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Abstract 

--In thls work two classes or graphs are IntrodUced. A graph ts weakly 

trlangulated tf nelther the graph nor Its complement contain a chordless cycle 

wlth ftve or mor~ vertlces as an Induced sUbgraph. A graph ls murky Ir nelther 

the graph nor Its 'complement çontaln the thordless cycle wlth ftve vertlces or the 

ch'brdless path wlth sIx vertlces' as an Induced subgraph.o The maJor results oC 
• 

thls thesis are theorems concernlng these two classes ot graphs. In partléular, 

weakly trlangulated graphs and murky graphs are p~rfect • 

• 

\ 
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Résumé 

-/ 

Dans ce travall on pre'sente deux classes de graphes. Un graphe est appelé 
~ 

fatblement triangule' st ni le graphe ni son complément n'admettent de cycle sans 

~orde de c1nq sommets ou plus comme sous-graphe Indult. Un gr1l.phe est appelé 

trouble' si ni le graphe nt son complément n'admettent de cyçle sans corde de cinq 

sommets ou de chemin sans corde de six sommets comme sous-graphe Indult. Les 
f . 

rè'sultats les plus Importants dans cette thèse sont des thè'orèmes qui concernent' 

ces deux êlasses de graphes. En partlculler;-les graphes faiblement trlangule's et , 
'1 

les graphes troublés sont des graphes parfaits. 

-
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Preface , 
The thesls consl$ts of tour chapters. 

( , . 
Chapter 1 ls an overview of the results of the thesis. A perspective Çr perfect,graph -. 

theory Is presented whlch motlvates the study of weakly trlangulated graphs and murkY 

graphs. 

Chapter 2 1s a brlef description of the background of -the thesls, narnely perfect 

graph theory. The first sectIon of the chapter 15 a description of' basic deftnltlons and 

notations oC general graph theory. The secondl\section Ilf a brlef outllne of selected 

results ln perfect graph theory. 
< \ 

Chapter 3-ls a collection of results on weakly triangulated graphs. Included are an 
, \ 

, . 
examinatlon of the relatlonship between weakly tri~ngulated graphs and star cutsets, 

and a prooC that weakly trlangulated gra.phs are perfecto The chapter also -includes 
• • 

algorlthms whlch solve certain optlrnlzation problems for weakly triangulat~d graphs. ---. 
Chapter 4 Is a collection of results on murky graphs. The hlghllght of this chapt~r 

1 • 

ls a proof that murky graphs are perfecto The proot Involves an exarnlDa~ion of 

propertl~ oC unbreakable murky graphs; the clntpter conclu des wltb a characterlzatlon 
, r - -

of such giiphs, 

! 
.. 

Unless otherwlse sta.ted, the tltled theorerns ln thls thesis are the work or the . , 

author. 

f .. 
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Ch~pter 1 

Overview .. 
A clique ls a set of palrwlse adJacènt vertlces ln a graph. The clique number of a 

graph lB the number of vertlces in a largest clique. The chromatic number of a graph lB 

th( least number or colours needed to colour the vertlces, 50 that adjacent vertlces 

recelve different colours. Note that the chro~~tlc number of a graph must 'be at least as 

large as the clique number. Claude Berge deflned a graph G to be perfeet if. for each 

Induced subgraph H of G. the chromatlc number of H ,ls equal tô the cllque number of 

H. 

A graph lB minimal imperfect Ir lt lB not perfect and yet every proper induced 

subgraph ls perfecto It lB an easy exerclse to c~eck that odd chordless cycl~ wlth at 

least Ove vertlces are mlnlmallmperféct; lt Js only a litt le more dlmcult to show that the 
~ . 

complements orsuch chor.dless cycles are aÎ80 minimal lmperfect. Are- t~e any other 

minimal lmperfect graphs? Th c rated Strong Perfeçt Graph Conjecture , posed by 

Berge in 1060, a:sserts that the answer t this questfo~ is "no": 

. , 

The SPGC. A graph i8 perfeêt if anclOiily if neither the grap/l nor its complement . . 
o 

contains an .odJ chordless cycle with flfJe or more fJertices. 

As early attempts to resolve the SPGC were uhsuccessful, Berge posed a second 

conjecture (whlch, sln'le lt 1s implled by the .Orst, 'was originally known as the Weak 

Perfeet Graph Conjeetur~ 

The WPGC. A graph ;8 perfect if and only il its complement is perfeet. 

. ". 

The WPGC was proved' by LoVMZ (sée [IlJ12a] and [1072b]), and is DOW Itnown as 

the ,Per/eet Graph Thfore.m. The SPGO lB stlU oi;en. Tlie SPGO has been the primary 
.--;- , ~. . .. ,,' . \... ~ .-

.. . 

( 

-- t 
.. ~ 

• 
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r ' 
motivatipn behind I.Dost oC the researcb in perCect graph theory to thls date. -

., 
We caU a grapb Berge iC nelther tbe grap~ nar Its complement con tains an odd 

chordless cycle wlth ftve or more c . The SPGC asserts tbat 0. graph lB perCect if 

and only if ft Is Be e Tbls WOrdin\ of tbe SPGC suggests one approach to 

investigating the conjecture: consider particillar classes of Berge graphs, and check to see 

whether or not the.gl'aphs in these classes ar~perfect. 
• 1 

One such cÎass Is ,the class of trianJ&lated graphs, also known as ~horclôI" graphs, 

deftned as those grapbs in whicb ~'v,e~cle wlth Cour or more vertlces has a chord. Let 

C" represent the chordless cycle wlth k vertices, and PI; the chordless path wlth k 

vertices. Let G represent the complement of tbe graph G. 'To see that trlàngulated •.. 

graphs are Berge, no~e tbat by deflnltion, trlangulated graphs do not contaln C" as an 
~, 

~.". --- - -~ .... 
Induced subgraph, for k > 4. AIso, C .. Is an.~eed subgraph of P6' and P6 ts an 

-
indu~ed subgraph of ë j , for j > 6; thus trlangulated graphs do not contaln C} as an 

Indueed subgraph, for j > 6. FiQ.ally,' since C ~ Is selC-comptementary, trlangulated 

graphs do not contain ë 6 as an induced subgraph. To summarize, trlangulated grapbs 

dnot eontâin CI;, Cor k > 4, nor ë j , Cor j > 5, as an Indueed subgraph. Thua 
~ 

trlangulated graphs are Berge. 

ln 1960 Berge showed tha~ trlangulated grapbs are perCect; thus trlangulated 

grapbs bave been kn,own to be perreet almost ,since the beglnning of the hlstory oF.-. , 

perrect grapb theory. Indeed, Berge's reallzatlon that both trlangulated graphs and 
~ q 

complements or trlangulated grapbs are perCeet (see Hajnal and Sura:nyl [lgS8J) was part 

or t~e motivation tbat led hlm to pose the SPGC and the WPGC. 

'-1 

Another example or a class or Berge graphs Is the class of P .. -free graphs-, detlned as 

those graphs that do not contaln p., the chordless path with rour vertlces, 88 an Induced 

~ - . --~~~----------
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subgra~~. Sinee every Cj contains Pj - 1 as a.n lnduced su bgraph , P .. -free graphs do~ot 

1 
contaln Cl:, Cor k > S, as an induc~d subgraph. Also, sinee p. Is selC-complementary, 

P.-free graphs do not...eontaln Ok, ror k > S, as an Indueed subgraph. Thus P .. -free 

graphs are Berge. S~insche (1974) proved that P .. -free graphs ale perfect .. 
The main contribution of this thesls ls the Introduction oC two new classes of Berge 

graphs, together wlth prooCs that such graphs are perCect. In light of the SPGC, it Is 
( 

îlatural to conslder classes of Berge graphs deftned in terms of forbldden Induced 
\ 

1 
subgraphs, and ln term5 of chordless cycles and complements" of chordless cycles. In 

t • 

light of the Perfect Graph Theorem '(formerly the WPGC) , It Is natural to consider . \ 

·,Î 

~ 

"~elf-complementary" classes of Berge graphs, l.e. classes ~r Berge graphs that are closed, /" 

u6der complementatlon. (Fol" example, G .. Is not triangulated, whereas ë .. 15; thus the 

~,Iass of trlangulated graf>hs Is not self-complementary. On the other hand, if a graph Is 

f.-free, then 50 Is Its complement; thus the class of P.-free graphs"'is 5elf-~ 
-:: "'~~~.. .. . 

çomplementary.) Recall that a graph Is triangulated (If and) only if it does not contain 
," 

Cl:' Cor k > 4, nor ë j , ror j > 5 as an induced subgraph. The two aforementloned 

-<"" 1\>' 

criteria: Cor selectlng a "il~tural" class of Betie/c graphs suggest. the followlng 

generallzation of trlangulated graphs: deflne a graph to be weakly trian!lulated if the (' 

graph does not contain Cl: or Ok , for k > 5, as an Induced subgraph. Note that the 

class' oC ;weakly triangulated graphs con tains aU triangulated graphs, ail complements of , 
triangulated graphs, and aIl P .. -free graphs . ..--.-

-
, ~ •• 

The second class of Berge graphs lntroduced in thls thesls also con tains ail P.-Cree 

graphs (but Dot a1l trlangulated graphs). CalI a. graph murklllf lt con tains no 0 6, Pe or 

-Po ~ an Indueed subgraph. Interest ln the class of murky graphs was partly motlvated 

by Ho4ng's study of the class of graphs that contaln no C 6' P6 or ,~ as an inducéd 

) 
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subgraph (see Hoàng [1 QS3r.· and Chvatal, Hoàng, Mahadev and De Werra Ito appearJ) 
, /". 

, 
How cao one prove that--all graphs ln a given class are perfect? One method Is to 

look for sorne structural property exhiblted by ail graphs ln the class, and then show, 

that no graph wlth the property can be minimal Imperfect Of partlcular interl'st ll.re ,.. . 
\... 

structural attributes that lead to a decomposition of the graph. For example, supposr 

that a graph G Wi@ertex set V has a clique cutset, that IS, a set of vertlce!> (' sucll 

that C Is a clique, and removal of a leaves a disconnected graph Let A be any set or 

vertices that induces a component of G - C, and let B be the rest of the vertices of G 

('t.e. B t V - A ~ a): 1'hen 1t, is a simple exercls6 to show th at G is perfect If the 

subgraphs induced by A Ua and BUe are perfecto take lfiïY two' respective. mllumnm 

colourings of these two graphs, and identify the colours along the clique C. Thus a 

graph' with a clique cutset may be d~omposed lnto two sm aller gr:tphs, each an induced 

sttJraPh of the original graph, ln such a way that the original graph 'iS pe~fèct jf the' 

two sm~!,? graphs are perfecto This implies that a graph with a clique cu tset can not be 

, 
minimal lmperfect. Dirac [1~611 proved that every trlangulated graph is ,cithcr a 

complete graph or else has a cliqu,e cutset. Thus triangulated graphs lire perfecto 

Another structural property of a graph that leads to a decompOfiition \s a 
~ 

homogeneous aet, defined as a subset H of at least two anij n9t ail of the yertices of the 

la. 

graph, such that every vertex not in H Is adjacent ,either to aIl or to none of the vcrtlces 
~ 

• F 

of H. From a result due to Lovâsz (see' [1072aJ) It rollows that If a graph G has a' 

homogeneous set H, and if H and the graph obtained from G by dele.ting aU bu t one , 

vertex of H are both perfect, then <;; ls perfecto (Note that both ()r the sm aller graphs 

" 
are induced 8ubgraphs or' th'e ,origlnal_iraph.) Thus a graph wlth a homogencous set 

cannot be minimal imperfect. 

• 
/' -

, '1\ 

( 
_~ ______ ~_"'\~.-J.L...."""",-____________ _ 
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Seinsche (lg74] proved that every P .. -Cree graph with at leâst ,two vertiëes either ls 
a 

dlsconnected. or else Its complement Is disconnected. From thls it follows that every p .. -

Cree graph wlth at least three vertices has' a -homogeneous set. Thu5 P .. -free graphs are 

perfecto (Although P,,-free graphs and homogeneous sets are lntimately related, the 

. 
conclusion that P .. -free graphs are perfect can be reached without using homogeneous . 

, 
, 

sets. It Is ,easy to prove that if a graph or Its complement is disconnected, then the 

gr.ph 1. not mi~'llmperrect.) . 

An attrlbute of a graph that generallzes both a clique cutset and a homogeneous set 

" is a star cutset, defthed as a set C of vertlces of a graph G , such that sorne vertex in C 

Is ~jacent to aIl remaining vertices in C. and such that G - C Is disconnected. The 

notion of a star cutset was Introduccd by Chvâtal. wlth the alm of unifying several 
1 

structurall?roperties associated with decompositlons. Let C be a star cutset of a graph 

G , wlt}l vertex v ln C adjacent to ail vertlces of C - v, and let A be a component of 

G - C, and B the vertices of G - C - A. Chva:tal proved that G 15 perfect if G - v 

and the su.bgraphs Induced by A uC! and 'B UC are perfect; he aIso proved the 

an~)ogous decompositlon result for 'the case rn- whlch the complement of a graph has a 
~ 

star cutset. It follows tl}at nelther a, minimal \mperfect .graph nor its complemen t can 

have a star cutset. 

As clique cutsets are assoclated with trlangulated graphs. and homogeneous sets 

with P .. -Cree graphs: one mlght ask whether there Is a class of graphs assoclated with star 

'cutsets. Since a ~tar cutset ls a general1zation of both a clique cutset and a homogeneous 

set (see Chvâtal IH~85aJ). sucb a. class of grapbs wou Id Include trlangulated graphs and . 
P .. -Cree graphs. In fact, there ls such a class of graphs, na.mely weakly triangulated 

graphs. In Cbapter 3,we prove tbat if a graph ls weakly triangulated and bas at lèast 

,ii 



o 

\, 

!!i' 
J 

-8-

, . 
thr~.:/~tie\7 then either the graph or its complement has a. star cutset. Thus wca.kly 

triangulated ~aphs are perfect. Also, if a graph Is not weakly triangulated, then th«:, 
1 

graph has~e induced (not necessarily proper) su ~graph (namely, Cl: or CI: wlth k > 

5) s~hat neither the induced subgraph nor its complement has a star cutset, thus 
/ , 

! 

st'at. cutsets and weakly trlangulated graphs are intimat~ly related, 

The star cutset decomposition can be used as the startlng pomt ln atternpting to 
~ 

prove that other classes' of Berge graphs, besides weakly triangulated graphs, are perfecto 

A graph ls called unbreakable if neither the graph nor Its complement has a star clLtset. 

Minimal imperfect graphs are unbreakable: thus. In order te" show that the graphs of a 

particular class of Berge graphs are perfect, It suffices to show that the unbreakable 

graphs of the class are perfecto What do_ uribreakable Berge graphs look Iike? WJ.lat 
...... , 1 .... 

properties do they have? How do ch~rd less cycles (of, eve~ length) and complemen ts of 

such cycles ln tersect in unbreakable Berge graphs? These questions motlvate our proof 

that murkY graphs .are perfect; this Is the main result of Chapter 4. As a post~crlpt, .we " 

Include a. cha.racterlzatlon of unbreaka.ble murky graphs. 

1 

One reason perfect graphs are Interestlng is that there a.re certal.n optirnlzation 

problems which are NP-completè for arbltrary graphs, but for which there exlst 

algorithms which run in polynomial time if the input graph Is perfecto A stable sel of a 

graph Is. a set of pairwise non-adjacent vertlces of a graph, the slability 7lumber Is the 

number of vértices in a largest stable set. The clique cover number of a graph lS the " 

least number of cliques needed to cover the vertices. Note that the stablllty numbcr of a 

graph G is equal to the clique number of G; the clique cover numbet' or G Is cqlla.! to 

the chromatic number of tJ.' Grëtschel, Lovâsz, and Sc'hrijver 110841 dcscribed 

algorithms that solve the problems of determinlng the clique number. stabilit.y number. 

," 

• 
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o cbromatlc number and clique cover number (and even the weighted versions oC these 

problems) in polynomial tlme for perfect grap'bs . .fI'heir powerfui algorithms are based on 

the e.J1ipsoid method of lInear programmlng, and on ,prevlous work of Lovlfsz [1 g7gj 

Concernlng Shannon's capacity of a graph. Glven the non-transparent nature oC these 

results, lt ls oC ln terest to look for simpler algorlthms, especially when considerlng 

partlcular classes or perfect graphs. One contribution oC this thesis ls the presentation of 

simple comblnatorlal algorlthms which exploit the structure of weakly triangulated 

graphs to solve the Cour aCorementloned optlmizatlon problems (and also the weighted 

, . 
versions of these problems) Cor the class of weakly triangulated graphs. We have been 

unable to flnd a.nalogous algorithms which solve these problems Cor the class of murky 

graphs. 

o 

-" 

o 

." 

, 
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Cha.pter 2 

Background 
~ 

The Orst section of thi~ chapter ls an introduction to the terrninology used ln the 

thesls; other deftnitions will be Introduced later as needed. The second section 15 a. brier 

outllne of selec'ted results ln perfect graph theory. 

2.1 Definitions and Notation 

A graph consists of a flnlte non-empty set of vertices. together with a flnite set of 

edges, or unordered pairs of distinct vertices. If two vertices are in some edge of a 

graph, then the vertices are said to be adjacent, otherwlse they are non-adjacent. Wc ,. 
use the terms "sees" and\ "misses" as synonyms for a'djacency and non-adjacency 

.. - . . " 
respectively; thus "a sees b and misses c" ls equivalent to "a is adjacent to b , but not 

to c"o .. 
A verte~ is called a neighbour of another vertex if the two vertlces are adja.cen t. 

The neighbourhood of a vertex x in a graph G, denoted N(x), is the set of 0.11 

neighbours of x ln G; the nôn-neighbourhood of x , denoted M (x), is the set of 0.11 non-

nelghbours of x in G -:r 0 

If S lB a subset of the vertlces of a graph G, the,n the subgraph of G induced by S, 

denoted Gs , Is the graph wlth vertex set S , whose edges are preclsely those edges of G 

that consist of two vertices of S 0 An f'ftduced subgraph of G Is a subgraph Induced by 

sorne S 0 

A patk Is a sequence of (palrwise distinct) vertlces VI v:I . 0 0 Vt, such that every two 

consecutive vertlces Vi ,Vj+l' are adjacent, for 1 < j < k -1; If also tI 1 sees v" th en 

Vltl:l • 0 • V, Is called a cycle. A chord/ess paih is a path tJ 1 V 2 •.• v, such that the on/y 

edges of the path are (Vi ,Vj+1)' for 1 < j < k -1; a chordless cycle ls a cycle 

\ 

\ 

... -
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.g. 

UIU2' •• Ui 8uch that the only edges of the cycle are (vi ,V; +1)' for 1 < j < k-l; and 

'.' the edge (UI,Ui)' Pk denotes the chordless path with k vertices; a" denotes the 

chordless cycle with k vertlces. 

A graph is connected If.lQr every two vertlces :t and y there is sorne path :t ... y. A 
~' 

component oC a g'raph is a maximal connected subgraph .. (Throughout the thesis, the 

terms "maximal" and "minimal" are used with r-espect to set inclusion; for example, a 

maximal connected subgraph is a connected subgraph that 15 not a proper subgraph of 

, any other connected subgraph of the graph). A'" singleton of a graph is a component 

\Vith only one vertex; a big component ls a component wlth more than one vertex. A 

culad ls a set of vertlces of a graph, 5uch that the sUbgraph lnduced by the remaining 

vertlces Is disconnected. Note that in a dlsconnected graph, any proper subset of the 

vettlces of any c6mponent Is a subset. 

1 
The complement of a graph 15 the graph obtalned by replaclng aIl edges with non-

edges, and vice versa. (J denotes the complement of the graph G. Thus, Pk and ëk 

~re the respective complements of Pk and Ok' 

A c~ique (respectively stable set) of a graph Is a set of pairwise adjacent 

(respectively non-adjacent) vertices. The clique number (respectively stablility number) 

of. a graph is the number of vertices in a largest clique (respectlvely stable set). The 

chromatic number (respectively cliqlfe covering number) ls the minimum number of 

stable sets (respectlvely cliques) needed to partition the vertlces of a graph. Denote the 

stablility number. clique number. chromatlc number and clique coverlng number of a 
~ 

graph G by ct( G), w( G), x{ G) and O( G) respectlvely. A graph is per/eet if, for each 

induced subgraph H' of G, X(H) = w(H). 



o 

o 

-10 -, 

2.2. Some Resulta in Perfect_ Graph Theory 

J 

In the more than twenty-flve years that have pMSed slnce Berge posed th~ gPGC, 

much research has been dlrected to the study of perfect graphs. Whereas orlglnally most 

research was directed towards resolving the conjecture, there are aspects of pcrfect gra.ph 

theory whlch are now consldered Interesting in their own rlght, Independent of whether 

or not the SPGC ~ true (or even If, It ls resolved). In partlcular, the emergence ln the 

past two decades of issues related to computational complexity has Insplred much 

ln terest ln perfect graphs:r. the question of whether or not perfect grap hs are ln -1YP Is 

curreIÏtly the focus of much research. 
, L 

In- this chapter, we sketch a background of perfect graph theory. A more complete 

, t 

hlstory can be found in any of a number of recently publIshed graph theory texts; for 

instance, see Berge [lgSS}. Two books devoted 'entirely to perfect graph theory are 

Golumbic [1080J and Berge and Chva:tal 11g84]. 

2.2.1 The PGT and the SSPGT 

When initiai attempts to resolve the SPGC were unsuceessful, Berge posed a second . 
conjecture, whlch (sinee It was Implied by the SPGC) beeame' known as. the Weak 

Perfect Graph Conjecture. This conjecture was proved by Lova:sz and is now known as 

, the Perfe'ct Graph Theorem. 

PGT (Lovâsz [1072a]). A graph i8 perfect if and only if ils complement i8 perfecto 

In llght of the PGT, lt is natural to look Cor propertles oC perfect graphs that arl 

in'Variant under compjementation. Speculation about such propertles led Chv:îtal 

[lg84al to deflne the Pi-structure of a graph G as the collection of those flets of four 

vertlces that induce a Pi ln G. Since the complement of a Pi ls a Pi' the Pi-structure or 

\ • 
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o a. graph ls the same as the P.-structure of Its complement. ChvlCtal conjectured that the , 

perfection of a graph depends o~ly on Its P.-structure. This conjecture, Implied by the 

SPGC and Implying the PGT(WPGC), was ,known as the Semi-Strong Perfect 7Jraph 

Conjecture or SSPGC. The conjecture was proved by Reed in 1984, and Is now known 

as the Semi-Strong Perfect Graph Theorem. 

SSPGT (Reed [1985]). Every graph with the P.-structure of a perfeet graph IS 

\ 
perfecto 

The SSPGC has inspired several results that consider decompositions of perfect 

gr,aphs deftned ln tertns 'of P .. -structure. For example, vertices z and y a.re ~alled 

siblings If there Is a set S ·of three vertices sueh that both S U {x} and S U {y} are 

p .. 's. ChvlCtal proved the Collowlng result. 

Theorem (ChvlCtal [1985bJ). Let thé vertices of a graph G be c%ured with two 

c%urs 8uch that euery two siblings have the sa me colour. Then G is perfect if and only 

if each of the subgraphs induced by th.~ set of ail vertices of the same colour is perfecto 

This theorem generalizes two earller results: ChvlCtal and Ho~ng (UJ85J showed that 

if the vertlces of a graph can be coloured wlth two colours su ch that every p .. has an 

even number of vertlces"of each colour, then the graph Is perfect If and only If each of 

the two mono-chromatlc Induced subgraphs is perfect; Ho~ng [1985bJ showed that if the 

vertlces of a graph can be coloured wlth two colours ln such a way that every p .. has an 

odd number of vertlces of each colour, then the graph 15 perfecto 

Another result concernlng P .. -structure ls that in a minimal Imperfect graph every 

vertex ls ln at least four p.s; thls follows from a theorem of Olarlu [1986J. (~ctually, 

Olarlu's theorem Is a much stronger Btatement; however, It Is not primarily related to 

P .. -structure.) 

... ~ 
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2.2.2 Sorne Classes of Perfect Graphs 

From the time that Berge ftrst proposed the SPGC, IDuch of the energy devoted to 

the study of perfect graphs has focused on ftnding new classes of perfect graphs. As has 

been mentloned, both triangulated graphs and complements of trlangulated graphs were 

known to be pet:fect by 1060. Other classes of graphsJrulg known to be pcrfect include 

Une graphs of bipartite graphs (thl5 follows from a theorem. due to I(onlg 110301 

concerning the edge-chromatlc number oC a bipartite graph) and comparablnty graphs. 

A graph Is a comparability graph if the edges can be directed so that for evety three 

vertices a ,b ,e , If (a,b ) and (b ,e ) are directed edges, then so 1s (a ,e). It 15 an exerclse . 
to show that comparabUfty graphs are perfect; that complements of comparabllity 

~aphs are perfect follows from I?l1worth 's t~eorem [1050J: the slze of a largest anti-chaln 

. 
1s equal to the minimum number of chalns needed to cover a partlally, ordered set. 

Since the carly 1960's many classes of perfect graphs. have been dlscovered. In the 

rest of othis section we brlefly dlscuss two ways of! obtalnlng classes of perfect graphs, 

Let P be sorne forbldden property of minimal Imperfect graphs. Ir every Induced 

subgraph of a certain graph sa.t1lles P, then the graph Is perfecto Thus 'the "S11bgraph 

property" paradigm can be used to deftne classes of perfect graphs. For example, Berge 

and Duchet [1984) deftned a graph to be slrongly per/eet if every Induced subgraph has a 

stable set wMch Intersects aIl maximal cliques. Ânother class of graphs which fIts thls 

paradigm was dèftned by Meyniel. CalI a set {x ,y } of vertices of a graph an even pair 

if every chordless path between x and y has an even numberof edges. Meynlel 110861 

dellned a. graph G to be quasÎ-parity If, for every induced 8utigraph H of G wlth 'at 

least two vertlces, either H or H has an even pa.lr. We will say more about quasH>arlty 

graphs ln Chapter 3. 

A 
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. , 

Another way to obtafn (candidates tor) clasSes oC pertect graphs Is to Corbld certain 

.Induced 8ubgraphs trom Berge graphs. For Instanèe, Tucker [lg77] sbowed' that"K .-free 

'Ii " 
Berge graphs are perfect; Partha:;;arathy and Ravlndra showed that J( 1,3-rree Berge 

, graphs [lg161 and (K .-e )-rree Berge graphs [19791 are perfecto Chvâtal and Sblhi rerer 

to the conneéted gr,aph wlth tlve vertices. that conslsts or a t.rlangle and two pendant .. 
edges as a bull; they shawed that bull-fre,e. Betge graphs are perfect [lgS6J. 

il 

As was mentioned ln Chapter l, the major contr~bution or 'this thesis 1s the' 

Introduction or weakly trlangulated gra})hs and murky graphs. These two clllSSes of 
l' 

graphs clearly Cali Into the "forbldden subgraph" paradlgm: weakly trlangul,ated graphs 
.... 

a.re Berge graphs wlth no' Ok or G,,~ for k even and k > 6; murky grapps aie' Ber.ge 

graphs wlth no P G or J5 G' 

, ( 

In fact, weakly trlangulâted. graphs a.iso CaU into the 

"subgra.ph property" paradlgm; exactly bow thls ls 50 ls discussed ln Section 3.2.3. 
~. ,,' r 

p 2.2.3 Properties of Minimal Imperfect Graphs 

If the SPGO 1s true, tben the only minimal Imperfect graphs are cbordless odd 
., 

cycles wlth a~ least Dve vertlces, and the complements of. such cycles. One approa.ch to 

the SPGO bas been to look tor propertles or minimal imperfect graphs. For instance, (as 
. , 

was noted ln the previous cbapter), a minImal imperrec~ graph does not bave a clique 

cutset, nor a homogeneous set, nor a star cutset. (ActuallY, the fact tb'M.a graph does 
~ , f 

, . 

not have a star cutset impUes that Is bas nelther a ,clique cutset nor a homoge!leous set; 

see Chvi!tal [1985al.) A major result ln tbls area 1s due to Lov a:sz , 

Theorem (Lovâsz [1972b]). Every minimal imperfect graph G sal;isfies 

Q(G)w(G) = 1 G 1 - 1. 

(Recall tbat cr( G) ls the stabUity number ot G, and wC G ) tbe cUque num ber.) 

~ ______ . t'~ •. 
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o Padberg (lg74] extended LoV8SZ'S result by showlng that ln a. minimal lmperfect 

graph G 
~ ~ 

- there are 1 G Ilargest cliques a.nd 1 G Ilargest stable !Jets. 

- every vertex is in exactly aC G) largest cliques and w( G) largest cliques. and 

-
- every largest stable set Intersects all but one larg~st clique. and vice versa. 

Deftne the graph C; as Collows: VI • .... Vn are .the vertlces. wlth VI and Vj adjacent 
. 

if li - j 1 <01 
_ t" Cor every pair of vertlces vi, Vj' Observe that C:lé +1 15 C:lé +1 • and 

1 ' 
C;i"~I' In fact, the graph C ~!'" sa.tlSfies the condItions of Lovâsz a.nd 

1 ", . 
Chvà:tal [IQ84C] showed the SPGC is equivalent to sta.tlng that every minimal Padberg. 

r 

lmperfect.? gra.ph bas a spannlng sUbgraph isornorphic to C ;:;;1' However. Chvl!tal, 

Graham, Perold and Whitesldès [lg7gj Cound Inftnitely rnany graph~, whlch do not 
o 

contain Q ;;!1 as a spannlng subgraph, and yet which satlsCy the condltlo~ns of Lovdsz . 
~ . 

o and Padberg; Bland, Huang and Trotter [lg7g'J Independently dlscov.ered two of these 
'" 

'!--
graphs. Thus the IIst oC properties of minimal lmperCect graphs desçrlbed 50 Car 18 

insumclent to lmply the SPGC. 
'" 

....... . 

2.2.4 Complexity and a Changing Perspective 

Since the Ume that ttfe-sFGC was ftrst posed. ldeas have emerged ln tlte theory of 

~omputer sciènce that have slgnlOcantly altered the way p~oblerns are approached by 

computer sclentists. One such Idea is the notion or a ~ood algorithm, suggested by . , 
Edmonds [lg65] as a.n algorlthm whlch computes the answer to a problem ln 8uch a way 

tha.t the number or operations required by the algorithm Is bounded a.bove by, sorne 

polynomial ln the size or the problem. This Imrnedlately ra.ises the question "Cor wblcb ... 

problerns do there exlst goOd algorlthms?". 

~, . 
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) From thls point of vlew, one of tbe m08t important.open problems ln peJ'tect graph 

theory Is "does there ex1st a polynomial time algorlthm to recognlze perfect graphs?" A 

related question is whether or not there exists a certlflcate of perf~ctloll that coulet be 

. veritled in polynomial time (i.e. whether or not perfect graphs are Iil Np). Whitesldes 

has suggested (see Berge and Cbvà:tal (1984), page xil) that perhaps pèrrec't-graphs can 

be created from çertaln "primitive classes" of perfect graphs using perfection preserving 

-v 
operations. Ir the graphs in tbe primitive classes are ln NP; and if the perfection 

.. • l ' 

preserving operations can be performed in polynomial time, tllen it would folldW that 

perfect graphs are in,NP. For example).clique identification is th,e process of combining 

two graphs by Identlfylng a clique of one with a clique of the other: It follows from ' 

Dirac's theorem that trlangulated grapbs can be created from cliques uslng tbe 
.. , 

. perfection preservlng operation of clique ident,lflcatlon. Whitesides [lgS4) has shown how 

,to reverse this proèess, 50 that every trlaIÎgulated graph ëan be deco~pq~ed into cliques 

,I,p polynomial t!me. (There à,re faste,r wa~s to ~e90gnlze trlangulated graphs; for 

'\ " 

Instan~e, se~ Rose, TarJan and Leuker (1976). However, the example presented here 

'suinces to llIustrat~ our paradlgm.) Altbough tbis ~pproach has b~~n su~ssful in 

sbowlng that certain ,cclasses ?f perfect graphs are':' in NP (or' even in P), the question of 
\ 0 

whetber or not perfect' graphs are ln NP 1s st1ll'~pen. On the 'otber hand, imper/ect 

graphS are ln NP. We close the chapter wltb thls result. 
, . 

Blarw, Huang, and Trotte,t (1970) calI ~,graph G partitionablerif there are integers 

r.~ 2 and 8 > 2' such that 'for each vertex tJ of G, the vertlces of G - 11 partition 

1000 r cliques of slze 8 and 8 stable sets of size r. 'rhey noted that Lov!Csz's theorem " 

(see tbe prevlous section) lmplles tbat a grapb.1e- mlnim,al ImperCect ,if and oOly If li 

contalns a partltionable Induced subgrapb. AB Cameron and Edmonda remarked (aee 

Cameron 11082]), this ImpUes that Imperfecqraphs are ln NP. 

v 

" 
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Chapter 3 

Weakly' Triangulated Graphs , 

" 

Recall.that a graph fs "ÙJeakly triangulat~d if 'It contal~8 no CI; .' and n9 lYl:, fV k ;::: 

"s. In tbIs chapter we decribe sorne prol?ertles or weakly trlangulated graphs, and show 

tbat weakly triangulated gra.phs are perfeçt. _In particular, we describe a relatlonsh\p 

between weakly triangulated graphs and star eutsets. F~na.lly, We descrlbc PQlynoml~1 

time algorfthms which solve' the maximum 'cllque, maximum independent set, minimum , 

colourlng and minimum clique cover problems for weakly triangula;.ted graphs 
~ '.' -~ 

An attractive feature of, weakly tr~angulated graphs ls that thèy can be recognlzed 
.' 

in polynomial time. One such recog-pition alggrithm Is as ,follows: for eaeh vertex in a 

gra.ph, determine If the vertex 15 contain'ed ln a chordlesS cy'cie wlth Ove or l1lore vertiees; 

repeat th'é process for the complement of the graph. Whether or not a vertex v Is 

contain~d in ~ cnor<Uess cycle with flve or more vertlces ean be <:h~cked as follows: (or .. 
each pair' of non-adjacent vertlces x and y which are both adjacent to v, rçmove ail 

" 

v·er.~lces of the graph adjacent to both % anq y .... as weIl as ail vertlces a~ent to v 

(exéept ,", aqd y). and then ch.à1< wh.th" or not there 1. a path from %" Y ln the 

~sulting graph. The vertex li is contained iIf a chordless cycle wlth at least tlve vertlces 
;, 

if and only if there exists such a path from x to y. For -a. graph wlth n vertlces and e 

1 edges, deter~lning .w.hether or not there Is a path bet~~en a specltled pair or vertlces can 
. 

be done ln time 0 (e). Slnce the total number or edges in a graph and Its complement, 

is 0 (n 2), the above algorit~nf recognlzes weak~y triangulated graphs ln ume? (n 6) • 

.., 

\ 

_ ....... ,. ... .... 

.. 

> t.l ~ 
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. 
o ~.2 Weakly Triangulated Graphs, Star Cutsets, and Perfection 

3.2.1 Why Star Cutsets? 

-In attempting to analyze the stru~ture of weakly triangulated graphs. we begln by 
. , 

\.. examining two special cases: triangulated graphs and P .. -free graphs. 

\ 

Diraè [1961J proved that every minimal cutset in a triangulated graph is Il. clique. 
, ./ e 

.- ,A theorem due to Seinsche [1974J Implies that every P .. -free graph wlth at Îeast three 

vertices has a homogeneous set. However. there .âre weakly trlangulated graphs wlth no 

clique cutset, no clique cutset in the complement, and no homogeneous set. The smallest 

such graph appears ln Figure 9.1. '\ 
j 

\ 
In attemptlng to unlry certain structural properties associated wlth decompœitions 

of perrect graphs, Chvâtal [lgS5aJ conceived the foU<\wlng notion: a star cutset Is a .set 

C of vertlcés of a graph G su<?h that sorne verte.x ln C is adjacent to ail other vertices 

in 'O. and such that G - C ls dlsconnected. (In particular, if a graph has a clique '. 
J /' 

cutset, th en lt bas a star cutset; if a graph has a bomogeneous set, then elther the graph . 
" 

or lts complement has a star 'Cutset.) Let G be a graph with stRT cutset C '. wlth vertt;J 

v in 0 adjacent to aIl vertices of C - v • and lèt A be a component of G ~ C, and B 

the vertices of G - C - A, Chvâtal proved that G ls perfect if the\ three sUbgraphs 
• 0 , 

GAUC ' GBUC ' and G "-v respectively are perfect; he also proved the analogous 

\ 

decompositlon result for the case ln which the complement of a graph has a star cutset. 

, 
The following is a consequencè of these two results: 

, 
~he Star Cutset Le~ma (Chvâtal !lgS5a}). If a graph Î8 minimal imperfect, then 

. --- -
neither the grdph nor its complement has a star cutset. 

o .. 
" 

( , 1 

1 
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....... 

Chva:tal conJeétu.red -that èvery weakly triangulated graph wlth at least tbree 

vertlceseither has a star cutset, or else lts complement bas a star cutset. This 

conjecture wlll be proved as the WT Star Cutset Theorem. 
p 

.. 
.... 3.2.2 Perfection 

-
The WT Star Cutset Theorem follows ea,sily from the followlng theorem. - . \ 

The WT Min Out Theorem. Let N be a minimal cutse{ of a weakly triangulated 

graph G, and let N induce a connected 8ubgraph of G. The",. e~ch connected component 
D 

of G - N inc/udes at least one vertex adjacent to' ail the vertic~~ of N. 

Proof of the WT Min Out Theorem. We flrst show that 

every two non-adjacent vertlces ln N 

have a common neighbour ln each component of G - N. (1) 

For thts purpose,- consider- arbitrary non-adjacent veni./es % 'and\< y ln N, ,and an 

arbltrary component A oC G - N. Since the cutset N is minimal, each'(vel'tex ln N 

has at least one neighbour in A; now connectedness of A implies the existence of a path' 

Crom % to y with allinterior vertlces ln A ; the shortest such path P is chordless. The 

same argument, appÎled to another component B of G - N, shows the existence of a 

chordless path Q from % to y with aU Interior vertices ln B. The two paths P and Q 

combine Into a chordless cycle ln G; sinee G con tains no chordless cycle with ftve or . 

more vertices, each or the two paths must have only one Interior vertex. In partlcular, 

the Interlor vertex of f 1s!l'a common neighbotir of % and y ln A ,fo.nd (J.) is proved. 

Next, let us show ~hat 

the theorem holds whenever no two vertices ln N are adjacent. (2) 

---
To prove (2), we use Induction on INI. When INI = l, ~he conclusion follows from the . - , 

'i 



o 

0, 

t 

--
fa.ct that tbe cutset N lB minimal. When IN 1 = 2, tbe conclusion lB guaranteed by (l). 

'When IN 1 > 3, choose distinct vertices z ,y ,z ln N and conslder an arbltrary , 

component A of G - N. Note that N - x Is a minimal cutset of G - :t , and that 

(G -x) - (N -x) = G - N. Hence the induction bypothesls guarantees the existence of 

a vertex u in A that is adjacent to an vertlces ln N - z. By the same argument, some 

- vertex v ln A Is adjacent to ail vertlces ln N - y, and sorne vertex W ln A ls adjacent 

to ail vertlces ln N - z. 'We will show that at least one of the vertlces u. v ,w 15 

adjacent to ail the vertlces ih N. Assumlng the contrary. note that u .V ,w must be 

distinct. Now u cannot be adjacent to v (else y ,u ,v ,X, and any common nelghbour of • 

x and y ln G - N - A , whose exls~ence Is guaranteed by (1), would induce a chordless 

cy~le in G); by the same argument; u cannot be adjacent to w, nor v to w. But then. 

x ,W ,y ,u ,z ,v Induce a'chordless cycle in G. This contradiction completes the proof of 

(2). 

To prove the theorem ln lts full g~nerallty, we again use Ind uc~on on 1 NI. When 

"IN 1 < 2, the conclusion follows from (2). When IN 1 > 3, we may assume that at least 

twp vertlces ln N are adjacent (else the conclusion Is guaranteed by (2) agaln). Now we 

" 
'(llalm that N Includes distinct vertlces % and y such that 

(1) x and y are adja.cent in G, and 

(11) both N - % and N - Y Induce connected sUbgraphs of G. 

(To justUy this c1alm, we only need choose z and y 50 that, in the subgraph or lJ 

l~duced by N, the shortest path from %' to Y Is as long as possible.) Conslder an 

arbttrary cp~ponent A or G - N. By the Induction hypothesls, A Includes vertl~es u 

and tI such that u Is adjacent to ail the vertlces ln N - x and v 16 adJacen t to ail the . . 

vertlces1n N - y. We wlll show that at lejlSt one oC the vertlces u and v ls adJa.cent to 

ail the vertices in N. Assumlng the contrary, note that u and v must be distinct. By 
G 

... - . - -
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(l), the shortest path P from :t to Y ln the subgraph of lJ lnduced bYr N bas at le~t 

one Interlor vertex. Now u and v must be adjacent: else u ,v and P would lnduce a 

chordless cycle ln (J. Next, \the argument showlng the existence of v ln A shows a180 
1 -.. 

the existence of a vertex r' ln- G - N - A sucb that r is adjacent to all the vertlces ln 

N - y. Ir r is not adjacent to y th en u ,r and P Induce a chord)ess cycle ln lJ; else 

U ,r ,v and P Induce a chordless cycle ln (J. This contradiction completes the proor .• 

The WT Star Cutset Theorem. If G is a weakly triangulated graph with at least 

three vertices then G or lJ has a star cutset. 

Proof of the WT Sta.r Cutset Theorem. The star cutset May be round as 

follows. Choose an arbltrary vertex w ln G. For each vertex % other than w, put :t ln 

the set N If :t Is adjacent to w; else put:t ln the set M. If N 1s empty then stop: {u } 
.' 

ts a star cu tset ln G 'Cor every vertex u ln M. If M ls empty then stop: {v} ts a star 

cu tset ln G for every vertex v ln N. 

Now, both M and N are non-empty. Ir M Induces a. dlsconnected subgraph oC G 

then stop: {w } U N lB a star cutset ln G. Ir N Induces a. dlsconnected subgraph oC (J 

then stop: '{ w } U M ts a star cutset ln (J. 

Now, M In'duces a nonempty connected subgraph or Gand N lnduces a nonempty 
~ 

''''. 
connected~·subgrapb of lJ. If sorne vertex v ln N ls adjacent to no vertex ln M th en 

stop: {w} U (N - v) Is a star cutset ln G. In the) other case, each vertex ln N is 

a.dJacent to at least one vertex ln M; note that N ls a minimal cutset ln G. Now, the 

WT Min Cut 'Theorem guarantees tha.t sorne vertex 11 ln M, 1s a.djacent to ail the 

vertlces ln N. Stop: {w} U (M - u ) lB a. star cutset ln lJ .• 

. , 
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o Carollary. Alt-weakly triangulated graphs are perfecto 

Praof. Argue by contradiction; let G be an ImperCect weakly triangulated graph. 

Then tbere Is sorne Induced suograph H oC G such that H is minimal ImperCect. H ls 

also weakly trlangulated. Graphs with one or two vertlces are perCect; thus H has at 

• 1 

leasÇ three v~rtices. But now the WT Star Cutset Theorem says that either H or R hns 

a star cutset, contradicting Chvâtal's Star Cutset Lemma. • 

3.2.3 Star Cutsets and Generating Classes of Perfect Graphs 

Cbvâtal has pointed out that a forbidden property oC minimal imperCect graphs 
1 

may be used to generate large classes of perCect graphs from smaller ones. For example, 

the star cutset may be used in sucb a way. Speciftcally, given any class C of graphs, 

denote by" C· tbe class oC graphs deftned recursively by the following two rules: 

(i) ir GEe then G E C', 

(il) Ir G or G bas a star cutset, and If G - 11 E O· ror ail v E G, t.hen G E C·. 

Chva'tal's Star Cutset Lemma Implies tbat C· Is a class or perCect graphs whenever 

C Is. For example, let Triv denote the class of all graphs wlth at most two vertlces. 

What can we say about the class or graphs Triv'? By the WT Star Cutset Tileorem ft 
, , 

rollows that Trill' contalns the class or weakly triangulated graphs. On the other hand, 

neSther chordless cycles wltb Ove or more vertlces nor the complements or snch cycles . 
, 

have star cutsets; thus a graph in Triv' cannot contain Ok or (JI;, for k > 5, as an 

lnduced subgraph. It Collows that Triv' Is exactly the class of weakly triangulated 

graphs. Thus weakly triangulated graphs are tlle class of graphs associated wlth the 

o 
property "elther a graph or Its complement bas a star cutset". 

\ , 

\ 

• 



, . 

o 

. --
- 22-

Another class ot graphs assoclated wlth star cutsets is the class Bip • , where Bip 

denotes the class ot bipartite graphs. Although Bip· con tains Triv f, as weIl as many 

other classes or perrect graphs, it Is not known whether or not graphs ln Bip· can be 

recognized ln I}olynomlal tlme. 
1 o 

~.2.4 Which Wea.kly Tria.ngulated Graphs Have Star Cut.setsr 
.., 

Ndte that the WT Star Cutset Theorem states only that a weakly triangulated 

graph wlth at least three vertices, or its complement, has a'star cutset. We now answer 
, 

the question "exactly whlch weakly trlangulated graphs have star cutsets?".. The 

rollowlng theorem ls a strlctly stronger statement than the WT Star Cutset Theorem. 

However, we have lncluded both theor~ms because the proof of the WT Star Cutset 

Theorem ls much simpler than the proof of the Collowing theorem, and because the lVT , 
. 

Star Cutset Theorem su1l1ces te prove that weakly trlangulated graphs are perfecto In 

ract, lt ls the WT Star Cutset Theorem that appears in Hayward [1 gS5J. 

The Second WT Star Cutset Theorem. Let G be a weakly triangulated graph. 

Then exactly one of the following is true: 

ri) G i8 a clique, 

{;il every component of G consists of a single edge, 

(i;i) G has a star cutset. 

. 
Before provlng the theorem we present a lemma; before presentlng the lemma, ,ve 

lntroduce sorne deftnitlons. A vertex x ls said to be dominated by a vertex y If every 

vertex (dltrerent from x and y) that is adjacent to x Is also adjacent to y. We cali a 
- -

iraph with no dominated vertex domination-free. Recall that N (x) and M (x) are 

respectlvely the nelghbourhood and non-nelghbourhood or a ver.tex x. 

\ 
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The WT Domination-Free Lemma. If G i8 a domination-fret! weakly 

triangulated graph with al least t~o vertices,~hen (J has a star cutset. 

ProoC of Lemma.. Flrst, we propose to flnd a vertex v a.nd a component J of 

M(v)such that 

every vertex ln N (v) has a nelgh bour ln J. (1) 

For thls purpose, we borrow a trick from Ravlndra IHI82J: nnd à. vertex t and a 

component F of lvl(t) such that the number of vertlces ln F 15 minimlzed (ovc~ ail 

cholces of t and F). We c1aim that (I) holds whenever v E F and J ls the èomponent 

of M (v) that con tains t. To justlfy this claim, consider an arbl trary x ln N (v). We 

may, assume that x ri. N (t ), for otherwlse t ls the nelghbour of :x, ln J; hence x E F. 

'Since:x is not domlnated by V, It has a nelghbour y ln M(v); trivlally, y E F U 

N(t). NowweonlY,needverlfythatF nM('v)C JandN(t)nM(v)S:; J, 'l'he 

second of these inclusions Is obvious; to ver~ the flrst, we only need v~rify that evcr; y 

ln F n M (v) has a nelgh bour ln N (t) n ~(v). If the last assertion were false th en 

the component of M(v) that contains y would be contalned ln F-v, contradicting our 

choice of t and F. Hence (1) holds. 

Now consider the subgraph H of G Induced by {v} U N (v) U J. It follows 

from (1) that N (v) Is a minimal cutset in' H. Next, the WT Min Cut Thtorem 

guarantees that the complement of the subgraph Induced by N (v) must be dlsconnccted 

(otherwise v would be domlnated by sorne vertex or J in H, and thereforè al50 ln G). 

But th en {v} U M(v) Is a starcutset in G .• 

ProoC of the Second WT Star Cutset Theorem. We shaH argue by Induction; 

the cases where G has at most four verttces can be ch'ecked by inspection. Now suppose 

1 
... -
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\ 
that G has ·at least flve vertlces. Ir G 15 domination-Cree then G ls domination-Cree, 

&nd G bas a star cuts .. by the tT Domination-Fre. L.mma. Suppose then th" G 1. 
, 

not dominatlon-free: ln this case there are vertlces u and v ln G, such that fJ 

domlnates u, Le. N(u) - fJ ls a subset of N(v). 

Case 1: suppose that u is not adjacent to aIl the vertlces'of G - v. In this case 

{ v } U N ( u) is a star cu tset . 

. Case 2,: suppose that u 15 adjacent to aU the vertlces of G - v. Then, slnce fJ 

dominates u "v is adjacent to aU of G - u. There are two subcases to consider . . 
"" Case 2.1: suppose' that u Is adjacent to v (thus N(v) = G - v and 

N(u) = G - u). Then either G Is a clique, or else there are non-adjacent vertlces x 

and y ln G, ln whlch case G - % - Y Is a star cutset (v Is adjacent to ail of G - v). 

Case 2.2: suppose tha~ u 15 not adjacen t to v (th us 

N (v) = N(u) = G - u - v). We now use the inductive hypothesis on G - u - fJ. 

Ir G - u - v is a clique, then G - u - v 15 a star cutset in G. If G - u - fJ has a 
" 

star cutset C, then C U {u ,v} 15 a star cutset ln G. Flnally, note that the 

complement oC G consists of the complement oC G - u - v together with a component 

conslstlng of the edge Induced by {u ,v}. Thus, if every componen~ of G - u - v Is a 

single edge, then every component of G is a single edge.· This completes the proof of the 

Second lVT Star Cutset Theorem. • 

Vertlces x and y of a graph Gare called twins II' every vertex of G - x - y ls 

a.djacent either to both x. and y or to neither x nor y. A. corol" of the Second WT 

Star Cutset Theorem is that every twln-free weakly trlangulated graph wlth at least. 

three vertlces has a star cutset. This. Is a stronger statement than the WT Domination-

Free Lemma. 
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3.2.5 A Domlnation-Free Weakly Triangulated Graph 

Domination-Cree weakly trlangulated graphs are mentloned ln the prooC of the 

Second WT Star Cutset Theorem. In thls section we descrlbe such a graph W. Our 

search Cor a domination-Cree weakly trlangulated graph was motlvated by Mahadev 
" 

The set of vertlces of W ls the union of thè set X == { .z o. X l' X 2' .•.• Xli} and 

the set Y = { 110' YI' Y2' .•• , Y 11}' The only edges of W wlth both endpoints lit X are 

(r si, x ai +1) and (x 3i +1' x 3k +2)' Cor k = 0,1.2,3. The only edges of W with both 

endpolnts ln Y are (Y3i, 1I3k+1) and (Ysk+1' YSi+2)' for le = 0,1,2.3. Finally. Cor le = 

0,1.2,3. (aH indices are modulo 12) 

(Ysi, XSi), 

-

-.> 

the only edge oC W between {Ysk,Yai+l'Y8i+2} and {XSi+G,XSi+10,X8k+u} ls the edge 

Table 1 llsts that part oC the adjacency matrlx oC W represen tlng edges oC the form 

(X;. Yj)· Figure 9.8-ls a drawlng, oC t);le subgraph of W induced by X U {y si, YSk +1' 

11 ai +2}' and Figure 9.9 1s a drawlng oC the whole oC W. Note that W ls selC-

complementary: the permutation P deftned by P (Xi) = Yi and P (Yi) = :ri +3 Cor i = 

0.1 ••••• 11 senda edges oC W onto edges of W and vice versa. 

d 
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0 o 1 2 3 4 5 6 7 8 g 1011 

0 1 0 0 IJ 1 0 l' 1 1 0 1 1 
1 0"'0 0 0 0 o ,0 1 1 1 1 1 
2 o 0 0 0 0 0 1 1 1 1 1 1 

3 0 1 1 1 0 0 0 1 0 1 1 1 

4 1 1 1 0 0 0 0 0 0 0 1 1 
5 1 1 1 0 0 0 0.0 0 1 1 1 

, 
6 1 1 1 0 1 1 1 0 0 0 1 0 
7 0 1 ·1 1 1 1 0 0 0 0 0 0 
8 1 1 1 1 1 1 0 0 0 0 o 0 

--,.... -.- g 0 1 0 1 1 1 0 1 1 1 0 0 \ 
10 0 0 0 0 1 1 l ' 1 1 0 0 0 
11 o 0 0 1 i 1 '1 1 1 0 0 0 

~ . 
Table 1. ' '1tfr= 1 if and only if x, is adjacent to YJ inW 

1 , 

Since W 1s self-complementary, ln order to prove that W Is weakly trlangulate<l it 

is sutncient to show that W has no chordless cycle 0 with at least 5 vertices, Argue by 

con.tradictlon; suppose that W con tains such a 0, Recall that 
1 . ---~ .. --- - .~-

" ,(1) the subgraph of W Induced by X consists of four disjoint P s's, 
~ 

" 
(il) the sUbgraph of W Induced by Y cbnslsts of four disjoint P s's, 

4 . 
• ' ' 

I~ is a routine matter to verity the following three claims: 

'-. (Ul) ~V contains no cnordless path (p 1. P 2' P S. p .. ) whœe Intersection. with X is the 

set {p~, Pa}. 

(lv) W con tains no chordless path (p l' P ,. P 3' P 4' Pa) whose Intersection wlth X 1s 

{PI' P 8' P.}. 

(v) W contains no chordless cycle (c l' e 2' ca, C -i. ca) wh ose Intersection wlth X ls 

. 
{c l' ca. e .}. 

, 
-' . . 

\. 
. 

From Cv) and tbe ract tbat>- bath W and 0, are selt-complemen tary. lt '. \' 
. 

-" , Lv 

\ 

~ , 
~'-
ttr" 1 

"'''",'?'r.,: . .._,~-_. - -. 
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foUows tbat 

(vi) W con tains no chordless (c l' C 2' C 3' c •• C 5) whose Intersection witb X ls the set 

\ 
o \ \ 

Because oC (i). C cannot be properly contained ln X.' Because of (H), C cannot be 

properly contained in Y. Hence, let Cx be ~beflsubgraph of W lnduced by' those 

vertlces of C ln j( and Cy be the subgraph of ~V lnduced by those vert\ces of C ln Y. 

Both Cx and Cy must consist of disjoint chordless paths. Because or (i)", Cx con tains 
l' 

no PI: with k > 3. aecause of (iv) ana (v), Cx contains no P 3' Because or (lii), Cx 

contains no P 2' Thus -Cx conslsts or pairwise non-adjacent vertices. Cx cannot consist \' 

of a single vertex, because then Cy would con.taln a PI; • with k > 4, contradicting (il). 

Thus Cx consists oC at least tw~ non-adjacent vertices; hence C y consists or (at leas(' 

two) disjoint chordless paths. But Cy cannot contain -three or more dlsjoiift chordless 
".. 

patha, because then- ë y wou Id contain a triangle. contradictlng (11) Thu's Cy consists 

of exactly two disjoint paths; now (il) Implles thali one :r thee paths Is an .01.at1!d 

vertex. and the other has two vertices (each subgraph or W induced'W at least four 

" 
vertlces II) Y 1s connected).' !Jut th en the' cycle would have to consist or exactly Ove 

\ ~ 

,vertices (Cl' C 2• C 3, C •• c6),whose intersection with Y ls {c 2' c •• cs}. contradictlng . , 

. (vi). Thus, W la weakly triangulated. 

To verify that W Is domination-Cree, assume the contrary: sorne vertex u ls 

dorninated by a vertex v. First, consider the case when' u is ln X. By 8ymmertry. we 

. ) , 
may assume that U = :li with 0 < i < 2. To see that v cannot be ln Y, consult 

Table II. 

) : \ . " 

':1 
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Yo YI Ya 110 YIO Yu 

XII X 2 1 X 2 1 X 2 1 X 2 1 X 2 1 X 2 l '!I 7 1 J4 1 Y 7 1 11 10 l '!Ill~ 1 Y 10 1 
o 

---------------------------y--------------------------------
X 2 1 xII xII xII z 1 1 XII i\ l, '!I 7 1 Y a 1 Y 7 1 y io l '!I 11 1 Y 10 1 

:----\------------------------------------------------------------
Table II. Neighbours of XI non-adjacent to y J in IW. 

1 

Tl\us we ~ust have v =- Xj for sorne j; consldering the subgr~ph of W induced' 

bY,)(, we conclude' easily that 0 < j < 2. But 'now we only need observe that 

11 0 sees X 0 and misses x l'X 2' r 11 il sees X l'X 2 and misses X 0' 

11 Il sees z 2 and misses X l' 

z 0 sees % 1 and misses x 2' 

Thus u cannot be ln X. 

Next, conslder the case when u i8 in Y. By symmetry, we may assume that u -

Yi wlth 0 < 'i < 2. To see that v cannot be ln X, 'obseJlye that u Is adjacent to both,r . 
%2 and x81 at least o~e ~f WhIC~ ls non-a.djacent to 11. Th~nly remaln,g subcase, with 

fJ and v both ln Y, ls reduced ta a previous subcase by consldering the per~utation P 

that sends lV onto its complement: clearly, P(v) Is dominated by peu), and both 
\ 

P (u ) and P (v ) are in X. Th us·-J.V Is domination-Cree. 

Inclstentally, W ,has nelther a clique cutset nor ·a 4omogeneous set. Furthermore, 

IV ls Inot strongly perfecto (Recall from Chapter 2 that a graph ls strongly perfect If ln 

every lnduced subgraph there is a stable set that meets ail maximal Cliques.) ln the 

. 8ubgraph of W Induced by Z = (x 0' Z l' X 2' Z CI' X7, X a- '!1o, '!I 1- Y Il: 1/7 } no stable set . . 
. . 

meets aU ~axlmal cUques. To see thls, note that the maximal cliques of this graph are 

( -- , 

. ~ ,'\ ... 

. 
, 

! 

,- , 
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{ ZO,'X 1, 1h}' {%O~ Z7' 11t}, {zo. Yo, YG~' {~fS' YG' Yo}. 

{ zo, 110' 117}, {%Ol YfS' YI }, {t l , %2' Y7}' { Z7' ~8' 11t}, 

{ Z2' YO}' { Z8' Yo}' and { YI' Y7}' 

Assign to the~e cliques the lntegers -1,-1,0,0,1,1.1:1,-1,-1,-1 respectively. The sum of the 

lntegers ls -l, and yet Cor each vertex v, the sum of the integers of the cliques that 

contain v ls O. On the other hand. let S be a )itable set that meets every maximal 

clique of a graph G. Since a stable set meets a clique in at most one vertex, each 

maximal clique of G meets precisely one vertex of S. Thus, if lntegers are asslgned to 

the maximal cliques of G such that for each v'e'rtex v. the sum of the lntegers oC the 

cliques that contain tI ls 0, then the sum oC the integers must also be O. Thus Wz 1s 

not strongly perfect, and so neither ls W. A. drawing oC Wz , wlth the maximal cUques .. 
labelled as described above, ls shown ln Figure 9.4. 

---

, l 
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3.3 Weakly Triangulated Graphs and Two-:Pairs 

:>! 

1, An, even pair ls a pair 'oC (non~adjacent) vertlces in a graph. such that every 

cbordless path between the two vertlces has an even number of edges: Meyniel deftned a 

• 
graph G to be strie,t quasi-parity if every Induced subgraph H of G which Is not 0. 

clique bas an even pair. A graph G is quasj-parity If every induced sUbgraph H of G. 
(.) 

or lts complement H. ls either a clique or has an even pair. Meyniel proved that strtct 

quasi-parity graphs and quasl-parity graphs are perfecto Recently Hoàng and Ma.rTray 

[1g86] proved tha,t weakly trlangulated graphs are strict, quasi-parity, It 15 not knowll 

whether or not strict qu~l-parity graphs. or quasi-p:l.Pif:Y grap.hs, can be recognlzed ln 

polynomial Ume. 

Hoàng and Matrray showed that weakly triangulated graphs are strict quasi-parlty 

by proving that every weakly ,triangula~ed gra.ph which 15 not.a clique has an even pair, 
l . 
Il 

ln fact, a slightly stronger statement ~ ~rue. We cali a pair of yertlces a two-pair If 

-every chor<!lc:ss path which joins the yertices lias exactly two edges, The original 

. theorem of Hoàng and Matrray was easily modUled to Yleld .the followlng theorem 
, "\ 

The WT Two-Pair Theorem. Every weakly triangulated graph whic" is not a clique 

has a two-pair. 
J! 1.) 

Proo!. We shan prove a stronger assertion, namely, that ail weakly trlangulated 

~ 
grapbs G other than cliques have the Collowing two properties: 

(1) 

(t) 

i/a has no ~iqUe cut8e~ then each cutset of G contains a two-pai~J 
G containsfa two-pair. ' 

Argulng by induction on the number of vertlces, we ~ay assume that both (1) and 

(2) hold Jor ail weakly triangulated graphs wlth Cewer vertices than G. To prove (1) ror 

l G. consider a.ny minimal cutset C oC a. By assumptlon. C Is I!0t a ,cllque. We Jha.1I 

" ',' 

..... ---' - --

" 

" 
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distlngulsb between two cases. 

Case 1. Suppose that Ge Is dlsconnected. Let D be the set of vertices of sorne 

1> ' • 

component of Ge wlth at least two vertlces (since 0 is not a clique, there must be such 

a set D). Note that every vertex of C - D 15 adjacent to every vertex of D , and that 

Disa minimal cutset, not a clique, of G - (0 - D). Thus by Inductive assumptlon, D 

con tains a two-pair of G - (0 - D ); obviously, this two-pair is a two-palr of G . 

Case 2. Suppose that Ge is connected. Let BI' ... , Bt be the vertex sets or' the 

components of G - O. Now use the lVT Min Out Theorem: in each component Bj, 

there is sorne vertex...that 15 adjacent to ail of O. 

Case 2.1. Suppose that IBj 1 = 1 for al! j. Then, by Inductive assumptlon the 

.graph 'Ge con tains sorne two-pair {:t';y}. Clearly {x ,y} ~ a two-pair o~ . 

Case 2.2. Suppose that IBj 1 > 2 for sorne j. Let z be any vertex or Bj tbat Is 

acUacent to ail of C; let D be the set or vertices of C that are adjacent to sorne vertex . 
"'. 

oC Bj - z. Now D 1s a minimal cutset of G - z. Note that D ls not empty, and not a 

cllque (otherwise D U {z} lB a clique cutset of G, contradiction): Thus, by, inductive 

aSsumptlon D con tains a two-palr of G - Z which,ls clearly a two-pair of G. 

To prove (2) tor G, we may assume that G has a. clique cutset C (otherwise the 

deslred conclusion rollows from (1». Let BI) B 2' ••• 'r B, be the vertex sets of the 
q. 

componen ts of G -O. If sorne G -B j is not a clique then by the Ind uction hypothesls 
, 

G -Bi con tains "a .two-pair; slnce every chordless patb ln G wlth botb endpolnts ln 

G -Bi- 15 fully con talned ln G -Bi' this two-pair Is also a two-palr ln C!' Hence we may 
, -

assume tba.t each G -Bj ls & cl1que. This lmplies that t =1= 2 and tha.t {:Z,1I} 15\ a. two-
1 

pair whenever:z E BI' 11 E B 2' • .0 

o 
" , 
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A noteworthy distinction between an even pair and a tw~alr Is that ft ts euy to 

check ln polynomial tirne whether or not a pair or vertlces Is a two-palr: remove the 

corn mon nelghbours, and check whether the original two vertlces a.re ln dllferent 
~ 

cornponents of the resulting graph. (Wé know of no polynomial tlme a.l,gorlthm to 

determine If a pair of vertices Is an even pair.) In the next section we bulld ,upon thls 

propefty and derive polynomial time algorlthms for solvlng certain optlmlzation 

problems for weakly tri.angulated graphs. 

... , \ 1 

A • 



o 

o 

o 

- 33-

3.4 Optimizing Weakly Triangulated Graphs 
I! 

3.4.1 Introduction 

In this section algorlthms are presented whlch solve thè rollowing pr~blems ror 

weakly trlangulated graphs in polynomial time. 

The Maximum Clique Problem. Find a largest clique in a graph. 

The Maximum Stable Set Problem. Find a largest stable set in a graph. 

The Minimum Colouring Problem., Find a partition of the vertices into the 

smallest number of stable sets. 

The Minimum Clique Covering Problem. Find a partition of the vertices into 

,the smallest'number of cliques. 

AIgoritbms are also presented which solve tbe weighted versions of these problems. 

In each of the following problems, assu me that a graph G with vertlces vi, .. , vn and 

positive Integers w (v l)'''''W (vn ) are given. These integers are referred to as w~ights. 

The Maximum Weighted Clique Problem. Find a clique K of G, such that the 

sum of-the weights of the vertices of J( is maXiT!Wm, over ail cliques of G. 

The Maximum Weighted Stable Set Problem. Find a stable set S of G, su ch 

that the sum of the weights of the vertlces of S t's maximum, over ail stable sets of G. 

The Minimum Weighted Colouring Problem. 'Find stable sets S l""'S, anJ, 

inJegers X (S IJ, ... ,X (St J, such that 

(1) for every vertex v) , the sum of the integers X (S,) of ail sets Si such that Vi E Si 

is at least W (v j J, and sueh that 

(e) the sum of ail integera X (S 1) + ." + X (S,) is minimum, over ail sets of integers 

that satisfy (1). 

'. 
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The Minimum 'Weighted Clique Covering Problém. Find cliques K 1I ••• ,K, ,. 
, 

~nd integers X (K J, ... ,~ (K,), 8uch that 

(1) for every verlex Vj' the 8um of the integers X (Ki) of ail sets Ki such that vi E Ki 

is at least W (Vj), and such that-

(t) the sum of ail integers X (K 1) + ... + X (J(,) is minimum, over ail sets of integers 

that satisfy (1). f' 

An algorlthm whlch solves any or the welghted problems' can be used tQ solve the 

unweighted version or the problem by asslgning the weight "1" to al1 vertlces. However, 

since our algorlthms for the unwelghted problems are more transparent and more 

efficient (in the sense or worst tlme complexity) than the algorlthms for the welghted 

problems, we \nclude both sets of algorlthms. 

Actually, we present only two algorlthms. Aigorithm OPT solves" the maximum 

clique and minimum colouring problem ror weakly triangulated graphs; A/gorit/un W-

OPT solves the weighted versions of these problems. Since the complement of a weakly 

triangulated graph Is weakly trlangulated, Algorithms OPT and W-OPT can also be 

used to solve the unwelghted and weighted versions respectlvely of the maximum stable 

~et and minimum clique covenng problems: to ftnd a largest stable set of a graph G, 

flnd a largest clique of G; to ftnd a minimum clique covering of a graph G. ftnd a 

, minimum colouring of G. 

Our algorlthms rely on the ract that every weaklY trlangulated graph is either a 
\ 

cUque or eIse has a two-pair (see the prevl6us section). The aforementloned optlmizatlon 

problems are easlly solved for graphs which are cliques. Given a weakly triangulated 

graph other than a clique, our algorithms repeatedly ftnd a two-palr, each tlme 

transrorming the graph in question lnto a smaller weakly trlangulated graph by 

. - . 

., 
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;i 

"identlrylng" the two-palr. (We wlll define lbls term shortlY.) Eventually the original 

graph Is trarisformed Into a clique; tbe'(,ptlmlzatlon problem 1s solved for th: clique, a.nd 

~ 

the two-pair ,identification process Is reversed, transformlng the solution or tbe 
.. 

optimizatlon problem ror the clique to the solutl9n or the optimlzatlon problem for the 
... tj'" 

original graph. 

3.4.2 The Unweighted Case 

Let G (xy -z) be the graph obtalned by replacing vertices x and y or G with a 

vertex z. such tbat z sees exactly those vertices or G - {x ,y } that see ~t least one of 

{x ,y}. The identification of x and y and G 15 the process of replaclng G witb 

• G(xy-z). 

ln the Collowlng algorlthm, we speclCy à colonrlng by a. functlon ! G ~at asslgns 

sorne Integer from 1 to t to eacb vertex. such tbat adjacent vertlces are asslgned 

'~utrerent ·lntegers. Assu.me tbat V(G) = {Vl' "2' ...• "n} Is the set or vertices of G. 

A1gorithm OPT( G ). 

~ 

Input: 
jJ 

Output: 

Step 1. 

) 
Step e. 

Step 9. 

a weakly triangulated graph G. 

a largest clique KG and a minimum colouring 1 G' 

Look ror a two-palr {x ,y} or G. 

If C--Iias no two-pan, th en 

(a) KG +- V(G), 

(b) ror i = 1 to R 40 J G (vil +- i, a.nd 

(c) STOP. 

J +- G(xy-z). " 

KI. f J +- OPT(J). 

; -

" 

..,:. 



o 
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If z ~ KI then KI +:- KG. else (z E /(J and ... ) 

Ir x sees aU or KI - {z l'then Ka +- KJ - {z} + {z}. 

else KG +-.KJ .-lz } + {y}. 

1 a (% ) +- f G (y ) +- 1 J (z ); 

for each vi E J - {x .y } do 
" 

• 

1 

To proye ~he corredtness of ~'gor;ihm op'T, we ~eed to e~ta»I.\eve~al pro':"ti., 

.concerning the identification or a two-palr ln a weakly trl,angulated graph. One such 

" property is described in the followlng leI?rna. 

, 

The Identification Leinma. Let G be Il weakly triangulated graph with a two-pair ' 
.;> ~ l '. 4D 

{z,y}·. Then G(%y-J) is weakly triangulated. 

Proof. Let H =) G (xy -z). We prove that- if H is not weakly trlangulated, then , 
d 

nelther is G. A&'Surne that H is Dot weakly ttiaDgulated. Then there lB sorne subset C ' , . 
o(th.e vertices of iI. sucb that the sUbgraph He or H induced hy C lB elthéf Ci or l'J" 

, 
witli k > 5. If z ~ C, tben cleàrly G i5 Dot weakly trlangulate·d, Thu5 we may 

assume that z E (J . 
" " \ 

CMe 1. He 15 a chordless cycle C 1'''C. with k > 5. . . . 
AsSume wlthout loss of generality tha~ z = C l' Then C 2,.:.Ck ls a chordlessl' path ln G . . 

. Sin ce z sees c 2,ck, and'DonftoC ca·, .... ck_l'.at'Ieast oB'e of {%.y} se'es c2' ahd ~lmllarlY 

~ ck, and neither % Dor y sees any of {c 3" ... Ck-1}. Now observe that· at le~t one or 

'{z,y} must see both or {C2IC,'}, (Suppose Dot;' assu~e w.l.?g. that % sees c 2 but- not 

1 ci and that y sees ck but not c 2' Then (% ,c 2 ..... ci .y) Is a chordless path with at least , . , 
( 

• six vertices, contradicting the assumptio'n that {%,y) is a tv.;o-palr.) Thus Msume 
.po 

, r 

. -

• 

" 

. Q 
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\,. 

w.1.o.g. tbat :t sees both of {c 2,Ci}' Then {x,e 2,,,,,ck } induces a Ok in G, G is not , 

weakly tr~':Lngula.ted, ,and the theorem bolds in tbls case. 

Case 2: He is a. chordless cycle e l"'Ck witb k > 5. 

Assume witbout loss of generallty tbat z = el' Thus e 2",ci is a Pi - 1 in G, and 

, .' (i) , c 2 sees nelther x nor y and ck sees neitber x nor y, and 

. 
(il) every vertex in {c 3 ..... ci } sees at least one of {x .y }. 

Now observe that 

" (Iii) x or ~ sees both C"3 and Ci' 

. " 

(Assume tbe contrary. By 'il) elther x or 11 sees C 3; assume w.l.o.g. tbat x sees c 3' 
~ -

Since (tii) does Dot hold. x does not see Ci; thus by (U) 11 sees e.f' and sin ce (Ui) does not 

.bold. y does not see c 3' But t~en (x;c ;,CbC .f'y) ~ a P6. contradicting the fact t'hat . 
{x,y} ls a two-palr in G.) 

. " . 
Assume w.l,o.g. lihat, x s~es both e 3 and c .. ; let m be the smalles~ index greater 

~han Jour such that x does no't see Cm' Tben x c 2".e,J is a: ëk , with k > 5, G is not 
( // 

weakly triangulat.ed, and the tbeorem bolds ln, this case. • 

, Anotber result tbat will 'be used in proving the correetness of Algorithm OPT ls 

... w , • 

tha.t two-pair identification eJoes not ch!1nge the. cl,iCJ:ue slze. Tbls follow!3 from a lemma 

due to Meyniel. , . 
• 

The qUque Size Lemma (M~yniel [lgS6]). If verlicca x and y 0/ a graph Gare \ 
" • C> 

not joincd by any chordleas palh with three eiges, then w(G(xy-+z)) = w(G). 

, ~e Clique Size Corollary. Il {x,y} û ca two~ir 01 the weaklll tricang'Ulcated 
" 

gra~h G, then w(G(zy-:+z)) = w(G). 
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The Correctnesa Theorem. Algorithm OPT .finth a largest clique and G 

min~mum colouring 01 G. 

Proof. Througho'ut the proof we let If Gland 1111 denote th~ number of colours 

of 1 Gand 1 1 respectively. Slnce the clique slze of a graph is never greater than the 

, \ ' 

chromatic number, to prove the theorem It sulfices to show that KG Is a clique. that 1 G 

is a colouring, and that IKG 1 = Il G 1. The proof ts by Induction on the nun:tber or caUs 

of OPT. (Since identification decreases tlie number of vertices by one, OPT Is called à,t 

most n tlmes; thus the algorithm termlnates-.) If 0p,T Is called only ol}ce. then the 

algorithm terminates at Step 1. By the WT Two-Pair Theorem, KG = V(C) Is a 

clique, 1 G Is a colouring with.n = IKG 1 colours, and the theorem holds. 

Suppose then that OPT is called more than once; th us the algorlthm termlnates 
-1 

with Step 4b. Since (by the Identification Lemma) J Is weakly trlan'gulated, by the 
, 

inductive hypothesis we may assume that KI and 1 1 are a respectively li. clique and a 

colouring, of J, such that IKII = If ,1· If z Ft. KI, then KG = K" and IKG 1 = IKI 1· 

IC z E K" then elther % or 11 must sec ail vertices or K, - z. (~uppose not. Th.en % 

misses sorne Vi E ~/; however, y sees Vi ' cise z would miss vi' Slrnllarly, 11 misses 

" sorne Vj E KI that sees::. But then ::Vj Vi 11 ~ a chordless path. contradictlng the 

assumptlon that {::,y} ls a two-palr.) Thus IKG 1 > IK,I. Slnce KIls a largest clique 

oC J, the Identification Lemma impUes that 'IKG 1 = IK,I· . -

Since no pair or adjacent vertlces a ,b of J satlsfy J J(a) = 1 I(b), no pair or 

adjacent vertlces a,b oC G - {% ,y} satisCy 1 G (a) = 1 G (6). Flnally, let c be a 

~ ,vertex of G that sees a'least one oC {::,y}; then c sees z ln J. and 50 

1 G (c ) = l, (c) =1= 1 J (z) = 1 a (::) = 1 G (y). 

Thus no palr.of adjacent vertlces u,v of G-satlsf'y 1i;(U) = loCv), and la ls a 



o 

10 
1 

. , 

) 

• 

colourtn,. Note that If G 1 -

-

1/ G 1, and the 
\ 

trlang~Ja.ted. Thœ (slnee ever'Y Induced subi,taph <oC a ~eakly triangulated graph is 

weakly 'trlangulated) the Correctne88 Theorem yie!ds a.nother proof that weakly 

trlangulated graphs are perfer.t. 

" ) 
We now a.nalyze the complexlty oC Aigorithm OPT(G}. Let e be the number oC 

D 

, . 
edges of G, and n the number or v"ertlces. Note that a. pair oC non-adjacent vertlces % 

,) 

o , 

and 11 in a graph G Is a two-pair IC and only iC"there ls no path Crom z to 11 ln G - N J 

o 

where N ls the set of a.1I vertlces oC G that see both z and 11 •• Detèrmlning whether or 

noC. two vert1ces are ln the same eomponent oC a graph can be done ln time Q, (n +e'). 
- , 

., 0 

Thu! determlnlng whether or not a pair oC vertices ls a two-pair can be done- ln tlme 
r 

o (n +e ), and Step 1 ean be done ln time 0 «n 'Te )n 2). Step 2 ean be done ln tlm,e . 
o 

o ln), r ean.Steps 43: a.nd 4b. Slnce Step 3 ls executed at)Inost n -1 tlmes, the worst-

case complexlty oC Aigorithm OPT ls 10 «n +e )n 3). ' \, • ' 

., 
, , 

\ 

o 

, 
.' 

/ 
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3.4.3 The Weighted Case 1 

" 

In .this section we present polynomiaL time algorithms that solve the welghted , 
versions or the maximum cUque, maximum stable set, minimum colouring and minimum 

cUque coverlng problems for weakly trlangulated graphs. 

One way to solve the weighted clique problem for a graph G Is to replace' every 

vertex v of G with a cUque of size w (v), and th en solve the unweighted cllque problem 

on the resulting graph. However, this transformation is Inefficient if th~ welghts are 

large. Our solution 15 more direct. 

De.fine G (u -vw) to be the graph obtained from the gra.pl1 G by replacll'lg the' 

vertex u wlt.h vertlces v and w, su ch that v sees w, and such· that u,v,w see exactly , , 

the same vertices of G - u. This process Is referred to as dupliçation. , 

",We now d~fine an operation tha~ comb.ines identification an,Uuplication. Deflne 

G (%y -za) to b~ the graph H (xb -z)~ where H = G (y -ab). We refer to the 

process of replaclng G wlth G (xy -za) as quasi-identification. 
~ , 

Quasi-identification is represented ln Figure 9.5. Note that G (x1/-za) ls the 

graph 'Obtalned from G by replacing x,y wlth z ,a respectively, sucb.. th~t z seesa. z 
J ' 
1 

sees exa.ctly th ose vertlces of G - {x ,y} that see.at least one of {x ,y}, and a sees , , 

exactly those vertlces of G - {x ,11 } that see 11 • 
, ' 

" 

/' ln the followlng algorrthm. the welghted colouring fa consists of s~abl~ se~ SOI' 

f Sa tiil1!'" Sar' a.nd assoclated positive integprsX(Sa1),"X(Sa), .... X(Sa,). 

" Algorithm W-OPT( G ). 

Input: a weakly trlangulated graph G. 

Output: a max. welght~d clIque Ka and a..mln. welghted colourlng / G . 

'Ij 

\ 

;V 

, .-



o Step 1. 

-, 

$tep !J. 

It " 

" , ' 

$tep 8r 

,Stèp -la. 

'Step ./b. 

O', 
( . 
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Look for a two-palr {x ,V } of G . 

If G has no two-pair th en 

. (a) KG - V (G ), 

(b) for i .- 1 to n,do 

SG, - {Vi}' '\ 

X(SG ) - W (Vi) , 

(c) STOP. 

Assume that w (x) < w (y) 

If ~ (x) = w (y )then 

J ~ G {xy-+z), 

wez) ~'w(xJ; 

else { ... thus w (x) <; w (y) ... } 

J ....: G {xy -+za ), 

w (.aJ -- 10 (x },' 

.. , 
[(J, f.J ,~ W-OPT( J). . 

'" , 

..: 

If z ~ [(1 then [(G -- [(J" else, (~ :.E K{ ;and .. ~) 

'" 

" 

' .. 

if y. sees aU of !<J - {a"z } fhen Ka - KJ - {a,z} + y 
. 

else ( ... r.sees aIl of I~J - {a ,z } ... ) KG +- !(J - {a,z} + x, . 
, ' 

Fo~ each set, SI, of 1 J do 'J , , 
, . 

. , 

J. '!". _, 

, 
, , 

. , 

(i) If z E SI. then SG +-' SI -.Z + {x,y }, else 
1 • 1 1 

. 'i 
Ir a e SJ, tilen Sa, +- SI, - a t y, else 

" 

(li) X (Ba) +- X (SI. ). , , • 
, 1 

• 

~. 

.-. 
l, '. j .. , 
'f 
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Tbe proof of correctness of Aigorithm W-OP.T paral1els the proof of correctness of 

Aigorithm OPT. We llrst show that Quasi-Identification of a two-palr of a weakly 

.. 
trlangulated graph y[elds a weakly trlangulated graph. • ; 

Thp. Quasi-Identificati<?n Lemma. Let G be a weakly triangulated graph with a 

two-pair {x,1/}. Then G (xy-za) is weakly triangulated. 

Proôf. G (xy -zoa) = H (xb -Z), where H = G (y -ab). It Is easy to check . ... 
that H Is weakly trianguJated and that {x ,b} is â two-pair of H. Now the result 

...... 

follows from the Identification Lemma . •. - , 

. 

.Next we . prove th.a.t the J>rocess of Quasi-ldentHlcatlon, together wlth the 

rewelghtlng of tlle new vertlees as descrlbed ln Algorithm J.V-OPT, do~ not change the 
. 1 

/ 
welghted clique number of G. Let O(G) rep,resent the weighted clique number or G 

, ~f.e. the .welght of a max.imum welghted clique of G). 

\ The Weighted Clique Number Lemma. Let G be a w_eighted weakly 
. --- - \ 

triangulated grap~ with a two.pair {x,Y} 8uclflhcii-;(x) ::; w(y). Let F = G(zy-+za), and 

let w(z) = w(x) and w(a) = w(y} - w(x). Then O(G) = OfF). 

~ 
Proof. F = G (zy -za) = H(xb -Z), wh~re H = G,(y -ab). Let w (b) = 

w(x); clearly g(H) = n(G). To prove the lemma we need only show that O(F) = 

O(H). 

, 
Let KH be a eliqu'e of H of maxlm~m weight. Since x.b are non-adjacent, KH 

cQntafns at most one of ,these t\Vo vertlces. If KH con tains nelther x nor b, then KH 15 

a cllique of F. Ir KH con tains x • then KH - x + 1 ls a cUque of F wlth the same 

welght as KH ; if KH coutalns b. th en KH -, b + z ls a cUque or F wlth the same 
.\, 

)Yel,ht as KH • Thus O(F) > O(H). 

.. 

\ 
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~ v. 1)- • l 

Now let KF be a clique of F of ma:xlmum welght. Ir z ri. KF then !(F 18 a cllQut' 
.",,-

of 1:f: If z E K;' then elther KF ... Z + i or KF - z + b 15 a clique of H. and both 

have the same welght as [(F' Thus O(H) ~ n(F). • 

The Weighted Correctness Theorem. Algorithm W-OPT solues the M()xim,IlTn , 
Weighted Clique Problem and the Minimum Weighted Colouring Problem for a weakly ,..., 

t~iangulated graph G. ., ., 

Proof. Let KG and 1 G be as described in Aigorilhm lV-OPT. It is casy to cht'ck 

that Ka 15 a clique, and that Sa, Is a stable set, for all i. Let IKG 1 = ~ W (tl ) and 
IIE Ka 

let If al = E X(Gi )· We wish to show that /a satlsfies property (1) of the dcnnttlon 
i -

'.'~ 

of the Minimum Weight Colouring Problem. and that IKa 1 = Il a 1. Note that If 1\ Is 

aoy clique of a weigh ted graph, and if f Is any colouring that satisnes (1). then 1/( 1 ~~ ~", . ~ 

------Il /; th us the equality IKa 1 = If al implies that both Ka and 1 a' a.-re--<>JJtTitâc-
-----~ 

" We Ors. ',how that (1) holds COr f G' 'Argn"'IîiÎn;;:;;o~ on the n urober oC tlrnes 

Step 1 ls executed ln W-OPT(G). If Step 1 Is executed only once. then X (Sa) = W{Vj) . '. 

\ for aIl i = l .... n, and (1) holds. 

J 

Suppose then that St,ep 1 is executed at least twice. Thus the algorithm terminates 

wlth Step 4. Assumé by Induction that (1) holds for the colouring f J of J. Recall that 

ln Step 4b, 

the vertex z Is replaced (in évery set SJ of f J that conta.ins z) wleh the 
1 -J 

pair of vertices ~ ,y , and, If w (x) < W (y), 

vertex y. 

the vertex a ls replaced (ln every set SJ or f J that contalns a f wlth the 
1 

... 
'., 

---IIIIl_ ~_. _. 
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In"the case where w (z) = w (y). we have t{I (z) = w (z) = w Cy). and so 
.~. 

w (x) = w (z ) = E X (SI,) = E X (Sa,>. 
sJ 2z sa 2~ , , 

.. 
In the case where wez) < weYl. we have wez) =.w(z) and w(~) = w(a) + wez), 

and 50 

w (x) = w (z) = E X(sJ,) = E X (Sa,>. 
SJ 2z Sa 2~ , , 

Thus property (1) holds for 1 a . 
• 

. 
Now we wish to show that IKG 1 = Il G 1. Argue by Induction on the number of 

executlons of Step 1; the result clearly holds if Step 1 is executed exactly once. Assume 

. then that Step 1 15 executed more than once; thus the algorithm .terminates with Step' 4. 

By thé induction hypothesis. I[(J 1 :::1:: If Il. 

Now an argument slmllar to that used in the Oorrectness Theorem establishes that 
.. 

IKG 1 = IK/I; thus to finish the proof. we need only show that If al = If Il. But thls 18 

, 
obviously the case. because there Is a one-to-one correspondence between the stable sets 

of f Gand fI. namely Sa, cqrresponds to SI,. and X (Sa) = X (SI) for ail i. .\ 

\ 

\ 

We DOW analyze the complexity of Aigorilhm W-OPT(G). Let e be the number of 

edges of G. and n the number of vertices. As ln Aigorithm OPT(G), Step 1 can' be 

done ln tlme 0 « il +e )n 2). and Steps 2. "la and "lb can be done ln' time 0 (n). Now 

conslder Step 3. The graph J is elther G (l'y -z) or G (xy -za). In the former case J 

haS one vertex f~wer than G; ln the latter case, J has at least one edge more than G (z 
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sees every vertex or G - {x ,1/} that x sees, a sees every vertex or G '- {x ,1/ } that 1/ 

sees, a.nd z sees a whereas :r miSses 11). Thus Step 3 ls executed at most 

n' - 1 +(;) - e tlmes, and the worst-case complexlty of Aigorithm W-OPT ls 

o «n +e)n .). 

J 

, , 

) 

" 

" , 

/ \ 

.. 
\ \ . \ ' 

'-'- J . . -....J::......L... _____ _ 
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Chapter 4 

Murky Graphs 

, 4.1 1 The Main Result 

In thIs chapter we Introducl!! a new class of Berge graphs, namely rnurky graphs, 

and prove that murky graphs are perfecto A graph is murky if it con tains nelther C 6: . . . 
PIS' nor PIS as an induced subgraph. 

Recall (see ,Chapter 1) that, a graph is unbreakable If nelther the graph nor Its 

complement has a star cutset. A class H of graphs is called hereditary If evcry ind uced 
< ,< 

. subgraph ora graph in H Is in H. Since minirnallmperfect graphs are unbrea.kable~ t'o 

prove that the graphs in sorne hereditary class C are perfect, we only . need prove that 

the unbreakablê graphs in C are perfecto Clearly mu·rky graphs are hereditary; thus to , 

prove that murky.graphs are perfect we need only prove that unbreakable murky gra.phs 

lare perfecto 

The Une graph L(G) of a graph O'lls the graph whose vertices correspond to the 

edges ofr-G, su ch that two vertices of L (G) are adjacent If and only if the 

corresponding edges of G share a vertex. J( 3.3 Is the graph- with SIX vertices whose 
"'JÔ 

complement consists of two disjoint triangles. J( 3.3-e is the graph obtained by removlng 

. 
any edge from [(3.3' We let L 8 and L ~ denote the Hne gr~phs of [( 3.3- e and [(3,3 f 

respectlvely. Drawlngs of L 8 and Lo are shown in Figure 4,1. 

There are two kinds of unbreakable murky graphs. those that contaln L 8 as an 

Induced subgraph, and those that do not. Let U be an unbreakable murky graph. If U . 
con tains L 8 as an Induced subgraph, then U is elther L 8 or L 0 If U does Ilot contam 

L 8 as an induced subgraph. th en U can be constructed by taking two copies of a P .. -free 
~-

graph, and adding a specifted set of edges between the two copies The followmg 15 a 
) 

.. 
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Figure 4.2. A mirror graph 
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Corma.l deflnitlon of such graphs, whlcb we caU "mirror grapbs". 
~ 

l>eflne a mirror partition [R .SI of a graph G .to be a partition of tbe yertlces into - , ,. 
sets R = {r l' ... , ri} and S = {SI' ... , St} such that 

(1) GR and Gs are P .. -free, and 

(2) ri sees r j if and only if Si sees Sj if and only if 

ri misses Sj if ànd only if $i misses r j, for 1 ~ i < j :5 t. 

(Note that one consequence of (2) 1s that GR and Gs are isomorphic.) 

• 

• to. 
..." . 

Any graph tbat has a mirror partition Is called a mirror graph. With respect to a 

mirror partition IR,S 1 of a mirror graph, a pair of corresponding vertlces {r j ,s j} Is a 
----

couple, and r} 1s the mate of Sj (and vice versa.). Note that in a mlrror graph the 

vertlces of a couple may Of may not be adjacent. A mlrror graph Is shown ln Fzgure -1. e. 
~: . 

Recall that vertices x and y are twins in a graph G if every vertex in G' - {x ,y } 

~ees both or neither of {x,~}. Lovasz Ilg72al showed that a minimal imperfect gni.ph 

does not have twins. Olariu caUs vertices u and v ln a graph G anti-twius if every 

vertex ln G - {u,v} sees exactly one of {u,v}; he proved that a minimal imperfect 

graph does not have an ti-twins [1 gS6J. (His proof"of thls result appcars in the appendlx.) 

Burlet and Uhry (see Lemma 5 ln [Hl84)) observed that every P .. -free graph with at 

least two vertices has twins. (We use this fact ln the proof of the followlng proposition, 

and frequently throughout the chapter.) We prove a simtlar result for m'l'iTor graphs. 

The Mirror Proposition. Let F be an induced subgraph of a mirror graph G. If 

F-has at least two tJertices then F contains twins or antz·-twz·ns. 

Proof. Let [R ,S ] be a mlrror partition of G. Detlne 

A = {i: ri E F}, B={j:SjEF}. 
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Ir sorne k belongs to A n.JJ then rk ,8k are an ti-twins ln F. Hence we may assume 

that A n B = 4J. Now let F - be tbe grapb Indu~.ed by ail rk with k EAU B; let 

ri,rj betwinsinF-. Ifi EA,j EA (ori EB,j EB)thenri,rj (or Sj,Sj) are 

twlns in F; If i E A , j E B. (or i E B, j E A ) th en rj ,Sj (or s, ,rj) are anti-twins ln 

F .• 

~ 
The main results of this chapter are summarized by the following two theorems. 

The' pr60f of Theorem 4.1 takes ®p most of the rest of the chapter. The proof of 

The'orem 4.Efollows almost Immediately from Theorem .{..1, and 1s 'presented below. 

Theorèiïi 4.1. If G is an unbrea/çable murky graph, then G i8 L 81 L Q, or a mirror 

graph. 

Theorem 4.2. Murky graphs are perfecto 

Proof of Theorem 4.2. By the Star Cuf.8et Lemma a.nd the fact that murky 

graphs satisfy the hereditary property, we need only prove that unbreakable murky 

graphs are perfect; by 'Theorem 4.1 we need ooly prove that L 8" L 0 and mlrror graphs 

are perfecto It is a routine exercise ,to check that L 8 and L 0 are perfect (actually, allllne 

graphs of bipartite graphs are perfect: this follows from a theorem due to Konig [1 g36J 

coocernlng the edge-chromatic number of a bipartite graph). That mirror graphs are 

-
perfect follows from the MlTror Proposition, and the fact that a mh\imal imperfect graph 

contain~ neither twins nor anti-twins. • 1 

The proof of Theorem 4.1, which appears at the eod of Section 4.3, is preceded by 

severa.1 intermediate results: Sections 4.2 and 4.3 contain lemmas concernlng properties 
'\ 

of unbreaka.ble mirror graphs. As a postscript, in Section 4.4 we present a theorem 

whlch extends Theorem 4.1 to a characterization of unbreakable murky graphs. 

-. 
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4.2 Local PropertThâ of Unbreakable Mirror Graphe 

In thls section we prove seyerallemmas concernlng unbreakable murky graphs. As 

alrnost every result ln thfs section ls concerned wlth graphs which contaln or do not . '~ 

contaln other graphs as Induced subgraphs, the followfng abbreviation will be adopted: 

CL 
we shaH say that a graph contains sorne other graph If the latter fs an fnduced subgraph 

~ -
or the rormer. Simllarly, a graph properly con tains sorne other graph If the latter fs a 

proper Induced subgraph of the former. 

The deftnitfon of .. t~Vins" fs extended as follows: gl~~n vertices % and y and a 

subset H of the vertices of G , the vertlces % and y are called twins with respect to H if 

% and y see exactly the sarne set of vertlces of H n (G - {x ,y }). Given a vertex tJ 
'li> 

and a subset X of the 'vertlces of a graph, we "ay that v is (respectively) nu//, partial, Or 
, . 

universal on X ir v se,es (respectlvely) none, sorne but not a11, or aU, or the vertlces of . . 
x. 

~ ~\\ 

The L 8 Lemma. If an unbreakable murky graph contains L 8' then it is either L 8 .0 

orLo· 

( 

Before, provlng the lemrna, we present two claims. The first stàtes how a vertex 

- 'can attac'h to L 8 ln a murky graph; the second ls a slrnllar statement, but wlth the 

added hypothesfs that the graph fs unbreà.ka.ble. 

Claim Attach. Let X be a subset of the. vertices of-a murky graph G such that X 

induce8 L a, and such that 80rne vertex 11 of "G - X is partial on X. Then either ther~ ;s 

sorne vertex u in X 8uch that u and v are twin8 with re8pect to X, or else X + v "nduces 

Proof of Claim. Label the vertlces or X as ln Figure '.1.9. Let v be an ~ arbltrary . . 
ve~tex ou tslde X. Conslder the followlng fouI' cases. 

, 
.. ~ """~~-"" ~.'~-

1 
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Case 1: fi misses ail or 1,2,3,4. 

Since t1 sees at least one vertex ln X, assume w.1.o.g. that tJ sees 5. No~ tJ sees 6 (00 
~ 

o 

avoid a Pc on t1 51436); by rotation al symmetry, v seeing 6 rorces v to see 7, and tJ 

s~eing 7 forces fi to see 8. But then X"""'~ tJ Induce~ Lo .• 
\ .. 

Case 2: fi misses aIl of 5,6,7.8.-

Since fi sees at least one vertex in J(, assume, w.l.o.g. that tJ sees 1. If fi sj!es 3 then 

tJ 1573 Is a' C 5; If v misses 3 then v 15736 ls a Pts. Henc~ thls case cannot: occur. 

Case 3: fi sees 1 but misses 2 and 3. 

Now fi misses 7 (to a.void a C 5 on v 1237). 

Subcase 3.1: v sees 6. 

• 1 

fi 6341). But then fi and 8 are twlns with respect to X. -

Subcase 3.2: tJ misses 6. , J, 
\ ' 

,N(),~ fi sees 8 (to !,-vold a Pc on v' U!J637) 'and, tJ sees' 5 (to avo1d a. PfJ on 
" 

.... • ~;) ! 

fi 15736). But then fi 5268 Is a 06' Hence ~hl.s subcase ca.nnot' qccur. . ' , 
.J ' 'b 'f 

Cas,e 4: fi sees 6 but misses 5 and 7. 
" , 

_ • l ~ 

• J 1 'b -,:,,' 

Now fi misses at least one of 1,3 (to avold a Q 6 on tI 1573) and 11 miss~s at 17as't oqè of 
, , 

1 

~,4 (to avold a C 6 on.", 2574). But then thls case reduces to Case l.or (possibly rotated) " 
l, ca, J \-" >. ' 

Case 3. 
.. , 

4 • 

;) "Q 

We no~ show that t'he ptooC reduces to one of ,the prev'lous cases. Ir fI~'tôlsses ail of 
" '9 t • 1 

, . , . ' 

1,2,3,4 thèn it.satisfles the hypothesls of Cs:se'l; ir v sees a1l of 1,2,3,4 then It satlsftes .. , 

. the hypothesis or Case '2 on ?Jx . l:Ienc~ we m'ay assume that',,' fs partial op {I,2,3,4}; 
1 \ ... -0 ,~~ , , . 

,next, rotat~onal sY!Dmetry allows us to assume that v sees 1 and misses 2. Ir v ml.sS"es:} . , 

, Il,, 
, " 

'1 

l, 
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• f ... 

" 

then lt satlstles th~ hypothesls oC Case 3; If li sees 3 then lt satistles the hypothesis of 

Case"" on lJx . This concludes the prooC of Claim Attach, • 

, , 

Claim No-Twins. Let X be a 6ubset of th~ vertices of an un'brèàkable m~;'ky graph 
-.. 

G 8uch that X induces L 8' Then ther-e is no vertex v in G - X st/ch that v' is a twin with 

, resp~t to X of sorne ';ertex of X 
'. 

Proof of Claim. Assume the contrary: there Is a' vertex u ln X such that the, set 
----'-

.'i of ail twlns of u with respect to X (including u itself) has slze, at least two. Without, 

loss oC generallty, we may assume that u = 1 (aIl ot,ber cases reduce to this one by 

, ro~iÙlon' ~n~ complemen tatlon). Note that ~8 inciudes ,no ~ertices of X excèpt 1. Since 

G, Is unbreakablè, 8 ls not a homogeneo'Us set in G, Hence sorne vertex v' outslde 8 

- ' , 

t sees spme a in '8 and misses sorne b in S; ·tri~lally, v ri. X. Let A ,and.fJ denote the-, 
c. " 

:> ; l , • 0 

11,' sUQgraphs of ~ G, hfduced by X + a-l, and X + a - b respttIV<:lY. Note that v' must l' 

be pa.rtlal on X (else v would bave precisely one ~eighbour ln, A \ or pr~cisely' seven 

n'clghbours ln Bi contradicting <?lairn Attach) and that X + v does not Induce'L o (ëlse 

li would contradlct CHaim Attach ~lth A in place of X). By Claim Attach, v must he a 

twln with respect to' X of sorne w ln X; sinee tJ ''F,S, w~ have w ~ 1; now symmetry 
\ . . 

-. , , 1 l' 

(swapplng 5 wlth 8, 2 wUh 4, and 6 witb 7). allo'Ws us to assume that w Is 0!le of 2,3,5,6. 

If. w = 3 or w = 6 th en v contradlcts Claim Attach wlth ,A lIlplace of X; if w = 2 
b' • 

or w = 5, then v contradicts Clairil Attach with B ln' place of X . This completes the 

. 
proof or Claim No- Twins. • 

----- - '- ~ 
" 

ProoC of the L 8 Lemma. let X. be a proper su bset, oC the vertlces of an 
. ~ , 

unbrea.kable murky graph. (j such that X Indu'ces L 8' Slnce à is unbreakable, X la 
" . 

.. not a bomogeneous set of G, and thereCore soI!le vertex u of G - X' Is p~rttal on X, . ~ 

i 
\ 

. , ~ J' .- .. 

b . 
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-
Let Y :- X + {U}. Claim Attach together wlth Claim No- Twins Imply that Y Induces --

L g', Now we need only show that there' are no vertices ln G - Y: Assu~e the contrary; 

then there lB sorne vertex w' ln G -' Y that lB partial on Y. But then It Is possible to 

1 .~ 
dclete sorne vertex v of Y so that w sees either at most.three or at least ftve vertices of 

y - {v}. "But Y - v Induces L 8. and sinee w does not see exactly four vertlces of 

y - {v}. Y + w - v does not induce L o. Now ëither Claim Attach or C/aim No

Twins ls contradlcted. • , 

, 
Let L be the Clsss of murky ,!nbreakable graphs that contain L 8 as an Induced 

subgraph and M the class of ail other unbreakable murky graphs. From the L 8 Lemma 

lt follows that 'L con tains al most two graphs. narnely L 8 and L. o. (Wc have not yet 

dcterrnlned whether L 8 and L 0 are ln L. In fact, they are. However, slnce. lt Is not 

necessary to' establ1sh this ln order to prove Theorem 4.1, we posGpone this task until , 

Section 4.4.) . 

We now turn our attention to M. By deftaltion, no graph ln M con tains L 8 as an 

Induced subgraph. The Collowing lemma shows that in fact the class M 1s even more 
r 

restrlcted. We deflne L7 to be the graph obtalned by removing any vertex of degree 

cohr Crom L 8" 

The L 7 Lemrna. No graph in M contains l' 7' 

Proot. Lèt G be a graph ln M. Argue by contradlètion; suppose that X Is a set . 
of vertlces stîch that Gx 18 L 7, labeÎled as in Figure ,(.4. (Th~ graph in Figure ,(.4 can 

~ 1 

bé obtalned Crom the graph ln Figure 4.9 by removing vertex 1.) Slnce G is 

unbreakable, there must be sorne path Crom 5 to 8, none oC whose-vertlces lB 3 or sees 3. 

Conslder any shortest su ch path P:' Since G ls murky, P contalns at most three 



o 
\ 

. 
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,Interlor vertlces. 

Clalm 1: P does not contaln exactly one Interior vertex. 

Suppose it iI~; label the l~terior' vertex l, 50 that P =' 518. Note that 1 misses at least . ~ 

one oC 2,4,6,7 (ta avoid a Pt) on 137245); assume without 1055 or generality that 1 misses 
, .. 

7. Now 1 sees 4 (to avold a C 6 on 15748), and 1 misses 6 (to avoid a C 6 on i6375), and 

50 1 sees 2 (to avoid a Clion 18625). But then {1, ... ,8} induees L 8. contradiction. 

, 

Claim 2: P does not contaln exactly two interlor \rertiees. 
1 

Suppose it did; label the virtices 0 and 1 50 that P = 5018. Then 0 sees 7 (s.uPPosc 

'not: then (if 0 sees 6) 05736 is a.c 6 or (ir 0 misses 6~ 057368 is a Pel. By symmetry. 0 ' 

,ee~ 2, 1 sees 4, and 1 sees 6. Now, 0 misse~ 4 (to avoid a PG on 035427). By symmetry, 
" , 

o'misses 6, 1 misses 2, and 1 misses 7. But then 02341 is a C 6' contradiction. 

Clalm 3: P does not con tain exactly three IR terior vertlees. 

Suppose it di.d; label the vertices g,O,l 50 that P = 5g01S. Argulng as ln Clalm 2, 

vertex g sees 7 and 2 but misses 4 and 6, vertex 1 sees 4 and 6 but misses 7 and 2. Now 

the graph indtlced by {g,7,4,l,6,2.3} ls lsomorphlc ta that Induced by {2.: .. ,8}; 

( 

Curthermore .. 0 sees g and 1 but misses 3. T~ererore. by Clalm l, {S?,7,4,1,6,2,3,O} 

Induces L 8' contradiction .• 

.-

, 
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I;~ .... ; 
The next letilma is of the followlng form: If a graph G in M properly conta.lns a 

certain subgraph S, then a certain subgraph' T or G properly con tains S. In thls case, 
1!" ~ 

S = PJ and T = Cc. Later, we present another lemma of thls form . 

. 
The Pt; Lemma. Let G be a graph in M. Then every P6 in G i8 contained in a CG' 

Proof. w~ will caU a' Pi bad If It Is not contained ln a Cc. We begln wlth a 

simple observation. .' 

If abcde is a bad P~ in C, and sorne vertex J sees a but not C, tllen f se.es b. (*) 

(Otherwise, fabcd Is à. c 6 01 fabcde is a Pes.) 
r ' 

Detlne a bypass Qf a P6 abcde ta be a chordless path P Crom a ta e , such that 

every interlor vertex of P misses c. Note t~at ln an .unbreakable graph, every P" abcde 
1 

has a bypass (otherwlse, c Is in sorne star cutset that separates a and e); w'f\. will use . , 

thls fact repeatedly ln the proof. Dellne the index of a Pt; (In an unbreakable graph) to 

be the number of Interlor vertlces in a shortest bypass. Note that in a murky graph, the 

index of a P6 is at most three. 

Let G be a graph in M. To prove th~ lemma, we will show that there is no ba~ P6 

ln G; we do thls by showlng that there 15 no bad P6 with'index one, two, or three. 

Claim 1: No bad P6 has Index one. 

Assume the contrary; let 12345 be a bad Pi' with 'bypass P = 165. By (*), 6 sees 2 and 

4. The graph induced by {1, ... ,6} is shown ln Figure 4.5.1. Now, 63142 is a P" ln (J; 
l' J 

turthermore, It 15 a bad P6 of G. (Assume the contrary; then there Is a vertex 7 that 

sees 3,1,4 but misses 2,6 in G. If 7 sees 5 then 73265 Is a C", cIse {1, ... ,7} induces r; 7; 

contradiction.) Now 63142 must have a bypass ln G. 

A_ . 
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.,. 

o Clalm 1.1: 63142 does not have index one. 

Assume the contrary; let Q = 672 be a byp~ of 63142 in lJ. Thus. uslng (*) wlth 

63142, in G, 7 sees 1 but misses 6.3,4,2. But 7 seeiilg 1 and missing 2.3 contradicts (*) 

~ 

with 12345. This concludes Clalm 1.1. 

'. Claim 1.2: 63142 does not have index two. 

Assume the contrary; let Q = 6782 be a bypass of 63142 in lJ. Thu~. in G. vertex 7 

sees 2,1. but misses 6,8; vertex 8 sees 6.i· but misses 2.7: USing (*) with 63142. 7 misses' 

3. and 8 misses 4; using (*) with 12345, 8 sees 3. Now it follows that 

• 7 misses 4 (to avoid a C 6 on 74381), 

7 misses 5 (to avoid a C 6 on 72345), 

8 sees 5 (to avoid a PG on 718345). 

The subgraph of G indûced by {1 ..... 8} is now the graph in Figure -I.51!. Now note 

o that 71643 is a bad P6' (Assume the contrary: let 716430 be a CG' Then 0 sees 7.3 but 

misses 1 • .i,'6. Thus 0 misses 5 (to avoid a C 5 on 07165) and g secs 8 (to avold a. C 6 on 

97183); flnally, If 9 misses 2 th en 07268 is a C 5. If 0 sees 2 then 913782 15 a J5G.) 

Claim 1.2.1: 71643 does not have index One. 

Assume the contrary; let R = 793 be a bypass of 71643. Thus. using (*) wlth 71643. 

vertex 9 sees 7.1.4,3 but misses 6. But if Il m~es 2 then 07264 is a C 6' If 0 sees 2 th en 

06314215 a Po. This conclu des Claim 1.2.1. 

Claim 1.2.2: 71643 does not have Index two. 

\ Assume the contrary; let R = 7003 be a bypass of 71643. By (*) with 71643. vertex g 

sees 1,7,0 but misses 3.6; vertex 0 sees 3.4.0 but misses 7.6. Now 

Omisses 1 (If 0 sees 1 then 0 misses 2 (to avoid a PG on 063142). and so 

o 05623 is a C 6 or {1,2.3.4.5.6.0} induces L7); 



o 

9 sees 4 

9 sees 8 

Omisses 8 

9 sees 2 

Omisses 2 
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(to avoid a CI> on 01640), 

(00 avoid a CI> on 01834), 

(00 avoid a ~ on 960148), 

(to avoid a CI> on 01234), 

(to avoid a ~ on 960142), and fln~lly 

If 0 sees 5, then 05623 is a 0 6, else 045812 is a Po' This concludes Claim 1.2.2. 

Claim 1.2.3: 71643 does not have index three. 

Assume the contrary; let R = 7gx 03 be a bypass of 71643. By (*) with 71643, vertex 9 

sees 1,7,x but misses 3,6,0; vertex x sees g,O but misses 3,6,7; vertex 0 sees 3,4,% but 

misses 6,7,9. Now 

Omisses 1 

- 0 sees 8 

Omisses 5 

x sees 4 

x misses 1 

9 sees 4 

9 sees 2 

9 sees 8 

9 sees 5 

x misses 2 

x misses 8 

'X sees 5 

--
(if 0 sees 1 then 0 misses 2 (to avoid a ~ on 063142), and 50 

05623 is a CI> or {1,2,3,4,5,6,0} induces L1 ); 

(if 0 misses 8 then 0 sees 5 (to avoid a P6 on 045817), 

but then either 02185 or 05623 is a G 6), 

(If 0 sees 5 then 05623 is aGI> or 063524 is a P6)' 

(If x misses 4 then x 0461 IS a Cs or x 04617 is a Po), 

(If x sees 1 then x 1834 15 a CI> or x 60148 is a Po), 

(to avold a CI> on 0164x ), 

(to avoid a Iv\ on 9] 234), 

(to avoid aGI> on 94381), 

(to avoid a P6 on 695148),' 

(to avoid a Po on 96x 142), 

(to avold a Po on 96x 148), 

(to avoid a Po on x 45812), 

" 
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Omisses 2 (00 avold a C 6 on % 5620). 

But now ,{% ,O,3,2,6,5,8} Induces L7' 'l'his contradiction justifies Clalm 1.2.3, and 

there!ore Clalm 1.2. 

Claim 1.3: 63142 does not have index three. 

Assume the contrary; let Q = 67802 be a bypass of 63142 in ?f-: Thus, by (*), ln G 

,'vé1-tex 7 sees 1,2,0 but misses 3,6.8; vertex 8 sees 1,2,6 but misses 7,9; vertex 9 sees 1,6,7 

but misses 2,4,8. By (*) with 12345, 0 sees 3. Now 

, 8 misses~ 
8 misses 4 

8 misses 5 

Osk.5 

7 sees 4 

7 sees 5 

(to avoid a p;, on 137892), 

(to avoid a C 6 on 84391), 

(to avoid a C 6 on 82345), , 

(to avoid a PfJ on 543918), 

(i! 7 misses 4 then 72345 is a C 6 or 827954 is a Pe), 

(to avoid a p;, on 675149). 

" But th en removing vertex 6 and relabelling vertices 7,8,9 as 6,7,8 respectlvely gives the 
... 

graph ln Figure -I.s.e, and we are done by Claim 1.2. This concludes Clalm 1.3, which 

(flnally) concludes Clalm 1. 

Claim 2: No ba<! P6 has Index two. \ 

Assume the contrary; let 12345 be a bad P6 with bypass P ~ -1675. By (*) wlth 12345, 

6 sees 1.2,7 but misses 3,5; 7 sees 5,4,6 but misses 1,3. Now 7 must see 2; suppose not. 

By Clalm 1 (wlth 7 ln place o! 5). 12347 must extend lnto aCe, say 123478. But then 

(*) is contradlcted by 12345 and 8. Thus 7 sees 2; by symmetry, 6 sees 4. The graph 

Induced by {1 ..... 7} 15 shown in Figure 4.5.9. 

Now note that ln G 63142 ls a bad P6' (Assume the contrary; let 863142 be a ëfJ 

ln G. Then elther 84721 15 a C 6 or 682417 is a Fe.) 

'. 

1 

\ 
\ 
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Claim 2.2: 63142 does not have index two. 

Assume the contrary; let S = 68g2 be a bypass of 63142 In..{J. Argulng as in the 

beglnnlng of Clalm 2, in G both 8 and g see 3 and 4. But then, ln G, g sees 1 but 
, 
misses 2,3, whlch contradicts (*) with 12345. This concludes Claim 2.2. 

Claim 2.3: 63142 does not have index three. 

Assume the contrary; let -S = 68002 be a bypass df 63142 in ë. Thus, using (*) wit'b 

63142, in G, 8 sees 1,2,g but misses 3,6,0; g sees 1,6,8~ut misses 2,4,0; 0 sees 1,2,6 but 

misses 8,g. Now 

g sees 3 

Omisses 3 ~ 

Omisses 4 

8 misses 5 

Omisses 5 

g sees 5 

8 sees 4 

(If g misses 3 then (*) with 12345 Is oontradlcted), 

(to avoid a ~ on 138002), 

(to avoid a C z; on 01034), 

(If 8 sees 5 then 12345 Is bad Pz; wlth tnclex one), 

(ir 0 sees 5 then 12345 Is a bad Pz; with index one), 

(to avoid a PtJ on Olg345), and 

(to avold a PtJ on 02Sg54). 

Now 8314g extends to a CG ln Cl,.. say 8314gx. (Suppose not; Jn G, 0 sees S,g bu t 

misses i, and 5O-:8314g ls a bad Pz; with Index one, contradicting Claim 1.) Then, ln G , 

x misses 2 (to avoid a Pa on % 83142). But ln ~, x sees 2 but misses 1,4, which 

contradlcts (*) wlth 63142. ~his concludes Clalm 2.3, and a.iso Clalm 2. 
i 

Clalm 3: No bad Pz; has index three. / 

Assume the contrary; let 12345 be a bad Pz; wlth bypass P = 16785 .. Thus 167S5 Is a. 

chordless path such tha.t 3 misses 6,7,S. Since 12345 has Index tbre~e, 1 misses 7 and 8, 5 

misses 6 and 7; by (*), 6 sees 2 and 8 sees 4. 

a _ 
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If 6 mISses 4 then'62345 Is à P6 of index at most two (conslder 6785) and bence not 0 / 

'r 'et , , . 
, 

a bad P6, by Claims 1 and 2; thus ,there Is a CCI of the form 623450, contradlctlng tbe 
\ 

, , ' , (p" î 

assurnptlQD' tbat 12345 bas index tbree (consider 1~695), Hen~ 6 sees 4; by symmetry, 8 
fi" , 

" " sees 2. The subgrapIrt of G induced. by {1, ... ,8} is shown ln Figure fS,.j (the vertex 7 
" . 

ma.y or may not see 2, and may or may see 4). , 

Now,suppose that G con tains a C & of the form 631420, Tilen 

Osees 8 (to avoid a C 6 on 0128-1), 

Osees 7 (to avold a C 6 on 01678), 

2 misses 7 (00 avoid ~ 15& on 718602). 
; 

.. an'd flnally 76230 is a C 6,'à contradiction . 

. \ Hence we May assum,e tbat 63142 is a bad P, in G,; by Claims 1 and 2, lta index ls 
." , . 

three. But then we obtaln tb,.e desited contradiction by forgettlng ail about 7 and 8 and 

following the proo! of. Clalm' 2.3 (wbic,h daes not refer at a.U ta vertex 7 of Figqre .j.5.9). 
. . . 

This conciudes the proof of Claim 3. and the P6 Lemma. • 
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The next le8l1?a' is a, stronger statement than the L 7 Lemn:a, in that It impUes that 

two partlcular slx-vèrtex induced subgraphs of L-7 (and their complements) are'forbidden 
',' ' .\ . , 

Induced subgraphs oC graphs in M~ This lemma will be used in the prooC of the OG 

" Lemma, 

(*) . 
(**) 

\ 
The-Stronger Lemma. If G is a graph in M, thcn G does not ~ontain either 

" a P6 leS45 anc!. ,à .vertex 6 that sees l,f!AJ5 'but misse8 ~ or 
• el' • R 

a P6 leS45 and a vertex 6 lhat sees' f!,$ b'ut misses 1,..1,5. 

pr.oor~ .' To ~rove (*), noté ,that by the P6 Lemma t,he ~ 24136' must extend to a 
, 

~G' Thus there is a. vertex 7 that secs 1,3,4 but misses 2,6 in G, But this ~ïm~ossible, 

slnee If 7 sees 5"then 237561s a C 6' ~h~reks If 7 misses 5 then. {l, ... ,;} ind'uces [7" 

,. ~ ~ <> ~', rt; 

To prove (**), not~ thD,.t by the Pt), 'Lemma. the P6 12345 mu~t extend, to a .cc: Thus 

there Is' a \'ertex 7 that sees 1,5 but mlsses'2,3,4 in G, But this is imposSible, ~nce 'if 7 , , 

sees ti tJten 34576 b7a 0 6, whereas It 7 m1ss~â (} then 634571 ls'a, PQ: ' • 

.lI 
'iT 

~ o;r t 

, . " 

• 

" 

" 
. \ , . ~ , '. . 
" " 

~ 
, --

'. ~ '., " ... .,. , , 
,~ . -. 

, 
( -0 ~ 

If," 

, f' ~ . , . 
, " , 'i • " " ' 

, 1 ,. 
," 

" 
" 

, ' 
, . 

Q 

\ 

.. 
\ , 

1 

~ 

" 
~ 

" 
<1 .1 -

o 

" 



-, ' ~ 

~ j , i 

," 
, , 

1 : 

.. 
,,' 

'. , 

.. 

-S(lb -

r. 
J 

\,J. 

U 

S-. 
l 

'1 

v 

S' " 
;Î, 

" 

FiguresI 4.6.1 and 4.6.2 
1 

---- - ... . .. 

.. 

, , 

AI 

\ '. 

\ 
\ 

~ .\ 

\. 
\ 

\ 

j 

i 

... : 

r. 
J 

, 
, ' 

>, -.:. 

(top and bottom) 
1 

( 

" 



\ -

--- --------.---

'f''\.' , '-61- .)"\ . 
'~ lli', 

The Collowing lemma descrlbes restr~ctlons on the ways iÎl whlch vertice~ of a graph 

G ln M can att3:ch to one oC two particular s~ven-vertex subgraphs oC G. This result, 

~Ill be us~d ln the 0 G Lemma. ~d ar~in the Second Extension Lem~a. 
) \ 

The Little I:ocal~emma. L X = {ri',Tj ,r"si ,Sj,s, ,v} be a subset of the 

verlices of a graph G in 

\ 
. ( 

(lA) If Gx ;s the !!raph in Fiflure.,- ~.6.1 and there are vertices Wi ,Wj E G - X such 
?, 

that wi sees Sj',S, but misses ri ,r"v '; and wi st;es Si /s/ but misses r"r,/v , then eilher 

Wi or' wi sees Si ,Si ,s, but misses ri ,ri ,r"tl • 

(lB) If Gx is the graph in Figure 4.6.1 and ~!&ere ;s a vertex w E G - X such tllat W 
. . ~ '\ 

sees Si ,s, but misses r j , r, /" / then W sees Si ,si ,s~' but misses ri ,r j , r, /" . 

(2A) If Gx is the graph ;71 Figure 4.6.2 and there ;s a vertex w E G - X suck that W 

, 

sees Si ,s, but misses r j ,r, .,V / then W sees Si 'Si ,s, but misses ri ;rj ,r, ,". 

(2B) If Gk is the graph in Figure !-6.2 and there is a vertex w in G - )f such that w 

sees Si ,s, but mis8es ri ,r, ,v, th~n W sees Si /8i ,s, but misses ri ,ri ,r,," . 

Proof. Tc prove (lA), assume the contrary. Now w, must see ri (if not, then wi 

must sec 8i to avoid a P(J on wi St ri v r, si, and we are donc) and therefore miss s, (to 

avold a 0 6 on wiri v r, Si)' By symrrîetry, Wj must see rj and miss si' But th en 

W"Wi 8i r,sj ls a C" or wi s; r, v r; Wj is a Po, a contt~diction. 

To praye (lB), note that w misses ri (ta ayoid a CI; oJ W r, v r, Si) ~nd sees Sj (to 

avold a. Po on w s, rj v rt Sj)' 

To proye (2A), note that w misses ri (ta avoid a C 6 on w'r, v r, si) and sees s, (to 

avold aPoon ws/rj"rtsj), \ ", 
1 . , 

To prove (2B), note that w sees Si (to avoid a C 6 on w Si 8j r j 8, ) and thus misses 

r, (to avold a 0 6 on w 8) r, " ra)' • 

, , 
,) " 
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The followlng lemma describes how certain seven-vertex Induced subgraphs (of 

- . (' 
graphs ln M) that contain Co extend to other induced su bgf\l.pbs. This lemma will be 

. used as' the basis case in the proof of Theorem 4.1. 

The Co Lemma. Let X = {r"r, ,r"si ,Sj ,8t,V} be a subset of vertices of a 

graph G ,'n M. 

(1) If Cx is the graph in Figure 4. 7. lA, then there is a vertex W ln C, such that 

GXU{w} is the graph in Figure 4. 7. lB. 

(2) If Cx is the graph in Figure 4.7.eA, then' there is a vertex ~ ln C, such that 

GXU{w} is the graph in Figure 4.7.eB . 

(3) If Gx is the graph in Fagure 4. 7.9A, then there are vertices w,x,y in C, such that 

GXU{w.z.u} is the !}raph in Figure 4· 7.9B. 

(4) If Cx i8 the graph in Figure 4.7.4A, then there are vertices w,x,y in C, such that 

GXU{w.z.u} is the graph in Figure 4· 7.4B, Figure 4· 7·4C,. or 4· 7.4D. , 

Before proving the lemma, we present a claim which will be used in two of the four 

cases of the proof. Throughout the claim, (*) and (**) refer back te the Stronger 

Lemma. 

Claim. Let 129456 be a Coin a graph C in M, and let 7 b-e a vertex of G that sees 

1!,6 but not 9,4,5 (7 may or may not see 1). Then there is a verte~ 8 in' C that sees 1,9)5 

but not e, 6, 7 (8 may or may nof see 4). 

Pro of of Claim. Since G is unbrcakable, there must be a path from 1 to 3, none 

of whose vertlces sees 7. Let P be any shortest such p,aJ;b. Note that P Is chordless. 

Case 1: P has exactly one Interior vertex: 

Let P = 1831, lr 8 sees 2 then 
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.. 
8 sees 6 (ir 8 misses 6 then 8 misses 5 (to avoid a C 6 on· 82765), but now 

81654 Is a C 6 or 827654 is a Po), 

8 misses 5 (if 8 sees 5 th en 8 wlth 32765 contradicts (*», and then 

if 8 ~ees -4 then 8 with 34561 contradlcts (*), cise 83456 15 a C 6: contradiction. 
\ 

So 8 misses 2. Now 8 misses 6 (to avold a C b on x 3276), and ftnally 8 sees 5 (to 

avoid a Po on 832765). Th us 8 is the desired vertex. 

Case 2: P has exactly two in tenor- vertices 

Let P = lxy 3. If x sees 5, then we are in Case 1: switch 2 with 6 ~nd 2 with 5. Bence 

wc may assume that x misses 5 Then x must see 6 (if not, x1654 is a C 6 or x 16543 15 

a Po). Thus x must sec 2 (else x wlth 56123 contradicts (U». 

If x sees -4 then, by (1) wlth x ln place of 7, sorne vertex 8 sees 1,3,4,5 and misses 

2,6,x ; note that 8 misses 7 (to avoid a C 6 on 872x 4). 

Hence we may assume that x misses 4. Applying the argumen t of Case 1 with x 

in place of 1 and with y in place of 8, we conc1ude that y sees x ,3,5 and misses 2,6,7 . 
Now by (1) with y in place of 4 and with x in place of 7, sorne vertex 8 sees 1,3,y ,5 and 

;; ~ 4) 
• {' .t-, 

does not see 2,6,x ; note that 8 mIsses 7 (to avoid li. l.i 6 on 876xy). 

Case 3: P has exactly three in tenor vertices. 

Î!,. ,'#1 • .. . .. )~ 

Let P = lxy~ 3. As in Case 2~ we may assume that x misses 5, sees 6, sees 2 and misses 

4. By Case 2, ther~ ls a vertex w that sees x ,3,5 and not 2,6,7. If w sees l, then wc' 

• 
may set 8 = w with x in place of 1; hence we may assume that w ~isses 1 Py (1) ~ 

with w ln place of 4 and with x in place of 7, sorne vertex 8 secs 1,3,w,5 and misse::. ' 

2 I G,x; note that 8 misses 7 (to avold a C 5 on 876XW). This concludes the proof of the 
'" 

Clalm .• 'l., .fj. 

.,'-

J 
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,. Praof of the C cs Lemma. To prove (1), by the Ps Lemma the ~ fi r, B, Bj V 

must extend to a ë 0; suppose that sorne vertex w sees Bt ,Bj ," but misses ri ,v. Then 

w does ~ot see rJ (else w'J v r, sJ is a Cs) and w sees 8, (else w s, fj s,,, is a Cs)." 

Thus (1) Is proved. 

To prove (2), by the P6 Lemma the Ps B, f, U " Si ID ust extend to a C 6' thus there 

is a vertex w] that sees s, ,S, but misses f, "1 ,U. Similarly, the P6 St f) v,, 5J must 
, 

extend to a C 6; thus there IS a vertex w, that sees S, ,s] but misses r, ,f) ,v. Now, by 

(lA) of th'e Little Local Lemma, it follows th3:t elther W, or Wj Is the desired vertêx w. 

To prove (3), by the Claim (wlth vertex v and the C 6 S, r, s) r, S, r) in place of 7 

and the C 6 123456 respectlvely) there Is a vertex x that sees ~I,SJ ,si but misses 

'. ,f j, v. Similarly, (by the Claiffi with vertex s, and the C 6 v 'i S] r, s, , j) there Is a 
"' 

vertex 11 that sees v ,s) ,SI but misses 'i ,r) ,s" Next, (by the Claim wlth vertex x and 

the C Il r, s, r] v r, S j ) there Is a vertex w that sees ri ,r, , f j and misses x ,S j,S, . 

Now 

x misses y 

x sees r, 

y sees rt 

w sees s, 

w misses y 

w sees v 

, 

, (to avoJd a. Cs on x s, fi !LY), 

. (to ayoid a p. on r, f~" ri v), 

(to avoid a,Po on r,sj 11 v 'fs,), 
'-1 

(to avoid a CI; on w r, x s, ri)' 

(to avoid a CI; on s, w 11 Si x ), 

• 

, 
(to avoid a CI; on W r, y v f,), and (3) is proved. 

To prove (4), argue as in the beginning of th~ proof of (3): there are vertlces x ,y 

such that vertex 'X sees s, ,s} ,s, but misses ri ,fj ,v, and vertex 11 sees v ,S) ,Sj but 

misses 'i,r j,St· Note that x sees 11 (to avoid a Cs on 8t v y Si x). There are three 

cases to conslder. 

f 
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case 1: ft misses x. 

Applying the Claim to the 0" on rt si rj V'fi Sj and to vertex x. we ftnd a vertex w that 

sees f, ,r, ,r j but misses x ,S j ,8, . Now 

w misses 8/ (to avoid a 05"On 8/ W rt s, x ), 

W misses y (to avoid a 0 5 on W y X S/ r, ), ... 
y sees r, (to aVOld a Pfj on y SI T/ W ri S/ ), 

W sees v (to avoid a Pfj on v rJ w r, s) x), 

and the graph induced by {St ,ri ,S) ,Tt ,S, ,r) ,v ,x ,y ,w } is that shown ln Figure i.7.4B-

Case 2: T/ misses see y . 

Apply,ing the Claim to the 0 0 on r, SI r,st r, Sj and to vertex y, we flnd' a vertex w 

that sees T, .rt ,r} but misses s) ,SI ,y. Now . # 

w misses v (to avoid a 0 5 on v W Tt 8i Y ). 

W misses x (to avoid a 0 5 on w x v ri ), 

x sees rt (to avoid a Pfj on x 8i rt w ri V), 

w sees S/ (to avoid a Pfj on St rj w rt SJ y), 
,:. 

and the graph induced by {St ,fi ,8j ,Tt ,S, ,r) ,V ,x ,y ,w} is that -shown in Figure 4.7.4C 

Case 3: rt sees x and y. 

Applyipg (2) to the C 6 on S} v x ri Y St and to vertex r/ we /Ind a vertex w that secs (in 

G) 8t ,ri ,rt;v and does not see 8j,X ,y . Now 

w misses 8i (to avoid a 0 5 on ws, X8jrj)" 

w sees T j 

and the graph lnduced by {St ,rI ,s; ,rt ,s, ,r"v ,x,y ,w} ls that shown ln Figure 4. 7.~D. 

This conclu des the proof of the C (1 Lemma. • 

\ 

Q , 
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4.3 Strong Mirror Gra.phs 

It i.s easler to prove Theorem -1.1' by deallng only wlth a. certain su bclass of mlrror 

graphs that IncJudes ail unbreakable mirror graphs, rather than by dealmg with aIl 

mlrror graphs. This subclass Is the class of "strong mlrror graphs"; we present a formaI 

detlnltion shortly. It turns out that a mlrror graph IS unbreakable if and only if It 15 a 

strong mlrror graph. As we dld wlth L 8 and L g, we will postpone the proof of 

unbreakability, I.e. the "If" part of the previous statement, untll Section --14. 

We shall say that a P-4-free graph G 15 slrong unless (and only unless) G or G has 

precisely two components and one of these components Is a smgleton. The following 

lemma 15 a useful tool for workmg with strong Pi~free graphs. The graph 2[( 2 referred 

to in- the lemma is the graph wlth two components, each of which Is a single edge. 

The Rip-Off Lemma. Lel G be a strong P-4-jree graph with al [east Jour vertices . , 

such that neither G nor G is El( 2' Then G contains twins ::t,y such thal G - x and 

~ - y are slrong Pi-Jree graphs. Furthermore, if G has an iso/ated vertex z, theu we 

can' choose x,y both distinct jrom z. 

Proof. Flrst, let us prove only that G contains twlns C ,d such that both G - c 

and G - d are strong Pi-free graphs. Let a , b be twins ln G. Since G - a and G - b 

are Isomorphlc, we may assume that G - a Is not strong (otherwise we are done by 

settlng c = a, d = b) Replacmg G by G if necessary, we may assume that G - a 

has precisely t~o components and that one of them is a singleton. Note that the 
) 

singleton 15 b (else G would not be strong); cali the other component Q ;,observe that 

Q 15 a component of G. Now let c,d be any twms in Q. 

To complete the proof, assume that one of c,d is lsolated in G (otherwise we can 

set x = c lWld y = d). Then both c and d are lsolat~d ln G. If G has no edges at 

( 
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all then any two vertlces % tg distinct from c and d will do; else G has "a. big 1 

component Q and any twlns % tg ln Q will do. • ' o 

Strong mirror gr.phs are deflned as follows: start with the definition of a mirror 

graph, Insist that the ICP .. -free gr::j.ph GR be strong, and speclfy exactly which couples of 

the pàrtltlon induce edges of the graph (that IS, for which couples {r, ,Sj} the vertices 

rj and Sj are adjacent) ThIS specification 15 in the form of a certain 0-1 func,tion f; thls _-.\ 

• functlon is deftned in terms of a decomposltlon of P .. -free graphs that follows from 

repeatedly applylng Seinsche's theorem. (Recall Selnsche's theorem from Chapter 1: If a 

P .. -free graph has at least two vertlces, th en either the graph or Its complement 18 

dlscon nected.) 

We now present a reeursive definition of a graph DT(G) whose verticlâcorrespond 

to subsets of vertices of another graph G. In order to avold ambiguity, we Will refer to 

the vertlces of DT (G) as nodes. The decomposition tree DT (G) of a P .. -Cree graph G 

Is the rooted tree such that: 

(1) af G has only one vertex v, then the root of D T(G) is the vertex V, and 

thue are no other nodes in D T(G), and 

(e) af G has more than one vertex, then the root of D T(G) is the set of ail 

-
vertices of C, and the nodes adjacent to the root are DT(G 1), ... , DT(GI;), where 

G 11 , •• , CI: are the induced subgraphs of G that correspb~d to the compdnenls'of 

w/iichever of G or G is disconnected. 

o 

A Pi-Cree\ graph and its decomposition tree are shown III Figure 4.8. Note that 
1 

1 

every vertex of C ls a leaf of DT (G). Also, every leaf of DT (G) is a vertex of G , and 

every node of DT (G) that ls not a leaf is a su bset of at least two of the vertices of G. 

Note also that DT(G) Is ~tlcal toDT(G). 

J 
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We ne.ed one more detlnltlori' before we can detlne th~ 0-1 Cunctlon 1. 'Let G be a ... 
P .. -Cree graph wlth at least two vertlces. For every vertex li of a P.,-Cree graph G with 

. \ 

at 'l~a.st two ~er~lces, dellne the parent P(G, v) to be the parent of v'' ln D 7:.(<;1), (le. the 

".. }. 1} .... 

node qC DT(G) adjacent to the leaf !'). For example, wlth respect to the P,,-Cree graph 

. G shown .ln Figure J.8, the parent of 1 1s tbe root: of DT (G ') (namely, the set or al,1 

" 

vertlces of G), the parent of 2,3, and 4 1s the node {2,3,4}, the parent of 5 and 818 the 
-. 
nodè {5,6,7,8}, and the pirent 0(6 and 115 the.node {6,7}. 

, , , 

NaY.( detln~ the'functlon J(G,v) so that 

I(G,v) = 0 iJGp(G.u} is disconnected, ~d 
" 

g I(G ,v) = 1 iJGp(G.u) is c01J.necteél . 

. Note th~~ -v Is a. singleton in whichev~r of Gp (G ,u) or Gp'~G.U)' 1s d18codhected. For the 

o graph G snown ln Figure 4.8, J(G,v) = 0,1.1,1,1,0,0',1, for v , 1,2,.\ .• 8 respectively. 

No~ thatJ(G,v) Is deflned, we can tormally deflne~sirong m~rror graphs. A 
, . 

partition [R,8 1 of tlie vertices of' a. graph G 1s called a s'trong mirror partition if 

. , . 
conditions (1) and (2) or tlie deflnition or a mirrol' partit~op. are ,satisfled, and if 

(9) 

(./) 

GR is a strang' ? .. -Jree graph, and 
• 

Jor ail rj E R. 
" 

A graph with ~ strong mirror partition ls a strong mirror graph. A. strong mlrror gl'aph 
,L_~ . 

1s shown ln Figure 4.9: '\. 

.. 
. '. f' 

. .. 
1 

-

, ( 

1 

" 
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The classes,of Pol-free graphs and murky graphs are self-complementary, We now , 

show that t'he same Is true for the classes or tnirror graphs and strong mlrror graphs, 

'. ~ 
The ComplemeÏlt Lenirna. Let f~,S] be à (strong) mirror partition of G. Then 

../ 

the paftiti~n' /R,S], with vertices ./abelled aS,;n the partition of G, is a (strong) mirror' 
't-" -<110 

,,, 

partition of G . 

"d ,P~~O!. The ICOQditions 'p>, (2), (3), (4) mentloned ln the proof refer to the 
.fi. , . 

deflnitions of mirror partition and strong mlrror pa.rtition. 

, 0 

Let G be a graph with mirror IJa,rtition [R ,S J. Since the compleme~t of a P .. -free - '. ~ 
q , ,. 

,. graph is P .. -Cree, the partit!on [R ,S lof ëJ satlsftes conditron, (1) . 
~ 

. , 

Let rm and r:, be.any two vettices of R'; f m sees r, in G If and only rm misses r, 

" 
in G. From (2) i~:.rollows that in G 

if and only Î!' 
, 

1 Irm misses r, sm misses 8, if and only ir 

1 

it anèl'only If r m sees 8,' Sm sees r, , 

Thus ln G . 
rm sees r, it and only if sri! sees s, 'if and only If 

rm misses s, if and only if sm misses r, • 

and (2) holds for the partition [R .S 1 of (J. Thus [R ,S J is a mirror partition of G. 

~ • r 

Now assume that [R ,S 1 is a strong mlrror partition of G; we will prove that 1t 'ls 
\ ' 

also a strong mirror partition of G. By the previous argument we need only prove that 

(3) and (4Thold for [R ,S J with respect to G. But (3) holds trivmlly. To sec that (-1) 
, 
J 

holds. note that DT(H) = DT(R) for any P .. "-free graph H; thus Hp(H,v) ls the 
,. 

complement of-Hp (Y.II)' and 50 (if H' has at least two vertlces) f(H.v) + J<n"u) = 
(~ 

Nô\v set H ,= GR' and use the Cact that (4) holds Cor [R .S J wlth respect to G .• 
\ 

• 1 

~ , 
-- l, 

l , J ... Il., . . _ . 1. .À . \ _ .. ' , 
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.. The graph shown' in Figure .j.9 Is a. strong mirror graph. slnee the partition 

suggested by the drawlng ls a strong mlrrdr partition. (Partition the vertices Into the 
, -

"upper set" and the "lower set"; the couples are the pairs of verticn,lIy aligned vertlces ~ 

Note that the subgrapbs induced by "upper set" and "Iower set" respectlvely are 

lsomorphie to the graph sho\tn in Figure .j.8.) On the other hand, the partition 

" suggested by thé drawlng of the mirror graph ln Fz'gure 4.~. is not a strong mlrror 

partition (in fact this graph has no strong mirror partition). In Section 4.4 we will ~ 

more about 'whlch m'Irror graphs have strong mirror partitions. F~ however,~ we wc 

wish to prove Theorem 4.1. Wlth this goal ln mlnd, we state two results concerning the 

functlon 1. : '" 

The Localization Lemma~ Let G be a P,-free graph and let H be a homogeneou8 

set in G. Then /(G,x) = I(GH 1%)' Jor ail x E tff. 

Proof. Consider an arbitrary vertex x ln H. The Complement Lemma allows us 
- / 

to assume thàt f( G .x) = O. w~ay assume that J( GH ,x) = 1, for otherwise we are, 

done. Let A .J2~ the parent of % ln DT(G}; sinee J(G ,x) = 0, vertex x is isolated ln A. 

Let B be the parent of x ln DT (GH ); sinee f(GH,x) = 1, vertex x sees ail the 
~ 

remalnlng vertlces ln B. It Cqllows that the intersection of A and B çontalns only x. 

sinee' both A and B have at least two vertiees,' there is some vertex a E A - B , and 

sorne vertex b E iJ - A . 
.' 

. 
Note that A ls homogeneous ln Gand that B (being homogeneous ln GH ) ls also 

homogeneous ln G. Since a misses % , lt must miss a11 of B; ln partlcular~ a misses b. . , 

Sinee b sees x, lt must see all-o!. B; ln partlcular, b sees a; contradiction. • 

, 
, 

.. !w,i.t~';l~1 .. :;;s ~~":.-.< .. v 
! 

t , 

1 . 
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,. 

A special case or the Localization Lemma asserts that J(G ,x) = f(G ,y) = 1 
, 

when~"er x ,11 • are a(lJ~en t twlns and that J( G ,x) = f( G ,y) = 0 whenever z ,y aré 

" non-adjacent twlns. 

- / 

.. if" @.t 

The ~lIowlng lemma is aJso concerned with f and wlth twins. 
.,. . 

,. 

The Twin Lenima. Let ~ be a P .. -free graph with at least three vertices. If x,y . ; 

are twins in G then J(G,z) .- J(G-z, z) = J(G-y, z), ~ for ail z in G - {x,y}. 

Praof. Argue by induction on -tG l, Since f( G ,; ~ + J( ~,x) = 1 for aU P .. -free 

graphs G, we may assume that G ls disconnected: lts vertices can be partitioned Into 

non-empty dlsJoin~ sets SI' 8 2, so that no edge has one vertex ln each 8 i , If z and y 
c • 

belong to distinct Si 's, then each vertex distinct from both z and y misses at least one 
\. 

• 
of them, and therefore It misses'both; hl"that case, we can redeflne SI' S 2 by -settincg.g-.::SI-,l.-------

, , j 

= {x,y} a.nd lettlng 8 2 t:onslst of a11 the remalnlng vertices. 

Hence. we may assume that x ,y E 8 l' To prove the lemma for aU z ln SI' distinct .. 
trom both x and y, we may assume that 18 11 ~ 3 (else there ls nothing t? prove); the 

.. 
Induction hypothesls'guarantees that 

(j 

= f(GS1-x,z) = f(GS1-Y'z) whene~erz ES1 , z-:fx,y; 

the LocalizaUon Lemma guarantees that 

Now combinlng these two sets of equalltles yields the desired conclusion. 

To pro,ve the lemma for ail z E--.S:t' we may assume that 18 21 > 2. (else J( G ,x) = 
, 1 

1 
f(G-x,z) = f(G -y ,z) = 0 for the singleton z ln S 2' and we are done). Clearly, 82 is 

, 1 

â. bomogeneous set of G, G -x 1 and G -y; now the Lo.calization Lemma Implles the 

dplred conclusion. • 

. 
·'·0 , ~.' 
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Ha.ving bu Ut up a repetoire or resù1ts concerning f, we ~re able to present somé lemmas 
- . 

;' concerning strong mlrror graphs. 

The Reduction Lemma.. Let G be a strong !1'irror ,grap,h with al least eighl 
, 

vertices su ch thal neither GR nor GR is el( 2' Then there a"re twins ri Ir) in GR 8uch· 

1hat either -

(a) fR-ri ,8-si J is a slrong mirr"or partition of G - {ri ,Si}, 

fR-r) ,8-s j J is a strong mirror .partition orG - {r j ,8; }, and 

or 

(h) fR-ri ,8-sj J ;s a strong mirror partition of G - {ri ,Sj }/' 

/ 
fR-r j ,8-si J is a strong m,'rror partition of G - {r j,Si}, ànd' 

1 

In ail cases, ~ll sets {ri ,SI;} witb k :f (j are couples' of these strong mirro,"- partitions. 

Furthermore, 1] GR lias an isolated v~rtex r, 1 tlt~ we can choosc i,j both distinct Irom t. 

D 

Proo!. By the Rip-Off Lemma, we· flnd twins ri ,rj in GR such that GR -ri a.nd 

GR -ri are Jlt'rong P.-Cree graJ)'hs, and such that, ~or any glven isolated vert.ex or rt , 

both i ,j I:I-re distinct from t. 'By the Twin Lemma, 
" 

Note tha~' GR -ri, GR -r j , Gs -s.' Gs -s j are all isomorphlc and ~hat 

In addition, note that 

/(GR ,r;) = /(GR ,rj), = 1 Ir ri sees rJ' 

f(GR ,ri) -: /(GR ,ri) .== 0 lC ri misses rj 

(use the Localization Lemma with G = GR' H = {ri ,rJ }). Hence (a) holds Ir 
Q 

.1 

\. 
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One dUllculty that must be overcome ln provlng theorems that concern s~rong 

-mlrror graphs 1s that a strong mlrror graph can have more thàn one strong mlrror ., 
part.ltlon. For example, the strong mlrror graphs shown lQ Figures -1.10, ./.11, and .j.12 

, . 
are isomorpblc and yet bave dltrerent strong mirror partitions. Tbe followlng two 

lerpm~ show. how this non,;,unlqueness ca~ be exploited. In parttcular, the first of these . .... 
y .. ~-

lemmas shows that under certain hypotheses It Is pOSSible to "repartltlon" a strong 
,---

mlfror graph, i.e. tlnd some -other strong mlrror partition of tbe grapb, The second 

lemma. shows that any glven strong mlrror graph has a strong mirror partition that 

"lsolates" any glveii vertex of the graph. 

The Repartitioning Lemma. Let <f'be a strong mirror graph with a strong 

mirror partition {R,S/, and sup.pose that whichever of GR or GIi is disconne'cted has 

Bome big component. Let RI be the set of vertices of such a component ,ànd let SI be the 
l ' 

set of mates of vertices in RI' Define R' = il 1 + S - SI' and S' = SI + R - RI' 

Then the partition [R ',S'/ in which the couples are the same as the couples, of IR,S/ is a 

, strong mirror partitioTfi of G. 

, "f " 
ProoC of Lemma. Label the vertlces of R ~and S 50 that couples of [R ,S 1 are 

~, , 
couples of IR ,S l, i.e. let ri = ri for aIl ri ln RI and let ri = Bi for aU Si ln S - SI; 

let Si' = Bi for ail Si ln SI and let s/ = r j for aU 8i ln R - RI' To prove the lemma 

It suft'lces ta confirm that tbe followlng four properties hold. 

(1) GR' and Gs' are P .. -free, 

(2) 
1 

" " 1 ri sees rJ. If and only If Si sees Bj 

.J 

If and only If 

" " ~ ri .lD~es Sj If and only If Bi misses rj' for aU i r j. 

(3) GR' an'd Gs' are strong P .. -free graphs, 

(4) 
, , 1 

rj sees Bi If and only If I(GR, ,riJ.-= l, for all r/ ln R'. 

, . 

, . 

.. 
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Bot~ GR J and Gs -$ ~ are P .. -free, and there are either no edges or aIl edges between 
, 1 

GRl and Gs-s"J thus G;' is P .. -free. By symmetry, 50 is Os' , and (1) holds. 

To see that (3) holds, cc:msider ftrst the case in whleh GR is disconnected; note that 
~ 

, ' GR' is dise~nnectel SinceoR 1 Induces a big component in GR-, rJR , has at least three 

components (at least two are indueed by R l' and at least one Is Indueed by S - SI)' 
'" 

and so GR' is a strong P .. -free graph. Similarly, in the case where GR is disconnected, 

GR' is disconnected' and has at least·three components, and (3) holds. 

il " 
Note that (2) ls equlvalen t to the following: 

for every two distinct couples X = {a,~} and Y = {c,d}, 
o 

each vertex of X sees exactly one vertex of Y. 

Sinee this property holds with respect to the partition [R ,SI, and since th~ couples of 

[R ,S J are the same as the couples of (R ',S'], It follows that thls property holds with 

respect to the partition [R ',S'j. Thus (2) holds. 

Flnall~, to show that (4) holds, let r / be any vertex ln R t Consider ftrst ,'the CfBe 

r/ E RI: Note that RI Is a homogeneous set of both GR and GR' ; by the Loca/z'zation 

Lemma,f(GR"r/)=f(G;J,r/)andf(GR,rj)=f(GRJ'rj). Since r/-= rJ and G~I= 

GRJ, It follows that f(GR , ,r/) = f(GR ,r}). ThiS, together with the fact that (by thc_ 

repartltioning) r/ sees s/ if and only if r} sees Sj' and the fact that (slnce IR ,SI 15 a 

\ " . strong mirror partition) rj sees s} if and only if f(GR ,r j ) = l, Imply that r} sees Sj If 

and only If f(GR , ,r/) = 1. Thus (4) holds in this case. 

In the other case, r/ E S - 8 l' Since GR is a strong P .. -free graph, 18 - Sil > 2, 

and S - SI is a homogeneous set of both GR' and Cs. Nowa slmUar argumen t to 

that or the prevlous case implies that (4) holds ln thls case as weil. • 

- • • 
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\. Figure ~.10 'sbows a. strong mlrror grapb; the partition 8uggested by the drawing 
1 

(i.e ... upper part" and" lower part") 15 a strong mlrror partition. The gra.ph ln FI·gI.Ire 
G " • 

4.11 can be obtalned by repartltlon"ing the graph '1n Figure -1.10 as follows: let RI be the 
1 . 

lertmost component of the "upper part" of the graph ln Figure {10, and repartltlon as 

described ln the Repartitz'on Lemma. Simllarly, the graph in Figure -I)t can be 'obtalned 
, 

, by repartltioning the graph in Figure 4.11. 

The Isolation Lernma. Let G be a graph œilh" a strong mirror partaïi~ fR,si, 

and let v be an,.~ertex of G. Then there is a strong mir,ror partition IR',S'j of G such 

tha~ the couples of IR ',S'/ are the couples of fR,Srand sucll tllat v is a singleton in 

whichever of GR' or GR' is disconneçted. , 

Proor of Lemma. Assume that GR ls disconnected (the tollowing argument 

holdS Il GR is replaced with ëJR ). Let RI be the set of vertlces of R ln the component 

of GR that con tains v. The proof 15 by induction on IR 11. 

If IR 1J = l, then [R ,S]is the deslred partition. Suppose then that IR 11 2: 2. Let 

R' and S' be as detlned ln the RepartitiWn9 Lemma. Consider the strong mlrror 

partition [R',S'l of G. Note that GR' \s disconnected and has aL least three 

components. Let R ~ be the set of vertlces of R' Induced by the component of GR' 

that con tains v. Since R ~, \s a proper subset of R l' IR; 1 < IR 11 The lemma now af 

tollows by ind uctive hypothesls and the Repartit,'oning Lemma 1 

The Isolation Lemma \s Illustrated by the graphs shown ln Figures 4.10, '4.11 and 

4.112. Let v be the upp.~r leftmost vertex in the graph ln Figure 4.10. Figure 4.11 and 

Figure 4.12 show the sequence ot two repartltlons that Isolate v. (The vertex v appears 

as the upper leftmost vertex ln aIl three drawlngs.) 

--
• • 
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The following two lemmas describe restrictions on how vertices ln Iraphs ln M ca.n 

. 
"attach" to strong mirror subgraphs. 

t 

The Zero-Two Lemma.. L~ fi be a graph an M, let G be a 'strong mirror' 

8ubgraph of H, and let v be a vertex of H - G that ;s partial on G. If v Î8 universal or . 
" 

nu Il on Borne couplt: {r, ,8,} of a strong mirror partition of 0, . then v Î~ a twin of one of . 
r, ,b, iDith respect to G - {r, ,8, }. 

Proof. Argue by Inductlo~ on the number or vertices in G. ~ Complement 

Lemma and the' Isolation Lemma, we may assume that r, ls Isola.ted ln GR . 

Ir G has _ preclsely six vertices then r, sj. r j s, ri ~ i Is a Pc. There are two cases. 

Case 1: v Is null on {r, ,s, }.-

Sinee v sees at least one vertex of G , by swapplng Rand S if necessary. and also i 

and i, we may assume that 11 sees S;. Now 11 must see s J (If not, elther 11 8i r, 8 i ri Is 
1 . 

a. 0 6 or v Si r, Sj ri St Is a Pc). This implles that v misses rj (if v sees ri' then elther 

V 8j ri 8, rj ls a 01) or {v ,r, ,8, ,ra ,s, ,ri ,Sj } induces L 7): by symmetry, v also misses ri' _

Now observe that 11 Is a twin with respect to r, of G ~ 

Case 2: v ls universal on {r, ,s, } 

Sinee v misses at least one vertex of G, Jj'y swapplrtg Rand S If necessary, and also i· 

and j, vie m'ay aSsume that 11 misses Sj Now 11 sees rJ (to avoid a C 6 on v r, Si rJ s,), 
\ J 

misses Sj (else 11 and the Ps 8; r, S, rJ s, contradlct (*) of the Stronger Lemma), and 

flnally sees r, (to avold a CI) on 11 rt 8 J r, 8,). Now 11 15 a twin wlth respect to 8, or 

G - {r, ,8, }. 

"f 
Ir G has at least elght .vertlces then (slnce r, ls lsolated ln GR) nelther GR nor 

{lR ls 2K 2' and 50 we can---apply the R.eduction Lemma. Let ri ,r j be as ln the 

A. 

\ 
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conclusion of the Lemma; set Gj :=' G - {ri ,8i}' Gj - G,:" {rj ,8j } ln case (a) and Gj 

: ' 
= G - {ri ,Bj}, Gj = G - {rj ,Si} ln case (b). By the induction hypothesls, there Is a. 

vertex wi ln {r, ,s, } such that v lB a twln or Wj wlth respect to G j - {r, ,8, } and there 

,Is 'a. vertex Wj ln {r, ,s, } such that such that v Is a twill of w; with respect to Gj -

{r, ,s,}. We need only prov.e that Wj = Wj' , 
, 

Assume the contrary: wi "" Wj. Now Wj and Wj are antl-twlns ln G. However, 

t1 ls. a twln of both with respect to the non-empty graph G - {ri ,Si ,Tj ,Bj,r, ,s,}, a 

contradiction. This concludes the proof of the Zero-Two Lemma. • 

The Attachment Lemma. Let H be a graph in M, let G be a strong mirror 

sübgraph of H, and let v be a ve,Ttez of H - G that ;8 partial on G. Then either 

(1) theTe;s a stTong m;rror pa~tition. {R,S] of G sJch that 

t1 ;s universal on Rand null on S, or 

(11) in efJery stro'ng miTror partition /R,SI of G there <J couple {T, ,s,} 

sud that v iB a twin of one of r, ,s, with respect to G - {r"s, }: 
" 

Proof. We may assume that (11) does not hold; now the Zero- Two' Lemma 

gua.~ntees the existence or a strong mlrror partition IR ,S 1 of G 8uch tha.t v Is partial 

on every couple {r, ,8, }. 

Flrst we clalm that 

(1) if GR has at least three components then v Is partittl on at Most two 01 them. 

, \ 

To justity this claim, assume the c~ntrary: GR bas comP9Dents R l' il 2' R a-(and . - -

p~lbly others) such that v la partial on RI and R 2' Let SI' S 2' S 3 be the 

" corresponding components of Gs . Now there are adjacent vertlces a and z ln RI' 8uch 

that v sees z and misses a; let b denote the mate or z. Nowa E R l' b E SI' and 

,J 

-
, . 'L-~ ____ ~ ____ ~.L-•• __________________________ __ 
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li • b , fi âre palrwlBe non~adJacen t, By symmetry, tbere are vertlces c and d sucb that c 

e R *d e S 2 and 'uch tbat c ,d ,v are palrwlse non-adjacent. 

- . 
Flnally, let {% ,g} b~ a couple with x .. E R3' Y E 8 3, Swapplng Rand S 1C 

necessary, we may assume that v sees %, Now we wlsh to flnd a vertex z ln S 3 that 

• misses %. Ir R 3 = {%} then J( GR ,%) = 0, and '50 we' may set z = y; eIse let z .b~the 
" . 

mat~ oC any nelghbour oC % ln R 3' Now observe that azcbxd is a CG' Since v sees % 

and misses a,b,c,d, eitber v%daz is a C 6 or tndazc is a PG, a contradiction. 

Next we clalm th at 

(2) GR has no eoniponents RI' R 2' R 3 such that Il ls 

partial on R'l' unlversal on R 2' and null on R 3' \ 

To justlCy thls clalm. assume the contrary. Al? ln the prooC oC (1), we find a vertex a ln' , 

RI and b ln ~ 1 such that lI.b ,v are- pairwlse non-adjacent. Now let c be any vert,ex ln 

R 2" There ls a vert~x d, ln S 2 that mlSS~s c: if R 2 = {c } then J( GR .c ) = 0, and we 
\ .... 

J ~ • 

ma.y let d be the ma.te oC c, èlse we ma.y let d be the mate oC a.ny neighbour oC c ln 
. 

. R 2' Flnally. let e be any vertex ln R s' Note that v ~I nuU on 8 2; It Collows that . . 
tlcbeda lB a PG• acon tradlctlon. 

Flnally, replaclng H by H If necessary, we may ~sume that GR 1s disconnected. 

Let us distlngulsh between two cases. 

case'l: v ls partial on no component of·àR " 

ln th!s case, let RI. be the set or nelghbours oC v ln R , and let SI be the set or non

( ~ 
geig-hbours oC t1 ln S. Note that IR 11 > 2 (else RI = {r, } and v ls a twin of r, wlth 

, '. 

respect to G . - {r, ,8~ } ). Note that RI and R - R 1 a~e homogeneous ln _ ~R; by the 

Localization Lemmq, [R 1 + S - 8 l' SI + R - R llis a strong mirror partition of G . 

Since fi is unlversal on RI + S - 8 1 and null on SI + R - RI' property (i) holds. 

.. 
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Case 2: fi Is partial on sorne" component o~ G~. 

~ J" ,.1 ~ é 

:. «'By (1), fi 1s partlai on precisely .e component RI of' GR : • ~e shall argue by ind~IC?~ 

o'n IR 11. By (2), fi is universal or null on R, - RI' Note t):l~f IR - R 11 > 2 (becD.use 
, -

GR ls strong); hence RI and R - R"l are bomogén-eous in GR" Set R' = R 1 + S - S l' 

st = S 1 + R - R 1" By the Localization Lemma, iR ',S', is a strong mirror partition or 

G. Note that R' induces a disconnected ~ubgraph of (J, and 50 does RI" By (2), v is 

partial on at most one' component of ~. If fi Is partla.l on precisely one such 
• ~ "" 1 

component then we are done by the induction hypothesls applled to ute' mirror partition-

1 lR ',S', of G; if fi is partla.l on no such cômponent th en we are done beca.u~e the mirror 
/ 

r partition [R ',S'lof G satisfles the.hypothesis or Case f. This concludes the proor of the 

Attachment Lemma .• 
. . 
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The Collowlng two lemm9,S are both 'statements of the fOllowlng forrn: suppOs~ that 
\ 

G Is a strong mlfror subgraph of a graph H ln M, and suppose that v Is sorne vertex 

that attaches to G ln a certain way; then there Is another vertex (or there are other 
, 

vertlces) ln G that attlach to H + v ln another certain way, These lemmns are the InSt 

tWQ berore the proof of Theorem 4.1. 

The First E'xtension Lemma. Let G be a 8trong mirror subgraph of a graph H in 

M, let fR,S] be a strong mirror partition of G, let ~GR be di8connected, and let v be a 

vertex in li. -1Jthat is universal on Rand null on S. Then there i8 a vertex w in H - G 

that mi8ses v, ;8 universal on S, and nul/ on R. 

Proof. We shaH argue by Induction on the number of vertlces in G. Ir G has 

, \. . 
preclsely six vertices. then.lit is a C (J and the deslre~ conclusion Collows by (2) of the C (J 

Lemma. 

Another case that will 'Dë treated separately Is that of G = 2[( 2' .Assume that G 

'is labelled as ln Figure 4,18. Applying the Pt; Lemma to 8 "r:lv r 3S l' we ftnd a vertex w 

'-
that sees 8 4,8 1 and misses r 2,r Sl v. Now w 

..J 
W 818 lIr 28 ... and W 8 4S sr SS l' respectlvely), and 

must see S2 and 8S (to avold a C 6 ~ 

\ ' 

W must miss ri and r" (to avoid a Pc 011 

W r lI818 4S 2r 1 and w r 38 ,,8 1~ 4' respectlvely). 
'" 

"'" Now we may assume that G has at least elght vertlces and that G ::/: 2[( 2' Let 

ri ,rj be as ln the Reduction Lemma, and let Si ,8j be thelr respective mates. wlth respect 
, 

to thll partition IR ,S 1. Observe that GR has a component R.o that includes neither ri 
t,. 

nor rj' Let S 0 be the correspondlng component of Gs . Let r, be any vert'ex ln R 0' Il 

R 0 = {r,} then let 8, be the mate of, r" else let,8, be the Iftate of any 'nelghbour or r, 

ln GR' Note that 8, ls ln So.and'missCf! r,. Ir ri ,rj are adjacent then the 8ubgraph oC 

• 
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If conclusion (a) of the Reduction Lemma holds then, by the Induction hypothesls, 

we ftnd vertices Wj and wi non-adjacen t to v such that wi Is universal on S - s, and 

null on R - ri, and wJ Is universal on S - si and nuU on R - rj' In case rj ,ri are 

non-adjacent, case (lA) of the Little Local Lemma guarantees that one of Wj ,w) Is 
o 

universal on {Si ,Sj ,S,} (and therefore oô S), and nuU on {r"r i ,r, } (and theref~ on 

R). In case ri ,r j are adjacent, c:,\Se (,2A) of the' Little Local Lemma guarantees that w, 
\ . 

in unlversal on {Sj ,si ,s, } and null on' {ri ,ri ,r, }. 

If conclusion (b) or the Reduction Lemma holds, th en by the Induction hypothesrs,-

we ftnd a vertex W non-adjacent to v such that W Is universal on S - s) __ and null on 

R - ri' But nOfN, by the Little Local Lemma (apply cases (lB) and (2B) if ri ,r j a.re 

respectively nOn-adjaCent. and adjacent\ W Is universal on {Si ,8j ,S,} a.nd n~~l on 

• 
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The Second Extension Lemma. Let G be a strong mirror subgraph of a graph H -
in M, let [R,Sj be a strong mirror partition of G, let r, be isolated in GR, and let v be ta 

vertex in H-:--G that is universal on R - r, and null on S - s, . 

(1) If V sees both r, and s, -. 

then some vertex w misses v, sees both r, and s" is universal on S - s, and 

null on R - r, . 

(2) If v sees r, and misses s, 

then 80me vertex w mis8es v, ;s universal on Sand null on R. 

(3) If v misses both r, and s, 

then there· are vertices W,%,y such that the subgraph induced by {r, ,s, , v, w,x,y} 

is as shown in Figure 4.15A,· and such that 
~ 

both % 7nd y are universal on S - s, and null on R - r" and w is. universal on 
.--..--

R - r, and universal on S - s, . 

(4) If V misses r, anlf"sees 8, 

the't' there are vertices W,%,y Buch that the subgraph 'induced by {r"s, ,v, w,x, y} 

i8 as shown in one of F2"gureB 4.15B, 4.150; 4.15D and such that 

both % and y are universal on S - B, and null on R.- r" and w is universal on 

R - r, and universal on S - s, . 

Proof. In aIl four cases, we shaH argue by Induction on the number of vertlces ln 
• 

G. Ir G has precisely six vertices then, ln each of the four cases, the deslred conclusion , 

Collows from the corresponding case of the 0 (1 Lemma; see Figure 4.7. Now assume that 

G has at least eight vertlces. Note that (since r, Is isolated in GR) neither CIRnOr GR 

lB 2K 2; let ri ,rj be as in the Reduction Lemma. 

If case (a) of the Reduction Lemma applles, 

• 

t 

\ 
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set G' = G -:: {rj,Bj}, R' = R - rj, S' = 5 -,8i; 

Il {} R" R Sil 5 set G = G - r j ,B j. = :- r j , = - 8 j . 

Ir case (b) appl1es, 

. --
set G' = G.- {rj,Bj}, R' = R - ri' S' = S - 8-;; 

! 

" {}" " set G = G - r j ,8j , R = R - r j, S = 5 - 8j • 

Proof of (l-}.- By the induction hypothesis, there 1s a vertex w that misses Il, sees 
-

both r, and 8, ' a.nd Is universal on 5' - 8, and null on R' - r,. Since w is universal on 

{r, ,8, }, the Zero-Two Lemma guarantees that w is either universal on 5 - 8, and null 

on R - r, or null on 5 - 8,- and universal on R - r,. To exclude the latt~r alternative, 

we only neeo recall that w 1s universai on S' - 8, . 

Proof of (2). By the induction hypothesis, there 1s a vertex w 1 that misses v, is 

unlversal on 5' and n ull on R'; there Is aIso a vertex w If that misses Il, Is universal on 

Sil and null on R". By the Little Local Lemma, one of w',w" has the properties requlred 

of w. 

Prpof of (3). By the induction hypothesis, there are vertices w ,x,V such that the 

subgraph Induced by {r, ,s, ,V,w ,x ,V } 'is as in Figure 4.15A, and such that x and y are 

both unlversal on S' - s, and null on R' - r, ' and w 15 universal on R' - r, and null on 

s' - 8,. Since w Is unlversal on {r, ,s,}, the Zero- Two Lemma guarantees that w ls 
o 

elther unlversal on R - r, and null on S - 8, or universal on 5 - St and null on R -

r,. To exclude the latter alternative, we only need reeall that w Is unlversal on R' - rt . 

The same argument shows that V 1s unlversal on S - s, and null on R - r,. Flnally, 

sinee v and 8, are twlns wlth respect tx:> G, and slnee x is universal on {r"v}, the --.. 
same argument used onee agaln shows that x lB universal on S - 8, and, null on R - r, . 

" 
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//' Proo! oC (4). Let F be the subgraph or' G Induced by {r, ,s, ,v ,:r ,:r ,y}. By the 

/ . 
induction hypothesls, t.here are vertlces w ,% ,y su ch that F is as ln one of Figures 

~ , 
~.15B, ,/.150, 4.15D, and such that x and y are both unlversal on S - 8, and null on 

R' - r" and w ls unlversal on R' - r, and' n ull on S' - s,. There are three cases to 

consider. 

Case B: the subgraph F la as ln Figure ~.15B. 

Since 8, and v are twins wlth respect to G, and slnce w is unlversal on {r, ,v}, by the 

. Zero-Two Lemma It rollows that w Is elther unlversal on R - r, and null on S - 8; or 

null on R - r, and universal on S - 8,; to exclude the la.tter alterna.tIve, note that w ls 

unlversalon R' - r,. Slnce % and y are respectlvely null and unlversal on {r, ,v}, the 

'same argument shows that both x and y are universal on S - s, and null on R - r, . 

Case C: the subgraph F ia as in Figure 4.150. 

Sin ce x,y ,w are each either universal or null on {r, ,s,}, the Zero-Two Lemma together 

with x and y being unlversal on S' - s, and w belng unlversal on R' - rt Imply that % 

and y are both universal on S - s, and null on R - r, ' and W ls unlversal on R - r, 

and null on S - 8,. :. 

Case D: the sub~~aph F is as ln Figure ~.15D. 

Since % ,w are both universal on {rt ,s, }, the Zero-Tt.tJO-Lemma together wlth x belng 

universal on S' - s, and w being universal on R' - r, Imply that x Is unlversal on S -

St and null on R - rt , and w 15 unlversal on R - rt and null on S - -t, Flnally. note 

that v and s, are twins with respect to G', and that y ls universal on {rt ,u} Now tre 

Zero: Two Lemma together with y being unlversal on S' - 8, Implies that y is unlvcr~al 

on S - s, and null on R - r,. This concludes the proof of the Second Extension 

Lemma .• 

• 

\ 
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We now prove the main result oC thls chapter, namely, that the ooly unbreakable 

murÎcy graphs are L 8' LOI and strong mirror graphs. 

Proof of Theorem 4.1. Let H be an unbreakable murky gr ap h;. IC H con tains 

L a as an induced subgraph, then by the L 8 Lemma, H is either L 8 or L o. 

Thus we may assume that H does not contain L 8' and so H Is in M. Now note 

that the WT Star Cutset Theorem oC Chapter 3 guarantees that H con tains a chordle§ 

cycle with at least Ove vertices, or the complement oC suc~ 'a cycle. 'Since H Is murk~, 
H does not contaln C li' C", or ë", for k > 7. Thüs H con tains either C cs or ë cs as an 

Induced subgraph; note that both C cs and ë cs are strong mltror graphs. 

Now let G be any strong mlrror sub~raph of H with the greatest number of 

vertlces. If G = H then we are done, 50 assume that G is a. proper subgraph of H; we 

will show that thls leads to a contradiction. 

Since H is unbreakable, there Is sorne vertex ti ln H - G that Is partial on G. By 

the Complement Lemma, by taklng the complement if necessary, we may assume that 

GR is dlsconnected Çnote that v lS partial on G if and only if v is partial on' G in H). 
fil 

By the Attachment Lt;mma, there are two possible cases. 

Case (1): there is a strong mirror partition {R,S] of G su ch that v is universal on R . " 

and null on S. 

In thls case, by the First Extenswn Lemma, there Is a vertex w that misses v, 18 null on 

R ' , R, and unlversal on S. Let = R + w and S = S + v. Now we claim that the 

partition IR ',S'J, whose couples are {w , v } and aIl couples of IR ,S J, Is a strong mirror 

partition. To justify thls claim, we need only show that R' and S'are strong P,.-free 
. ~ 

graphs, that f(GR"w) = f{Gs',v), and that for every couple {rj,sj} of [R,SJ, 

\ 
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. 'Slnce GR ls ~ dlsconnected strong p..,-rree graph. lt has at least two components. 

GR' lB Cormed by adding the Isolated vertex w to GR ; thus GR' ls p .. -rree. and hn.s at . 
least three components; thus GR' Is strong. Since w Is an isolated vertex ln GR' • 

I(GR , ,w) = O. Similarly. Cs' Is a strong ~-free graph, and j(Gs ' ,v) = o. 

Flnally. let rj be any vertex of R, and let X be the vertex set of thee component of 

GR contalnlng r'i' Note that X Is also the vertex set of the component of Gi, 

contalnlng r). IfJXI > 2. then X Is a homogeneous set of both GR- and- GR" and 

I(CR ,ri) ~ f(Gx ,ri) = I(GR , ,ri)' by the Localization Lemma. On the other hand, if 

IX 1 = l, th en r j Is a singleton ln both GR and CR' , and j( GR ,ri) = 0 = j( GR' ,r) ). 

Slmflarly, j(Gs ,Sj) = j(Gs ' ,si) for aU Si ln S. Thus the clalm holds ln this case, and 

" 1 [R ,S] lB a strong mlrror partition; contra.dlctlng the assumptlon that G was a larges~ 

strong mlrror subgraph of H. 

Case (II): in every strong ~irror partition fR,S] of G there is a couple {r, ,S, } 8uch 

that v ;s a twin of one of r, ,s, with respect to G - {r, ,s, }. 

By the Isolation Lemma, there 15 a strong mlrror partition of G such that r, 18 a 

singleton ln whichever of GR or GR la disconnccted. By the Complement Lemma, Il Is 

also alstrong mirror graph, with the same partition; v is partial on G ln H If and only 

- - 1 
If v 1s partial on G ln H. Thus, by taking the complement of II If necessary, wc may 

assume that!i\rt is isolated ln GR Now v is a twin of either r, or s, wlth respect G -

{r, ,s,}; by swapping Rand S If necessary, we may assume that v Is a 'twln of 8, . 

Thus v ~ unlversal on R - r, and null on S - s,. Now the Second Extension Lemma 

applles, and there are four subcases to consider. (Sec Figure ./.1.) 

• 
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_ Subc~e (1): v sees both r, and 8, ~ and 80me vertez w misses v, sees both r, and 8,:1 

and i6 universal on S - s, and~1I on R - r,. ' ( . 
, - , ~ 

Let· R = R + tJJ and S = S -ft,. v. It is a rou tine exerclse to show that the partition 
, ~)-

IR',S'], whose couples are' {w ,8,}, {r, ,v}, and aIl couples of IR - r"S - 8,], is a strong 
1 

mirror partition. 

Subcase (2): v sees r, and misses s, , and some vertex w misses v, is universal on S, 

and null on R. 

Let R' = R + w and S' = S + v. It is a routine exerclse to show that the partition 

(R',S'j, whose couples are {w ,v}, and aIl couples of (R ,S], ls a strong mirror partition. 

~, \ ' 

Subcase (3): v misses both r, and 8" and thére are vertices w,x,y 8uch tilal the 

Bubgraph induced by {r, ,s, ,v,w,.x,y} is as 8hown in Figure -I.15A, and such that x and yo 

are both universal on S - s, and nu Il on R - r, , and w is universal on R - r, and nu/l on 

s- 8,. 

Let R' = R + {x,~} and let S' = S + {v,w}. It ls a routine exercise to show that 

the partition [R',S'], whose couples are {r, ,w}, {x ,8,} and {y,v} and aU couples of 

IR - r,..&- - 8, ] is a strong mirror partition. 

Subcase (4A): v misses r, and sees s" and t!Jere are vertices w,z,y such t!Jat the 

8u1Jgraph induced by {r, ,s, ,v,w,x,y} i8 as shown in Figure 4.15B, Figure -1.150, or Figure 

-1. 15D, and such that x and y are both universal on S - 8, and null on R - r" and w is 

universal on R - r, and null on S - s, . 

Let R' = R + {x,y} and let" ""'S' = 8 + {v,w}. If the subgraph induced by' 

{r, ,8, ,v,W ,z ,y} is as shown in Figure -1. 15B, th en the partition [R',S'] with couples 

{r, ,8, }, {z,w 1.{v'v}, and ail couples of (R - r, ,8 - s,lis a strong mirror partition; 

If the subgraph lnduced by {rt ,8t ,v ,W ,x ,y} ls as shown in Figure -1:150, then the 
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partition [~',S') with couples {r"v}, {y,lO}, {:r ,8,} and aU couples or [R - r,,8 - 8,1 

ls a 8trong mlrror partition; 

Ir the 8ubgraph lnduced by {r, ,8"V ,1O,:r,g} 18 as shown ln Figure -1. 15D, th en the 

partition [R',S') with cOl1ples {r,,1O}, {y,v}, {:r ,8,} and aIl couples of [R - r, ,8 - 8,1 

la a strong mirror partition; 

Thus, ln aIl four subcases there exists ln H a strong mlrror subgraph wlth more-

_ vertices than G; thls contradiction completes the prooC of Theorem 4.1. • 
~ 

, 

.' 

':'" 
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4.4 A Characterizatlon or Unbreakable Murky Graphs 

ln the previous section we showed that ft a murky graph is unbreakable, then' lt ' 

" 
mtlst be L 8' L g or a strong mirror graph. In this section, we will prove the cçmverse, 

. 
. namely, that L 8' L g and strong mirror graphs are murky and unbreakable. These two 

~ 

results combine to give theCollowingSl1ara.cterization ~r unbreakable murky graphs. 

Theorem 4.3. A graph i8 murky and unbreakqlJle if and only if it is either La, LOI 

or a 8trong mirror graph. 

The neceSSary haU (I.e. the "only ir' pa.rt) of the theorem is Theorem 4.1; thus to 

pr~ve Th,eorem 4.9, we need only prove the sufl'lciency half of the theorem. This half of 

. .... v' 
tlle theorem is "p!oved as the Collowing four propositions. 

P~oposition U The graphs L 8 and L 0 are murky. 

Proposition 2. Mirror graphs are murky. 

Proposii;ien 3. The graphs L 8 and L" are unbreakable. 

Proposition 4. Strong mirror graphs are unbreakable.' 

, 
Proof of Proposi~ion 1. Since removing 'a vertex Crom L" corresponds' to 

• 1 

removing an edge from K s.s, lt Collows that every eight-vertex Induced subgraph oC L g is 

\ 

L 8' Also, removing a vertex of degree four from L 8 leaves L. 7; removlng a vertex of 

degree three leaves r; 7' Thus every seven-vertex subgr~pb oC L 8' and L ", ls L 7 or r; 7' (t 
, . 

ls a. routine matter ta verlCy that L 7 Is murky; since the com~le.ment of a murky graph 

ls murk.Y, 1:7 is murky. Thus both L8 and L" are murky .• 
" 

Proor ·of Proposition 2. Recall the Mirror Proposition oC S~ctlon 4.2: every 

lnduced s·ubgraph of 'a mirror graph has twlns or an ti-twlns. Since nelther C 6' Po, Dor 

Po bave either twins or antl-twlns, mlrror graphs cannat have C 6' Po"or Pli as Induced 

" 
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subcraphs; thu~ mirror graphs are murky" .--
~ , . , 

Recall tha.t t.he neighbourhood N(v) of a vertex v ln a graph G ls tbe set of ail 

vertices of G - v that see v, and that the non-nelghbourhood M (v) ls tbe set of ail -, vertices of G - v that m!SS v. A pure star cutset of·-8, graph G is a set ~' = v U 

N(v), for sorne vertex v ln G, su ch that G',,: S ls dlsconnected. The dllThrence 
- \ 

. between - a pure st,ar cu tset and a star. cu tset lB' th at a pu re star cu tset conslsts of a 

vertex together wfth ail of Its neighbou.rs, whereas a star cutset conslsts of Il vertex , , 

togetber wlth any subset of lts nelghbours. We, will, caU a graph G wlth at least three 

vertlces breakable If elther G or '(j has a star cutset. The following clalm helps to .. 
shorten the proof of the final two propositionl;l. 

Claim (Chvâtal, private communlc'à.tion). Let G be a breakable graph ,with al Least 
o ' 

./ive vertices. Then lither d or lJ has a pure star c,utset. 

o " .. 
Proof br Claim. Let G be a breakable gtaph wlth no pure star cutset. Chvlital 

- observed [1gS5a] that this irnplles the existence of vertlces tI ,w ln G , su ch that v sees 
Ir -1 

. w, and v domlnates w, l'low, If tI and w have:any corqmon nelghbour % in G; then. 

'I~"G ,.~ U N(w) Is. a pure st~ cuts.et of G. (In G, rernov,lng w and al,llts nel_ghbours 

\ 
leaves a graph ln wblch tI Is a singleton, ~nd % ls ln sorne other component.) Thus we 

~ 

may assume- that the only neigh b.$)ur of!l' in G is v. Let H = G - {v ,w}. Now 

there are two cases to conslder. 

-
Case 1: sorne vertex z (other than w ) sees, v and misses sorne h EH. 

In thJs case, we are done: ln G, z U N (z) Js a pure star cu tset. 

Ca:se 2: every vertex z (other than z) that sees v sees ail vertlees in H. 
'; 

Let S be t.he set of vertices of H tbat -see v , and let T be ail other vertlces of H. Note 

that tbe bypotbesis of Case 2 implles that S ls a clique, and tbat every vertex in S sees 

__ >_.1_-",~_~~ ____ _ A. 

.. , .. 
.' 1 
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every vertex ln T. Now, l! there are any two non-adjacent v.ertlces a,b ln T, then, ln 

G, a U N(a) (whlch Includ~ aIl of S) Is a pure star cutset. Otherwise, T is_a clique, 

and therefore the vertlces of H form a clique. But now, there is a vertex h E H 8uch 

" th a; ln ël, h U N (h ) Is a pure star cutset: if T ls non-empty, plck h any vertex ln T; 

else, plck h any vertex ln S (in each case, in G N(h) Is a subset of {v ,w}, and the 

--. vertices ln M (h ) form a stable set; ,slnce G has ât least five vertices, the stable set has 
, 

,at least two.) This completes the justification of the Claz·m .• 
! 

Proof of Proposition 3." To prove that L 8 Is unbreakable, by the preceding' 

~ " 
clalm and the fact that L 8 Is seif-complementary, we need only prove that L 8 has no 

pure star cutset: we ,need only prove that, for each v-ertex v E L 8' M (v) is connected. 

An automo~phism of a graph G is a permutation P of the vertfc~s su ch that x and y" 

are adja.cent If and only if P (x) and P Cy) are adjacent, for aIl pairs of vertices x and 

Y" l'\ote that for every pair of vertlces of L 8 1 with the same degree, there is an 

automorphism whicb m.aps one vertex to the other. Label the vertlces of L 8 as)n .Figure 

4.9. Vertex 1 has degree 4~ the subgraph Induced by M (1) 18 a P 3' and is hence 

, 
cOJlnected. Vertex 5 has degree 3; the subgraph induced by M (5).is a C 4' and Is hence 

connected. ~u~_ L 8 15 unbreakabie. 

To prove that L g Is unbreakable, by the precedlng clalm and the fact tbat Lg .Is 
1 \. 

selt-complernen~ary, we need only prove tbat L g has no pure star cutàet; I.e. we need 
• 

only prove that, for each vertex 1) E L 0' M (v) 1s connected. Note that for -any two :' 
\ Q 

vertlces ln L g tbere Is an automorphism wblch maps one vertex to the other. Tbus we 

need only show'tbat, for any vertex tI of Lo, M(v) is connected. Pick any vertex of Lo; ..... 
lts non-nelghbourhood Induces a 0 4 , and ls bence connected. Thus Lois unbreakable. _. 

l 
/ 

V 

• C 

• 
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o Proof'of Proposition 4. To prove that a strong mlrror graph Is unbreakable, by 

~he preceding clalm and ~h~ ta.ct -that..lt ~..!I-, ~trong~irror graph (see the Complement 
...... , 

o ~ ". ,. 

Lemma) we need only ~how that no vertex ln G has a pure"l?!!-! cutstlt. By the IsolaCio"n , 
Lemma, there is a strong mirror partition IR ,S 1 su ch tha.t (vis in R and) Il 4s a 

singleton ln whichever of GR or GR ls disconnected. Let w b~ th! ~a.te of 1> • 

Case 1: GR 15 disconnected. 

In this case f(GR ,II) = O. and Il misses w. Thus M(v) = R - fi + w; sinee w sees 
, 

'\ 
• -""- ali of.oR .:.. v , M (II) is c~:>nnected. 

, 
C3{le 2: GR 'ls disconnected. 

In this'case f(GR.II) = 1, and Il sees w.
p 

Thus M(v) = R -,11. But slnee G Is 

strong, the -ract thata v ls a. singleton in GR Implies that GR has at least three 
/ 

components, and ~o" GR ::'II is disconnected, and therefore GR -li 15 connected. This 

concludes the proof of l'roposition 4. a·nd also the proof of Theorem .f.~ .• 

-'" \ 
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AppendlX 

The followlnJ result appears as Theorem 1!.1!.1In Olarlu [19861. 

Theorem (Olarlu). No minimftl imper/eet graph contaim anti-twin6. 

\ 
Proo!. ~me the statement Calse: some minimal ImperCect graph G contalns antl·twlns 

u and v. Let A denote the set oC aU nelghours oC 11 other than t1 • and let B denote the set of 

nelghbours of 11 other than u . 

. 
Let Of and w denote the number oC vertlces ln a largest stable set and cllque respectlvely oC 

G. Now o'-.!. 

B con tains a cUque of size w - 1 that extends 

lnto n~ clique or slze w ln A U B . (*) 

To Justlfy (*), colour G - Il by w colours and let S be the colour class that 1ncludes u • 
r ~ 

, Slnce G - S cannot be coloured by w, - 1 colours, lt con tains a cllque oC slze w; slnee G - S - t1 

18 coloured by w - 1 colours, it must be that Il E O. Hence 0 - tI Is a cl1que ln B oC slze w - 1. 

Ir a vertex :r extends 0 - tI Into a clique oC slze w then % rt B (slnce otherwlse :r would extend 

o ln~ a cllque of slze w + 1). Thus (*) 15 justl.o.ed. 

The Per/cct Graph Theorem guarantees that the complement of G ls minimal imperfect; 

thus (*)..!.~plle5 that __ 

A ,cQntalnS a stable...set oC slze () - 1 that extends 

lnto no s~able set of slze a in A U B . ( .. ) 
Now let C be the cUque Ceatured ln (li<) and let S be the stable set 'Ceatured ln (**); let X 

be a vertex ln C that bas the smallest number of nelghbours ln S. By (U), % has a nelghbour z 

ln S; by (*), Z 15 non·adjacent to sorne 11 ln C. Slnce 11 has at l~ast as many nelghbours ln S as 

%, U. must bave a nelghbour w ln S that Is non-adjacent ta :r. Now U,Z,%,lIIW lnduce ln G a 

cbordless cycle. Thus G lB not mlnlmallmperCect •• 

" -
-

\ . 
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