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ABSTRACT 
 
Colorectal Cancer (CRC) is the second leading cause of cancer mortality in North America. 

Death from CRC is largely due to metastatic disease and the liver is the most common site of 

distant metastasis. Surgery when feasible carries the only chance of cure for Colorectal 

Cancer Liver Metastasis (CRCLM) patients. Post surgical resection further patient 

management and choice of adjuvant chemotherapy relies on pathological assessment of 

tumor grade. Multiple histopathologic assessment methods have been developed with 

variable correlation with patients’ outcome. Until recently the Tumor Regression Grade 

(TRG) had the strongest correlation with patients’ outcome. It scores lesions according to the 

ratio of fibrosis against the sum of viable tumor and necrosis. However with the widespread 

use of anti-angiogenic agents that causes necrosis as a form of response in the preoperative 

setting the modified Tumor Regression Grade (mTRG) evolved. It differentiates between two 

types of necrosis with different prognostic roles, Usual Necrosis (UN) and Infarct-Like 

Necrosis (ILN). Nonetheless pathological evaluation remains limited by its subjective nature. 

Our works describes the use of Matrix Assisted Laser Desorption and Ionization (MALDI) 

imaging mass spectrometry (IMS) to generate lipid signatures for different topographies.  To 

do so we initially applied a semi-supervised histology driven approach to build our spectral 

library using an automated clustering method (k-means) and direct visual histological 

correlations (5-stain panel) on a training set (n=12). We identified six histologically 

correlated lipid signatures and further mined them for discriminate lipid markers. We used 

partial Least Squares-Discriminant Analysis (PLS-DA) to implement our spectral library on 

an independent validation cohort (n=40). Additionally, by dissecting out the lipid signatures 

we have identified single lipid moieties that are unique to UN and ILN that could potentially 
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be used as new biomarkers for assessing response to therapy. Using these signatures and lipid 

markers we obtained a histologically quantitative and objective mTRG score.  
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RÉSUMÉ 
 
Le cancer colorectal (CCR) est la deuxième cause la plus importante de mortalité dérivée du 

cancer en Amérique du Nord. La mort causée par le CCR peut être attribuée à la métastase du 

cancer. Le site le plus fréquent de métastase éloignée de l’origine du CCR est le foie. Si cela 

est possible, la chirurgie donne la seule occasion de traitement pour les patients avec des 

métastases hépatiques du cancer colorectal (MHCCR). Les soins administrés après résection 

ainsi que le choix de chimiothérapie adjuvante dépendent de l’évaluation  pathologique du 

grade de la tumeur. Plusieurs méthodes d’évaluation histopathologique ont été dévelopées, 

mais leurs corrélations avec les résultats des patients sont variables. Jusqu’à date, le « Tumor 

Regression Grade » (TRG) avait la plus forte corrélation avec les résultats des patients. Celui-

ci marque les lésions selon la proportion de fibrose sur la somme de tumeurs viables et de 

nécrose. Pourtant, l’usage répandu d’agents anti-angiogéniques qui causent la nécrose lors de 

la période préopératoire a poussé le TRG à évoluer en TRG modifié (mTRG). Le mTRG 

différencie entre deux types de nécrose qui ont des rôles prognostiques différents : la Nécrose 

Commune (NC) et la Necrose qui ressemble à une infarctus (ILN). De plus, les évaluations 

pathologiques restent quand-même limitées par leur nature subjective. Le projet présenté 

dans ce mémoire décrit l’utilisation de l’imagerie de spectroscopie de masse (ISM) par 

Désorption/Ionisation Laser assistée par Matrice (MALDI) afin de définir les signatures 

lipidiques signatures pour des topographies différentes. Nous avons initialement appliqué une 

approche histologique semi-supervisée afin de construire notre banque spectrale par une 

méthode automatique de classification (k-means) et des corrélations histologiques visuelles 

directes (panneau de 5 couleurs) sur une série d’échantillons préparatoire (n=12). Nous avons 

identifié six signatures lipidiques qui sont mises en corrélation par histologie et puis, nous les 

avons exploitées afin de découvrir des marqueurs lipidiques discriminants. Nous avons utilisé 

la méthode d’analyse « Partial Least Squares-Discriminant » (PLS-DA) afin de mettre en 
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place notre banque spectrale sur une cohorte de validation indépendante de 40 patients. De 

plus, en analysant les signatures lipidiques, nous avons identifié des fractions lipidiques 

uniques distinguant les NC et les ILN, qui peuvent potentiellement être utilisées comme 

biomarqueurs pour évaluer la réaction au  traitement. En utilisant ces signatures et marqueurs 

lipidiques, nous avons obtenu  un score de mTRG quantifié par histologie et objectif.  
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1. INTRODUCTION 
 

1.1 Colorectal Cancer and Liver Metastasis Burden 
 

Colorectal cancer is a major cause of cancer morbidity and mortality worldwide
1
. In North 

America it constitutes 8.4% of all cases of cancer and is the second leading cause of cancer 

mortality
2,3

. As local disease is promptly controlled and dealt with surgically, death is largely 

due to distant metastasis
4
. This is observed with five year overall survival rates of metastatic 

disease (stage IV) being around 13.1% only as opposed to 90.1% and 70.8% for local and 

regional disease (Stages I to III) recepectively
2
. The liver is the most common site of 

metastatic disease due to the nature of the portal circulation that drains the blood from the 

digestive tract directly to the liver. About 25% of patients will be burdened with liver 

metastasis at primary presentation (synchronous) while over half of them will present with it 

at some point thereafter
5
. Synchronous presentation is associated with worst outcome

6
. 

Furthermore, around third of stage IV disease patients will have the liver as the sole site of 

metastasis
7
.  

 

1.2 Colorectal Cancer Liver Metastasis Management 
 

1.2.1 Surgical Intervention 

 

Surgical intervention when feasible carries the only chance of cure and long-term survival for 

colorectal cancer liver metastasis (CRCLM) patients, with five year overall survival rates for 

patients undergoing surgical resection observed at 47%
8,9

. Historically, surgical resection was 

limited by many factors including multiple lesions, proximity to major vessels and hilar 

adenopathay
10

. In today's clinical practice, this is no longer the case. Nevertheless, the 
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majority of patients are burdened by extra-hepatic disease at presentation thus deemed 

unresectable and will consequently be offered palliative chemotherapy
11

. Alternatively, these 

patients can undergo resection with limited improvement in survival rates if the extra-hepatic 

disease can be similarly dealt with as well. However a vigilant patient selection process needs 

to be practiced
12

.   

 

1.2.1.1 Conditions for Resection 

 

Currently, two conditions need to be satisfied for a patient to be considered for surgical 

intervention. One of which is microscopically clear surgical margins (R0)
13

. Based on 

preoperative imaging tumor free margins should be thought feasible, this will be further 

verified by intraoperative ultrasound. The width of free margins has been controversial 

however there is agreement that free margins of any width carry significantly better outcome 

than involved margins whether microscopically or grossly (R1 and R2 respectively)
9,14

. The 

second condition is a sufficient future liver remnant (FLR) along side the preservation of two 

adjacent segments and vessel integrity
15

. FLR is the volume of the remaining liver after 

resection, it is assessed through preoperative imaging studies using computed tomography 

(CT) in relation to body weight or body surface area
16

. Up to 80% of the liver can be safely 

removed, as a FLR of 20% is adequate in normal otherwise healthy liver
17

. However if 

chemotherapy induced hepatotoxicity is suspected this is further increased to roughly 30-40% 

as well as in cases of liver injury due to steatosis among other conditions
17

. A small FLR has 

been correlated with post-hepatectomy liver failure (PHLF), a condition associated with 

postoperative mortality and defined as a failure of one or more synthetic and excretory liver 

functions
16,18

. To avoid this, portal vein embolization (PVE) can be attempted in those 

patients
19

. It is a minimally invasive procedure that induces atrophy to the tumor burdened 
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lobe and hypertrophy to the counter-lateral lobe by embolization of portal venous branches
20

. 

In addition, it is contraindicated in patients with sufficient FLR as it promotes tumor 

progression despite atrophy
21,22

.  Another conversion modality for initially unresectable 

tumors is neoadjuvant (preoperative) chemotherapy or as appropriately called in this case, 

conversion chemotherapy
22,23

.  

 

1.2.2 Neoadjuvant Chemotherapy 

 

Neoadjuvant chemotherapy can be similarly given to initially resectable patients to improve 

postoperative outcome
24,25

.  Chemotherapeutic agents commonly used in these regimens 

include a base of Folinic acid and Flurourcil (5-FU), a thymidylate synthase inhibitor, along 

with Oxaliplatin, a cytotoxic agent, and/or Irinotecan a topoisomerase 1 inhibitor (referred to 

as FOLFOX, FOLFIRI and FOLFOXIRI respectively)
26-29

. More recently, Bevacizumab, an 

angiogenesis agent that inhibits vascular endothelial growth factor A (VEGF-A), has been 

increasingly used along side these regimen as well
30-34

. In some centers Cetuximab, an 

epidermal growth factor receptor (EGFR) inhibitor, is also being used as first line therapy in 

selected patients
35,36

.  

 

1.2.3 Response to Chemotherapy Assessment 

 

Patient response to chemotherapy is assessed through radiological imaging (CT or MRI), 

which necessitates that baseline scans be performed and follow up scans be repeated in 8 

weeks to 3 months
37,38

. A widely clinically used method is the Response Evaluation Criteria 

in Solid Tumors (RECIST), it assesses response based on size changes of target lesions where 

a decrease in size of  >30% is considered a response
39

. This method of assessment is limited 

by size changes and might underestimate response when using anti-angiogenic agents (e.g. 
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Bevacizumab) where it elicits central necrosis and consequently increases lesion size as a 

form of response
40

. The modified RECIST (mRECIST) developed to assess Hepatocellular 

Carcinomas (HCC) treated by Sorafenib, an inhibitor of vascular endothelial growth factor 

(VEGFR), which causes central necrosis as a treatment response as well, tackled this 

limitation
41

. It assesses response according to size changes of viable tumor in target lesions 

by using contrast enhanced dual phase imaging, instead of the whole lesion size
41,42

. However 

its application beyond HCC are yet to be investigated. A single study comparing RECIST and 

mRECIST in relation to pathological response in CRCLM found neither to be predictive of 

residual viable tumor burden
43

. Alternatively, the Morphological Criteria that uses CT scans 

to assess changes in attenuation morphology is found to have a statistically significant 

association with pathological response and patient outcome. However, its application in 

clinical settings is not as widespread as that of RECIST
44

. 

1.2.4 Patient Prognostication and Outcome 

 

Post resection, patient prognostication plays a major role in further patient management 

including choice and duration of adjuvant chemotherapy agents. Traditionally, clinical scores 

were used to predict patient’s outcome
45

. These include the preoperative clinical risk score 

(CRS) that takes into account five clinical criteria: primary tumor nodal status, disease free 

interval, number of lesions, size of the largest lesion, and preoperative Carcinoembryonic 

Antigen (CEA) serum levels
46

. The latter is a glycoprotein involved in cell adhesions; it 

serves as a non-diagnostic tumor marker for CRC and CRCLM that can also be elevated in 

other conditions including various gastrointestinal tumors
47

. CRS along with other clinical 

scores were capable of stratifying patients into high and low risk groups by which predicting 

patients’ outcome and suitability for surgical intervention
46,48

. However, with the relatively 

recent widespread use of neoadjuvant chemotherapy, these scores are considered rudimentary 
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and no longer correlate well with patient outcome
45,49

. On the other end of the spectrum, 

molecular biomarkers have long been described in CRC. These include KRAS mutation, a 

point mutation in codon 12 and 13 that occur in up to 40% of CRC patients
50

. It is a well-

established predictor of resistance to Cetuximab in stage IV disease
51

. Other drug targets 

have similarly been described in the last decade however they are yet to be implemented in 

clinical practice
52

. KRAS mutation also plays a predictive role in patient survival with local 

and regional disease, however it is not well described in metastatic disease
53,54

. Another 

clinically established molecular biomarker is Microsatellite-Instability (MSI); it serves as a 

predictor of benefit from Fluorouracil based chemotherapy
55

.  In the era of personalized 

medicine these molecular biomarkers will be further applied in the clinical setting, but as it 

stands now they are of limited applications as drug targets. In the midst of the outdated 

clinical scoring systems and the not yet well-implemented molecular biomarkers is the 

pathological grading and response. Pathological assessment allows for actual tumor burden 

evaluation as the amount of viable tumor alone has been well correlated with patient 

outcome
56

.   

 

1.2.4.1 Pathological Evaluation and Response 

 

Pathological evaluation not only predicts patient outcome by assessing response to 

preoperative chemotherapy it also evaluates surrounding normal liver parenchyma for 

chemotherapy associated toxicity that could lead to morbidity, further driving the choice of 

future chemotherapy and management
57,58

. It additionally assesses tumor margins, an 

important independent prognostic factor, as patients who received downsizing perioperative 

chemotherapy were observed to recur at the margins.
59

 Pathological grading systems have 

been developed to address this with variable correlation with survival
56,60-63

. The Tumor 
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Regression Grade (TRG) demonstrates a good correlation with patient outcomes including 

overall and disease free survival
62,64

. It takes into consideration the degree of fibrosis and 

necrosis in relation to tumor viability, in which fibrosis is considered a positive indicator and 

necrosis a negative indicator of response
62

. However, with the widespread use of 

Bevacizumab and other anti-angiogenic agents, the Modified Tumor Regression Grade 

(mTRG) emerged
65

. mTRG differentiates between two types of necrosis (Fig1.1) seen in 

resections; usual necrosis (UN), typical of tumor progression, and infarct-like necrosis (ILN), 

a response to treatment, whose presence has been associated with favourable prognosis
65

.  

 

A limitation that still remains is subjectivity. Pathological evaluation and grading is done 

through ‘eye-ball’ semi-quantitative estimates, as a cell-count approach is not feasible in this 

setting. Inter- and intra-pathologist variability has been observed in literature
66,67

. A 

complementary objective histologically quantitative technical approach can further enhance 

pathological synoptic reporting
68

. 

 

Figure 1.1 Types of Necrosis. A and B featuring Usual Necrosis, surrounded by viable 

tumor and characterized by its patchy distribution and nuclear debris. C and D Featuring 

Infarct-Like Necrosis, characterized by larger confluent areas and walled off by 

desmoplastic-like ring (black arrows).
 65
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1.3 Imaging Mass Spectrometry 
 

Imaging Mass Spectrometry (IMS) is a mass spectrometry (MS) technique that allows direct 

visualization of molecules on tissue sections by providing chemical and spatial information
69

. 

In brief, MS is an analytical chemistry modality that uses an ion source to identify molecules 

based on their mass to charge ratio (m/z)
70-72

. A Mass Spectrometers is composed of three 

main parts, an ionization source, an analyzer and a detector (Figure.1.2)
73

. Both the ionization 

source and analyzer can differ according to which specific device is used although the basic 

concept remains unvaried
74

. The raw data generated by spectrometers is a mass spectrum, a 

plot of ion intensity (abundance) against m/z (Figure1.3)
73

. The analyte is the biomolecule of 

interest and will be detected as a gas-phase ions, it can be proteins or lipids among other 

targets
75,76

. When this is performed on an intact tissue section it is known as IMS.  

 

 

Figure 1.2 Mass Spectrometry workflow. Ion sources can be coupled with different type of 

mass analyzers. 
73
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Figure 1.3 Mass Spectrum. An example of a mass spectrum from our data. 

1.3.1 Matrix Assisted Laser Desorption and Ionization 

 

Matrix Assisted Laser Desorption and Ionization (MALDI) is the most commonly used IMS 

method
77

. It captures mass spectra at defined 2-D positions across an intact tissue and 

reconstructs data into ion maps that reflect molecular distributions78,79. Matrix application 

will result in matrix-analyte co-crystal formation
80

. The choice of matrix is extremely 

important and depending on the analyte, the type of matrix and the method of its application 

will differ
81

. Matrices are small organic acids that allow uniform desorption across the 

sample by absorbing the ionizing laser first, then in turn ionizing the sample
80

. A pulse UV 

laser is used to create gas-phase ions of the analyte (Figure1.4) 
81

.  MALDI can work in both 

positive and negative modes to detect positive and negative ions respectively, therefore 

allowing the identification of larger set of molecules. The choice of matrix also plays a role 

here as not all matrices can be used in both modes
82

. In MALDI IMS the gas-phase ions are 
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formed through protonation and deprotonation, which is the addition or loss of a proton or 

more instead of an electron as seen by most preceding spectrometers
73

. Moreover, it preforms 

soft ionization, which means that the molecules are transferred intact into the gas-phase form 

without fragmentation
83

. This is advantageous, as molecules do not require reconstruction to 

be identified; furthermore because of the nature of the ionization the sample is not exhausted 

and can be used for downstream staining
68

. Once the m/z(s) of interest are chosen, 

established online databases can be used to inform about their identity
84,85

. Often times the 

identity of molecules need to be further confirmed, in that case Tandem Mass Spectrometry 

(MS/MS) can be utilized
86

. In MS/MS molecules are purposefully fragmented to ascertain 

their identity. This is done in two steps, the first to isolate the m/z of interest, which is known 

as the parent molecule or precursor ion. The second is to fragment the parent molecule and 

identify its components
73

. The mass analyzer most commonly coupled with MALDI is the 

Time of Flight (TOF). It operates on the simple concept that given that all ions travel the 

same distance to the detector and are accelerated at fixed potential, smaller ions with lower 

m/z will achieve higher velocity and consequently detected at an earlier time
87

. 
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Figure 1.4 MALDI IMS Schematic Representation. Laser pulse charges the analyte-matrix 

crystals into gas phase ions that are in turn accelerated through the mass analyzer (TOF) to 

the detector. 
88

 

1.4 Lipids 

1.4.1 Lipidomics 

 

Lipdiomics is an emerging field pertaining to mapping of the lipidome and investigating its 

interaction with other biomolecules
89

. Unlike the other classes of biomolecules, lipids do not 

share a common chemical structural feature rather they are defined by their water 

insolubility
90

. Lipidomics, introduced recently after genomics and proteomics, owes its 
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relatively rapid expansion to advances in analytic chemistry, specifically mass 

spectrometry
91

. These allowed detailed description of the cell’s lipidome from classes to 

subclasses to the individual molecular species. It also facilitated lipid metabolism 

investigations as well as describing lipid-lipid and lipid-protein interactions
92

. LIPID MAPS 

online database was formed soon thereafter to deal with the massive amount of data 

generated and ease international collaboration
84

.  

1.4.2 Phospholipids 

 

Phospholipids are a heterogeneous class of lipids characterized by a polar hydrophilic head 

and a hydrophobic tail, their amphipathic nature facilitate basic membrane function
93

. 

Phospholipids play multiple roles in the physiological cellular state, including their 

involvement in second messenger signalling and their function as cellular energy reservoirs
94

. 

One of the most well recognized functions of phospholipids is their role in cellular 

architecture as they form the plasma lipid bilayer
95

. The majority of cellular lipids are mainly 

synthesized in the Endoplasmic Reticulum (ER)
96

. Suitably, to facilitate its function in the 

insertion and transport of newly synthesized lipids and proteins the ER membrane 

phospholipids themselves are loosely packed
97

. This is achieved by rapidly transporting 

sterols and complex sphingolipids to other organelles and highlights how the type of 

phospholipids and their concentrations have to be fine-tuned to meet the requirements of 

physiological function
97,98

. Other organelles such as the Golgi and Mitochondria are involved 

in lipid synthesis to a lesser extent
99,100

. Lipids synthesized in the Golgi are almost invariably 

designated for the plasma membrane. Despite the fact that the plasma membrane is not 

directly involved in lipid synthesis, it contributes to lipid production through phospholipids 

turnover such as sphingomyelin (SM) synthesis from plasma membrane ceramides
101

. The 

plasma lipid bilayer complexity is further increased by its asymmetrical nature due to 
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variance in phospholipid distribution across its inner and outer leaflets, which imparts 

different functional characteristics
102,103

.  

1.4.3 Lipid Dysregulation in Cancer 

 

In cancer processes aberrant lipid synthesis has been observed as early as 1953, when it was 

demonstrated that tumor tissue had increased de novo lipogenesis, comparable to that of liver 

tissue
104

. This was further propagated by the discovery that OA-519, a negatively prognostic 

breast cancer tumor marker, was in fact Fatty Acid Synthase (FASN)
105

. An increase in fatty 

acid (FA) de novo synthesis is necessary to maintain the membrane production needed by the 

proliferating tumor
106

. Most of these newly synthesized FAs are predominantly designated 

for phospholipid production and consequently incorporated in the plasma lipid bilayer
107

. 

These findings were validated by the upregulation of upstream cellular pathways in cancer 

cells
108

.  This led to mining lipogenesis pathways for antitumor drug targets
109,110

. Beyond the 

aforementioned role that lipids play in the proliferating cancer cell, there is evidence of its 

involvement in malignant transformation
111

. As the cells move from the physiological up take 

of free FAs and lipoproteins to the pathological increase in de novo synthesis the lipid bilayer 

saturation increases rendering the cancerous cell more resilient to oxidative damage
112

. The 

dynamic and complex nature of lipids and especially phospholipids metabolism in health and 

disease makes them attractive biomarker candidates. 

 

1.5 MALDI IMS Lipidomics Clinical Applications 
 

1.5.1 Applications in Cancer Research 

 

Imaging Mass Spectrometry applications in clinical studies have long been performed. It 

originally started with bacteriology studies but soon was utilized in other fields
113

. Proteins 
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and peptides have been the major culprit in clinical studies. This is in part due to the 

availability of formalin fixed paraffin embedded (FFPE) tissue samples in clinical research as 

opposed to fresh frozen samples required for lipid analysis
114

. However, more recently lipids 

are being investigated for clinical applications as well
115,116

. In cancer research MALDI IMS 

has been used mainly for prognostic, predictive and diagnostic biomarker development. 

Clinical lipidomic studies utilising IMS in cancer are scarce compared to those of proteomics, 

nevertheless they are currently gaining growing attention as a promising field for biomarker 

discovery. A recent study concerning prostate cancer used tissue from resection specimens to 

compare viable tumor to adjacent normal epithelium
117

. They successfully identified a single 

lipid (lysophosphatidylcholine (LysoPC) (16:0 OH)) as an independent predictor of 

biochemical recurrence after radical prostatectomy
117

. Using a similar approach in two 

different non-small cell lung cancer cell lines (PC9, PC9R) rather than tissue section to assess 

response to therapy (responsive vs. resistant respectively) also revealed difference in lipid 

expression
118

. Furthermore, its applications in diagnostics are also being tackled where a 

thyroid cancer study using MALDI IMS on tissue section of malignant and benign thyroid 

tumors
119

. They identified phospholipids including phosphatidylcholine (PC) and 

sphingomyelin (SM) species that were expressed differently. This was taken a step further by 

finding these lipid signatures in the serum of these patients with sufficient specificity and 

sensitivity rendering it more applicable to the clinical setting
119

. 

 

1.5.2 Application in Colorectal Cancer and Liver Metastasis 

 

A couple of studies regarding CRC using MALDI IMS lipidomics have been conducted. The 

earlier of the two was a feasibility study assessing the suitability of MS as a pathology tool 

using CRCLM tissue sections
120

. In a supervised histology-driven approach two Regions of 
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Interest (ROI) were chosen according to pathologist annotation; one of viable tumor area and 

the other of adjacent normal tissue. By comparing the lipid profiles of the two regions they 

were able to identify a tumor specific SM ((16:0)+Na) at 725 m/z
120

. The second study was 

performed on CRC specimens where a supervised histology-driven approach was also 

performed. However, three ROI were chosen here pertaining to cancer tissue, adjacent 

normal and distant normal tissue
121

. Discriminant analysis was performed to investigate the 

metabolic field effect of the tumor microenvironment (TME). The analysis identified three 

ions differentially expressed in tumor tissue compared to non-tumor (adjacent and distant) at 

m/z 478.3, 504.3 and 760.6, which was later identified by MS/MS to be LysoPC (16:0), 

LysoPC (18:1) and PC (16:0/18:1) respectively. By plotting their expression according to 

class (tumor, tumor-adjacent, and tumor-distant), a slight overlap between tumor and tumor-

adjacent spectra expression was observed further supporting the TME field effect
121,122

. TME 

was also investigated in CRCLM in a MALDI IMS proteomics study where three zones were 

identified (peritumoral, rim and center) according to their peptide expression
123

. Both 

lipidomic studies where performed only in positive ion mode and were limited by a small 

sample number (n=1 and n=12 respectively)
120,121

.  

 

1.6 Objective 
 

In this Study, we describe MALDI IMS lipidomics applications in CRCLM management. 

The main focus of the study is to turn the subjective semi-quantitative pathological 

assessment into an automated objective histologically quantitative one. To do so we used a 

training-set of 12 fresh frozen CRCLM resection samples to build a spectral library that 

identifies histology based molecular signatures (phospholipids) and validated these signatures 
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on another 40 samples. We further explored its clinical application by generating IMS 

derived mTRG and correlating it to pathologists’ mTRG.  
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2. METHODS AND MATERIALS 
 

2.1 Tissue Procurement 
 

Tissue specimens were procured between November 2011 and July 2014 from 52 liver 

resections for 50 patients (two patients underwent staged resections). Through the McGill 

University Health Center (MUHC) Liver disease Bio-bank (LDB) informed consent was 

obtained  (LDB: MUHC research ethics board approved protocol:SDR-12-174). Post 

pathological confirmation of cancer diagnosis and surgical margins specimens were 

immediately banked and frozen within 30 minutes as per LBD banking protocol. Specimens 

were allowed to cool down on ice briefly for 10 minutes before getting immersed in 

isopentane at -45ºC for 10 to 15 minutes for complete freezing. Next, the tissue was wrapped 

in foil and stored at -45ºC until sectioning. 

 

2.2 Clinical Data Collection  
 

Full clinical data for each patient was collected through medical records and hospital 

database (OACIS) used at MUHC including review of operative, radiological and 

pathological reports as well as clinical transcriptions. Data collected included patient 

demographics (age and sex), primary disease data (date of diagnosis, type of presentation, 

location within the proper colon, sigmoid colon or rectum, management modalities, date of 

surgical intervention if applicable, TNM classification, and lymphovascular involvement), 

liver metastasis data (type of presentation -synchronous vs metachronous-, date of diagnosis, 

type and date of surgical intervention, location of metastasis (lobe and segment), size and 

number of lesions, degree of differentiation, and PVE status), chemotherapy details (type of 

agents, number of cycles, date of first and last cycles, and radiological response according to 
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RECIST), relevant laboratory and biomedical results (CEA levels: pre-chemo, pre-op and 

post-op), personal and family history of cancer, and the presence of co-morbidites.  

 

2.3 Survival Analysis and Statistics 
 

Overall survival (OS) and disease free survival (DFS) were calculated for each patient. 

Overall survival was calculated from the date of metastasis diagnosis until the date of last 

follow-up. Disease free survival was calculated from the date of surgical intervention when 

complete resection was achieved to the date of recurrence or last follow-up if patient remains 

in remission. OS and DFS analysis was performed using the Kaplan-Meier survival analysis 

for the full cohort, training set and validation set. Further, survival analysis was done for 

pathological response groups (major, partial and minor) according to two independent 

pathologists grading as well as our developed pathological based IMS grading. Kaplan-Meier 

survival analysis curves were generated and significance was assessed using the log-rank test. 

Significance was set at P≤0.05. Statistical analysis was performed with both Prism 6 and JMP 

11 for Mac OS.  

 

2.4 MALDI-IMS Data Treatment 
 

FlexImaging 4.1 (Bruker Daltonics, Billerica, Massachusetts) was used to export data to 

.imzML format
124

, a flexible data format developed for IMS that allows the comparison of 

data from different instruments by applying identical parameters,  for downstream data 

treatment in R environment using MALDIquant package
125

. Total Ion Current (TIC)
126

 global 

normalization was performed next. This step is crucial as mass spectra of different samples 

are not always quantified within the same amplitude range and therefore not comparable 
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without normalization
126

. For peak picking process, smoothing was done according to 

Savitzka and Golay algorithm
127

. This is done to avoid false-positive peaks. Peak picking was 

performed at a single-to-noise ratio of 3.0. 

 

2.5 Clustering and Data Mining 
 

Using Cardinal MSI package
128

 in R environment, spatially aware K-means (k=7) algorithm 

was performed and collated to build our spectral library. K-mean is an approach to 

segmentation that incorporates spatial information directly into the clustering method
129

. 

Partial Least Squares – Discriminant Analysis (PLS-DA) was next performed to implement 

spectral library using the mixOmics package
130

. Receiver operator curve analysis was done 

using ROCR package
131

 in the R environment to identify histology specific discriminate 

lipids. 

 

2.6 Tissue Sectioning 
 

Serial sections 10-12 μm thick were cut using a Hacker/Bright cryostat (Hacker Instruments 

& Industries Inc., Winnsboro, CA) and stored in tightly closed box at -40°C to be used later 

for staining. Two serial sections of each sample were placed on special indium-tin-oxide 

(ITO) coated glass slides (Delta Technologies, Stillwater, MN) to be used for imaging mass 

spectrometry. ITO slides were either stored at -80°C or analyzed immediately. The rest of the 

slides were fixed for 60 minutes in 4% formaldehyde dissolved in 0.1 M phosphate buffer at 

pH 7.2 before staining. 
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2.7 Histological Characterization 
 

Using serial sections of each specimen a histological panel of 5 stains was built for the 

training set (n=12) to serve as a comparative assay for correlating IMS data with the different 

histologies in our specimens. The panel included: Apolipoprotein F (ApoF) in-situ 

hybridization (ISH) (a hepatocyte-specific stain that defines regions of liver adjacent to the 

tumor area), phospholipid transfer protein (PLTP) ISH (showing macrophages aggregation 

within or around the tumor), alcian blue (AB) (staines mucin within the tumor), haematoxylin 

and eosin (H&E)(a principle stain for general histology), and Ki67 immunostaining to 

identify viable tumor areas. Only H&E staining was performed for the validation set (n=40) 

on a serial section to validate topographies retrospectively after identifying them using lipid 

signatures.  

 

2.7.1 H&E Staining 

 

Fixed tissue sections were immersed for 2 minutes in hematoxylin solution (Sigma, cat. 

#H3136) prepared according to the manufacturer instruction and filtered before use. Tissue 

sections were then washed for 10 minutes under running tap water. Then, sections were 

stained for 3 minutes in eosin Y solution (Fischer cat. #E-511) prepared according to the 

manufacturer directive. Following staining, sections were transferred directly to 95% ethanol, 

then dehydrated in a series of alcohol baths of 3 minutes each (one 95% and two 100% 

ethanol baths), cleared with 3 xylene baths of 2 minutes each and finally cover slipped with 

permount
132

. 
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2.7.2 Alcian Blue Staining 

 

Fixed tissues were washed in water for 5 minutes and stained for 45 minutes in 1% alcian 

blue 8GX (Sigma, cat. #05500) in 0.1 M hydrochloric acid solution at pH 1.0. As described 

for H&E staining, following staining, sections were transferred directly to 95% ethanol, then 

dehydrated in a series of alcohol baths of 3 minutes each (one 95% and two 100% ethanol 

baths), cleared with 3 xylene baths of 2 minutes each and finally cover slipped with 

permount
133

. 

 

2.7.3 In Situ Hybridization 

 

In situ hybridization (ISH) was performed with [35S]-labeled riboprobes synthesized in  vitro 

from  DNA Templates at cytochrome.inc. Briefly,  mouse  Apolipoprotein F  (ApoF, 

GenBank AF411832.1)  DNA  template  of  675  bp  was  produced by  PCR  using  sense 

gataccagatgcagacctca   and   antisense   gttcgtcgttgttgacaaga   primers.   Human phospholipid 

transfer protein (PLTP, GenBank NM_006227.3) DNA Template of 884 bp   was   produced   

using   GAAGAGCGGATGGTGTATGT (sense) and TGGTGGACGGACTGTAATTG 

(antisense) primers. Sequences recognized by SP6 Polymerase (5′-

GCATTAATTTAGGTGACACTATAGAAGCG...-3′) were attached to         antisense and 

T7 Polymerase (5′-GCGCTATAATACGACTCACTATAGGGAGA...-3′) to sense primers. 

Following hybridization, the results were visualized by x-ray  film autoradiography showing 

anatomical level topography and emulsion autoradiography showing cellular level ISH 

labeling
134,135

. 
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2.7.4 Ki67 Immunohistochemistry (IHC) 

 

Rabbit monoclonal-antibody (cat. # RM-99106-S, Fisher, Thermo, QC) was used for 

staining, diluted 1:1000. Haematoxylin was used for counter staining
136

. 

 

2.8 Pathological Grading and Response 
 

The modified Tumor Regression Grade (mTRG)
 65

 differentiates between two types of 

necrosis. The first is Usual Necrosis (UN), considered a negative prognostic factor and a 

form of tumor progression. The second is Infarct-like Necrosis (ILN), a positive prognostic 

factor and a form of response. UN is identified as small patches of necrosis mixed with 

nuclear debris and walled off by tumor cells, while ILN is seen as large pink confluent areas 

surrounded by a desmoplastic like ring. Two independent pathologists graded every lesion 

according to modified Tumor Regression Grade (mTRG). Grade 1, complete response, was 

defined as the absence of viable tumor. Grade 2, was defined by the presence of rare tumor 

cells and little to no UN (<10%). Grade 3, was defined when more than rare but less than 

predominant the sum of viable tumor cells and UN were present (10-49%). Grade 4, when the 

sum of viable tumor cells and UN is predominant (>50) but fibrosis is seen within or around 

tumor cell. Grade 5 was defined by the absence of fibrosis with predominant viable tumor 

cells. 

 

2.9 Radiological Response 
 

Radiological response to therapy was assessed according to Response Evaluation Criteria in 

Solid Tumors (RECIST 1.1) guidelines
137

. Baseline CT scans were performed before the start 

of chemotherapy and repeated in 8-12 weeks. Complete Response (CR) is defined by the 
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disappearance of all target lesions, Partial Response (PR) is defined by a 30% or more 

decrease in the sum of target lesions, Progressive Disease (PD) is defined by a 20% or more 

increase in the sum of the target lesions or the appearance on new lesions, and Stable Disease 

(SD) is when neither criteria for PR or PD is met. Target lesions are measured at their longest 

diameter in both baseline and follow-up CT scans. They must be of at least 10mm in the 

longest diameter on CT scan, a maximum of 5 lesions can be considered as target lesions per 

organ.  

 

2.10 Matrix Application and Slide Preparation 
 

1,5-Diaminonapthalene (1,5DAN) matrix is applied by sublimation82. A glassware 

apparatus connected to a cold trap that in turn is connected to a pump is used to create 

vacuum (Figure2.1). First, an oil bath in a spinning plate is heated to 160°C. Next a 

double compartment glass jar is placed above it, but not yet immersed. In the inner 

compartment of the glass jar cold water and ice (slush) is placed. The ITO coated glass slides 

with the specimen thawed on top are taped to the bottom of the inner compartment externally 

in a perpendicular fashion in regards to the vacuum spout. The matrix is placed inside the 

external jar and arranged opposite of the slides to facilitate sublimation. Once the apparatus is 

connected the pump is switched on. When sufficient vacuum is achieved and the oil is heated 

efficiently the double compartment jar is slowly immersed into the oil for 8-10 minutes, 

where the matrix will be sublimated.  
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Figure 2.1 Scheme of Matrix Sublimation system. A Arrows indicate airflow. B Slide and 

matrix aliment.
138

  

 

2.11 MALD-IMS Instrument Parameters 
 

Bruker MALDI-TOF/TOF Ultraflextreme was used for IMS. Both positive and negative 

polarities were performed on serial sections, or in some cases on the same section with a 

50µm shift in two directions. Mass resolution was set at 100 µm and 150 laser shores were 

summed per array position. Mass range was set at m/z 460-1200 for both ionization modes. 

 

 

A 

B 
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2.12 MALDI Tandem Mass Spectrometry 
 

Tandem mass spectrometry or MS/MS is used to identify ions detected through 

fragmentation.
 
To improve fragmentation, species detected in positive mode

 
were acquired in 

Bruker Solarix 15 T FT-ICR using dried droplet spotting of 2,5-dihydroxyacetophenone 

doped with 100 mM Lithium Trifluoroacetate (LiTFA)
139

 in addition to LIFT-TOF/TOF 

mode of the Ultraflexetreme. This preparation method is advantageous as lithium exhibits 

high affinity for phospholipids and facilities its ionization accordingly. Species detected in 

negative mode were directly identified through fragmentation with LIFT-TOF/TOF mode of 

the Ultraflexetreme.  
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3. RESULTS 
 

3.1 Baseline Clinical Characteristics and Survival 
 

A total of 52 lesions from 50 patients were included in this study. Table 3.1 shows patient 

characteristics for the entire study population (Training and Validation sets are displayed 

separately in Table 6.1 (appendix)). Twelve lesions sections were used for training while the 

rest was used for validation (n=40). The median age of diagnosis for the entire study cohort is 

65 years of age with a range of 31 to 81 years. Male Patients constitute most of the study 

population (62%). The majority of primary disease lesions were in the colon, while 34% only 

were in the rectum. Most patients presented in a synchronous manner with the primary 

disease (63.4%). Over half of the patients had liver lesions in the right lobe (59.6%) while 

only 2 patients had bi-lobar disease. Furthermore, 46% have a single liver lesion while 17.3% 

have more than 4 lesions. Lesions averaged 3.7 cm in size at the longest diameter (range 0.3-

10 cm). Most patients received neoadjuvant chemotherapy (67.3%), around half of which 

received Bevacizumab (54.2%). Three patients had complete response (CR), 13 patients had 

partial response (PR) and 15 had stable disease (SD), while only 4 patients had progressive 

disease (PD) two of which underwent PVE. Table 3.2 shows chemotherapy data for the entire 

study population as well as the correlation between radiological and pathological response to 

therapy (The two sets chemotherapy status is displayed separately in table 6.1).  

 

At the last follow-up 8 mortalities were noted. All but one died from metastatic disease (two 

of which had brain metastasis).  Estimated 1-year and 3-year OS were at 100%, and 82.6% 

respectively (26.5 months mean follow up duration). In addition, 27 (54%) patients had 

recurrence in the liver, 13 of those also had recurrence in the lungs, and another 4 patients 

recurred in the lungs without liver recurrence. Estimated 1-year, and 3-year DFS for liver 
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metastasis were at 49.9%, and 44.4% respectively (26.5 months mean follow up duration). 

Figure 3.1 shows patient survival for the entire cohort as well as for the training and 

validation sets separately. 

Table 3.1 Patient Demographics. 

*n=50 **n=52 

 

 

 

Variable No.(%) Mean (SD) Range 
Age (years)*  63.1 (11.7) 31-81 
Sex*    

Male 31 (62)   
Female 19 (38)   

Location of Primary Disease*    
Proper Colon 8 (16)   
Sigmoid Colon 15 (30)   
Rectum 17 (34)   
Unknown 10 (20)   

Stage of Primary Disease (TNM)*    
T (size)    

T1 1 (2)   
T2 2 (4)   
T3 27 (54)   
T4 8 (16)   
Unknown 12 (24)   

N (lymph node)      
N0 11 (22)   
N1 16 (32)   
N2 9 (18)   
Unknown 14 (28)   

Disease Free interval**    
Synchronous 33 (63.4)   
Metachronous 19 (36.5)   

Location of Liver Lesion**    
Right Lobe 31 (59.6)   
Left Lobe 19 (36.5)   
Bi-lobular 2 (3.8)   

No. of Lesions**  2.5 (2.1) 1-10 
≤ 4 43 (82.6)   
> 4 9 (17.3)   

Size of Lesion (cm)**  3.7 (2.3) 0.3-10 
≤ 5 cm 36 (69.2)   
> 5 cm 16 (30.7)   
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Table 3.2 Chemotherapy Status and Response 

Chemotherapy Status n (%) 
Chemo-naïve* 17 (32.6) 
Chemo-treated* 35 (67.3) 

Chemotherapy alone** 16 (45.7) 
Bev+Chemotherapy** 19 (54.2) 

Radiological Response to 
Chemotherapy**** 

Pathological Response to Chemotherapy*** 
Major 

Response 
n(%) 

Partial 
Response 

n(%) 

Minor 
Response 

n(%) 
Complete Response 2 (66.6) 1(33.3) 0 (0) 
Partial Response 6 (46.1) 2 (15.3) 5 (38.4) 
Stable Disease  3 (20) 6 (40) 6 (40) 
Progressive Disease 0 (0) 2 (50) 2 (50) 
*n=52 **n=35 ***according to pathologist’s mTRG

65
 ****according to RECIST 1.1

137
 

 

Figure 3.1 Overall Survival (OS) and Disease Free Survival (DFS). A Entire Study 

population survival proportions indicated in results. B Training Set: estimated 1-year and 3-

year OS were observed at 100% and 81.8% respectively. Estimated 1-year and 3-year DFS 

were observed at  58.3% and 48.6% respectively. C Validation set: estimated 1-year and 3-

year OS were observed at 100% and 81.6% respectively. Estimated 1-year and 3-year DFS 

were observed at  47.3% and 44.2% respectively. 
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 3.2 Spectral Library Development: 
 

To build a spectral library a semi-supervised histology-derived approach was done initially 

using a set of 12 samples. This was performed using clustering algorithms (k-means) instead 

of manually choosing ROI according to pathologist annotations, thus avoiding the 

introduction of non-relevant IMS pixels, which occurs with manual selection in 

microscopically heterogeneous samples such as tumor sections. Acquired spectra were 

clustered using spatially aware k-mean (k=7) algorithm for each sample (n=12), and 

correlated with a 5 stain histological panel (Apo F, PLTP, AB, Ki67 and H&E) as shown in 

figure 3.2. This proved adequate to distinguish molecular signatures pertaining to histological 

topographies as 6 of the 7 clusters were immediately correlated with histology (Figure3.3), 

and thus identified as topography specific lipid signatures. The 7th cluster correlated with 

background matrix and consequently excluded from further data mining. These identified 

topographies are normal liver, viable tumor, necrosis, fibrosis, inflammation and mucin. The 

associated lipid signatures are color coded as blue, red, purple, grey, green and white 

respectively throughout this dissertation (classification for the entire training set are displayed 

in Figure 6.1).  

 

 Each of the six lipid signatures is identified by a group of co-expressing ions. By comparing 

them in a one vs. all approach we were able to identify and select single lipid histology 

marker candidates while excluding markers that may express similarly in multiple signatures. 

Receiver operator characteristics (ROC) curves were calculated for all picked peaks, and area 

under the curve (auROC) was calculated to determine the most discriminant lipids for each 

signature. These lipids were subsequently fragmented to ascertain their identity (Figure 6.2). 

Table 3 indicates the most discriminant species’ topographies, masses, auROCs, fold 

changes, identity, and characteristic MS/MS ions (combined Ion images are displayed in 
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figure 6.4). A tile plot of average peak intensity shows univariate comparisons of 14 top 

marker ions for the correlated topographies is shown in figure 3.4. Mucinous/empty histology 

was not included, as discriminant markers were 1.5-DAN matrix peaks. Another advantage of 

an automated means of data clustering is that it allows the comparison of signatures and 

therefore their designated histologies across the samples. By further dissecting the red 

signature we identified a lipid in the negative mode at m/z 835.54 with an expression 

intensity that correlates visually with ki67 IHC. 

Table.3 Discriminate Ions 

Topography m/z Identity Fold change auROC MS/MS 

Normal NEG_738.5 PE(16:0/20:4) 3.161 ± 0.23 0.923 FA-1:255,FA-2:303,434(Etn),452(Etn) 

  NEG_762.5 PE(16:0/22:6) 4.827 ± 0.45 0.940 
FA-1:255,FA-2:327, 434(Etn),452(Etn), 

506(Etn),524(Etn) 

  NEG_885.56 PI(18:0/20:4) 3.227 ± 0.19 0.964 

303, 283 (fatty acyl chains), 297 
(Glycerophosphoinositol), 241 (Inositol phosphate 

ion) 

  POS_758.57 PC(16:0/18:2) 2.71  ± 0.66 0.996 

Li_fragmentation: 508(NL of 16:0), 484(NL of FA 
18:2), 508(NL of 16:0), NL of 59, NL of 183 (PC 

headgroup) 

Tumor NEG_698.48 PE(p-16:0/18:2) 2.408 ± 0.42 0.878 
FA-2: 279, 436 (Loss of sn2 acyl chain as ketene 

(RCH=C=O) from [M-H]-) 

  NEG_700.51 PE(p-16:0/18:1) 2.151 ± 0.52 0.864 
FA-2: 281, 436 (Loss of sn2 acyl chain as ketene 

(RCH=C=O) from [M-H]-) 

  NEG_835.54 PI(16:0/18:1) 2.813 ± 0.63 0.885 

281, 255 (fatty acyl chains), 297 
(Glycerophosphoinositol), 241 (Inositol phosphate 

ion), 673(NL of inositol) 

  POS_706.55 PC(14:0/16:0) 2.835 ± 0.51 0.829 184(PC headgroup), ~0.7 ppm error 

  POS_732.55 PC(16:0/16:1) 5.355 ± 1.29 0.921 
Li_fragmentation: 480(NL of 16:1), 482(NL of 16:0), 

NL of 59, NL of 183 (PC headgroup) 

Inflammation NEG_722.49 PE(p-16:0/20:4) 3.749 ± 0.62 0.935 
436(Loss of sn2 acyl chain as ketene (RCH=C=O) from 

[M-H]-), 303(FA chain) 

  NEG_750.53 PE(p-18:0/20:4) 3.744 ± 0.66 0.845 
464 (Loss sn2 acyl chain as ketene (RCH=C=O) from 

[M-H]-), 303(FA) 

  POS_734.57 PC(16:0/16:0) 3.673 ± 0.72 0.942 
Li_fragmentation: 478(NL of 16:0), NL of 59, NL of 

183 (PC headgroup) 

Fibrosis POS_782.55 PC(18:2/18:2) 1.5 ± 0.61 0.780 184(phophotidylcholine headgroup) 

Necrosis POS_703.57 SM(d18:1/16:0) 5.62 ± 0.66 0.902 
Li_fragmentation: 280(sn-2 loss), NL of 59, NL of 183 

(PC headgroup) 

Etn = ethanolamine. NL = neutral loss. FA = fatty acid. PC = phosphotidylcholine. 

PE=phosphoethanolamine. SM = Sphingomyelin. p-16:0/p-18:0 = plasmenyl lipid. Cer =  

Ceramide. PI = phosphoinositol. 
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Figure 3.2 Histological 5-stain Panel. A representative subset of the training samples. 

(ApoF) apolipoproteIn F (AB) alcian blue, (H&E) hematoxylin and eosin, (PLTP) 

phospolipid transfer protein, (Ki67) proliferation index 



 39 

 

Figure 3.3 Histological Correlation. A H&E scan of serial section. B Lipid signatures (5 of 

the identified 6 are showing). Yellow arrows draw direct spatial correlation between lipid 

signatures and their designated histologies. 



 40 

 

Figure 3.4 Histology Lipid Markers. A tile plot of average peak intensity shows univariate 

comparisons of 14 top marker ions and their co-expression. 
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3.3 Validation of Lipid Signatures 
 

We used the spectral library developed by collation of the identified lipid signatures of the 

training-set to classify the topography of 40 additional samples. According to their lipid 

profiles and coordinates each IMS pixel of the validation set samples was classified to a 

single lipid signature or another using Partial Least Squares – Discriminant Analysis (PLS-

DA). The IMS predictions of topography were validated retrospectively for the entire 

validation set (n=40) by a pathologist using high resolution H&E scans. Figure 3.5 illustrates 

three of the samples and their validation score. The rest of the validation’s set histological 

correlations are shown in Figure 6.3. Very strong correlations were observed between 

predicted topography and gross morphology.   

 

Validation was done by scoring each lipid signature in every lesion from 0 to 5. A lipid 

signature was only scored ‘0’ if its correlated histology was not present in the H&E section 

while it was on the IMS predications or vice-versa. A score of 1 indicated that 1/5
th

 of the 

histology is matching and a score of 5 indicated a complete correlation. The green and grey 

signatures were scored as one signature as their designated histologies (inflammation and 

fibrosis respectively) were difficult to distinguish between based solely on H&E without 

further histopathological staining. The Blue (adjacent normal), Red (tumor), Purple 

(necrosis), Grey/Green (fibrosis/inflammation) and White (loose tissue/mucin) signatures 

scored an average of 5, 4.9, 4.5, 4.9, and 4.7 respectively indicating a very high level of 

correlation between the IMS prediction of all histologies in this cohort of lesions. Most H&E 

scans were of a direct serial section of that used for IMS, however when that was not the case 

(n=4) special consideration was taken by the pathologist and correlation remained strong. 
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Figure 3.5 Validation process. Three representative samples. A Tumor predominant 

sample reflected in the red lipid signature. High resolution H&E scan shows small 

amount of necrosis was picked up. B Sample with 2 small foci of viable tumor accurately 

detected in IMS lipid signatures. C Histologically heterogeneous sample. 

 

3.4 Purple Signature Mining 
 

The Modified Tumor Regression Grade (mTRG) as described by Chang et al. differentiates 

between two type of necrosis, Infarct-like Necrosis (ILN) and Usual Necrosis (UN) namely. 

Thus, further mining of the Purple signature (correlating with necrotic topography) was 

deemed necessary to generate automated mTRG using our lipid signatures. This was done by 

manual mining of top ion hits of the purple signature and comparing their ion images to 

histopathology. Once ions were selected as candidate markers for each type of necrosis 
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MS/MS was performed to ascertain their identity (Table.4). We were able to differentiate 

these two types of necrosis using single lipid ions in both polarities. In positive mode 

(Figure3.6) we identified a sphingomyelin species to be abundant in ILN at m/z 703.57 (SM 

(d18:1/16:0)) and two series of plasmalogens abundant at UN at m/z 746.57 (PC (p-

16:0/18:0)) and 744.57 (PC (p-16:0/18:1)). In negative mode we identified two ceramide 

species; one to be abundant in UN at m/z 536.50 (Cer (d18:1/16:0) and another abundant in 

ILN at m/z 616.47 (Cer-1-P(d18:1/16:0)).  

Table.4 Necrosis Specific Discriminate Ions 

Topography m/z Identity Fold change auROC MS/MS 

Infarct-like 
Necrosis POS_703.57 SM(d18:1/16:0) 5.62 ± 0.66 0.902 

Li_fragmentation: 280(sn-2 loss), NL of 59, NL of 183 
(PC headgroup) 

  NEG_616.47 Cer-1-P(d18:1/16:0) 4.83 ±  1.12 0.880 96(phosphate group),78(phosphate-H2O) 

Usual Necrosis POS_742.57 PC(p-16:0/18:2) 2.20 ±  0.43 0.823 
Li_fragmentation: NL of 189 (PC headgroup),279(NL 

of 189 + NL of non-plasmenyl FA) 

  POS_744.59 PC(p-16:0/18:1) 5.16 ±  1.14 0.911 
Li_fragmentation: NL of 189 (PC headgroup),279(NL 

of 189 + NL of non-plasmenyl FA) 

  POS_746.59 PC(p-16:0/18:0) 5.56 ±  0.78 0.912 
Li_fragmentation: NL of 189 (PC headgroup),279(NL 

of 189 + NL of non-plasmenyl FA) 

  POS_768.57 PC(p-18:0/18:3) 5.02 ±  0.98 0.902 
Li_fragmentation: NL of 189 (PC headgroup),307(NL 

of 189 + NL of non-plasmenyl FA) 

  POS_770.59 PC(p-18:0/18:2) 3.94 ±  0.74 0.872 
Li_fragmentation: NL of 189 (PC headgroup),307(NL 

of 189 + NL of non-plasmenyl FA) 

  POS_772.59 PC(p-18:0/18:1) 3.54 ±  0.88 0.854 
Li_fragmentation: NL of 189 (PC headgroup),307(NL 

of 189 + NL of non-plasmenyl FA) 

  NEG_536.50 C16 Cer(d18:1/16:0) 4.83 ±  1.19 0.945 
506(NL of H2CO), 504(NL of H2-H2CO), 488(NL of H2O-

H2CO), 296(side chain loss), 254(FA loss) 

NL = neutral loss. FA = fatty acid. PC = phosphotidylcholine.. SM = Sphingomyelin. p-

16:0/p-18:0 = plasmenyl lipid. Cer = Ceramide.  
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Figure 3.6 Purple Signature Mining. A Lipid signatures. White arrow points two foci of 

necrosis of different types. B By manual mining of the signature we identified single lipid 

markers for each by correlation with H&E (C). D High magnification of ILN on H&E. E 

High magnification of UN on H&E. 

 

3.5 Molecular Based mTRG 
 

To evaluate the robustness of the classifications -based on lipid signatures including those 

distinguishing UN and ILN- and its clinical application we generated an automated objective 

mTRG score established by the IMS data. Based on published mTRG scoring guidelines
65

 we 

developed an algorithm applicable to IMS lipid signatures. The algorithm applies the 

following parameters; grade 1 was defined by the absence of the red signature (identified as 

viable tumor), grade 2 was defined by <7% of the sum of the red signature and UN signature 
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in relation to other signatures (7% was chosen as a cut-off as opposed to pathologist eye-ball 

estimate of 10% by correlating pathologist estimates to IMS quantifications), grade 3 by ≥ 

7% but <50% of the sum of the red signature and UN signature in relation to other segments, 

grade 4 by ≥ 50% of the sum of the red signature and UN signature in relation to other 

signatures and grade 5 by ≥ 50% of the sum of the red signature and UN signature in relation 

to other signatures and the absence of the grey signature (identified as fibrosis). To validate 

our method we correlated the scores for all the lesions (n=52) with scores of two independent 

blinded pathologists. Inter-pathologist correlation was observed at r=0.7361 shown in Table 5 

(p<0.0001). The IMS generated scores correlated with both pathologists (r=0.8121 and 

r=0.6227, for pathologist 1 and 2, respectively, (p<0.0001)). It is noteworthy to mention that 

a few lesions were deemed too small for assessment by Pathologist 2, further details are in 

table 6.2. 

 

To further drive this correlation and observe its clinical relevance we plotted the mTRG 

grades from the two pathologist and lipid signatures (IMS mTRG) to overall survival (OS) 

and disease free survival (DFS) as seen in Figure 3.7. Patients who received chemotherapy 

were stratified into three response groups according to theirs scores (major response: grades 1 

and 2, partial response: grade 3, and minor response: grades 4 and 5)
62

. Three-year OS and 

DFS were calculated for each response group (Pathologist 1, Pathologist 2 and IMS mTRG) 

and homogenous trends were observed. Interestingly the major response group selected by 

IMS has significantly better DFS than those selected to be major response by either 

pathologists. This suggests that IMS increased sensitivity allows for better patient 

stratification as illustrated in Figure 3.7B. 
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Table.5 IMS Generated mTRG Correlations 

 
Pathologist 1 Pathologist 2 MALDI 

Pathologist 1 
 

0.7361 0.8121 
Pathologist 2 0.7361 

 
0.6227 

MALDI 0.8121 0.6227 
 

Average 0.7741 0.6794 0.7174 
P<0.0001 for all correlations. 
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Figure 3.7: Kaplan–Meier Survival Analysis For The Three Response Groups stratified 

according to pathological grading as observed by two independent pathologists and by MALDI IMS. 

The p value of the log-rank test is shown. A: Overall survival (OS) curve for major response group 

showing 100% OS at 12 and 36 in all three observation groups. No events in this patient group. All 

data censored. B: Disease Free Survival (DFS) curve for major response groups showing 63.6% DFS 

for the pathologist 1 and pathologist 2 and 75% DFS for MALDI IMS at 12 months and 21.7%, 0% 

and 38% DFS for Pathologist 1, Pathologist 2 and MALDI IMS at 36 months respectively.C: OS 

curve for partial response group showing 100% OS at 12 months for all three observation groups and 

51.4%, 64.2% and 63% OS at 36 months for pathologist 1, pathologist 2 and MALDI IMS 

respectively. D: DFS curve for partial response groups showing 54.5%, 57.1% and 45.4% DFS at 12 

and 0%, 38% and 22.7% at 36 months for the pathologist 1, pathologist 2 and  MALDI IMS 

respectively. E: OS curve for minor response group showing 100% OS at 12 months for all three 

observation groups and 70.1%, 72.9% and 68.1% OS at 36 months for pathologist 1, pathologist 2 

and MALDI IMS respectively. F: DFS curve for minor response group showing 30.7%, 35.7% and 

25% DFS at 12 months and 15.3%, 10.7% and 8.3% DFS at 36 months for pathologist 1, pathologist 

2 and MALDI IMS respectively. 
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4. DISCUSSION 
 

We were able to generate an automated objective histologically quantitative mTRG using 

MALDI IMS based lipid signatures. This allowed us to stratify patients into response groups 

and accurately predict their outcome (overall survival and disease free survival), thus 

providing pathologists and clinicians with a valuable objective tool to prognosticate patients 

and further drive treatment options and decisions. Unlike previous works in the field that 

relied on pathologist annotation to select ROI in a histology driven approach, we scanned the 

entire tissue section using MALDI IMS and included the entirety of the data in our analysis, 

thus alleviating possible error that might occur during ROIs selection and increasing 

statistical power of inter-sample comparison. A possible concern in including the whole 

resection sample in the analysis is that it often takes into consideration areas of inflammation 

adjacent to the tumor foci but not within it, therefore overestimating inflammation. However, 

despite this slight overestimation, grades remained the same throughout the cohort in the 

fully automated grading (no manual ROI selection), when compared to grades where ROI 

(entire lesion area, not histology specific ROI) were selected (r=0.98 p<0.001). In addition, 

previous studies aimed to distinguish cancer lesions from adjacent normal and distant normal 

tissue with a single or a few lipid intensities, while our approach allowed us to explore the 

TME at a deeper level. This is significant because cancer lesions are composed of multiple 

tissue types, and the progression and regression of these lesions is a dynamic process with 

composition changes reflecting the status of the lesion.   

 

Classifications based on IMS data will be key in clinical analysis. It will not be practical for a 

routine clinical pathology lab to examine IMS data ion by ion. Furthermore, many molecules 

detected by IMS are generic and will be expressed by several types of cells, with changes in 

their relative abundance distinguishing histologies and prognoses. Although the discovery 
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phase and classifications will require the full MALDI setting, the initial cost of introducing 

MALDI IMS into the clinical setting can be reduced by opting for a counter-top device that is 

already utilized in many microbiology clinical laboratories. Furthermore, aside from 

objectivity, using this method, a synoptic pathology report can be automated and produced 

within two hours from start to finish. 

 

In addition, from a research standpoint, correlating IMS raw data with clinical variables is not 

feasible due to the limited number of observations in typical clinical studies compared to the 

huge set of data generated by this type of analysis.  Our training and validation sets were 

selected according to procurement dates to avoid selection bias. Although the two groups of 

patients are clinically comparable this coincidently resulted in under representation of ILN in 

training set lesions, which necessitated further mining of the purple cluster. This could be 

avoided by hand selecting histologically representative sample for training, leading to upfront 

separate clustering of the two types of necrosis. Another possible limitation of our study was 

the subjectivity of the validation process. A technical objective validation can be done by 

randomly assigning samples into multiple training sets and comparing their classification in a 

single validation set. Nonetheless for the purpose of clinical applications pathologist’s 

validation will remain necessary despite its subjective nature.  Lastly, the small study sample 

and short follow up duration (median 26 months) limit the generalization of our findings. A 

longer multi institute study with a larger cohort is needed for validation.  

 

MALDI IMS plays a role beyond pathological grading as a valuable biomarker candidate 

discovery tool. Within the necrosis areas we examined, we identified C16 ceramide and C16 

ceramide-1-phosphate (C1P) associated with UN and ILN, respectively. C16 ceramide has 

been described as having tumor suppressor activity as it is thought to be anti-proliferative and 
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pro-apoptotic, while in contrast C1P has pro-survival anti-apoptotic activity, making these 

lipids attractive biomarker candidates
140,141

. It has been reported that high levels of C1P -

which stimulates cell division and inhibits apoptosis- is toxic and can kill cells
142

. The two 

ceramide markers correlation within the two distinct and differentially prognostic necrosis 

areas could potentially lead to a novel target.  Alongside the ceramides, plasmalogens were 

identified in the necrosis areas. Although found ubiquitously in human cells, they have not 

been previously described in cancer or necrosis processes, unlike other ether lipids. In 

addition, they have been reported to be lower in abundance in liver tissue compared to other 

organs
142,143

. Interestingly, within our data set we identified PE (phosphoethanolamine) 

plasmalogens to be associated with both tumor areas and areas of inflammation, whereas PC 

plasmalogens are exclusively abundant in areas of UN. Current research indicates PE 

plasmalogens as the precursor to PC plasmalogens as no plasmenylcholine desaturase 

enzyme has been described. Compared to UN, we find minimal PC plasmalogen signal in 

surrounding liver tissue. The function of these lipids in the specific histologies opens further 

areas of research. 

 

IMS and MALDI offer a unique exploration of spatial information. Resection margins largely 

affect patient outcome and are regarded as an independent prognostic factor. Considering that 

MALDI IMS has a higher sensitivity in detecting viable tumor, as proven by the superior 

outcome of patients regarded as Major Response group by IMS signatures, its employment in 

margins assessment could be greatly beneficial to clinical practice. Furthermore, with a 

suitable spectral library it can generate a detailed automated pathological grading in as little 

as 30 min – 2 hours depending on sample size. In addition, by building a larger more 

heterogeneous spectral library with various types of cancers, MALDI IMS could be used for 

diagnostic purposes in differentiating cancer type based on lipid profiles. Not only can the 
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tissue section be used for downstream staining after acquiring data, but also the IMS data can 

be mined at any point of time with reproducible methods, and correlated with different tissue 

markers. It can also be used to replace a number of histological stains and antibodies, which 

will lead to lower overall costs. For example, in our set of data we have identified a mucin 

signature which can replace AB staining, which allows for an actual quantification and 

overcomes staining and IHC methods limitations
144

. 

 

Advances in MS have facilitated lipidomic applications in biomarker discovery. Liquid 

chromatography (LC/MS) is already being widely used for discovering and identifying lipid 

biomarkers in blood samples
145

. Our study demonstrates IMS applications in CRCLM 

histopathology and biomarker discovery using lipidomics. We have uncovered a novel set of 

markers (ceramides and plasmalogens) that can be further investigated to better understand 

the underlying pathology and be used as possible novel drug targets. 
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Varible Training Set Validation Set  
  

 No.(%) Mean 
(SD) 

Range No.(%) Mean 
(SD) 

Range 

Age (years)  62.7 
(15.9) 

31-81  *63.2 
(11.7) 

*40-81 

Sex       
Male 5 (41.7)   *26 (68.4)   
Female 7 (58.3)   *12 (31.5)   

Primary Disease        
Proper Colon 4 (33.3)   *11(28.9)   
Sigmoid Colon 4 (33.3)   *5 (13.15)   

Rectum 4 (33.3)   *14 (36.8)   
Unknown 0 (0)   *8 (21)   

Primary Disease (TNM)       
T (size)       

T1 0 (0)   *1 (2.6)   
T2 0 (0)   *2 (5.2)   
T3 7 (58.3)   *20 (52.6)   
T4 4 (33.3)   *4 (10.4)   
Unknow
n 

1 (8.3)   *11 (28.9)   

N (lymph node)       
N0 3 (25)   *8 (21)   
N1 6 (50)   *10 (26.3)   
N2 2 (16.6)   *7 (18.4)   

Unknow
n 

1 (8.3)   *13 (34.2)   

Disease Free intevral       
Synchronous 12 (100)   **21 

(52.5) 
  

Metachrnous 0 (0)   **19 
(47.5) 

  

Location of Liver Lesion       

Right Lobe 9 (75)   **20 (50)   

Lift Lobe 3 (25)   **18 (45)   

Bilobar 0 (0)   **2 (5)   

No. of Lesions  2.1 (1.9) 1-7  **2.6 
(1.9) 

**1-10 

≤ 4 10 (83.3)   **29 
(72.5) 

  

> 4 2 (16.6)   **11 
(27.5) 

  

Size of Lesion (cm)  4.7 (2.3) 0.3-
9.2 

 **3.4 
(2.3) 

**0.8-
10 

≤ 5 cm 6 (50)      
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Table 6.1 : Patient characteristics separated by training and validation set. Training set 

12 lesions from 12 patients. Validation set  40 lesions from 38 patients (2 patients underwent 

stage resection). *n=38 **n=40 

 
Figure 6.1: Segmentation of the IMS data for the training set.  The colors blue, red, 

purple, green, grey and white represent normal liver, viable tumor, necrosis, inflammation, 

fibrosis, and mucinous/empty/noise areas in and outside the tumor area, respectively 

 
 

 

 

 

 

 

 

 

 

••31(77.5) 
> 5 cm 6 (50)   ••9 (22.5)   

Chemotherapy Status       
Chemo-naive  3 (25)   ••14 (35)   
Treated 9 (75)   ••26 (65)   
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Figure 6.2 :MS/MS (fragmentation) of most discrimiant markers. Fatty acid side chain 

length and number of unsaturations are given, however, side chain position at either sn-1 or 

sn-2 is not known.  

I. Adjacent “Normal” Liver, Negative  mode,  m/z 738.62, PE(16:0/20:4) 

 
II. Adjacent “Normal” Liver, Negative  mode,  m/z 762.55, PE(16:0/20:4) 
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III. Adjacent “Normal” Liver, Negative  mode,  m/z 885.56,  PI(18:0/20:4) 

 
 

 

IV. Adjacent “Normal” Liver, Positive  mode,  m/z 758.57,  PC(16:0/18:2) 
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V. Viable Tumor, Negative  mode,  m/z 698.48,  PE(p-16:0/18:2) 

 
 

 

 

 

VI. Viable Tumor, Negative  mode,  m/z 700.51,  PE(p-16:0/18:1) 
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VII. Viable Tumor, Negative  mode,  m/z 835.51,  PE(p-16:0/18:1) 
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VIII. Viable Tumor, Positive  mode,  m/z 706.55,  PC(14:0/16:0) : Identified 

through LIPIDMAPS on exact mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX. Viable Tumor, Positive  mode,  m/z 732.54,  PC(16:0/16:1) 
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X. Inflammation, Negative Mode, m/z 722.49, PE(p-16:0/ 20:4) 

 
 

XI. Inflammation, Negative Mode, m/z 750.53, PE(p-18:0/ 20:4) 

 
 

 

XII. Inflammation, Positive Mode, m/z 734.57, PC(16:0/ 16:0) 
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XIII. Necrosis, Positive Mode, m/z 703.57, SM(d18:1/16:0) 
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Table 6.2: Pathologists and IMS mTRG gradings for all samples 
serial no. Path1 Path2 IMS 

1 1 2 1 

2 2 2 2 

3 3 3 3 

4 3 5 3 

5 3 3 3 

6 4 4 4 

7 4 5 3 

8 2 2 1 

9 4 4 4 

10 4 5 4 

11 5 4 4 

12 3 4 3 

13 3 3 3 

14 3 too small to assess 3 

15 4 5 3 

16 3 too small to assess 3 

17 4 5 3 

18 4 4 4 

19 1 too small to assess 1 

20 4 3 3 

21 4 4 3 

22 2 1 1 

23 4 4 4 

24 2 1 2 

25 3 5 4 

26 3 3 4 

27 2 too small to assess 3 

28 2 2 2 

29 3 2 2 

30 4 4 3 

31 3 3 3 

32 4 too small to assess 4 

33 3 3 3 

34 1 1 1 

35 3 2 3 

36 3 3 3 

37 4 4 4 

38 4 4 4 

39 4 1 5 

40 3 3 3 

41 4 4 3 

42 4 4 4 

43 4 4 3 

44 4 4 4 

45 4 4 3 

46 4 4 4 

47 2 2 2 

48 3 4 4 

49 4 5 4 

50 2 2 2 

51 3 3 2 

52 4 4 4 
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Figure 6.3: Predictive IMS on validation set of CRC samples. (a) For all samples, a is the 

predicted IMS data at 100 µm. (b) large scale view of H&E staining of serial section. (c-e) 

zoom views of H&E for comparison.  
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Figure 6.4:Ion images of topographical markers 
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I. Markers of inflammatory cells(green), tumor cells(red), and adjacent liver(blue) from 

positive ionization mode. Green = + m/z  734.56, PC(32:0). Red = + m/z 732.55 

PC(32:1). Blue = + m/z 758.56, PC (34:2).  
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II. Markers of inflammatory cells (green), tumor cells (red), and adjacent liver (blue) 

from positive ionization mode. Green = - m/z  722.51, PE(P-36:4). Red = - m/z 700.50 

PE(P-34:2). Blue = - m/z 762.50, PE(38:6). 

http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PE(P-36:4)
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III. Markers of fibrotic tissue (grey), positive ionization mode. Grey = + m/z  782.55, 

PC(34:1) + K
+
. 
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IV. Markers of necrotic tissue (purple), positive ionization mode. Purple = + m/z  

703.55, SM(34:1). Outline of tissues highlighted with dotted line. 

 


