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Abstract 

Systems in extreme thermal environments are susceptible to severe temperature changes. 

Variations in temperature can lead to undesired geometric changes in sensitive applications that 

require very fine precision, such as satellite antennas, space telescopes, and large array mirrors. 

These applications call for materials with zero coefficient of thermal expansion (CTE) to avoid 

unexpected thermal deformation. On the other hand, other applications require materials with 

large positive or negative CTE which make them capable to morph and adapt their geometry in 

response to variations in temperature. In these scenarios, materials that are able to provide 

tunable thermal expansion with high structural efficiency become crucially important. 

It is known that the CTE of architected materials, as opposed to that of conventional solids, can 

be tuned by intentionally altering the geometry and material distribution of their dual-material 

architecture. Existing concepts, however, offer a limited range of CTEs, which is obtainable 

from a restricted palette of materials only. In addition, they feature an inherent coupling between 

their thermal and elastic properties, with high specific stiffness obtainable at the expense of CTE 

tunability, and vice versa. The overarching goal of this work is to address these intertwined 

issues so as to expand the CTE range that an architected material can offer without penalizing its 

specific stiffness. 

The thesis introduces a class of planar and three dimensional architected materials with tunable 

thermal expansion. In 2D, hierarchical lattice materials are proposed to feature a theoretically 

unbounded range of CTE tunability, regardless of their constituent solids. An unbounded control 

on thermal expansion is achieved without incurring in severe loss of structural performance. 

Stretch-dominated bi-material diamonds with low- and high-CTEs are proposed as building 

blocks of hierarchical lattices, including those made of recursive unit cells, with the goal of 

decoupling thermal and elastic properties. In 3D, a unifying methodology based on thermoelastic 

behavior of dual-material tetrahedra is developed for the analysis and design of spatial lattices 

and truss structures with desired thermal expansion modes including unidirectional, transversely 

isotropic, and isotropic CTE. The method establishes a relationship between the unit cell 

symmetry and its corresponding thermoelastic response, which is expressed by introducing the 

thermal expansion vector of the building block in the unit cell. The methodology is exemplified 



v 

 

through the application to a set of three dimensional lattices, such as the dual-material Octet-

truss, which are proved not only to be stiffer and stronger than any other existing concepts, but 

also to offer a highly tunable CTE. 

The method and concepts are obtained via a combination of thermoelastic mechanic theory, 

numeric simulations, and physical experiments on 3D fabricated prototypes with plan and spatial 

architecture. The material architectures are scale independent and can open up new avenues 

towards the development of multifunctional materials with customizable thermal expansion and 

mechanical properties. The novelty and simplicity of the proposed designs, as well as the ease in 

fabrication, make the concepts here introduced well-suited for a wide range of applications 

across the length scale, including satellite antennas, space optical systems, precision instruments, 

thermal actuators, and MEMS. 
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Résumé 

Les systèmes dans des environnements extrêmes sont sujets à de larges variations de température. 

Ces écarts de température peuvent provoquer des changements de géométries non désirés pour 

des applications sensibles requérant une très grande précision, comme pour les antennes de 

satellites, les télescopes spatiaux ou les panneaux solaires. Ces applications nécessitent 

l’utilisation de matériaux possédant un coefficient d’expansion thermique (CET) nul afin d’éviter 

des déformations thermiques inattendues. Par ailleurs, d’autres applications requièrent des 

matériaux avec de grands CET, positifs ou négatifs, de manière à ce qu’ils puissent ainsi adapter 

leurs géométries en réponse aux variations de température. Dans ces scénarii, les matériaux dont 

il est possible de régler l’expansion thermique en gardant une grande efficacité structurelle 

deviennent de première importance. 

Il est avéré que le CET de matériaux architecturés, à l’opposé de celui des solides conventionnels, 

peut être réglé en altérant de manière intentionnelle leurs géométries et leurs distributions, ce qui 

est rendu possible grâce à leur architecture duale. Les concepts préexistants n’offrent cependant 

qu’une plage limitée de CET, obtenue à partir d’une faible diversité de matériaux. De plus, il 

existe un couplage inhérent de leurs propriétés thermiques et élastiques, une grande raideur 

spécifique étant ainsi obtenue au dépend de la finesse du réglage du CET, et vice versa. Le but 

principal de cette étude est de traiter de cette problématique de couplage afin de faire en sorte 

qu’augmenter la plage de CET ne résulte pas en une raideur spécifique dégradée. 

La thèse introduit une classe de matériaux architecturés dans le plan et tridimensionnels dont il 

est possible de régler l’expansion thermique. En 2D, des matériaux hiérarchisés avec une 

structure en treillis sont proposés pour représenter une plage théorique illimitée de réglage de 

CET, sans tenir compte des solides les constituant. Un contrôle illimité d’expansion thermique 

est atteint sans trop impacter les performances structurelles. Des diamants composés de deux 

matériaux à déformations axiales, avec des grands et des faibles CET sont proposés comme unité 

de base dans la structure des treillis hiérarchisés, incluant ceux fait de cellules récursives, dans le 

but de découpler les propriétés thermiques et élastiques. En 3D, une méthodologie universelle 

bas e sur le comportement thermoélastique de tétrahedrons bi matériaux est développée pour 

l’analyse et le design de treillis dans l’espace et de structures en barreaux possédant des modes 
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d’expansion thermiques recherchés, parmi lesquels les modes unidirectionnels, transverses 

isotropiques et isotropiques. La méthode établie une relation entre la symétrie de la cellule et la 

réponse thermoélastique correspondante, qui est exprimée en introduisant le vecteur d’expansion 

thermique de l’unité de base dans la cellule. Afin d’illustrer cette méthodologie, sont donnés des 

exemples de son application sur plusieurs structures en treillis tridimensionnels, comme l’Octet-

truss bi matériaux, dont il est prouvé qu’il est non seulement plus rigides et plus résistants que n

importe quel autre concept existant, mais qu’il offre aussi un CET réglable de manière très 

précise. 

La méthode et les concepts sont obtenus via une combinaison de théorie mécanique 

thermoélastique, de simulations et d’expérimentations faites sur des prototypes tridimensionnels 

manufacturés avec des architectures planes ou spatiales. L’architecture des matériaux est 

échelonnée de façon indépendante et peut permettre d’ouvrir de nouvelles voies sur le 

développement de matériaux multifonctionnels possédant des expansions thermiques et des 

propriétés mécaniques personnalisables. Le caractère inédit et la simplicité des designs proposés, 

de même que le procédé simpliste de leurs fabrications, rendent ces concepts introduits ci-dessus 

bien adaptés pour de multiples applications à différents échelles, comme (pour) les antennes de 

satelites, les systems optiques spaciaux, les instruments de précisions, les actionneurs thermiques 

ou les systèmes microélectromécaniques. 

 

 

 

 

 

 

 

  



viii 

 

Acknowledgement 

I would like to take this chance to express my sincerest thanks to a group of people including my 

supervisor, my friends and family for their help and support. First, I would like to thank my PhD 

supervisor Professor Damiano Pasini. His kindness and enthusiasm encouraged me, his technical 

support and scientific guidance enlightened me, and his preciseness and dedication motivated me 

throughout my research explorations. He is a great teacher, a true mentor, and a family-oriented 

role model. He set the bar for me within school and beyond, both as an outstanding scholar as 

well as an exemplary father-figure for me in the future. 

I appreciate the nice friends from “The Pasini Group” whom I was pleased to meet and know. 

Particularly, I wish to thank Purnendu Prithipaul, Emily Gogarty, and Sajad Khanoki who helped 

me so much in my first year, during my hardest moments. Thanks Amr Farag, Yingjun Wang, 

Jiazhen Leng, Daniel Fraschetti, and Joseph Lu whom I collaborated with. My other team 

members: Burnett Johnston, Abdolhamid Shafaroudi, Lu Liu, Ahmed Moussa, Xiao Shang, 

Chuan Qiao and many others, thank you for the good times.  

I would like to say my deepest thanks to my beloved wife, Qiuyi Lyu, who accompanies me 

through all my adventures. I will always be indebted and grateful to you for all the sacrifices you 

made for me. I would like to express my special thanks to my parents and my parents-in-law for 

their encouragement, unconditional love, and continuous support. Nina, my lovely daughter, you 

taught me the meaning of responsibility, and your birth brought the whole family endless joy. 

This thesis and the rest of my life are dedicated to you. 

Finally, I would like to thank the China Scholarship Council (CSC), the National Sciences and 

Engineering Research Council of Canada (NSERC), and the McGill Engineering Doctoral 

Award (MEDA) for their collaborative financial support for this project. 

  



ix 

 

Table of contents 
 

Abstract ................................................................................................................................... iv 

Résumé .................................................................................................................................... vi 

Acknowledgement ................................................................................................................. viii 

Table of contents ..................................................................................................................... ix 

List of figures ..........................................................................................................................xiv 

List of tables ......................................................................................................................... xxvi 

Contributions of the author .............................................................................................. xxviii 

1. Chapter 1: Introduction and literature review ................................................................2 

1.1 Introduction ..................................................................................................................2 

1.1.1 Thermal expansion .................................................................................................2 

1.1.2 The definition of coefficient of thermal expansion .................................................2 

1.1.3 Thermal expansion requirements in engineering applications .................................3 

1.1.4 Materials with intrinsically zero or large positive/negative CTE .............................4 

1.1.5 The main target of this PhD work ...........................................................................6 

1.2 Literature review ...........................................................................................................6 

1.2.1 Micro-architected lattice materials .........................................................................6 

1.2.2 Bending versus stretching dominated architectures.................................................7 

1.2.3 Architected materials with tunable CTEs................................................................8 

1.2.4 Challenges for design of architected materials ...................................................... 15 

1.3 Thesis objectives ......................................................................................................... 17 

1.4 Structure of the thesis .................................................................................................. 17 

1.5 Reference .................................................................................................................... 19 

2. Chapter 2: Multilevel hierarchy in bi-material lattices with high specific stiffness and 

unbounded thermal expansion ............................................................................................... 28 



x 

 

2.1 Abstract ...................................................................................................................... 28 

2.2 Introduction ................................................................................................................ 29 

2.3 Methodology ............................................................................................................... 31 

2.3.1 Unit cell model with a bi-material diamond shape ................................................ 31 

2.3.2 Experimental validation ....................................................................................... 39 

2.4 Results ........................................................................................................................ 44 

2.4.1 System calibration ................................................................................................ 44 

2.4.2 Testing results ...................................................................................................... 44 

2.4.3 Model predictions ................................................................................................ 45 

2.5 Discussion................................................................................................................... 49 

2.6 Conclusion .................................................................................................................. 53 

2.7 Supplementary material............................................................................................... 53 

2.7.1 Architected material baselines .............................................................................. 53 

2.7.2 Definition of relative density, fractal, and hierarchical lattice ............................... 55 

2.7.3 Thermo-elastic properties of dual-material diamond-shaped lattice ...................... 57 

2.7.4 Testing setup ........................................................................................................ 64 

2.7.5 Asymptotic homogenization method .................................................................... 65 

2.8 References .................................................................................................................. 68 

Link between chapter 2 and chapter 3 ................................................................................... 72 

3. Chapter 3: Routes to program thermal expansion in three-dimensional lattice 

materials built from tetrahedral building blocks ................................................................... 74 

3.1 Abstract ...................................................................................................................... 74 

3.2 Introduction ................................................................................................................ 75 

3.3 3D lattice with low-CTE tetrahedra ............................................................................. 79 

3.3.1 Definition of material length vector and thermal displacement vector ................... 79 



xi 

 

3.3.2 Exploration of dual-material tetrahedra ................................................................ 84 

3.3.2.1 Thermal deformation mode of dual-material tetrahedra..................................... 84 

3.3.2.2 CTE of low-CTE tetrahedron ............................................................................ 88 

3.3.3 Generation of 3D bi-material lattices with desired thermal expansion ................... 90 

3.3.3.1 Unidirectional CTE requirement ....................................................................... 94 

3.3.3.2 Transverse isotropic CTE requirement .............................................................. 96 

3.3.3.3 Isotropic CTE requirement ............................................................................... 99 

3.3.3.4 Geometrical constraints of compound unit cells .............................................. 101 

3.3.3.5 Summary points for prescribing thermal expansion in spatial lattices .............. 102 

3.4 Fabrication and experimental validation .................................................................... 103 

3.4.1 Component materials ......................................................................................... 103 

3.4.2 Engineering of specimens .................................................................................. 104 

3.4.2.1 Fabrication of building block samples ............................................................ 104 

3.4.2.2 Fabrication of unit cell specimens ................................................................... 104 

3.4.3 Experimental method ......................................................................................... 106 

3.4.4 Experimental results ........................................................................................... 107 

3.5 Mechanical properties ............................................................................................... 111 

3.5.1 Relative density ................................................................................................. 111 

3.5.2 Elastic stiffness .................................................................................................. 112 

3.6 Discussion on thermal expansion, specific stiffness, and their trade-off ..................... 116 

3.7 Conclusions .............................................................................................................. 122 

3.8 Supplementary material............................................................................................. 123 

3.8.1 Additional concepts ........................................................................................... 123 

3.8.2 Testing setup and testing samples ....................................................................... 126 

3.8.3 Calculation of elastic stiffness for truss members ............................................... 129 



xii 

 

3.8.4 Yield and buckling strength ............................................................................... 133 

3.9 References ................................................................................................................ 137 

Link between chapter 3 and chapter 4 ................................................................................. 142 

4. Chapter 4: Structurally efficient three-dimensional metamaterials with controllable 

thermal expansion ................................................................................................................. 144 

4.1 Abstract .................................................................................................................... 144 

4.2 Introduction .............................................................................................................. 144 

4.3 Mechanisms of thermal deformation in a tetrahedron ................................................ 146 

4.4 Generation of Octet bi-materials with high CTE tunability ........................................ 148 

4.5 Results ...................................................................................................................... 149 

4.6 Discussion................................................................................................................. 151 

4.7 Conclusions .............................................................................................................. 155 

4.8 Methods .................................................................................................................... 156 

4.8.1 Sample fabrication ............................................................................................. 156 

4.8.2 DIC measurements ............................................................................................. 156 

4.8.3 Finite element simulations and asymptotic homogenization ............................... 156 

4.9 Supplementary material............................................................................................. 157 

4.9.1 Manufacturing: pretension snap-fit method ........................................................ 157 

4.9.2 Assembly and tessellation rules .......................................................................... 158 

4.9.3 Experiment to test thermal expansion ................................................................. 159 

4.9.4 Shear modulus of low-CTE octet truss ............................................................... 161 

4.10 References ............................................................................................................. 161 

5. Chapter 5: Conclusions ................................................................................................. 167 

5.1 Summary of the main results ..................................................................................... 167 

5.2 Original contribution ................................................................................................. 170 



xiii 

 

5.3 Future work .............................................................................................................. 171 

5.4 Publications .............................................................................................................. 173 

5.4.1 Refereed journals ............................................................................................... 173 

5.4.2 Conference abstracts .......................................................................................... 173 

5.4.3 Poster presentations: .......................................................................................... 174 

 

 

  



xiv 

 

List of figures 

Figure 1-1: Linear thermal expansion of a straight bar. ................................................................3 

Figure 1-2: (a) The linear CTEs of ferromagnetic disordered Fe65Ni35, Fe72Pt28 and Fe68Pd32 

alloys as a function of temperature, according to experiments [22, 23, 27]. The value of the Curie 

temperature of each system is denoted as Tc [28]. (b) Ashby Chart: the linear expansion 

coefficient,  , plotted against Young’s modulus, E [29]. ............................................................5 

Figure 1-3: Nickel alloy hierarchical metamaterial and critical features across seven orders of 

magnitude in length scale. [31] ....................................................................................................6 

Figure 1-4: Deformation modes of architectures: (a) bend-dominated structure and (b) stretch-

dominated structure with their undeformed and deformed structures. ..........................................8 

Figure 1-5: Architected material concepts constructed via bi-material strips [50, 51]: (a) a bi-

material strip building block with controllable CTE in the horizontal direction [43]; (b) a unit cell 

in 2D [43]; and (c) a unit cell in 3D [52]. Red and blue constituents represent materials with high 

and low CTE respectively. ..........................................................................................................8 

Figure 1-6: Architected material concept constructed via nested double-barrelled struts [44, 47]: 

(a) building block: a bi-material nested double-barrelled strut with controllable CTE in the axial 

direction without (I) and with (II) structural hierarchy; (b) a unit cell in 2D; and (c) a unit cell in 

3D. Red and blue constituents represent materials with high and low CTE respectively...............9 

Figure 1-7: Architected material concepts constructed via flexure-blades building blocks [45, 48, 

55]: (a) a flexure-blades building block with controllable CTE in the vertical direction; (b) a unit 

cell in 2D; and (c) a unit cell in 3D. Red and blue constituents represent materials with high and 

low CTE respectively. ............................................................................................................... 10 

Figure 1-8: CTE-tunable concepts with re-entrant architecture: (a) Jefferson et al. [18, 56], (b) 

Ng et al. [57], (c) the 2D concept of Ai et al. [58], and (d) the 3D concept of Ai et al [42]. The 

two elements of a re-entrant architecture are marked as: (A) intercellular straight connector and 



xv 

 

(B) a curved beam. Red and blue constituents represent materials with high and low CTE 

respectively. .............................................................................................................................. 11 

Figure 1-9: Architected material concept constructed via bi-material triangles and tetrahedra [17, 

60, 61]: (a) the planar building block: a bi-material triangle with controllable CTE in the vertical 

direction; (b) a unit cell in 2D; (c) the spacial building block: a bi-material tetrahedron with 

controllable CTE in the vertical direction; and (d) a unit cell in 3D. Red and blue constituents 

represent materials with high and low CTE respectively. ........................................................... 12 

Figure 1-10: Concepts developed by topology optimization: (a) concept with zero thermal 

expansion and maximized bulk modulus [46, 73, 74]; (b) optimized concepts with the forced 

void domain for maintaining the deformation range [75]; (c) a low bulk modulus, high thermal 

expansion concept [76]; and (d) the maximal modulus design [76]. Red and blue constituents 

represent materials with high and low CTE respectively. ........................................................... 13 

Figure 1-11: Laminates and particulate composites with controllable CTEs: (a) origami laminates 

for tunable thermal expansion [80]; (b) laminated plate with in-plane controllable CTEs [26, 81-

86]; and (c) particulate composites for thermal stress management [87, 88]. Red and blue 

constituents represent materials with high and low CTE respectively. ....................................... 14 

Figure 2-1: Deformation of a unit cell in a diamond shape with low, LD (a-I), and high, HD (b-I), 

CTE, strut thickness t , horizontal bar length l , sloped bar length 'l  , and skew angle  . (II) 

Deformation of hypothetically unconnected elements and their corresponding dimensional 

changes. (III) Actual deformation of rigidly connected elements along with change in dimensions 

due to rigid nodal connectivity. ................................................................................................. 32 

Figure 2-2: Multiscale lattices with second-order hierarchy (n=2). (a-I) Fabricated fractal-like HL 

with low-CTE, (b-I) hybrid-type HL with low-CTE with specified dimensions denoted in mm. 

(a-II) and (b-II) geometric models of second-order hierarchy with cell-wall thickness, 2t , and 

length, 2l . (a-III) and (b-III) first order unit cell models with low- and high-CTE shaped-diamond, 

i.e. LD and HD, and their respective cell-wall thickness, 1t , and length, 1l . n  with  0, 90n    

is the angle between the inclined cell wall and the x-direction. (a-IV) and (b-IV) constituent 



xvi 

 

materials colour-coded to illustrate low and high CTEs. All lattices are planar with prismatic 

units of identical out-of-plane thickness. ................................................................................... 35 

Figure 2-3: Thermal experiment of fractal-like HL with: 0n   (a); 1n   (b); and 2n   (c), and 

thermal deformation field shown in column (III) for x-direction and column (IV) for y-direction. 

To perform DIC, black and white speckles were applied randomly and uniformly across the 

nodes to each hybrid-type and fractal-like HL samples, for thermal displacement measurements. 

Columns (I) and (II) illustrate respectively initial configurations for designed and fabricated 

samples. Obtained CTE values along with theoretical and simulated values are summarized 

along their corresponding columns. Computational values are obtained via asymptotic 

homogenization. ........................................................................................................................ 40 

Figure 2-4: Thermal experiment of hybrid-type HL with skew angles of 55° (a), 60° (b), and 65° 

(c) and thermal deformation field shown in column (III) for x-direction and column (IV) for y-

direction. Columns (I) and (II) illustrate respectively initial configurations for designed and 

fabricated samples. Obtained CTE values along with theoretical and simulated values are 

summarized along their corresponding columns. Computational values are obtained via 

asymptotic homogenization. ...................................................................................................... 42 

Figure 2-5: Thermal experiment of hybrid-type HL with wall layers of 1M   (a); 2M   (b); 

and 3M   (c) and thermal deformation field shown in column (III) for x-direction and column 

(IV) for y-direction. Columns (I) and (II) illustrate respectively initial configurations for 

designed and fabricated samples. Obtained CTE values along with theoretical and simulated 

values are summarized along their corresponding columns. Computational values are obtained 

via asymptotic homogenization. ................................................................................................ 43 

Figure 2-6: CTE (a) and structural efficiency (b) of fractal-like HL in the y-direction as a 

function of n , the number of hierarchical order; CTE (c) and structural efficiency (d) of hybrid-

type HL in the y-direction, respectively, with respect to n . Lines of given skew angle are 

visualized for hybrid-type HL and fractal-like HL, and shaded regions (green) in (a) and (c) are 

depicted to represent by-layer laminates of solid materials ( 0  ). CTE trends shown as 

continuous connect discrete values calculated via the models presented in Section 2.3. ............. 46 



xvii 

 

Figure 2-7: Visualization of properties coupling and decoupling for LD unit and hierarchical 

lattices. A change in skew angle (a) and relative density (b) in LD affects both thermal ( *
xa  and 

*
ya ) and elastic properties ( * *

2x sE E  and * *
2y sE E ). On the other hand for hybrid-type HL (c and 

d), *
1a  and *

2a  of the first and the second order, as well as their effective Young’s modulus, are 

tuned to preserve constant either the Young’s modulus ( *
1yE ) in (c) or the CTE ( *

2 ) in (d). This 

is achieved in (c) through changing both the skew angle of the first order, 1 , and 1 1t l , and in (d) 

by keeping these parameters constant and varying the relative density of the second order, 
* *
2 s  . ..................................................................................................................................... 48 

Figure 2-8: (a) Comparison of proposed and existing bi-material concepts on the basis of (i) CTE 

tunability ( CTE = Max CTE – Min CTE) for prescribed stiffness of 1 MPa, visualized as 

orange bars, and (ii) specific stiffness (Young’s modulus / Density: E  ) for given CTE 

(47.5×10-6/°C), in green. (b) CTE tunability plotted versus structural efficiency of existing 

concepts along with hybrid-type and fractal-like HL for increasing hierarchical order 

( 1, 2, ...n  ). Results are obtained from a parametric study of unit cell geometry, where the list of 

possible sets of properties for each concept are sorted by increasing structural efficiency, and 

then grouped based on a range of similar values of E  . The minimum CTE value is selected 

from each group to calculate CTE  for a given E  . This value, the median structural 

efficiency of each group, is plotted as a point on the graph with the corresponding CTE  value 

on the ordinate axis. .................................................................................................................. 51 

Figure 2-9: Lakes’ and Steeves’ low-CTE concepts with structural hierarchy. [18, 26] .............. 54 

Figure 2-10: Thermal and mechanical performance of Lakes’ and Steeves’ low-CTE concepts 

with different CTE ratio ( 1 2  ) of the constituent materials. [18, 26] ....................................... 55 

Figure 2-11: Stress distribution in a diamond-celled honeycomb. Case 1 has the applied stress in 

the y-direction while case 2 has the applied stress in the x-direction. ......................................... 58 

Figure 2-12: Deformed isosceles triangles for calculating elastic moduli. The corners are 

assumed to be pin-jointed as the effect of encasement on deflections is of second order. ........... 60 



xviii 

 

Figure 2-13: Cell thermal deformation: (a) undeformed diamond-celled honeycomb; (b) 

deformation caused by thermal expansion; (c) left half of the unit cell, which is here examined 

further; (d) force diagram of beam elements; (e) geometric constraint of inclined beam against 

rotation; and (f)  geometric coordinate condition. ...................................................................... 61 

Figure 2-14: Experimental set-up used to measure thermal expansion: (a) 1) Light shield; 2) 

Power source; 3) CCD cameras; 4) DAQ system; 5) Heating chamber; and 6) PID controller, and 

(b) schematic of the apparatus. .................................................................................................. 65 

Figure 3-1: (a) CTE versus temperature for selected solids and architected materials: W-concept 

[30], S-concept [3], Al6061 [41], Ti-6Al-4V [41], and two iron alloys [42]. The temperature 

range on the earth orbit and the CTE requirement for materials used in communication satellites 

are also shown. Since CTEs of component materials, i.e. Al6061 and Ti-6Al-4V, selected here 

for demonstrative purposes, change with temperature, the effective CTE of the W-concept and S-

concept is also a function of temperature, and its value has been numerically obtained for the 

temperature range -150  to 150  (b-e) CTE tunable building blocks in the literature: (b) a bi-

layer strip concept [27], (c) a nested double-barrelled concept [27], (d) a flexure blade concept 

[30], and (e) a tetrahedron concept with a stationary node [3]. The corresponding unit cells in 3D 

are shown in (g) to (j). Concepts constructed via topology optimization: (f) a low-bulk modulus, 

high thermal expansion design and (k) the maximal modulus design [40]. We also note that a 

change of the constitutive materials can yield values of the CTE that differ from those in the 

figure, which are obtained for the given pair of materials: Al6061 and Ti-6Al-4V; prescribing the 

pair of materials enables a consistent comparison among the relative performance endowed by 

the architecture of each concept. ................................................................................................ 77 

Figure 3-2: (a) Material length vector, M , and thermal displacement vector, N , for a solid 

material under a temperature change. Definition of M  and N  vectors on building blocks in 2D 

and 3D: (b) 2D low-CTE triangle and (c) 3D low-CTE tetrahedron. (d) M  and N  vectors for an 

assembled unit cell (d-I to d-IV) and a tessellated system of unit cells (d-V and d-VI) before and 

after thermal deformation [3]. Deformations are visualized considerably larger than the true ones, 

which are small and within the linear elastic regime. ................................................................. 81 



xix 

 

Figure 3-3: Exploration of dual-material tetrahedra made of permutations of low (blue) and high 

(red) CTE bars. (a): monomaterial low-CTE tetrahedra with no CTE tunability; (b) to (e): 

tetrahedra with low-CTE; (f): a tetrahedron with intermediate CTE; and (g) to (j): tetrahedra with 

high-CTE; (k): monomaterial high-CTE tetrahedra with no CTE tunability. Both undeformed and 

deformed structures are depicted in each subfigure from (a) to (k). Black arrows represent 2D 

ML vectors. Green arrows represent 3D M  vectors along the direction of CTE tunability, and 

red arrows N . ........................................................................................................................... 87 

Figure 3-4: Tetrahedra with zero CTE in the principal direction (z-direction): (a) TL-1, (b) TL-2, 

and (c) TN with undeformed frame on the left and thermal deformations with zero CTE on the z-

direction on the right. The normalized CTEs of Low-CTE tetrahedra along the vertical direction 

vary with respect to the skew angle and ratio of the component CTE ( 1 2s s   ): (d) TL-1, (e) 

TL-2, and (f) TN. CTE magnitude plotted in polar coordinate system with respect to the principal 

directions, i.e. x, y, and z; the semi-axes of each ellipsoid are the CTE coefficients, x , y , and 

z  of the corresponding tetrahedra with 2   (A high-CTE material of 6
1 20 10 / Cs

    and 

a low-CTE material of 6
2 10 10 / Cs

    are taken here as representative components): (g) TL-

1, (h) TL-2, and (i) TN. ............................................................................................................. 89 

Figure 3-5: Trigonal crystallographic symmetry group applied to the generation of a spatial bi-

material lattice with two independent coefficients, 1  and 3 , of the CTE tensor: (a) screw 

geometry illustrating the 3-fold axes of symmetry with its top view shown in (b), (c) top view of 

building blocks assembled with 3-fold axes, and (d) axonometric view of the resulting unit cell.

 ................................................................................................................................................. 94 

Figure 3-6: Unit cells with unidirectional CTE tunability: (a) TL-1 concept, (b) TL-2 concept, 

and (c) TN concept. Green arrows represent the ML vectors of the building blocks, all oriented 

along the 3x  direction. (d), (e), and (f) are images of their physical ball-and-stick models. (g), (h), 

and (i) show the deformed and undeformed concepts with the main characteristic symmetry of 

the building block arrangement. The order of rotational symmetry is given by one of the three 

graphical symbols: a cusped oval, a triangle, and a square. (j), (k), and (l) are the top view of the 



xx 

 

unit cell assembly. (m), (n), and (o) show an axonometric view of the unit cell assembly. (p), (q), 

and (r) show CTE magnitude plotted in polar coordinate system with respect to the principal 

directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the CTE coefficients, 1 , 

2 , and 3  of the corresponding unit cell. ............................................................................. 96 

Figure 3-7: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) 

TL-2 concept, and (c) TN concept. Green arrows represent the ML vectors of the building blocks. 

(d), (e), and (f) are images of their physical ball-and-stick models. (g), (h), and (i) show the 

deformed and undeformed concepts with main characteristic symmetry of the building block 

arrangement. The order of three-fold rotational symmetry is given by the triangle symbol. (j), (k), 

and (l) are the top view of the unit cell assembly; (m), (n), and (o) show an axonometric view of 

the unit cell assembly. (p), (q), and (r) show CTE magnitude plotted in polar coordinate system 

with respect to the principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid 

are the CTE coefficients, 1 , 2 , and 3  of the corresponding unit cell................................ 99 

Figure 3-8: Unit cells with isotropic CTE tunability: (a) TL-1 concept, (b) TL-2 concept, and (c) 

TN concept. Green arrows represent the ML vectors of the building blocks. (d), (e), and (f) are 

images of their physical ball-and-stick models. (g), (h), and (i) show the deformed and 

undeformed concepts with the main characteristic symmetry of the building block arrangement. 

The order of three-fold rotational symmetry is given by the triangle symbol. (j), (k), and (l) are 

the top view and assembly. (m), (n), and (o) show an axonometric view of the unit cell assembly. 

(p), (q), and (r) show CTE magnitude plotted in polar coordinate system with respect to the 

principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the CTE 

coefficients, 1 , 2 , and 3  of the corresponding unit cell. ................................................ 100 

Figure 3-9: Testing samples: (a) TN (components: Al6061 and Ti-6Al-4V); (b) assembly 

drawing of a TN; (c) TL-2 (components: Al6061 and Ti-6Al-4V); (d) assembly drawing of a TL-

2; (e) TN concept with rigid joints (components: acrylic and PTFE for bars and ABS for joints); 

(f) assembly drawing of proof-of-concepts with rigid joints; (g) ball for rigid joint (a flat surface 



xxi 

 

at the bottom is used to ensure continuous contact with the carrier of the 3D printer); (h) testing 

sample with black and white pattern for DIC testing. ............................................................... 105 

Figure 3-10: Thermal displacement distribution in a pin-jointed TL-2 ( 61.7   , Al/Ti) 

measured experimentally (a and c), and computationally (b and d), in the horizontal and vertical 

directions, respectively. Thermal displacement distribution in pin-jointed TN ( 63.3   , Al/Ti) 

and rigid-jointed TN ( 60   , acrylic/Teflon) tested (for pinned: e and g; for rigid: i and k) and 

computed numerically (for pinned: f and h; for rigid: j and l) in the horizontal and vertical 

directions, respectively. ........................................................................................................... 108 

Figure 3-11: (a) Predicted curve and experimental results of effective CTE for Al/Ti and Al/Invar 

building blocks (TL-2 and TN) within a range of skewness, along with the CTE of the solid 

materials. (b) Predicted and experimental CTE results along the principal direction/s: vertical 

direction ( 3x ) for the concepts with unidirectional CTE and principal directions within the plane 

1 2x x  for other concepts here examined. ............................................................................... 109 

Figure 3-12: Three-dimensional surfaces showing the variation of Young’s moduli along the 

principal directions for (a) TL-1, (b) TL-2 and (c) TN concepts. The length of the radius vector is 

the Young’s moduli of each concept taken Al/Ti as components. ............................................ 114 

Figure 3-13: Normalized specific stiffness in the vertical direction for TL-1, TL-2, and TN 

building blocks as a function of the skew angle for selected values of the stiffness ratio of the 

components ( 2 1s sE E ): (a) Young’s modulus and (b) shear modulus. *  represents relative 

density. ................................................................................................................................... 115 

Figure 3-14: Relation between CTEs and skew angle for the nine unit cells here under 

investigation. A high-CTE material of 6
1 20 10 / Cs

    and a low-CTE material of 

6
2 10 10 / Cs

    are taken here as representative components. For unit cells with 

unidirectional low CTE, the CTE refers to the vertical direction ( 3x ). For unit cells with 

transverse isotropic and isotropic low CTE, the effective CTE refers to the principal directions in 

the plane 1 2x x . Each line style indicates one of the three building blocks which a unit cell is 



xxii 

 

built from. The CTE of a benchmark isotropic concept [3] with identical effective CTE to the 

isotropic TN concept is also shown in purple for comparison. ................................................. 116 

Figure 3-15: Contour plots for specific stiffness (    1 1s sE E  with E  representing the 

effective stiffness in the CTE tunable direction and   representing the density of the lattice) 

versus skew angle and relative density: Young’s modulus in the vertical direction of cell 

topologies with unidirectional CTE: (a) TL-1, (b) TL-2, and (c) TN concept; Young’s modulus in 

the horizontal direction of cell topologies with transverse isotropic CTE: (d) TL-1, (e) TL-2, and 

(f) TN concept; and Young’s modulus of cell topologies with isotropic CTE: (g) TL-1, (h) TL-2, 

and (i) TN concept. Steeves’ concept [3] is plotted as a benchmark in (j) to compare elastic 

performances........................................................................................................................... 118 

Figure 3-16: (a) Comparison of proposed and existing bi-material concepts for given bar 

thickness ratio of 0.02 on the basis of (i) CTE tunability ( Max MinCTE CTE CTE   ) shown 

as blues bars for Young’s modulus of 1GPa in the CTE tunable direction, and (ii) specific 

stiffness (Young's modulus/Density: /E  ) for prescribed CTE of 6.5 10-6/ , in red. (b) CTE 

tunability plotted versus structural efficiency. The relative specific stiffness and CTE tunability 

are plotted in the vertical direction for unidirectional and isotropic CTE concepts, and in the 

horizontal direction for other concepts. The thermoelastic properties of a benchmark isotropic 

concept [3] is also shown in purple for comparison. ................................................................ 120 

Figure 3-17: Dual-material tetrahedra along with compound unit cells (a): tetrahedron with low-

CTE (four low-CTE bars and two high-CTE bars, L4H2); (b) to (d): unit cells constructed from 

the low-CTE tetrahedron shown in (a); (e): tetrahedron with intermediate CTE (L3H3); and (f) to 

(h): unit cells assembled from the intermediate-CTE tetrahedron shown in (e)......................... 124 

Figure 3-18: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) 

TL-2 concept, (c) and (d) TN concepts. (e) to (h) show an axonometric view of the unit cell 

assembly; (i) to (l) are the top view of assembly.  ,  , and   are skew angle, deviation angle, 

and packing factor respectively. Dash yellow line indicates the compound unit cell within the 

assembly. ................................................................................................................................ 125 



xxiii 

 

Figure 3-19: CTE dependence of TL-2 and TN concepts with unidirectional CTE tunability, on 

stiffness mismatch of materials (i.e. Young's modulus ratio of high-CTE material over low-CTE 

material: 1 2s sE E ), skew angle, and joint assumption. ............................................................. 126 

Figure 3-20: Experimental set-up used to measure thermal expansion: (a) (1) PID controller; (2) 

Computer; (3) Power source; (4) DAQ system; (5) Heating chamber; and (6) CCD cameras, and 

(b) schematic of the apparatus. ................................................................................................ 126 

Figure 3-21: Thermal testing experiments for tetrahedra with stationary lines (I with Al/Ti and II 

with Al/Invar) and tetrahedra with stationary nodes (III with Al/Ti and IV with Al/Invar). 

Samples with three skew angles of roughly 55° (a), 60° (b), and 65° (c) are tested. ................. 127 

Figure 3-22: Thermal testing experiments for nine compound units with an identical skew angle 

of 60°. ..................................................................................................................................... 128 

Figure 3-23: The coordinate system defined for (a) TL-1 and TL-2 concepts, and (b) TN concept. 

Different sets of trusses are marked in different colours and numbered accordingly................. 132 

Figure 3-24: Yield (solid and dash line) and buckling (solid and dot dash line) surface in 

macroscopic  1 2 3, ,    space: (a) for TN and (c) for TLs; and in  12 23 13, ,    space: (b) for 

TN and (d) for TLs. σis and σib represent for equivalent uniaxial yield strength and buckling 

strength of the lattice material respectively. ............................................................................. 136 

Figure 4-1: Thermal mechanisms a bi-material tetrahedron featuring either a stationary-node (a-

I) or stationary-lines (b-I). II and III show visually uncoupled thermal expansions, one for the 

low-CTE material and the other for the high-CTE material; IV shows the overall thermal 

expansion of the tetrahedron. Application of bi-material tetrahedra to the Octet cells (c and f). (c) 

Iso-CTE Octet obtained by assembling 8 stationary-node tetrahedra with skew angle ( I ) of 60° 

and 50° on a regular octahedron (red core). (d and e) isotropic CTE properties plotted in polar 

and spherical coordinates. (f) Aniso-CTE Octet (skew angle A =60°) with directional CTE 

obtained with stationary-lines tetrahedra. (g and h) anisotropic CTE properties with low CTE in 



xxiv 

 

the z-direction. The green dashed line in (d) and (g) represents points with zero thermal 

expansion. ............................................................................................................................... 146 

Figure 4-2: Design embodiments for Iso-CTE Octet and Aniso-CTE Octet: (a-I) Topologies for 

Iso-CTE Octet ( I =60°) with A1 and A2 used as corresponding nodes for the CTE measurement 

in the x-direction, (a-II) Iso-CTE octet ( I =50°) with B1 and B2 used as corresponding nodes for 

the CTE measurement in the z-direction, and (a-III) Aniso-CTE Octet ( A =60°), with C1 and C2 

as corresponding nodes for the CTE measurement in the z-direction; (DIC tested CTEs obtained 

by evaluating the average of 100 CTE measurements between pairs of corresponding nodes). (b) 

Cells manufactured from Al6061 (high-CTE) and Ti-6Al-4V (low-CTE); Design target and 

tested CTEs given for Iso-CTE Octet and Aniso-CTE Octet in the z-direction. (c) 3D printed 

low-CTE lattices showing one layer of the bi-material lattice: PLA (poly lactic acid) in red with 

high CTE, and ABS (acrylonitrile butadiene styrene) in blue with low CTE. (d) Top and 

isometric views of two layers showing the stacking sequence as well as the overall lattice 

assembly for each bi-material concept. Thermal displacement maps for horizontal deformation 

(e: DIC and f: FEA) and vertical deformation (g: DIC and h: FEA). (Scale bar: 10 mm). ........ 149 

Figure 4-3: (a) Thermal properties of the Octet bi-materials and benchmark concepts (S-concept 

[9] and H-concept [32]) plotted with respect to the normalized skew angle, Normalized . Shown in 

bracket below each pictorial, Normalized  is calculated as    /Normalized Model min max min       , where 

Model  is the skew angle of a concept, and min  and max  are respectively the minimum and 

maximum skew angle that a concept can provide without its cell topology degenerates. (b) 

Histogram showing the CTE tunability (∆CTE) as well as the max and min CTE for the selected 

concepts compared to a low CTE solid material, i.e. Ti-6Al-4V. (c) Effective stiffness and (d) 

effective strength plotted with respect to relative density * . Note  /* lattice solid composite    where 

lattice  is the actual density of the bi-material unit cell and  solid composite  is the density of the solid 

bi-material with volume fraction of the constituent materials. Note that the maximum relative 

density of the Iso-CTE Octet does not reach 0.3; it is 0.2 for I =50°, and 0.25 for I =60°, 

because above these values the size of the joints become unfeasibly larger than the cell members, 

which means that the cell is unfeasible. ................................................................................... 153 



xxv 

 

Figure 4-4: (a) CTE plotted against Young’s modulus [39]; and (b) CTE versus normalized 

strength (ultimate strength for Metals and Polymers; modulus of rupture for Ceramics; tensile 

strength for Composites) [40]. The points for the Octet cells are obtained by varying either the 

skew angle for a given relative density (0.05) or vice versa. Relative density ranges considered in 

the charts for the Octet lattice concepts: 0.02< * <0.25 for the Iso-CTE Octet, and 0.02< *

<0.60 for the Aniso-CTE Octet................................................................................................ 154 

Figure 4-5: Pretension snap-fit manufacturing process. (a) Laser cutting; (b) Sheet metal hot 

extrusion processes to impose a given skew angle; (c) Snap-fitting of diagonal elements; (d) 

Wedge for pretension; (e) Snap-fitting of horizontal elements; (f) Joint reinforcement via Epoxy 

Glue; (g) Octet cell assembly from unbended elements; and (h) Octet cell assembly from slightly 

bended elements. (Scale bar: 10 mm) ...................................................................................... 158 

Figure 4-6: Tessellations of bi-material Octet cells (a) Aniso-CTE Octet with A =60°, (b) Iso-

CTE Octet with I =50°, (c) Iso-CTE Octet with I =60°, (d) and (e) are Iso-CTE Octet with I

=70°. Assembly in axonometric view (I) and top view (II). ..................................................... 159 

Figure 4-7: Experimental set-up used to measure thermal expansion (photograph (a) (1 PID 

controller; 2 Computer; 3 Power source; 4 DAQ system; 5 Heating chamber; and 6 CCD 

cameras) and schematic picture (b)). ....................................................................................... 160 

Figure 4-8: Effective shear modulus plotted with respect to relative density *  ...................... 161 

 

  



xxvi 

 

List of tables 

Table 2-1: Predicted and experimentally measured CTE values (×10-6/°C) for solid materials. .. 39 

Table 2-2: Predicted and experimentally measured CTE values for fractal-like and hybrid-type 

HL (  and  indicate standard deviation).............................................................................. 45 

Table 3-1: Relation between crystal symmetry and the thermal expansion tensor α , specified 

with respect to the principal directions (i.e. conventional orientations) of the crystals in cubic, 

tetragonal, hexagonal, trigonal, and orthorhombic systems. Crystals in a monoclinic system have 

only one fixed principal axis, i.e. the direction of 2-fold axis (with respect to the 2x  direction). 

Crystals in triclinic system have no fixed principal axis, thus the α  tensor is expressed as a 

general form in the last column. Groups without higher-order axes denote groups containing only 

2-fold axes, mirror planes, and inversion center, e.g. orthorhombic, monoclinic, and triclinic 

systems. [43] ............................................................................................................................. 91 

Table 3-2: Admissible range of the skew angle,  , for the building blocks of the concepts 

visualized in Figure 3-6 to 8.   and   represent the deviation angle and packing factor 

respectively. ............................................................................................................................ 102 

Table 3-3: Properties of solid materials for proof-of-concept fabrication ................................. 104 

Table 3-4: Relative density of all nine unit cells, where 1l  is the length of high-CTE bars with 

circular cross section of radius a ,   is the deviation angle (Figure 3-7),  1 223 4 cos   , and 

 1 221 2cos   . ................................................................................................................. 112 

Table 3-5: Effective Young’s modulus (in direction 3x ) and shear modulus (on the 1 2x x  plane) 

for TL-1, TL-2, and TN concepts with unidirectional CTE tunability. ..................................... 114 

Table 3-6: Predicted and experimentally measured CTE values for TN and TL-2 along with the 

joint length ratio, i.e. the length ratio of a copper flake to a bar, of each testing sample. .......... 128 

x y



xxvii 

 

Table 3-7: Unit vector components, lengths, and effective Young’s moduli of TL-1 and TL-2 

concept truss members ............................................................................................................ 132 

Table 3-8: Unit vector components, lengths, and effective Young’s moduli of TN concept truss 

members ................................................................................................................................. 133 

Table 4-1: The measured CTEs of Al6061 and Ti-6Al-4V by DIC and TA Q400 .................... 160 

Table 4-2: The mechanical properties of Al6061 and Ti-6Al-4V ............................................. 161 

 

  



xxviii 

 

Contributions of the author 

This is a manuscript-based thesis consisting of three journal articles. The title of the articles, 

name of the authors, and their contributions are listed below: 

1) Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded 

thermal expansion  

Hang Xu, Amr Farag, and Damiano Pasini 

Department of Mechanical Engineering, McGill University,  

817 Sherbrooke St. West, Montreal, QC H3A 0C3, Canada  

Acta Materialia, 2017. 134: p. 155-166. 

Author contributions:  

H. Xu: Developed hierarchical architectures, derived closed form expressions, designed and 

performed the experiments, analyzed the data and wrote the manuscript.  

A. Farag: Developed the Finite element model, performed the simulation, editing the text.  

D. Pasini: Supervised the research and review processes, gave technical and scientific advice, 

and edited the figures and the text. 

2) Routes to program thermal expansion in three-dimensional lattice metamaterials built 

from tetrahedral building blocks 

Hang Xu, Amr Farag, and Damiano Pasini 

Department of Mechanical Engineering, McGill University,  

817 Sherbrooke St. West, Montreal, QC H3A 0C3, Canada  

Journal of the Mechanics and Physics of Solids, 2018. 117: p. 54-87. 

Author contributions:  

H. Xu: Developed spatial architected materials, derived closed form expressions, designed and 

performed the experiments, analyzed the data and wrote the manuscript.  

A. Farag: Developed the Finite element model, performed the simulation, editing the text. 



xxix 

 

D. Pasini: Supervised the research and review processes, gave technical and scientific advice, 

and edited the figures and the text.  

3) Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal 

Expansion 

Hang Xu and Damiano Pasini 

Department of Mechanical Engineering, McGill University,  

817 Sherbrooke St. West, Montreal, QC H3A 0C3, Canada  

Scientific Reports, 2016. 6: p. 34924. 

Author contributions:  

H. Xu: Developed spatial architected materials, derived closed form expressions, designed and 

performed the experiments, analyzed the data and wrote the manuscript. 

D. Pasini: Supervised the research and review processes, gave technical and scientific advice, 

and edited the figures and the text.  



1 

 

 

 

 

 

Chapter 1 

 

Introduction and literature review 

 

 

 

 

 

 

 

 

 

 

 



2 

 

1. Chapter 1: Introduction and literature review 

1.1 Introduction 

1.1.1 Thermal expansion 

Thermal expansion, the change in shape, length, area, and volume upon heating under constant 

pressure, is assumed to be normal in our daily live [1]. Materials usually expand in response to 

heating and contract in response to cooling. For example, the contraction of air in a cooling jar 

widens the gap between internal-external air pressures and causes the jar lid to tighten. However, 

there are a growing number of materials, synthetic and naturally occurring, that can maintain 

their dimension(s) or can even contract upon heating within certain temperature ranges, thus 

exhibiting a zero or negative thermal expansion [2]. For instance, ice-cold water contracts as it is 

warmed up to 4℃ and then expands above this temperature. Hence, the negative thermal 

expansion of water vanishes at 4℃ and then becomes positive. In everyday life, thermal 

expansion is a typical requirement to meet in several applications. In medical applications, for 

example, mercury expands in a thermometer showing the body temperature. In the transportation 

field, hot air balloons fly when the air inside expands and becomes less dense than the air 

surrounding it. However, in some cases, thermal expansion is viewed by engineers as a nuisance, 

which must be compensated for. For example in the rail transportation industry, gaps must be left 

between successive lengths of train tracks to allow for thermal expansion on hotter days. Without 

the gaps, the tracks would thermally buckle, thereby hindering the safety of train passengers.  

1.1.2 The definition of coefficient of thermal expansion 

Subjected to an increase in temperature, most naturally occurring materials uniformly expand. 

This uniform expansion has been considered an inherent property of the material and it cannot be 

modified [3]. The coefficient of thermal expansion (CTE) describes this inherent property, i.e. 

how the size of an object would change in response to a change in temperature, a phenomenon 

associated with the anharmonicity of the interatomic potential energy in the crystalline lattice. 

The CTE quantifies the tendency of matter to change in length, area, or volume in response to a 

change in temperature. The linear definition of CTE is:  
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where 0l  is the representative length of an element at reference temperature 0T , 0T T T    is 

the change of temperature and l  is the change in length. 

            

Figure 1-1: Linear thermal expansion of a straight bar. 

1.1.3 Thermal expansion requirements in engineering applications 

Materials with unconventional thermal expansion behaviors (e.g. near zero, large positive or 

negative CTE) are particularly advantageous in a large assortment of applications that maintain 

precise dimensional tolerances or require responsive deformations under given changes in 

temperature [4-6]. On one hand, in extreme thermal environments, sensitive applications that 

require very fine precision call for materials with low-to-zero thermal expansion so as to avoid 

undesired thermal deformation. For example, systems in outer space are particularly vulnerable 

to large temperature changes when passing in and out of sunlight. Variations in temperature can 

lead to undesired geometric changes in sub-reflector supporting struts, satellite antennas, space 

telescopes, and large array mirrors [7, 8]. These geometric changes cause systems to be 

susceptible to large thermal stress, thermo-mechanical fatigue, and thermal buckling. To suppress 

such failures, materials with a zero CTE over a wide range of temperature are desired.  

On the other hand, there are other applications requiring materials with large positive or negative 

thermal expansion, which make them capable of morphing and adapting their geometry in 

response to variations in temperature. This temperature change is often, but not always, dictated 

by the surrounding environment [9]. For instance, large positive/negative CTE materials can be 

used in smart lightweight structures that possess morphing (e.g. self-shaping, self-folding, and 

deployable [10-12]) functions, which may have broad applications in self-assembly [13], 

packaging [11, 12], actuation [14], structural adaptivity [10, 14, 15], and biological devices [12], 

among many others. In bioengineering, for instance, the mismatch of thermal expansion between 
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a restorative material and a tooth may cause stress at their interface, thus leading to microleakage 

[16]. In order to avoid the possibility of the microleakage, the restorative material should have a 

large negative CTE, as near as possible to the CTE of human dentin, which is 666.03 10 C    

in a dry condition [16].  

In addition to providing desired zero, large positive, or negative CTEs, there exists a large 

number of applications that require materials subjected to other design requirements, such as 

high stiffness, high strength, and resistance to thermal fatigue [17]. Among many, examples of 

multifunctional materials include those that can maintain precise dimensional tolerances under 

large temperature fluctuations and high structural efficiency (e.g. stiffness/mass and 

strength/mass), which are very appealing, especially in aerospace where minimum mass is of 

critical importance [2]. Specifically, the supporting struts of the subreflector are required to have 

high stiffness to obtain a high natural frequency far from any excitation frequency that could 

cause structural failure. 

1.1.4 Materials with intrinsically zero or large positive/negative CTE 

In general, low to zero thermal expansion can be achieved with the use of intrinsically low or 

negative expansion materials [18], such as ZrW2O8 and related ceramics [19-21] or Invar and 

related metals (as shown in Figure 1-2) [22, 23], alone or in a composite form [24, 25]. Solids 

having low, or even negative, CTE exist, but all possess characteristics which limit their use in 

applications requiring robustness and durability over large temperature changes. One of their 

drawbacks is the narrow range in which they can operate, which is problematic when large 

temperature swings, from -150°C to 150°C as in outer space, occur. Invar (Fe65Ni35) and 

Fe68Pd32 are robust, although the low thermal expansion they can provide (shown in Figure 1-2a) 

is strongly dependent on the temperature they operate with [22, 23]. For example, Fe68Pd32 

provides near-zero CTE only at temperatures near 327℃ (600K) as shown in Figure 1-2a. Hence, 

if the temperature conditions vary outside this range during the service life of the 

material/structure, there will be undesired dimensional changes. For ZrW2O8 and related 

ceramics [19, 20], the brittleness and abrupt failure upon peaks of thermal stresses limit their use 

in applications requiring robustness and durability over a large temperature range. Low to zero 

CTE can also be achieved with solids in a composite form such as fiber-reinforced composites. 
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However, the interface thermal strain and failure caused by the large difference of CTEs between 

fiber and matrix restrict their application range [26].  

 

Figure 1-2: (a) The linear CTEs of ferromagnetic disordered Fe65Ni35, Fe72Pt28 and Fe68Pd32 

alloys as a function of temperature, according to experiments [22, 23, 27]. The value of the Curie 

temperature of each system is denoted as Tc [28]. (b) Ashby Chart: the linear expansion 

coefficient,  , plotted against Young’s modulus, E [29]. 

Similarly, for applications requiring large CTEs, solid materials can feature intrinsically positive 

or negative CTEs, such as Fe72Pt28 shown in Figure 1-2a. However, the available range of CTE 

these materials can offer remain too narrow (about -101 ppm /℃ to 103 ppm /℃ as shown in 

Figure 1-2b [29]) to induce responsive and large deformations, such as those required for 

morphing and other applications [10, 14]. Furthermore, the CTE is proportional to the reciprocal 

of Young’s moduli (1/E) [30], i.e. the increase of the CTEs of solids is accompanied by the 

reduction of the elastic moduli. For example, as depicted in Figure 1-2b, ceramics, with the 

lowest coefficients of expansion, have the highest moduli; elastomers which expand the most 

have the lowest moduli. Hence, the coupled thermoelastic properties of solids distribute in a zone 

from top left to bottom right and leave broad blank spaces in the thermal expansion–modulus 

chart (Figure 1-2b). The absence of combinations of thermal expansions and Young’s moduli 

that lay in the unpopulated regions manifested by the trends shown in Figure 1-2b limits 

designers to meet the diverse design requirements of various engineering applications. 
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1.1.5 The main target of this PhD work 

Where solids have limitations, architected materials have been proposed to overcome the issues 

above. The main target of this PhD work is to design architected materials with specific 

thermomechanical properties, notably zero, large positive or negative CTE with desired 

structural efficiency. More particularly, the aim is to introduce materials with tailored thermal 

distortion for applications where thermal management and low mass are important requirements. 

The next section, literature review, starts first to recall the basic concepts of micro-architected 

lattice materials. The corresponding structural performance of stretch- and bend-dominated 

structures to meet mechanical requirements of engineering applications is then analyzed before 

reviewing the literature of architected materials with tunable CTE.  

1.2 Literature review 

1.2.1 Micro-architected lattice materials 

 

Figure 1-3: Nickel alloy hierarchical metamaterial and critical features across seven orders of 

magnitude in length scale. [31] 

Architected materials (also known as mechanical metamaterials) are man-made designer matter 

that obtains their effective properties by structure rather than composition [32]. Via introducing 
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voids to the material, e.g., as illustrated in Figure 1-3, highly regular cellular materials can be 

designed by tessellating a large number of unit cells comprising slender beams or tubes, leading 

to micro-architected lattice materials [33]. The multiscale metallic lattices in Figure 1-3 display 

structural hierarchy, which means materials exhibit a given structure on more than one length 

scale and contain structural elements which themselves have structure [34]. Structural hierarchy 

has been recognized as one crucial factor governing high stiffness, strength, and toughness in 

both natural and bio-inspired materials [34-36]. 

Architected materials can be designed to elicit extreme mechanical properties, often beyond 

those of existing solids [37]. In the applications of these properties, the target to maximize might 

be either structural, through attaining for example minimum mass at maximum stiffness [31, 38], 

or functional, such as thermal dimension control [4], heat transfer [39], band gaps [40], 

mechanical biocompatibility [41], and others [37]. Among these, tunable thermal expansion has 

been the recent focus of intense research [6, 42] aiming at obtaining large positive, zero or 

negative CTE via material architecture tuning. Recent works have shown that the CTE of 

architected materials made of two solids can be tuned by purposefully designing the architecture 

of their repeating units and proper selection of the constituent materials [4, 17, 18, 43-48]. These 

architected materials can accommodate thermal expansion through the thermally-mismatched 

deformation of the component materials they are made of.  

1.2.2 Bending versus stretching dominated architectures  

Architected materials can deform through either bending (Figure 1-4a) or stretching (Figure 

1-4b) of their constituent members. While most architected materials are bend-dominated, those 

that are stretch-dominated are more weight-efficient and thus suitable in structural applications 

[49]. Figure 1-4 depicts the difference in the deformation modes of bend- and stretch-dominated 

architectures under given loading condition. In Figure 1-4a, the applied load, F, induces bending 

moments at the rigid joints of the architecture, and these cause the beam elements to bend. The 

collapse load of this bend-dominated architecture is dictated mainly by the flexural strength of 

the beam elements. However, when loaded, although the beam elements of the architecture in 

Figure 1-4b slightly bend, the constituent members mainly support axial loads: tensile in some, 

compressive in others. Thus, the frame in Figure 1-4b is stretch-dominated and the collapse load 

is dictated largely by the axial strength of the beam elements. The architected materials that are 
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stretch-dominated are more efficient from a weight standpoint; for example, a stretch-dominated 

architected material is expected to be about ten times as stiff and about three times as strong as a 

bending-dominated one for a relative density * 0.1   (relative density is expressed by the ratio 

of the density of the architected material,  , and that of the solid component, s ) [49].  

 

Figure 1-4: Deformation modes of architectures: (a) bend-dominated structure and (b) stretch-

dominated structure with their undeformed and deformed structures.  

1.2.3 Architected materials with tunable CTEs  

In the realm of thermal control, architected materials made of two solids with distinct CTEs have 

been proposed as a potential family of CTE tunable materials. Many attempts have been made to 

design architected materials capable of exploiting thermal management applications with the 

respective concepts shown in Figure 1-5 to 11. All of them incorporate two materials with 

positive CTEs: one high and the other low. 

 

Figure 1-5: Architected material concepts constructed via bi-material strips [50, 51]: (a) a bi-

material strip building block with controllable CTE in the horizontal direction [43]; (b) a unit cell 
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in 2D [43]; and (c) a unit cell in 3D [52]. Red and blue constituents represent materials with high 

and low CTE respectively. 

Lakes has described periodic foams in 2D (Figure 1-5b) and 3D (Figure 1-5c) built from bi-

material strips (Figure 1-5a) that are dominated by bending, a characteristic that lowers structural 

efficiency, and brings about unbounded thermal expansion [43, 52]. When the temperature 

changes, the individual bi-material strips (Figure 1-5a) flex or flatten due to the in-plane shear 

stress caused by thermal expansion mismatch between the two layers. The change in curvature of 

an individual load-free strip induces a positive, zero or even a negative overall CTE of the lattice 

structure, depending on the relative thermal expansion of each layer. Given this bi-material strip 

concept, several investigators have constructed dual-material architected lattices that can exhibit 

large positive, zero or large negative thermal expansion via distinct tessellation algorithm in both 

2D and 3D including Wu et al. [53] and Qu et al. [54]. However, all the planar and spatial 

lattices assembled by winding strips deform with a bend-dominated mode, whose stiffness and 

strength to weight ratios are less than that obtainable with stretch-dominated lattices. 

 

Figure 1-6: Architected material concept constructed via nested double-barrelled struts [44, 47]: 

(a) building block: a bi-material nested double-barrelled strut with controllable CTE in the axial 

direction without (I) and with (II) structural hierarchy; (b) a unit cell in 2D; and (c) a unit cell in 

3D. Red and blue constituents represent materials with high and low CTE respectively. 

More recently, Lehman and Lakes [44, 47] have proposed stretch-dominated lattices in both 2D 

(Figure 1-6b) and 3D (Figure 1-6c) made of nested double-barrelled struts (Figure 1-6a) with 

high structural efficiency but limited adjustable CTE range. Their tunable CTE range is limited 

due to the relatively modest mechanism of CTE accommodation, i.e. Poisson’s effect, their struts 

can attain. The Poisson’s effect can be explained as Poisson’s contraction in the longitudinal 

direction that is achieved by the transversal mismatch of thermal expansion of two nested 
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concentric tubes made of different materials [47]. These nested double-barrelled concepts have 

then been developed to contain structural hierarchy (Figure 1-6a-II), i.e. the nested double-

barrelled struts in the concept contain oriented porosity at a length scale one order smaller [44]. 

This gives rise to improved strength and stiffness, and provides additional design flexibility 

associated with anisotropy. However, the limited adjustable CTE range the nested double-

barrelled concept can obtain restricts its application. 

 

Figure 1-7: Architected material concepts constructed via flexure-blades building blocks [45, 48, 

55]: (a) a flexure-blades building block with controllable CTE in the vertical direction; (b) a unit 

cell in 2D; and (c) a unit cell in 3D. Red and blue constituents represent materials with high and 

low CTE respectively. 

Hopkins et al. demonstrated an architected material with tunable CTE designed by the principles 

of freedom, actuation, and constraint topologies (FACT) approach [48]. The FACT approach can 

be applied to the synthesis, analysis, and optimization of microarchitectures that possess extreme 

or unusual thermal expansion properties (e.g. zero or large negative thermal expansion 

coefficients). From its successful application, the 2D and 3D concepts (Figure 1-7b and c, 

respectively) constructed via flexure-blades building blocks (Figure 1-7a) have low specific 

stiffness but can attain large negative CTEs for the given pair of constituents: photocurable poly 

(ethylene glycol) diacrylate (PEGDA) and reinforced PEGDA [45]. In the Hopkins’ concepts, a 

negative CTE is achieved by means of flexure blade deforming [45]. Consider the building block 

shown in Figure 1-7a, when heated, two red beam elements will expand more, due to their higher 

CTE, than blue elements and pull toward the blue cell-to-cell connector tab, which crosses the 

center of each unit cell wall. As the temperature increases, the cells expand into the void spaces 

and the connector tabs pull inward causing the entire architecture to contract along the two 

orthogonal axes for planar concept or three orthogonal axes for spacial concept.  
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The FACT synthesis approach provides designers with a comprehensive library of geometric 

shapes from which they can rapidly visualize and consider a large number of solutions, such as 

multiple cell topologies of lattices with low CTE [48, 55]. Furthermore, the FACT approach 

combined with topology optimization has claimed to help designers identify the most optimal 

concepts with greater confidence than either approach alone [48]. Owing to its diversity and 

optimality of cell topologies, Hopkins’ concepts can also use irregular unit cells to fit irregular 

boundaries [55]. However, because of the significant stress concentrations at the small and 

slender cell-to-cell connector tabs, the strength and stiffness of this concept under given material 

and geometric conditions is lower than stretch dominated concepts. 

 

Figure 1-8: CTE-tunable concepts with re-entrant architecture: (a) Jefferson et al. [18, 56], (b) 

Ng et al. [57], (c) the 2D concept of Ai et al. [58], and (d) the 3D concept of Ai et al [42]. The 

two elements of a re-entrant architecture are marked as: (A) intercellular straight connector and 

(B) a curved beam. Red and blue constituents represent materials with high and low CTE 

respectively.  

Bend-dominated concepts with controllable CTE also include those designed via re-entrant 

architecture, a well-known mechanism for negative Poisson’s ratio [59]. With Jefferson’s concept 

(Figure 1-8a), near-zero-CTE and isotropic negative expansion designs are achieved by creating 

compliant re-entrant architectures, where the overall expansion is compensated by internal 

bending deformation. A continuous honeycomb-like structure is fabricated out of one material. A 

second material with dissimilar CTE is inserted into each cell as shown in Figure 1-8a. As the 

structure undergoes a temperature increase, the inserts expand more than the honeycomb and 

thus the faces experience bending. The shortening of the faces due to bending effectively cancels 

out the overall expansion; thus, with appropriate specification of materials and geometry, a zero 

or other design target of effective thermal expansion can be achieved [18]. Jefferson also found 
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that, for the lattice structure made up of this unit cell, the edge effect is quite small and can be 

neglected [18]. In addition, the thermal expansion of the structure resulting from a uniform 

temperature change shows that this essential behavior is maintained even with a substantial 

asymmetry in the temperature distribution. Similar re-entrant architecture can be found in the 

concepts of Ng et al. [57] (Figure 1-8b) and Ai et al. [42, 58] (Figure 1-8c and d) with negative 

Poisson’s ratio. However, all concepts with re-entrant architecture are bend-dominated and have 

lower structural efficiency than stretch-dominated architected materials. 

 

Figure 1-9: Architected material concept constructed via bi-material triangles and tetrahedra [17, 

60, 61]: (a) the planar building block: a bi-material triangle with controllable CTE in the vertical 

direction; (b) a unit cell in 2D; (c) the spacial building block: a bi-material tetrahedron with 

controllable CTE in the vertical direction; and (d) a unit cell in 3D. Red and blue constituents 

represent materials with high and low CTE respectively. 

Steeves et al. introduced a family of robust stretch-dominated bi-material lattices which combine 

low (or zero) thermal expansion with high stiffness over wide temperature ranges [17, 60, 61]. 

The thermal expansion of the Steeves’ concepts is accommodated by rotations of elements at the 

nodes. With a temperature increase, the height rise of the dual-material triangle in Figure 1-9a, 

triggered by the blue elements with low CTE, is compensated by the sinking of its top vertex due 

to the higher thermal expansion of the red bar with high CTE. Similarly, in a spatial building 

block (Figure 1-9c), with a temperature increase, the height rise, i.e. the thermal expansion in the 

vertical direction triggered by the blue elements, is counteracted by the sinking of its apex due to 

the higher thermal expansion of the high-CTE red base. The assembly of the dual-material 

triangular and tetrahedral building blocks creates Steeves’ concepts in 2D (Figure 1-9b) and 3D 

(Figure 1-9d) with planar and spatial isotropic controllable CTE, respectively. It is also 

significant that, by choosing the skewness of the low-CTE elements and the combination of 

components, Steeves’ concepts can ensure a controllable CTE over the desired wide temperature 
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range, while keeping high structural efficiency due to the axial deformation endured by its 

members [17]. Comparable results, i.e. planar and spatial lattice concepts constructed via multi-

material triangle, tetrahedra or pyramids, with controllable CTE and high structural efficiency, 

have been obtained by Schuerch [62], Vandeperre et al. [63], Aboudi et al. [64], Grima et al. [65, 

66], Miller et al. [67], Berger et al. [68], Palumbo et al. [4], Lim et al. [69, 70], Yamamoto et al. 

[5], and Wei et al. [71, 72]. However, the desired flexural deformation that a large thermal 

deformation would require is generally antagonist to the high specific stiffness that is distinctive 

of a structurally efficient architecture. This indicates that preserving high specific stiffness is in 

conflict with the need of enhancing thermal deformation control, as manifest in stretch-

dominated unit cells constructed by dual-material triangles (2D) or tetrahedra (3D), which offer a 

remarkable structural performance, but cannot achieve the sizeable CTE tunability of bend-

dominated architectures. Another main drawback which reduces the thermal expansion 

performance lies in the significant stress concentrations at the connections of different materials 

[18].  

 

Figure 1-10: Concepts developed by topology optimization: (a) concept with zero thermal 

expansion and maximized bulk modulus [46, 73, 74]; (b) optimized concepts with the forced 

void domain for maintaining the deformation range [75]; (c) a low bulk modulus, high thermal 

expansion concept [76]; and (d) the maximal modulus design [76]. Red and blue constituents 

represent materials with high and low CTE respectively. 

The numerical topology optimization method is applied to find the distribution of materials 

within a unit cell envelop that achieves the predefined thermoelastic properties subject to certain 

constraints, such as the volume fraction of different phases in a periodic base cell [74]. The 

optimization procedure yields the distribution of two material phases with dissimilar bulk moduli 
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and a void phase [74]. Sigmund and Torquato [46, 73, 74] used topology optimization to design 

three-phase composites with zero thermal expansion while maximizing the bulk modulus (Figure 

1-10a). The concepts are used to design 2D composites with extremal or unusual thermal 

expansion behavior. However, although the bulk modulus was optimized, the in-plane uniaxial 

stiffness is poor. In addition, the two materials should be of similar stiffness, with widely 

differing thermal expansions [46]. This is another aspect that contributes to narrowing the choice 

of materials. Several other three-phase concepts that exhibit tailorable CTEs have also been 

carried out via topology optimization: Takezawa et al. [75] considered planar concepts with a 

forced void domain for maintaining the deformation range (Figure 1-10b); Watts et al. [76] 

considered spatial concepts with constraints on both modulus and thermal expansion (Figure 

1-10c and d); Oruganti et al. demonstrated an NTE Ni-Cr cellular structure [77]; Wang et al. 

applied level-set method for design [78]; and Hirota et al. obtained optimal design via mixed 

integer programming [79]. Although the aforementioned concepts have optimized performance 

under corresponding constraints, the complex configuration and bended geometry of the unit cell 

also limit their application in stiff lightweight components due to challenges in manufacturing. 

Nevertheless, the merit of topology optimization is to obtain the performance boundary, which 

can be used as a benchmark to compare different unit cells. 

 

Figure 1-11: Laminates and particulate composites with controllable CTEs: (a) origami laminates 

for tunable thermal expansion [80]; (b) laminated plate with in-plane controllable CTEs [26, 81-

86]; and (c) particulate composites for thermal stress management [87, 88]. Red and blue 

constituents represent materials with high and low CTE respectively. 

Differently from all previously reported systems, the combination of two materials with 

dissimilar CTEs may form nonporous laminates or particulate composites having positive, near-

zero or even negative thermal expansion. When heated, the thermal expansion mismatch of 

different components induces thermal stress on the interface between two distinct materials. The 
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thermally induced shear stress deforms the architecture anisotropically, such as plate tuning of 

origami (Figure 1-11a) [80], as well as the Poisson effect of laminates (Figure 1-11b) [26, 81-86] 

and particulate composites (Figure 1-11c) [87, 88]. These anisotropic deformations compensate 

the thermal expansion of architected materials in specific directions leading to a low-to-zero or 

even negative effective CTE. For example, Boatti et al. demonstrated that origami architected 

materials provide a platform for the design of systems with a wide range of CTEs by tuning the 

geometrical parameters of the origami structure and the arrangement of plates and creases [80]. 

Grima et al. proposed that a negative CTE can be obtained via the Poisson’s effect of 

multilayered systems constructed by a combination of thin layers of stiff materials, having a high 

positive CTE, bonded with thicker layers of a soft material, having low CTE and high Poisson’s 

ratio (Figure 1-11b) [85]. However, architected materials with porosity provide a larger range of 

attainable CTEs than nonporous ones, while also allowing both isotropic and anisotropic 

behaviour. This is due to the empty regions in the architecture in which a large amount of 

anisotropic displacement is possible. The large interlayer stress concentration which leads to 

failures including thermal buckling, matrix crack, delamination, and fiber break, restricts the 

application of laminates and particulate composites with controllable CTEs. 

1.2.4 Challenges for design of architected materials 

It can be concluded from this survey of literature that current concepts belong to either i) bend-

dominated architecture with low structural efficiency but wide adjustable CTE range or ii) 

stretch-dominated architecture with high structural efficiency but restricted adjustable CTE range. 

The existing concepts fail to simultaneously meet requirements in engineering applications 

(section 1.1.3): i) high structural efficiency and ii) wide, ideally unbound, obtainable CTE scope 

covering large negative to positive including zero CTEs. The high structural efficiency, e.g. 

stiffness to mass ratio with small deformation when mechanically loaded, and ample freedom to 

tune the effective CTE, e.g. sufficient deformation can be obtained to adjust the thermal 

expansion of components leading to zero effective CTE, are two conflicting requirements, which 

current available concepts are unable to ideally reconcile. 

The conflict existing between structural efficiency and adjustable CTE range has also been 

identified in the seminal work of Lehman and Lakes, who attempted to find a trade-off design of 

stiff lattices with zero CTE via rib cross section optimization [44]. In their approach, however, 
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the architectures with enhanced stiffness still deform mainly by bending. As a result the whole 

set of trade-off designs are bend-dominated and cannot meet the aforementioned application 

requirements. A very small set of architectures, on the other hand, are stretch dominated with 

high specific stiffness, but these concepts can generate only a narrow range of CTE. Steebes et al. 

attempted to extend the controllable CTE range of their stretch-dominated concepts via tuning 

the geometrical parameters at the cost of decreasing the structural efficiency [61]. The trade-off 

between CTE tunability and structural efficiency is currently unresolved with current concepts 

achieving wide, or even unbounded, adjustable CTE range only at the expense of a dramatic loss 

in their specific stiffness and specific strength [18, 48, 50, 52], and vice versa [2, 17, 44, 47, 64, 

67, 69, 70].  

As discussed above, the first issue we want to address in this thesis: how to enlarge adjustable 

CTE range in stiff bi-material concepts, with the ultimate goal of obtaining any desired CTE 

starting from any pair of materials with different CTEs, up to a theoretical unbounded CTE range. 

The second issue associated with the first is the coupling between mechanical properties and 

thermal properties. This is typical of existing dual-materials concepts, for which CTE tailoring 

through architecture manipulation may result in severe reduction of mechanical performance. 

Hence, the second question: how to reduce the penalty that an increase in the adjustable CTE 

range will bring on the elastic properties, so as to obtain the best out of them.  

In addition, several methodologies in the literature have been developed to use existing building 

blocks with CTE tuning mechanisms to design a class of architected materials with desired 

thermal expansion [2, 17, 47, 52, 55, 67]. However, they only investigate individual special cases 

of periodic lattice layouts while the underlying relationships between controllable thermal 

expansion of building blocks, structural symmetry of unit cells, and the effective thermoelastic 

properties of periodic trusses have not been reported. Thus a systematic methodology for 

designing and evaluating unlimited number of lattices with controllable CTE is necessary in 

order to meet a great diversity of application requirements.  

In this thesis, therefore, the overarching goal is to address these intertwined issues so as to 

expand the CTE range an architected material can offer without penalizing its specific stiffness. 

The proposed research will focus primarily on developing and validating concepts for stiff, 
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strong, and CTE tunable lattice materials that can overcome the deficiencies of the material and 

structural concepts currently available in literature. 

1.3 Thesis objectives  

The overall objective of this thesis is to contribute to the field of architected materials with 

tunable thermal expansion and desirable mechanical performance. The specific objectives of this 

thesis are to:  

 Enlarge adjustable CTE range in stiff bi-material concepts, with the ultimate goal of 

obtaining a theoretical unbounded CTE range starting from any pair of materials with 

different CTEs, without penalizing their mechanical performance.  

 Decouple the tailoring process of thermal and mechanical characteristics of architected 

materials to simultaneously realize a wide adjusted CTE range and high structural 

efficiency, e.g. specific stiffness and specific strength.  

 Investigate relationships between controllable thermal expansion of building blocks, 

structural symmetry of unit cells, and the effective thermoelastic properties of periodic 

trusses. Then, develop and validate a systematic methodology for designing and 

evaluating architected materials with controllable CTE and high structural efficiency.  

 Exemplify the design methodology through the application to a set of architected 

materials that are not only stiffer and stronger than existing concepts, but also offer a 

highly controllable CTE.  

1.4 Structure of the thesis 

The present thesis is manuscript based and is composed of five chapters. The current chapter 

(Chapter 1) briefly introduced the general background of thermal expansion, followed by a 

detailed review of CTE tunable architected materials. Requirements in the engineering 

applications are characterized, and the significance of utilizing architected materials is analyzed. 

In particular, Chapter 1 points out three main requirements of thermal expansion control: 

materials with zero CTE to avoid severe thermal distortion, large positive/negative CTEs to 

morph as a response to changes in ambient temperatures, and high structural efficiency to meet 

mechanical requirements such as high load-bearing capacity and low mass. A survey of existing 
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concepts and design guidelines for CTE tunable architected materials indicates their merits and 

limitations. The challenges of existing concepts in the literature to tailor thermal and mechanical 

performance are evaluated and discussed. In the end, the overall objective of this thesis is 

proposed. 

Chapter 2 of this thesis proposes two-dimensional hierarchical lattices that feature a theoretically 

unbounded range of CTE tunability, regardless of the constituent solids provided that their CTEs 

are different, and enables thermal expansion control without incurring a severe loss of structural 

performance. Bi-material diamonds with low- and high-CTEs have been proposed as building 

blocks of hierarchical lattices with the goal of decoupling the thermal and elastic properties to 

allow for separate tuning of their performances in different length scales. The obtainable CTE 

range increases with the order of hierarchy, so as to theoretically approach an unbounded value 

for unlimited hierarchical order. Through derived closed-form expressions, simulations, and 

experiments on fabricated proof-of-concepts, it is found that hierarchical architectures, including 

those made of recursive unit cells, can be tailored to provide theoretically unbounded CTE 

tunability with CTE values ranging from large positive, zero, to large negative. 

Chapter 3 reports routes to systematically engineer thermally responsive architected materials 

that are built from dual-material tetrahedral units that are stiff and strong. Drawing from 

concepts of vector analysis, crystallography, and tessellation, a scheme is presented for three-

dimensional lattices to program desired magnitude and spatial directionality of thermal 

expansion. All the material permutations that can occur in the struts of a dual-material 

tetrahedron are analyzed and three tetrahedra are selected as building blocks to construct unit 

cells. The relationship between the geometric symmetry of the unit cell and its thermal expansion 

is elucidated, and then systematic routes to assemble truss materials with desired magnitude and 

directionality of thermal expansion are proposed. The framework is applied to nine concepts that 

can meet three thermal expansion requirements including unidirectional, transverse isotropic, and 

isotropic. A range of investigations covering theoretical and computational analysis along with 

thermal testing on fabricated samples is carried out to assess their thermal expansion and elastic 

properties, e.g. Young’s modulus, as well as the trade-off existing between them. 
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Chapter 4 exemplifies the introduced design methodology through the application to a set of 

three-dimensional lattices, such as the dual-material Octet-truss, which are proven to not only be 

stiffer and stronger than any other existing concepts, but also offer a highly tunable CTE. 

Pretension snap-fits were used to fabricate all the three versions of the Octet cell, which resolve 

the trade-off between CTE tunability and structural efficiency, and extend the pin-jointed 

concept in Chapter 3 to bonded-joint lattices. Via a combination of numerical simulations and 

physical experiments on 3D fabricated prototypes, this work demonstrates how the Octet lattice 

can generate a large range of CTE values, including negative, zero, or positive, with no loss in 

structural efficiency. The novelty and simplicity of the proposed design as well as the ease in 

fabrication, make this bi-material architecture well-suited for a wide range of applications, 

including satellite antennae, space optical systems, precision instruments, thermal actuators, and 

MEMS. 

Finally, Chapter 5 highlights the main results and the main contributions of this research. At the 

end, a few guidelines for future works are also recommended. 
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2.1 Abstract 

Dual-material concepts that expand or contract as desired upon changes in temperature exist but 

have their limitations. One upon which we focus here is the trade-off caused by the inherent 

thermo-elastic coupling that they feature, a condition that makes desired changes in thermal 

expansion penalize elastic stiffness, and vice versa. In this chapter, we present hierarchical bi-

material lattices that are stiff and can be designed to attain a theoretically unbounded range of 

thermal expansion without (i) impact onto elastic moduli and (ii) severe penalty in specific 

stiffness. Through a combination of theory, numerical simulations and experiments, we 

demonstrate the thermomechanical performance of eight hierarchical lattices, including two 

fractal-like hierarchical lattices with self-repeating units that are built from dual-material 

diamond shapes with low and high coefficients of thermal expansion (CTE). Results show that 

the achievable range of CTE can be enlarged by 66% through the addition of one order of 

hierarchy only, and that for a given CTE range the specific stiffness can be at least 1.4 times 

larger than that of existing stretch-dominated concepts. The concepts here introduced can open 

up new avenues towards multifunctional devices and structurally efficient materials with 

simultaneously customized thermal expansion and mechanical properties. 

Keywords: Thermal expansion tunability, Thermoresponsive materials, Cellular solids, 

Composites, Mechanical properties. 
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2.2 Introduction 

Architected materials can be designed to elicit extreme mechanical properties, often beyond 

those of existing solids [1]. They are very appealing for use in several fields of engineering 

including aerospace, automotive and biomedical [2-4]. In these applications, the target to 

maximize might be either structural, through attaining for example minimum mass at maximum 

stiffness [5, 6], or functional, such as thermal dimension control [2], heat transfer [7], band gaps 

[8], mechanical biocompatibility [9], and others [1]. For lightweight structural applications, high 

stiffness is desired for preserving the structural integrity and resisting a variety of loading 

conditions. In contrast, high compliance is required to adapt under other loading conditions for 

more functional applications, such as energy absorption [10]. For functional applications, the 

coefficient of thermal expansion (CTE) has been the recent focus of intense research [11, 12] 

aiming at obtaining large positive, zero or negative CTE via material architecture tuning.  

The design freedom to adjust thermal expansion is particularly advantageous in a large 

assortment of applications. On one hand, in extreme thermal environments, sensitive applications 

that require very fine precision, such as satellite antennas, space telescopes, and large array 

mirrors [4, 13], call for materials with zero CTE so as to avoid undesired thermal deformation. 

On the other hand, there are other applications requiring materials with large positive or negative 

CTEs. These materials must induce responsive and desirable deformations under given changes 

in temperature [14], often, but not always, dictated by the surrounding environment, such as in 

morphing and adaptive structures [15, 16], as well as MEMS [17]. The potential of periodic 

architected materials is also appealing because their repeating cell can be designed to 

concurrently maximize multiple performance requirements, notably structural and functional. 

Among many, examples of multifunctional lattices include those developed for aerospace 

components that can maintain precise dimensional tolerances under large temperature 

fluctuations and specific stiffness requirements [2, 18].  

This chapter focuses on multifunctional lattices designed with the goal of providing unique 

control of thermal expansion and structural performance, at levels currently unmet by existing 

concepts. As with previous works [2, 11, 18-22], we deal with material architectures made of two 

materials, which can be designed to compensate the mismatched thermal deformation generated 
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by each of the two materials. If exploited, this strategy enables the attainment of an overall 

thermal deformation that can be large positive, zero or large negative. Since dual material 

architectures achieve a tunable CTE through a purely mechanical, and thus temperature-

independent, mechanism [4], their CTE is extremely dependent on the unit cell architecture and 

on the difference in CTE of their constituent solids [12, 18]. To assess the potential of a given 

architected material in providing a range of CTE values via tailored selection of its material 

constitutes and its cell topology, we need a quantitative metric. CTE tunability, ( CTE ), can be 

used [23] to measure the maximum range of CTE values that a concept can achieve upon 

changes of its unit cell geometry from a given pair of materials. Whereas a single material has 

only one CTE value, hence no CTE , the CTE of dual material concepts can be adjusted by 

geometric manipulation of the building block with the result of obtaining a range of CTE values. 

The difference between the minimum and maximum CTE that an architected material can offer 

is defined as CTE . For a given concept, a large CTE  indicates ample freedom to tune the 

unit cell geometry, an asset that can release the dependence on the CTE ratio of the constituents 

(see Supplementary Material Section 2.7.1).  

Several dual-material concepts have been proposed in the literature, most notably by Lehman 

and Lakes [19, 24], Steeves et al. [18], Hopkins et al. [25], Jefferson et al. [20], Sigmund et al. 

[22], and Xu et al. [23]. A number of these concepts, such as Lakes concept [26], while 

successful in demonstrating theoretically unbounded CTE tunability, feature a trade-off in 

structural efficiency [27]. The compromise between them emphasizes an inherent coupling 

between mechanical properties and thermal properties. This is typical of existing dual-materials 

concepts (See Supplementary Material Section 2.7.1), for which CTE tailoring through 

architecture manipulation may result in severe reduction of mechanical performance. For 

example, some existing concepts show that the desired flexural deformation that a large CTE 

tunability would require is generally antagonist to the high specific stiffness that is distinctive of 

a structurally efficient architecture. This indicates that preserving high specific stiffness is in 

conflict with the need of enhancing CTE , as manifest in stretch-dominated unit cells 

constructed by dual-material triangle (2D) or tetrahedron (3D), which offer a remarkable 

structural performance [2, 18], but cannot achieve the sizeable CTE tunability of bend-dominated 

architectures [11, 26]. Hence, the main issue we want to address in this chapter: how to reduce 
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the penalty that an increase in CTE  will generate on the elastic properties, so as to obtain the 

best compromise out of them. 

This work proposes hierarchical lattice materials which feature enhanced CTE tunability 

regardless of the choice of the constituent solids, and enable thermal expansion control without 

incurring in severe loss of structural performance. Structural hierarchy is not new and for a long 

time now has been recognized as one crucial factor governing high stiffness, strength, and 

toughness in both natural and bio-inspired materials [28-30], and even more recently in the field 

of thermal expansion [19]. However, what has not been so far explored yet is how to exploit it to, 

first, amplify CTE tunability in architected materials, and then to decouple physical properties 

that are in conflict. The method adopted in this chapter, as explained in Section 2.3, combines 

solid mechanics theory, finite element simulations and experiments on proof-of-concept lattices. 

The results presented in Section 2.4 demonstrate that initially coupled properties can be 

individually tuned in distinct hierarchical orders to obtain large CTE tunability without sensible 

loss in structural performance. Section 2.5 discusses the concept performance by drawing a 

comparison with a set of existing architected materials that are stretch and bend dominated. 

2.3 Methodology  

Our focus here is on bi-material unit cells (Figure 2-1) with high and low CTE, which are used to 

build hierarchical lattices (HL) including those made of self-repeating unit cells, i.e. fractal-like 

hierarchical lattices (fractal-like HL) and hierarchical lattices which feature at least two unit cells 

with different topologies, thus making the hierarchical lattice of a hybrid-type (hybrid-type HL) 

(Figure 2-2). The following provides closed-form expressions and computational results of their 

thermomechanical properties, along with details on sample fabrication and CTE testing. 

2.3.1 Unit cell model with a bi-material diamond shape 

Figure 2-1a-I shows the diamond that can attain a low-CTE performance (LD). Upon a uniform 

increase of temperature, red ( 1s ) and blue ( 2s ) elements in a LD deform at different rates, 

visualized in Figure 2-1a-II as unbonded for explanation purpose. Figure 2-1a-II displays the 

height increase, 1lH , caused solely by thermal expansion in the blue elements. In the final 

configuration (Figure 2-1a-III), rigid connections at the nodes cause a higher expansion in the 
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red horizontal bar that turns the blue struts. As a result, the top vertex of the diamond springs 

back by 2lH , a displacement that if desired can be conveniently designed to compensate 1lH . 

By harnessing the values of 1s  and 2s , or the skewness of the blue elements,  , the CTE of a 

LD can be tuned to zero, or even negative, in the y-direction. Similarly, Figure 2-1b-I shows the 

complementary version of the diamond in Figure 2-1a-I, where the switched material distribution 

yields a high-CTE diamond (HD). In Figure 2-1b-II, the expansion of the red elements bring 

about a height increase, 1hH , and a width-wise gap, hW , which would appear if the blue bar, 

which exhibits less expansion, were visualized as unconnected. Also in this case, rigid 

connections (Figure 2-1b-III) would compensate the visualized horizontal gap, hW , by a height 

increase of 2hH , adding on to 1hH , and this value of 2hH can also be tuned by manipulating 

1s , 2s  and  . From this explanation, we gather that the CTE in the y-direction depends on the 

thermal expansion ratio of the constituent materials, 2 1s s   , and the skewness angle,  . If 

  is given, the smaller the  , the lower (for LD) or higher (for HD) the CTE [18]; hence the 

greater the CTE distinction of the constituent solids, the higher the CTE tunability.  

 

Figure 2-1: Deformation of a unit cell in a diamond shape with low, LD (a-I), and high, HD (b-I), 

CTE, strut thickness t , horizontal bar length l , sloped bar length 'l  , and skew angle  . (II) 

Deformation of hypothetically unconnected elements and their corresponding dimensional 

changes. (III) Actual deformation of rigidly connected elements along with change in dimensions 

due to rigid nodal connectivity. 

We now examine the general case of a LD (Figure 2-1a-I) with an arbitrary skew angle,  , and 
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we derive its Young’s moduli, from which those for HD can also be easily obtained. A small 

thickness ratio is considered, 1 8t l  , that gives LD a low relative density, *
s  , which is 

defined as the ratio of its real density over the density of the solid. For a generic dual-material 

unit cell, the relative density can be expressed as a function of the volume fractions of the 

constituents (Supplementary Material Section 2.7.2), and more specifically for a LD (details in 

Supplementary Material Section 2.7.3) can be written as: 

* cos 2
sins

t
l

 
 


            (2-1) 

Using structural mechanics [31], the in-plane Young’s moduli can be derived as (Supplementary 

Material Section 2.7.3): 
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where 1sE  and 2sE  are the Young’s modulus for solid materials 1 and 2, respectively. We note 

that although Eqs. (2-2) and (2-3) are valid for a defect-free lattice in a fully undeformed state, 

the thermal deformation and fabrication imperfections, which are less than ±1% of the bar length 

deviation, will not significantly reduce the elastic moduli (no more than 5% [32]). Even under 

the largest achievable temperature changes considered in this article ( 50 CT   ), the thermal 

deformation remains small, thereby causing no significant impact on the elastic moduli. 

Since the thermal expansion mismatch between the constituent materials cause bar bending, the 

effective CTE in the y-direction can be written (Supplementary Material Section 2.7.3) as: 
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Similarly in the x-direction, the effective CTE is (Supplementary Material Section 2.7.3): 
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Eq. (2-4) can be simplified as: 

*
2 1 2( )y s CTE s sk               (2-6) 

where        1 12 2 12 3
1 2cos 2 8cos sin 8cos cos 2CTE s sk t l t l E E    

      
 

 has 

always a negative value. The LD and HD cases can be specified by the difference in values of 

the two solid CTEs. If 1s > 2s , *
y  is less than the lowest CTE of the two solids (i.e. 2s ), thus 

representing LD (Figure 2-1a-I). On the other hand, if 2s > 1s , then *
y  is larger than the 

highest CTE - in this instance 2s  - which corresponds to the HD case (Figure 2-1b-I). 

In Eqs. (2-4) and (2-5) above, the effective CTE is also governed by the geometric parameters of 

the lattice, namely t l  and  . The stiffness can also be expressed similarly to the CTE, since 

they are contingent on the same set of geometric parameters (i.e. t l  and   in the Eqs. (2-2) and 

(2-3)). From this, it is evident that a change of this set of parameters would make both the CTE 

and stiffness vary, as further demonstrated in Supplementary Material Section 2.7.1. How to 

avoid this thermo-elastic coupling is illustrated later in this section, after we first explain below 

how to enlarge CTE  in architectures made of any pair of materials.  

The LD and HD unit cells introduced above can be used as building blocks to create multiscale 

self-repeating lattices (fractal-like HL) with potentially unbounded range of CTE without severe 

penalty in specific stiffness. This can provide better trade-off between thermal and mechanical 

performance. This performance is achieved with neither change of their constituent materials nor 

manipulation of their skew angles. The underlying principle here is that by replacing the solid 

constituents with unit cells with higher (HD) and lower (LD) CTE values than those of their base 

materials, we amplify CTE . Figure 2-2a shows a low-CTE example of fractal-like HL with two 

hierarchical orders, each constructed through the tessellation of LD and HD with prescribed 

internal angle 60   . The reverse performance case, i.e. higher CTE, can be obtained by a 

switch of HD and LD positions. Higher orders can be introduced to reduce or enlarge the 

effective CTE in desired directions with high structural efficiency ( E  ) originating from the 

stretch-dominated cell this fractal-like HL is built from.  
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Figure 2-2: Multiscale lattices with second-order hierarchy (n=2). (a-I) Fabricated fractal-like HL 

with low-CTE, (b-I) hybrid-type HL with low-CTE with specified dimensions denoted in mm. 

(a-II) and (b-II) geometric models of second-order hierarchy with cell-wall thickness, 2t , and 

length, 2l . (a-III) and (b-III) first order unit cell models with low- and high-CTE shaped-diamond, 

i.e. LD and HD, and their respective cell-wall thickness, 1t , and length, 1l . n  with  0, 90n    

is the angle between the inclined cell wall and the x-direction. (a-IV) and (b-IV) constituent 

materials colour-coded to illustrate low and high CTEs. All lattices are planar with prismatic 

units of identical out-of-plane thickness. 
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For the analysis, we consider the general case of n th order fractal-like HL of density *
n , 

effective Young’s modulus *
nE , and effective CTE *

n . The cell walls consist of LD and HD 

cells of density, *
1n  , effective Young’s modulus, *

1nE  , and effective CTE, *
1n  . The skew 

angle   is given and common to all hierarchical orders, whereas the thickness ratios i it l  are 

different. The relative density for the general case of fractal-like HL with n orders is: 

*
2 1

12 1
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The Young’s modulus of the high- and low-CTE fractal-like HL in the y-direction can be 

expressed as: 
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where h  and l  represent the high- and low-CTE, respectively, and i  represents the hierarchical 

order, such that *
,y,l iE  is the effective Young’s modulus of the low-CTE element in the i th order 

and the y-direction. Their effective CTEs are given by: 
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with 1 i n  , *
, ,0h y sh  , *

, ,0l y sl  , *
, ,0h y shE E , and *

, ,0l y slE E . 

The relations above show that fractal-like HL of any hierarchical order possesses anisotropic 

thermo-elastic properties that are coupled. Isotropic (planar) behaviour can be attained by 

changing cell shapes among structural order, i.e. by creating hierarchical lattices, with shapes 
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that exhibit isotropy. Below we apply this strategy and consider self-repeating lattices that are 

shaped at the last order with cell geometry dissimilar than those of the preceding orders, so as to 

create hybrid-type HL. 

Figure 2-2b illustrates an example of hybrid-type HL with two levels of hierarchy. A change in 

unit cell shape, i.e. a triangle, is implemented at 2n   to show how hierarchy can be effective in 

not only decoupling but also tuning thermo-elastic properties. As opposed to the fractal-like HL 

in Figure 2-2a-I, which contains both LD and HD, in Figure 2-2b-I only LD is used at 1n   to 

create a triangle hierarchical lattice with low-CTE, whereas its high-CTE counterpart can be 

obtained by swapping the material position. We shape hybrid-type HL at 2n   with a triangle to 

infer isotropic (planar) mechanical properties and control thermal expansion with LD at 1n  . 

This simple strategy is effective in achieving desired levels of property decoupling which can be 

readily extended to lattices of higher hierarchical order and beyond CTE and stiffness, such as 

CTE and strength, CTE and Poisson’s ratio, thermal-conductivity and Poisson’s ratio, and others.  

Let’s examine hybrid-type HL with 2n  . If the 2nd order consists of LD only (Figure 2-2b-I), 

then its overall effective CTE, *
2 , is equal to the CTE of LD in the axial direction (y-direction 

in the current case), which can be simply expressed as * *
2 1y  . This shows that *

2  is not 

dependent on any changes in geometry at the 2nd order, such that 2  and 2 2t l  have no influence 

on the effective CTE of the overall hybrid-type HL. However, any geometric changes at the first 

order, such as the skew angle, will affect not only *
1y  but also the CTE of the overall hybrid-

type HL, i.e. *
2 . With respect to elastic stiffness for hybrid-type HL, the normalized effective 

Young’s modulus * *
2 1E E  of the 2nd order, which is mainly a function of unit cell topology, 

nodal connectivity, cell wall angle, and relative density, * *
2 1  , can be expressed through the 

wall thickness ratio, 2 2t l  as: 

*
2 2

2*
1 2

q
E tk
E l

 
  

 
           (2-10) 

2k  is a function of the cell topology adopted at the 2nd order of hybrid-type HL; q  depends on the 

cell wall deformation mode of the 2nd order - stretching or bending - and can assume values that 
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depend on the scaling condition applied to the cell wall cross-section [33-35]. If *
1E  is given, the 

stiffness of the 2nd order is merely a function of the geometry at the 2nd order and any geometric 

change at this order will not influence the overall CTE of hybrid-type HL.  

The thermal and mechanical 2D isotropic behaviour of the hybrid-type HL in Figure 2-2b derives 

from the shape of the unit cell, in this case a triangle. The relevant properties of hybrid-type HL 

at 1n   are given in Eqs. (2-1), (2-2), and (2-4), and the mechanical properties at 2n   

( 2 60   ) in Eqs. (2-11) and (2-12). Since the CTE of the last order hybrid-type HL, *
2 , is 

equivalent to that of the preceding order, in this example the CTE of LD, or HD for the high-

CTE case, the thermomechanical properties of hybrid-type HL are given by:  

*
2 2
*
1 2

2 3 t
l




   (2-11)  
*
2 2
*
1 2

2 3
3y

E t
E l

   (2-12)  * *
2 1y   (2-13) 

To demonstrate CTE tuning that brings no change in the elastic properties of hybrid-type HL, we 

seek in its first order a set of pairs for the skew angle 1  and 1 1t l  that can satisfy the condition 

of constant *
1yE . This can be achieved by rearranging Eq. (2-4) to find the expression of *

1yE  that 

is governed by 1 1t l  and 1 , and whose solution provides CTE values at the first order, *
1 , that 

change with the skew angle but leave *
1yE  unaltered. This strategy preserves the Young’s moduli 

in the second order and allows CTE tuning in the first order. Furthermore, this scheme enables to 

construct hybrid-type HL with tunable stiffness via changing wall thickness at the second order, 

2 2t l , while keeping the overall CTE *
2 constant, hence allowing thermo-elastic decoupling.  

The explanation given above is of course demonstrative for hybrid-type HL of 2 orders. If 2n   

and hybrid-type HL has the triangle at the last ( n th) order, the scheme still holds and enables to 

decouple CTE from elastic stiffness. In this case, the first order to the ( -1)n th order are made of 

low-CTE fractal-like HL; and the relative density and thermo-elastic properties of the highest 

order can be expressed using Eqs. (2-11) to (2-13) by simply replacing 2nd order terms with n th 

order terms and 1st order with ( -1)n th order. The effective properties *
1n  , *

1nE  , and *
1n   in those 

general equations can be calculated through Eqs. (2-7), (2-8) and (2-9), respectively.  
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2.3.2 Experimental validation  

Three sets of experimental validation (Figure 2-3 to 5) for the prediction models presented earlier 

are performed on laser cut prototypes of hierarchical lattices. Given the scheme presented here is 

material selection free, a representative pair of materials is chosen to fabricate the samples: 

Teflon® Polytetrafluoroethylene (PTFE, DuPont, USA), and acrylic plastic (Polymethyl 

Methacrylate (PMMA), Reynolds Polymer, Indonesia) (materials properties in Table 2-1). 

Nevertheless, the experimental validation here provided can be applied to lattices made of any 

pair of solids including metals, such as Al6061 and Ti-6Al-4V, and for hierarchical orders above 

2. The first set of experiments aims at validating the fractal-like HL model that can predict CTE 

values and its tunability (Eq. (2-9)), where the low-CTE of a representative lattice is tested in the 

y-direction. The second set is designed to measure CTE tunability for hybrid-type HL with 2n 

(Eqs. (2-4) and (2-13)), and the third to demonstrate thermo-elastic properties decoupling (Eqs. 

(2-4) and (2-13)). 

Material Measured 
CTE (DIC) 

Measured 
CTE (TMA 

Q400) 

CTE 
provided by 
the supplier 

Difference 
(%) 

Young’s 
Modulus 

(GPa) 

Density 
(g/cm3) 

Acrylic 
(Low CTE 
component) 

67.0 ±0.5 - 69.0 2.9% 3.2 1.2 

Teflon® PTFE 
(High CTE 
component) 

123.0 ±0.9 - 120.0 2.5% 0.475 2.2 

Al6061 22.6 ±0.4 23.0 - 1.7% - - 

Table 2-1: Predicted and experimentally measured CTE values (×10-6/°C) for solid materials. 

Sheets of 1.59 mm thickness of each material were laser cut (TROTEC Laser GmbH, Austria) to 

build 2nd order fractal-like and hybrid-type HL. Laser cutter was calibrated to provide planar 

deviations within ±0.05 mm. Bar elements were individually embedded to diamond-shaped cells 

and epoxy glue (Gel Epoxy Syringe Glue, LePage) was applied to provide adherence between 

materials. The epoxy glue thickness was about 0.1 mm, 2% of the typical length of a lattice 

element; the epoxy CTE (65×10-6/°C) was similar to the CTE of acrylic, thus providing 

negligible influence on the CTE measurements of HL samples.  
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Figure 2-3: Thermal experiment of fractal-like HL with: 0n   (a); 1n   (b); and 2n   (c), and 

thermal deformation field shown in column (III) for x-direction and column (IV) for y-direction. 

To perform DIC, black and white speckles were applied randomly and uniformly across the 

nodes to each hybrid-type and fractal-like HL samples, for thermal displacement measurements. 
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Columns (I) and (II) illustrate respectively initial configurations for designed and fabricated 

samples. Obtained CTE values along with theoretical and simulated values are summarized 

along their corresponding columns. Computational values are obtained via asymptotic 

homogenization.  

A 3D digital image correlation (DIC) set-up with a temperature controlled heating chamber (See 

Supplementary Material Section 2.7.4 for details) was assembled and used to assess the CTE of 

each set of HLs. In total, 3 sets of DIC experiments were undertaken for a total of 9 tests, 3 for 

each set. In the first group (Figure 2-3), DIC was applied to solid bars of acrylic and 2 fractal-

like HLs, one with 1 order of hierarchy and the other with 2n  . The skew angle ( 60   ) as 

well as the wall thickness ratio (about 0.1t l  ) of the fractal-like HL were kept identical. The 

joints were shaped in hexagons to preserve strut connectivity (six) at each node. The second set 

(Figure 2-4) features DIC results for 2nd order hybrid-type HL samples with varying skew angles 

(55°, 60° and 65°) and hexagonal nodes of dimensions identical to those of the first set. To prove 

CTE tunability of hybrid-type HL for constant Young’s modulus, *
1yE , the geometry of the three 

hybrid-type HL samples was kept identical with the exception of their skew angles, 1 , and wall 

thickness, 1t , in the first order. The last set of samples in Figure 2-5, second order hybrid-type 

HL, were built with varying strut thickness to assess the impact of 2 2t l  on their effective CTE. 

Here the geometric parameters of all samples were kept identical except the thickness ratio of the 

second order ( 2n  ) chosen as the only variable. The number of LD along the thickness 

direction varied from 1M   to 3M   as shown in Figure 2-5a, b, and c. All samples were tested 

five times through the thermal cycle to ensure test repeatability, and on each occasion the 

thermal displacement was measured to provide statistical context to the results.  
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Figure 2-4: Thermal experiment of hybrid-type HL with skew angles of 55° (a), 60° (b), and 65° 

(c) and thermal deformation field shown in column (III) for x-direction and column (IV) for y-

direction. Columns (I) and (II) illustrate respectively initial configurations for designed and 

fabricated samples. Obtained CTE values along with theoretical and simulated values are 

summarized along their corresponding columns. Computational values are obtained via 

asymptotic homogenization. 

Testing temperature was monitored and managed from 25℃ to 75℃ through a PID (proportion-

integration-differentiation) controller (CN7800, Omega, US). DIC system calibration ensured an 

epipolar projection error below 0.01 pixels, i.e. the average error between the position where a 
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target point was found in the image and the theoretical position where the mathematical 

calibration model located the point. A CCD (charge coupled device) camera (PointGrey, Canada) 

was used to focus on an area of 2240 200 mm  with a resolution of 2448 2048  pixels; based 

on the image resolution, any deformation smaller than 0.98 μm (0.01 pixels) was merged by the 

epipolar projection error. Finally the accuracy of the whole testing system was verified with 

measures taken from a commercial thermomechanical analyzer, TMA Q400 (TA Instr., US). 

 

Figure 2-5: Thermal experiment of hybrid-type HL with wall layers of 1M   (a); 2M   (b); 

and 3M   (c) and thermal deformation field shown in column (III) for x-direction and column 

(IV) for y-direction. Columns (I) and (II) illustrate respectively initial configurations for 

designed and fabricated samples. Obtained CTE values along with theoretical and simulated 
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values are summarized along their corresponding columns. Computational values are obtained 

via asymptotic homogenization.   

2.4 Results 

2.4.1 System calibration 

The testing system was calibrated on three solid materials, Al6061, acrylic and PTFE. Table 2-1 

shows a comparison of their measured and predicted mean CTE along with their standard 

deviations, with errors below 3%. The epipolar projection error is at 0.98 μm, which governs the 

smallest measured CTE value of the samples, i.e. 0.27×10-6/°C. The low magnitude of these 

errors warrants the required accuracy for the DIC system used in this work.  

2.4.2 Testing results 

Figure 2-3a-III and IV show thermal deformation maps for the solid material, acrylic, in both x- 

and y-directions, respectively. The tested CTE is observed isotropically in all directions in the 2D 

plane. While their thermal deformation is shown in Figure 2-3 to Figure 2-5-III and -IV in both 

x- and y-directions, mean CTE from testing are summarized in Table 2-2, along with their 

standard deviation and CTE predictions. The error associated with testing results only go as high 

as 5%, and the difference between tests and the computational values obtained via asymptotic 

homogenization (AH) (see Supplementary Material Section 2.7.5) are generally within 10% error, 

with the exception of fractal-like HL ( 2n  ) sample, where the amplified low-CTE behaviour 

also amplifies the deviation between both results. 

Figure 2-3b-IV illustrates that LD (Figure 2-3b-I, 1n   with 60   ) without structural 

hierarchy can reduce the CTE along the y-direction from 67.0×10-6/°C ( 0n  , i.e. the component 

material, acrylic, as shown in Figure 2-3a-I) to 60.3×10-6/°C. However, for increasing 

hierarchical order, fractal-like HL (Figure 2-3c-I, 2n  ) can further reduce the effective CTE in 

the y-direction to 29.2×10-6/°C, result obtained with no change in material selection nor skew 

angle. By adding hierarchical orders from 1n   to 2n  , fractal-like HL shows a CTE tunability 

up to 31.1×10-6/°C. Figure 2-4-III and IV show for hybrid-type HL the decrease of the effective 

CTE from 56.4×10-6/°C ( 1 65   ) to 49.6×10-6/°C ( 1 55   ), which emphasizes a much smaller 

CTE tunability (6.8×10-6/°C) in comparison with adding hierarchical orders (31.1×10-6/°C). The 



 

45 

 

combination of varying skew angles and adding hierarchical orders appears to be proficient in 

tuning the effective CTE. For the last set of specimens, however, the effective stiffness relative 

to an hybrid-type HL with 1M   is expected to double for 2M   and triple for 3M  ; the 

overall effective CTE displays a tendency of remaining constant around 53×10-6/°C. These 

results experimentally show that thermo-elastic properties can be decoupled in hybrid-type HL, 

as explained in more detail in the following section.  

Sample 
Predicted CTE 
(Beam Theory, 

×10-6/°C) 

Measured CTE 
(×10-6/°C) Error 

 x y x ± x  y ± y  x y 
Fractal-like HL (n=1) 115.0 62.0 115.2±0.3 60.3 ±2.4 0.2% 2.8% 
Fractal-like HL (n=2) 138.7 20.8 125.5±1.3 29.2 ±0.9 10.5% 28.8% 

Hybrid-type HL  
(55°, M=2) 43.4 49.6 ±1.3 12.5% 

Hybrid-type HL  
(60°, M=2) 49.4 52.1 ±0.6 5.2% 

Hybrid-type HL  
(65°, M=2) 55.0 56.4 ±2.9 2.5% 

Hybrid-type HL  
(60°, M=1) 50.3 53.1 ±1.3 5.3% 

Hybrid-type HL  
(60°, M=2) 50.3 52.7 ±1.6 4.2% 

Hybrid-type HL  
(60°, M=3) 50.3 52.7 ±1.6 4.2% 

Table 2-2: Predicted and experimentally measured CTE values for fractal-like and hybrid-type 

HL (  and  indicate standard deviation). 

2.4.3 Model predictions 

Figure 2-6a illustrates the CTE values for low- and high-CTE fractal-like HL in the y-direction 

as a function of hierarchical order. Each of the plotted lines, obtained from Eq. (2-9), represents 

CTE values for a given skew angle,  , and starts from 0n  , solid materials, through 1n  , the 

HD and LD, followed by fractal-like HLs with increasing hierarchical order 2n  . We recall 

that these predictions represent discrete values of CTE, each obtained for a given n, although the 

trends are shown as continuous to ease their interpretation within each figure. Assuming the CTE 

of PTFE and acrylic as the high and low CTE values, respectively, we observe that as the order 

x y
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increases from 0 to 1, the effective CTE of HD is higher than that of PTFE, whereas the CTE of 

the LD is lower than that of acrylic. The gap between these two CTE spectra, i.e. LD and HD, 

taking 60    as an example, enlarges from 56×10-6/°C (initial gap between solid materials) to 

93×10-6/°C, meaning an increase of 165% in CTE . As the order changes from 1 to 2, the gap 

increases even more drastically to 154.7×10-6/°C (275% of the initial gap) and larger once more 

from order 2 to 3, reaching 257.3×10-6/°C (460% of the initial gap). CTE tunability ( CTE ) 

increases with the order of hierarchy, so as to theoretically approach an unbounded value for 

unlimited n.  

 

Figure 2-6: CTE (a) and structural efficiency (b) of fractal-like HL in the y-direction as a 

function of n , the number of hierarchical order; CTE (c) and structural efficiency (d) of hybrid-

type HL in the y-direction, respectively, with respect to n . Lines of given skew angle are 

visualized for hybrid-type HL and fractal-like HL, and shaded regions (green) in (a) and (c) are 

depicted to represent by-layer laminates of solid materials ( 0  ). CTE trends shown as 

continuous connect discrete values calculated via the models presented in Section 2.3.  
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We also note the shaded region in Figure 2-6a, where the lattice collapses to a by-layer laminate. 

This concept can cover CTE values between the CTEs of the constituent solids by changing their 

layer thickness ratio. Furthermore, Figure 2-6b illustrates structural efficiency – a metric 

expressed here as the ratio of the specific stiffness of the lattice to that of the solid materials – in 

the y-direction of low- and high-CTE fractal-like HL versus hierarchical order. For normalization 

purposes, solid acrylic (blue in figure) is considered as benchmark with 100% structural 

efficiency. With the increase of hierarchical order, the structural efficiency of fractal-like HL 

decreases. This is expected as stretch dominated lattices become more compliant with higher 

order of hierarchy, but nevertheless this drop is less than that of bend dominated lattices [29]. 

Another insight that we gain from Figure 2-6a and b is that the thermo-elastic properties of 

fractal-like HL are coupled, and CTE changes as structural efficiency does. How to avoid this 

coupling is shown below where results obtained from models described in Section 2.3 are 

presented.  

Figure 2-6c, d show the predicted CTE and structural efficiency for hybrid-type HL as a function 

of the hierarchical order and the skew angle, 1 , in the range 50 70   , which is representatively 

chosen here to visualize the effect of varying skewness. In Figure 2-6c, the first order ( 1n  ) 

allows some degree of CTE tailoring with a gap increase between the low and high CTE spectra 

from 56×10-6/°C to 93×10-6/°C. With the addition of the second order ( 2n  ), this time hybrid-

type HL, as opposed to fractal-like HL, allows stiffness modulation without thermal expansion 

variation. Hence CTE remains insensitive, i.e. CTE  between the first two orders is constant, 

despite a drop of structural efficiency.  

The trends shown in Figure 2-6c and d between 1n   and 2n   are now used as example to 

show how hybrid-type HL can be effective in decoupling thermal and mechanical properties. To 

do so, we first show that CTE and Young’s modulus for LD are inherently coupled and hence no 

independent tuning is possible. This is shown in Figure 2-7a, b where Eqs. (2-1) to (2-5) are 

plotted in dash style along with results obtained from AH (continuous style), here included to 

provide a further element of validation to the analytic models presented therein. Figure 2-7a 

shows that for prescribed 1 1t l , a reduction of the skew angle brings a decrease of both the CTE 

and Young’s modulus in the y-direction. On the other hand, if the skew angle is given and 1 1t l  
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varies (Figure 2-7b), both the CTE and Young’s modulus in the y-direction show a monotonic 

increase for rising relative density. Hence Figure 2-7a, b visualise the thermo-elastic coupling 

that exists in diamond lattices. In the next step, we show separate property tuning through 

hybrid-type HL. Figure 2-7c, d show results for CTE and Young’s modulus obtained from Eqs. 

(2-12) and (2-13) for hybrid-type HL of two orders (Figure 2-2b-I). Also in this case, results 

from closed-form expressions are reported along with those obtained computationally via AH. 

Figure 2-7c shows that a changed 1  in the first order of hybrid-type HL enables CTE tuning for 

both orders, while causing no impact in the Young’s modulus, as shown by its unchanging trend. 

Likewise in the mechanical spectrum, Figure 2-7d shows that the effective Young’s modulus can 

be varied with relative density with no effect on the CTE. It is the thickness ratio of the second 

order, 2 2t l , that, in this case, is the variable empowering the Young’s modulus modulation for 

inviolate values of CTE. Figure 2-7, thus, gives a visual summary of model predictions validated 

through experiments for thermo-elastic coupling, which appears to have been bypassed with 

hybrid-type HL. 

 

Figure 2-7: Visualization of properties coupling and decoupling for LD unit and hierarchical 

lattices. A change in skew angle (a) and relative density (b) in LD affects both thermal ( *
xa  and 
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*
ya ) and elastic properties ( * *

2x sE E  and * *
2y sE E ). On the other hand for hybrid-type HL (c and 

d), *
1a  and *

2a  of the first and the second order, as well as their effective Young’s modulus, are 

tuned to preserve constant either the Young’s modulus ( *
1yE ) in (c) or the CTE ( *

2 ) in (d). This 

is achieved in (c) through changing both the skew angle of the first order, 1 , and 1 1t l , and in (d) 

by keeping these parameters constant and varying the relative density of the second order, 
* *
2 s  . 

2.5 Discussion 

This chapter proposes to use LD and HD as building blocks of fractal-like and hybrid-type HL 

with the goal of attaining a CTE range that can be theoretically unbound, and if desired this boost 

can be obtained with no penalty in elastic stiffness. Experimental results with specifics illustrated 

in Figure 2-3, 2-4, 2-5, are reported in Figure 2-7c and d and provide validation to the trends 

obtained via closed-form expressions presented in Section 2.3 and numerically via AH. Thermo-

elastic properties of fractal-like HL in Figure 2-6 demonstrate that the addition of only one order 

of hierarchy enlarges the CTE tunability by 66%, which is up to five times higher than what can 

be obtained through a change in skew angle. On the other hand, hybrid-type HL allows an 

increase in structural efficiency equal to 0.0585 of 20.6% (Figure 2-6 at 2n  ) with respect to 

that of fractal-like HL (0.0485) at the identical order. Validated models of hybrid-type HL 

suggest that concepts with higher orders can offer much larger CTE tunability than stretch-

dominated lattice benchmarks [18] and superior mechanical performance than baseline concepts 

that are bend-dominated [26], in addition to their decoupled, planar isotropic thermo-elastic 

properties.  

To compare the thermo-elastic performance of fractal-like and hybrid-type HL ( 5n  ) with the 

existing ones, in particular L-Concept [26] and S-Concept [18], we plot in Figure 2-8a bars of 

their specific stiffness, a measure of structural efficiency, and of CTE , the CTE tunability 

defined as the maximum range of CTE values a concept can offer. The magnitude of a given 

performance metric is represented by the bar height. All concepts are compared on an equal basis, 

as they are generated from the same pair of materials (PTFE and acrylic). With respect to the 

(orange) bars of CTE tunability in Figure 2-8a, CTE  is calculated for each concept and for a 
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given value of Young’s modulus, which is representatively considered here as 1 MPa. From the 

bar rises, we gather that fractal-like HL dominates with the largest CTE range (534×10-6/°C), 

whereas CTE  for the S-Concept is the smallest (169×10-6/°C). CTE  for hybrid-type HL 

(331.1×10-6/°C) is as high as that of L-Concept (332.6×10-6/°C), which is claimed to provide 

unbounded CTE . This is quite unique, as the L-Concept relies on bend-dominated cells, 

whereas the proposed hybrid-type HL can obtain a similar result using a much stiffer structure. 

Similarly with respect to structural efficiency (green bars), Figure 2-8a provides a visual 

comparison of the specific stiffness of each concept for a representative CTE value that is here 

assumed as half the average of the materials’ CTE (47.5×10-6/°C). From the bars, we observe 

that fractal-like HL has the highest specific stiffness in the y-direction (349.2 KPa×m3/Kg) 

followed by hybrid-type HL (116.5 KPa×m3/Kg), both of which outperform the existing 

concepts. More specifically, focusing on planar isotropic materials, hybrid-type HL provides a 

42% increase in structural efficiency compared to the stiff, yet dense, S-Concept (82 

KPa×m3/Kg), while demonstrating twice the specific stiffness of the L-Concept (51.7 

KPa×m3/Kg). 

A more comprehensive comparison of the concepts is illustrated in Figure 2-8b, where CTE 

tunability is plotted versus specific stiffness. The curves are created from a parametric study of 

the unit cells, where the skewness angle and the thickness-to-length ratio are the active variables 

for given materials. hybrid-type and fractal-like HL are compared with L-Concept and S-

Concept, the benchmarks. While both high- and low-CTE cases (Figure 2-6) can be plotted, 

Figure 2-8b displays only the low-CTE concepts which are sufficient to capture the potential of 

hierarchical lattices. We recall that, in this low-CTE case, CTE  is defined by the range 

between the lowest CTE value of a given low-CTE concept, at the calculated structural 

efficiency, and the CTE of the solid material with lower thermal expansion (i.e. 67×10-6/°C of 

acrylic).  

While S- and L-Concepts show curves that describe the change of CTE  with structural 

efficiency, hybrid-type and fractal-like HL are represented by two domains (blue for hybrid-type 

HL and green for fractal-like HL). These shaded regions represent the possible set of curves that 

are obtained with varying hierarchical orders. For both cases, the first hierarchical order that 

makes up the concept ( 1n   for fractal-like HL and 2n   for hybrid-type HL) provides the most 
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optimal curve (closest to the top-right corner). The following hierarchical orders (the second for 

fractal-like HL, and the third for hybrid-type HL) provide the least optimal curve, while higher 

orders lie in between. Higher hierarchical orders are predicted to approach the curve of the first 

order ( 1n   for fractal-like HL and 2n   for hybrid-type HL) with increasing n .  

 

Figure 2-8: (a) Comparison of proposed and existing bi-material concepts on the basis of (i) CTE 

tunability ( CTE = Max CTE – Min CTE) for prescribed stiffness of 1 MPa, visualized as 

orange bars, and (ii) specific stiffness (Young’s modulus / Density: E  ) for given CTE (47.5

10-6/°C), in green. (b) CTE tunability plotted versus structural efficiency of existing concepts 

along with hybrid-type and fractal-like HL for increasing hierarchical order ( 1, 2, ...n  ). Results 
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are obtained from a parametric study of unit cell geometry, where the list of possible sets of 

properties for each concept are sorted by increasing structural efficiency, and then grouped based 

on a range of similar values of E  . The minimum CTE value is selected from each group to 

calculate CTE  for a given E  . This value, the median structural efficiency of each group, is 

plotted as a point on the graph with the corresponding CTE  value on the ordinate axis. 

In general, Figure 2-8b shows a Pareto-front for the existing concepts, thus showing trade-offs 

between metrics: an attempt of increasing structural efficiency results in a reduced CTE . This 

trade-off is not only influenced by the relation between geometric parameters and effective 

properties, but also by the design requirements. For example, the L-Concept is the ideal 

candidate to attain large CTE tunability, whereas the S-Concept is ideal for structural efficiency, 

as both are designed for different specifications. When considering the concepts presented in this 

chapter, a better overall performance can be observed compared to the existing baselines. The 

curves derived from both fractal-like and hybrid-type HL are offsets of the L- and S-Concept 

toward the top right corner on the figure, where both high CTE tunability and high structural 

efficiency are achieved; hence their domains show higher potential of hierarchical lattices to 

attain better trade-offs between CTE  and E  .  

While the work here presented show promises for planar lattices, the strategy can be applied also 

to 3D hierarchical concepts. Nevertheless, their potential should always be confronted with the 

capabilities of current practices. For example, while the concepts are scale independent and 

material selection free, increasing the order of structural hierarchy has to account for the limits 

that a given manufacturing process poses [6]. The fabrication of hierarchical structures can be 

highly time consuming, and to the best of authors’ knowledge, only structures with up to three 

orders of hierarchy have been physically realized, even recently, such as multi-material shape 

memory structures (two orders) [36]  and multiscale metallic metamaterials which feature three 

orders of hierarchy [6]. Given the fast development of multiple material additive manufacturing 

[37, 38], we can infer that higher level of hierarchy in dual material lattices might be achieved in 

the near future. In addition, while thermal expansion and stiffness have been here investigated, 

other structural properties, such as yield strength and toughness, might not perform equally well 
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in practice as adding hierarchy alone reduces strength further due to high stress concentrations 

that stem at the joints of dissimilar materials [30].  

2.6 Conclusion 

In this chapter, stretch-dominated bi-material unit cells with low- and high-CTE have been 

proposed as diamond shaped building blocks of hierarchical lattices with the goal of improving 

CTE tunability and structural performance, as well as allowing separate tuning of their thermo-

elastic properties. Through simulations, derived closed-form expressions and experiments on 

fabricated proof-of-concepts, we have shown that hybrid-type HL architecture including those 

made of self-repeating unit cells, i.e. fractal-like HL, can be tailored to concurrently provide high 

specific stiffness and theoretically unbounded CTE tunability with CTE values ranging from 

large positive, zero to large negative. The hallmark of fractal-like and hybrid-type HL is that they 

can reduce the penalty that an increase in CTE  will generate on the elastic properties, so as to 

obtain the best compromise out of them. In addition, their stretch-dominated behaviour provides 

higher specific stiffness than existing concepts that are bend-dominated. Another benefit of 

hybrid-type HL is that they can be exploited to decouple initially coupled thermo-elastic 

properties so as to provide the individual property tailoring that current concepts have not been 

proven to attain yet. The strategy presented in this work can pave the way to the multifunctional 

design of bi-material hierarchical lattices with properties that can be independently tuned and 

exploited to the most of their potential. It can thus be extended to potentially address other 

conflicting properties to finally generate trade-off solutions for multifunctional applications, 

including thermal expansion control, MEMS, biomedical sensors and space optical systems. 

2.7 Supplementary material 

2.7.1 Architected material baselines 

Two benchmarks from the field of controllable thermal expansion are here considered from 

Lakes’ [26] and Steeves’ [18]. As shown in Figure 2-9, Lakes’ concept is a curved bilayer beam 

with distinct solid materials of dissimilar coefficients of thermal expansion (CTE) such that the 

overall CTE of the structure can be tailored by changing the curvature of the beam. The 

curvature of the beam is defined by the angle of the arc, or included angle ( L ). On the other 
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hand, Steeves’ concept, is constructed by a bi-material low-CTE triangle that can be tuned by 

altering the skew angle, S . Lakes relies on a bending dominated topology to achieve a quite 

large range of CTE values, while Steeves’ concept is stretching dominated and can attain a 

smaller range of low-CTE values. The thermo-elastic properties of both concepts are mainly 

dependent on two geometric parameters: the wall-thickness ratio and the angles defining the 

curvature or skewness of the cell geometry. Figure 2-9 illustrates the effects of varying one of 

these variables, while keeping the other constant, on the effective CTE and Young’s modulus of 

each topology. Steeves’ stretch dominated concept (solid line), in Figure 2-9, demonstrates 

significantly higher Young’s Modulus compared to Lakes’ bilayer beam (dashed line) at every 

point. However, Steeves’ design cannot attain a wide range of CTE values as that observed in 

Lakes’ design. Finally, it is evident that changing each variable results in a pronounced 

modification to both the CTE and Young’s Modulus of both structures. Therefore, the thermo-

elastic properties are coupled and neither of them can be tailored independently. 

 

Figure 2-9: Lakes’ and Steeves’ low-CTE concepts with structural hierarchy. [18, 26] 

Figure 2-10 presents the effect of the CTE ratio between the two constituents, 1 2  , on the 

CTE tunability ( CTE ) of the two benchmarks considered in our work. On one hand, each 

concept offers its own CTE s for a given pair of materials. As shown in Figure 2-10, when the 

structural efficiency is higher than 0.002 (line AB in Figure 2-10), the S-concept offers a larger 
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CTE  than the L-concept. However, when the structural efficiency is lower than 0.002, the L-

concept has a larger (up to an unbounded) CTE tunability than the S-concept. Difference in CTE 

tunability depends on cell topology, whether the building block is bend- or stretch-dominated. 

On the other hand, for a given concept, especially those with limited CTE tunability, each 1 2 

offers its own CTE s. This is demonstrated in Figure 2-10 below, where as we change 1 2   

from 2 to 10, the CTE  of the S-concept increases. Similar reasoning applied for the L-concept. 

From this figure we gather that for a given concept to achieve a specified CTE  and structural 

efficiency, there is a limitation on the 1 2  , i.e. a limit on the difference in expansion of the 

material constituents. Hence, having a large CTE  indicates ample freedom to tune the unit cell 

geometry, which is an advantage that can release the dependence on the CTE ratio of the 

material constituents.  

 

Figure 2-10: Thermal and mechanical performance of Lakes’ and Steeves’ low-CTE concepts 

with different CTE ratio ( 1 2  ) of the constituent materials. [18, 26] 

2.7.2 Definition of relative density, fractal, and hierarchical lattice 

Definition of Relative Density: 

The unit cell volume can be defined as: 
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 1 2unit cell void mat matV V V V         (2-14) 

where  unit cellV  is the volume occupied by the unit cell, in particular by its envelope defined by the 

unit cell size. 1matV  and 2matV  are the volumes occupied by the first and the second kind of 

constituent materials separately. 
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where:  Ro is the volume fraction of the unit cell, in particular the volume of the solids 

normalized by the volume occupied by the unit cell. 1fV  and 2fV  are the volume fraction of 

material 1  and material 2 separately with respect to the sum of the volumes of the two 

constituent solids. The relative density can be defined as following:  

  

 

lattice unit cell
relative

solid composite





        (2-18) 

where relative is the relative density of a bi-material lattice unit cell.   lattice unit cell  is the density of 

the bi-material lattice unit cell (the ratio of the mass of the lattice material to the unit cell volume 

(  unit cellV )).  solid composite  is the combined density of the bi-material solids based on their volume 

fractions without considering the volume of the voids in the bi-material lattice. If we also define 

the density of the solid material 1mat  (the density of the solid constituent material 1) and 2mat  

(the density of the solid constituent material 2), we can derive: 

   1 1 2 2
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We find: 
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Similarly: 
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By substituting Eqs. (2-22) and (2-23) into Eq. (2-20): 
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Thus the relative density of a bi-material lattice is: 

  

 

lattice unit cell
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solid composite

Ro



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Eq. (2-25) shows that the relative density of a bi-material periodic lattice can be represented by 

the volume fraction, as defined Eq. (2-15). 

2.7.3 Thermo-elastic properties of dual-material diamond-shaped lattice 

Figure 2-11a shows a unit cell of a dual-material diamond shape with all cell walls at a constant 

thickness, t , and the width of each cell is l . We now evaluate the moduli for a general 

honeycomb at an arbitrary skew angle,  , with depth (into the page) of c. We assume that the 
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honeycomb has a low relative density, *
s  , so that t l  is small (e.g. / 0.1t l  ); simple 

geometry gives the relation between the two as: 

* cos 2
sins

t
l

 
 


       (2-26) 

We also assume that deformations are sufficiently small such that changes in the geometry can 

be neglected. Using standard method of stress analysis [31], consider the equilibrium of an 

elemental cuboid cut of a diamond-celled honeycomb as outlined in the dashed region of Figure 

2-11. The honeycomb is subject to the applied stresses, x  and y , which are in-plane and 

tensile. The tension distributions that exist in the cell walls are shown as 1T  and 2T . It is 

necessary to consider two separate in-plane loading cases as they give rise to two different 

tension distributions within the cell wall.  

 

Figure 2-11: Stress distribution in a diamond-celled honeycomb. Case 1 has the applied stress in 

the y-direction while case 2 has the applied stress in the x-direction. 

Since the cell walls behave as rigid structures when the joints between the cell walls are replaced 

by pins, the cell wall deformation of diamond-celled honeycombs is stretch-dominated under 

axial loading. Calculation of tension distribution assumes that all joints are pinned joints – that is, 

they cannot sustain any bending moments. In this way, simple equilibrium of joints can be 
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applied and tensile stresses are calculated in the cell walls. The force acting on the two 

boundaries of the elemental cuboids shown in the dashed region gives rise to the following 

equilibrium equations: 

Case 1 

 external force  internal tensions  

y-direction ycl   = 22 sinT    (2-27) 

x-direction 0  = 1 22 cosT T    (2-28) 

Case 2 

 external force  internal tensions  

y-direction 0  = 22 sinT    (2-29) 

x-direction tanxcl    = 1 22 cosT T    (2-30) 

 

From these equilibrium equations, the corresponding wall tensions are 

Case 1 Case 2 

1 tan
ycl

T



    (2-31) 1 tanxT cl   (2-33) 

2 2sin
ycl

T



  (2-32) 2 0T   (2-34) 

 

It is known for lattices made up of slender struts that the deflection of the structure is not 

influenced greatly by the encasement of the joints. This phenomenon introduces an error on the 

order of a few percent when calculating deflections. It is therefore acceptable to use a pin-jointed 

framework analysis for estimating elastic moduli, as these are calculated from the load required 

to achieve a given deflection (this assumption will be verified later). 
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Figure 2-12: Deformed isosceles triangles for calculating elastic moduli. The corners are 

assumed to be pin-jointed as the effect of encasement on deflections is of second order. 

It is important to emphasize the direct extension and the lateral contraction of an isosceles 

triangular cell when it is stretched during deformation. Consider an isosceles triangle of skew 

angle   as shown in Figure 2-12a. If its sides extend by small amounts of l  and 'l  then the 

two sides have length ' 'l l   each, and the base length becomes l l . The stretched height of 

the triangle is h h  , and by using Pythagoras’ theorem we obtain: 

   
2

2 2' '
2

l l h h l l         
 

     (2-35) 

Ignoring terms of second order for small extensions, and using the results ' 2cosl l   and

tan 2h l   we get: 

2 2

1 ' 1
sin ' tan

h l l
h l l 
         

   
     (2-36) 

The quantities l l  and ' 'l l  are simply the strains of the sides under tension 1T  and 2T  given 

by 1 1sT E t and 2 2sT E t , respectively, where 1sE  and 2sE  are the Young’s modulus of solid 

material 1 and 2. The strains in cases 1 and 2 can therefore be represented as: 

 Case 1  

y-direction: 1 3 3
2 12sin tan

x x
y

s s

l lh
h E t E t

 


 


    (2-37) 
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 Case 2  

x-direction: 2
1

tany
x

s

ll
l E t

 



   (2-38) 

From Eqs. (2-37) to (2-38) the in-plane Young’s moduli for the honeycomb are derived as: 
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Figure 2-13: Cell thermal deformation: (a) undeformed diamond-celled honeycomb; (b) 

deformation caused by thermal expansion; (c) left half of the unit cell, which is here examined 

further; (d) force diagram of beam elements; (e) geometric constraint of inclined beam against 

rotation; and (f)  geometric coordinate condition. 
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Unlike the calculation above for elastic deflection, the coefficient of thermal expansion is 

influenced significantly by the behaviour of the joints as a result of bending stresses induced in 

the cell walls. The bending moment is caused by the thermal expansion mismatch of different 

component materials. In contrast, a unit cell modelled with pin joints will not experience any 

thermal stresses under significant temperature changes. Therefore under thermal load, joint type 

has a significant impact on the stress distribution. Since the lattices built in this work were 

connected with rigid joints, the rigid-jointed model can evaluate the effective thermal expansion 

more accurately than a pin-jointed model. Figure 2-13b shows the defected shape of the rigid-

joint unit cell (Figure 2-13a) when experiencing an increase in temperature. The deflected shape 

of the cell walls emerges from the assumption that the embedded angle (e.g. ACB ) at the 

joints is maintained at  . Due to symmetry, we only analyse the left half of the diamond unit 

cell as shown in Figure 2-13c. 

Because of the rigid joint at point B, the embedded angle ABO  is maintained (Figure 2-13e). 

First, we express 3 12I ct  as the second moment of area of the cell wall and A ct  as the 

cross-sectional area. Then, given 2 / 2 sFl E I   for the angular displacement caused by 1
2 BxF  

and / sMl E I   for the angular displacement caused by 1BM  on a fixed-fixed beam, the angle of 

rotation of beam AB at point B can be derived from: 

2

1

2 2 2 2

1 sin ' '20
2

Bx
B

s s

F l M l
E I E I


        (2-41) 

considering ' / 2cosl l  , Eq. (2-41) becomes 

1
1 tan
8B BxM F l       (2-42) 

Using 3 / 3 sFl E I   for the deflection of 1
2 BxF and 2 / 2 sMl E I   for the deflection of 1BM  on 

a fixed-fixed beam, the total deflection of beam AB is calculated as: 
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To satisfy the deformation compatibility condition in the horizontal direction (Figure 2-13f): 

sin cosAB BOl l           (2-44) 

where ABl  and BOl  are the elongation of beams AB and BO: 
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F l
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From (2-42) to (2-46) we can find: 
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2 2
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 
    (2-47) 

Then, from Figure 2-13f, h  can be obtained as: 

sin cosABh l            (2-48) 

from which the effective CTE parallel to y-direction is simply  *
y h h T    . Since 

1
2 tanh l , we obtain: 

2
* 1 2

2 2
2 2 2 2

3
2 2 2 2 1 1

cos2
sin cos 12 96 cos

96 cos 2

y
s s

s s s

l
lE A E I
E I E A E A

 
 

 


  
   

   
  (2-49) 

The effective CTE parallel to x-direction is  * 1
2x BOl l T    , giving:  
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  (2-50) 

With 3
1 2 /12I I ct   and 1 2A A ct  , the coefficients of thermal expansion are given by: 
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    (2-52) 

2.7.4 Testing setup 

Figure 2-14 shows the schematic of the experimental set-up built to test the thermal expansion of 

lattice materials. It consists of a heating chamber and a DIC system. The former with dimensions 

of 200(L)×200(W)×150(H) mm is made of borosilicate glass to provide an unobstructed view for 

DIC measurements. A 200 Watt strip heater was placed under the copper plate in the heating 

chamber. The copper plate is supported by four leveling mounts which were used for horizontal 

adjustment. The temperature was controlled by a feedback system, which included a K-type 

thermocouple attached to the copper plate and a proportion integration differentiation (PID) 

(OMEGA CN7800) temperature controller. The controllable temperature range was from 25°C 

to 200°C. The temperature-time data in the PID controller were imported through a RS-485 

interface. A NI cDAQ 9174 data acquisition system was used to collect the other three 

thermocouples from different locations in the chamber and to measure the temperature 

heterogeneity. A fan in the chamber mixes the air to provide a uniform ambient temperature. The 

temperature inhomogeneity was regulated within 5% of the real-time temperature through the 

application of a rotational air fan. Testing samples were covered by a black and white pattern and 

were set on the copper plate with thermal transfer grease between the two. The thermal strain 

was measured by DIC using images that were captured through two CCD cameras (Grasshopper 

5.0 MP with Fujinon HF25SA-1 lens). Using the DIC correlation software, Vic-3D (Correlate 
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Solution Inc.), virtual extensometers were placed on the reference image and tracked through the 

images to measure the displacement between pairs of pixel subsets. The strain field was obtained 

from the relative displacement between these pairs of subsets. The average CTE was calculated 

from thermal strain and temperature change. 

 

Figure 2-14: Experimental set-up used to measure thermal expansion: (a) 1) Light shield; 2) 

Power source; 3) CCD cameras; 4) DAQ system; 5) Heating chamber; and 6) PID controller, and 

(b) schematic of the apparatus. 

2.7.5 Asymptotic homogenization method 

A lattice material can be considered as a periodic structure comprised of solids and voids. 

Asymptotic homogenization (AH) is one homogenization method where, in a periodic domain, 

the mechanical (including thermo-elastic) properties of a heterogeneous material can be 

accurately predicted to consistently align with results obtained from experiments. This 

homogenization method represents different length scale behaviors in composite materials by an 

asymptotic expansion to determine the effective values. AH replaces the periodic composite with 

an equivalent material model and has been demonstrated to provide accurate predictions of 

thermo-elastic properties for any type of cell topology and for the whole range of relative density. 
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AH assumes that each field quantity depends on two different scales: one on the macroscopic 

level x and the other on the microscopic level, y x  .   is a magnification factor that scales 

the dimensions of the unit cell to the dimensions of the material at the macroscale. It also 

assumes that the corresponding boundary value problem for any field quantity, such as 

displacement and temperature, can be described with an asymptotic expansion [39]:  

       0 1 1 2 2, , ,u x u x y u x y u x y   ε ε ε     (2-53) 

where the functions 0 1 2, ,u u u   are Y-periodic with respect to the local coordinate y , which 

means they yield identical values on the opposing sides of the unit cell. When this expansion is 

replaced into the governing equations of equilibrium, it allows for the derivation of the effective 

properties of the material [40, 41]. Considering the microstructure effects, the governing 

equations (weak form) of the thermal stress problems can be described, respectively, by 
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(2-54)  

where   is assumed to be an open subset of 3R  with a smooth boundary on   and ε  is the 

solid part of the domain.  
ib  and it  denote the body force and the traction on boundary Γ t  and 

0T  is the initial temperature. ΩV  is the kinematically admissible virtual displacement field. The 

temperature and displacement fields are expressed using an asymptotic expansion as follows: 

     0 1 1, ,u x u x y u x y  ε ε       (2-55) 

     0 1 1, ,T x T x y T x y  ε ε       (2-56) 

The homogenized elastic tensor H
ijklE  and thermal expansion coefficient H

kl  are derived as 

follows:  
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where Y  is the base cell of the cellular body and Y  denotes the volume of the unit cell. ijklE  is 

the elastic tensor and H
ijpqC  is the homogenized compliance tensor. kl

p  is the characteristic 

function tensor of microstructure. k  represents the characteristic displacement vector due to the 

traction it  and the thermal expansion [42]. 

Periodic boundary conditions (PBC), can be generally applied on the base cell. PBC implies that, 

each unit cell in the composite has identical deformation modes and no separation or overlap 

between neighboring unit cells exists after deformation. This means all boundary nodes 

separated by the periods 1Y  and 2Y  along the coordinate directions should follow the following 

displacement constraints: 

   1 2 1 1 1 2 2 2; ;i iu x x u x k Y x k Y         (2-59) 

where iu  is the displacement vector at node i  and 1k  and 2k  are integers. 

AH results have been validated experimentally in a series of studies to prove the accuracy and 

reliability of the method in predicting the effective mechanical properties, large deformation 

behavior and failure mechanisms of heterogeneous periodic materials. That, along with its 

flexibility in application, emphasizes the noteworthy advantage of AH as a theoretical tool, used 

in the study to further validate the closed-form expressions obtained from beam theory. 
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Link between chapter 2 and chapter 3 

In the previous chapter, the thesis proposed two-dimensional hierarchical lattices that feature a 

theoretically unbounded range of CTE tunability, regardless of the constituent solids, provided 

that their CTEs are different, and enables thermal expansion control without incurring a severe 

loss of structural performance. However, the bi-material diamond with low- and high-CTEs is 

the only building block that has been proposed for hierarchical lattices with the goal of 

decoupling the thermal and elastic properties to allow for separate tuning of their performances 

in different length scales. In order to extend concepts from 2D to 3D with a variety of building 

blocks to program CTE directionality, Chapter 3 reports routes to systematically engineer 

thermally responsive architected materials that are built from nine dual-material tetrahedral 

building blocks that are stiff and strong. Drawing from concepts of vector analysis, 

crystallography, and tessellation, a scheme is presented for three-dimensional lattices to program 

desired magnitude and spatial directionality of thermal expansion. All the material permutations 

that can occur in the struts of a dual-material tetrahedron are analyzed. The relationship between 

the geometric symmetry of the unit cell and its thermal expansion is elucidated, and then 

systematic routes to assemble truss materials with desired magnitude and directionality of 

thermal expansion are proposed. The framework is applied to nine concepts that can meet three 

thermal expansion requirements including unidirectional, transverse isotropic, and isotropic. A 

range of investigations covering theoretical and computational analysis along with thermal 

testing on fabricated samples is carried out to assess their thermal expansion and elastic 

properties, e.g. Young’s modulus, as well as the trade-off existing between them. 
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3.1 Abstract  

Thermal expansion can be problematic in manifold applications that require thermal stability, yet 

it can also be purposely exploited to meet specific directional requirements of thermal 

deformation. Opportunities to tailor thermal expansion in architected materials exist, but design 

options that are stiff and provide full directional authority on thermal expansion are currently 

limited by the structural characteristics of existing concepts. In this work, we report routes to 

systematically engineer thermally responsive lattice materials that are built from dual-material 

tetrahedral units that are stiff and strong. Drawing from concepts of vector analysis, 

crystallography, and tessellation, a scheme is presented for three-dimensional lattices to program 

desired magnitude and spatial directionality, such as unidirectional, transverse isotropic, or 

isotropic, of thermal expansion. Demonstrations on thermal expansion and mechanical properties 

include theoretical, computational, and experimental studies of nine representative concepts, 

from tetrahedral building blocks to compound unit cells that can tessellate structurally efficient 

lattices with tunable magnitude and prescribed directionality of thermal expansion. 

Keywords: thermal expansion, three-dimensional lattices, mechanical metamaterials, structural 

efficiency. 
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3.2 Introduction 

Systems in extreme thermal environments are susceptible to severe temperature changes. 

Variations in temperature can lead to undesirable geometric changes in sensitive applications that 

require very fine precision during their working conditions, such as satellite antennas, space 

telescopes, and large array mirrors [1, 2]. As shown in Figure 3-1a, systems that operate in space 

need to be thermally stable and dismiss unexpected thermal deformation, a feature that calls for 

material with zero coefficient of thermal expansion (CTE) [1, 3]. In other applications, on the 

other hand, thermal deformation is highly desired, and here the quest shifts to material systems 

that can deliberately deform in response to a temperature swing dictated by the surrounding 

environment. This scenario generally translates into a demand for large, positive or negative, 

CTE [4-6]. Examples stemming from a broad and diversely wide range of applications include 

morphing, e.g. self-shaping, self-folding, and deployable systems [7-9], self-assembly [10], 

packaging [8, 9], actuation [11], structural adaptivity [4, 7, 11] and biological devices [9]. 

In general, low to zero CTE can be achieved with intrinsically low or negative expansion 

materials [12], used as standalone solid or in a composite form without voids [13]. As shown in 

Figure 3-1a, ZrW2O8 and related ceramics [14, 15] or Invar have low, or even negative, CTE. 

But most of all have shortcomings that limit their use in applications requiring robustness and 

durability over a large temperature range. Their faults generally correlate with the material type, 

and examples include: for ceramics, the brittleness and abrupt failure upon peaks of thermal 

stresses; for Invar-36 and other metals (e.g. Fe68Pd32) with low CTE, their limited range of 

temperature (Figure 3-1a) [3]; and for fibre-reinforced composites, the interface thermal strain 

and failure caused by the large difference of CTEs between fibre and matrix [16]. Similarly, for 

applications requiring large CTEs, solid materials can feature intrinsically positive or negative 

CTEs, such as Fe72Pt28 shown in Figure 3-1a. However, the available range of CTE these 

materials can offer remain too narrow (about -101 ppm /℃ to 103 ppm /℃ [17]) to induce 

responsive and large deformations, such as those required for morphing and other applications [7, 

11]. An effective alternative to all solids listed above are architected materials made of two 

solids with distinct CTEs. The rational tuning of their structural geometry and/or selection of 

their components can generate desired values of CTE from large positive to negative including 

zero. 
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Different concepts exist in the literature of CTE tunable architected materials. Each has its own 

characteristics and performance, and CTE tunability ( CTE ) is a metric that can be used to 

discriminate between the potential of their architecture; CTE  measures the range of CTE 

attainable via geometric manipulation of a concept for a given pair of constituents. Whereas no 

CTE  exists for a single material system, dual material concepts can attain a range of CTE 

values, and the difference between the upper and lower bound represents CTE . The larger 

CTE , the broader the prospect of manipulating the material architecture to meet given CTE 

requirements. In the literature, the majority of concepts are in 2D [2, 3, 18-29] and can 

accommodate only in-plane thermal deformation, including those resorting to origami [6]. Others 

are three-dimensional [3, 20, 24, 25, 30-35] and, compared to the planar concepts, have a range 

of advantages including the ability to provide low density space filling in a protective medium 

[36], remarkable heat exchange with larger contact area [37], CTE tunability in all spatial 

directions to yield desired thermal behaviour, such as spatial isotropic expansion [24, 38], and 

others. The lower part of Figure 3-1 also shows the main 3D concepts that can use one building 

block to construct a series of unit cell topologies with controllable CTE. Figure 3-1g is a periodic 

foam built from bi-material strips (Figure 3-1b) that are dominated by bending, a characteristic 

that lowers structural efficiency (i.e. stiffness/mass and strength/mass), and brings about 

unbounded CTE  [27, 31]. Figure 3-1h is a stretch-dominated lattice made of nested double-

barrelled struts (Figure 3-1c) with high structural efficiency but low CTE  due to the relatively 

modest Poisson effect their struts can attain, i.e. transversal mismatch of thermal expansion 

brings longitudinal contraction [32]. Another concept in Figure 3-1i has low specific stiffness [30] 

but can attain high CTE tunability mainly in the negative range (as shown in Figure 3-1a for the 

given pair of constituents Al and Ti). Concepts built from a bi-material tetrahedron as building 

block (Figure 3-1j), on the other hand, are able to ensure a sizeable CTE tunability, while 

keeping high structural efficiency due to the axial deformation endured by its members [3, 20, 38, 

39]. While the concepts listed above are introduced by a number of researchers, others are 

generated via topology optimization [28, 40], and feature a fairly complex structure. As shown 

by some illustrative examples in Figure 3-1f and k, their architecture is generally bend-

dominated, thus highlighting a uniaxial specific stiffness that is lower than that of stretch 

dominated, truss-like concepts. 
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The majority of the 3D building blocks discussed in the literature (Figure 3-1b-e), except those 

developed via topology optimization (Figure 3-1f and k) [40], can tailor the CTE in only one 

specific direction (horizontal direction for Figure 3-1b, axial direction for Figure 3-1c, and 

vertical direction for Figure 3-1d and e). A more diverse performance with a multitude of tunable 

CTE directions, such as isotropic CTE, can be obtained by assembling several building blocks 

into a unit cell (as demonstrated in Figure 3-1g-j). This can be achieved by studying the 

relationships between building block symmetry, tessellation patterns, and effective thermoelastic 

properties, a research path yet to be systematically explored in the context of architected 

materials. While mechanisms for tessellating building blocks into unit cells via reflection and 

translation are available in the literature [20], only special cases have been so far examined, with 

those inspired by multi-fold rotational symmetry in crystallography able to attain only isotropic 

CTE [23].  However, other directional requirements of thermal expansion, such as unidirectional 

and transverse isotropic, might be desirable in certain engineering applications. 

 

Figure 3-1: (a) CTE versus temperature for selected solids and architected materials: W-concept 

[30], S-concept [3], Al6061 [41], Ti-6Al-4V [41], and two iron alloys [42]. The temperature 
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range on the earth orbit and the CTE requirement for materials used in communication satellites 

are also shown. Since CTEs of component materials, i.e. Al6061 and Ti-6Al-4V, selected here 

for demonstrative purposes, change with temperature, the effective CTE of the W-concept and S-

concept is also a function of temperature, and its value has been numerically obtained for the 

temperature range -150℃ to 150℃. (b-e) CTE tunable building blocks in the literature: (b) a bi-

layer strip concept [27], (c) a nested double-barrelled concept [27], (d) a flexure blade concept 

[30], and (e) a tetrahedron concept with a stationary node [3]. The corresponding unit cells in 3D 

are shown in (g) to (j). Concepts constructed via topology optimization: (f) a low-bulk modulus, 

high thermal expansion design and (k) the maximal modulus design [40]. We also note that a 

change of the constitutive materials can yield values of the CTE that differ from those in the 

figure, which are obtained for the given pair of materials: Al6061 and Ti-6Al-4V; prescribing the 

pair of materials enables a consistent comparison among the relative performance endowed by 

the architecture of each concept. 

The aim of the investigation reported here is twofold: (i) to provide a fundamental understanding 

of the mechanisms of thermal expansion in spatial lattices built from dual-material tetrahedron 

building blocks, and (ii) to offer systematic routes to program their thermal expansion in given 

directions as required by the application. Concepts of vector analysis are used to express thermal 

expansion of building blocks and compound units along their principal, or any other, directions. 

In addition, notions of crystal symmetry are borrowed from crystallography to elucidate the 

relationship between geometric symmetry and thermal expansion of bi-material lattices 

assembled from either building blocks or compound units. The proposed framework enables the 

attainment of three sets of distinct behaviour of directional CTE: (i) unidirectional, (ii) transverse 

isotropic, and (iii) isotropic. In addition to CTE tunability, closed form expressions are provided 

for the Young’s modulus, shear modulus, buckling and yielding strength of unit cells, here 

introduced to attain a high level of both CTE tunability and structural efficiency. A total of 21 

proof-of-concepts are built and their effective CTE tested via three-dimensional digital image 

correlation (3D DIC) for model validation; in particular, 12 proof-of-concepts are metallic 

tetrahedra built from Al6061, Ti-6Al-4V, and Invar-36, and 9 are polymer unit cell specimens 

made of PTFE (Polytetrafluoroethylene), acrylic, and ABS (Acrylonitrile Butadiene Styrene). 
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Concluding the chapter is a discussion that gauges the trade-off between CTE tunability and 

specific stiffness, a paramount insight to elucidate for aerospace and other applications. 

3.3 3D lattice with low-CTE tetrahedra 

In this section, we draw from concepts of vector analysis to reframe thermal expansion of 

periodic trusses as a relationship between the material length vector and the thermal 

displacement vector. These concepts are first applied to the tetrahedron building block with the 

goal of studying thermal expansion in a three-dimensional space. Then we borrow concepts from 

crystallography to show how typical relations of symmetry can be used to create unit cells with 

desired thermal expansion, such as unidirectional, transverse isotropic, or isotropic. These can be 

further tessellated into spatial trusses or lattices exhibiting prescribed thermoelastic behaviour.  

3.3.1 Definition of material length vector and thermal displacement vector 

In a solid, a change in temperature can cause the material to change in shape, length, area and 

volume. Here we show that via the application of the thermal displacement vector, it is possible 

to draw a simple analogy between the thermal deformation triggered in a solid material and that 

appearing in a bi-material building block. Below, the basic concepts for a solid material are 

briefly summarized and then extended to a truss system.  

Figure 3-2a-I shows the material length vector, M , whose direction defines a referential 

direction along which the thermal expansion is measured, and whose magnitude describes the 

initial length, 0l , i.e. the initial distance between two points, e.g. A and B, in a spatial domain. If 

point A is selected as a stationary reference, with a change in temperature ( T ), point B can 

move away from its original location to reach a generic point B '  (Figure 3-2a-II), creating the 

vector, N , which is defined as the thermal displacement vector. Assuming there is no rigid-body 

translation or rotation of the material in the domain 1 2 3Ax x x , we can represent the thermal strain 

by the second-order tensor, ij   : 

 , 1,2,3 ,i ij jN M i j        (3-1) 

where the subscript follows the Einstein notation. If T  takes place uniformly throughout the 
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solid (i.e. T  is a scalar), the deformation is uniform, and all the components of ij    are 

proportional to T  such that: 

,ij ij T          (3-2) 

where ij  is the CTE along the direction ij. Since ij    is a symmetrical second-order tensor, so 

is ij   , which is given in its three-dimensional form by: 

11 12 13

21 22 23

31 32 33

.ij

  
   

  

 
   
  

     (3-3)  

In the most general case where the solid material can freely expand in any direction, N  has 

components both parallel ( N ) and transverse ( N ) to M . The magnitude of the CTE in the 

direction of M  is given by measuring  N M T , where M  is the length of M  and 

cos( )N  N  (Figure 3-2-a) is identical to the length change, l . Then the CTE in the M  

direction, M , can be expressed as:  

2 ,
M T





M

M N        (3-4) 

where " "  represents the dot product. Eq. (3-4) shows that for a unit change in temperature the 

CTE in any arbitrary direction is the thermal extension or contraction, per unit length of a line 

drawn originally in that direction. If the thermal expansion tensor is conveniently expressed with 

respect to its mutually orthogonal principal axes, then the tensor (Eq. (3-3)) simplifies to:  

1

2

3

,ij


 



 
   
  

       (3-5) 

where 1 , 2 , and 3  are the principal CTEs in the 1x , 2x , and 3x  directions. For the remainder 

of the chapter, the material length and the thermal displacement vectors are now abbreviated to 
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ML and TD vectors, respectively, and mathematically expressed as M  and N , respectively. 

 

Figure 3-2: (a) Material length vector, M , and thermal displacement vector, N , for a solid 

material under a temperature change. Definition of M  and N  vectors on building blocks in 2D 

and 3D: (b) 2D low-CTE triangle and (c) 3D low-CTE tetrahedron. (d) M  and N  vectors for an 

assembled unit cell (d-I to d-IV) and a tessellated system of unit cells (d-V and d-VI) before and 

after thermal deformation [3]. Deformations are visualized considerably larger than the true ones, 

which are small and within the linear elastic regime. 
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The simple concepts for ML and TD vectors described above for a solid material (Figure 3-2a), 

can be extended to a dual-material triangle truss in 2D (Figure 3-2b) and further to a tetrahedron 

truss in 3D (Figure 3-2c). With a temperature increase, the height rise of the dual-material 

triangle in Figure 3-2b, triggered by the blue elements with low CTE is compensated by the 

sinking of its top vertex (Point B) due to the higher thermal expansion of the red bar with high 

CTE. In Figure 3-2b-I, the ML vector describes the direction of thermal expansion between the 

midpoint of the base ( ACO , taken here as the reference point) and the apex (point B), which is the 

only CTE tunable direction in the triangle. By harnessing the CTE values of the solid 

components, 1s  and 2s , or the skewness of the blue elements,  , we can tailor the CTE of the 

dual-material triangle in the vertical direction, so as to assume one of the following value: 

positive (Figure 3-2b-II) with codirectional ML and TD vectors; negative (Figure 3-2b-III) with 

ML and TD vectors in the opposite direction; or zero with a zero TD vector.  

Similarly in 3D, the Μ  vector of the dual-material tetrahedron (Figure 3-2c-I, [20]) is defined by 

the apex (point B) and the centroid of the base triangle (point O, taken as the reference point). 

With a temperature increase, the height rise, i.e. the thermal expansion in the M  direction, 

triggered by the blue elements is counteracted by the sinking of its apex due to the higher 

thermal expansion of the red base (△ACD). In this case, all lateral faces (i.e. △BAC, △BAD, and △BCD) of the dual-material tetrahedron are low-CTE triangles (Figure 3-2b-I), and the resultant 

of all three ML vectors of the low-CTE triangles (i.e. 1M , 2M , and 3M  in Figure 3-2c-I) passes 

through points O and B. Thus, the direction of the resultant vector given by the sum of 1M , 2M , 

and 3M  (each representing the only CTE tunable direction in 2D) is equidirectional to the M  

vector of the tetrahedron (green vector in Figure 3-2c-I, representing the only CTE tunable 

direction in 3D). This observation highlights a directional relationship of CTE between a 

tetrahedron and its triangular faces: the resultant of the 2D ML vectors of the triangles specifies 

the CTE tunable direction of the tetrahedron, chosen here as the direction of the 3D ML vector. 

In other words, the direction of the tunable thermal expansion in the triangular faces governs that 

of the overall tetrahedron. This rule is also useful for locating the ML vector direction of other 

types of dual-material tetrahedra, along with the CTE tunable directions, as explained in the 

following section. As per the magnitude, the effective CTE in 3D, similar to the 2D case, can be 



 

83 

 

tailored to be positive (Figure 3-2c-II), negative (Figure 3-2c-III), and zero through a change in 

  and/or 1s / 2s . In both 2D and 3D cases, the apex point B can be termed as stationary node 

[3], since for the zero-CTE case its position relative to the reference point can remain stationary 

during thermal expansion. 

The ML and TD vectors can also express the CTE of an assembly of building blocks, such as the 

unit cell shown in Figure 3-2d-III [3]. Here in this exemplifying case, simple affine 

transformations, in particular translation and rotation (Figure 3-2d-II), are used to assemble the 

dual-material building block (Figure 3-2d-I) into a unit cell with multiple subunits (Figure 3-2d-

II). The assembly of the four tetrahedra in Figure 3-2d-II creates a high CTE octahedron core 

within the unit cell (Figure 3-2d-III). The ML vectors, 1M  in orange for the octahedron core, 

and 2M  in green for the tetrahedron (Figure 3-2d-III), can be defined between the center of the 

unit cell, point O, taken as the reference point, and the vertex B, separated by point A (Figure 

3-2d-III). The overall thermal expansion behaviour between O and B is given by the sum of the 

corresponding vectors, 1M , 2M , and the TD vectors, 1N  and 2N , of these two thermally distinct 

parts, OA and AB. Hence the thermal expansion of the assembled unit cell in Figure 3-2d-III can 

be simply expressed as: 

     
 

 1, 2 .
k k k

k

k
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T M
  
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     (3-6) 

We now show that the above ML and TD vectors can also be applied to desired 3D tessellations 

of compound units. Figure 3-2d-V shows an example with a periodic truss assembled with the 

compound cell of Figure 3-2d-III. The distance between the centers of any adjacent unit cells, 

such as between centers 1O  and 2O , can be accessed via ML and TD vectors, as shown in Figure 

3-2d-V and VI. In this case, the thermal expansion of the spatial truss can be simply expressed as:  

      
1 2O O 1, 2 ,
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     (3-7) 



 

84 

 

where kN   and kM   are the components of kN  and kM  parallel to 1 2OO , respectively. We 

remark here that since the projection cosine of both kN  and kM , i.e. cos , is identical, the 

terms containing the directional angle,   in Figure 3-2d-V and VI, cancel out in both the 

numerator and denominator of Eq. (3-7). No matter which direction is considered, the CTE for 

this cell topology is identical in all directions, thus equaling the effective CTE evaluated by Eq. 

(3-6), i.e. 
1 2O O  M . We can conclude that since the thermal expansions between centers of any 

adjacent unit cells are identical, the overall CTE of the truss material shown in Figure 3-2d-V is 

thermally isotropic and the magnitude can be evaluated by the vector analysis explained above.  

The concept presented in Figure 3-2c and d are given as examples to show the handiness of using 

vectors to visualize and analyze thermal expansion of a periodic truss built from single units as 

well as a more complex assembly of compound units. In both cases, the primitive building block 

is a tetrahedron that features a distinct arrangement of solids in its bars. But this is just one 

among other material layouts that are feasible. The following sections examine all the possible 

material arrangements that can appear in the strut of a dual-material tetrahedron, each defining a 

building block with its own CTE profile.  

3.3.2 Exploration of dual-material tetrahedra 

The simplest 3D hinged structure that is free to deform upon temperature changes is a 

tetrahedron. Six types of rods can make up its frame, and different combinations of component 

materials or dimensions are possible. Below we examine all the material permutations that can 

occur in the struts of a dual-material tetrahedron, and study the relation that each of these has 

with the CTE along its principal axes. The goal here is to provide a foundational basis to 

understand other, more complicated, truss-like materials.  

3.3.2.1 Thermal deformation mode of dual-material tetrahedra 

Let us consider a tetrahedron made of six rods, each made of a material with either low or high 

CTE, but both positive. Figure 3-3 shows all the possible material permutations that can appear 

by simply switching the position of red rods with high-CTE, 1s , and blue rods with low-CTE, 

2s . In total, there are eleven possible arrangements, each visualized by a tetrahedron from 

Figure 3-3a-k. For monomaterial tetrahedra (e.g. Figure 3-3a and k), the thermal expansion is 
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uniform; as there is no thermal mismatch, no opportunity exists to tailor the CTE. For the 

remaining tetrahedra, on the other hand, CTE tunability is possible as the effective CTE can be 

adjusted in one or more directions. To ease the CTE assessment, we propose to classify the nine 

tetrahedra into three groups:  

I. Low-CTE tetrahedra (Figure 3-3b-e), which can yield an effective CTE that is lower than 

the CTEs of both the component materials;  

II. Intermediate-CTE tetrahedron (Figure 3-3f), the only one able to attain the effective CTE 

of a value between the CTEs of the two components only;  

III. High-CTE tetrahedra (Figure 3-3g-j), with effective CTEs higher than both the CTEs of 

the components.  

For the sake of simplicity, the main body of the chapter examines only the low-CTE cases 

(Figure 3-3b-e), as the analysis of high-CTE cases can be easily completed by switching the 

material properties. The analysis of the second group (Figure 3-3f) is given in Supplementary 

Material Section 3.8.1.  

The M  and N  vectors introduced in the previous section now become handy in evaluating the 

thermal expansion of all tetrahedra in Figure 3-3. The direction of the 3D M  vector with CTE 

tunability is controlled by the resultant of the 2D ML vectors of its triangular faces, and can be 

purposely chosen to align along one of the principal axes of a tetrahedron. As explained in later 

sections, this choice eases the assembly of building blocks in spatial lattices and helps identify 

the direction of CTE tunability. 

Figure 3-3b-I shows a tetrahedron in which one of the rods possesses high-CTE as opposed to 

the rest with low-CTE. Two low-CTE triangles equivalent to those in Figure 3-2b can be found 

in Figure 3-3b-I, △ ACD  (purple face) and △ BCD  (yellow face), where only the undeformed 

configuration is shown to emphasize their ML vector, 1M  and 2M  (marked as black vectors), 

whose resultant sets the direction of the M  (green arrow) and N  vector (red arrow) for this 

tetrahedron. The M  vector visualized in Figure 3-3b-I is aligned with the direction of CTE 

tunability, i.e. the local coordinate axis z, and show the thermal expansion direction of the 

deformed tetrahedron (Figure 3-3bII). For the zero-CTE case, points A and B are stationary 
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nodes with respect to the line CD in the low-CTE triangles. Analogously, the relative position, 

including the minimum distance and skew angle between the two skewed lines, AB and CD, can 

be constant under a temperature change. We can thus name the pair of lines AB and CD as 

stationary lines (SL), and call the tetrahedron shown in Figure 3-3b as a tetrahedron with 

stationary lines (TL-1). Under the pin-jointed assumption, through Eq. (3-4) we can obtain its 

effective CTEs as: 
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Figure 3-3c and d shows two other possible ways by which we can permute the positions of 

high- and low-CTE bars. Here two high-CTE bars and four low-CTE bars make up the unit: the 

high-CTE bars of the former meet at one of their vertices, while the high-CTE bars of the latter 

are not in contact. Let us first examine Figure 3-3c, where the tetrahedron has two low-CTE 

triangles: △ ABC and △ ACD . We consider O'A , the resultant of the two corresponding 2D ML 

vectors ( 1M  and 2M ), as the direction of M , and O as the fixed reference point. After thermal 

expansion, the deformation mode in Figure 3-3c shows the tetrahedron is no longer a regular 

triangular pyramid. The N  vector, i.e. the change of the relative location between point A and 

the base △ BCD , indicates the CTE in the vertical direction can be tuned, only while being 

subjected to shear deformation due to the thermally asymmetric nature of this tetrahedron. For 

this reason, its thermoelastic properties are given in Supplementary Material Section 3.8.1.  

We now turn to the tetrahedron in Figure 3-3d, where all four triangles have low CTE. Here, the 

resultant vector of their four 2D ML vectors passes through the midpoints of the two high-CTE 

bars. Similar to the case shown in Figure 3-3b, for the zero-CTE case, the relative location, 

including the minimum distance and the skew angle between lines AB and CD, can be kept 

stationary during thermal expansion (Figure 3-4b). Thus, the tetrahedron in Figure 3-3d has a 

pair of SLs that can be used for CTE tailoring. The effective CTEs of this tetrahedron with 

stationary lines (TL-2) can be obtained by applying Eq. (3-4) under the pin-jointed assumption as: 
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Figure 3-3: Exploration of dual-material tetrahedra made of permutations of low (blue) and high 

(red) CTE bars. (a): monomaterial low-CTE tetrahedra with no CTE tunability; (b) to (e): 

tetrahedra with low-CTE; (f): a tetrahedron with intermediate CTE; and (g) to (j): tetrahedra with 

high-CTE; (k): monomaterial high-CTE tetrahedra with no CTE tunability. Both undeformed and 
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deformed structures are depicted in each subfigure from (a) to (k). Black arrows represent 2D 

ML vectors. Green arrows represent 3D M  vectors along the direction of CTE tunability, and 

red arrows N . 

For a tetrahedron with three high-CTE bars and three low-CTE bars, there are three possible 

ways by which bars can be arranged (Figure 3-3e-g). In the arrangement shown in Figure 3-3e, 

the high-CTE bars are connected in a loop. During thermal expansion, the relative location 

between point A and the base △ BCD  can be kept stationary, as discussed in the previous section. 

Thus, point A is a stationary node (SN), and Figure 3-3e shows a tetrahedron with a stationary 

node (TN). The effective CTEs of TN under the pin-jointed assumption can be expressed as: 

 
1

2
2 1

, 2

, 30 , 90 .3 4 cos
3 4 cos

x y s

TNs s TN
z TN

TN

  
  




 
   

    (3-10) 

The case where the high-CTE bars and low-CTE bars are in series, as in Figure 3-3f (group two: 

intermediate tetrahedron), is also given in Supplementary Material Section 3.8.1. Figure 3-3g 

shows the opposite configuration of Figure 3-3e, and hence this building block is used to obtain 

high-CTE. Similarly, Figure 3-3j, h and i are the counterparts of Figure 3-3b, c, and d, and thus 

these tetrahedra are viable for high-CTE systems. The close-form equations for the CTE 

evaluation of high-CTE group can be obtained via switching 1s  and 2s  in the equations of the 

low-CTE group. 

3.3.2.2 CTE of low-CTE tetrahedron  

The CTE of the regular tetrahedra presented above can be adjusted by manipulating both 

material and geometric variables, in given directions. Evidently, the pin-jointed assumption used 

to derive Eqs. (3-8)-(3-10) reduces the CTE-dependent variables to only the skew angle and the 

CTE of the components. This section examines the role of these two CTE-dependent variables 

on the effective CTE of building blocks for both high- and low-CTE concepts (considering 

Figure 3-3g-j are the counterparts of c to f). We examine three CTE-tunable building blocks with 

different linear-dominant thermal deformation modes along the principal direction: TL-1 (Figure 

3-3c), TL-2 (Figure 3-3e), and TN (Figure 3-3f). The zero-CTE cases of these building blocks 

are also visualized in Figure 3-4a-c before and after thermal expansion; each tetrahedron is 
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orientated to keep the M  (green) vector along the vertical direction, demonstrating the concepts 

of stationary line and stationary node.  

 

Figure 3-4: Tetrahedra with zero CTE in the principal direction (z-direction): (a) TL-1, (b) TL-2, 

and (c) TN with undeformed frame on the left and thermal deformations with zero CTE on the z-

direction on the right. The normalized CTEs of Low-CTE tetrahedra along the vertical direction 

vary with respect to the skew angle and ratio of the component CTE ( 1 2s s   ): (d) TL-1, (e) 

TL-2, and (f) TN. CTE magnitude plotted in polar coordinate system with respect to the principal 

directions, i.e. x, y, and z; the semi-axes of each ellipsoid are the CTE coefficients, x , y , and 

z  of the corresponding tetrahedra with 2   (A high-CTE material of 6
1 20 10 / Cs

    and 

a low-CTE material of 6
2 10 10 / Cs

    are taken here as representative components): (g) TL-

1, (h) TL-2, and (i) TN. 
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Figure 3-4d-f shows the effective CTEs of both low- and high-CTE tetrahedra along the z-

direction (shown in Figure 3-4a-c) against the skew angles. From previous section, we recall that 

the M  vector direction (green arrow), i.e. z-direction, is the only CTE tunable principle direction 

while along the others the CTE is that of the constituent solids. As depicted in Figure 3-4d-f, z  

of the building blocks can be tuned by changing the skew angles to cover a large range of values, 

from large negative/positive to approximately zero, demonstrating a sizeable CTE tunability. 

Figure 3-4d-f also demonstrates that the CTE in the z-direction depends on the CTE ratio of the 

constituent materials, 1 2s s   . If the skew angle,  , is given, the larger/smaller the  , the 

lower (for low CTE concept, Figure 3-3b, d, and e) or higher (for high CTE concept, Figure 3-3g, 

i, and j) the effective CTE, respectively. Hence the greater the CTE distinction of the constituent 

solids, the higher the CTE tunability. The magnitude of the three ellipsoids shown in Figure 

3-4g-i illustrates that the direction of the tetrahedron M  vector (z-direction), i.e. the direction of 

CTE tunability, follows the direction of a principal axis, i.e. the direction that can yield the 

lowest CTE magnitude for the case of 2   (whereas the highest CTE magnitude will be for 

1  ). The aforementioned building blocks distinguished by their own tunable characteristics 

lay the foundation for designing spatial lattices with tunable CTE, as shown in the following 

section. 

3.3.3 Generation of 3D bi-material lattices with desired thermal expansion  

Here, we propose a scheme that systematically uses the building blocks, TL-1, TL-2, or TN, 

along with their M  and N  vectors in the CTE tunable direction to program thermal expansion in 

spatial lattices. Notions of crystal symmetry, in particular from the crystallographic point groups, 

are applied to the building blocks and used to assemble more complex truss systems that can 

meet desired CTE requirements. To illustrate the scheme, Sections 3.3.3.1 to 3.3.3.3 present nine 

examples of lattices that are engineered to attain unidirectional, transverse isotropic, or isotropic 

controllable CTE. Before doing so, though, we first elucidate the relation between the geometric 

symmetry in a unit cell and the directions of its thermal expansion, which are typically set a 

priori by a given application.  

In a general case, the thermal expansion requirements a system should attain can be specified by: 

(i) the magnitude and sign of its CTE, which can be large positive, near zero, or negative, and/or 
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(ii) the thermal expansion directionality, defining its anisotropic or isotropic behaviour. The 

former is a requirement mainly governed by the geometry and components of the building blocks, 

as elucidated in Sections 3.3.2.1 and 3.3.2.2. The latter correlates to the directions of the CTE 

properties that are governed by the assembly rules of tetrahedral building blocks, such as 

orientation, symmetry operations, and relative position, as explained below.  

System Characteristic 
Symmetry 

Number of 
independent 
coefficients 

Tensor referred to axes 
in the conventional–

orientation 

Cubic 4  3-fold axes 1 





 
 
 
  

 

Tetragonal 1  4-fold axes 

2 
1

1

3






 
 
 
  

 Hexagonal 1  6-fold axes 

Trigonal 1  3-fold axes 

Orthorhombic 

3 mutually 
perpendicular 2-

fold axes; no axes 
of higher order 

3 
1

2

3






 
 
 
  

 

Monoclinic 1  2-fold axes 4 
1 13

2

13 33

 


 

 
 
 
  

 

Triclinic 
A center of 

symmetry or no 
symmetry 

6 
11 12 13

12 22 23

13 23 33

  
  
  

 
 
 
  

 

Table 3-1: Relation between crystal symmetry and the thermal expansion tensor α , specified 

with respect to the principal directions (i.e. conventional orientations) of the crystals in cubic, 

tetragonal, hexagonal, trigonal, and orthorhombic systems. Crystals in a monoclinic system have 

only one fixed principal axis, i.e. the direction of 2-fold axis (with respect to the 2x  direction). 

Crystals in triclinic system have no fixed principal axis, thus the α  tensor is expressed as a 

general form in the last column. Groups without higher-order axes denote groups containing only 

2-fold axes, mirror planes, and inversion center, e.g. orthorhombic, monoclinic, and triclinic 

systems. [43] 

There is a direct relation between the geometric symmetry of building blocks in the unit cell and 
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the symmetry of elements of its thermal expansion tensor. To understand this, notions of 

crystallographic point groups become handy here. As the crystal properties are governed by the 

crystal symmetry, analogously the CTE properties of a lattice can be inferred by the geometric 

relationships of symmetry between building blocks. Following the Neumann’s Principle: if a 

crystal is invariant with respect to certain symmetry operations, its physical properties must also 

be invariant with respect to the same symmetry operations. This is shown in Table 3-1 for 

several systems, where the effect of crystal symmetry on the second-rank tensor properties is 

described by the reduction of independent components in its symmetrical tensor. For example, 

for a crystal with cubic symmetry that is invariant with respect to four 3-fold axes, the CTE can 

be expressed by a second-rank tensor, α , where the number of independent coefficients 

decreases from six to one; hence the CTE is isotropic. Another example is for a crystal with 

trigonal symmetry (Figure 3-5a), where the number of independent coefficients decreases to two.  

The last column of Table 3-1 illustrates the CTE tensor of the corresponding crystal having its 

principal directions aligned along the axes defining the reference coordinate system of the crystal, 

i.e. 1x , 2x , and 3x . In this case, the CTE of a trigonal crystal, taken here as example, can be 

simply expressed as 

1

1

3

,ij


 



 
   
  

     (3-11) 

where 1  and 3  refer to the CTE along the principal directions. If the reference axes are rotated 

with respect to the principal directions, the components of α  can be just obtained by applying a 

transformation law for second-rank tensor, through the matrix,  ijl , such as: 

,mn mi nj ijl l         (3-12) 

where the CTE tensor mn  refers to the coordinate system after transformation, and mil  and njl  

represent the components in the transformation matrix  ijl . The CTE value in any specific 

direction can then be evaluated through: 
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,ij i jl l        (3-13) 

where il  and jl  are the direction cosines of the original axes with respect to the new rotated axes. 

By analogy, the symmetry systems reported above can be readily transferred to assess the CTE 

of dual-material lattices built from tetrahedral building blocks. In particular during the assembly 

of building blocks, the symmetrical arrangement of tetrahedra in a unit cell can be chosen to 

match that of a point group of a crystal. Figure 3-5a and b shows an example for a trigonal 

system with a 3-fold axes. The screw geometry illustrates that this system relies on a 3-fold axes 

in which a single geometry is replicated twice through rotation about the axis at 2 3  intervals. 

By analogy, Figure 3-5c shows that the trigonal system can be enforced to assemble 4 TNs. The 

result is the repeating unit in Figure 3-5d, where three TNs form the base of the 3D lattice, and 

upon their apexes rests the fourth one. All the building blocks have 3-fold axes of symmetry, 

which is also the rule of symmetry of their spatial arrangement. Hence, the correspondence 

between the symmetry relationship of the building blocks within the unit cell and that of the 

crystal system used to assemble them, makes the CTE tensor of the overall lattice feature 

physical characteristics identical to those of a trigonal crystal. For the lattice in Figure 3-5d, the 

CTE in Eq. (3-11) is defined by only two independent coefficients, i.e. 1  and 3 , with only 3  

having CTE tunability. Hence the unit cell holds a unidirectional CTE tunability along the 

principal direction 3x . Therefore, the calculation of the CTEs along the principal directions 

reduces to the mere appraisal of the M and N  vectors of its building block, and the CTEs in any 

other directions can be obtained via Eq. (3-13).  
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Figure 3-5: Trigonal crystallographic symmetry group applied to the generation of a spatial bi-

material lattice with two independent coefficients, 1  and 3 , of the CTE tensor: (a) screw 

geometry illustrating the 3-fold axes of symmetry with its top view shown in (b), (c) top view of 

building blocks assembled with 3-fold axes, and (d) axonometric view of the resulting unit cell.  

The simple example above focusing on one symmetry system has demonstrated how the 

crystallographic point groups can guide the relative arrangement of building blocks in the 

repeating unit. This is just one, among others, of the possible systems listed in Table 3-1. When 

one of these symmetry systems is enforced to arrange building blocks in a unit cell, then a direct 

correlation emerges between the geometric symmetry of the building block and the symmetry of 

the elements of its CTE tensor. The elements in the CTE tensor that are independent represent 

the CTEs of the overall lattice in the principal directions, which can be evaluated via M  and N  

vector analysis. This is shown in the following sections, where a crystal symmetry system is used 

to assemble building blocks into a repeating unit that can satisfy prescribed CTE requirements.  

3.3.3.1 Unidirectional CTE requirement 

There is theoretically an infinite number of unit cells that can be proposed to meet the 

unidirectional requirement of CTE. Figure 3-6a-c shows three of them, each constructed with its 

own building block and a specific relation of symmetry, but all have unidirectional CTE 

tunability in the vertical direction ( 3x ). 

The first unit cell in Figure 3-6a consists of eight TL-1 building blocks assembled via reflection 

and rotational transformations to make each adjacent block appear in an upside-down position. In 

this unit cell, there are only three mutually perpendicular 2-fold axes with an inversion center but 
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no axes of higher order, e.g. 3-fold or 4-fold axes; hence, the unit cell has an orthorhombic 

symmetry (Figure 3-6g). All ML vectors of TL-1s in Figure 3-6a are parallel with the vertical 

direction and therefore the CTE-tunable mechanism of TL-1 governs the thermal deformation of 

the unit cell in the vertical direction. As revealed in Table 3-1, the CTE tensor of an 

orthorhombic unit cell has three independent components with values equivalent to the principal 

CTEs. Although the overall CTE is orthotropic, the entire lattice shows unidirectional CTE 

tunability with magnitude of 3 , 1z TL    (Eq. (3-8)) that is tunable in the vertical direction only. 

Along the other two principal directions 1 1s   and 2 2s  , the periodic lattice can 

uniformly expand with the CTE of its components. The second unit cell shown in Figure 3-6b is 

structured with eight TL-2 building blocks via only rotation around, and translation along, the 

vertical direction. This unit cell has a 4-fold axis with a middle mirror plan, and thus classed as 

tetragonal symmetry. In its CTE tensor (Table 3-1), there are only two independent coefficients: 

1 1s   and 3 , 2z TL    (Eq. (3-9)). This unit cell, although obtained with symmetry 

relationship different from that of the previous model, still keeps all ML vectors of the building 

blocks along the vertical direction and therefore results in a unidirectional CTE controllable in 

the vertical direction. The unit cell in Figure 3-6c uses the TN tetrahedron, which has a trigonal 

symmetry (Figure 3-5b and Figure 3-6i). As discussed above, the only two independent 

coefficients are 1 1s   and 3 ,z TN   (Eq. (3-10)), thereby demonstrating unidirectional CTE 

tunability.  

The three concepts in Figure 3-6 feature dissimilar symmetry systems constructed via different 

affine transformations, however, they all keep the M  vectors in the CTE tunable direction along 

direction 3x . The direction 3x  of each concept follows the direction of the 2-fold, 3-fold, and 4-

fold axes, which are principal directions. Each unit cell, therefore, inherits the CTE tunability of 

its building block in the principal direction 3x . Figure 3-6p-r illustrates their omnidirectional 

CTEs in a spherical coordinate system, from which a pertinent symmetry in thermal expansion 

appears for each case. The direction with the lowest CTE (dark blue in the legend), i.e. a single 

vertical axis for each unidirectional concept, is the principal direction of CTE tunability. No CTE 

tunability is viable along the other principal directions, i.e. plane 1 2x x .  
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Figure 3-6: Unit cells with unidirectional CTE tunability: (a) TL-1 concept, (b) TL-2 concept, 

and (c) TN concept. Green arrows represent the ML vectors of the building blocks, all oriented 

along the 3x  direction. (d), (e), and (f) are images of their physical ball-and-stick models. (g), (h), 

and (i) show the deformed and undeformed concepts with the main characteristic symmetry of 

the building block arrangement. The order of rotational symmetry is given by one of the three 

graphical symbols: a cusped oval, a triangle, and a square. (j), (k), and (l) are the top view of the 

unit cell assembly. (m), (n), and (o) show an axonometric view of the unit cell assembly. (p), (q), 

and (r) show CTE magnitude plotted in polar coordinate system with respect to the principal 

directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the CTE coefficients, 1 , 

2 , and 3  of the corresponding unit cell. 

3.3.3.2 Transverse isotropic CTE requirement 

Figure 3-7a-c shows three unit cells, each assembled with its own building block but all have 

trigonal symmetry to meet transverse isotropic CTE requirement. In the first example (Figure 

3-7a), low-CTE stationary lines of six TL-1s form the inner core with two sets of triadic building 

blocks at the same altitude ( 3x ) arranged with equal angular spacing. On the middle mirror plane 

(Figure 3-7g), three additional low-CTE bars are added, combined with the six low-CTE 

stationary lines, forming a central triangular bipyramid. This operation, considered along with 

the periodic tessellation in Figure 3-7m, is enforced to lock any mechanism as well as to make 
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the unit able to perform as a pin-jointed structure. As shown in Figure 3-7g, the unit cell consists 

of 3-fold rotational symmetry, analogous to the trigonal crystal, it has only two independent 

components in the CTE tensor, 1  and 3 . All TL-1 ML vectors deviate outward from the 

vertical direction by an identical deviation angle,   (  0 , 90    with 75    in Figure 3-7a), 

which, together with the skew angle and component CTEs, controls the horizontal effective CTE 

with in-plane isotropic CTE tunability ( 1 2  ). In the out-of-plane principal direction, i.e. 3x , 

if the tessellation of unit cells (shown in Figure 3-7j and m only along plane 1 2x x for visual 

simplicity) allows connection only at the peaks of the triangular bipyramid, there is no CTE 

tunability, resulting in 3 2s  . Thus, the overall effective CTEs of the unit cell in Figure 3-7a 

are expressed as: 

 1 2
2 2 1 2

1 2

3 2

cos tan cos
,cos cot

s s s s

s

       
 

  
 

       
 
 

    (3-14) 

where  1 221 2cos   .  

Similarly, for the second example in Figure 3-7b, TL-1s are replaced by TL-2 building blocks to 

construct a unit cell with transverse isotropic controllable CTE. A triangular bipyramid core is 

constructed via six high-CTE stationary lines and three high-CTE bars added in the middle 

mirror plane. All TL-2s have an identical   (  0 , 90    with 75    in Figure 3-7b). The 

symmetry relationship of the building blocks within the unit cell in Figure 3-7b is identical to 

that of TL-1 concept (Figure 3-7a), and the unit cell has thermal expansion behaviour expressed 

as: 

 1 2
1 2 1

1 2

3 1

cos tan 2 cos
.cos cot

s s s

s

      
 

  
 

  
  
 
 

    (3-15) 
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The third example in Figure 3-7c shows that TN building blocks can also be manipulated to 

construct a unit cell with transverse isotropic CTE. Six TNs deviate from the vertical direction by 

  ( 0 , 90  
   with 90    in Figure 3-7c) and round up their high-CTE base members, 

together with the three high-CTE bars added on the middle mirror plane, to form the edges of a 

central polyhedron. Figure 3-7i shows the unit cell in a 3-fold rotational symmetry, analogous to 

a trigonal crystal, resulting in only two independent components in the CTE tensor, 1  and 3 . 

Within the horizontal plane, the concept has in-plane isotropic CTE tunability ( 1 2  ). The 

out-of-plane tessellation (along plane 1 2x x  in Figure 3-7o) reveals a mere connection via the 

high-CTE cores, yielding 3 1s   with no CTE tunability in the vertical direction. For this 

reason, the thermal expansion behaviour of the unit cell in Figure 3-7c is expressed by: 

 2
2 1 1

1 2 2

3 1

3 4cos cos
,2 3cos

s s

s

    
 

 
 

  
  
 
 

    (3-16) 

where  1 223 4cos   . 

We remark that the top views shown in Figure 3-7j, k, and l are the 3D analogues of previous 2D 

concepts [23]. The assembly of other spatial unit cells can be inspired by other 2D cell 

topologies in the literature [3, 20]. Furthermore, as shown in the examples of Supplementary 

Material Section 3.8.1, the vertical direction ( 3x ) can also possess CTE tunability by decreasing 

the deviation angle,  . Figure 3-7p-r show the omnidirectional CTEs of the concepts in a 

spherical coordinate system. A central horizontal plane circularly shaped (dark blue in Figure 

3-7p to r) shows principal directions with CTE tunability for each transverse isotropic concept. 

Contour plot symmetry in Figure 3-7p-r also reflects the symmetry in thermal expansion, such as 

no CTE tunability is viable in the vertical direction. 
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Figure 3-7: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) 

TL-2 concept, and (c) TN concept. Green arrows represent the ML vectors of the building blocks. 

(d), (e), and (f) are images of their physical ball-and-stick models. (g), (h), and (i) show the 

deformed and undeformed concepts with main characteristic symmetry of the building block 

arrangement. The order of three-fold rotational symmetry is given by the triangle symbol. (j), (k), 

and (l) are the top view of the unit cell assembly; (m), (n), and (o) show an axonometric view of 

the unit cell assembly. (p), (q), and (r) show CTE magnitude plotted in polar coordinate system 

with respect to the principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid 

are the CTE coefficients, 1 , 2 , and 3  of the corresponding unit cell.  

3.3.3.3 Isotropic CTE requirement 

Figure 3-8 shows three unit cells, one for each row, possessing isotropic controllable CTE, with 

TL-1s, TL-2s, and TNs as their building blocks, respectively. A regular octahedron core is 

constructed by either stationary lines of TL building blocks or high-CTE base triangles of TNs. 

This monolithic core has a uniform thermal expansion in all directions and connects all building 

blocks via identical distance to the center of each unit cell for given angular space. All the unit 

cells have a cubic envelope as the unit cell domain. Along the four body diagonal directions of 

the cubic domain, four 3-fold axes can be found for each unit cell (Figure 3-8g-i), thus showing a 
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cubic symmetry. Analogous to the cubic crystal, there is only one independent coefficient in the 

CTE tensor of each concept, and therefore each unit cell has identical thermal expansion in all 

directions. Hence, the tessellated periodic lattices, with all unit cells connected by either 

stationary nodes or stationary lines (Figure 3-8j-o), feature a CTE that is isotropic with 

adjustable magnitude given by: 

  2
2 2 1 2

1

cos cos
,

cos
s s s s

Iso TL

      


  

    


   for Figure 3-8-a; (3-17) 

 2
1 2 1

2

cos 2 cos
,

cos
s s

Iso TL

     


  

 



       for Figure 3-8-b;        (3-18) 

 2
1 2 12 cos 4 3 cos

,
2 cos

s s s
Iso TN

     


 

 



   for Figure 3-8-c. (3-19) 

 

Figure 3-8: Unit cells with isotropic CTE tunability: (a) TL-1 concept, (b) TL-2 concept, and (c) 

TN concept. Green arrows represent the ML vectors of the building blocks. (d), (e), and (f) are 

images of their physical ball-and-stick models. (g), (h), and (i) show the deformed and 

undeformed concepts with the main characteristic symmetry of the building block arrangement. 

The order of three-fold rotational symmetry is given by the triangle symbol. (j), (k), and (l) are 
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the top view and assembly. (m), (n), and (o) show an axonometric view of the unit cell assembly. 

(p), (q), and (r) show CTE magnitude plotted in polar coordinate system with respect to the 

principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the CTE 

coefficients, 1 , 2 , and 3  of the corresponding unit cell. 

The unit cells examined in Figure 3-8 are some among many other possibilities. Figure 3-2d 

shows another example of a unit with isotropic CTE tunability, previously studied in the 

literature [3]; this cell has an analogous spatial structure of carbon atoms in a diamond, i.e. cubic 

symmetry. More examples are shown in Supplementary Material Section 3.8.1. Figure 3-8p-r 

indicates the omnidirectional CTEs of the concepts in a spherical coordinate system. Evidently, 

the isotropic CTEs are described by monocoloured spheres, reflecting the symmetry in thermal 

expansion. The principal directions can be randomly selected within the entire spherical space, 

yet obtaining the identical lowest CTE for each unit cell. 

3.3.3.4 Geometrical constraints of compound unit cells  

For the nine concepts illustrated in Figure 3-6 to 8, the effective CTEs in the principal direction 

can be tuned through a change of the skew angle,  , of the building block. The range of   is 

restricted by certain values that preserve the tetrahedral shape of the building block, as well as 

avoid causing collision between adjacent unit cells during thermal expansion. For concepts with 

transverse isotropic CTE, the range of   is also governed by  . Table 3-2 shows the allowable 

range of   for each cell topology with   representing the packing factor of the lattice. A packing 

factor correlates to a given tessellation. For example, a packing factor of 100% is shared by the 

unit cells shown in Figure 3-6m-o. In contrast, for the unit cells with isotropic CTE given ranges 

of their skew angles result in tessellations with lower packing factors, such as 50% for the 

tessellation shown in Figure 3-8o ( 60   ). Differences in the packing factor are controlled by 

the requirement of the inner polyhedron, e.g. octahedron in Figure 3-8c, to thermally expand 

without touching adjacent cells.  
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 Unidirectional Transverse Isotropic Isotropic 

TL-1 
and 

TL-2 

 45 , 90 

100%   

 
1

2 245 ,arccos 1 csc 
 

 
 

 , 50%    45 arccos 3 3 




 50%   

 
1

2 2arccos 1 csc , 90
 

 
 

 , 100%     arccos 3 3 , 90

 100%   

TN  30 , 90 

100%   

 
1

2 2

2

3 cos 430 ,arccos
3sin 3




 
  

   
  

 

 , 50%   
30 , 60 

  , 
50%   

 
1

2 2

2

3 cos 4arccos , 90
3sin 3




 
  

   
  

 

 , 100%   
 60 , 90  , 

100%   

Table 3-2: Admissible range of the skew angle,  , for the building blocks of the concepts 

visualized in Figure 3-6 to 8.   and   represent the deviation angle and packing factor 

respectively. 

3.3.3.5 Summary points for prescribing thermal expansion in spatial lattices 

There are plentiful ways to construct 3D lattices from tetrahedral building blocks. Below, the key 

notions explained above are summarized to help assemble tetrahedron-based lattices that can 

meet given magnitude and directional requirements of thermal expansion. The distinguishing 

features are the building blocks with the definition of their ML and TD vectors, and the 

symmetry construction operations used to assemble them in the repeating unit.  

 Building blocks with their thermal expansion. The bi-material tetrahedron is the smallest 

building block chosen here for generating a periodic 3D lattice. Nine relevant material 

permutations are available (Figure 3-3b-j), among which the most practical are those with 

stationary lines, TL-1 and TL-2, and with stationary node, TN. For each of them, the 

material length vector, ML, and the thermal displacement vector, TD, provide a visual 

and handy description of the magnitude and direction of their thermal expansion. They 

assist in meeting requirements of given CTE magnitude and closed form expressions are 

given in Section 3.3.2 to quantify them. 
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 Unit cell construction for prescribed CTE behaviour. Building blocks can be used to 

assemble complex compound units either with unidirectional CTE tunability (e.g. Figure 

3-6a) or with a number of tunable CTE directions (e.g. Figure 3-8c), as prescribed by the 

application requirements. The crystal systems in Table 3-1 can assist their arrangement to 

satisfy directional requirements. If the symmetry relations of one crystal system transfer 

to the geometrical arrangement of building blocks in a unit cell, analogously the 

independent tensor components of that crystal system return into the CTE tensor of the 

overall lattice. Here, the tensor components of the unit cell represent the CTEs in the 

principal directions, either with or without CTE tunability, of the overall lattice. By 

following this strategy the overall thermal expansion of a spatial lattice built from 

compound units can be assessed through the ML and TD vectors of its constitutive 

building blocks (Section 3.3.2).  

In this summary, we also remark that unit cell construction should also meet tessellation 

requirements, such as those ensuring minimum static and kinematic determinacy, among others. 

If the assembly process leads to an unstable mechanism, additional members are necessary to 

lock in any mechanism, and additional struts can be inserted to match the CTE of its surrounding 

elements so as to avoid altering the direction(s) of CTE-tunability. In addition, because there are 

multiple tetrahedral building blocks and numerous relations of symmetry to choose from, the 

number of 3D tessellations capable of satisfying given CTE requirements can be countless. This 

work has presented nine of them (Figure 3-6 to 3-8) obtained by implementing the scheme 

presented here, and the following section describes their proof-of-concept fabrication and 

thermal testing. Additional concepts showing the viability of the method are given in 

Supplementary Material Section 3.8.1. 

3.4 Fabrication and experimental validation 

3.4.1 Component materials 

This section presents the fabrication and CTE testing of (i) the building blocks, TN and TL-2, 

made from metallic constituents, and (ii) the nine lattice concepts shown in Figure 3-6 to 3-8, 

made from polymers. The six constituent materials selected are: Al6061, Ti-6Al-4V, and Invar-

36 as metallic constituents; and acrylic, Teflon® PTFE, and ABS as polymer constituents. Table 

3-3 shows their relevant properties.  
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Material Al 6061 Ti-6Al-4V Invar-36 Acrylic PTFE ABS 
Young’s modulus (GPa) 70.8 113.8 140.0 3.2 0.475 2.6 

CTE (×10−6/℃) 23.0 11.5 1.5 67.0 123.0 94.5 

Table 3-3: Properties of solid materials for proof-of-concept fabrication [41] 

3.4.2 Engineering of specimens 

3.4.2.1 Fabrication of building block samples 

Testing samples of building blocks were fabricated via pin-jointed metallic bars (Figure 3-9a-d). 

Ti-6Al-4V shafts (low-CTE) were cut and sanded to the desired length (Figure 3-9b and d) with 

each end shaped into a crevice. A flake in the shape of a ring tongue terminal was fastened in the 

crevice of bars by interference fit and strengthened via administering epoxy glue (LePage Epoxy 

Gel, Henkel, Canada) to serve as a hinge axle sleeve for pinned joints. As shown in Figure 3-9, 

Al6061 shafts (high-CTE) are thicker (diameter of 6.4 mm) than the Ti-6Al-4V bars (diameter of 

3.2 mm) so as to construct a stable base with through-holes drilled directly to serve as hinge axle 

sleeves. All the high CTE bars have given length of 50mm (Figure 3-9b and d), and the length of 

low-CTE bars vary for modifying the skew angle at given values. Then the assembly of the 

different tetrahedral samples were completed using bolts, screw nuts and washers. Since only 

rotation occurs and no bending moment appears at the joints, the tested CTE of pin-jointed 

building blocks are validated via closed-form equations in Section 3.3.3 relying on the pin-

jointed assumption. Furthermore, in the fabricated prototypes shown in Figure 3-9, the length of 

the flakes (totalling about 12 mm at both ends), compared with the typical length of the shaft 

(about 40-55 mm), is not negligible. Thus, the thermal effect of flakes on the overall effective 

CTE of lattices is taken into account to amend the analytical model as further explained in 

Supplementary Material Section 3.8.2.  

3.4.2.2 Fabrication of unit cell specimens 

To ease the understanding of the spatial arrangement of building blocks in all unit cells, we built 

ball-and-stick models as proof-of-concepts (Figure 3-6 to 3-8). Connection balls (10 mm 

diameter) have several blind holes (with a 1.6 mm diameter and 2 mm depth) in different 

orientations on the surface (Figure 3-9g) to connect sticks (Figure 3-9e and f). All the spheres are 

3D printed (printer: Original Prusa i3 MK2) by ABS. The sticks were laser cut into different 

lengths, all from 1.6-mm-diameter rods made from either PTFE (high-CTE) or acrylic (low-
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CTE). Both ends of the sticks were plugged into the blind holes of spheres and then rigidly fixed 

by resin glue (LePage Epoxy Gel, Henkel, Canada). The thickness of the resin adhesive layer 

was very thin making the thermal expansion of resin glue negligible. In contrast, the ABS 

connection ball had a non-negligible thermal expansion, and this deviation is considered in a 

later section validating experimental measures against theoretical and simulation results. 

 

Figure 3-9: Testing samples: (a) TN (components: Al6061 and Ti-6Al-4V); (b) assembly 

drawing of a TN; (c) TL-2 (components: Al6061 and Ti-6Al-4V); (d) assembly drawing of a TL-

2; (e) TN concept with rigid joints (components: acrylic and PTFE for bars and ABS for joints); 

(f) assembly drawing of proof-of-concepts with rigid joints; (g) ball for rigid joint (a flat surface 

at the bottom is used to ensure continuous contact with the carrier of the 3D printer); (h) testing 

sample with black and white pattern for DIC testing.  

Moreover, since the CTE properties of the concepts here introduced are primarily dependent on 

the unit cell geometry besides the CTEs of the constituent solids, the principles can be applied to 

systems across a wide range of length scales, and hence fabricated with both conventional and 

advanced methods. Additive manufacturing is a viable method that can be effortlessly used to 

assemble in large volume bi-material lattices with smaller element size, as demonstrated by 

recent works appeared in the literature on this topic [30, 35, 44]. 
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3.4.3 Experimental method 

Both tetrahedral building blocks (Figure 3-9) and compound unit cells (Figure 3-6 to 8) were 

experimentally investigated to validate their CTEs. For the former, 12 physical samples were 

tested to verify the respective theoretical models of TL-2 and TN building blocks (Eqs. (3-9) and 

(3-10) in Section 3.3.2.1) with two dissimilar pair of material combinations and three different 

skew angles (see Supplementary Material Section 3.8.2 for the images of the physical samples of 

the building blocks). The first material combination consisted of Al6061 and Ti-6Al-4V (i.e. 

Al/Ti), and the second consisted of Al6061 and Invar (i.e. Al/Invar). In all cases, Al was the high 

CTE material while Invar and Ti were the low CTE materials. The three skew angles of the 

building blocks for each material combination varied between 53° and 65° with approximately 

equal angle difference. For example, if the 12 samples were organized into four sets of three, the 

first set would consist of three TL-2 samples made from Al/Ti with skew angles 53.5°, 61.7° and 

63.7°, respectively. Besides building blocks, nine physical samples of the compound unit cells 

were tested, one for each of the concepts shown in Figure 3-6 to 8 (see Supplementary Material 

Section 3.8.2 for the images of the compound unit samples). The skew angles of all samples 

were set to 60 , and the CTEs along the principal directions were measured by assessing the 

relative thermal displacement of the connection balls.  

3D DIC tests (schematic setup shown in Supplementary Material Section 3.8.2) were performed 

to measure the thermal displacement of all samples with randomly distributed black and white 

pattern painted on the surface (Figure 3-9h). DIC testing consists of capturing images, before and 

after heating the sample within a heating chamber, at selected temperatures so that elongation 

can be measured. Testing temperature was monitored and managed from 25℃ to 75℃ (for 

polymer samples) or to 150℃ (for metallic samples) through a PID (proportion-integration-

differentiation) controller (CN7800, Omega, US). A data acquisition system (NI cDAQ 9174) 

was used to measure the temperature heterogeneity via collecting three thermocouples from 

different locations in the chamber. The temperature heterogeneity was regulated within 5% of the 

real-time temperature through the application of a rotational air fan. DIC system calibration 

ensured an epipolar projection error below 0.01 pixel, i.e. the average error between the position 

where a target point was found in the image and the theoretical position where the mathematical 

calibration model located the point. Two CCD (charge coupled device) cameras (PointGrey, 



 

107 

 

Canada) were used to focus on an area of 240 200 mm2 with a resolution of 2448 2048 pixel; 

based on the image resolution, any deformation smaller than 0.98 μm (0.01 pixel) was merged 

with the epipolar projection error. Using the DIC correlation software, Vic-3D (Correlate 

Solution Inc.), virtual extensometers were placed on the reference image and tracked through the 

images to measure the displacement between pairs of pixel subsets. The thermal deformation 

field (Figure 3-10) was obtained from the relative displacement between these pairs of subsets. 

The effective CTE was calculated from thermal strain and temperature change. Finally, the 

accuracy of the whole testing system was verified with CTE measurements of a solid material, 

Al6061, taken from a commercial thermomechanical analyzer, TMA Q400 (TA Instrument, US). 

A comparison of their measured (22.6 10-6/°C) and DIC predicted mean CTE (23.0 10-6/°C) 

shows an error of 1.7%. The epipolar projection error is at 0.98 μm, which governs the smallest 

measured CTE value of the samples, i.e. 0.27 10-6/°C. Hence, the low magnitude of these 

errors warrants the required accuracy for the DIC system used in this work.  

3.4.4 Experimental results  

The thermal testing results of both the building blocks and compound unit cells are here 

compared with results from either numerical analysis (Figure 3-10) or closed-form expressions 

(Figure 3-11). The role of component materials and skew angle on the effective CTE is 

emphasized. In addition, the effect of connection type, either pin-joint (building blocks) or rigid-

joint (unit cells), is assessed to validate the pin-jointed assumption of the closed-form 

expressions derived for ideal building blocks and compound unit cells. 

As shown in Figure 3-10a-h, a TL-2 and a TN, both pin-jointed with similar   and identical 

components of Al/Ti, are taken as representatives to illustrate the tunable thermal displacement 

that each tetrahedron can provide along the principal directions. The horizontal thermal 

displacement shown in Figure 3-10 (a and b for TL-2 with 61.7   , e and f for TN with 

63.3   ) indicates that for both building blocks, the effective CTE is high and positive (23

10-6/°C), identical to that of the high-CTE constituent Al, i.e. no CTE tunability. In the vertical 

direction of TL-2 (Figure 3-10c and d), the nearly alike light-green colour on nodes used for 

CTE measurement (i.e. nodes B1 and B2 in Figure 3-10d) indicates a near zero distance change. 

Thus, the effective CTE of TL-2 specimen in the vertical direction is almost vanishing (3.70
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10−6/°C). In contrast, along the vertical direction of TN (Figure 3-10g and h), the distance 

between the two corresponding nodes, D1 and D2 in Figure 3-10h used for CTE measurement, 

increases during thermal expansion, which results in a positive effective CTE (8.42 10−6/°C), a 

value below those of its constituents Al (23 10−6/°C) and Ti (11.5 10−6/°C). Thus for similar 

skew angle and identical constituents, TL-2 can attain a lower CTE than TN. 

 

Figure 3-10: Thermal displacement distribution in a pin-jointed TL-2 ( 61.7   , Al/Ti) 

measured experimentally (a and c), and computationally (b and d), in the horizontal and vertical 

directions, respectively. Thermal displacement distribution in pin-jointed TN ( 63.3   , Al/Ti) 

and rigid-jointed TN ( 60   , acrylic/Teflon) tested (for pinned: e and g; for rigid: i and k) and 

computed numerically (for pinned: f and h; for rigid: j and l) in the horizontal and vertical 

directions, respectively.  

To assess the assumption of the unit cell connections, pin- versus rigid-joints, we compare the 

results shown in Figure 3-10e-h, to those in Figure 3-10i-l illustrating the tested thermal 

displacement distribution of a unit cell specimen (Figure 3-6f). In both directions, the thermal 



 

109 

 

distribution of the former made of Al and Ti, parallel that of the latter, made of acrylic and PTFE, 

despite the difference in magnitude caused by each given pair of constituent materials. 

 

Figure 3-11: (a) Predicted curve and experimental results of effective CTE for Al/Ti and Al/Invar 

building blocks (TL-2 and TN) within a range of skewness, along with the CTE of the solid 

materials. (b) Predicted and experimental CTE results along the principal direction/s: vertical 

direction ( 3x ) for the concepts with unidirectional CTE and principal directions within the plane 

1 2x x  for other concepts here examined. 
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Figure 3-11a illustrates the impact of the skew angle, building block type, and component 

material on the effective CTE of building blocks. For all sets of samples, the CTE reduces 

significantly with decreasing skew angle, whereas for high values the CTE is less sensitive; 

nevertheless, CTE tuning across the range of skew angle here considered can be achieved for 

both TN and TL-2. In addition, for prescribed pair of materials, i.e. (Al/Ti) and (Al/Invar), the 

red and green curves show the CTE trend of TN with respect to the skew angle, and the blue and 

violet curves that of TL-2. The results show that the CTE of TL-2 can be tuned to a smaller value 

than that of TN, hence the CTE  of TL-2 is larger in the given range of skew angle. Another 

insight that can be gained from Figure 3-11a pertains to the role of the CTE ratio of the 

constituents, i.e. 1 2s s   . The greater the CTE distinction of the constituent solids 

( Al-Invar 15.3   which is higher than Al-Ti 2.0  ), the larger the CTE tunability of a building 

block. We also remark that the largest negative CTE a building block can reach in all 

experiments of this work is -26.2 10−6/°C (Al/Invar TL-2 with 54.1   ) which is well below 

the CTE values of its components.  

Figure 3-11b compares the experimental (specimens with rigid-joints) and theoretical (closed-

form expressions with pin-joints) results for the CTE of all the compound units. The relatively 

small errors associated with the testing results, which go as high as 6.3%, validate the CTEs 

under pin- and rigid-joint assumptions displaying small deviations, hence respecting the small 

deformation assumption. Another insight concerns the effective CTE of the building blocks here 

investigated. As shown in Figure 3-11b, comparing the three concepts with unidirectional CTE 

tunability (i.e. specimens 1, 2, and 3 in Figure 3-11b), specimens with stationary lines (TL-1 and 

TL-2) have smaller effective CTE values than that of specimens with stationary nodes. The 

conclusion up to this point is summarized as TL concepts have larger CTE tunability than TN 

concepts which also applies to the concepts with identical transverse isotropic or isotropic CTEs. 

The comparison between three concepts made of TL-1s (i.e. specimens 1, 4, and 7 in Figure 

3-11b), or other concepts made of the identical building block, show an increase in the effective 

CTE when the CTE-tunable directionality increases from unidirectional (one principal direction) 

to transvers isotropic (two principal directions) and then to isotropic CTE (three principal 

directions). An increase of CTE-tunable directionality is accompanied by the presence and size 

increase of the monomaterial core of concepts. For example, unidirectional cells contain no 
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monomaterial core, but transverse-isotropic cells have small cores compared to isotropic cells’ 

large cores. The presence and size of a monomaterial core make the effective CTEs increase with 

the size of the core. However, TL-2 concepts are more significantly affected by the high-CTE 

(red) cores than TL-1 concepts with low-CTE (blue) cores. Thus in Figure 3-11b, with a 

triangular bipyramid core, specimen 4 has a larger CTE than specimen 5, while in contrast, 

specimen 7 has a smaller CTE than specimen 8 when an octahedron core is constructed for the 

isotropic concepts. The fabrication and testing method reported in this work can also be applied 

to building blocks with effective CTEs higher than that of the constituents (i.e. high-CTE cases 

as shown in Figure 3-3) as well as concepts with more complex architecture. 

3.5 Mechanical properties 

To understand how a programmable CTE truss-system behaves as a bulk material with effective 

properties, we adopt here a classical continuum-based approach that relates the stress-strain 

behaviour of the unit cell to that of the global level. In doing so, we assume that the characteristic 

length of the unit cell is at least one or two orders of magnitude below the characteristic length of 

the truss-system. This scale separation between the global response and that of the unit cell 

allows us to calculate the effective properties through a continuum model [45]. For three dual-

material unit cells with unidirectional CTE tunability (TL-1, TL-2 and TN concepts shown in 

Figure 3-6), we present in the main body of the text closed-form expressions of their elastic 

properties, and in Supplementary Material Section 3.8.4 their buckling and yielding strength. For 

unit cells with transverse isotropic or isotropic CTEs (concepts shown in Figure 3-7 and 8), a 

numeric approach is used to obtain their elastic properties.  

3.5.1 Relative density 

Table 3-4 lists the relative density * , i.e. the volume fraction, of all nine unit cells. *  is given 

by the ratio of the volume of the solid components, solidV , to the volume of the unit cell, unit cellV : 

*
soli u ced nit llV V  . The expressions rely on the assumption that all high- and low-CTE bars have 

a circular cross-section with radius a , and bars made of identical material have identical length. 
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Table 3-4: Relative density of all nine unit cells, where 1l  is the length of high-CTE bars with 

circular cross section of radius a ,   is the deviation angle (Figure 3-7),  1 223 4 cos   , and 

 1 221 2cos   . 

3.5.2 Elastic stiffness  

The continuum-based modeling approach offers a practical and efficient method for analyzing a 

periodic medium [45, 46]. It is based on the substitution of the discrete model with an equivalent 

continuum. A number of approaches, such as those relying on standard mechanics and 

asymptotic homogenization theory [47], have been proposed for developing continuum models, 

and for determining the appropriate constitutive relations [46]. Using the standard mechanics 

approach [48] (see Supplementary Material Section 3.8.3 for more details), here we examine the 

three unit cells with unidirectional CTE tunability (Figure 3-6a-c) for demonstration purposes. 

The macroscopic stiffness tensor for the TL-1 concept:  
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(3-26) 

where 1TLC   is the effective stiffness matrix of TL-1 concept and 1sE , 2sE  are Young’s modulus 
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of two components, respectively. The stiffness matrix in Eq. (3-26) shows a typical material in 

an orthorhombic system referring to the coordinate system shown in Supplementary Material 

Section 3.8.3. Analogously, for the TL-2 concept the stiffness tensor is:  
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which shows a typical material in a tetragonal system. The macroscopic stiffness tensor for the 

TN concept can be written as:  
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(3-28) 

which is the stiffness tensor of a typical material in a trigonal system. The homogenized stiffness 

matrix relates the macroscopic strains to the macroscopic stresses of the homogenized material. 

Table 3-5 reports the closed form expressions of the effective Young’s modulus of the three 

concepts in the vertical direction (i.e. the principal direction with CTE tunability, 3x ) and shear 

modulus in the 1 2x x  plane.  
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Table 3-5: Effective Young’s modulus (in direction 3x ) and shear modulus (on the 1 2x x  plane) 

for TL-1, TL-2, and TN concepts with unidirectional CTE tunability. 

Similar to the CTE maps presented in Section 3.3.2.2 for the three building blocks, TL-1, TL-2 

and TN, Figure 3-12 visualizes the spatial variation of the Young’s moduli in spherical 

coordinates for their corresponding unidirectional concepts. The symmetries of the surfaces 

shown in Figure 3-12 also feature the geometrical symmetry of each concept: Figure 3-12a for 

the orthorhombic system, Figure 3-12b for the tetragonal system, and Figure 3-12c for the 

trigonal system.  

 

Figure 3-12: Three-dimensional surfaces showing the variation of Young’s moduli along the 

principal directions for (a) TL-1, (b) TL-2 and (c) TN concepts. The length of the radius vector is 

the Young’s moduli of each concept taken Al/Ti as components. All concepts have identical 

beam length to diameter ratio of 0.04. 

As shown in Figure 3-13, for concepts with unidirectional CTE tunability, the normalized 

specific Young’s moduli and shear moduli change with the skew angle and Young’s modulus 

ratio of components (i.e. Young’s moduli of low-CTE material over high-CTE material: 



 

115 

 

2 1s sE E ). In Figure 3-13, an increase in skew angle causes rising Young’s modulus and falling 

shear modulus due to concept degeneration. For all the three concepts, the normalized vertical 

Young’s moduli gradually converge to 1 and the normalized shear moduli gradually converge to 

0. Figure 3-13a and b also indicate that, for each concept, the effective stiffness, including both 

Young’s and shear moduli, increases with the stiffness ratio of the components. This is caused by 

the low-CTE material (material two in this work) predominantly located along the 3x  direction 

with stiffness ( 2sE ) increasing with the component stiffness ratio. Comparing concepts of given 

skew angle, the TN concept generally has Young’s moduli in the vertical direction higher than 

those of stationary lines. In contrast, concepts constructed via TL-1 and TL-2 have similar 

vertical Young’s moduli. As shown in Figure 3-13b, no concept is absolutely superior to others 

for all skew angles, as the shear moduli converge at different rates to zero with   approaching 

90 . In addition to stiffness, buckling and yielding strength, other properties that pertain to 

structural efficiency, are derived and summarized in Supplementary Material Section 3.8.4. 

 

Figure 3-13: Normalized specific stiffness in the vertical direction for TL-1, TL-2, and TN 

building blocks as a function of the skew angle for selected values of the stiffness ratio of the 

components ( 2 1s sE E ): (a) Young’s modulus and (b) shear modulus. *  represents relative 

density.  
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3.6 Discussion on thermal expansion, specific stiffness, and their trade-off  

 

Figure 3-14: Relation between CTEs and skew angle for the nine unit cells here under 

investigation. A high-CTE material of 6
1 20 10 / Cs

    and a low-CTE material of 

6
2 10 10 / Cs

    are taken here as representative components. For unit cells with 

unidirectional low CTE, the CTE refers to the vertical direction ( 3x ). For unit cells with 

transverse isotropic and isotropic low CTE, the effective CTE refers to the principal directions in 

the plane 1 2x x . Each line style indicates one of the three building blocks which a unit cell is 

built from. The CTE of a benchmark isotropic concept [3] with identical effective CTE to the 

isotropic TN concept is also shown in purple for comparison. 

Thermal expansion. The CTE of bi-material lattice materials depends on the CTE mismatch of 

materials, the skew angle, i.e. the interplay of the structural members, as well as the stiffness 

mismatch of materials and joints. Figure 3-14 reveals the role of the skew angle in the thermal 

expansion performance of each low-CTE unit cell. As a general trend, we observe that as the 

skew angle increases from the minimum to the maximum value of  range (Table 3-2), the CTEs 

for all units converge gradually to that of the low-CTE solid material ( 610 10 / C   in Figure 

3-14). The similar upper bound indicates the largest CTE  comes from the concept obtaining 

the lowest CTE value. As shown in Figure 3-14, with a given range of skew angles and given 

directional behaviour (i.e. unidirectional, transverse isotropic, or isotropic), the lowest effective 



 

117 

 

CTE a TL-1 and TL-2 concept can achieve is generally lower than that of the TN concept. This 

demonstrates that concepts with stationary lines have a better CTE tunability, because the CTE 

tunability of TL-1 and TL-2 building blocks is higher than that of the TNs (Figure 3-4). Similarly, 

when comparing TL-1 with TL-2 concepts, the latter has generally a larger CTE , especially for 

concepts with small or no monomaterial core (i.e. transverse-isotropic and unidirectional, 

respectively). However, for isotropic concepts, above 53    TL-2 has higher CTE values than 

TL-1, as the influence of TL-2 high-CTE octahedron core is far larger than that of the low-CTE 

core of the TL-1 concept. For lattices assembled with a given building block, TL-1, TL-2, or TN, 

the CTE tunability is often the smallest for unit cells with isotropic CTE, followed by unit cells 

with transverse isotropic CTE. This can also be attributed to the influence of larger single-

material core (octahedron) of isotropic-concepts than the core (triangular bipyramid) of the 

transverse-isotropic concepts; the former is more effective in counteracting the CTE tunability 

via larger monomaterial core and hence impairing CTE tunability. On the other hand, the largest 

CTE tunability in the principal direction can be achieved by unit cells which have unidirectional 

CTE with no monomaterial core. 

The experimental results in Section 3.3.4 show that the CTEs under the pin- and rigid-jointed 

assumptions deviate marginally from each other. Under the pin-jointed assumption, the stiffness 

mismatch of the component materials has no effect on the effective CTE, as opposed to the case 

of the rigid-jointed assumption, where the stiffness mismatch of the components can play a role 

on CTE tunability. A relative comparison between the three factors here examined shows that the 

effect of the stiffness mismatch is secondary to the influence of the other two, namely the 

interplay of structures and the CTE mismatch of materials. Section 3.8.1 reports additional 

results on the CTE of rigid-jointed bi-material lattices obtained for a number of Young's modulus 

ratio of the constituent solids. 

Specific stiffness. As per the sensitivity of the elastic properties, Figure 3-15 shows 

computational results of their normalized Young’s modulus in the direction of CTE tunability, 

versus both * , relative density, and  , skew angle. The relative density ranges from 0 to 0.2. 

Different representative fields of the skew angle are selected for each concept to indicate the 

variation trend of unit cell stiffness. Along the vertical axes, sketches show the variation of the 

unit cell geometry with the skew angle. 
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Figure 3-15: Contour plots for specific stiffness (    1 1s sE E  with E  representing the 

effective stiffness in the CTE tunable direction and   representing the density of the lattice) 

versus skew angle and relative density: Young’s modulus in the vertical direction of cell 
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topologies with unidirectional CTE: (a) TL-1, (b) TL-2, and (c) TN concept; Young’s modulus in 

the horizontal direction of cell topologies with transverse isotropic CTE: (d) TL-1, (e) TL-2, and 

(f) TN concept; and Young’s modulus of cell topologies with isotropic CTE: (g) TL-1, (h) TL-2, 

and (i) TN concept. S-concept [3] is plotted as a benchmark in (j) to compare elastic 

performances. 

The specific stiffness of all concepts increases linearly with * . For increasing   with constant 

* , the Young’s modulus is also observed to raise for unidirectional concepts (Figure 3-15a to c), 

while a parabolic effect appears for the remaining concepts (e.g. Figure 3-15f and i), i.e. a rise is 

followed by declining modulus. This can be attributed to the changing alignment of the high-

stiffness component (i.e. low-CTE Ti bars) along the loading direction: (i) for unidirectional 

concepts, increasing   results in an incremental alignment along 3x ; (ii) for both transverse-

isotropic and isotropic concepts, the same incremental alignment is initially experienced along 

the loading direction, before beginning to deviate from the loading direction above a specific   

value. The parabolic effect can also be observed for Figure 3-15d, e, g, h, and j when a larger 

range of   is plotted. 

For given *  and  , Figure 3-15 highlights also similarities between the stiffness of TL-1 and 

TL-2 concepts. Compared to TL-2 concepts, TL-1 concepts feature slightly higher values of 

specific stiffness, due to presence of more Ti bars. However, TN concepts generally outperform 

the others in stiffness, especially for transverse-isotropic (Figure 3-15f) and isotropic concepts 

(Figure 3-15i) where the parabolic effect is observed at 60   , resulting in a much higher 

specific stiffness than TL concepts with identical  , * , and CTE directionality. Figure 3-15j 

plots also the specific stiffness values for the benchmark [3]. Compared to this baseline, we 

notice that unidirectional and transverse-isotropic concepts produce higher stiffness along the 

direction of CTE tunability, but the isotropic concepts are comparable for given geometric and 

constituent parameters. 

Trade-off between CTE tunability and specific stiffness. The results above give an indication 

of existing trade-offs between the properties of the concepts here studied: CTE  and specific 

stiffness. To better understand these trade-offs, Figure 3-16a shows bars of CTE  and specific 
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stiffness simultaneously, and in Figure 3-16b CTE  is plotted versus specific stiffness to 

demonstrate Pareto-fronts, both for all concepts made of Al and Ti. 

 

Figure 3-16: (a) Comparison of proposed and existing bi-material concepts for given bar 

thickness ratio of 0.04 on the basis of (i) CTE tunability ( Max MinCTE CTE CTE   ) shown 

as blues bars for Young’s modulus of 1GPa in the CTE tunable direction, and (ii) specific 

stiffness (Young's modulus/Density: /E  ) for prescribed CTE of 6.5 10-6/℃, in red. (b) CTE 

tunability plotted versus structural efficiency. The relative specific stiffness and CTE tunability 
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are plotted in the vertical direction for unidirectional and isotropic CTE concepts, and in the 

horizontal direction for other concepts. The thermoelastic properties of a benchmark isotropic 

concept [3] is also shown in purple for comparison. 

For Figure 3-16a, the CTE  bars are calculated for all concepts under a given stiffness value (1 

GPa), while bars of structural efficiency are all derived from concepts with equal CTE (6.5 10-

6/℃), a value lower than the CTE of their base materials: Al/Ti). This allows for a consistent 

comparison of their thermo-elastic performance. The bars are arranged in order of increasing 

number of CTE tunable principal directions, from unidirectional to isotropic concepts. Evidently, 

with increasing number of CTE tunable directions, there is a penalty in both CTE  and 

structural efficiency. The decrease in CTE  is due to the presence and increasing size of 

monomaterial cores, as previously observed. The drop in structural efficiency, however, is 

attributed to the distribution of load bearing bars along the CTE tunable directions, thus resulting 

in a more uniform load capacity, but with lower effective stiffness along a specific direction. For 

unidirectional and transverse-isotropic concepts, TL-2 unit cells provide the best CTE  and 

specific stiffness values, followed closely by TN concepts, while both performing significantly 

better than TL-1. However, for isotropic concepts, the TN thermo-elastic performance exceeds 

that of TL-2, due to the reduced performance of the TL-2 core. 

The Pareto-front curves shown in Figure 3-16b are generated from a parametric study of the unit 

cells, where the skewness angle and the thickness-to-length ratio are the active variables for 

given materials (Al/Ti). The curve shapes emphasize the trade-offs between the two metrics 

plotted: an attempt of increasing structural efficiency results in a reduced CTE . This common 

trend demonstrates that the desired deformation that a large CTE tunability would require is 

generally antagonist to the high specific stiffness that is distinctive of a structurally efficient 

architecture. Here we notice that unidirectional concepts excel in structural efficiency along their 

CTE tunable direction; but for increasing CTE , their specific stiffness drops. Transverse-

isotropic unit cells are unable to attain the highest level of specific stiffness, but, within their 

attainable range, they generally provide higher CTE  compared to unidirectional concepts. 

Finally, for isotropic concepts, including S-concept [3], there is a sacrifice in both CTE  and 

structural efficiency, except for the isotropic TN unit cell, which maintains performance similar 

to its transverse-isotropic counterpart. Overall, Figure 3-16a and b provides a comprehensive 
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comparison of the thermo-elastic performance of the concepts here examined, bearing in mind 

that no CTE directionality is ultimately superior to the rest as the direction of CTE tunability is 

entirely dependent on the application requirements. Other structural properties, such as yield and 

buckling strength, have been evaluated for specific concepts, as examples, and their expressions 

are provided in Supplementary Material Section 3.8.4. 

In summary, this work has added to the body of the existing literature three fundamental aspects. 

The first is on the concepts and their mechanisms of thermal deformation. Three groups (low-

CTE, intermediate-CTE, high-CTE) are introduced for the tetrahedral building block to tune the 

effective CTE at values that can be lower, in between, or higher than the constituent material 

CTEs. For the low-CTE group, three specific mechanisms are identified for a bi-material 

tetrahedron: two with stationary-lines, and the third with a stationary-node, the only one known 

in the literature. The second novel feature of this work is a systematic method to rationally 

assemble building blocks into compound units, such as the nine here introduced, that can attain 

desired magnitude and directionality of thermal expansion in three-dimensional lattices. The 

third is a path forward for resolving the trade-off between CTE tunability and specific stiffness, 

which has led to the assembly of building blocks into stiff and strong, yet high CTE tunable 

spatial lattices with application across the spectrum of length scale. 

3.7 Conclusions 

This chapter has investigated thermal expansion of spatial bi-material lattices built from 

tetrahedral building blocks with the twofold goal of providing a fundamental understanding of 

their mechanisms of thermal expansion, and a systematic method to program their CTE while 

achieving high values of structural efficiency. The material length vector and thermal 

displacement vector are first defined to assess thermal expansion of truss concepts, and then used 

to examine all the possible material permutations that can occur in the struts of a dual-material 

tetrahedron. Drawing from concepts of crystallography and tessellation, a scheme has been 

presented to understand the relationships between CTE tunability of tetrahedral building blocks, 

structural symmetry of unit cells, independent elements in the CTE tensor, and effective 

thermoelastic properties of periodic truss, which can be built from single units as well as more 

complex assembly of compound units. The results establish underlying principles governing 
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tailorable thermal expansion in dual-material lattice materials, where desired CTE magnitude and 

spatial CTE directionality can be programmed a priori to satisfy given CTE requirements, such 

as unidirectional, transverse isotropic, or isotropic. Closed-form expressions for predicting and 

tuning CTE performance are validated through computational and experimental studies on proof-

of-concept prototypes. Results illustrated in maps have been discussed within the context of 

structural efficiency and CTE tunability, two properties that are generally in conflict at a degree 

dependent on the unit cell type. This work has also shown that three-dimensional lattices can be 

systematically assembled with high specific stiffness to attain large CTE tunability over a 

substantial range of temperature, thus appealing to a large palette of applications where low mass, 

thermal stability and thermal actuation are primary goals. 

3.8 Supplementary material 

3.8.1 Additional concepts and stiffness mismatch of materials 

Figure 3-17 depicts two dual-material tetrahedra with CTE tunability that can be used to generate 

six supplementary unit cells with given CTE behaviour. The first tetrahedron (Figure 3-17a) has 

low-CTE tunability in the vertical direction with shear thermal deformation during expansion. 

The second tetrahedron, intermediate tetrahedron, is able to obtain the effective CTE of a value 

between the CTEs of the two components only. The additional concepts shown in Figure 3-17 

can not only obtain transverse isotropic and isotropic CTE, as with concepts shown in Figure 3-7 

and Figure 3-8, but also orthotropic CTE, as shown in Figure 3-17b. The unit cell shown in 

Figure 3-17b has CTE tunability in both the x1 and x3 directions with different magnitudes. With 

the x2 direction exhibiting no CTE tunability, the concept overall demonstrates orthotropic CTE 

tunability.  

The effective CTE of the dual-material tetrahedra shown in Figure 3-17a and e ( M  direction) 

can be expressed respectively as:  

 
2

1 2
L4H2 2

16 cos , 15 ,75
16cos 1

s s
z

   



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 
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Figure 3-17: Dual-material tetrahedra along with compound unit cells (a): tetrahedron with low-

CTE (four low-CTE bars and two high-CTE bars, L4H2); (b) to (d): unit cells constructed from 

the low-CTE tetrahedron shown in (a); (e): tetrahedron with intermediate CTE (L3H3); and (f) to 

(h): unit cells assembled from the intermediate-CTE tetrahedron shown in (e). 

Figure 3-18 shows unit cells with transverse isotropic CTE governed by the deviation angle,  , 

and the skew angle,  . The decrease of   and increase of   allow the connection of unit cells 

(Figure 3-18a-d) in the out-of-plane principal direction via only stationary lines or stationary 

nodes. In contrast with concepts shown in Figure 3-7, which have no CTE tunability in the 

vertical direction, concepts in Figure 3-18 have CTE tunability in all three principal directions. 

Comparison of concepts depicted in Figure 3-18c and d shows the effects of   and   on the 

packing factor,  . Differences in the packing factor are controlled by the need of the inner 

octahedron to thermally expand without touching adjacent cells (Figure 3-18k and l). A packing 

factor of 50% could be obtained for tessellation in Figure 3-18A2k. In contrast, dissimilar skew 

angles for the concept in Figure 3-18A2d results in a tessellation with higher packing factors, i.e. 

100%. 
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Figure 3-18: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) 

TL-2 concept, (c) and (d) TN concepts. (e) to (h) show an axonometric view of the unit cell 

assembly; (i) to (l) are the top view of assembly.  ,  , and   are skew angle, deviation angle, 

and packing factor respectively. Dash yellow line indicates the compound unit cell within the 

assembly. 

In the following we assess the effect of the stiffness mismatch of materials and joint assumption. 

Figure 3-19 visualizes the effective CTE in the vertical direction for rigid-jointed TL-2 and TN 

concepts with unidirectional CTE tunability, here chosen for demonstrative purposes. Both the 

skew angle and the Young's modulus ratio 1 2s sE E  of the components (i.e. Young's moduli of 

high-CTE material over low-CTE material) play a role in the effective CTE but to a different 

extent. The effect of the stiffness mismatch of materials is secondary compared to that caused by 

a change in the skew angle, i.e. the interplay of structures. The former has a non-negligible 

influence only at low values of the skew angle (e.g. below 55    for TL-2 concept, and below 

40    for TN concept). If the low-CTE material has a larger Young’s modulus (i.e. 1 2s sE E ), 

an increase in 1 2s sE E , i.e. the Young's modulus ratio of the components, reduces the effective 

CTE to a lower value; this phenomenon is caused by the high-CTE elements inducing a larger 

compensation of thermal expansion with increased stiffness. In contrast, if the high-CTE material 

has a larger Young’s modulus (i.e. 1 2s sE E ), the impact of the stiffness mismatch of materials 
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on the effective CTE is negligible. 

 

Figure 3-19: CTE dependence of TL-2 and TN concepts with unidirectional CTE tunability, on 

stiffness mismatch of materials (i.e. Young's modulus ratio of high-CTE material over low-CTE 

material: 1 2s sE E ), skew angle, and joint assumption. 

3.8.2 Testing setup and testing samples  

Figure 3-20 shows the schematic of the experimental set-up built to test the thermal expansion of 

specimens. It consists of a heating chamber and a DIC system. The heating chamber with 

dimensions of 200(L) 200(W) 150(H) mm is made of glass to provide an unobstructed view for 

DIC measurements. Testing samples were set on the copper plate with thermal transfer grease 

(Fuchs Lubricants Co., US) between the two. 

 

Figure 3-20: Experimental set-up used to measure thermal expansion: (a) (1) PID controller; (2) 
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Computer; (3) Power source; (4) DAQ system; (5) Heating chamber; and (6) CCD cameras, and 

(b) schematic of the apparatus.  

 

Figure 3-21: Thermal testing experiments for tetrahedra with stationary lines (I with Al/Ti and II 

with Al/Invar) and tetrahedra with stationary nodes (III with Al/Ti and IV with Al/Invar). 

Samples with three skew angles of roughly 55° (a), 60° (b), and 65° (c) are tested. 

Twelve physical samples (Figure 3-21) were tested to validate the thermoelastic properties of the 

building blocks. Four sets, each of three samples, were constructed: two sets consisted of Al6061 

and Ti-6Al-4V (Figure 3-21-I and III), and the other two were made from Al6061 and Invar 

(Figure 3-21-II and IV). Each set of material combinations included one of two configurations 

consisting of stationary lines or stationary nodes, at three skew angles (Figure 3-21a to c). This 

ensures that each building block was tested using two different material combinations and three 

different skew angles.  

Table 3-6 tabulates the CTEs of building blocks obtained both from theory and experiments for 

given pair of materials. The joint-to-length ratio (averaging about 29%), referring to the length 

ratio of a copper flake (made of copper with CTE of 16 10-6/ ) to a bar, characterizes the 

impact of flakes in the measured values of CTEs. Considering the joint impact, the absolute error 

goes no higher than 0.84 10−6/°C. 
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Sample 

Measured CTE in 
the vertical 
direction 

( 610 / C  ) 

Predicted CTE in 
the vertical 
direction 

( 610 / C  ) 

Absolute 
error 

( 610 / C  ) 

Joint to 
length 
ratio 
(%) 

TN (Al/Ti, 53.7   ) 3.62 ± 0.56 3.97 -0.35 30.8 
TN (Al/Ti, 59.7   ) 7.65 ± 0.45 7.35 0.30 27.6 
TN (Al/Ti, 63.3   ) 8.42 ± 0.39 8.77 -0.35 26.5 

TN (Al/Invar, 56.2   ) -3.60 ± 0.61 -3.48 -0.12 30.4 
TN (Al/Invar, 61.0   ) 0.97 ± 0.54 0.13 0.84 29.2 
TN (Al/Invar, 64.0   ) 1.69 ± 0.25 1.73 -0.04 28.3 
TL-2 (Al/Ti, 53.5   ) -11.58 ± 0.32 -11.61 0.03 32.0 
TL-2 (Al/Ti, 61.7   ) 3.70 ± 0.41 4.49 -0.79 30.0 
TL-2 (Al/Ti, 63.7   ) 6.47 ± 0.68 6.08 0.39 28.6 

TL-2 (Al/Invar, 54.1   ) -26.2 ± 0.49 -26.8 0.60 31.0 
TL-2 (Al/Invar, 59.6   ) -10.40 ± 0.64 -9.98 -0.42 27.0 
TL-2 (Al/Invar, 64.9   ) -2.50 ± 0.35 -2.26 -0.24 26.2 

Table 3-6: Predicted and experimentally measured CTE values for TN and TL-2, accompanied 

by their standard deviation, along with the joint length ratio, i.e. the length ratio of a copper flake 

to a bar, of each testing sample. 

 

Figure 3-22: Thermal testing experiments for nine compound units with an identical skew angle 

of 60°. 
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The nine samples of compound units are shown in Figure 3-22. Randomly distributed black and 

white pattern is painted on the surface of ABS connection balls for DIC testing.  

3.8.3 Calculation of elastic stiffness for truss members 

Using the standard mechanics approach here, the microscopic strain tensor, ij , at any point 

within the representative volume element (RVE) can be linearly expressed by the macroscopic 

strain tensor kl  through the local structural tensor ijklM : 

ij ijkl klM  .        (3-31) 

From the constitutive relation, we have: 

ij ijpm pmC   ,      (3-32) 

where ij  is the microscopic stress tensor and ijpmC  is the stiffness matrix of the component. The 

effective stress matrix can be simply defined by a volumetric average through integrating the 

microscopic stress over the RVE and dividing by the RVE volume: 

1
RVE

ij ij RVEV
RVE

dV
V

   ,     (3-33) 

where RVEV  is the volume of the RVE. Substituting Eqs. (3-31) and (3-32) into Eq. (3-33) results 

in 

1
RVE

ij ijpm pmkl RVE klV
RVE

E M dV
V

   ,    (3-34) 

where ijpmE  is the elastic properties of solid components. From Eq. (3-34) the effective stiffness 

matrix ijklC  is defined as  

1
RVE

ijkl ijpm pmkl RVEV
RVE

C E M dV
V

  .    (3-35) 

Since the RVEs of dual-material unit cells consist of discrete members, the volumetric average 
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through integration simplifies to become a mere summation. The relation between the effective 

strain of the thk  truss member,  k
pm , and the local axial strain along the bar member,  k , is 

given by [49]: 

     k k k
ij ijN  ,      (3-36) 

where ( )k
ijN  is the linear transformation operator from the local to global coordinates of the thk  

member: 

   2 2 2 kk
ijN l m n mn nl lm    ,   (3-37) 

where  , ,l m n  are the direction cosines of the member. Furthermore, the local stress-strain 

relation is given by: 

     k k k
sE  ,      (3-38) 

where  k
sE  is the Young’s modulus of the solid component of the thk  unit cell member. The 

relation between the effective stress of the lattice,  k
ij , and the local stress in the lattice 

member,  k , is given by: 

      Tk k k
ij ijN  ,      (3-39) 

where T denotes transposition. By substituting Eqs. (3-36) and (3-38) into Eq. (3-39), we can 

obtain the effective stress via a summation:  

          T

1

1 k
k k k k k

ij ij s pm pm
kRVE

N E N A L
V

 


  ,   (3-40) 

where  kA  and  kL  are the cross-sectional area and length of the thk member, respectively. 

From Eq. (3-40) we can extract the macroscopic stiffness tensor component as follows: 
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          T

1

1 k
k k k k k

ijpm ij s pm
kRVE

C N E N A L
V 

  ,   (3-41) 

For ease of representation of the constitutive equations, we introduce vector notation for the 

tensors. We write the effective stiffness tensor as:  

TC N RN ,       (3-42) 

where N  is the transformation operator for a lattice with M  sets of struts, i.e. sharing the same 

directional orientation, size/volume and solid component: 

2 3 2
1 1 1 1 1 1 1 1 1

2 3 3
M M M M M M M M M

l m n m n n l l m

l m n m n n l l m

 
   
  

     N ,  (3-43) 

where  , ,i i il m n  are the directional cosines of the thi  set of struts with axes 1x , 2x , and 3x , 

respectively. R  is given by:  

1

0

0
i

M

r

r

r

 
 
 
 
 
 
  




R ,     (3-44) 

with 

si i i
i

RVE

E A Lr
V

 .       (3-45) 

Here we examine the three unit cells with unidirectional CTE tunability (Figure 3-6a-c) for 

demonstration purposes. The coordinate systems defined for these concepts are depicted in 

Figure 3-23. As shown in Figure 3-23, struts sharing cross sectional area and component, parallel 

and equally distant from each other can be considered as one set of struts. Since TL-1 and TL-2 

concepts have identical strut location, they both use the coordinate system shown in Figure 3-23a. 
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Figure 3-23: The coordinate system defined for (a) TL-1 and TL-2 concepts, and (b) TN concept. 

Different sets of trusses are marked in different colours and numbered accordingly.  

For the topologies shown in Figure 3-6a-c, we summarized all the directional cosines, element 

length, and the effective Young’s modulus of each set of struts, ir , in Table 3-7 (for TL-1 and 

TL-2 concepts) and Table 3-8 (for TN concept). 

Truss Set No. 1 2 3 4 5 6 
l 2 2  2 2  0 0 2cos  2cos  

m 2 2  2 2  2cos  2cos  0 0 

n 0 0         

Length 1l  1l  1

2cos
l


 1

2cos
l


 1

2cos
l


 1

2cos
l


 

r for TL-1 
2

1
2

1

2 cosE a
l
 


 

2
2

2
1

E a
l



 
2

2
2

1

E a
l



 

r for TL-2 
2

1
2

1

2 cosE a
l
 


 

2
2

2
1

E a
l



 

Table 3-7: Unit vector components, lengths, and effective Young’s moduli of TL-1 and TL-2 

concept truss members. 
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Truss Set No. 1 2 3 4 5 6 

l 0 3
2

 3
2

 3 cos
3

  2 3 cos
3

  3 cos
3

  

m 1  
1
2

  
1
2

 cos  0 cos  

n 0 0 0 3 3  3 3  3 3  

Length 1l  1l  1l  1

2cos
l


 1

2cos
l


 1

2cos
l


 

r 
2

1
2

1

4 cosE a
l
 


 
2

2
2
1

2E a
l



 

Table 3-8: Unit vector components, lengths, and effective Young’s moduli of TN concept truss 

members. 

By substituting the values of directional cosines into Eq. (3-42), we obtain the macroscopic 

stiffness tensor for the TL-1, TL-2, and TN concepts with unidirectional CTEs as shown in Eqs. 

(3-26)-(3-28). 

3.8.4 Yield and buckling strength 

Tetrahedral building blocks were chosen in this study because of their high structural efficiency, 

which includes strength/mass, in addition to stiffness/mass. For this reason, here we also 

examine the overall strength performance, and we do so by adopting notation and terminology 

used in Supplementary Material Section 3.8.3. In this section, the yield and buckling strength of 

the three concepts with unidirectional CTE tunability are derived as examples for other concepts. 

From Eq. (3-39), we can obtain: 

               T Tk k k k k k k
ij ij ijA N A N f      (3-46) 

where  kf  is the axial load of the thk  bar. Considering the same simplification steps discussed 

earlier, the stretching forces vector, f , of struts can be defined as, 

 T
1 i Nf f f  f      (3-47) 

where if  is the axial load of the thi  set of struts. Thus, we have 
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TS N f        (3-48) 

with  

1

0

0
i

N

S

S S

S

 
 
 
 
 
 
  




     (3-49) 

iS  is the area occupied by one strut in the thi  set. From Eq. (3-42), we have 

T 1I N RNC       (3-50) 

where I  is a unit matrix. Thus, we have 

T T 1N f = S = N RNC S       (3-51) 

So the stretching forces vector, f , can be derived as  

1f = RNC S       (3-52) 

Taking the yield strength of a strut as Y , and the Euler buckling strength as E , the ultimate 

force a strut can carry is [50] 

2

2

2

, yield by tension
, yield by compression
, buckling by compression

Y

ij Y

E

a
f a

a

 
 
 


 


   (3-53) 

The force carried by each strut can be computed according to Eq. (3-52). If any component of 

vector f  reaches ijf  defined in Eq. (3-53), the corresponding global stress would be equal to 

the strength of the lattice material. The Euler buckling load of the struts is given by 

 2 3 4 24E sP n a E l  while the plastic yielding load is 2
Y YP a  , with n  determined by 

supporting conditions at strut ends. Thus, the critical aspect ratio is given by  
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2
s

cr
Y

En al 


       (3-54) 

Under compression, if the length of the strut is larger than the critical length, then the strut will 

buckle and the buckling strength is given by 

2 2 2

24
s

E
n E a

l


        (3-55) 

The initial yield surfaces under general macroscopic loadings are composed of the envelope of, 

at most, twelve super-planes in the stress space, and represented as follows for the TN concept: 

       

         

       

1 2 3 122 2

1 3 23 13 122

1 3 23 132

2 cos 1 3 2 cos 1 2 cos 2 cos 1 2 2 cos 1

2 cos 2 cos 4 cos 3 3 4 cos

2 cos 1 2 cos 2 cos 1 3 2 cos 1 2 cos 1 3 2 cos 1

cos cos

2 cos 1 2 cos 2 cos 1 3 2 cos 1 2 cos 1

cos

    
   

   

     
    

    

    
   

   

   
   

 

    
   

   
  

 

     

   

     

12

3 23 132 2

3 132 2

3 23 132 2

*

3 2 cos 1

cos

3 2 cos 1 3 3 2 cos 1 2 cos 1

2 cos 4 cos

3 2 cos 1 2 cos 1

2 cos

3 2 cos 1 3 3 2 cos 1 2 cos 1

2 cos 4 cos

, yield by tensi
Y






  
  

  

 
 

 

  
  

  

 




  
 

 


  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

*

*

on

, yield by compression

, buckling by compression

Y

E

 

 









 (3-56) 

The yield criterion in the stress space for TL concepts is: 
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   
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1 2 3 122

1 2 3 122

1 2 3 232 2 2

1 22 2
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cos cos cos

cos 1 cos 1 2 cos cos 1 2 cos 1

cos cos cos

cos 1 cos 1 cos 1 cos 1 2
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





 (3-57) 

According to Eqs. (3-56) and (3-57), the yield surface of the lattice in the macroscopic 

 1 2 3, ,    and  12 23 13, ,    space is sketched in Figure 3-24.  

 

Figure 3-24: Yield (solid and dash line) and buckling (solid and dot dash line) surface in 

macroscopic  1 2 3, ,    space: (a) for TN and (c) for TLs; and in  12 23 13, ,    space: (b) for 
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TN and (d) for TLs. σis and σib represent for equivalent uniaxial yield strength and buckling 

strength of the lattice material respectively. 
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Link between chapter 3 and chapter 4 

In the previous chapter, the thesis proposed routes to systematically engineer thermally 

responsive architected materials that are built from nine dual-material tetrahedral building blocks 

that are stiff and strong with desired magnitude and spatial directionality of thermal expansion. 

Chapter 4 exemplifies the design methodology through the application to a set of three-

dimensional lattices, such as the dual-material Octet-truss, which are proven to not only be stiffer 

and stronger than any other existing concepts, but also offer a highly tunable CTE. Pretension 

snap-fits were used to fabricate all the three versions of the Octet cell, which resolve the trade-

off between CTE tunability and structural efficiency, and extends the pin-jointed concept in 

Chapter 3 to bonded-joint lattices. Via a combination of numerical simulations and physical 

experiments on 3D fabricated prototypes, this work demonstrates how the Octet lattice can 

generate a large range of CTE values, including negative, zero, or positive, with no loss in 

structural efficiency. The novelty and simplicity of the proposed design, as well as the ease in 

fabrication, make this bi-material architecture well-suited for a wide range of applications, 

including satellite antennae, space optical systems, precision instruments, thermal actuators, and 

MEMS. 
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4.1 Abstract  
The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of 

conventional solids, can be tuned to zero by intentionally altering the geometry of their structural 

layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in 

structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In 

this work, we elucidate how to resolve the trade-off between CTE tunability and structural 

efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger 

than other 3D architected materials, but also has a highly tunable CTE. Via a combination of 

physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how 

two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an 

Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with 

no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the 

ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, 

including satellite antennas, space optical systems, precision instruments, thermal actuators, and 

MEMS. 

4.2 Introduction 
With an increase in temperature, most conventional materials expand with thermo-elastic 

distortions that can be difficult to accommodate. Materials with low coefficient of thermal 

expansion (CTE) are less sensitive to temperature changes and thus sought in several areas of 
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engineering, such as precision instruments, scanning electron microscopes, flexible electronics, 

biomedical sensors, thermal actuators, and MEMS [1-3]. Low CTE materials are also 

particularly crucial in aerospace components, such as space-based mirrors [3] and satellite 

antennas [4], that are built on earth but operate in outer space where wide temperature swings 

may cause undesired shape and size shrinkage. Solid materials, such as Invar and other metallic 

alloys, with intrinsically low or negative thermal expansion exist [5], and are currently used 

despite their limitations. One of their drawbacks is the narrow range in which they can operate, 

which is problematic when large temperature swings, from -150°C to 150°C as in outer space, 

occur. The CTE of ceramics and other brittle solids, on the other hand, is low as well as 

insensitive to temperature variation [6, 7]; their brittleness, however, poses challenges because 

thermal stresses easily peak and lead to abrupt failure. In contrast, the ideal material would have 

CTE that could be tailored to vanish for the whole range of temperature it operates and would 

not be brittle, a condition currently unmet by all existing solids. One route to create a material 

with adjustable CTE is to engineer its structural architecture and purposefully tweak it to yield 

desired ranges of CTE, from positive to negative values including zero.  

Recent works on mechanical metamaterials have shown that the CTE of periodic materials can 

be tuned by purposefully designing the architecture of their repeating unit and proper selection of 

the constituent materials [2, 3, 8-36]. It has been shown that low CTE can be obtained through a 

purely mechanical, and thus temperature-independent, mechanism [3], which can be in principle 

designed to make the material operate over a wide range of temperature. Existing mechanical 

metamaterials, however, have their limitations. The majority are two dimensional and can 

accommodate only in-plane thermal deformation [2, 3, 8-25, 28-30, 34, 35]. A handful are three-

dimensional [9, 25-33]. Among those, some can generate a large range of CTE, i.e. their CTE 

tunability is high, but their structural efficiency, i.e. the specific stiffness and strength, is poor, 

since their architecture deform by bending when loaded [36], a deformation mechanism that is 

far from being structurally efficient. A very small set of architectures, on the other hand, are 

stretch dominated with high specific stiffness, but these concepts can generate only a narrow 

range of CTE and cannot yield a vanishing CTE. The trade-off between CTE tunability and 

structural efficiency is currently unresolved with current concepts achieving high CTE tunability 

only at the expense of a dramatic loss in their specific stiffness and specific strength [25, 32], and 
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vice versa [9, 26-31, 33]. The goal of this work is to create a structurally efficient 3D architected 

material with highly tunable CTE including zero. 

4.3 Mechanisms of thermal deformation in a tetrahedron  

 

Figure 4-1: Thermal mechanisms a bi-material tetrahedron featuring either a stationary-node (a-

I) or stationary-lines (b-I). II and III show visually uncoupled thermal expansions, one for the 

low-CTE material and the other for the high-CTE material; IV shows the overall thermal 

expansion of the tetrahedron. Application of bi-material tetrahedra to the Octet cells (c and f). (c) 

Iso-CTE Octet obtained by assembling 8 stationary-node tetrahedra with skew angle ( I ) of 60° 

and 50° on a regular octahedron (red core). (d and e) isotropic CTE properties plotted in polar 

and spherical coordinates. (f) Aniso-CTE Octet (skew angle A =60°) with directional CTE 

obtained with stationary-lines tetrahedra. (g and h) anisotropic CTE properties with low CTE in 

the z-direction. The green dashed line in (d) and (g) represents points with zero thermal 

expansion. 

Since existing architected materials with high CTE tunability are bend-dominated and have thus 

low specific stiffness and strength, here we start off our investigation by considering a stretch-

dominated lattice, the Octet truss, known for its structural efficiency, superior to that offered by 

most of the other existing lattices. The Octet lattice is obtained by replicating along periodic 

directions a unit cell that consists of a regular octahedron surrounded on each of its eight faces 

by a tetrahedron. We first focus on the thermal deformation mechanisms of its main building 

block, the tetrahedron, and show later how they can be used in an Octet lattice to generate high 
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CTE tunability, equally low in all directions or along preferential directions. A bi-material 

tetrahedron can undergo two mechanisms of thermal deformation by simply switching the 

position of the constituent materials. The first mechanism results in stationary-nodes (Figure 

4-1a) [9, 28-31, 33-35], and can be used in an Octet cell to generate thermal expansion isotropy. 

The second mechanism that we identify here for the first time resorts to stationary-lines that 

appear in a bi-material tetrahedron upon thermal expansion (Figure 4-1b).  This mechanism can 

be applied to obtain an Octet lattice with zero CTE in a specific direction, a thermal behavior that 

is often required at the interface between dissimilar materials, especially in transition 

components, or adapter elements, in need to tolerate a thermal-expansion mismatch in a given 

direction [17]. We recall that the unit cell of the Octet truss, here chosen for its high structural 

efficiency, contain eight tetrahedra that can be used to create thermal expansion mechanisms 

with either stationary lines or stationary nodes. A systematic strategy that uses the tetrahedron as 

the building block of the repeating unit is currently developed in a parallel work to rationally 

design a rich variety of bi-material lattices with programmable thermal expansion. 

Figure 4-1a and 1b show the thermal expansion mechanisms with a stationary node and 

stationary lines respectively. The members with higher CTE, 1 , are shown in red and those 

with lower, but still positive, CTE, 2 , in blue. With a temperature increase, two modes of 

deformation occur simultaneously in the tetrahedron of Figure 4-1a-I, although visualized 

uncoupled in Figure 4-1a-II and III. The blue elements tend to heighten the tetrahedron ( 1H  in 

Figure 4-1a-II), whereas its top vertex is retracted by the red elements ( 2H  in Figure 4-1a-III). 

If the CTE of the constituent materials, 1  and 2 , or alternatively the skew angle,  , are 

carefully chosen, as shown in Figure 4-1b-IV, the height increase of the tetrahedron can be 

counteracted, a condition that leaves the position of the top vertex unaltered. This point is 

designated as a stationary-node [35], which implies that its position in the tetrahedron does not 

change during thermal deformation. An alternative scheme of thermal deformation, introduced 

here, consists of stationary-lines that can appear in a tetrahedron during thermal deformation 

(Figure 4-1b). With this mechanism, the minimum distance (marked as H  in Figure 4-1b) 

between the top and bottom struts (red) of the tetrahedron, which have identical CTE, remain 

constant upon heating. For stationary lines to appear, the struts with high CTE (red) should be 
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rationally designed in the tetrahedron so as to be skewed (Figure 4-1b), as opposed to those in a 

stationary-node mechanism, which all lie in the base plane of the tetrahedron (Figure 4-1a). In a 

stationary-line layout, the relative position of the struts, including the angle between struts and 

the minimum distance ( H ) between the top and bottom struts are preserved upon heating. 

Similarly to Figure 4-1a, Figure 4-1b-II and III show the deformation modes for a stationary-line 

tetrahedron; here to ease the understanding, the deformations are shown as uncoupled, although 

in practice they are not, as they occur at the same instant. Figure 4-1 (b-II)) shows the height 

increase, 1H , caused by the thermal expansion of the blue elements, whereas Figure 4-1 (b-III) 

visualizes the height decrease 2H  induced by the greater expansion of the horizontal red beams. 

The height increase, 1H , of the blue elements (Figure 4-1b-II) is thus compensated by a height 

decrease, 2H , (Figure 4-1b-III) induced by the greater expansion of the red members. As a 

result, the overall CTE of the tetrahedron in the vertical direction (Figure 4-1b-IV) can be 

controlled through either an educated choice of the constituent materials, in particular by 

selecting the CTE ( 1  and 2 ) of the two constituent materials, or a tailored selection of the 

skew angle,  , between the struts shown in Figure 4-1. 

4.4 Generation of Octet bi-materials with high CTE tunability 

Low CTE tetrahedra with either a stationary-node (Figure 4-1a-I) or stationary-lines (Figure 

4-1b-I) can be used to generate more complex 3D unit cells that in turn can tessellate periodic 

lattices with low CTE in desired directions. Here we chose three examples as shown in Figure 

4-1c and 1f, all applied to an Octet cell but potentially applicable to other cell topologies 

containing tetrahedra. Figure 4-1c shows two Octets with a stationary-node, one with skew angle 

I =60° and the other with I =50°, and Figure 4-1f illustrates an Octet with stationary-lines for 

A =60°. The Octet in Figure 4-1c, namely Iso-CTE Octet, has a regular octahedron as its core, 

surrounded by eight stationary-node tetrahedra on its faces. Upon heating, each of the vertices of 

the eight tetrahedra remains stationary, and can guarantee an isotropic CTE, as shown by the 

plots in Figure 4-1d and e. On the other hand, the Aniso-CTE Octet in Figure 4-1f has stationary-

lines tetrahedra assembled in an Octet cell that results in thermal expansion anisotropy. In this 

case, upon heating, the relative position of the planes, where the red struts of the eight tetrahedra 

lie, remain unaltered, thereby leading to a potentially zero thermal deformation in a specific 
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direction (see Figure 4-1e and h). Whereas the thermal expansion of the Iso-CTE Octet is 

isotropic, its mechanical properties are almost isotropic, as opposed to the Aniso-CTE Octet, 

which is both mechanically and thermally anisotropic. 

4.5 Results 

Manufacturing, simulations, and testing 

 

Figure 4-2: Design embodiments for Iso-CTE Octet and Aniso-CTE Octet: (a-I) Topologies for 

Iso-CTE Octet ( I =60°) with A1 and A2 used as corresponding nodes for the CTE measurement 

in the x-direction, (a-II) Iso-CTE octet ( I =50°) with B1 and B2 used as corresponding nodes for 

the CTE measurement in the z-direction, and (a-III) Aniso-CTE Octet ( A =60°), with C1 and C2 

as corresponding nodes for the CTE measurement in the z-direction; (DIC tested CTEs obtained 

by evaluating the average of 100 CTE measurements between pairs of corresponding nodes). (b) 
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Cells manufactured from Al6061 (high-CTE) and Ti-6Al-4V (low-CTE); Design target and 

tested CTEs given for Iso-CTE Octet and Aniso-CTE Octet in the z-direction. (c) 3D printed 

low-CTE lattices showing one layer of the bi-material lattice: PLA (poly lactic acid) in red with 

high CTE, and ABS (acrylonitrile butadiene styrene) in blue with low CTE. (d) Top and 

isometric views of two layers showing the stacking sequence as well as the overall lattice 

assembly for each bi-material concept. Thermal displacement maps for horizontal deformation 

(e: DIC and f: FEA) and vertical deformation (g: DIC and h: FEA). (Scale bar: 10 mm). 

The concepts shown in Figure 4-1 elucidate the two thermal expansion mechanisms of a 

tetrahedron and show their application to three Octet cells, where the skew angle can be tuned to 

yield negative, zero, or positive, CTE in either all directions or a specific direction. We now 

demonstrate their thermal tunability with physical experiments on fabricated prototypes and 

examine the robustness of our findings by performing numeric simulations. The embodiment of 

each Octet cell (Figure 4-1) is shown in Figure 4-2a with manufactured prototypes in Figure 4-2b, 

each targeting a specific CTE value of design. Each Octet cell is an assembly of laser cut pieces 

from Al6061 (23×10-6/°C) and Ti–6Al–4V (11.5×10-6/°C) alloy sheets with pretension snap-fit 

joints, similar to simple snap-fit joints [37]. (See Methods Section 4.8 and Supplementary 

Material Section 4.9). The thermal properties are tested on a single unit cell with experimentally 

measured CTE values, reported in Figure 4-2b, that enable a quantitative validation of the 

computational results. The feasibility of the overall lattice assembly is demonstrated in Figure 

4-2c and d, where geometric models and 3D printed prototypes for each version of the Octet cell 

show the overall in-plane and out-of-plane tessellation. For CTE measurements, a 3D digital 

image correlation (DIC) set-up with a temperature controlled heating chamber (Methods Section 

4.8 and Supplementary Material 4.9) is used to assess the CTE of each version of the Octet cell. 

Results from experiments (Figure 4-2e and g) and their counterpart simulations (Figure 4-2f and 

h) are quantitatively in good agreement. The results in Figure 4-2e-I to h-I show that for the Iso-

CTE Octet with I =60°, the thermal expansion along both the x- and z-direction is low and 

positive (9.83×10-6/°C), which is below the CTE value of the inner Al6061 octahedron (21×10-

6/°C), and below that (11.5×10-6/°C) of its constituent material Ti-6Al-4V. In addition, the 

effective CTE of the Iso-CTE Octet can be further reduced to 8.39×10-6/°C by changing the skew 

angle from I =60° to 50° (Figure 4-2e-II to h-II). On the other hand, for the Aniso-CTE Octet, 
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the CTE measurement in Figure 4-2g-III shows no change appears in the vertical distance 

between the horizontal bars; in addition, the CTE value in the z-direction is almost zero 

(0.171×10-6/°C), and much lower than the CTE in the horizontal direction (Figure 4-2e-III to h-

III). We note that the maximum and minimum CTE values obtained with FEA and DIC differ 

slightly. The reason for the discrepancy is attributed to the testable zone on a given strut where 

DIC can provide reliable measurements. Points outside this zone, which is smaller than that 

analyzed with FEA, cannot be measured. Other factors of the DIC technique that can play a role 

in explaining the difference between experiment and computational results include the size and 

curvature of the testing sample subset, and the light contrast used during the experiments. (See 

Methods Section 4.8 and Supplementary Material Section 4.9). 

4.6 Discussion 

To establish and compare the thermomechanical merit of the Octet lattice bi-materials here 

presented, we now resort to two sets of charts. The first set (Figure 4-3) compares the Octet 

concepts with two 3D benchmarks existing in the literature [9, 32] for a representative value of 

relative density of 0.05 and assuming Al6061 and Ti–6Al–4V as the constituent materials 

(Material properties in Table 4-1 and Table 4-2 of Supplementary Material Section 4.9); the 

second set (Figure 4-4) compares them with other classes of materials in a given range of relative 

density. Figure 4-3a illustrates the CTE trends with respect to the skew angle for our versions of 

the Octet, along with those of the two benchmarks, the H-concept [32] (bend-dominated) and the 

S-concept [9] (stretch-dominated). The former has low structural efficiency but high CTE 

tunability, as opposed to the latter, which is structurally efficient but with relatively poor CTE 

tunability. CTE tunability is here measured by ∆CTE, which is the difference between the upper 

and lower CTE limit (obtained from the y-axis of Figure 4-3a) that each unit cell can yield with a 

change in either its skew angle or the constituent materials. We recall here that these are two, 

among others, of the most promising geometric variables that can be controlled to further boost 

the CTE tunability. The higher the CTE tunability of a concept, the larger ∆CTE. The results 

obtained for each concept via asymptotic homogenization [38] and validated via experiments for 

given geometries, show that the Aniso-CTE Octet has the highest CTE tunability. The CTE in 

the z-direction ranges from -366×10-6/°C (not visible in Figure 4-3a) to 10.9×10-6/°C, values that 

result in a tunability ∆CTE(θ)=376.9×10-6/°C. For larger skew angles, the CTE of the Aniso-CTE 
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Octet monotonically increases to reach that of Ti-6Al-4V. The H-Concept, on the other hand, has 

a highly tunable CTE, which can also reach negative values; as shown in Figure 4-3a; its 

effective CTE first decreases before rising up again for increasing skew angles. The CTE 

tunability of the Iso-CTE Octet is more than double that of the S-Concept, which has CTE that 

reaches the minimum of 0.273×10-6/°C for I =42° and its max of 11.3×10-6/°C for I =65°. 

Figure 4-3b shows a comparison of the CTE tunability of the concepts here under investigation, 

with those of Ti-6Al-4V. Besides their ∆CTE represented by the height of each column, the red 

and blue gradients specify CTE ranges of positive and negative values with white indicating zero. 

The Iso- and Aniso-CTE Octet are the only concepts that can obtain near-zero CTE. The H-

Concept can provide a negative CTE range, whereas the ∆CTE of the S-Concept is narrow with 

min and max values that are both positive. The octet concepts presented in this work have a large 

CTE tunability including vanishing CTE obtained from common materials, such as Al and Ti 

alloys, which have both positive CTE.  

To assess the structural efficiency of the bi-material Octet lattices, we plot in Figure 4-3c and d 

the effective elastic modulus and yield strength in all the relevant directions for the low range of 

relative density 0.02 to 0.30. The plot of the shear properties is included in the Supplementary 

Material Section 4.9. The properties of the H-Concept and the S-Concept are also visualized to 

allow a comparison of their specific stiffness and strength, represented by the slope of a given 

point on a curve. We note that for *  below 0.1, the relation between the Young’s modulus and 

the relative density of the bi-material Octet lattice is not linear – as one would expect to be for a 

single material lattice. The reason for this is that the unit cell contains struts made of two 

materials with dissimilar relative density. As expected, the results show that all stretch 

dominated concepts have a better structural efficiency, with the Aniso-CTE Octet being the best 

for stiffness and strength in the z-direction. For relative density above 0.1, the Iso-CTE Octet 

with I =60° performs worse than the S-Concept, because the joints of the latter are modelled as 

ideal, i.e. weightless, as opposed to those of the Octet cells, which are modelled with their actual 

manufactured geometry. By comparing the two versions of the Iso-CTE Octet, one with I =50° 

and the other with 60°, we observe that the former can provide a lower CTE at the expense of a 

reduction in structural performance. In summary, the Aniso-CTE Octet has the best mechanical 
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performance, whereas the Iso-CTE Octet outperforms the structural performance of the S-

Concept and the H-Concept. 

 

Figure 4-3: (a) Thermal properties of the Octet bi-materials and benchmark concepts (S-concept 

[9] and H-concept [32]) plotted with respect to the normalized skew angle, Normalized . Shown in 

bracket below each pictorial, Normalized  is calculated as    /Normalized Model min max min       , where 

Model  is the skew angle of a concept, and min  and max  are respectively the minimum and 

maximum skew angle that a concept can provide without its cell topology degenerates. (b) 

Histogram showing the CTE tunability (∆CTE) as well as the max and min CTE for the selected 

concepts compared to a low CTE solid material, i.e. Ti-6Al-4V. (c) Effective stiffness and (d) 

effective strength plotted with respect to relative density * . Note  /* lattice solid composite    where 



 

154 

 

lattice  is the actual density of the bi-material unit cell and  solid composite  is the density of the solid 

bi-material with volume fraction of the constituent materials. Note that the maximum relative 

density of the Iso-CTE Octet does not reach 0.3; it is 0.2 for I =50°, and 0.25 for I =60°, 

because above these values the size of the joints become unfeasibly larger than the cell members, 

which means that the cell is unfeasible. 

 

Figure 4-4: (a) CTE plotted against Young’s modulus [39]; and (b) CTE versus normalized 

strength (ultimate strength for Metals and Polymers; modulus of rupture for Ceramics; tensile 

strength for Composites) [40]. The points for the Octet cells are obtained by varying either the 

skew angle for a given relative density (0.05) or vice versa. Relative density ranges considered in 

the charts for the Octet lattice concepts: 0.02< * <0.25 for the Iso-CTE Octet, and 0.02< *

<0.60 for the Aniso-CTE Octet. 

We finally resort to material property charts to visualize the thermomechanical performance of 

the two Al6061-Ti-6Al-4V Octet concepts and compare it with that of other classes of materials. 

Figure 4-4a and b show respectively Young’s modulus and normalized strength plotted versus 

the CTE. The Octets with high CTE tunability achieve unprecedented combinations of properties 

that cannot be obtained with other classes of materials [39, 40]. By spanning the skew angle of 

the Iso-CTE Octet, the CTE can range from near-zero (<1×10-6/°C) to that of Ti-6Al-4V. The 

CTE of the Aniso-CTE Octet in the vertical direction can be theoretically changed from negative 
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infinity to the CTE of Ti-6Al-4V. The Aniso-CTE Octet has CTE in the horizontal direction 

approximately equal to the Al6061 CTE, but possesses Young’s modulus and normalized 

strength that can be tailored by purposefully changing relative density and skew angle. Figure 

4-4 shows that for a given CTE, the Young’s modulus and normalized strength of the Aniso-CTE 

Octet in the z-direction are higher than those of the Iso-CTE Octet. On the other hand, for given 

Young’s modulus or normalized strength, the Aniso-CTE Octet can obtain a lower CTE in the z-

direction, which make it an ideal candidate for applications which require thermal stability in 

prescribed directions. 

4.7 Conclusions 

To conclude, this study has presented, built, and thermally tested Octet lattice bi-materials 

(Al6061-Ti-6Al-4V) that can be tuned to cover a substantial range of CTEs, which include zero, 

in given spatial directions without jeopardizing their structural efficiency. Several variables 

defining the unit cell geometry govern the macroscopic thermo-mechanical properties of the bi-

material lattices here investigated. The focus of this chapter has been on a subset of parameters, 

i.e. skew angle and strut thickness controlling relative density, which were selected as considered 

to play a crucial role in the CTE as well as specific stiffness and strength of the lattices. Other 

factors, such as the strut diameter ratio of the constituent materials and other topological 

variables, can be studied and used to achieve further CTE tuning. We also note that the 

conclusions drawn in this work on the thermomechanical performance of the bi-material octet 

lattice apply to the cases here investigated. Prototypes were built via snap-fit with pretension 

joints from either tetrahedra with stationary-node to provide CTE isotropy, or tetrahedra with 

stationary-lines to achieve CTE anisotropy. Results experimentally tested and validated via 

numeric simulations show that by introducing material architecture even common materials can 

render unprecedented combinations of thermomechanical properties. The novelty and the 

simplicity of the proposed 3d design as well as the ease in fabrication, make structurally efficient 

lattices with tunable coefficient of thermal expansion well-suited for a wide range of applications, 

such as satellite antennas, space optical systems, space-based mirrors, precision instruments, 

thermal actuators, and MEMS. The thermal expansion mechanism introduced in this chapter for 

the stationary-line tetrahedron, can also be exploited to create other multifunctional 3d 
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architectures with high structural performance and desired directional properties, including 

thermal conductivity, acoustic bandgap, and electrical conductivity. 

4.8 Methods  

4.8.1 Sample fabrication 

Pretension snap-fits were used to fabricate all the three versions of the Octet cell. Laser cut 

elements were bended to allow skew angle variation as needed, prior to snap-fitting of diagonal 

elements. Pretension provided by wedge resistance was used to fasten diagonal elements into 

cross-shaped holes. The connection between different elements was further reinforced with 

epoxy glue. The metal fabrication process is summarized schematically in Figure 4-5 with 

further explanatory details given (Supplementary Material Section 4.9). 

4.8.2 DIC measurements 

Digital Image Correlation was used to measure the small deformation of each lattice member and 

provide a full-field displacement map describing the thermal deformation behavior [3, 16, 18, 

35]. A high contrast black and white speckle pattern with proper dot density was painted on each 

member of the lattice samples. The lattice was then placed into a heating chamber which rose the 

temperature up to approximately 125°C starting from an initial temperature of 25°C 

(Supplementary Material Section 4.9). The temperature was measured via thermocouples and 

collected in a data acquisition system. A proportional–integral–derivative controller (PID) was 

used to control the temperature. Digital images were captured with two charge-coupled-device 

(CCD) cameras and were controlled by a computer program (Vic-Snap 8 [41]). VIC-3D [42] was 

used to track the motion of speckle patterns to obtain the thermal deformation. The accuracy of 

the DIC system was evaluated by tested CTEs from standard metal alloy sheets (Al6061 and Ti-

6Al-4V). The displacement noise was evaluated by taking multiple stationary images with time 

separation of 100ms. The noise was less than 2μm, while the expected displacement range was 

~100-150μm. 

4.8.3 Finite element simulations and asymptotic homogenization 

Full 3D models of the testing samples were simulated by performing finite element simulations 

(ANSYS 14.5 [43]). All models were meshed using 10-node tetrahedral elements and simulated 
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under a thermal load of 100°C. The effective CTEs were calculated by measuring the linear 

expansion between either the stationary-nodes or the stationary-lines (Figure 4-2a). For each cell 

topology, including the H-Concept and the S-Concept, asymptotic homogenization theory was 

combined with finite element analysis to calculate the thermomechanical effective properties. 

For thermal expansion analysis in steady state, the properties including effective stiffness, yield 

strength, and CTEs in all three orthogonal directions were calculated with respect to the relative 

density and the skew angle. Thermal properties calculated numerically were further validated for 

selected samples via experimentally obtained thermal measures. On the role played by the joints 

in the deformation of the simulated versus manufactured lattices, we recall that the Octet lattice 

is a pin-jointed structure that is stretch dominated, i.e. its slender members carry axial forces only. 

Making the joints of the Octet rigid makes no difference in the deformation modes. Whereas the 

computational analysis has considered both types of joints (pin and rigid), the manufactured 

lattices are built with rigid joints that are snap-fit to allow proper connection between struts of 

dissimilar materials. 

4.9 Supplementary material 

4.9.1 Manufacturing: pretension snap-fit method 

Figure 4-5 shows the pretension snap-fit technique used to build the bi-material Octet cell. First, 

the structural elements were laser cut from metal sheets. For the regular Octet with either I =60° 

or A =60°, inclined elements were snap-fitted without bending and then attached to the 

horizontal panels. For irregular Octet-trusses, both the beam elements and interlayer panels 

require bending. To avoid rebound deformation, sheet metal hot extrusion processes can be used 

to alter the skewness angle. Since the snap-fit connections are between Al6061 (high CTE) and 

Ti-6Al-4V (low CTE), when heated, the cross-shaped grooves on the aluminum panels have a 

larger expansion than the titanium inserts, which loosens the joints, weakens the low CTE 

mechanism, and might cause the whole structure to fall apart. To avoid joint loosening, wedges 

with steep slopes (15°) were designed on both skewed elements and horizontal panels. When 

inserted, the wedged forces provided by the oblique-wedge clamping constrained the joints. 

Moreover, high-strength high-temperature-resistant epoxy glue (LePage Gel Epoxy Syringe Glue 

with working temperature up to 150°C) was used to fill in and cement Al6061 and Ti-6Al-4V 
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elements. Epoxy providing a much larger CTE (45-65×10-6/°C compared with Al6061 and Ti-

6Al-4V) can increase the fastening force and prevent the joints from loosening. The wedges can 

be either laser cut or fine finished by CNC. We emphasize that joints made of Al6061 and Ti-

6Al-4V can also be vacuum brazed with TiBrazeAl-580 foil (Al-12Si foil and Cu foil, Titanium 

Brazing, Inc.).  

 

Figure 4-5: Pretension snap-fit manufacturing process. (a) Laser cutting; (b) Sheet metal hot 

extrusion processes to impose a given skew angle; (c) Snap-fitting of diagonal elements; (d) 

Wedge for pretension; (e) Snap-fitting of horizontal elements; (f) Joint reinforcement via Epoxy 

Glue; (g) Octet cell assembly from unbended elements; and (h) Octet cell assembly from slightly 

bended elements. (Scale bar: 10 mm)  

4.9.2 Assembly and tessellation rules 

Figure 4-6 shows possible tessellations for Octet cells at given skew angles. A packing density of 

100% could be obtained for all Aniso-CTE Octets (Figure 4-6a). In contrast, dissimilar skew 

angles for the Iso-CTE Octet result in tessellations with lower packing factors, i.e. 50% for 
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concepts in Figure 4-6b, c, and d, and 100% for the concept in Figure 4-6e. Differences in the 

packing factor are controlled by the need of the inner octahedron to thermally expand without 

touching adjacent cells as shown in Figure 4-6c-II. 

 

Figure 4-6: Tessellations of bi-material Octet cells (a) Aniso-CTE Octet with A =60°, (b) Iso-CTE Octet 

with I =50°, (c) Iso-CTE Octet with I =60°, (d) and (e) are Iso-CTE Octet with I =70°. Assembly in 

axonometric view (I) and top view (II). 

4.9.3 Experiment to test thermal expansion 

Figure 4-7 shows the schematic of the experimental set-up built to test the thermal expansion of 

the Octet cells. It consists of a heating chamber and a DIC system. The former with dimensions 

of 200(L)×200(W)×150(H) mm is made of glass to provide an unobstructed view for DIC 

measurements. A 200 Watt strip heater was placed under the copper plate in the heating chamber. 

The copper plate is supported by four leveling mounts which were used for horizontal adjustment. 

The temperature was controlled by a feedback system, which included a K-type thermocouple 

attached to the copper plate and a proportion integration differentiation (PID) (OMEGA CN7800) 

temperature controller. The controllable temperature range was from 25°C to 200°C. The 

temperature-time data in the PID controller were imported through a RS-485 interface. A NI 

cDAQ 9174 data acquisition system was used to collect the other three thermocouples from 

different locations in the chamber and to measure the temperature heterogeneity. A fan in the 

chamber mixed the air to provide a uniform ambient temperature. The temperature 

inhomogeneity was regulated within 5% of the real-time temperature through the application of a 
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rotational air fan. Testing samples were covered by a black and white pattern and were set on the 

copper plate with thermal transfer grease between the two. The thermal strain was measured by 

DIC using images that were captured through two CCD cameras (Grasshopper 5.0 MP with 

Fujinon HF25SA-1 lens). Using the DIC correlation software, Vic-3D (Correlate Solution Inc.), 

virtual extensometers were placed on the reference image and tracked through the images to 

measure the displacement between pairs of pixel subsets. The strain field was obtained from the 

relative displacement between these pairs of subsets. The average CTE was calculated from 

thermal strain and temperature change.  

 

Figure 4-7: Experimental set-up used to measure thermal expansion (photograph (a) (1 PID 

controller; 2 Computer; 3 Power source; 4 DAQ system; 5 Heating chamber; and 6 CCD 

cameras) and schematic picture (b)). 

To evaluate the accuracy of the CTE testing system, we choose Al6061 (Ta Chen International 

Inc.) and Ti-6Al-4V (RTI International Metals, Inc.) as two standard materials. The CTEs of 

these two standard materials were tested by both our DIC experimental set-up and a commercial 

thermal expansion instrument (TA Q400, TA Instruments, Inc.). The comparison of the 

measured CTEs shown in Table 4-1 shows the accuracy of our experimental set-up. 

Material DIC Commercial instrument 
Al6061 22.6×10-6/°C 23.0×10-6/°C 

Ti-6Al-4V 12.0×10-6/°C 11.5×10-6/°C 
Table 4-1: The measured CTEs of Al6061 and Ti-6Al-4V by DIC and TA Q400 
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Material Young’s Modulus Poisson’s Ratio 
Al6061 70.75Gpa 0.35 

Ti-6Al-4V 113.8GPa 0.34 
Table 4-2: The mechanical properties of Al6061 and Ti-6Al-4V 

4.9.4 Shear modulus of low-CTE octet truss 

 

Figure 4-8: Effective shear modulus plotted with respect to relative density *  
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5. Chapter 5: Conclusions 

5.1 Summary of the main results 

The existing CTE tunable concepts of architected materials fail to simultaneously meet the 

following requirements imposed by a range of engineering applications: i) high structural 

efficiency and ii) wide, ideally unbound, obtainable CTE range covering large negative to 

positive, including zero, CTEs. The high structural efficiency, e.g. stiffness to mass ratio with 

small deformation when mechanically loaded, and ample freedom to tune the effective CTE, e.g. 

sufficient deformation can be obtained to adjust the thermal expansion of components leading to 

zero effective CTE, are two conflicting requirements, which current available concepts are 

unable to ideally reconcile. In this context, this thesis has provided the following insights on the 

CTE tunability of structurally efficient architected materials:  

 In Chapter 2, stretch-dominated bi-material unit cells with low- and high-CTE have been 

proposed as diamond-shaped building blocks of hierarchical lattices with the goal of 

improving CTE tunability. The presented hierarchical bi-material lattices can be designed 

to attain a theoretically unbounded range of thermal expansion without (i) impact onto 

elastic moduli and (ii) severe penalty in specific stiffness. Through simulations, derived 

closed-form expressions and experiments on fabricated proof-of-concepts, this thesis has 

shown that hierarchical lattices (HL) including those made of self-repeating unit cells, i.e. 

fractal-like HL, can be tailored to concurrently provide high specific stiffness and 

theoretically unbounded CTE tunability with CTE values ranging from large positive, 

zero to large negative. Results show that the achievable range of CTE can be enlarged by 

66% through the addition of one order of hierarchy alone, and that for a given CTE range 

the specific stiffness can be at least 1.4 times larger than that of existing stretch-

dominated concepts. 

 Dual-material concepts that expand or contract as desired upon changes in temperature 

exist but have their limitations. One upon which we have focused in Chapter 2 is the 

trade-off caused by the inherent thermo-elastic coupling that they feature, a condition that 

makes desired changes in thermal expansion penalize elastic stiffness, and vice versa. 

The introduced hybrid-type HLs can be exploited to decouple initially coupled thermo-
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elastic properties in different order of structural hierarchies so as to provide the individual 

property tailoring that current concepts have not been proven to attain yet. The hallmark 

of fractal-like and hybrid-type HL is that they can reduce the penalty that an increase in 

CTE  will generate on the elastic properties, so as to obtain the best compromise out of 

them. 

 Thermal expansion can be problematic in manifold applications that require thermal 

stability, yet it can also be purposely exploited to meet specific directional requirements 

of thermal deformation. Opportunities to tailor thermal expansion in architected materials 

exist, but design options that are stiff and provide full directional authority on thermal 

expansion are currently limited by the structural characteristics of existing concepts. In 

Chapter 3, we have reported routes to systematically engineer thermally responsive lattice 

materials that are built from dual-material tetrahedral units that are stiff and strong. 

Drawing from concepts of vector analysis, crystallography, and tessellation, a scheme has 

been presented for three-dimensional lattices to program desired magnitude and spatial 

directionality, such as unidirectional, transverse isotropic, or isotropic, of thermal 

expansion. Demonstrations on thermal expansion and mechanical properties include 

theoretical, computational, and experimental studies of nine representative concepts, from 

tetrahedral building blocks to compound unit cells that can tessellate structurally efficient 

lattices with tunable magnitude and prescribed directionality of thermal expansion.  

 In a solid, a change in temperature can cause the material to change in shape, length, area 

and volume. In Chapter 3 we have shown that via the application of the material length 

vector (ML) and thermal displacement vector (TD), it is possible to draw a simple 

analogy between the thermal deformation triggered in a solid material and that appearing 

in a bi-material building block. The ML and TD vectors can also express the CTE of an 

assembly of building blocks and even the CTE of tessellations of compound units. 

Concepts in both 2D and 3D have been given as examples to show the handiness of using 

vectors to visualize and analyze thermal expansion of a periodic truss built from single 

units, as well as a more complex assembly of compound units. 
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 In Chapter 3, we have also considered a tetrahedron building block made of six rods, each 

made of a material with either low or high CTE, but both positive. In total, there are 

eleven arrangements with all the possible material permutations that can appear by 

simply switching the position of high- and low-CTE rods. For two monomaterial 

tetrahedra, the thermal expansion is uniform; as there is no thermal mismatch, no 

opportunity exists to tailor the CTE. For the remaining nine tetrahedra, on the other hand, 

CTE tunability is possible as the effective CTE can be adjusted in one or more directions 

yielding effective CTEs that can be classified into three groups: 1) lower than, 2) between, 

and 3) higher than the CTEs of both the component materials. This chapter has thus also 

studied the relation that each of these tetrahedra has with the CTE along its principal axes 

and has provided a foundational basis to understand other, more complicated, truss-like 

materials. 

 Chapter 4 has exemplified the design methodology presented in Chapter 3 through the 

application to a set of three-dimensional dual-material Octet-trusses, which are proven to 

not only be stiffer and stronger than any other existing concepts, but also offer a highly 

tunable CTE. Chapter 4 has presented, built, and thermally tested Octet lattice bi-

materials that can be tuned to cover a substantial range of CTEs, which include zero, in 

given spatial directions without jeopardizing their structural efficiency. In contrast with 

Chapter 3, all metallic and plastic prototypes in Chapter 4, either laser cut or 3D printed, 

are built via snap-fit with pretension rigid joints, which are more practical than pin-

jointed or ball-and-stick rigid-jointed models in Chapter 3. Prototypes have been built 

from either tetrahedra with stationary-nodes to provide CTE isotropy, or tetrahedra with 

stationary-lines to achieve CTE anisotropy. Several variables defining the unit cell 

geometry govern the macroscopic thermo-mechanical properties of the bi-material 

lattices here investigated. The focus of this chapter has been on a subset of parameters, i.e. 

skew angle and strut thickness controlling relative density, which were selected to play a 

crucial role in the CTE as well as specific stiffness and strength of the lattices. Results 

experimentally tested and validated via numeric simulations have shown that by 

introducing material architecture even common materials can render unprecedented 

combinations of thermomechanical properties.  
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In summary, we engineered several strategies for the development of architected materials that 

can simultaneously meet the two conflicting requirements in engineering applications, i.e. high 

structural efficiency and large CTE tunability. Firstly, structural hierarchy decouples thermos-

elastic properties and allows stretch-dominated architected materials to exhibit unbounded CTE 

tunability. A scheme is then presented for architected materials to program desired magnitude 

and spatial directionality of thermal expansion, such as unidirectional, transverse isotropic, or 

isotropic CTE. As an exemplification of the scheme, we have elucidated how to resolve the 

trade-off between CTE tunability and structural efficiency, and presented Octet concepts that are 

not only stiffer and stronger than other 3D architected materials, but also offer a highly tunable 

CTE. 

5.2 Original contribution 

The following list summarizes the main findings achieved during the present study: 

 Stretch-dominated architected materials, for the first time, have been tailored to provide 

theoretically unbounded CTE tunability via structural hierarchy. For a given concept, a 

large CTE tunability indicates ample freedom to tune the effective CTE of a unit cell, an 

asset that can also release the dependence on the CTE ratio of the constituents.  

 Structural hierarchy has been applied to decouple physical properties of architected 

materials that are in conflict. Hierarchical architected materials can achieve both high 

CTE tunability and high structural efficiency. Hence, a better trade-off between thermal 

and mechanical performances can be provided.  

 The material length vector and thermal displacement vector have been defined to assess 

thermal expansion of building blocks and their assembly, as well as the CTE of 

tessellations of compound units. Concepts in both 2D and 3D have been given as 

examples to show the handiness of using vectors to visualize and analyze the thermal 

expansion of a periodic truss. 

 All the possible material permutations that can occur in the struts of a dual-material 

tetrahedron have been for the first time examined for linear thermal expansion control. 
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The relationship that each of these tetrahedra has with the CTE along its principal axes 

provides a foundational basis to understand other, more complicated, truss-like materials. 

 Drawing from concepts of crystallography and tessellation, a scheme has been presented 

to understand the relationships between CTE tunability of tetrahedral building blocks, 

structural symmetry of unit cells, independent elements in the CTE tensor, and the 

effective thermoelastic properties of a periodic truss, which can be built from single units 

or a more complex assembly of compound units. The results establish underlying 

principles governing tailorable thermal expansion in dual-material lattice materials, 

where desired CTE magnitude and spatial CTE directionality can be programmed a priori 

to satisfy given CTE requirements, such as unidirectional, transverse isotropic, or 

isotropic.  

 A set of three-dimensional dual-material Octet-trusses, with either anisotropic or 

isotropic CTE tunability, have been fabricated via pretension snap-fit technique. They are 

proven to not only be stiffer and stronger than any other existing concepts, but also offer 

a highly tunable CTE. 

5.3 Future work 

In this work, architected materials have been engineered to concurrently attain high structural 

efficiency and CTE tunability with desired magnitude and directionality. Hierarchical 

architectures have been applied to amplify the CTE tunability and decouple the conflicting 

physical properties. Several innovative fabrication methods, such as pretension snap-fit 

technique, have been developed to implement these microstructures and their associated 

mechanisms into engineering material. These contributions provide a platform to further explore 

CTE controllable architected materials, through combined experimental, analytical, and 

numerical studies. The following guidelines are therefore proposed as a continuation to this 

work: 

 While the hierarchical architected materials here presented show promise for planar 

lattices, the strategy can also be applied to 3D hierarchical concepts. Nevertheless, their 

potential will always be confronted with the capabilities of current practices. For example, 
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while the concepts are scale independent and material selection free, increasing the order 

of structural hierarchy has to account for the limits that a given manufacturing process 

poses. Furthermore, the fabrication of 3D hierarchical structures can be highly time 

consuming. However, given the fast development of multiple material additive 

manufacturing, we can infer that higher level of hierarchy in dual material lattices might 

be achieved in the near future.  

 The hierarchical architectures have been applied to decouple the thermal expansion 

impact from elastic stiffness adjustments in Chapter 2. The strategy presented in this 

work can pave the way to the multifunctional design of bi-material hierarchical lattices 

with properties that can be independently tuned and exploited to the most of their 

potential. It can thus be extended to potentially address other conflicting properties to 

finally generate trade-off solutions for multifunctional applications, including thermal 

expansion control, MEMS, biomedical sensors and space optical systems.  

 Though the scheme presented in Chapter 3 can engineer a class of architected materials 

with proposed magnitude and directionality of CTE, it can be extended to develop other, 

more complicated, truss-like materials providing unique CTE tunability. For example, 

extra building blocks, e.g. bi-material pyramids, can be considered to construct potential 

concepts with innovative thermal expansion performance (e.g. orthotropic CTE tunability) 

independently or jointly with tetrahedral building blocks.  

 Despite considerable potential of large CTE tunability, all spatial specimens in Chapter 3 

provide only small thermal deformation due to the restriction of the material and 

craftwork. Spatial bi-material lattices can be engineered to become thermally-responsive 

architected materials with given thermal expansion directionality upon prescribed 

changes of temperature. This task may require exploring 3D printable polymers with 

distinct CTEs as base components. The class of potential architected materials takes one 

step closer to meeting the demands of thermally functional materials that are stiff and 

strong and can be engineered to provide customized directions and levels of large 

deformation.  
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 In Chapter 4, a subset of geometric parameters that govern the macroscopic 

thermomechanical properties of the bi-material lattices have been investigated. This 

subset includes skew angle and strut thickness, which play a crucial role in the CTE as 

well as the specific stiffness and strength of the lattices. Other factors, such as the strut 

diameter ratio of the constituent materials and other topological variables, can be studied 

and used to achieve further CTE tuning. The additional conclusions drawn from the 

consideration of comprehensive parameters allow better understanding of thermal-

mechanical performance of architected materials with CTE tunability.  
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