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Abstract -

-

In this work two classes of graphs are Introduced. A graph s weakly

- trlangulated If nelther the graph nor 1ts complement contaln a chordless cycle
with flve or more vertlces as an ifnduced subgraph. A graph 1s murky If nelther
v the graph nor 1t$:complement contaln the €hordless cycle with flve vertices or the

chordless path' with six vertlces as an Induced subgraph., The maljor results of

4 ———

thils thesls are theorems concerning thege two classes of graphs. In partlcular,

o
‘e

weakly trlangulated graphs and murky graphs are ﬁérrect.

L4
-
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Résumeé
i B /‘ -

Dans ce travall on preésente deux classes de graphes. Un graphe est appel¢

falblement t.rlangtile’ sl nl le graphe nl son complément n'admettent de cycle sans

A B

corde de cinq sommets ou plus comme sous-graphe Indult. Un graphe est appelé

trouble€ st nl le graphe nl son complément n'admettent de cycle sans corde de clng

o

sommets ou de chemlin sans corde de six sommets comme sous-graphe indult. Les

<

résultats les plus Importants dans cette thése sont des théorémes qul concernent’

ces deux Classes de graphes. En partlculler, les graphes falblement triangulées et

9

les graphes troublés sont des graphes parfalits.

-




Preface .
\ ) .

The thesls consists uor four chapters.

S { .
Chapter 1 is an overview of the results of the thesis. A perspective Qf_perfect.graph

A

theory is presented which motivates the study of weakly triangulated graphs and murky
graphs. - ¢
Chapter 2 Is a brief description of the background of the thesis, namely perfect

graph theory. The first section of the chapter is a description of basic definitions and

notations of general graph theory. The second ' section is a brief outline of selected

4

results in perfect graph theory. \
> < \
Chapter 3-is a collection of results on weakly t;\riangulated graphs. Included are an

examination of the relationship between weakly triangulated graphs and star cutsets,
- v -
4

and a proof that weakly triangulated grephs are perfect. The chapfer also.includes

3 [}

algorithms which solve certain optimization problems for weakly triangulated graphs.

g

Chapter 4 Is a collection of results on muricy graphs. The highlight of this chapter

!

Is a proof that murky graphs are perfect. The proof involves an examination of

properties of unbreakable murky graphs; th{e chapter concludes with a characterization

of such graphs, ° ' ] ’ .

Unless otherwise sr.a.ted"\the titled theorems In this thesis are the work of the

author.

- J—
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Chapter 1 P 7 ‘ e

. . Overview -

A clique is a set of pairwise adjacént vertices in a graph. The cliqgue number of a
graph is the number of vex:tices in a largest clique; The chromatic number of a graph is
th€ least number of colol/lrs needed to colour the vertices, so that adjacent vertices
receive different colours. Note that the chromatic number of ;. graph must ‘be at least as
larg; as the clique number. Claude Berge deflned a graph G to be perfect if, for each

&

induced subgraph H of G, the chromatic number of H is equal to the cligue number of
K. ' ™~

A graph is minimal smperfect if it is not perfect and yet every proper induced
subgraph ls perfect. It is an easy exercise to cl}eck that odd chordless cycles with at
least filve vertices are minimal lmperféctﬁ it is only a little more difficult to shg\-w that the
complements of guch chor‘dless cycles are also minimal imperfect. Are thgre any other

minimal imperfect graphs? The cg¥orated Strong Perfect Graph Conjecture , posed by

Berge in 1060, asserts that the answer t&\this question is "no”:

The SPGC. A graph is perfect if and only if neither the graph nor its complement

[}

contains an odd chordless cycle with five or more vertices.

-

As early attempts to resolve the SPGC were uhsuccessful, Berge posed a second ]

conjecture {which, since it is implied by the first, 'was originally known as the Weak

- \

Perfect Graph Conjecture ):
The WPGC. A graph is perfect if and dnly i sts complement is perfect.

The WPGC was proved by Lovdsz (see [I072a] and (1972b)), and is iow Known as

the Perfect Graph Theorem. The SPGC is still open. The SPGC has been the prim
' ; ’/,.,- . . s

-

- 0 ..

LS
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mgtivatign behind most of the research in perfect graph theory to this date. ™

T

We call a graph Berge if neither the graph nor its complement contams;t an odd

chordless cycle with five or more ¢eg. The SPGC assetts that a graph is perfect if
and only if it is Berge, /This wordlnl\ of the SPGC suggests one approach to
investigating the conjecture: consider partlcﬁlar classes of‘ Berge graphs, and check to see

whether or not the.graphs in these classes are’perl‘ect.

/

/
One such class is .the class of :riy&lated graphs, also known as chordal graphs, )

defined as those graphs in which ;v,e cycle with four or more vertices has a chord. Let
C, represent thé chordless cycle with k vertices, and P the chordless path with &
vertices. Let G represent the complement of the graph G . To see that cri{m}ulated

graphs are Berge, note that by deflnition, triangulated graphs do not contain C; as an -

v

i -
induced subgraph, for k > 4. Also, C, is an .ifiduced subgraph of P, and P is an

~
3

induced subgra.phvor C:, for J 2 6; thus triangulated/grap;hs do nbt. contain U, as an
Induced subgraph, for j > 8. Fmally,‘since C; is self~comptementary, triangulated
graphs do not contain c 5 asﬁ an induced subgraph. To summarize, trlangul:ated graphs
dﬁnoc contain Cj, for k > 4, nor C;, for j > 5, as an induced subgraph. Thus

}
triangulated graphs are Berge.

In 19060 éerg"e showed that triangulated graphs are perfect; thus triangulated
graphs have been known to be perfect almost ,sincé the beginning of the hlst,ory‘ of-
. perfect graph theory. Indeed, Ber'ge's realization that both triangulated graphs and
complements of triangulated graphs are perfect (see Hajnal and Sﬁurdnyl (1958]) was part

of the motivation that led him to pose the SPGC and the WPGC. ’

e
Another example of a class of Berge graphs is the class of P,-free graphs, defined as

°

those graphs that do not contain P,, the chordless path with four vertices, as an induced

-

LS8

[
' o .
»
i
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subgra;)l}. Since every C’j contains P,-_1 as an induced subgraph, P,-free graphs do not
contain Cj, for k’Z 5, as an inducgd subgraph. Also, since P, is self-complementary,

P,free graphs do not-contain Cy, for k > 5, as an induced subgraph. Thus P,-free

graphs are Berge. Seinsche [1974] proved that P,-free graphs are perfect
. - &>

The main contribution of this thesis is the introduction of two new classes of Berge

graphs, together with proofs that such graphs( are perfect. In light of the SPGC, it is

“Tfatural to consider classes of Berge graphs defined in terms of forbidden induced
/ .

subgraphs, and in terms of chordless cycles and complements of chordless cycles. In
4.

light of the Perfect Graph Theorem-(formerly the WPGQC), it is natural co\consider

"gell-complementary” classes of Berge graphs, i.e. classes of Berge graphs that are closed,

uhder complementation. (For example, C, is not triangulated, whereas C, is; thus the

qlass of triangulated graphs is not sell-complementary. On the other hand, if a graph is '

P-free, then so Is its complement; thus the class of Pgfree graphs s self-

< e "

¢omplementary.) Recall that a graph is triangulated (if and) only u‘ it does not contain
Cp, for k > 4 nor C";, for j = 5 as an induced subgraph. The two aforementioned
criteria for selectiné a "nz;tural" class of 'Bet':é;""“ graphs suggest the fol}owing
generalization of triangulated graphs: define a graph to be weakly trianjulated if the

graph does not contaln C; or i, for k > 5, as an induced subgraph. Note that the

class'- of weakly triangulated graphs contains all triangulated graphs, all complements of

——————

triangulated graphs, and all Py-free graphs.

3 - N
The second class of Berge graphs introduced in this thesis also contains all P-free

N

graphs (but not all triangulated graphs). Call 4 graph murky if it contains no Cg, Py or
P;, §s an induced subgraph. Interest in the class of murky graphs was partly motivated

by Hodng's study of the class of graphs that contain no C,, P; or P; as an induced

A\

[

4

“J
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subgraph (see Hodng [1983], and Chvidtal, Hodng, Mahadev and De Werra [to appear])
\ - -

How can one prove that all graphs in a given class are perfect? One method is to

look for some SCruc;tural property exhiblte’d by all grz?,phs in the class, and then show-
that no graph’wit_h r,he'propert,y can be minimal imperfect .Ol‘ particular interest are
structural attributes that lead to a decomposition or\ t,he‘graph. For example, suppose
that a graph G wi@ertex set V has a clique cutset, that i1s, a set of vertices (' such
that C is a clique, and removal of C’ leaves a disconnected graph Let A be any set of
vertices that induces a component of G - C, and let B be the rest of the vertices of G
(t.e. B =V -A = C): Then 4t is a simple exercise to show that G is perfect il the
s.ubgraphs induced by A UC and B UC’ are pelrfec:b. take 4My two’'respective minimum

colour‘ings of these two graphs, and identify the colours along the clique C. Thus a
graph with a clique cutset may be de,composéd into iwo smaller graphs, each an indl;ced
su*béraph of the original gra.'ph. in such a way” that the original graph qis perféct. if the
two smaller graphs are perfect. This implies that a graph with a clique cutset cannot be

minimal imperfect. Dirac [1961] proved that e'very triangulated graph is either a

complete graph or else has a clique cutset. Thus triangulated graphs are perfect.

1

Another structural property of a graph that leads to a decomposition Is a

homogeneous set, defined as a subset H of at least two and not all of the vertices of the
. .
graph, such that every vertex not in H is adjacent either to all or to none of the vertices
e
e v,
of H. From a result due to Lovdsz (see [1972a]) it follows that if a graph G has a

LY

homogeneous set H, and if H and the graph obtaine'd from G by deleting all but one
vertex of H are both perfect, then @ is perfect. (Note that both of the smaller graphs
are induced subgra:phs of the original graph.) Thus a graph with a homogeneous set

«

cannot be minimal imperfect.
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Seinsche [1974] proved that every c’P,--ﬁ'ee graph with ar,‘ least two vertices either is
disconnected, or else its complement is disconnected. F‘rom this it follows that every P,
free graph with at least three vertices has a homogeneous set. Thus P,-free graphs are
perfect. (Although P,-free graphs and homogeneous sets are intimately related, the
conclu'sion that P,-free graphs are perfect can be reache'd without using homogeneous -
sets. It is .easy to prove that if a graph or its complement is disconnec'ted. then the

graph is not minimal imperfect.)

An attribute of a graph that generalizes both a clique cutset and a homogeneous set
is a star cutset, defined as a set C of vertices of a graph G, such that some vertex in C
is édjacent. to all remaining vertices in C', and such that G -~ C is disconnected. The

notion of a star cutset was introduced by Chvatal, wi’th the aim of 'unifying several

) structural_ﬁrof)erties associated with decompositions. Let C' be a star cutset of a graph

G, with vertex v in C adjacent to all vertices of C - v, and let A be a component of

G - C, and B the verticesof G — C - A . Chvdtal proved that G is perfect if G - v

~

and the subgraphs induced by A UC’ and B UC are perfect; he also proved the

anilogous decomposition result for ‘the case in which the complement of a graph has a
I .

star cutset. It follows that neither a minimal \mperfect graph nor its complement can

have a star cutset. - —

»

As clique cutsets are assoclated with triangulated graphs, and homogeneous sets

-

with Pyfree graphs: one might ask whether there Is a class of graphs associated with star

" cutsets, Since a star cutset is a generalization of both a clique cutset and a homogeneous

set (see Chvadtal [1985a]), such a class of graphs would include triangulated graphs and
Pgfree graphs. In fact, there is such a class of graphs, namely weakly triangulated

graphs. In Chapter 3 we prove that if a graph is weakly triangulated and has at léast

{

T3y
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thrtiv/e;ﬂoé§i: then either the graph or its complement has a star Cl;tset. Thus weakly
triangulated éiga.phs are perfect. Also, if a graph Is not weakly triangulated. then the
graph has/@m’e induced (not necessarily proper) subgraph (namely, C} or C‘; with k& 2>
5)/suc‘!dhat’neicher the induced subgraph nor its complement has a star cutset, thus

star cutsets and weakly triangulated graphs are intimately related.

P

The star cur,s“et. decomposition can be used as the starting point in attempting to
prove that other classes of Berge graphs, besides weakly triangulated graphs, are perlect.
A graph is called unbreakable if neither the graph nor its complement has a star cutset.
Minimal im.perfect graphs are unbreakable; thus, in order torshow that the graphs of a
par‘ticular class of Berge graphs are perfect, it suflficess to show that the unbreakable
graphs of the class are perfecs, What go”l‘qribreakable Berge graphs look like? What
pro.perties do they have? How do chordless cycles (of even length) and complements of
such cycles intersect in unbreakable Berge graphs? These questions motivate our proof
that murky graphs are perfect; this is the main result of Chapter 4. As a postscript, -we

Include a characterization of unbreakable murky graphs.

-

1
One reason perfect graphs are interesting is that there are certain optimzation

problems which are NP-complete for _arbit.rary graphs, but for which there exist

algorithms which run in polynomial time if the input graph is perfect. A stable sel of a
graph is a set of pairwise non-adjacent vertices of a graph, the stability number is the
number of vértices in a largest stable set. The cligue cover number of a graph is the
least number of cliques _qgedegi tovcover the vertices. Note that the stz;bllity number of a

graph G Is equal to the clique number of G ; the clique cover numbet of G s equal to

-

the chromatic number of &: Grdtschel, Lovdsz, and Schrijver (1984] described

algorithms that solve the problems of determining the clique number, stability number,

e, S t




‘ -7
~.

chromacl;: number and clique cover number (and even the weighted versions of these
problems) in polynomial time for perfect grap’l;s. Jrhgir powerful algorithms are based on
the ellipsoid method of linear programming, and on previous work of Lovdsz [1979]
.4
Esncerning Shannon's capacity of a graph. Given the non-transparent nature of these
results, it is of interest to l;)ok for simpler algorithms, especially when considering
particular classes of perfect graphs. One contribution of this thesis is the presentation of
simple combinatorial algorithms which exploit the structure of weakly triangulated
graphs to solve the four aforementioned optimization problems (and also the weighted

versions of these problems) for the class of weakly triangulated graphs. We have been

unable to find analogous algorithms which solve these problems for the class of murky

T

graphs. \ .

—_



| Chapter 2

Background
. T

The first section of this chapter is an introduction to the terminology used in the
thesis; other definitions will be introduced later as needed. The second section is a briefl

outline of selected results in perfect graph theory.
R4
2.1 Definitions and Notation -
A graph consists of a finite non-empty set of vertices, together with a finite set of
edges, or unordered pairs of distinct vertices. If two vertices are in some edge of a

graph, then the vertices %re said to be adjyacent, otherwise they are non-adjacent. We

use the terms "sees” and\"misses" as synonyms for ahjacency and non-adjacency
-

respectively; thus "a sees b and misses ¢ ” is equivalent to " a is adjacent to &, but not

”

toc”. . ‘
A vertex is called a neighbour of another vertex if the two vertices are adjn.cenb.
The netghbourhood of a vertex z in a graph G, denoted N(z), is the set of all

neighbours of z in G ; the fon-neighbourhood of z, denoted M (z), is the set of all non-

neighboursof z in G -z .
S

If S is a subset of the vertices of a graph G, then the subgraph of G induced by S,
denoted Gy, Is the graph with vertex set S, whose edges are precisely those edges of G

that consist of two vertices of S. An Mduced subgraph of G is a subgraph induced by

some S . -

.

A path Is a sequence of (pairwise distinct) vertices v,;v, - - - v, such that every two
consecutive vertices v;,v;,, are adjacent, for 1 < j < k-1; if also v, sees v, then
v vy * ¢ Y is called a cycle. A chordless path is a path v,v, - - - v such that the only

edges of the path are (v;,v;,), for 1 < j < k-1, a chordless cycle is a cycle



e9.

v v, -+ v, such that the only edges of the cycle are (v;,v;4,), for1 < j < k-1; and

the edge (v,,v;). P, denotes the chordless path with k vertices; Cp denotes the

LS <

chordless cycle with k vertices.

A graph is connected If for every two vertices z and y there is some path z...y. A

*

.
component of a graph is a maximal connected subgraph. . (Throughout the thesis, the

terms "maximal” and “"minimal” are used with respect to set inclusion; for example, a

maximal connected subgraph is a connected subgraph that is not a proper subgraph of

_any other connected subgraph of the graph). A “singleton of a graph is a component

with only one vertex; a big component is a component with more than one vertex. A

cutset Is a set of vertices of a graph,'such that the subgraph induced by the remaining

Fei

vqrbices is disconnected. Note that in a disconnected graph, any proper subset of the

vertices of any component is a subset.

, The complement of a graph is the graph obtained by replacing all edges with non-

edges, and vice versa. G denotes the complement of the graph G'. Thus, P, and C,

are the respective complements of Py and C;.

A clique (respectively stable set) of a graph is a set of pairwise adjacent
(respectively non-adjacent) vertices. The cligue number (respectively stablility number)
of a graph is the number of vertices in a largest clique (respectively stable set). The

chromatic number (respectively cliqgue covering number) is the minimum number of

stable sets (respectively cliques) needed to partition the vertices of a graph. Denote the

P

stablility number, clique number, chromatic number and clique covering number of a
-

graph G by a(G), &(G), x(G) and (G ) respectively. A graph is perfect if, for each

-

induced subgraph H of G, x(H ) = w(H ).
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2.2. Some Results in l?erfect_Graph Theory

In the more than twenty-five years that have passed since Berge posed thélS'PGC,
much research has been directed to the study of perfect graphs. Whereas originally most
research was directed towards resolving the conjecture, there are aspects of perfect graph
theory which are now considered interesting in their own right, independent of whether
or not the SPGC is true (or even if it is resolved). In particular, the emergence in the
past two decades of Issues related to computatibnal complexity has inspired much
interest in perfect graphs: the question of whether or not perfect graphs are in_JNP is

currently the focus of much research.

In this chapter, we sketch a background of perfect graph theory. A more complete
history can be found in any of a number of recentis? published graph theory texts; for
instance, see Berge [1985]. Two books devoted ‘entirely to perfect graph theory are

Golumbic [1980] and Berge and Chvdtal (1984]. ¢

2.2.1 The PGT and the SSPGT I

When initial attempts to resolve the SPG'C were unsuccessful, Berge posed a second
conjecture, which (since it was implied by the SPGC) became’ known as the Weak
Perfect Graph Conjecture. This conjecture was proved by Lovdsz and is now known as

_the Perfect Graph Theorem.
PGT (Lovdsz [1072a]). A graph is perfect if and only if its complement is perfect.

In light of the PGT, it is natural to look for properties of perfect graphs that ar
invariant under complementation. Speculation about such properties led Chvdtal
[1984a] to define the Pp-structure of a graph G as the collection of those sets of four

vertices that induce a P, in G. Since the complement of a P, is a P,, the Py-structure of
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a graph is the same as the Py-structure of its complement. Chvdtal conjfacbured that the

perfection of a graph depends only on its P,-structure. This conjecture, implied by the

- v

SPGC and Implying the PGT(WPGC), was known as the Semi-Strong Perfect Graph
Conjecture or SSPGC. The conjecture was proved by Reed in 19084, and is now known

as the Semi-Strong Perfect Graph Theorem.

SSPGT (Reed [1985]). Every graph with the P,-structure of a perfect graph is

-

perfect.

+

The SSPGC has inspired several results that consider decompositions of perfect
graphs deflned in terims of Pgstructure. For example, verfices z and y are called
aiblings If there Is a set S of three vertices such that both § | J {z} and S {J {y} are

Py's. Chvdtal proved the following result.

Theorem (Chvatal [1985b]). Let thé vertices of a graph G be coloured with two
colours such that every two siblings have the same colour. Then G is perfect if and only

>
if each of the subgraphs snduced by the set of all vertices of the same colour is perfect,

This theorem generalizes; two earlier results: ChvZtal and Hodng [1985] showed that
If the vertices of a graph can be coloured with two colours such that every P, has an
even number of vertices’of each coloux:, then the graph is perfect if and only if each of
‘the two mono-chromatic induced subé;aphs is perfect; Hodng [1985b] showed that if the

vertices of a graph can be coloured with two colours in such a way that every P, has an

odd number of vertices of each colour, then the graph is perfect.

Another result concerning P,-structure is that in a minimal imperfect graph every
vertex is in at least four Fj's; this follows from a theorem of Olariu [1988]. (AJctually,
Olariu’s theorem is a much stronger statement; however, it is not primarily related to

P,-structure.)

- -
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2.2.2 Some Classes of Perfect Graphs .

-

From the time that Berge first proposed the SPGC, much of the energy devoted to

the study of perfect graphs has focused on finding new classes of perfect graphs. As has

\ been mentioned, both triangulated graphs and complements of triangulated graphs were

known to be perfect by 1860. Other classes of graphs long known to be perfect include
line graphs of bipartite graphs (this follows from a theorem due to Koénig [1036]
concerning the edge-chromatic number of a bipartite graph) and comparability graphs.
A graph is a comparability graph if the edges can be directed so that for evefy three
vertices a,b,c, if (a,b) and (b ,c ) are directed edges, then so is (a ,c ). .It is an exercise
to show that comparability graphs are perfect; that complements of comparability
Ea‘phs ~a*e perfect follows from Dilworth's theorem [1950]): the size of a largest anti-chain

is equal to the mlri'imum number of chains needed to cover a partially. ordered set.

Since the early 1960’s many classes of perfect graphs, have been discovered. In the

rest of this section we briefly discuss two ways of; obtaining classes of perfect graphs.

Let P be some forbidden property of minimal imperfect graphs. If every induced
subgrz;.ph of a certain graph satifies P, then the graph is perfect. Thus ‘the "subgraph
property” paradigm can be used to define classes of perfect graphs. For example, Berge
and Duchet [1984] defined a graph to be strongly perfect if every induced subgraph has a
stable set which int‘,e;‘sects all maximal cliqu.es. Another class of graphs which fits this
paradigm was défined by Meyniel. Call a set {:r ,y} of vertices of a graph an even p.a‘;'r
if every chordless path between = and y has an even number of edges. Meyniel [19886]
defined a graph G to be quasi-parity if, for every induced subgraph H of G with at

least two vertices, either H or H has an even pair. We will say more about quasi-parity

graphs in Chapter 3.

Ul
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Another way to obtain (candidates for) classes of perfect graphs is to forbid certain

,lnduced stbgraphs from Berge graphs. For inst,anf:e, Tucker [1977] showed® that, K ,-free

Berge 'Eraphs are perfect; Parthagarathy and Ravindra showed that K, s-free Berge

, graphs [1976] and (K ,-e )-free Berge graphs [1979] are perfect. Chvdtal and Sbihi refer

to the connected graph with five vertices.that consists of a t;;ia.ngle and two pendant

[

14

edges as a bull; they shdwed that bull-free Berge graphs are perfect [1986].

- - 4
As was mentioned in Chapter 1, the x'najor contri’butlon of ‘this thesis is the

-

introduction of weakly triangulated graphs and murky graphs. These two classes of
¢ . .
graphs clearly fall into the "forbidden subgraph'; paradigm: weakly triangulated graphs
- "
are Berge graphs with no Cp or Uk‘, for k even and k > 6; murky graphs are Berge
4

. . ‘ )
graphs with no P, or P,. In fact, weakly trianguléted graphs also fall into the

"subgraph property” paradigm; exactly how this is so is discussed in Section 3.2:3.
v X

# t >
EE™

L]

2.2.3 Properties of Minimal Imperfect Graphs

If the SPGC is true, then the only minimal imperfect graphs are chordless odd
cycles with at least flve vertices, and the complefnints of such cycles.dOne approach to
the SPGCixas been to look for properties of minimal imperfect graphs. For instance, (as'
was noted in the previous chapter), a minimal imperfect graph does not havw}e 'a clique
cutset, nor a homogeneous set, nor a.‘star cutset. (Actually, the fact th'm:,'a ;;raph does

not have a star cutset implies that is has neither a clique cutset nor a horhogeneous set;

see Chvdtal [1985a).) A major result in this area is due to Lovdsz.

Theorem (Lovdsz [1072b])). Every minimal smperfect graph G  safisfies

ao(GYfG)= |G| ~1.

-

i

(Recall that o G ) is the stability number of G, and «{G ) the clique number.)

[T Loy N SR
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A
Padberg [1074] extended Lovdsz’'s result by showing that in a minimal imperfect

graph G
~

— there are |G | largest cliques and |G | largest stable sets.

— every vertex is in exactly a(G ) largest cliques and uX G ) largest cliques, and

— every largest stable set intersects all but one largest clique, and vice versa.
Y

Define the graph CY as follows: v, ..., v, are the vertices, with v, and v; adjacent

if |{ - 7| < t, for every pair of vertices v;, v;. Observe that Cp ., Is Cg} 4, , and

!

Carpr Is CL,. In fact, the graph C guty_ satisfles the conditions of Lovdsz and

~

Padberg. Chvdtal [1984c] showed the SPGC is etiuivalenc to stating that every minimal

¢
imperfect..graph has a spanning snfbgraph isomorphic to C ;’Ji,. However, Chvdtal,

Graham, Perold and Whitesidés {1979] found infinitely many grapfl_s, which do not

* I

. contain C}':’;}.l as a spanning subgraph, and yet which satisfy the conditions of Lovdsz °

M
and Padberg;, Bland, Huang and Trotter [1979‘} independently discovered two of these

-

graphs. Thus the list of properties of minimal imperfect graphs described so far Is

v

insufficient to imply the SPGC. ~ -

1Y

- 2.2.4 Complexity and a Changing Perspective

Since the time that the™SPGC was first posed, ideas have emerged in the theory of

-tomputer science that have significantly altered the way p}oblems are approached by

AY

computer scientists. One such idea is the notion of a gpod algorithm, suggested by

———

Edmonds [1965] as an algorithm which computes the answer to a problem in such a way

that the number of operations required by the algorithm is bounded above by some

polynomial in the size of the problem. This immediately ralses the question "for which "

"

problems do there exist good algorithms?”,

-

-

t“




- P
' -15- ‘

A

> From this point of view, one of the most important open problems in perfect graph

theory is "does there exist a polynomial time algorithm to recognize perfect graphs?” A

related question is whether or not there exists a certificate of perrgctfoh that could. be

. verified in polynomial time (i.e. whet;xer or not perfect graphs are in NP). Whitesides
has suggested (see Berge and Chvdtal [1984], page xil) that perhaps pérrec:rgraphs can
be created from certain "primitive classes” of perfect graphs using perfection preserving
opératlons. I’f the graphs in the primitive a/asses are in _NP; and‘ if.tlhe perfection
preserving opera:tions ”E;.n be performed in pol‘ynomial time, then it wouldafollo‘w that
perfect graphs are in NP. For exam‘x;le,ﬁcliquc tdentification is the process of combining
two graph's by identifying a cllcilie of one with a clique of the other. It follows from .
Dirac’s theorem that triangulated graphs can be created from cliques using the

- perfection preserving operation of clique' identffication. \Whitesides [1984] has shown h?w
t0 reverse this proé‘:ess, so that every trlat‘n'gulated graph can be deco}npo“sed into cliques

i polynon{lal time. (There are faster ways to xj‘e,cognize .;rla.ngul’a‘ted graphs; for
Instance, see Rose, Tarjan and Leuker [1(‘976]. '.'However, the example presented here
‘suf'l'lces to illustrate our paradigm.) Although this lgp’roach l;as bt;:n successful in
showing lt.l’xat, certain ‘classes of perfect graphs are in NP (or even in P), the question of

\ e

whether or not perfect: graphs are in NP is sbillloopen. On the other hand, smperfect

' [s}

 graphs are in NP. We close the chapter with this result.

oA

Bland, Huang, and Trotter [1979] call a graph G partitionable-if there are integers
r-2> 2 and 8 > 2'such that for each vertex v of G, the vertices of G - v partition
into r cliques of size 8 and s stable sets of size r. They notend that Lovdsz’s theorem

(see the previous section) implies that a graph -is minimal imperfect if and only if it

contains a partitionable induced subgraph. As Cameron and Edmonds remarked (see

3

Cameron [1082]), this implies that imperfect"graphs are in NP. N
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Chapter 3

Weakly Triangulated Graphs

v -

3.1 Introductio'n !

] /

I,

Recall that a graph is weakly triangulated if ‘it contains no C..and no G}, fes k 2

-

‘5. In this chapter we decribe some properties of weakly triangulated graphs, and show

that weakly triangulated graphs are perfect. .In particular, we describe a relationship

.

between weakly triangulated graphs and star cutsets. F:mally, we describe polynomla:l
time algorithms whicl‘l solve the maximum clique, maximum independent set, minimum

colourglg and minimum clique cover problems for weakly triangulated graphs

-

An attractive feature of, weakly triangulated graphs is that théy can be recognized

Fl

in polynomial time. One such recognition alggrithm is as follows: for each vertex in a

graph, determine if the vertex is contaimed in a cﬁordles’s cycle with flve or more vertices;

o

ref)ea.t; the process for the complement of the graph. Whether or not a vertex v Is

o

e

contained in & chordless cycle with five or more vertices ean be ¢hecked as follows: for

hY

each pair of non-adjacent vertices z and y which are both adjacent to v, remove all

L]
°) -

v'er't..ices of the graph adjacent to both z and y, as well as all vertices adjacent to v

-
(except z and y), and then chedk whether or not there is a path from z%o y in the

resulting graph. The vertex v is contained iff a chordless cycle with at least five vertices
. } v

if and only if there exists such a pdath from 2 to y. Fora graph with n vertices and e

edges, determining whether or not there is a path between a specified pair of vertices can

-

" be done in time O (e ). Since the total number of edges in a graph and its complement

is O(n %), the above algdrlb[nm‘ recognizes weakly triangulated graphs in time O (n®).

1

*

4\~
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3.2 Wea.kly Triangulated Graphs, Star Cutsets, and Perfe;:tion

~

I3

3.2.1 Why Star Cutsets? .

In attempting to analyze the structure of weakly triangulatgé- graphs, we hegin by

4 -

examining two special cases: triangulated graphs and P-free graphs.

\
Dira¢ [1961] proved that every minimal cutset in a triangulated graph is a clique.
- & ' .
‘A theorem due to Seinsche [1974] implies that every P,-free graph with at least three

vertices has a homogeneous set. However, there are weakly triangulated graphs with no

clique cutset, no clique cutset in the comf)lement. and no homogeneous set. The smallest

1}

such graph appears in Figure 8.1. L

i

In attempting to unily certain structural properties associated with decompositions_
of perfect graphs, Chvdtal [1985a] conceived the follo\wing notion: a star cutset Is a set
C of vertices of a graph G such that some vertex in C is adjacent to all other vertices

in C, and such that G ~ C is disconnected. (In particular, if a graph has a clique
t/ " ‘
cutset, then it has a star cutset; if a graph has a homogeneous set, then either the graph

)
¢

or its complement has a star cutset.) Let G be a graph with star cutset C', with vertex

vin C acija.ceht‘. to all vertices of C - v, and Iet A be 2 component of G ~ C,and B

the vertices of G -~ C - A. Chvdtal proved that G is perfect if t’.he\lthree subgraphs

[y

GAUC' GBUC' and G v respectively are perfect; he also proved the analogous

‘ )
decomposition result for the case in which the complement of a graph has a star cutset.

The following is a consequencé of these two results:

The Star Cutset Lemma (Chvital (1985a}). If a graph is minimdl imper/ect, then

-

neither the graph nor its complement has a star cutset. -
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Chvdtal conjeétured -that every weakly triangulated graph with at least three
vertices either has a star cutset, or else its complement has a star cutset. This

conjecture will be proved as the WT Star Cutset Theorem.

3.2.2 Perfection - .

The WT Star Cutset Theorem follows easily from the following theorem.

z

v

The WT Min Cut Theorem. Let N be a minimal cutset of a weakly triangulated
graph G, and let N induce a connected subgraph of G. Then each connected component

of G- N includes at least one vertex adjacent to all the vertices of N.

Proof of the WT Min Cut Theorem. We first show that
every two non-adjacent vertices in /N N
have a common neighbour in each componentof G ~ N. (1)
For this purpose,. consider- arbitrary non-adjacent vem, es z ‘and* y in N, and an
arbitrary component A of G - IN-. Since the cutset N is minimal, each“vertex in IV
has at least one neighbour in A; now connectedness of A implies the existence of a path

"

from z to y with all interior vertices in A ; the shortest such path P is chordless. The

same argument, appiled to another component B of G — N, shows the existence of a

chordless path @ from z to y with all interior verticesin B. The two paths P and @

combine into a‘ chordless cycle in G; since G contains no chordless cycle with flve or |

more vertices, each of the two paths must have only one interior vertex. In particular,

the interfor vertex of 1; is 'a common neighbourof z andy in A, £nd (3) is proved.

Next, let us show that

¥

the theorem holds whenever no two vertices in N are adja.cent. (2)

To prove (2), we use induction on [N|. When |[N| = 1, the conclusion follows frof the

3
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[
¢ o

O . fact that the cutset N is minimal. When |N| = 2, the conclusion Is guaranteed by (1).

'‘When |N| = 3, choose distinct vertices z,y,z in /N and consider an arbitrary °

=

component A of G — V. Note that N -z is a minimal cutset of G — £, and that
(G-z)-(N-z)= G - N. Hence the induction hypothesis guarantees the existence of
a vertex u in A that is adjacent to all vertices in NV - z . By the same argument, some

-

- vertex v in A Is adjacent to all vertices in N - y, and some vertex w in A Is adjacent
to a:ll vertices in N — z. 'We will sho;v that at least one of the vertices u,v,w Is
adjacent to a.li the vertices in /N. Assuming the contrary, note that u,v ,w must be
distinct. Now u cannot be adjacent to v (else ¥y ,u ,v,z, and any common nelg;xbour of ,
z and y in G -N - A, whose exisgence is guaranteed by (1), would induce a chord.less
cyple in G); by the same argument, u cannot be adjacent to w, nor v to w. But then.
z,w,y,u,z,v induce a'chordless cycle in G. This contradiction completes the proof of

o , (2). ' ' C

To prove the theorem in its full generality, we again use induction on |N|. When
IN| < 2, the conclusion roll;v\;'s from (2). When |N| > 3, we may assu;ne that at least |
two vertices in N are adjacent (else the conclusion is guaranteed by (2) again). Now we
claim that N includes distinct v;rcices z and y such thz'u: _ o
f(i) z and y are adjacent in G, and
() both N - z and N -~ y induce connected subgraphs of G . -
- (To justir;r this claim, we only need choosevx and y so that, in the subgraph of G
lﬂduced by N, the shortest path from z “to y is as long as possible.) Consider an
arbitrary cpmponent A of G — N. By the induction hypothesis, A Includes vertices u
and v such that u is adjacent to all the vertices in N — z and v is adjacent to all the

verticestn N — y. We willshow that at least one of the vertices u and v Is adjacent to

O' all the vertices in N. Assuming the contrary, note that u and v must be distinct. By
@
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(1), the shortest path P from z to y in the subgraph of G induced byl N has at le;a.st
one Interior vertex. Now u and v must be adjacent: else u,v and P would induce a
chordless cycle in G . Next, &ithe argumexit sho“.r_lng the existence of v in A shows also
the existence of a vertex r iI:- G - N - A such that r is adjacent to all the vertices in

N -y. If r is not adjacent to y then u,r and P induce a chordless cycle in G else

u,r,v and P induce a chordless cycle in & . This contradiction completes the proof. N

v

The WT Star Cutset Theorem. If G is a weakly triangulated graph with at least

three vertices then G or G has a star cutset.

Proof of the WT Star Cutset Theorem. The star cutset may be found as
follows. Choose an arbitrary vertex w in G. For each vertex  other than w, put z in
the set NV If z Is adjacent to w; else put z in theset M. If V' is empty then stop: {u}
Is a star cu-tseo in G for every vertex u in M. If M is empty then stop: {v} is a star

cutset in G for every vertex v in N. .
L]

-

Now, both M and N are non-empty. If M induces a disconnected subgraph of G

then stop: {w } | J V isastar cutset in G. If N induces a disconnected subgraph of G

then stop: {w } UM is astar cutset in G.

Now, M induces a nonempty connected subgraph of G and N induges a.xnonempty
connecte;i:: Subgraph of G. If some vertex v in N is adjacent to no vertex in M then
stop: {w} | (N — v) is a star cutset in G. In the other case, each vertex in N is
adjacent to at least one vertex in M; note that N is a minimal cutset in G. Now, the

WT Min Cut Theorem guarantees that some vertex u In M is adjacent to all the

vertices in N. Stop: {w} U (M - u) is astar cutset in G. |

¢ ¥
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Corollary. Altrweakly triangulated graphs are perfect.

-

Proof. Argue by contradiction; let G be an imperfect weakly triangulated graph.
Then there is some induced subgraph H of G such that H is minimal imperfect, H is
also weakly triangulated. Graphs with one or two vertices are perfect; thus H has at
least three vertices. But now the WT Star Cutset Theorem says that either H or H has
a star cutset, contradicting Chvdtal’s Star Cutset Lemma. M

i

3.2.3 Star Cutsets and Generating Classes of Perfect Graphs

Chvatal has pointed out‘ that a forbidden property of minimal imperfect graphs
may be used to generate large classes of perfect graphs from smaller ones. For example,
the star cutset may be used in such a way. Specifically, given any class C' of graphs,
denote by“C" the class of grap;s defined recursively by the following two rules: .

() rGeCthenGeC”’,

(i) if G or G hasastar cutset, and f G ~v € C " " forallv € G,then G € C°.

Chvatal's Star Cutset Lemma tmplies that C* is a class of perfect graphs whenever
C is. For example, let Triv denote the class of all graphs with at most two vertices.
What can we say about the class of graphs T rz"v'? By'the WT Star Cutset Theorem it
follows thaé Triv°® contalins the class o'r weakly triangulated graphs. On the other hand,
neither chordless cycles with five or more vertices nor th:a complements of such cycles
have star cutsets; thus a graph in Triv’ cannot contain C} or’ Cy, for k > 5, as an
fnduced subgraph. It follows that Triv® is exactly the class of weakly triangulated
graphs. Thus weakly triangulated graphs are the class of graphs _aséociated with the

\’property "either a graph or its complement has a star cutset”.

\ -
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Apother class of graphs associated with star cutsets is the class Bip ', where Bip
denotes the class of bipartite graphs. Although Bip * contains Triv’, as well as many
other classes of perfect graphs, it is not known whether or not graphs in Bip * can be

v
3
h

recognized in polynomial time.

’ -4

3.2.4 Which Weakly Triangulated Graphs Have Star Cutsets?

i
NJte that the WT Star Cuiset Theorem states only that a weakly triangulated

graph with at least three vertices, or tfs complement, has a'star cutset, We now answer
the question ”exact‘ly which weakly triaﬁgulated graphs have star cutsets?”, The
following theorem is a strictly stronger statement than the WT Star Cutset Theorem.
However, we have included both theorems because the proof of the WT Star Cutset
Theorem is much simpler than the proof of thcf following theorem, and because the WT
Star Cutset Theorem siffices to prove t.hat weakly triangulated graphs are ;;erfect. In

fact, it is the WT Star Cutset Theorem that appears in Hayward [1985].

The Second WT Star Cutset Theo;'em. Let G be a weakly triangulateé graph.
Then exactly one of the following is true:
(i) G isa clique,
(ii) every component of G consists of a single edge,

(17i) G has a star cutset.

Before proving Lﬁe t,heor;,m we present a lemma; before presenting the lemma, we
Introduce some deflnitions. A vertex z Is said to be dominated by a vertex y if every
vertex (different from z and y ) that is adjacent toz is also adjacent to y. We call a
graph with no dominated vertex dominatz'on-frc;:. Recall that /N (z) and M(z) are

respectively the neighbourhood and non-neighbourhood of a ventex z .

. -
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The WT Domination-Free Lemma. If G is a domination-free weakly

N

triangulated graph with at least two vertices,then G has o star cutsel.

Proof of Lemma. First, we propos? to find a vertex v and a component J of

M (v) such that
. every vertex in IV (v) h;!s a neighbour in J. ) 1)

b -

For this purpose, we borrow a trick from Ravindra [1982): find a vertex ¢ and a
component F of M (t) such that the number of \;ertices in F is minimized (ovet all
choices of t and F'). We claim that (1) holds whenever v € F° and J is the component
of M(v) that contains ¢{. To justify this claim, consider an arbitrary = in N (v ). Weo
may assume that z ¢ N(¢), for otherwise ¢ is the neighbour of z. In J; hence z € F.

 Since z is not dominated by v, it has a neighbour y in M (v); trivially, y € F U

N (t). Now we only need verify that F M| M(»)C J and N(¢)N M (v) C J. The

second of these inclusions is obvious; to verify the first, we only need verify that every y
in F (M M (v) has a neighbour in N (¢) (| M(v). If the last assertion were false then
the component of M (v) that contains y would be contained in F-v, contradicting our

&

‘choice of ¢t and F. Hence (1) holds.

_ Now consider the subgraph H of G induced by {v} | J N(v) |J J. It follows
from (1) that N(v) is a minimal cutset in” H. Next, the WT Min Cut Theorem
guarantees that the complement of the subgraph induced by N (v ) must be disconnected
(otherwise v would be dominated by some vertex of J in H, and therefore also in G).

’

But then {v } | J M (v)isa starcutset in &. W

Proof of the Second WT Star Cutset Theorem. We shall argue by induction;

the cases where G has at most four vertices can be checked by inspection. Now suppose
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that G has at least five vertices. If G is domination-free then G is domination-free,

" and G has a star cutset by the WT Domination-Frqe Lemma. Suppose then that. G is

- 1

not domination-free; in this case there are vertices ¥ and v in @G, such that v

dominates u, l.e. N(u) -~ v isasubsetof N(v).

Case 1. suppose that u is not adjacent to all the vertices'of G — v. In this case

{v} U N (u) is a ster cutset.

’

. Case 2: suppose that u is adjacent to all the vertices of G — v. Then, since v

dominates u,.v is adjacent to all of G - u . There are two subcases to consider.

Case 2.1: suppose’ that u s adjacent to v (thu;‘ N(v)=_G —v and
N(u)= G - u). Then either G is a clique, or else there are non-adjacent vertices z

and y in G, in which case G -z — y Is a star cutset (v is adjacent to allof G - v).

Case 2.2: suppose that u is not adjacent to v (thus
N@w)= N(u)= G -u - v). We now use the inductive ~hypot;hesis on G —u -v.
If G-u -v Isa cllm‘xe, then G —u -v is a star cutset in G. If G ~u —v has a
star cutset C, then C | {u,v} is a star cutset in G . Finally, note that the
complement of G consists of the complement of G — u - v together with a component
consisting of the edge induced by {u ,v}. Thus, if every component of G-u —visa
single edge, then every component of G isa single edge.- This completes the proof of the

chond WT Star Cutset Theorem, i

Vertices z and y of a graph G are called twins if every vertex of G — z — y is

adjacent either to both z and y or to neither z nor y. A corollary of the Second WT

.Star Cutset Theorem is that every twin-free weakly triangulated graph with at least

three vertices has a star cutset. This. Is a stronger statement than the WT Domination-

\
Free Lemma. ~
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3.2.5 A Domination-Free Weakly Triangulated Graph

Domination-free weakly triangulated graphs are mentfoned in the proof of the

Second WT Star Cutset Theorem. In this section we describe such a graph W. Our

-

_search for a domination-free weakly triangulated graph was motivated by Mahadev

- e

v

[1984]. -

The set of vertices of W is the union of the set X = { zo, 2, Zo, ..., Z,; } 2nd

L]

the set Y = { yo ¥1. ¥2 --» ¥11 }- The only edges of W with both endpoints in X are
(Zak, Zar41) 80d (Tap 4y Tapsa) for b = 0.1,2,3? The only edges of W with both
endpoints in Y :;re (Y3t Yae+1) and (¥ s 410 Y3k 42) for £ = 0,1,23. Finally, for k =
0,1,2,3, (all indices are modulo 12)

the only edge of W between {yai, Yak +10 Yak+2} 30d {Zap, T3k 41 T3k 4o} I8 the edge

(yak » T3k )'

the only edge of W between {¥az, ¥a +10 Yak 42} 208 {3k 4a Tk 40 Tak 45} IS the edge

(¥ sk » Tsi+s) — '

sa——

the only edge of W between {yai, Yak +1, Yok +2} 884 {3k 40 T3k 47, Zak 48} 15 the edge

——

(Yar» Zak +7)

the only edge of W between {ysi,¥se +1.Yst+2} 80 {Z 310,23k +10.F5k +11} IS the edge

-

(Y 3k 1% 3k +0)-

Table I lists that part of the adjacency matrix of W re;)resentlng edge; of the form
(i » y;). Figure 8.8is a drawing of the subgraph of W induced by X ) {¥st. ¥at+1
y;;, +a} ~a.nd Figure 8.9 is a drawing of the whole of W. Note that W is self-

complementary: the permutation P defined by P (z;) = y; and P (y;) = 2; .3 for 1 =

0,1,....11 sends edges of W onto edges of W and vice versa.
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‘ Yl) the sybgraph of }¥ induced by X consists of four disjoint Pg's,

&

= A R A

\
- 20 -
~ 012 345 678 91011
0O 100 D10 11 011
1 0c0O0 000.011 111
2 000 000 111 111 r
’ 3 011 100 010 111
4 111 000 000 01
5 111 000 000 111
8 111 011 100 010
7 017 111 000 000
8 111 111 000 000 -
—_— 010 111 01 1 00
10 000 11 1'1 0 00
11 000 171111 0 00

Tablel. . &jj =1 if and only if x; is adjacenttoy; in W

Since W is self-complementary, in order to prove that W is weakly triangulated_it
is sufficient to show that W has no chordless cycle C' with at least 5 vertices. Argue by

contradiction: suppose that W contains such a C. Recall that

(if) the subgraph of ¥ induced by Y consists of four disjoint P's.

a

It is a routine matter to verify the following three claims:

(lif) W contains no cliordless path (p,, pa, Ps P4) Whose intersection with X is the

set {py, P}, -

(lv) W contains no chordless path (p,, pa, P3s P4 Ps) Whose intersection with X is

{P2ps P

o

(v) W contains no chordless cycle (¢4, €g, Cg €4 ¢g) Whose Intersection with X is

{ca 3 4}

Ftom (v) and the fact that-both W and C, are self-comﬁlementary, it

-

< L w
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follows that

(vi) W contains no chordless (¢,, ¢4, g, ¢, ¢j) Whose intersection with X Is the set

)
£l

{c1. ca}.
\

" \ :
Because of (i), C' cannot be properly contained in X .~ Because of (ii), C' cannot be
properly contained in Y. Hence, let Cy be ghe*subgmph of W induced by those

vertices of C in X and Cy be the subgraph of W induced by those verticesof C in Y.

Both Cy and Cy must consist of disjoint chordless paths. Because of (i), Cy contains

,

no P, with & > 3. Because of (iv) and (v), Cx contains no P3. Because of (lif), Cy

contains no P,. Thus Cy consists of pairwise non-adjacent vertices. Cy cannot consist '

of a single vertex, because then Cy would contain a P, , with ¥ > 4, contradicting (if).

Thus Cyx consists of at least two non-adjacent vertices; hence Cy consists of (at least™

two) disjoint chordless paths. But Cy cannot contain ‘three or more disjoint chordless

paths, because then 5y would contain a triangle, contradicting (ii) Thus Cy consists

L}
of exactly two disjoint paths; now (ii) lmpllés that one of thése paths is an #olated

vertex, and the other has two vertices (each subgraph of W lnduced’f)"i at least four

vertices iy Y is connected).” l}ut then the cycle would have to consist of exactly five

\ »

. vertices (¢, €g, €3 €, Cg) whose intersection with Y is {c, ¢, ¢4}, contradicting

.
(vi). Thus, W is weakly triangulated.

To verify that W is domination-free, assume the contrary: some vertex u s

dominated by a vertex v. First, consider the case when’u is in X . By symmetry, we

may assume that 4« = z; with 0 < { < 2. To see that v cannot be in Y, consult
1

Table II.

o ’ \ . ’ o

&
“ 1
‘ . \
A

g
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Yo U1 Y2 Y3 Y Ys Ye VY7 Ys Yo Y10 Yu

zo | zylzalzs |l zolov ]z ] volvs |l 97| Yol yual vl
'z, lzzlznlzzlzzlzzlzzl!I7|.1L8|y7|y10|yud| Yo |
Y
T3 Izl‘lzllzllzllzlIzall»y7‘y8|y7|yiolylllylol
o ] Table II. Neighbours of x; non-adjacent to yj inW.
: - .
Thus we must have v = z; for some j; considering the subgraph of W induced ’

by X, we conclude easily that 0 < j < 2. But now we only need observe that
. Yo Sees T o and misses 7,25, ,
Yo Sees T,,7, and misses T4, /\
Y ¢ Sees T, and misses z,,

Z o sees x, and misses z,.
f‘:_m

Thus u cafnot be in X .

Next, consider the case when u is in Y. By symmetry, we may assume that u =

y; witho < ¥ € 2. Tosee that v cannot be in X, observe that u is adjacent to bothy

.

z, and 24 at least one of which is non-adjacent to v. The only remainkng subcase, with

a—

M N
u and v both in Y, is reduced to a previous subcase by considering the permutation P

that sends I onto its complement: clearly, P (v) is dominated by P(u ), and both

\
P(u)and P(v)are in X. Thus-W is domination-free.

Incidentally, W has neither a clique cutset nor a homogeneous set. Furthermore,
W is inot strongly perfect. (Recall from Chapter 2 that a graph is strongly perfect if in
every induced subgraph there is a stable set t.tiat. meets all maximal cliques.) In the

a

"subgraph of W induced by Z = {.zo, T, %9 g 29 g Yoo V1o y,,,‘y., } no stable set

[/\ meets all maximal cliques. To s;:e this, note that the maximal cliques of this g\raph are

¢

&
Y

*



Figure 3.4.

The subgraph

Ww,,

with: weights on maximal cliques

-
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{ zo v Y7 ho -'l"'on Zn¥r b {20 Vo ycé» { ";ov Yo Yo }r
{zovo¥7h{za e ¥1} {21 2297} { 27,25 ¥1 ),
\{ Ty Yo} { Zar Yo}, 2nd { ¥y, y7}.
Assign to theée cliques the integers -1,-1,0,0,1,1,1/1,-1,-1,-1 respectively. The sum qf the

integers is -1, and yet for each vertex v, the sum of the integers of the cliques that

contain v is 0. On the other hand, let S be a §ca.b1e set that meets every maximal
clique of a graph G. Since a stable set meets a clique in at most one vertex, each

maximal clique of G meets precisely one vertex of S. Thus, if integers are assigned to
¢

the maximal cliques of G such that for each vertex v, the sum of the integers of the

cliques that contain v is O, then the sum of the integers must also be 0. Thus W, is

»

not strongly perfect, and so neither is W. A drawing of W5, with the maximal cliques

-

labelled as described above, is shown in Figure 8.4.
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3.3 ‘Weakly Triangulated Graphs and Two-Pairs

——

E
* An, even pair is a pair ‘of (nonzadjacent) vertices in a graph, such that every

chordless path between the two vertices has an even number of edges.’ Meyniel defined a

- ]
graph G to be strict quasi-parity if every induced subgraph H of G which is not a

.

clique has an even pair. A graph G is quasi-parity if every induced(gﬁbgraph H of @,
or its complement H, is either a clique or has an even pair. Meyniel proved that strict
quasi-parity graphs and quasi-parity graphs are perfect. Recently Hoding and Maflray
[1086] proved that weakly triangulated graph‘s are st.rict.\'quasl-paricy. It is not known
whether or not gt'rict. quasi-parity graphs, or qunsi-pavit{y,gfaphs, can be recogniz-ed in

polynomial time.

N

+

Hoing and Maflra¥y showed that weakly triangulated graphs are strict quasi-parity

by proving that every weakly triangulated graph which is not.a clique has an even pair.
\ °
‘I

In fact, a slightly stronger statement iéz true. We call a pair of yerbices a lwo-pair il

“

every chordless path which joins the yertices has exactly two edges. The original

- theorem of Hodng and Maffray was easily modified to yield .the following theorem -

TA !

-
-

The WT Two-Pair Theorem. Every weakly triangulated graph which is not a clique

has a two-pair. -

’ @ ) t 34

Il

Proof. We shall prove a stronger assertion, namely, that all weakly triangulated
graphs G other than cliques have the following two properties: o
(1) if G has no clique cutset then each cutset of G contains a two-pair,

(2) G contains/a two-pair. , .

Arguing by induction on the number of vertices, we rfla.y assume that both (1) and

v

(2) hold Sor all weakly triangulated graphs with fewer vertices than G'. To prove (1) for

. G, consider any minimal cutset C of G . By assumption, C Is not aclique. We ghall

~

g




|

di;tlngulsh between two cases.

Case 1. Suppose that 50 {s disconnected. Let D be the set of vertices of some
component of (70 with at least two vertices (since C' is not a clique, there m“ust; be sdc}l
a set D). Note that every vertex of C - D is adjacent to every vertex of D, and that
D is a minimal cutset, not a clique, of G - (C -~ D). Thus by inductive assumption, D

contains a two-pair of G — (C - D ); obviously, this two-pair is a two-pairof G .

Case 2. Suppose that G Is connected. Let B,, .., B, be the vertex sets of the

components of G ~ C. Now use the WT Min Cut Theorem: in each component B;,

there Is some vertex.that is adjacent to allof C.

o

o

Case 2.1. Suppose that [B;| =1 for all j. Then, by inductive assumption the

-graph G¢ contains some two-pair {7y }. Clearly {z,y} Iya two-pair of 7.

Case 2.2. Suppose that |B;| = 2 for some j. Let z be any vertex of ‘Bj that is

s

adjacent to all of C; let D be the set of vertices of C that are adjacent to some vertex
of B; - z. Now D isaminimal cutset of G — z. Note that D is not empty, and not a
clique (otherwise D [J {2} is a clique cutset of G, contradiction). Thus, by. inductive

assumption D contains a two-pair of G -z which Is clearly a two-pair of G.

N

To prove (2) for G, we may assume that G has a clique cutset C' (otherwise the
desired conclusion follows from (1)). Let B,y B, ..x B, be the vertex sets of the

[N
components of G—C. If some G-B; is not a clique then by the induction hypothesis

' G’-—B,- contains a two-pair; since every chordless path lfl G with both endpoints in

G —B;-\ is fully contained in G -B;, this two-palr is also a two-pair in G . Hence we may

i

assume that each G -B; is a clique. ‘This implies that ¢ == 2 and that {z v} s, a two-
/ ; -

pair wheneverz € B,, y €~B,. | ~,
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A noteworthy distinction between an even pair and a twospair is that it is easy to
check in polynomial time whether or not a pair of vertices is a two-pair: remove the

common neighbours, and check whether the original two vertices are in dilrerencn
=
components of the resulting graph. (Wé know of no polynomial time algorithm to

determine if a pair of vertices is an even pair) In the next section we build upon this

propeity and derive polynomial time algorithms for solving certain optimization

t

problems for weakly tri‘angulated graphs.
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3.4 Optimizing Weakly Triangula—téed Graphs

3.4.1 Introduction

In this section algorithms are presented which solve thé following problems for

weakly triangulated graphs in polynomial time.
The Maximum Clique Problem. Find a largest clique in a graph.
The Maximum Stable Set Problem. Find a largest stable set in a graph,

The Minimum Colouring Problem.. Find a partition of the vertices into the

smallest number of stable sels. 4 !

- ’ : ! v \,
The Minimum Clique Covering Problem. Find a partition of the vertices into

the smallest'number of cliques.

¢

Algorithms are also presented which solve the weighted versions of these problems.
In each of the following problems, assume that a graph G with vertices v}V, and

positive integers w(v,),..,w (v, ) are given. These integers are referred to as weights.

The Maximum Weighted Clique Problem. Find a cligue K of G, such that the

sum of<the weights of the vertices of K is mazimum, over all cligues of G.

The Maximum Weighted Stable Set Problem. Find a stable set S of G, such

———

that the sum of the weights of the vertices of S is mazimum, over all stable sets of G.

The Minimum Weighted Colouring Problem. Find stable sets S ..., ang
ingegers X (S 1),...X (S, ), such that
(1) Jor every vertex v, , the sum of the integers X (S, ) of all sets S; such thatv; € S;
is at least w (v; ), and such that

(2) the sum of all integers X (S,) + ... + X (S, ) is minimum, over all sets of integers

that satisfy (1). P
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The Minimum Weighted Cl'ique Covering Problém. Find cliqgues K ,,...,K,
and integers X (K J,,X (K, ), such that
(1) for every vertex v;, the “sum of the :'ntegcr.; X (K; ) of all sets K; such that v; € K;
is at least w (v; ), and such that
(2) the sum of all integers X (K,) + ... + X (K, ) is minimum, over all sets of sntegers
that satisfy’(l). v

An algorithm which solves any of the weighted problems can be used to solve the
unweighted version of the problem by assigning the weight "1 to all ve;rtlces. However, '
since our algorithms for the unweighted problems are more transparent and more
efficient (in the sense of worst time complexity) than the algorithms for the weighted

problems, we include both sets of algorithms.

Actually, we pres;m. only m"o algorithms. Algorithm OPT solves the maximum
clique and minimum colouring problem for weakly triangulated graphs; Algorithm W-
OPT solves the weighted Lversions of these problems. Since the complement of a weakly
triangulated graph is weakly triangulated, Algorithms OPT and W-OPT can also be
used to solve the unweighted’and weighted versions respectively of the maximum stable
set and minimum clique covering problems: to find a largest stable set of a graph G,
find a largest clique of G; to find 2 minimum clique covering of a graph G, find a

minimum colouring of G .

Oour algorlth?ns rely on the fact thab\ every weakly triangulated graph Is either a
clique or else has a two-pair (sée the previdﬁs section). The aforementioned optimization
problems are easily solvued for graphs which are cliques. Given a weakly triangulated
graph other than a clique, our algorithms repeatedly find a two-palr, each time

transforming the graph in question into a smaller weakly triangulated graph by
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o

*
"identifying” the two-pair. (We will define this term shortly.) Eventuslly the original

graph is transformed into a clique; thehoptlmlzation problem is solved for thq clique, and

—— A

&
the two-pair identification process s reversed, transforming the solution of the

optimization problem for the clique to the soluti¢n of the optimization problem for the
: o

orlginal graph.

3.4.2 The Unweighted Case .

Let G (zy—z) be the graph obtained by replacing vertices z and y of G with a

vertex z, such that z sees exactly those vertices of G - {z ,y} that see z;,t least one of

{z.y}. 'The identification of z and y and (G is the process of replacing G with

[
]

G(zy—2z).
In the following algorithm, we specify a colouring by a function fg at assigns

some integer from 1 to £ to each vertex, such that adjacent vertices are assigned

different integers. Assume that V(G ) = {v,, vy, ..., U, } Is the set of vertices of G.

L4

Algorithm OPT(G).

Inpl‘x't: a weakly triangulated graph G.
Output: a largest clique K; and a minimum colouring f ;. i
Step 1. Look for a two-pair {z,y}of G.

It G-has no two-pair, then

(@) Kg « V(G),

(b) fors =1ton do fg(y)e 1, and

(c) STOP.
Step 2. J — G(zy—z). " _ )
Step 8. K;, f; ~ OPT(). . ’

% )
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Step 4a. If 2 ¢ K; then K; — K¢, else (z € K; and...)

if z seesall of K; — {z} then Kg — K; -{z}+ {z}.
[
else . Kg+—K; -{z}+{y}. -

7T Step 4b. fa(’f)_‘- Je(y)— fs(2);

o

foreach v; € J ~ {z,y} do

’fIG(vi)‘_fJ(”i)- . ’

To prove the correctness of Algorithm OPT, we need to estapl~ish\§everal propertles

- concerning the identification of a two-palr in a weakly triangulated graph. One such

proper},y Is described in the following lemma. ’

- -
»

)

The Identification Lemma. Let G be a weakly triangulated graph with a two-pair -

U

{z,y}. Then G(zy—3) is weakly triangulated.

Proof. Let H =G (zy—z ).‘ We prove that if H is (no't weakly triangulated, then
neither is G. Afume thath ‘is not ;veakly t.ria.ngula!teci. Then th;:re Is some subset C

‘ ‘of’_thye vertices of H, such that the subgraph H; of H induced b;' C iseithér C; or Gy,

with ¥ > 5. Ifz ¢ C, t,hen clearly G. is not weak;y briangulacé‘d\. tThus we may

assume that 2 € C. ' ' R

Case 1. Hg is a chordless cycle ¢,...c; with k¥ > 5.

Assume without loss of generality that z = ¢,. Then ¢c,...¢c; is a chordless'path in G

Since z sees c 5,¢c;, and ‘nongrof cj,...,C_,,. 3t least one of {z,y} sees ¢, and similarly

¢, and neither 2z nor y sees any of {cg,...,C;_;}. Now observe that at least one of
ey

{2,y } must see both of {c 2‘c,;}. (Suppose not; assume w.Lo.g. that z sees ¢, but- not

;¢ and that y sees ¢ but not c,. Then (z,¢c ,,...,‘c,, ,y ) Is a chordless pa.ph with at least
{

-

. six vertices, contradicting the assumption that {z,y} is a two-pair) Thus 4ssume
2~
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4
) *
e w.log. that z sees both of {c,,¢; }. Then {z,c,...,c; } induces 2 C; in G, G is not

weakly triangulated, and the theorem holds in this case.

Ty

,\\/‘ Case 2. H; is a chordless cycle ¢ 1Cp With k > 5,

Assume without loss of generality that z = ¢;. Thus c,...c; is a P,,in G, and

" (1) 1 ¢ o sees neither z nor y and cp sees neither z nor y, and =
, 2 y

, ' / - (1)  every vertex in {cs,...,c; } sees at least one of {z,y}. .

3

Now observe that

?

(iil) "z or (“sees both ¢+ and 4
" (Assume the céxgtrary. By (ii) either z or y sees c4; assume w.lo.g. that z sees Cg.

Since (lil) does not hold, z does not see ¢ ,; thus by (ii) Y sees ¢4, and since (iii) does not

-

hold, y does not see ¢y But then (z,¢5,0¢,¢ 4,y) is a P, contradicting the fact that
{z,y}Isa two-pairin G.) oL : '

4

% , " . Assume wlo.g. that z -sges both ¢ and c,; let m be bh.e smallest, i\nde} greéter
than four such that z does not see Cpy . Then z c,...t;j,,J is & C} , with k& > 5, G is not
weakly triangulated, and the theorem holds in this case. W | ‘
. r \ .
"Another result that will ‘be used in prow,fing the corr;ectnes,s of Algorithm OPT i;

b4 7

that two-pair identification does not change the. clique size. This follo»'v,s from a lemma

Que to Meyniel,

» -

2 »

The Clique Size Lemma (Méyniel (1986]). If vertices x and y of a graph G are \

B L not joined by any 'chordlcssopath with three edges, then w(G(zy—z)) = w( G).

, '.lyﬁe Clique Size Corollary. If {2y} s o two-pair of the weakly tri;zngulat;d
\ graph G, then w(G(zy—z)) = w(G) . . N

. -
< ~ ‘
N -
s -
B
.

'
4

A




o , -38-
I

" The Correctness Theorem. Algorithm OPT .finds a largest cligue and a

minimum coloursng of G.

Proof. Throughout the proof we let i]al and |f;| denote the number of colours
of fg and [, respectively. Since the cliq;xe size of a graph is never greater than tht;
chrométic number, to prove the thegrem it suffices to show that K¢ is aclique, that f 5
isa colourlneg, and tha;, |Kg|=|f¢| The proof is by ind;xction on the number of calls
of OPT. (Since identification decreases the number of vertices by one, OPT is called at
most n times; thus the algorithm terminates:) If OPT is called only once, then the
algorithm terminates ac; Step 1. By the WT Two-Pair The’orem, Kg = V((G)is a

clique, f ¢ is a colouring with n == |K | colours, and the theorem holds.

Suppose then that OPT is called more than once; thus the algorithm terminates
with Step 4b. Since (by the Identification Lcrr?ma) J is weakly triangulated, by the
inductive hypothesis we may assume that K; and f, are a respectively 4 clique awnd a
colouring of J, such that |K—:|-= [fs] Itz ¢ K;, then Kg = K, and |Kg | = |K;|.
If 2 € K, then either z or y must see all vertices of K; — z. (Suppose not. Then z
tt;lsses s<;me v; € K;; however, y sees v;, else z would miss v;. Similarly, y misses
some v; € K; that sees z. But then zv;v;y is ;L chordless path, contradicting the

assumption that {z,y} Is a two-pair.) Thus |z | = |K;|. Since K, is a largest clique

of J, the Identification Lemma implies that |Kg | = | K|

Since no pair of adjacent vertices a ,b of J satisfy f;(a) = f,(b), no palir of

adjacent vertices a,b of G - {z,y} satisfy fg(a) = fg(b). Finally, let ¢ be a

" vertex of G that sees a@least one of {z,y }; then ¢ sees z in J, and so

Jele)=[fi(c)F* [,c)=[g()= fa(y) -

Thus no pair.of adjacent vertices u,v of G-satisfy fg(u) = fa(v'), and fg Is a

A
XS

\“ & o
N » - Y WP -
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colouring. Note that |fg| = |fs]|. Thus |Kg| = |Ks| ="|f ;] = /¢ a.\nd the

——

theorem s prove&. N
{
. . |
A corollary of thhe Correctnyss Theorem is that w(G) = x(G) if' G is weakly

?

criangglated. Thus (since every induced subg):aph of a weakly triangulated graph is

weakly ‘triangulated) the Correctness Theorem yields another proof that weakly

triangulated graphs are perfect.

We now analyze the complexity of Algorithm OPT(G). Let e be the number of

edges of G, and n the number of vertices. Note that a pair of non-a.djacent\,) vertices z

" and y in a graph G is a two-pair if and only Hifvbhere is no patl; fromz toy in G - N,

where NN Is the set of all vertices of G that see both z and y._ Determining whether or
not two vertices are in the same compo?xent of a graph can be done in time O (n-+¢).

Thus determining whether or not a pair of vertices is a two-pair can be done in time

O(n+e¢), and Step 1 can be done in time O((n*e¢)n?). Step 2 can be done in time -

N s [s]

O(n), [a can.Steps 42 and 4b. Since Step 3 is executed a.ﬂmost n -1 times, the worst~

case complexity of Algorithm OPT 1s'0 ((n +¢ )n®). ' o

’
i

v/-(
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3.4.3 The Weighted Case , . | y

In .ihis section we present polynomial time algorithms that solve the weighted
\ f

versions of the maximum clique, maximum stable set, minimum colouring and minimum

. ¥
clique covering problems for weakly triangulated graphs.

One way to solve the weighted clique problem for a graph G is to replace' every
vertex v of G with a clique of size w (v ), and then solve the unweighted clique problem

on the resulting graph. However, this transformation is inefficient if the weights are

¢

large. Our solutioh Is more direct.

Deflne G (u—vw ) to be the graph obtained from the graph G by replacing the:
vertex u with vertices v and w, such that v sees w, and such that u,v,w see exactly

the same vertices of G - u. This process is referred to as duplication.

We now define an operation that combines identification a.ng,.dupliéatlon. Define

G(zy—2a) to bé the graph H(zb —z), where I = G(y—ab). We refer to the

b

process of replacing G with G (zy —za ) as quasi-identification.

"‘ &

Quasi-identification is represented in Figure 9.5. Note that G (zy —za) is the

gr"aph obtained from G by replacing =,y with z,a respectively, such, that z sees a 4
i ‘

i -
sees exactly those vertices of G - {z,y} that see at least one of {z,y}, and @ sees

exactly those vertices of G - {z,y} that see y .

In the following algorithm, the weighted colouring f @ consists of stable sets Sg,

[ 8¢ g+ 5S¢, and assoclated positive integers X (Saxj,“X (S¢,p), - X(Sg,)-

°

", Algorithm W-OPT(G). .
Input: a weakly triangulated graph G . \
Output: . a ma.x: weighted clique Kz and a.min. weighted colouring [ ¢ .
. Y “

-




Step 1.

Step &.

-41.

Look for a two-pair {z ,y } of G.

If G has no two-pair then

“(a) Ke — V(G),

(b) fori «— 1ton do
Sg, — {v}, 2
X(Sg,) +~ w(y)
(c) STbP.
Assume that w (z) < w(y)

yo

If‘w(zz:)= w (y) then

J & Gry—z),

w(z) +w(z)
else { ..thus w(z) < w(y) ... }
J — G(:‘ry—i'za )

w(z)—w(z)

w(a) — w(y) - w(z).

K. J4 &~ W-OPT(J). .

Iz ¢ K, chen Kg; «— K;, else, (Z E I(J and .

ify seesallofK, -{a z}then Kg «-KJ -{a,2}+y

“

else (...z- sees all of Iy - {a,2})..)Kg —K; -{a,z}+z."

For each set, Sy of f s do

o (1) Iz €85, thensa«-s,—z +{z.y }, else

e

' 8g, =5y,

(1) X(Sg) — X (5.

if @ €5; then Sg «—S,'—a +y, else




- 42-

The proof of correctness of Algorithm W-OPJT parallels the proof of correctness of

Algorithm OPT. We first show that quasi-identification of a two-pair of a weakly

@ -

triangulated graph ylelcfs a weakly triangulated graph.
The Quasi-Identification Lemma. Let G be a weakly triangulated graph wit(z a
two-pair {z,y }. Then G (zy —za ) is weakly triangulated.
Proof. G (zy—za) = H (zb—z), where H = G (y —ab). It Is easy to check

that A is weakly triangulated and that {z,b} is a two-pair of H. Now the result

ot
]

follows from the Jdentification Lemma. I ‘
LY

.Next we -prove that the process of quasi-identification, together with the -

reweighting of the new vertices as describe/d in Algorithm W-OPT, does not change the

s

' 4
weighted clique number of G. Let (G ) represent the weighted clique number of G

~
¥

f.e. the weight of a maximum weighted clique of G). ' . R

The Weighted Clique Number Lemma. Let G be a weighted weakly

triangulated graph uith a two-pair {z,y} such/lhafjv?a; < w(y). Let F = G(zy—za), and

-

let wkz) = w(z) and w(a) = wfy) — w(z). ThenQ(G) =Qq(F). .

&
Proof. F' = G(zy —2a) = H(zb —z), where H = G(y—ab). Let w(b) =

w(z); clearly 2(H) = Q(G). To prove the lemma we need only show that Q(F) =
QH).
Let Ky be a clique of # of maximum weight. Since z,b are nox‘l-a.djacent., Ky

contains at most one of these two vertices. If Ky contalns neither z nor b, then Ky is

“

a clique of F'. If Ky contains z, then Ky -~z + 2 Is a clique of F with the same

L1

welght as Ky; if Ky comtains b, then Ky -,\b + 2z is a clique of F' with the same

’

weight as K. ThusQ(F') 2 o(H ). . ‘

L *
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. : . 1 5 ,
Now let Kp be a clique of F of méximum weight. If z ¢ K then K Is a clique

v f
of H;if z € K then either Kp ~z + 7 or Kp -~z + b Is a clique of H, and both

have the same weight as Kr. Thus Q(H) > a(F). B

The Weighteil Correctness Theorem. Algorithm W-OPT solves the Mazximum

Weighted Cliqgue Problem and the Minimum Weighted Colouring Problem for a weakly

'Y

triangulated graph G .

Proof. Let g and f o be as described in Algorithm W-OPT. It is casy to check

-

that K¢ Is a clique, and that Sg Is a stable set, for all . Let |[K¢g|= 3 w(v)and
- vEK;

let |[fg]= 3 X(G;). We wish toshow that f ¢ satisfies property (1) of the definition
; N .
]

of the Minimum Weight Colouring Problem, and that |[Kg| = |f g] Note thatir K is

any clique of a weighted graph, and if f is any colouring that satisfles (1), then |[K| <
. P !

T

|/ |; thus the equality |Kg | = |/ | implies that both K and f ¢ are-optimal.
o

We first show that (1) holds for f ;. Afgue/by{duction on the number of times
" - ¢
Step 1 is executed in W-OPT(G). If Step 1 is executed only once, then X (S¢,) = w{y;)

for all { = 1,..,n, and (1) holds. ‘ '

Suppose then that Step 1 is executed at least twice. Thus the algorithm terminates
with Step 4. Assume by induction that (1) halds for the colouring f; of J. Recall that

in Step 4b,

©

the vertex z Is replaced (in dvery set Sy of [ that contains z) with the

_

pair of vertices z,y, and, if w(z) < w(y),
/

the vertex a Is replaced (in every set S; of f; that contains a) with the

-

vertex y. ' -
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In the case where w (z) = w(y), we have w(2) = w(z) = w(y), and so

wE)=w(z)= 3 X)) = 8 X(5).
S,'Dz SG.D::

w(y)=uw(z)= 3 XE)= 32 X (Sg):
Sl'..:).‘ 50'29

-

In the case where w(z) < w(y), we have w(z) =.w(z) and w(y) = w(a) + w(z),

and so )

w(E)=w()= 3 X(S,)= 3 X(S,)

S,.Q: SG'Q::

. £. -
w(y)=w(z)+w(e)=3 X(5;)+ 3 X(S;))= 3 X(S¢)-
S; 28 . 5y 2e S¢ 2 !

. Thus property (1) holds for f¢.

L4

Now we wish to show that |[Kg| = |f g| Argue by induction on the number of
? {9

executions of Step 1; the result clearly holds if Step 1 is executed exactly once. Assume

-then that Step 1 is executed more than once; thus the algorithm terminates with Step'4.

ra -
.

By theé induction hypothesis, |K;| == |f,|.

Now an argument similar to that used in the Correctness Theorem establishes that

v

K| = |K;|; thus to finish the proof, we need only show that |f s | = |f ;| But thisis
G

obviously the case, because there is a one-to-one correspondence between the stable sets

“of [ and [ ;. namely Sg corresponds to S, and X (Sg ) = X (S;) for all 1. .\

\

V\\"e now analyze the complexity of Algorithm W-OPT(G). Let ¢ be the numt;er of
edges of G, and n the number of vertices. As in Algorithm OPT(G), Step 1 can be
done in time O ((n +c‘)n2). and Steps 2, 4a and 4b can be done in time O (n). Now
consider Step 3. The graph J is either G (zy —z) or G (zy—+za ). In the former case J

has one vertex fewer than G ; in the latter case, J has at least one edge more than G (z
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sees every vertex of G — {z,y} that z sees, a sees every vertexof G - {z,y} that y

sees, and z sees a whereas z misses y). Thus Step 3 is executed at most

n -1 +(3] — ¢ times, and the worst-case complexity of Algorithm W-OPT is

O((n+e)n*.
~N
I
»
‘ 4
. .
I -
i .
- i 1

. . . )
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Chapter 4 .

Murky Graphs

4.1 'The Main Result : ¢
. ¢

In this chapter we introduce a2 new class of Berge graphs, namely murky graphs,
and prove that murky graphs are perfect. A graph is murky ir it ,contains neither Cg.
. [}

Ps, nor P; as an induced subgraph. -

4 L

Recall (see .Chapter 1) that a graph is unbreakable if neither the graph nor its

L

complement has a star cutset. A class H of graphs is called hereditary if every induced

[

" subgraph oi’g a graph in H is in . Since minimal imperfect graphs are unbreakable: to

prove that the graphs in some hereditary class C are perfect, we only'need prove that
the unbreakable graphs in C are perfect. Clearly murky graphs are hereditary; thus to
prove that murky.graphs are perfect we need only prove that unbreakable murky graphs

3are perfect.

3

The line graph L(G) of a graph G"sis the graph whose vertices correspond to the

s

_edges of ~G, such that two vertices of L (G) are adjacent if and only if the

-
-

corresponding edges of G share a vertex. K 3 is the graph- with six vertices whose
complement consists of two disjoint triangles. K ;4-¢ is the graph obtained by removing
any edge from K ;5 We let Ly and L, denote the line graphs of K 3 4¢ and K3

respectively. Drawings of L g and Ly are shown in Figure {.1.

-

There are two kinds of unbreakable murky graphs. those that contain L g as an
induced subgraph, and those that do not. Let U/ be an unbreakable murky graph. if U
contains L g as an induced subgraph, then U is either Lgor Ly If U does not contain

L g as an induced subgraph, then U can be constructed by taking two copies of a P,-free

&

graph, and adding a specified set of edges between the two copies The following Is a
e - |

i

v




 §
|

A
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formal deﬁnitlon of such graphs, which we call "mirror graphs”.
»

«

Define a mirror partition [R ,S] of a graph G to be a partition of the yertices into
. P .
sets R ={r,, ...,r;} and § = {s,, ..., 5; } such that

(1) Ggr and G5 are P,-free, and

) (2) r; seesr; ifandonlyif s; seess; ifand onlyif

. r; misses s; if and only if &; misses ri, Jor1<i<j<st

°© t

(Note that one consequence of (2) is that G and G are isomorphic.) Tk ,

‘Anyl graph that has a mirror partition is called a mirror graph. With respect to a
mirror partifion |[R,S] of a mirror graph, a pair of corresponc}lng vertices {r;.,s;} Is a
couple, and r, is the mate of s; (and vice versa). Note that in a mirror graph the
vertices of a couple may or may not be adjacent. A mirror graph is shown in szure 4.2

i ¥ .

Recall that vertices z and y are twins in a graph G if every vertex in & - {z,y}
sees both or neither of {z Y }. Lovdsz [1972a] showed that a minimal imperfect graph
does not have twins. Olariu calls vertices u and v in a graph G anti-twins if every
vertex in G — {u,v} sees exactly one of {u,v}; he proved that a minimal imperfect:

I

graph does not have anti-twins [1986]. (His proof of this result appears in the appendix.)

Burlet and Uhry (see Lemma 5 in [1984]) observed that every P,-free graph with at
least two vertices has twins, (We use this fact in the proof of the following proposition,

and frequently throughout the chapter.) We prove a similar result for mirror graphs.

The Mirror Proposition. Let F be an tnduced subgraph of a mirror graph G. If

"

. F-has at least two vertices then F contains twins or anti-twins.

Proof. Let [R,S] be a mirror partition of G. Define

A={i:r;€F}, B={j:s; €EF}.

~
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If some k belongs to A (M.B then r;,s; are z:,nti-twins in . Hence we may assume
that A n B = ¢. Now let F* be the graph induced by all re withk € A | B let
r;,r;j be twins in F'. i €A,jEA (ori € "B, J € B) then r},r; (or s;,s;) are
twins in F;ifi €A, j €B (ori € ’B, J € A) then r;,s; (or s;,r;) are anti-twins in
F. R ' .
“

The mai'n results of this chapter are summarized by the rollowi'ﬁ’g two theorems.

The  préof of Theorem 4.1 takes@ip most c;f the rest of the chapter. The proc_:f of

L)

Theorem 4.2 follows almost immediately from Theorem 4.1, and is presented below.

Theorem 4.1. If G 1s an unbreakable murky graph, then G is Ly, L g, or a mirror

graph.

Theorem 4.2. Murky graphs are perfect.

-

Proof of Theorem 4.2. By the Star Culset Lemma and the fact that murky
graphs sac_isfy the hereditary property, we neéd only prove that unbreakable murky
graphs are perfect; b}-' ‘Theorem 4.1 we need only prove that Lg, Ly and mirror graphs
are perfect. It is a routine exercise to check that L g and L are perfect (actually, all line
graphs of bipartite graphs are perfect: this follows from a theorem due to Konig [1936]
concerning the edge-chromatic number of a bipartite graph). That mirror graphs are
perfect follows from the Mirror Proposition, and the fact that a miﬁ{mal imperfect graph

contains neither twins nor anti-twins. n g

The proof of Theorem 4.1, which appears at the end of Section 4.3, is preceded by
several intermediate results: Sections 4.2 and 4.3 contain lemmas concerning properties
b1

of unbreakable mirror graphs. As a postscript, in Section 4.4 we present a theorem

which extends Theorem 4.1 to a characterization of unbreakable murky graphs.
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Figure 4.3.

L8 (top) and its complement (bottom)
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4.2 Local Properties of Unbreakable Mirror Graphs

In this section we.prove several lemmas concerning unbreakable murky graphs. As
almost everyl result l}) this section is concerned with graphs whicB)conta.ln or do not
contain other graphs as indpced subgraphs, the following abbreviation will be adopted:
we shall say that a graphﬂc;)‘ntains some other graph if the latt'er is an induced subgraph

of the former. Similarly, a graph properly contains some other graph if the latter is a

proper induced subgraph of the former,

The definition of "t;vilTs‘" is extended as follows: giv@n vertices z and y and a

subset H of the vertices of G, the vertices x and y are called twins with respect to H if
z and y see exactly the same set of vertices of H (M) (G - {z.y}). Given a vertex v
»

and a subset X of the vertices of a graph, we say that v is (respectively) null, partial, or

universal on X if v sees (respectively) none, some but not all, or all, of the vertices of
1) - .

X,

L3

-

The L g Lemma. If an unbreakable murky graph contains L g, then it is either L 4

orL,.

Before proving the lemma, we present two claims, The first states hbw a vertex

- .can attach to L, in a murky graph; the second is a similar statement, but with the

added hypothesis that the graph is unbreakable.

Claim Attach. Let X be a subset of the vertices of-a murky graph G such that X

snduces L 4, and such that some vertez v of ‘G ~ X is partisl on X. Then cither there is

some vertez u in X such that u and v are twins with respect to X, or else X + v induces

Ry

Proof of Claim. Label the vertices of X as in Figure {.8. Let v be an arbitrary

. vertex outside X . éonstder the following four cases.

o el a-



L

‘o

NI TR ot o Ta T I - - T A - P
CE R PN . { o8 ﬁ&

Case 1; v misses all of 1,2,3,4.

Since v sees at least one vertex in X, assume w.l.o.g. that v sees 5. Now v sees 6 (to
] & >
Q

avoid a F; on v51436); by rotational symmetry, v seeing 6 forces v to see 7, and v

A}
t

seeing 7 forces v to see 8. But then XQ:- v induces L.

\
]

Case 2: v misses all of 5,8,7,8."

Since v sees at least one vertex in X, assume. W.lLo.g. that v sees 1. If v sees 3 then

v1573 is a: Cg; if v misses 3 then v 15736 is a P,. Hence this cae cannot occur. !

Case 3: v sees 1 but misses 2 and 3. : ° ) o

Now v misses 7 (to avoid a C' gz on v 1237). .

Subcase 3.1: v sees 6. ) ) - ' .

o Now v misses 5 (toN\avold a C; on v 8375) and v sees 4 (t6 pvoid‘a Cyg on

R -

v 6341). But then v and 8 are twins with respect to X . -

Subcase 3.2: v misses 6. C .
. . ]

Ve

v

.Now v sees 8 (to avold a Fy on v'18637) and. v sees’5 (to avoid a P, on

. . [ £ ! o )
v 15736). But then v 5268 is a C';. Hence this subcase cannot aceur.
- ’ -: P Y |' { ’ ° ’

LS 4

Case 4: v sees 8 but misses 5 and 7. L -

v R ~

) 1

v Sy . N ' . Lt
Now v misses at least one of 1,3 (to avoid a ¢ 5 on v1573) and v misses at least oné of

-

AN

2,4 (to avoid a Cgon+v 2574). But then this case reduces to Case 1.or (possibly rotated) -

Py *

Case 3. o

' )
[ 1 . '

- Y

)
. . s . s »

s
no

We now show that the proof redices to one of the previous cases. If v inisses all of
Ty M o ° : q B < ' ~

., IO [}

1,2,3,4 then it satisfles the hypothesis of Case"1; if v sees all of 1,2,3,4 then it satisfies

4

. the hypothesis of Case 2 on Gy . Hence we may assume that v is partial on (12,34} .

"o
—_— ~

next, rotailonh.l symmetry allows us to assume that v sees 1 and misses 2. If v misses 3

T, ¢

.
- . i
L " -, 1
[
'



. ~
then it satisfles tbé hypotﬁesis of Case 3; If v sees 3 then it satisfles the hypothesis of

G Case 4 on Gy . This concludes the proof of Claim Attach. ||

[4

Claim No-Twins. Let X be a subset of the verttces of an unbreakable murky graph
G auch that X induces L 4. Then thcnc s no vertez v in G — X sych that v'is a twin with

v respec’t to X of some vertez of X. Lt -

N

. ’ Proof of Claim. Assumeﬂntrary: there is a vertex u in X such that the set

S of all twins of u with respect to X (including u itself) has size at least two. Without~

loss of generality, we may assume that © = 1 (all other cases reduce to this one by

v

- rotation and complementation). Note that S includes no vertices of X except 1. Since

G is unbreakable, S is not a homogeneous set in G'. Hence some vertex v outside S

’ »

\ . Sees spme a in ‘S and _misses some b in S; triVia,lly, vg X. Let A and B denote the ,

#. subgraphs of G’ ifduced by X + a -1 and Y + a -b resp tlve}y. Note that v must ;
;o G be partlal or: X (else v would have precisely one neighbour in A* or précisely‘ seven
' n&éhbours in B+ contradicting Qlaim Attach) and that X + v does not induce' L, (else
Vv , . v woulci contradict Géatm Attach with A in place of X). By Claim Altach, v mu;t be 2

twin with respect to X of some w In X ; since v ’¢.S, we have w £ 1; now symmetry
l ' 3 ,

. ) '-‘ i ”
(swapping 5 with 8, 2 with 4, and 6 with 7)“&"0WS us to assume that w is one of 2,3,5,6.

- ’ Il.Lw = 3 or w =6 then v contradicts Claim Attach with A in place of X ; if w = 2 —

or w = 5, then v contradicts Clainm Attach with B in place of X . This completes the
. ~* proof of Claim No-Twins. N ' o C
’ P

Proof of the Lg Lemma. Let X .be a proper subset of the vertices of an

. ® . e

unbreakable murky graph .G such that X lndu‘cés L, Since G is unbreakable, X is

& npot a homogeneous set of G, and therefore some vertex u of G — X' is partial gn X.

.' ' '
O S
ér . * *
FE N ' -
, .
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"Let Y = X + {u}. Claim Attach together with Claim No- Twins imply that Y induces _. - -
. } 2
Ly Now we need only show that there are no verticesin G — Y- Assume the conjrary;
then there is some vertex w' in G ~ Y that is partial on Y. But then it is possible to
' L . T/w—-
delete some vertex v of Y so that w sees either at most.ithree or at least five vertices of

Y -{v} ‘But Y -v induces Lg and since w does not see exactly four vertices of

Y-{v} Y 4+ w -v does not induce Lo,. Now either Claim Attach or Claim No-

- Twins is contradicted. ]

>

»

Let L be the glass of murky unbreakable graphs that contain Lg as an induced
subgraph and M the class of all other unbreakable murky graphs. From the L g Lemma
it follows that L contains at most two graphs, namely Lo and L,. (We have not yet

determined whether Ly and Lg are in L. In fact, they are. However, since. it is not

necessary to establish this in order to prove Theorem 4.1, we postpone this task until

Section 4.4.) ' .

We now turn our attention to M. By deflaition, no graph in M contains Lz as an

induced subgraph. The following lemma shows that in fact the class M is even more

’

restricted. We define L, to be the graph obtained by removing any vertex of degree

four from L 4.
/‘/._/-\_

\
The L ; Lemma. No graph in M contains L.

°

Proof. Let G be a graph in M. Argue by contradiction; suppose that X is a set

of vertices stich that Gy is L,, labelled as in Figure {.4. (The graph in Figure 4.4 can
be obtained from the graph in Figure 4.9 by removing vertex 1)) Since G is

unbreakable, there must be some path froln 5 to 8, none of whose-vertices Is 3 or sees 3.

Consider any shortest such path P.: Since G is mufky, P contains at most three

hd .
* ’ c
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.interior vertices.

Claim 1: P does not contain exactly one interior vertex.
Suppose it _c'l}\d; label the interior vertex 1, so that P = 518. Note that 1 misses at least
one of 2,4,6,7 (to avoid a Po on 137245); assume without loss of generality that 1 misses

7. Now 1 sees 4 (to avold a C; on 15748), and 1 misses 6 (to avoid a C' 5 on 16375), and

so 1 sees 2 (to avoid a Cgon 18625). But then {1,...,8} induces L g, contradiction.

)

Clajm 2: P does not coptain exactly two interior vertices.

Suppose it did; label the virtices 0 and 1 so that P == 5018. Then O sees 7 .(S_UppOSc
‘not: then (if O sees 8) 05738 is a .y or (if 0 misses 8) 057368 is a P,). By symmetry, 0°

jees 2, 1sees 4, and 1 sees 6. Now, 0 missesé (to avoid a F‘,, on 035427). By symmetry,

0'misses 6, 1 misses 2, and 1 misses 7. But then 02341 is a C, contradiction.

Claim 3: P does not contain exactly three interior vertices.
Suppose it did; label the vertices 9,0,1 so that P = 59018. Arguing as in Claim 2,
vertex 9 sees 7 and 2 but misses 4 and B, vertex 1 sees 4 and 6 but misses 7 and 2. Now

the graph induced by {9,7,4,1,6,2!3} is isomorphic to that induced by {2,.'..,8};

A

. , ( .
furthermore, O sees 9 and 1 but misses 3. Therefore, by Claim 1, {9,7,4,,6,2,3,0}

e

induces L4, contradiction. | .

oy e




, Figure4.5.1
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The next lemma is of the following form: if a graph G in M properly contains a
certain subgraph S, then a certain subgraph T of & properly contains §. In this case,

S = Fgand T = C, Later, we present another lemma of this form.

. The Ps Lemma. Let G be a graph in M. Then every Py in G is contained in a C.

Proof. We will call a:-P; bad if it is not contained in a C,. We begin with a
simple observation.
If abede is a bad Py in &, and some vertex f sees a but not c, then f sees b. (*)

, ' 7
(Otherwise, fabcdisa C g o1 fabede is a Fy.) !

[y

Define a bypass of a P abcde to be a chordless path P from a to e, such that
every interior vertex of P misses ¢ . Note tl}at in an .unbreakable graph, ;:very Py abcde
1
) has a bypass (otherwise, ¢ is in some star cutset that separates a and ¢); wg\will use
this fact repea.tediy in the proof. Define the index of a Py (in an unbn;akable graph) to-
be the number of interior vertices in a shortest bypass. Note that in a murky graph, the

-

index of a P, is at most three.

Let G be a graph in M. To prove the lemma, we will show that there is no ba‘fi ¥ o

in G; we do this by showing that there is no bad Py with index one, two, or three.

Claim I:  No bad F; has index one.
Assume the contrary; let 12345 be a bad P, with'bypass P = 165. B;' (*), 8 sees 2 and
4. The graph induced by {1,....8} is shown in ’Fz'gurc 4.5.1. Now, 6831421is a P, in G ;
furthermore, it is a bad P; of G . (Assurne the contrary; then there is a vertex 7 that
sees 3,1,4 but misses 2,6 in G. If 7 sees 5 then 73285 is a Cj, else {1,...,7} ;nduces Ly v

contradiction.) Now 63142 must have a bypassin G .
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&
Claim 1.1: 83142 does not have index one, .
Assume the contrary; let @ = 672 be a bypass of 63142 in G. Thus, using (*) with

63142, in G, 7 sees 1 but misses 6,3,4,2. But 7 seeing 1 and missing 2,3 contradicts (*)

with 12345.‘This concludes Claim 1.1.

Claim 1.2 63142 does not have index two.
Assume the contrary; let @ = 6782 be a bypass of 63142 in G. Thus, In &, vertex 7
sees 2,1, but misses 6,8; vertex 8 sees 6,1' but misses 2,7. Using (*) with 63142, 7 misses”

3, and 8 misses 4; using (*) with 12345, 8 sees 3. Now it follows that

7 misses 4 (to avoid a Cy on 74381),
7 misses 5 ) (to avoid a C; on 72345),
" g seess (to avoid a P, on 718345).

The subgraph of G indiced by {18} is now the graph in Figure 4.5 2 Now note
that 71843 is a bad F,. (Assume the contrary: let 716439 be a C',. Then 9 sees 7,3 but
misses 1,4,6. Thus 9 misses 5 (to avoid a C g on 97165) and 9 sees 8 (to avoid a C on

97183); finally, if @ misses 2 then 97268 is a C', if 9 sees 2 then 913782 15 a Po.) ”

Claim 1.2.1; 71643 does not have index ¢ne.
Assume the contrary; let £ = 793 be a bypass of 71643. Thus, using (*) with 71643,
vertex 9 sees 7,1,4,3 but misses 6. But if 9 misses 2 then 97264 is a C, if 9 sees 2 then

963142 is a Pe- This concludes Claim 1.2.1.

Claim 1.2.2: 71643 does not have index two.

Assume the contrary; let £ = 7903 be a bypass of 71643. By (*) with 71643, vertex 9 .

»

sees 1,7,0 but misses 3,6; vertex 0 sees 3,4,9 but misses 7,6. Now
0 misses 1 (if 0 sees 1 then O misses 2 (to avoid a Fo on 063142), and so

- 05623isa Cgor {1,2,34,56,0} induces Ly );

AN




9 sees 4
9 sees 8
0 misses 8
9 sees 2

O misses 2

If 0 sees 5, then 05623 is a C'y, else 045812 is a P;. This concludes Claim 1.2.2.

Claim 1.2.3:
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(to avoid a C 4 on 91640),
(to avoid a C'5 on 91834),
(to avoid a P, on 960148),

(to avold a C'y on 91234),

(to avoid a P, on 960142), and finally

71643 does not have index three.

-

Assume the contrary; let £ = 79z 03 be a bypass of 71643. By (*) with 71643, vertex 9

sees 1,7,z but misses 3,8,0; vertex z sees 9,0 but misses 3,6,7; vertex O sees 3,4, but

misses 6,7,9. Now

0 misses 1

-0 sees 8

0 misses 5'
T sees 4
Z misses 1
0 sees 4
9 sees 2
9 sees 8
9 sees 5
z misses 2
Z misses 8

‘T sees S

1

.

I

(if 0 sees 1 then O misses 2 (to avoid a P, on 063142), and so

05623 is a Cgor {1,2,3,4,5,6,0} induces L, );

(if 0 misses 8 then 0 sees 5 (to avoid a P; on 045817),

but then either 02185 or 05623 is a Cy),

(If 0 sees 5 then 05623 is a C; or 063524 is a P,),

(if z misses 4 then 10461 15 a C 5 or 204617 is a F),

(if z sees 1 then z 1834 is a C; or z 60148 is a F;),

(to avoid a C'5 on 9164z ),
(to avoid a €% on 91234),

(to avoid a C'; on 94381),

(to avoid a P; on 695148),

-

(to avoid a Py on 96z 142),
(to avoid a P, on 96z 148),

(to avoid a £ on z 45812),

-



/ -

/
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0 misses 2 (to avoid a C'; on z 5620).

L

But now {z,0,3,2,6,58} induces L, This contradiction justifies Claim 1.2.3, and

“therefore Claim 1.2.

Claim 1.3: 683142 does not have index three.

Assume the contrary; let @ = 67892 be 2 bypass of 63142 in G. Thus, by (%), in G

~vertex 7 sees 1,2,8 but misses 3,6,8; vertex 8 sees 1,2,6 but misses 7,9; vertex 9 sees 1,6,7

but misses 2,4,8. By (*) with 12345, 9 sees 3. Now

‘8 misses 3) (to avoid a P, on 137892),

8 misses 4 (to avoid a C; on 84391),

8 misses 5 (to a\nroid a C; on 82345), ‘

] seés 5 . (to avoid a Py on 543918),

7sees4 - (if 7 misses 4 then 72345 is a O or 827954 is a F,),
7 sees 5 (to avoid a P; on 675149). ‘

But then removing vertex 8 and relabelling vertices 7,8,9 as 6,7,8 respectively gives the
-
graph in F'igure {.5.2, and we are done by Claim 1.2. This concludes Claim 1.3, which

(finally) concludes Claim 1.

Claim 2: No bad Py has index two. \
Assume the contrary; let 12345 be a bad Py with bypass P =.1675. By (*) with 12345,
8 sees 1,2,7 but misses 3,5; 7 sees 5,4,6 but misses 1,3. No;: 7 must see 2; suppo;«;‘not.
By Claim 1 (with 7 in place of §), 12347 must extend into a C'4, say 123478. But then

(*) is contradicted by 12345 and 8. Thus 7 sees 2; by symmetry, 6 sees 4. The graph

induced by {1,..,7} is shown in Figure {.5.9.

Now note that in G 63142 is a bad P;. (Assume the contrary; let 863142 be a Ce

in G. Then either 84721 is a Cyor 682417 Is a P,




- 58« \

Claim 2.2: 83142 does not have index two.
Assume the contrary; let S = 6892 be a bypass of 63142 in-G. Arguing as in the

beginning of Claim 2, in G both 8 and © see 3 and 4. But then, in G, 9 sees 1 but

misses 2,3, which contradicts (*) with 12345. This concludes Claim 2.2.

Claim 2.3: 63142 does not have index three._
Assume the contrary; let *S = 68002 be a bypass of 63142 in G. Thus, using (*) with
63142, in G, 8 sees 1,2,9 but misses 3,8,0; 9 sees 1.6.855“ misses 2,4,0; 0 sees 1,2,6 but

n

misses 8,9. Now

9 sees 3 (if 9 misses 3 then (*) with 12345 is contradicted),

0 misses 3 o (to avoid a Py on 138092),

O misses 4 (to avoid a C 5z on 01034),

8 misses 5 (if 8 sees 5 then 12345 is bad P, with index one), -
ggisses 5 ‘ ilr 0 sees 5 then 12345 is a bad P, with index one),

9 sees 5 " (to avold a P, on 019345), and

8 sees 4 (to avoid a Py on 028954).

Now 83149 extends to a C, In G, say 83149z. (Suppose not; in G, 0 sees 8,9 but
misses i, and so~83149 is a bad Py with index one, contradicting Claim 1.) Then, in G,
z misses 2 (to avoid a P; on z 83142). But in G, z sees 2 but misses 1,4, which
contradicts (*) with 63142. This concludes Claim 2.3, and also Claim 2. /
Claim 3;:  No bad F; has index three. . /
Assume the contrary; let 12345 be a bad Py with bypass P = 16785, Thus 16785 Is a

chordless path such that 3 misses 6,7,8. Since 12345 has index three, 1 misses 7 and 8, 5

misses 6 and 7; by (*), 6 sees 2 and 8 sees 4. ’ .
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O -, ‘ If 6 misses 4 then 62345 is 2 P; of index at most two (consider 6785) and hence not - -
s bad B by‘Claims 1 and 2; thus there is a C'4 of the form 623450, contradicting the

- ) a ( & ‘ e
assumption that 12345 has index three (consider 1695). Henh\e 6 sees 4; by symmetr}. 8
®° ' . ‘ )

sees 2. The sut;graph of G induced. by {18} is shown lfl Fx'gurg £.5.4 (t?he vertex 7

x[na‘.y or may not see 2, and may or may see 4). ) o
o . ' ‘ ‘ Now suppose that G contains a Cqof tll; form 631420. Then \ .
. o 6sees 8 . (to avoid a C g on 01284), 4 '
0 sees 7 (to avoid a C'; on 01678),
. 2 misses 7 _ (to avoid a P, on 718602), : o

* and finally 76230 is a C';,"a contradiction.

'

Hence we may assume that 63142 is a bad Ps in G' by Claims 1 and 2, its gndex Is

three. But then we obtain the desired contradiction by rorget.t,ing all about; 7 and 8 and

' 0 following the proof of.Claim’ 2 3 (which does not refer as all to vertex 7 of Fi, tgure 4 5.9).
This concludes the proof of Clalm 3, and the Py, Lemma. n . -
- * N v
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. 0 The next lem-,ma. is e.stronger statement than the L , Lemma, in that it implies that
5: two part.lcular six-vértex mduced subgra.phs of L~ (and t:hexr complements) are rorbldden
» ,\
T lnduced subgraphs of graphs in M: This lemma will be used in the proof of the O,
) . ¢ )
. [ L P
ﬁ" ; ) . Lemma. . .
. . \ ' \ -
\ - - -~
. The-Stronger Lemma. If G ts a graph in M, then G does not contain either
X (*) a Py 12845 and a vertez 6 that sees 1,2,4,5 -but misses l{, or

(**) ' a P, 12845 and a vertez 6 that sees 2,9 but misses 1,4,5.

Proof. ‘ To prove (%), noté that by the P; Lemma the Py 24136 must extend to a

’

U,. Thus there is a vertex 7 that sees 1,3,4 but misses 2,6 in G. But this is impossible,

’ since if 7 sees 5°then 23756 isa Cg, where% if 7 misses 5 then {1,...,7} induces L,
. ¢ oW S, .

To prove (**), note that by the Py ‘Lemma the P, 12345 must extend to a C'y. Thus

\

'sees 6 then 34576 is’a C g, whereas if 7 misses 6 then 634571 is'a Py. '

.
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there Is'a vertex 7 that sees 1,5 but misses-2,3,4 in G. But this is impossible, since 'if 7

H
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‘c .. The following lemma describes restr{ctions on the ways in which vertices of a graph
¥

G in M can attach to one of two partiéula.r séven-vertex subgraphs of G. This result\

will be used in the C, Lemma, $nd also in bhe\a Second Eztension Lemma.

The Little I:oi:al emma. Lef X = {r,-',rj,r, ,8;,8;,8,,v} be a subset of the . '

G

! ( ' .

° oo (1A)  If Gx is the graph in Figure, 4.3.1 and there are vertices w;,w; € G~ X such
! .

vertices of a graph G in

that w; seces s; ,s, but missesr;,r, 05 and w; sees s;,8; but misses r,,r,,v, then either
' w; or w; sees s;,3;,8, bul misses ry,rj,ryv. . )/

(1B) If Gy is the graph in Figure {.6.1 and there is a vertezw € G - X such that w
' . b ’
- < .
sees 8; ;8 but misses rj,ry v, then w sees s;,s;,s, but misses r;,r;,ry,v.
!

(2A) If Gy 1is the graph in Figure 4.6.2 and there is a vertezw € G - X such that w -

aec&_sj ,8 but misses r;,ry v, then w sees 8;,8;,8 but misses r;,r;,r,v.
G“ . (2B) If Gx is the graph in Figure {.6.2 and there is a vertez w in G- X suchllhat w T
‘ sees 8; ,8; but missesr; ,r,,v, then w sees s;,s;,5, but misses r;,rj,ry,v. |
Proof. To prove (1A), assume the contrary. Now w, must see r; (if not, thenl w;
must see s; to \avoid a Py onw;sr;vr;s;, and we are done) and therefore miss s, (to "
- : avold a C4 on w;r;vr,s;). By symmetry, w; must see r; and mlsa;. sj. But then
wpw; 8; 1y st Isa Cgorwysryvr,w;isa Py a cont;rztdict;ion.
b To prove (1B), note that w misses r; (to avoid a Uy oxj wrvrs) z;nd sees 8; (to
, |
avoid a Pyon w s rjvr s;).
To prove (2A), note that w misses r; (to avoid a Cgz on wu;', v r; 8;)and sees s, (to
: avold a Pyon ws;r;vrs;). \ , <.
i ., (,\

1 & '
7 To prove (2B), note that w sees s; (to avoid a Cjon w s;s;r; 5¢) and thus misses

r, (toavolda Cyonws, reur;). W e
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The following lemma describes how certain seven-vertex induced subgraphs (of

] B

- .. {\ . N
graphs in M) that contain C, extend to other induced subgraphs. This lemma will be

"used as the basis case in the proof of Theorem 4.1.

The C4 Lemma. Let X = {r,,r,,r;,s;,8;,5,v} be a subset of vertices of a
graph G in M. 2
(1) If Gy is the graph in Figure 4.7.1A, then there is a vertex w in G, such that
Gy Uw} 18 the grap}z in Figure 4.7.1B. '

(2) If Gy is the graph in Figure 4.7.2A, then there is a vertex w in G, such that

GXU{“’} 18 the graph in Figure 4.7.2B. .

(3) If Gy is the graph in Figure 4.7.9A, then there are vertices w,z,y in G, such that

s
1]

GXU{w,z " is the graph in Figure 4.7.3B.

(4) If Gy is the graph in Figure {.7.4A, then there are vertices w,z,y in G, such that

GXU{W.: 2} 1s the grap;z in Figure 4.7.4B, Figure 4.7.4C,.or 4.7.4D.

Before proving the lemma, we present a claim which will be used in two of the four
cases of the proof. Throughout the claim, (*) and (**) refer back tc the Stronger

Lemma,
L

Claim. Let 128456 be a Cg4 in a graph G in M, and let 7 be a vertez of G that sees

2,6‘but not 9,4,5 (7 may or may not see 1). Then there is a vertez 8 in G that sees 1,85

. but not 2,6,7 (8 may or may not’see 4).

¥

Proof of Claim. Since G is unbreakable, there must be a path from 1 to 3, none

of whose vertices sees 7. Let P be any shortest such path. Note that P is chordless.

Case 1: P has exactly one interior vertex.

Let P == 183. If 8 sees 2 then
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w

8 sees 6 (if 8 misses 6 then 8 misses 5 (to avoid a C; on. 82765), but now
81654 isa C'; or 827654 is a Fy),
8 misses 5 X (it 8 sees 5 then 8 with 32765 contradicts (*)), and then

if 8 sees 4 then 8 with 34561 contradicts (*), else 83456 is a C'j; contradiction.
\

So 8 misses 2. Now 8 misses 6 (to avold a €', on r3276), and finally 8 sees 5 (to

avoid a P, on 832765). Thus 8 is the desired vertex.

Case 2: P has exactly two interior vertices
Let P = 12y 3. If z sees 5, then we are in Case 1: switch 2 with 6 and 2 with 5. Hence
we may assume that z misses 5 Then =z must see 6 (if not, z'1654 is a C; or z 16543 is

a P). Thus z must see 2 (else z with 56123 contradicts (**)).

.

If z sees 4 then, by (1) with z 1n place of 7, some vertex 8 sees 1,3,4,5 and misses

2,6,z ; note that 8 misses 7 (to avoid a C; on 872z 4).

Hence we may assume that r misses 4. Applying the argument of Case 1 with z
in place of 1 and with y in place of 8, we conclude that y sees z,3,5 and misses 2,6,7
Now by (1) with y in place of 4 and with z in place of 7, some vertex 8 sees 1,3,y,5 and

; .
. '
does not see 2,6,7; note that 8 misses 7 (to avoid « "t's on 876zy). -

Case 3: P has exactly three interior vertices.
Let P = lzyz 3. As in Case 2, we may assume that z misses 5, sees 6, sees 2 and misses

a

4., By Case 2, there is a vertex w that sees z,3,5 and not 2,6,7. If w sees 1, then we’
may set 8 = w with z in place of 1; hence we may assume that w misses 1 By (1)
with w in place of 4 and with z in place of 7, some vertex 8 sees 1,3,w,5 and misses

2,6,z ; note that 8 misses 7 (to avold a C'g on 876zw ). This concludes the proof of the
‘#

Claim. W




S
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Proof of the C 4 Lemma. To prove (1), by the Py Lemma the P, r;r; s, 8;v
must extend to a C,; suppose that some vertex w sees 8¢ ,8;,ry but misses r; ,v. Then

w does \}lot see r, (else wr,vr s, is a C5) and w sees s, (else ws;rjys, ry isa Cg).”

€

Thus (1) is proved. .

To prove (2), by the Py Lemma the Py s, r, v r; s; must extend to a Cgq, thus there
Is a vertex w, that sees §,s, but misses r,,r,,v. Similarly, the Py s r,vrgs, must

’
extend to a Cg; thus there 1s a vertex w, that sees s,,s, but misses r,,r ,v. Now, by

J ]’

(1A) of the Little Local Lemma, it follows that either w, or w; is the desired vertex w.

To prove (3), by the Claim (with vertex v and the C4 s 1,5, rys,r, in place of 7

J

and the C, 123456 respectively) there is a vertex z that sees s;,s,,s; but misses
r,.r;,v. Similarly, (by the Claim with vertex s, and the Cgq v r;s,r s, r;) there is a

vertex y that sees v,s, ,s, but misses r;,r,,s,. Next, (by the Claim with vertex z and

1 100y

the Cg4rys, r,vr,s;) thereis a vertex w that sees r;,r,,r; and misses z,s;,s, .

’

Now ‘ '
z misses y _ (toavoida Cgonzs;r;vy),
T sees r; .(toavoid a Pyon rysfz s, r;v),
y sees ry (toavoid a Pyon rysjyvryg),
e
w sees s, (toavoid a Czyon wryz s, 1,), o ’
w misses y (toavoid a Czon sy wys; z),
w sees v (toavoid a Cgon wryyvr,), and (3)is proved.

To prove (4), arghe as in the beginning of thg proof of (3): there are vertices z ,y

o

S but

such that vertex & sees g 15548, but misses r;,r;,v, and vertex y sees v,s,,

<

misses r;,r;,s;. Note that z sees y (to avoid a Cg on svys; z). There are three

cases to consider.
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Case 1: r, misses z .

-

Applying the Claim to the Cg4o0n 1y 8; rivr; 8; and to vertex r, we find a vertex w that

sees r,,ry,r; but misses z 2S5 08y Now

. w misses 3 - (to avoid a Cgon sy wr;s, z),
w misses y (toavoida Cgonwyzsr,),
"~
y sees r, (toavoida Pgonys, rywr, s, ),
w sees v (to avoid 2 Pgon vr, wrs,z),

o

and the graph induced by {s; ,r,.8,,7;,5,.,r,,v,2,y,w } is that shown in Figure {.7.4B

¥

Case 2: r; misses see ¥ .

Applying the Claim to the Cgqon r, s, 7,57, 5; and to vertex y, we find a vertex w

that sees r, ,r,,r, but misses s,,s5,,y . Now . R
w mESes v (to avoida Cgon vw ry8;y), g
. w misses T (to avoida Cgonwz vr),
.
z sees ry (toavoida Pgonzs;r,wr;v),
w sees §; (to avoida Pgon sy rjwris;y), ;

and the graph induced by {s;,r, 8;,7, .5, .U, ,y,w } is that shown in Figure 4.7.4C .

t

-
Case 3: ryseeszt and .

Applying (2) to the C4on s,vzr;ys and to vertex r, we find a vertex w that sees (in
G ) s;,ri,ry ;v and does not see s;,7,y . Now
w misses §; (to avoida C'son ws, z8;1;), |

w sees r; (toavoida Psonwr,s,zs,r,),

J

and the graph induced by {s;.r,,8;,r;.8,.r,,v,2,y,w} is that shown in Figure {.7.4D.

This concludes the proof of the Cq Lemnma. ||
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4.3 Strong Mirror Graphs

It is easier to prove Tﬁeorcm 4.1 by dealing only with a certai;x subclass of mirror
graphs that includes all unbreakable mirror graphs, rather than by dealing wit“h all
mirror graphs. This subclass is the class of "strong mirror graphs”; we present a formal
definition shortly. It turns out that a mirror graph 1s unbreakable if and only if it is a
strong mirror graph. As we did with L4 and L, we will postpone the proofl of

unbreakability, i.e. the "if" part of the previous statement, until Section 4 4.

We shall say that a P,-free graph G 1s strong unless (and only unless) G or G has
precisely two components and one of these componencé is a singleton. The following
lemma is a useful tool for working with strong Pfree graphs. The graph 2K, referred

]

to in-the lemma is the graph with two components, each of which is a single edge.

The Rip-Off Lemma. Let G be a strong P,-free graph with at least four vertices
such that neither G nor G is 2K, Then G contains twins z,y such that G — z and

G -y are strong P,-frec graphs. Furthermore, if G has an 1solated vertex 2z, then we

can choose z,y both distinct from z.

Proof. First, let us prove only that G contains twins ¢ ,d such that both G - ¢
and G — d are strong Pfree graphs. Let a,b be twinsin G. Since G —a and G - b
are isomorphic, we may assume that G - a is not strong (otherwise we are done by
setting c ==a, d = b) Replacing G by G if necessary, we may assume that G —a
has precisely Q}vo components and that one of them is a singleton. Note that the
singleton is b (else G would not be strong); call the other componené Q@ ; observe that

@ Is a component of G. Now let ¢ ,d be any twins in Q.

To complete the proof, assume that one of ¢ ,d is Isolated in G (otherwise we can

e

set 2 = ¢ and y = d). Then both ¢ and d are isolated in G. If G has no edges at
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all then any two vertices z,y distinct from ¢ and d will do; else G has’a big .

component Q and any twins z,y In Q@ willdo. W - o

Strong mirror graphs are defined as follows: start with the definition of a mirror
graph, insist that the [F,-free graph Gp be strong, and specifly exactly which c;)uples of
the partition induce edges of the graph (that 1s, for which couples {r,,s; } the vertices
r; and s; are adjacent) This specification is in the form of a certain 0-1 function f; this
function is defined in terms of a decomposition of P,-free graphs that follows from
repeatedly applying Seinsche’s theorem. (Recall Seinsche’s theorem from Chapter 1: if a
P,free graph ha:; at least two vertices, then either the graph or its compleme;t is
disconnected.) m\

We now present a recursive definition of a graph DT (G) whose vertices correspond
to subsets of vertices of another graph G . In order to avoid ambiguity, we will refer to
the vertices of DT (G) as nodes. The decomposition tree DT (G ) of a P-free graph G

———

Is the rooted tree such that: ‘
(1) if G has only one vertez v, then the root of DT(G) is the vertez v, and
there are no other nodes in DT(G), and
(2) if G has more than one vertez, then the root of DT(G) is the set of all
verlices of G, and ‘t‘he nodes adjacent to the root are DT(G,), ..., DT(G} ), where

G,, ..., Gy are the induced subgraphs of G that correspbtd to the compénents of

whichever of G or G s disconnected.

A P,-free\graph and its decomposition tree are shoxovn in Figure {.8. Note that
{

every vertex of G is a leaf of DT (G). Als‘o, every leaf of DT (@) is a vertex of G, and

1l

every node of DT (G ) that is not a leaf is a subset of at least two of the vertices of G.

Note also that DT (G) is identical to DT (G).

)

3
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Figure 4.9. A strong-mirror graph
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‘ O We need one more definition before we can define the 0-1 function J. Let G bea

P,free graph with at least two vertices. For every vertex v of a P-free graph G with

at least two v'erc'lces, deflne the parent P(G,v) to be the parent of v' in DT.(G), (Le. the
node of DT (G ) adja.cent, to the leaf v ). For e;(ample, with respect to the P,-free graph
"G shown in F:gurc 4.8, the parent of 1 ls the rooc of DT (G) (namely, the set or all

‘ vertices of G), the parent of 2,3, and 4 is the node {‘2 3,4}, the parent of 5 and 8 is the

- -
-~

node' {5.6,7.8}, and tle parent of 6 and 7 is the.node {6,7}.
' A .

~

e i Now define the function /(G ,v) so that
[(a .v) = 0 ifGp(G.y) is disconnected, end :
g HGwv)=1 ifGpg,is connectcd
' a;) Ll y

Note that v Is a singleton in whichever of Gp(g v) OF EP(G v)is dlscon‘hected For the

o graph G shown in Fzgurc 4.8 /(G,v)=01,111001, forv ==12,..,8 respectlvely.

C -
< ) .. Now that J(G,v) Is defined, we can formally define” §trong mirror graphs. A

partition [R,S] of tlie vertices of ‘a graph G Is called a strong mirror partition if

»

condltions (1) and (2) of tl,tig definition of a' mirror parbit}o,n are satisfled, and if

-

(8) Gpisa strong P,-free graph, and , .

(4) rjseess; ifandonlyif f(Gg,r;) = 1, forcall r; € R.

A graph with a strong mirror partition is a strong mirror graph. A strong mirror graph
> N ‘L..-x& )
is shown in Figure 4.9. ‘ ~

’
. -
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3

. ‘The classes.of P;ffee graphs and murky graphs are self-complementary. We now

L]
9

show that the same is true for the classes of mirror graphs and strong mirror graphs.

Al
i

L ) . &
The Complement Lemima. Let [R,S] be a (strong) mirror partition of G. Then
L N J

the partit::on’[R,S/, with vertices labelled as in the partition of G, is a (strong) mirror’

- ) N o £

. Proof. The |conditions (1), (2), (3), (4) mentioned in the proof refer to the
o N I _‘ ‘& .
definitions of mirror partition and strong mirror partition.

-~

14

)

Let G be a graph with mirror partition [R,S]. Since the complement of a Py-free .

graph is Pyfree, the partition [R ,S]of G satisfles conditjon (1).

Let r,, and r, be any two vettices of R r, sees rp, in G if and only r,, misses T

&

in G. From (2) it,follows that in G ‘ o
| Tm mlsse; T if and ;nly&lf' 8y, Misses s, if ‘and only ;r 7
’ {
}r,,, sees s, If and'only If s, seesr,. S ' )
Thus in G ' ' S R
‘ rm Sees r, if andonly if s, seess, 'if and only if '

rm misses s, ifand only if s, misses r,,

and (2) holds for the partition [R,S]of G. Thus [R,S] is a mirror partition of G. ,

4 . . ¢ . .
Now assume that [R,S} is a strong mirror partition of G'; we will prove that it'is .
- g '

also a strong mirror partition of G . By the previous argument we need only prove that

(3) and (4] hold for [R ,S] with respect to G . But; (3) holds trivially. To see that (4)
holds, note that DT (H) = DT (H) for any P -free graph H; thus HP(H",) is the

”

complement o(‘N'I-TP(”'u ) and so (if H' has at least two vertices) f(H ,v) + f(Iif ,v) = 1

: @
Now set H = Gp, and use the fact that (4) holds for [R ,S] with respect to G. W

1

f

| ' )
!

1



.70 -

- [

_ The graph shown'in Figure 4.9 is a stroﬁ“g mirror graph, since the partition
suggested by the drawing is a strong mirrér partition. (Partition‘ the vertices lntc; the
"upper set” and the "lower sec"; the couples are the pairs of vertically aligned vertices
Note that the subgraphs induced by "upper set" and "lower set" respectively are
isomorphic to the graph sho;(m in Figure 4.8) On the other hand, the partition
suggested by thé drawing of the mi;ror graph in Figure 4.2 is not a strong mirror
partition (in fact this graph has no strong mirror partition). In Sect\lon 4.4 we will i&y
more about which mirror graphs have strong mirror partitions. FX( however, we we
wish to prove Theorem 4.1.' With this goal in mind, we s"tat:e two results concerr}ing the
function f. e

|

The Localization Lemma:. Let G be a P,-free graph and let H be a homogeneous

set in G. Then [(G,z2) = f(Gy,x), foralz€H

Proof. Consider an arbitrary vertex z in H. The Complement Lemma allows us
v

;:o assume that f(G ,z) = O. W:&na.y assume that f(Gy,z) == 1, for otherwise we are
done. Let A .be the parent of z in DT(G); since j(é’:z) == 0, vertex z is isolated in 4.
Let B be the parent of z in DT (Gy); since [(Gyg.,z) = 1, vertex = segs all the
relpainlng vertices in B. It fqllov;s that the intersection of A and B contains only z.

Since both A and B have at least two vertices, there is some vertex a € A — B, and

some vertex b €B - A.

Note that A is homogeneous in G and that B (béing homogeneous in Gy ) is also

homogeneous in G. Since @ misses z, it must miss all of B; in partlcu_la.r,\ a misses b.

Since b sees z, it must see all-of’ B ; in particular, b sees a; contradiction. [ |

N
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A speclal case of the Localization Lemma asserts that f(G,z) = f(G,y) =1

whenever z,y-are adjicent twins and that f(G,z) = f(G,y) = 0 whenever z,y aré
.- . N '
non-adjacent twins. T ‘ L
A ®

- ¥
+ The fBllowing lemma is also concerned with f aﬁ’d with twins.

The Twin Lenima. Let G-be a P,-free gragh with at least three vertices. If z,y
are twins in G then f(G,z) = [(G-z, ) = [f(G-y, z),, for all zin G — {z,y}.

! Proof. Argue by induction on~}G|. Since (G .3) + f(G,z) = 1 for all Pgfree
graphs G, we may assume that G is disconnected: its vertices can be partitioned into
non-empty disjoint sets S,, S,, so that no edge has one vertex in each S;. If z and y

belong to distinct S;’s, then each vertex distinct from both z and y misses at least one
\

of them, and therefore it misses both; Iwthat case, we can redefine S,, S, by setting S,

N\

. . ¥y
== {z,y } and letting S, tonsist of all the remaining vertices.

Hence we may assume that z,y € S5,. To prove the lemma for all 2 in 5',, distinct
LN

from both z and y, we may assume that |S,| 2> 3 (else there is nothing to prove); the

»

AR

fnduction hypothesis-guarantees that
f(Csl.z) = /(oGsl—-:c, z) = [(Gsy,z) whenever z € Sy, 232,y -
the Localszation femma guarantees that
fG,z) = [(Gs,z). NG-z,z) = f(Gs-z,2), NG-yie) = [(Csry, 2)
Now combining these two sets of equalities yields the desired conclusion.
To proye the lemma for all z €.5,, we may assume that |.?',| > 2.(else (G ,z)=
G-2z,2) = f(G —y,z) == O for the singleton 2z in S5, and we are done). Clearly, S, is
a homogeneous set of G, G-z; and G-y ; now the Localization Lemma implies the

dgsired conclusion. Nl

e

o E M + 4-
I T Y P T

——
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Having built up a repetolre_ of res?flt,s concerning J, we h‘re able to present somé lemmas

“ [

d

concerning strong mirror graphs.

The Reduction Lemma. Let G be a strong mirror graph with at least eight

vertices such that neither Gp nor Gp is 2K, Then there are twins ri,r, in Gp such

°
-

that either - ‘ .
(a) [R-1; ,S-s; | is a strong mirror partition of G — {r; 3; },
[R-r,,5-s; | is a strong mirror partition of G - {rj,s;}, and
© J(Gporiyri) = f(Gr-ryri) = f(Gam) = [Gr.ry)  or
(b) | [R-r;,5-3; | i3 a strong mirror partition of G — {r;,s, },"
[R-r;,5~s; [ is aA strong mirror partz:tion of G~ {r;,s}, and
H(Gp-ri,rj) = N(Gg-rj,r;) # f(Griri) = [(Gr.rj)

In all cases, all sets {ry,si} with k 5 ij are couples'of these strong mirror partilions.

Furthermore, if Gp has an isolated vertex ry, then we can choose 1,7 both distinct from t.

L ' 8
Proof. By the Rip-Off Lemma, we- find twins r;,r; in Gg such that Gg-r; and

- -

Gr -r; are gtrong P-free graphs, and such that, for any given isolaied vertex of r,,

»

both ¢ ,7 are distinct from ¢. By the Twin Lemma, ) s
AGr-rir) = fGgr-rjry) = f(Gp,ry) whenever k 5 i,5. .

Note that Gg—r;, Gp—r;, Gs—-8;, Gg~s; are all isomorphic and that

°

SGg~rir;) = [(Gg—r;.1).

AGgr ;) = fGg,rj) = 1 Ifr; sees ri ' &

f(Gg.ri) = f(Gp,rj) = 0 ifr; missesr; \
(use the Localization Lemma with G == Gp, H = {r;,r;}). Hence (a) holds if

- ¥ . Q

A(Gg —r; ,r;) = f(Gg,rj), and (b) holds in the other case. M

n

N ,e -
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One difficulty that must be overcome in proving theorems that concern strong

———

mirror graphs is that a.’strong mirror graph can have more than one strong mirror

partition. For example, the strong mirror graphs shown in Figures {.10, {.11, and 4.12

*
b X L]

are isomorphic and yet have different strong mirror partitions. The following two

legxm& show. how this non;uniqueness can be exploited. In particular, the first of these ,

¥
A4

\Iemmas shows that under certain hypothéSes it is possible to "repartition” a strong
. ) o
mirror graph, i.e. find some other strong mirror partition of the graph. The second

—————

lemma shows that any given strong mirror graph has a strong mirror partition that

P

"isolates” any given vertex of the graph.

>

The Repartitioning Lemma. Let #Fle a strong mirror graph with a strong

N mirror partition [R,S|, and suppose that whichever of Gg or Gy is disconnected has
) .- ‘ .

some big component. Let R be the set of vertices of such a component dnd let S, be the
) set of mates of verlices in R,. DefneR' =R, +5-S,,andS' =S5, +R - R,.

Then the partition [R',S’] in which the couples are the same as the couples. of [R,S] is a

@

" strong mirror partition of G.

Proof of Lemma. Label the vertices of R'_.and S’ so that couplés of [R',8] are

5

couples of (R ,S i, le let r;; =1r; forallr; In R, and let r,-' =g; foralls; In S - §y;

let 8;' = s; for all &; In S, and let s,-' = r; forall s; in R — R,. To prove the lemma

5 It suffices to confirm that the following four properties hold.

(1) - Gpg: and Gg:i are Ppfree,
. X | g
2) r,-' sees r;'n if and only if s,-' sees s,-' if and only if .

r,-'_mlsges 8; ifand only if a,-' misses r,-', foralls £ 5, . -

(3) Gpg' and Gy are strong P,-free graphs,

‘ (4) r,-' sees s,-' it and only it f(Ggr: ,r‘,-',L= 1, " for all r,-' in R'.

| @ | \
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Both Gg, and Gs_s, are Pfree, and there are either no edges or ail edges between

-

Gp, and Gs._shl;”‘ thus Gy is Ppfree. By symmetry, sois Gg: , and (1) holds.

3

To see that (3) holds, consider first the case in which Gp is dlsco'nnect;ed; note that
. Gg: is discgnnectedﬁ éinceoR ; Induces 2 big component in Gy, Gg: has at least three
components (at least two are induced by R, and at least one is Induced by S - §)),
and so Gy« is a strong P-free graph. Similarly, in the case where G is disconnected,

L4

Gp+ is disconnected” and has at least-three components, and (3) holds.

.«
Note that (2) is equ\ivalent to the following:
, Jor every two distinct couples X = {a,b} and Y = {c,d},

each vertez of X sees exactly one vertez of Y.

Since this property holds with respect to the partition [R,S], and since the couples of

[R,S] are the same as the couples of [R ',S'], it follows that this property holds with

e
~rap

respect to the partition [R',S’]. Thus (2) holds.

Finallg, to show that (4) holds, let r,-' be any vertex in Réu Consider first the c;gse
r._,-' € R,. Note that R, is a homogeneous set of both Gg and Gy ; by the Localization
Lemma, f(Gg: ,rj') == f(GR', ,rJ') and f(Gg,r;) = f(Gp l,r‘,-a). Since r]-'-= r, and GR'1=
GR,r it follows that f(Gp, ,rj') = f(Gp,r,). This, together with the fact that (by thc_
repartitioning) rj' sees sj' if and only if r, sees s;, and the fact that (since [ ,S] Isa
_ strong mirror partition) r; sees s, if and only if M(Gr ,r;) = 1, imply that rJ' sees 8,-' ir
and only if f(Gg:,r;') = 1. Thus (4) holds in this case.

In the other case, rj' € S - 5,. Since Gy is a strong P-free graph, |§ - 5,| 2 2,
and § - §, is a homogeneous set of both G, and Gs. Now a similar argument to

that of the previous case implies that (4) holds in this case as well. [ |




~
e,

Figure 4.10
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3

» Figure {.10 shows a strong mirror graph; the partition suggested by the drawing

!
{i.e. "upper part” and "lower part”) is a strong mlrrq}r partition. The graph In Figure

4.11 can be obtained by repartitioning the graph*in Figure 4.10 as follows: let R, be the
g
leftmost component of the "upper part” of the graph in Figure 4.10, and repartition as

described in the Repartition Lemma. Similarly, the graph in Figure 4.1£can be obtained

" by repartitioning the graph In Figure {.11.

The Isolation Lemma. Let G be a graph with a strong mirror partiti%[R,S/,
and let v be ange-vertez of G. Then there is a strong mirror partition [R',S'] of G such
that the couples of [R ",5'] are the couples of [R,S/‘_and such that v is a singleton in

P ———

whichever of Gg. or Gg. is disconnected.
v 3

Proof of Lemma. Assume that Gp is disconnected (the following argument
holds if Gy is replaced with Gz ). Let R, be the set of vertices of R in the component

of Gp that contains v. The proof is by induction on |R |.

If |[R,) == 1, then [R ,5] is the desired partition. Suppose then that |R,] > 2. Let
R' and S’ be as defined in the Repartz’éigmizg Lemma. Consider the strong mirror
partition [R',S’] of G. Note that Gpg. is disconnected and has at least three
components. Let R,‘: be the set of vertices of R’ inducec{ by the component of C"R,
that contains v. Since R, is a proper subset of R, |[Rz | < |R The lemma now

follows by inductive hypothesis and the Repartitioning Lemma R

The Isolation Lemma is {llustrated by the graphs shown in Figures 4.10, +4.11 and
4.12. Let v be the upper leftmost vertex in the graph in Figure 4.10. Figure .11 and
Figure 4.12 show the sequence of two repartitions that isolate v. (The vertex v appears

as the upper leftmost vertex in all three drawings.)




-3

— Figure 411
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v
’

The following two lemmas describe restrictions on how vertices in graphs in M can

s

n
L]

"attach” t.o strong mirror subgraphs.

-

t

- 1
The Zero-Two Lemma. L#f H be a graph in M, let G be a strong mirror

subgraph of H, and let v be a vertex of H ~ G that is partial on G. If v is universal or-

—

null on some couple {r,,8, } of a strong mirror partition of G, then v is a twin of one of

s
v

re ,8; with respect to G - {re,s }.

Proof. Argue by induction on the number of vertices in G . BLJQg\Compl_emcnt

N

* Lemma and the Isolation Lemma, we may assume that r, is isolated in Gp .

- /“

If G has precisely six vertices then r;s; r;5,r;8; is a 'y, There are two cases.

Case 1: v is nullon {r,,s, }.’
Since v sees at least one vertex of G, by swapping B and S if necessary, and also {
and j, we may assume that v sees s;. Now v must see s, (if not, either va;rya;r; Is
¢ .-J? N

a Cgor vsrs;r;s Isa Fg). This implies that v misses r; (if v sees r;, then either

vsjrisr; isa Cgor {v,r,8,r,5,r;,8} induces L); by symmetry, v also misses r;. ——

Now observe that v is a twin with respect to r, of G’;{{r}o,,}.\

Case 2: v Is universal on {r;,s; }
Since v misses at least one vertex of G, by swapping K and S if necessary, and also i -
and j, whe may a{Ssume that v misses s; Now v sees r, (toavoida Cgonvr s r,s),
misses s; (else v and the P 8;ry 8, ry 8 contradict (*) of the Stronger Lemma), and
finally sees r, (to avold a Cgzon vrys,r,8 ). Now v isa twin with respect to s of

G —{ri.a }.

i

*
If G has at least glght vertices then (since r;, is isolated in Gg) neither Gp nor

Gr s 2K, and so we canapply the Reduction Lemma. Let ri,r; be as in the




Figure 4.12
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]
conclusion of the Lemma; set G; = G - {r;,8;}, G; = G, = {r;.s; } In case (a) and G;

=G -{r;,8;}, G; = G - {rj,5} in case (b). By the induction hypothesis, there is &
vertex w; in {r;,s } such that v is a twin of w; with respect to G; - {r,,s,} and there

3

is & vertex w; in {r,,s } such that such that v Is a twia of w; with respect to G; -

A
&t

{r:,8,}. We need only prove that w; = wj. =
N\ '

Assume the contrary: w; w;. Now w; and w; are anti-twins in G. However,
v Is_a twin of both with respect to the non-empty graph G - {r;,s; T 085,78 }a

contradiction. This concludes the proof of the Zero-Two Lemma. M

L3
-

1

The Attachment Lemma. Let H be a graph in M,. let G be a strong mirror
w;bgraph of H, af;d let v be a vertez of H - G that is partial on G. Then either
(1) there is a strong mirror pa;'titiort. [R,S] of G st‘tch that
v is universal on Rand nullon S, o
- ) (i) #n every strong mirror partition [R,S/ of G there ;2 couple {r, ,8;}

such that v is a twin of one of r,,8, with respect to G — {r;,8, }.

Proof. We may assume that (ii) does not hold; now the Zero-Two' Lemma

guarantees the existence of a strong mirror partition (R ,S] of G such that v is partial

3

L3

on every couple {ry,s; }. T . C

First we claim that ‘ N
(1) if Gg has at least three components tl;en v is part!a‘.l on at most two of them.
To justify this claim, assume the cbntrary:’GR has compopents R,, ‘1’2;,’R3_(and .
possibly others) such that v Is partial on R, and R, Let S, S, S; be the

- corresponding components of Gg. Now there are adjacent vertices a and z in R, such

that v sees z and misses a; let b denote the mateof 2. Now a € R,, b € §,, and

ol
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°

a,b ,v are pairwise non-adjacent. By symmetry, there are vertices ¢ and d such that ¢

ERpd € S;and fuch that ¢ ,d,v are pairwise non-adjacent.

Finally, let {z ,y} be a couple with a‘rx € R;.‘y € S, Swapping R and S If
necessary, we Inay assmime that v sees z: Now we wish to find a vertex z in S, that

. missesz. If Ry= {z} then f(Gr,z) =0, and .so we may set z =y; else let z be the
mate of any neighbour of z in R4 Now obser\;e that azebzd is a C, Since v sees z

and misses a,b,c,d, either vzdaz is a C' g or vzdazc is 2 P,, a contradiction.

Next we claim that
(2) Gp has nocomponents R ,, R, R jsuch thatv is * ) —
partialon R,, universalon R ,, and nullon R 5. \

o

To justify this claim, assume the contrary. As in the proof of (1), we find a vertex a in' -

R, and b in S, such that a,b ,v are pairwise non-adjacent. Now let ¢ be any vertex in

. g i)
3 R, There is a vertex d.in S, that misses ¢: if R, = {c } then f(Gp,c) =0, and we

-

may let d be the mate of ¢, else we may let d be the mate of any neighbour of ¢ In

! '

* Rg,. Finally, Tet ¢ be any vertex in R, Note that v is:null on S, it follows that
» ' - R . Fy
vcbeda is a Py, a contradiction.

- ]

Finally, replacing H by H If necessary, we may agsume that Gp is disconnected.

Let us distinguish between two cases.

1

’ Case 1: v Is partial on no component of‘"fv’R .

«

In this case, let R, be the set of neighbours of v in R, and let S, be the set of non-

— -

f
neighbours of v in §. Note that |R,| => 2 (else R, = {r:}and v isatwinof r, with
) respect to G — {r;,5, } ). Note that R; and R - R, are homogeneous in Gg; by the
Localization Lemma, [R, + S — §,, S; + R ~ R,]is a strong mirror partition of G.

-

@ Since v is universalon R, 4+ S - S, and nullon S, + R - R, property (i) holds.

= / \
- /
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Case 2: v is partial on some component of GR' ' .
* [N -

| . . ' . o - ,
. "By (1), v is partial on precisely Qe component R, of Gp. We shall argue by lndmlqn

on |R,. By (2), v is universal or null on R - R,. Note t}:ié,p IR - R,|] > 2 (because
Gpg Isstrong); hence R, and R - R are hémoge’n‘eous inGp. Set R°"=R,+ S -§,,

S = S, + R - R,. By the Localization Lemma, {R ',S'] is a strong mirror partition of

G . Note that R’ induces a disconnected Qubgraph of G, and so does R - By (2), v is

partial on at most one comgonent of (73,. If v is partial on precisely one such
P

componelit then we are done by the induction hypothesis applied to tie* mirror partition-

'R '.S') of G; if v is partial on no such component then we are done because the mirror
partition [R',S'] of G satisfles the .hypothesis of Case T. This concludes the proof of the

Attachment Lemma. B >

MY

e
—
v




: . i
, Lot
°Q -
. \
® m '
- .1
N - =
) h .
I
!
}t - )
LY
p
. 5
s v r~i -
;
- wome 5 s, A N
l‘
s 2
- . ]
]
5 1
. .
.
s
A




-80 -

The following two lemmas are both statements of the follow'ing rorn{: suppdsé that

\ . .
G is a strong mirror subgraph of a graph H in M, and suppose that v Is some vertex
that attaches to G in a certain way; then there is another vertex (or there are other

vertices) in G thg.t attach to H + v in another certain way. These lemmas are the last

two before the proof of Theorem 4.1

The First Extension Lemma. Let G be a strong mirror subgraph of a graph H in
M, let [R,S] be a strong mirror partition of G, let"Gp be disconnected, and let v be a

vertez in H—‘ﬁ‘tlxat 15 untversal on R and null on S. Then there is a vertez win H- G

that misses v, is universal on S, and null on R.

Proof. We shall argue by induction on the number of vertices in G. If G has

preéisely six vertices, then’it is a C'y and the de'sire_d'concluslon follows by (2) of the C

Lemma.

Another case that will D€ treated separately is that of G = 2K, Assume that G

is labelled as in Figure 4.13. Applying the Py, Lemma to 8,r,v r,;s,, we find a vertex w
- .
that sees 8,5; and misses r,rav. Now w must see s, and 8, (to avoid a Cj on

& .
W 3,857 99, and W S 434735, respectively), and w must miss r, and r, (to avold a P, on

W r;8,8,8,r,; and w rys,s,84r , respectively).

Now we may assume that G has at least eight vertices and that G 3 éI(,. Let

r;,r; be as in the Reduction Lemma, and let s;,3; be their respective mates with respect

to the partition [R;,S]. Observe that Gp has a component R, that includes neither r;

E

nor r;. Let Sg be the corresponding component of Gg. Let r; be any vertex in Ry If
Rgo = {r;} then let s; be the mate of r;, else let 5; be the mate of any neighbour of r

in Gp. Note that 8, isin S, and misses r,. If r;,r; are adjacent then the subgraph of

@ b, ¢




3

Figures 414.1 and 4142 (top and bottom)

—
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"G Induced by {r;,r;,r,,8,8;,8 } is as in Figure {.14.1, }se it is as in Figure 4.14.2.

_If conclusion (a) of the Reduction Lemma holds then, by the induction hypothesis,

we find vertices w; and w; non-adjacent to v such that w; is universalon S -3, and

null on R - r;, and w; is universalon S - s; and nullon R - r;. In case r;,r; are

non-a.djaceﬁt. case (LA) of the Little Local Lemma guarantees that one of w;,w, is

o

universal on {s; '8 .3 } (and therefore on S), and null on {r..r; ,r¢ } (and bheretﬁ on

R). In case r;,r; are adjacent, case (2A) of the Little Local Lemma guarantees that w,
A} .

in universal on {s;,s;,5, } and null on {r, ,r;.r; }.

If conclusion (b) of the Reduction Lemma holds, then by the induction hypothesis,

we find a vertex w non-adjacent to v such that w is universal on S - s, and null on
R-r;. But now, by the Little Local Lemma (apply cases (1B) and (2B) if r,,r; are

respectively non-adjacent and adjacent)aw is universal on {s;,s;,5} and null on
i)
13

{"i."j o} |

!

)
}




Figures 4.15A to 4.15D (top to bottom)
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The Second Extension Lemma. L_ct G be a strong mirror subgraph of a graph H

in M, let [R,S| be a strong mirror partition of G, let r, be isolated in Gg, and let v be a
vertez in H--G that is universalon R - r; and nullon S- s, . )
(1) Ifv seesbothr, and s, - TN ‘

then some vertex w misses v, sees both r; and s;, is universal on S — 8, and

nullon R~ r,.

(2) Ifv sees r, and misses s, ) : . - -
- then some vertex w misses v, is universal on S and null on R. o
- (8) If v misses both r; and s;
y
then there are vertices w,z,y such that the subgraph induced by {r,,s; ,v,w,z,y}
i3 as showri in Figure {.15A, and such that '
j&th z and y are universal on S— 8; and null on R — r,, and w is universal on
R~ r, and universalon S - s;. i
(4) If v misses r, and’sees s,
then there are vertices w,z,y such that the subgraph induced by {r,,s, ,v,w,z,y}
18 as shown in one of Figures 4.15B, {.15C, {.15D and such that
both x and y are universal on S— s, and null on R — r;, and w 13 unsversal on
R - r, and universal on S - s, .
Proof. In all four cases, we shall argue by irzduction on the number of vertices in
G . It G has precisely six vertices then, in each of the\four cases, the desired conclusion
follows from the corresponding case of the C'y Lemma; see Figure 4.7. Now assume that
G has at least eight vertices. Note that (since r, is isolated in Gp ) neither G nor Gg
is 2K j; let r;,r; be as in the Reduction Lemma.
If case (a) of the Reduction Lemma applies, o
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st G =G —{r;,5;}, R'"=R -r,,8" =5 - 8;;
n " N .
set G =G —-{rj8;},R =R -r;, S =85 —3;.
If case (b) applies,
v ' ‘
set G' = G-{rs;}, R =R -1, 8 =8 -sy;
st G'=G —{rj,}, R"=R -r;, S" =5 ~ 3.
Proof of (+)- By the induction hypothesis, there is a vertex w that misses v, sees
both r, and s, and Is universal on s’ - 8; and null on R'- r,. Since w is universal on
r, .8 }, the Zero-Two Lemma guarantees that w is either universal on S - s, and null
(]

on R ~ 7, ornullon S — s;-and universal on R - r;. To exclude the latter alternative,

we only need recall that w is universalon S’ — 8.

Proof of (2). By the induction hypothesis, there is a vertex w’ that misses v, is
universal on S’ and null on R there is also a vertex w' that misses v, is universal on
S" and null on R". By the Little Local Lemma, one of w',w” has the properties required

of w.

Prpof of (3). By the induction hypothesis, there are vertices w ,z,y such that the
subgraph induced by {r,,s;,v,w,z,y }'is as in Figure {.15A, and such that z and y are
both universal on S’ - 8; and null on R' - ry, and w Is universal on R'- r, and null on
S' -8, . Since w is universal on {r,,s }, the Zero-Two Lemma guarantees that w Is

o
either universal on R - r, and null on S — s, or universal on S - s; and nullon R -
r,. To exclude the latter alternative, we only need recall that w is universal on R’ - re-
The same argument shows that y is universalon S - 3 and null on B - r,. Finally,

since v and s, are twins with respect to G, and since r is universal on {r, U }, the
i 4

same argument used once again shows that z is universalon § - s, and nullon R - r,.

- —
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" Proof of (4). Let F be the subgraph of G induced by {r,,s;,v,z,z,y}. By the

s .
induction hypothesis, there are vertices w,z,y such that F Is as in one of Figures
4.15B, 4.15C, 4.15D, and such that z and 5 are both universal on ' - s, and null on

R' - r,, and w is universal on R’ - r, and'null on §' — 5,. There are three cases to

’

consider.

' &3
Case B: the subgraph F is as in Figure {.15B.

-
\

Since s; and v are twins with respect to G, and since w Is universal on {r, v } by the

. Zero-Two Lemma it follows that w is either universalon R -~ r, and nullon S - 8, or

null on B - r; and universal on S - s;; to exclude the latter alternative, note that w s
universal on R’ - r,. Since z and y are respectively null and universal on {r,,v}, the

‘same argument shows that both z and y are universalon S - s and nullon B - r,.

Case C: the subgraph F is as in Figure 4.15C.
Since z,y ,w are each either universal or null on {r;,s, }, the Zero- Two Lemma together
with 2z and y being universal on 5 - 8; and w being universal on R'- r, imply that z
and y are both universal on S — s, and nullon R -r,, and w Is universalon R - r,

and nullon § - 3.

Case D the subgraph F Is as in Figure {.15D.
Since z,w are both universal on {r,,s; }, the Zero-Two-Lemma together with z being
universal on S’ - 8, and w being universal on R' - r, imply that z Is universalon S -
s, and nullon R - r,, and w is universalon B - r, and nullon S - Finally, note
that v and s, are twins with respect to G, and that y Is universal on {r,,v} Now the
Zero-Two Lemma together with y being universal on S’ ~ g, implies that y is univcr[al
on S — & and null on R - r,. This concludes the proof of the Second Ezxtension

Lemma. N
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We now prove the main result of this chapter, namely, that the only unbreakable

murky graphs are L g» L o, and strong mirror graphs.

Proof of Theorem 4.1. Let H be an unbreakable murky graph. If H contains

L 4 as an induced subgraph, then by the Ly Lernma, H is either L g or L.

Thus we may assume that H does not contain Lg, and so H is in M. Now note
that the WT Star Cutset Theorem of Chapter 3 guarantees that H contains a chordlesy
cycle with at least five vertices, or the complement of such ‘a cycle. ‘Since H is murky,
H does not contain Cy, C;, or C;, for k > 7. Thus H contains either Cq or C,4 as an

induced subgraph; note that both C4 and Uc are strong mitror graphs.
3

Now let G be any strong mirror subgraph of H with the greatest number of
vertices. If G = H then we are done, so assume that G is a proper subgraph of H ; we

will show that this leads to a contradiction.

Since H is unbreakable, there is some vertex v in H — G that Is partial on G. By
the Complement Lemma, by taking the complement if necessary, we may assume that
i
Gg Is disconnected (note that v 1s partial on G il and only if v is partial on'G in H).
o

By the Atlachment Lemma, there are two possible cases.

Case (i): there ts a strong mirror partition [R,S| of G such thaf v is universal on R
and null on S.
In this case, by the First Extension Lemma, there is a vertex w that misses v, is null on
R, and universalon S. Let R'=R + w and §' = § + v. Now we claim that the
partition [R ',S'], whose couples are {w,v } and all couples of [R,S], is a stro|ng mirror
Partitlon. To justify this claim, we need only show that R’ and S’ are stro?‘g P,-free

graphs, that f(Gp:,w) = f(Gs:,v), and that for every couple {rj,s;} of [R,S),
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AGp: ,r;) = [(Gp,r;) and f(Gs: ,3;) = f(Gs,s;).

P

* "Since Gy is & disconnected strong Py-free gx:aph, it has at least two components.
Gp+ is formed by adding the isolated vertex w to Gp; thus Gg: is P,-free, and has at
Jeast three components; thus G’m is strong. Since w is an Isolated vertex in Gp/,

f(Gg+ ,w) = 0. Similarly, G is a strong Pj,-free graph, and f(Gg: ,v) = 0.

Finally, let r; be any vertex of £, and let X be the vertex set of the componént of

e’

Gpr contalning r'j. Note that X is also the vertex set of the component of G,
containing r, . IrP|X[ > 2‘ then X is a homogeneous set of both G and Gy, and
J(Gr.r;) = f(Gx .,rj) = f(Gg:,rj), by the Localization Lemma. On the other hand, if
|X| = 1, then r; is a singleton in both Gg and Gg., and f(Gg.rj) = 0 = f(Gg: .r,).
Similarly, j((;s,sj) = f(Gg+,8;) for all s; in §. Thus the claim holds in this case, and

(RS is a strong mirror partition; contradicting the assumption that G was a largest

strong mirror subgraph of H .

Case (li): in ct;cry strong ;n:'n;or partition [R,S] of G there is a couple {r,,8 } such
that v is a’twin of one of ry ,s; with respect to G- {r, ,8;}. i
By the Isolation Lemma, there is a strong mirror partition of G such that r, is a
singleton in whichever of Gy or G Is disconnected. By the Complc;cnt Lemma, G 1s
also a strong mirror graph, with the same partition; v is partial on & in H If and only
it v is partialon G In H. Thus, by taking the complement of H if necessary, we m:lzy
assume that®r, is Isolated l;’l Gp Now v is a twin of either r, or s, with respect G —
{ri .8 }; by swapping R and S if necessary, we may assume that v Is a twin ol: 8 .

Thus v i$ universalon R - r, and null on S - s,. Now the Second Eztension Lemma

applies, and there are four subcases to consider. (See Figure 4.7.)
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. Subcase (1): v sees both r; and s,, and some vertez w misses v, sees both r; and s,

and is universal on S— s, and.nyllon R - r;. -
\

Let: R' =R + w and §' = S 4.v. It is a routine exercise to show that the partition

ha

[R',S"], whose lcouples are {w,8 }(, {ry,v }, and all couples of [R - r;,S — g,], is a strong

mirror partition.

Subcase (2): v seces r; and misses s, , and some vertex w misses v, i8 universal on S,
and null on R. ‘ - -
Let R =R +w anduS' = S 4 v. It is a routine exercise to show that the partition

[R',S"], whose couples are {w,v }, and all couples of [R,S], is a strong mirror partition.
{ ,

Subcase (3): v misses both r, and s;, and there are vertices w,z,y‘such that the
subgraph induced by {r,,s, ,v,w,z,y} s as shown in Figure 4.15A, and such that z and y-
are both universal on S — 8, and null on R — r;, and w is universal on R - r, and null on
S-s.

Lt R'=R + {z.y} and let S'=5 + {v,w}. It is a routine exercise to show that
the partition [R',S'), whose couples are {r,,w}, {z,5} and {y,v} and all couples of

[R - r,,S_~ 8 ] is a strong mirror partition.

Subcase (4A): v misses r; ar;d sees 8;, and there are vertices w,z,y such that the
subgraph induced by {r, ,8; ,v,w,z,y} is as shown in Figure {.15B, Figure {.15C, or Figure
4.15D, and such that z and y are both universal on S - 8 and null on R — r;, and w i3
unsversal on R — r, and null on S - s,.

Let R'" = R + {z,y} and let S = S + {v,w}. If the subgraph induced by
{r .8y ,v,w,z,y} is as shown in Figure 4.15B, then the parcitio/n [R',S'] with couples

{re.8e ), {z,w}, {y.v}, and all couples of (R - r,;,S - 5] is a strong mirror partition;

if the subgraph induced by {r,,s,,v,w,z,y} Is as shown in Figure 4:15C, then the
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partition [R',S'] with couples {r;,v}, {y.w}, {z,8} and all couples of [R ~r;,5 - 8]
is a strong mirror partition;
if the subgraph induced by {r;.s;,v.w,r,y} is as shown in Figure 4.15D, then the
partition [R’,S'] with couples {r,,w }.) {y.v} {z,5} and all -couples of [R -r,S ~ 5]
is a strong mirror partition;

Thus, in all four subcases there exists in H a strong mirror subgraph with more”

_ vertices than G ; this contradiction completes the proof of Theorem {.1. W

\, 4
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4.4 A Characterization of Unbreakable Murky Graphs

~

In the previous section we showed that if a murky gra.phais unbreakable, then' it -
must be L, Lg or a strong mirror graph. In this section, we will prove the converse,
naniely, that L4, Lo and strong mirror graphs are murky and unbreakable. These two

results combine to give the following characterization of unbreakable murky graphs.

-

\
-~

Theorem 4.3. A graph is murky and unbreakable if and only if it is esther Ly, L,

or a strong mirror graph.

-

The necessary half (i.e. the "only if* part) of the theorem is Theorem 4.1; thus to
r.;n;ve Thgorcm 4.8, we need only prove the sufficiency half of the theorem. This half of
. N '"\// ’
the theorem is _proved as the following four propositions.
Proposition 1i The graphs L g and L g are murky.
Proposition 2. Mirror graphs are murky.

Propositien 3. The graphs L 4 and L o are unbreakable.

Proposition 4. Strong mirror g;aphs are unbreakable.

Al

Proof of Proposition 1. Si;lce removing ‘a vertex from L4 coi*responds’ nto
rem‘ovlng an edge from K g4 4, It follows that every eight-vertex i'n‘duced subgraph of L is
L 4. Also, removing ;. vertex of degree four from L4 leaves L,; removing a verte;c of
degree three leaves ;. Thus e'very seven-vertex subgraph of L g, and L, is LyorL,.1t

is a routine matter to verify that L, is murky; since the c.omgle_ment of a murky graph

is murky, L, is murky. Thus both L 4 and L ¢ are murky. W

Proof of Proposition 2. Recall the Mirror Proposition of Section 4.2: every
induced subgraph of ‘a mirror graph has twins or anti-twins. Since neither Cy, P,, nor

Py have either twins or anti-twins, mirror graphs cannot have Cj, P,,.or P, as induced
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subgraphs; thus mirror graphs are murky. N
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Recall that the neigixbourhood N{(v) of a vertex v In a graph G is the set of all
vertices of G — v that see v, and that the non-neighbourhood M (v) is the set of all ’ \
. . ) , o
vertices 6f G — v that miss v. A pure star cutset of-a graph G is B set S =v | s
N(v), for some vertex v in G, such that G‘f—S is disconnected. ’llhe difftrence
RN : .

.between a pure star cutset and a star cutset is that a pure star cutset consists of a

vertex together with all of its neighbours, whereas 2 star cutset consists of a vertex
together with any subset of its neighbours. We will. call a graph G with at least three
vert,ices breakable if either G or G has a star cutset. The following claim helps to

shorten the proof of the final tiwo propositions.

Claim (Chvd4tal, private com;nunic'at.ion). Let G be a breakable graph with at least

five vertices. Then &ther G or & has a pure star cutset.

o ( . &
_Proof of Claim. Let G be a breakable graph with no pure star cutset. Chvatal

L

" observed [19§5a] that this implies the existence of vertices v,w in G, such that v sees

|
I 4 .
Now, if v and w have.any common neighbour z in G, then,

L

'in"a;w U N(w) is a pure stir cutset of G. (In (7, removﬂing w and all its neighbours

Al

leaves a graph in which v is a singleto}l, and z is in some other component.) Thus we -
\ )

may assume that the only neighbour of w in G iIsv. Let H = G - {v,w}. Now

there are two cases to consider.

<

Case 1: some vertex z (other than w ) sees v and misses some h € H.

In this case, we are done: in G, z | N(z) Is a pure star cutset.

Case 2: every vertex z (oiher than 2) that sees v sees all vertices in H.
Let S be the set of vertices of H thatsee v, and let T be all other vertices of H. Note

that the hypothesis of Case 2 implies that S is a clique, and that every vertex in S sees
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_at least two.) This completes the justification of the Claim. W
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v

every vertexin T. wa, if there are any two non-adjacent vertices a ,b in T, then, in
G,a U N(a) (which includes all of S) is a pure star cutset. Otherwise, T is a clique,

and therefore the vertices of H form a clique. But now, there is a vertex h € H such

tfbat in G, h U N(h) is a pure star cutset: if T is non-empty, pick A any vertexin T;

else, pick h any vertex in S (in each case, in G N{(h) is a subset of {v.,w}, and the

“vertices in M (h) form a stable set; since G' has at least five vertices, the stable set has

'Y

Proof of Proposition 3. To prove that L ¢ is unbreakable, by the preceding’
claim and the fact that L g is self~complementary, we need only prove that Lavha.s ﬁo

pure star cutset: we need only prove that, for each vertex v € Ly, M (v) is connected.

An automorphism of a graph G is a permutation P of the verb{{:es such that z and y.

are adjacent If and only if P(z) and P(y) are adjacent, for all pairs of vertices z and

y.. Note that for every pair of vertices of L,'with the same degree, there is an
automorphism which maps one vertex to the other. Label the vertices of L4 as in Figure
4.9. Vertex 1 has degree 4; the subgraph induced by M (1) is a Pg, and is hence

copnected. ‘Vertex 5 has degree 3; the subgraph induced by M (5) is a C,, and is hence

i
!

connected. 'f‘(g,ug L g is unbreakable.

4

To prove that L, is unbreakable, by the preceding claim and the fact that L, is
/‘ ?
. \
self-complementary, we need only prove that Ly has no pure star cutdet; i.e. we need
@

only prove that, for each vertex v € Lo M (v\) is connected. Note that for.-any two =

@

[

- vertices in L g there is an automorphism which maps one vertex to the other. Thus we

need only show*that, for an& vertex v of Ly, M (v)is connected. Pick any vertex of L ;

its non-neighbourhood induces a C,, and is hence connected. Thus L 4 is unbreakable.

°

. * -
,

L 4

. g
.« ~
. N s

-«
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+ ~— allof R - v, M(v) is connected.
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Proof-of Proposition 4. To prove that a strong mirror graph Is unbresakable, by

the preceding claim and the fact -that G is a strong mirror graph (see the Complement

~.
[
6 ~

. : o - . .
Lemma) we need only show that no vertex in G hasa pure\star cutset. By the [solatian
Lemma, there is a strong mirror partition [R,S] such that (¥ is in B and) v ds a

singleton in whichever of Gg or Gy Is disconnected. Let w be t'hf mate of v.
N

Case 1: Gp is disconnected. %

In this case f(Gp,v) = 0, and v misses w. Thus M(v) = R — v + w; since w sees

\

& .
Case 2: Gp ‘is disconnected.

L4

In this «case f(Gp,v) = 1, and v sees w." Thus M(v) = R —wv. But since G s

strong, the Tact thato v s a singleton in Gp implies that Gp has at least three

0
s

components, and §o‘53:,, is disconnected, and therefore Gp_, is connected. This

concludes the proof of Proposition 4, and also the proof of Theorem {3 |
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The following result appears as Theorem £.2.1 In Olariu [1986].

Theorem (Olariu). No minimal imperfect graph contains anti-twins. _
\
Proof. As?ume the statement false: some minimal imperfect graph G contains anti-twins

u and v. Let A denote the set of all neighours of ¥ other than v, and let B denote the set of

neighbours of v other than u .

Let o and w denote the .number of vertices in a largest stable set and clique respectively of

0

G . Now - \
B contains a clique of size w — 1 that extends

. - into no clique of size win A U B. I )]

5
B ¢

To justify (*), colour G —v by w colours and let S be the colour class that Includes u .
v £

- Since G — § cannot be coloured by w — 1 colours, 1t contains a clique of size w; since G - § - v

is coloured by w — 1 colours, it must be that v € C. Hence C - v is a clique in B of size w~ 1.
If a vertex z extends C - v Into a clique of size w then z € B (since otherwise z would extend

C intp a clique of size w + 1). Thus (*) is justified.

The Perfect Graph Theorem guarantees that the complement of G is minimal imperfect;

thus (*) implies that __ ) . -
A contains a stable-set of size o ~ 1 that extends ) Q/

into no stable set of size & in A U B. (**)

Now let ¢ be the clique featured in (*) and let § be the st,abl;a set featured in (**); let X
be a vertex in C that has the smallest number of nelghbours in §. By (**), 2 has a neighbour 2
in S; by (*), z Is non-adjacent tosome y in C. Sincey has at least as many neighbours in § as
z, It must have a ne!g‘hbour w in § that Is non-adjacent to z. Now u,z,z,y,w Induce in G a

chordless cycle, Thus G is not minimal imperfect. | |

Y
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