl < 1 Z2 < Vez) , X2 < (3 < 0 g pt! t ,pt t l p1h .u. H2 < 0, Hl < 0
Vez) < Z2 , 0 < /3 < X2 h prf -!- , pt -!- , p~ 1'r H2 < 0,0 < Hl

1 < Xl z2 < Vez) , X2 < (3 < 0 i prf t ,p~ t , pth t H 2 < 0 , Hl < 0
V (z) < z2 , 0 < (3 < X2 j pt, -!- , piQ -!- , pth -!- H2 < 0,0 < Hl

Table 6.

Each entry in Table 6 refers to the same entry labels as in table 4. From

the above table the only non-zero contributions are those of Cg) and (h) due

ta a pole at pt = pth and these two differ by a sign. Putting these pieces

together the result of pt integration is

(6.2.78)

Dbe(ch)
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• In order to determine the high energy behavior of M3 it is necessary to find

the region of Xi (and Zi) integration that makes the highest contribution or

produees an enhancement. This usually occurs for small values of Xi 's. In the

first two integrals the integrand vanishes at the X boundary of X2 integration.

The same occurs at Xl = 1. We can cut off the region close to X2 = X and

Xl = 1 by replacing X --)- Cl!X and 1 --)- ç where 0 < Cl! < 1 , 0 < ç < 1. Then

we can approximate

(6.2.80)

WXI

X2H 2 n2 x 2

(1 - xr)HI ~ -w .
Further, if we go to regions of smaller X2, i.e., IX21 < IWXII, we can ignore

these last two factors as weil.

The above discussion on the magnitude of X2 further requires us ta write

- <
1

8

1 1
Iwlxl => -'-1 < Xl < 1 => - < Iwl

8W 8

1
< Z2 , Z2 < W-(z) ; W± = Vez) ± ( )6.2.81)

8 Zo + Zl

which places further restrictions on Zo and Zl' For example Z2 < W- restricts

Zo and Zl as follows

+ 1
Zl =l-zo--

SZo
O

zo(l - Zo - zd - 1/8
< Zo < => a < Zl < zi

Zo +Zl

1 _ 1
=> -<l-zo => zo<zo<zt; Zo =-,

8~ S

+ 1
Zo = 1- - .

8

•

The requirement that W+ < Z2 would place the same restriction on Zo and

Zl' Now we go back to (6.2.79). The second and third integrals don't make

leading contributions as s --t 00 sinee IX21 is bounded from below. Therefore

we will have,

(6.2.82)
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•
Then if we let Xl = (x~/w) in the first integral and Xl = -(x~/w) followed

by X2 --+ -X2 in the second integral we will have,

(6.2.83)

x [ rl-zO-Zl dZ
2

rV) dx' r';l;~ dX2 N_3 _
Jw+ J~ l J~ WX~(SX2 - a7)

_ rW
- dZ

2
r-V) dx~ r';l;~ dX2 1 N3 ] •

Jo J~ J~ WX1( -SX2 - a7)

Carryïng out the X2 integration we get

M 3 =

(6.2.84)

Next carrying out the integration over x~ yields

M 3 =
8 Nf 2 1 z+ z+

_----.,;.....9_s_ L JII 'Dpu. r0 dZQ r1 dZl
327r4m 2

/ i=l ala2aSa6 Jz; Jo

x [/;:%0-%1 dZ2 ~3 [~In2(s) + In(s) In(w)

+~ In(w? - i7rUn(w) + In(S)]]

+ foW- dZ2~3 [~In2(S) + In(s) In(-w) + ~ In(-W?H6.2.85)

•
The Zi integrations are long and tedious and here we simply give the final

result
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•

•

As one can see, the realleading part has canceled out between the two terms

leaving behind only the imaginary part.

Equations (6.2.67), (6.2.70) and (6.2.86) are the final results for the space­

time part of diagrams in Fig. (6.1).

In brief, in this chapter we have improved on the calculation of the so

called abelian contributions to the eighth-order scattering of two quarks. We

used dimensional regularization to isolate the UV divergence of the fermion

loop which is then removed by the four-gluon vertex counter-term. The

leading terms of the finite parts are then used to calculate the high energy

behavior of eighth-order diagrams. This result constitutes part of the cor­

rections due to fermion pair production ta the BFKL equation.

We would like to mention two points. A quick comparison of our results

(6.2.67), (6.2.70) and (6.2.86) and those of Cheng and Wu [19] regarding

energy dependence of 8th-arder e-e diagrams shows that our results are gen­

erally one power of In(s) higher than theirs. Their results however carry an

infinite quadratic multiplicative integral factor that has arisen due to the

lack of regularization of the diagrams. For this reason it seems to us that the

extra power has more ta do with the renormalization than with the true high

energy behavior of the diagrams. Therefore a definitive statement regarding

the true non-leading behavior should involve other diagrams that play a raIe

in the renormalization of 4g vertex.

The second point is that since the discussion so far has been in the context
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•

•

of QCD, there are other contributions that need to be considered in order

to obtain the final result concerning the contribution of fermion loops up

to eighth-order. These are due to the 50 called non-abelian diagrams and

involve a combination of 3g vertex and a triangular fermion loop. What we

have calculated here are the 50 called abelian contributions which simply

means that they are like QED diagrams multiplied by color factors. Given

this fact, the In(s) dependences of the above results cannot be taken as

indicating the definitive behavior of diagrams containing fermion loops as

they need to be supplemented by non-abelian contributions.

In summary, the role of diagrams with fermion loops cannot a priori be

ignored in the discussion of high energy behavior of parton scattering am­

plitudes on grounds of their making only non-Ieading contributions. One

reason for this is that leading order calculations such as those offered by

BFKL equation violate the Froissart bound. So, to fix this, attention has

to be directed toward non-leading contributions. Although there are pure

non-leading gluonic contributions as was explained at the beginning of this

chapter, one cannot be a priori assured that other non-Ieading contributions

such as those originating from diagrams with fermion loops are of no impor­

tance.

One other reason for considering diagrams with fermion loops is that they

are inevitably tied to and mixed with pure gluonic diagrams through renor­

malization process. Our calculations in this chapter have been an endeavor

along these lînes.
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(A.1.I)

•
Appendix A

Conventions and sorne fine
details

A.1 Spinor helicity technique

In chapter 3 we make extensive use of the spinor helicity formalism. For that

to be well defined a review of the essentials of this formalism [40] will be

given here.

When considering massless fermions it is convenient to adopt the chiral

representation of Dirac matrices where 'Ys is diagonal. A massless Dirac

spinor with momentum p is then given by,

u+(P)lm=o - Ip+ >= J2pO ( X+Jp) ) l

u-(P)lm=O - Ip- >= -J2pO ( X-~p) ) ,

u+(P)lm=O - < p + 1 = -J2pO(O X~(P))

u-(P)jm=O - < p -IJ2pO(X~(p) 0),

where the two-component helicity eigenstate X.À (p) satisfies

(A.1.2)

•
The norma1ization adopted in (A.1.I) gives

(A.1.3)
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• while chirality conservation implies

<p± Iq± >= O·

We also adopt the notation,

(A.L4)

< pq >=< p - /q+ > [pq] =< p + Iq- > , (A.l.5)

and since 0"20"0"2 = -0"*, it is convenient to choose the phase of the helicity

eigenstates to satisfy

This then implies

0"2XÀ Cp) = iÀX~Cp) r (A.l.6)

<pq >= - < qp > [pq] = -[qp] = sign(p . q) < qp >*. CA.l.7)

Throughout our discussion we assume vectors to be in the forward lightcone

50 p . q > o. The choice of phase aIso gives cise to the relations

< P ± 1'1-'1 ... 'Y~2n+llq± > < q ± l'YP2n+l 'YPllp± > ,

< P ± l'Pl·· ·'P2nlq=F > - - < q ± !'YP2n+l 'YPl Ip=F > . (A.l.B)

Using (A.l.3) and

'Y. P = Ip+ >< p -1 + Ip- >< p-I

it is easy to see that

(A.l.9)

< p + l, .klq+ >= (Pk] < kq >

In particular using (A.L3) one gets

< p - l'Y . klq- >=< pk > [kq] .

(A.LIO)

•
< qp > [pq] = 2p . q
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• Fierz identities can he expressed as

< AD >< CB > + < AC >< BD > - < AB >< CD >(A.1.12)

[AD][CB] + [AC][BD] - [AB][CD] , (A.l.13)

< A+ I,~IB+ >< C -I,~ID- > - 2[AD] < CB > , (A.1.14)

< A + I,~IB+ >< C + IÎ~ID+ > - 2[AC] < DB > (A.l.15)

The spinor-helicity representation of polarization vector for an outgoing pho­

ton or gluon with momentum p and helicity ± is gÏven by,

€~(p, k) = ± < p ± 1,~lk± >
V2<k=Fjp±>

(A.l.16)

where the reference momentum k is massless but otherwise arbitrary. The

choice of a different value of k corresponds to the choice of a different gauge,

and these different choices are related by

~ (P) J.' (P') ln < kk' > tnP
€+ ,k -4- €+ , k - v 2 k k' ~.< p >< p>

The polarization vectors satisfy the following identities:

(A.1.17)

4(P, k) = (€~(p, k))*

€±(p, k) . €±(p, k') = 0

€±(p, k) . €±(p', k) = 0

p . €±(p, k) = k . €(p, k) = 0 ,

€±(p, k) . €=FCP, k') = -1 ,

€±(p, k) . €±(k, k') = 0 , (A.1.1B)

•

and also satisfy the following two relations

é.t-(P, k)ë(P, k) + €~(p, k)~(P, k) = _gl'" + pl'k
u
+{kil, (A.1.19)

p.

'Y. E±(P, k) = ± k 1± (1P'f >< k'f 1+ IH >< p ± D, (A.1.2D)
< =F P >

which completes our quick review of the spinor helicity formalisme
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• A.l.l Off-shell Fierz identities

In section (3.1) we mentioned that the diagramatic relations hold even when

the momenta of the lines are off-shell. This fact relies on the off-shell versions

of the Fierz identities in (A.l.I3). Here we show how these off-shell relations

could be derived frOID the on-shell ones. Our considerations in section (3.1)

were restricted to tree-Ievel diagrams, 50 an off-shell momentum can always

be written as a sum of on-shell extemal momenta,

(A.1.21)

where pt are the extemal momenta and CAi = {-1, 0, 1} depending on how

one decomposes a given internai momentum. Now it follows from (A.1.9)

that

(A.1.22)

Notice that of the two terms in the above relation, which is the typical

numerator of an interim fermion propagator, only one will eventually survive

because at the end points one always multiplies by the definite helicity spinors

of the externa1 lines. So we can further define

IPA± >< PA ± 1=LCAilpi± >< Pi ± 1·
i

(A.1.23)

To see what the off-shell Fierz identity looks like consider the following ex-

pression,

(A.1.24)

•

where Pa, Pb, Pc and Pd are arbitrary on-shell momenta not necessarily those

of the incoming ones. Now using (A.1.23) we can write the above expression

as

(A.1.25)
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• The on-shell Fierz relation for the angle brackets can now be used to expand

the product of the two angle brackets in the above relation,

1 = [apA] < PAPD > [PBbJ[cpe] < PePB > [PDd]

+[apA] < PAPe> [PBb][cpe] < PBPD > [PDd]

- < Pa + IpAPDlpd- >< Pc + IPePBIPb- >

+ < Pa + IPAPelpc- >< Pb + IPBPD !Pd- > (A. 1.26)

This last equality is the off-shell version of the Fierz relations for the angle

brackets. The on-sheIl relation can be retrieved if we assume ail the momenta

with capital-Ietter lower index are on-shell momenta. In this case one can

discard ail the on-shell square bracket factors from both sides of the first

equality as they are weIl defined on-shell spinor products and the remaining

angle bracket factors will make the on-shell relation.

Similarly, one can work out the off-shell Fierz relation for the square

brackets. It reads

< Pa - IpAPBlpb+ >< Pc -IPePDIPd+ >

=< Pa - IpAPDlpd+ >< Pc - IpCPBlpb+ >

+ < Pa -IPAPelpc+ >< Pb -IPBPDlpd+ > . (A.l.27)

Two other useful relations which can be worked out following the above

procedure are,

•

< Pa ± IPA[Pb± >< Pc ± IPePDIPd=F >

=< Pb =F Ipc IPc=F > < Pa ± 1,APDIPd=F >

- < Pb + IPD!Pd=F >< Pa ± IpAPclPc=F > ,

< Pa =F IPA IPb=F >< Pc ± IpepD/Pd=F >
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•
A.2

- < Pa =F 115D IPd=F >< Pc ± IPePA IPb=F >

+ < Pa =F Ipc IPc=F >< Pb ± 115APD Ipd=F > .

8upersymmetry conventions

(A.1.29)

Our conventions follow those of 80hnius [41]. The Minkowski flat-space met­

rie is taken ta be,

9~v = diag(+ 1 -, -, -) 1

Dirac matrices are taken in the Chiral representation as

(A.2.30)

(A.2.31)

where the the four matrices aV and a~ are defined in terms of Pauli-matrices

a and 1 as,

a~ = (1, cr) . (A.2.32)

The 'Ys and a~V are defined as follows

(
-i 0)rS = ror1'Y2'Y3 = 0 i (A.2.33)

A general spinor 'l/J(x) satisfying the Dirac equation

(if/J - m)'l/J(x) = 0

has the following representation independent mode expansion,

(A.2.34)

where u). (P) and v). (P) are spinor wavefunctions of definite helicity À and

momentum P and satisfy,
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CP - m)u).(p) = 0
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• where C is the charge conjugation operator and in the representation (A.2.31)

is given by

c = (-~cr i~2) . (A.2.36)

Equation (A.2.34) represents the expansion of an unconstrained spinor. If

we impose the Majorana constraint

then together with (A.2.35) we will have,

(A.2.37)

which represents a self-conjugate (~lajorana) field where the anti-particle

(second term) is identical to the particle (first term).

A.3 Sorne fine details

In equation (2.2.6) we gave the results for the SUSY transformations of on­

shell particle creation and annihilation operators. Here we will show how

these commutation relations are derived from the general off-shell SUSY

transformations of (2.2.5).

Consider l'l' > to be an arbitrary quantum state. Then we will have

o=< OIQ<l?I'lT >=< 01[Q, <l?]I'lT > + < OI<l?Qlw > , (A.3.38)

•

where Q= ~Q and cp stands for Àa or A~. Here we have used the fact that

the vacuum is invariant under SUSY transformations which would imply

QIO >= 0 =< 01Q. By appropriate choice of the state Wfor each field we can

find how the on-shell operators transform under SUSY transformations. Let

us begin by choosing l'If >= Ig~(P) > for cp =Àa where !9h(P) > represents
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• an incoming gluon with definite momentum p, helicity h and color a. Then

we will have using (2.2.5)

l ~

0= -2"uIJUç < OI(aJ.lA~ - avA~)lgh(P) > + < 0IAaQlgh(P) >. (A.3.39)

Note that in F(a)pu we have dropped the term. proportional ta 9 because we

are considering free on-shell states. The action of Q on a gluon state will

produce, up to a constant, a fermion state

(A.3AD)

50 we will have

. 1 .. .
n (p k) Ip h > e-1p·x = i-uJ,wCe-'P'x(p €In (P) _ p €In (P))
h" 2 ~ /..1 h,u v h./..I ' (A.3AI)

where we have used1

(A.3.42)

and where Xa is the color wave function and Ip, h > represents the spinor

wave function. Note that the color index a in (A.3.41) has been dropped

sinee the color wave function of the fermion and vector particle are the same

and therefore can be dropped from aU terms. In order to proceed we need an

explicit representation for the polarization vector. Choosing this to be the

spinor-helicity basis representation,

(A.3A3)For outgoing p ,out(p ) _ h < p, hl'YJ.llq, h >
€h ,q - ln

./..1 v2 < q, -hlp, h >

with q the reference momentum, we will have upon multiplying (A.3.41) by

< q, -hl,

•
nh(P, k) < q, -hlp, h >= ...

IFor a review of spinor-helicity basis see App. (A.1)
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• (A.3.44)

where we have used

ç= Ik+ > 8 + Ik- > (} (A.3.45)

in (p ) _ [out(p )]* _ out (p ) _ -h < p, hl"Yvlq, h > (A 3 46)
€h,v , q - €h,v , q - €-h,v ,q - M2 hl -h' . .

v~<q, p, >
and where in (A.3.45) (} and 8 are two anti-commuting numbers introduced

to represent the anticommuting nature of ç. Now, fixing the helicity h = +
in (A.3.44) and using explicit form of u PV together with (A.3.46) will give,

n+ < qp > - -~B{< q - Ipt~t(P, q) - t~t(p, q)plk+ > }

1_{ -V2 F v'2 }-2(} [qp] < qp > [pq] < Pi; > + [qp] < qp > [qp] < pk >

n+ +V2 (j < kp > . (A.3.47)

Similarly, we can work out the result for h = -, with the result

n_ = -V2 (} [kp] . (A.3.48)

The job is now half complete. Going back to (A.3.38) and choosing cp = A~

and 1'11 >= IAh(P) > and using (2.2.5) we obtain

(A.3.49)

Also sinee supersymmetry transforms fermionic states into gluonic ones we

will have

(A.3.50)

•

then (A.3.49) will take on the farm,

-mh(P, k) < OIA~lgh > - ë/I-' < olÀalA~ >

-mh (P, k )€~~IJ (P, k) - ë"YPIp, h >

-mh(P, k) -h < k, hl/plp, h > _ (- 1 1) 1v'2 < k, hlp, -h > (} < k - + (} < k + "Yp p, h >

(A.3.51)
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• Now if we let h = ± we will get,

m_cp,k) = -V28 < kp > . (A.3.52)

Having found the constants resulting from the action of Q on gluon and

fermion states we can now easily find the transformation of on-shell operators.

To this end let us write (A.3.4D) as fol1ows,

(A.3.53)

sa we will have

.... t
[Q,9+CP)] -

.... t
[Q,9-CP)] -

and similarly we can find the supersymmetric transformation of At by writing

(A.3.50) as

(A.3.55)

Replacing for bath values of h we will get

.... t
[Q, A+CP)] -

[Q, A~(P)]

+V2 e[kp] g~(p) =+N+(p, k)gt(P) ,

-V2 B< kp > gt(p) = -N_(p, k)gt(P), (A..3.56)

•

and finally taking hermitian conjugation of (A.3.54) and (A.3.56) we will get

the commutation relations used in (2.2.6) .
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•
Appendix B

Color oriented vertices

Color oriented vertices can be derived from normal vertices in the fol1owing

way. Begin with the 3g and 4g vertex factors, written

T~!h - igjabe[ga/3(Pl - P2).., + gfYy(P2 - P3)a + g..,a(P3 - Pl)/3] ,(B.O.1)

W:~ - _g2[jabe jecd(go:-y9/36 - 90.69/3..,) + face f ebd(go.{3g..,6 - 9o.6g{3..,)

(B.O.2)

From the commutation relation of the group algebra one can write the struc­

ture constants f°be in terms of traces of products of fundamental representa­

tion matrices, ta. as in

(B.O.3)

•

Using this trace representation the 3g vertex factor decomposes into two

color-oriented vertices both of whose color-oriented factors can be expr~ssed

by

see Fig.(B.1). The above factor is specificaly that of the first diagram. on the

right side. It can simply be read off the graph by turning clockwise. For the
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• 1.a./1

~t
l

~ + 1A - 3 2

3.7. c 2.13.6

<11 b++C+++~++e ++d~ b t: b 1 d r.le d d C b b

Figure B.l: Color-oriented vertices.

second graph the same c10ckwise rotation ruIe for color indices and momenta

holds and the factor is

Similarly, using the same replacement for the structure constants, the 4g ver­

tex splits into six different trace combinations, aU of which can be expressed

by a single color-oriented vertex factor

(B.O.6)

•

which represents the color-oriented factor of the first diagram on the right

side in Fig.(B.l) .
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•
Appendix C

Color deeornposition of eut and
ordinary Feynman diagrams

As was mentioned in chapter 5, summing up diagrams with color factors is

feasihle only when they have the same color or their color factor has been

decomposed in terms of a basis so that one can sum up the coefficients of the

same color basis elements. Here we will work out these color decompositions

in a graphical manner.

Let ta he the generators of SU(N) group satisfying the commutation

relation

(C.O.1)

and normalized according to,

(C.O.2)

The constants !abc are the group structure constants and are antisymmetric

in aIl the indices. Then it follows that

(C.O.3)

•
which can be represented pictoriallyas in Fig.(C.1). Combining (C.O.1) and

the first equation in (C.O.3) we get i!badtatb = ctd which is shown pictorially
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• a

if~

~=2C~

a

A =c~
C~b

Figure C.l: (a) Triple-gluon color factor, (b),(c) Two identities involving 3g
vertex.

d

A =c

d

=-c

T
ri

•

Figure C.2: Two different forms of i!badtatb = cid.

in Fig(C.2). Also, taking a cut on the fermion line ta he the commutation of

two ta matrices we can draw the set of relations in Fig.(C.3). Now, using these

graphical relations, we can analyze all the color factors that were encountered

in chapter 5. Figures (C.4) and (C.5) are examples of a ordinary Feynman

diagram and a cut diagram analyzed using graphical relations.
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•

a b a b a b a b

-U =
y 4- y

=

11 =

A X = A
a b a b a b a b

a b a b a b

li - x -U-=

rr- x 11
a b a b a b

Figure C.3: Final set of graphical relations.

x TT 1

= 1
1

i
1

1

1 1 i
1

!

= + 1 1

1 i 1
1 1
, 1

V 1 1 V= ~j 1 1 1

= ~4+ 2cG2 - Gs

Figure C.4: A sample calculation of the color of a Feynman diagram.
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+

= -

1 1 1
1 i
~

1 1

A! ,
= -

-
+ c2

1 = 0

•

Figure C.5: A sample ealeulation of the color of a eut diagram.
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•
Appendix D

Dimensional Regularization
formulas

Below is a list of standard integrals [42] that were used in chapter 6 to

regularize the UV divergence of the fermion loop.

•

i1rn/ 2r(a - nf2)
r(a)(_q2 - m2)a-n/2 '

_i7T"n/2r(a - nf2)
~--:--_---:....-_---:....-~ qJJ
r(a)(_q2 - m2)a-n/2 '

i7T"n/2
r(a)(_q2 _ m2)a-n/2 [qJJqVr(a: - nf2)

+~g""(-cf - m2)r(a - 1 - n/2)] ,

i7T"n/2 [
- r(a)(_q2 _ m2)a-n/2 - qJJqVq>.r(a- nf2) ,

-~ (g""(1 + g"Àq" + gÀ"q")

X(-cf- m2)r(a-l-n/2)] ,
. n/2 [

- r(a)( _q~1r_ m 2)a-n/2 q"cfclqPr(a - n/2) ,

+~ (qJJqVg>'P + perm) (_q2 - m2)r(a - 1 - nf2) ,

+~ (g""gÀP + perm) (_q2 - m 2)2r(a - 2 - n/2)] .
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