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ABSTRACT

World maps contribute a significant part of the interactivity and
entertainment to modern video games. While large-scale indus-
trial world map generation tools exist, their use usually implies
a substantial learning curve, and the cost of licences restricts the
accessibility of these tools to individual game developers.

In this paper, we introduce a world map generator for Unity-based
games that exploits model-based techniques. After the game-specific
concepts of the world map are captured and turned into a meta-
model, the world map generation problem is first formulated as a
consistent graph generation problem solved by a state-of-the-art
model generator. This graph model is subsequently refined into a
concrete world within the Unity game engine by (1) mapping the
abstract graph elements into Unity game objects and (2) creating a
height map based on user-defined properties with the Perlin Noise
technique. Demonstration video: https://youtu.be/03BbD61EKpk

CCS CONCEPTS

« Software and its engineering — Software design engineer-
ing; « Theory of computation — Automated reasoning; « Ap-
plied computing — Computer games.

KEYWORDS

world map generation, graph generation, video games, model-based
engineering

ACM Reference Format:

Bogqi Chen, Dylan Havelock, Connor Plante, Michael Sukkarieh, Oszkar
Semerath, and Daniel Varré. 2020. Automated Video Game World Map
Synthesis by Model-Based Techniques. In ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems (MODELS
"20 Companion), October 18-23, 2020, Virtual Event, Canada. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3417990.3422001

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MODELS ’20, October 18-23, 2020, Montreal, Canada

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8135-2/20/10.

https://doi.org/10.1145/3417990.3422001

Oszkar Semerath
Budapest University of Technology
and Economics, Deptartment of
Measurement and Information
Systems
Budapest, Hungary
semerath@mit.bme.hu

Déaniel Varrd
McGill University
Montreal, Quebec, Canada
daniel.varro@mcgill.ca

1 INTRODUCTION

Motivation. Virtual maps are a key constituent of modern video
games, which present several square miles of complex terrain to the
players!, and the design of those maps takes a substantial undertak-
ing in game development. To support map development, complex
map editors are created with the game, which are domain-specific
modeling environments mixing graphical modeling and program-
ming or scripting languages. Moreover, procedurally generated
content has become a highlighted feature of several games [17],
which means that the application is able to automatically generate
game maps before or during the game session in order to increase
the size of game world and content and to enhance replayability.
Some well-known generators are even exhibited as art pieces [1].

Problem statement. Creating maps is a challenging and cumber-
some task with little support for automation. Existing map devel-
opment tools [3, 18] have a steep learning curve with a complex
development process, which can be prohibitive for small teams or
individual (indie) developers. Additionally, their expensive licence
is impractical for games with a smaller scope.

Each map should satisfy the domain-specific requirements of
the game (i.e., each map should be playable). Additionally, map re-
sources are expected to have a realistic and fair distribution. Existing
solutions for automating map generation are frequently error-prone
(thus frequently resulting in glitched or unplayable maps?), or they
skip the generation of sophisticated features (which results in maps
with significantly fewer features than manually created maps>).

Objectives and contributions. This paper aims to provide tool
support to simplify and partially automate the creation of consistent
video game maps using model-based techniques. In particular,

e We propose a declarative multi-step map generation ap-
proach to first derive an abstract graph structure and then
the precise geometry of world maps.

o Our approach supports logic constraints to enforce the domain-
specific game rules on the maps.

e We provide prototype implementation of the map generation
approach, by integrating a consistent model generator [8]
into Unity [13], the popular game development framework.

1Red Dead Redemption 2: 29mi?, Grand Theft Auto V 312, The Witcher 3: 84 mi®

2 A sample bug repository for world generation can be found at: https://undertowgames.
com/forum/search.php?keywords=map+generation&fid%5B0%5D=6.

3E.g. Brendan Caldwell: Broken Promises of No Man’s Sky, Rock Paper Shotgun
2016, https://web.archive.org/web/20160818024314/https://www.rockpapershotgun.
com/2016/08/17/broken-promises-of-no-mans-sky/


https://youtu.be/03BbD61EKpk
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://undertowgames.com/forum/search.php?keywords=map+generation&fid%5B0%5D=6
https://undertowgames.com/forum/search.php?keywords=map+generation&fid%5B0%5D=6
https://web.archive.org/web/20160818024314/https://www.rockpapershotgun.com/2016/08/17/broken-promises-of-no-mans-sky/
https://web.archive.org/web/20160818024314/https://www.rockpapershotgun.com/2016/08/17/broken-promises-of-no-mans-sky/
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Added value. The proposed approach enables to automatically
synthesize game world maps with structural guarantees. The pro-
posed technique can also support the manual development of such
maps by seamlessly integrating into the game development envi-
ronment which can significantly reduce the development effort.
We selected the Unity game engine as a target platform, since its
free license is preferred by indie developers. With our prototype
implementation, game developers can specify key map features
in a generic, declarative way and define logic constraints that the
solver ensures in all generated maps. Semantically, by generating
game maps for different logic structure, the diversity of the game
maps can be enforced [6, 7]. Our tool chain allows to use alternative
components for graph generation or map visualization.

2 BACKGROUND
2.1 Running Example

Our map generation approach is illustrated in the context of a
typical game world generation problem. In our approach, we specify
the requirements of the world map using three categories of rules:

(1) Structural rules capture the key concepts of a world map as
well as their potential relations. For example, a map may have
regions like sea, island, continent, city, lake and mountain,
The "inside" relation denotes containment between regions,
while the "next" relation links two cities.

(2) Quantity constraints restrict world map generation to con-
tain a designated number of concepts, e.g. 2 islands, 1 conti-
nent, 1 lake, 2 cities and 3 mountains in our example.

(3) Logic constraints help to enforce the domain-specific game
rules on map generation. For example: (i) If two cities are
linked with a "next" relation, then they are connected with a
path there is a path between that exclude water areas (like
sea or lake). (ii) An island should contain at most one city.

While complex quantity and logic constraints are key requirements
of a game mayp, traditional noise-based world map generators do
not guarantee to respect such constraints, thus they will eventually
be violated at some parts of the map.

2.2 Game engines

A game engine is an integrated suite of software tools used for
developing games. Usually, it two main components. The game
editor provides a graphical user interface (GUI) that the game de-
veloper interacts with to modify the contents of a game. Normally,
the editor allows developers to view all game objects in a given
level as well as a real-time preview of the level where the user can
manipulate the game objects (with some extra context-specific fea-
tures). The run-time environment is the core program that executes
the game, which typically includes simulating physics, running
the game logic, handling network communication and rendering
frames.

Unity [13] is a widely used game engine which offers a full 3D
engine and supports game development with C# scripts. Compared
to other game engines, Unity is more lightweight, as such, it has
a smaller learning curve. Since Unity became free for individual
(indie) developers in 2009, it has grown to be one of the most popular
game engines for indie game developers.
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2.3 World map generation

Game worlds. A game world represents an artificial environment
where the players interact with other features or agents (like each
other) during game play. In our context, a game world defines the
static environment (or the initial state of a dynamic environment)
that player can interact with to achieve the game objectives. In this
paper, we aim to aid the development of this design artifact.

Content Generation. Procedural Content Generation (PCG) uses
algorithms to generate content that would otherwise be manually
produced by game developers [11]. In case of static PCGs, generation
takes place prior to the start of the game play, whereas for Dynamic
PCGs, the game content is generated while the game is running.
World map generation is a specific subclass of PCG where a part or
the entire world map of the game is generated automatically from
a set of configurations planned by level artists, who are in charge
of design the game levels or worlds.

A common PCG technique used in world map generation to
synthesize computer graphics with realistic appearance is Perlin
Noise [5]. It differs from other noise algorithms in its intuitive
parameterization and cohesive noise results instead of pure random.
Our tool uses Perlin noise library within Unity to derive the concrete
final visualization (rendering) of the world map.

2.4 Model-based techniques

Graph models. Abstract game concepts in a game level are cap-
tured in our approach by a graph-based model with nodes (objects)
representing game concepts and edges (links) defining relations
between nodes. The possible types of nodes and edges are captured
by a respective metamodel, which is compliant in our approach with
the popular Eclipse Modeling Framework (EMF). However, EMF is a
Java-based technology, which is not directly usable in the C#-based
Unity framework, thus certain EMF-based code generators had to
be adapted or re-developed.

Graph Model Generator. An abstract world map representation
will be synthesized by a graph model generator, which takes a meta-
model, a set of well-formedness constraints and a configuration
file as input, then derives an instance model corresponding to the
metamodel while satisfying the constraints. In this work, we use the
state-of-the-art VIATRA Solver [8] for graph model generation. VI-
ATRA Solver starts from an initial partial model, which is gradually
refined to a concrete model. The actual generation is carried out as
a design space exploration with incremental constraint evaluation
supported by VIATRA Query [15].

3 KEY FEATURES AND ARCHITECTURE

3.1 Overview

The game world generator is available as a plugin integrated with
the Unity game engine. The user can easily configure the generation
directly inside the Unity editor. The generation results are obtained
as a Unity game object within a game scene, which enables the
game developer to perform modifications to the auto-generated
world or continue development using the generated result.

Figure 1 provides an overview of the architecture of our tool. A
level artist first uses the Map Concept Editor to define new region
types to generate the structural relationship between regions and
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Figure 1: Architecture of world map generation

specific properties for each region type. Once all region configura-
tions have been set, the generation can be started with one click of a
button. The entire generation process is carried out in parallel with
the main loop of the Unity Editor, thus the user can continue game
development while the generation takes place. Once the generation
is finished, the concrete world map will be a mesh game object,
with visualization in the preview window of the Unity Editor. Game
developers can easily copy the game object to save the generation
result or fine-tune the resulting map to fit their needs.

The generation process consists of three main steps. First, the
user-defined region configuration is translated and serialized for
graph generation through the Graph Region Serialization. Then,
the VIATRA Solver creates an instance graph model for the setting.
This abstract graph is then post-processed by the Map Visualization
component and finally rendered by Unity.

3.2 Map Concept Editor

The Map Concept Editor is the entry point of our tool for the level
artist to set map-specific region configuration parameters prior to
map generation. Figure 2 shows the region configuration for the
running example to highlight the two main components of the Map
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Concept Editor, namely, the Region Editor (left) and the Region
Property Editor (right).

The Region Editor enables to define novel map concepts and
various relations between them. The structural rules of the running
example are defined with this editor. Map features are specified as
region types connected by insides relation to describe the structure
of the map. The next loop of a city captures the potential reachabil-
ity relations between two cities. The region property editor enables
to set properties for each region type. Such properties include im-
portant visualization such as Octaves and Noise Scale as well as
configuring the number of region instances to generate (Generation
Range Max/Min) to respect the quantity constraints.

3.3 Graph Generation

The graph generation step bridge between game world generation
with a consistent graph solver. It is responsible for transforming
the game world generation problem into a graph model genera-
tion problem, invoking the graph model generation and parse the
resulting instance graph model into C# object representations.

Metamodel. Transforming from the game world generation prob-
lem to graph generation relies on mapping from region configu-
rations to a metamodel (carried out by the EPackage Factory and
Ecore Generator) to respect the structural rules (see Figure 3). The
underlying metamodel contains fixed three abstract classes as su-
perclasses of the game-specific classes: Region, CompositeRegion and
ElementaryRegion. A region can have one or many next region with
other regions. The concrete region classes inheriting the abstract
classes are derived from the user inputs and created in the meta-
model. The critical relationship in the metamodel is represented
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as a composition from composite regions to other regions (insides
relation). It describes the structural information of region instances
that can be later translated to positional information during the
visualization. The classes at the bottom of the metamodel are the
map features defined for the running example. A map feature is
classified as a composite region if it can contain at least one other
feature; otherwise, it is an elementary region. For example, a sea is
a composite region because it can contain continents and islands.
However, a lake is an elementary region as no other regions can be
contained in it.

Constraints and configurations. Since the metamodel only shows
generic composition and associations (e.g. a region can be inside
a composite region), the exact relationships (e.g. an island region
should be in a sea region) and the logic constraints are expressed
using the VIATRA query language [15]. For example, our map needs
to satisfy the constraint that a sea region can only contain islands or
continents. The corresponding constraint is formulated as follows:

pattern isIsland(region){ Island(region); }
pattern isContinent(region) { Continent(region); 3}
@Constraint pattern SealnsideViolation(sea: Sea) {

Sea.insides(sea,ins);

neg find isIsland(ins);

neg find isContinent(ins);

The first two patterns are helper patterns used in the actual
constraint. The logic constraint is specified as a violation, that is,
any graph containing an occurrence of this is inconsistent, i.e. if
there is a region inside the sea and is neither an island or a continent.
We provide a set of default definitions in Ecore Parser of the relation
constraints such as insides, whereas a user can also write custom
constraints directly using the query language.

Moreover, the Ecore Parser examines the tree structure of the
region configuration, creates a starting instance graph with an in-
stance of the root region as the container object. In our running
example, the starting instance graph is a sea object. As further input
of the generation, a configuration file is automatically produced
when game world generation is initiated. This configuration file
contains the references to the metamodel, the constraint specifica-
tion and the seed instance model together with search parameters
such as the required number of instances for each region type.

Graph Generation and Parsing. The graph generation step in our
world map generator tool is invoked by creating a background
JVM process which executes the VIATRA Solver by passing the
inputs prescribed by the configuration file above. As such, Unity
developers are not blocked during map generation. Once the graph
generation is completed, each region in the generated instance
graph is transformed into Unity objects of C# class generated by
the C# Class Generator. The Instance Parser first transforms all the
regions along the insides composition relation and then infers other
relations. It creates a single region instance object of the root region
that contains the entire representation of the instance graph, which
is then used for synthesizing the concrete game world.
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3.4 Concrete World Map Synthesis

The abstract representation of the world map derived by the graph
generation phase only contains structural information of the re-
gions without precise positional information. It is the job of the
map visualization phase to determine where these regions are actu-
ally located, the height map of each region, and how the regions
should look like when rendered on the screen. The map visualiza-
tion phase contains three components to achieve these tasks: the
Region Parser, the Height Map Generator and Height Map Display.

Region Parser. The Region Parser takes the instance graph pro-
duced by the Instance Parser and produces an augmented instance
graph, which maintains the original region types and relationships
but adds positional information onto each region instance. This pro-
cess is achieved by performing a pre-order traversal of the instance
graph where the container of a given region instance is always
visited before visiting the region instance itself. In this manner, we
determine the area taken up by a region instance in the map by
randomly sampling a sub-area of the container area of that instance.
In case of the root node, this area is the entire map.

Height Map Generator. Taking the augmented instance graph
from the previous step, the Height Map Generator produces the
height map of the level. The height map is a 2D array of real (float)
numbers that describe the height of each point in the world. The
final height map is produced by a pre-order traversal of the aug-
mented instance graph where at each node, we generate the height
map of the corresponding region instance. The exact heights are
then generated using the Perlin Noise technique. By combining the
parameters provided by the level artist at the right side of Figure
2. Each parameter will influence the resulting height map of the
region instance. For instance, Noise Scale defines the range of the
random variable the noise generation will sample, whereas Height
Remap defines the curve when sampling the final height of each
region. The height map of each region instance is then annotated
onto the initial height map using the positional information of that
node. A sample auto-generated noise and height map is shown in
Figure 4, where height is color-coded in the noise map.

Height Map Display. This component takes the height map of the
world and converts it into Unity-specific Mesh and Texture objects
which are used to render the world. A Mesh object describes the
geometry of the world and it is used by Unity to render the shape of
the world. A Texture object represents the color of the world and it
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is used by Unity to visualize the final world. To determine the color
of a point on the map, the game developer can specify a height-color
mapping for each region with the objects generated in the scene.
Figure 5 shows a sample output generated automatically by our
tool for our running example. As an illustration, we also added a
comparison with the corresponding auto-generated region graph.
There, a continent contains two cities that are next to each other.
The generated concrete map can then be fine-tuned or directly used
for games by the game developers.

3.5 Related Work on Map Generation

Key research papers and tools related to grid-based map genera-
tion are overviewed in [16]. The main difference is that they are
supporting discrete tile-based maps, while our multi-step approach
transforms the generated graph into continuous geometry.

The conceptually closest approaches [10, 12] are based on answer
set programming as a background technique to solve the logic prob-
lem of generating consistent maps. In contrast, our approach uses
a graph-based background solver which can exclude isomorphic
states [7] to enforce diversity requirements [6]. Other approaches
are using optimization techniques (like genetic algorithms to place
rooms [14]), or other techniques that semi-randomly create maze-
like structures (like cellular automatas [4]). In those techniques, it
is the responsibility of the developer to enforce the domain-specific
requirements of the game on the maps.

Terrain geometry generation is typically carried out by repeated
application of noise generation and region splitting [2, 9]: noise
generation adds random features to the map (e.g., randomizes the
heightmap of the terrain, randomly adds objects like trees into
forest regions), and region selection splits the map into parts (e.g.,
based on the heightmap select parts of the map as forest). Those
techniques are mainly focusing on the generation of realistic and
aesthetic maps, consistency is typically a secondary requirement.

4 CONCLUSION AND FUTURE WORK

In this paper, we proposed an integrated game world map gen-
eration tool chain to synthesize maps respecting game-specific
constraints as requirements. We integrated a graph generator to
derive logic structure of consistent game worlds. Then, we vi-
sualized those structures to concrete game worlds by synthesiz-
ing height maps with Perlin noise. These auto-generated game
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worlds can be manually post-processed by game developers inside
Unity. The GitHub repository of the generator can be found at:
https://github.com/20001LastOrder/Map-Generation

As future work, we aim to combine our approach with modern
noise-based map generators to improve the quality of concrete
maps. Moreover, integrating a numerical solver for visualization
may deduce better positional information of each game concept
concerning the structural information provided by the graph.
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NSERC RGPIN-04573-16 project and the BME-Artificial Intelligence
FIKP grant of EMMI (BME FIKP-MI/SC).
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