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Equations are just the boring part of mathematics. I attempt to see things in terms

of geometry.

Stephen Hawking
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Abstract

As solutions of the Einstein-Maxwell field equations, the Kerr-Newman-de Sitter ge-

ometries are spacetimes that model the outer geometry of a charged, rotating black

hole. We re-derive, using a lemma of Brandon Carter, first-order conserved quantities

for the motion of zero rest mass and massive test particles in the Kerr-Newman-de

Sitter spacetimes. The Liouville-Arnol’d integrability theory allows us to use first

integral equations in place of second-order equations in the dynamical analysis. In

examining the effects of first integral data on the equations, we expose some differ-

ences between particle dynamics in the electrically-neutral, asymptotically-flat Kerr

geometries and those in the charged, de Sitter geometries.
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Résumé

Les géométries de Kerr-Newman-de Sitter sont des solutions des équations d’Einstein-

Maxwell avec constante cosmologique modélisant la partie extérieure de l’espace-

temps au voisinage d’une configuration d’équilibre d’un trou noir en rotation. Nous

calculons a l’aide d’un lemme de Brandon Carter les quantités conservées du premier

ordre associées au mouvement de particules d’épreuve de masse nulle et non-nulle

dans la métrique de Kerr-Newman-de Sitter. Le théorème d’intégrabilité de Liouville-

Arnol’d nous permet d’utiliser ces quantités conservées pour analyser la dynamique.

Ceci nous permet de mettre en evidence les différences entre la dynamique des par-

ticules selon que l’on introduit ou non un champ électromagnétique et une constante

cosmologique.
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Résumé v
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Introduction

0.1 Motivation

The large-scale structure of space and time, to some extent, can be predicted by means

of the general theory of relativity. Ultimately, these predictions must be weighed

against experimental evidence concerning both the local and asymptotic behaviour

of the actual universe surrounding us. The search for exact solutions to the Einstein

field equations has produced a plethora of models: the Schwarzschild universe; the

de Sitter universe and its anti-de Sitter counterpart; the Gödel universe; and so on.

Many more are found within [13]. In choosing a model to fit the actual universe, two

factors to consider are (a) the existence of black holes, and (b) the magnitude of the

cosmological constant Λ.

Our own galaxy contains an extremely dense star cluster, in which lies a compact

radio source known as Sagittarius A*. Current observations made via high-resolution

10-metre telescope imaging suggest “the presence of a three million solar mass black

hole in Sagittarius A* beyond any reasonable doubt. The Galactic Center thus con-

stitutes the best astrophysical evidence for the existence of black holes which have

long been postulated...” [7]. At the other extreme, “Recent experimental data in-

dicate that the cosmological constant is most likely positive, suggesting (assuming a

spacetime of constant curvature, at least in first approximation) a de Sitter universe
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at cosmological distances” [14].

The Kerr-Newman-de Sitter geometries comprise, collectively, the unique pseudo-

stationary axisymmetric solution of the source-free Einstein-Maxwell equations with

positive cosmological constant ([3]). Each such spacetime not only houses a black

hole inside its horizons, but also has constant scalar curvature. While these special

features capture some of the essential properties of our universe (as observed within

the limits of modern experiments), the Kerr-Newman-de Sitter spacetimes are by no

means models of the universe on a large scale. Rather, they are good models for the

outer geometry of the equilibrium state of a rotating black hole viewed as an isolated

system.

Regardless of how cosmologically suitable our model is, one question we may ask

is “How do photons and massive test particles move in it?” While the motivation is

physical, the problem itself is entirely mathematical. Particles transporting a charge

q under the gravitational and electromagnetic influence of an empty spacetime are

constrained along precisely those curves minimizing the action of a Lagrangian Lq

determined by the metric and the Maxwell potential. When the charge q is set to

zero, the components of the potential no longer contribute to the Lagrangian L0,

whose action-minimizers are the geodesic curves in the spacetime. In the case of a

Kerr-de Sitter spacetime, the Maxwell potential is zero, and so the charge on a parti-

cle plays no role in its dynamics. In particular, the only orbits assumed by particles

are the geodesics in the manifold. B. O’Neill submits, in [10], a partial answer to the

geodesic classification problem in the asymptotically-flat Kerr geometry. The treat-

ment is global, as the trajectories are studied in the maximally-extended spacetime.

The variational orbit problem in Kerr-Newman-de Sitter has an equivalent Hamil-
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tonian formulation, which we exploit in extracting the constants of motion. With

sufficiently-many independent integrals in hand, we discuss the various trajectories

determined by the initial conditions prescribed to a particle, charged or uncharged.

While the treatment here concerns local dynamics only, the analysis, to some extent,

mimics that performed by O’Neill.

The outline of the study is as follows:

1. Properties of Kerr-Newman-de Sitter spacetimes. In this chapter, we

• introduce the metric formally;

• discuss how the choice of a positive cosmological constant affects the num-

ber and type of horizons;

• find sufficient conditions on the spacetime parameters such that the num-

ber of horizons is maximal;

• define the Boyer-Lindquist and de Sitter blocks.

2. Integrability of the equations of motion. In this chapter, we

• introduce the Hamiltonian formulation of the orbit problem;

• extract the integrals of motion (with particular attention paid to the so-

called Carter’s constant);

• use the first integrals to write down first-order differential equations for

the components of a particle’s velocity.

3. Dynamics of charged particles. In this chapter, we

• analyze the first-order evolution equations for charged particle trajectories.

Before we begin, we fix the notation and conventions to be used in the thesis.
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0.2 Notation, conventions, and preliminary defini-

tions

Definition 0.1. A Lorentz vector space is a pair (V, 〈−,−〉) in which V is a vector

space of dimension dimR(V ) ≥ 2 and 〈−,−〉 : V ×V → R is a scalar product of index

ind(〈−,−〉) = 1. When the scalar product is understood, we write V for (V, 〈−,−〉).

We say that each vector v ∈ V has a causal character, described as

• timelike if 〈v, v〉 < 0;

• null or lightlike if 〈v, v〉 = 0;

• or spacelike if 〈v, v〉 > 0.

(The competing convention is to require the index to be n − 1, under which

〈v, v〉 > 0 defines timelike and 〈v, v〉 < 0 defines spacelike.)

By a semi-Riemannian manifold (M, g), we mean a Hausdorff topological space

M endowed with a smooth, real differentiable structure and a metric tensor, that

is, a smooth covariant field g of nondegenerate scalar products TpM × TpM → R

of fixed index. For economy, when the metric is understood, we write M for (M, g).

Throughout, symbols in the style M or X will denote semi-Riemannian manifolds and

hypersurfaces in them, save for R, Q, and C which of course denote number fields.

Of particular concern in the forthcoming development are Lorentz manifolds.

Definition 0.2. A Lorentz manifold M is a semi-Riemannian manifold whose

metric tensor g endows each fibre Vp = π−1(p) of the tangent bundle TM π→ M with

a scalar product gp such that (Vp, gp) is a Lorentz vector space. (A Lorentz manifold

is also referred to as a spacetime.)
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As its tangent spaces are Lorentz spaces, a Lorentz manifold is necessarily of di-

mension at least 2.

A function h : M→ R may be restricted to a curve γ : I → M, where I ⊂ R, by

the composition h ◦ γ : I → R. Abusing notation, we denote the value taken by this

composition at s ∈ I by h(s). We denote the rate of change of h with respect to the

parameter s interchangeably by dots and primes, that is,

d(h ◦ γ)

ds
≡ ḣ(s) ≡ h′(s).

Where explicit use of the summation symbol
∑

becomes cumbersome, we use in

its place the Einstein summation convention, in which an index appearing once in

subscript and once in superscript is summed over the range 1, . . . , n (where n is the

dimension of the manifold on which the summed quantities are relevant). For econ-

omy, when the trigonometric functions sin θ and cos θ appear with high frequency we

write S and C in lieu of them.

Finally, geometrized units will be used throughout. In particular, the speed of

light c and the gravitational constant G are unity.
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Chapter 1

Properties of Kerr–Newman–de

Sitter spacetimes

1.1 The metric

A Kerr-Newman-(anti) de Sitter spacetime K is a four-dimensional Lorentz manifold

whose metric tensor g = gabdx
a ⊗ dxb, when cast in local coordinates (t, r, θ, ϕ), has

the components

gtt =
a2 sin2 θ∆θ −∆r

λ2ρ2
(1.1)

grr =
ρ2

∆r

(1.2)

gθθ =
ρ2

∆θ

(1.3)

gϕϕ =
sin2 θ

λ2ρ2

[
(r2 + a2)2∆θ − a2 sin2 θ∆r

]
(1.4)

gtϕ = gϕt =
a sin2 θ

λ2ρ2

[
∆r − (r2 + a2)∆θ

]
(1.5)

gij = gji = 0 for all other components.
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Within these components are the functions

ρ2 = r2 + a2 cos2 θ (1.6)

∆r =

(
1− 1

3
Λr2

)(
r2 + a2

)
− 2Mr + e2 (1.7)

∆θ = 1 +
1

3
Λa2 cos2 θ (1.8)

λ = 1 +
1

3
Λa2. (1.9)

The coordinates (t, r, θ, ϕ) are referred to as Boyer-Lindquist coordinates1. The time

coordinate t and the radial coordinate r are allowed to range over R, so long as the

coordinate functions remain non-singular at the values they assume. The colatitude

θ takes values in the range [0, π] while the longitude ϕ takes values in [0, 2π). Points

in K with θ = 0 or π are called poles, and the set of all poles in K is the axis, denoted

A. Physically, A is the axis about which the black hole rotates. As the coordinates

consist of a spherical coordinate system (θ, ϕ) taken at various radii r ∈ R and at

various coordinate times t ∈ R, the Boyer-Lindquist charts induce on K the topology

of R2 × S2. We refer to the functions ∆r and ∆θ, respectively, as the radial horizon

and colatitudinal horizon functions. The coefficients of dr2 and dθ2 in the line element

are not well-behaved at the roots of ∆r and ∆θ. Furthermore, spherical coordinates

(θ, ϕ) fail at the poles of the sphere, since the longitudes ϕ converge at the poles and

become indeterminate. Therefore, Boyer-Lindquist coordinates are only valid away

from roots of ∆r and ∆θ, and away from points with θ = 0 or π.

Respectively, the real parameters M , a, and e are called the mass, angular mo-

mentum per unit mass, and charge per unit mass of the spacetime. Although Ma

and Me are the respective total angular momentum and total charge, for convenience

1The metric, in the coordinates displayed here, may be obtained from solution class [A] of [2] by

the transformation Λ 7→ −Λ, µ 7→ a cos θ, p 7→ a2, q 7→ 0, h 7→ 1 − a2Λ/3, χ 7→ t/λ − a2Ψ, and

Ψ 7→ ϕ/(aλ).
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we refer to a and e simply as the “angular momentum” and “charge” of K. Nor-

mally, we take M and a in [0,∞) and—neglecting the quantization of charge—e in

(−∞,∞). Like the charge, the real parameter Λ can be negative or positive, and is

referred to as a cosmological constant. If this constant is positive, K is referred to as

a Kerr-Newman-de Sitter spacetime; if it is negative, then K is a Kerr-Newman-anti

de Sitter spacetime2.

Whenever we write K to refer to spacetime, we invariantly take the metric to be

in its most general form, with all four parameters a, e,M,Λ possibly nonzero. To

emphasize a particular choice of the parameters, we sometimes write K(a, e,M,Λ)

for K. Whenever we omit a symbol from the parameter list, we understand that the

corresponding parameter is set to zero. For instance, K(a, e,M) has Λ = 0. When all

parameters are zero, in which case we are left with empty Minkowski spacetime, we

denote the manifold by K(0). For reference, we collect the traditional names of the

families corresponding to the possible parameter lists. (We use ' to indicate when

two spacetimes are in fact isometric.)

Definition 1.1. Families of K spacetimes:

• K = K(a, e,M,Λ) — Kerr-Newman-(anti) de Sitter

• K(a,M,Λ) — Kerr-(anti) de Sitter

2The metric admits yet a fifth parameter, p, for the magnetic monopole moment of the spacetime;

see [12]. However, we take p = 0 throughout.
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• K(e,M,Λ) — Reissner-Nordström-(anti) de Sitter

• K(M,Λ) — Schwarzschild-(anti) de Sitter

• K(a, e,Λ) ' K(a,Λ) ' K(e,Λ) ' K(Λ) — (anti) de Sitter

• K(a, e,M) — Kerr-Newman

• K(a,M) — Kerr

• K(e,M) — Reissner-Nordström

• K(M) — Schwarzschild

• K(a, e) ' K(a) ' K(e) ' K(0) —Minkowski.

Apart from naming the spacetimes, the list implies that, whenever we let the

mass of the spacetime tend to zero, the parameters a and e lose their physical and/or

geometric significance. This fact is consistent with their interpretations as quantities

per unit mass. We easily see, for instance, that if all the parameters in the components

(1.1)-(1.5) vanish save for a, then we are left with

gtt = −1, grr = 1− a2 sin2 θ/(r2 + a2), gθθ = r2 + a2 cos2 θ, gϕϕ = (r2 + a2) sin2 θ,
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with all other components (in particular gtϕ = gϕt) vanishing. The four-dimensional

Lorentz spacetime with metric gabdx
a⊗dxb taking these components is the well-known

Minkowski spacetime, cast in an oblate spheroidal coordinate system. Explicitly,

these coordinates are obtained by applying the transformation r =
√
r2 + a2 sin θ,

z = r cos θ to

η = −dt2 + dr2 + r2dϕ2 + dz2, (1.10)

which is the usual form of the Minkowski metric in cylindrical coordinates.

The various K spacetimes arise in the general theory of relativity as solutions to

field equations for gravity coupled to electromagnetism. We define a one-form A that

vanishes when the charge e of the spacetime tends to zero:

A =
er

λρ2

[
dt− a sin2 θdϕ

]
. (1.11)

With g the metric reconstructed from the line element ds2, and with A the choice of

electromagnetic potential3, the couple (g, A) is a solution of the source-free Einstein-

Maxwell field equations with contribution from a nonzero cosmological constant Λ:

Gab − 8πTab + Λgab = 0. (1.12)

In (1.12), the Einstein tensor Gab is Rab− 1
2
Rgab while the stress-energy tensor Tab

is
1

4π

(
4∑
c=1

FacF
c
b −

Igab
4

)
. The symbols Rab and R denote, respectively, the Ricci

tensor and the scalar curvature, while Fab = 2(dA)ab is the antisymmetric Maxwell

field tensor and I =
∑

1≤a,b≤4

FabF
ab is a scalar invariant.

3This potential is but one example of an entire family A(α) of one-forms with which g is a

solution of the Einstein-Maxwell equations. The parameter α determines the “complexion” of the

electromagnetic field, as Carter explains in [2]. Our choice of potential is equivalent to setting α = 0.
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We note that the cosmological constant Λ makes no entry into the differential

forms satisfying Maxwell’s equations; however, the rotation a does. This observation

is consistent with the fact that the electromagnetic potential A, as defined above, is

precisely the one coupled to the Kerr-Newman metric (in which Λ = 0 but a 6= 0).

So long as the rotation parameter a is nonzero, the Killing vector fields ∂t and ∂ϕ

remain non-orthogonal, which is indicative of the loss of full spherical symmetry in

favour of axial symmetry. In terms of isometries, while the map t 7→ −t, ϕ 7→ −ϕ is

an isometry of K, the reversal of only one of the two signs is not. The physical inter-

pretation is simple: when we run time backwards, the rotation reverses as well. When

we let a→ 0, the component gtϕ also → 0, and so spherical symmetry is regained by

the non-rotating sub-family K(e,M,Λ). In this case, the four maps t 7→ ±t, ϕ 7→ ±ϕ

are all spacetime isometries.

It is a simple observation that the Boyer-Lindquist components (1.1), (1.4), and

(1.5) for the Killing fields satisfy the following identities.

Lemma 1.1. Using the symbol S in lieu of sin θ, we have

gϕϕ + aS2gtϕ = 〈W,∂ϕ〉 =
(r2 + a2)S2∆θ

λ2
(1.13)

gtϕ + aS2gtt = 〈W,∂t〉 = −aS
2∆θ

λ2
(1.14)

agϕϕ + (r2 + a2)gtϕ = 〈V, ∂ϕ〉 =
aS2∆r

λ2
(1.15)

agtϕ + (r2 + a2)gtt = 〈V, ∂t〉 = −∆r

λ2
, (1.16)

where V := (r2 + a2)∂t + a∂ϕ and where W := ∂ϕ + aS2∂t.
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As the vector fields V and W pervade the study of Kerr-type spacetimes as rota-

tional versions of ∂t and ∂ϕ, we make a formal

Definition 1.2. The canonical Kerr vector fields ([10]) are

V = (r2 + a2)∂t + a∂ϕ (1.17)

and

W = ∂ϕ + aS2∂t, (1.18)

where S again stands in place of sin θ.

It is clear that 〈∂r, V 〉 = 〈∂r,W 〉 = 〈∂θ, V 〉 = 〈∂θ,W 〉 = 0. Moreover:

Lemma 1.2. 〈V, V 〉 = −ρ
2∆r

λ2
, 〈W,W 〉 =

ρ2S2∆θ

λ2
, and 〈V,W 〉 = 〈W,V 〉 = 0.

Proof. By Lemma 1.1,

〈V, V 〉 = (r2 + a2) 〈V, ∂t〉+ a 〈V, ∂ϕ〉

= −(r2 + a2)
∆r

λ2
+ a

(aS2∆r)

λ2

= −ρ
2∆r

λ2
(1.19)

〈W,W 〉 = 〈W,∂ϕ〉+ aS2 〈W,∂t〉

=
(r2 + a2)S2∆θ

λ2
− aS2 (aS2∆θ)

λ2

=
ρ2S2∆θ

λ2
(1.20)

〈V,W 〉 = (r2 + a2) 〈∂t,W 〉+ a 〈∂ϕ,W 〉

= −(r2 + a2)
aS2∆θ

λ2
+ a

(r2 + a2)S2∆θ

λ2

= 0. (1.21)
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With our verification of the orthogonality of V and W , we see that the set

{∂r, ∂θ, V,W} is an orthogonal basis for the fibres of the bundle T (K). This fact

will be put to use time and time again in chapters 2 and 3.

When the cosmological constant is zero, the Boyer-Lindquist components of the

metric tend to Minkowskian components (in spherical coordinates) as r → 0. For this

reason, we say that spacetimes K(a, e,M) are asymptotically flat.

The more general spacetimes K(a, e,M,Λ) with Λ 6= 0 are not asymptotically flat,

but rather are characterized by constant nonzero scalar curvature. To compute the

trace of the Ricci tensor, we apply the contravariant metric g−1 = gab∂a ⊗ ∂b to each

side of (1.12). The result is

R− 2R + 4Λ = 8πT aa .

However, we have 8πT aa = 2
(
F b
cF

c
b − Igabgab/4

)
= 0, since I := FcdF

cd. Therefore,

we have that our solution is one of constant scalar curvature, namely

R = 4Λ,

When Λ > 0, the spacetime has constant positive curvature (de Sitter), and when Λ <

0, the spacetime has constant negative curvature (anti-de Sitter). A characteristic

feature of Lorentz spacetimes with constant positive curvature is the existence of a

unique hypersurface partitioning the spacetime into two causal components—that is,

a boundary across which no massless or massive particle may travel ([8]). To discover

where this feature arises in Kerr-Newman-de Sitter geometry, we must investigate the

various regions of coordinate failure.



1.2 Singularities and horizons 15

1.2 Singularities and horizons

Boyer-Lindquist coordinates fail in several regions of R2 × S2. Some of the failures

are more serious than others. The spherical coordinates (θ, ϕ) on S2 invariably fail at

the poles, where the longitudinal curves ϕ converge. However, we will see in Chapter

2 that, while Boyer-Lindquist coordinates fail at the poles, the first-order differential

equations for a particle’s Boyer-Lindquist coordinates generally do not. For our pur-

poses, the failure is harmless.

The most serious failure occurs at the ring singularity : the set of zeros of the func-

tion ρ2 = r2 + a2 cos2 θ, which appears in the denominators of gtt, gtϕ, and gϕϕ. In

the general case a > 0, the function ρ2 is zero if and only if both r = 0 and cos θ = 0,

that is, if and only if r = 0 and θ = π/2. The set Σ of all spacetime events (t, r, θ, ϕ)

with r = 0 and θ = π/2 is a circle in the equatorial plane, persisting through time:

Σ ∼= R1 × S1. Although the radius of this ring is r = 0, we must remember that, as

r may assume negative values, the region of the equatorial plane E := {(t, r, π/2, ϕ)}

that is bounded inside the ring is just as expansive as the region outside the ring. (It

makes more sense to draw the “radius” of the ring, or that of any circle concentric

with it, by taking the center at r = −∞ rather than r = 0.)

As Σ is “a circle of infinite gravitational forces” [10], it is the site of the black hole

contained in K. The coordinate failure along Σ is most serious because Σ is the site

of an actual metric singularity, rather than a singularity owing to poor coordinates.

That the Riemann curvature of K is singular at Σ is observed directly in the Kerr

curvature computations performed in the second chapter of [10]. We will not repeat

these here. For comparison with the Reissner-Nordström-de Sitter family K(e,M,Λ)

(which further reduces to the Schwarzschild geometry as e,Λ→ 0), the function ρ2 is
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simply r2, and so the singularity collapses to a single point of degenerate curvature.

Therefore, the ring singularity owes its existence exclusively to the rotation of the

black hole.

Further regions of coordinate failure are the horizons, which are the hypersurfaces

{(t, r0, θ, ϕ)} with r0 a root of ∆r, and {(t, r, θ0, ϕ)} with θ0 a root of ∆θ. We denote

the (set-theoretic) union of these hypersurfaces by H. These failures vary in sever-

ity. Some horizons may be event horizons, which act as one-way membranes through

which particles may pass but never return. Others may be cosmological horizons,

across which no physical information may be sent or received. The latter type par-

titions an otherwise topologically path-connected spacetime into two spacetimes S1

and S2, causally-disconnected from one another. (Here, causal disconnection means

there exists no smooth geodesic curve γ, with connected domain I ⊂ R, such that

γ(s1) ∈ S1 for at least one number s1 ∈ I, and γ(s2) ∈ S2 for at least one number

s2 ∈ I.) Before we discuss the types of horizons manifesting themselves in K, we de-

termine conditions on the parameters a, e,M,Λ that control the number of horizons

and their locations.

We may write H as the union of two subsets, Hr and Hθ, where Hr consists of

those points whose r coordinates are roots of ∆r, and where Hθ consists of those

points whose θ coordinates are roots of ∆θ. (As we will see in the case of Λ < 0, these

sets are not necessarily disjoint.) Due to the current opinions in cosmology cited in

the introduction, we choose to investigate de Sitter spacetimes rather than anti-de

Sitter ones. In choosing Λ > 0, we are eliminating the existence of θ-horizons, for

∆θ = 1 +
Λ

3
a2 cos2 θ > 0.

Consequently, H = Hr when Λ > 0.
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The remaining possibilities for horizons are those corresponding to roots of the

quartic polynomial

∆r(r) = −Lr4 + (1− La2)r2 − 2Mr + a2 + e2 (1.22)

with L := Λ/3 > 0. The polynomial ∆r(r) has exactly four roots, though these roots

are generally complex. If a complex root a + ib has nonzero imaginary part b, then

the root is one of a conjugate pair (a ± ib). Such roots may be discarded, as they

do not manifest themselves physically. Subsequently, there are three possibilities: no

real roots; two real roots and one complex conjugate pair; or four real roots.

In the case of no real roots, H is empty and the curvature singularity has no

horizons to conceal it. To use the standard terminology, Σ is “naked.” An observer

in the vicinity of such a black hole would be able to see light entering the singular-

ity itself, as there are no points between the observer and the singularity where the

coordinates (his or her way of looking at the world) tend to fail. The imperative to

study this case is subject to some debate. On the one hand, the “cosmic censorship”

hypothesis of R. Penrose asserts that stellar collapse does not admit the formation

of naked singularities ([4]). On the other hand, computer simulations by S. Shapiro

and S. Teukolsky ([11]) have shown that, given assumptions on the compactness of

the material undergoing gravitational collapse, physics may in fact admit naked sin-

gularities. Still, D. Christodoulou has rigorously proved that, while there exist initial

data with which the spherically-symmetric Einstein equations for gravity coupled to

a massless scalar field yield naked singularities (see [5]), he also shows that these

singularities are unstable (see [6]).

In the two-parameter Kerr geometry K(a,M), the horizon function reduces to the
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quadratic polynomial

δ(r) = r2 − 2Mr + a2,

which gives rise to a naked singularity whenever a > M . When a < M , two distinct

horizons emerge. In the three-parameter geometry K(a, e,M), the horizon function

changes only minimally to become

δ(r) = r2 − 2Mr + a2 + e2.

Nakedness occurs when a2+e2 > M2, and distinct horizons appear when a2+e2 < M2.

We must note, however, that the nakedness condition a2 + e2 > M2 is highly unphys-

ical, given the expectedly large mass of a star collapsing to a black hole.

Considering the nonexistent observational evidence for naked black holes, and the

instability proofs of Christodoulou (at least in the spherically-symmetric case), we

keep our investigation conservative and consider only those Kerr-Newman-de Sitter

spacetimes with real r-horizons. To ensure that the scenario with Λ > 0 is maximally

different from that of the asymptotically-flat Kerr spacetimes, we seek the maxi-

mal number of horizons. For the quartic horizon function of the general spacetime

K = K(a, e,M,Λ), we make the following claim, which generalizes the conditions for

the maximal number of horizons in the Kerr-Newman geometry.

Proposition 1.1. There exists no anti-de Sitter Kerr spacetime (L < 0) with more

than two radial horizons. If L is positive, L2 << 1, La2 << 1, and a2 + e2 <<

M2 << L−1, then ∆r has four distinct real roots.

The proof is given in Appendix A.
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Before leaving behind the anti-de Sitter spacetimes entirely, we note in passing

that even in the case where no r-horizons are present, there always exists a pair of

θ-horizons, as the solutions of the equation

1− |Λ|
3
a2 cos2 θ = 0.

The horizons manifest themselves as three-dimensional hyperplanes placed symmetri-

cally to the north and south of the equatorial plane E. (The equatorial plane itself can

never be a horizon.) In particular, when Λ = −3/a2 these horizons occur at the poles

θ = 0, π, and so the entire axis A is the θ-horizon. When we introduce r-horizons

(of which there can be at most two), the two types of horizons have nonempty in-

tersections, which are homeomorphic to circles S1 × {t}. A detailed study of the

implications of the existence of θ-horizons, and of their intersections with r-horizons,

is left for future study.

1.3 Boyer-Lindquist blocks

As the de Sitter geometry—to which we now confine ourselves—is devoid of θ-

horizons, the term “horizon” will henceforth refer only to radial ones. We note that

the sufficient conditions presented in Proposition 1.1 for the existence of a maximal

number of horizons are physically reasonable. As we expect the mass of the rotating

star collapsing to the ring singularity to be quite large, the condition M2 << Λ−1

places a very small upper bound on the value of the cosmological constant, which

is consistent with what experiments lead us to believe ([14]). Also, the condition

a2 + e2 << M2 mimics the analogous condition for a maximal number of horizons in

the asymptotically-flat Kerr-Newman geometry.
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Let us label the four distinct roots as r−−, r−, r+, and r++ in such a way that

r−− < r− < r+ < r++.

We may characterize fully the signs of these roots.

Corollary 1.1. Suppose that ∆r has four distinct real roots. If a2 +e2 6= 0, then they

are all positive save for r−−, which is negative.

Proof. When a2 + e2 6= 0, no root can be zero. Since L > 0, we can rearrange ∆r = 0

into an equation in which each side is strictly positive for r < 0:

Lr4 + La2r2 = r2 − 2Mr + a2 + e2. (1.23)

If we take the derivatives with respect to r of each side, we get

4Lr3 + 2La2r = 2r − 2M.

Each side of the differentiated equation is strictly negative on r < 0. Hence, each

side of (1.23) is strictly decreasing on r < 0. For large negative r, the left side is

greater than the right side. But while the left side of (1.23) is zero at r = 0, the

right side takes the positive value a2 + e2 there. Hence, the two curves must cross

at a unique point r less than zero. The crossing point is r−−. The remaining roots,

distinct from r−−, are therefore positive.

It is well-known that while de Sitter manifolds are geodesically complete, there

are points in them which cannot be connected by geodesics. The causal discon-

nection is such that there exist two maximal causal components, separated by a

three-dimensional r-hypersurface ([3] and [8]). In other words, de Sitter spacetime
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possesses a (unique) cosmological horizon. The massless de Sitter manifold, K(Λ),

has the horizon function

∆r = −Lr4 + r2,

which has nonzero roots at ±
√

1/L and a coincident pair of roots at r = 0. The

roots at r = 0 are artificial, however, since ρ2 = r2 for K(Λ), and hence grr =

r2/(−Lr4 + r2) = (−Lr2 + 1)−1. Only the roots ±
√

1/L persist. In can be shown

that, in the maximally-extended de Sitter spacetime, the horizons associated to each

of these roots are identified, and hence form the unique cosmological horizon (see [3]).

In Schwarzschild-de Sitter K(M,Λ), the horizon function is −Lr4 + r2 − 2Mr,

and so the radial Boyer-Lindquist component is grr = r/(−Lr3 + r − 2M). In the

event that the denominator has three roots, one is negative and two are positive.

The smaller of the two positive roots is the generalization of the Schwarzschild radius

from the asymptotically-flat Schwarzschild geometry. As is commonly known, the

Schwarzschild radius (= 2M when Λ = 0) is the event horizon, for geodesics may

cross it only in the ingoing direction, towards the singularity at r = 0, and may never

return. Null geodesic coordinate systems that pass smoothly over this horizon can be

constructed (e.g. Kruskal coordinates, see [8]), and so the metric failure is artificial.

As in de Sitter spacetime, the larger positive root identifies with the negative one to

form the cosmological barrier. With respect our labelling of zeros of ∆r, these roots

corresponds to r−−, r+, and r++, with r+ as the Schwarzschild radius. The horizon

structure for Reissner-Nordström-de Sitter is no different (although the cosmological

horizon applies more generally to also halt charged particle trajectories, which are

extremal with respect to some action but not geodesic).

Introducing a > 0, we regain the third (and smallest) positive root r−, assuming

the parameter choices allow four real roots to exist. The Kerr-specific hypersur-
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face {(t, r−, θ, ϕ)} is a Cauchy surface, that is, a surface penetrable by a particle at

most once, but not necessarily in an ingoing direction (see [8] and [10]). In [10], the

Boyer-Lindquist coordinates are replaced by null geodesic Kerr-star coordinates that

pass smoothly over both r±, showing that these are coordinate singularities but not

metric singularities. In concordance with the non-rotating case, the r+ hypersurface

supplies the event horizon of the rotating black hole, while the identified roots r−−

and r++ supply the cosmological horizon. When r−− and r++ are left unidentified,

we can imagine the r++ surface dividing K(a, e,M,Λ) roughly into a “Kerr” half (for

r < r++) and a “de Sitter” half (for r > r++).

The following definitions (which generalize those made in [10]) help us to classify

the location of a spacetime event relative to the horizons.

Definition 1.3. The set of all spacetime events (t, r, ϕ, θ) with

• r > r++ is the de Sitter block ;

• r+ < r < r++ is the Boyer-Lindquist block I ;

• r− < r < r+ is the Boyer-Lindquist block II ;

• r < r− and r 6= r−− is the Boyer-Lindquist block III.

The four blocks are disjoint, and no horizon is contained in a block. By definition,

block III skips over the negative horizon, but includes the curvature singularity Σ.
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As r−− and r++ are identified in the maximally-extended spacetime, the region of

block III with r < r−− is actually contained in block I, while the de Sitter block is

contained in the region of block III with r > r−−. In this way, referring to the blocks

collectively as the Boyer-Lindquist blocks does not exclude the de Sitter block. For

convenience, we will often write dS for the de Sitter block, and I, II, and III for the

others.

In Chapter 3 especially, the definitions of the blocks will help us to organize our

study of particle orbits.
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Chapter 2

Integrability of the equations of

motion

In the relativistic theory of mechanics, particles moving under the gravitational and

electromagnetic influence of a spacetime are constrained to nonspacelike curves min-

imizing the action of the Lagrangian determined by the electromagnetic and metric

fields. We call these minimizers spacetime orbits or trajectories. Referring to such a

curve as timelike, null, or spacelike is well-defined, since as we shall see, the tangent

vectors along an action-minimizer are of invariant causal character. (Therefore, a

spacelike minimizer is wholly unphysical, for all of its velocity vectors lie outside the

nullcones of the tangent spaces to which they belong.)

The Lagrangian for this variational problem (see [12]) is given by

Lq(s, x
j, ẋj) =

1

2
gabẋ

aẋb − qAaẋa, (2.1)

where A is a choice of potential whereby (g, A) is a solution of the source-free Einstein-

Maxwell equations (1.12). Such a choice is made in (1.11). The number q is a real

parameter fixing the charge of the geodesics. (We must not confuse this number
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with the charge e per unit mass of the spacetime itself.) For a particle of charge q,

we obtain its possible trajectories as solutions of the second-order system of Euler-

Lagrange equations arising from (2.1). In the special case q = 0 corresponding to

photon and neutral-particle orbits, the Euler-Lagrange equations are the familiar

geodesic equations

(
xk
)′′

+ Γkij
(
xi
)′ (

xj
)′

= 0, (2.2)

where the derivatives ′ ≡ ∂

∂s
are taken with respect to an affine parameter s, and

where the Γkij are the Christoffel symbols coupled to the metric. We are right, how-

ever, to be wary of the seemingly simplistic appearance of these equations. They are

complicated enough to rarely yield to exact solubility, and this poses an obstacle to

our study of test matter dynamics.

Alternatively, it is possible to construct a system of first-order differential equa-

tions amongst whose families of solutions we find all those solutions of the second-

order geodesic equations. Such a system arises whenever we have access to sufficiently-

many so-called first integrals—quantities that are necessarily conserved along action-

minimizing curves.

2.1 First integrals

Consider an action-extremizing problem on a manifold M, that is, the problem of

finding extremal curves (γ(s), γ′(s)) ⊂ T (M) of the action

A[γ(s)] =

∫ s1

s0

L(s, γ(s), γ′(s))ds

for a given Lagrangian L.
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Definition. A first integral for the solutions of an action-extremizing problem on a

manifold M is a smooth function f : T (M)→ R such that for each solution γ : Iγ →M

(Iγ ⊂ R), the function s 7→ f(γ(s), γ′(s)) is a constant, denoted by fγ or f(γ).

The smooth assignment of a constant k = f(γ) to each solution γ determines a

first integral T (M)→ R, v 7→ f(γv), where γv is the extremizing curve with tangent

vector v ∈ Tγ(0)M. In this way, a first integral f becomes a first-order differential

equation for the coordinates of γ, with additive constant k = f(γ).

We consider coordinates (x1, . . . , xn, x1′, . . . , xn′) on the tangent bundle T (M) in

which the xk are functions of the parameter s and the xk
′
are the derivatives of the xk

with respect to s. We introduce canonical coordinates (x1, . . . , xn, p1, . . . , pn) on the

cotangent bundle T ∗(M) by means of a Legendre transformation, defined fibre-wise

by

xk
′ 7→ ∂L

∂xk ′
=: pk(x

k ′). (2.3)

In this way, the conjugate momenta pk in T ∗(M) depend upon the generalized veloc-

ities xk
′

in T (M). The inverse Legendre transformation is

pk 7→
∂H

∂pk
= xk

′
(pk),

where H : T ∗(M)→ R is the Hamiltonian derived from the Lagrangian. From these

transformations, we obtain Hamilton’s equations: xk
′
= ∂H/∂pk and p′k = −∂H/∂xk.

If a smooth, real-valued function f is defined on T ∗(M), then we may view it as

a function of the xk
′

by the dependence in (2.3). Subsequently, we may ask how f

varies with the parameter s of an extremizing curve. If
d

ds
f(xk, pk) = 0 along each

curve, then f is a first integral for the variational problem.
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Exploiting the cotangent bundle representation of first integrals, we have at our

disposal an extremely useful tool for identifying first integrals:

Lemma 2.1. A function f : T ∗(M) → R is a first integral if and only if it is in

involution with the Hamiltonian H, that is, if and only if H and f Poisson commute.

Proof. Applying Hamilton’s equations xk
′
= ∂H/∂pk and p′k = −∂H/∂xk, we have

d

ds
f(xj, pj) =

n∑
k=1

(
∂f

∂pk

dpk
ds

+
∂f

∂xk
dxk

ds

)
=

n∑
k=1

(
∂f

∂xk
∂H

∂pk
− ∂f

∂pk

∂H

∂xk

)
= {f,H}.

An immediate corollary of this lemma is that, since the Poisson bracket {−,−} is

skew-symmetric, {H,H} = 0 and so the Hamiltonian itself is a first integral. While

we may proceed to collect further first integrals, we should discuss the actual advan-

tages of possessing them in the first place. To this end, we cite Liouville’s theorem

as found in [1]:

Theorem 2.1. (Liouville-Arnol’d) Suppose that f1, . . . , fn are first integrals for

a Hamiltonian H : T ∗(M) → R, where dimT ∗(M) = 2n. Consider a level set

Mc = {x ∈ T ∗(M) : fi(x) = ci, i = 1, . . . n}, such that df1∧· · ·∧dfn 6= 0 at every point

of Mc (so that the fi are functionally independent on Mc). If the fi pairwise Poisson

commute, then the Hamiltonian flow on Mc is completely integrable (by quadratures).

The theorem can be interpreted as saying that, for a 2n-dimensional Hamiltonian

system with n Poisson-commuting first integrals, those solutions γ(s) whose constants

f1(γ) = c1, . . . , fn(γ) = cn determine a level set Mc on which the fi are functionally
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independent are solutions of the first-order system constructed from the first integrals.

(In other words, these solutions are not lost in considering the first-order system in

lieu of the higher-order Euler-Lagrange system.)

We apply the integrability theory for Hamiltonian systems to the problem of

determining particle orbits in the vicinity of a Kerr-Newman-de Sitter singularity.

Stated beforehand in (2.1), the Lagrangian for particle orbits in K is

Lq(s, x
j, ẋj) =

1

2
gabẋ

aẋb − qAaẋa, (2.4)

which we differentiate by ẋa to obtain the conjugate momenta pa = gabẋ
b− qAa. (We

recall the convention that derivatives with respect to the parameter s are denoted

equivalently by dots and primes.) Furthermore, the Hamiltonian takes the form

H(xj, pj) =
1

2
gab(pa + qAa)(pb + qAb) (2.5)

in terms of the components of the contravariant metric g−1 = gab∂a ⊗ ∂b and of the

potential one-form A = Aadx
a. When we transform the momenta pa to functions

gabẋ
b − qAa on the tangent spaces, we are left with

H =
1

2
gabgabgabẋ

aẋb =
1

2
δaagabẋ

aẋb =
1

2
gabẋ

aẋb =
1

2
〈γ′, γ′〉 .

Thus, the scalar product of a minimizer’s tangent vector with itself remains con-

stant along the curve, for 〈γ′, γ′〉 and the first integral H are scalar multiples of each

other. In particular, a minimizer has a well-defined causal character. If γ′ is timelike

(or null or spacelike) at a point then it is timelike (or null or spacelike) at every point

p = γ(s). We refer to the first integral q := 〈γ′, γ′〉 = 2H as the rest mass of the

particle travelling along the curve. The constancy of q therefore represents the con-

servation of the particle’s mass. (We set m2 := −q so that timelike curves correspond

to particles of real mass, lightlike curves to massless particles, and spacelike curves



30 Integrability of the equations of motion

to particles of imaginary mass.)

The existence of Killing vector fields for K gives rise to two other independent first

integrals. The Poisson bracket of a conjugate momentum pk with the Hamiltonian is

{pk,H} =
∂H

∂xk
.

Since the components of both the metric and the potential one-form are independent

of the coordinate functions t and ϕ, we have
∂H

∂t
=
∂H

∂ϕ
= 0. It follows from Lemma

2.1 that the momenta pt and pϕ are first integrals for the minimizers of the action∫
L ds. Furthermore, as momenta Poisson-commute amongst themselves, and since

they are functionally independent as coordinates on T ∗(K), pt and pϕ are independent

in the sense required by Liouville’s theorem. We call the first integral pt(γ) the en-

ergy of the particle travelling along γ, and write E := −pt. We call pϕ(γ) the angular

momentum of the particle—which is not to be confused with the angular momentum

a of the spacetime itself. We write L := pϕ. The constancy of these first integrals

reflects the conservation of energy and of (axial) angular momentum of a particle

moving under the gravitational and electromagnetic influence of spacetime.

Thus far, we have a set {q = 2H, E = −pt, L = pϕ} of three first integrals in in-

volution. To achieve the Liouville-Arnol’d integrability of the Hamiltonian system,

we need to identify at least one more first integral, in involution with the others.

The existence of this fourth first integral, referred to in the literature ([10], [12], etc.)

as Carter’s constant, is not so obvious. We can, however, motivate its discovery by

expanding the first integral q = 〈γ′, γ′〉 and writing it in terms of the canonical vector

fields V and W .
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2.2 Carter’s constant and first-order equations for

r and θ

Our quest for a fourth first integral begins by writing the invariant mass q = 〈γ′, γ′〉

in terms of the Boyer-Lindquist functions r(s) and θ(s), and their first derivatives.

First, we examine the linear combination

Ψ :=
〈γ′, V 〉
〈V, V 〉

V +
〈γ′,W 〉
〈W,W 〉

W. (2.6)

We use the identities in lemmas 1.1 and 1.2, as well as our knowledge that ∂r, ∂θ, V ,

and W are pairwise orthogonal, to expand (2.6) as

Ψ =
t′ 〈∂t, V 〉+ ϕ′ 〈∂ϕ, V 〉

−ρ2∆r/λ2
V +

t′ 〈∂t,W 〉+ ϕ′ 〈∂ϕ,W 〉
ρ2S2∆θ/λ2

W

=
−t′∆r/λ

2 + ϕ′aS2∆r/λ
2

−ρ2∆r/λ2
V +

−t′aS2∆θ/λ
2 + ϕ′(r2 + a2)S2∆θ/λ

2

ρ2S2∆θ/λ2
W

=
−t′∆r/λ

2 + ϕ′aS2∆r/λ
2

−ρ2∆r/λ2
V +

−t′aS2∆θ/λ
2 + ϕ′(r2 + a2)S2∆θ/λ

2

ρ2S2∆θ/λ2
W

=
t′ − aS2ϕ′

ρ2
V +

(r2 + a2)ϕ′ − at′

ρ2
W

=
(V − aW )t′ + ((r2 + a2)W − aS2V )ϕ′

ρ2
.

But V − aW = ρ2∂t and (r2 + a2)W − aS2V = ρ2∂ϕ, and so

〈γ′, V 〉
〈V, V 〉

V +
〈γ′,W 〉
〈W,W 〉

W = t′∂t + ϕ′∂ϕ.

Therefore, the velocity vector field of a curve, in Boyer-Lindquist coordinates, is

γ′ = r′∂r + θ′∂θ +
〈γ′, V 〉
〈V, V 〉

V +
〈γ′,W 〉
〈W,W 〉

W.

It follows that

〈γ′, γ′〉 = (r′)2grr + (θ′)2gθθ +
〈γ′, V 〉2

〈V, V 〉2
〈V, V 〉+

〈γ′,W 〉2

〈W,W 〉2
〈W,W 〉 .
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Inserting the definitions of grr and gθθ, we have

〈γ′, γ′〉 = (r′)2 ρ
2

∆r

+ (θ′)2 ρ
2

∆θ

+
〈γ′, V 〉2

〈V, V 〉
+
〈γ′,W 〉2

〈W,W 〉

= (r′)2 ρ
2

∆r

+ (θ′)2 ρ
2

∆θ

− 〈γ
′, V 〉2

ρ2∆r/λ2
+
〈γ′,W 〉2

ρ2S2∆θ/λ2
,

and so we may write

q ρ2 =
ρ4r′2 − λ2 〈γ′, V 〉2

∆r

+
ρ4θ′2 + λ2 〈γ′,W 〉2 /S2

∆θ

. (2.7)

As q assigns a (finite) constant to each action-minimizing curve, and since ρ2 =

r2 +a2 cos2 θ is defined everywhere in spacetime, it follows that the right-hand side of

(2.7) must also be defined everywhere in K, even on horizons and the axis. Of great

interest to us is the minimal coupling of r and θ in this equation. Upon our writing

out the left-hand side as q r2 + q a2C2, a slight rearrangement of (2.7) gives

q r2 − ρ4r′2 − λ2 〈γ′, V 〉2

∆r

= −q a2C2 +
ρ4θ′2 + λ2 〈γ′,W 〉2 /S2

∆θ

. (2.8)

On the left-hand side, ∆r is a function only of r alone, whereas on the right-hand

side, ∆θ, S
2, and C2 are functions of θ alone. (We remind ourselves that the symbol

λ, which appears on both sides, is just the positive constant 1 + 1/3Λa2.) If (2.8)

were fully separated, with the left side depending only on r and the right side only

on θ, then each side would necessarily be constant. As was shown by B. Carter ([2]),

this is in fact the case.

Theorem 2.2. (Carter) For each K-curve γ minimizing the action of (2.1), there

exists a constant K = Kγ such that, if q is the rest mass of the curve, then

K = q r2 − ρ4r′2 − λ2 〈γ′, V 〉2

∆r

= −q a2C2 +
ρ4θ′2 + λ2 〈γ′,W 〉2 /S2

∆θ

. (2.9)
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For the case of the electrically-neutral, asymptotically-flat Kerr spacetimes K(a,M),

a surprisingly simple proof of this fact is due to B. O’Neill ([10]). In this case,

At = Aϕ = 0 and the Lagrangian becomes

L(s, xj, ẋj) =
1

2

(
lim
e,Λ→0

gab

)
ẋa ẋb.

Applying the argument of O’Neill, we may integrate directly the corresponding Euler-

Lagrange equations for θ′ and r′ to find K as a constant of integration. This method

does not generalize to K(a, e,Λ,M) with nonzero charge e (and q) and nonzero cos-

mological constant Λ. Instead, we determine K by studying the Hamiltonian

H(xj, pj) =
1

2
gab(pa + qAa)(pb + qAb).

We suppose for the moment that the Hamiltonian can be partially separated in

the following manner:

H =
1

2

Hr +Hθ

Ur + Uθ
, (2.10)

where Ur and Uθ are single-variable functions of r and θ, respectively, and where

• Hr is independent of pθ and of all Boyer-Lindquist coordinates save for r;

• Hθ is independent of pr and of all Boyer-Lindquist coordinates save for θ.

Lemma 2.2. If the Hamiltonian H partially separates in the manner described above,

then the function K : T ∗(K)→ R defined by

K =
UrHθ − UθHr

Ur + Uθ
(2.11)

is in involution with H.

The proof of this lemma can be found in [3].
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Assuming that H separates as desired, we would have K as a fourth first integral

for the geodesics in K. We now complete the proof of Carter’s theorem by showing

that H does indeed separate as desired.

Proof. (Theorem 2.2)

To determine whether the Hamiltonian admits the special form (2.10), we must com-

pute the contravariant metric g−1 : T ∗(K)2 → C∞(K). As the matrix for g, in

Boyer-Lindquist coordinates, is of the form

gab =


α 0 0 0

0 β 0 0

0 0 η σ

0 0 σ ψ

 ,

it has an inverse of the equally sparse block matrix form

gab =


1/α 0 0 0

0 1/β 0 0

0 0 ψ/d − σ/d

0 0 − σ/d η/d

 ,

where d := ψη − σ2. As η = gtt, ψ = gϕϕ and σ = gtϕ, the determinant d can be

readily calculated and simplified as

d = −∆r∆θS
2

λ4
, (2.12)

which is only zero on horizons or poles (where Boyer-Lindquist coordinates fail in any

case).
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Referring to definition (1.11) in the introduction, we recall the particular choice

of potential with which g solves the source-free Einstein-Maxwell equations:

A =
er

λρ2

[
dt− aS2dϕ

]
.

Choosing α = grr, β = gθθ, and η, ψ, and σ as above, we may write down the

Hamiltonian (in terms of the covariant metric components) as

H =
1

2

[
p2
r

grr
+
p2
θ

gθθ
+
gϕϕ(pt + qAt)

2

d
+
gtt(pϕ + qAϕ)2

d

]
− gtϕ(pt + qAt)(pϕ + qAϕ)

d
.

Substituting At, Aϕ, and (1.1)-(1.5) into this expression, we obtain after simplifi-

cation

2ρ2H = ∆rp
2
r + ∆θp

2
θ

+λ2

(
a2S2

∆θ

− (r2 + a2)2

∆r

)(
pt + q

er

λρ2

)2

+λ2

(
1

S2∆θ

− a2

∆r

)(
pϕ − q

eraS2

λρ2

)2

+2λ2

(
a

∆θ

− a(r2 + a2)

∆r

)(
pt + q

er

λρ2

)(
pϕ − q

eraS2

λρ2

)
. (2.13)

Inspecting the terms in (2.13), we find that the desired near-separability comes to

fruition as

Hr(r, pr, pt, pϕ) = ∆rp
2
r −

λ2

∆r

[
(r2 + a2)pt + apϕ +

qer

λ

]2

(2.14)

Hθ(θ, pθ, pt, pϕ) = ∆θp
2
θ +

λ2

∆θS2

[
aS2pt + pϕ

]2
(2.15)

Ur(r) = r2 (2.16)

Uθ(θ) = a2C2, (2.17)

so that Ur + Uθ = ρ2 and Hr +Hu = 2ρ2H. Subsequently, the function

K =
UrHθ − UθHr

Ur + Uθ
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is a constant of motion, as per Lemma 2.2. We may rewrite this expression as

K =
UrHθ − UθHr + (UrHr − UrHr)

Ur + Uθ

=
Ur(Hr +Hθ)−Hr(Ur + Uθ)

Ur + Uθ
= Ur(2H)−Hr

= qUr −Hr. (2.18)

With the definition

P(r) := −
(

(r2 + a2)pt + apϕ +
qer

λ

)
, (2.19)

we see from (2.18) and (2.14) that

K = q r2 −∆rp
2
r +

λ2P2

∆r

.

Transforming to tangent space coordinates, that is, replacing pr with grrr
′−qAr =

ρ2

∆r

r′, we have

K = q r2 − ρ4r′2 − λ2P2

∆r

.

Now, we examine −P(r) in the tangent space coordinates:

−P = (r2 + a2)(gttt
′ + gtϕϕ

′ − qAt) + a(gϕϕϕ
′ + gϕtt

′ − qAϕ) +
qer

λ

=
〈
t′∂t + ϕ′∂ϕ, (r

2 + a2)∂t
〉

+ 〈t′∂t + ϕ′∂ϕ, a∂ϕ〉+ q
(
−(r2 + a2)At − aAϕ +

er

λ

)
= 〈t′∂t + ϕ′∂ϕ, V 〉+ q

(
−(r2 + a2)

er

λρ2
+ a2S2 er

λρ2
+
er

λ

)
= 〈t′∂t + ϕ′∂ϕ, V 〉+ q

(
−er
λ

+
er

λ

)
,

so that any terms associated with the electromagnetic potential vanish. Since V , ∂r,

and ∂θ are mutually orthogonal (with respect to the metric), we may write

−P = 〈r′∂r + θ′∂θ + t′∂t + ϕ′∂ϕ, V 〉 = 〈γ′, V 〉 .
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We conclude that

K = q r2 − ρ4r′2 − λ2 〈γ′, V 〉2

∆r

,

as desired. Alternatively, we define the θ-dependent function

D(θ) := pϕ + ptaS
2. (2.20)

Since D(θ) = 〈γ′,W 〉, we may use K = Hθ − Uθq to write

K = −q a2C2 +
ρ4θ′2 + λ2 〈γ′,W 〉2 /S2

∆θ

,

thereby completing the proof.

Since K is a function neither of coordinate time t nor of the Boyer-Lindquist lon-

gitude ϕ, we see that it Poisson commutes with E = −pt and L = pϕ for the same

reason that H commutes with them. It follows that {q, E ,L,K} is a complete set of

four first integrals in mutual involution. Upon obtaining first-order equations from

them, we will remark upon their functional independence (on level sets), as required

by Theorem 2.1.

Instead of writing K = q r2 − ρ4r′2 − λ2 〈γ′, V 〉2

∆r

, we prefer to write

K = q r2 − ρ4r′2 − λ2P2

∆r

, (2.21)

because the function P(r) = (r2 + a2)E − aL − qer/λ involves the energy and the

angular momentum of the particle, and so using equation (2.21), we may calculate K

in terms of the other first integrals E , L, and q. Similarly, we write

K = −q a2C2 +
ρ4θ′2 + λ2D2/S2

∆θ

(2.22)

for D(θ) = L − EaS2. A slight rearrangement of these equations yields the following
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Corollary 2.1. Coupled to each particle trajectory γ in Kerr-Newman-de Sitter

spacetime K is a constant K = Kγ which, together with the coordinates r and θ

of γ, satisfies the equations

R(r) := ρ4r′2 = ∆r

(
q r2 −K

)
+ λ2P2 (2.23)

Θ(θ) = ρ4θ′2 = ∆θ

(
q a2C2 +K

)
− λ2D2/S2. (2.24)

Appropriately, we call these equations the first integral equations for (the Boyer-

Lindquist coordinates) r and θ. They are also known in the literature (e.g. [10]) as

the radial equation and colatitude equation, respectively.

2.3 First-order equations for t and ϕ

Now that we have first-order equations for r(s) and θ(s), we wish to use the pair E , L

to construct a system of first-order differential equations for the coordinates t(s) and

ϕ(s) of an arbitrary orbit γ(s). The definitions of these integrals are themselves a

pair of first-order equations for t and ϕ, but the equations are coupled: each equation

involves both t and ϕ explicitly. The first-order coupled equations are

−E + qAt = t′gtt + ϕ′gtϕ (2.25)

L+ qAϕ = t′gtϕ + ϕ′gϕϕ. (2.26)

Since the determinant of the matrix of coefficients,

gttgϕϕ − g2
tϕ = −∆r∆θS

2

λ4
,

is nonzero away from coordinate singularities, the system can be solved exactly for

t′ and ϕ′. To find the solution for t′, we subtract gtϕ times equation (2.26) from gϕϕ

times (2.25). We are left with

t′(gttgϕϕ − g2
tϕ) = −gϕϕE − gtϕL+ q(gϕϕAt − gtϕAϕ),
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or

t′
∆r∆θS

2

λ4
= gϕϕE + gtϕL+ q(gtϕAϕ − gϕϕAt).

Inserting the actual Boyer-Lindquist components and performing a preliminary sim-

plification, we obtain

t′
∆r∆θS

2

λ4
=

(r2 + a2)∆θS
2

λ2ρ2

(
(r2 + a2)E − aL − qer

λ

)
+
a∆rS

2

λ2ρ2

(
L − EaS2

)
,

that is,

t′
∆r∆θS

2

λ4
=

(r2 + a2)∆θS
2

λ2ρ2
P +

a∆rS
2

λ2ρ2
D.

Rearranging this for t′, we get

t′ =
λ2

ρ2

(
(r2 + a2)P

∆r

+
aD
∆θ

)
.

To find an equation for ϕ′ that is independent of t′, we mimic this procedure

and subtract gtt times equation (2.26) from gtϕ times (2.25). After the necessary

simplifications, we arrive at

ϕ′ =
λ2

ρ2

(
D

S2∆θ

+
P
∆r

)
. (2.27)

We refer to the decoupled system of equations

t′ =
λ2

ρ2

(
(r2 + a2)P

∆r

+
aD
∆θ

)
(2.28)

ϕ′ =
λ2

ρ2

(
D

S2∆θ

+
P
∆r

)
(2.29)

as the first integrals equations for t and ϕ, respectively.

Equations (2.28), (2.29), (2.23), and (2.24) comprise a system of first-order differ-

ential equations whose solutions are minimizers of the action of (2.1). Amongst the

solutions of these equations, do we find all the minimizers? In other words, have we
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lost any solutions of the second-order Euler-Lagrange equations? By Theorem (2.1),

we necessarily retain those solutions γ(s) whose constants of motion correspond to

level sets Kc = {x ∈ T ∗(K) : q (x) = cq , E(x) = cE ,L(x) = cL,K(x) = cK} on which

the first integrals are functionally independent. So far, we only know that E and L are

independent in this sense, owing to the fact that they are momenta. Our goal in this

chapter, however, was not only to prove the existence of four Poisson-commuting first

integrals for our Hamiltonian system, but also to construct them explicitly. Having

actually constructed them, we may answer the question of “lost solutions” in a dif-

ferent way: by differentiating the four first-order equations to check that we retrieve

the Euler-Lagrange equations themselves, which are

d

ds

(
gkbẋ

b − qAk
)

=
1

2
gab,kẋ

aẋb − qAa,kẋa, for k = 1, . . . , 4.

The Euler-Lagrange equations corresponding to t or ϕ have right-hand sides identi-

cally zero, since the metric components and the potential components are t-independent

and ϕ-independent, and so we see immediately that (2.25) and (2.26) are integrated

Euler-Lagrange equations with additive constants E and L. The radial and colatitude

equations do not yield to inspection so easily, but with effort they can be shown to

be integrated Euler-Lagrange equations for r and θ with constants of integration q

and K. Having done this, we can be confident that no orbits have been lost along

the way. (Knowing that the first integral equations determine all the minimizers, we

may conclude from the form of these equations that the Kc ⊂ T ∗(K) on which the

first integrals are functionally independent are precisely those level sets determined

by numbers (cq , cE , cL, cK) for which R(r)|Kc ,Θ(θ)|Kc ≥ 0.)

While each minimizer of (2.1) is a solution of the first integral equations (2.28),

(2.29), (2.23), and (2.24) for some four-tuple (q , E ,L,K), is the converse true? For

any such four-tuple is there a minimizer whose conserved quantities are these num-

bers? A minimizer is uniquely determined by its starting position and velocity. When
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a starting position (t0, r0, θ0, ϕ) and constants E and L are supplied, the system of

equations (2.25) and (2.26) for t′ and ϕ′ is linear and invertible wherever Boyer-

Lindquist coordinates are valid. Hence, at each starting position (t0, r0, θ0, ϕ0) in K,

the pair (E ,L) determines uniquely the initial data t′(0) and ϕ′(0) of a minimizing

curve and vice-versa. The starting position and the pair (E ,L) also determine P(r0)

and D(θ0) in the radial and colatitude equations, so that equations (2.23) and (2.24)

become linear equations for r′2 and θ′2 in q and K. Given numbers q ,K such that

R(r0),Θ(θ0) ≥ 0, we may then solve for r′(0) and θ′(0)—but not uniquely, since

(2.23) and (2.24) are equations for the squares of r′ and θ′. Hence, for each eight-

tuple (t0, r0, θ0, ϕ0, q , E ,L,K) such that R(r0),Θ(θ0) ≥ 0, there are four minimizing

curves departing from (t0, r0, θ0, ϕ0), depending on the signs of r′(0) and θ′(0).

Remark 2.1. Are the right-hand sides of (2.24) and (2.29) singular at θ = 0, π?

While we might suspect so, the fact is that the equations do not fail on the axis.

Since L = gϕϕϕ
′ + gϕtt

′ − qAϕ, and since gtϕ, gϕϕ, and Aϕ are all proportional to S2,

we have that D(θ) = L − EaS2 is proportional to S2. Therefore, D/S2 is a quotient

whose numerator is equal to S2 times a function D∗(θ) which does not blow up as

S2 → 0. Upon cancelling S2 from the top and bottom, the quotient is just D∗(θ).

The verification of the well-behavedness of (2.29) on A reveals a fact about the

motion of test particles in K. Since L is written as a combination of functions pro-

portional S2, it must be zero on the axis. (This agrees with our intuition, as axial

angular momentum is taken about A.) Since L is fixed along every action-minimizing

trajectory, we are forced to conclude that every particle crossing the axis must have

zero angular momentum. This already places a severe restriction on the types of or-

bits that may pass through the axis, and we will apply this fact in the next chapter,

where we shed light on the dynamics implied by the first-order equations.
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Chapter 3

Dynamics of charged particles

In this chapter, we examine the dynamical implications of the first-order equations

(2.28), (2.29), (2.23), and (2.24) derived in the previous chapter. Our goal is not

to completely exhaust all the possible orbits that light and charged test matter can

achieve under the gravitational and electromagnetic impetus of a Kerr-Newman-de

Sitter-type spacetime. Rather, we strive to emphasize the differences between or-

bits in the general Kerr-Newman-de Sitter setting and those in electrically-neutral,

asymptotically-flat Kerr spacetimes, which are treated almost exhaustively in [10].

Glimpses of the differences arise naturally when we seek to understand the geometric

and physical meanings of Carter’s constant K.

3.1 Principal orbits

In the previous chapter, we emphasized the physical interpretations of q (= −m2) as

mass, E as energy, and L as (axial) angular momentum. These beg us, in turn, to

find meaning for Carter’s constant—geometric, physical, or both. We start with a

geometric one.
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As a preliminary step, we notice that gθθ = ρ2/∆θ is everywhere positive—save

for at the ring, where it vanishes. Similarly, 〈W,W 〉 = ρ2S2∆θ/λ
2 is positive away

from the ring and axis. Let us consider a trajectory γ : I → K− (H∪Σ∪A), that is,

an orbit contained in a Boyer-Lindquist block that steers clear of poles and the ring.

At every point of K − (H ∪ Σ ∪ A), gθθ and W are positive, and so at each point p

visited by γ, the two-dimensional vector subspace Span{∂θ,W} of TpK is spacelike.

The orthogonal plane Π := Span {∂r, V } at each point is necessarily timelike. We call

the timelike planes Π the principal planes along γ. In the special case where γ′ ∈ Π

at each point of γ, we refer to γ a principal orbit.1

We fix the symbols γ′Π and γ′⊥ for the components of γ′ in Π and Π⊥ = Span {∂θ,W},

respectively. To emphasize that the scalar product on Π⊥ is positive definite, we write

the line element 〈v, v〉 as |v|2 when v ∈ Π⊥. We now reveal a geometric meaning of

K, as a measure of the relation of γ′ to the principal planes Π along γ.

Lemma 3.1. If γ is the orbit of a particle with mass q and Carter’s constant K, then

K = ρ2 |γ′⊥|
2 − q a2C2 = q r2 − ρ2 〈γ′Π, γ′Π〉 . (3.1)

Proof. We consider the formula for γ′ derived at the beginning of Section 2.2, namely

γ′ = r′∂r + θ′∂θ +
〈γ′, V 〉
〈V, V 〉

V +
〈γ′,W 〉
〈W,W 〉

W.

Accordingly, the component of γ′ in Π⊥ = Span {∂θ,W} is

γ′⊥ = θ′∂r +
〈γ′,W 〉
〈W,W 〉

W,

1We borrow this terminology from [10], where the analogous definition is made in the special case

of geodesic orbits.
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so that

|γ′⊥|
2

= 〈γ′⊥, γ′⊥〉 = θ′2gθθ +
D2

〈W,W 〉

= θ′2
ρ2

∆θ

+
D2λ2

ρ2S2∆θ

.

We may solve for the square of θ′:

θ′2 =
∆θ

ρ2

(
|γ′⊥|

2 − D2λ2

ρ2S2∆θ

)
.

Inserting this expression into the colatitude equation (2.24) gives us

K = −q a2C2 + ∆−1
θ

[
∆θρ

2

(
|γ′⊥|

2 − D2λ2

ρ2S2∆θ

)
+
D2λ2

S2

]
= −q a2C2 + ∆−1

θ

[
|γ′⊥|

2
∆θρ

2 − D
2λ2

S2
+
D2λ2

S2

]
= −q a2C2 + ρ2 |γ′⊥|

2
.

Since T (K) = Π⊕ Π⊥, the invariant mass of γ decomposes as

q = 〈γ′Π, γ′Π〉+ |γ′⊥|
2
.

Applying this to the new formula for K, we arrive at

K = ρ2 |γ′⊥|
2 −

(
〈γ′Π, γ′Π〉+ |γ′⊥|

2
)
a2C2

= (r2 + a2C2) |γ′⊥|
2 −

(
〈γ′Π, γ′Π〉+ |γ′⊥|

2
)
a2C2

= r2 |γ′⊥|
2 − 〈γ′Π, γ′Π〉 a2C2

= r2 |γ′⊥|
2

+
(
r2 〈γ′Π, γ′Π〉 − r2 〈γ′Π, γ′Π〉

)
− 〈γ′Π, γ′Π〉 a2C2

= r2
(
|γ′⊥|

2
+ 〈γ′Π, γ′Π〉

)
− (r2 + a2C2) 〈γ′Π, γ′Π〉

= r2q − ρ2 〈γ′Π, γ′Π〉 .
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As r and θ are global functions, so too are these expressions for K. Since K ap-

pears here as the difference of two quadratic forms (q and 〈vΠ, vΠ〉), K itself can be

regarded as a quadratic form on each fibre of T (K). Moreover, this form is positive

definite, as 〈vΠ, vΠ〉 is a negative definite inner product on the timelike plane Π.

These expressions for Carter’s constant also bring to light the following facts con-

cerning K-orbits of the three causal types:

Corollary 3.1. Let γ be an orbit in K.

1. If γ is timelike, then K ≥ 0; K = 0⇔ γ is a principal equatorial orbit.

2. If γ is lightlike, then K ≥ 0; K = 0⇔ γ is principal.

3. If γ is spacelike, then K ≥ −q a2; K = −q a2 ⇔ γ is a principal orbit con-

strained to the axis.

Proof.

• In the case that q < 0, K = ρ2 |γ′⊥|
2 − q a2C2 is nonnegative, and is equal to

zero if and only if both |γ′⊥|
2 and cos2 θ are equal to zero.

• In the case that q = 0, K = ρ2 |γ′⊥|
2 is nonnegative, and vanishes if and only if

|γ′⊥|
2 is zero.
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• In the case that q > 0, K = ρ2 |γ′⊥|
2 − q a2C2 ≥ −qa2, and is equal to −qa2

whenever |γ′⊥|
2 = 0 and cos2 θ = 1.

While these results are not different from the analogous results in the K(a,M)

spacetimes (see [10]), we nevertheless use the corollary to expose crucial differences,

particularly in the way a particle may approach the ring singularity, Σ.

But in the meantime, we discuss the ways in which the t and ϕ coordinates of a

particle may evolve given initial data E and L.

3.2 Evolution of the time and longitude coordi-

nates

We remind ourselves of the first-order equations for t and ϕ:

t′ =
λ2

ρ2

(
(r2 + a2)P

∆r

+
aD
∆θ

)
ϕ′ =

λ2

ρ2

(
D

S2∆θ

+
P
∆r

)
.

As the simplest dynamics to understand are those of what we call “lazy” orbits—

particles with E = L = 0—we pay particular attention to them, and ask where the

differences arise when their motion is compared to that in K(a,M).

If a neutral particle (such as a photon) is devoid of energy or axial angular mo-

mentum, then P = D = 0 along its orbit. Consequently, t′ = ϕ′ = 0 by equations

(2.28) and (2.29). Such a particle remains frozen in time—coordinate time, not proper

time—and in its longitudinal position. Radial and colatitudinal motion may still be

possible, as equations (2.23) and (2.24) imply, at least when q and K are nonzero.
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Thus, to a distant observer who views the world through Boyer-Lindquist coordinates,

a particle with the attributes E = L = 0 may instantaneously vanish from his or her

line of sight, for any change of the particle’s latitude or radial position would oc-

cur without the elapse of Boyer-Lindquist time. However, the geodesics traversed by

lazy uncharged particles are necessarily trapped in special submanifolds of spacetime

called closed, totally-geodesic submanifolds. If a particle starts in such a submani-

fold, with an initial velocity tangent to it, then its orbit remains constrained to the

submanifold indefinitely. (More details on these submanifolds, including a proof of

this fact, can be found in [9].) It is also true that the set of fixed points of a space-

time isometry, as well as the set of fixed points of a Killing vector field, are closed,

totally-geodesic submanifolds. This makes both the axis A and the equatorial plane

E closed, totally-geodesic submanifolds. Furthermore, polar planes (hypersurfaces of

fixed t = t0 and ϕ = ϕ0) are closed and totally-geodesic, as well as the Kerr and de

Sitter horizons.

We suppose that a lazy, neutral geodesic is not trapped in H or A. It follows

that Boyer-Lindquist coordinates are valid, and so the first integral equations imply

L = E = 0 ⇔ P = D = 0 ⇔ t′ = ϕ′ = 0. The velocity vector γ′ is tangent to a

polar plane, and is therefore doomed to remain in it. The fates of the lazy neutral

geodesics are sealed in this characterization.

In Kerr(-de Sitter), these remarks are the end of the story for particles with no

energy or angular momentum. A key difference, however, arises in Kerr-Newman(-de

Sitter) geometry: when q 6= 0, L = E = 0 does not imply P = 0. In P , a linear

function of r, proportional to the charges q and e, persists even after L and E vanish.

Motion in the t and ϕ directions is still possible, and the first-order equations take
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the simple forms

t′ = −(r2 + a2)
qerλ

ρ2∆r

and

ϕ′ = − qerλ
ρ2∆r

in which the rates of progression along the t and ϕ axes are proportional to the charge

q. In particular, t′ and ϕ′ have the same sign. Based on the signs of ∆r in the Boyer-

Lindquist blocks, we can construct the following table for the sign of t′ and ϕ′ along

orbits with E = L = 0:

Table 3.1: Directions of travel along the t and ϕ axes for E(γ) = L(γ) = 0.

qe < 0 qe > 0

dS - +

I + -

II - +

(r > 0) III + -

(0 > r > r−−) III - +

(r < r−−) III + -
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For instance, a lazy particle with initial position in the de Sitter block and a

charge opposite in sign to the charge of the black hole will invariably move backwards

in Boyer-Lindquist time, and rotate in a direction opposite to that of the rotation of

the black hole. In agreement with the identification of r++ with r−−, the behaviours

exhibited in I and in the r < r−− region of III are the same. Furthermore, the be-

haviours exhibited in the de Sitter block and in the 0 > r > r−− region of III are the

same.

While much more can be said about the evolution of t and ϕ, particularly for the

much larger class of particles with energy and angular momentum, we instead focus

on unravelling the more complicated behaviour of the θ coordinate.

3.3 Evolution of the colatitude coordinate

While the first integral equations for the t and ϕ coordinates of a particle depend

only on the values of E and L, the radial and colatitude equations depend on all four

first integrals. However, information about the local evolution of r(s) and θ(s) may

be gleaned from one overriding fact about R(r) and Θ(θ): neither can be negative.

An immediate dynamical consequence of this is as follows:

Theorem 3.1. If a trajectory γ approaches the ring Σ, then it must have K = 0 and

an angular momentum proportional to its energy (specifically L = aE).

Proof. We define a first integral Q, dependent on the others, by

K = Q+ λ2(L − aE)2. (3.2)
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While Q, at first glance, may only be a shifted variant of Carter’s constant, the use-

fulness of this alternate form will become quite clear. Without confusion, we apply

the name “Carter’s constant” to Q, and let the symbols K and Q indicate the form

being used.

Now, if γ(s) → Σ as s → s∗ (where s∗ ≤ ∞), then necessarily lims→s∗ r(s) = 0

and lims→s∗ θ(s) = π/2. Since R(r(s)), Θ(θ(s)) ≥ 0 for all s ∈ R, it follows by the

continuity of the functions R and Θ as defined in Corollary 2.1 that R(0),Θ(π/2) ≥ 0.

But

R(0) = ∆r(0)(−K) + λ2P2

= −(a2 + e2)(Q+ λ2(L − aE)2) + λ2(a2E − La)2

= −(a2 + e2)Q− e2λ2(L − aE)2 − a2λ2(L − aE)2 − a2 + a2λ2(aE − L)2

= −(a2 + e2)Q− e2λ2(L − aE)2.

If we enforce the nonnegativity of this expression, then

Q ≤ −e
2λ2(L − aE)2

a2 + e2
,

which forces Q to be negative whenever L is different from aE . Examining Θ at

θ = π/2, we find the inequality

Θ(π/2) = ∆θ(π/2)(q a2C2(π/2) +K)− λ2D2(π/2)

S2(π/2)

= 1 · (0 +Q+ λ2(L − aE)2)− λ2(L − aES2(π/2))/12

= Q ≥ 0.

The two inequalities for Q are non-contradictory only when Q is zero, which

occurs only when L = aE . Subsequently, Carter’s constant K for this orbit is K =

Q+ λ2(L − aE)2 = 0.
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Taken together, the theorem and Corollary 3.1 indicate that the only material

(timelike) particles that can approach the ring are those that do so following princi-

pal trajectories in the equator. Similarly, the only photons that can approach Σ are

those that are principal. (The same corollary seems to suggest that a hypothetical

spacelike tachyon with K = 0 need not follow a special path to meet its destruction

at the ring.)

It is in these results that we begin to see characteristic differences between the

behaviour of action-minimizing curves in Kerr-Newman-de Sitter spacetime and, say,

that of geodesics in Kerr-de Sitter spacetime. In Kerr-de Sitter (or simply Kerr), the

upper bound on Q obtained in the preceding proof is zero since e2 = 0. Thus, we may

have Q = 0 without requiring L = aE , and consequently K may be greater than zero,

in which case a greater variety of timelike and null geodesics may be permitted into

the ring. As is remarked in [10] for curves in Kerr spacetime, “it is rare for a Kerr

geodesic to hit the ring singularity. By contrast, in Schwarzschild spacetime every

particle falling through the horizon inexorably meets the central singularity (unless

it perishes earlier).” The results above indicate that it is even less likely for a Kerr-

Newman(-de Sitter) orbit to enter the ring. Should the charge per unit mass of the

spacetime be even slightly different from zero, then the upper bound on Q is negative,

such that the only matter or light that can meet the ring must do so via the special

paths mentioned above. Furthermore, these restrictions come into effect regardless of

whether the particle is charged or not. Remarkably, the electromagnetic field seems

to affect all particles, repelling away from Σ all those with angular momentum L

different from aE . This strange phenomenon is an effect of the combined presence of

the black-hole rotation with the Maxwell field, for if a were zero, the e2 terms in the

upper bound on Q would necessarily cancel.
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If we consider the vanishing of rotation (but not necessarily of the cosmologi-

cal constant), then the upper bound on Q becomes −λ2L2. Consequently, the only

geodesics in Reissner-Nordström(-de Sitter) that meet the singularity—no longer a

ring but a point—are those with zero angular momentum. In particular, there are no

apparent energy restrictions on particles.

While the previous theorem provides us with a lot information concerning particle

behaviour, we can extract even more by writing the constant Q independently of K.

To achieve this, we make note of the following identity, which follows immediately

from the definition of ∆θ.

Lemma 3.2.

∆θ(L − aE)2 − (L − aES2)2

S2
= a2C2

(
L(L − aE)2 + E2 − L2

a2S2

)
,

where L := Λ/3.

Now, using the θ-formulation of K, we write

Q = K − λ2(L − aE)2

= −q a2C2 +
1

∆θ

[
ρ4θ′2 + λ2D2

S2

]
− λ2 ∆θ

∆θ

(L − aE)2

= −q a2C2 +
1

∆θ

[
ρ4θ′2 + λ2

(
(L − aES2)2

S2
−∆θ(L − aE)2

)]
.

By Lemma 3.2 we have

Q = −q a2C2 +
1

∆θ

[
ρ4θ′2 − λ2a2C2

(
L(L − aE)2 + E2 − L2

a2S2

)]
,

which we rearrange as

Q = T + V (3.3)
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for

T ((r, θ), θ′) :=
ρ4

∆θ

θ′2 (3.4)

and

V (θ) := −a2C2

[
q +

λ2

∆θ

(
L(L − aE)2 + E2 − L2

a2S2

)]
. (3.5)

As the expression L(L− aE)2 + E2 is a positive constant, we use a single symbol, N ,

to denote it. Under this convention, (3.5) becomes

V (θ) := −a2C2

[
q +

λ2

∆θ

(
N − L2

a2S2

)]
. (3.6)

The decomposition of Q as T + V answers the question of the physical meaning

of Carter’s constant. The functions T and V can be interpreted as rotational kinetic

and rotational potential energies, respectively, of a particle moving along the θ-axis.

As T ≥ 0 and T = 0 ⇔ θ′ = 0, the function T exhibits the positive definiteness that

we would expect of a kinetic energy. (We assume that the radial positions adopted

during the motion of the particle are bounded away from the singularity Σ, such that

ρ2 is always strictly greater than zero.) Subsequently, the constancy of T + V can be

interpreted as the conservation of rotational mechanical energy of the particle.

We may acquire a deeper understanding of the evolution of the colatitudinal co-

ordinate θ(s) by examining the potential function V (θ). Suppose that we were to

draw a graph of V versus θ ∈ (0, π). At any height V = Q, we draw a horizontal

line through the graph. At the points where the line intersects the graph, the kinetic

energy T is zero. Since T ≥ 0, the θ coordinate may only take on values in (0, π) at

which V (θ) lies below or on the line Q. Any other values of θ are forbidden.

We list some important properties of V for θ ∈ (0, π):



3.3 Evolution of the colatitude coordinate 55

• V (θ) → +∞ as θ → 0, π: as the particle moves within reach of the poles,

its potential energy blows up. Such unabated growth in V would necessarily

require a large Carter constant Q, but even then, Q is a ceiling that the values

of V cannot exceed. Hence, the particle can never actually reach the poles.

(The range θ ∈ (0, π) excludes the event that γ actually starts at a pole. In this

case, the term L2/(a2S2) vanishes, as L2 can be written as S4 times a function

that is non-singular on the axis. The particle completes its journey with the

simpler potential

u(θ) = −a2C2

[
q +

λ3E2

∆θ

]
. (3.7)

For a photon (q = 0) starting at a pole, the function u is always negative, and

so the kinetic energy has lower bound Q+ |u|.)

• V (θ) has an obvious repeated root: θ = π/2. In other words, when the particle

meets the equatorial plane, its kinetic energy is maximal (and is equal to Q).

For some particles, this is the only root of V ; photons emitted from the axis

are one example. A sufficient condition for further roots to exist, distinct from

π/2, is the satisfaction of the inequality

0 <
L2

a2

(q

λ
+N

)
< 1 (3.8)

by the parameters of the trajectory. Any additional roots of V are zeros of the

equation

S2 =
L2

a2

(
∆θq

λ2
+N

)
,

and the right-hand side is bounded above by
L2

a2

(q

λ
+N

)
. Therefore, when

the inequality holds, S2 < 1 has two distinct roots θ± different from π/2 and
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symmetric about the equator.

The existence of these roots, combined with (a) the continuity of V ; (b) the

limits V → +∞ as θ → 0, π; and (c) the third root V (π/2) = 0, imply that

there exist minima at points θ∗− and θ∗+ such that

0 < θ− < θ∗− < π/2 < θ∗+ < θ+ < π.

By examining V ′(θ) directly, we may discover other sufficient conditions for the

existence of critical points of V .

• The slope of V is

dV

dθ
= 2a2SC

[
q +

λ2

∆2
θ

(
N − LL

2C2

S2

)
− λ2L2

a2∆θS4

]
. (3.9)

It follows that V ′(θ) → −∞ as θ → 0 and that V ′(θ) → +∞ as θ → π. This

information describes the way in which V asymptotically approaches the po-

tential barriers at θ = 0, π.

• The function V ′ has an obvious root at θ = π/2. If there are no other roots,

then π/2 is the site of a global minimum: V (π/2) = 0. In this case, Q ≥ 0.

Above, we discovered a sufficient condition for the existence of further roots of

V ′. We see now that these critical points must lie symmetrically to each side

of θ = π/2, since all the sine and cosine functions in V ′ appear to even powers

(save for the SC out in front). The sufficient conditions (3.8) necessarily require

L 6= 0. Alternatively, we may investigate the possibility of sufficient conditions



3.3 Evolution of the colatitude coordinate 57

for V -minima in L = 0 orbits. Subject to this restriction, V ′ reduces to

dV

dθ
= 2a2SC

[
q +

λ3E2

∆2
θ

]
.

If q = 0, then θ = π/2 is the only critical point in 0 < θ < π. For material

particles (q < 0), there exist two additional critical points θ∗− and θ∗+, symmetric

about π/2, if and only if

E > (|q | /λ3)1/2 and

(
λE

√
λ

|q |
− 1

)
< La2. (3.10)

Now, when L = 0, the potential takes the form

V (θ) = −a2C2

[
q +

λ3E2

∆θ

]
.

When the two additional roots of V ′ exist, we have ∆θ(θ
∗
±) = λE

√
λ/ |q |, and

so

V (θ∗±) = −a2C2(q + E
√
|q |λ3),

which is strictly negative when θ 6= π/2, owing to the lower bound on E . Since

V (π/2) = 0 > V (θ∗±), V (π/2) is a local maximum while V (θ∗±) are minima.

In particular, Q ≥ V (θ∗±), i.e. Q may assume a negative value. When Q < 0,

we call the orbit vortical, a term coined by de Felice ([10]).

Hence, we have two sets of sufficient conditions, (3.8) and (3.10), such that sym-

metric minima of V exist—one set of conditions for L 6= 0 and one for L = 0.

(The L = 0 conditions are not only sufficient but also necessary.) Our collection of

facts concerning the potential V (θ) lead us immediately to the following dynamical

conclusions. The first concerns the L 6= 0 case.
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Corollary 3.2. (See Fig. 3.2.) If γ is an orbit for which (3.8) holds, then

1. Q > 0 ⇒ θ oscillates symmetrically about π/2;

2. Q = 0 ⇒ θ lies unstably at π/2, or approaches the equator asymptotically;

3. Qmin < Q < 0 ⇒ θ oscillates between η1 and η2, where

θ− < η1 < θ∗− < η2 < π/2

or π/2 < η1 < θ∗+ < η2 < θ+ ; .

4. Q = Qmin ⇒ θ is lies stably at θ∗− or θ∗+.

Remark 3.1. In Case 2, if the particle does not already lie at the equator, then

because dΘ/dθ|θ=π/2 = 0, θ(s) can only approach π/2 asymptotically. It may also

approach the ring singularity Σ ⊂ E, but only if its angular momentum is equal to

aE , as demonstrated earlier. In Case 3, particles trapped in the minima of V (θ) find

themselves caged either in the northern hemisphere or the southern hemisphere of

spacetime, with no possibility of crossing the equator.

As the conditions (3.8) are sufficient but not necessary, Corollary 3.2 is the most

we can say about orbits with L 6= 0. However, the L = 0 conditions for symmetric

minima are necessary and sufficient, and so we may make the following

Corollary 3.3. If γ is a massless particle with L = 0, or a massive particle with

L = 0 that fails to meet condition (3.10), then Q > 0 =⇒ θ oscillates symmetrically

about π/2; Q = 0 =⇒ π/2 is a node at which γ is confined stably (see Fig. 3.1). If

γ is a massive particle with L = 0 that meets condition (3.10), then the θ-behaviour

is precisely that described in Corollary 3.2 for particles with axial angular momentum.
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Figure 3.1: Potential versus colatitude, θ ∈ (0, π), when Qmin = 0.

Figure 3.2: Potential versus colatitude, θ ∈ (0, π), when Qmin < 0.

These corollaries capture a rough portrait of the θ-behaviour in Kerr-Newman-de

Sitter geometry, with the primary difference between the motion in K(a, e,M,Λ) and
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motion in K(a,M) arising in the way that particles may approach the ring.

Finally, we turn to the radial coordinate, r(s).

3.4 Evolution of the radial coordinate

Briefly, we consider some implications of the inequality R(r) = ρ4r′2 ≥ 0 on the mo-

tion of test particles. We pay particular attention to the existence of forbidden regions

of radial motion, as they expose significant differences between the electrically-neutral

and electrically-charged settings.

We consider a timelike trajectory γ, and its radial evolution equation

R(r) = ∆r(q r
2 −K) + λ2P2. (3.11)

To ensure that the right side of (3.11) is nonnegative, we require

λ2P2 ≥ ∆r(K − q ). (3.12)

Since K ≥ 0 (see Corollary 3.1) and q < 0, we have that K − q is strictly greater

than zero. This means that whenever ∆r > 0, which occurs in block I and in part of

block III, λ2P2 must be positive—and larger than ∆r(K − q ). However, P2 is zero

whenever

Er2 − qer

λ
+ a2E − aL = 0.

This quadratic equation has real roots only if and only if q2e2 ≥ 4aEλ2(aE − L). We

suppose that the spacetime parameters and the first integral data of γ satisfy this

condition. If either of the roots of P lies in the interval (r+, r++) or (r−−, r−), then

we will have both λ2P2 = 0 and ∆rK > 0 at that root. In turn, R would be negative
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there. Consequently, by the continuity of R(r), there would exist a connected interval

(r∗−, r
∗
+), containing the root, on which R(r) < 0. Therefore, for each timelike orbit

satisfying q2e2 ≥ 4aEλ2(aE − L), there is the possible danger of forbidden zones in

blocks I and III. (A particle travelling on an asymptotic equatorial orbit, however,

might not consider these a danger—particularly if it finds itself in block III, where,

depending on the location of the root(s) of P2, the barrier might offer safety from the

ring at r = 0.)

Even if a particle’s parameters satisfy q2e2 ≥ 4aEλ2(aE −L), we cannot conclude

based on this information alone that forbidden regions necessarily exist. The roots of

P2 must be situated in blocks I and III (with r > r−− in III) in order for the barriers

to arise. While only the signs of the roots of ∆r are known to us, we know that P2

is a parabola that opens up and has cusps at the roots, due to the squaring of P . As

P = (r2 +a2)E −qer/λ−aL, we may adjust the position of the roots by changing the

magnitude of L. When we choose L > 0 to be larger, P gets pulled vertically down-

wards, and so the roots of P2 occur wider apart. When L is chosen to be smaller, the

roots get closer together. In terms of the condition q2e2 ≥ 4aEλ2(aE −L), choosing L

to be positive and large only makes it easier for the inequality to be satisfied. When

we choose L small, we need only ensure that q2e2 is large (or to be more physically

reasonable, that E is small). In this manner, we are able to construct timelike orbits

with barriers in I or III by choosing L sufficiently large or small (so as to place at

least one of the roots of P in the desired location).

The condition q2e2 ≥ 4aEλ2(aE − L) highlights an important difference between

the Kerr and Kerr-Newman spacetimes. When the charge of spacetime is zero, the

condition reduces to E(aE − L) ≤ 0, which is satisfied if and only if 0 ≤ aE ≤ L or

L ≤ aE ≤ 0. Thus, orbits may only encounter forbidden zones if the size of the orbit’s
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angular momentum bounds that of its energy (times a). But as q2e2 ≥ 4aEλ2(aE−L)

shows, this is not a strict requirement in Kerr-Newman(-de Sitter).

Moreover, a nonzero cosmological constant introduces features of radial travel that

do not exist in asymptotically-flat Kerr-Newman spacetimes. While R(r) is a quartic

polynomial in r in the asymptotically-flat Kerr geometry, the same function is sextic

in r in Kerr-Newman-de Sitter, with dominant term −Λq r6/3. (We can see this by

inserting the definitions of ∆r and P(r) directly into the radial equation.) One geo-

metric, though not necessarily physical, consequence of this fact is that no spacelike

geodesics may be found at infinity in the de Sitter block.

As a final remark, we observe that R(r) can be written in the form

R(r) = −∆rQ+R∗(r)

where R∗(r) is R(r) with K = λ2(L−aE)2. By the discussion in the previous section,

this makes R∗(r) the radial equation for particles moving in, or asymptotically to, the

equatorial plane. If we let Q increase while the other first integrals are left fixed, we

see that any forbidden regions will expand, consuming more and more once-navigable

r values. In this way, Carter’s constant finds another meaning.
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Conclusion

In this thesis, we have outlined the basic geometric properties of the family of Kerr-

Newman-de Sitter spacetimes, explained the physical significance of those proper-

ties, and made choices of parameters reflecting current observations in experimental

physics. Using the Liouville-Arnol’d integrability theory, we extracted sufficiently-

many independent first integrals for the spacetime motion of charged test particles.

Amongst these first integrals is the so-called Carter’s constant, whose discovery owes

to the fundamental work in [2]. By attempting to interpret this constant physically

and geometrically, we exposed several differences between orbits in Kerr-Newman-de

Sitter and geodesics in Kerr. Some highlights are:

• Lazy particles, devoid of energy or angular momentum, are no longer con-

strained to closed, totally-geodesic submanifolds.

• Only particles with K = 0 and L = aE may approach the curvature singularity

at Σ = {r = 0, θ = π/2}, which is an effect of the electromagnetic field com-

bined with the black-hole rotation. All particles—charged or uncharged—are

subject to this restriction.

• The nonzero charge of the black hole makes it easier for forbidden regions of
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radial travel to arise. The size of a particle’s forbidden region is intrinsically

related to the size of Carter’s constant Q.

As for similarities between the Kerr and Kerr-Newman-de Sitter settings, the co-

latitudinal behaviour of orbits in K(a, e,M,Λ) was found to be largely identical to

that K(a,M), save for the much more complicated nature of the potential V (θ).

Future work can be carried out in several directions:

• the existence (particularly the number) of black-hole ergospheres, and the cor-

responding Penrose energy extraction process;

• the existence of closed timelike curves;

• the expansion of the study to anti-de Sitter cosmologies, and accordingly to the

investigation of θ-horizons;

• the treatment of global dynamics in maximally-extended Kerr-Newman-de Sit-

ter spacetimes.
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Appendix A

Quartic polynomials

The details of Proposition 1.1, omitted from Chapter 1, are included below.

Proposition A.1. There exists no anti-de Sitter Kerr spacetime (Λ < 0) with more

than two radial horizons. If Λ > 0 is such that Λ2 << 1, Λa2 << 1 and a2 + e2 <<

M2 << Λ−1, then ∆r has four distinct real roots.

Proof. The radial horizons of a Kerr-Newman-de Sitter spacetime K(a, e,M,Λ) are

determined by the roots of the quartic polynomial

∆r(r) = −Lr4 + (1− La2)r2 − 2Mr + a2 + e2,

where L := Λ/3.

If p ∈ R[x] is an n-th degree parametric polynomial (a polynomial whose coeffi-

cients are functions of one or more parameters), we can in principle extract necessary

and sufficient conditions for the realization of a desired root structure—for instance,

n real and distinct roots. These conditions normally take the form of a list of d ≤ n

determinants, combined with lists of signs. Each sign list has length d and instructs

us as to whether each determinant is to be positive, negative, identically zero, or any
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of the three. Associated to each possible root structure of p is at least one sign list.

The realization of the signs in one of the lists coupled to a root structure is a sufficient

condition for p to exhibit that structure. Conversely, if p has a given root structure,

then one of the sign lists associated to it must be satisfied by the determinants.

For an arbitrary real parametric polynomial of degree four, a determinant list and

sign lists are given in [15]. From this information, we distill the following information

regarding the horizon function: The polynomial ∆r has four distinct real roots exist

if and only if

(D1) ∧ (D2) ∧ (D3),

where:

L− L2a2 > 0 (D1)

−L× (−1 + L2a4 − 4Le2 − La2 + L3a6 + 4e2L2a2 + 18M2L) > 0 (D2)

−L× (32L2e4a2 + L3a6M2 + 12L3a6e2 − 33M2La2 + 22L2a4e2 − 36Le2M2

+12e2La2 + 8L3a4e4 + L4a8e2 + 33L2a4M2 + 36L2a2e2M2 + a2 + 4a4L

−M2 + e2 + 6L2a6 + 8Le4 + 4L3a8 + L4a10 + 27LM4 + 16L2e6) > 0 (D3).

Since the coefficients of ∆r(r) are polynomials in a, e, M , and L, the three deter-

minants above are also polynomials in those parameters. For four real and distinct

roots, there is a single sign list, demanding that each determinant be positive. We

would like to show that the hypotheses of the Proposition are sufficient conditions for

the sign list to be realized.
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If L < 0, then condition (D1) is equivalent, after dividing both sides by L, to

La2 > 1. Since this can never hold for L < 0, the conditions can never be real-

ized. Hence, there is no anti-de Sitter Kerr spacetime with more four horizons, and

subsequently, there can be at most two. (Actually, as the condition (D1) reduces to

L > 0 in the non-rotating de Sitter case, this is a property of all Lorentz manifolds

of constant negative scalar curvature.)

Now, we consider the hypotheses on the parameters in the case that L > 0. In

this case, (D1) reduces upon division by L to La2 < 1, which is true by hypothesis.

Upon our dividing both sides of condition (D2) by −L, the inequality to be satisfied

becomes

P2(a, e,M,L) := −1 + L2a4 − 4Le2 − La2 + L3a6 + 4e2L2a2 + 18M2L < 0. (D2)′

Examining the terms above, we may write the function P2 in a form that is far easier

to inspect:

P2(a, e,M,L) = (La2 − 1)
[
1 + L(a2 + 4e2)

]
+ 18M2L.

Since La2 << 1, we may safely take La2 − 1 ≈ −1, in order to write

P2(a, e,M,L) ≈ −1− 4Le2 + 18M2L.

The condition to be satisfied reduces in turn to

4e2 +M2 < 1/L.

As e2 << M2 and M2 << 1/L, the condition is realized.

Finally, in (D3), we safely ignore any terms involving L2 << 1 or higher powers of

L. If P3(a, e,M,L) is the polynomial on the left side of the inequality in (D3) (after
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division by −L), then

P3(a, e,M,L) ≈ −M2 + L(−36e2M2 − 33M2a2 + 12e2a2 + 4a4 + 8e4 + 4a4 + 27M4)

is a valid approximation, given the assumptions made on the parameters. Let us put

P31 := P3 +M2. The condition P3 < 0 is then equivalent to P31 < M2, or equivalently

P32 < 1, with P32 = M−2P31. But

P32(a, e,M,L) ≈ 27LM2.

By hypothesis, M2 << 1/L, and so P32 << L/L = 1. Condition (D3) is therefore

satisfied.

As a test, we compute horizons for given parameters, say a = 0.01, e = 0.05,

M = 2000, and 3Λ = L = 10−9. The roots are:

r−− ≈ −33459.6

r− ≈ 6.5× 10−7

r+ ≈ 4067.3

r++ ≈ 29392.3 .

As we expect, there is a single negative horizon and three positive ones. It is interest-

ing to note how near to the ring is the positive root r−. While there are no physical

units at play here, relative scale is meaningful: the other three horizons are astro-

nomically farther from the ring. (In terms of our results in Chapter 3, these choices

of parameters lower the likelihood for a equatorial particle in block III to have a wall

of R(r) < 0 between it and the ring).



69

Suppose that we increase Λ by a single order of magnitude, and then repeat the

calculation. The roots become

r−− ≈ −11597.0

r− ≈ 6.5× 10−7

r+ ≈ 5798.5 + 932.0i

r++ = r+ .

As we can see, the existence of a maximal number of roots is extremely sensitive

to the size of Λ. If we now decrease M by an order of magnitude to compensate, we

revive the four real roots, but find that r− scales by an order of magnitude away from

unity (whereas changing Λ had no appreciable effect on r−). The change in M also

brings each of r+ and r++ an order of magnitude closer to unity. Hence, one root

moves away from the ring (increasing the likelihood of block III barriers) while two

move closer. In the large-scale picture, the “Kerr” half of spacetime loses volume to

the “de Sitter” half. Letting a, e,M → 0 and fixing L = 10−8, we are left with three

roots: a double root r− = r+ = 0, and the pair r−−, r++ = ±
√
L−1 = ±10000, which

overlap in the maximally-extended de Sitter spacetime to form a single cosmological

horizon, as discussed in Chapter 1.
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