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Abstract 

 

Intonation in singing is a complex phenomenon that has received only limited empirical 

attention in the literature to date. Previous studies have observed that singers do not 

conform to either equal temperament or any other fixed-intonation system. However, none 

of these studies have explored whether singers’ intonation practices are systematically related 

to musical context. The main objective of this dissertation is to examine the ways in which 

intonation is related to musical context, in both solo singing and in one voice-per-part SATB 

ensembles. The intonation-related data was extracted automatically from the recordings 

using a score-audio alignment algorithm optimized for the singing voice that was developed 

for this dissertation. Fundamental frequency estimates were made using an existing algorithm 

and a single perceived pitch for each note was obtained by taking a weighted mean of these 

estimates. This dissertation also uses the discrete cosine transform to explore novel ways to 

describe how the fundamental frequency changes over the duration of a note (for example, if 

singers scoop up into certain notes rather than others).  

The dissertation consists of two experiments. The first uses two groups of singers 

(undergraduate vocal majors and professionals) to study the role of musical context in the 

intonation of melodic semitones and whole tones. The impact of accompaniment is also 

explored. Each singer performed the test piece, Schubert’s “Ave Maria,” three times a 

cappella and three times with recorded accompaniment. The participants in the second 

experiment are one SATB ensemble of semi-professional singers and two SATB ensembles 

of professional singers. This experiment explores the ways in which observable melodic and 

vertical intonation tendencies are influenced by the organization of musical context. 

Specifically, the intonation of semitones and whole tones is compared when they occur 

between different scale degrees and vertical tunings are examined in different harmonic 

contexts. The repertoire for the second experiment consists of several short composed 

exercises where the melodic intervals occur over a range of harmonic functions, a chord 

progression by Benedetti, and Praetorius’ “Es ist ein Ros entsprungen.”  
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Sommaire 

 

L’intonation du chant est un phénomène complexe qui a été peu étudié jusqu’à présent. Les 

évaluations empiriques qui ont eu lieu indiquent que les chanteurs ne se conforment pas à un 

tempérament égal, ni à aucun autre système d’intonation fixe, mais ces études n’ont pas 

cherché à déterminer si les pratiques d’intonation des chanteurs sont reliées de façon 

systématique au contexte musical. L’objectif principal de cette thèse est d’examiner les façons 

dont l’intonation est liée à un contexte musical, à la fois pour des chanteurs solistes et pour 

des choeurs SATB (une seule voix par partie). Les données liées à intonation ont été extraites 

automatiquement à partir des enregistrements des chanteurs en utilisant un algorithme 

d’alignement et suivi de partition optimisé pour les voix chantées et développé 

spécifiquement pour cette thèse. Les estimations de fréquences fondamentales ont été 

obtenues via un algorithme existant, et une unique hauteur perçue a été calculée, pour 

chaque note, par moyenne pondérée de ces estimations. Cette thèse utilise également la 

transformée en cosinus discrète afin d’explorer de nouveaux moyens de décrire la manière 

dont la fréquence fondamentale varie pendant la durée d’une note ; par exemple, si un 

chanteur monte plus pendant certaines notes que d’autres. 

La thèse se compose de deux expériences. La première fait appel à deux groupes de 

chanteurs (des étudiants en chant de premier cycle universitaire et des chanteurs 

professionnels) pour étudier le rôle que joue le contexte musical dans l’intonation des tons et 

demi-tons mélodiques. L’impact de l’accompagnement musical est aussi étudié. Chaque 

participant a chanté « Ave Maria » de Schubert trois fois a cappella et trois fois avec un 

accompagnement enregistré. Les participants à la seconde expérience faisaient partie d’un 

ensemble SATB semi-professionnel et de deux ensembles SATB professionnels. Cette 

expérience étudie les manières dont le contexte musical influence les tendances d’intonation 

observables mélodiques et verticales. Plus précisément, les intonations des demi-tons et des 

tons sont comparées en différents degrés de la gamme. De plus, les intonations des 

intervalles verticaux sont examinées dans différents contextes harmoniques. Le répertoire 

utilisé pour la seconde expérience est constitué de plusieurs courts exercices composés, au 

cours desquels l’intervalle mélodique apparaît sur une gamme de fonctions harmoniques, 

d’une progression d’accords de Benedetti, et du « Es ist ein Ros entsprungen » de Praetorius. 
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Chapter 1 Introduction 

 

The main objective of this dissertation is to examine whether intonation in the Western 

tradition is related to musical context, in both solo singing and in SATB (Soprano, Alto, 

Tenor, Bass) ensembles with one voice per part. Specifically, to determine whether the 

tuning of melodic semitone and whole tone intervals is influenced by intervallic direction 

and/or the scale degrees between which the intervals occur. This research also explores 

whether the tuning of vertical intervals is influenced by the number of shared harmonics 

between the two simultaneous notes or whether vertical intervals that occur in a cadential  

non-cadential context. Within this dissertation, intonation refers to the adjustment of the 

tuning of the musical tones that singers produce, as measured by interval size. 

1.1 Motivation 

Intonation in singing is a complex phenomenon that has received only limited attention in 

the literature to date. Previous studies have observed that singers, like non-fretted string 

instruments, do not strictly conform to either equal temperament or any other fixed-

intonation system, such as Just Intonation or Pythagorean tuning (Barbour 1953; Backus 

1977). None of these earlier studies, however, have explored whether singers’ intonation 

practices in the western tradition are systematically related to musical context.  

Intonation is an interesting object of study for a number of reasons. At the most basic level, 

there is the unanswered question of what singers are doing rather than what they are not 

doing. If they are not singing in a particular system, what is governing the consistencies that 

can be observed in repeat performances by a single singer or across singers? There are also 

issues surrounding how much of the singers’ intonation practice is intentional and whether 

this changes with training or experience. Moreover, studying how intonation practices relate 

to the musical context can help us understand the link between what is written in the score 

and the actual music that the audience hears. Findings from this type of research could 

possibly be used to generate more “natural” sounding digital re-creations and also have 

potential pedagogical applications for training vocalists.  
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1.2 Prior Research 

In the early 20th century, psychologist Carl Seashore and his colleagues at the University of 

Iowa undertook extensive work in performance analysis on singing, examining dynamics, 

intonation, and vibrato (Seashore 1936, 1938). Their analyses were based on amplitude and 

frequency information extracted from recordings with phonophotographic apparati. 

Seashore and his colleagues manually measured fundamental frequency (F0) and found that 

the intonation of these estimates deviated from equal temperament. They also analyzed how 

F0 changed over the duration of each note and the impact of note duration on the amount 

and characteristics of this change. They did not, however, consider how variation in the 

collected data might be understood in terms of musical context: due to the laborious nature 

of the analysis, they only examined a limited number of recordings. 

In recent years, much of the work relating to intonation has been conducted at the Speech, 

Music, and Hearing department at the Royal Institute of Technology (KTH) in Stockholm. 

Sundberg (Sundberg 1987) pioneered much of this research, including the examination of 

variations in intonation between solo and choral performance, as well as the influence of 

certain vowels on tuning. The work at KTH in the 1980s and 1990s was based on manual 

annotation of the note onsets and offsets. The F0 estimates were also done manually by 

finding an isolated overtone in a spectrogram representation of the audio. Prame used this 

method in his study of intonation in solo soprano singing, where he found that the 

intonation of notes deviated substantially, though not consistently, from equal temperament 

(Prame 1997). More recent work has used a semi-manual approach, where the beginning and 

ending of notes are annotated by hand before F0 estimation algorithms are employed. This 

approach has been used to study vibrato and pitch glides in solo performances of several 

Schubert songs by Timmers (2007), as well as chromaticism and pitch inflection, with a 

focus on the chromatic inflections for leading tones, in traditional solo Lithuanian singing by 

Ambrazevičius and Wiśniewska (2008). In contrast, Marinescu and Ramirez (2008) used a 

machine learning approach to extract information about pitch, duration, and amplitude for 

sung notes in several monophonic recordings and developed a model of expressiveness for 

timing and amplitude.  
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Vocal ensembles have been studied to a lesser degree than soloists, primarily because of the 

challenge of extracting information from a polyphonic signal (Ternström 2003). For 

example, Hagerman and Sundberg (1980) studied intonation in barbershop quartets, a style 

known for its ‘straight tone’ singing, i.e., singing with minimal vibrato. Jers and Terström 

(2005) used a semi-automated approach to examine intonation and vibrato in a multi-track 

recording of an eight-measure piece by Prateorius. They looked at the average values across 

both the whole ensemble and the individual sections for the mean and standard deviation of 

F0 for each note. Howard (2007a; 2007b) examined pitch drift and adherence to either equal 

temperament or just intonation in an SATB quartet using electroglottalgraphs to obtain F0 

estimates. The results of these experiments are detailed in Section 2.2. 

1.3 Methodology 

A  number of technical and perceptual issues needed to be addressed in order to answer the 

question of whether intonation in Western music is related to musical context. While 

intonation data can be extracted manually, it is an extremely time consuming procedure that 

limits the number of recordings that can be evaluated. Automatic extraction of intonation 

data allows for more data to be collected, which in turn enables more robust generalizations. 

There are two stages to the automatic extraction method: the first concerns the labelling of 

note onsets and offsets, and the second involves extracting fundamental frequency (F0) 

estimates for each frame of audio.  

Labelling note onsets and offsets delineates the temporal period in the signal where each 

note occurs. Since scores were available for the recordings analyzed in this dissertation, 

score-audio alignment techniques were used to automatically label note onsets and offsets 

(Scheirer 1998). For the purpose of this study, an existing score-audio alignment method for 

identifying not only note onset and offsets, but also transient and steady-state sections of 

each note was developed by building on an existing algorithm (Orio and Schwarz 2001), and 

was fine-tuned for monophonic recordings of the singing voice. Once the note onsets and 

offsets were identified, F0 estimates were made with the YIN algorithm developed by de 

Cheveigné and Kawahara (2002). YIN is an autocorrelation-based monophonic F0 estimator, 

producing estimates at intervals of several milliseconds. To address the issue of pitch 

extraction in the ensembles, each singer was miked separately. The minimal bleed-through 
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from the other voices was resolved by using the score to constrain the YIN F0 estimates to 

improve their accuracy in this quasi-polyphonic context. Perceived pitch estimates for each 

note were made by taking the weighted mean across the series of F0 estimates, a method 

developed and perceptually tested by Gockel, Moore, and Carlyon (2001). This research also 

explores an improved way of describing how F0 changes over the duration of the note. For 

example, the first two coefficients of the discrete cosine transform are used to examine 

whether singers adjust the F0 at the end of the first note in a melodic interval in order to 

prepare the arrival of the second note.  

This dissertation describes two experiments, one with solo singers and one with SATB 

ensembles. The first experiment looked of two groups of singers (undergraduate soprano 

vocal majors and professionals) and examined the role of intervallic direction and musical 

context on the intonation of melodic semitones. Each participant sung three a cappella 

renditions of the first verse of Franz Schubert’s “Ave Maria,” followed by three renditions 

with recorded accompaniment, which allowed for the role of accompaniment in melodic 

intonation tendencies to also be explored. Three SATB ensembles participated in the second 

experiment. One was a group of semi-professional singers who performed without a 

conductor and the other two were professional ensembles conducted by Peter Schubert, a 

music theory professor at McGill University. The experimental material consisted of four 

parts, which were each sung at least three times: a set of progressions by Jonathan Wild, 

another music theory professor at McGill, in which semitones occurred in different contexts; 

a set of progressions by Peter Schubert in which whole tones occurred in different contexts; 

an exercise by Giambattista Benedetti built on a two-measure chord progression designed to 

show that singers do not really perform in Just Intonation; and the first verse of Michael 

Praetorius’ “Lo, how a rose e’er blooming,” which was included so that, as with “Ave 

Maria,” the participants were also performing a piece with which they were familiar. As with 

the solo singer experiment, the intonation of melodic semitones and whole tones were 

studied. This experiment also allowed for the study of vertical intonation tendencies, 

specifically whether vertical intervals are tuned closer to Just Intonation when there is a 

greater coincidence of harmonics and if this is influenced by whether the intervals occur in 

cadential versus non-cadential contexts. 
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In order to ensure that the renditions that were studied were “in tune,” the solo singers were 

asked to listen to their recordings and confirm that they considered their intonation to be 

accurate. During the recording sessions for the professional SATB ensembles, the conductor 

indicated which renditions were acceptably “in tune.” In the absence of a conductor for the 

semi-professional ensemble, I appraised the recordings. 

1.4 Contributions 

This dissertation explores a number of issues that have not been addressed in prior research 

on intonation and makes four main contributions to the existing body of work on intonation 

practices.  

• Although it has been shown that singers do not conform to a prescribed intonation 

system, there has not been, with the exception of Ambrazevičius and Wiśniewska’s 

work on Lithuanian music (2008), a systematic study of whether singers tend to 

perform musically similar patterns in similar ways. This dissertation analyzes 

intonation practices for melodic semitones and whole tones and vertical intervals 

with regards to local musical context in order to explore the consistency of singers’ 

intonation tendencies when singing similar material.  

• In earlier research, only a limited number of performances were analyzed and the 

issue of reconciling variation between multiple performances of the same piece was 

not properly addressed. The experiments for this dissertation were designed to 

collect a large amount of similar data from different singers in order to explore the 

range of intonation practices that exist within groups of singers with similar levels of 

ability.  

• Most of the prior research only looked at the mean of the F0 over the duration of the 

note. With its use of discrete cosine transform coefficients, this dissertation explores 

a new way of describing the evolution of the F0 Specifically, at the end of the first 

note in melodic intervals.  

• The development of a tool for automatically annotating onsets and offsets in the 

recordings in the singing voice facilitated the analysis of the experimental data in this 

dissertation and will be made available to other researchers.  
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Aspects of this dissertation have been published in a number of scholastic venues and 

presented at several national and international conferences. I performed the majority of the 

research and writing in all of these publications and presentations, and the specific 

contributions of my co-authored are detailed below. The early stages of this work were 

presented at the 2006 International Conference on Music Perception and Cognition 

(Devaney 2006) and at the 2007 Conference on Interdisciplinary Musicology (Devaney and 

Ellis 2007). The ideas in these conference papers were later expanded in an article for the 

Journal of Interdisciplinary Musicology (Devaney and Ellis 2008) and in paper presentations at the 

2008 Digital Music Research Network Conference (Devaney et al. 2008) and at the Fourth 

Conference on the Physiology and Acoustics of Singing (Devaney and Wild 2009). The co-

authors for these papers, Dan Ellis, Jonathan Wild, and Ichiro Fujinaga, all provided 

guidance in the development of the methodology. Dan Ellis also provided some 

programming source code for the Journal of Interdisciplinary Musicology article, which was 

ultimately not implemented in this dissertation. Some of the work presented in these papers 

also builds on the graduate work I completed at Columbia University with Fred Lerdahl. 

The issues related to studying expressive performance using alignment methods were 

presented at the 2009 International Computer Music Conference (Devaney and Ellis 2009), 

and the refined method used in the experiments was presented at the 2009 Workshop on 

Applications of Signal Processing to Audio and Acoustics (Devaney et al. 2009a). Both of 

these papers were co-authored with Dan Ellis and the latter was also co-authored by Michael 

Mandel. Dan Ellis provided overall guidance for the digital signal processing aspects of the 

papers, and Michael Mandel assisted with the implementation of the hidden Markov model 

used in the refined alignment method. This work was summarized for a psychology audience 

in a forthcoming publication in Psychomusicology (Devaney et al. Forthcoming). 

Preliminary results from the two experiments in this dissertation were presented at 

conferences. Some preliminary results for the solo experiment were presented at the 2009 

Indiana University Symposium of Research in Music Theory (Devaney 2009), the 2009 

Society for Music Perception and Cognition (Devaney et al. 2009b), and in the forthcoming 

publication in Psychomusicology (Devaney et al. Forthcoming). In the Psychomusicology article, 

Michael Mandel implemented the discrete cosine transform approach, which was the basis of 

the approach described in Section 3.2. Preliminary results from the ensemble experiment 
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were presented at the Fifth Conference on the Physiology and Acoustics of Singing 

(Devaney et al. 2010b) and at the 2010 International Conference on Music Perception and 

Cognition (Devaney et al. 2010a). The co-authors for these papers, Jonathan Wild, Peter 

Schubert, and Ichiro Fujinaga, provided assistance in the general formation of the 

experiments and the choice of the experimental material. 

Some of the music theoretical implications of this research were presented at the 2007 

meeting of the Society for Music Theory (Devaney 2008b), the 2008 meeting of the 

Canadian University Music Society (Devaney 2008a), and the 2010 Indiana University 

Symposium of Research in Music Theory (Devaney et al. 2010c). Some ways in which the 

tools developed for analyzing the recordings discussed in this dissertation could be applied 

to other expressive performance studies were presented at the 2010 Meeting of the Society 

for Music Theory (Devaney and Fujinaga 2010). My co-authors, Jonathan Wild, Peter 

Schubert, and Ichiro Fujinaga, provided general guidance in the projects presented in these 

papers. 

In all of the papers mentioned above, I was the first author, completing the majority of the 

research, and except where indicated above, writing all of the text.  

1.5 Structure 

This dissertation has three main chapters, which detail the existing relevant literature 

(Chapter 2), the methods used to extract the intonation data (Chapter 3), and the two 

experiments (Chapter 4). Chapter 2 is divided into five sections, each of which surveys 

scholarly work in a different area related to this thesis: Section 2.1 in the area of tuning 

theory, Section 2.2 in the area of performance analysis, Section 2.3 in the area of pitch and 

consonance perception, Section 2.4 in the area of fundamental frequency estimation and 

transcription, and Section 2.5 in the area of audio-score alignment. Chapter 3 is divided into 

two sections. Section 3.1 details a number of evaluations that were performed for annotating 

note onsets and offsets in audio files with score-audio alignment and describes the algorithm 

that is used. Section 3.2 describes how perceived pitch is modeled for the purposes of this 

dissertation and how the discrete cosine transform is applied to describe the evolution of 

fundamental frequency. Chapter Four has three sections. Section 4.1 describes the set up and 

results of the experiment on intonation in solo singing. Section 4.2 examines the setup and 
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results of the experiment on intonation in SATB ensemble singing. Lastly, Section 4.3 

analyzes and compares the results of the both experiments.  
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Chapter 2: Literature Review 

 

This chapter presents a review of existing literature relevant to the research described in 

Chapters 3 (Automatic Extraction of Performance Parameters) and Chapter 4 (Intonation 

Experiments). The first and second main sections of this chapter provide the context for the 

main research question being posed by this dissertation: how do singers tune? Section 2.1 

focuses on tuning theory and consists of both the mathematical definitions of the most 

commonly discussed tuning systems (Pythagorean, Just Intonation, Meantone, and equal 

temperaments) and a survey of the history of tuning theory from antiquity to the present. 

Section 2.2 discusses the history of performance analysis. This section includes a 

comprehensive survey of studies of intonation and vibrato in the singing voice, as well as 

relevant studies on intonation, vibrato, timing, and dynamics in other instruments. Section 

2.2 concludes with a discussion of various attempts to model performance practices.  

The third, fourth, and fifth main sections of this chapter provide background on the 

techniques used to extract and analyze intonation-related data in the experimental recordings 

used in this dissertation. Section 2.3 surveys the literature on pitch and consonance 

perception, which is important both for calculating estimates of the perceived pitch with the 

fundamental frequency estimates extracted from the recordings and for understanding the 

relationship between vertical consonance and tuning. The literature discussed in Section 2.3 

forms the basis for the analysis techniques described in Section 3.2 and provides a context 

for the experimental data in Chapter 4. Section 2.4 describes the range of approaches for 

automatically extracting fundamental frequency data from recordings and draws links 

between these technical approaches and the perceptual findings detailed in Section 2.3. 

Section 2.5 surveys the current state of the art in determining the location of note onsets and 

offsets in recordings.  Both Sections 2.4 and 2.5 provide a background for the techniques for 

extracting intonation-related data described in Section 3.1.  
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2.1 Tuning Theory 

This section provides an overview of the mathematics of the most widely discussed tuning 

systems, as well as the historical context in which they developed. Section 2.1.1 presents an 

overview of the mathematic and acoustical details of Pythagorean tuning, 5-limit Just 

Intonation tuning, 1/4-comma Meantone temperament, and equal temperament. Section 

2.1.2 details the historical context for the development of these and other tuning systems, 

including well temperaments. 

2.1.1 Overview of Tuning Systems 

Harmonic tones, such as those produced by the singing voice or musical instruments, 

contain an overtone series of frequencies in whole number ratios to the fundamental 

frequency. The distance between these harmonics can be used to derive the tunings of 

intervals, as demonstrated in Figure 2.1.1. The decision about which harmonics are 

admissible into a system is a defining feature between such systems as Pythagorean and 5-

limit Just Intonation system. The historical context for these system is discussed in Section 

2.1.2.  

 

Figure 2.1.1: Some of the interval tunings that can be derived from the first sixteen partials 

of the overtone series.  
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 Pythagorean 5-limit Just Intonation Meantone Equal Temperament 
Ratio Cents Ratio Cents Cents Cents 

m2 256:243 90 16:15 112 86 100 
M2 9:8 204 9:8 

10:9 
204 
182 

193 200 

m3 32:27 294 6:5 316 312 300 
M3 81:64 408 5:4 386 386 400 
P4 4:3 498 4:3 498 503 500 
TT 1024:729 

729:512 
588 
612 

45:32 
64:45 

590 
610 

578 
620 

  600 

P5 3:2 702 3:2 702 697 700 
m6 128:81 792 8:5 814 770 800 
M6 27:16 905 5:3 884 888 900 
m7 16:9 996 9:5 1018 1008 1000 
M7 243:128 1110 15:8 1088 1082 1100 
P8 2:1 1200 2:1 1200 1200 1200 

Table 2.1.1: Interval sizes in Pythagorean, 5-limit Just Intonation, 1/4-comma Meantone, 

and equal temperament. The perfect consonances in Western harmonic practice (perfect 

fourth, fifth, and octave) differ by only a few cents. The bolded values indicate where the 

largest tuning differences occur between the systems, especially for the imperfect 

consonances (major/minor thirds and sixths). 

 

Pythagorean tuning is essentially a 3-limit system (Partch 1974). In this instance,  limit refers 

to the largest prime number harmonic (or its multiple) from which intervals can be 

constructed, such that in a 3-limit system only intervals consisting of ratios of 2 and 3 and 

their multiples are included. In a 3-limit system, only perfect unisons, fourths, fifths, and 

octaves occur within the first few partials. Other intervals do not occur until much further 

up the overtone series, leading to the critique that the major and minor thirds and sixths are 

not “in tune.” For example, the ratio of the first occurring major third in a 3-limit system is 

81:64, whereas in a 5-limit system the ratio of the first occurring major third is 5:4. The most 

common use of Just Intonation is as a 5-limit system, though 7-, 11-, 13-, 17-limits have also 

been used (Partch 1974; Johnston 2006). Just Intonation is sometimes referred to a “pure” 

tuning in the literature because of its close adherence to the lower overtones in comparison 

to not only Pythagorean, but also to Meantone and equal temperament. Table 2.1.1 shows 

the difference in interval sizes between these two systems.   
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One practical issue with both Pythagorean and 5-limit Just Intonation is that the systems are 

only partially in tune for keys within a small number of steps on the circle of fifths (see 

Figure 2.1.2). When the modulation moves further away on the circle of fifths, intervals in 

the new key move further and further away from their tuning in the home key. For example, 

in a simple implementation of a fixed 5-limit Just Intonation tuning, a modulation of one 

step around the circle, from C to G, would result in intervals in the tonic triad, G-B-D, that 

are the same size as the original triad, C-E-G: the B would still be 386 cents above the G, 

and the D would still be 702 cents above the G. However, taking two steps, C to D, would 

result in a tonic triad with a condensed fifth: the F# would be 386 cents (a 5/4 major third) 

above D (assuming a 45:32 tritone in relation to C), but the A would be only 680 cents 

above D. In order to achieve robustness in the face of modulation, it is necessary to temper, 

or adjust the size, of some of the intervals. This is what is done in both Meantone and equal 

temperaments.  

 

Figure 2.1.2: Circle of Fifths. 

 

Meantone and equal temperaments can both be described as redistributions of tuning 

commas, the difference between incompatible compound intervals, such as two chains of 

intervals that end on the same note but not the same tuning. The Pythagorean comma, ~24 

cents, is the difference between twelve perfect fifths (8424 cents) and seven perfect octaves 

(8400 cents). The Syntonic comma, ~22 cents, is the difference between four perfect fifths 
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(2808 cents) and two perfect octaves plus a 5:4 major third (2786 cents), as well as the 

difference between the Pythagorean major third (408 cents) and Just major third (386 cents) 

and between the 9:8 major whole tone (112 cents) and the 10:9 minor whole tone (90 cents).  

In Meantone temperaments, the Syntonic comma is split over a specified number of fifths. 

Therefore, 1/4-comma Meantone tempers all the fifths in the chain by 1/4 of the Syntonic 

comma, 1/5-comma Meantone tempers the fifths by 1/5 of the Syntonic comma, 1/6-

comma Meantone tempers the fifths by a 1/6 of a Syntonic comma, and so on. In 1/4 

Meantone, the first modulation described above (C to G) results in a tonic triad with a B that 

is 386 cents above the G and a D that is 697 cents above the G. The second modulation (C 

to D) results in a tonic triad with the F# 386 cents above D and the A 697 cents above D. A 

comparison of modulations in Just-Intonation and Meantone temperament, as well as equal 

temperament, is shown in Table 2.1.2. 

 Original key 1 step on circle of 
5ths 

2 steps on circle of 5ths 

 C E G G B D D F# A 
5-limit Just Intonation 0 386 702 0 386 702 0 386 680 
¼ Comma Meantone temperament 0 386 697 0 386 697 0 386 697 
Equal Temperament 0 400 700 0 400 700 0 400 700 

Table 2.1.2 Comparison of the impact of modulation around the circle of fifths in 5-limit.  

 
Equal Temperament can be understood as either the equal redistribution of 1/12 of the 

Pythagorean comma across all twelve fifths in the chain or as a system where the size of each 

semitone is 

 

212 . In equal temperament, for example, the size of the tonic triad remains the 

same regardless of how many steps around the circle of fifths are taken. The third of the 

chord is always 400 cents above the tonic and the fifth of the chord is 700 cents above the 

tonic. The trade off for the increased modulation robustness in these systems is with 

intervals that more closely align with those in the overtone series. In 1/4-comma Meantone, 

only the unisons, major thirds and octaves are “in tune” and in equal temperament only the 

unisons and octaves are “in tune.” 

2.1.2 History of Tuning and Temperament 

Questions of tuning have preoccupied many theorists from antiquity up until the present. 

For some ancient Greeks, the definitions of good tuning and consonance were numerically 

based. The Pythagoreans, c. 500 BCE, limited their definition of consonance to intervals that 
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corresponded to monochord divisions, which employed only super-particular ratios of the 

numbers 1, 2, 3, and 4. This series of numbers was known as the tetractys and has the 

property of summing to ten. The tetractys was geometrically represented as a triangle with 

the top row having one point, the second row having two, the third row having three, and 

the fourth row having four. It also had important numerological significance for the 

Pythagoreans: the use of these numbers resulted in a system in which only the octave (with a 

frequency ratio of 2:1), the fifth (3:2), the fourth (4:3), and the compounds of the octave and 

the fifth (i.e., the 4:1 perfect fifteenth and the 3:1 perfect twelfth) were considered 

consonant. The octave compound of the perfect fourth perfect eleventh (8:3) was not 

considered consonant because the number eight does not occur in the tetractys (Barbera 

1984). In contrast, Aristoxenus (c. 335 BCE) argued that the ear, rather than strict 

mathematics, should be the guide for determining consonance. Ptolemy (c. 120 CE) took the 

middle road between the Pythagorean numerically-based methodology and the Aristoxenean 

aurally-based methodology, contending that the Pythagorean approach was essentially 

correct but that it should be informed by aural perception. In his study of harmonics, the 

aim of which was to address both physical and perceived musical phenomena, Ptolemy 

defined a seven-note diatonic scale system with a variety of tunings. His Syntonic Diatonic 

tuning system was one of the first complete articulations of 5-limit Just Intonation, which 

mirrors the sequence of intervals that can be derived from the harmonic series (unlike 

Didymus, whose earlier system was closer to the arrangement of the monochord) (Barbour 

1953). 

The early medieval period’s main contribution to tuning theory was the transmission of 

Greek ideas. The major source of Greek music theory in the late medieval and early 

renaissance periods was Boethius’ De institutione arithmetica musica libri quinque (c. 520 CE), 

which is known in English as Foundations of Music. This text laid out an extensive discussion 

of consonance and dissonance in the Pythagorean tradition. While the Pythagorean doctrine 

of limited consonance was sufficient for the music of the early and mid medieval eras, the 

increased use of the third and the sixth as imperfect consonances in the music of the late 

medieval period created a need for tuning theories and systems in which these intervals 

sounded agreeable (e.g., 5-limit Just Intonation).  
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There was an increasingly widespread acceptance of thirds and sixths as consonant intervals, 

and a number of High Renaissance theorists adjusted the Pythagorean method of 

monochord division to account for these intervals, e.g., Ramis’ Musica Practica (1482). In late 

Renaissance, this method of monochord divisions was expanded to include chromatic and 

enharmonic pitches in Glarean’s Dodechordon (1547) and 5-limit just-intonation divisions by 

Salinas’s De musica libri septem of 1577. The first explicit discussions concerning intonation 

arose around the same time and were inspired by the increased interest in keyboard 

tuning/temperament systems that highlighted the difference between singers’ tuning 

practices and the fixed tuning of keyboard instruments. 

The first attempt to systematically address the issue of singers’ intonation practices in 

performance, as well as to develop a keyboard instrument to guide them, was Nicola 

Vicentino’s L’antica musica ridotta alla moderna prattica (1555). Vicentino put forth two tuning 

systems for his 31-tone gamut. The first was explicitly named “Tuning System for the 

Purposes of Accompanying Vocal Music,” which was conceived of as an augmented ¼-

comma Meantone system, with the first 19 fifths tempered by ¼ of a syntonic comma and 

the remaining 12 fifths tuned pure. The second system was built with a chain of 31 fifths 

tempered by a ¼-comma, which Vicentino conceived, somewhat erroneously, as 31-tone 

equal temperament. This is characteristic of a recurring conflict throughout the late 

Renaissance and Baroque periods, a time when there was the desire for idealized systems and 

the need for practicality in keyboard tuning. The conflict was also articulated in Zarlino’s Le 

istitutioni harmoniche (1558), where both 5-limit Just Intonation and the need to systematically 

temper intervals when tuning string and keyboard instruments are discussed. See Wild and 

Schubert (2008) for a discussion of the mathematics underlying theories of vocal tuning in 

the late Renaissance. 

Debates concerning the most appropriate keyboard temperament continued to dominate 

tuning theory for the next hundred and fifty years. Equal temperament, however, eventually 

emerged as the preferred system over the various meantone and well-tempered systems that 

were developed during this time. Salinas’s De musica libri septem’s also described a number of 

meantone systems, which were developed by distributing different proportions of the 

syntonic comma over a chain of fifths. In his 1581 treatise, Dialogo di Vincentino Galilei… della 

musica antica, et della moderna, Vincenzo Galillei provided practical advice on how to derive 
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equal temperament, suggesting that the 18:17 Just semitone (99 cents) could be used as a 

basis for calculation. In his unpublished treatise from the 1580s, De spiegheling der singconst, 

Stevin described a method for calculating roots. These roots eventually became the basis of 

equal tempered intervals as the 

 

212 . In Harmonie universelle, Mersenne (1636) applied Stevin’s 

roots to the question of tuning and presented a mathematical derivation for the equal 

tempered semitone.  

In spite of these mathematical advancements, well-temperaments were used for tuning 

keyboards until the 20th century (Jorgensen 1991). Well-temperaments were used because 

they minimized the wolf-tone found in ¼-comma Meantone systems and sounded better in 

the keys with the least numbers of accidentals, which were favoured in the pre-Romantic 

eras. Well-temperaments distribute the Pythagorean comma amongst a chain of fifths in 

different ways. In 1691, Werkmeister described a number of cyclic tunings, including those 

based on 1/4 and 1/3 commas. In 1754, Vallotti, and later Young in 1800, independently 

developed a well temperament where 1/6 of the Pythagorean comma was distributed over 

the first six fifths. Later systems distributed the comma more equally, allowing for a greater 

number of keys to be usable. 

With the decline of interest in Just Intonation in the eighteenth and nineteenth centuries, 

discussions of tuning ratios were limited to music theoretic treatises that considered 

arguments for consonance and dissonance. The most notable of these treatises were 

Rameau’s theory of harmony (1722) and Helmholtz’s theory of Konsonanz (1863), which will 

be discussed in Section 2.3.4. More details on the history of tuning and temperament can be 

found in Barbour (1953), Burns (1999), Rasch (2002), and Page (2004).  

By the early twentieth century, tuning theory had become something of a fringe interest that 

was restricted primarily to compositional pursuits (Wilkinson 1988). The question of 

intonation in practice was only rarely considered, as there was no reliable way of assessing 

exactly what pitches were being performed.  One notable exception is Boomsliter and 

Creel’s (1961; 1963) attempt to develop a theory of melody based on their experiments with 

musicians’ preferences for various tuning systems on a monochord-like instrument.  

An increased interest in the accurate performance of early music over the past forty years has 

prompted deeper investigations into historical tuning and temperament. Most of these 

studies are, however, a prescriptive endeavor: the musicians/singers are generally instructed 



 

 

 17 

on how they should modify their usual intonation practices in order to achieve a more 

historically accurate performance, e.g., Jackson (2005). In contrast, the research described in 

this dissertation is descriptive, rather than prescriptive, in its attempt to create a model of 

common contemporary vocal ensemble intonation practices from actual performances. The 

descriptive nature of this study falls in line with a small, but growing, number of studies that 

address questions related to intonational aspects of performance, which are described in 

Section 2.2. 

2.2 Performance Analysis 

This section surveys research conducted in the area of performance analysis from the early 

of psychologists in the first half of the twentieth century, as described in Section 2.2.1. 

Section 2.2.2 discusses different methods of extracting performance data, with a focus on 

audio recordings. Studies of intonation and vibrato in non-fretted string instruments are 

examined in Section 2.2.3. The focus turns to singing in Section 2.2.4 with a description of 

the physiology and acoustics of the singing voice. Studies of intonation and vibrato in the 

singing voice are subsequently detailed in Section 2.2.5. The question of how to model the 

collected performance data is addressed in Section 2.2.6.  

2.2.1 General Overview 

Interest in studying recorded performances dates back almost as far as the birth of 

recordable media. One of the earliest contributions to this field was Dayton Miller’s (1916) 

work on visualized pitch information in recordings with phonophotographic apparati. The 

psychologist Carl Seashore and colleagues at the University of Iowa also undertook extensive 

work in performance analysis (Seashore 1936a, 1938) of pianists, violinists, and singers. The 

researchers employed a number of methods to study recorded performances, including a 

stroboscope technique for frequency estimation and an oscillograph for intensity estimation. 

Piano performances were studied from both piano rolls and films that showed the 

movement of the hammers during the performance. Vernon (1937) studied asynchrony in 

the timing of individual chord notes in performances by four different pianists. He found 

that the degree of asynchrony was performer dependent and ranged from 30–200 ms. He 

also found that the amount of asynchrony was related to melody and phrasing. Studies on 

fretless stringed instruments will be described in Section 2.2.3, and studies on singing will be 

described in Section 2.2.5. 
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Though relatively accurate performance data could be assessed with these methods, the 

methods were extremely labour intensive, which limited the number of pieces that could be 

evaluated. Interest in empirical performance analysis subsequently diminished due, in part, to 

its laboriousness. It continued mainly in the area of ethnomusicology (Seeger 1951; Tove et 

al. 1966) and in smaller-scale studies of acoustic features of instruments (Fletcher and 

Sanders 1967; Beauchamp 1974). 

The resurgence of a more general interest in music performance studies in the late 1970s 

coincided with musicologists moving away from equating scores with music, as well as 

cognitive psychologists’  increased interest in music. Much of this work was on rhythm. 

Bengtsson and Gabrielsson (1980, 1983) undertook a number of systematic experiments on 

musical rhythm in performance. Following up on this earlier research. Todd (1985; 1992) 

studied both rubato and dynamics in piano performance, developing models to account for 

their individual relationships to musical structure and their interaction. Similarly, Clarke 

(1989) examined how rhythm in piano performance could be related to both the structural 

hierarchy of a piece and note-level expressive gestures. In the 1990s, Repp (1990, 1992) 

performed extensive evaluations of timing in the piano music of Beethoven and Schumann. 

He found that the degree of ritardando in musical phrases could be consistently related to the 

hierarchy of phrases and observed that the higher the structural level, the more pronounced 

the ritardandi. Repp (1997) also analyzed the collected data for the Schumann performances, 

as well as performances of a Chopin Etude, and found that the re-created versions of the 

performances based on the average of the timing variations were pleasing to listeners. A 

comprehensive survey of research on musical performance for various instruments up to 

2003 can be found in published reviews by Palmer (1997) and Gabrielsson (1999, 2003), and 

a discussion of the history of performance analysis in musicology is available in Cooper and 

Sapiro (2006). 

2.2.2 Extraction of Performance Data 

Historically, the piano has been the primary instrument of performance analysis for several 

reasons. One reason is the large amount of solo repertoire available. This allows for the 

examination of the performer in a context to which he or she is accustomed, in contrast to 

instruments where it is more typical to play in an ensemble. Another reason is the piano’s 

percussive nature, which makes it possible to study timing with a high degree of precision. 
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One can also acquire accurate, minimally intrusive performance measurements from a pianist 

via MIDI or another technology that can record information about timing of the note onsets 

and offsets, as well as the key velocity, which corresponds to dynamics. In typical 

experiments, regular acoustic pianos are rigged with a system to record the hammer action in 

a digital format. Examples of such pianos are Yamaha’s Disklavier and Bösendorfer’s Special 

Edition. For instruments other than the piano, the precision of the mapping between the 

physical instruments’ motions and MIDI is severely limited. The main limitation of this 

approach is that only performances recorded on specialized instruments can be studied. 

Recently, other approaches have been developed, such as Chen, Wollacott, Pologe, and 

Moore’s (2008) system for extracting pitch information from finger-board positioning on the 

cello, though unlike comparable approaches for the piano this does not provide information 

about note onsets and offsets.  

This extraction of performance data directly from recordings enables the study of a wider 

range of instruments and existing performances. Accuracy, however is still an issue. This is 

particularly true for the singing voice and instruments with non-percussive onsets and 

flexible intonation capabilities. Since the mid-1990s, there has been an increase in studies on 

these types of instruments, particularly the violin (Fyk 1995; Ornoy 2008) and cello (Hong 

2003). The recorded performances in these studies were analyzed using either manual or 

semi-automatic methods, where the notes onsets and offsets were manually annotated and 

the F0 estimation was done with an algorithm. Semi-automated systems are also used for 

analyzing recordings of piano music. For example, the system proposed by Earis uses a 

“manual beat tapping system” for synchronization that is corrected by both a computer-

aided system and human intervention (Earis 2007). The research described in this 

dissertation uses a fully automated method that is described in Chapter 3.  

2.2.3 Studies of Intonation and Vibrato in Instruments  

Early work completed at the University of Iowa included studies by Hattwick (1932) on 

vibrato in wind players and found that wind players typically employed a minimal amount of 

vibrato. Green (1937) looked at whether solo violinists played in equal temperament, 

Pythagorean, or Just Intonation. He observed that violinists tended towards Pythagorean 

tunings. Mason (1960) looked at the same question as Green for intonation in wind quartets. 

He found that the intonation in the wind quartets he studied did not conform to equal 
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temperament, Pythagorean, or Just Intonation. Contemporaneously to Mason, Shackford 

(1961, 1962b, 1962a) studied intonation in string trios and found a wide variety of sizes for 

all intervals studied, including major seconds, major and minor thirds, fourths, tritones, and 

fifths. Loosen (1993) built on Green’s work, exploring whether solo violinists’ intonation is 

closer to equal temperament, Pythagorean, or Just Intonation. He found that in the 

performances he studied the intonation was closer to Pythagorean and equal temperament 

than Just Intonation.  

Loosen also studied the relationship between musical experience and intonation, looking 

specifically at whether instruments influenced musicians’ tuning preferences. In a task where 

the participants adjusted a scale of synthetic tones, he found that violinists’ adjustments were 

closer to Pythagorean tuning, pianists were closer to equal temperament, and non-musicians’ 

adjustments did not converge on a particular tuning system (Loosen 1994). In a listening 

experiment using synthetic scales tuned to different systems, Loosen found similar results in 

regards to instrument and preference for Pythagorean and equal temperament. He also 

found that both groups of instrumentalists judged scales tuned in Just Intonation to be less 

in tune than either Pythagorean or equal temperament (Loosen 1995). Nordmark and 

Ternström (1996) performed a pitch adjustment experiment with synthesized major thirds 

using both undergraduate students and orchestral musicians as subjects. Their subjects’ 

preferred tunings ranged from 388–407 cents, with the average being 397 cents.  

The connection between intonation and other factors has also been considered. The 

relationship between string players’ intonation and training has been explored by Salzberg 

(1980), and the relationship between wind player’s intonation and timbre has been studied by 

Ely (1992). More recently, Chen and colleagues (2008) looked at the role of the physicality of 

cello playing, specifically bowing, on pitch accuracy. Other studies of intonation are 

described in Morrison and Fyk (2002), including the role of training in intonation tendencies. 

Overall, they found that a number of studies support the idea that trained instrumentalists 

tend to play sharp, particularly for intervals larger than a third, and that listeners prefer the 

sharper tunings. Morrison and Fyk contrasted this finding with other studies that showed 

that musical context impacts intonation; however, they did not find much agreement in the 

studies they considered about exactly how ascending versus descending contexts impact 
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intonation. Moirrison and Fyk also discuss the pedagogical implications of such intonation 

studies. 

2.2.3.1 Fyk’s work on Melodic Intonation in the Violin 

The largest of intonation in solo violin performance to date is Fyk’s Melodic Intonation: 

Psychoacoustics and the Violin (1995). Fyk proposed a multi-level model of intonation with a 

degree of independence for interval tuning that corresponds inversely with the structural 

significance of the interval. Through listening tests, she found that both pitch discrimination 

and production are learned. Fyk also explored the role of expectation in the perception of 

intonation, suggesting that some sequences are perceived holistically, and the role of 

categorical perception of interval size. Fyk termed these tuning ranges “tolerance zones” and 

argued that their parameters are influenced by musical context.  

Fyk also undertook empirical evaluation of recordings of two professional violinists 

performing both individual intervals, as well as performances of a piece in theme and 

variations form. From her analysis of these performances, Fyk made a number of 

generalizations about melodic intonation in the violin. She found that both notes in the 

middle of phrases and notes with vibrato were less stable. Also, when violinists repeated the 

same phrase, there was some variation in intonation, particularly at slower tempos, but the 

general shape, or “colour,” of the intonation was maintained. Fyk argues that the glides at 

the end of the notes are intentional and suggests that note connections may influence pitch 

perception. 

Fyk found that there were not any general tendencies towards any prescribed tuning system. 

She observed that smaller intervals (smaller than a fifth) tended to be smaller than equal 

temperament, while larger intervals tended to be larger than equal temperament. She also 

found that when players made a tuning mistake, they tended to adjust the following interval 

to compensate. Overall, Fyk argues that melodic intonation is “dynamically charged,” which 

means that it is influenced by tonal function rather than a prescribed system. She also 

concludes that “correct” intonation is ultimately a combination of acoustic, cultural, and 

individual factors.  
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2.2.4 Physiology and Acoustics of the Singing Voice 

The anatomy of the human voice organ includes the vocal folds, the breathing system, and 

the vocal and nasal tract. In the vocal tract, when the glottis is narrowed, the resulting air 

stream restriction both causes the vocal folds to vibrate and creates a Bernoulli force, which 

in turn tries to close the glottis. The sound created by the vibration of the vocal folds is 

phonation, with the audible frequency equal to the frequency of the vibration of the folds. 

This frequency is affected by the overpressure from the lungs, subglottis pressure, and 

laryngeal musculature, which determines the length and tension of the vocal folds. The 

vibration patterns of the vocal folds vary according to phonation frequency. At lower 

frequencies, the rate of glottis closure is slower.  At higher frequencies, the vocal folds are 

long, thin, and tense, with no glottal waves.  

Lindblom and Sundberg (1970) proposed a theory of how the articulatory system is used in 

singing based on measurements of the x-rays of subjects pronouncing various long vowels. 

They determined that the articulation of long vowels is influenced by the jaw; the lip 

opening, which is primarily dependent on the jaw position, but can also be widened or 

narrowed horizontally; the thickness of the tongue body; the velum, which controls the 

amount of air which flows into the nasal cavity; and the larynx, which can be raised or 

lowered. The physiological basis of vocal vibrato has not been conclusively determined. 

Recently, Titze, Story, Smith, and Long (2002) proposed that vibrato could be due to the 

physiological pairing of the cricothyroid muscle with either the thyroarytenoid or the lateral 

cricoarytenoid muscles as an agonist–antagonist pair. 

One of the most important characteristics of the vocal tract is that the formant frequencies 

are more easily transferred through it than other frequencies. The result is that the 

frequencies in the voice source that are close to the formant frequencies are more audible. 

Formants determine the vowel and are sometimes modified by singers to increase their 

perceptibility in orchestral contexts (known as the singer’s formant). The acoustical 

differences between solo and choir singing have been explored by Rossing, Sundberg, and 

Ternström (1984). They observed that solo singers tended to emphasize the “singers’ 

formant,” while choir singers tended to emphasize the fundamental frequency. The results of 

this study were replicated with different singers in Rossing, Sundberg, and Ternström (1985), 

as well as Rossing, Sundberg, and Ternström (1987). In their later work, they also explored 
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gender differences in the “singers formant.” The formants are dependent on the length and 

shape of the vocal tract (generally longer vocal tracts have lower formant frequencies) and 

are also influenced by the shape of the lips, the jaw opening, the tongue, the velum, and the 

larynx. The complete anatomy of the human voice and how it functions in singing is 

described in Sundberg’s The Science of the Singing Voice (1987) and in slightly more detail in 

Titze’s Principles of Voice Production (1994). 

The physiology of the singing voice has been used to inform singing synthesis. Some of the 

earliest work in this area was done by Sundberg (1978b), who used models of the glottal 

voice source and vocal tract resonator. Cook (1993) created a physical model of the singing 

voice that could be controlled in real time through a text-based software synthesis 

environment. The physical model was developed with waveguides and re-creates both the 

vocal and nasal tracts, as well as the acoustic energy that radiates through the throat. Cook 

(1996) provided an overview of earlier work in speech and singing synthesis, including the 

use of linear predictive coding in speech synthesis (Atal and Hanauer 1971), sinusoidal 

modeling in both speech (Mcaulay and Quatieri 1976) and singing synthesis (Serra and Smith 

1990), as well as models for controlling formants (Rodet 1984). A more recent survey of 

models of the singing voice is available in Kim (2009). Kim’s survey included two recent 

dissertations on the subject: Kob’s physical model (Kob 2002), which can capture different 

registers and pathologies, and Kim’s own analysis-synthesis framework, which automatically 

estimates the modeling parameters (Kim 2003). Recently, another approach has been 

developed by d’Alessandro and collaborators (2008), who describe a refined technique for 

separating the vocal source from the glottal source in order to better capture the expressive 

aspects of singing. A review of KTH’s work on singing synthesis is available in Sundberg 

(2006). 

Other work concerning singing synthesis has focused on vocal vibrato. Maher (1990) 

presented a wavetable approach for tracking formants to determine the rate and depth of 

vibrato. Herrera and Bonada (1998) described a sinusoidal modeling framework, where 

vibrato-related peaks in the frequency envelope of the sound could be identified in analysis 

and modified in resynthesis. Arroabarren and Carlosena (2004) described a source-filter 

model of vibrato that can be combined with sinusoidal approaches. More recently, 

Arroabarren and collaborators (2002a; 2002b; 2003) developed a method for measuring 
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amplitude and frequency modulation in vibrato and explored the relationship between the 

two types of modulation. In later work, they extended this to include instantaneous 

frequency and amplitude analysis of the partials in vibrato tones (2006).  

Perceptual tests by Howes and colleagues (2004) showed a discrepancy between acoustic 

analyses of vibrato and the listeners’ reported perceptual judgement. Verfaille, Guastavino, 

and Depalle (2005) used a listening test for evaluating different vibrato models and found 

that vibrato with modulation of the spectral envelope was preferred over vibrato with just 

frequency modulation pulses, amplitude modulation pulses, or a combination of frequency 

and amplitude modulation pulses.  

2.2.5 Studies of Intonation and Vibrato in the Singing Voice 

2.2.5.1 Solo Voice 

As noted above, empirical evaluation of the singing voice dates back to the early part of the 

twentieth century. Schoen (1922) studied five performances of Gounod’s setting of the “Ave 

Maria” and found that tuning depended on the direction of the line: notes in a descending 

line tended to be flatter, whereas notes in an ascending line tended to be higher. He found 

that in general the singers’ tunings were sharper than either equal temperament or Just 

Intonation. Easley’s study of vibrato in opera singers found that the rate of the singer’s 

vibrato was faster and the depth was broader when they sung opera songs, compared to 

when they sung concert songs (Easley 1932). Bartholomew (1934) studied vibrato along with 

other acoustic features of the singing voice in an attempt to define “good” singing. He 

observed the vibrato to be sinusoidal in nature and its rate to be approximately 6–7 Hz. 

H. G. Seashore (1936b) also looked at singers’ performances of Gounod’s setting of the 

“Ave Maria,” as well as Handel’s Messiah. He studied nine performances, focusing on the 

connections, or glides, between notes. He was able to correlate glide extent with direction 

and found that glide extent was larger going up than going down. Miller (1936) also studied 

vibrato and observed a 5.9–6.7 Hz range of vibrato rate and a 44–61 cent range of depth, 

with faster vibrato in shorter tones. He also provided a large amount of detail through 

“performance scores” about tuning, though a lot of the data was not analyzed. Miller’s 

finding on vibrato echoed Tiffin’s earlier findings (1932) that the average rate of vibrato is 

6.5 Hz and the average depth is 60 cents and Metfessel’s findings (1932) that the range of 
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vibrato rate ranged from 5.5–8.5 Hz (with an average of 7 Hz) and the depth of the vibrato 

ranged from 10–100 cents (with an average of 50 cents). Miller’s observations about 

intonation also confirmed earlier findings that singers deviate from either equal temperament 

or Just Intonation. Miller also described different characteristics of the gliding transitions 

between notes. He also detailed dynamics and timing in the performances. Bjorklund (1961) 

studied the influence of training on vibrato and timbre in soprano singers. His results 

showed that with more training, singers had greater control over their vibrato.  

2.2.5.1.1 Research at KTH 

More recently, there has been a great deal of work done at the “Speech, Music, and Hearing” 

research group at the Royal Institute of Technology (KTH) in Stockholm, Sweden. Sundberg 

(1982) observed deviations from Pythagorean and Just Intonation in singing with vibrato 

and concluded that the presence of vibrato allowed the singers to use greater range of 

tunings than singers singing in straight-tone barbershop style because of the presence of 

beats. Gramming, Sundberg, Ternstrom, Leanderson, and Perkins (1987) looked at the 

relationship between pitch and accuracy in the singing voice in three different populations: 

professional singers, non-singers, and singers with some form of vocal dysfunction. They did 

not find any significant differences between the groups. Sundberg (1987) also examined 

variations in intonation between solo and choral performance, as well as the influence of 

certain vowels on tuning. He found a significant amount of variation in F0 across choirs, 

especially when vibrato is present. He also observed some variation in regards to 

“sharpness” or “flatness” of certain vowels, but general observable trends were limited. 

Carlsson-Berndtsson and Sundberg (1991) showed that singers tuned the two lowest 

formants in order to project their voices and that this did not produce a discernible 

perceptual impact on vowel perception. Sundberg (1994) also examined the role of vibrato in 

classical singing, detailing its acoustics and psychoacoustic features in a  thorough review of 

vocal vibrato research.  

Prame (1994; 1995) studied vibrato rate in ten professional sopranos’ performances of 

Schubert’s “Ave Maria.” The fundamental frequency estimates were obtained using a 

sonogram. The analysis was restricted to the 25 longest notes because only these notes had 

enough vibrato cycles to accurately measure the vibrato rate. He found that that the mean 

rate of vibrato was 6 Hz and that the rate of the vibrato tended to increase about 15 % at the 
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end of the notes. Sundberg, Prame, and Iwarsson (1995) used the same recordings to study 

both expert listeners’ perceptions of whether or not the 25 tones are in tune, as well as the 

professional singer’s ability to replicate pitches in the opening and closing statements of 

“Ave Maria.” They did not find much agreement amongst the expert listeners as to which 

notes were in tune and which ones were not. The singer’s ability to replicate the tones was 

done by comparing the deviation of mean frequency of each corresponding note in the 

opening and closing statements in “Ave Maria” from equal temperament. They found that 

when the corresponding tones were within 7 cents of each other, the expert listeners agreed 

that they were in tune. Prame (1997) also used the “Ave Maria” recordings to study vibrato 

extent and intonation. He found that the vibrato extent in these performances ranged from 

34–123 cents and that tones with larger vibrato depth tended to be sharper. The intonation 

of the notes deviated substantially, though not consistently, from equal temperament. Prame 

also calculated each singer’s mean deviation from the accompaniment. Overall, the range of 

these means was from 12 cents below equal temperament to 20 cents above equal 

temperament.  

A survey of other research into singing voice performance by the “Speech, Music, and 

Hearing” research group is available in Sundberg (1999). Some more recent work includes 

Murbe, Pabst, Holfmann, and Sundberg’s (2002) study of the role of auditory and 

kinaesthetic feedback on pitch control under various conditions, including fast vs. slow and 

legato vs. staccato singing. They found that a reduction in auditory feedback reduced 

intonation accuracy in staccato and fast singing. Bretos and Sundberg (2003) examined 

vibrato in sustained notes with vibrato and found that vibrato rate was singer dependent, but 

that both vibrato extent and F0 was related to sound level. Their results also confirmed 

Prame’s finding of an increase in vibrato rate towards the end of a note. 

2.2.5.1.2 Other Research 

Other work on vibrato includes a number of articles grouped together as a special topic in a 

1987 issue of the Journal of Voice. Myers and Michel (1987) looked at vibrato and pitch 

transitions and observed small perturbations in the vibrato rate and depth that facilitated 

changes of note. Ramig and Shipp (1987) argued that vocal vibrato in professional singers 

and vocal tremors in people with vocal pathologies are related. More recently, van Besouw, 

Brereton, and Howard (2008) used a listening experiment to determine the range of 
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acceptable tunings for notes sung with vibrato. They found that the range for tones without 

vibrato was 24 cents and with vibrato was 34 cents. Reviews of other vibrato literature are 

available in Reinders (1995), Rothman (1987), and Timmers (2000). 

The past few years have seen an increased interest in the relationship between singing-voice 

performance parameters and musical structure. Timmers (2007) examined various 

performance parameters, including tempo, dynamics, and pitch variations manually with 

PRAAT (Boersma 1993; 2001) for professional recordings of several Schubert songs whose 

recording dates spanned the last century. In relating these parameters to the musical 

structure of the piece, she found consistency across performers. She also explored the 

emotional characteristics of the performances and the ways in which performance style 

changed throughout the twentieth century. Ambrazevičius and Wiśniewska (2008) studied 

chromaticism and pitch inflection in traditional Lithuanian singing. They also used PRAAT 

for analysis and derived a number of rules to explain chromatic inflections for leading tones, 

as well as ascending and descending sequences. Rapoport (2008) manually analyzed the 

spectrograms of recordings of the songs by Berlioz, Schubert, Puccini, and Offenbach, and 

classified each tone based on the relative strength of the harmonics in its spectrum and 

vibrato rate and depth. He used this analysis to assess the similarities and differences 

between individual singers’ interpretations of the songs. Marinescu and Ramirez (2008) 

performed spectral analysis to determine pitch, duration, and amplitude for each note in 

several monophonic excerpts from several arias performed by Josep Carreras. They also 

analyzed the sung lines with Narmour’s implication-realization model (Narmour 1990) and 

then combined this with a spectral analysis in order to induce classification rules using a 

decision tree algorithm.  

2.2.5.2 Vocal Ensembles 

Hagerman and Sundberg (1980) examined the impact of vowels on intonation accuracy in 

professional barbershop quartets. These singers were chosen because of their straight-tone 

style of singing. They found that there was a high degree of precision in the ensembles’ they 

studied and that there was limited influence on their intonation by the type of vowel sung. 

Ternström and Sundberg (1982) studied amateurs singing intervals against synthesized tones 

and found that intonation accuracy was highest when the sung notes had strong common 
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partials with the stimuli tones. They also found that intonation accuracy was greater with less 

vibrato.  

Sundberg (1987) observed a significant amount of variance in phonation frequencies across 

choirs, especially when vibrato was present. He also noted that accurate intonation required 

that the singers must be able to hear one another. Sundberg also discussed the intrinsic pitch 

associated with vowels, but noted that general observable trends concerning the “sharpness” 

or “flatness” of certain vowels were limited. Ternström and Sundberg (1988) looked at 

intonation in choirs, specifically the impact of sound pressure level and spectral properties 

within a choir on their intonation. They played reference tones for singers individually and 

found that intonation precision of the singers’ response tones was negatively impacted by 

increased sound pressure levels and increased amounts of vibrato for simple spectra.  

A number of intonation-related studies in the mid-late 1990s were based on listening tests. 

Ternström (1993) looked at experienced listeners’ preferences of vocal scatter in choirs; the 

amount of variation in the singers’ mean F0. He found that the listeners preferred scatter of 

less than 5 cents, but that scatter up to 14 cents was acceptable. Bell (1994) performed 

intonation preference listening tests with trained musicians on synthesized versions of four-

part Bach chorales and solo melodies from the same chorales. The solo melody and/or one 

voice in the chorale were systematically detuned to create drift of 0.5, 2, or 8 cents per 

second. He found that tuning variations of 2 or 8 cents were more perceptible in the chorale 

than in the solo melody. Swann (1999) looked at tuning preferences and pitch discrimination 

in choir singers. He presented participants with chords tuned to equal temperament, 

Pythagorean, Just Intonation, and mean-tone systems, as well as chords with randomized 

mistuning. The chords were presented in root position and in inversion. He found that the 

subjects preferred just-intonation for root position triads, Pythagorean for first inversion 

triads, and mean-tone for second inversion triads. 

Reviews of choral intonation studies until 2002 are available in Ternström and Karna (2002) 

and Ternström (2002, 2003). Ternström and Karna provide a general overview on studies of 

choirs, including vocal production, as well as acoustical and perceptual issues. In their 

discussion of intonation, they proposed a number of factors that influence tuning: the 

intrinsic pitch of vowels (Ternström et al. 1988), the impact of amplitude on pitch 

perception, the ensembles’ ability to maintain enough breath support to achieve accurate 
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pitch, and the influence of the musical materials. Ternström provided an overview of choir 

acoustics that dated back to the work done by Lottermoser and Meyer in the 1960s. He also 

described Lottermoser and Meyer’s work on the size of major and minor thirds in three 

choirs. They found that the major thirds tended to be sharp (416 cents) and that the minor 

thirds tended to be flat (276 cents). Ternström also reviewed work on relative dynamics, 

dynamic ranges, choral spacing, and his own work on “self-to-other-ratios” in choral 

settings.  

More recently, Jers and Ternström (2005) examined intonation and vibrato in two a cappella 

multi-track recordings of an eight-measure piece by Prateorius. One was recorded at a slow 

tempo and the other was recorded at a faster tempo. Pitch estimates were made semi-

automatically using a correlogram, which visually represents several F0 estimates for 

monophonic vocal signals (Granqvist and Hammarberg 2003). Jers and Terström averaged 

across both the whole ensemble and the individual singers for each note’s mean F0 and 

standard deviation. Overall, they found that the amount of scatter was greater at the faster 

tempo than at the lower tempo. They also found increase in the standard deviations of F0 at 

note transitions. In terms of vibrato, Jers and Terström observed a certain degree of 

synchronization between singers at both tempos. 

Vurma and Ross (2006) had thirteen professional singers sing isolated major second, perfect 

fifths, and tritones. They analyzed the recording using PRAAT and found that the major 

seconds tended to be smaller than equal temperament and that both the perfect fifths and 

tritones were larger than equal temperament. However, there were some small differences in 

the averages for ascending and descending versions of each interval. They also ran a listening 

test with both the singers in the experiment and seventeen amateur musicians, where the 

subjects were asked to classify the sung intervals as being either in or out of tune. The details 

of this experiment are discussed in Section 2.3.1. 

Howard (2007b; 2007a) examined pitch drift and adherence to equal temperament in two a 

capella SATB quartets. F0 estimates were calculated by measuring the movement of the larynx 

with an electroglottograph and SPEAD software by Laryngograph Ltd. Howard argues that 

in pieces with modulation, choirs used non-equal temperament and that pitch drift is 

necessary for choirs to stay in tune (Howard 2007b). Howard replicated the experiment with 
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a second SATB ensemble and found a tendency toward, although not full compliance with, 

Just Intonation (Howard 2007a).  

Vurma (2010) studied a cappella two-part singing in an experiment where 15 professional 

singers sung the upper part from a two-part vocal exercise against a synthesized lower part. 

In the first half of the exercises, the voices began in unison with the upper voice moving up 

a minor second against the lower voice moving up by a perfect fourth before both returned 

to the unison. In the second half, the voices again began in unison with the upper voice 

moving up and down by a perfect fifth and the lower voice moving up and down by a major 

third. The accompaniment was presented either in equal temperament or with the melodic 

intervals either compressed or expanded by 20 or 40 cents. Vurma found that the singers did 

not respond to the detuning in the accompaniment and remained relatively consistent in 

their own melodic interval sizes against all of the different tuning conditions. Overall, the 

median of major seconds tunings for each singer was 94–103 cents and the median of the 

perfect fifths was 697–706 cents. Vurma also ran a listening test on the recorded data with 

seven professional musicians. The details of this experiment are discussed in Section 2.3.1. 

2.2.6 Modeling Expressive Performance 

Analyses of performances have demonstrated that all parameters of human performances 

(timing, dynamics, intonation, and vibrato) show a deviation from what would be produced 

in a mechanical performance. This section details various approaches to modeling expressive 

human performances. Comprehensive reviews of the challenges and approaches not covered 

in this section are available in De Poli (2004), Widmer and Goebl (2004), Widmer et al. 

(2007) and Goebl et al. (2008).  

Todd (1985) developed a model of expressive timing based on Lerdahl and Jackendoff’s 

generative theory of tonal music (Lerdahl and Jackendoff 1983). Todd compared the results 

of his model with three performances on a piano that could measure the timing of each note 

attack via photocells near the hammers and found varying degrees of agreement to his 

model’s hierarchical phrase final lengthening projections. He later extended his hierarchical 

phrase-based model to account for dynamics, defining the relationship between timing and 

dynamics as “the faster the louder, the slower the softer” (1992) with an increase in tempo 

and dynamics of the middle of the phrases and a reduction of both at the end of the phrases. 

The revised model was shown to correspond with a performance of a Chopin prelude. 
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Windsor and Clarke (1997) evaluated Todd’s model on several performances of a Schubert 

Impromptu. They found that Todd’s model did not account for all of the timing and 

dynamic activity, but they were able to achieve a good fit by applying weightings that put 

more emphasis on timing at lower structural levels and on dynamics at higher structural 

levels.  

The Director Musices system for generating expressive performance was developed at the 

Royal Institute of Technology in Stockholm in the 1990s and 2000s (Bresin et al. 2002). The 

system was built on an “analysis-by-synthesis” approach, where listening tests determined 

the parameters for the model, in contrast to the measurement-based approach employed in 

other approaches by Todd. This “analysis-by-synthesis” approach was first described by 

Sundberg, Askenfelt, and Frydén (1983), and early work on determining the thresholds for 

the different parameters was done by Sundberg, Friberg, and Frydén (1991). As with Todd’s 

work, a lot of emphasis has been placed on phrase-related rules (Friberg 1995; Sundberg et 

al. 2003). The researchers have also developed a number of rules related to intonation, 

specifically that higher pitches are sharper, that melodic intervals tend towards Pythagorean 

sizes, and that harmonic intervals tend towards beat-free tunings. They also developed a 

hybrid form of the melodic and harmonic rules for ensemble performances (Bresin et al. 

2002; Friberg et al. 2006).  

The Director Musices system was evaluated by Zanon and De Poli (2003a, 2003b), who 

found that the parameters reported in the KTH publications did not conform to their 

findings. This led Zanon and De Poli to develop a method of tuning these values. 

Gabrielsson and Juslin (1996) related the KTH model to the emotional aspects of music 

appraised through listeners’ ratings. This work was later expanded by Juslin, Friberg, and 

Bresin (2002) into a generative computational model of emotion. Ornoy (2008) studied flute 

and cello intonation in relation to the KTH rules and found that there was not a strong 

correspondence between the predictions of the rules and the intonation in the recordings.  

In the past decade, machine learning techniques have been used to model expressive 

performance in piano performance. The piano is popular because of the large amount of 

data that can be obtained from pianos, such as the Bösendorfer SE, which is capable of 

recording the hammer attack timing and velocity to a computer. Widmer and his/her 

colleagues at Vienna have developed a multi-level approach where both note-level and 



 

 

 32 

phrase-level timing and dynamics rules are learned from data collected from a set of Mozart 

piano sonatas (Widmer 2002, 2003; Widmer et al. 2003; Widmer and Tobudic 2003). Their 

model makes use of two different algorithms for learning activity at the two different levels: 

a rule-learning algorithm for the note-level activity and a nearest neighbour algorithm for 

identifying phrase-level activity. An evaluation of their model showed a good agreement 

between their predictions and actual performances (Widmer 2002; Widmer and Tobudic 

2003). 

More recent work has explored the use of other machine learning algorithms. Grindlay and 

Helmbold (2006) made use of hierarchical HMMs to both model and generate timing 

changes and dynamics in piano performance. Flossman, Gratchen, and Widmer 

experimented with using both support vector machines (Flossmann et al. 2008) and discrete-

state HMMs (Flossmann et al. 2009) for determining both tempo and local note-level 

deviations from the overall tempo in piano performances. They found that the use of 

HMMs allowed them to better incorporate performance context.  

2.2.7 Summary 

This section has surveyed the existing work on extracting and describing performance data. 

The majority of the work in performance analysis has been in timing and dynamics, but there 

is a small tradition of literature on vibrato and intonation research for both non-fretted 

string instruments and the singing voice. Early studies used manual methods to extract pitch 

and timing information from recorded performances. More recent studies have used 

automatic methods for extracting pitch information, but the identification of note onset and 

offset locations is still done manually. Overall, studies of intonation in both solo and 

ensemble vocal performances have shown that singers do not sing in a fixed tuning system. 

However, the findings have been variable as to whether singers tend to be sharper or flatter 

than equal temperament or if singers are closer to Just Intonation than equal temperament. 

The discrepancies in the findings may be related to the smaller number of performances that 

were studied. The findings for vibrato rate have been more consistent, with several studies 

reporting the range to be 5–7 Hz. Vibrato depth is more variable, with reports of up to 100 

cents. 

As detailed in Chapter 1, this dissertation addresses a number of questions not raised in the 

existing research on intonation. Specifically, this research provides a systematic study of 
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whether singers tend to perform musically similar patterns in similar ways by studying a 

larger number of repeated performances and developing ways of analyzing the variations 

between multiple performances. Also, this dissertation uses a method for automatically 

extracting intonation data from recorded performances. The background on this method is 

described in Sections 2.3–5, and the method itself is detailed in Chapter 3. 

2.3 Pitch and Consonance Perception 

This section provides an overview of both historical and contemporary theories of pitch and 

consonance perception. Section 2.3.1 describes the basic mechanisms of the auditory system. 

Section 2.3.2 details the history of the debate over how pitch processing occurs within the 

auditory system, specifically the spectral and temporal perspectives of pitch perception. 

Section 2.3.2 discusses the perception of continuous pitch, surveying theories of how the 

varying pitches within a note, such as vibrato, are perceived as a single percept. Section 2.3.4 

extends the discussion of perception to consonance and dissonance. 

2.3.1 Overview of the Mechanisms of the Auditory System 

Sound is conveyed as sound waves, perpetuations, or fluctuations in the air. Sound waves 

can be described in terms of their frequency, the number of cycles of a waveform occurring 

in a given time, which are measured in cycles per second as hertz (Hz), their amplitude, the 

amount of difference in air pressure measured in decibels (dB), and their relative phase to 

one another. When multiple sound waves in whole number ratios are sounded 

simultaneously with decaying amplitudes as the frequency rises and synchronized phases, 

they are generally perceived as a single tone. Typically, the lowest frequency is heard as the 

fundamental. In musical tones, the pattern of amplitude in these harmonics does not decay 

monotonically, and the relative strengths of the upper partials contribute to the timbre of the 

tone. This whole-number relationship is referred to as the overtone, or harmonic, series. 

Figure 2.3.1 shows the first seven notes close to the overtone series of the note A1. In 

general, the individual partials can only be heard out by someone practiced in analytical 

hearing, which is how, with the assistance of resonators, 19th-century theorists developed 

their ideas about the structures of complex tones, as discussed in Section 2.3.2–3. 
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Figure 2.3.1: Overtone series from the note A1 (55 Hz). 

The fact that the intervals between 55 Hz and 110 Hz and between 110 Hz and 220 Hz are 

perceived as being the same (i.e., one octave) illustrates the logarithmic nature of pitch height 

perception.  Intervals can be represented linearly in cents, where each cent is 1/100 of an 

equal-tempered semitone. The relationship between cents and frequency is defined in 

Equation 1, where note1 is the lower note in the interval, measured in Hz, and note2 is the 

upper note, also measured in Hz.   

 

cents =1200 × log2
note2
note1

 
 
 

 
 
        (1) 

Under ideal conditions, the human auditory system perceives frequencies between 20–20,000 

Hz, although the upper limits range decreases with age and exposure to loud sounds. The 

loss of the upper range mainly affects the perception of timbre, as the range of the 

fundamental of the human voice for speaking is approximately 85–180 Hz for men and 165–

255 Hz for women, extending up to 1100 Hz for the singing voice. A human’s ability to 

distinguish differences in frequency between two notes, referred to as the just noticeable 

difference (JND) or difference limen (DL), depends on a number of factors, including 

frequency, amplitude, note duration, timbre (pure vs. complex tones), and listening 

conditions. Most studies on the JND had subjects either adjust or listen to intervals of 

synthetic tones (either sinusoidal or complex), many of which are described in Burns (1978). 

Vurma, in his work with Ross (2006) and alone (Vurma 2010), has studied JND in intervals 

with sung stimuli. In both experiments, expert listeners were asked to indicate whether a 

target note in an interval was in tune, sharp, or flat. Vurma and Ross (2006) focused on 

melodic intervals and found tuning deviations as large as 20–25 cents were considered to be 

in tune by their subjects. They also found that their subjects tended to classify the perfect 

fifths and tritones as out of tune more frequently than the thirds.  Vurma (2010) used 
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harmonic major and minor thirds between a synthesized lower part (that deviated either 0, 

20, or 40 cents from equal temperament) and a sung upper part as stimuli. He asked his 

subjects to assess the tuning of both parts in separate trials and found that there was a higher 

correlation between the measured pitch deviations and the subjects’ assessments for the 

synthesized tones than for the sung tones. Overall Vurma’s subjects had only a 34% success 

rate for tuning deviations of 20 cents, and a 58% success rate for tuning deviations of 40 

cents. The difference between the JND in isolated conditions with synthesized and musical 

contexts can be attributed to categorical perception of intervals (Fyk 1995). 

The peripheral human auditory system consists of both the ear and the nerves that connect 

the ear to the brainstem, as shown in Figure 2.3.2. Sound waves pass through the external 

auditory canal into the outer ear and are conducted by the tympanic membrane, commonly 

known as the eardrum, and the three ossicles (the malleus, incus, and stapes) through the 

middle ear to the oval window of the cochlea, in the inner ear. Both the oval and round 

windows are membranes that vibrate in opposite phases to one another. The auditory 

processing in the inner ear takes place in the cochlea.  

 

Figure 2.3.2: Schematic of the human ear (Helix: Structures of the Human Ear.  1997). 
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Within the cochlea is the organ of Corti, which is divided in two by the basilar membrane. 

Different parts of the basilar membrane are attuned to different frequencies. On the basilar 

membrane are the auditory hair cells, and on each hair cell are multiple projections called 

stereocilia. The frequency response of the basilar membrane is organized from high to low 

along, a schematic of which is shown in Figure 2.3.3, and function like an overlapping filter 

bank (Patterson et al. 1992). Studies with notch-noise and rippled-noise have led to the 

development of a formula for calculating the equivalent rectangular bandwidth (ERB) of 

each filter (Moore and Glasberg 1983; Glasberg and Moore 1990). The output of the basilar 

membrane is a neural spike code, which travels, along with balance information, through the 

Vestibulocochlear nerve to the brain. 

 

Figure 2.3.3: Schematic of the basilar membrane (Hearing: Basilar Membrane.  1997). 

 
2.3.2 Pitch Perception 

As detailed in Section 2.3.1, initial frequency analysis takes place in the cochlea, when there is 

a place to frequency correspondence; however, this frequency analysis does not create a 

pitch percept. Rather, it is likely formed in the cortex or the brainstem, and the frequency 

analysis information is sent there by neural spike code. Figure 2.3.4 shows a rough model of 

where different processes occur in the auditory system.  
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Figure 2.3.4: Pitch processing in the auditory system. 

 
Section 2.3.2.1 provides an overview of the history of developments in pitch perception 

from ancient Greece to the 1960s, and Section 2.3.2.2 describes the main divide in more 

recent literature between the spectral and temporal theories. This section sets up the next 

main section of this chapter, 2.4, and discusses the link between these theories and signal 

processing approaches to automatic pitch estimation.  

2.3.2.1 Historical Overview of Pitch Perception 

The spectral approach to pitch perception argues that pitch is determined solely by the 

cochlea’s reaction to frequencies. De Cheveigné (2005) argues that the roots of pitch 

perception theories related to the place of excitation in the cochlea, known as place theories, 

can be traced back to the ancient Greeks with Pythagoras in the 6th century BCE, who 

performed a number of investigations on a monochord in order to explore the relationship 

between string length and frequency. Their investigations demonstrated that when a plucked 

string is divided in half, its resultant pitch is double the pitch of the whole string. De 

Cheveigné also suggests that temporal theories of pitch perception date back to 

Nichomachus (c. 100 CE), who observed that sound is made up of a sequence of pulses and 

that the speed of a sequence of sounds determines its pitch. Boethius later echoed 

Nichomachus’ observations (c. 520 CE) and was the main source for the transmission of 

Greek thought in Europe (Bower 2002).  

In the 16th and 17th centuries, Mersenne’s and Sauveur’s explorations of the partials of 

complex instrumental sounds laid the foundation for modern spectral theories. Mersenne 

(1636) observed that the fundamental frequency of the string is inversely proportional to the 

mass. Sauveur (1701) found that a string could vibrate at several frequencies simultaneously, 
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and coined the words fundamental and harmonics for this phenomenon. Other works from 

the 16th and 17th centuries more closely related to temporal pitch perception theories. Both 

Galileo and Mersenne experimented with measuring sound vibrations, while both Mersenne 

and Descartes studied the relationship between vibration rate and the speed of propagation 

(de Cheveigné 2005). 

It was only in the 18th century that more complete models of how the auditory system 

perceives pitch began to emerge. Seebeck, Ohm, and Helmholtz all developed their own 

theories of pitch perception (Turner 1971), much of these theories built on Fourier’s 

observation that any complex signal can be represented as a sum of weighted sinusoids 

(Fourier 1820). These frequency-based theories argued that pitch is determined by the 

fundamental. In contrast, periodicity-based theories, for example, by Schouten, argued that 

pitch is determined by contributions from all of the partials and that the perceived pitch is 

the period at which they all coincide (i.e., the fundamental). By including partials in his 

model, Seebeck was able to explain the phenomenon of the “missing fundamental,” where 

the same pitch is perceived when the fundamental is absent. Ohm believed that the 

perceived pitch was conveyed solely by the fundamental and that the partials contributed 

only to the timbre of the tone. He dismissed Seebeck’s missing fundamental theory as an 

illusion. Helmholtz (1863) sided with Ohm, arguing that in cases where the fundamental is 

missing acoustically, it is generated by the interaction of the partials in the middle ear, thus 

creating the perception of pitch. Helmholtz also put forth a physiological model of pitch 

perception related to Fourier’s theorem. Helmholtz posited that the basilar membrane had a 

set of taut fibres that are attuned to different frequencies and that resonate when the 

corresponding frequencies occur in a sound.  

As noted above, the “missing fundamental” issue marked a divide between Seebeck’s and 

Ohm’s theories. Nearly a century later, Schouten’s work on residue pitch demonstrated the 

validity of Seebeck’s theory (Schouten et al. 1962). Schouten showed that even when the 

fundamental was removed from a complex tone, the perceived pitch remained the same. He 

termed this pitch percept the residue pitch, though it is also known in the literature as 

periodicity, virtual, and low pitch. Seebeck’s findings were confirmed by Licklider (1954) in 

an experiment where he showed that the pitch remained unchanged when the fundamental 

was masked by noise.  
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Schouten’s revisitation of Seebeck’s “missing fundamental” explanation led to a number of 

inquiries regarding the dominance region for pitch perception. The significance of the 

dominance region is that partials that occur within it have more influence on the perceived 

pitch than partials outside of it. Plomp (1967) and Ritsma (1967) found the overall 

dominance region for pitch perception to be 500–2000 Hz. Plomp observed that the 

dominance region for complex tones depends on the fundamental frequency. For example, 

for tones above 1400 Hz, the fundamental is dominant; for tones 700–1400 Hz, the second 

harmonic and higher are dominant; for tones 350–700 Hz, the third harmonic and higher are 

dominant; and for tones up to 350 Hz, the fourth harmonic and higher are dominant. 

Ritsma demonstrated that the dominance region within the range of typical musical 

instruments (100–400 Hz) was the third, fourth, and fifth harmonics. Within this range, the 

third and fourth harmonics dominated in tones between 100 and 200 Hz, and the second 

harmonic dominated in tones above 400 Hz.  

The dominance region for frequency is closely related to another important development for 

theories of pitch perception: the critical bandwidth for the auditory filters. First described by 

Fletcher (Fletcher 1940), the critical bands indicate which partials are resolved in the cochlea 

and which are unresolved. With resolved partials, there is sufficient separation between 

partials that they excite different parts of the basilar membrane. For unresolved partials, 

frequency information can only be extracted by the temporal relationship between the neural 

spikes generated by the basilar membrane. According to Shackleton and Carlyon (1994), 

partials are resolved when there are fewer than 2 partials in a critical band and unresolved 

when there are more than 3.25. They considered 2–3.25 partials per band to be a transition 

region. Resolved and unresolved partials have implications for spectral and temporal theories 

of pitch perception since spectral theories rely on the place of resolution on the basilar 

membrane that only occurs with resolved partials. In contrast, temporal theories rely on 

peaks in the pattern of neural spikes that are produced in the cochlea, often referred to as 

inter-spike intervals. The next section describes the development and differences between 

these two approaches in greater detail. 

2.3.2.2 Contemporary Spectral and Temporal Theories of Pitch Perception 

Spectral, or place, approaches to perception fall into the tonotopic tradition that began with 

Helmholtz, where pitch perception is based on the resolution of partials on the basilar 
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membrane. Goldstein (1973) developed a model of pitch perception for a complex tone that 

uses a “harmonic sieve” to match the partials of the tone to an estimated pitch percept. 

Goldstein’s approach was limited to resolved partials and single tones. Wightman (1973) also 

used a pattern recognition approach; his two-step process began with a Fourier-based 

analysis of the power spectrum followed by peak-picking to determine pitch. Terhardt (1974) 

expanded the idea of the “missing fundamental” in his virtual pitch theory, which builds on 

Helmholtz’s theory that there are two types of listening: analytic, where each partial is heard 

individually, and synthetic, where the composite of the partials is heard as a single pitch. 

Terhardt argues that synthetic listening uses a pattern matching mechanism that is learned 

from exposure to speech (Terhardt 1979). The implications of Terhardt’s theory on the 

perception of consonance are discussed in Section 2.3.4.3.  

As noted above, problems with spectral approaches arise due to the resolvability of partials. 

The cochlea can resolve lower partials because they are separated by more than one critical 

band, so the place theory holds for pitch perception of pure tones or complex tones from 

low frequency components. However, even higher, unresolvable harmonics can produce the 

perception of a weak pitch, which indicates that there is another process in the auditory 

system that can derive pitch from these cues (de Cheveigné 2005). This process is based on 

the temporal relationships of the neural spike code generated by the cochlea, where 

frequency information is derived from the spacing of the neural spike code.  

Licklider (1951) proposed that pitch perception could be explained by autocorrelation, a type 

of self-similarity measure, on the intervals between the  neural auditory spikes that are 

generated by the hair cells on the basilar membrane. The activity of the hair cells was later 

modeled by Meddis and Hewitt (1991) as compression, half-wave rectification, and low-pass 

filtering. They also proposed the use of a summary autocorrelation approach across the 

analyzed frequencies to predict pitch, which was later expanded by Meddis and O’Mard 

(1997). De Cheveigné (1998) described a variation on the autocorrelation approach that uses 

a difference function to implement a cancellation model of pitch that is, unlike 

autocorrelation approaches, sensitive to phase and capable of explaining polyphonic pitch 

perception. More recently, Balaguer-Ballester and colleagues (2008; 2010) have proposed a 

cascade autocorrelation model, where a cascade of filters was added to the summary 

autocorrelation function of Meddis and O’Mard. 
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It has not been determined exactly what the role of neural spike timing is in pitch 

perception, that is, how much the spikes contribute to the determination of frequency for 

resolved partials (Oxenham et al. 2009). It cannot be assumed that the timing between these 

spikes is solely responsible for pitch perception: experiments with dichotic, or binaural, 

pitches have shown that when the harmonics are spread across the ears, pitch can still be 

perceived (Bilsen 1977; Raatgever and Bilsen 1986). Such experiments support the theory 

that there is a pattern matching mechanism for resolved harmonics that works in 

combination with a temporal mechanism (Bernstein and Oxenham 2003).  

The role of unresolved harmonics in pitch perception has been examined recently with 

experiments using mistuned harmonics. Bernstein and Oxenham (2008) looked at the 

relationship between F0 discrimination and resolved versus unresolved individual harmonics. 

They found that detuning of odd harmonics increased F0 discrimination in tones with only 

the tenth harmonic and higher. They argued that F0 discrimination ability is more impacted 

by whether the individual harmonics fall into separate spectral filters rather than spectral 

resolution of the harmonics. They related their findings to their earlier revisions to the 

autocorrelation model of pitch perception (Bernstein and Oxenham 2005), which they 

expanded with a summary autocorrelation function across the auditory channels. Moore and 

Glasberg (2010) revisited their findings and argued that the results of Bernstein and 

Oxenham (2008) could instead be explained by temporal fine structure in each auditory 

channel, and that details are lost when a summary autocorrelation is performed. More 

information about the role of temporal fine structure in pitch perception can be found in 

Moore (2008), and a further investigation of the role of temporal fine structure in F0 

determination using unresolved harmonics is available in Oxenham, Micheyl, and Keebler 

(2009).  

Some recent work by Pressnitzer and Patterson (2001) looked at the role of combination 

tones in pitch perception. Combination tones occur when either the sum or the difference of 

two simultaneously sounding tones is perceptible. Pressnitzer and Patterson recognized that 

such tones are not necessary for pitch perception, as Helmholtz had initially argued, but 

which was later disproved by Schouten. Rather, they explored the question of whether 

combination tones contribute to pitch perception in the absence of partials in the dominance 

region. Researchers such as Dai (2010) have argued that the existence of combination tones, 
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along with spectral edges, allow subjects to perceive the pitch of such tones without relying 

on temporal mechanisms.  

There has also been a small body of work on the perception of pitch in musical contexts. 

McDermott and Oxenham (2008) provided a survey of what is known about auditory 

mechanisms for pitch perception and the perception of pitch relationships in a musical 

context. They concluded that while the discernment of individual pitches has been shown to 

take place in the auditory system, the more structurally related aspects of music listening are 

taken care of by neural mechanisms that have not yet been fully explored. Marmel, Tillman, 

and Dowling (2008) looked at the role of tonal expectations on pitch perception, finding that 

when tonally related notes were mistuned, the pitch processing time increased. Bharucha 

(2009) explored the parallels between the mapping of frequency to pitch and the mapping of 

tones to tonal relationships, such as chords and keys. He also looked at the role of 

hierarchical self-organization in the perception of musical structures. Other open questions 

about pitch perception are surveyed in Plack (2005), and more thorough reviews of pitch 

perception are available in de Cheveigné (2005) and Yost (2009).  

2.3.3 Perception of the Pitch of a Single Tone 

The synthetic stimuli used in pitch perception experiments do not replicate the acoustic 

variability found in natural tones. Though variability may occur in terms of pitch, loudness, 

and timbre, this section will focus on how variability in pitch influences pitch perception, 

specifically for the singing voice and non-fretted string instruments. Outside of the pitch-

related instability at the beginnings and endings of notes, these tones generally have a degree 

of vibrato. Vibrato is a systematic variation of fundamental frequency over the stable portion 

of the note that is characterized by its depth (the amount of pitch change) and rate (the 

speed of the pitch change). Vibrato is most prevalent in the singing voice and unfretted 

string instruments; therefore, the majority of research on the perception of a single pitch in 

tones with vibrato has focused on these instruments. The physiology of vibrato is described 

in Hirano (1995), and studies of vibrato in performance practice were surveyed in Section 

2.2. 

The first studies of the perceived pitch of tones with vibrato were done in the 1930s at the 

University of Iowa (Tiffin 1931; Metfessel 1932). These early studies used a tone whistle 

mounted on a crank to produce a synthetic tone of 420 Hz with vibrato ranging from 0–200 
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cents. Metfessel simply reported that the perceived pitch was the mean of the vibrato, but 

that there was some variation in his subjects’ responses. Tiffin provided more detail, 

reporting the average perceived pitch across subjects was 1 cent flat of the geometric mean 

with a standard deviation of 10 cents. In Japan, Hirose (1934) ran experiments using stimuli 

with frequencies of 900, 1100, and 1500 Hz and vibrato ranging from 12–361 cents. He 

found that the perceived pitch depended on the width of the vibrato: vibratos with smaller 

widths were perceived as slightly sharp of the mean, while vibratos with larger widths were 

slightly flat of the mean. Seashore (1938) later reported that the studies undertaken at Iowa 

used the simplified assumption that pitch of a tone with vibrato is the mean. This 

assumption was also used by Bjorklund (1961) in his study of soprano voices.  

Sundberg (1972, 1978a) studied the perceived pitch of synthesized sung tones. He looked at 

the effects of both vibrato and the singer’s formant by presenting subjects with different 

versions of the stimuli tones (straight, with vibrato, with singer’s formant, and with both 

vibrato and singer’s formant), and asked them to adjust a reference tone to match the pitch 

of the stimuli tone. He found that, on average, neither the addition of vibrato with a 

maximum width of +/- 1.7% of F0 around the center frequency or the singer’s formant 

changed the perception of the pitch, though there were some differences observed in both 

the average and standard deviation of individual responses. Shonle and Horan (1980) used a 

similar adjustment method for square-wave stimuli tones ranging from 220–1500 Hz to test 

the influence of vibrato on perceived pitch. They found that the average perceived pitch was 

closer to the geometric mean than the arithmetic mean. Iwamiya, Kosugi, and Kitamura 

(1983) revisited the findings of Tiffin, Hirose, and Shonle and Horan with experiments on 

both vibrato tones and trills. They also found that the perceived pitch of both vibrato and 

symmetrical trills is roughly the center frequency; however, there was a shift either up or 

down for asymmetrical trills that corresponded to the direction of the asymmetry. Later, 

Iwamiya and colleagues expanded their study to examine the role of amplitude modulation in 

the perceived pitch of vibrato (Iwamiya and Fujiwara 1985; Iwamiya et al. 1994).  

D’Alessandro and Castellengo (1994, 1995) studied the perceived pitch in short vibrato tones 

in an attempt to better model the perception of pitch in actual singing practice. They found 

that the F0 at the end of the note was more significant for the pitch perception than the 

beginning of the note. They also argued that taking the mean of the steady state portion of 



 

 

 44 

the note rather than the mid-point between the maximum and minimum frequencies 

produces a more robust estimate of the perceived pitch. Brown and Vaughn (1996) studied 

pitch perception for vibrato in stringed instruments, using real samples of violins rather than 

synthesized tones. The subjects were presented with a pair of tones and asked to determine 

whether the second tone was higher or lower than the first. Brown and Vaughn’s results 

confirmed the results of experiments with synthetic tones. They also provided a good survey 

of the results of earlier research, including the work of Hirose, Tiffin, Seashore, Shonle and 

Horan, and Iwamiya and colleagues. Yoo, Sullivan, Moore, and Fujinaga (1998) built on 

Brown and Vaughn’s study and looked at differences in response time when reporting 

whether the second tone was higher or lower. They found that it took subjects longer to 

make a determination for vibrato tones than for non-vibrato tones. 

Gockel, Moore, and Carlyon (2001) revisited d’Alessandro and Castellengo’s finding that 

certain parts of the tone influenced the perceived pitch more than others. In their 

experiments with sinusoids, they found that the parts of the tone with slower frequency 

modulation contributed to the perceived pitch more than the parts of the tone with faster 

frequency moduation. They proposed that the perceived pitch be calculated as a weighted 

average favouring the slower moving portions of the note, rather than taking an unweighted 

mean over the duration of the note. Mesz and Eguia (2009) developed a model to better 

explain how the frequency instability that occurs in natural tones affects the perceived pitch 

for vibrato, which can also predict Gockel, Moore, and Carlyon’s results. They propose a 

three-part algorithm that begins with an initial instantaneous frequency analysis for each 

frequency band, or channel. The instantaneous frequency of each channel is used to 

determine the rate of the F0 fluctuations, and then the rate calculations are used to determine 

the weightings for calculating the perceived pitch.  

2.3.4 Consonance Perception 

Consonance, and by extension dissonance, can be considered as both a sensory 

phenomenon and as a cultural, or musical, one. Section 2.3.4.1 details the study of sensory 

consonance since Helmholtz, for both pure and complex tones. A survey of precursors to 

Helmholtz’s work is available in Hoffman-Engl (2010). Section 2.3.4.2 details recent theories 

of musical consonance.  
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2.3.4.1 Sensory Consonance 

In his theory of consonance and dissonance, Helmholtz (1863) postulated that the 

coincidence of a significant number of partials between two pitches produced a consonance, 

whereas the absence of such coincidence produced a dissonance. He argued that the degree 

of consonance between complex tones was dictated by the degree of roughness, or beating 

between partials. Beats are audible up to ~20Hz and beyond that a rattling sensation, or 

roughness is produced. Beating is a tremolo produced by interference between tones of 

proximate frequency. The rate of the tremolo is determined by the difference in frequency 

between the two tones. Beating and roughness may occur both between the tones’ 

fundamentals and their partials. The greater the degree of coincidence between the partials 

of the two tones, the less rough, or less dissonant, the resultant sound is. The theory of 

sensory consonance makes a case for Justly tuned vertical intervals, as there is a greater 

coincidence of partials between them than with tempered intervals. 

Plomp and Levelt (1965) revisited some of Helmholtz’s ideas through a series of tests on 

untrained subjects. They also summarized the relevant work since Helmholtz, including 

studies on difference tones and fusion. Plomp and Levelt discovered that an interval size, 

called the critical band, is also a significant factor in the perception of consonance. The size 

of the critical band is a function of frequency, but it is about a minor third for pitches in the 

range of typical musical instruments or the voice. Their general results, using sine tones, 

indicated that their subjects judged intervals less than a minor third and greater than a unison 

as a sensory dissonance and judged intervals a minor third or greater as sensory consonance. 

They also demonstrated that the same interval in a lower frequency range was generally 

perceived as being less consonant than the same interval in a higher frequency range.  

Plomp and Levelt also applied their critical band findings to the interactions between the 

partials of pairs of complex tones using the results of their sine tone experiments. They 

calculated the dissonance of each complex interval by summing the dissonance of adjacent 

pairs of the first six partials. This resulted in a different relationship between consonance and 

frequency than for simple tones (see Figure 2.3.5). Rather than maximum consonance 

centering around the minor third, the consonance peaks for complex tones occur for 

intervals with simple ratios (2:1, 3:2, 5:3) where there is a maximum coincidence of partials. 

 



 

 

 46 

 

Figure 2.3.5: Plots of consonance as a function of frequency from Plomp and Levelt (1965), 

as reprinted in Rasch (1999). The plot on the left represents the relationship between 

consonance (y-axis) and frequency separation (x-axis) for simple tones. The plot on the right 

represents the relationship between consonance (y-axis) and frequency separation (x-axis) for 

complex tones with six harmonics.  

 

A study by Kameoka and Kuriyagawa (1969a) showed that the level of consonance 

associated with two-tone intervals of pure tones forms a V-shape when plotted over an 

octave. Maximal sensory consonance is perceived at the unison before it declines towards 

the critical band. The amount of consonance then increases again towards the octave, 

though it does not reach the same level as for the unison. They observed that consonance 

was determined by frequency separation and sound pressure level in combination with 

frequency ratio rather than just being a function of frequency ratio alone. Kameoka and 

Kuriyagawa (1969b) extended this study to complex tones with 3–12 components, using the 

dissonance calculation methods that they developed in their earlier work. Their results are 

similar to those of Plomp and Levelt’s for simple complex tones when the sound pressure 

level is held constant. This is demonstrated in the comparison of the plots in Figure 2.3.5 

and Figure 2.3.6. 
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Figure 2.3.6: Plots of consonance as a function of frequency as reported by Kameoka and 

Kuriyagawa (1969a, 1969b). The plot on the left represents the relationship between 

consonance (y-axis) and frequency deviation (x-axis) for simple tones. The plot on the right 

represents the relationship between consonance (y-axis) and intervals for complex tones with 

eight harmonics. 

 
Hutchinson and Knopoff (1978) developed a formalism, built on Plomp and Levelt’s work, 

for predicting the sensory dissonance of dyads of complex tones, ranging from a minor 

second to a double octave. Hutchinson and Knopoff found an agreement between the 

results of their method and the relative consonance ratings reported by Malmberg (1918) 

from his experiments with piano dyads. They also considered the impact of real instrument 

timbres on the perception of consonance and dissonance. Sethares (1993) delved deeper into 

the timbral implications of Plomp and Levelt’s work, presenting a computational method for 

predicting sensory consonance for different natural and synthesized timbres.  

Swallowe, Perrin, Sattar, Colley, and Hargreaves (1997) evaluated the role of exposure in the 

amount of unpleasantness experienced by listeners when they hear acoustic dissonance with 

a study using four component complex tones. They found that outside of the critical band, 

cultural rather than acoustic factors influenced a subject’s perception. Pressnitzer and 

McAdams (1999) explored the role of temporal aspects of timbre in the perception of 

roughness, which is associated with fluctuations in spectral components. To test this, they 

varied the phase of one of the partials and the spectral envelope of a synthetic complex tone. 
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They found that such modifications have a significant effect on the perceived roughness. 

Both of these studies call into question the ability of purely spectral based models, such as 

Hutchinson and Knopoff’s and Sethares’ to predict sensory consonance and dissonance. 

Schön, Regnault, Ystad, and Besson (2005) reinforced the role of musical context in the 

perception of consonance and dissonance in their study on whether exposure to sensory 

consonance and dissonance elicited any event-related brain potential (ERP) effects. This 

view has been challenged by McDermott, Lehr, and Oxenham (2010), who found that 

harmonicity (i.e., the presence of a harmonic spectra) was the only consistent correlate with 

listeners’ reports of consonance. Their finding that the use of harmonicity as a perceptual 

cue is not experience-based was later reinforced by Plack (2010).  

2.3.4.2 Musical Consonance 

Terhardt (1984) expanded the work of Plomp and Levelt with a theory of consonance that 

reconciles psychoacoustic phenomena of sensory consonance, which he linked to 

Helmholtz’s concept of Konsonanz, with musical consonance, which he aligned with both 

Helmholtz’s theory of Klangverwandtschaft and his own virtual pitch theory (Terhardt 1974). 

His theory of consonance prioritizes intervals with low ratios, which can be thought of as 

those occurring lower in the harmonic series; the unison (1:1); the octave (2:1); the fifth 

(3:2); and the major third (5:4). There is a discrepancy between this hierarchy and some of 

the ordering of consonance that emerges from studies of sensory consonance: the unison 

(1:1), the octave (2:1), the fifth (3:2), the major sixth (5:3), the fourth (4:3), the minor third 

(6:5), and the major third (5:4) (as demonstrated in Figure 2.3.5).  

Terhardt’s virtual pitch theory draws on both Schouten’s residue theory and Rameau’s 

theory of the fundamental bass (Rameau 1722), and argues that consonance is created by a 

whole number frequency relationship between the elements of a chord and its fundamental 

bass. In his 1737 treatise, Generation Harmonique, Rameau attempted to reconcile his 

fundamental bass theory with his understanding of harmonics, which he referred to as the 

corps sonore (Rameau 1737). Rameau’s fundamental bass did not coincide with the root of the 

chord: rather, it was a sub-root for which all of the chord tones coincided with its partials. 

Rameau was, however, unable to provide an acoustical foundation for all of the aspects of 

his theory of harmony, such as the minor triad (Christensen 1993). For example, the 

fundamental bass of a close position major chord on C4 would be C2 (the C two octaves 
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below) since C4-E4-G4 coincide with the 4th, 5th, and 6th of C2’s overtone series. The virtual 

pitch theory suggests that the perception of harmonic consonance in Western art music is 

dependent on the mind’s acquisition of an acoustical template. Terhardt argues that this 

template, based on the harmonic series, allows the listener to perceive the pitch of a complex 

tone as being that of the fundamental, whether or not the fundamental is actually present. 

He expands this to harmonic consonance by arguing that the template acts as a reference 

point for determining whether or not the bass note of a chord corresponds to the virtual 

fundamental note that is suggested by the template. When the sounded bass note and the 

virtual fundamental note align, the sonority is perceived as consonant. The learning process 

associated with the acquisition of this template allows for varying degrees of consonance, 

which correspond with the different degrees of consonance that are typically assigned to 

different types of sonorities. Terhardt argues that the majority of this learning comes from 

exposure to the complex tones found in speech sounds, so although this learning impacts 

musical perception, its acquisition is predominantly non-musical. He uses this theory to 

support a further argument that the basis of harmonic consonance, like sensory consonance, 

is psychoacoustical rather than cultural. Terhardt’s theory of consonance has been used by 

Parncutt (1989) as the basis for a reinterpretation of western harmonic practices and by 

Huron (2001) in a study of voice leading practices. 

In contrast with Terhardt’s explanation of musical consonance, there have been attempts to 

explain western harmonic practice without reference to any cultural factors. Cook’s model of 

musical consonance (Cook et al. 2004; Cook 2009) incorporates a psychoacoustic model of 

harmonic instability that extends Plomp and Levelt’s model to triads with a tension model of 

triads and modes. Lots and Stone (2008) made an argument for the primacy of certain 

intervals in the Western tonal system on account of neural synchrony.  

2.3.4.3 Consonance and Tuning 

Vos has addressed the issue of how consonance relates to tuning perception and 

preferences. In his earlier work, Vos (1982) showed that there was a lower discrimination 

threshold for Just vs. tempered perfect fifths between complex tones (702 vs. 700 cents) 

than for Just vs. tempered major thirds (384 vs. 400 cents). Vos looked at three different 

tone duration (250, 500, and 1000 milliseconds) and found that the discrimination threshold 
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decreased as the tones got longer. He also showed a correlation between the perceived 

strength of beats and the discrimination threshold for tempered intervals (Vos 1984). 

Vos and van Vianen (1985b) built on Vos’ earlier findings and looked at all the intervals that 

could be formed by frequency ratios of integers up to 8. They evaluated the role of 

complexity by equating an increase in complexity with an increase in the value of p + q, 

where p and q are the integers in the ratio (p:q). Vos and van Vianen demonstrated that, for 

synthetic tones, the thresholds for discrimination between pure and tempered intervals 

increased when the complexity of the interval increased. They also found that the 

discrimination threshold was not influenced by fundamental frequency (Vos and Van Vianen 

1985a).  

2.3.5 Summary 

This section began by briefly surveying the process by which humans perceive pitch, both in 

terms of the mechanisms of the human auditory systems (Section 2.3.1) and theories about 

how humans process frequency information (Section 2.3.2). Section 2.3.3 addresses the 

question of how continuous fluctuations in pitch are perceived as a single percept (e.g., 

vibrato). The latter part of the section focused on consonance as a sensory phenomenon and 

how this type of consonance impacts tuning discrimination.  

The research described in this section impacts the work done in this dissertation in two 

ways. First, the work described in Section 2.3.3 provides a guide for describing the F0 

estimates extracted from the experimental recordings. As will be detailed in Section 3.2, 

these findings are used to describe the perceived pitch of a single tone. Specifically, the 

Gockel, Moore, and Carlyon method(2001), which takes into account the rate of change of 

the frame-wise F0 estimates by weighting each frame’s F0 in the overall pitch estimate, is 

used. The work on the perception of consonance in Section 2.3.4 is useful for understanding 

the pitch estimates, and the work on sensory consonance in Section 2.3.4.1 is an important 

consideration for vertical tunings. Also, the research described in Section 2.3.4.3 done 

individually by Vos (1982) and collaboratively with von Viannen (1984; 1985a, 1985b) is 

used in interpreting the results of the ensemble experiments described in Section 4.2. 
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2.4 Fundamental Frequency Estimation and Transcription 

This section builds on Section 2.3 by considering how spectral and temporal understandings 

of pitch perception influence work in the area of automatic F0 estimation. The following 

sections describe a range of techniques for both monophonic and polyphonic estimation 

methods using a categorization proposed by de Cheveigné (2006): spectral, temporal, 

spectro-temporal, and, for polyphonic estimation, learning-based approaches. For most 

harmonic signals, monophonic fundamental frequency estimation can be considered a solved 

problem. Polyphonic fundamental frequency estimation, however, is still an open problem. 

Section 2.4.1 discusses approaches to monophonic estimation, including the YIN algorithm 

(de Cheveigné and Kawahara 2002) that is used for the experiments in this dissertation.  

2.4.1 Monophonic Estimation 

Spectral approaches to fundamental frequency estimation can take advantage of the 

efficiency of the fast Fourier transform (FFT), but are dependent on good frequency 

resolution. There are a number of different spectral approaches to monophonic fundamental 

frequency estimation. One makes use of a filter bank, where the difference between peaks in 

the output is tallied in a histogram and the bin with the largest value is assumed to be the F0. 

This approach can run into problems when the partials of the note are stronger than the 

fundamental (Martin 1982). Another approach is to take the cepstrum of the signal (the 

inverse FFT of the log of the FFT), which gives the slow moving (resonant) characteristics 

of the signal in the lower part of the result and the fast moving characteristics of the signal in 

the higher part—the first large bin of the higher part can be used as an estimate for the 

fundamental frequency (Noll 1967). A third approach is to apply an FFT to the signal, which 

provides phase and amplitude information at each frequency bin for each temporal frame 

(Schroeder 1968). A mapping of the frequencies in the signal can be constructed by taking 

the derivative of the phase of the bins with the largest amplitude value. These frequencies, 

however, are quantized to the mid-point of the bin, so it is advantageous to look at the phase 

values in two sequential frames to improve frequency estimation accuracy. The F0 can either 

be assumed to be the strongest frequency or a harmonic (timbral) mapping can be applied to 

determine the fundamental of the harmonic complex. The filter-bank and FFT approaches 

can be extended to account for the presence of multiple F0s, as will be discussed in Section 

2.4.2. However, the cepstrum method is only useful for single F0 estimation.  
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Temporal approaches to fundamental frequency estimation are dependant on good temporal 

resolution. They can also deteriorate in the presence of high numbers of inharmonic partials 

because they rely on the detection of self-similarity in the signal. At the same time, temporal 

approaches are an appealing alternative to spectral approaches because they can be 

formalized in a way that is close to the mathematical definition of periodicity. Simple 

temporal approaches include measuring intervals between land marks, counting positive 

going zero-crossings, performing full wave rectification, or squaring after low-pass filtering. 

These simple approaches do not work for all signals, though their effectiveness can be 

increased through pre-processing. A more robust approach is autocorrelation, which was, as 

detailed in Section 2.3.2.2, first suggested by Licklider (1951). This approach was first 

implemented into an automated F0 estimation algorithm by Rabiner (1977) as a running 

autocorrelation function:  

 

rt τ( ) =
1
ω

x j( )x j +τ( )
j = t +1

t +ω

∑        (1) 

 

τ  is the lag 

 

ω  is the size of the window 

t is the time at which the calculation is made 

The autocorrelation function compares one frame of the signal to another frame that was 

extracted from the signal after a certain temporal lag. The lags with the highest scores are 

retained and typically the longest lag is assumed to be the fundamental frequency. One 

problem with autocorrelation is that there can be a spike around lag zero, so typically a 

normalized version of the function that accounts for this is generally used.  

Following this approach, de Cheveigné and Kawahara (2002) developed the YIN algorithm, 

which uses a squared difference function instead of the running autocorrelation algorithm 

shown in Equation 2. 

 

dt τ( ) =
1
ω

x( j) − x( j +τ)[ ]2

j = t +1

t +ω

∑        (2) 

The squared difference function is prone to subharmonic errors. As shown in Equation 3, 

the YIN algorithm normalizes the results by taking the cumulative mean. 



 

 

 53 

 

dt
' τ( ) =

1, if τ = 0,

dt τ( ) 1 τ( ) dt ( j)
j =1

τ

∑
 

 
 
 

 

 
 
 
 otherwise

 

 
 

 
 

      (3) 

Evaluation on speech data reports that 99% of estimates are accurate to within 20% of the 

correct F0, 94% to within 5%, and approximately 60% were accurate to within 1% (de 

Cheveigné & Kawahara, 2002). In the same evaluation, YIN was shown to be robust in 

terms of minimizing gross error (errors off by more > 20%) than other commonly used F0 

estimation techniques, including the F0 estimator in PRAAT (Boersma 1993). The algorithm 

was also evaluated on the singing voice by de Cheveigné & Henrich (2002). 

Spectro-temporal approaches are motivated by the division of labour in the auditory system: 

The cochlea performs a spectral representation of the sound and then this representation is 

coded into temporal neural spikes for further processing. In such approaches, the spectral 

analysis is typically done by gamma-tone or constant-Q filter banks, depending on which 

aspect of the auditory system one wants to model, and this output is then subject to some 

type of temporal analysis, often autocorrelation, in each channel. 

2.4.2 Polyphonic Estimation 

When approaching polyphonic F0 estimation, one can use a monophonic algorithm to 

estimate one voice, suppress it, and then move to the next voice, or one can estimate the 

voices jointly. One of the main challenges is automatically estimating the number of sources, 

as there may be some confusion between fundamentals and partials. Thus, in much of the 

early literature on polyphonic F0 estimation, the number of sources was specified a priori.  

In terms of spectral methods, Parsons (1976) described a method for estimating a signal with 

two periodic components using the histogram technique developed by Schroder (1968) to 

identify one of the components before removing it from the signal and estimating the 

second. The process is then iteratively repeated to improve the estimate. Duifhuis, Willems, 

and Sluyter (1982) developed a polyphonic F0 estimator based on pattern matching and 

harmonic sieve model of pitch perception by Goldstein (1973) (described in Section 2.3.2.2). 

More recently, Yeh, Robel, and Rodet (2005) described a frame-wise method for polyphonic 

F0 estimation in the spectral domain that produces a hypothetical partial sequence 

constrained by three principles: spectral match, spectral smoothness, and spectral continuity. 



 

 

 54 

The hypothetical partial sequence is subject to a score function that picks the best 

fundamental frequency candidates. 

An example of a temporal approach to polyphonic F0 estimation is de Cheveigné and 

Baskind’s (2003) proposed extension to the YIN algorithm called MMM, which uses a 

double difference function in order to estimate multiple F0s. They also included a method of 

determining the number of voices, which involved fitting monophonic and polyphonic 

models and selecting the best fit. The self-similarity approaches can be made more efficient 

by ordering the lags. 

A spectro-temporal approach was employed by Klapuri (2006) in a method that makes use 

of a gammatone filter bank. Following Meddis and Hewitt’s hair cell model, the outputs of 

the filter bank were subject to compression, half-wave rectification, and low-pass filtering. 

Similarly, Marolt (2004) uses a gammatone filterbank, but he applies a bank of time-varying 

oscillators to model its output. Both of these techniques subsequently apply a learning-based 

model to estimate the individual notes: Klapuri uses a hidden Markov model (HMM) which 

will be described in greater detail below, while Marolt uses a neural network on the output of 

the time-varying oscillators to determine the most likely notes which are present in the 

signal. 

Learning-based techniques encompass several approaches, including neural networks, 

generative approaches, and non-negative matrix factorization. Davy (2006) describes a 

number of generative approaches that interpret the problem of polyphonic fundamental 

frequency estimation in terms of priors, transitions, and probabilities. This allows for a great 

deal of flexibility in terms of handling an unknown number of sources. Non-negative matrix 

factorization assumes the signal to be the product of two matrices. The resulting 

representation can be constrained to be sparse, which is helpful for a task like polyphonic F0 

estimation if it can be done in such a way that the harmonics are preserved and stochastic 

noise in the signal is removed. Cont, Dubnov, and Wessel (2007a) assured sparsity by 

introducing assumptions about the nature of musical timbre. Abdallah and Plumley (2004) 

applied independent component analysis to the power spectra of the signal and used a 

learned dictionary to create a sparse representation. Vincent, Bertin, and Badeau (2007) 

constrained their non-negative matrix factorization to be harmonic, which they found to 

improve their results. 
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2.4.3 Transcription of the Singing Voice 

Much of the work on F0 estimation in the singing voice has been in the context of 

transcription. Weihs and Ligges (2003) divided the task of singing transcription into different 

steps: note segmentation, F0 estimation, note estimation, quantization, and transcription. A 

preliminary question sometimes addressed in the literature on singing transcription is 

whether there are vocals at all in some sections of the audio. Berenzweig and Ellis (2001) 

presented a technique based on hidden Markov models for locating vocal segments in 

polyphonic audio, which is particularly useful for pop songs where there are instrumental 

bridges or sections that should be ignored. Tsai and Wang (2004) also developed a technique 

for segmenting the audio in vocal and non-vocal sections before applying a method for 

modeling each singer’s vocal characteristics and tracking them in a polyphonic vocal 

recording using parametric Gaussian mixture models. 

The issue of note segmentation is challenging for the singing voice since, unlike an 

instrument like the piano, it lacks a clear percussive attack. Sundberg and Bauer-Huppmann 

(2007) studied the perceived onset time by analyzing the synchronization of pianists 

accompanying singers in aligned performances. They found that overall the accompanists 

entries were synchronized with the start of the steady-state portion of the tone rather than 

the transient. Various approaches have been experimented with for note onset estimation. 

Transient detection often does not work very well because of the lack of sharp onsets in the 

sung voice. Clarisse et al. (2002) use an energy threshold to determine onsets by measuring 

the root mean square energy as a function of time. Wang et al. (2003) use dynamic 

programming to determine the end point of the notes. Weihs and Leigges (2003) combine 

segmentation with pitch estimation and use pitch differentials to segment the notes. The 

method used in this dissertation, based on audio-score alignment, will be described in 

Section 3.1. 

The timbre of the singing voice can also pose some challenges for F0 estimation, specifically 

the presence of formants. Formants are resonant frequencies produced by the vocal tract 

that define vowels and timbre. They are relatively consistent in speech, but can be modified 

in the singing voice when sopranos sing higher than the first formant (in which case they 

raise it to match the fundamental) (Sundberg 1999). In the case of the singer’s formant, one 

or more formants are adjusted by bass, tenor, and alto singers in order to assist them in 
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projecting their voice over an orchestral accompaniment (Bartholomew 1934). The benefit 

of temporal versus spectral approaches is that they are more robust to the presence of 

formants. Thus singing transcription methods generally rely on autocorrelation-related 

techniques, for which de Cheveigné and Kawahara’s YIN algorithm (2002) is particularly 

popular. An alternative approach that is used is to filter the signal in a manner similar to the 

filtering done by the cochlea (Clarisse et al. 2002). The timbre characteristics of the singing 

voice can make it more challenging to use learning-based techniques, since the same note 

sung by the same singer would have a slightly different timbre depending on the syllable 

being sung.  

Note estimation is the assignment of a pitch class or MIDI note to the F0 estimates over the 

duration of the note and is complicated by two factors: the presence of vibrato and the fact 

that the human voice is flexible in its intonation capabilities. The steady-state portion of the 

note generally contains vibrato (typically up to +/- 71 cents, as reported by Prame (1997)), 

which means that estimation of a single fundamental frequency, or perceived pitch, requires 

the application of a heuristic or rule. As discussed in Section 2.3.3, the perceived pitch is 

often assumed to be the mean of the frequencies over the duration of the note. This mean 

value can then be assigned to a MIDI note using the “round MIDI” techniques described in 

the singing transcription literature (Clarisse et al. 2002; Viitaniemi et al. 2003; Wang et al. 

2003). These approaches set up a specified range of frequencies that translate to each MIDI 

note: this is either done automatically, using a fixed tuning reference, or by assessing the 

relative tuning of the estimated fundamental frequencies. 

The quantization of the notes, necessary to represent them in a metre, is often performed by 

hand, but there is a relatively workable automatic Bayesian framework developed by Cemgil 

and collaborators (2000). Transcription is the process of generating a MIDI file from the 

quantized note values. Nienhuys and Nieuwenhuizen’s Lilypond software (2003) is currently 

the de facto tool for this final step in the task of singing transcription.  

There are alternative approaches that use a variation of the five steps (note segmentation, F0 

estimation, note estimation, quantization, and transcription) outlined by Weihs and Ligges 

(2003). These include Wang and collaborators’ (2003) method for determining where the 

vowels are in the signal and building “islands” around them in the representation of signal 

where the analysis should be focused. They also use a particularly sophisticated stochastic 
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technique, named Adaptive Round Semitones, for adaptively assigning the estimated 

frequencies to MIDI notes. The work of Ryynanen and Kalpuri also deviates substantially 

from the Weihs and Ligges conception of the problem. 

Ryynanen (2006) discusses some additional problems associated with transcription of the 

singing voices, where transcription results in a piano roll representation rather than a musical 

score. These include variations in tuning and the detection of note-offsets. In order to 

account for the fact that the voice has flexible intonation capabilities, the transcription 

system needs to have some rules for assigning fundamental frequency estimates to note 

names. This can be done by either rounding the frequencies to the nearest note on an equal-

tempered scale, which is generally quite problematic, or by taking a more adaptive approach, 

which may or may not allow for tuning drift. The note-offset problem is quite challenging. 

In legato singing, the onsets can be located at the terminus point of the previous note, but in 

detached singing, this is not a viable option. However, in legato singing, onset detection itself 

is much more challenging.  

Ryynanen’s work with Klapuri (2004; 2008) on singing voice transcription uses an HMM-

based note recognizer that works around the onset, and to a certain extent, offset challenges, 

by applying a metrical model to the transcription problem. For simple monophonic signals, 

the note offset can be determined by a decay in amplitude; however, there exists the 

degenerate situation in monophonic music where reverb may blur the offset and the general 

situation of polyphonic music. Once note events, such as pitch, voicing, phenomenal accents 

(as defined in Lerdahl and Jackendoff (1983)), and metrical accents are modeled with a 

hidden Markov model, note event transitions are modeled with a musicological model, 

which performs key estimation and determines the likelihood of two- and three-note 

sequences. Other recent papers addressing this problem include Dannenberg and 

collaborators (2007), as well as  Unal, Chew, Georgiou, and Narayanan (2008).  

There are applications of this research in a number of areas. For Query-by-Humming 

(Kosugi et al. 2000; Birmingham et al. 2001; Clarisse et al. 2002), current monophonic 

singing transcriptions systems are sufficient for analyzing the queries. However, the problem 

remains as to whether people can accurately reproduce the song they are thinking of. This 

research is also helpful for synchronizing lyrics to a sung melody, which is useful for karaoke 
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(Tsai and Wang 2004). This technology is also useful in systems for training vocalists (Mayor 

et al. 2006).  

2.4.4 Summary 

Single-voice F0 estimation is effectively a solved problem. In particular, de Cheveigné and 

Kawahara’s YIN algorithm has been shown to be robust for the singing voice. However, 

none of the existing polyphonic F0 estimation techniques are robust enough for use in this 

dissertation. The techniques described in Section 2.4.3 make use of quantization to create a 

MIDI-like transcription. These systems are evaluated in terms of the overall accuracy of their 

transcription rather than frame-wise accuracy of the individual components. Therefore, they 

are not useful for extracting the detailed pitch information required for the study of 

intonation. This research makes use of monophonic recordings, either in the study of a 

single singer or of an ensemble where each singer is miked individually. Note segmentation 

is done with the audio-score alignment method described in Section 3.1 and the YIN 

algorithm for F0 estimation. 

2.5 Audio-Score Alignment 

This section surveys existing work related to annotating note onsets and offsets in the 

singing voice. As described in Section 2.5.1, this type of signal is not well suited to blind 

onset detection algorithm. The subsequent sections describe different types of audio-score 

alignment algorithms (2.5.2–3) and their utility in obtaining information about onsets and 

offsets (2.5.4–5). 

2.5.1 Annotating Note Locations 

Note onsets and offsets are an important first stage in the extraction of performance data 

because they delineate the temporal period in the signal where each note occurs. Note onset 

information is also useful as timing data. Currently, there are no robust automated methods 

for estimating note onsets and offsets in the singing voice. Although much work has been 

done in the area of note onset detection (Bello et al. 2005), accurate detection of onsets for 

the singing voice and other instruments without percussive onsets is not a solved problem. 

Available onset detection algorithms are discussed in Goebl, Dixon, Knees, Pampalk, and 

Pohle (2008), specifically Dixon’s Beatroot system (Dixon 2001; Gouyon and Dixon 2005). 

However, these algorithms often require a significant amount of manual correction. Friberg, 
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Schoonderwaldt, and Juslin (2007) developed an onset and offset detection algorithm that 

was evaluated on electric guitar, piano, flute, violin, and saxophone. On human 

performances, they reported an onset estimation accuracy of 16 ms and an offset estimation 

accuracy of 146 ms Toh, Zhang, and Wang (2008) describe a system for automatic onset 

detection for solo singing voice that accurately predicts 85% of onsets to within 50 ms of the 

annotated ground truth. This degree of accuracy makes this the state of the art, but it still is 

insufficient for our purposes.  

For music where a score is available, audio-score alignment techniques can be used to guide 

signal-processing algorithms. The challenge in using a musical score to guide the extraction 

of performance data is that performers do not play or sing with the strict rhythm or pitch of 

the notation. In order to serve as a reference, the temporal events in the score must be 

aligned with the temporal events in the audio file, a process for which numerous algorithms 

exist. This research question has been an active area of inquiry for over twenty-five years, 

and although most of the fundamental issues have been addressed, there remain some open 

questions for certain applications. In early work, the research question was defined in terms 

of an online problem for following a soloist while generating a time-sensitive musical 

accompaniment, which is known as score following. Later work explored the applications of 

offline implementations, including expressive performance analysis, audio database search, 

and synchronization for digital libraries. Different applications require different degrees of 

accuracy, ranging from the note or measure level for digital libraries to the order of 

milliseconds for expressive performance studies. The first part of this section reviews the 

early history of score following before describing the various techniques that are used for 

music alignment and their applications. The second discusses the challenges in evaluating 

music alignments and the open research questions that remain, particularly for expressive 

performance applications. 

2.5.2 Early Score Following 

The published history of score matching began at the 1984 International Computer Music 

Conference, where Dannenberg (1984) and Vercoe (1984) presented separate papers on the 

topic of automating computer accompaniment for a live musician. Both Dannenberg and 

Vercoe broke the overarching problem of automatic accompaniment into a set of sub 

problems. Dannenberg identified three problems: Continuous and accurate detection of 
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what the soloist plays, matching this against a score, and using this information to generate 

an accompaniment. Vercoe took a slightly different approach than Dannenberg and 

explicitly included learning in his framework in addition to listening and performing. This 

survey considers only the score-following aspects of his work, not the generation of an 

accompaniment. Typically, in these early works, either pitch tracking is used to generate 

MIDI data or MIDI data is transmitted directly from the instrument. The performance data 

is then aligned to the stored MIDI data, generally using string-matching techniques.  

2.5.2.1 Dannenberg 

Dannenberg used dynamic programming to find the best match between the incoming pitch 

tracking information and the note information available in the score. He made the 

assumption that the order of events in the performance was fixed, which made the system 

usable for only monophonic performances. Bloch and Dannenberg (1985) extended the 

matching system to polyphonic keyboard performances. They discussed two approaches: a 

“static” version, which collapses polyphonic events into a single moment in the score, and a 

“dynamic grouping” version, which allows for matching between an incoming sequence and 

notated simultaneities (chords). Dannenberg and Mukaino (1988) further increased the 

robustness of the system by extending the framework to allow for additional matching 

algorithms that could accommodate alternative interpretations of the performance. They also 

demonstrated the utility of grouping notes together to account for ornamentation. The issue 

of tracking an ensemble performance, rather than a soloist, was addressed by Grubb and 

Dannenberg (1994). Their algorithm dealt only with MIDI data, taking a weighted average of 

the pitch and timing information available in the MIDI messages to calculate an estimate of 

the ensemble’s score position.  

2.5.2.2 Vercoe and IRCAM 

Vercoe’s work was specifically motivated by a commission for a piece for flute and live 

electronics by IRCAM, but also more generally by the idea of developing a “synthetic 

performer” that is able to respond to live performers. Vercoe used optical sensors on the 

flautist’s fingers to guide the pitch-tracker algorithm. Strategies for improving the score 

following through learning were further explored by Vercoe and Puckette (1985). They 

described a technique for reanalyzing the rehearsals offline to improve the accuracy of the 
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score following during performances. The learning approach was not incorporated into the 

actual IRCAM system because of the risks involved in relying on these heuristics in a live 

system. These risks were described by Puckette and Lippe (1992), specifically the way in 

which they make the system less predictable and more likely to fail catastrophically. The 

system could fail even with the incorporation of heuristics, which meant that someone 

needed to supervise the score following, lest it go off track. Puckette (1990) describes a 

graphical sequence editor for MAX called EXPLODE that allows for easy specification of 

when the system should expect input from a performer. 

2.5.2.3 Second-generation Score Followers 

Baird, Blevins, and Zahler (1990; 1993) presented what they termed a “second generation” 

score follower. Their work built on Dannenberg’s and Vercoe’s by using segments of the 

musical score to improve the musicality of score following. The segmentation was achieved 

by doing a phrase-based analysis of the music and used performance heuristics to improve 

the system’s expectations of dynamics, note durations, and rests in relation to these 

segments.   

Stammen and Pennycook (1993) pioneered the use of a particular form of dynamic 

programming called dynamic time warping (DTW) in the context of score following. They 

extracted pitch and rhythmic contours from incoming MIDI data and matched this to the 

stored MIDI score via DTW. Vantomme (1995) explored the use of MIDI timing 

information for score following as an alternative to the pitch-based techniques. The paper 

discusses techniques for account for timing deviation in performance, particularly 

asynchrony in the performance of simultaneities.  

2.5.2.4 Tracking a Vocal Performer 

Following a vocal performer raises some additional challenges, as separate pitches are not so 

clearly delineated as in instrumental music. For example, the instantaneous pitch of a vocal 

onset does not necessarily relate to the pitch of the note and there is more variability depth 

and rate of vibrato of a sung note, as well as the amplitude envelope. Katayose, Kanamori, 

Kamei, Nagashima, Sato, Inokuchi, and Simura (1993) developed a method tracking a vocal 

performer that is tuning to attend to where plosives will occur in the score as a type of 

acoustic marker. Puckette (1995) presented a system that not only attempts to assign a pitch 
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as soon as possible to minimize latency, but also allows for a posteriori corrections if the 

system finds that certain notes were not accounted for as they were performed.  

Grubb and Dannenberg (1997) introduced a stochastic approach to estimating a score 

position pointer in a vocal performance by observing only pitch data. They refined the 

approach the following year by using not only pitch information, but also spectral envelope, 

and note onset estimates, which decreased the latency in the score follower by ~10% (Grubb 

and Dannenberg 1998). The score position pointer was estimated using probability density 

functions that were calculated from hand-labelled data. 

2.5.3 Techniques 

This section describes three different approaches to score matching: dynamic programming, 

particularly dynamic time warping (DTW), hidden Markov models (HMMs), and support 

vector machines (SVM). DTW can be considered a constrained form of an HMM, where the 

state sequence always moves forward and each transition has the same probability for all 

states. The original DTW formulation does not allow for a meaningful training procedure. 

Due to its constrained nature, DTW is better suited to offline applications where there is a 

known correspondence between the performance and the score since it is not as flexible as 

HMMs in dealing with performance errors in online contexts. HMMs are a type of 

generative learning algorithm, where the learning can be either supervised or unsupervised. 

In contrast, support vector machines (SVMs) are a type of discriminative supervised learning 

algorithm. 

2.5.3.1 Dynamic Programming and Time Warping 

DTW, a type of dynamic programming, allows for the alignment of similar linear patterns, or 

sequences, evolving at different rates. Through DTW, the two sequences are aligned by 

warping them to minimize a cost function that penalizes both local and sequential mismatch. 

The time warp can be represented visually as a path through a similarity matrix (Rabiner and 

Juang 1993), as shown in Figure 2.5.1. In the similarity matrix, black indicates maximum 

similarity and white indicates maximum dissimilarity; shades of grey indicate intermediate 

steps. The best path through the similarity matrix is a warping from note events in the MIDI 

to their occurrences in the audio. The black line in Figure 2.5.1 represents the best path, 

which was calculated using a cost function that considers all possible paths through the 
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similarity matrix (from the bottom left corner to the top right corner) and which penalizes 

for both distance and dissimilarity. 

Early work with dynamic programming focused on matching polyphonic MIDI 

performances to the stored MIDI data. Later work applied DTW to audio-score matching, 

where both the MIDI and audio files are reduced to a set of features. As these features are 

generally spectral, the MIDI file was first converted to audio, or some type of spectral-like 

representation, for feature extraction. The question of which features are the most 

appropriate for this task has been the topic of some debate in the literature. Spectral 

decomposition methods have also been explored as an alternative to feature-based matching. 

 

Figure 2.5.1: A dynamic time warping similarity matrix. The black line indicates the optimal 

path through the similarity matrix, which is used to warp the timing in the audio and MIDI 

to match each other. The y-axis is the number of audio frames and the x-axis is the number 

of MIDI frames. Black indicates high similarity and white indicates low similarity. 

 

2.5.3.1.1 MIDI Data 

Large (1993) utilized an offline dynamic programming algorithm for coding pitch errors in 

MIDI piano performances. He scored the performances based on the number of matches, 

substitutions, additions, and deletions. Large reports that his algorithm was computationally 

efficient and achieved a greater than 90% accuracy in error detection. Also, in the early 

1990s, Honing and Desain began working on an offline matching algorithm for polyphonic 

MIDI data (Honing 1990; Desain and Honing 1992). This algorithm, along with some later 

variants, was described in their later articles with Heijink (Desain et al. 1997; Heijink et al. 
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2000a; Heijink et al. 2000b). These articles identify three main challenges in polyphonic 

matching: the ordering of events notated as simultaneities in the score, performance errors 

(including missed notes, extra notes, and wrong notes), and ornaments. They term their 

earliest algorithm as an “incremental matcher,” where they match notes in the simultaneities 

in which they occur. They also describe a “non-incremental matcher,” which considers all of 

the possible orderings of notes in a simultaneity before selecting the most appropriate one, 

as well as a “structure-based matcher,” which uses both pitch and onset information. The 

“structure-based matcher” has the flexibility to act like either the “incremental” or “non-

incremental” matcher, depending on how many notes it considers at a time. The various 

types of matchers were evaluated in Heijink, Windsor, and Desain (2000b) on the same 

dataset of MIDI piano performances used in Hoshishiba, Horiguchi, and Fujinaga (1996). 

The error rate for the “incremental matcher” was 1.2%, the “non-incremental matcher” is 

1.1%, and the “structure-based matcher” was 0.1%. 

2.5.3.1.2 Acoustic Features  

Orio and Schwarz (2001) experimented with spectral peak structural distance as a feature for 

DTW-based alignment. They found that the use of the delta peak structural distance, as well 

as a model for attacks and silence, improved their initial results. Their algorithm was tested 

on 708 sequences of sample-based synthesized music with different timbres and 

articulations. The test material included monophony and two- and three-voice polyphony. 

Two evaluation criteria were used: error rate, which was defined as the number of estimates 

that were more than 200ms off the ground truth, and average offset, which referred to the 

average amount that the estimates were off the ground truth in ms. The average error for 

monophonic performances was 0.42% and polyphonic was 3.6%. The average offset for all 

of the performances was 31 ms without the attack/sustain model and 18 ms with.  

In the same year, Pardo and Birmingham (2001) described a score-following system to 

match a MIDI performance to a lead sheet using dynamic programming. The system 

automatically segments the performance based on a metrical reduction analysis and groups 

the segments into chords that are then aligned to the lead sheet using dynamic programming. 

The following year, Pardo and Birmingham (2002) described some improvements for a 

monophonic score follower based on a probabilistic modeling transcription error and timing 
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information. They evaluated their dynamic programming-based alignment algorithm on solo 

alto saxophone performance. 

Soulez, Rodet, and Schwarz (2003) improved the robustness of the algorithm in Orio and 

Schwarz (2001) to include a sustain model. They tested their algorithm on real world, rather 

than synthesized, audio recordings that varied in their musical content from the 

corresponding MIDI file. The lack of direct correspondence made it difficult to evaluate, so 

only global alignment was considered. They defined a correct alignment as one where the 

estimated onset in the performance is closer to its correct match than any other onset in the 

score. Using this evaluation metric, they had an error rate of 9.7%. 

In the same year, Danneberg and Hu (2003) evaluated the usability of chromagrams for 

alignment. They evaluated their algorithm both in terms of visualizations of the DTW path 

in a similarity matrix and against hand annotated points in complex polyphonic audio. The 

visualization showed that the alignment methods were sensitive to systematic adjustments in 

the MIDI file. The evaluation of the algorithm was made against five manually annotated 

points in three different pieces, two pieces by Beethoven and one by the Beatles. Overall, the 

average error ranged from 34–76 ms.  

Turetsky and Ellis (2003) presented a DTW-based score-matching algorithm. They explored 

the use of combinations of the cosine difference of spectral power, first-order difference 

between channels, and first-order difference in frequency as features. These features were 

extracted from both the audio and a sonified version of the MIDI. They explored the 

performance of “greedy” alignment, which finds a smoother path but has the potential to 

fail, as well as “unconstrained” alignment, which might not find the most optimal path but 

will always find a path. Turetsky and Ellis used a two-step alignment approach, where an 

“unconstrained” alignment is refined by a “greedy” one. The algorithm was evaluated aurally, 

as well as empirically, by calculating the similarity of paired values in the alignment to 

determine how good the alignment was overall. They did not provide any evaluations on the 

accuracy of the alignment at the note level.  

Izmirli, Seward, and Zahler (2003) expanded the work done in Baird, Blevins, and Zahler 

(1990; 1993) with the development of a method for automatically analyzing the score for 

melodic “anchor” points that could be used as an alternative to arbitrarily segmenting the 

score by length. These anchor points are then used to guide the alignment algorithm. The 
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system was successfully implemented in a performance evaluation, and visual evaluation was 

used to compare their system’s performance with and without the “anchor” points.  

Dixon (2005) presented an online version of DTW using spectral features for audio-to-audio 

alignment in the context of score following. He tested the system on piano music recorded 

from a Bosendorfer SE piano, which provided precise information about the timing of each 

note played. The average note-level alignment error was 59 ms.  

2.5.3.1.3 Spectral Decomposition 

Arifi, Clausen, Kurth, and Müller (2004) looked at several types of matching: audio to MIDI, 

music score data to MIDI, music score data to audio, and audio to audio. Since they were 

dealing with score data, they opted to extract features from the audio that more closely 

resemble the score data. To this end, they used a combination of sub-band analysis and 

onset detection to extract note-like features; the technique was later extended by Müller, 

Kurth, Roder, and Clausen (2004; 2005). The approach in Müller, Kurth, and Roeder (2004), 

as in Arifi, Clausen, Kurth, and Müller (2003), focuses exclusively on piano music and adds 

peak picking of local energy maxima to the sub-band decomposition and onset detection 

techniques used for sparse representation in Arifi, Clausen, Kurth, and Müller (2003). Müller, 

Kurth, and Clausen (2005) introduced the Chroma Energy distribution Normalized Statistics 

(CENS), a non-instrument dependant feature based on chroma and short-time statistics. 

Although the chroma features use the same filtering method as was used in Müller, Kurth, 

and Roder (2004) for sub-band decomposition, it differs in that the chroma signal is 

decomposed in 88 bands corresponding to musical notes. The matching, or synchronizing, 

algorithm in Arifi, Clausen, Kurth, and Müller (2003); Müller, Kurth, and Roder (2004); and 

Müller, Kurth, and Clausen (2005) all use a less constrained version of dynamic 

programming than classic DTW in order to allow for matching when there is information in 

the audio signal that is not present in the score (e.g., ornamentation). In Müller, Kurth, and 

Roder (2004), the algorithm was evaluated on Romantic piano music and performed well in 

aural evaluation. In Müller, Kurth, and Clausen (2005), it was evaluated by querying a 

collection of Romantic music of various genera and found to perform well for clips of 20 

seconds or longer.  

In 2006, Müller, Mattes, and Kurth (2006) presented a multi-scale DTW-based algorithm 

which refines an original alignment using the CENS features described in Müller, Kurth, and 
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Clausen (2005). The multi-scale approach increases the efficiency of the DTW algorithm by 

first doing a rough initial alignment before doing a more refined alignment based on the 

initial one. They assess this approach to have an accuracy of less than 100 ms. In 2008, 

Müller and Ewert (2008) presented a DTW-based algorithm for assessing structural 

similarities between two pieces of audio by doing a joint structural analysis on the pieces. In 

addition to revealing structural differences, the joint analysis also allowed for better 

alignment with pieces that have significant structural variation from the reference recording, 

or MIDI file. 

Niedermayer (2009) presented a matching algorithm in 2009 using non-negative matrix 

factorization (NMF), which builds on the approach described by Cont (2006). A dictionary 

of tone models was learned and then used to decompose the signal into constituent pitches. 

The alignment was performed with DTW. The algorithm was evaluated on 13 Mozart piano 

sonatas and was found to have comparable results to chroma vectors. Niedermayer also 

explored the potential of converting the sparse NMF representation to MIDI and doing 

alignment in the symbolic, rather than in the audio, domain. The benefit of matching in the 

symbolic domain is that it would be far less computationally intensive; however, the results 

for matching with the NMF-derived symbolic representation were significantly worse than 

for NMF in the audio domain. Only 18.9% of the symbolic domain alignments were within 

50 ms of the ground truth versus 68.6% for the audio domain alignments.  

2.5.3.2 Hidden Markov Models and Related Techniques  

A hidden Markov model (HMM) is a statistical model of the temporal evolution of a 

process. The model is based on the assumption that the future can be predicted from current 

state, since it summarizes the past sequence of events. In order to model the temporal 

dynamics of a system, each state has a certain probability of transitioning to every other 

state; the true state path is hidden in the HMM. The observations of information from the 

HMM are stochastically related to the state, but the state itself is never observed directly 

(Rabiner 1989). In the case of music alignment, only the acoustic features of the signal can 

be observed, and it is not known whether a given frame is from either an attack state or a 

sustain state. In their earliest applications for music alignment, single-level HMMs were used, 

but they proved to be unreliable at times. More recent works have explored the use of multi-

level and graphical models. 
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2.5.3.2.1 Single-level HMMs 

In 1999, several papers described hidden Markov model-based (HMM) approaches to score 

matching. Cano, Loscos, and Bonada (1999) focused on monophonic music and created left-

to-right HMMs to model notes as attack, sustain, and release states, as well as silence as a 

single state and no-notes states for all non-notes/non-silence. For its observations, the 

HMM used energy, zero-crossing, and fundamental frequency and their derivatives. The 

HMM was trained with hand-labelled audio and used a Virtebi decoder to find the optimal 

path. There was no formal evaluation of the system in the paper. 

Loscos, Cano, and Bonda (1999) described an HMM-based algorithm that incorporated 

phoneme recognition into score matching of vocal music. The motivation for using 

phonemes was to simplify the alignment problem and reduce the amount of delay in a real-

time context. The authors describe the acoustical difference between singing and speaking 

voice in terms of voiced/unvoiced ratio, dynamics, fundamental frequency, vibrato, and 

formants, and develop an HMM architecture that used predominantly mel cepstrum and 

energy values for observations. As in Cano, Loscos, and Bonada (1999), the algorithm used 

three left-to-right HMMs. The only difference in this implementation was that the non-note 

(plosive) HMM was modeled with two states. The system was tested on a number of songs 

and was evaluated visually with the alignment displayed over a time-domain representation 

of the audio.  

Raphael (1999) described an HMM approach for monophonic signals. Each frame of audio 

is described as a low-dimensional feature vector and unsupervised learning is used to train 

the system. Raphael contrasts this work with the pitch-based approaches of earlier work, 

including Dannenberg (1984), Vercoe (1984), Puckette and Lippe (1992), Puckette (1995), 

and Grubb and Dannenberg (1997). The data model consists of two note states (articulation 

and pitch) and one rest state (silence). The system uses the Forward-Backward algorithm to 

find the optimal segmentation of the audio. Evaluation was done visually, by overlaying the 

segmentation on the spectrogram, and aurally.  

2.5.3.2.2 Multi-level HMMs 

Orio and Dechelle (2001) presented a new approach for training a multi-level HMM for 

polyphonic music that consisted of both a note-level and a score-level. As in Orio and 
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Schwarz (2001), a bandpass filter was used to assess spectral energy. Here, the filtering was 

done on a database of sounds to obtain note-level observations. At the score level, a variant 

of the Baum-Welch algorithm was used for training, where the user had to specify the last 

correct state. The decoding was done using Viterbi. The system was evaluated sonically on 

several pieces of contemporary music, as well as repertoire, with various ornamentations and 

articulations.  

This approach was extended by Schwarz, Orio, and Schnell (2004), who implemented an 

HMM for use with polyphonic MIDI piano data, which included the use of the sustain 

pedal. The incoming MIDI signal was quantized to account for asynchrony in notated 

simultaneities. Informal evaluation was performed on a contemporary chamber opera with 

robust results. The following year, Cont, Schwarz, and Schnell (2005) described a Gaussian 

Mixture Model approach to model the observations in the IRCAM score follower that was 

based on Orio and Déchelle (2001). In order to train the score-following system, they 

learned the mapping between the score and the performance through a discriminative 

approach.  

Cont (2006) presented a method for score following based on Non-negative Matrix 

Factorization (NMF) and hierarchical HMMs. The NMF approach allows for multiple pitch 

estimation through the unsupervised learning of dictionary specific to the acoustics of a 

particular instrument. The hierarchical HMM has two levels: the lower level models the 

notes, chords, and rests themselves, and the upper level models the temporal relationship 

between the lower-level events and the score. The method was evaluated visually on a piece 

of contemporary piano music.  

Montecchio and Orio (2009) presented an HMM approach that uses the output of a discrete 

filter bank, rather than a Fast Fourier Transform (FFT), for observations. As in Orio and 

Déchelle (2001), the HMM is multi-levelled with the acoustics of each musical event 

modeled at the event level, and these events themselves modeled at the score level. As in 

earlier works, Viterbi decoding was used. The algorithm was tested on single instrument, 

chamber, and orchestral music. The results were evaluated both aurally and visually. A 

comparison with an FFT-based approach was also made using a manually annotated 105-

note excerpt. The filter bank approach performed more robustly in terms of event 

recognition (101 vs. 93). 
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Cont (2010) described an approach for “anticipatory” score following, where the system 

makes predictions about the future to inform its current decision. These inferences are made 

with a hidden hybrid Markov/semi-Markov model that is constructed from information in 

the score. The observations are based on the FFT of each frame of audio. The system was 

evaluated using both synthesized audio and the MIREX 2006 dataset (Downie 2006), which 

is discussed below in Section 2.5.5.3. On the synthesized audio data set the mean onset error 

ranged from 8.69 to 9.5 ms, and the mean tempo error ranged from 8.13 to 158.78 ms under 

various tempo manipulations. On the MIREX dataset, the system performed better than any 

of the systems submitted to either the 2006 or 2008 evaluation with a total precision of 

91.49% given a tolerance of 250 ms. The mean offset error on the MIREX dataset ranged 

from 75.1 to 240.9 ms. 

2.5.3.2.3 Graphical Models 

Raphael (2004) presented a graphical model method for score matching based on pitch 

content of the audio. Raphael turned to graphical models in order to address the 

shortcomings of HMM-based systems when following complex polyphonic audio. He notes 

that the modeling of note length is often problematic, and in his system, tempo-shifts are 

modeled in order to use the duration information in the score more effectively. This is 

achieved with a two-level model: one level models the pitch content in the signal, and the 

other models the notes and tempo-shifts. In order to make the model tractable and to 

handle the continuous nature of the tempo-shift variable, a maximum a priori estimate is 

computed to find the most likely collection of paths. The system was evaluated on a 55-

minute set of orchestral excerpts that were labelled by tapping and hand correction. The 

result showed that 95% of the estimate onset times were within 250 ms of the ground truth, 

and 72% were within 125 ms. Aural evaluation was also used, and the results were made 

available, as well as the evaluation set. The work was later described in greater detail in a later 

article (Raphael 2006).  

Peeling, Cemgil, and Godsill (2007) presented a new approach for alignment called score 

position pointer estimation. They described two feature-sextraction methods: one using two-

element spectrogram-derived vectors for each frame of audio to characterize the signal’s 

energy and one using a sinusoidal subspace model to extract frequency, amplitude, phase, 

and damping coefficient. Observation models were learned directly from the data, and the 
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progression of the score position pointer was calculated with Viterbi. On a test set of 

sample-based piano performances, the algorithm performed with an average onset resolution 

of 7.5 ms. The authors also evaluated the algorithm both aurally and visually.  

2.5.3.2.4 Support Vector Machines (SVMs) 

SVMs find the maximum margin between two classes of data. They are used when the 

margin cannot be discriminated in a low-dimensional feature space (Christianini and Shawe-

Taylor 2000). Shalev-Shwartz, Keshset, and Singer (2004) presented an SVM-approach for 

offline alignment polyphonic music. They used ten different features, nine of which are 

FFT-based and one of which is the similarity (or relative tempo) between the performance 

and the scored MIDI data. The weights for the features are learned from a training set. Once 

the weights have been applied, dynamic programming is used to determine changes in 

relative tempo between the recording and the MIDI file over the entire piece. The authors 

evaluated their approach against a generative HMM model on 12 piano performances for 

which MIDI files of the performance were available to use as ground truth. The average 

onset detection error was less than 20 ms compared to 25–78 ms for the variants of 

generative HMMs that they also evaluated. In a later article with Chazan (Keshet et al. 2007), 

they expanded this technique to speech-to-phoneme alignment.  

2.5.4 Applications 

There are numerous applications for music alignment techniques. This section surveys 

different approaches to a range of applications. The most pertinent to this dissertation are 

the applications for expressive performance studies. Other applications include automatic 

accompaniment, query-by-humming, and digital libraries.  

2.5.4.1 Expressive Performance Studies 

As noted above, music alignment can be used for expressive performance studies since it 

often performs with more precision in identifying note onsets and offsets than blind 

estimation algorithms. In his master’s thesis, Scheirer (1995) described the architecture of a 

system for transcribing polyphonic piano music using a MIDI score as a guide. He discussed 

the potential applications for the study of expressive performance both in his thesis and in a 

book chapter on the topic (Scheirer 1998). His work represents the first attempt to study 

performance from audio data; however, the study of MIDI recordings remained much more 
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common until 2003. As discussed above, Large (1993) used dynamic programming to assess 

errors in piano performance. Hoshishiba, Horiguchi, and Fujinaga (1996) discussed a 

number of methods for using dynamic programming to find the best alignment between 

different MIDI performances that contained several errors, as well as a technique for 

defining a normative performance. Heijink and colleagues (2000a; 2000b) later followed up 

on the work of Hoshishiba, Horiguchi, and Fujinaga.  

Dixon (2003) picked up on the work done by Schierer and described another architecture for 

a system capable of aligning an audio recording of a piano to a MIDI score. A later paper by 

Dixon and Widmer (2005) presented a working toolkit for Dixon’s algorithm but with a 

focus on aligning different audio performances and the potential of relating it to MIDI with 

sonified version of the MIDI (building on Turetsky and Ellis 2003). This work was later 

summarized in a book chapter by Goebl et al. (2008), which also discussed some techniques 

for computationally modeling the collected data.  

2.5.4.2 Automatic Accompaniment 

Automatic accompaniment motivated the earliest research in score following (Dannenberg 

1984; Vercoe 1984) and remains a current topic of interest since improving the response and 

naturalness of the accompaniment systems is still an open research question. Raphael (2001) 

described his Music Plus One system, based on the score-following technique described in 

Raphael (1999). The motivation for Music Plus One was to improve the static performances 

that were used in existing accompaniment systems, such as Music Minus One, where the 

accompaniment could not adapt to the expressive characteristics of the soloist’s 

performance. The IRCAM score follower is also implemented in the context of a real-time 

accompaniment system. Schwarz, Cont, and Schnell (2005) described the implementation of 

the IRCAM score follower in automatic accompaniment systems for electro-acoustic and 

vocal music.  

Current implementations of both the Music Plus One and the IRCAM score follower work 

with acoustic input, most optimally from a monophonic source. More recently, Jordanous 

and Smaill (2009) presented an HMM-based polyphonic MIDI score-following system and 

undertook surveys with performers to see how they felt about the automatic accompaniment 

system. They found that the performers felt that the accompaniment system performed well 

with simple pieces, but that latency became an issue for more complex pieces. 
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2.5.4.3 Query-by-Humming 

Query-by-Humming (QBH) has been an active area of research since the mid-nineties. The 

requirements for aligning a hummed or sung query to complex audio are a different, but 

related, problem for score alignment. Recognizing that people may not be completely 

accurate in their renditions of the melody they are looking for, early researchers used 

contour rather than absolute pitch to represent the query and matched it against the items in 

a database. Specifically, they represented the contour in terms of upwards, downwards, and 

repeating motion. Ghias, Logan, Chamberlin, and Smith (1995) used a fuzzy approach to 

pattern matching to account for any errors that may occur in the input query or the 

representation of the items in the database. The following year, McNab, Smith, Witten, 

Henderson, and Cunningham (1996) described a string-matching approach that utilizes 

dynamic programming.  

Birmingham et al. (2001) presented a framework called MUSART that improved melody-

based database queries by generating a thematic index. Searching was done using dynamic 

programming. The following year, Shlev-Schwartz et al. (2002) presented a probabilistic 

approach that used spectral and temporal features from the audio. Hu, Dannenberg, and 

Tzanetakis (2003) applied the method described in Dannenberg and Hu (2003) to database 

retrieval. They tested chromagrams against mel-frequency cepstrum coefficients, or MFCCs 

(Logan 2000), and pitch histograms for the task of retrieving pieces from a database of 

MIDI using audio queries. They found that chromagrams had the best accuracy: 0.95 on 

their dataset of 10 acoustic Beatles recordings, with pitch estimates coming in slightly below 

at 0.82 and MFCCs performing poorly at 0.30. The poor performance of the MFCCs is to be 

expected given that MFCCs highlight timbral information and discard most of the useful 

pitch information. When comparing MIDI and audio representations, it is likely that there 

will be significant timbral differences even when the same notes are being played, thus 

undermining the ability of the algorithm to match the pitch sequences. Adams, Bartsch, 

Shirfrin, and Wakefield (2004) examined the relative performance of three types of time 

series representations for queries: sequences of notes, a “smoothed” pitch contour, and 

sequences of pitch histograms. They used a dynamic programming-based search to evaluate 

each of these representations. They found that the pitch histograms work almost as well as 

contour, and both were better than pitch sequences. Pitch histograms had the advantage of 
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less computational complexity than “smoothed” pitch contours. In the following year, 

Adams, Marquez, and Wakefield (2005) described a system using pitch histograms with 

iterative deepening search and dynamic time warping.  

Pardo and Sanghi (2005) addressed the issue of queries switching between different 

polyphonic lines in the targeted recording with an approach that made use of a probabilistic 

extension to string alignment. Suyoto, Uitdenboger, and Scholer (2007) used a noisy 

polyphonic transcription with the longest common subspace alignment. The following year, 

they experimented with relative pitch in the same framework (Suyoto et al. 2008). Overall, 

they found that they were able to make their DTW-based system more robust for truncated 

queries by exploring all possible transpositions in the alignment stage. 

2.5.4.4 Digital Music Libraries 

Digital music libraries contain both score-based and acoustic-based representations of music. 

These materials can be synchronized with one another to create a multi-modal browsing 

experience and music alignment can be used for this synchronization. A paper by Orio 

(2002) presented an HMM-based approach for synchronizing symbolic and acoustic versions 

of pieces in a digital library context. Orio discussed the limitations of the MIDI format for 

representing the information available in the score and, in light of this, designed a framework 

that can work with other digital representations of the music score. The use of different 

representations is discussed in more detail in Melucci and Orio (1999). Orio also described 

how the HMM representations that are used for alignment purposes can also be used for 

automatic recognition of performances within a library catalogue. This research was 

extended by Miotto and Orio (2007) to work for orchestra music and by Orio (2010) to 

work for non-Western music and underspecified scores.  

Dunn, Byrd, Notess, Riley, and Scherle (2006) explored the potential for incorporating 

Raphael’s music alignment method (Raphael 2004) in the Variations3 digital music library 

project at Indiana University. In the Variations2 phase of the project, the scores and 

recordings were manually synchronized by someone tapping along while listening to each 

recording. The synchronization allowed for both fast indexing of the recordings and a multi-

modal experience where the score position is shown in real time while the recording plays. 

This type of large-scale synchronization has been implemented at the Bavarian State Library 

(Fremerey et al. 2008) by a group of researchers at the University of Bonn, who have made 
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the technology widely available as a package called SyncPlayer. Kurth, Müller, Damm, 

Fremerey, Ribbrock, and Clausen (2005) first introduced SyncPlayer, a synchronization and 

visualization framework for different types of musical documents. The framework uses the 

alignment technology described in Müller, Kurth, and Roder (2004). Two years later, Kurth, 

Müller, Fremerey, Chang, and Clausen (2007) reported on the implementation of score 

alignment data collected through optical music recognition in the SyncPlayer framework.  

2.5.4.5 Other Applications 

2.5.4.5.1 Karaoke  

A karaoke-related application of alignment was described by Cano, Loscos, Bonada, de Boer, 

and Serra (2000). They described a technique for morphing the characteristics of an inputted 

singing voice to the characteristics of a target singing voice. Alignment was done using the 

technique described in Cano, Loscos, and Bonada (1999). 

2.5.4.5.2 Education  

In their 2006 survey article, Dannenberg and Raphael (2006) described two educational 

applications of music alignment. The first is a program called Piano Tutor, described more 

extensively in Dannenberg, Sanchez, Joseph, Joseph, Saul, and Capell (1993), where 

students’ performances are matched in real time to the score that they are playing. The 

system then makes note of any errors that are made in the performance. The second 

program is a commercial product called SmartMusic, which provides an accompaniment for 

students to play along with. AudioZoom, another application, was described by Montecchio 

and Orio (2008). This tool allows for visual and auditory highlighting of an instrument in a 

polyphonic recording.  

2.5.4.5.3 Signal Processing 

Another application of music alignment is to create a reference for signal processing 

algorithms. Turetsky and Ellis (2003) described how music alignment could be used to 

generate ground truth for polyphonic transcription. Woodruff, Pardo, and Dannenberg 

(2006) used score and spatial information to separate instruments in a polyphonic mixture of 

instruments. They tested their approach on a performance of sample-based string quartet 

performances and found that the score-guided separation worked better than blind 

separation based only on spatial information. The following year, Dannenberg (2007) 
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described a multi-track music editor that uses music alignment to isolate individual tracks. 

The alignment estimates are improved with a root mean square (RMS)-based onset detection 

algorithm. Dynamics for each part were estimated with RMS and fundamental frequency (F0) 

was estimated using de Cheveigné and Kawahara’s YIN algorithm (de Cheveigné and 

Henrich 2002). Dannenberg also described a method for making adjustments to pitch, 

timing, and balance within the polyphonic mixture. Recently, Smit and Ellis (2009) described 

an algorithm for making frame-wise F0 estimates in four-part vocal music using an aligned 

MIDI file as a guide. They demonstrated that their probabilistic approach outperformed the 

YIN algorithm when it was guided by the aligned score.  

2.5.5 Evaluation 

Various evaluation approaches have been employed for assessing music alignment 

algorithms. When the alignment algorithm is part of a larger system, the quality of the 

alignment can be evaluated indirectly by measuring the end-to-end performance of the 

system. Direct evaluations of music alignment accuracy can be done aurally by generating a 

click track from the aligned onset estimates and then playing it back with the original audio, 

and/or visually by overlaying a representation of the audio signal in the time or frequency 

domain with the alignment onset estimates. For more precise evaluation of the timing 

discrepancies between the alignment algorithm’s onsets and offsets estimates and those in 

the reference recordings, accurate annotations of the reference recordings are needed to act 

as ground truth. 

2.5.5.1 Ground Truth 

Obtaining a sufficiently accurate ground truth for the systematic evaluation of audio 

alignment algorithms is an open problem. MIDI alignment systems, in contrast, are able to 

use the information in the reference MIDI file that the incoming MIDI file is being aligned 

to. However, MIDI alignment systems are greatly limited in their utility since they are only 

applicable to instruments that are capable of outputting MIDI data and are only useable for 

recordings in MIDI format, which are far less numerous than audio recordings. For audio 

alignment algorithms, a number of different approaches have been taken, including the use 

of synthesized audio (Orio and Schwarz 2001), audio recordings from instruments capable 

of also outputting symbolic data (Raphael 2004), and hand annotation of audio files (Dixon 

2005).  
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The use of synthesized, or sample based, audio solves the problem of having accurate timing 

information for the notes in the reference recording. The audio signals that such a method 

creates are not as complex as real-world audio signal. Specifically, the limitation of timbral 

variability in the instrumental performance and reverberation greatly simplifies the alignment 

problem compared to its real-world counterpart. Recordings done on instruments capable of 

outputting symbolic data are generally limited to piano performances on a Bosendorfer SE, a 

Yamaha Disklavier, and other similar acoustic pianos with MIDI capabilities. Since these 

acoustic pianos can be recorded in ecologically valid conditions, these recordings provide 

useful ground truth. However, in the polyphonic context, this approach is only viable for 

piano music. It is possible to annotate other types of polyphonic recordings manually, but it 

is a laborious process that can be aided by an initial rough alignment and then making 

corrections by hand. The problem with this approach is that it is often hard to accurately 

identify individual onsets when different instruments are playing together. The use of multi-

track recordings addresses this problem of asynchrony between the musical lines. However, 

such recordings are far less numerous than mixed-down recordings, which limits the amount 

of ground truth that is available in this format. 

2.5.5.2 Formal Evaluation 

The first wide-scale formal evaluation of score-following took place as part of the 2006 

Music Information Retrieval Evaluation eXchange (MIREX) (Downie 2006). Several metrics 

were used, including precision rates that were calculated by subtracting the number of 

“missed notes” from the number of notes in the ground truth both at the level of the audio 

file and over all of the files. “Missed notes” were defined as those that exist in the ground 

truth but which are either not reported by the system or which are reported with a 

discrepancy of more than 2000 ms between the ground truth and the onset estimate. The 

second definition of “missed notes” is also contained in the “false positive” measurement. 

The average and mean discrepancies, as well as the discrepancies’ standard deviation and the 

systems’ average latency, were also calculated. 

The systems submitted to the 2006 MIREX task were evaluated on 47.38 minutes of audio, 

which contained 8957 notes. The audio included a Mozart vocal aria, a Mozart clarinet 

concerto, a Boulez piece for flute and chamber ensemble, and a Bach violin sonata. The 

ground truth was obtained by hand correcting an initial offline score alignment. There were 
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two systems submitted: one by Cont and Schwarz, who obtained a piecewise precision of 

90.06%, and one by Puckette, who obtained a piecewise precision of 69.74%. The piecewise 

average discrepancy error in the Cont and Schwarz system ranged from 91.8–409.7 ms with 

a standard deviation of 148–905.4 ms. The following year, Cont et al. (2007b) explained the 

MIREX evaluation system in greater detail and the task was run again in 2008 (Downie 

2008) with a dataset submitted by the participants. For this task, Montecchio and Orio 

obtained an average piecewise precision of 66.50% and Macrae had an average piecewise 

precision of 22.85%. 

2.5.5.3 Required Accuracy 

Different applications of music alignment require different degrees of accuracy. Work on 

score-following systems consider estimates within 250 ms (Cont 2010) to 300 ms (Cont et al. 

2007b) of the actual note to be correct. The current state of the art for following a range of 

instruments was presented by Cont (2010), where 91.49% of the onset estimates were within 

250 ms of the ground truth and the mean offset. This statistic adds together both the 

estimation error and the latency of the system, which ranged from 75.1–240.9 ms, with 

standard deviations of 24.8–253.3 ms, across the pieces in the test set. The values do not 

take latency into account. Within this 250 ms error rate, there are certain instruments for 

which score following is effective, but others remain for which it needs to be improved, 

including the singing voice. 

For digital music libraries, where the alignment is used to either visually link the score to the 

audio during playback or to find a particular section of the piece, the alignment precision 

could range from note-level, at its most precise, to the bar-level, for certain applications. For 

a piece in 4/4 that is performed at 120 bpm, this would translate to 500 ms for quarter note-

level precision and 2000 ms for measure-level precision. Evaluations of digital libraries are 

typically made in terms of overall usability or retrieval accuracy rather than onset estimation 

accuracy. 

In contrast, expressive performance studies require much greater precision. For timing-based 

studies, this is particularly important when evaluating asynchrony in the performance of 

notated simultaneities either on a polyphonic instrument, such as the piano, or between 

instrumentalists in an ensemble, which can range from 7 to 50 ms (Palmer 1997). Also, when 

the alignment is used to guide signal-processing algorithms in complex polyphonic 
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recordings to estimate pitch or dynamic information, the discrepancy for the onset and 

offset estimates needs to be as close to 0 ms as possible. Currently, none of the existing 

approach comes close to this level of precision on non-synthesized audio, and this remains 

an open area of research. Section 3.1 describes an alignment algorithm optimized for 

accurate estimation of notes onsets and offsets in monophonic recordings of the singing 

voice. 

2.5.6 Summary 

This section has surveyed various approaches to audio-score alignment and their 

applications. The majority of the early work focused on real-time following of monophonic 

instruments for use in live performance settings. More recently, researchers have also 

explored the use of audio-score alignment for analyzing the content of musical signals. The 

next chapter details experiments that demonstrate that none of these existing methods are 

sufficient for accurately identifying the location of notes onsets and offsets in recordings of 

the singing voice and presents a new alignment algorithm for addressing this problem. 
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Chapter 3: Automatic Extraction of Performance Parameters 

 

This chapter details the methods used to extract and analyse intonation-related data in the 

audio recordings used in the experiments in Chapter 4. The first main section (3.1) describes 

the challenge of automatically annotating note onsets and offsets in audio files. This section 

builds on the literature review in Section 2.5 and focuses on the challenges of determining 

onset and offset in recordings of the singing voice through score-audio alignment. Section 

3.1.1 details a set of experiments on the utility of existing dynamic time warping alignment 

algorithms on recordings of the singing voice. Section 3.1.2 describes a new approach for 

score-audio alignment for such signals that bootstraps a hidden Markov model that uses the 

acoustical properties of the singing voice with an existing dynamic time warping alignment 

algorithm. The second main section (3.2) discusses the tools used in this dissertation for 

extracting and describing fundamental frequency information from the audio recordings 

once the note onsets and offsets have been determined. Section 3.2.1 discusses how de 

Cheveigné and Kawahara’s YIN algorithm (2002) is used to extract F0 estimates. Section 

3.2.2 explains how a perceived pitch for each note is calculated from these estimates. Section 

3.2.3 details the use of the discrete cosine transform to model the evolution of F0 through 

estimations of the slope and curvature of the F0 trace for each. 

3.1 Annotation of Audio Files with Score-Audio Alignment 

No robust solutions currently exist for annotating note onsets and offsets in recordings of 

the singing voice. The current state of the art for score-guided onset and offset estimation is 

described in Section 2.5. One general theme that emerges from the literature is that blind 

estimation algorithms are less robust than score-audio alignment algorithms, particularly for 

audio with non-percussive onsets, such as the singing voice. The singing voice is particularly 

challenging for several reasons: the difficulty of determining note onsets and offsets when 

notes change under a single syllable, the differences in onset characteristics between vowels 

and consonants, and the acoustic characteristics that accompany different types of attacks 

and articulations. The spectrographic representation in Figure 3.1.1 demonstrates the 
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acoustic difference between a vocal line and a solo drum line, which can be considered a 

nearly optimal signal for onset detection. In particular, the broad band energy and higher 

amplitude at drum hits is easier to track than the pitch-based shifts that are the most salient 

characteristics of onsets and offsets in solo vocal recordings. Unlike percussive onsets, 

amplitude is not a useful cue for onset and offset detection in the solo vocal recordings since 

singers often achieve their highest amplitude level mid-note. The differences between these 

types of sound clearly impact the onset detection algorithms’ performance. Figure 3.1.2 

shows the results from the 2007 Music Information Retrieval Evaluation eXchange 

(MIREX) Onset Detection Task’s solo drum examples (Downie 2007). The high values for 

precision (the number of correct onset estimates divided by the total number of onset 

estimates) and recall (the number of correct onset estimates divided by the number of onsets 

in the ground truth) in nearly all of the algorithms demonstrate how good the state of the art 

is for percussive onsets. In contrast, the results for the singing voice examples in Figure 3.1.3 

are much lower and more varied.  

 

Figure 3.1.1: Spectrographic representations of 7-second audio clips of solo drum (left) and 

solo voice (right).  
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Figure 3.1.2: Plot results from MIREX 2007 Onset Detection evaluation for solo drum from 

Downie (2007). The y-axis is precision, the number of correct onset estimates divided by the 

total number of onset estimates, and x-axis is recall, the number of correct onset estimates 

divided by the number of onsets in the ground truth. The legend on the right indicates 

which algorithm is which. Details of the algorithms can be found on the MIREX 2007 web 

page (Downie 2007). 
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Figure 3.1.3: Plot of the results from MIREX 2007 Onset Detection evaluation for singing 

voice from Downie (2007). The y-axis is precision, the number of correct onset estimates 

divided by the total number of onset estimates, and x-axis is recall, the number of correct 

onset estimates divided by the number of onsets in the ground truth. The legend on the right 

indicates which algorithm is which (Downie 2007). 

 

For the purposes of this research, the offsets of each note also had to be accurately 

identified in order for fundamental frequency (F0) estimates to be calculated for each frame 

of audio in each note. Since scores are available for all of the recordings used in this 

research, score-audio alignment can be used for annotation. However, none of the existing 

algorithms have been extensively tested for the singing voice. The emphasis of earlier 

evaluations was on timing information; therefore, they focused solely on onsets. Also, the 

evaluations used different data sets, often without any isolated examples of the singing voice.  

The first step in the evaluation compared dynamic time warping (DTW)-based algorithms 

(Orio and Schwarz 2001; Dannenberg and Hu 2003; Turetsky and Ellis 2003) and hidden 
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Markov model (HMM)-based algorithms (Raphael 2004; Peeling et al. 2007). A qualitative 

evaluation of these algorithms on recordings of the singing voice showed that offline DTW-

based algorithms performed better, likely because they are more constrained than the online 

HMM-based algorithms. A two-part quantitative evaluation of DTW-based algorithms for 

onset and offset estimation on recordings is described in Section 3.1.1. These evaluations 

demonstrate that none of the existing approaches were sufficiently accurate for our 

purposes, as we require accurate identification of not only the onset, but also the locations of 

the transients and steady state portions in the notes. The accuracy of the DTW-based 

approach was improved with a newly developed two-step approach, where an HMM is 

bootstrapped with an existing DTW alignment in order to increase its accuracy. The 

algorithm and its evaluation are detailed in Section 3.1.2. 

3.1.1 Evaluation of Dynamic Time Warping Approaches to Alignment 

This section demonstrates the limits of existing audio-score alignment approaches for 

annotating onsets and offsets in recordings of the singing voice. Section 3.1.1.1 details how 

the ground truth was collected for the evaluations. The following section describes the test 

data. Section 3.1.1.3 describes the evaluation metric used for the experiments. The first 

experiment, described in Section 3.1.1.4, is a quantitative evaluation of three different DTW 

approaches (Orio and Schwarz 2001; Dannenberg and Hu 2003; Turetsky and Ellis 2003). 

The second experiment, described in Section 3.1.1.5, is a more detailed evaluation of the 

method by Orio and Schwarz (2001).  

3.1.1.1 Ground Truth Collection 

Ground truth was collected by manually labelling the audio in Audacity, an open source 

audio editor that provides time- and frequency-domain representations of the audio, as well 

as labelling functionality. The general location of the onset and offset of each note is 

determined aurally. The estimates were then refined through repeated listening of small 

segments of audio while alternating between the time-domain (Figure 3.1.4) and frequency-

domain (Figure 3.1.5) representations. Each note’s onset and offset estimations were verified 

several times before the next note was annotated. Manual annotation takes about 10–12 

times real-time (i.e., 10–12 times the duration of the audio file). The pieces used for this 

evaluation were annotated multiple times to ensure consistency. 
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Figure 3.1.4: Time-domain representation of audio in Audacity with note onsets and offsets 

labelled underneath. In the audio representation in upper window, the x-axis represent time 

in seconds, and the y-axis represents amplitude in dB. In the lower window, the labels are 

visualized and labelled as silence, transient, or steady state.  

 

Figure 3.1.5: Frequency-domain representation of audio in Audacity with note onsets and 

offsets labelled underneath. In the audio representation in upper window, the x-axis 

represent time in seconds, and the y-axis represents frequency in Hz. In the lower window, 

the labels are visualized and labelled as silence, transient, or steady state. 
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3.1.1.2 Test Data 

The test data for the DTW evaluation consisted of four 40 s multi-tracked audio recordings 

from the opening of Guillaume de Machaut’s Notre Dame Mass (see Figure 3.1.6 for score). 

The recordings were made in the Centre of Research in Music Media and Technology 

(CIRMMT) labs at McGill University by first recording the singers as an ensemble and then 

re-recording each singer individually while they listened to the ensemble recording. This 

allowed for the creation of synchronized yet completely isolated multi-track recordings. 

Details of the recording process are reported in Wild and Schubert (2008). 

 

Figure 3.1.6: Score of the opening of Machaut’s Notre Dame Mass. 

 

The multi-track recordings were combined four ways: Triplum (Soprano), Triplum 

(Soprano) + Motetus (Alto), Triplum (Soprano) + Tenor + Contratenor (Bass), and Triplum 

(Soprano) + Motetus (Alto) + Tenor + Contratenor (Bass). These combinations were used 

to represent different combinations of voices and in order to be representative of the 

different frequency ranges in the piece. 

3.1.1.3 Evaluation Framework 

The evaluation metric looks at the accuracy of note onset and offset alignment by comparing 

the collected ground truth to the results of the alignment algorithms. As described in Section 

2.5.5, this is done by comparing each time value in the ground truth against the list of 

warped MIDI values generated by the alignment algorithm. If the absolute difference 

between the aligned value and the ground truth is less than the value defined in the 

experiment, either 50 or 100 ms, the alignment is considered to be correct. Each correct 

onset and offset alignment scores one point in their respective counts. This evaluation 
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method is similar to the metric described in Cont et al. (2007), but differs in that they also 

discussed some other measures that are not relevant to the offline systems evaluated here: 

latency in the actual detection, offset in reporting of the detection, missed notes (which are 

known not to exist in this dataset), and misaligned notes (which are already penalized in our 

accumulated count). 

3.1.1.4 Experiment One: Comparison of DTW Approaches 

This experiment focused on three different DTW-based alignment approaches: Orio and 

Schwarz, Dannenberg and Hu, and Turetsky and Ellis. As described in Section 2.5.3, Orio 

and Schwarz (2001) used peak structural distance as a feature and a model of attacks and 

silence for matching a note mask representation of a MIDI file to an audio file. Dannenberg 

and Hu (2003) used chromagrams to match a sonified version of a MIDI file to an audio file. 

Turetsky & Ellis (2003) used a combination of the cosine difference of spectral power, first 

order difference between channels, and first order difference in frequency for aligning 

sonified MIDI to audio files. However, since the recordings in this experiment are 

monophonic, only the cosine difference of spectral power was used in the evaluation. More 

details about these algorithms can be found in Section 2.5. The evaluation was done using 

publicly available MATLAB code (Dannenberg 2003; Ellis 2003, 2008), which was modified 

in order to account for differences between the offset of one note and the onset of the next 

by inserting an optional silence between each of the notes. 

The performance of each of the alignment algorithms is detailed in Table 3.1.1–Table 3.1.3. 

Table 3.1.3 shows the mean difference between the ground truth and the alignment 

algorithms for the onsets and offsets, as well as the minimum and maximum differences. 

Table 3.1.2 shows a tally of the number of onsets and offsets for each algorithm within 50 

ms of the ground truth, and Table 3.1.3 show the tally for the number of onsets and offset 

within 100 ms. Taken in combination, these tables indicate both the average accuracy (Table 

3.1.1) and the robustness (Table 3.1.2 and Table 3.1.3) of the algorithms. 

 

 



 

 

 89 

 

 Orio and Schwarz 

Onsets Offsets 

Mean Min Max Mean Min Max 

Triplum 0.1344 0.0026 0.8373 0.0715 0.0025 0.7655 

Triplum+Motetus 0.1301 0.0026 0.8455 0.1110 0.0025 1.0176 

Triplum+Tenor+Contratenor 0.2262 0.0029 0.9346 0.1739 0.0026 0.6219 

Triplum+Motetus+Tenor+ Contratenor 0.1798 0.0015 0.9346 0.1546 0.0018 1.5641 

 

 Dannenberg & Hu 

Onset Offset 

Mean Min Max Mean Min Max 

Triplum 0.2491 0.0180 0.9708 0.1763 0.0205 0.9345 

Triplum+Motetus 0.2057 0.0013 0.4997 0.1749 0.0011 1.0176 

Triplum+Tenor+Contratenor 0.3273 0.0039 1.7935 0.3358 0.0205 3.3069 

Triplum+Motetus+Tenor+ Contratenor 0.2831 0.0059 2.5435 0.3136 0.0040 4.0569 

 

 Turetsky and Ellis 

Onsets Offsets 

Mean Min Max Mean Min Max 

Triplum 0.1310 0.0026 0.8373 0.0721 0.0025 0.7655 

Triplum+Motetus 0.1270 0.0026 0.8455 0.1037 0.0025 0.8176 

Triplum+Tenor+Contratenor 0.1536 0.0029 0.6446 0.1324 0.0008 0.6219 

Triplum+Motetus+Tenor+ Contratenor 0.1436 0.0029 0.5817 0.1320 0.0008 0.6522 

Table 3.1.1: Mean, minimum, and maximum difference in calculated onset and offset values 

in the alignment from the ground truth in ms for each of the algorithm evaluated in 

Experiment One. 

Filename  
(# of onsets and offsets) 

Orio & Schwarz Dannenberg & Hu Turetsky & Ellis 

Onset Offset Onset Onset Onset Offset 

Triplum (62) 10 18 1 1 10 10 

Triplum+Motetus (122) 15 30 8 9 16 16 

Triplum+Tenor+Contratenor (170) 15 20 8 4 18 18 

Triplum+Motetus+Tenor+ 
Contratenor (198) 

19 35 15 12 19 19 

Table 3.1.2: Tallies of number of onsets and offsets estimated by the algorithms that are 

within 50 ms of the ground truth. 
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Filename  
(# of onsets and offsets) 

Orio & Schwarz Dannenberg & Hu Turetsky & Ellis 

Onset Offset Onset Onset Onset Offset 

Triplum (62) 18 26 1 11 18 18 

Triplum+Motetus (122) 33 42 9 25 33 33 

Triplum+Tenor+ Contratenor (170) 26 29 8 22 31 31 

Triplum+Motetus+Tenor+ 
Contratenor (198) 

37 48 22 42 41 41 

Table 3.1.3: Tallies of number of onsets and offsets estimated by the algorithms that are 

within 100 ms of the ground truth.  

 

Overall, the Turetsky and Ellis and Orio and Schwarz algorithms performed better than 

Dannenberg and Hu and, as a general rule, the accuracy was better for excerpts with fewer 

voices. The poorer performance of the Danneberg and Hu algorithm suggests that chroma 

are not the best features for aligning vocal music, particularly for excerpts with three and 

four voices. There was no significant difference between the other two algorithms, as both 

performed fairly consistently for the entire dataset. However, the Orio and Schwarz 

algorithm has an advantage over the Tuetsky and Ellis algorithm in its implementation. The 

use of a note mask, instead of a sonified version of the MIDI file, greatly streamlines and 

expedites the running of the algorithm, particularly in the MATLAB environment. 

3.1.1.5 Experiment Two: Evaluation of Orio and Schwarz under different conditions 

Experiment One evaluated the performance of three different DTW-based alignment 

algorithms for cases where the same information was available in both the audio and the 

MIDI. This experiment compares the performance of Orio and Schwarz’s algorithm for 

three conditions: in the first, each line of the monophonic recording of each part was aligned 

to the corresponding monophonic MIDI data; in the second, all four MIDI parts were 

aligned to the polyphonic composite of the individual multi-tracks; and in the third the 

individual MIDI parts were aligned to the polyphonic composite. The first condition allowed 

the DTW alignment algorithm to perform under the simplest circumstance, where all of the 

harmonic information in the signal was related to each note in the MIDI file. The second 

condition presented the algorithm with more material to align. In this condition, 

simultaneous score events were treated as single events with a single time in the alignment. 

The third condition evaluated whether aligning each vocal line individually allows for more 

accurate timing estimates for each line within a polyphonic recording. This third condition is 
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an important one to evaluate in the context of this thesis since both solo and ensemble 

performances of the singing voice are studied. Also, as noted above, the second condition 

cannot accurately account for the asynchronies between simultaneously performed notes 

because only a single time warp is created. All notes that occur simultaneously in the score 

are assigned the same onset and offset time; therefore each voice’s onsets and offsets cannot 

be accurately annotated. 

The test data for this experiment was the same hand-annotated forty-second excerpt of 

multi-tracked recordings of the Kyrie from Machaut’s Notre Dame Mass used in Experiment 

One. Likewise, the evaluation metric also looks at the note onset and offset alignment 

estimates against manually annotated ground truth. For this experiment, two measures were 

considered. The first tallies the number of alignments that are within 100 ms of the ground 

truth’s onsets and offsets (Table 3.1.4) and details the average amount that the alignments in 

each component of each test were off from the ground truth and their standard deviation 

(Table 3.1.5). 

The results demonstrate that the simultaneous alignment (Condition 2) performs comparably 

to the individual alignment (Condition 1). At times, the simultaneous alignment outperforms 

the individual alignment. This was due to the fact that the need to match multiple notes 

constrains the DTW algorithm and reduces the likelihood of it getting temporarily lost. 

Figure 3.1.7 and Figure 3.1.8 show that in both conditions, the alignment algorithm is able to 

consistently find the relevant notes in the audio signal, but that the determination of the 

exact location of onsets and offsets is not always accurate. Figure 3.1.9 provides a visual 

example of the asynchrony issue in Condition 2. Around 13.3 s, there is notated simultaneity 

between the soprano and the bass: the alignment is locked to the onset of the soprano’s 

note, which, in performance, is about 30–40 ms behind the onset of the bass’ note. Also, the 

offset of the tenor note occurs approximately 100 ms before the other voices’ offsets. As 

noted above, one way of addressing the asynchrony is to align the lines one at a time against 

the composite signal (Condition 3). Figure 3.1.10 shows the main drawback of this approach, 

which is that the alignment algorithm can easily become lost when aligning a single line in 

the presence of multiple voices.  
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Vocal Part 
(Number of notes) 

Test 1 
Individual 

Test 2 
Composite Simultaneous 

Test 3 
Composite Individual 

Soprano (31) On 7 (22%) 8 (26%) 8 (26%) 

Off 22 (71%) 21 (26%) 18 (58%) 

Alto (30) On 6 (20%) 10 (33%) 7 (23%) 

Off 20 (67%) 14 (70%) 17 (57%) 

Tenor (14) On 4 (29%) 6 (42%) 3 (21%) 

Off 7 (50%) 9 (64%) 2 (14%) 

Bass (24) On 5 (21%) 16 (67%) 8 (33%) 

Off 14 (58%) 15 (62%) 9 (38%) 

Totals (99) On 31 (31%) 40 (40%) 26 (26%) 

Off 63 (64%) 59 (60%) 46 (46%) 

Table 3.1.4: The number of onsets and offsets predicted within 100 ms of the ground truth. 

Vocal Part 
(Number of notes) 

Test 1 
Individual 

Test 2 
Composite  

Simultaneous 

Test 3 
Composite  
Individual 

Mean SD Mean SD Mean SD 
Soprano (31) On 0.163 0.144 0.146 0.096 0.237 0.254 

Off 0.092 0.063 0.086 0.056 0.185 0.267 

Alto (30) On 0.194 0.146 0.182 0.153 0.229 0.195 

Off 0.154 0.224 0.179 0.174 0.165 0.216 

Tenor (14) On 0.206 0.232 0.124 0.082 1.419 1.598 

Off 0.327 0.082 0.074 0.059 1.815 1.579 

Bass (24) On 0.132 0.065 0.098 0.093 0.228 0.342 

Off 0.108 0.102 0.110 0.119 0.298 0.668 

All On 0.171 0.146 0.142 0.117 0.612 0.836 

Off 0.147 0.331 0.118 0.124 0.693 0.975 

Table 3.1.5: Mean and standard deviation in seconds between the onset and offset set 

alignments and the ground truth. 

 

Figure 3.1.7: Condition 1: Overlay of alignment of a single line aligned to a single voice. 
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Figure 3.1.8: Condition 2: Overlay of alignment for all four lines aligned simultaneously to a 
composite signal. 

 

Figure 3.1.9: Condition 2: Example of a performance asynchrony for a notated simultaneity. 

 

Figure 3.1.10: Condition 3: Overlay of alignment for a single line aligned to a composite 

signal of all the voices. 
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3.1.2 Improving Alignment Accuracy 

As demonstrated in Section 3.1.1, current score-audio alignment algorithms are not 

sufficient for accurately estimating note onsets and offsets in recordings of the singing voice. 

This section describes a technique for improving the accuracy of score-audio alignment by 

using known acoustical properties of the signal to train a hidden Markov model (HMM) to 

identify silence, transient, and steady state portions of each note. The described 

implementation is for solo singing voice, although the technique could be applied to other 

instruments by modifying the acoustical features and to polyphonic signals with the use of 

an algorithm capable of producing the required acoustical descriptions. 

This approach of using an initial alignment to guide a secondary process is similar to the 

bootstrapping algorithm for onset detection described in Hu and Dannenberg (2006), where 

an initial DTW alignment is used to establish note boundaries that are in turn used to train a 

multi-layer neural network for onset detection. Similarly, HMMs have previously been used 

for describing signals containing the voice in Shih, Narayanan, and Kuo (2003) and 

Ryynanen (2006). In Shih, Narayanan, and Kuo (2003), a three-state HMM was implemented 

to model the phonemes of hummed notes for a query-by-humming application. Ryynanen 

(2006) deals explicitly with transcription of the singing voice and uses a three-state note 

event HMM and a four-component rest event Gaussian mixture model (GMM) trained on 

examples of singing and no-singing audio frames, respectively.  

Since the HMM performs only local adjustments to the alignment, a relatively accurate initial 

alignment is important for this technique and achievable with DTW. Following from Section 

3.1.1, Orio and Schwartz’s algorithm is used for the initial DTW alignment. The HMM was 

implemented in Matlab with Kevin Murphy’s HMM Toolbox (1998) using periodicity and 

power estimates from Alain de Cheveigné’s YIN algorithm (2002). 

3.1.2.1 Acoustical Properties of the Singing Voice 

The design of the HMM was based on the acoustical properties of the singing voice. As a 

result, this implementation is optimized for the singing voice and would require some 

adjustment to work with other instruments. The amplitude envelope and periodic 

characteristics of a sung note are influenced by the words that are being sung. The three 

acoustic events modeled for this system (silence, transient, and sustain/steady state) are 
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shown in Figure 3.1.11. Transients occur when a consonant starts or ends a syllable, while 

vowels produce the steady-state portion of the note. The type of consonant, voiced or 

unvoiced, affects the characteristics of the transient, as does the particular manner in which 

the singer attacks or enunciates the consonant. The motivation for identifying transients is to 

determine where the voiced section of the note begins for estimating a single fundamental 

frequency of the duration of the note.  

 

Figure 3.1.11: Time domain representation of a sung note’s waveform; (a) is the time domain 

representation of a sung note with the HMM states labelled, (b) is the aperiodicity measure, 

and (c) is the power measure. The aperiodicity and power measurements are used as 

observations for the HMM, whose three states (silence, transient and steady state) are 

labelled across the top of the figure. 
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3.1.2.2 HMM Details 

The basic implementation of this HMM has three states: silence, transient, steady state (see 

Figure 3.1.12). In the figure, there are two types of transients, beginning and ending, which 

allow for correct modeling of where the consonants occur in each syllable. An optional 

fourth state, breath, was introduced experimentally, which improved results in some cases; 

however, the breath state should not be considered an essential component of the model 

(see Figure 3.1.13). A second silence after the breath state is added to this state sequence to 

reflect the common practice among singers of briefly holding the inhaled breath before 

singing the next note. 

The transition probability values were calculated from a superset of the music used in the 

experiments in Sections 3.1.1.4, 3.1.1.5, and 3.1.2.7, including Schubert’s “Ave Maria” and a 

Latin mass by Machaut. The silence, breath, transient, and steady-state portions of these 

pieces were hand-labelled. Self-loop probabilities, the probability of a state to repeat rather 

than change, were estimated from the average duration of each state in 90 seconds of audio. 

Non self-loop probabilities were estimated from summary statistics of 318 notes from these 

scores. Specifically, the transition probabilities to the transient states were set to reflect the 

likelihood of syllables beginning and ending with consonants in the Latin text. Transition 

probabilities to the silences were based on the average frequency of rests in the score: it was 

assumed that in the legato singing style that dominates the singing voice literature, silences 

would only occur at rest or breath marks. 

Two versions of the state sequences were implemented. The first algorithm allows each state 

to be visited for each note. The second algorithm was determined by the particular lyrics 

being sung; transients were only inserted when a consonant began or ended a syllable and 

silences (and breaths for Algorithm Two-B) were inserted only at the end of phrases. The 

state sequence for the opening phrase of Schubert’s “Ave Maria” is shown in Figure 3.1.14. 
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Figure 3.1.12: Three-state basic state sequence seed: steady state (SS), transient (T), silence 

(S). The ending transient (ET) and the beginning transient (BT) both have the same 

observation distribution. 

 

Figure 3.1.13: Basic state sequence seed plus breath (B). 

 

Figure 3.1.14: State sequence adapted to sung text. The circles with solid lines represent 

those states included in the basic state sequence, while the circles with the dotted lines 

represent those states that were added when the optional breath state was included.  

 

The observations for the HMM are the square root of periodicity and power estimates 

provided by the YIN algorithm for each frame. The F0 estimates from YIN are also used, 

which provided a somewhat noisy cue, especially for the silence and transient states and the 

standard deviation used to model it varied accordingly. The F0 estimates assist alignment 

when the note changes under a single vowel. YIN estimates fundamental frequency by 



 

 

 98 

measuring the self-similarity of a signal over time. While standard autocorrelation uses an 

inner product to measure similarity, YIN uses the squared difference to measure dissimilarity. 

The YIN algorithm was applied to audio sampled at 44,100 samples/s with a frame size of 

10 ms and a hop size of 0.7 ms. The mean and variance values for each frame were 

calculated by isolating representative examples of silence, transient, steady state, and breath 

from recordings by different singers. In total, 2.25 s of data were used to calculate the means 

and variances for silence, 13.4 s for steady state, 0.47 s for transients, and 3.83 s for breath.  

The initial DTW alignment is used as a prior to guide the HMM (see Figure 3.1.15). The use 

of the DTW alignment obviates the need to encode information about the score in the 

HMM. By assuming that the DTW alignment is roughly correct, it is not necessary to encode 

pitch specific information into the HMM. This drastically simplifies the problem that the 

HMM has to address, since it simplifies the design of the HMM and allows the same HMM 

seed to be used for each note. One issue with this approach is that it cannot adjust the initial 

alignment by more than one note, so the initial alignment has to be relatively accurate.   

 

Figure 3.1.15: Visualization of the DTW alignment implemented as a prior for the HMM. 

The prior is created by placing a rectangular window with half a Gaussian on each side over 

the note positions estimated by the DTW alignment. Each state has a different set of rules 

governing the placement and width of the windows, as well as the half Gaussians. This is 

detailed in Figure 3.1.16.   
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 5% start 100% start 100% end 5% end 

Silence 
(and Breath) 

50% between  
N-1On and N-1Off 

N-1Off NOn 50% between 
NOn and NOff 

Opening 
Transient 

N-1Off  75% between N-
1Off and NOn 

25% between NOn 
and NOff 

NOff 

Steady State N-1Off N On N Off N+1On 

Closing 
Transient 

NOn  75% between 
NOn and NOff 

25% between NOff 
and N+1On 

N+1On 

Figure 3.1.16: Gaussian distributions for the creation of a prior from the DTW alignment. N 

is the current note number.  

3.1.2.3 Evaluation 

Three annotated recordings of the opening of Schubert’s “Ave Maria” by three different 

singers were used to evaluate the system. The annotations were done manually using 

Audacity (Mazzoni and Dannenberg 2000), as described in Section 3.1.1.2. All of the singers 

had soprano voices; one was a professional and the other two were undergraduate vocal 

majors. The singers exhibited differences in overall timbre, attack time (transient length), and 

vibrato rates. 

In Algorithm One, each note is modeled with a complete set of states. This is the baseline 

test, to evaluate whether performance is improved when the text is taken into account 

(Algorithm Two). The first version of this algorithm (One-A) uses the basic three-state 

HMM model (Figure 3.1.12) and the second (One-B) adds the optional breath state (Figure 

3.1.13). In Algorithm Two, the state space is modified based on the presence of consonants 

in the sung text and phrase endings or rests in the score (Figure 3.1.14). As with Algorithm 

One, Algorithm Two was run both with the basic three-state HMM (Two-A) and with the 

optional breath state added (Two-B). The results of the experiments are detailed in Table 

3.1.6, which provides the 2.5, 25, 50, 75, and 97.5 percentiles of the absolute difference 

between the manually annotated ground truth for both the experiments and the original 

DTW alignment. At the 50th percentile, or median, the second version of the algorithm 

without breath outperforms the DTW alignment with an error rate of 27.8 ms vs. 52.3 ms. 
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 Percentile 

 2.5 25 50 75 97.5 

Dynamic Time Warping 3.2 32.6 52.3 87.9 478.7 

One-A: General w/o breath 1.6 13.1 41.8 88.8 564.1 

One-B: General w/breath 1.9 13.7 47.4 117.8 923.8 

Two-A: Textual w/o breath 1.6 13.1 27.8 78.0 506.0 

Two-B: Textual w/breath 2.1 13.7 41.8 91.3 923.1 

Table 3.1.6: Results from Algorithms One and Two compared to the original dynamic time 

warping alignment in milliseconds. The bolding indicates the condition with the lowest error 

rate in each percentile. 

 

In general, both algorithms provided greater alignment accuracy than the initial DTW 

alignment. However, the 75th and 97.5th percentiles for the unmodified state sequence of 

Algorithms One and Two were less accurate than the DTW. There was also consistent 

improvement in performance by the modified state sequence used in Algorithm Two over 

the unmodified sequence in Algorithm One. This was largely to be expected: since in the 

first algorithm, the HMM had the freedom to select a state that would not have occurred at 

certain points in the recorded performance. The addition of the breath state did not increase 

the accuracy of the alignment; rather it led to a small number of quite severe misalignments. 

Upon inspection, it emerged that these misalignments occurred at the silence-breath-silence 

states in Algorithm Two and not in the transient and steady state portions of the notes 

where accuracy is more important for onset and offset annotation. In terms of the transient 

and steady state alignments, the accuracy is comparable to Algorithm One. 

A visual demonstration of the improvement in alignment can be seen in Figure 3.1.17. Here 

the boxes indicate the DTW alignment, the HMM estimates for silence are represented by 

dotted lines, the estimates for transients are represented by diamond shapes, and the 

estimates for the steady state portions of the notes are represented by solid lines. At 

approximately 400 ms, 800 ms, and 1500 ms (labels 1, 2, and 3, respectively), the DTW 

alignment estimates the offsets too early and the onsets too late, and at approximately 

1800 ms (label 4), the DTW estimates the offset too late. All of these misalignments are 

corrected by the HMM. Moreover, at 1 and 3, the HMM successfully identifies the presence 

of the transients at the start of the notes.  
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Figure 3.1.17: Visualization of the performance of the Algorithm Two-A versus the DTW 

alignment. The opening passage of a recording of the “Ave Maria” is represented as a 

zoomed-in log-frequency spectrogram. The boxes indicate the note positions estimated by 

the initial DTW alignment. The HMM estimates for silence are represented by dotted lines, 

the estimates for transients are represented by diamond shapes, and the estimates for the 

steady-state portions of the notes are represented by solid lines.  

3.1.2.4 Discussion 

Closer examination of where the HMM made incorrect state identifications revealed that 

some voiced consonants introduced a considerable amount of “noise” in steady state 

sections (i.e., when the consonants are rolled). The implementation of the transient state 
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predominantly modeled unvoiced consonants, while allowing for the possibility of several 

frames of noise at the start of a voiced consonant. The implementation of the steady-state 

portion covered both voiced consonants and vowels. The reason for this is that the voiced 

consonants contribute to the perceived pitch. There is also some ambiguity present in the 

ground truth. Onsets and offsets in the singing voice are notoriously difficult to identify 

(Toh et al. 2008), which may affect the accuracy of the ground truth, and thus the results of 

the experiments, by several tens of milliseconds.  

The algorithm does require some amount of manual intervention before it can be run. This 

takes approximately 3 times the duration of the audio. The lyrics must also be encoded, 

which takes about 2 times the duration of the audio, though this only has to be done once 

for each piece. The alignment algorithm itself currently runs quite slowly, but it does not 

require any manual intervention while it is running. Using a single core on a Quad-Core Mac 

Pro with 2.26 GHz processors and 8 GB of RAM, the algorithm runs at about 15 times real-

time. Once the algorithm has run, the user can visually examine the alignment, which runs at 

about real time. The amount of time needed for error correction depends on the number of 

errors present, at the rate of about 5 times the length of each note that needs correcting. In 

contrast, manually annotating the steady state and (where applicable) transient portions of 

each note takes about 10–12 times real time (i.e., 10–12 times the length of the entire audio 

file). Overall, the algorithm is not faster in absolute time, but requires far less manual 

intervention: 5 times real time for each score plus any necessary error correction compared 

to 10–12 times real time for each audio recording. 

3.1.2.5 Conclusions 

Overall, the three-state HMM algorithm was able to improve the results of the standard 

DTW alignment, decreasing the median alignment error from 52 to 42 ms. When a simple 

model of the phonetics of the lyrics was taken into consideration, the median error was 

further reduced to 28 ms. The HMM algorithm also differentiated between transient and 

steady-state portions of the note. This differentiation is important when examining pitch-

related performance practices, since only the steady-state portion of the note contributes to 

pitch perception.  



 

 

 103 

3.1.3 Summary 

The tests in Section 3.1.1 demonstrate that existing score-alignment algorithms are not 

sufficiently accurate at identifying note onsets and offsets in recordings of the singing voice 

for the purposes of this research. Section 3.1.2 describes a new score-alignment algorithm 

that is informed by the acoustics of the singing voice, the lyrical content of the score, and the 

audio being aligned. This algorithm not only improves the alignment of notes onset and 

offsets over existing methods, but also identifies the transient and steady-state portions of 

the sung notes.  The algorithm was used to annotate the recordings used in the experiments 

in Chapter 4.  

3.2 Modeling Perceived Pitch and the Evolution of Fundamental Frequency 

Once the onsets and offsets of each note have been determined using the algorithm 

described in Section 3.1, the pitch-related information can be extracted and modeled. This 

section details several descriptors that are used in the experiments in Section 4. Section 3.2.1 

discusses how fundamental frequency information is extracted from recordings. Section 

3.2.2 builds on the perceived pitch literature discussed in Section 2.3.2.4 and details the way 

in which perceived pitch was calculated. Section 3.2.3 describes ways of modeling the 

evolution of the estimated fundamental frequency over the duration of each note.  

3.2.1 Extracting Fundamental Frequency Information 

This research uses the YIN algorithm by de Cheveigné and Kawahara (2002) for 

fundamental frequency (F0) estimation. The YIN algorithm is an auto-correlation-related F0 

estimator, whose technical details were described in Section 2.4. De Cheveigné’s MATLAB 

implementation of YIN was used for this research (de Cheveigné 2002). This 

implementation allows for a number of parameters to be specified: minimum and maximum 

expected F0s, window size, buffer size, hop size, and threshold.  

The YIN algorithm begins by low-pass filtering the signal with a default setting of one 

quarter of the sampling rate. The minimum and maximum F0s are set according to the note 

information in the aligned score. For this research, the maximum F0 is set to two semitones 

above the corresponding note in the score, and the minimum F0 is set to two semitones 

below. This is a very useful feature for recordings that are not strictly monophonic, such as 
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the scenario in the SATB ensemble experiment that was discussed in Section 4.2, where each 

singer was closely miked, but where there was a certain amount of bleed-through from the 

other voices. Figure 3.2.1 shows a spectrographic representation of such a recording. The 

rectangle represents both the miked singer’s vocal line and the settings of the minimum and 

maximum F0 parameters. The dotted oval and dotted circle represent the other singers. 

 

Figure 3.2.1: Example of a spectrographic representation of quasi-monophonic recording 

from the ensemble experiment in Section 4.2. The solid rectangle indicates the notes in the 

dominant voice (alto), as well as the minimum and maximum F0 parameters supplied to 

YIN. The dotted ovals (soprano) above and dotted circles (tenor) below indicate the 

locations of the other voices. The score in the bottom right corner represents the musical 

material that corresponds to the spectrographic representation. 

 

The signal is analyzed in frames, whose size is determined by the window size parameter. 

For the experiments in this dissertation, the window size is set adaptively as the sampling 

rate divided by the specified minimum F0 value. For example, for a soprano singing 

Schubert’s ―Ave Maria‖ in Bb, the minimum F0 is 329 Hz, which results in a frame size of 3 

ms and a hop size of 0.68ms. The frame size is larger for lower voices. YIN returns three 
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quantities for each frame: an F0 estimate, an instantaneous power estimate, and an 

aperiodicity measurement. YIN considers a frame’s F0 estimate as accurate when the 

aperiodicity measurement is less than two times a specified threshold. The default value for 

the threshold is 0.1, but for this research we used 0.01 due to the highly periodic nature of 

the singing voice. The YIN algorithm sets this threshold value adaptively in relation to the 

minimum of the difference function.  

3.2.2 Describing the Perceived Pitch 

Section 2.3.2.4 described various experiments related to how pitch is perceived, both in 

general and in the singing voice in particular. The general consensus in the literature is that 

the perceived pitch is represented by the mean of frame-wise fundamental frequency 

estimates. However, there is some debate over whether it is the arithmetic or geometric 

mean. Following from the findings in the experiments described in Section 2.3.3, this 

research uses the geometric mean, although as noted by Shonle and Horan (1980), the 

difference is often insignificant. For example, the difference between the arithmetic and 

geometric mean of the signal in Figure 3.2.2 is only 0.3 cents, with an arithmetic mean of 

456.96 Hz and a geometric mean of 456.88 Hz. 

The simple arithmetic and geometric mean values are calculated over the entire F0 trace. A 

more reliable measure can be achieved with a robust mean, which only uses the central 80% 

of the sorted frame-wise F0 estimates. This approach is more robust because it removes 

outliers that could distort the calculation, though the difference is generally quite small for 

sung notes. For example, the difference between a regular and a robust geometric mean of 

the signal in Figure 3.2.2 is 0.75 cents, with a regular geometric mean of 456.89 Hz and a 

robust geometric mean of 457.08 Hz.  

As detailed in Section 2.2, both the simple and robust means have been used in the existing 

vibrato literature. Following Gockel, Moore, and Carlyon (Gockel et al. 2001), this research 

uses a weighted mean based on the F0’s rate of change. This mean is calculated by assigning a 

higher weighting to the frames where the F0 has a slower rate of change than those with a 

faster rate of change. The threshold between fast and slow rates of change is set at 1.41 

octaves/second. The choice of the value for the threshold was informed by results reported 

by Prame (1994; 1997) that professional singers have an average vibrato rate of 6 Hz and a 
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depth of +/- 71 cents. For notes with stable vibrato, this calculation produces value close to 

the robust geometric mean (see Figure 3.2.2), but it is useful to observe the difference 

between the two calculations as a measure of the stability in each note. This is particularly 

true when making generalizations about intonation across different sections of a piece and 

different performances, as the sizes of intervals with less stable notes are a less reliable basis 

for generalization than intervals with stable notes.  

 

Figure 3.2.2: F0 trace of a single sung note with the robust geometric mean (dashes) and the 

weighted mean (lines) overlaid. The zoomed-in image on the right shows that for this note, 

the robust geometric mean over the duration of the note (457.0847 Hz) is only 1.87 cents 

different than the weighted mean (456.5913 Hz). 

 

The calculation of a single mean over the duration of each note is most useful for horizontal 

(melodic) intervals, where it could be argued that a single pitch percept is generated for each 

note and then related to the subsequent and proceeding notes in the melody. For harmonic 

intervals, however, this approach does not accurately model the experience of a vertical, or 
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harmonic, interval between two singers. In this scenario, the singers are tuning continuously 

to each other, and the analysis of means taken across each note for calculating the size of a 

vertical interval does not take this into account. Instead, the size of vertical intervals is 

calculated by measuring the interval size for each frame and then by taking the mean across 

the series of vertical calculations. Figure 3.2.3 shows the difference in the calculation for an 

example vertical interval. 

 

Figure 3.2.3: Example of how vertical interval size is calculated. The plots on the left show 

the use of a melodic interval approach, where the robust geometric mean across each note’s 

frame-wise F0 estimates is used to calculate the vertical interval size (423 cents). The plots on 

the right show the method used for this research, where frame-wise vertical interval size 

calculations are made, and then the robust geometric mean is taken across these calculations 

(421.5 cents).  

3.2.3 Evolution of Fundamental Frequency 

The means described in Section 3.2.2 provides only a single value for each note and throw 

away information about how F0 changes over the duration of the note. This section 

discusses how the evolution of F0 can be described by using discrete cosine transform 

(DCT) coefficients. 
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A moving average is obtained by taking the mean of a shifting subset of the F0 trace and is a 

type of low-pass filter. The moving average provides information about the slower moving 

trends in the F0, such as whether the frequency is increasing or decreasing, by smoothing out 

fast moving fluctuations like vibrato. Figure 3.2.4–Figure 3.2.7 show the moving average of 

four different window sizes (50, 100, 150, and 200 ms) on four notes of different lengths 

(4.0 s, 2.1 s, 0.77 s, and 0.48 s).  

 

 

Figure 3.2.4: Moving averages for a long note (4.0 s) with four different window sizes (50 

ms, 100 ms, 150 ms, and 200 ms). The original signal is represented with a dotted line. 
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Figure 3.2.5: Moving averages for a medium long note (2.1 s) with four different window 

sizes (50 ms, 100 ms, 150 ms, and 200 ms). The original signal is represented with a dotted 

line. 

 

Figure 3.2.6: Moving averages for a medium short note (0.77 s) with four different window 

sizes (50 ms, 100 ms, 150 ms, and 200 ms). The original signal is represented with a dotted 

line. 
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Figure 3.2.7: Moving averages for a short note (0.48 s) with four different window sizes (50 

ms, 100 ms, 150 ms, and 200 ms). The original signal is represented with a dotted line. 

 

For the purposes of generalizing the evolution of F0 over the duration of the note, a larger 

window size is preferable. With a larger window size, more general trends about whether the 

F0 trace is generally moving higher or lower can be observed. If the window size is too small, 

the vibrato rate will impact subsequent calculations about slope and curvature. In all of the 

examples, the moving average calculations with 50 and 100 ms window sizes closely follow 

the vibrato. The moving average signals calculated with 150 and 200 ms window sizes are 

much smoother, though some artefacts of the vibrato remain in certain cases. While window 

sizes larger than 200 ms would further smooth the signal, they are not practical for this data 

since they would start to exceed the size of half of the shortest signal (470 ms) and could 

smooth more than just the vibrato. This happens to coincide with the findings in the 

literature that the vibrato range is 5–7Hz. 

The moving average generates a string of values, which can be used to visually observe 

trends. However, additional calculations are needed to generate slope and curvature values 

that can be compared between different notes. One way of calculating the slope is to take 

the difference between the first and the last value in the moving average signal and dividing 
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it by its the length. The problem with this approach is that it is highly sensitive to any noise 

in the first or last element. A more robust option is to calculate the slope over the duration 

of the signal rather than from just two points. One way of doing this is to fit a second-order 

polynomial to the moving average signal. In a first-order polynomial, the constant term is the 

mean of the signal, and the coefficient on the first order term is the slope. In a second-order 

polynomial, however, the bases are not orthogonal, so a separation between the slope and 

curvature is not guaranteed. A more robust approach is the discrete cosine transform (DCT), 

where the input signal is represented as a sum of scaled cosines and the basis functions are 

orthogonal (Jain 1989).  

The DCT is similar to the discrete Fourier transform (DFT) but differs in that it is real, 

whereas the DFT is complex. Thus the DCT returns a single coefficient for each frequency 

with a fixed phase, whereas the DFT returns two coefficients (amplitude and phase) for each 

frequency. The fixed phase simplifies the comparisons between values. The MATLAB 

implementation of the DCT used in this research uses Equation 1 for calculating the 

coefficients ( y(k) ), where N  is the length of the signal x  and k  is the number of 

coefficients. 

y(k) (k) x(n)cos
k(2n 1)

2N
n 0

N 1

 k 0,1,2       (1) 

where (k)

1

N

2

N

 

k 0

1 k 2

 

As demonstrated in Equation 2, the 0th coefficient returned by the DCT is the mean of the 

signal over the square root of N (the number of samples in the signal). The 1st and 2nd DCT 

coefficients can be used to capture the broad contours of a signal, in this research the F0 

trace, that relate to slope and curvature while ignoring fine details, such as vibrato. In order 

to transform the DCT coefficients so that they are independent of signal length, the 0th 

coefficient is divided by N
1/ 2

, the 1st by N
3 / 2

, and the 2nd by N
5 / 2

. After this scaling, the 1st 

coefficient is approximately in units of cents/second, and the 2nd coefficient is approximately 
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in units of cents/second2. Also, the 1st coefficient represents negative slope, so its sign is 

reversed so that it describes positive slope.  

y(0) (0) x(n)cos
0(2n 1)

2N
n 0

N 1
1

N
x(n)

n 0

N 1

     (2) 

The 1st DCT coefficient approximates the slope of the evolution of F0. The slope provides 

information about whether the singers are gliding up or down or staying relatively stable. 

The amount and direction of movement (if any) depends on the sign and value of the 

coefficient. The 2nd DCT coefficient approximates the curvature of the evolution of F0. The 

curvature, once the slope has been subtracted, indicates the amount that the F0 trace is 

higher or lower in the middle than at the two ends of the time period analyzed. Figure 3.2.8 

shows the DCT coefficients for seven simple signals: a straight line, a diagonal line (up and 

down), a parabolic curve (up and down), and a scooping line (up and down). All of the 

signals have a mean of 20, so the 0th coefficient remains the same. For the flat line, only the 

0th coefficient has a nonzero value since the signal can be completely described by its mean. 

For the diagonal line, the 1st coefficient has a much larger value than any other (except for 

the 0th), which demonstrates the relationship between the 1st coefficient and the slope of the 

signal. For the parabolic curve, the 2nd coefficient has the largest value (again except for the 

0th), demonstrating that the 2nd coefficient can be taken to approximate the curvature of the 

signal. This relationship is more approximate than between the 1st coefficient and the slope, 

which can be seen in the greater values of the 4th and 6th DCT coefficients for the parabolic 

curve. The spread of energy across different coefficients occurs because the signals are 

generated from second-order polynomials rather than cosines. 

Table 3.2.1 and Table 3.2.2 show simple signals with different curves and slopes: five straight 

lines (a-e), four parabolic curves (f-i), and four other curves (j-k). The signals in Table 3.2.1 

are lines with a moving average that closely follows the original signal. In Table 3.2.2, the 

signals in Table 3.2.1 have been modified with the addition of a sinusoid. For these signals, 

the moving average follows the midpoint of the sinusoids. For the signals in Table 3.2.1, the 

1st and 2nd DCT coefficients from the original signals and moving average are virtually 

identical. For the sinusoidal signals in Table 3.2.2, there is a small discrepancy between the 1st 

DCT coefficients calculated on the original signal versus the moving average. The signals in 
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Table 3.2.2 are derived from those in Table 3.2.1, so the 1st and 2nd DCT coefficient values 

should be the same.  

The difference between the DCT’s coefficients for the original signal and the moving 

average are likely due to the DCT’s sensitivity to the phase of the sinusoidal signal, an issue 

that is avoided by the moving average’s smoothing. With the analysis of more complex real-

world signals, such as F0 traces of a sung note, this issue becomes even more significant, 

particularly when only a segment of the signal is studied. The DCT coefficients could vary 

greatly if the starting or ending of the signal moves by some fraction of the vibrato’s cycle. 

This is demonstrated in Figure 3.2.9, which shows the 1st and 2nd DCT coefficients calculated 

from the F0 trace of the 4 s note in Figure 3.2.4 and a moving average of the F0 trace with a 

window size of 200 ms. These DCT coefficients were calculated for windows of the same 

length, shifted one sample at a time. The variance in the DCT values from the F0 trace 

demonstrates the sensitivity of the DCT to the phase of the vibrato. The greater stability 

values from the moving average show that although the moving average is not completely 

impervious to the phase of the vibrato, its effect is greatly minimized. Using a larger window 

could further minimize the effect of the vibrato’s phase, but, as mentioned above, this runs 

the risk of smoothing more than just the vibrato. For this reason, the DCT coefficients for 

the experiments are also calculated on a moving average of the F0 trace of each note as an 

alternative method of analysis.  
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Figure 3.2.8: Examples of DCT coefficients for simple signals. The plots on the left are the 

original signals (straight line, diagonal line, parabolic curve, and scooping line), and the bar 

graphs on the right are the values for the DCT coefficients 0–7. The 0th coefficient is the 

mean, the 1st coefficient approximates slope, and the 2nd coefficient approximates curvature.  
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Signal Slope/ 
Curvature 

 Signal Slope/ 
Curvature 

(a) 

 

0 
(0) 

 

  

0 
(0) 

 

 

(b) 

 

0.0573 
(0. 057312) 

 

(c) 

 

0.1146 
(0.11462) 

0 
(0) 

0 
(0) 

(d) 

 

-0.0573 
(-0. 057312) 

 

(e) 

 

-0.1146 
(-0.11462) 

0 
(0) 

0 
(0) 

(f) 

 

0 
(0) 

 

(g) 

 

0 
(0) 

0.3941 
(0.3941) 

-0.7897 
(0.7897) 

(h) 

 

0 
(0) 

 

(i) 

 

0 
(0) 

-0.3941 
(-0.3941) 

-0.7897 
(-0.7897) 

(j) 

 

0.057314 
(0.057312) 

 

(k) 

 

0.11463 
(0.11462) 

0.1971 
(0.1971) 

0.3941 
(0.3941) 

(l) 

 

-0.057314 
(-0.057312) 

 

(m) 

 

-0.11463 
(-0.11462) 

-0.1971 
(-0.1971) 

-0.3941 
(-0.3941) 

Table 3.2.1: This table shows thirteen simple signals with different curves and slopes—five 

straight lines (a-e), four parabolic curves (f-i), and four other curves (j-k)—and the values for 

the 1st and 2nd DCT coefficients for each signal. The 0th coefficient (i.e., the mean) for all of 

the signals is 0. The DCT coefficients were calculated on the original signal and the moving 

average (indicated in parentheses), which is plotted with a dashed line but not clearly visible 

because it closely follows the original signal for all of the examples. 
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Signal Slope/ 
Curvature 

 Signal Slope/ 
Curvature 

(a) 

 

-0.0017 
(0) 

 

  

0 
(0) 

 
 

(b) 

 

0.0556 
(0.057312) 

 

(c) 

 

0.1129 
(0.11462) 

0 
(0) 

0 
(0) 

(d) 

 

-0.059 
(-0.057312) 

 

(e) 

 

-0.1163 
(-0.11462) 

0 
(0) 

0 
(0) 

(f) 

 

-0.0017 
(0) 

 

(g) 

 

-0.0017 
(0) 

0.3941 
(0.3941) 

0.7897 
(0.7897) 

(h) 

 

-0.0017 
(0) 

 

(i) 

 

-0.0017 
(0) 

-0.3941 
(-0.3941) 

-0.7897 
(-0.7897) 

(j)  

 

0.0556 
(0.057312) 

 

(k)  

 

0.11292 
(0.11462) 

0.1971 
(0.1971) 

0.3941 
(0.3941) 

(l)  

 

-0.059 
(-0.057312) 

 

(m)  

 

-0.11634  
(-0.11462) 

-0.1971 
(-0.1971) 

-0.3941 
(-0.3941) 

Table 3.2.2: This table shows thirteen simple signals that mirror the signals in Table 3.2.1 

with the addition of sinusoids, as well as the values for the 1st and 2nd DCT coefficients for 

each signal. The 0th coefficient (i.e., the mean) for all of the signals is 0. The DCT 

coefficients were calculated on the original signal and the moving average (indicated in 

parentheses), which is plotted with a dashed line.  
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Figure 3.2.9: Comparison of the 1st (bottom left) and 2nd (bottom right) DCT coefficients 

calculated from the F0 trace of the 4 s note in Figure 3.2.4 (dotted line) and those calculated 

from a moving average of the F0 trace with a window size of 200 ms (solid line). The 500 

DCT coefficient calculations were made on windows of the same length (N-500 or 5479-

500, which is 4979 samples), shifted one sample at a time. The variability in the dotted lines 

demonstrates the sensitivity of the DCT to the phase of the vibrato, which is mitigated by 

the moving average. 

 

Figure 3.2.10–Figure 3.2.13 show reconstructions of the DCT coefficients over three 

sections of the four notes in Figure 3.2.4–Figure 3.2.9. The DCT reconstructions were done 

with the inverse DCT, as defined in equation 3–6, with the DCT coefficients calculated on a 

200 ms moving average of the original signal. Equation 3 shows the generalized equation, 

Equation 4 shows the equation for the 0th DCT reconstruction, Equation 5 shows the 0th+1st 

DCT coefficients, and Equation 6 shows the 0th+1st+2nd DCT coefficients. 
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x(n) (k)y(k)cos
(2n 1)k

2N
k 0

2

n 1,2,...,N      (3) 

where (k)

1

N

2

N

 

k 0

1 k 2

 

x0(n) (0)y(0)cos
(2n 1)0

2N
k 0

0

n 1,2,...,N

x0(n)
y(0)

N
n 1,2,...N

     (4) 

 

x1(n)
y(0)

N

2

N
y(1)cos

(2n 1)

2N
n 1,2,...,N     (5) 

 

x2(n)
y(0)

N

2

N
y(1)cos

(2n 1)

2N

2

N
y(2)cos

(2n 1)

N
n 1,2,...,N  (6) 

 

In Figure 3.2.10–Figure 3.2.13, the top subplots show the original signal with a 

reconstruction of the signal from the inverse discrete cosine transform using only the 0th 

(mean) coefficient overlaid, the middle plot shows the signal with the 0th (mean) + the 1st 

(slope) coefficients overlaid, and the bottom plots show the signal with the 0th (mean) + the 

1st (slope) + the 2nd (curvature) coefficients overlaid. 
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Figure 3.2.10: Discrete cosine transform on a 200 ms moving average of the F0 trace of a 

long note (4.0 s). All of the plots represent the original F0 trace with a dotted line. The top 

plot shows the 200 ms moving average. The second plot shows the reconstruction of the F0 

trace with the 0th (mean) DCT coefficient calculated over each 3rd of the note. The third plot 

shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) DCT coefficients and 

the bottom plot shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) + 2nd 

(curvature) DCT coefficients. 
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Figure 3.2.11: Discrete cosine transform on a 200 ms moving average of the F0 trace of a 

long note (2.1 s). All of the plots represent the original F0 trace with a dotted line. The top 

plot shows the 200 ms moving average. The second plot shows the reconstruction of the F0 

trace with the 0th (mean) DCT coefficient calculated over each 3rd of the note. The third plot 

shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) DCT coefficients, and 

the bottom plot shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) + 2nd 

(curvature) DCT coefficients. 
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Figure 3.2.12: Discrete cosine transform on a 200 ms moving average of the F0 trace of a 

medium short note (0.77 s). All of the plots represent the original F0 trace with a dotted line. 

The top plot shows the 200 ms moving average. The second plot shows the reconstruction 

of the F0 trace with the 0th (mean) DCT coefficient calculated over each 3rd of the note. The 

third plot shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) DCT 

coefficients, and the bottom plot shows a reconstruction of the F0 trace with the 0th (mean) 

+ 1st (slope) + 2nd (curvature) DCT coefficients. 
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Figure 3.2.13: Discrete cosine transform on a 200 ms moving average of the F0 trace of a 

short note (0.48 s). All of the plots represent the original F0 trace with a dotted line. The top 

plot shows the 200 ms moving average. The second plot shows the reconstruction of the 

original F0 trace with the 0th (mean) DCT coefficient calculated over each 3rd of the note. 

The third plot shows a reconstruction of the F0 trace with the 0th (mean) + 1st (slope) DCT 

coefficients, and the bottom plot shows a reconstruction of the F0 trace with the 0th (mean) 

+ 1st (slope) + 2nd (curvature) DCT coefficients.  

 

3.2.4 Summary 

Section 3.2.1 explains how the YIN algorithm was used to extract F0 estimates from both the 

recordings made for the experiments in Chapter 4. YIN was used on both the monophonic 

recordings from solo singing experiment (Section 4.1) and the quasi-polyphonic recordings 

produced by close miking the individual singers in the ensemble singing experiment (Section 

4.2). The descriptors detailed in Sections 3.2.2 and 3.2.3 used the F0 estimates to provide a 
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good summary of pitch-related characteristics of sung notes. The descriptors in Section 3.2.2 

provide an estimation of the perceived pitch of melodic and vertical intervals, and the 

descriptors in Section 3.2.3 provide information about how a note’s F0 evolves, or changes, 

over time by calculating its slope and curvature. The descriptors from both sections were 

used to characterize the intonation-related details of each note in the experiments in Section 

4.1, while only the descriptors from Section 3.2.2 is used in Section 4.2. In Section 4.1, the 

evolution of F0 is described by calculating the DCT on the end of the first note in each 

melodic interval on both the original F0 trace and the F0 trace with a 200 ms moving average 

applied to it. The end of the note is defined as the last 250 ms of the F0 trace or the last 150 

ms of the F0 trace with a 200 ms moving average of the steady-state portion of the note. The 

points of convergence between the two methods of calculations are considered to be a 

reliable indication of the evolution of F0. Such generalized descriptors are useful because 

they allow comparisons not only across different notes in the same performance, but also 

across notes in different performances by the same singer and across different singers.  
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Chapter 4 Intonation Experiments 

 

This chapter presents two sets of experiments on intonation practices: one focused on 

intonation in solo singing and the other on intonation in SATB ensembles with one voice 

per part. In the experiment in Section 4.1, two groups of singers, one made up of 

undergraduate vocal majors and the other made up of professional singers, performed 

Schubert’s “Ave Maria” three times a cappella and three times with accompaniment. The 

melodic semitones and whole tones in the recordings were assessed in regard to interval size, 

as well as the slope and curvature of F0 at the end of the first note of each melodic interval. 

In the experiment described in Section 4.2, three different ensembles were recorded: one 

semi-professional ensemble that sang without a conductor and two conducted professional 

ensembles. The two professional ensembles performed two sets of short exercises (Parts 

One and Two) designed so that melodic semitones and whole tones occurred in different 

contexts. All of the ensembles performed a repeated chord progression by Giambattista 

Bendedetti (Part Three) and “Es ist ein Ros entsprungen” by Michael Praetorius (Part Four). 

Both melodic and vertical intervals were studied: melodic semitones in Parts One and Four; 

melodic whole tones in Parts Two, Three, and Four; and vertical intervals in all four parts. 

Section 4.3 draws a connection between the results in both sets of experiments and posits 

some interpretations about intonation in singing that can be made from the data.   

4.1 Intonation in Solo Singing 

The experiment described in this section explores whether there is a relationship between 

melodic interval tuning in solo singing and the context in which the interval occurs. 

Following Prame’s work (1994; 1997), Schubert’s “Ave Maria” was used for the experimental 

material since it allowed for an exploration of commonalities of intonation tendencies in a 

well-known piece. There were twelve subjects for the experiment: six undergraduate vocal 

majors from McGill and six professional singers from the Montreal area. Each singer 

performed the first verse three times a cappella and three times with recorded 

accompaniment. 

Where Prame limited his analysis to the 25 longest notes in the piece, this experiment looks 

at all of the semitones and whole tones between notes whose durations were greater than a 
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thirty-second note. This limitation was imposed due to the instability of the pitch in shorter 

notes. Using the algorithm described in Section 3.1, reliable onset, offset, and pitch estimates 

could be obtained for the non-ornamental notes in the piece. Accurate annotation of the 

ornamental notes, however, required manual intervention due to the variability in the way in 

which the ornaments were performed. As described in Section 3.2, the intonation is 

described by both the weighted mean across the frame-wise fundamental frequency 

estimates of each note and the 1st and 2nd DCT coefficients, which are used to approximate 

the slope and curvature of the last 250 ms of the first note in each melodic interval.  

The data analysis in this section examines the sizes of the semitone and whole tone intervals, 

specifically whether the context in which the intervals occur influences the intonation 

tendencies of the singer. The analysis focuses on interval size, rather than absolute pitch, to 

remove the influence of drift. For both types of intervals, the difference between the 

ascending and descending intervals is evaluated. The semitone analysis also compares the 

semitones between the leading tone and the tonic to the other semitones in the piece (Figure 

4.1.1). This allows for the assessment of a commonly held belief, rooted in Pythagorean 

tuning theory, that ascending leading-tones are sung sharp, which would make the leading 

tone semitone smaller relative to other semitones (Friberg et al. 2006). The whole tone 

analysis looks at whether the movement towards or away from stable notes influences the 

intonation tendencies (Figure 4.1.2). The data analysis also considers intonational 

consistencies both within each performer’s a cappella and accompanied renditions, as well as 

across performers.  
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Figure 4.1.1: Schubert’s “Ave Maria” with analyzed semitone categories marked. 

 

Figure 4.1.2: Schubert’s “Ave Maria” with analyzed whole tone categories marked. 
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4.1.1 Method 

4.1.1.1 Participants 

The first group of participants consisted of six undergraduate soprano vocal majors from 

McGill University, hereafter referred to as the non-professional group, who had completed 

an average of 2 years (SD = .63) of full-time course work in the Bachelor of Music degree 

program. The participants had a mean age of 20.2 years (SD = 2.13) and an average of 14.7 

years (SD = 3.6) of sustained musical activity, with an average of 6 years (SD = 2.9) of 

private voice lessons. They had engaged in daily practice for an average of 5.2 years (SD = 

3.2), with a current daily practice time average of 1.1 hours (SD = 0.7). 

The second group consisted of six singers with graduate-level training, who worked 

professionally in the Montreal area. Their ages ranged from 28 to 58, with a mean of 35.7 

years (SD = 11.5). They had an average of 26.0 years (SD = 8.7) of sustained musical 

activity, with an average of 10.3 years (SD = 6.0) of private voice lessons. They had engaged 

in daily practice for an average of 5.2 years (SD = 3.2), with a current average daily practice 

time of 1.5 hours (SD = 0.5).  None of the singers in either group possessed absolute pitch. 

4.1.1.2 Apparatus 

The singers were recorded on AKG C 414 B-XLS microphones in a 4.85m x 4.50m x 3.30m 

lab at the Center for Interdisciplinary Research in Music Media and Technology (CIRMMT). 

The lab had low noise, reflections, and reverberation time (ITU-standard). The microphones 

were run through an RME Micstasy 8 channel microphone preamplifier and an RME Madi 

Bridge into a Mac Pro computer for recording. 

4.1.1.3 Procedure  

In the experiment, each of the singers performed three a cappella renditions of the first verse 

of the “Ave Maria” followed by three renditions with recorded accompaniment. The 

performers were asked to produce a neutral performance with minimal vibrato. The 

recorded accompaniment was performed on a Bösendorfer SE piano and subsequently 

transposed on the instrument to a range of keys. This allowed the singers to perform the 

accompanied version in the key of their choice. The accompaniment was played back to the 

singers on Sennheiser HD 280 Pro closed headphones while they sang so that their singing 

could be recorded as an isolated monophonic line, which was necessary for accurate signal 
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processing. The singers only wore the headphones over one ear so that they could hear 

themselves.  

The intonation-related data analysis was extracted using the methods described in Chapter 3 

and was checked manually by two trained musicians using Audacity to correct any errors 

made by the algorithm. Three measurements were extracted for each interval: one for 

interval size and one for slope and curvature of the end of the first note. The interval size 

was calculated by taking the difference between the perceived pitch estimates for each note 

making up the interval. The perceived pitch estimates were made by taking the weighted 

mean over the F0 estimates for each note, as described in Section 3.2. Two approaches were 

used for obtaining slope and curvature estimates. In the first, the discrete cosine transform 

(DCT) was run on the last 250 ms of the F0 trace of the first note in the interval. In the 

second, the DCT was run on the F0 trace smoothed by results of applying a 200 ms moving 

average. The moving average was applied to minimize the influence of vibrato on the 

calculation. For the second approach, the last 150 ms of the smoothed signal was used. If 

the original F0 trace was less than 500 ms, or the smooth signal less than 300 ms, then the 

last half of the signal was used. The 1st DCT coefficient was used to approximate slope and 

the 2nd was used to approximate curvature. As discussed in 3.2, the slope provides 

information about whether, and if so, how much, the singers are gliding up or down, while 

the curvature indicates the amount that the F0 is lower in the middle than at the two ends of 

the analyzed signal once the slope has been subtracted. The slope and curvature of the end 

of the first note is of interest because it provides an indication about whether the singer is 

anticipating and preparing for the second note in the interval more so under certain 

conditions than others. The data were analyzed in a number of ways, including the 

examination of the means and standard deviations across groupings of interval conditions, 

visualisation of data in box and whisker plots, and the linear regression analysis to look for 

significant trends.   

4.1.1.4 Analytical Statistics 

Linear regression analysis was chosen for some of the analyses over the more commonly 

used ANOVA technique because it provides information about the effect direction and size 

for each of the factors considered, without the need for post-hoc hypothesis testing (Platt 

1998), and measures how well the sum of the weighted predictors explains the variance in 
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the data (Cohen 2002). However, the ANOVAs are still useful to explore interactions among 

independent variables. Linear regression shares a number of assumptions with ANOVA, 

including those concerning linearity and the normality of the data distribution. The normality 

of the data’s distribution was evaluated. The data distribution did not pass the Kolmogorov-

Smirnov test’s criteria for normality and a quantile-quantile plot subsequently revealed that 

the distribution was heavy-tailed. It has been found, however, that this type of departure 

from normality does not significantly impact the results of ANOVAs, t-tests, or regression 

analyses (Kutner et al. 2005).  

In the regression analysis, ß values, which are calculated for each predictor, indicate the size 

and direction of the effect that the predictor has on the variable being predicted. With 

appropriate encoding, the ß values can also be used to evaluate the difference between the 

two groups that are defined by the predictor (e.g., a cappella or accompanied). The 

significance of an effect can be determined though ß’s 95% confidence interval. If the 

confidence interval does not include zero then the effect can be considered significant. 

The linear regression analysis was used to quantify the effect of various potential 

explanations of the variations in interval size and slope and curvature measurements. The 

quantity being predicted (the dependent variable) was either interval size in cents, an 

approximation of cents/second for slope, or an approximation of cents/second2 for 

curvature. Six linear regressions were performed, listed in Table 4.1.1, which fall into two 

broad categories. The first category consists of four regressions: one each for the semitones 

and whole tones performed by both the non-professional and professional groups. All of the 

regressions in this category have five different predictors, or independent variables (1 for 

accompaniment, 1 for intervallic direction, 2 for intervallic condition, and 1 for singer 

identity). In the second category, the regression was performed over both groups of singers 

simultaneously for the semitone and whole tone conditions, with singer identity being 

replaced by group identity. Table 4.1.1 also details the conditions in each regression that 

were encoded as binary variables. For example, an ascending accompanied leading tone 

performed by singer four was coded as 101000001 while a descending a cappella whole tone 

between two chord tones performed by singer two was coded as 011101000. 
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 Accom. Desc. Leading 
tone  

Non  

A-B/ 

B-A 

1st Note 
Chord  
Tone 

2nd Note 
Chord  
Tone 

Singers (Baseline: 
Singer Six) 

Pro 

1 2 3 4 5 

Semitones 
(Pro) 

X X X X   X X X X X  

Semitones 
(Non-pro) 

X X X X   X X X X X  

Whole 
tones 
(Pro) 

X X   X X X X X X X  

Whole 
tones 
(Non-pro) 

X X   X X X X X X X  

Semitones 
(All) 

X X X X        X 

Whole 
tones 
(All) 

X X   X X      X 

Table 4.1.1: Summary of the conditions evaluated in the regression analyses performed in 

this section. The columns list the various independent variables and the X’s indicate which 

of these were used in each regression. 

 

These regressions were also run on the interval size data with the values rounded to either 

the nearest five or ten cents in order to assess whether a coarser description of interval size 

would allow for trends to emerge; however, the results were not significantly different. 

Logistic regressions were also run to examine whether the singers’ intonation was 

systematically larger or smaller than equal temperament, Pythagorean tuning, or Just 

Intonation. There was no significant correspondence found between any of the singers and 

any of the tuning systems. 

In addition to the linear regression analysis, two ANOVAs were performed to explore 

interactions between independent variables and to validate the findings from the linear 

regression analysis. The first ANOVA was performed with semitone size as the dependent 

variable and the second with whole tone size as the dependent variable. One ANOVA used 

a 2 (accompaniment) x 2 (direction) x 2 (spelling) x 2 (group) mixed model ANOVA design, 

with singer nested within group, to investigate the effect of musical context on semitone 

interval size.  The between-subjects variables were singer and group and the within-subject 

variables for the semitone analysis were accompaniment, direction, and spelling. The other 

ANOVA used a 2 (accompaniment) x 2 (direction) x 3 (interval type) x 2 (group) mixed 

model ANOVA design, with singer nested within group, to investigate the effect of musical 
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context on whole tone interval size. The between-subjects variables were the same as the 

semitone ANOVA (singer and group), though the within-subject variables differed in that 

interval type replaced spelling.  The spelling factor in the semitone analysis defined whether 

the semitone was between A-B/B-A or another pair of notes. The interval type factor 

indicated whether the whole tone occurred between two chord tones, a chord tone and a 

non-chord tone, or a non-chord tone and a chord tone.   

The results of the ANOVA for the individual factors confirmed the results of the linear 

regression analysis, inasmuch as the various predictors considered in the regression could be 

assessed in an ANOVA. Specifically, the leading tone function in the semitones and the 

impact on starting and/or ending on a chord tone versus a non-chord could not be explicitly 

addressed in the ANOVA since these factors could not be represented independently. There 

were no significant effects for the interactions of the variables for the semitones. For the 

whole tones there was only a significant effect for the interaction of direction, interval type, 

and singer (F(20,143) = 3.22, p < 0.01). 

4.1.2 Results 

Overall, there was a high degree of variability between the singers, though some singers were 

more self-consistent than others. The following figures (Figure 4.1.3–Figure 4.1.6) not only 

demonstrate this variability with data from the opening and closing “Ave Maria” statements, 

but also show intra-performance consistency in the relative size of the intervals.  
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Idealized Interval Sizes 

Equal 
Temperament -100 100 400 -200 -200 

Pythagorean  -90 90 408 -204 -204 

5-limit  
Just Intonation -112 112 386 -182 (Minor) -204 (Major) 

Singer 1 

Opening  
A cappella 

-86.6 
(SD = 14.5) 

87.8 
(SD = 8.3) 

397.0 
(SD = 5.8) 

-210.6 
(SD = 2.0) 

-200.2 
(SD = 3.4) 

Opening 
Accompanied 

-95.8 
(SD = 3.6) 

101.1 
(SD = 5.3) 

394.73 
(SD = 4.9) 

-207.6 
(SD = 8.8) 

-197.5 
(SD = 8.6) 

Closing 
A cappella 

-87.9 
(SD = 8.0) 

99.1 
(SD = 3.4) 

386.6 
(SD = 1.6) 

-204.0 
(SD = 4.6) 

-204.2 
(SD = 1.8) 

Closing 
Accompanied 

-83.2 
(SD = 6.1) 

96.2 
(SD = 5.2) 

379.6 
(SD = 5.7) 

-197.3 
(SD = 7.1) 

-200.5 
(SD = 10.0) 

Singer 2 

Opening  
A cappella 

-60.2 
(SD = 12.1) 

101.6 
(SD = 12.4) 

368.1 
(SD = 14.2) 

-196.1 
(SD = 17.9) 

-207.4 
(SD = 7.2) 

Opening 
Accompanied 

-74.8 
(SD = 16.9) 

98.4 
(SD = 22.5) 

368.4 
(SD = 11.0) 

-184.7 
(SD = 4.4) 

-216.5 
(SD = 9.1) 

Closing 
A cappella 

-53.4 
(SD = 0.7) 

85.9 
(SD = 31.4) 

370.7 
(SD = 15.9) 

-194.7 
(SD = 17.9) 

-223.6 
(SD = 9.5) 

Closing 
Accompanied 

-63.8 
(SD = 3.5) 

101.0 
(SD = 6.2) 

375.83 
(SD = 6.1) 

-183.2 
(SD = 11.3) 

-227 
(SD = 16.5) 

Singer 3 

Opening  
A cappella 

-91.6 
(SD = 6.3) 

99.5 
(SD = 5.5) 

377.7 
(SD = 9.6) 

-190.0 
(SD = 4.6) 

-194.5 
(SD = 4.4) 

Opening 
Accompanied 

-92.2 
(SD = 8.4) 

97.6 
(SD = 4.5) 

375.5 
(SD = 10.6) 

-192.3 
(SD = 3.7) 

-199.3 
(SD = 7.9) 

Closing 
A cappella 

-90.4 
(SD = 11.8) 

108.2 
(SD = 10.2) 

373.0 
(SD = 15.3) 

-185.1 
(SD = 11.3) 

204.2 
(SD = 15.3) 

Closing 
Accompanied 

-88.5 
(SD = 14.2) 

95.4 
(SD = 13.4) 

376.3 
(SD = 7) 

-176.7 
(SD = 4.6) 

-213.6 
(SD = 5.6) 

 

Figure 4.1.3 Comparison of the opening and closing statements of “Ave Maria” for non-

professional singers 1–3. The Just Intonation tuning calculations were made in relation to 

the tonic triad. 
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Idealized Interval Sizes 

Equal 
Temperament -100 100 400 -200 -200 

Pythagorean  -90 90 408 -204 -204 

5-limit  
Just Intonation -112 112 386 -182 (Minor) -204 (Major) 

Singer 4 

Opening  
A cappella 

-86.9 
(SD = 9.0) 

88.9 
(SD = 17.5) 

394.1 
(SD = 10.6) 

-217.6 
(SD = 10.8) 

-197.7 
(SD = 5.3) 

Opening 
Accompanied 

-89.5 
(SD = 8.6) 

102.4 
(SD = 12.6) 

387.2 
(SD = 1.6) 

-200.3 
(SD = 9.6) 

-200.6 
(SD = 9.6) 

Closing 
A cappella 

-88.9 
(SD = 8.6) 

82.1 
(SD = 8.8) 

416.8 
(SD = 11.1) 

-211.5 
(SD = 3.9) 

-208.1 
(SD = 7.4) 

Closing 
Accompanied 

-87.5 
(SD = 3.0) 

96.1 
(SD = 4.9) 

397.3 
(SD = 6.3) 

-205.8 
(SD = 11.0) 

-213.0 
(SD = 3.9) 

Singer 5 

Opening  
A cappella 

-55.3 
(SD = 5.3) 

98.0 
(SD = 5.5) 

356.1 
(SD = 3.2) 

-180.9 
(SD = 11.9) 

-223.5 
(SD = 19.6) 

Opening 
Accompanied 

-58.7 
(SD = 7.7) 

90.7 
(SD = 6.7) 

378.9 
(SD = 5.5) 

-200.2 
(SD = 6.5) 

-201.8 
(SD = 9.9) 

Closing 
A cappella 

-60.9 
(SD = 2.9) 

100.8 
(SD = 0.9) 

352.8 
(SD = 6.6) 

-195.5 
(SD = 11.4) 

-227.37 
(SD = 8.7) 

Closing 
Accompanied 

-71.2 
(SD = 9.4) 

99.1 
(SD = 15.9) 

362.7 
(SD = 9.8) 

-195.5 
(SD = 6.8) 

-191.0 
(SD = 18.4) 

Singer 6 

Opening  
A cappella 

-58.8 
(SD = 13.1) 

88.4 
(SD = 20.4) 

394.9 
(SD = 6.0) 

-192.6 
(SD = 14.4) 

-202.5 
(SD = 2.5) 

Opening 
Accompanied 

-73.3 
(SD = 5.2) 

95.5 
(SD = 3.5) 

385.3 
(SD = 4.5) 

-207.3 
(SD = 4.4) 

-215.8 
(SD = 6.8) 

Closing 
A cappella 

-80.2 
(SD = 16.7) 

89.5 
(SD = 10.0) 

398.3 
(SD = 3.4) 

-198.7 
(SD = 9.6) 

-218.6 
(SD = 3.7) 

Closing 
Accompanied 

-75.1 
(SD = 6.9) 

88.5 
(SD = 2.2) 

381.0 
(SD = 10.9) 

-199.8 
(SD = 8.7) 

-198.7 
(SD = 13.9) 

Figure 4.1.4: Comparison of the opening and closing statements of “Ave Maria” for non-

professional singers 4–6. The Just Intonation tuning calculations were made in relation to 

the tonic triad. 
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Idealized Interval Sizes 

Equal 
Temperament -100 100 400 -200 -200 

Pythagorean  -90 90 408 -204 -204 

5-limit  
Just Intonation -112 112 386 -182 (Minor) -204 (Major) 

Professional singer 1 

Opening  
A cappella 

-87.4 
(SD = 3.4) 

96.8 
(SD = 7.6) 

398.7 
(SD = 4.2) 

-224.7 
(SD = 4.5) 

-197.4 
(SD = 3.9) 

Opening 
Accompanied 

-97.0 
(SD = 2.8) 

103.5 
(SD = 1.5) 

392.9 
(SD = 6.0) 

-205.7 
(SD = 9.8) 

-199.11 
(SD = 8.5) 

Closing 
A cappella 

-97.1 
(SD = 10.8) 

86.4 
(SD = 16.7) 

420.6 
(SD = 7.2) 

-220.6 
(SD = 5.3) 

-204.3 
(SD = 9.8) 

Closing 
Accompanied 

-83.1 
(SD = 7.3) 

92.3 
(SD = 4.0) 

383.7 
(SD = 5.8) 

-197.6 
(SD = 6.7) 

-200.4 
(SD = 9.6) 

Professional singer 2 

Opening  
A cappella 

-87.5 
(SD = 10.2) 

90.9 
(SD = 15.7) 

392.4 
(SD = 10.9) 

-216.6 
(SD = 10.1) 

-198.3 
(SD = 4.7) 

Opening 
Accompanied 

-89.7 
(SD = 9.5) 

103.4 
(SD = 13.0) 

387.2 
(SD = 2.0) 

-203.9 
(SD = 13.5) 

-198.2 
(SD = 13.4) 

Closing 
A cappella 

-89.1 
(SD = 3.1) 

81.9 
(SD = 8.0) 

417.46 
(SD = 398.4) 

-212.1 
(SD = 4.8) 

-208.4 
(SD = 7.6) 

Closing 
Accompanied 

-86.6 
(SD = 2.3) 

94.6 
(SD = 6.4) 

398.4 
(SD = 7.1) 

-206.1 
(SD = 11.6) 

-213.4 
(SD = 4.5) 

Professional singer 3 

Opening  
A cappella 

-68.1 
(SD = 4.4) 

81.0 
(SD = 11.8) 

402.8 
(SD = 7.2) 

-188.1 
(SD = 12.3) 

-237.1 
(SD = 3.6) 

Opening 
Accompanied 

-76.4 
(SD = 19.3) 

87.1 
(SD = 22.4) 

402.3 
(SD = 21.9) 

-202.5 
(SD = 9.9) 

-224.22 
(SD = 11.5) 

Closing 
A cappella 

-77.0 
(SD = 10.3) 

95.3 
(SD = 2.4) 

398.6 
(SD = 11.8) 

-201.2 
(SD = 7.4) 

-227.0 
(SD = 9.2) 

Closing 
Accompanied 

-79.1 
(SD = 9.8) 

99.2 
(SD = 28.5) 

395.4 
(SD = 10.8) 

-204.4 
(SD = 22.6) 

-212.7 
(SD = 20.6) 

Figure 4.1.5: Comparison of the opening and closing statements of “Ave Maria” for 

professional singers 1–3. The Just Intonation tuning calculations were made in relation to 

the tonic triad. 
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Idealized Interval Sizes 

Equal 
Temperament -100 100 400 -200 -200 

Pythagorean  -90 90 408 -204 -204 

5-limit  
Just Intonation -112 112 386 -182 (Minor) -204 (Major) 

Professional singer 4 

Opening  
A cappella 

-88.9 
(SD = 19.5) 

90.2 
(SD = 5.6) 

417.2 
(SD = 7.6) 

-198.9 
(SD = 14.1) 

-207.03 
(SD = 16.1) 

Opening 
Accompanied 

-87.5 
(SD = 34.4) 

91.6 
(SD = 44.6) 

402.82 
(SD = 14.04) 

-187.15 
(SD = 22.7) 

-223.54 
(SD = 19.1) 

Closing 
A cappella 

-82.3 
(SD = 13.4) 

82.3 
(SD = 7.9) 

399.1 
(SD = 6.3) 

-201.2 
(SD = 18.1) 

-204.3 
(SD = 12.6) 

Closing 
Accompanied 

-93.7 
(SD = 9.4) 

91.2 
(SD = 2.9) 

407.0 
(SD = 9.6) 

-203.8 
(SD = 28.4) 

-199.6 
(SD = 27.6) 

Professional singer 5 

Opening  
A cappella 

-98.0 
(SD = 6.7) 

93.4 
(SD = 5.7) 

399.24 
(SD = 5.0) 

-208.6 
(SD = 7.2) 

-194.14 
(SD = 5.2) 

Opening 
Accompanied 

-98.4 
(SD = 9.5) 

110.75 
(SD = 19.1) 

391.4 
(SD = 9.5) 

-191.2 
(SD = 13.2) 

-209.4 
(SD = 13.6) 

Closing 
A cappella 

-102.8 
(SD = 1.2) 

96.4 
(SD = 4.4) 

400.6 
(SD = 6.8) 

-191.2 
(SD = 1.8) 

-208.5 
(SD = 2.1) 

Closing 
Accompanied 

-93.7 
(SD = 6.9) 

92.87 
(SD = 9.1) 

397.2 
(SD = 5.6) 

-194.6 
(SD = 3.8) 

-201.6 
(SD = 4.4) 

Professional singer 6 

Opening  
A cappella 

-87.4 
(SD = 3.4) 

96.8 
(SD = 7.6) 

398.7 
(SD = 4.2) 

-224.7 
(SD = 4.5) 

-197.4 
(SD = 3.8) 

Opening 
Accompanied 

-97.0 
(SD = 2.8) 

103.5 
(SD = 1.5) 

392.9 
(SD = 6.0) 

-205 
(SD = 9.8) 

-199.1 
(SD = 8.5) 

Closing 
A cappella 

-97.1 
(SD = 10.8) 

86.4 
(SD = 16.7) 

420.6 
(SD = 7.2) 

-220.6 
(SD = 5.3) 

-204.2 
(SD = 1.8) 

Closing 
Accompanied 

-83.13 
(SD = 7.3) 

92.3 
(SD = 4.0) 

383.7 
(SD = 5.8) 

-197.6 
(SD = 6.7) 

-200.5 
(SD = 10.0) 

Figure 4.1.6: Comparison of the opening and closing statements of “Ave Maria” for 

professional singers 4–6. The Just Intonation tuning calculations were made in relation to 

the tonic triad. 

Amongst the non-professional group, the ascending A-B semitones tended to be larger than 

the descending B-A semitones, though the absolute semitone size varied amongst the 

singers. Overall, the descending semitones were generally smaller than Just-Intonation (112 
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cents) and equal temperament (100 cents), and also smaller than Pythagorean (90 cents) for 

some singers. For the descending whole tones, there were varying degrees of consistency. 

Singers 2, 3, 6, and, sometimes, 5 tended to compress the first descending whole tone more 

than the second. The mean interval sizes for the whole tones were closer to the 

Pythagorean/Major Just Intonation (204 cents) and equal tempered (200 cents) versions than 

the minor Just Intonation (182 cents), though some singers sang much larger whole tones 

than any of these. The variability in the impact of accompaniment seemed to be both singer- 

and interval-dependent, with some of the singers showing a greater amount of variability for 

some intervals than others.  

Amongst the professional group, there was less consistency in the size of the ascending A-B 

semitones versus descending B-A semitones across singers. Overall, semitones were 

generally smaller than Just-Intonation (112 cents) and equal temperament (100 cents), and 

also smaller than Pythagorean (90 cents) for some singers. As with the non-professional 

group, there were varying degrees of consistency amongst sizes for the descending whole 

tone, though mean interval sizes were closer to the Pythagorean/Major Just Intonation (204 

cents) and equal tempered (200 cents) versions than the minor Just Intonation (182 cents). 

In contrast with the non-professional group, there seems to be little impact of 

accompaniment in this group on the means, though there are some observable effects for 

standard deviations of some of the singers’ whole tones.   

Table 4.1.2 provides an overview of the mean interval size and standard deviation for both 

semitones and whole tones divided into ascending versus descending and a cappella versus 

accompanied. The high standard deviations both show the variability within these conditions 

and demonstrate that different types of analyses are needed to verify observable trends in the 

means, such as a tendency for descending semitones to be smaller than ascending ones.  

 Non-professional Singers Professional Singers 

Conditions A cappella Accompanied A cappella Accompanied 
(Number of Instances) Mean SD Mean SD Mean SD Mean SD 
Semitones, ascending (144) 89.8 20.4 95.1 16.1 98.7 17.5 98.6 16.6 

Semitones, descending (162) 87.3 18.4 88.9 17.7 93.0 17.6 93.8 16.4 

Whole tones, ascending (198) 197.8 22.8  195.0 22.0 199.6 21.1 202.9 21.3 

Whole tones, descending (234) 200.5 18.5 200.7 18.7 202.8  18.9 203.4 17.7 

Table 4.1.2: Summary of the mean interval size and standard deviation in cents for the two 

subject groups across all of the semitones and whole tones used in this experiment. 
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The observations made from Table 4.1.2 and Figure 4.1.3–Figure 4.1.6 are a useful starting 

point for making generalizations about the intonation tendencies in the experimental 

recordings. However, the large amount of variability within the broad conditions of 

ascending versus descending and a cappella versus accompanied needs to be explored in more 

detail since no clear trends emerged within these categories. The following sections explore a 

more fine-grained categorization within both semitones and whole tones.  

4.1.2.1 Semitones 

In order to assess how the tuning of a semitone in the piece is influenced by the context in 

which it occurs, the direction of the interval, and/or the presence of accompaniment the 

semitone intonation data for the singers in each group, was evaluated for several conditions 

(see Figure 4.1.1): leading tones (36 intervals per group = 2 instances in each rendition x 6 

singers x 3 a cappella renditions), other A-B semitones (72 intervals per group), B-A 

semitones (72 intervals per group), ascending other semitones (36 intervals per group), and 

descending other semitones (90 intervals per group). There were the same number of 

conditions per group for the accompanied renditions, resulting in a total of 72 leading tones, 

144 A-B intervals, 144 B-A intervals, 72 ascending other semitones, and 180 descending 

other semitones for each group of singers. Overall, each group had 144 ascending semitones 

for each set of a cappella and accompanied renditions, as well as 162 descending semitones. 

4.1.2.1.1     Interval Size 

The mean interval sizes and standard deviations across all of the singers for the various 

semitone conditions are shown for the non-professional group in Figure 4.1.3 and for the 

professional group in Figure 4.1.4. In the non-professional group, the mean interval size of 

both the a cappella and accompanied leading tones were the smallest: 79.3 cents for the a 

cappella leading tones (SD = 15.5) and 90.7 for the accompanied leading tones (SD = 12.7). 

Overall, the standard deviations for the leading tone condition were smaller than other 

corresponding a cappella and accompanied semitone conditions. In the professional group, 

there was much less variation between the ascending semitone conditions, though amongst 

the descending semitones, both the mean interval size and standard deviations of the B-A 

condition are markedly smaller in both the a cappella (87.6 cents, SD = 13.4) and 

accompanied conditions (89.9 cent, SD = 13.9).  
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Non-professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 79.3 15.5 90.7 12.7 

A-B semitones,  non-leading tones (72) 95.4 19.6 99.5 13.4 

B-A semitones (72) 83.4 19.0 86.4 16.2 

Other semitones, ascending (36) 89.2 22.3 90.7 21.4 

Other semitones, descending (90) 90.4 17.5 91.0 18.6 

Table 4.1.3: Mean and standard deviation of the semitone sizes in cents in the non-

professional group. 

Professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 94.8 16.5 93.2 14.3 

A-B semitones,  non-leading tones (72) 98.6 16.6 98.7 16.5 

B-A semitones (72) 87.6 13.4 89.9 13.9 

Other semitones, ascending (36) 102.7 19.7 103.9 17.7 

Other semitones, descending (90) 97.2 19.4 96.9 17.7 

Table 4.1.4: Mean and standard deviation of the semitone sizes in cents in the professional 

group. 

The box and whisker plots in Figure 4.1.7 and Figure 4.1.8 show the range of interval sizes 

for the ascending versus descending and the a cappella versus accompanied conditions for 

each singer for both the non-professional (Figure 4.1.7) and professional (Figure 4.1.8) 

groups. The plots in Figure 4.1.9 and Figure 4.1.10 show the interval sizes for each semitone 

condition across all of the singers in each group: non-professionals in Figure 4.1.9 and 

professionals in Figure 4.1.10.  

In the box and whisker plots, the top and bottom of each box represents the 25th and 75th 

percentiles, with the solid horizontal line running through the box representing the 50th 

percentile, or median. The short solid horizontal lines at the end of the “whiskers” represent 

the 5th and 95th percentiles (the most extreme non-outlier data points), and the plus signs 

indicate the outliers. One way to interpret these figures is to consider that the smaller the 

boxes, the more consistent the singer was in the condition. For the non-professionals in 

Figure 4.1.7, it can be observed that the size of the semitone sung with accompaniment is 

more consistent than those sung a cappella for both the ascending and descending semitone 

conditions. Also, the median of the interval size was smaller for semitones sung a cappella 

than for the accompanied ones, with the accompanied ones being closer to equal 

temperament. For the professional singers in Figure 4.1.8, the degree of consistency was 
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singer dependent, as was the amount that the consistency differed across conditions. Overall, 

the median interval size was larger for the professionals and more consistent between the a 

cappella and the accompanied conditions. 

In terms of the overall behaviour of each group in the more detailed semitone conditions of 

leading tone, other A-B semitones, B-A semitones, other ascending semitones, and other 

descending semitones, there are some notable differences between the groups. For the non-

professional group (Figure 4.1.9), the interquartile (25th to 75th percentile) range, shown by 

the boxes, is quite consistent in the a cappella condition and generally smaller in the 

accompanied one, though there is more variation in the (size/position) of the 95th percentile 

intervals, which is shown by the whiskers. The median leading tone size is smaller than the 

other A-B semitones and slightly smaller than the B-A semitones. Similar trends can be 

observed for the professional group (Figure 4.1.10), though the leading tones’ median size is 

more comparable to the other A-B semitones and larger than the B-A semitones. Also, 

there is less of a difference between the a cappella and accompanied conditions. 

The first linear regression analysis was run over intervallic direction, intervallic condition 

(leading tone versus non-leading tone and A-B/B-A versus other spellings), whether the 

singer was accompanied, and singer identity analysis for each of the groups. The regression 

analysis on the semitone data from the non-professional group had a relatively low R2 value 

(R2=0.19, p < 0.0001), indicating that only some of the variance in the data was explained by 

the conditions considered in the regression. The regression did reveal that the leading tone 

semitones were on average 10 cents smaller than the other semitones (95% confidence 

interval = [5,14]); however, there was no significant effect for size of the A-B/B-A 

semitones (including leading tones) compared to the other semitones. The a cappella 

semitones were on average 3 cents (95% confidence interval = [1,6]) smaller than the 

accompanied ones, and the descending intervals were on average 7 cents smaller than the 

ascending ones (95% confidence interval = [4,10]). There were also statistically significant 

effects for the average interval size of singer one’s semitones (8 cents larger, 95% confidence 

interval = [3,12]), singer two’s semitones (7 cents smaller, 95% confidence interval = [2,11]), 

singer four’s semitones (11 cents larger, 95% confidence interval = [6,15]), and singer five’s 

semitones (8 cents smaller, 95% confidence interval = [3,12]) in comparison to singer six. 

There was not a significant difference in interval size between singers three and six.  
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For the professional group, the regression analysis’ R2 value was smaller (R2=0.09, p < 

0.0001), indicating that less of the variance in the data was explained.  The regression analysis 

did reveal that the A-B/B-A semitones (including leading tones) were on average 7 cents 

smaller than the other semitones (95% confidence interval = [4,10]); however, there were no 

significant effects for leading tone function. The descending semitones were on average 8 

cents smaller than the ascending ones (95% confidence interval = [4,10]). There were no 

significant effects for the a cappella versus accompanied condition, nor were there any 

significant effects for singer identity. 

The second linear regression analysis, where both groups were combined and singer identity 

was replaced by group identity, also had a small R2 value (R2=0.07, p < 0.0001), although it 

produced significant results for all conditions except for a cappella versus accompanied. The 

descending semitones were on average 8 cents smaller than ascending ones (95% confidence 

interval = [6,10]). The leading tones were on average 7 cents smaller than the non-leading 

tone semitones (95% confidence interval = [3,10]), while the average semitone size of the A-

B/B-A semitones (including the leading tones) was 4 cents larger than the other semitones 

(95% confidence interval = [2,6]). The professional group’s semitones were on average 6 

cents larger than the non-professional group’s (95% confidence interval = [4,8]). 
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Figure 4.1.7: Box and whisker plots of semitone interval sizes across all non-professional 

singers. The subject are represented individually as well as in combination on the x-axis. The 

y-axis shows the size of the intervals in cents. The plots on the left show the interval sizes 

for the a cappella performances, and the plots on the right show the interval sizes for the 

performances with accompaniment. The plots on the top show the interval sizes for the 

ascending semitones, and the plots on the bottom show the interval sizes for the descending 

semitones.  
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Figure 4.1.8: Box and whisker plots of semitone interval sizes across all professional singers. 

The subject are represented individually as well as in combination on the x-axis. The y-axis 

shows the size of the intervals in cents. The plots on the left show the interval sizes for the a 

cappella performances, and the plots on the right show the interval sizes for the performances 

with accompaniment. The plots on the top show the interval sizes for the ascending 

semitones, and the plots on the bottom show the interval sizes for the descending 

semitones. 
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Figure 4.1.9: Box and whisker plots of the semitone size in cents for each semitone 

condition (leading tones, other A-B semitones, B-A semitones, other ascending semitones, 

and descending) across all non-professional singers. The plot on the left shows the interval 

sizes for the a cappella performances, and the plot on the right shows the interval sizes for the 

performances with accompaniment.  

 

  
Figure 4.1.10: Box and whisker plots of the semitone size in cents for each semitone 

condition (leading tones, other A-B semitones, B-A semitones, other ascending semitones, 

and descending) across all professional singers. The plot on the left shows the interval sizes 

for the a cappella performances, and the plot on the right shows the interval sizes for the 

performances with accompaniment. 
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4.1.2.1.2     Slope and Curvature 

A summary of the slope and curvature values for the endings of the first note in each 

semitone interval across the ascending versus descending and a cappella versus accompanied 

conditions are shown for both the non-professional and professional groups in Table 4.1.5.  

As discussed above, slope is approximated by the 1st DCT coefficient and curvature by the 

2nd DCT coefficient of the last 250 ms of the signal when the DCT is calculated on the 

original F0 trace or the last 150 ms of the signal when a moving average with a 200 ms 

window has been applied to the F0 trace. The units for slope and curvature are 

approximations of cents/second and cents/second2, respectively. For notes that are less than 

500 ms, the last half of the note is evaluated. The data are further broken down into 

conditions in the subsequent tables.  The means and standard deviations for the slope values 

run on the original F0 trace are shown in Table 4.1.6 for the non-professional group and 

Table 4.1.8 for the professional group. The results from the 1st DCT run on the F0 trace with 

a 200 ms moving average applied to it are shown in Table 4.1.7 for the non-professional 

group and in Table 4.1.9 for the professional group. Likewise, the means and standard 

deviations for the curvature values run on the original F0 trace are shown in Table 4.1.10 for 

the non-professional and in Table 4.1.12 professional groups. The results from the 2nd DCT 

coefficient run on the F0 trace with a 200 ms moving average applied to it are shown in 

Table 4.1.11 for the non-professional group and in Table 4.1.13 for the professional group. 

 

 Non-professional Singers Professional Singers 

Conditions A cappella Accompanied A cappella Accompanied 
(Number of Instances) Mean SD Mean SD Mean SD Mean SD 

Slope, F0 trace, ascending (144) 32.3 62.9 30.6 55.4 9.3 100.4 -5.1 115.9 

Slope , MA, ascending (144) 12.2 32.8 11.3 47.8 15.0 67.5 5.6 43.9 

Slope, F0 trace, descending (162) -19.7 53.4 -17.4 109.8 -47.8 115.0 -18.7 75.4 

Slope, MA, descending (162) 9.4 36.1 2.8 40.5 2.7 34.3 6.8 38.0 

Curvature, F0 trace, ascending (144) 15.2 388.6 45.5 552.6 -141.9 865.5 -179.2 719.4 

Curvature, MA, ascending (144) 56.5 204.0 53.7 172.3 -275.6 922.0 -129.5 595.4 

Curvature, F0 trace, descending (162) -122.7 481.0 -151.6 600.9 -5.5 442.4 13.8 325.2 

Curvature, MA, descending (162) -8.3 124.0 -2.8 190.2 -24.8 226.0 26.2 157.1 

Table 4.1.5: Summary of the means and standard deviations of the slope and curvature for 

the two subject groups across all of the semitones used in this experiments. 
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Non-professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 12.3 37.7 15.0 35.3 

A-B semitones, non-leading tones (72) 25.5 59.2 24.7 41.5 

B-A semitones (72) -13.1 40.8 -4.1 47.7 

Other semitones, ascending (36) 45.3 38.2 33.5 33.9 

Other semitones, descending (90) -26.2 63.0 -28.8 147.4 

Table 4.1.6: Non-professional group’s semitone slope values calculated on the original F0 

trace.  

Non-professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 10.8 30.8 4.3 34.8 

A-B semitones, non-leading tones (72) 14.0 35.1 18.3 35.5 

B-A semitones (72) -0.2 26.3 -2.8 33.2 

Other semitones, ascending (36) 19.5 22.6 12.9 27.6 

Other semitones, descending (90) 14.6 38.8 9.4 46.6 

Table 4.1.7: Non-professional group’s semitone slope values calculated on the F0 trace with a 

moving average applied to it. 

 

Professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 8.9 43.1 1.7 35.6 

A-B semitones, non-leading tones (72) 5.0 64.4 -3.9 63.3 

B-A semitones (72) -48.1 71.5 -9.8 52 

Other semitones, ascending (36) 30.3 83.9 41.6 67.9 

Other semitones, descending (90) -52.7 148.2 -26.3 91.1 

Table 4.1.8: Professional group’s semitone slope values calculated on the F0 trace. 

 

Professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 2.8 23.7 1.5 25.0 

A-B semitones,  non-leading tones (72) 3.3 31.3 10.4 31.1 

B-A semitones (72) -2.4 36.1 10.4 33.4 

Other semitones, ascending (36) 29.8 28.4 17.6 34.1 

Other semitones, descending (90) 3.5 30.1 5.5 39.5 

Table 4.1.9: Professional group’s semitone slope values calculated on the F0 trace with a 

moving average applied to it 
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Non-professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) -68.9 257.7 103.4 289.4 

A-B semitones,  non-leading tones (72) -22.1 334.9 4.1 231.5 

B-A semitones (72) 24.8 220.5 0.3 250.8 

Other semitones, ascending (36) 84.1 256.3 113.0 186.0 

Other semitones, descending (90) -257.7 609.1 -279.8 796.6 

Table 4.1.10: Non-professional group’s semitone curvature values calculated on the F0 trace. 

 

Non-professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 11.0 71.7 23.4 88.2 

A-B semitones,  non-leading tones (72) 20.7 140.6 34.5 82.7 

B-A semitones (72) -16.5 110.3 -11.0 108.9 

Other semitones, ascending (36) 53.7 79.9 20.7 96.5 

Other semitones, descending (90) 6.9 128.2 5.5 239.8 

Table 4.1.11: Non-professional group’s semitone curvature values calculated on the F0 trace 

with a moving average applied to it. 

 

Professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) -40.0 165.4 35.8 133.7 

A-B semitones,  non-leading tones (72) -89.6 520.9 -205.3 431.4 

B-A semitones (72) -110.3 275.6 -81.3 420.3 

Other semitones, ascending (36) 73.0 642.2 -59.3 651.9 

Other semitones, descending (90) -456.2 1248.6 -191.6 742.8 

Table 4.1.12: Professional group’s semitone curvature values calculated on the F0 trace. 

 

Professional Group A cappella Accompanied 

Semitone conditions (Number of Instances) Mean SD Mean SD 

A-B semitones, leading tones (36) 26.2 118.5 15.2 117.1 

A-B semitones,  non-leading tones (72) 27.6 128.2 48.2 110.3 

B-A semitones (72) -64.8 206.7 22.1 129.5 

Other semitones, ascending (36) 35.8 91.0 46.9 122.7 

Other semitones, descending (90) 1.4 242.6 44.1 165.4 

Table 4.1.13: Professional group’s semitone curvature values calculated on the F0 trace with a 

moving average applied to it. 
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The following box and whisker plots show the range of the 1st DCT coefficient values, 

measured in an approximation of cents/second, and the 2nd DCT coefficient values, 

measured in an approximation of cents/second2. The plots show the ascending versus 

descending and a cappella versus accompanied conditions for each singer run on both the 

original F0 trace for the non-professional group (Figure 4.1.11 for the 1st DCT and Figure 

4.1.17 for the 2nd DCT) and the professional group (Figure 4.1.12 for the 1st DCT and Figure 

4.1.18 for the 2nd DCT) and on results of applying a 200 ms moving average to the original 

F0 trace for the non-professional group (Figure 4.1.13 for the 1st DCT and Figure 4.1.19 for 

the 2nd DCT) and the professionals group (Figure 4.1.14 for the 1st DCT and Figure 4.1.20 

for the 2nd DCT). The plots in Figure 4.1.15 and Figure 4.1.16 show the 1st DCT coefficient 

for each semitone condition across all of the singers in the non-professional group and 

professional group,  respectively. Similarly, the plots in Figure 4.1.21 and Figure 4.1.22 show 

the 2nd DCT coefficient for each semitone condition across all of the singers in the two 

groups.  
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Figure 4.1.11: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 250 ms of the F0 trace of the first note of all of the 

semitones performed by the non-professional group. Each plot shows the results for the six 

non-professional singers individually and the mean across all of the singers. The plots on the 

left show the values of the 1st DCT coefficient for the a cappella performances, and the plots 

on the right show the values of the 1st DCT coefficient for performances with 

accompaniment. The plots on the top show the 1st DCT coefficient values for the ascending 

semitones, and the plots on the bottom show the 1st DCT coefficient values for the 

descending semitones. The units on the y-axis are an approximation of cents/second. 
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Figure 4.1.12: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 250 ms of the F0 trace of the first note of all of the 

semitones performed by the professional group. Each plot shows the results for the six 

professional singers individually and the mean across all of the singers. The plots on the left 

show the values of the 1st DCT coefficient for the a cappella performances, and the plots on 

the right show the values of the 1st DCT coefficient for performances with accompaniment. 

The plots on the top show the 1st DCT coefficient values for the ascending semitones, and 

the plots on the bottom show the 1st DCT coefficient values for the descending semitones. 

The units on the y-axis are an approximation of cents/second. 
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Figure 4.1.13: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 150 ms of the F0 trace (smoothed by results of 

applying a 200 ms moving average) of the first note of all of the semitones performed by the 

non-professional group. Each plot shows the values for the six non-professional singers 

individually and the mean across all of the singers. The plots on the left show the values of 

the 1st DCT coefficient for the a cappella performances, and the plots on the right show the 

values of the 1st DCT coefficient for performances with accompaniment. The plots on the 

top show the 1st DCT coefficient values for the ascending semitones, and the plots on the 

bottom show the 1st DCT coefficient values for the descending semitones. The units on the 

y-axis are an approximation of cents/second. 
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Figure 4.1.14: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 150 ms of the F0 trace smoothed by applying a 200 ms 

moving average of the first note of all of the semitones performed by the professional 

group. Each plot shows the results for the six professional singers individually and the mean 

across all of the singers. The plots on the left show the values of the 1st DCT coefficient for 

the a cappella performances, and the plots on the right show the values of the 1st DCT 

coefficient for performances with accompaniment. The plots on the top show the 1st DCT 

coefficient values for the ascending semitones, and the plots on the bottom show the 1st 

DCT coefficient values for the descending semitones. The units on the y-axis are an 

approximation of cents/second. 
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Figure 4.1.15: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the end of the first note of all of the semitones in each 

condition across all of the non-professional singers. The plots on the left show the values for 

the 1st DCT coefficient for the a cappella performances, and the plots on the right show the 

values for the 1st DCT coefficient for performances with accompaniment. The plots on the 

top show the values of the 1st DCT coefficient run on the original F0 trace, while the plots 

on the bottom show the valuse 1st DCT coefficient run on the F0 trace smoothed by results 

of applying a 200 ms moving average. The units on the y-axis are an approximation of 

cents/second. 
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Figure 4.1.16: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the end of the first note of all of the semitones in each 

condition across all of the professional singers. The plots on the left show the values of the 

1st DCT coefficient for the a cappella performances, and the plots on the right  show the 

values of the 1st DCT coefficient for performances with accompaniment. The plots on the 

top show the values of the 1st DCT coefficient run on the original F0 trace, while the plots 

on the bottom show the values of the 1st DCT coefficient run on the F0 trace smoothed by 

results of applying a 200 ms moving average. The units on the y-axis are an approximation 

of cents/second. 
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Figure 4.1.17: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 250 ms of the F0 trace of the first note of all of the 

semitones performed by the non-professional group. Each plot shows the results for the six 

non-professional singers individually and the mean across all of the singers. The plots on the 

left show the values of the 2nd DCT coefficient for the a cappella performances, and the plots 

on the right show the values of the 2nd DCT coefficient for performances with 

accompaniment. The plots on the top show the 2nd DCT coefficient values for the ascending 

semitones, and the plots on the bottom show the 2nd DCT coefficient values for the 

descending semitones. The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.18: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 250 ms of the F0 trace of the first note of all of the 

semitones performed by the professional group. Each plot shows the results for the six 

professional singers individually and the mean across all of the singers. The plots on the left 

show the values of the 2nd DCT coefficient for the a cappella performances, and the plots on 

the right show the values of the 2nd DCT coefficient for performances with accompaniment. 

The plots on the top show the 2nd DCT coefficient values for the ascending semitones, and 

the plots on the bottom show the 2nd DCT coefficient values for the descending semitones. 

The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.19: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 150 ms of the F0 trace (smoothed by results of 

applying a 200 ms moving average) of the first note of all of the semitones performed by the 

non-professional group. Each plot shows the results for the six non-professional singers 

individually and the mean across all of the singers. The plots on the left show the values of 

the 2nd DCT coefficient for the a cappella performances, and the plots on the right show the 

values of the 2nd DCT coefficient for performances with accompaniment. The plots on the 

top show the 2nd DCT coefficient values for the ascending semitones, and the plots on the 

bottom show the 2nd DCT coefficient values for the descending semitones. The units on the 

y-axis are an approximation of cents/second2. 
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Figure 4.1.20: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 150 ms of the F0 trace (smoothed by results of 

applying a 200 ms moving average of the first note) of all of the semitones performed by the 

professional group. Each plot shows the results for the six professional singers individually 

and the mean across all of the singers. The plots on the left show the values of the 2nd DCT 

coefficient for the a cappella performances, and the plots on the right show the values of the 

2nd DCT coefficient for performances with accompaniment. The plots on the top show the 

2nd DCT coefficient values for the ascending semitones, and the plots on the bottom show 

the 2nd DCT coefficient values for the descending semitones. The units on the y-axis are an 

approximation of cents/second2. 
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Figure 4.1.21: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the end of the first note of all of the semitones in each 

condition across all of the non-professional singers. The plots on the left show the 2nd DCT 

coefficient values for the a cappella performances, and the plots on the right show the 2nd 

DCT coefficient values for performances with accompaniment. The plots on the top show 

the values of the 2nd DCT coefficient run on the original F0 trace, while the plots on the 

bottom show the values of the 2nd DCT coefficient run on the F0 trace smoothed by results 

of applying a 200 ms moving average. The units on the y-axis are an approximation of 

cents/second2. 
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Figure 4.1.22: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the end of the first note of all of the semitones in each 

condition across all of the professional singers. The plots on the left show the values of the 

2nd DCT coefficient for the a cappella performances, and the plots on the right show the 

values of the 2nd DCT coefficient for performances with accompaniment. The plots on the 

top show the values of the 2nd DCT coefficient run on the original F0 trace, while the plots 

on the bottom show the values of the 2nd DCT coefficient run on the F0 trace smoothed by 

results of applying a 200 ms moving average. The units on the y-axis are an approximation 

of cents/second2. 

In order to analyze these data, the same regressions run on interval size were also run on the 

slope and curvature data. The first linear regression analysis of the original F0 trace’s 1st DCT 

coefficients in the non-professional group (R2=0.08, p < 0.0001) showed significant effects 

for A-B/B-A semitones versus other semitones, with the other semitones having a slope 

value 18 cents/second larger than on average (95% confidence interval = [7,28]). There were 
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also significant effects for singer identity when comparing the singers 1, 2, and 5 against the 

baseline, singer six. Singer one’s slopes were on average smaller by 17 cents/second (95% 

confidence interval = [1,33]), singer two’s were 23 cents/second larger (95% confidence 

interval = [6,39]), and singer five’s were 20 cents/second smaller (95% confidence interval = 

[4,37]) than singer six’s slopes.  

For the data from the professional group, the same linear regression analysis (R2=0.14, p < 

0.0001) showed a significant effect for accompaniment, with the accompanied performances 

having on average a 16 cents/second smaller slope than the a cappella ones (95% confidence 

interval = [5,27]). As with the non-professional group, there was a significant effect for A-

B/B-A semitones versus other semitones, with the other semitones having a 21 

cents/second larger slope on average (95% confidence interval = [9,33]. There were also 

significant singer identity effects for singers one, three, and four. Singer one’s slope was on 

average 23 cents/second larger than singer six’s (95% confidence interval = [5,42]), singer 

three’s was on average 56 cents/second larger (95% confidence interval = [37,74]), and 

singer four’s was on average 30 cents/second larger (95% confidence interval = [11,48]). 

Neither of these regressions had a particularly high R2 value. Although the professional 

group (0.14) had a slightly larger R2 value than the non-professional group (0.08), this still 

indicates that much of the variation in the data was left unexplained.  

The second linear regression analysis, run over the data from both groups together, also had 

a small R2 value (R2 = 0.04, p < 0.0001). It did, however, show a significant effect again for 

A-B/B-A semitones versus other semitones, with the other semitones having a 19 

cents/second larger slope on average (95% confidence interval = [11,27]). It also showed a 

significant effect for group identity, with the professional group having on average a 10 

cents/second larger slope than the non-professional group  (95% confidence interval = 

[3,18]). 

In the first linear regression analysis of the 1st DCT coefficients calculated on the result of 

applying a 250 ms moving average to the F0 trace (R2=0.09, p < 0.0001), there were only 

significant effects in the non-professional group for singer identity. There were no significant 

effects for accompaniment, direction, or type of semitone (leading tones versus non-leading 

tones or A-B/B-A semitones versus other semitones). In terms of singer identity, the all of 

the singers’ slopes except for singer three were significantly different than singer six’s slopes. 
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Singer one’s average slope was 12 cents/second smaller than singer six’s (95% confidence 

interval = [5,19]), singer two’s average slope was 10 cents/second larger (95% confidence 

interval = [3,17]), singer four’s average slope was 10 cents/second smaller (95% confidence 

interval = [3,17]), and singer five’s average slope was 8 cents/second smaller (95% 

confidence interval = [1,15).  

In the results of the same linear regression run on the professional singers’ data (R2=0.20, p 

< 0.0001), there were significant effects for leading tone function and singer identity. There 

were no significant effects for accompaniment or direction. The slope of the leading tone 

semitones was on average 8.3 cents/second smaller than the non-leading tone semitones 

(95% confidence interval = [2,14]). All of the singers, except for singer five, differed 

significantly from the baseline. Singer one’s average slope was 7 cents/second larger than 

singer six’s (95% confidence interval = [2,13]), singer two’s average slope was 6 

cents/second larger (95% confidence interval = [0.06,12]), singer three’s average slope was 

26 cents/second larger (95% confidence interval = [20,31]), and singer four’s average slope 

was 24 cents/second larger (95% confidence interval = [18,30]).  The R2 value was larger for 

the regression run on the professional group’s data (0.2) than on the non-professional 

group’s data (0.09).  

In the second linear regression (R2=0.01, p < 0.0001), where both groups’ average slope data 

were analyzed, there was only a significant effect for leading tone function. The slopes of the 

semitones with a leading tone function were on average 6 cents/second smaller than the 

slopes of those without (95% confidence interval = [0.8,10]).  

In the first linear regression analysis of the 2nd DCT coefficients calculated on the original F0 

trace showed significant effects for intervallic direction, A-B/B-A semitones versus other 

semitones, and singer identity for all of the singers except for singer two (R2=0.10 p < 

0.0001). The descending semitone’s curvature was on average 86.1 cents/second2 larger 

(95% confidence interval = [21.4,150.8]) and the non A-B/B-A’s curvature was on average 

162.0 cents/second2 larger than the A-B/B-A semitones (95% confidence interval = 

[98.5,225.6]).  In terms of singer identity, all of the singers except for singer two showed a 

significant effect: singer one’s curvature was on average 201.2 cents/second2 smaller than 

singer six’s curvature (95% confidence interval = [100.6,301.8]); singer three’s curvature was 

on average 154.9 cents/second2 smaller than singer six’s curvature (95% confidence interval 



 
 

 163 

= [54.2,255.5]); singer four’s curvature was on average 177.1 cents/second2 smaller than 

singer six’s curvature (95% confidence interval = [76.5,277.7]); singer five’s curvature was on 

average 222.8 cents/second2 smaller than singer six’s curvature (95% confidence interval = 

[122.1,323.4]).  

For the professional group, there were significant effects for leading tone function, A-B/B-

A semitones versus non A-B/B-A semitones, and singer identity for singers one, three, and 

four (R2=0.19 p < 0.0001). The semitones with a leading tone function’s curvature were on 

average 156.2 cents/second2 smaller than the non-leading tone semitones (95% confidence 

interval = [8.3,304.1]). The non-A-B/B-A semitones had on average a 248.6 cents/second2 

larger curvature than the A-B/B-A semitones (95% confidence interval = [154.7,342.5]). 

Singer one’s curvature was on average 178.4 cents/second2 smaller than singer six’s 

curvature (95% confidence interval = [30.0,327.5]), singer three’s curvature was on average 

503.9 cents/second2 smaller than singer six’s curvature (95% confidence interval = 

[355.1,652.6]), and singer four’s curvature was on average 410.4 cents/second2 smaller than 

singer six’s curvature (95% confidence interval = [261.7,559.2]).  

For the second linear regression, across both groups of singers, there were significant effects 

for A-B/B-A semitones versus other semitones and group identity (R2=0.07 p < 0.0001). 

The non-A-B/B-A semitones’ curvature was on average 205.3 cents/second2 larger than 

the A-B/B-A semitones (95% confidence interval = [145.4,265.2]). The professional 

singers’ average curvature was on average 102.5 cents/second2  (95% confidence interval = 

[47.7,157.3]). As with the regressions run on the slope data, the R2 values were small overall 

and larger for the professional group (0.19) than the non-professional group (0.12). Also, like 

the regressions on the slope data, the R2 value for the regression run on both groups was 

quite small (0.07). 

In the first linear regression analysis of the 2nd DCT coefficients calculated on the result of 

applying a 200 ms moving average to the F0 trace, there were only significant effects for 

singer identity in the non-professional group (R2=0.10, p < 0.0001). Singer one’s average 

curvature was 58.5 cents/second2 smaller than singer six’s (95% confidence interval = 

[30.2,86.7]), singer two’s average curvature was 30.6 cents/second2 larger (95% confidence 

interval = [2.3,58.8]), singer three’s average curvature was 34.5 cents/second2 smaller (95% 

confidence interval = [6.3,62.8]), singer four’s average curvature was 51.4 cents/second2 
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smaller (95% confidence interval = [23.1,79.7]), and singer five’s average curvature was 45.5 

cents/second2 smaller (95% confidence interval = [17.2,73.7]).  

For the linear regression analysis on the professional group, there were significant effects for 

accompaniment, direction, and for singers one, three, and four against the baseline (R2=0.22, 

p < 0.0001). Accompanied semitones’ curvature was on average 26.7 cents/second2 smaller 

than a cappella semitones’ average curvature (95% confidence interval = [8.3,45.2]) and 

descending semitones’ curvature was on average 39.3 cents/second2 larger than ascending 

semitones’ average curvature (95% confidence interval = [18.7,59.8]). Singer one’s average 

curvature was 35.8 cents/second2 larger than singer six’s (95% confidence interval = 

[3.7,67.8]), singer three’s average curvature was 125.8 cents/second2 larger (95% confidence 

interval = [93.8,157.8]), and singer four’s average curvature was 143.2 cents/second2 larger 

(95% confidence interval = [111.2,175.2]). The relative sizes of the regressions’ small R2 

values are the same as the other regressions on the curvature and slope data and the R2 value 

for the regression run on the professional data (0.22) is larger than that for the non-

professional data (0.10).  

In the second linear regression analysis run on the combined curvature data for the entire 

group (R2=0.02, p < 0.0001), there were significant effects for direction and group identity. 

The descending semitones’ curvature was on average 28.7 cents/second2 larger than 

ascending semitones’ average curvature (95% confidence interval = [13.9,43.5]). The 

professional group’s curvature was on average 15.9 cents/second2 larger than non-

professional group’s semitones’ average curvature (95% confidence interval = [2.5,29.2]).   

4.1.2.2 Whole Tones 

In order to assess the degree of variability between the singers in each group in terms of 

whole tones, interval size was evaluated for several conditions (see Figure 4.1.2): ascending 

whole tones between chord tones and non-chord tones (72 total intervals per group = 4 

instances per rendition x 6 singers x 3 renditions), descending whole tones between chord 

tones and non-chord tones (54 total intervals per group), ascending whole tones between 

non-chord tones and chord tones (36 intervals per group), descending whole tones between 

non-chord tones and chord tones (108 intervals per group), ascending whole tones between 

chord tones (72 intervals per group), and descending whole tones between chord tones (90 

intervals per group). There were the same number of conditions per group for the 



 
 

 165 

accompanied renditions, resulting in a total of 144 ascending whole tones between chord 

tones and non-chord notes, 108 descending whole tones between chord tones and non-

chord tones, 72 ascending whole tones between non-chord tones, 216 descending whole 

tones between non-chord tones and chord tones, 144 ascending whole tones between chord 

tones, and 144 descending whole tones between chord tones. Overall each group had 198 

ascending and 234 descending whole tones, for each set of a cappella and accompanied 

renditions. 

4.1.2.2.1 Interval Size 

The mean interval sizes and standard deviations across all of the singers for the various 

whole tone conditions are shown for the non-professional group in Table 4.1.14 and for the 

professional group in Table 4.1.15. 

 

Non-professional Group A Cappella Accompanied 

Whole tone conditions (Number of Instances) Mean SD Mean SD 

Chord tone – chord tone, ascending (72) 207.9 25.4 202.7 23.5 

Chord tone – chord tone, descending (54) -198.1 18.8 -194.5 19.6 

Chord tone – non-chord tone, ascending (36) 188.2 15.6 187.7 15.9 

Chord tone – non-chord tone, descending (108) -199.3 18.7 -201.7 16 

Non-chord tone – chord tone, ascending (72) 192.6 19.3 191 20.9 

Non-chord tone – chord tone, descending (90) -203.5 18 -203.2 20.5 

Table 4.1.14: Mean and standard deviation of the whole tone sizes (in cents) for each of the 

tested whole tone conditions for the non-professional singers. 

 

Professional Group A Cappella Accompanied 

Whole tone conditions (Number of Instances) Mean SD Mean SD 

Chord tone – chord tone, ascending (72) 202.5 23.3 209 27.5 

Chord tone – chord tone, descending (54) -203.3 15.6 -200 18.1 

Chord tone – non-chord tone, ascending (36) 200.9 19.7 200.3 15.3 

Chord tone – non-chord tone, descending (108) -200.6 20 -201.6 17.8 

Non-chord tone – chord tone, ascending (72) 196.2 19.1 198 14.4 

Non-chord tone – chord tone, descending (90) -205.3 19.1 -207.4 16.9 

Table 4.1.15: Mean and standard deviation of the whole-tone sizes (in cents) for each of the 

tested whole tone conditions for the professional singers. 
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In the non-professional group, ascending chord tone to chord tone whole tones tended to 

be the larger than the corresponding descending whole tones. This was not the case, 

however, for the chord-tone-to-non-chord-tone whole tones and the non-chord-tone-to-

chord-tone whole tones, where the corresponding descending whole tones tended to be 

larger. The means of the whole tone sizes in the professional group were more consistent 

across the chord tone to chord tone and chord tone to non-chord tone conditions; except 

for accompanied chord to chord tone condition, where the ascending intervals tended to be 

larger. In the non-chord tone to chord tone condition the descending whole tones tended to 

be larger. 

The box and whisker plots in Figure 4.1.23 and Figure 4.1.24 show the range of interval sizes 

for the ascending versus descending and a cappella versus accompanied conditions for each 

singer for both the non-professional (Figure 4.1.23) and professional (Figure 4.1.24) groups. 

The plots in Figure 4.1.25 and Figure 4.1.26 show the interval sizes for each whole tone 

condition across all of the singers in each group, with non-professionals in Figure 4.1.25 and 

professionals in Figure 4.1.26. As discussed in Section 4.1.2.1, one way to interpret these 

figures is to consider that the smaller the boxes, the more consistent the singer was in the 

condition.  
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Figure 4.1.23: Box and whisker plots of whole tone interval sizes across all non-professional 

singers. Each subject is represented individually on the x-axis, as well as the combination of 

all of the subjects. The y-axis shows the size of the intervals in cents. The plots on the left 

show the interval sizes for the a cappella performances, and the plots on the right show the 

interval sizes for the performances with accompaniment. The plots on the top show the 

interval sizes for the ascending whole tones, and the plots on the bottom show the interval 

sizes for the descending whole tones. 
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Figure 4.1.24: Box and whisker plots of whole tone interval sizes across all professional 

singers. Each subject is represented individually on the x-axis, as well as the combination of 

all of the subjects. The y-axis shows the size of the intervals in cents. The plots on the left 

show the interval sizes for the a cappella performances, and the plots on the right show the 

interval sizes for the performances with accompaniment. The plots on the top show the 

interval sizes for the ascending whole tones, and the plots on the bottom show the interval 

sizes for the descending whole tones. 
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Figure 4.1.25: Box and whisker plots of the whole tone size in cents for each whole tone 

condition across all non-professional singers. The plot on the left shows the interval sizes for 

the a cappella performances, and the plot on the right shows the performances with 

accompaniment. 

 

 

  
Figure 4.1.26: Box and whisker plots of the whole tone size in cents for each whole tone 

condition across all professional singers. The plot on the left shows the interval sizes for the 

a cappella performances, and the plot on the right shows the performances with 

accompaniment. 
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A linear regression analysis was run over whether the singer was accompanied, intervallic 

direction, intervallic condition, and singer identity for each of the groups. The results of the 

regression on the data from the non-professional group  (R2=0.09, p < 0.0001) showed that 

the descending whole tones were on average 5 cents larger than the ascending whole tones 

(95% confidence interval = [2,8]). The regression also showed that intervals ending with a 

chord tone were 4 cents smaller on average than those ending with a non-chord tone (95% 

confidence interval = [1,7]). In terms of singer identity, singers three (10 cents smaller, 95% 

confidence interval =[5,14]), four (7 cents larger, 95% confidence interval = [3,12]), and five 

(6 cents smaller, 95% confidence interval = [2,11]) were statistically different than the 

baseline, singer six. For the professional group, the linear regression (R2=0.04, p < 0.0001) 

revealed that there was no statistically significant difference between ascending and 

descending whole tones. There was no statistically significant difference in interval size for 

the different whole tone conditions regarding chord tones and non-chord tones. There were, 

however, significant effects for singer identity in the average whole tone size for singers two 

(14 cents larger, 95% confidence interval = [0.03,9]) and five (95% confidence interval = 

[3,12]) compared to singer six. Overall, there was no statistically significant effect for the 

presence of accompaniment in either the non-professional or professional groups. 

A second linear regression (R2=0.02, p < 0.0001), where both groups were combined and 

singer identity was replaced by group identity, produced significant results for all conditions 

except for a cappella versus accompanied. As with the first regression, there was no 

statistically significant impact of accompaniment on interval size. The descending whole 

tones were on average 3 cents smaller than ascending one (95% confidence interval = [1,4]). 

The whole tones ending with a chord tone were on average 3 cents smaller than those 

ending with a non-chord tone (95% confidence interval = [1,5]). Overall, the professional 

group’s whole tones were on average 3 cents larger than the non-professional group (95% 

confidence interval = [2,5]). 

The results of the ANOVA analysis described in Section 4.1.1.4 revealed a significant effect 

for the interaction between direction, intervallic conditions, and singer (F(20,143) = 3.22, p 

< 0.01). This suggests that some of the singers sung the combination of ascending versus 

descending and different intervallic conditions significantly differently than other singers. It 

should be noted, however, that the related two-way interactions (singer and direction, singer 



 
 

 171 

and intervallic condition, direction and intervallic condition) were not significant, which 

makes it difficult to directly assess the implications of this three-way interaction.  

4.1.2.2.2 Slope and Curvature 

A summary of the slope and curvature values for the endings of the first note in each whole 

tone across the various whole tone contexts is shown for both groups of singers in Table 

4.1.16. The means and standard deviations for the slope values, approximately cents/second, 

from the 1st DCT coefficient run on the original F0 trace for the non-professional group are 

shown in Table 4.1.17 and for the professional group in Table 4.1.19. The results from the 

1st DCT run on the F0 trace with a 200 ms moving average applied to it are shown in Table 

4.1.18 for the non-professional group and in Table 4.1.20 for the professional group. The 

means and standard deviations for the curvature values, approximately cents/second2, from 

the 2nd DCT coefficient run on the original F0 trace are shown in Table 4.1.21 for the non-

professional and in Table 4.1.23 for the professional group. The results from the 2nd DCT 

coefficient run on the F0 trace with a 200 ms moving average applied to it are shown in 

Table 4.1.22 for the non-professional group and in Table 4.1.24 for the professional group. 

 Non-professional Singers Professional Singers 

Whole Tone Conditions A cappella Accompanied A cappella Accompanied 
(Number of Instances) Mean SD Mean SD Mean SD Mean SD 
Slope, F0 trace, ascending (198) 46.1 89.6 45.9 93.0 17.5 67.2 16.3 85.7 

Slope , MA, ascending (198) 41.2 57.0 36.9 54.4 17.0 54.5 20.9 50.8 

Slope, F0 trace, descending (234) -28.8 91.8 -13.6 82.4 -36.7 114.9 -23 133.8 

Slope, MA, descending (234) 0.1 41.4 -3.3 37.2 1.2 46.8 -5.3 54.8 

Curvature, F0 trace, ascending (198) -126.8 606.4 -62.0 617.4 -108.9 682.2 -60.6 680.8 

Curvature, MA, ascending (198) 85.4 268.7 56.5 308.7 56.5 250.8 34.5 243.9 

Curvature, F0 trace, descending (234) -246.7 571.9 -136.4 589.8 -419.0 891.6 -351.4 938.5 

Curvature, MA, descending (234) 9.6 191.6 27.6 172.3 13.8 272.9 51.0 296.3 

Table 4.1.16 Summary of the means and standard deviations of the slope and curvature for 

the two subject groups across all of the whole tones used in this experiment. 

Non-professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 71.0 116.4 71.3 101.1 

Chord tone – chord tone, descending (54) -1.8 102.2 0.3 82.2 

Chord tone – non-chord tone, ascending (36) 49.7 39.5 27 123.7 

Chord tone – non-chord tone, descending (108) -36.7 96.8 -13.2 77.0 

Non-chord tone – chord tone, ascending (72) 19.5 67.8 30.0 54.4 

Non-chord tone – chord tone, descending (90) -37.0 71.2 -22.6 71.1 

Table 4.1.17: Non-professional group’s whole tone slope values calculated on the original F0 

trace. 
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Non-professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 53.1 71.8 46.3 65.7 

Chord tone – chord tone, descending (54) 7.8 38.1 2.7 32.4 

Chord tone – non-chord tone, ascending (36) 28.6 39.3 22.6 42.8 

Chord tone – non-chord tone, descending (108) -1.4 38.8 -8.3 38.2 

Non-chord tone – chord tone, ascending (72) 35.5 44.9 34.5 45.3 

Non-chord tone – chord tone, descending (90) -1.2 46.2 -1.1 36 

Table 4.1.18: Non-professional group’s whole tone slope values calculated on the F0 trace 

with a moving average applied. 

 

Professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 35.5 79 38.7 120.7 

Chord tone – chord tone, descending (54) -24 95.4 7.5 104.6 

Chord tone – non-chord tone, ascending (36) 35.2 57.7 16.5 42.0 

Chord tone – non-chord tone, descending (108) -37.1 102.7 -36.5 136.0 

Non-chord tone – chord tone, ascending (72) -9.4 47.8 -6.3 45.2 

Non-chord tone – chord tone, descending (90) -47.2 136.7 -31.6 101.2 

Table 4.1.19: Professional group’s whole tone slope values calculated on the original F0 trace. 

 

Professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 22 75.9 24.6 68.6 

Chord tone – chord tone, descending (54) -3 53.5 5.2 33.7 

Chord tone – non-chord tone, ascending (36) 22.9 38.2 23.2 36.1 

Chord tone – non-chord tone, descending (108) 2.7 49.0 0 56.1 

Non-chord tone – chord tone, ascending (72) 9.1 30.0 16 33.5 

Non-chord tone – chord tone, descending (90) 0.5 33.6 -9.5 51.5 

 Table 4.1.20: Professional group’s whole tone slope values calculated on the F0 trace with a 

moving average applied. 

 

Non-professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) -295.5 847.2 -180.1 854.9 

Chord tone – chord tone, descending (54) -28.1 398.9 -23.8 348.3 

Chord tone – non-chord tone, ascending (36) 84.2 203.9 34.3 338.8 

Chord tone – non-chord tone, descending (108) -329.6 637.9 -165.3 496.9 

Non-chord tone – chord tone, ascending (72) -62.2 364.8 7.8 385.1 

Non-chord tone – chord tone, descending (90) -284.6 475.9 -181.1 474.0 

 Table 4.1.21: Non-professional group’s whole tone curvature values calculated on the 

original F0 trace. 
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Non-professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 155.5 379.7 121.9 296.9 

Chord tone – chord tone, descending (54) 1.1 235 27.3 190.9 

Chord tone – non-chord tone, ascending (36) 21.6 121.6 -69.3 498.8 

Chord tone – non-chord tone, descending (108) 21.7 192.4 38.1 178.7 

Non-chord tone – chord tone, ascending (72) 47 149.1 55.1 131.5 

Non-chord tone – chord tone, descending (90) -16.7 143.9 9 128.5 

Table 4.1.22: Non-professional group’s whole tone curvature values calculated on the F0 

trace with a moving average. 

 

Professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) -284 958.8 -211.8 968.8 

Chord tone – chord tone, descending (54) -17.1 451.9 -30.7 565.8 

Chord tone – non-chord tone, ascending (36) 39 295 135.1 309.6 

Chord tone – non-chord tone, descending (108) -391.1 846.2 -390.8 928.7 

Non-chord tone – chord tone, ascending (72) -9.2 398.4 -7.4 372.1 

Non-chord tone – chord tone, descending (90) -445 722.8 -355.3 752.6 

Table 4.1.23: Professional group’s whole tone curvature values calculated on the original F0 

trace. 

 

Professional Group A Cappella Accompanied 

Whole Tone Conditions  (Number of Instances) Mean SD Mean SD 
Chord tone – chord tone, ascending (72) 102.4 345.4 73 323.3 

Chord tone – chord tone, descending (54) -15.1 253.8 60.7 338.6 

Chord tone – non-chord tone, ascending (36) 43.8 166.2 -32.5 203.6 

Chord tone – non-chord tone, descending (108) -13.5 231.1 9.9 232.3 

Non-chord tone – chord tone, ascending (72) 15.2 148 29.2 148.4 

Non-chord tone – chord tone, descending (90) 21.3 277.6 57.8 263.4 

 Table 4.1.24: Professional group’s whole tone curvature values calculated on the F0 trace 

with a moving average applied. 

 

The following box and whisker plots show the range of the 1st DCT coefficient values, 

measured in an approximation of cents/second, and the 2nd DCT coefficient values, 

measured in an approximation of cents/second2. The plots show the ascending versus 

descending and a cappella versus accompanied conditions for each singer run on both the 

original F0 trace for the non-professional (Figure 4.1.27 for the 1st DCT and for Figure 4.1.33 

the 2nd DCT) and professional (Figure 4.1.28 for the 1st DCT and Figure 4.1.34 for the 2nd 

DCT) groups and on results of applying a 200 ms moving average to the original F0 trace for 
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the non-professionals (Figure 4.1.29 for the 1st DCT and Figure 4.1.35 for the 2nd DCT) and 

professionals (Figure 4.1.30 for the 1st DCT and Figure 4.1.36 for the 2nd DCT). The plots in 

Figure 4.1.31 and Figure 4.1.32 show the 1st DCT coefficient for each whole tone condition 

across all of the singers in the non-profession and professional group, respectively. The plots 

in Figure 4.1.37 and Figure 4.1.38 show the 2nd DCT coefficient for each whole tone 

condition across all of the singers in the groups.  As with the semitones, linear regressions 

analyses were also run on the whole tones’ slope and curvature data. As with regression 

analysis on the semitones, the R2 values for these regressions are quite small. 

The first linear regression analysis of the original F0 trace’s 1st DCT coefficients in the non-

professional group (R2=0.12, p < 0.01) showed significant effects for whether or not the 

whole tone started or ended with a chord tone, as well as for singer identity for all of the 

singers except for singer two. The average slope of whole tones starting on a chord tone was 

17 cents/second smaller than those starting on a non-chord tone (95% confidence interval = 

[5,26]), and those ending on a chord tone were 30 cents/second smaller than those ending 

on a non-chord tone (95% confidence interval = [19,41]). All of the singers’ average 

curvatures were smaller than singer six’s average slope: singer one’s average slope was 55 

cents/second smaller (95% confidence interval = [40,71]), singer two’s average slope was 30 

cents/second smaller (95% confidence interval = [14,46]), singer four’s average slope was 47 

cents/second smaller (95% confidence interval = [32,62]), and singer five’s average slope 

was 44 cents/second smaller (95% confidence interval = [28,59]). In the professional group 

(R2=0.08, p < 0.0001), there were also significant effects for intervallic direction and for 

singer identity for singer four. Descending whole tones’ slopes were on average 25 

cents/second larger than ascending whole tones’ (95% confidence interval = [13,36]). Singer 

four’s average slope was on average 38 cents/second larger than singer six’s (95% 

confidence interval = [19,56]).  

In the second linear regression analysis, across both groups, there were significant effects for 

intervallic direction and whether or not the whole tone started or ended with a chord note 

(R2=0.02, p < 0.001). Descending intervals’ slopes were on average 9 cents/second larger 

than ascending intervals (95% confidence interval = [2,17]). The average slope of whole 

tones starting on a chord tone was 10 cents/second smaller than those starting on a non-

chord tone (95% confidence interval = [2,20]), and those ending on a chord tone were 20 
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cents/second smaller than those ending on a non-chord tone (95% confidence interval = 

[11,29]). Overall there were no significant effects for accompaniment or group identity. 

In the first regression analysis of the slope data for the non-professional singers (R2=0.17, p 

< 0.0001) there were significant effects for direction, whether the whole tone ended with a 

chord tone, and singer identity. There were not, however, significant effects for the presence 

of accompaniment or whether the whole tone started with a chord tone or non-chord tone. 

The slope of the descending whole tones was on average 18 cents/second smaller than the 

slope of the ascending ones (95% confidence interval = [14,23]). Whole tones ending with a 

chord were 12 cents/second on average smaller than those ending with a non-chord tone 

(95% confidence interval = [6,18]), In terms of singer identity, the average slopes of singers 

one (33 cents/second, 95% confidence interval = [24,41]), four (23 cents/second smaller, 

95% confidence interval = [15,31]), and five (10 cents/second smaller, 95% confidence 

interval = [2,18]) were significantly different than singer six’s average slope.  

For the professional singers (R2=0.17, p < 0.0001), there were significant effects for 

direction: the descending whole tones’ slopes were on average 8 cents/second smaller than 

the ascending whole tones’ (95% confidence interval = [3,13]). There was also a significant 

effect for whole tones ending on a chord-tone, whose slope was on average 15 cents/second 

smaller than those whole tones ending on a non-chord tone (95% confidence interval = 

[9,21]). There were no significant effects for whole tones beginning on chord tones versus 

non-chord tones or for the presence of accompaniment. There were singer identity effects 

for singers three (26 cents/second larger, 95% confidence interval = [17,34]) and four (34 

cents/second larger, 95% confidence interval = [25,42]) in comparison to the baseline, 

singer six.  

In the second linear regression analysis (R2=0.05, p < 0.0001), on the slope data for the both 

groups, there were significant effects for direction and for whole tones ending on a chord 

tone versus a non-chord tone. Descending whole tones’ slopes were on average 11 

cents/second smaller than the ascending whole tones’ slopes (95% confidence interval = 

[8,15]).  The slopes of the whole tones ending on a chord tone were on average 13 

cents/second smaller than those starting on a non-chord tone (95% confidence interval = 

[9,18]). There were no significant effects for accompaniment or group identity. 
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In the linear regression analysis of the 2nd DCT coefficients calculated on the original F0 

trace for non-professionals, there was no significant effect for intervallic direction or 

whether or not a whole tone started on a chord tone. There were, however, significant 

effects for whether or not the whole tone ended on a chord tone and for singer identity for 

all of the singers (R2=0.09, p < 0.0001). Whole tones ending on a chord tone’s curvature was 

on average 103 cents/second2 smaller than whole tones ending on a non-chord tone (95% 

confidence interval = [31,175]). All of the singers’ average curvatures were smaller than 

singer six’s average curvature: singer one’s average curvature was 375 cents/second2 smaller 

(95% confidence interval = [274,476]), singer two’s average curvature was 152 cents/second2 

smaller (95% confidence interval = [51,254]), singer three’s average curvature was 114 

cents/second2 smaller (95% confidence interval = [13,215]), singer four’s average curvature 

was 308 cents/second2 smaller (95% confidence interval = [207,409]), and singer five’s 

average curvature was 254 cents/second2 smaller (95% confidence interval = [153,579]).  

For the professional group, there were significant effects for intervallic direction and for 

singers two, three, and four (R2=0.13, p < 0.0001).  Descending whole’s average curvature 

was 176 cents/second2 larger than ascending semitones curvature (95% confidence interval 

= [92,260]). Singer two’s curvature was on average 168 cents/second2 smaller than singer 

six’s curvature (95% confidence interval = [29,306]), whereas singer three’s curvature was on 

average 441 cents/second2 larger than singer six’s curvature (95% confidence interval = 

[302,580]) and four’s curvatures was on average 268 cents/second2 (95% confidence interval 

= [129,406]) larger than singer six’s curvature. 

For the regression run across both groups, there were only significant effects for intervallic 

direction, the ending notes, and for group identity (R2=0.02, p < 0.0001). Descending whole 

tones curvature was on average 101 cents/second2 larger than the ascending whole tones 

(95% confidence interval = [46,156]). The whole tones ending on a chord tone curvature 

was on average 79 cents/second2 smaller than the curvature of those ending on a non-chord 

tone (95% confidence interval = [13,143]). The profession group’s curvature was on average 

94 cents/second2 larger than the non-professional group’s curvature (95% confidence 

interval = [42,147]). There were no significant effects for accompaniment in any of the 

regressions. 
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The linear regression analysis of the 2nd DCT coefficients calculated on the result of applying 

a 200 ms moving average to the F0 trace to the non-professional singers’ whole tones 

(R2=0.11, p < 0.0001) revealed effects for direction and whether the whole tones started or 

ended on a chord tone. The curvature of the descending whole tones was on average 33 

cents/second2 smaller than ascending whole tones (95% confidence interval = [7,59]). 

Whole tones starting on a chord tone’s curvatures were on average 35 cents/second2 smaller 

than those starting on a non-chord tone (95% confidence interval = [5,65]). Similarly, whole 

tones ending on a chord tone’s curvatures were on average 79 cents/second2 smaller than 

whole tones ending on a non-chord tone’s curvature (95% confidence interval = [49,110]). 

There were no significant effects for the presence of accompaniment or the starting note of 

the whole tone. In terms of singer identity, there were significant effects for all of the singers 

in relation to the baseline, singer six. On average, singer one was 167 cents/second2 smaller 

than singer six (95% confidence interval = [123,210]), singer two was 68 cents/second2 

smaller than singer six (95% confidence interval = [25,111]), singer three was 99 

cents/second2 smaller than singer six (95% confidence interval = [56,142]), singer four was 

146 cents/second2 smaller than singer six (95% confidence interval = [102,189]), and singer 

five was 125 cents/second2 smaller than singer six (95% confidence interval = [82,169]).  

For the professional singers (R2=0.20, p < 0.0001), there were only significant effects for 

whether the whole tone ended on a chord tone or non-chord tone, as well as for singers 

three and four. The curvature of the whole tones ending on a chord tone was on average 65 

cents/second2 smaller than those ending on a non-chord tone (95% confidence interval = 

[34,97]). Singer three’s average curvature was 130 cents/second2 larger than singer six’s 

curvature  (95% confidence interval = [87,174]), and singer four’s average curvature was 217 

cents/second2 larger than singer six’s curvature (95% confidence interval = [173,261]).  

In the second regression analysis on the curvature data of both groups combined (R2=0.03, p 

< 0.0001), there were no significant effects of accompaniment, direction, and the starting 

note of the whole tone. There were, however, significant effects for the ending notes of the 

whole tone and group identity. Whole tones ending on a chord tone were on average 72 

cents/second2 smaller than those ending on a non-chord tone (95% confidence interval = 

[49,96]). The curvatures of professional group’s whole tones were on average 19 
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cents/second2 larger than the non-professional group’s curvatures (95% confidence interval 

= [0.3,38]). 

 

 

 

 

 

  
Figure 4.1.27: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 250 ms of the F0 trace of the first note of all of the 

whole tones performed by the non-professional group. Each plot shows the results for the 

six non-professional singers individually and the mean across all of the singers. The plots on 

the left show the 1st DCT coefficient values from the a cappella performances, and the plots 

on the right show the 1st DCT coefficient values from performances with accompaniment. 

The plots on the top show the 1st DCT coefficient values for the ascending whole tones, 

and the plots on the bottom show the 1st DCT coefficient values for the descending whole 

tones. The units on the y-axis are an approximation of cents/second. 
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Figure 4.1.28: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 250 ms of the F0 trace of the first note of all of the 

whole tones performed by the professional group. Each plot shows the results for the six 

professional singers individually and the mean across all of the singers. The plots on the left 

show the 1st DCT coefficient values for the a cappella performances, and the plots on the 

right show the 1st DCT coefficient values for performances with accompaniment. The plots 

on the top show the 1st DCT coefficient values for the ascending whole tones, and the plots 

on the bottom show the 1st DCT coefficient values for the descending whole tones. The 

units on the y-axis are an approximation of cents/second. 
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Figure 4.1.29: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the last 150 ms of the F0 trace (smoothed by results of 

applying a 200 ms moving average) of the first note of all of the whole tones performed by 

non-professional group. Each plot shows the results for the six singers individually and the 

mean across all of the non-professional singers. The plots on the left show the 1st DCT 

coefficient values for the a cappella performances, and the plots on the right show the 1st 

DCT coefficient values for performances with accompaniment. The plots on the top show 

the 1st DCT coefficient values for the ascending whole tones, and the plots on the bottom 

show the 1st DCT coefficient values for the descending whole tones. The units on the y-axis 

are an approximation of cents/second. 
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Figure 4.1.30: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient, 

approximating slope, run on the last 150 ms of the F0 trace (smoothed by results of applying 

a 200 ms moving average) of the first note of all of the whole tones performed by the 

professional group. Each plot shows the results for the six singers individually and the mean 

across all of the professional singers. The plots on the left show the 1st DCT coefficient 

values for the a cappella performances, and the plots on the right show the 1st DCT 

coefficient values for performances with accompaniment. The plots on the top show the 1st 

DCT coefficient values for the ascending whole tones, and the plots on the bottom show the 

1st DCT coefficient values for the descending whole tones. The units on the y-axis are an 

approximation of cents/second. 
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Figure 4.1.31: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the end of the first note of each whole tone interval for each 

condition across all non-professional singers. The plots on the left show the 1st DCT 

coefficient values for the a cappella performances, and the plots on the right show the 1st 

DCT coefficient values for performances with accompaniment. The plots on the top show 

the values of the 1st DCT run on the original F0 trace, while the plots on the bottom show 

the values of the 1st DCT coefficient run on the F0 trace smoothed by applying a 200 ms 

moving average. The units on the y-axis are an approximation of cents/second. 
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Figure 4.1.32: Box and whisker plots of the 1st discrete cosine transform (DCT) coefficient 

(approximating slope) run on the end of the first note of each whole tone interval for each 

condition across all professional singers. The plots on the left show the 1st DCT coefficient 

values for the a cappella performances, and the plots on the right show the 1st DCT 

coefficient values for performances with accompaniment. The plots on the top show the 

values of the 1st DCT coefficient run on the original F0 trace, while the plots on the bottom 

show the values of 1st DCT coefficient run on the F0 trace smoothed by applying a 200 ms 

moving average. The units on the y-axis are an approximation of cents/second. 
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Figure 4.1.33: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 250 ms of the F0 trace of the first note of all of the 

whole tones performed by the non-professional group. Each plot shows the results for the 

non-professional six singers individually and the mean across all of the singers. The plots on 

the left show the values of the 2nd DCT coefficient for the a cappella performances, and the 

plots on the right show the values of the 2nd DCT coefficient for performances with 

accompaniment. The plots on the top show the 2nd DCT coefficient values for the ascending 

whole tones, and the plots on the bottom show the 2nd DCT coefficient values for the 

descending whole tones. The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.34: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the last 250 ms of the F0 trace of the first note of all of the 

whole tones performed by the professional group. Each plot shows the results for the 

professional six singers individually and the mean across all of the singers. The plots on the 

left show the values of the 2nd DCT coefficient for the a cappella performances, and the plots 

on the right show the values of the 2nd DCT coefficient for performances with 

accompaniment. The plots on the top show the 2nd DCT coefficient values for the ascending 

whole tones, and the plots on the bottom show the 2nd DCT coefficient values for the 

descending whole tones. The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.35: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient,  

(approximating curvature) run on the last 150 ms of the F0 trace (smoothed by applying a 

200 ms moving average of the first note) of the first note of all of the whole tones 

performed by the non-professional group. Each plot shows the results for the six non-

professional singers individually and the mean across all of the singers. The plots on the left 

show the values of the 2nd DCT coefficient for the a cappella performances, and the plots on 

the right show the values of the 2nd DCT coefficient for performances with accompaniment. 

The plots on the top show the 2nd DCT coefficient values for the ascending whole tones, 

and the plots on the bottom show the 2nd DCT coefficient values for the descending whole 

tones. The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.36: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature,) run on the last 150 ms of the F0 trace (smoothed by applying a 

200 ms moving average) of the first note of all of the whole tones performed by the 

professional group. Each plot shows the results for the six professional singers individually 

and the mean across all of the singers. The plots on the left show the values of the 2nd DCT 

coefficient for the a cappella performances, and the plots on the right show the values of the 

2nd DCT coefficient for performances with accompaniment. The plots on the top show the 

2nd DCT coefficient values for the ascending whole tones, and the plots on the bottom show 

the 2nd DCT coefficient values for the descending whole tones. The units on the y-axis are 

an approximation of cents/second2. 
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Figure 4.1.37: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the end of the first note of each whole tone interval for 

each condition across all non-professional singers. The plots on the left show the 2nd DCT 

coefficient values for the a cappella performances, and the plots on the right show the 2nd 

DCT coefficient values for performances with accompaniment. The plots on the top show 

the values of the 2nd DCT run on the original F0 trace, while the plots on the bottom show 

the values of the 2nd DCT coefficient run on F0 trace smoothed by applying a 200 ms 

moving average. The units on the y-axis are an approximation of cents/second2. 
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Figure 4.1.38: Box and whisker plots of the 2nd discrete cosine transform (DCT) coefficient 

(approximating curvature) run on the end of the first note of each whole tone interval for 

each condition across all professional singers. The plots on the left show the 2nd DCT 

coefficient values for the a cappella performances, and the plots on the right show the 2nd 

DCT coefficient values for performances with accompaniment. The plots on the top show 

the values of the 2nd DCT run on the original F0 trace, while the plots on the bottom show 

the values of the 2nd DCT coefficient run on of the F0 trace smoothed by results a 200 ms 

moving average. The units on the y-axis are an approximation of cents/second2. 
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4.1.3 Discussion 

4.1.3.1 Semitones 

The mean and median semitone size values across all of the singers in both groups tended to 

be smaller than the 100 cent equal tempered semitone. The 50% confidence intervals for 

semitone size, shown in Figure 4.1.8 for the non-professional group and in Figure 4.1.9 for 

the professional group, encompass the 90 cent Pythagorean semitone, the 100 cent equal 

tempered semitone, and for some contexts, the 112 cent minor diatonic Just Intonation 

semitone. Only the descending non-B-A semitones in the progression group encompass the 

112 cent major diatonic Just Intonation semitone.  

The only interval size measurement for which there was significant effect for the presence of 

accompaniment was in the non-professional group. The non-professional group’s semitones 

were on average 3 cents smaller for a cappella renditions than for those with accompaniment.  

When the DCT was run on the F0 trace with the moving average applied, there was a 

significant effect for accompaniment in the professional group, with the accompanied 

renditions having a smaller curvature on average than the a cappella ones. There was also a 

significant effect for intervallic direction, with the descending intervals having on average a 

larger curvature than the ascending ones. There were no specific effects for accompaniment 

in the non-professional group when the DCT was run on the result of the moving average, 

or for either group when the DCT was run on the original F0 trace. 

Both groups showed a significant effect for direction on interval size. The linear regression 

analysis showed that both the non-professional and the professional singers’ descending 

semitones were smaller than their ascending ones. For the slope and curvature 

measurements, there was only a significant effect for curvature. Specifically, the curvature of 

descending semitones in the non-professional group, when the DCT was calculated on the 

original F0 trace, descending semitones had, on average, a larger curvature than the ascending 

semitones. Likewise, the descending semitones in the professional group, when the DCT 

was calculated on the F0 trace with a moving average applied to it, also had on average a 

larger curvature measurement than the ascending semitones. 

In terms of the different types of semitones, only the non-professional group showed a 

significant effect for leading tones versus non-leading tone semitones, with the leading tones 
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being on average 10 cents smaller. In contrast, the professional group had significant effect 

for non A-B/B-A semitones versus the A-B/B-A semitones, with the non A-B/B-A 

semitones being on average 7 cents larger. For slope, as measured by the 1st DCT coefficient 

on the end of the first note of the semitone, there were significant effects for A-B/B-A 

versus other semitones when the DCT was run the F0 trace. Both the non-professional and 

professionals singers had a greater slope on average for the non-A-B/B-A semitones. 

When the DCT was run on the F0 trace after a moving average had been applied to it, there 

was only a significant effect for semitones with a leading tone function in the professional 

group, which had on average a smaller slope for the semitones with a leading tone function 

than those without.  For curvature measured on the original F0 trace, there were significant 

effects for leading tone function and A-B/B-A semitones, with the semitones with a 

leading tone function having a smaller curvature than the semitones with other functions 

and the A-B/B-A semitones having a smaller curvature than semitones between different 

notes. The non-professional group also had a significant effect for the A-B/B-A semitones, 

which had a smaller curvature than the other semitones.  

Overall, the non-professional group showed more of an effect for singer identity than the 

professional group, particularly for interval size, where only singer five was significantly 

different from its baseline, professional singer six. In the non-professional group, singers 

one, two, four, and five were all significantly different from their baseline, non-professional 

singer six. There was also a significant group effect for interval size, with the professional 

group’s interval size being 6 cents larger on average than the non-professional group’s 

interval size. In terms of slope, both groups had three singers who differed significantly from 

the baseline when the DCT was calculated on the original F0 trace (singers one, three, and 

four in the professional group and singers one, two, and five in the non-professional group), 

and four singers who differed significantly from the baseline when the DCT was calculated 

on the F0 trace after the moving average had been applied to it  (singers one, two, three, and 

four in the professional group and singers one, two, four, and five in the non-professional 

group). There was only a significant effect for group identity for the slope values calculated 

on the original F0 trace. For curvature in the professional group, the same three singers’ 

curvature measurements were significantly different than the baseline (singers one, three, and 

four) in both calculations. Whereas all of the non-professional singers were significantly 
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different from the baseline when the DCT was calculated on the result of the moving 

average, only four differed significantly when it was run on the original F0 trace (singers one, 

three, four, and five). There was a group effect for curvature for both calculations, with the 

professional group having a larger curvature measurement on average in both cases. 

Overall, the R2 values for the regressions were low, the highest value was 0.22 for the 

regression run on the professional groups’ curvature data calculated on the F0 trace with a 

moving average applied to it, which indicates that the conditions evaluated only some of the 

variation in the data. The implications of this will be discussed in Section 4.3.  

4.1.3.2 Whole Tones 

As with the semitone analysis, the R2 values for the regressions were low. The highest R2 

value overall was 0.19, for the regression run on the professional group’s curvature data 

calculated on the original F0 trace. In terms of whole tone size, the mean and median whole 

tone size values across all of the singers for the various conditions centered around the 200 

cent equal tempered whole tone. The 50% confidence intervals for whole tone size, shown 

in Figure 4.1.25 for the non-professional group and in Figure 4.1.26 for the professional 

group, encompass the 204 cent Pythagorean/major Just Intonation whole tone and the 200 

cent equal tempered whole tone. Only the a cappella and accompanied ascending whole tones 

between non-chord tones and chord tones, a cappella and accompanied ascending whole 

tones between two chord tones, and a cappella descending whole tones between two non-

chord tones in the non-professional group encompass the 182 cents minor Just Intonation 

whole tone.  

There was no significant effect for accompaniment in either group for any of the 

measurements: interval size, slope, or curvature. In terms of intervallic direction, only the 

non-professional group showed an effect for interval size, with their descending whole tones 

on average 5 cents larger than their ascending whole tones. Both groups showed a significant 

effect for slope. When the slope was calculated directly on the F0 trace, the professional 

group’s average slope was larger for descending whole tones than ascending whole tones. 

The opposite was true for the non-professional group. When the slope was calculated from 

the F0 trace with a moving average applied to it, the average slopes of both groups’ 

descending whole tones were smaller than their ascending whole tones. Only the non-

profession group, when curvature was calculated from the F0 trace with a moving average 
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applied to it, showed a significant effect for direction with the average curvature of the 

descending whole tones being slightly smaller than the ascending whole tones.   

In the non-professional group’s whole tone data there was a significant effect for whole 

tones starting on a chord tone, which were on average 4 cents smaller than whole tones 

starting on a non-chord tone. There was no effect in the professional group’s interval size 

data. When the slope calculations were made directly on the F0 trace, there were significant 

effects for both the professional and non-professional groups. Both non-professional 

groups’ average slopes for whole tones starting or ending on chord tones were, when 

significant, both smaller than those starting or ending on non-chord tones. When the slope 

calculations were run on the F0 trace with the moving average applied, there was only a 

significant effect for the non-professional group’s whole tones ending with a chord tone, 

which had a smaller slope on average than the whole tones ending on a non-chord tone. For 

the curvature data calculated directly on the F0 trace, the non-professional group had a 

significant effect for whole tones ending on a chord tone, which had a smaller slope on 

average than the whole tones that ending on a non-chord tone. For the curvature data 

calculated on the F0 trace with the moving average applied to it, there was a significant effect 

for both the professional and non-professional groups for whole tones ending on a chord 

tone, which had a smaller curvature on average in both groups than the whole tones ending 

on a non-chord tone. There was also a significant effect in the non-professional group for 

whole tones starting on a chord tone, which had a smaller curvature on average than the 

whole tones starting on a chord tone. 

In terms of group identity, the professional group’s interval size and curvature 

measurements were on average larger than the non-professional group, although there were 

no significant group effects for slope. There were comparable effects for singer identity in 

both groups for the interval size and slope measurements. For interval size, singer identity 

effects for two professional singers (two and five) and three non-professional singers (three, 

four and five). For slope, there were significant effects for the four non-professional singers 

(one, three, four, and five) for the calculations made on the F0 trace and three non-

professional singers (one, four, and five) for calculations made on the F0 trace after a moving 

average had been applied to it. For the professional group, there were significant effects for 

one singer (four) when the slope was calculated directly on the F0 trace and two singers 



 
 

 194 

(three and four) when the slope was calculated on the F0 trace after a moving average had 

been applied to it. For the non-professional singers’ curvature, there was a significant effect 

for four singers (one, three, four, and five) when the curvature was calculated directly on the 

F0 trace and for two singers (three and four) when the curvature was calculated on the F0 

trace after a moving average had been applied to it. For the professional group, there were 

significant effects for three singers (two, three, and four) when the curvature was calculated 

directly on the F0 trace and for two singers (three and four) when the curvature was 

calculated on the F0 trace after a moving average had been applied to it. 

4.1.3.3 Slope and Curvature 

As discussed in Section 3.2, slope and curvature data were calculated in two different ways: 

directly on the F0 trace and on the F0 trace after a 200 ms moving average had been applied 

to it. The calculations were made on the end of the first note in each melodic interval in 

order to determine if the singer was preparing for the imminent arrival of the upcoming note 

with changes in F0. The moving average was used to minimize the effect of vibrato, although 

not enough evaluation has been done to determine either if this approach is sufficient to 

remove the vibrato or if it is also removing some of the information related to the slope and 

curvature trends in the signal. In light of this uncertainty, more weight is put on those 

conditions in which both calculations agree.  

For slope calculations on the semitone data, the only points of agreement are in singer 

identity. In contrast, for the slope calculations on the whole tone data, there are observable 

trends in the non-professional group for the whole tones ending on a chord tone where the 

singers have a smaller slope on average than when moving towards a non-chord tone. 

Overall, there is more agreement in the slope data for some singers than others, although the 

actual slope sizes vary quite substantially, with the calculations run directly on the F0 trace 

tending to have larger values and confidence interval ranges.  

For curvature calculations on the semitone data, the only point of agreement is in group and 

singer identity, with the professional group having larger curvature values on average than 

the non-profession group. This is also the case for the whole tone curvature data.  As with 

the slope data, the curvature data for the whole tones exhibits a correspondence between the 

whole tones ending on a chord tone for the non-professional group, with the singers having 

a smaller curvature on average than when moving towards a non-chord tone. Also, similar to 
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the whole tone slope data, there is close agreement in terms of singer identity for both 

semitones and whole tones, and the curvature amounts also tend to be larger for the 

calculations run directly on the F0 trace.  

These findings suggest that singers are more variable in their slope and curvature for 

semitones than for whole tones, which agrees with what has been observed in this 

experiment for interval size. In terms of the question of singers “scooping up” (increased 

slope + increased positive curvature) into leading tones, there does not appear to be any 

evidence supporting this. Overall, the biggest effect was between intervallic direction and 

slope in whole tones. This makes intuitive sense given that since there is a larger distance for 

the singer to traverse in the whole tone than the semitone, the singer might start moving 

toward it sooner. The finding of smaller curvature values for whole tones ending in a chord 

tone suggests that the singers might be preparing for the stability of the next note with 

increased stability in the current one. The larger curvature values in the professional group 

are harder to interpret, but may suggest that the professionals studied in this experiment 

were shaping their notes more than the non-professionals. It is interesting to observe that 

this trend co-occurs with all of the non-professional singers being significantly different 

from their baseline. 

Overall, the use of the 1st and 2nd Discrete Cosine Transform has provided some interesting 

data related to way in which the F0 changes at the end of the first note in the melodic 

intervals being studied. However, the large amount of variability and the open questions 

regarding how best to apply the DCT to the signal means that only highly interpretative 

claims can be made from the data. For this reason, only interval size is examined in the 

ensemble experiments in the next section, 4.2. 
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4.2 Intonation in SATB Ensemble Singing 

This experiment builds on the solo singer experiment in Section 4.1 by looking at the tuning 

of semitones and whole tones in the context of four-part ensemble singing. As with the 

previous experiment, both the degree of consistency across performances as well as musical 

context was considered. Three SATB ensembles were used in the four different parts of the 

experiment. In Part One (Figure 4.2.1 and Figure 4.2.2), there were 27 short progressions 

composed by Jonathan Wild, a music theory professor at McGill, where semitones in 9 

different contexts occurred in each of the 3 upper voices. In Part Two (Figure 4.2.3), there 

were 18 short progressions composed by Peter Schubert, also a music theory professor at 

McGill, where whole tones in 6 different contexts occurred in each of the 3 upper voices. 

Part Three (Figure 4.2.4) was a short two-measure progression by Giambattista Bendedetti 

(1530–1590) repeated four times in each of the renditions. Depending on which voice is 

used as a tuning reference, this repeated progression can, in theory, promote an upward drift 

in tuning. The fourth part (Figure 4.2.5, Figure 4.2.6, and Figure 4.2.7) was the first verse of 

Michael Praetorius‘ (1571–1621) ―Es ist ein Ros‘ entsprungen‖ (―Lo, How a Rose E‘er 

Blooming‖ in English). The first ensemble was used in a pilot study, where only the third 

and fourth parts were recorded since the first and second parts were designed after the pilot 

study took place. The second and third ensembles recorded all four parts of the experiment. 

The intonation data were extracted in the same way as in Section 4.1, and the melodic 

intervals were calculated in the same manner. The vertical intervals were calculated by 

measuring the interval size for each frame and then taking the mean across the series of 

vertical calculations, as described in Section 3.2. As with Section 4.1, this section examines 

role of musical context on the interval size for semitone and whole tone melodic intervals. 

Given the weak results in the solo singing experiments in Section 4.1, the slope and 

curvature were not analyzed for the ensemble experiment. Vertical intervals sizes were also 

examined, specifically whether the singers tuned the intervals closer to the interval sizes that 

can be observed between the lower harmonics in the harmonic series.  
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Figure 4.2.1: Score for Part One. In its entirety, Part One consists of 27 progressions. 

Progressions 1–18 are shown in this figure. In each progression, the semitone of interest has 

been circled. The semitones of interest move between the three upper voices: they occur in 

the soprano in progressions 1–9, in the alto in 10–18, and in the tenor in 19–27.  
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Figure 4.2.2: Score for Part One. In its entirety, Part One consists of 27 progressions. 

Progressions 19–27 are shown in this figure. In each progression, the semitone of interest 

has been circled. Overall, the semitones of interest move between the three upper voices: 

they occur in the soprano in progressions 1–9, in the alto in 10–18, and in the tenor in 19–

27. 
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Figure 4.2.3: Score for Part Two, which consists of 18 progressions. In each progression, the 

whole tone of interest has been marked with boxes. The whole tones of interest move 

between the three upper voices: they occur in the soprano in progressions 1–6, in the alto in 

progressions 7–12, and the tenor in progressions 13–18. 
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Figure 4.2.4: Score for Part Three, a chord progression by Benedetti. The seed progression, 

which is repeated four times, is shown in the box.  
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Figure 4.2.5: Score for Part Four, Praetorius‘ ―Es ist ein Ros‘ entsprungen.‖ The ascending 

semitones are marked with circles with solid lines, and descending semitones are marked 

with circles with dashed lines. 
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Figure 4.2.6: Score for Part Four, Praetorius‘ ―Es ist ein Ros‘ entsprungen.‖ The ascending 

whole tones are marked with boxes with solid lines, and descending whole tones are marked 

with boxes with dotted lines. 
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Figure 4.2.7: Score for Part Four, Praetorius‘ ―Es ist ein Ros‘ entsprungen.‖ The vertical 

intervals studied are marked with boxes. Those in a cadential context are marked with 

dashed lines, and those in a non-cadential context are marked with solid lines. 
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4.2.1 Method 

4.2.1.1 Participants 

Three SATB ensembles participated in this experiment. The first ensemble (pilot) 

participated in the pilot study without a conductor, with only a subset of the experimental 

material that was used in the full experiment. This ensemble was semi-professional and was 

brought together for the experiment. Three of the four singers had previously sung together 

as section leads at Christ Church Cathedral in Montreal. The ensemble had an average age of 

26 years (SD = 3.6), with an average of 6.5 years of private voice lessons (SD = 4.5), an 

average of 6.5 years of regular practice (SD = 2.5), and an average of 0.75 hours of daily 

practice (SD = 0.84).  

The second ensemble (―Lab ensemble‖), which performed in the main experiment, regularly 

sings together as a professional ensemble (―VivaVoce Montréal‖) in the Montreal area with 

the same conductor, Peter Schubert, who also conducted them during the experiment. The 

third ensemble (―Church ensemble‖) was the same as the second ensemble, except for the 

tenor. The original tenor was not available due to scheduling conflicts. These two ensembles 

had an average age of 42 years (SD = 9), an average of 7.75 years of private voice lessons 

(SD = 0.5), an average of 24 years of regular practice (SD = 10), and an average of 1.75 

hours of daily practice (SD = 1).  

4.2.1.2 Apparatus 

Both the pilot and professional Lab ensembles were recorded in the same room, a 4.85m x 

4.50m x 3.30m lab at the Center for Interdisciplinary Research in Music Media and 

Technology (CIRMMT). The room had low noise, reflections, and reverberation time (ITU-

standard). The singers were miked with cardioid headband mics (DPA 4088-F). The 

microphones were run through an RME Micstasy 8-channel microphone preamplifier and an 

RME Madi Bridge into a Mac Pro computer for recording. The professional Church 

ensemble was recorded on the altar of St. Mathias‘ Church, a church in Montreal dating 

from 1912 with wooden floors, limestone walls, and seating for 350 people. As with the lab 

environment, the singers were miked with cardioid headband mics (DPA 4088-F), although 

a portable Zaxcom Deva 16 digital recorder was used for the rest of the recording setup.  
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4.2.1.3 Procedure  

As with the experiment in Section 4.1, the intonation-related data were extracted using the 

methods described in Chapter 3 and were checked manually by two people to correct any 

errors made by the alignment algorithm. Overall, there were far fewer errors in the 

alignments for this data than the recordings from ―Ave Maria‖ due to the lack of 

ornamentation in the music used in this experiment.  

Interval size estimates for the melodic intervals were calculated by taking a weighted mean 

across the frame-wise F0 estimates for each note, as used in Section 4.1 and described in 

Section 3.2. The interval size for vertical intervals was calculated by measuring the interval 

size between each note‘s frame-wise F0 estimates and then taking the robust mean across this 

series of vertical calculations. This method for calculating vertical interval size, as described 

in Section 3.2, was chosen since it best summarizes the moment-to-moment tuning between 

the two singers. As with the solo singer experiment, the data were analyzed by examining the 

mean and standard deviation across groupings of intervallic conditions, through visualisation 

of data in box and whisker plots, and with linear regression analysis to evalulate significance 

in observable trends.  

Linear regression analysis was used to explore the influence of musical context on melodic 

intervals by evaluating intervallic direction (up or down), intervallic conditions (each type of 

semitone and whole tone defined below), and singer identity. For Parts One and Two, the 

intervallic conditions shown in Table 4.2.1 and Table 4.2.4 were evaluated. Due to the 

repetitive nature and lack of directed harmonic context in Part Three, only intervallic 

direction and singer identity were evaluated. For Part Four, the same semitone intervallic 

conditions as ―Ave Maria‖ linear regression were used. However, due to homophonic 

texture of the music in Part Four, there were not enough instances of the whole tone 

intervallic conditions from ―Ave Maria‖ (see Table 4.1.1 in Section 4.1.1.3) to analyze, so for 

whole tones, only direction and singer identity were evaluated.  

The main question underlying the analysis of the vertical interval data was whether the 

singers tend more towards the ―pure‖ tunings found in Just Intonation (i.e., those found in 

the harmonic series). This hypothesis was tested by dividing intervals into two groups: those 

intervals where the notes have at least 6 harmonics in common amongst their first 32 

harmonics and those intervals where the notes have less than 6 harmonics in common. 
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Intervals that fall into the first group are the Perfect Octave, the Perfect Fifth, and the Major 

Third. Intervals in the second group that occur in this piece are the Minor Third, the 

Tritone, the Minor Sixth, the Major Sixth, and the Augmented Sixth. This division allows for 

investigation of the historical debate, detailed in Barbour (1953), about whether vocal 

ensembles tend towards ―pure‖ Perfect Octaves, Perfect Fifths, and Major Thirds. 

T-tests, with a threshold of 0.05, were run to determine whether singers in the experiment 

tended to sing the vertical intervals with a greater coincidence of partials (the first group) 

closer to the tuning found in the harmonic series (Just Intonation) than those with fewer 

partials in common (the second group). Similarly, t-tests were run with the intervals in Part 

Four divided up into those that occur in cadential progressions and those that occur in non-

cadential progressions. T-tests were also used to evaluate whether there was any influence of 

syllable or vowel on intonation in Parts Three and Four amongst the renditions sung to 

different syllables.  

4.2.2 Results 

4.2.2.1 Part One: Semitone Exercises 

The twenty-seven progressions in Part One were written by Jonathan Wild and were 

designed to present the singer with melodic semitones between the same two pitches (G-G 

and G-A in the soprano and tenor, and D-D and D-E in the alto) in nine different 

harmonic contexts. In each context, the harmonic material presented in the other voices was 

manipulated so that five chromatic semitones occurred as different chord factors in five 

pairs of different chord types, and four diatonic semitones occur between different scale 

degrees— 3̂2̂ - , 4̂3̂ - , 6̂5̂ - , and 8̂7̂ - —and also over different chord types, as detailed in 

Table 4.2.1. Each of the 9 contexts was repeated for each of the top 3 voices (soprano, alto, 

and tenor) and, each ensemble sang the entire exercise set 3 times, resulting in 9 instances of 

each condition per ensemble (3 instances per rendition * 3 renditions). The mean and 

standard deviations for each semitone condition are shown in Table 4.2.2. Vertical intervals 

were calculated between the bass and the notes in the melodic semitone intervals being 

studied, resulting in 18 intervals calculated between each voice and the bass in each 

rendition. For each ensemble, across all renditions, there were: 27 instances of Minor Thirds, 

18 instances of Major Thirds, 45 instances of Perfect Fifths, 36 instances of Major Sixths, 18 

instances of Minor Sevenths, and 18 instances of Perfect Octaves. The means and standard 
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deviations for each type of vertical interval across all of the singers in each ensemble are 

shown in Table 4.2.3.  

 Chromatic semitones  8̂7̂ -  3̂2̂ -  4̂3̂ -  6̂5̂ -  
Soprano 1–5 6 7 8 9 

Alto 10–14 15 16 17 18 

Tenor 19–23 24 25 26 27 

Table 4.2.1: Organization of Part One. The columns indicate the conditions, the scale 

degrees between which the semitone occurs, and the rows indicate in which progression the 

conditions occur. These numbers correspond to the progression label in Figure 4.2.1 and 

Figure 4.2.2. 

 Lab Ensemble Church Ensemble 

Semitone conditions 
(Number of instances) 

Mean SD Mean SD 

Chromatic semitone 1 (9) 86.9 12.2 111.9 23.3 

Chromatic semitone 2 (9) 88.5 9.8 93.0 8.4 

Chromatic semitone 3 (9) 93.0 10.8 95.8 11.7 

Chromatic semitone 4 (9) 86.2 12.1 97.4 12.4 

Chromatic semitone 5 (9) 81.8 15.8 101.1 8.6 

8̂7̂ -  semitone (9) 95.7 10.4 107.2 17.1 

3̂2̂ -  semitone (9) 102.6 13.8 98.6 18.5 

4̂3̂ -  semitone (9) 96.2 8.6 101.3 8.0 

6̂5̂ -  semitone (9) 87.9 7.5 102.5 15.4 

Table 4.2.2: Mean and standard deviation of the melodic semitone sizes for both the Lab and 

Church ensembles in Part One. 

 Lab Ensemble Church Ensemble 

Vertical Intervals [JI size] 
(Number of instances) 

Mean SD Mean SD 

Minor Third [316 cents] (27) 307.9 14.6 303.0 14.3 

Major Third [386 cents] (18) 400.6 15.0 408.3 13.2 

Perfect Fifth [702 cents] (45) 713.8 9.8 705.5 13.4 

Major Sixth [884 cents] (36) 900.0 14.2 894.4 13.2 

Augmented Sixths [977 cents] (18) 989.6 14.6 995.2 24.5 

Perfect Octave [1200 cents] (18) 1195.4 15.8 1203.1 13.0 

Table 4.2.3: Mean and standard deviation of the sizes of the vertical intervals in Part One 

between the first and second notes in the semitone intervals and the bass note for both the 

Lab and Church ensembles. 

 

With the exception of the 3̂2̂ -  semitone, the means for the Lab ensemble were smaller than 

the Church ensemble. Overall, the means of the interval sizes in each category for the Lab 

ensemble‘s semitones were closer to the Pythagorean semitone (90 cents), whereas the 
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Church ensemble‘s were closer to equal temperament (100 cents), with two conditions 

(Chromatic 1 and 8̂7̂ - ) closer to the Just Intonation semitone (112 cents). The groups‘ mean 

interval sizes were more consistent with each other for the vertical intervals than for the 

melodic intervals. Some of the vertical intervals were closer to 5-limit Just Intonation than 

others; however, in light of the large standard deviations, there was no clear trend even in 

these intervals to Just Intonation. The standard deviations varied quite substantially between 

groups and conditions for both melodic and vertical intervals. As with Section 4.1, further 

analysis is required to see if the musical context has influenced interval size in these 

performances.  

As discussed in Section 4.1, the top and bottom of each box in the box and whisker plots 

represents the 25th and 75th percentiles, with the solid horizontal line running through the 

box representing the 50th percentile, or the median. The short solid horizontal lines at the 

end of the ‗whiskers‘ represent the most extreme, non-outlier, data points, and the plus signs 

indicate the outliers. The box and whisker plot in Figure 4.2.8 shows the sizes of the 

semitones in each condition in both ensembles, and Figure 4.2.9 shows semitone interval 

size data organized by singer. The interval size data for each type of vertical interval is shown 

for each ensemble in Figure 4.2.10.  

 

  

Figure 4.2.8: Box and whisker plots for the semitones interval sizes in Part One across each 

condition, separated by ensemble.  
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Figure 4.2.9: Box and whisker plots for the semitone interval sizes in Part One for each 

singer in each ensemble. 

 

  

Figure 4.2.10: Box and whisker plot of interval sizes for the vertical intervals in Part One 

between the bass and the voice singing the melodic semitone interval being evaluated. The 

vertical interval sizes were calculated for both notes in the melodic semitone interval. The 

dotted lines represent the position of the idealized 5-limit Just Intonation tunings for each 

interval, and the solid line represents equal temperament (EQT). 

 

As visualized in the box and whisker plots for the Lab ensemble‘s different semitone 

conditions (Figure 4.2.8), there were, with the exception of the ˆ 2 ˆ 3  semitone, smaller 25th-

75th ranges for diatonic semitones than the chromatic semitones. A t-test, with a threshold 
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of 0.05, showed that there was a significant difference between the overall means for the 

chromatic (87.3 cents) and diatonic (95.6 cents) semitones. In contrast, the Church ensemble 

had much larger 25th–75th percentile ranges for the diatonic intervals and slightly smaller 

ranges for the chromatic semitone. There was, however, much more variability within both 

groups of semitone categories, which meant that the difference between the means of the 

groups was not statistically significant. However, no such trends were observed for the 

Church ensemble. Overall, the mean of the Lab ensemble‘s semitones (90 cents) was 

significantly smaller than the mean of the Church ensemble‘s semitones (101 cents), with a 

threshold of 0.05. 

A linear regression analysis was run on the semitone data to see if there were any significant 

effects on semitone size for the different categories or the singers within each ensemble. For 

this analysis, the ˆ 7 ˆ 8  semitone was used as a baseline for comparing interval categories, and 

the soprano was used as a baseline for comparing the singers. For the Lab ensemble (R2 = 

0.28, p < 0.01), there was only a significant difference between the ˆ 7 ˆ 8  semitones and the 

Chromatic 4 semitones, which were on average 10 cents smaller than the ˆ 7 ˆ 8  semitones 

(95% confidence interval=[3,16]). For the Church ensemble (R2 = 0.25, p < 0.02), there was 

a significant effect for the Chromatic 2 semitones, which were on average 16 cents smaller 

than the ˆ 7 ˆ 8  semitones (95% confidence interval=[3,29]). There were also significant 

effects for singer identity: the tenor‘s semitones were on average 12 cents smaller than the 

soprano‘s (95% confidence interval=[4,19]), and the alto‘s were on average 8 cents smaller 

(95% confidence interval=[1,16]). 

Figure 4.2.9 shows the same data as Figure 4.2.8, divided up by singer instead of semitone 

category. Only the soprano (same singer) was consistent between ensembles (mean interval 

size of 93.6 cents in the Lab ensemble versus 96.0 in the Church ensemble), while both the 

alto (same singer) and the tenor (different singer) had significantly larger interval sizes in the 

Church ensemble. The alto‘s average semitone size increased from 91.6 to 99 cents, whereas 

the two tenors‘ average semitone sizes were 88 cents and 105 cents between the Lab and 

Church ensembles. 

The plots in Figure 4.2.10 show the vertical interval data for each ensemble. In this exercise, 

the purely tuned Perfect Octaves (2:1), Perfect Fifths (3:2), and Major Thirds (5:4) were put 

into the first group of vertical intervals and the Minor Thirds (6:5), Major Sixths (5:3), and 
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Augmented Sixth (255:128) were put in the other. The box and whisker plots show that in 

general the vertical intervals did not converge around the interval size predicted by Just 

Intonation for either category listed above, although there was, as with the melodic intervals, 

a high degree of variability in interval size. In order to evaluate this question, a two-tailed t-

test was run on the deviations from Just Intonation for each interval in each group. For the 

Lab ensemble, the absolute distance of the intervals in the first group from Just Intonation 

tuning was on average 19.7 cents, whereas the intervals in the other group were on average 

12.3 cents away. The difference between the groups was not statistically significant. For the 

Church ensemble, the difference between the groups was significant: the first group was on 

average 17.4 cents away from Just Intonation tuning, and the second group was on average 

38.1 cents away.  

4.2.2.2 Part Two: Whole tone Exercises 

The eighteen progressions in Part Two were written by Peter Schubert and were designed to 

present the singers with melodic whole tones between the same two pitches (A-B in the 

soprano and tenor, and D-E in the alto) in six different contexts. In each context, the 

harmonic material presented in the other voices was manipulated so that the melodic whole 

tones were between different scale degrees: 2̂1̂ - , 3̂2̂ - , 4̂3̂ - , 5̂4̂ - , 6̂5̂ - , and 7̂6̂ - , as 

detailed in Table 4.2.4. Each of the six contexts was repeated for each of the top three voices 

(soprano, alto, and tenor), and each ensemble sang the entire exercise set three times, 

resulting in 9 instances of each condition per ensemble (3 instances per rendition x 3 

renditions). The mean and standard deviations for each condition are shown in Table 4.2.5. 

Vertical intervals were calculated between the bass and the notes in the melodic whole tone 

intervals being studied. There were 12 intervals calculated between each voice and the bass 

in each rendition. Across all renditions there were, for each ensemble: 30 instances of Minor 

Thirds, 27 instances of Major Thirds, 9 instances of Tritones, 15 instances of Perfect Fifths, 

9 instances of Minor Sixths, and 18 instances of Perfect Octaves. The means and standard 

deviations for each type of vertical interval across all of the singers in each ensemble are 

shown in Table 4.2.6. 
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 3̂2̂ -  6̂5̂ -  5̂4̂ -  4̂3̂ -  2̂1̂-  7̂6̂ -  
Soprano 1 2 3 4 5 6 

Alto 7 8 9 10 11 12 

Tenor 13 14 15 16 17 18 

Table 4.2.4: Organization of Part Two. The columns indicate the conditions, the scale 

degrees between which the whole tone occurs, and the row indicates the progression in 

which the conditions occur. These numbers correspond to the progression label in Figure 

4.2.3. 

 Lab Ensemble Church Ensemble 

Whole tone conditions 
(Number of instances) 

Mean SD Mean SD 

3̂2̂ -  whole tone (9) 199.6 10.9 200.6 28.7 

6̂5̂ -  whole tone (9) 193.0 8.8 193.9 6.5 

5̂4̂ -  whole tone (9) 211.7 12.8 203.5 13.9 

4̂3̂ -  whole tone (9) 204.6 12.9 202.4 10.4 

2̂1̂-  whole tone (9) 200.1 11.7 198.8 21.2 

7̂6̂ -  whole tone (9) 206.8 7.1 205.6 11.4 

Table 4.2.5: Mean and standard deviation of the melodic whole tone sizes in Part Two for 

both the Lab and Church ensembles. 

 Lab Ensemble Church Ensemble 

Vertical Intervals [JI size] 
(Number of instances) 

Mean SD Mean SD 

Minor Third [316 cents] (30) 302.0 17.1 294.7 25.0 

Major Third [386 cents] (27) 403.1 19.4 394.1 18.2 

Tritone [590 cents] (9) 604.1 35.3 603.8 13.4 

Perfect Fifth [702 cents] (15) 715.4 11.7 708.3 10.5 

Minor Sixth [814 cents] (9) 797.6 11.7 809.2 14.1 

Perfect Octave [1200 cents] (21) 1210.2 14.1 1210.9 12.7 

Table 4.2.6: Mean and standard deviation of the sizes of the vertical intervals in Part Two 

between the first and second notes in the whole tone intervals and the bass note for both the 

Lab and Church ensembles. 

Overall, the means of the melodic interval sizes were comparable between both groups, as 

were the standard deviations with the exception of the 3̂2̂ -  and 2̂1̂ -  whole tones. Overall, 

the mean values were much closer to the equal tempered (200 cents) and the 9:8 

Pythagorean/Major Just-Intonation (204) whole tones than the 10:9 Minor Just Intonation 

whole tone (182 cents). There was more variation in the groups‘ mean interval sizes for the 

vertical intervals than for the melodic intervals, although the standard deviations were similar 

except for the Tritone in the Lab ensemble and the Minor Third in the Church ensemble.  
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The same analysis performed in 4.2.2.1 was repeated to see if the musical context has 

influenced interval sizes in these performances. The box and whisker plots in Figure 4.2.11 

correspond to the semitone plots in Figure 4.2.8 and shows the size of the whole tones for 

each condition in both ensembles. Likewise, Figure 4.2.12 corresponds to Figure 4.2.9 and 

shows whole interval size data organized by singer. Figure 4.2.13 corresponds to Figure 

4.2.10, and shows the data for vertical interval size.  

 

  

Figure 4.2.11: Box and whisker plots for the whole tone interval sizes in Part Two across 

each condition, separated by ensemble.  

  

Figure 4.2.12: Box and whisker plots for the whole tone interval sizes in Part Two for each 

singer in each ensemble. 
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Figure 4.2.13: Box and whisker plot of interval sizes for the vertical intervals between the 

bass and the voice singing the melodic whole tone interval being evaluated in Part Two. The 

vertical interval sizes were calculated for both notes in the whole tone interval. The dashed 

lines represent the position of the idealized 5-limit Just Intonation tunings for each interval. 

 

In the box and whisker plots for the different whole tone conditions (Figure 4.2.11), the 

relative size of 25th–75th position between the two ensembles followed similar trends except 

for the ˆ 2 ˆ 3  whole tones, which had a large amount of variability. In both groups, the 

median position was lower in the ˆ 2 ˆ 3  and ˆ 5 ˆ 6  whole tones than in the other ones. In the 

Lab ensemble, the remaining medians showed some variability, whereas in the Church 

ensemble, the remaining medians were closer. Overall, there was no significant difference 

between the means of all of the whole tones in the lab (202.6 cents) and the church (200.8 

cents) ensembles, using a t-test with a threshold of 0.05. 

The linear regression analysis was run on the whole tone data using the ˆ 6 ˆ 7  whole tone and 

tenors as a baseline (R2 = 0.42, p < 0.001 for the Lab ensemble and R2 = 0.32, p < 0.01 for 

the Church ensemble). Amongst the whole tone conditions, there was only a significant 

effect for ˆ 5 ˆ 6  in the Lab ensemble, which was on average 14.4 cents smaller than the 

baseline (95% confidence interval=[5,24]). Both the tenor and the alto were significantly 

different than the soprano in the Lab ensemble, with the tenor being 12.3 cents smaller (95% 

confidence interval=[6,19]) and the alto being 9.2 cents smaller than the soprano (95% 

confidence interval=[3,16]). For the Church ensemble, there was only a significant effect for 
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the alto, which was on average 20.3 cents larger than the soprano (95% confidence 

interval=[10,30]). 

Figure 4.2.12 shows the same data as Figure 4.2.11, divided up by singer instead of semitone 

category. As with the Part One, the soprano (same singer) was consistent between ensembles 

(mean interval size of 198.1 cents in the Lab ensemble versus 197.6 in the Church 

ensemble), and the alto (same singer) had significantly larger interval sizes in the Church 

ensemble. The alto‘s average semitone size increased from 200.6 to 212.6 cents. The 

difference between the two different tenors in each ensemble was opposite of Part One, 

with the second tenor having a smaller interval size for whole tones than the first one (204.0 

cents versus 196.3 cents); however, this difference was not statistically significant with a 

threshold of 0.05. 

The plots in Figure 4.2.13 show the vertical interval data for each ensemble. The vertical 

intervals in this set of exercises were slightly different than those in Part One: Tritones and 

Minor Sixths occurred in place of Major Sixths and Minor Sevenths in the second group of 

intervals, where the upper note had less than 6 harmonics in common with the first 32 

harmonics of the lower note in the interval. As in Part One, the vertical intervals did not 

converge around the interval size predicted by Just Intonation. For the Lab ensemble, the 

first group, consisting of the Perfect Octave, the Perfect Fifth, and the Major Third, had an 

absolute average distance from Just Intonation tuning of 19.7 cents, and the second group 

had an absolute distance that was 17.0 cents. This difference was not statistically significant, 

with a threshold of 0.05; however, the difference between the two groups for the Church 

ensemble was. For the Church ensemble, the first group‘s average distance from Just 

Intonation was 17.4 cents, and the second group was 29.4 cents away. 

4.2.2.3 Part Three: Benedetti Chord Progression 

The experimental material in Part Three was a three-part chord progression written by 

Giambattista Bendedetti (1530–1590) that was designed to show that singers do not sing in 

Just Intonation since strict adherence to Just Intonation would result in a significant pitch 

drift that is not observable in performances of the progression (Benedetti 1585; Palisca 

1994). The progression, as shown in Figure 4.2.4, is built from a seed two-measure 

progression that is repeated four times. In the two-measure seed, a note in one of the voices 

is either sustained or repeated between each chord, as shown in Table 4.2.7.  
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D E E D 
A (A) B (B) 
D A G (G) 

Table 4.2.7: Notes in the two-measure seed progression, which is repeated four times to 

make up the musical material used in Part Three. The bolded notes are either sustained or 

repeated from the previous sonority. 

 

If the singers were to tune in Just Intonation to the sustained note, rather than the bass note, 

the ensemble would drift up a syntonic comma (21.5 cents) by the end of each seed, 

resulting in a total upwards drift of 86 cents by the end of the four repetitions. In contrast, if 

the singers were to tune to the bass in each vertical sonority, with D, A, or G in the bass, 

there should be no drift. The calculations for both tuning scenarios are shown in Figure 

4.2.14.  

 

 

Figure 4.2.14: Theoretical tuning for Benedetti progression used in Part Three. The numbers 

in the tables at the top and bottom of the figure indicate the difference in cents between the 

projected tuning and equal temperament. 
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For this part of the experiment, four different ensembles were recorded. As detailed in 

Figure 4.2.15, Ensemble 1 consisted of singers from the pilot experiment, Ensemble 2 

consisted of singers from the professional Lab ensemble, and Ensembles 3 and 4 consisted 

of the singers from the professional Church ensemble. Ensemble 1 sung without a 

conductor, whereas Ensembles 2–4 were conducted by Peter Schubert. Ensemble 1 

performed the exercise three times, Ensembles 2 and 3 performed the exercise four times, 

and Ensemble 4 performed the exercise five times. 

 

Ensemble 1 – Semi-professional singers* (ATB, pilot) 
Ensemble 2 – Professional singers** (ATB, lab) 
Ensemble 3 – Professional singers** (SAT, church) 
Ensemble 4 – Professional singers** (ATB, church) 

*no conductor 
**conducted by Peter Schubert 

Figure 4.2.15: Ensembles used in Part Three. 

 

In order to assess whether the ensembles were drifting in the way predicted by Benedetti, the 

perceived pitch estimates for the D in bass at the start of each seed progression were 

obtained and plotted for each of the ensembles‘ renditions in Figure 4.2.16. Ensemble 1 

sung all of their renditions on the syllable ―du,‖ Ensemble 2 sung 2 rendition on the syllable 

―mi‖ and 2 on the syllable ―ma,‖ Ensemble 3 sung 2 renditions on the syllable ―mi‖ and 2 on 

the syllable ―ma,‖ and Ensemble 4 sung 3 renditions on the syllable ―mi‖ and 2 on the 

syllable ―ma.‖ 
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Figure 4.2.16: Summary of the amount of drift in each ensemble‘s renditions of the 

Benedetti‘s chord progression used in Part Three. The lines in the each plot link the 

perceived pitch estimates for the notes D1–D5 in each rendition. 

 

The plots in Figure 4.2.16 show that none of the ensembles drifted as much as predicted by 

Benedetti. This is not surprising as such a rapid drift, 88 cents over eight measures, is highly 

unlikely since it implies that the singers were not retaining their starting pitch as a reference 

only a few tens of seconds after it was sung. Ensemble 1 was the most consistent with itself 

across performances, exhibiting only a small amount of drift. Ensembles 2 and 3 both 

tended to drift upwards with Ensemble 3 showing a greater amount of variability in the 

amount of drift. Ensemble 4 had little drift overall but showed a large amount of variation 

within each performance. 

Exercise Three also provided the opportunity to examine ascending and descending whole 

tone melodic intervals. In each rendition, there were 4 ascending and 4 descending whole 

tones in the upper voice, 4 ascending and 4 descending whole tones in the middle voice, and 

4 descending whole tones in the bottom voice for a total of 8 ascending whole tones and 12 

descending whole tone intervals in each rendition. Due to the repetitive nature of the 

musical material in this exercise, there were no contextual whole tone conditions to consider, 
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so the mean and standard deviation values for only the conditions of ascending and 

descending are shown in Table 4.2.8. Vertical intervals were calculated between all of the 

voices: lowest voice to middle voice, lowest voice to upper voice, and middle voice to upper 

voice. Overall, there were 51 vertical intervals in each rendition: 4 Minor Thirds, 8 Major 

Thirds, 9 Perfect Fourths, 17 Perfect Fifths, 4 Major Sixths, and 9 Perfect Octaves. The 

means and standard deviations for each type of vertical interval across all of the singers in 

each ensemble are shown in Table 4.2.9. 

The means of the whole tone interval sizes in Table 4.2.8 were generally smaller than either 

the equal tempered (200 cent) or the Pythagorean/Major Just Intonation (204 cents) 

semitones. The most notable variance occurred in the middle voice, where the mean 

intervals sizes for the ascending whole tones was 185 cents in Ensemble 1 and 207 cents in 

Ensemble 2 and for the descending whole tones was 183 cents in Ensemble 1 and 210 cents 

in Ensemble 2. The standard deviations were comparable across the ensembles and voices.  

For the vertical interval sizes in Table 4.2.9, there was a wide range in the mean values for 

both the vertical Minor and Major Thirds, ranging from 300–322 cents for the Minor Third 

and 375–413 cents for the Major Third. The Minor Third ranges encompassed the equal 

tempered (300 cents) and Just Intonation (316 cents) tunings, whereas the Major Third range 

encompassed the Just Intonation (386 cents), the equal tempered (400 cents), and the 

Pythagorean (408 cents) tunings. When the standard deviations were taken into account, 

Ensemble 2 also encompassed the Pythagorean tuning (294 cent) for the Minor Thirds. The 

range of the means for the Major Sixths encompassed only the equal tempered tuning (900 

cents) since the means were all larger than the Just Intonation tuning (884 cents) and 

marginally smaller than the Pythagorean one (905 cents). The tunings for the Perfect Fourth 

(498 cents), Perfect Fifth (702 cents), and Perfect Octave (1200 cents) were common to both 

the Pythagorean and Just Intonation systems and were close to the values for equal 

temperament (500, 700, and 1200 cents, respectively); the ranges for these intervals 

encompassed all of these tunings. The box and whisker plots in Figure 4.2.17 show the 

ascending and descending whole tones interval data for each ensemble across the singers. 

The plots in Figure 4.2.18 show the data for the vertical intervals for each ensemble.  
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 Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 

Whole tone conditions 
(Number of instances) 

Mean SD Mean SD Mean SD Mean SD 

Top voice, ascending 
(12/16/16/20) 

199.3 5.5 191.7 5.9 199.0 8.8 189.4 13.4 

Top voice, descending 
(12/16/16/20) 

195.0 4.3 190.8 16.2 198.7 10.3 194.0 7.5 

Middle voice, ascending  
(12/16/16/20) 

184.6 5.8 207 11.5 199.4 7.6 196.4 10.4 

Middle voice, descending 
(12/16/16/20) 

182.9 9.9 210.0 12.6 196.0 7.6 196.0 12.5 

Bottom voice, descending 
(12/16/16/20) 

191.0 6.8 189.1 5.5 198.2 10.9 195.1 12.5 

Table 4.2.8: Mean and standard deviation of the ascending and descending melodic whole 

tone sizes in Part Three for all ensembles, broken down by voice. 

 

 Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 

Vertical Intervals  
[JI values] (Number of instances) 

Mean SD Mean SD Mean SD Mean SD 

Minor Thirds [316 cents] (12/16/16/20) 322.4 7.4 299.5 12.1 307.0 7.6 300.8 14.0 

Major Thirds [386 cents] (24/32/32/40) 375.6 9.1 413.3 11.3 397.4 10.6 405.8 14.9 

Perfect Fourths [498 cents] 
(27/36/36/45) 

508.7 10.1 497.0 17.2 507.2 11.9 492.9 13.4 
 

Perfect Fifths [702 cents] (51/68/68/85) 700.7 6.2 704.9 13.9 704.0 10.7 701.6 12.0 

Major Sixths [884 cents] (12/16/16/20) 893.0 6.4 903.1 14.5 904.3 10.8 896.1 10.4 

Perfect Octaves [1200 cents] (27/36/36/45) 1201.3 7.3 1205.9 11.6 1208.5 9.0 1202.3 12.0 

Table 4.2.9: Mean and standard deviation of the sizes of the vertical intervals in Part Three 

between the three voices across all renditions by each ensemble. 

 

 

Figure 4.2.17: Box and whisker plots for the whole tones interval sizes in Part Three across 

all the singers for each ensemble. 
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In the box and whisker plots in Figure 4.2.17, there are observable similarities between 

Ensembles 2 and 3 in terms of the relative positioning of the medians and the 5th, 25th, 75th, 

and 95th percentiles of the descending and ascending whole tones. Overall, the medians were 

slightly higher for the ascending intervals, and the percentile ranges were larger for the 

descending intervals. In contrast, Ensemble 1 exhibited the same trend for medians, but the 

percentile ranges were much smaller for the descending whole tones than for Ensembles 2 

and 3. Ensemble 4 was anomalous in that the ascending whole tones‘ medians were lower, 

and the percentiles ranges were comparable between the ascending and descending 

semitones.  

A linear regression analysis was run on the melodic interval data with intervallic direction 

and singer identity for conditions. For Ensemble 1 (R2 = 0.48, p < 0.0001), there was no 

effect for direction or the upper voice; the only significant effect was that the middle voice 

was on average 13.4 cents smaller than the lower voice (95% confidence interval = 

[9.5,17.3]). Likewise, for Ensemble 2 (R2 = 0.40, p < 0.0001), there were no significant 

effects for direction or the upper voice, whereas the middle voice was on average 17.3 cents 

larger than the lower voice (95% confidence interval = [11.7, 22.9]). The regressions for 

Ensemble 3 (R2 = 0.01, p = 0.85) and Ensemble 4 (R2 = 0.04, p = 0.28) were not themselves 

significant.  
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Figure 4.2.18: Box and whisker plot of interval sizes for the vertical intervals in Part Three 

between all of the singers in each ensemble. The dotted lines represent the position of the 

idealized 5-limit Just Intonation tunings for each interval. 

 

Figure 4.2.18 shows a high degree variance between Ensemble 1 and the other ensembles for 

vertical interval size. Specifically, the median values for Ensemble 1 were much closer to Just 

Intonation tuning than the other ensembles. Ensemble 2 showed the largest ranges for the 

5th–95th percentiles, although there were fairly substantial deviations in all of the ensembles. 

There were not any observable trends in the interval size data to explain the drift trends for 

each ensemble, which remains an open research question that will be addressed in the future 

works section in Chapter 5.  
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As with Parts One and Two, the vertical intervals were divided into groups for the purpose 

of statistical analysis. As with the other ensembles, the first group of vertical intervals was 

made up of the Major Thirds, Perfect Fifths, and Perfect Octaves. The second group was 

made up of all other vertical intervals: Minor Thirds, Perfect Fourths, and Major Sixths. 

Three different t-tests were run on the vertical interval data: the first for all of the intervals, 

the second for the intervals between the lower voice and the middle and upper voices, and 

the third for the intervals between the two upper voices. The division of the intervals for the 

second and third t-test was done to explore if the singers were more likely to tune closer to 

Just Intonation when the interval occurred between an upper voice and the bass rather than 

between the upper voices, which could suggest that the singers were tuning to the bass. 

There were significant effects in Ensemble 1 for the first and second tests, in Ensemble 2 for 

the first test, and in Ensemble 3 for the first and third tests. There were no significant results 

for Ensemble 4. Detailed results for the t-test are available in Table 4.2.10. These results 

show that the effects were ensemble-dependant. In Ensembles 1–3, the group of intervals 

where the upper note had at least 6 harmonics in common with the first 32 harmonics of the 

interval‘s lower note were almost always (if not significantly) smaller than the group of 

intervals with fewer partials in common, although the amount of the difference varied both 

amongst ensembles and between the voices in which the intervals occurred. In Ensemble 4, 

in contrast, the distance from Just Intonation tunings were generally the same between the 

groups of intervals. 
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 All 
intervals 

Intervals between the 
middle and upper voices 

Intervals between the lower 
voice and the upper voices 

Ensemble 1 – Intervals with at 
least 6 harmonics in common  

6.3865 4.8362 6.625 

Ensemble 1 – Other intervals 10.194 10.493 9.2227 

Ensemble 2 – Intervals with at 
least 6 harmonics in common 

15.485 11.522 15.921 

Ensemble 2 – Other intervals 15.918 14.68 20.152 

Ensemble 3 – Intervals with at 
least 6 harmonics in common 

10.178 9.7295 10.117 

Ensemble 3 – Other intervals 12.559 8.9419 20.309 

Ensemble 4 – Intervals with at 
least 6 harmonics in common 

13.143 13.704 13.056 

Ensemble 4 – Other intervals 12.991 12.728 13.846 

Table 4.2.10: Results of the t-tests run on the deviations (in cents) from Just Intonation for 

the grouping of vertical intervals in Part Three into those that share a larger number of 

harmonics with the fundamental (P8, P5, M3) versus those that share a fewer number of 

harmonics. The bolded items indicate that the mean of the group of intervals was 

significantly larger than the group it was tested against. 

 

T-tests were also used to determine if there was a difference in the interval when Ensembles 

2, 3, and 4 sung on ―mi‖ versus ―ma‖ (see Figure 4.2.12). The t-tests, with a threshold of 

0.05, showed that the mean of the melodic intervals interval size in the renditions sung to 

―mi‖ in each ensemble were not significantly different than the mean of those sung to ―ma‖ 

for any of the ensembles. For the vertical interval sizes, there was no significant difference in 

the means for Ensemble 2 between the ―mi‖ and ―ma‖ renditions. For Ensemble 3, the ―mi‖ 

intervals‘ mean was 4 cents higher than the ―ma‖ interval‘s mean. This was reversed in 

Ensemble 4, where the ―ma‖ intervals‘ mean was 5 cents higher than the ―mi‖ intervals.  

 

 Melodic  
(“mi”) 

Melodic  
(“ma”) 

Vertical  
(“mi”) 

Vertical 
 (“ma”) 

Ensemble 2 1.7 -0.1 4.3 8.6 

Ensemble 3 2.3 -0.3 5.3 1.0 

Ensemble 4 -1.8 0.2 -0.02 4.8 

Table 4.2.11: Results of the t-tests run on absolute interval size normalized around zero of 

the melodic and vertical intervals from Part Three to evaluate if the syllable that the notes 

were sung to influence interval size. The bolded items indicate that the intervals sung to that 

syllable were significantly larger. 
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4.2.2.4 Part Four: Praetorius’ “Es ist ein Ros’ entsprungen” 

The experimental material in Part Four was the first verse of a setting of ―Es ist ein Ros‘ 

entsprungen‖ by Michael Praetorius (1571–1621), a four-part vocal piece with a 

predominantly homophonic texture. Three ensembles recorded the piece: Pilot, Lab, and 

Church. The Pilot ensemble performed all 3 of their renditions of the piece in English. The 

Lab ensemble performed 7 renditions, 4 in German and 3 to the syllable ―mi.‖ The Church 

ensemble performed 8 renditions of the piece, 4 in German and 4 to the syllable ―mi.‖  

Table 4.2.12 shows the means and standard deviations for all of the melodic semitones and 

whole tones in the piece. The first six rows in the table show the various semitone 

conditions considered in this experiment: E-F leading tones (2 instances per rendition), non-

leading tones E-F semitones (3 instances per rendition), F-E semitones (7 instances per 

rendition), chromatic semitones (1 instance per rendition), other ascending semitones (6 

instances per rendition), and other descending semitones (5 instances per rendition). The 

bottom two rows show the two whole tone conditions: ascending (18 instances per 

rendition) and descending (33 instances per rendition). Due to the lack of instances in this 

piece, the conditions of chord tone versus non-chord tone for the whole tone intervals 

starting and ending notes, which were used in analysing ―Ave Maria,‖ were not applicable for 

this piece. As with the other parts of the experiment, box and whisker plots were used to 

visualize the variance of the data in each intervallic condition, and regressions were used to 

evaluate the significance of differences between the conditions. As with ―Ave Maria,‖ the 

semitone regression tested for intervallic direction, leading tone function, whether the 

semitone occurred between E-F/F-E or another pair of notes, and singer identity. The 

additional condition of chromatic versus diatonic was also examined.  

Table 4.2.13 shows the means and standard deviations for the vertical intervals in the 21 

sonorities marked in Figure 4.2.7: Minor Thirds (16), Major Thirds (20), Perfect Fourths 

(12), Perfect Fifths (27), Minor Sixths (12), and Major Sevenths (13). Only sonorities with a 

half note in the bass were considered. This was based on the hypothesis that the singers‘ 

vertical tunings are more consistent for longer tones and less influenced by melodic interval 

tuning. Vertical intervals were calculated between all of the voices: Bass-Tenor, Bass-Alto, 

Bass-Soprano, Tenor-Alto, Tenor-Soprano, and Alto-Soprano. As with the Parts One-Three, 

the amount of deviation from Just Intonation was compared between two groups of 
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intervals. The first group, where there was a greater degree of coincidence between the 

harmonics, consisted of the Major Thirds, Perfect Fifths, and Perfect Octaves. The second 

group, with a lesser degree of coincidence between the harmonics, consisted of the Minor 

Thirds, Perfect Fourths, Minor Sixths, and Minor Sevenths. The influence of cadence on 

deviation from Just Intonation was also evaluated.  

 

 Pilot Lab Church 

Melodic Intervals Types (Number of instances) Mean SD Mean SD Mean SD 
Leading tone semitones (2/14/16) 107.0 9.7 105.9 7.4 100.2 12.5 

Non-leading tone E-F semitones (9/21/24) 105.2 19.8 105.3 15.3 107.5 20.1 

F-E semitones (21/49/56) 101.3 14.7 97.2 15.0 90.5 18.4 

Chromatic semitones (3/7/9) 112. 3 10.0 99.9 18.9 96.6 23.0 

Other semitones ascending (18/42/48) 99. 8 23.1 102.7 17.8 100.4 17.8 

Other semitones descending (15/35/40) 109.8 19.6 109.2 15. 8 100.9 18.2 

Whole tones ascending (54/126/144) 197.3 19.7 195.7 17.8 199.3 19.8 

Whole tones descending (99/231/297) 203.0 20.1 201.2 16.6 204.0 19.1 

Table 4.2.12: Mean and standard deviation of the interval sizes for all of semitones and 

whole tone sizes in Part Four for each ensemble. 

 

 Ensemble 1 Ensemble 2 Ensemble 3 

Vertical Intervals (JI values) 
(Number of instances) 

Mean SD Mean SD Mean SD 

Minor Thirds [316 cents] (48/112/128) 303.2 20.5 308.8 18.4 304.5 19.4 

Major Thirds [386 cents] (60/140/160) 401.4 16.0 387.3 19.3 397.8 19.6 

Perfect Fourths [498 cents] (36/84/96) 504.1 18.8 506.6 19.1 494.5 19.9 

Perfect Fifths [702 cents] (81/189/216) 697.3 14.8 696.4 17.8 704.6 18.3 

Minor Sixths [814 cents] (36/84/96) 802.2 16.2 807.1 19.2 799.6 16.5 

Major Sixths [884 cents] (39/91/104) 900.0 19.4 890.3 17.8 893.2 16.2 

Minor Sevenths [1018] (3/7/8) 1017.1 44.8 1011 30.7 999.7 23.4 

Perfect Octaves [1200 cents] (66/154/176) 1198 15.5 1195.9 17.4 1202.2 17.0 

Table 4.2.13: Mean and standard deviation of the sizes of the vertical intervals in Part Four 

between the four voices for all of the sonorities with a half note in the bass (as marked in 

Figure 4.2.7). 

 

Overall, the means of the semitone interval sizes in Table 4.2.12 varied both across 

conditions and amongst the ensembles. The whole tones‘ mean interval sizes had less 

variability, and for each ensemble, the mean size of the ascending whole tone was smaller 

than the descending one. The vertical interval data in Table 4.2.13 shows greater consistency 

amongst the ensembles for the Minor Third, Perfect Fourth, Perfect Fifth, Minor Sixth, 
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Major Sixth, and Perfect Octave intervals. The Pilot and Church ensembles had comparable 

means for the Major Third, which were all close to the equal tempered tuning (400 cents), 

whereas the Lab ensemble‘s mean for the Major Third was much closer to Just Intonation 

(386 cents). All three of the ensembles‘ standard deviations for the Major Thirds were 

comparable. There was also a wide range of means for the Minor Sevenths, with the Church 

ensemble‘s mean being closest to equal temperament (1000 cents), the Pilot ensemble‘s 

mean being closest to Just Intonation (1018 cents), and the Lab ensemble‘s mean falling 

somewhere in between. The box and whisker plots in Figure 4.2.19 and Figure 4.2.20 

visualise the melodic and vertical intonation data, respectively.  
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Figure 4.2.19: Box and whisker plots for the sizes of the melodic intervals in Part Four for 

each ensemble. The plots on the left show the data for the semitone conditions, while the 

plots on the right show the data for the whole tone conditions.  
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Figure 4.2.20: Box and whisker plots for the vertical intervals data in Part Four for each 

ensemble. The dotted lines represent the position of the idealized 5-limit Just Intonation 

tunings for each interval. 

 

The box and whisker plots in Figure 4.2.19 shows that there was a lot of variation in the 

melodic interval size, as observable in the wide ranges for both the 25th–75th and 5th–95th 

percentiles. The exception to this is the E-F leading tone, although its smaller percentile 

ranges were likely due to the smaller number of instances for this condition. It is interesting, 

however, to observe the contrast between the percentile ranges for the E-F leading tones 

and the chromatic semitones, which only had the number of instances of the leading tones. 

The much larger percentile ranges for the chromatic semitones suggest that directed 
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harmonic activity, as occurs with leading tones, may influence singers‘ tuning, and that in its 

absence, the singers are less consistent in interval size.  

All of the ensembles showed a similar pattern for the relative position of the medians of the 

E-F leading tone, non-leading tones E-F semitones, and the F-E semitones, with both 

categories of the E-F semitones being higher than the F-E semitones. The ascending versus 

descending whole tones exhibited similar relative median positions and percentile ranges 

across the ensembles. Overall, the vertical intervals in Figure 4.2.20 had comparable 5th–95th 

and 25th–75th intervals. The main exception to this was the wide percentile ranges for the 

Minor Sevenths in the Pilot and Lab ensembles. Also, with the exception of the Minor 

Seventh for the Pilot ensemble, the medians for both the Pilot and Church were closer to 

equal temperament than the Lab ensemble, whose medians tended slightly towards the 

values predicted by Just Intonation. It is also interesting to observe the large number of 

outliers for the Major Third in the Lab ensemble, which indicate that while the ensemble had 

a general trend towards the Just Intonation tuning (386 cents), there were occasions where 

the thirds were tuned much wider. 

A linear regression analysis of the semitone interval size data for the Pilot ensemble was not 

significant (p = 0.13). The analysis was significant for the Lab ensemble, although the R2 

value was small (R2 = 0.10, p < 0.01). The Lab Ensemble regression only showed a 

significant effect for the soprano, which was 13 cents larger than the bass (95% confidence 

interval = [5,21]). The regression on the Church ensemble explained more of the variance in 

the ensemble‘s data (R2 = 0.14, p < 0.0001) and showed significant effects for direction, with 

the descending semitones being on average 8 cents larger than the ascending ones (95% 

confidence interval = [3,13]), and singer identity. In relation to the soprano, the bass‘ 

semitones were on average 14 cents larger (95% confidence interval = [5,22]), the tenor‘s 

semitones were on average 3 cents smaller (95% confidence interval = [1,14]), and the alto‘s 

were on average 11 cents larger (95% confidence interval = [4,18]). None of the ensembles‘ 

regressions showed any effects for leading tone function (i.e., whether the semitone occurred 

between E-F/F-E or if the spelling was chromatic versus diatonic). 

The regression analysis for the whole tone data was also not significant for the Pilot 

ensemble (p = 0.24), and the R2 values for both the Lab and Church ensembles were even 

smaller than the corresponding semitone regressions. The regression analysis for the Lab 
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ensemble‘s data (R2 = 0.033, p < 0.03) showed a significant effect for intervallic direction, 

with the descending semitones being on average 4 cents larger than the ascending ones (95% 

confidence interval = [0.3,9]). The regression analysis of the Church ensemble‘s data (R2 = 

0.028, p < 0.03) showed significant effects for both interval direction and singer identity, 

with the descending whole tones being on average 5 cents smaller than the ascending ones 

(95% confidence interval = [1,9]) and the tenor‘s whole tones being on average 6 cents 

smaller than the soprano‘s (95% confidence interval = [1,11]). 

For the vertical interval data, t-tests, with the threshold set to 0.05, were run to evaluate two 

different conditions. The first was whether intervals that share a greater number of 

harmonics were tuned closer to the interval sizes predicted by 5-limit Just Intonation, and 

the second was whether the intervals were tuned close to Just Intonation at cadences than at 

other points in the piece. Table 4.2.14 shows the results of the t-tests for the first condition, 

and Table 4.2.15 shows the results for the second. 

 

 All 
intervals 

Intervals between the 
middle and upper voices 

Intervals between the lower 
voice and the upper voices 

Pilot – Intervals with at least 6 
harmonics in common 

12.776 13.127 12.675 

Pilot – Other intervals 18.197 17.203 24.075 

Lab – Intervals with at least 6 
harmonics in common 

16.768 18.450 16.208 

Lab – Other intervals 16.463 15.977 18.740 

Church – Intervals with at 
least 6 harmonics in common 

15.273 15.430 15.228 

Church – Other intervals 16.971 17.254 15.296 

Table 4.2.14: Results of the t-tests run on the deviations (in cents) from Just Intonation 

tunings for the grouping of vertical intervals in Part Four into the P8, P5, M3 versus the 

remaining intervals. The bolded items indicate that the mean of the group of intervals were 

significantly larger than the other group it was tested against. 

 

 Pilot Lab Church 

Cadence 14.356 14.108 14.261 

Other 17.027 16.631 17.254 

Table 4.2.15: Results of the t-tests run on the deviations (in cents) from Just Intonation in 

vertical intervals in Part Four that occurred in the cadential progression versus those that 

occurred in non-cadential progressions. 
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Only the Pilot ensemble showed a significant effect for the different intervals groups in the 

first set of t-tests. For this ensemble, the second group of intervals was significantly larger 

than the first group, which shared a larger number of harmonics with the fundamental. This 

was the case regardless of whether the vertical intervals occurred between the bass and an 

upper voice or within the upper voices. For the second set of t-tests, however, there were 

significant effects for all of the ensembles. In these tests, the ensembles‘ deviation from Just 

Intonation was shown to be significantly smaller for those intervals that occurred in a 

cadence than in other sonorities. 

As with Part Three, the influence of syllable was also evaluated with a set of t-tests, with a 

threshold of 0.05, and the interval data normalized around zero. Unlike Part Three, where 

the only variation between the syllabic condition was a single vowel (i.e., ―mi‖ versus ―ma‖) 

here the question being evaluated was whether there was a difference when the piece was 

sung with its original German lyrics as opposed to the syllable ―mi.‖ Since the Pilot ensemble 

sung all of their renditions in English, only the data from the Lab and Church ensembles 

were used in this evaluation. As detailed in Table 4.2.16, the impact was consistent when a 

significant difference could be observed. The mean of both the Lab ensemble‘s and Church 

ensemble‘s melodic intervals were significantly larger when sung to the German text rather 

than to ―mi.‖ Only the Lab ensemble‘s vertical intervals showed a significant effect for 

which text was sung, with the intervals sung in German being significantly larger.  

 

 Melodic 
(German) 

Melodic  
(“mi”) 

Vertical  
(German) 

Vertical 
(“mi”) 

Lab 3.180 0.128 0.4284 -4.385 

Church 1.971 -1.702 -0.205 1.089 

Table 4.2.16: Results of the t-tests run on the absolute interval size normalized around zero 

in Part Four and grouped into those takes sung in German and those sung to the syllable 

―mi‖ for the Lab and Church ensembles. The bolded items indicate the groups of intervals 

that were significantly larger. 
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4.2.3 Discussion 

4.2.3.1 Semitones 

Semitone melodic intervals occurred in Parts One and Four, although there were only 

ascending semitones in Part One but both ascending and descending semitones in Part Four. 

The means and standard errors of the ascending and, where applicable, descending 

semitones across each ensemble in Parts One and Four are shown in Table 4.2.17. With the 

exception of the Lab ensemble in Part One, the means of the ascending intervals were closer 

to equal temperament (100 cents) than either Pythagorean tuning (90 cents) or Just 

Intonation (112 cents). In contrast, the mean for the Lab ensemble‘s ascending semitones 

was much closer to the Pythagorean tuning. The means for the descending intervals for the 

Pilot and Church ensembles in Part Four were both significantly smaller than the ascending 

semitones, whereas the mean for Lab ensemble‘s descending semitones was comparable to 

the mean for its ascending semitones.  

 

 Ascending Semitone Descending Semitones 

 Mean Standard Error Mean Standard Error 

Part One – Lab 91.0 1.4 - - 

Part One – Church 100.8 1.7 - - 

Part Four – Pilot 99.1 2.3 94.1 2.2 

Part Four – Lab 104.1 1.8 104.5 1.4 

Part Four – Church 102.3 1.9 97.0 1.5 

Table 4.2.17: Summary of the means and standard errors for the ascending and descending 

semitones across each ensemble in Parts One and Four. 

 

Although Part One contained both chromatic and diatonic semitones, there was no 

significant effect in interval size between these two groups. Following from this, there was 

only a minimal effect for the different interval types within the groups, with only one 

significant effect emerging in the linear regression analysis of the Lab ensemble‘s and Church 

ensemble‘s data. In each case, one of the types of chromatic semitone‘ average size was 

significantly smaller than the ˆ 7 ˆ 8  semitones. In Part Four, there were fewer semitone 

conditions to consider (only leading tone versus non-leading tone and E-F/F-E semitones 

versus non E-F/F-E semitones) and none of them showed significant effects in the linear 

regression analysis. In both parts, however, there were significant effects for singer identity. 
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4.2.3.2 Whole tones 

Whole tone melodic intervals occurred in Parts Two, Three, and Four, with only ascending 

whole tones in Part Two and both ascending and descending intervals in Parts Three and 

Four. The means and standard errors of each ensemble‘s whole tones in each part are 

detailed in Table 4.2.18. Overall, the majority of the means for the ensembles‘ ascending and 

descending whole tones were closest to equal temperament (200 cents), with the descending 

semitones in the Lab and Church ensembles in Part Four sitting between the equal tempered 

value and the Pythagorean/Major Just Intonation whole tone tuning (204 cents). Ensemble 

One in Part Three had the smallest means: 191.9 cents for ascending intervals and 189.6 

cents for descending intervals, which were the only values that were closer to the Just 

Intonation Minor whole tone tuning (182 cents) than equal temperament.  

 

 Ascending Whole Tones Descending Whole Tones 

 Mean Standard Error Mean Standard Error 

Part Two – Lab 195.1 5.5 - - 

Part Two – Church 200.8 2.3 - - 

Part Three – Ensemble 1 191.9 1.9 189.6 1.5 

Part Three – Ensemble 2 199.6 2.1 196.6 2.2 

Part Three – Ensemble 3 199.2 1.5 197.7 1.4 

Part Three – Ensemble 4 192.9 2.0 195 1.4 

Part Four – Pilot 199.5 2.2 199.9 1.6 

Part Four – Lab 195.7 1.6 201.2 1.1 

Part Four – Church 198.6 1.6 202.1 1.1 

Table 4.2.18: Summary of the means and standard errors for the ascending and descending 

whole tones across each ensemble in Parts Two, Three, and Four. 

 

In the linear regression analysis, there were no significant effects for direction in Part Three. 

In Part Four, there was a significant effect for direction in the Lab and Church ensembles, 

with the average size of the ascending intervals in both ensembles being significantly smaller 

than the average size of the descending intervals. As with the corresponding semitone 

exercises in Part One, there was only a minimal effect for the different whole tone types in 

Part Two. The only statistically significant effect was in the Lab ensemble‘s data, where the 

6̂5̂ -  whole tones were smaller on average than the 7̂6̂ -  whole tones. Due to the lack of 

directed harmonic activity in Part Three and the lack of instances of the non-chord tone 

conditions in Part 4, different types of whole tones were not considered for these parts. 
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There were significant effects for singer identity when a regression was run using the upper 

voice in each ensemble as a baseline. In Part One, there were significant effects for the 

Church (tenor and alto) ensemble. In Part Two, there were significant effects for both the 

Lab (tenor and alto) and the Church ensembles (alto). In Part Three, there were significant 

effects for Ensemble 1 (ATB, pilot; tenor) and Ensemble 2 (ATB, lab; tenor). In Part Four, 

there were significant effects for both the Lab (bass) and Church (bass, alto, and tenor) 

ensembles for the semitone data, and for the Church (tenor) ensemble for the whole tone 

data. 

4.2.3.3 Vertical Intervals 

Vertical interval tuning was evaluated for Parts 1–4. The main question being evaluated with 

the vertical intervals was whether intervals with a greater number of harmonics between the 

upper and lower notes were tuned closer to Just Intonation since the coincidence of 

harmonics could encourage a tuning that is derived from the lower harmonics of the 

harmonic series. The intervals were divided into two categories: those where the upper note 

in the interval have at least 6 harmonics in common with the lower note‘s first 32 harmonics 

and those where the upper note has a fewer number of harmonics in common. Of the 

vertical intervals that occurred in Parts 1–4, the Perfect Octave, Perfect Fifth, and Major 

Third fell into the first category, wheras the Minor Seventh, Minor third, Perfect Fourth, 

Minor Sixth, and Major Sixth fell into the second category. The means and standard errors 

of the intervals in the first category across each ensemble for each part are shown in Table 

4.2.19. The means and standard errors for the second category for each part are shown in 

Table 4.2.20. The means and standard errors in Table 4.2.19 and Table 4.2.20 convey 

information about how close the different ensembles were on average to the tunings 

predicted by Just Intonation. Those ensembles with means that were within two standard 

errors of the Just Intonation tuning can be considered to encompass the Just Intonation 

tuning. The intervals for which the largest proportion of the ensembles‘ average tunings 

encompassed the relevant Just Intonation tuning included, as anticipated, those with the 

largest number of harmonics in common: Perfect Octave (6/11) and Perfect Fifth (7/11). 

This was not the case, however, for the Major Third (1/11), which suggests another factor 

may have influenced the tuning. Specifically, that the Just Tunings for the Perfect Octave 

and Perfect Fifth are closer to the equal tempered tuning, whereas the Just Tuning for the 

Major Third is 14 cents smaller than equal temperament.  
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In the second group of intervals, those with less than 6 harmonics in common between the 

first 32 harmonics of the two notes in the interval, the close relationship between the Just 

Intonation and equal temperament tunings for the Perfect Fourth (3/7) and the Tritone 

(2/2) could also explain why the means of these intervals were relatively close to Just 

Intonation tuning compared to the other intervals in the group. The Just Intonation tunings 

for the Minor Third (0/11), the Minor Sixth (1/5) and the Major Sixth (0/9) are 14–18 cents 

away from equal temperament and only a small proportion of ensembles‘ means 

encompassed the Just Intonation tuning. The Minor Seventh was the exception in this regard 

since the difference between the Just Intonation and equal tempered tuning is 18 cents, yet 2 

out of the 5 means encompassed the Just Tuning. This was not, however, because the Minor 

Seventh was on average closer to equal temperament, but rather because the standard errors 

were large enough to encompass both the Just Intonation and the equal tempered tuning. 

These findings suggest that, overall, the singers were tuning their intervals closer to equal 

temperament than Just Intonation. 

 

 Perfect Octave 
(JI: 1200) 

Perfect Fifth 
(JI: 702) 

Major Third 
(JI: 386) 

 Mean Std. Error Mean Std. Error Mean Std. Error 

Part One, Lab (P1 1) 1195.4 3.7 713.8 1.5 400.6 3.5 

Part One, Church (P1 2) 1203.1 3.1 705.5 2.0 408.3 3.1 

Part Two, Lab (P2 1) 1209.3 2.9 715.5 3.1 403.1 3.7 

Part Two, Church (P2 2) 1210.9 3.0 708.3 2.7 394.1 3.5 

Part Three, Ensemble 1 (P3 1) 1201.3 1.9 700.7 0.9 375.6 1.9 

Part Three, Ensemble 2 (P3 2) 1205.9 2.6 704.9 1.7 413.3 1.9 

Part Three, Ensemble 3 (P3 3) 1208.5 2.0 704.0 1.3 397.4 1.9 

Part Three, Ensemble 4 (P3 4) 1202.3 2.4 701.6 1.3 405.8 2.4 

Part Four, Pilot (P4 1) 1198 1.9 697.3 1.7 401.4 2.1 

Part Four, Lab (P4 2) 1195.9 1.4 696.4 1.3 387.3 1.6 

Part Four, Church (P4 3) 1202.2 1.3 704.6 1.2 397.8 1.5 

Table 4.2.19: Summary of the means and standard errors (SE) across each ensemble in each 

experiment part for the vertical intervals where the upper note in the interval had at least 6 

harmonics in common with the lower note‘s first 32 harmonics. Bolded values indicate those 

means that are greater than twice the standard error away from the Just Intonation tuning.  
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 Minor 
Seventh 

(JI = 1018) 

Augmented 
Sixth 

(JI=977) 

Minor 
Third 

(JI = 316) 

Perfect 
Fourth 

(JI = 498) 

Minor 
Sixth 

(JI = 814) 

Major 
Sixth 

(JI = 884) 

Tritone 
(JI = 590/ 

610) 

 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

P1 1 - - 989.6 3.5 307.9 2.8 - - - - 900.0 2.4 - - 

P1 2 - - 995.3 4.9 303.0 2.7 - - - - 894.4 2.4 - - 

P2 1 - - - - 302.0 3.3 - - 799.3 4.0 - - 604.1 11.8 

P2 2 - - - - 294.7 4.6 - - 809.3 4.7 - - 603.8 4.5 

P3 1 - - - - 322.4 2.1 508.7 1.9 - - 893.0 1.8 - - 

P3 2 - - - - 299.5 3.0 497.0 2.8 - - 903.1 3.6 - - 

P3 3 - - - - 307.0 2.0 507.2 2.0 - - 904.3 2.8 - - 

P3 4 - - - - 300.8 3.1 492.9 2.0 - - 896.1 2.3 - - 

P4 1 1017.1 22.4 - - 303.2 3.0 504.1 3.2 802.2 2.7 900.0 3.1 - - 

P4 2 1011.0 9.7 - - 308.8 1.8 506.6 2.1 807.1 2.1 890.3 1.9 - - 

P4 3 999.7 8.3 - - 304.5 1.8 494.5 2.0 799.6 1.7 893.2 1.6 - - 

Table 4.2.20: Summary of the means and standard errors (SE) across each ensemble in each 

experiment part  for the vertical intervals where the upper note in the interval had less than 6 

harmonics in common with the lower note‘s first 32 harmonics. Bolded values indicate those 

means that are greater than twice the standard error away from the Just Intonation tuning. 

The abbreviations on the left correspond to the full names for the ensembles listed in Table 

4.2.19. 

 

T-tests were used to explore the effect of the coincidence of harmonics on vertical tuning 

more generally with the groupings shown in Table 4.2.19 and Table 4.2.20. In Parts One and 

Two, the distance of each group‘s average interval sizes from Just Intonation were not 

statistically significant for the Lab ensemble, but were for the Church ensemble. In Parts 

Three and Four, a distinction was made between whether the intervals occurred between the 

bass and an upper voice or amongst the upper voices to see if intervals sung in relation to 

the bass tended to be closer to Just Intonation. This was the case in Ensemble 3 (SAT, 

church) in Part Three, where intervals between the upper voices and the lowest voice 

showed a significant difference between the two groups, whereas the intervals between the 

upper voices did not. In Ensemble 1 (ATB, pilot), the opposite was true. For this ensemble, 

there was a significant difference between the two groups for intervals occurring in the 

upper voices, but not for those between the upper and lowest voice. There were no 

significant differences for Ensemble 2 (ATB, lab) and 4 (ATB, church). In Part Four, there 

were only significant differences for the Pilot ensemble, where the intervals that had less 

partials in common with both the group of intervals between upper voices and the bass and 
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the group of intervals between the upper voices were significantly further away from Just 

Intonation tunings. Part Four also allowed for the possibility of dividing up the vertical 

intervals between those that occurred in a cadential context and those that did not. For all of 

the ensembles, the vertical intervals were on average closer to the Just Intonation tunings 

than those that occurred in a non-cadential context.  

4.2.3.4 Influence of Syllable 

The influence of syllables on tuning was also briefly considered, although this is a much 

larger question that will require additional studies to address properly. Parts Three and Four 

offered the opportunity to explore this question since some of the ensembles sung the music 

on different syllables. In Part Three, Ensembles 2–4 sang roughly half of their takes on ―mi‖ 

and the rest of ―ma.‖ In Part Four, the Lab and Church ensembles sang some of their takes 

in the original German and some to ―mi.‖ The recordings in Part Three were more 

controlled since the difference between the two sets is a single syllable. Overall, there were 

no significant effects for melodic interval size. For vertical interval size, only Ensembles 3 

and 4 showed a significant effect. In Ensemble 3, the average size of the vertical intervals 

sung to ―mi‖ was significantly larger than the average size of the vertical interval sung to 

―ma.‖ In contrast, in Ensemble 4, the average interval size of the vertical intervals sung to 

―ma‖ was significantly larger than those sung to ―mi.‖ Part Four was more complex since 

what was being evaluated was the tuning difference between when the piece was sung with 

its original lyrics versus a single syllable. There were significant effects in the Lab ensemble 

for both melodic and vertical intervals, with the average size of the melodic intervals being 

smaller for those sung in German than those sung to ―mi‖ and the average size of the 

vertical intervals being larger for those sung in German than those sung to ―mi.‖ For the 

Church ensemble, there was only a significant effect for melodic intervals: with the intervals 

sung in German also being larger on average than those sung to ―mi.‖  
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4.3 Analysis of Both Experiments’ Data 

This section considers the commonalities and differences in the interval size data across the 

solo experiment in Section 4.1 and the SATB ensemble experiment in Section 4.2. 

Specifically, this section summarises the ways in which the interval size data conforms to and 

deviates from formal tuning systems, the influence of direction on melodic intervals, the 

impact of musical context on interval size, the amount of individual variation across singers, 

the influence of training/experience, and some possible explanations for the size of the R2 

values in the regressions that were run on the interval size data. Overall, there was a large 

amount of variation in interval size both within individual singers’ takes and across singers 

and groups/ensembles, much more than was anticipated before the experiments were 

undertaken. 

4.3.1 Relationship to Formal Tuning Systems 

Overall, the mean interval sizes were closer to equal temperament than either Pythagorean 

tuning or 5-limit Just Intonation, with a few notable exceptions. For the melodic intervals, 

this was overwhelmingly the case for both ascending and descending whole tones, but for 

the semitones, there was a marked difference between ascending and descending, particularly 

for the solo singers. In the solo experiment, the means of the professional singers’ ascending 

semitones were close to equal temperament (100 cents), while the means of the non-

professional group were smaller overall. In both groups of solo singers, however, the means 

of the descending semitones were smaller than the ascending ones. The means of both the 

ascending and descending semitones for the non-professional group and the descending 

semitones for the professional group were closer to the Pythagorean/Major Just Intonation 

semitones (90 cents) than equal temperament. This was also true for the Lab ensemble’s 

ascending semitones in Part One of the ensemble experiment and the Pilot ensemble’s 

descending semitones in Part Four.  

As discussed in Section 4.2.3, the means of the vertical intervals were generally closer to 

equal temperament than 5-limit Just Intonation, except for those intervals where the sizes of 

the equal tempered and Just Intonation intervals were close to one another: the Perfect 

Octave (1200 cents for both), the Perfect Fifth (700 for equal temperament versus 702 for 

Just Intonation), and the Perfect Fourth (500 for equal temperament versus 498 for Just 

Intonation). Overall, the interval sizes were also closer to Pythagorean than Just Intonation, 
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particularly when the Pythagorean tunings were closer to Equal Temperament than Just 

Intonation. It should, however, be noted that the large standard deviations for both the 

melodic and vertical intervals indicate that while the means are centered around the values 

predicted by equal temperament, the singers were not singing in equal temperament.  

The motivation for focusing on Just Intonation, rather than Pythagorean tuning, in the 

statistical analysis of the vertical interval sizes was that the Just Intonation tunings are 

derived from lower harmonics in the overtone series than Pythagorean tuning. The question 

underlying this analysis was whether singers tend more towards Just Intonation tunings 

when there is a greater coincidence of harmonics between the interval’s notes. Overall, there 

were mixed results when the intervals were divided between those that had at least 6 of the 

first 32 harmonics in common (P8, P5, M3) and the remaining intervals. This is due in part 

to the wide range of tunings for the Major Third, where the ensembles’ means ranged from 

376–408 cents.  

4.3.2 Influence of Intervallic Direction on Interval Size 

For both the semitones and whole tones, there were significant effects for direction 

observed in some of the groups/ensembles studied, as detailed in Table 4.3.1, which shows 

the relationship of the interval size of the descending intervals to the ascending intervals. For 

both the semitones and whole tones, there were some groups/ensembles for which the 

difference between ascending and descending was not significant. When the difference was 

significant, however, two general tendencies emerged: the descending semitones tended to 

be smaller than the ascending ones, and the descending whole tones tended to be larger than 

the ascending ones. As described above in Section 4.3.2, the ascending semitones’ means 

were closer to equal temperament (100 cents), while and descending semitones were closer 

to the Pythagorean tuning (90 cents). This was not the case for the whole tones, as in those 

ensembles/groups where there was a significant difference between the ascending and 

descending whole tones, the descending whole tones’ means tended to be slightly larger than 

equal temperament, whereas the ascending whole tones means’ tended to be slightly smaller 

than equal temperament. 

 

 



 
 

 242 

Group/Ensemble Semitones Whole Tones 
Non Pro 8 Cents Smaller 5 Cents Larger 
Pro 7 Cents Smaller NS 
P3 Pilot - NS 
P3 Lab - NS 
P3 Church 1 - - 
P3 Church 2 - - 
P4 Pilot - - 
P4 Lab NS 5 Cents Larger 
P4 Church 8 Cents Smaller 5 Cents Larger 

Table 4.3.1: Summary of the results for intervallic direction from the regressions run on the 

melodic interval data. The “Larger/Smaller” labels refer to the relationship of the descending 

intervals to the ascending intervals. Italics are used to indicate those ensembles for which the 

regression was not significant (p > 0.05), and NS indicates that an individual condition was 

not significant. 

 

Overall, the differences between the ascending and descending semitones were in the 7–8 

cents range, and the differences between ascending and descending whole tones were around 

5 cents. It is hard to know if these values, or the differences between them, are significant, 

considering the wide range of values reported for the Just Noticeable Difference of pitch 

stimuli (see Section 2.3.1). It is, however, interesting to note that where the differences 

between the ascending and descending intervals are significant, the trends for the semitones 

and whole tones are opposite of one another. One possible explanation is that there is a 

compensatory effect happening to avoid excessive drift, where the ascending semitones are 

generally larger in order to correct for generally smaller ascending whole tones and vice 

versa. It is interesting to note that these trends emerge in two different pieces, one for the 

solo singers and one for the SATB ensembles, which suggests that the trends are not 

restricted to a particular arrangement of musical materials. 

4.3.3 Role of Musical Context 

The regression analyses of the melodic interval data explored the role of musical context on 

interval size. Overall, there was a minimal effect for the musical context in the solo 

experiment and virtually no effect for the ensemble experiment. For both “Ave Maria” in 

the solo experiment and “Es ist ein Ros entsprungen” (Part Four) in the ensemble 

experiment, two semitone conditions were evaluated. The first was whether there was a 
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significant difference between the mean interval sizes of leading tones and non-leading 

tones. The second was whether there was a difference between the mean interval sizes of 

semitones between the same pitch classes as the leading tone (whether or not they had a 

leading tone function) and semitones between other pitch classes. Table 4.3.2 shows which 

regressions and conditions showed significant effects. For the “Ave Maria,” there was a 

significant effect for the non-professional group in the first condition, with the non-leading 

tones being larger. In contrast, the professional group had a significant effect in the second 

condition, with the semitones between other pitch classes being larger. For “Es ist ein Ros 

entsprungen,” there were no significant effects found for either condition in any of the 

ensembles. 

Group/Ensemble LT Other 
Non Pro 7 Cents Smaller NS 
Pro NS 7 Cents Larger 
P4 Pilot - - 
P4 Lab NS NS 
P4 Church NS NS 

Table 4.3.2: Summary of the results for different semitone conditions from the regressions 

run on the melodic semitone data for the solo experiment and Part Four of the ensemble 

experiment. In the first column, the “Larger/Smaller” labels refer to the relationship of the 

semitones with a leading tone function to those without. In the second, it refers to the 

relationship of semitones between A and B to the semitones between other pitch classes. 

Italicization is used to indicate those ensembles for which the regression was not significant 

(p > 0.05), and NS indicates that an individual condition was not significant. 

 

Part One of the ensemble experiment offered a more controlled setting in which the 

influence of musical context on semitone size could be evaluated. In the progressions in Part 

One, there were five chromatic and six diatonic semitones. The semitones in each group 

were between the same pitch classes in different harmonic contexts and occurred 

sequentially in each of the upper three voices. As detailed in Table 4.3.3, the only significant 

effect was that in each of the ensembles, one of the chromatic semitone types was on 

average significantly larger in size than the diatonic semitone with a leading tone function.  
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Group/Ensemble 
Chromatic Semitones 

   1 2 3 4 5 
P1 Lab NS NS NS NS 14 Cents Larger NS NS NS 
P1 Church NS 16 Cents Larger NS NS NS NS NS NS 

Table 4.3.3: Summary of the results for different semitone conditions from the regressions 

run on the melodic semitone data for Part One of the ensemble experiment. The 

“Larger/Smaller” labels refer to the relationship of the semitones indicated in the column 

header to the  semitones, which were used as a baseline. NS indicates that an individual 

condition was not significant. 

 

The results for the whole tones were similar. In the “Ave Maria,” there was a significant 

effect in the non-professional group for whether a whole tone started or ended on a chord 

tone, shown in Table 4.3.4. The whole tones that ended on a chord tone were smaller on 

average than those that ended on a non-chord tone. There were no significant effects for the 

non-professional group.  

Group/Ensemble Starting Note Ending Note 
Non Pro NS 4 Cents Smaller 
Pro NS  NS 

Table 4.3.4: Summary of the results for different whole tone conditions from the regressions 

run on the melodic whole tone data for the solo experiment. The “Larger/Smaller” labels 

refer to the relationship of the size of the whole tones that either started or ended on a 

chord tone to those that either started or ended on a non-chord tone. NS indicates that an 

individual condition was not significant. 

 

Part Two was, like Part One, designed to present whole tones in different musical contexts. 

However, as with Part One, the significant effects for the average interval size across the 

different conditions were minimal, as detailed in Table 4.3.5. The only significant effect was 

that the whole tones between the fifth and sixth scale degrees were smaller on average than 

those between the sixth and seventh scale degrees, which were used as the baseline. 

 

 

 



 
 

 245 

 

Ensembles      
P2 Lab NS 14 Cents Higher NS NS NS 
P2 Church NS NS NS NS NS 

Table 4.3.5: Summary of the results for different whole tone conditions from the regressions 

run on data for Part One of the ensemble experiment. The “Larger/Smaller” labels refer to 

the relationship of the semitones indicated in the column header to the  semitones, 

which were used as a baseline. NS indicates that an individual condition was not significant. 

 

For the vertical intervals, musical context was considered in Part Four of the ensemble 

experiment with t-tests that evaluated whether the ensembles tuned closer to Just Intonation 

in cadential contexts than in non-cadential contexts. The t-tests showed a significant 

difference for all of the ensembles between the two contexts, with the intervals in the 

cadential context being significantly closer on average to Just Intonation tuning than the 

intervals that were not. 

The effects for the musical context amongst the solo singers were group-dependant and thus 

mostly likely due to the singers’ amount of training/experience. The influence of 

training/experience is discussed below in Section 4.3.5. In the ensembles’ melodic interval 

size data, the lack of significant effects for the different melodic contexts in the ensemble 

data indicate that there may be other factors influencing the intonation than the ones 

considered. It is also possible that the exercises in Part One and Two were too short to 

create sufficient musical context and that they were too unfamiliar for the singers to be 

consistent in their performances since they were effectively sight-reading. Ways of improving 

this experiment will be discussed in the future works section in Chapter 5. 

4.3.4 Individual Variation Amongst Singers 

The regression analyses also considered singer identity. Overall, there were more significant 

effects for singer identity than for musical context, although it does not explain all of the 

variation in the data. Also, the amount of the effect varied across the experiments. The 

results of the regression analysis for semitone data from the solo experiment are shown in 

Table 4.3.6. Overall, the non-professionals showed more of an effect than the professional 

group for singer identity, with four out of the five singers’ mean semitone size differing 



 
 

 246 

significantly from the baseline compared to only one singer in the professional group. There 

was also a significant effect for group identity, with the non-professional group’s semitones 

being smaller on average than the professional group’s semitones.  

 

Group Singer 1 Singer 2 Singer 3 Singer 4 Singer 5 
Non-Professional 8 Cents Larger 7 Cents Smaller NS 11 Cents Larger 8 Cents Smaller 
Professional NS NS NS NS 2 Cents Larger 

Table 4.3.6: Summary of the results for singer identity from the regressions run on the 

melodic semitone data in the solo experiment. The “Larger/Smaller” labels refer to the 

relationship of the singer indicated in the column header to singer 6, who was used as a 

baseline. NS indicates that an individual condition was not significant. 

 

The semitone size data in Parts One and Four in the ensemble experiment also showed 

significant effects for singer identity in some of the ensembles. In Part One, only the Church 

ensemble showed a significant effect, with both the tenor and alto singers’ semitones being 

larger on average than the soprano’s (Table 4.3.7). In Part Four, the Church ensemble also 

showed a strong effect, with the bass and alto’s semitones being smaller on average than the 

soprano’s and the tenor’s being larger. The Lab ensemble only had a significant effect for 

one singer, the bass, whose semitones were on average smaller than the soprano’s in that 

ensemble (Table 4.3.8).  

 

Ensemble Tenor Alto 
P1 Lab NS NS 
P1 Church 12 Cents Larger 8 Cents Larger 

Table 4.3.7: Summary of the results for singer identity from the regressions run on the 

melodic semitone data in Part One of the ensemble experiment. The “Larger/Smaller” labels 

refer to the relationship of the singer indicated in the column header to the soprano, who 

was used as a baseline. NS indicates that an individual condition was not significant. 
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Ensemble Bass Tenor Alto 
P4 Pilot - - - 
P4 Lab 13 Cents Smaller NS NS 
P4 Church 14 Cents Smaller 7 Cents Larger 11 Cents Smaller 

Table 4.3.8: Summary of the results for singer identity from the regressions run on the 

melodic semitone data in Part Four of the ensemble experiment. The “Larger/Smaller” 

labels refer to the relationship of the singer indicated in the column header to the soprano, 

who was used as a baseline. Italicization is used to indicate those ensembles for which the 

regression was not significant (p > 0.05), and NS indicates that an individual condition was 

not significant. 

 

The singer and group effects in the solo experiment’s whole tone data were similar to their 

effects in the semitone data. For the non-professional group, 3 singers’ means were 

significantly different than their baseline singer’s mean, while 2 of the professional group’s 

singers were different from their baseline (Table 4.3.9). There was also, as with the semitone 

data, a significant effect for group identity, with the professional singers having larger whole 

tones on average than the non-professional singers. 

 

Group Singer 1 Singer 2 Singer 3 Singer 4 Singer 5 
Non Professional NS NS 10 Cents Smaller 7 Cents Larger 6 Cents Smaller 
Professional NS 5 Cents Larger NS NS 8 Cents Smaller 

Table 4.3.9: Summary of the results for singer identity from the regressions run on the 

melodic whole tone data in the solo experiment. The “Larger/Smaller” labels refer to the 

relationship of the singer indicated in the column header to singer 6, who was used as a 

baseline. NS indicates that an individual condition was not significant. 

 

In the ensemble experiment, the regression analysis on the whole tone data from Parts Two, 

Three, and Four showed similar effects for singer identity to the statistical analysis of the 

semitone data in Parts One and Four. In Part One, there were significant effects for the Lab 

ensemble, where the tenor’s and alto’s whole tones were both larger on average than the 

soprano’s (Table 4.3.10). In Part Three, the middle voices in both the Pilot and Lab 

experiments differed from the upper voice (Table 4.3.11). In Part Four, there were fewer 
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significant effects for singer identity, with only the alto in the Church ensemble’s whole 

tone’s size differing significantly from the soprano’s.  (Table 4.3.12). 

 

Ensemble Tenor Alto 
P2 Lab 12 Cents Larger 9 Cents Larger 
P2 Church NS Smaller 

Table 4.3.10: Summary of the results for singer identity from the regressions run on the 

melodic whole tone data in Part Two of the ensemble experiment. The “Larger/Smaller” 

labels refer to the relationship of the singer indicated in the column header to the soprano, 

who was used as a baseline. NS indicates that an individual condition was not significant. 

 

Ensemble Lowest Voice Middle Voice 
P3 Pilot NS 14 Cents Larger 
P3 Lab NS 17 Cents Smaller 
P3 Church 1 - - 
P3 Church 2 - - 

Table 4.3.11: Summary of the results for singer identity from the regressions run on the 

melodic semitone data in Part Four of the ensemble experiment. The “Larger/Smaller” 

labels refer to the relationship of the singer indicated in the column header to the upper 

voice, which was used as a baseline. Italicization is used to indicate those ensembles for 

which the regression was not significant (p > 0.05), and NS indicates that an individual 

condition was not significant. 

 

Ensemble Bass Tenor Alto 
P4 Pilot WT - - - 
P4 Lab WT NS NS NS 
P4 Church WT NS NS 6 Cents Larger 

Table 4.3.12: Summary of the results for singer identity from the regressions run on the 

melodic semitone data in Part Four of the ensemble experiment. The “Larger/Smaller” 

labels refer to the relationship of the singer indicated in the column header to the soprano, 

who was used as a baseline. Italicization is used to indicate those ensembles for which the 

regression was not significant (p > 0.05), and NS indicates that an individual condition was 

not significant. 
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4.3.5 Impact of Training and Experience 

In the ensemble experiment, there were no clear differences between the semi-professional 

ensemble and the two professional ensembles. There were, however, significant differences 

between non-professional and professional groups of singers in the solo experiment. For 

semitones, the significant differences for conditions, accompaniment, and singer identity 

allowed for several interpretations about how intonation practices might be influenced by 

training and/or experience. Likewise an additional interpretation can be made from the 

whole tones’ significant differences for intervallic direction and whole tone conditions.  

The absence of a significant effect in interval size for the leading tones in the professional 

group (Table 4.3.2), in contrast to the non-professional group which showed a significant 

effect, allows for two different interpretations. One is that with training the singers acquire 

greater stability in their production of leading tones or that the singers with less training tend 

to exaggerate them. Another is that the existence of a significant effect for accompaniment 

(Table 4.3.13) and greater prevalence of a significant effect for singer identity (Table 4.3.6) 

for the semitones’ interval size in the non-professional group suggests that singers become 

more consistent both between a cappella and accompanied versions and with other singers 

when they acquire more training/experience. 

 

Groups ST WT 
Non Pro 3 Cents Larger NS 
Pro NS NS 

Table 4.3.13: Summary of the results for accompaniment from the regressions run on the 

melodic data in the solo experiment. The “Larger/Smaller” labels refer to the relationship of 

the accompanied intervals to the a cappella intervals for the interval types listed in the 

columns. NS indicates that an individual condition was not significant. 

 

In terms of whole tone interval size, the main distinction between the non-professional and 

professional groups was of the significant effect for direction and the ending not in the non-

professional groups (Table 4.3.1) versus the lack of significant effects in the professional 

group (Table 4.3.4). Unlike the semitone intervals, there were no significant effects for the 

presence of accompaniment. These observations suggest that training/experience reduces 
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the influence of direction on whole tone interval size and increases the influence of the 

musical material, such as the stability of the starting and ending notes of the intervals.  

4.3.6 R2 Values in the Regressions 

The R2 values, or coefficients of determination, for the regressions run on the data from the 

two experiments ranged from 0.02–0.42. The R2 values for the solo experiment’s regressions 

are shown in Table 4.3.14, and the R2 values for the ensemble experiment’s regressions are 

shown in Table 4.3.15. In Table 4.3.14 and Table 4.3.15, regressions with the same 

predictors are separated by dashed lines. Direct comparison between all of the R2 is not 

possible, since not all of the regressions shared the same predictors; however, general trends 

emerge when the regressors are taken into account. Overall, the R2 values in the solo 

experiment were less than 0.10, with the exception being the regression on the non-

professional group’s semitone data. For this regression, the significant effects for leading 

tones and singer identity compared to the professional ensemble’s data explained a greater 

amount of the variation in the data. For the ensemble experiment, the higher R2 values in 

Parts One–Three were due to a greater number of significant effects for singer identity. The 

R2 values were closer between the solo and ensemble experiment when the musical material 

was more comparable, as can be observed with the comparable R2 values for the regressions 

run on the “Ave Maria” data in the solo experiment and “Es ist ein Ros entsprungen” (Part 

Four) data in the ensemble experiment. Overall, these R2 values indicate that there is 

unexplained variation in the interval size, which is due to some factors not considered, 

randomness, or both. 

 

 Semitones Whole Tones 
Professional Group 0.09 0.06 
Non-Professional Group 0.19 0.08 
All Singers 0.07 0.02 

Table 4.3.14: R2 values for the regressions run on the interval size data in Section 4.1. Only 

those cells separated by a dashed line share the same regressors, which allows for direct 

comparison of the R2 values. 
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 Semitones Whole Tones 
Part One, Lab 0.28 - 
Part One, Church 0.25 - 
Part Two, Lab  - 0.42 
Part Two, Church  - 0.32 
Part Three, Ensemble 1  - 0.48 
Part Three, Ensemble 2  - 0.40 
Part Three, Ensemble 3  - NS 
Part Three, Ensemble 4  - NS 
Part Four, Pilot  NS 0.24 
Part Four, Lab  0.10 0.03 
Part Four, Church  0.14 0.03 

Table 4.3.15: R2 values for the regressions run on the interval size data in Section 4.2. Only 

those cells separated by a dashed line share the same regressors, which allows for direct 

comparison of the R2 values. 

4.3.7 Conclusions 

Overall, there was much more variation in the data than was expected at the outset of the 

experiments. It is not possible to determine if this variation is characteristic of the singers 

that were used or of singers in general, and more experiments are required to determine this. 

The future works section in Chapter 5 will discuss some possible modifications to the 

experiments and ways in which perceptual testing could be used to assess both how much 

variation in cents is significant and whether particular renditions are “in tune.” In the 

experiments detailed in this chapter, the question of whether a particular rendition was “in 

tune” was addressed in various ways. In the solo experiment, the solo singers, none of whom 

had absolute pitch, listened to their recordings and indicated that they considered their 

intonation to be accurate. For the Lab and Church ensembles,  the conductor indicated the 

acceptability of the intonation for each rendition during the recording sessions. For the Pilot 

ensemble, which was not conducted, all of the renditions were included.     
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Chapter 5 Conclusions 

5.1 Summary of Dissertation 

This dissertation examined the relationship of intonation to musical context through two 

experiments, one with solo singers and the other with SATB ensembles with one voice per 

part. Overall, the experiments show that the singers tended towards equal temperament; 

however, there was a wider range in interval size for the both the melodic and vertical 

intervals than was anticipated at the start of the project. In the solo experiment, as was 

found in Prame’s study (1997), the singers did not conform to equal temperament when 

performing the “Ave Maria.” There were some significant effects found for intervallic 

direction for some of the singers in the melodic intervals, with the descending semitones 

tending to be smaller than the ascending semitones and the ascending whole tones tending 

to be smaller than the descending ones. There were also some significant effects found for 

the musical context in the solo intonation experiment, but they were group dependent. The 

non-professional group’s leading tones tended to be smaller on average than their non-

leading tone semitones. The non-professional group also tended to sing whole tones that 

ended on chord tones smaller than those that ended on non-chord tones. In the ensemble 

experiment, however, there were no such tendencies for musical context in the melodic 

intervals. The vertical intervals were analyzed to see if the amount that they deviated from 

Just Intonation was related to the amount of coincidence of harmonics between the two 

notes in the interval or whether the interval occurred in a cadential or non-cadential context. 

The vertical intervals were divided into two groups: intervals where the notes shared at least 

6 harmonics in common amongst the first 32 harmonics and intervals where the notes had 

less than 6 harmonics in common. Overall, the differences between the two groups of 

intervals’ deviations from Just Intonation were variable and group-dependent. However, 

when the intervals were divided into those that occurred in cadential versus non-cadential 

contexts, a general trend emerged that showed that overall the intervals that occurred in a 

cadential context were significantly closer to Just Intonation than those that occurred in a 

non-cadential context. These results differed from the findings by Howard (2007a; 2007b), 

who observed a much closer, although not strict,  adherence to Just Intonation in the singers 
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and exercises he studied, which had far more modulations than those used in this 

experiment.  

5.2 Summary of Original Contributions 

As discussed in the Introduction, this dissertation explores a number of issues that have not 

been addressed in earlier research on intonation and presents both results and tools that 

contribute to the existing body of work on vocal intonation studies. The experiments 

showed that while overall there was a large amount of variability amongst the singers 

studied, both within singers’ takes and across singers, there were some statistically significant 

consistencies, particularly for the vertical intervals but also for intervallic direction and 

musical context for some groups for the melodic intervals. The breadth of the experiment 

also provided information regarding the effect of training on the intonation practices of solo 

singers. In terms of tools, this dissertation presented a new algorithm for automatically 

estimating note onsets and offsets in monophonic recordings of the singing, using a hidden 

Markov model-based approach that was trained on the acoustics of the singing voice and 

bootstrapped with an existing Dynamic Time Warping score-audio alignment algorithm. 

This algorithm allowed for the intonation from the large number of recordings considered in 

this dissertation to be analyzed more efficiently than manual annotation. This dissertation 

also introduced a new approach to describing changes in the fundamental frequency over the 

duration of a note using the discrete cosine transform. 

5.3 Future Research 

5.3.1 More Controlled Experiments 

The variation in the singers’ intonation practices detailed in Chapter 4 may be due to 

unaccounted-for degrees of variation in the musical material, as well as the behaviour of the 

other singers in the ensemble experiment. Parts One and Two of the ensemble experiment were 

designed to minimize some of this variability. Similar exercises could be developed to highlight 

particular musical features for both solo and ensemble experiments. With Parts One and Two, 

however, there remained the issue concerning the behaviour of the different singers and the fact 

that the singers were essentially sight reading this material. One way to minimize the effect of 

other singers is to have them perform individually against recorded and pitch-corrected versions 

of the other parts. Since the other voices would be held steady across each rendition, it would be 
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possible to identify when a singer is simply varying across performances rather than reacting to 

what another singer is doing. Another benefit of this approach is that alternate versions of the 

accompanying recordings could be created in different tuning systems.  

5.3.2 Perceptual Questions 

There are a number of perceptual issues that arose during this dissertation for which 

educated assumptions were made. Given more time, it would be productive to explore these 

questions in more detail. The first question relates to the perception of pitch for sung notes 

with vibrato. The existing work on pitch perception in notes with vibrato has been 

performed with either synthetic or violin tones. One can assume that the results would be 

the same for sung notes, though this is an assumption that can be tested. Secondly, while 

existing work has looked at variable rate and depth of vibrato in synthetic tones, the question 

remains of how pitch is perceived when the average pitch of the vibrato changes over the 

duration of the note. This relates to the question of how slope and curvature in F0 are 

perceived and if they influence the perceived pitch.  

Two additional perceptual issues arise when considering the issue of intonation explicitly.  

The first is the question of which tuning variations are perceived as “sharp,” which are 

perceived as “flat,” and which are perceived as changes in timbre. These perceptions have 

not been explored for the singing voice. The second is whether vowels have an inherent 

pitch. For example, if two notes have the same F0 trace but are sung with different vowels, 

are they perceived as being the same pitch?  

5.3.3 Improving the DCT 

In the solo experiments in Chapter 4, the use of the 1st and 2nd Discrete Cosine Transform 

has provided some interesting information about the ways in which the F0 changes at the 

end of the first note of the melodic intervals studied. However, there remain some open 

questions regarding how to best apply the DCT to the signal. There are the perceptual issues 

discussed in 5.3.2, as well as some implementation issues. The first  issue relates to 

minimizing the impact of vibrato on the calculations, which was roughly done in Section 4.1 

through the use of a 200 ms moving average. A more sophisticated approach that attempts 

to estimate the rate and depth of the vibrato for each cycle and cancel it out could be 

developed.  
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5.3.4 Other Ways of Analyzing the Music 

Theories of melodic attraction, particularly those put forth by Lerdahl (2001) and Larson 

(2004), offer alternative ways of quantifying the relationship between melodic tones that can 

supplement the approaches used in Chapter 4. Lerdahl’s approach is a component of his 

Tonal Pitch Space theory; in this method, he formalizes the tendency of a dissonant pitch to 

resolve to a consonant neighbour (which may be a neighbour at either the chromatic, 

diatonic, or triad level of his pitch space model) with a rule which observes both Bharucha’s 

principles of proximity and asymmetry (1996) and Newton’s law of gravitation. Lerdahl also 

discusses the asymmetries in attraction when moving from unstable to stable pitches and 

vice-versa. These asymmetries demonstrate how the same interval functions differently in 

different musical contexts.  

Larson posits a more complex calculation for the same phenomenon, though more explicitly 

focused on quantifying how listeners’ expectations are either met or confounded by 

particular musical activities (Larson 2004). Larson’s model correlates the forces of gravity 

(the tendency of a musical line to go down), magnetism (the tendency of unstable notes to 

move to stable ones), and inertia (the tendency of a musical line to continue rather than vary) 

explicitly in a single equation that is rooted in the gestalt psychological principles of 

proximity and stability. The cumulative forces acting on a note in a given context or pattern 

is calculated by summing the results of individual calculations for each force. Both Lerdahl’s 

and Larson’s theories have been subject to empirical perceptual tests (Vega 2003; Larson and 

Vanhandel 2005; Lerdahl and Krumhansl 2007), which produced results that generally 

support their theories, adding some strength to the notion that these theories could provide 

a cognitively sound way of quantifying the relative stability of notes in a musical passage.  

5.3.5 Intonation and Expression 

In the Psychology of Music, C. E. Seashore argued that pitch is the “fundamental character of a 

tone” and that “it determines in large part what emotional reaction we shall have for this 

tone” (Seashore 1938). Seashore’s idea that emotion is conveyed in performance through 

deviations from the norm was later subsumed by Meyer’s theory of musical emotion (Meyer 

1956), in which Meyer argued that emotional responses to music are rooted in the fulfillment 

or denial of the listener’s larger-scale expectations. More recently, Palmer (1996, 1997), 
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Gabrielsson (1999), and Sloboda (2005) have reconsidered the issue of musical emotion 

from the perspective of performance. Various studies of intonation practices, such as those 

carried out by Fyk (1995), have also discussed the expressive aspects of intonation. One 

future application of intonation studies is to provide quantitative data about the typical 

deviations in singing performance, which could be correlated with the results of 

psychological experiments on musical emotion. 

5.3.6 Intonation in Non-Western and Popular Music 

This dissertation focused on singing intonation in Western art music. Issues regarding the 

intonation practices of non-Western and popular traditions must also be considered. A 

potential area of inquiry involves the early twentieth-century American folk recordings 

included in the Smithonsian Folkways collection. This collection is appealing for a number 

of reasons, including the large amount of monophonic recordings, the existence of multiple 

versions of songs by different singers, and the availability of transcriptions made by Alan 

Lomax and other ethnographers. In non-Western classical music, Byzantine chant, and 

North Indian and Middle Eastern vocal musics are potentially fruitful areas of inquiry for 

intonation studies. 

5.3.7 Improving the Annotation Tool 

The alignment algorithm used in this dissertation was developed for use with recordings by 

singers who are following the score exactly, and it would have difficulty providing accurate 

annotations for performances that deviate from the score, either in error or by design. This 

response is due to the fact that the first-stage alignment relies on the sung pitches that 

closely correspond to the notated pitches in the reference score. An amateur rendition, for 

example, may include significant relative pitch errors, making this alignment unreliable. 

There are applications in which automatic alignment of such performances would be 

valuable, such as in an analysis of children’s singing practices. I plan to apply the algorithm 

to such recordings by relying on contour and word sequence rather than exact pitch 

matches. This type of algorithm would be useful for developmental psychologists, including 

those working on the acquisition of song in development through the SSHRC-MCRI funded 

Advancing Interdisciplinary Research in Singing (AIRS) project.  
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5.3.8 Examination of Existing Recordings 

Another source of data for intonation studies is the wealth of existing recordings of singing 

performances. Once signal processing tools are developed for accurately analyzing pitch 

information in polyphonic recordings, it will be possible to do longitudinal studies of 

intonation practices, both across time and geographic distance. With the currently available 

tools, these types of studies can be undertaken for existing monophonic recordings.   

5.3.9  Modeling Expressive Performance  

Once more data is collected, models of singers’ intonation practices can be developed. As 

discussed in Section 2.2.4, the only existing expressive performance model that addresses 

intonation is the Director Musices system (Bresin et al. 2002), an analysis-by-synthesis model 

whose intonation rules have not shown a strong correspondence to intonation in practice 

(Ornoy 2008). Expressive performance models are useful for generating “natural” sounding 

digital re-creations, and also have potential pedagogical applications for training vocalists.  
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