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Abstract

Space manipulators mounted on a [ree-floating base are structurally flexible mechan-
ical systems. For some applications, it is necessary to control the attitude of the base
by the use of on-ofl thrusters. However, thruster operation produces a rather broad
frequency spectrum that can excile sensitive modes of the flextble system. This situ-
ation is likely to occur especially when the manipulator is moving a big payload. The
excitation of these modes can introduce further disturbances to the attitude control
system, and therefore, undesirable fuel replenishing limit cyclé;r, may develop. To
investigate these dynamic interactions, an approximate two-mass system, where the
manipulator is replaced with an equivalent spring-and-dashpot system, is used to re-
produce l.h;: relative motion of the payload with respect to the spacecraft. A dynamic
model of a two-flexible-joint planar manipulator was derivedl‘ to obtain its natural
frequencics and then, to determine the corresponding spring %etiﬁness and damping
cocfficient of the approximate system. Since the attitude contéoller assumes the use
of on-off thrusters, which are nonlinear devices, the describing function technique,
an approximate method for the analysis of nonlinear systems, is used to perform a
parametric study investigating the significant parameters of three models studied.
This study provides some guidelines for the design of attitude control systems when
flexibility is & major concern. As well, this study shows that one of the three models
studied is a very good alternative to the actual attitude controllers. Finally, simu-
lations are executed to confirm these results and to study the addition of noislle and

model uncertainties in the three selected models.
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Résumé

Les r_obots manipulateurs montés sur une basc flottante et opérant dans Uespace sont
des systé..es mécaniques {lexibles. Pour certaines opérations, il est néeessaire de com-
mander la position de la base en utilisant des fusées de type tout-on-rien. Cependant,
I'opération de ces fusées produit un large spectre de {réquences qui peuvent exciter
les modes vibratoires du systéme. Cette situation devenant plus probable lorsque
le manipulateur transporte de grosses charges. L’excitation de ces modes peut in-
troduire davantage de perturbations au systéme de commande, continuant alors le
cycle et augmentant en méme temps la consommation de combustible, sans stabiliser
la base. Afin d’étudier ces interactions dynamiques, un modeéle simplifié & deux
masses, remplagant le manipulateur par un systéme équivalent ressort-amortisseur,
est utilisé pour reproduire le mouvement reialif de la charge par rapport & la base.
Un modele dynamique d’'un manipulateur planaire & deux articulations fexibles a éié
développé afin d’obtenir les [réquences de résonance et ainsi déterminer a rigidité du
ressort et le coefficient d’amortissement nécessaire pour le systeme simplifie. Puisque
la commande présume ['utilisation de fusées tout-ou-rien, qui sont des mécanismes
non-linéaires, la technique des fonctions desc:iptives a été utilisée pour effectuer une
étude paramétrique examinant les paritmétres importants de trois modeles différents,
Cette étude fournie quelques lignes directrices dans la conception de ce Lypc‘ de com-
mande, lorsque la flexibilité du systémﬁ est un paramétre important. En outre, cette
étude démontre qu'un des trois, modélci:s étudiés pourrait étre une trés bonne solution

de rechange aux méthodes de commande utilisées a ’heure actuelle dans espace.
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Chapter 1

Introduction

1.1 Robots in Space

In the last few years, robotics have begun to play a very important role in space
exploralion and exploitation. Space robots are expected to become an increasingly
vital part of future space operations. Not only will they be used for the assembly and
fabrication of large space structures, but also for in-orbit service and repair activities.
The mission cost and hazards of human orbital presence will therefore be reduced
by minimizing the need for astronaut Extra Vehicular Activity (EVA).

The control of space manipulators presents various challenges. For example, the
robot must be mounted on a free-floating base. Since robots are likely to carry
very large payloads compared to the mass of the spacecraft, large disturbances may
result at the base, thereby causing the robot to miss its target. Moreover, structural
flexibility is present in space robots, as they are required to be light and to have
large workspaces.

Currently, the only operational space manipulator available is the Space Shuttle
CANADARM, which is a six-degree-of-freedom arm, weighing nearly 400 kg and 15
m long. This manipulator was designed by a Canadian team in cooperation with

NASA, and is primarily used for deploying or retrieving satellites and space modules
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-

in orbit. A larger and more advanced version of the CANADARM is currently under
design lor the Space Station Freedom; this will be the contribution of Canada to this
international project. This manipulator, called MSS, for Mobile Servicing Svstem,
will assist in the construciion, operation and matntenance of the Space Station.
These two Leleoperated manipulator systems are uselul only for operation in Low
Earth Orbit (LEQ). However, we can imagine for the [uture a completely antonomons
robot mounted on a spacecraft that will be able to go in a Geostationary Orbil ((1150)
at 35,800 km from the Earth, pick up a satellite and bring it back to the Space Station
for maintenance. As we can sce, there are many possibilities for robots in space,
which is why extensive research is currently being conducted to further improve and

develop new technologies in this new ficld of robotics.

1.2 Literature Survey

1.2.1 Dynamics and Control

The kinematics, dynamics, and control of space robotic manipulators are much more
complicated than their counterparts on Earth due to the dynamic coupling between
the manipulators and their spacecraft. Several control schemes have been proposed
for such systems. Most of them assume that the manipulator moves sulliciently
slow to neglect the flexibility in drives, shafts, links, and gear transmissions. These
control methods can be classified in three major calegorics. In the firsh one, the po-
sition and the orientation of the spacccraft is controlled by jet thrusters and reaction
wheels, or a combination of both, to compensate for any manipulator dynamic forces
exerted on the spacecraft. The base of the manipulator thus being of a free-llying
type. In this case, the spacecraft is kept almost stationary, the control methods for
ground-fixed robots thus being applicable. The kinematic problem is consequently

relatively simple. However, the use of these control methods is limited, due to Lhe
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relatively high fuel requirements and the possibility to saturate the reaction-jet sys-
tem (Dubowsky, Vance and ‘Torres, 1989), To minimize these problems, Nenchev,
Umetani and Yoshida (1992) and Quinn, Chen and Lawrence (1994) studied motions
of the manipulator arm that do nol disturb the attitude of the spacecraft. With the
same objective, Torres and Dubowsky (1992) developed an Enhanced Disturbanced
Map (ISDM) used Lo suggest paths for a given manipulator that result in low-attitude
fue! consumption.

In the second calegory, reaction wheels or jet thrusters are used to control the
attitude only. ‘I'he centre of mass of the spacecraft, however, is still free to trans-
lale in response to the force disturbances from the robot and its payload. This is
an interesting approach, since reaction wheels can be used, thereby reducing the
fucl consumption while keeping fixed the attitude when necessary, as for antennae
pointing towards the Earth. Unfortunately, the control problem is obviously more
complicated than in the first category because the: relative disturbance translation of
the payload with respect to the spacecraft must be taken into account. This prob-
lem was addressed in (Longman, Lindberg and Zedd, 1987} by developing a new
kind of robot kinematics that adjusts the joint angle command to account for the
base molion. As well, a method to obtain the reaction moment needed to cancel
all attitude disturbances to the spacecraft was established, without recourse to a
full dynamic analysis of the robot. A technique called the Virtual Manipulator, is
available to simplify the control problem. This technique, presented in (Vafa and
Dubowsky, 1987; Vala and Dubowsky, 1990a,b), defined a virtual manipulator that
combines the kinetic and dynamic properties of the manipulator and the spacecraft.
This virtual manipulator is used in (Vafa and Dubowsky, 1987; Vafa and Dubowsky,
1990a) to develop a numerical approach to solve the inverse kinematic problem when
the orientation of the spacecraft is controlled. The inverse kinematic problem is also
solved in (Longman, Lindberg and Zedd, 1987; Lindberg, Longman and Zedd, 1990)
for an elbow manipulator like the CANADARM.
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In the third category, the [ree-floating case, no actuators arve used to control the
position and orientation of the spacecraft. Therefore, the spacecraft is free 1o move
in response to the manipulator motion. This control scheme has the advantages that
no fuel is required to control the spacecrall and that the risk of collision of the robot
end-eflector with an object about o be grasped, resulting from the attitude control
thrusters suddenly firing, is eliminated. However, path pl.n.uning hecomes mueh more
complicated than belore, because the platform is lloating and, therelore, as shown
in {Lindberg, Longman and Zedd, 1990), the position of the robot end-elfector is no
longer a function of the present robot joint angles, but rather of the whole history
of these joint angles. The inverse kinetics problem (instead of inverse kinematics lor
ground-fixed robots) is very complicated and generally has an inlinite number ol so-
lutions. Longman (1990b) developed one of these solutions for the free-lloating case
at hand. Despite the complicated dynamics, Papadopoulos and Dubowsky (1991D)
suggested that nearly any control algorithm thatl can be used for fixed-hased manip-
ulators can also be implemented for {ree-floating space robots with a few additional
conditions. Alexander and Cannon (1990) developed control methods Lhat achieved
accurate end-effector control in spite of the free dynamic response of the vehicle
to arm motion, using resolved-acccleration control. Umectani and Yoshida (198%9)
developed a similar control algorithm, but with the use of resolved-rate control.

Since the attitude control system of the spacecraft does not operate during this
mode of space manipulation, this mode becomes feasible when no external forces and
torques act on the system and when its total momentum is negligible (Papadopoulos
and Dubowsky, 1991b). Therefore, the robot workspace is reduced because the centre
of mass of the system will remain fixed under these assumptions. The workspace
is also reduced due to the existence of dynamic singularitics (Papadopoulos and
Dubowsky, 1993), which are not present in Earth-bound robots. To achieve an
unlimited workspace, a control scheme that switches between a free-floating mode

and a mode in which the system is treated as a redundant manipulator with a
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pseudo-inverse Jacobian-based controller is derived in (Spofford and Akin, 1990). In
the last three control schemes, the end-effector is able to track a desired path while
the spaceeraft floats [recly in a noncoordinated way.

Using the inherent redundancy in free-flying space robotic systems, it is possible
Lo guarantee coordinated motion of the spacecraft and the end-clfector without use
ol special compensating devices, as shown in (Nenchev, Umetani and Yoshida, 1992).
Also, Vafa and Dubowsky (1987; 1990b) have shown, using the virtual manipulator
approach, thal the manipulator itsell can correct the position and attitude of the
spacecralt through small cyclic motions in joint space. Based on this idea and using
the nonholenomic mechanical structure of space vehicle-manipulator systems, Naka-
mura and Mukherjee (1991) proposed a path-planning scheme to control both the
vehicle orientation and the manipulator joints by actuating only the latter. In an-
other study, & coordinated controller was designed to control both the spacecraft and
ihe end-cffector, and allowing the command of a desirable manipulator configuration
and the planning of a system motion with the use of thrusters (Papadopoulos and
Dubowsky, 1991a).

In all previous control schemes reported, no analysis has been performed that
includes the actual flexibility ol space robotic systems. In fact, one might presume
the vibrations of the robot arm will only induce attitude oscillations for the spacecraft

and that, after these vibrations are damped, the spacecraft attitude would be the

saune as directed from the reaction moment compensation torques derived for a rigid- -

body model in (Longman, Lindberg and Zedd, 1987). However, Longman (1990a)
showed that such a presumption is false and that the most common situation is
that the structural vibrations of the robot arm will try to tumble the spacecraft.
Longman developed a general formulation to determine the satellite attitude control
torque required to counteract robot motion disturbances that include the effects of

robot flexibility.
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1.2.2 Flexible Spacecraft Controlled by On-Off Thrusters

The control schemes introduced in Subsection 1.2.1 that require thrusting actions
assume the use of reaction jets that provide forces and torques proportional Lo the
commanded control input. Unfortunately, this is never the case in space, since such
technology is still not applicable and only on-ofl thrusters can be used to control
the position and attitude of the spacecralt (Anthony, Wic and Carroll, 1990). "These
on-off thrusters are nonlincar devices, the design of a control system becoming a very
difficult problem when flexible modes must be controlled,

Currently, the common approach to the design of control systems using on-oll
devices is to consider single-axis rigid-body motion and Lo define a switching logic
for a single set of thrusters by the use of phase plane analyses. The optimal-fuel
problem for this kind of rigid-body motion appears in many textbooks (Bryson and
Ho, 1975). However, the actual space structures are likely to be llexible and their
control using these nonlinear devices may interact with the structnral modes and
create instabilities that can be manifested as limit cycles (Millar and Vigneron, 1979).

Many researchers addressed the problem of controlling a {lexible spacecraft using
on-off thrusters. Wie and Plescia (1984) designed an on-off pulse modulator altitude
control system using the describing function analysis. They used the relative stability
margin, with respect to the limit cycle condition of a structural mode, as a measure
of the robustness of the nonlinear control system. Using the same idea, Anthony,
Wie and Carroll (1990) showed that the describing function analysis can be utilized
for practical control design problems such as flexible spacecrall equipped with pulse-
modulated reaction jets. Hablani (1992) developed a method 1o optimize the pulse-
width of the thrusters for fast active damping of flexible inodes, without destabilizing
the rigid-body modes. Adaptive bandpass filters were nsed to obtain an accurate
measure of the mode frequency, which was known imprecisely before. Assuming that
control moment gyros or other internal mechanisms were available for proportional

fine control, Nakano and Willms (1982) developed an open-ioop control scheme using
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only three switching times for rest-to-rest manocuvres. These switching times were
chosen to minimize residnal elastic energy at the end of the reorientation. On the
other hand, Vander Velde and e (1983) implemenied the phase plane approach to
design a control system for a flexible space structure of any order, while using any
munber of thrusters, based on an approximation to an optimal control formulation.

Unfortunately, all these methods assume a precomputed exact or approximate
knowledge of the flexible modes. For a space robotic system, or for a multitask
servicer as the Space Shuttle, the natural frequencies are always changing with the
robot configuration or the payload carried. Therefore, these control methods are

very diflicult to implement and more research is needed.

1.2.3 Payload-Attitude Controller Interaction

The Space Shuttle Reaction Control System (RCS) is similar to the one that flew
in Apollo missions. It evolved under the assumption that the Orbiter is sufficiently
rigid to allow the use of rigid-body mechanics in the description of Orbiter response
to RCS activity (Sackett and Kirchwey, 1982). No special attention was taken to
include structural flexibility in the RCS design that is described in (Hattis, 1982;
Sackett and Kirchwey, 1982; Nakano and Willms, 1982). However, at the time of
payload deployment, with or without the CANADARM system, flexibility becomes
important. The structural modes can have rather low frequencies and can be excited
by the RCS activity. Sackett and Kirchwey (1982) looked at the performance degra-
dation of the RCS due to the deployment of a {lexible payload by various means.

They grouped these dynamic interaction possibilities in order of increasing severity:

1. control effects — flexibility either induced additional firings or omitted some

of these;

2. structural motion and load response to typical, aperiodic jet firings;
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3. structural resonance due to periodic jel fiving cansed by rigid-body Flight Con-

trol System (IFCS) respouse to disturbance aceelerations;

4. closed-loop instability, where RCS lirings cause Hexnre, which passes through
the Inertial Mecasurements units (IMU) and stafe estimalor cansing ROS firings,

which reinforces flexure and continues to eventually reach a limit eyele,

After conducting extensive simulations, they concluded that the judicious selection
of control parameter values and careful operational procedures, based on a knowledge
of the payload structural characteristics, can reduce dynamic interactions and lowd
problems. Penchuk, Hattis and Kubiak (1985) used the describing lunction method
to analyze the problem of a payload deployed by means of a tilt Lable with o pivol
near the aft end of the Space Shuttle. Stability maps were oblained and compared
to simulation results to validate the describing function analysis. In {Redding and
Adams, 1987), a new attitude controller based on fucl-optimal manocuvres wis de-
veloped for the Space Shuttle, while Kubiak and Martin (1983) developped a new
design for the RCS to reduce the impact of large measurement nneertaintics in the
rate signal during attitude control. In both cases, the performance of Lhe ROS is
increased significantly for rigid-body motion. However, they did nol deal with the
flexibility problem and only mentioned that by diminishing the required fivings, the

likelihood to cause structural problems diminishes.

1.3 Problem Formulation and Objectives

As mentioned in Section 1.1, space manipulators are structurally flexible mechanical
systems. When the free-flying base of the manipulator is controlled by the use of
on-off thrusters, which produce a rather broad frequency spectrum that can excite
sensitive modes of the flexible system, dynamic interactions are likely to oceur. The
excitation of these modes can introduce further disturbances to the attitude con-

trol system, and therefore, undesirable fuel replenishing limit cycles may develop.



Chapter 1, Introduction ]

In those cases, thrusters are firing without stabilizing the base and a lot of Tuel is
consuwmed for almost nothing. Since fuel is an unavailable resource in space, the
consequences of such interactions can be very problematic. In the case where the
natural frequencies are dependent upon the payload and the configuration of the
system, as for a free-llying robot, the current method for resolving these problems
is Lo perform extensive simulations to examine the possibilities for dynamic inter-
actions. I these occur, corrective actions are taken, which would include adjusting
the RCS parameter values, or simply changing the operational procedures (Sackett
and Kirchwey, 1982; Penchuk, Hattis and Kubiak, 1985). Hence, classical attitude
controllers must be improved to reduce these dynamic interaction possibilitics.

In this thesis, it is intended to model the foregoing problems for a general space
manipulator mounted on a free-flying base controlled by on-off thrusters, and to de-
velop control methods to reduce these undesired effects. Approximate CANADARM
flexible modes are used to make the model behaviour more realistic; however, the
analysis is not restricted to this robotic system. The dynamic interactions are mod-
clled for the worst case that can occur, i.e. when the system is limit cycling. Since the
describing function method has been shown to be helpful for such nonlinear systems
(Wic and Plescia, 1984; Anthony, Wie and Carroll, 1990; Penchuk, Hattis and Ku-
biak, 1985), this method is used in a parametric study to find the system parameters
that affect system performance. Using these results, design guidelines are presented
for various control schemes, and based on this knowledge, control methods that are
intented to reduce the undesired effects are then developed. Simulation models are
used 1o confirm results obtained by the describing function analysis and to examine
cascs Lo which describing function analysis does not apply, as for the addition of

white noise in the system.
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1.4 Thesis Organization

A resonance frequency analysis is performied in Chapter 2 for a two-flexible-joint
space manipulator system. Thereaflter, an approximate model is derived to simplify
the analysis problem, and finally, various methods for nonlinear system analysis ave
briefly described. Chapter 3 is devoled to the control problem. Iirst, a classical
spacecraft attitude controller using phase planc techniques is introduced. A single-
rigid-mass system is used to show the function ol the controller. The effects of
hystetesis and time delays are brieflly studied. Finally, alternative control systems
used in simulation studies are formulated, and arc followed by the stability delini-
tion used in this thesis. In Chapter 4, valucs arc chosen for all parameters in the
models studied. The describing function technique is used to perform a parameiric
study and to construct stability maps, used to draw conclusions. Some simulation
results are introduced to confirm the validity of the describing lunction studies, ‘IMhe
importance of hysteresis and the effects of noise on the system are also discussed in
Chapter 4 by the use of simulation. Finally the influence of perturbed mass proper-
ties into a particular model studicd are investigated. Chapter § concludes the thesis
by summarizing the results of this study, and then outlining some recommendations

for future work.



Chapter 2

Modelling and Analysis of Space
Robots

2.1 Introduction

As mentioned in Section 1.1, the CANADARM, shown in Fig. 2.1, is the only op-
craticaal space manipulator. One limitation of this system is that it can work only
within its own reach, thereby requiring very long links to have a large workspace.
To avoid this problem, free-flying robots are currently being studied and will grab,
dock and manipulate while in orbit. Two interesting concepts are the U.S. Flight
Telerobotic Servicer (FTS) shown in Fig. 2.2(a), and the Japan NASDA OSV of
Fig. 2.2(b). Such free-flying systems are to be equipped with thrusters, manipula-
tors, several visual sensoré, a high-gain antenna, and a docking mechanism. Also,
they are to be teleoperated from Earth or from orbit through a satellite link.

All three systems presented above have the common feature that they are working
in a zero-gravity environment. T.e dynamic modelling and control of such systems
are therefore much more complicated than for fixed-base robots. Moreover, structural
and joint flexibility is likely to be important in space robots, as they are required to be

lightweight, move large payloads and/or have large workspaces, thereby increasing
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the complexity of the modelling and countrol problem. To simplify the analysis,
the dynamic modelling presented in the next section is restricted to a two-flexible-
joint planar manipulator mounted on a 3-DOJF spacecraft. This approximation is
legitimate since in the case of a free-flyer, as those of Fig. 2.2, they are likely to have
reduced structural llexibility but will have joint compliance which becomes important
when payload are big. In the case of the CANADARM, both structural and joint
lexibility is present but the latter is more important than the former. It can also be
asstmed that all flexibility in the system are lumped at the joints. In Section 2.3, a
two-DOF simplified model where the frequency characteristics are chosen to match
thosc of the manipulator studied in Section 2.2 is introduced. Since the use of on-
ofl thrusters is assumed in this thesis, analysis methods for nonlinear systems are

discussed in Section 2.4.

2.2 System Description: 2-DOF Planar Manipu-
lator on a 3-DOF Spacecraft

2.2.1 Manipulator Equations of Motion

In this section, the dynamics model of a two-flexible-joint planar manipulator moun-
ted on a [ree-floating base is developed using the Lagrangian formulation. In this
casc, [rce-floating operations are assumed, which means that no thruster or external
force act on the system, It is intended to obtain the general expressions for the
natural frequencies of this free-floating system. The manipulator under study is
shown in [Fig. 2.3, each flexible-joint being modelled as a torsional spring in parallel
with a torsional dashpot, both lumped in a mechanical coupling, as shown in Fig. 2.4.
The angle ¢2;_; represents the angular position of the motor for joint ¢, while the
angle gz is the angular position of the link for the same joint, Angles g and qq;

are measured relative to a reference line fixed to link 7 — 1.
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The system centre of mass (CM) can be chosen as the inertial origin, since, un-
der the assumptions of free-floating operation, i.e., in the absence of external lorces
and ol zero initial momentum, the CM remains fixed in inertial space. Also, under
these assumptions, the angular momentum with respect to the system CM is con-
stant. As explained in (Papadopoulos and Dubowsky, 1991b), we can further assume
that, during frec-floating operations, the system momentum is zero. If momentum
accumulales, the system may operate for a limited period of time. In practice, the
control system of the attitude of the spacecraft would be turned on and perform
a momentum dump manoeuvre in order to eliminate any accumulated momentum
{Papadopoulos, 1990). From the conservation of angular momentum, the spacecraft
angular velocity can be expressed as a function of the reduced vector of joint angles

(q+) and their time-rates of change (q.), where q, is defined as

q = g2 0" - (2.1)

"Therefore, the manipulator kinetic energy Ths can be expressed as a function of q,

and Q. only, and is given in (Papadopoulos and Dubowsky, 1991b) as
) - .
Tn = 54, H'(q,)a (2.2)

where H*(q,) is the reduced inertia matrix. For the simple planar case at hand, the

system inertia is of the form

D, + Dy)? Do(Dy 4+ D
. diy + 2dy3 + doo — (—M diz + dya — _2(1D+_2)
H*(q-) = Do(Ds + ) D3 (2.3)
dy2 +d22—T dzz—f
where
doo = I mo(m; + mg)rg
my
moro
dip = p— [[l(ml +m2) + T‘lmz] cos(qz) = dn
dyo = m::zmg rola cos(ga + qu) = doz
¢
dn = Il + Moty lf + it T'f + MotMa ([1 + 1‘1)2
my my my
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myma Moy
d2) = [ 1ln, rila + ::“ Ll -+ '3'1)] cos(qq) = dyy
doy = Iy + ma(mg + my) B

ny

2
DjEZd,‘j, _‘i=0,l,2

i=0
D= Du -+ Dl + Dz (21)

where m; and [; (¢ = 0,1, 2) are the ith body mass and moment ol inertia with respeet
to the centre of mass of the corresponding link, /; and »; (7 = 0, 1,2) are defined in
Fig. 2.3, and m, is the total mass of the system, given by my = myg -+ 1y 4 ma. All
di;, D; and D are expressed in frame 0, t.e., in the frame attached to the base.

The kinetic energy of the rotors, 7}, is
Ty = S0 + St 2.5
m =3 14 + 9" 24fy (....d)

where J;, for ¢ = 1,2, is the moment of inertia of motor ¢ about its axis of rotation,
which is assumed to contain the mass centre of the rotor. The total kinetic cnergy

of the system is, therefore,
r.11 = Tj\f + T'm . (...)..(i)

In the absence of gravity, the potential energy in the system is only due to joint

flexibility. Assuming direct drives, this potential energy can be wrilten as
1 L) 1 . L)
V= ski(ge — )" + Skalgs — a3)? (2.7)

where k; (1 = 1,2) is the torsional spring stiffness of joint :.
Viscous friction forces due to damping at each joint can be taken inlo account by

using Rayleigh’s dissipation function R, as discussed in (Goldstein, 1980)
1 .. . | S
R =5ei(d— ) + 5e2(d — @) (2.8)

where ¢; (i = 1,2) is the damping coefficient of joint i.

The system dynamical equations are obtained from the Euler-Lagrange equation

d|oT or av oR
il ICH ICC I A, Ty i =1,2,3,4 2.9
dt\dg;| 8g; Oq; Qi d4; g (29)
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where @ is the generalized foree corresponding to the joint angle ¢;. In this case,
(2; is equal to the torque applied by the motor for 7 = 1 and 3, and is zero for
4 = 2 and 4. Therefore, applying £q.(2.9) to the kinetic energy given by Eq.(2.6),
the potential energy given by [q.(2.7) and Rayleigh’s dissipation function given by

I5q.(2.8), resulls in a set of four scalar dynamics equations ol the form

M(q,)d + N(q,, 4, )4+ Ca+Kq=7 (2.10)
where, o o
| T
G2 0
q= ) T =
3 T2
| | 0
) 2 y
0 d“ + 2{112 + ([-22 —_ M 0 dl'l + d22 _ D.Z(Dl + D'z)
M(q,) = D —5
0 0 J2 0
Dy(Dy+ D p?
|0 detda- _2(_15_2) 0 dy — _1)i ]

C =
0 0 €z —C;
L 0 0 - c
- ke =k 0 0 ]
-k Ok 0 0
K= ! !
0 0 k? ""'kg
L 0 0 _k:.’ kg i
-0 0 0 0 T
N(g.q) = | © V@nd) O Na(a,4)

0 0 0 0
| 0 Nai(q,,q,) 0 Nai(q,,4.) |
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where Nii(q,,q,), for i = 1,2; j = 1,2, are expressions of Coriolis and contrifugal

terms that are included in Appendix A,

2.2.2 Manipulator Natural Frequencies

In this section, general expressions for the manipulator natural frequencies are de-
rived. To perform this frequency analysis, the joints are locked in a specifie contigu-
ration, the motion then being analyzed around this position.

Let us define
dop =g — q (2.11a)
Su=qui—qs. (2.11h)

Since brakes are applied and there is no rotation of the motor shalts, i.e. ¢ and

¢ are constant, we have

8G2 = ¢ (2.120)
SGi=q (2.12h)
o2 = G (2.12¢)
6Gs = Ga | (2.12d)

Using Eqs.(2.11) and (2.12}, and linearizing about an operaling point, where

second-order terms can be neglected, q.(2.10) can be wrilten as

Ji 0 0 0 1o
D D,)? D.(D D
0 diy+2d12+de— % 0 diz+dyp— "3(—11')-{-—"!—)' 8ify
0 0 Jy 0 0
Dy(D; + Ds) Dz o
I 0 dlg—i-dgz—-——b-——— 0 day — D |t ]
—c1d¢n —kydqa Ty
Y k\dq. 0
I R I B C(2.18)
—c28¢y —kabqy T2
i Cg(;(;’.; ] \_ k26([4 i 1 0 i
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The first and third equation of Eq.(2.13) give the expressions for ihe required
torgue Lo brake the joints, and the sccond and fourth equation describe the motion

around the operating point. This sccond set of equations can be written as
H*(q,)dg + C.dq + Kadq=0 (2.14)

where,

3q = [dqq, Jq‘t]T

_L| 0
Cy=

_0 Ca

& 0
K, =

| 0 ke

and H*(qg,) is defined in Eq.(2.3). Note that J, is included in fp, and J; in 1), since
the brakes are applied and the inertia of a motor rotor becomes part of that of a
previous link, assuming that the motor is at the joint and that direct drive is used.

The natural frequencies of the system are given by the square roots of the etgen-

values of the dynamic matrix W, which is defined as
W=H"(q)'K,. . (2.15)

H"(q.) is nonsingular, since it is a positive-definite matrix. Finally, the natural

frequencies wy and w; are given by

Hyky + Hogky — \/(Hukz — Hook))? + AHE ko (2.16a)
wy = 2.16a
A 2Hy Hyy — HE)
Hiyky + Hogky + \/(Hukz ~ Hoky )2+ AHE4k ko (2.16)
Wy = e
TN 2(Hi Hyy — Hp,)

where H;; is the (¢, j) component of H*(q,). Since we assumed small motions when
we linearized, the angle values can be chosen as g2 = ¢q; and ¢4 = ¢3. If we are given
the known natural frequencies of a manipulator for a specific configuration, then

the corresponding spring stiffnesses k; and k; at each joint can be determined from
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Egs.(2.16). Thercafter, using these computed spring stillness values, the manipulator

natural frequencies for other configurations can be approximated with Egs.(2.16).

2.2.3 Cartesian Space vs. Joint Space

In the previous subsection, the natural-frequency expressions for a general two-
llexible-joint planar manipulator were derived using the joinl equations of molion.
Therefore, by working in the joint space, these frequencies correspond Lo the joint,
oscillations. However, it will be shown in this subscction that these [requencies are
actually the same as the ones corresponding Lo the oscillations of the end-cflector (in
Cartesian space). Thus, the frequency expressions Egs.(2.16) can be used Lo deseribe
the frequency content of a payload attached to the end-cliector.

Cartesian velocities are related to joint velocities by the Jacobian matrix J{(q.
. q; ?

namely,
%= 3(q,)d - (2.17)
In this case, we have
dz Ja o/ &4
_ U e {z (218)
&y Ja 344

where J;; can be considered constant, since we are dealing with small motions.

If the first and second natural frequencies are w; and wy, we can write

§q2 = Z, sin{wt) (2.19a)
8qq = Zysin(wel) . g (2.19h)

where Z; and Z; are constant.

Differentiating Eqs.(2.19), we obtain

8G2 = Zyw) cos(w i) (2.20a)

8Gq = Zow, cos{wat) . (2.20h)
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Substituting Iqs.(2.20) in 15q.(2.18), we obiain

do = J”ZIQJ[ COS(QJ]I.) + J]QZQLU-J: COS(U..‘gt) (2.21)
84 = JnZywy cos(wil) + Jaz Zawn cos(wal) . (2.22)

Therefore, the frequency content of & and §y is wy and we, and thus, the natural

requencies in the Cartesian space are the same as those in the joint space.

2.3 Two-DOF Simplified Model Plant

2.3.1 Model Description

The dynamics ol a simple {wo-flexible-joint planar manipulator is rather compli-
cated; it is preferable to employ a simplified model to analyze the problem stated in
Section 1.3. We can replace the manipulator of Fig. 2.5(a) with an equivalent spring-
and-dashpot system, as shown in Pig. 2.5(b). By a proper selection of the spring
stiffness & and the damping coefficient ¢, the resonance frequency of the simplified
system can be matched to the first one of the original system. Therefore, a similar
relative motion of the payload with respect to the base can be obtained.

In this thesis, the two-flexible-joint manipulator model will be used to find the res-
onance [requencies of the manipulator for a specific payload and configuration. Then,
by introducing suitable values for & and ¢ into the simplified model of Fig. 2.5(b),

the first natural frequency of the original system will be matched.

2.3.2 Model Formulation

In this section, the equations of motion for the simplified system are derived. These
cquations are written in various forms and will be used in the simulation models that
are derived in Chapter 3.

The equations of motion for the system shown in Fig. 2.6 can be written directly
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Figure 2.5: Manipulator replacement by a spring and a dashpot: (a) T'wo-link ma-
nipulator; (b) Simplified two-mass system.

as
My + c(th — 32) + k(y1 — 1) = Bu (2.230)
Mygia — c(in —i2) = k(n — ) =0, (2.23h)

where M) is the mass of the base, M; the mass of the payload, y; the position of the
base, y2 the position of the payload, & the spring stiffness, ¢ the damping coeflicient,,
B the amplitude of the force developed by the thrusters and w is the command of
the thrusters, either +1, 0 or —1.

in order to write the system equations in state-space form, the following variables

are defined:

=1 (2.24a)
Ty = ‘T][ (22’”))
T3 = Y2 (2.24¢)

Ty = “1;12 . (224(‘)
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\ Y,

Figure 2.6: A two-mass system.

Using Eqs.(2.24), £qs.(2.23) can be written as

T =T (2.25a)
:h=£h}dm—md—ﬂm—mﬂ+84 (2.25b)
T3 = 24 (2.25¢)
dy = ﬁ :C(.’L'g —x4) + k(2 — .1:3)] . (2.25d)

Il we define the state vector as x = [z, ¥, 23, 24)7, 1qs.(2.25) can be written in

stale-variable form as

x = Ax + bu (2.26)
where
0 I 0 0 | [0 ]
Ao | TR ey KMy ) B/M,
0 0 0 1 0
| k/My /My —k[My —c/M, | 0

If the required output is 3, then one can write

w=c'x (

o
&)
-3

g
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with
-
c= [ 1 000 ] .

The overall motion of the system can be decomposed into a rigid-body motion
of the system centre of mass and a flexible-body motion around the centre of mass,
The equations governing these two motions are now derived,

The position of the centre of mass is given by

My, + Moys (2.28)
Yo = — 2.2
¢ 1‘“[| + 1"]'_)

and hence,
. My + Mg

Yo = "M+ A (12:29)
which can be written as
My = Myijy + Mo (2.30)
where the total mass of the system is
My=M 4+ M. (2.31)
Adding Eqs.(2.23a) and (2.23b), we obtain
Mg + Majhy = Bu . (2.32)
Inserting Eq.(2.32) into Eq.(2.30), we obtain
M. = Bu . (2.33)
This equation governs the motion of the system centre of mass.
Conversely, subtracting Eq.(2.23b) from Eq.(2.23a), we obtain
Mg — Maijz + 2¢(ih — 2} + 2k(y1 — y2) = Bu. (2.34)
By defining

Yr=4h — (2.35)
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and dilferentiating Eq.(2.35), we obtain

Y= — 92 (2.36)
Yy =i —1ip . (2.37)

The first two terms of Eq.(2.34) can be written as

(M + M)
(M) + M)
M2y + My Ma(i — §2) — M3
M,
Mg — My Ma(ih — d2) — MZg2 + 2My Ma(i — i)
M,
(My = M) (M + Maia) + 2M1 Mo (i1 ~ Jo)
M,

Muih — Mgy = (M — Majje)

My — Majja =

(2.38)

Substituting Eqs.(2.30) and (2.37) into Eq.(2.38), we finally obtain

2 "[1 ﬂ’[z i
A”[t JJ’ *

My = Majs = (M) — Ma)ije +

Using Eq.(2.33), Eq.(2.39) can be written as

Bu | oMMy,
M, M, -

Myi — Maijs = (My — Ma)

Thercfore, substituting Eqs.(2.35), (2.36) and (2.40) into Eq.(2.34), we obtain

M;i"’y,qucg; + ky; = %Bu. (2.41)
By defining the equivalent reduced mass p as
= Mﬁ# : (2.42)
_equalion (2.41) can now be written as
pijy + iy + kys = 7&;‘3“ (2.43)

which can also be transformed into the usual form

. - 1
§r + 2Awagy +wiys = a7 Be (2.44)
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where the natural frequency wy, is given by

k .
Wy = ,l_l_ (2"“-‘)
and the damping ratio ¢ is defined as
. c .
(=57 (2.16)

In summary, the system cquations of motion, Eqs.(2.23), can now be written as

. !
.= — ¥ 2 AT
ife M, Bu (2.7)

L ~ » <> l
iy + 2Cwnyy +wiyy = EB“ (2.48)

with w, and ¢ defined in Eqs.(2.45) and (2.46).
Equation {2.47) represents the rigid-body motion, while Eq.(2.48) represents the
flexible-body motion with a resonance frequency w,.

From Eq.(2.45), we obtain the system stiflness as

k= pw? . (2.49)
Substituting Eq.(2.49) into Eq.(2.46), ¢ can be written as

c= 21w, . (2.50)

Therefore, using Egs.(2.49) and (2.50), & and ¢ can be chosen to match a specific
resonance frequency w, and a specific damping ratio { for given masses M, and M,.
The transfer function mapping the input u into the base position ), is now

derived. That is

Yils) = Gyl(s)U(s) - (251)
Using Eqgs.(2.28) and (2.35), we can write

_ My + Myy,
==

%
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Taking the Laplace transform of 15gs.(2.47) and (2.48), and assuming zero initial
conditions, we obtain

MistYa(s) = BU(s) (2.53)

and

MYp(8) (82 4 20wns + w?) = BU(s) . (2.54)

Substituting Eqs.(2.53) and (2.54) into Eq.(2.52), we obtain

Y. (3) — 1/1"’! A;':IM; I3U(S) (.) 55)
! 52 8 + 20wy, s + w2 ' -
By defining
B = Ma/M, (2.56)

the transfer function Gy(s) relating the input u to the base position y; becomes

_ B/M, BB/M,
T s2 82 4 2wy, s + w?

Gols) (2.57)

where w, and ¢ are defined in Eqs.(2.45) and (2.46).

2.4 Methods of Analysis

As mentioned in Section 1.3, this thesis deals with space manipulators mounted on
a spacecraft controlled by on-off thrusters. This section describes various methods
that arc used in the following chapters to analyze these nonlinear systems. The
phase-plane method is initially recalled, which is a graphical procedure applicable to
second-order systems only. The second method is based on the describing function,
which is an approximate technique that replaces nonlinear components by linear
“equivalent” ones. Fiaally, a numerical simulation is presented, which is a useful

tool to obtain the response of a very complicated system.
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2.4.1 Phase Plane Analysis

Phase plane analysis is a graphical method for studying second-order systems, This
method generates, in a two-dimensional plane called the phase plane, motion trajec-
tories corresponding to various initial conditions. It is considered in this subscetion
"~ mainly because the spaceeralt attitude controller used in the next chaplers is hased
on the phase plane construction.

As mentioned in (Slotine and Li, 1991), a major class of second-order systems

can be described by differential equations of the form
4 fe,#)=0. (2.58)

In state-space form, the underlying dynamies can be represented as

Ty = Ty (2.59)
g = — f{2, x2) (:2.54h)

with @ = @ and @, = &. The phase planc is defined as the plane having @ and & as
coordinates. There are basically three methods to obtain the phase plane trajectories
for systems such as that of Eqs.(2.59). The first method is to munerically inlegrate
the system equations and then plot the trajectories. The second method is to solve
Eqgs.(2.59) symbolically and obtain the phase plane trajectories. The third method is
to use graphical techniques, as the method of isoclines (Graham and McRuer, 1961).
The second method will be illustrated helow with the use of a simple example.

Let us consider a constant force /' acting on a single mass M without any friction.

The dynamics of this simple system is described by
Mi=F (2.60)
which can be written as
&= FIM. (2.61)

By noting that & = (d&/dz)(dz/dl) = 2( i /dz), we can wrile Bq.(2.61) as

cdi F -
b= o (2.62)
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or
i di = — di . 2.6
bdi = o da (2.63)
Integration of 13¢.(2.63) yields
1., F .

where C' is a constant. Let us assume that the initial conditions are 2(0) = ag and

#(0) = d@y. Using these initial conditions, C is given by

1., F
C= 'é‘.'!?a -— W.’BQ (2.65)
and 15¢.(2.64) can be written as
LM, 1AM, .

"Therefore, phase plane trajectories are parabolas defined by Eq.(2.66), which
depend on the initial conditions and the acceleration /M. The orientation of the
parabolas is dependent upon the direction of the force F. For a given mass and force,
the trajectories for a positive I are depicted in Fig. 2.7(a) and the trajectories for a
negative I in Fig 2.7(b).

More on phase plane analysis is presented in Chapter 3, which is concerned with

control aspects.

2.4.2 Describing Function Analysis

The describing function is a tool used to find the approximate response of nonlinear
systems using methods derived for studying the frequency response of linear systems.
'The main use of this method is the prediction of limit cycles in nonlinear systems, al-
though it has a number of other applications, such as predicting subharmonics, jump
phenomena, and the response of nonlinear systems to sinusoidal inputs. However,

here, only the prediction of limit cycles is discussed in detail.
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Figure 2.7: Parabolic phase planc trajectories,
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First, it is important to define what kind of noulinear systems can be analyzed
with the describing function method. Simply stated, any system that can be Lrans-
formed into the configuration in Fig. 2.8 can be studied using describing functions.
However, to use the describing function technique in its simplest form (single input,
describing function), in a system that has only onc nonlincar component,, three hasic

conditions must be observed, as stated in (Slotine and Li, 1991):

1. the linear element has low-pass properties, and therefore, for a sinusoidal input,
x = Asin(wt), only the fundamental component w; () in the output, w(l) needs

to be considered,

o

the nonlinear component is time-invariant, and
3. the nonlinearity is odd, which is the case for most common nonlinearities.

If a limit cycle is present in the system, the system signals must all be periodic,
and hence these periodic signals can be expanded as the sum of many harmonics.
Moreover, if the linear element in Fig. 2.8 has low-pass propertics, which is true for
most physical systems, then the higher frequency signals will be filtered out and the

output ¥(¢) will be composed mostly of the lowest harmonic. Thercfore, for the case
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Nonlinear Linear
Element Element
r(t)=0 z(t) w(t) y(t)
" —_— 'w=f(:r) - G(s) fo—

Figure 2.8: A nonlincar system.

where a limit cycle is present, it is appropriate to assume thal the signals in the
whole system are basically sinusoidal in form.

Using this assumption, a describing function can be found that represents the
nonlinear component. Considering a sinusoidal input «(t) = Asin(wt), the output
w(t) of the nonlincarity is often a periodic function, and can be expanded in a Fourier
series as

w(l) = 24 > [a,, cos(nwt) + b, sin(nwt)] (2.67)

where
L™ () d(eot)
g = — o) e
0 T J=7

1 b
a, = ;;[-r w(!) cos{(nwt) d(wt)
b, = % i w(t) sin{nwt) d(wt) .

Since the nonlinearity is odd (third assumption above), one has ag = 0. Further-
more, due to the first assumption which states that the linear clement has low-pass

properties, only the fundamental component needs to be considered. Therefore,
w(t) = e, cos{wt) + by sin{wt) (2.68)

which can be written as
w(t) = Zsin(wt + ¢) (2.69)

where

Z(A,w) = \Jal + b2 (2.70)
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and
Gl w) = tan~Way /b)) . (2.71)

If the describing function N (A, w) of a nonlinearity is delined as a funetion that

maps the input 2(t) to the output w(t), we liave

_ w{!) _ Z sinfewl - &) .
N(A,w) = () Asin(w!) (=

which can be written in complex form as

Zellwttd) |
7 R T L 0
N(Aw) = yp ke ALJ = —A(m b jay) . (2.73)

Thus, the describing function of the nonlinearity is given by
1 .
f\r(/‘,LO) = ‘_\(bl +_‘[ﬁl) (2.7')
with

= ljr w(l) cos(wl) d(w!)

T J=r
by = % " (1) sinfwt) d{wt) .

The nonlinearity representation, N(A,w), is tabulated in many books for all
typical nonlinearities. A good reference on the subject is (Gelb and Vander Velde,
1968). Thercfore, the describing functions thal are required in this thesis are taken
from such a table, without making use of Eq.(2.74).

Now that we have a describing funclion for the nonlinecarity, we are ready to
analyze the system of Fig. 2.9 [or the existence of limit cycles, G(jw) is the frequency
response of the linear element of the system and is simply obtained by substituling
s by jw in the transfer function G(s). First, let us assume that there exists a selfl-
sustained oscillation of amplitude A and frequency w in the system. 'Then, the

variables in the loop must satisfy the following relations
T =—y (2.75)
w= N(Aw)z (2.76)

y = Cljwyw . (2.77)
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Describing Linear
Function Element
r(t)=0 x(t) w(t) y(t)
" N(Aw) - G(jw) -

Figure 2.9: A nonlinear system.

Thus, we have y = G(jw)N(A,w)(—y). Because y # 0, this implies:

CGljw)N(A,w)+1=0 (2.78)
which can be written as
1
1 ] = om ———me— 2.9

The amplitude A and the [requency w of the limit cycle in the system must satisfy
5q.(2.79). Il the above equation has no solution, then the nonlinear system has no
limit cycle.

* Since it can be difficult to sc!ve Eq.(2.79) algebraically, a simple solution method
consists of plotting both sides of Eq.(2.79) in the complex plane by varying A and
w, to observe whether tie two curves intersect or not. The intersection point gives
us the value of A and w and, therefore, the approximate limit cycle x = Asin(wt) is
completely determined.

As an example, let us consider the case when the describing funciion N is a

function of the gain A only. So, Eq.(2.79) becomes

1

G(jw) = -W '

(2.80)

The frequency response function G(jw) can be plotted by varying w in the com-
plex plane as in Fig, 2.10. The same can be done for the negative inverse describing
function (—1/N(A)) by varying A. If the two curves intersect, then there exist limit

cycles and the values of A and w corresponding to the intersection points are the
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b im
Gljw)
' d

-1/N(4)

Figure 2.10: nLimit eycle detection.

solutions of Eq.(2.80). If the curves intersect n times, then the system has n possible
limit cycles and the one actually reached depends upon the initial couditions,

Since the describing function method is an approximate method, it is not sur-
prising that the analysis results are sometimes not very accurate. Without going
into details, we can state a general rule mentioned in (Slotine and Li, 1991). [ the
G(jw) locus is tangent or almost tangent to the —1/N(A,w) locus, as in Pig. 2.11{a),
then the conclusions from a describing function analysis might be crroneous. Con-
versely, if the —1/N(A,w) locus intersect the G(jw) locus almosl al right. angles,
as in Fig. 2.11(b), then the results of the describing function analysis are nsually
accurate.

An intersection point of the two loci within the complex plane does nol guarantee
stability of the predicted limit cycle. Such limit cycle can be unstable and it will
never be observed. For brevity, we can state here a siimple Limit Cycle Criterion
based on the extended Nyquist criterion as stated in (Slotine and Li, 1991), namely,
Limit Cycle Criterion: Each interscciion poini of the evrve G(jw) and the curve
—1/N(A) corresponds to a limit .cyclc. If points near the inlersection and alony the
increasing-A side of the curve —1/N(A) are nol cnciveled by the curve G(jw), then

the corresponding limil cycle is stable. Otherwise, the limnil cycle is unstable,
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Figure 2.11: Reliability of limit cycle prediction.

For example, Fig. 2.11{b) depicts a stable limit cycle.

On the other hand, if no intersection of the loci G(jw) and —1/N(A) exists, the
stability of the system is assessed using the normal Nyquist criterion with respect to
any point on the ~1/N{A) locus rather than the point (—1,0) {Atherton, 1975). For
example, assuming that G(jw) is stable, Fig. 2.12(a) depicts a stable system while

IMig. 2.12(b) an unstable one.

2.4.3 Simulation

The third method used to analyze a nonlinear system is by simulation, a very con-
venient way of obtaining results, since one just has to set up an adequate model
and simulate its behaviour numerically, However, to perform many simulation runs,
such as those required in a parametric study, can be very time consuming and give
little insight on the physical system, as compared to algebraic or analytical meth-
ods. Therefore, in this thesis, simulations are used only to verify important results
obtained with the describing function and phase plane analysis. The simulations
model will be implemented with Simulink, a Matlab package that accommodates

model definition and dynamic simulation.
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[igure 2.12: Stability prediction. (a) Stable systen, (b) Unstable system.




Chapter 3

Control Problem

3.1 Introduction

In Chapter 2, a two-flexible-joint planar manipulator mounted on a spacecraft has
been modelled, and a two-DOF simplified model was derived. As seen in Subsec-
tion 1.2.1, control methods have been developed to control the end-effector of such
robots, while leaving the base free to react to disturbances. However, in cases where
this is undesired, on-off thrusters must be used to control the attitude and the posi-
tion of the spacecralt. Since, in this thesis, the latter control scheme is considered,
a method for controlling the base must be formulated in order to analyze the prob-
lem of dynamic interactions at hand. The spacecraft control problem with on-ofl
thrusters is addressed in this chapter to develop the detailed models required for

analysis. Finally, stability definitions used in this thesis are presented.

3.2 Spacecraft Control Scheme

As mentioned in Section 1.3, in this thesis it is assumed that the spacecraft attitude
and position are controlled by jet thrusters. The technology currently available does
not allow the use of proportional valves in space, and thus, the classical linear control

schemes of PD and PID control cannot be used. Therefore, actual spacecrafts are
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controlled by the use of on-ofl thrusters, that are nonlincar devices, since they are
ecither on or off. The classical way of dealing with such devices is Lo use a controller
based on phase plane methods. This controller requires the attitude and rate of
the spacecraft. as inputs. Since these two signals are not always available, a state
estimator is needed to find an estimate for the required states. Thus, the general
control scheme for the spacecraft is presented by the block diagram of Fig. 3.1, In
the following sections, the controller, plant and state estimator blocks are considered

separately to establish the models needed to analyze the problem at haud.

Output
Input BError U 10utput i estimate
P + o1 Coniroller = Planl P= Stnlc

command Lslimator

e

Figure 3.1: Standard spacecralt control scheme.

3.3 Controller

3.3.1 Simple Standard Controller Form

The usual scheme to control spacecraft with on-ofl thrusters is by the use of the
error phase plane. This plane is defined as the plane having the spacecraft attitude
error ¢ and error rate € as coordinates. The on-and-ofl switching is determined by
switching lines in the phase plane and can become very complex, as shown in (Sacketd
and Kirchwey, 1982) for the phase plane controller of the Space Shutile. A stmple
switching logic used in this thesis is presented in Fig. 3.2, The phasc planc is divided
into three regions separated by two switching lines. The region hetween these two
lines is a dead zone, whereby the thrusters arc off. The right arca is a zone where
the thrusters are on in a given direction, while the left area is a zone where they are

on in the opposite direction.
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Rate -
arror (F,‘)
|
\ slope==1/A
\ Allitude (
Fe) error )

\ e-the=d

Figure 3.2: Switching logic in the error phase plane.

The dead zone limits [—6, d] are determined by the attitude limit requirements,
the slope of the switching lines being given by the desired rate of convergence towards

the cquilibrium and by the rate limits. The equations of the switchiug lines are

etdé=4 (3.1a)
e+ ré=—4§ (3.1b)

where A is the negative inverse of the slope of these lines. Note that the smaller A,
the higher the slope of the switqhing line and, therefore, the larger can be the rate
errors.

This control logic is presented in block-diagram form in Fig. 3.3. 1t is composed
of a relay nonlinearity with a dead zone. The input to this relay is the left-hand side
of the switching lines, Eqs.(3.1), and the output is the command of the thrusters u,
cither +1, 0 or —1, based on the amplitude of the incofning signal. |

This control scheme is understood more easily with the analysis of a single mass

system controlled by thrusters. This is the subject of the next subsection.
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— 1+As l o8 “
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Figure 3.3: Controller block.

Y

3.3.2 Phase Plane for a Single Rigid Body

As an example, the single-mass system studied in subsection 2.41.1 is cousidered. 1n
this case, the force F acting on the mass is the force 3 developed by the thrusters.
Therefore, we can rewrite q.(2.66), which gives the phase plane trajectories, by

replacing the force F7 by the thrusters force I3

&

1M . LM, Q-
-—?'T?'.'llz + (:L’n — 551136) . (-‘..).)

If the desired position of the mass is z4 = 0, the position error and the velocity

error can be delined as:

€= = (3.3)
e=—. (3.3b)
Using Eqs.(3.3), along with ¢g = —zg and ép = =g, Eq.(3.2) can be writlen as
1M, 1M, :
e = (CQ ageg) - 35(32 . (-f.’i)

This equation represents the equation of a parabola in the error phase plane for
a particular set of initial conditions (eo, €), the orientation of the parabola being
determined by the direction of the thrusters firing. Thercfore, the trajectories of
the mass in the error phase plane are a combination of parabolic paths when the
thrusters are on and horizontal linear paths when the thrusters are ofl (constant-
velocity coasting). Given a particular set of initial conditions in the error phase plane,
Fig. 3.4 presents schematically the thruster control of the single-mass system. The
convergence rate is determined by the inclination of the switching lines, a limit cycle

being unavoidable since a zero-gravity environment is considered with no disturbance
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IMigure 3.4: Single-mass example.

forces. The smaller the vertical dimension of this limit cycle, the smaller the fuel
constmption, since the thrusters are firing for a very short period (during motions
A-B and C-D). |

More delails must be given about the final limit cycle, since we said that it
was unavoidable, This statement is true for practical reasons: when a thruster is
turned on, it will remain on for at least a minimum operating time AT,;,. However,
if we consider a perfect theoretical relay with no minimum on-tirne, then we can
imagine an impulse that will stop the mass. Because of physical limitations, this is
impossible in any practical system, which is why we stated that the final limit cycle
is unavoidable.

In practical systems, liysteresis and time delays are present. The effects of these
{wo parameters are described in the next subsection with the use of the same single-

mass example,
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3.3.3 Effects of Hysteresis and Time Delays

In practical relay systems, hysteresis must be included to avoid a phenomenon called
chatter, which is well deseribed in (Fliigge-Lotz, 1968), When a thruster is chatter-
ing, it turns on-and-olf continuously, lor a very short period AT, '1'his hehaviour
can reduce considerably the useful life span of thrusters, while the addition of hys-
teresis can reduce the severity of this problem. Also, when relays are modelled,
time delay must be included since Lhere is actually a delay between the time at which
an open (or close) command is senl to Lhe valves and the time ai which the valves
open (or close).

In this subsection, the effects of adding hysteresis and a pure time delay in the
system are discussed. [irst, if hysteresis is included in the controller, the relay
nonlinearity of Fig. 3.3 changes to that depicted in Fig. 3.5(a). The corresponding
effect on the switching logic in the error phase plane is lo add two switching lines,
as shown in Fig. 3.5(b). This means that the turn-on switching lines (F and 3) are
not the same as the turn-off ones (2 and 4). Referring to Fig. 3.5(b), the equations

of the switching lines are:

l. e+Md = ¢

2. e+re = §-—A
3. e+ re = =¢§
4 e+ de = —=64+A.

Since the turn-off switching lines are closer to the origin than the turn-on ones,
the thrusters stay on for a longer period because they stop only when the turn-off
switching line is reached instead of the original line, as when there is no hysteresis,
Therefore, the more hysteresis A we add to the system, the larger the final limit cycle.
A final limit cycle for the single-mass system example is presented schematically in
Fig. 3.6.

Now a pure time delay 7,4 is added to the hysteretic controller, such that when

the controller sends the command to turn on or off the thrusters, the command is
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(a) (b)

IMigure 3.5: Controller with hysteresis. (a) Relay nonlinearity, (b) Phase plane switch-
ing logic.

\

Figure 3.6: Single-mass example with an hysteretic controller.
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exceuted 7y seconds later. The eflect of the time delay in the error phase plane is 1w

change the slope of the switching lines, as shown in g, 3.7.

m—— Original switching
lines
...... Delayed swilehing
lines

=,"(I?)

Figure 3.7: Elfects of a pure time delay on the switching logi-.

For the single-mass system, the new switching line equations are (Graliam and

McRuer, 1961)

L. +(A—-m)e = 4
2 e+ (A-—m)ée = lBT(A ) +d—A
o o = oM 1 (2 d
3. +(A—-m)e = -8
1 B
4, ( - T,[)C = EH (1(21\ —_ T,g) -§4+ A,

3.3.4 Describing Function of the Relay Nonlinearity

In this subsection, the describing functions for the two nonlincarities used in this
thesis are derived. These describing functions are taken from (Gelb and Vander
Velde, 1968) and adapted for the notation used in this thesis. For the relay containing

a dead zone, as shown in Fig. 3.3, the describing function is given by

Ny(A) = ;% e A6 (3.5)
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where A is the amplitude of the predicted limit eycle and 6 the deadband limit.,
As well, the relay containing a dead zone and hysteresis of Fig. 3.5(a), is repre-

sented by

f) ‘)A
'.' — 2§ 2 — 2]_" R
Ni{A) = = [\/A TRVZCRTRING B AS$  (3.6)

where the first term represents the real part and the second term, the imaginary part

of Lhe describing function. Again, A is the amplitude of the predicted limit cycle, §
the deadband linit and A the amount of hysteresis included in the relay. It is noted
that, for a relay nonlinearity, since the paramaters § and A are fixed by design, the
describing Tunction is simply a function of the amplitude A of the limit cycle and
no longer a function of the frequency w. Figure 3.8 introduces the —1/Ny(A) and

—1/Ni(A) loci, which are plotted in the complex plane.

I ] T +
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___ -— 1
0.02 |- Aj ;M
4
" Ag=0.01 Ag=Ap=t  AdbBh
g 0 O~ Q—-—-—-—q —
o —> |
Ad A;=0.01
0.02 k- -
———— —UNgAY)
004 |- === —1/Nj(A}) -
| | 1 |
2 -1.5 -1 0.5 0 05

Real

Figure 3.8: Loci of the describing functions for the relays.
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3.4 Plant

For the plant block, see IFig. 3.1, the equalions representing the dynamies of the
simplified system are used. These cquations are written in state-space and in Lransler-
function form in Subsection 2.3.2; they are then used in the appropriate model in
the sections below. The sensors can be considered as parl. of the plant. A time
delay 7 must be included to account for the delay between the time a sensor reads
a measurement and the time this measurement is used. Since this time delay is
more significant than that of the relay operation due to the delay between the time
the controller sends the command to turn on or oll the thrusters, and the time this
command is exccuted, only the sensor time delay is inclnded in the models (and
that of the relay is neglected). In block diagram form, the plant block is given in
Iig. 3.9(a) for the stale-space form, and in Fig. 3.9(b) for the transfer-function form.

A thick line represents a state vector, while a thin line represents a scalar variable,

+ ' 1
Lalb A X c'! = ™ L ol Gu(s)

+

W

P“T.\'

Y

delay delny

A

(a) (b)

Figure 3.9: Plant block in: (a) state-space form and (b) transfer-function form.

3.5 State Estimator

A very important aspect in control system design is Lthe design of state estimators,
also known as state observers. Observers provide estimates for the states that are
not readily available from measurements but are still required for feedback control,
by using the states available by sensors.

In the case at hand, the required states are the position and the velocity of the

system base. Using current space technology, hoth stales can be obtained by sensor
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readings, However, it can happen that only the attitude is available and the velocity
must be estimated with the use of a state estimator.

In this thesis, three cases are considered. For case 1, we assume thatl both signals
are available and we simply pass these signals through [ilters to climinate high-
[tequency noise. For the last two cases, we assume that only the position is available
rom sensors and use two dilferent state estimators, In case 2, we dilferentiate the
position signal while passing it through a filter to obtain an estimate for the velocity.
The position signal is also [illered in this case. For case 3, a classical asymptotic
state observer is used to obtain an estimate for the position and the velocity. This
observer also has a fillering eflect. In the following sections, cach of these three cases

is presented in more detail,

3.5.1 Case 1: Position and Velocity Filters

When position and velocity arc available from sensors, the function of the state
estimator is simply to filter high frequency noise. This can be shown schematically

by the block diagram of Fig. 3.10.

1
Yl (s) Y
; ;

Figure 3.10: Case 1: block diagram when just filters are used.

Because of their simplicity, second-order filters are used, which can be represented

with the following transfer function G(s)

2
wy

CGrle) =3 2pwrs +wi

(3.7)
The cutoff frequency wy must be chosen to filter high frequencies such that it does
not slow down the response of the system by reducing its bandwidth. Since, for any

particular system, the exact frequency content of the noisy signals is not known,
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we will use w; as a parameter in our study to examine its influence on the svstem
performance. The damping term ¢; in Eq.(3.7) is chosen to be 0.707, which gives

good performance, since il is relatively fast, with small overshoot (1%) (Ogata, 1990).

3.5.2 Case 2: Velocity Estimator with Position Filter

The state estimator presented in Fig. 3.11 is similar to the one used on the Space
Shuttle for on-orbit operations (Penchuk, Hattis and Kubiak, 1985; Sackett and
Kirchwey, 1982; Hattis, 1982). I uses the current acceleration of the system centre
of mass (. = B/M,) and the delayed position (attitude) signal as input. Integrating
the acceleration §, imposed to the whole system by Lhe thruster action, an estimate
for the velocity fi and the position #, ol the system centre ol mass can he oblained.

From Eq.(2.52), we have

M, -
yr = AT-,,(”' —Ye) . (3.8)
By defining
' I"]g "
Yp =gl (n —ve) s (3.9)

an estimate of ¥}, #}, can be obtained by subtracting §. from 3. Differentiating
this “flexible-position” estimate and passing it through a filler Lo climinate high-
frequency noise, a “flexible-rate” estimate y} can be oblained. Then, adding the
velocity estimate of the centre of mass of the system, 7., we finally obtain an estimate

for the velocity of the base 7, since

Iy N d N N L .
Ty +8e = 2 (W = 9e) + 9o = - (3.10)

The differentiation of a noisy signal is usually not recommended because this am-
plifies the noise level in the signal. However, it this case, only the flexible part, needs
to be differentiated. This means that, for a rigid system, no diflerentiation is neces-

sary. Therefore, this kind of state estimator can give very good resulls for cascs of low
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Figure 3.11: Casc 2: block diagram for the velocity estimator only.

flexibility. The position filter is the same as the one presented in Subsection 3.5.1,
ihe diflerentiator-filter being given by sGy(s) where
w?

Gools) = e . (3.11)

2 1 9r R 2
5% + 2gowyes + Wi,

Again, wy of Bq.(3.7) will be a parameter in our study and ¢, is chosen to be
0.707. "The cutofl frequency for the dilferentiator-filter is chosen as w, = 0.2513
rad/s and the damping ratio as ¢, = 0.707. These two values correspond to the
approximated ones used on the Space Shuttle, as explained in (Penchuk, Hattis and

Kubiak, 1985; Sackett and Kirchwey, 1982).

3.5.3 Case 3: Asymptotic State Estimator

The last state estimator studied is a classical asymptotic state estimator described
in many books, for example (Chen, 1984).
Consider a plant model

X =Ax +bu (3.12)
and a single continuous measurement of the output of the plant y,
iy =c’x (3.13)

where A, b and ¢ are given by Eqs.(2.26) and (2.27). We can obtain an estimate for

the state vector x with the use of 4, u and knowledge of A and b.
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HY
By defining
X = estimate of x| (hrn
an estimated value of the measurement yy is given by
PR .
yi=c¢'X. {(3.18)

With knowledge of A, b and u, an estimate of x is available by feeding ¢ into a

soltware-implemented computer model of the plant, namely,
=A%+ bu. (3.16)

Under perfect knowledge of A and b, Bgs.(3.15) and (3.16) would give the actual
position of the base. However, this is never the case; the way to solve this problem

is to feedback the error y — ) into every equation of liq.(3.16), i.c.,

%= Ak +bu+ k(y —c"®) (3.17)
where L
L
L.
k=| *]. (3.18)
Ly
o L‘l -
By defining
X=X-X (3.19)

as the error in the estimate, X can be determined by subtracting 13q.(3.12) from
Eq.(3.17):
% = A% + k(i — ') . (3.20)

Using Eq.(3.13), Eq.(3.20) can be written as
%=(A-ke ). (3.21)

Therefore, the gains L, Lq, Lz and L, can be chosen such that the error equations

Eq.(3.21) are stable, providing that {c’, A} is an ohservable pair, which is the case
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here, Then, the error X will tend toward zero as ¢ increase. Now that a reasonable
estimate X is available, the desired estimate for the position and velocity of the base
can be obtained with

(3.22)

>
i
=
B

where

¥ =[],

1 000
0100

E =

and X as defined in Eq.(2.24).

The block diagram describing the asymptotic state estimator is illustrated in
Fig. 3.12. The determination of gain L,,---, Ly is an important part of this state
cstimator design. I the frequencies corresponding to the poles in the system of
Eq.(3.21) are too large, then we obtain a very good estimate, but the fltering is not
sullicient. Conversely, if these frequencies are too small, the filtering effect is very
good bul we obtain a poor estimate. Therefore, these gains must be determined

carcfully to obtain a reasonable performance of the state estimator.

‘—éﬁ"c"-—L -

U

Figure 3.12: Case 3: block diagram for the asymptotic state estimator.

3.6 Modelling

This section introduces the complete models that are used to perform the describing

function analysis and to run simulations. There is one model for cach state estimator,
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as introduced in the previous section.

3.6.1 Case 1: Model with Position and Velocity Filters

In the model of Fig. 3.13, it is assumed that both position and velocity of the base are
available for feedback. These signals are passed through a second-order lilter G p(s)
to climinate high-frequency noise. The transfer function, Grye(s), representing the

linear clements (Fig. 2.9) of this model is derived in Appendix B.l and is given as
Griner(s) = (1 4 As) exp™™ Gy(s)G () (35.23)

where Gp(s) and Gy(s) are defined in $gs.(2.57) and (3.7). Morcover, (7,(s) repre-
sents the plant transfer function, while G f(s) is the transfler function of a sccond-order

filter.

{ T IR 1
' ~ K 1 i
Wm0 o ey TE i + 1 — 7™ e G ()1 o
T 3 b /S E - 1
- - A 1 N delay |
! relay | | L . ! 2
: e TS Yr Cr(s) § W
X ! A T
H delay !
] | |
L e T 3
controller plant stale
estimalor

Figure 3.13: Case 1: model with position and velocity fillers.

3.6.2 Case 2: Model with a Velocity Estimator and a Po-

sition Filter

For the model shown in Fig. 3.14, only the position is available for feedback, Since
the velocity is also required, it is estimated with a differentiator combined with a
filter G,e(s). The position signal, in turn, is passed through a filter (/¢(s). For this

model, the transfer function of the linear clements Gru.(s) (Fig. 2.9) is derived in
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Figure 3.14: Case 2: model with a velocity estimator and a position filter.
Appendix B.2 and is given by

Grute(s) = exp™" G’,,(s)(Gf(s) + AsG,,_.(s)) + :—IB;(I - G,,(s)) . (3.24)
Tt

where G(s), Gf(8) and G,e(s) are defined in Eqs.(2.57), (3.7) and (3.11) respectively.
Finally, G,(s) represents the plant transfer function, while G(s) and G,(s) are the

transfer function of second-order filters.

3.6.3 Case 3: Model with an Asymptotic State Estimator

T'he last model discussed is the one using an asymptotic state estimator, as shown
in Fig. 3.15. The position signal is used to obtain an estimate of the position and
the velocity of the base. As derived in Appendix B.3, the transfer function Gusym(s)

of the lincar elements (Fig. 2.9) of this model is given by

gu1(s)  g1afs) 1

(3.25)
g21(s) gz2(s) exp™™ Gy(s)

Gusym(s) = [ 1A ]

where,
(s) = Mys?+cs+k
g“ 8§) = D(s) I
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Figure 3.15: Case 3: model with an asymptotic state cstimator,
M Mo [Llss + (c:i’l + LQ)Sz] + (le Ly 4+ Myl
kMaLs + cM, 1,..)5 + kM Ly + keMa Ly
grale) = D(5) ’
Mys® + (c + I Mg) s? 4 (k - c.’;;)s + ALy
ga(s) = D(s) ’
!‘”1 11’[2[4-)_33 + (L’A/[; Lo~ kl‘/fz Ll + kﬂ’l-g[;:g-}-
eM; L.t) s+ (kM. Ly + My L.,) s
gaa(s) = D{s) ’

with
q c 1 k CL] 2

D(s) = My M, [s + (-— + Ll)s + (— + + [,2)3 ] +

p®o reoon

(kﬂ’fl Ll + kMqu -+ CM1 Lg + CMg[M)S + kM| ];2 <+ kn’l'gl:‘;

and Gp(s) and g are defined in Eqs.(2.57) and (2.42). Gy(s) represents the plant

transfer function, while g is the equivalent reduced mass.
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3.7 Stability

ot
o

3.7.1 Definitions

I this subsection, a stability definition is given and used to describe the possible
behaviours of the system, as modelled in Scction 3.6. This stability definition is
Lased on the rate of fuel consumption of the system, which is explained in more
detail below,
I'he Muel consumed by the thrusters is proportional Lo their opening time. There-
fore, we can write
=3 ] Il dt (3.26)
where S is a specilic constant dependent upon the type of thruster fuel used and the
characteristics of the thrusters, and u is the thrusters command, either +1, 0 or —~1.

Since S is constant, the luel consumption F.(l) is defined in this thesis as

) = _zg) = [Iuld, (3.27)

and the units of () will be simply called “fuel units”. As well, the rate of fuel

consumption fy() can be defined as

R(1) = —1' j | di . | (3.28)

Since F(t) is a discontinuous function, R;(t) is not defined at the discontinuity
points. However, a continuous function F7(t) can be defined that best fits the fuel
consumplion curve and then, the rate of fuel consumption is defined everywhere as
a smooth function.

In all cases studied in this thesis, three different classes of behaviour were ob-
served. In the first class, the system eventually reaches a limit cycle similar to a rigid
body limit cycle, where the system states remain contained between the switching
lines. The resulting rate of fuel consumption is thus minimal and comparable to

that of a rigid body and the system is considered stable. In the second class, the
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position of the spacecraft diverges from the equilibrivm and thus the fuel consump-
tion increases with time, leading to a non-zero vate of fuel consumption. Since this
rate of [uel consumption is much larger than that of the desired rigid hody case,
the system is considered unstable, in accordance with the divergence of motion. For
the third possible class of behaviour, the spacecralt. motion follows a limit eyele of
large amplitude due to the excitation of the system flexible modes, As a vesnlt, the
limit cycle is not contained inside the switching lines and the thrusters are firing
continuously, leading to a non-zero rate of fuel consumption comparable Lo the one
obtained when the motion diverges. This type of behaviour will also be considered
unstable since it is not desirable from the fuel consumption point of view, 'T'hese
observations lead to the following stability definitions:

Stability Definitions:

1. a type-1 instability (U1) will describe an unstable behaviour for which the

motion diverges, resulting in a non-zero rale of fuel consumption;

2. a type-2 instability (U2) will describe a system where the motion reaches a
limit cycle that is not contained inside the switching lines as for a rigid hody
limit cycle, thus resulting in a non-zero rate of fiel consumption. This system

will be classified as unstable, too;

3. a stable system (S) will describe a system where the motion reaches a limit,
cycle similar to a rigid body limit cycle, thus being contained between the
switching lines, and resulting in a ncar-zero rate of fuel consumption as for a

rigid body system.

3.7.2 Application

The stability definitions of Subsection 3.7.1 arc applicd by using cither the deseribing

function method or simulation.
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For the describing function method, three typical describing function plots are
presented below Lo show the applicability of the stability definitions.
Type-1 Instability

The plot shown in Fig. 3.16 is typical of a type-1 instability. Since all the points of
the — 1 /Ny(A) locus are encircled clockwise by the G(jw) locus, they are all unstable
according to the Nyquist criterion and the amplitude of the oscillations, A, will
increase indefinitely. Therefore, the two intersecting points in Fig. 3.16 represent

unstable limit eycles that will never practically be observed.

i T T i
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A=0.01 A=l
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[Figure 3.16: Describing function plot for a type-1 instability.

Type-2 Instability

In this case, the plot of Fig. 3.17 represents a type-2 instability. Since all points
to the left of the G(jw) locus are not encircled clockwise by this locus, they represent
a stable zone, while the points to the right of the same locus are unstable points.
Two types of behaviour are observed in this plot. First, if we take a point on the
—1/N4(A) locus that corresponds to A < 0.0101 m, then the system is stable and

the amplitude of the oscillations will decrease till A = 0.01 m, that corresponds to
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Figure 3.17: Describing function plot for a type-2 instability.

the deadband limit which is the minimum value of A where — L/Ng(A) is defined.
Therefore, this corresponds to a stable motion according to the stability delinilions
of Subsection 3.7.1. However, if the point on the —1/Ny(A) locus corresponds to
0.0101 m < A < 0.1393 m, then this point is unstable and its amplitude will increase.
If the amplitude becomes greater than A = 0.1393 m, then this point, becomes a sta-
ble point and the related amplitude will decrease. Therefore, the point corresponding
to A = 0.1393 m represents a stable limit cycle of amplitude A = 0.1393 m, which
is not contained between the two switching lines since A > 0.0i m. The aclial
behaviour of the system will depend upon the initial conditions. However, since Lhe
possibility of a type-2 instability is present, the system is classified as being a type-2
instability. Moreover, the stable case is unlikely to happen since the amplitude of
the limit cycle, A, must also be greater than the deadband limit, by definition, which
is 6 = 0.01 m. The zone of stability is thercfore very small.

Stable System

A stable system is represented by the describing function plot shown in Fig. 3.18.
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Figure 3.18: Describing function plot for a stable system.

Since no point of the —1/N,(A) locus is encircled clockwise by the G(jw) locus,
all the points are stable, and the system exhibits a stable behaviour according to
our stability definition. No large-amplitude limit cycles are present in this system
because Lhere is no intersection of the two loci and, therefore, a small unavoidable
limit cycle due to AT}, will be reached as explained in Subsection 3.3.2.

In the case where simulations are performed, the fuel consumption given by
£q.(3.27) can be oblained easily, by integrating the absolute value of the thrusters
command u. The stability definition can be applied qualitatively by looking at this
fucl-consumption curve and imagining a continuous curve that fits this curve. If the
slope of this continuous curve becomes flat after a while, as the one in Fig. 3.19(a),
{his means that the rate of fuel consumption is near-zero, and that the system is
stable. If this continuous curve has a non-zero slope, as in Fig. 3.19(b), then the
system is said to be unstable. The type of unstable behaviour can be determined
by examining the error phase plane of the spacecraft to see if the motion diverges

as in Fig. 3.19(c), or rcaches a large limit cycle that is not contained between the
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Figure 3.19: Examples of stability determination. (a) Fuel-consumption curve of
a stable system, (b) Fuel-consumption curve of an unstable system, (¢) Spacecrall,
error phase plane when the motion diverges, (d) Spacecraft error phase plane when
the motion reaches a large limit cycle.

switching lines, as in I'ig. 3.19(d).
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Analysis and Discussion

4.1 Introduction

In Chapters 2 and 3, the analysis tools and control models required to study the
problem formulated in Section 1.3 were introduced. The analysis of this problem
is now adressed in this chapter to allow us draw design guidelines and conclusions.
Realistic parameter values are first proposed for the models. These values are next
used in a parametric study done using the describing function method. Simulation
results are also produced to show the reliability of this approximate method. Con-
clusions and discussion of this study follow and, finally, the importance of hysteresis,

noise and perturbed mass properties are studied in the last three sections.

4.2 Numerical Application

"I'o perform a parametric study using the describing function method, and to simulate
the models presented in Section 3.6, numerical values are chosen for all parameters
required. Using the approximate characteristics of the CANADARM-Space-Shuttle

systenn, the natural frequencies of the system are also obtained.
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4.2.1 Determination of Parameter Values for the Models

In order to perform the parametric study, realistic parameter values must be chosen
for the models formulated in Section 3.6. Some parnmeters like acceleration, time
delays, minimum operating time of the thrusters, ele. are taken from the Space
Shuttle system as indicative of current space technology.
Plant Parameters

Despite the fact that the CANADARM-Space-Shuttle system is often taken as
reference, this thesis does not focus on some particular system. Therefore, the mass
of the spacecralt M, can be chosen arbitrarily, and is chosen as 500 kg, whick is quite
small compared to the mass of the Space Shutile. However, the important point. is
Lo use a system acceleration that is reasonable; by a proper choice of the fuoree level
of the thrusters, this can be attained, and thus, similar behaviours are obtained. By
choosing a small mass for the spicecraft, we show that our analysis is vol restrietod
to the Space Shuttle system, and hence, it can apply to any space robotic system,
The manipulator is assumed to have a negligible mass, and since the maximum pay-
load rating for the CANADARM is about 30% of the mass of Lthe Space Shuttle,
the ratio of the mass of the payload over the mass of the spacecrall, /3, is assmmed
to vary between 0.01 and 0.3, For the manipulator, the four configurations studied
are shown in Fig. 4.1. The configuration in Fig. 4.1(a) is thal corresponding to the
highest first resonance frequency expected for a specific payload, while the conlig-
uration in Fig. 4.1(d) corresponds to the smallest frequency for the same payload.
Configurations in Figs. 4.1(b) and (¢) yield intermediate frequencies. T'he second-
order structural damping ratio { was oblained experimentally for the CANADARM,
as reported in (Allen, D’Eleuterio and MacLean, 1994), and is equal to 0.068. 1L is
also possible to extract this parameter from the simulation results of Singer (1989),
which give approximately 0.05. In this thesis, we also use ¢ = 0.05. As mentioned
in Section 3.4, the time delay for the relay operation is neglected since it is small

compared to the sensor time delay. This sensor delay is chosen as 7 = 0.1 s, which
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Paylond
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Figure 4.1: Manipulator configurutions studied.
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is inside the range of current delays for space sensors, order of 80 ms to 300 ms. As
example, the Space Shuttle sensors have a delay of 7 = 0.312 5 (Penchuk, Hattis and
Kubiak, 19835).
Controller Parameters

Current on-off thrusters can develop various force levels 3, the choice of the
required force being dependent upon the system. TFor this thesis, a 5 N lorce is
assumed Lo be available fo translate the system either in the posilive or negative
direction and is chosen as the nominal value, while, for the parametrice study, the
thrusters are assumed to range from (.1 N to 10 N. Morcover, the deadband atlitnde
fimit 4, is also system-dependent. Here, 0.01 m is chiosen as the nominal value for
§, while the range for the study is from 0.001 m to 0.1 m. The negative inverse of
the slope of the switching lines, A, is assumed to vary [rom 0.1 s 1o 10 s, and Lhe
minimum operating time for the thrusters is chosen as ATy, == 0.0 s, which is of
the same order of magnitude as thal for the thrusters of the Space Shutile, 0.080 s
(Nakano and Willms, 1982; Hattis ct al., 1982).
State Estimator Parameters

Some of the state estimator parameter values have already heen defined in Sub-

sections 3.5.1 and 3.5.2. Thesc are

wye = 0.2513 rad/s
Cee = 0.707
¢; =0.707 .

The cutoff frequency of the filters wy is varied from 0.2513 rad/s 1o 4 rad/s. The
same range is chosen for the pole placement using ihe gain k of the asymptotic stale
estimator. T'wo poles are placed on the negative real axis at, the chosen [requency
Wasym, While the two other ones are placed symmetrically about, the negative real axis
for the same frequency, but with a damping coefficient (oapm of 0.707—see: Fig 4.2,

All these parameter values are summarized in Tables 4.1 and 4.2.
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Figure 4.2: Poles placement of the asymptotic state estimator.

l !”l | i | (: I T |ATminl Wyp | Cf l Csc |Cn.1me
[500 kg | 135° | 0.05 [ 0.1s | O.1s | 0.2513 rad/s ] 0.707 | 0.707 | 0.707 |

Table 4.1: Fixed-parameter values.

2 001</5<03
) 0ls<Ar<ils
B
3

0.ON<B<I0N
0.0l mM<§<0lm

. —135°, —90°, —45°, 0°
f 0.2513 rad/s L wy <4 rad/s
u:‘f'ym 0.2513 rad/s < wasym < 4 rad/s

Table 4.2: Free-parameter values.
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4.2.2 First Natural Frequency Evaluation of the CANA-
DARM-Shuttle System

The natural [requencies of the manipulator arc dependent upon the pavload and
the configuration of the manipulator. Equation (2.16a) can be used to approximate
the first natural {requency of the CANADARM mounted on the Space Shuttle in
a specific conliguration and for a particular payload. The approximate characteris-
tics of the CANADARM-5pace Shuttle system are used to derive the model, The
CANADARM, a 6-DOF manipulator, has two long flexible finks, 1l the character-
istics of the whole manipulator are lumped around these two flexible links, and the
Space Shuttle is assumed to be the base, we obtain the approximate parameters given
in Table 4.3. These paramctcrs were obtained as follows: the length of the three livst,
links of the CANADARM (6.6 m, 7.1 m and 1.8 m, respeclively) are taken from
(Singer, 1989) and their corresponding mass (140 kg, 85 kg and 95 kg, respectively),
from (Cyril, 1988). The second and third links are assumed to be rigidly connected
as a single link, which corresponds to the second link of our madel. T'herefore, (he
centre of mass of this link is at 5.9 m from the beginning of the tink. The moment of
inertia of the first two links of the CANADARM, with respect Lo their centre of mass,
is approximated by the moment of inertia of a uniform thin rod i.c., I = mi?/12.
As well, the moment of inertia of the last link of the CANADARM, with respect 1o
its centre of mass, is approximated using the moment of inertia of a cylinder, i.c.,
I = m(r?*/4 + {2/12), and by assuming a radius of » = 0.25 m. These caleulated
values are 508 kg m?, 357 kg m? and 27 kg m?, vespectively, for the first three links of
the CANADARM. The moment of inertia of the second link of our model, with re-
spect to its centre of mass, can therefore be obtained from the second and third links
values of the CANADARM. Now, considering‘a point mass payload of frug kg, where
B is the ratio of the mass of the payload over the mass of the spacecraft, as defined
in Eq.(2.56), the properties of the second link of our model are modificd as follows:

the centre of mass of the link becomes z, = (1062 4 8.98my) /(180 + Brng), its mass
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[ Body TLG)] vi(m) [ mi(kg) | I; (kg m?) |
0 1 75,000 1,635,937
| 3.3 3.3 110 508

2 1.9 3 1580 1273
2+4Payload Te 8.9 —a. | 180+ fAmy | 1273 4+ 180(x. — 5.9)°+
Bmo(8.9 — a.)?

Table 4.3: Shuttle, simplified 2-link manipulator and payload parameter values.

my = 180+ fFmyg and its moment, of incrtia f2 = 1273 4+180(x. —35.9)*+ my(8.9—=z.)%

For the Space Shuttle, a mass mg = 75,000 kg scems reasonable, since its dry
weigth is about 68,000 kg (Lyndon B. Johnson Space Center, 1976). Finally, the
moment ol incrtia of the Space Shuttle was approximated by considering a 37 m
long cylinder with a radius of 3.5 m, and using the formula I = m(r?/4 + 12/12).
The lenglh of 37 m is the actual length of the Space Shuttle (Lyndon B. Johnson
Space Center, 1976) and the radius of 3.5 m is an approximate value.

The first two natural lrequencics for the CANADARM in the configuration ¢, =

135° and ¢y = 0°, without payload arc, as mentioned in (Singer, 1989),

wy = 27(0.32) rad/s (4.1a)
wy = 2m(3.2) rad/s (4.1b)

Substituting Egs.(4.1) in Bqs.(2.16) with the use of the parameters in Table 4.3 and

solving for &y and k,, two sets of solutions are obtained

Ky = 137,086 Nm/rad (4.2a)
kz'l = 295,547 Nm/rad (4.21))

or
ky2=1,228,961 Nm/rad (4.3a)

ke = 32,967 Nm/rad (4.3b)
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The first set of solution, £y ; and &y of Egs.(-1.2), is considered in the following anal-
ysis because the two spring stillnesses Ay and £ are of the same order of magnitude,
which makes more sense, since the two corresponding joints of the CANADARM are
similar. Therefore values of Eqs.(4.2) can be used in Eqgs,(2.16) to obtain the manip-
ulator natural frequencies for all configurations. Some resulls for the CANADARM
arc available in (Singer, 1989), and displayed in Table 4.0 with rosults obtained us-
ing Eqgs.(2.16). We sce that the error is quite small, and, despite the fact that we
lumped all flexibility at the joints, the model gives good agreement with the exper-
iments. Therefore, the parameters given by Eqs.(1.2) will be used in conjunction
with Eqs.(2.16) to obtain the configuration-dependent resonance [requencies for the

manipulator under study.

q (deg) | g3 (deg) || First nat. freq. (Hz) | First nat. freq. (Hz) [ Seror (%)
CANADARM Using Eqs.(2.16)
135 0 0.32 0.32 0
135 -45 0.35 0.34 3
135 -90 0.45 0.13 4
135 -135 0.8 (.65 1)

Table 4.4: First resonance frequency comparison.

Using Eq.(2.16a), the set of first natural frequencies, for the range of 7 and the
specific configurations ¢ and ¢z used in the parametric study, are given in ‘Table 4.5,
where the ratio of the highest frequency to the lowest one is 5 to 1. Making use
of tii: damping ratio ¢, these lrequencies are substituted in Eqs.(2.49) and (2.50)
to obtain the required spring stiffness & and damping cocflicient, ¢ for Lthe simplified

model formulated in Section 2.3.

4.3 Results of the Parametric Study

A parametric study, using the describing function technique, is next performed for

all three models considered in this thesis. System stability is investigated as done in
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LB laa=—135° | gu==90° [ qu = —45° [ ¢4 =0° |

0.01 0.255 0.170 0.136 0.127
0.05 0.128 0.090 0.075 0.071
0.1 0.097 0.072 0.062 0.059
0.15 .083 0.065 0.057 0.054
0.2 0.076 0.061 0.054 0.052
0.25 0.071 0.058 0.052 0.050
0.3 0.067 0.056 0.051 0.049

Table 4.5: First natural frequency evaluation (Hz).

the typical examples of Subseclion 3.7.2.

To validate the results obtained by the describing function method, a large num-
ber of simulations have been performed using Simulink, a Matlab package. More
allention was given to critical points, which diflerentiate unstable from stable be-
haviour. In general, simulation results confirmed those obtained by the describing
function method. However, for some conditions, the conclusions based on the de-
scribing function method were flalse. In those cases, simulations for conditions near
the ones that gave false results gave results that were in agreement with the describ-
ing Munclion predictions. Since we are only concerned with the general trends and not
with accurale values, conclusions based on describing functions remain acceptabie.

Iu the following subsections, the results of the parametric study are discussed
with the results of one simulation for each of the three models studied. The three
simulation cases studied are typical of the three possible types of behaviour described
in Subsection 3.7.1. In all simulations reported in this chapter, an initial error of
(.05 m was assumed for both the position of the spacecraft and the position of the
payload. The controller was then used to try to bring the spacecraft within the

deadband limits.
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4.3.1 Case 1: Model with Position and Velocity Filters

The results of the describing function analysis for the model with position and ve-
locity filters, which is shown in Fig. 3.13, are summarized in Tables 1.6, 4.7 and -8,
In these tables, “U1™ means an unstable system of type-1, U2 an qustable svstem
of type-2, and “S” a stable system. For this model, the lexibility level in the system
does not play an important role in stability determination. Il a system is stable for a
high-frequency case, it is also stable for a low-frequency case, for the same parameter
values. This conclusion is also valid for an unstable system. Therefore, the results
displayed in Tables 4.6, 4.7 and 4.8 are valid for the whole range of /7 and ¢y values

studied.

A {s)

wr(radfs) [O.L] 05 1L [ 25 4571w
0.2513 Ut Ul [urtjutjurjurfurfuz2ju
0.4700 Ul Ul Ugrtjurliutfu2iu2ju2lu
0.6911 Ul Ul urjfurjuziujuzyu2lu
1 Ul Ul Hiriuyzjuzjuziuzu2)u2

2 UL| Ul [U2|oz[uz|u2|uzluo2|u2

3 UL [ULJU2| S |S |S [ S |uz|uz|u2

4 ul S 5 S S b S lu2) e

10 Ul S S o S S1 S5 ]

where Ul = Type-1 instability
U2 = Type-2 instability
S = Stable system

Table 4.6: 3tability as a function of A and wy (=5 N, § = 0.0l m).

In Table 4.6, tlle\"..f’)_rce level B of the thrusters and the deadband limits § are
fixed to 5 N and 0.01 m, rcspcctivcly. We can sce that, lor a given cutoll frequency
wy smaller or equal to 2 rad/s, the system is unstable for all A values, cither by a
type-1 or a type-2 instability. A small A results in type-1 instabiiity, while a larger A

-results in type-2 instability. Moreover, the greater wy, the smalier the A separating
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)

dm) 01051 ][5 |10
0.000 fUI|{UL[UI|UI]UI
o1 Jurjurjur|ur|ul
005 (Ul UL [Ul]Ul|U!
0.1 urquljul{yJl|ul

where Ul = Type-1 instability

Table 4.7: Stability as a function of B and ¢ (wy -= 0.47 rad/s, A = 3 s).

B (N)

$(m)[[0.1]05]1 ]5 110
0001 f ST S JU2]U2] U2
0.01 S S S S | U2
pos | S| SIS |S]|S
0.1 S|1S|1S|S]|S

where U2 = Type-2 instability
S = Stable system

Table 4.8: Stability as a function of B and § (w; = 3 rad/s, A =3 s).
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the type-1 and type-2 instability zones. |If wy is nereased further, Lel, ifwp > 2
rad/s, a stable system for intermediate values of A can be obtained. Morcover, the
range of allowable A values for stability increases as wy increases. Therelore, for the
model with position and velocity [ilters, wy should be greater than 2 rad/s lor a
possible stable behaviour, as large as possible to increase the possibility of obtaining
a stable system. However, filters are designed to climinate high-lrequency noise; if
the cutoll frequency wy is too large, noise will pass through the filters and they will
not be effective. The proper choice of wy will thus depend upon the quality of the
available sensors and the need for filtering.

From Table 4.7, where wy is lixed to 0.47 rad/s and A to 3 s, il is noted thal
the variation of B and § has no cffect on the stability of the system. In all eases,
the system exhibits a type-1 instability. However, in Table .8, we can see that,
for a larger cutofl {requency, say, wy = 3 rad/s, the system is stable for low values
of B, as expected. The stability zonc is also extended by the choice of a larger
deadband limit 6. Therefore, § should be chosen as large as possible, being limited
by the amount of attitude error that is allowed in the system. The thruster force
B should be chosen as small as possible, without being saturated by base reaction
forces induced by possiblc,mdtions of the manipuiator. In other words, 3 should be
high enough to compensate for all basc-reaction disturhances.

A simulation has been conducted using the paramcters of Tables 4.1 and 4.9
for this model, the results being shown in Fig. 4.3. From Figs. 4.3(b) and ic), we
can see that the thrusters are firing continuously, which restills in a high total fiel
consumption of 478.9 fuel units, and a non-zero rale of fuel consumption. Therelore,
the system can be classified as unstable. Morcover, by Jooking at the phase plane
trajectories in Fig. 4.3(a), the instability is said to be of type-2, since a limil cycle
that is not contained instde the switching lines is reached. Hence, this agrees with

the describing function results of Table 4.6 for wy = 0.6911 rad/s and A = 3 s,
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[0.01 [3s]5NT0.00 m| 27(0.255) rad/s | 0.691] rad/s |

Table 4.9: Free-parameter values for a type-2 instability.

{a)
0.05
T
E o
3
00 005 0 005 0.
e (m)
b 500 (©
4789,/
1 400
05
£ 300
2 0 .g
05 5 200
-1 100
-1.5 0
0D 100 200 300 400 0 100 200 300 400
Time (s) Time (s}

Figure 4.3: Simulation results for a type-2 instability. (a) Spacecraft error phase
plane, (b) Thruster command history, (c¢) Fuel consumption.
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4.3.2 Case 2: Model with a Velocity Estimator and a Po-

sition Filter

If a velocity estimator and a position filler are used, as Tor the model of Fig, 3,141, the
flexibility level in the system is very important for stability determination. Sinee the
conclusion about the stability of a system for a particular set of @ aned gy values can
be different than the conclusion about the stability for the same system, but with
another set of 8 and ¢y values, it is not possible Lo present the results in the same
form as in Subsection 4.3.1. In this case, all free paramelers are studied separately
with the aid of a stability map.

The stability map studying the effect of the cutoll frequency wy ol the position
filter is presented in Iig. 4.4(a) by setiing A, &7 and § equal 0 3 5, 5 N and (.01 m,
respectively. Each curve in this stability map represents a stability boundary lor a
given wy. The region above a stability boundary is a zone of instability either by
type-1 or type-2, while the region below the boundary is a zone of stability. We
can see that the stability zone is augmented by increasing wy, since Lthe stability
boundary moves up. For wy; > 1 rad/s, the system is stable for all 8 and ¢y values
studied. Therefore, w; should be chosen as Jarge as possible, while keeping in mind
the noise reduction problem.

In the stability map of Fig. 4.4(b}), paramecters wy, A and & are fixed to 0.47
rad/s, 3 s and 0.01 m, respectively, to study the effect of the force level B developed
by the thrusters. For low foree, i.e., B = 0.1 N, the system is always unstable
(for 8 = 0.01). However, for a small increase in B, $ = 0.5 N, the stability zone
is increased significantly. This stability zone is subsequently reduced if 13 further
increases, and, finally, maintains the same level for B > 5 N. In this case, the best
parameter choice is probably 3 > 5 N, since at lower foree levels, there is a jump
between stability and instability zonc. This kind of jump phenomena should he
avoided to eliminate the possibility of instability in a rcal physical system.

'The effect of the negative inverse of the slope of the switching lines A is studied
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Figure 4.4: Describing lunction stability maps. (a) Effect of wy, (b) Effect of £, (¢)
Effect of ), (d) Effect of 4.
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in the stability map of Fig. 4.4(¢). For this study, the parameters wy, I3 and § are
fixed to 047 rad/s; 5 N and 0.01 m, respectively. For A < 2 s, the system is always
nnstable and the stability zone is enlarged with an increase in A, For A > 5 s,
Lhe system becomes stable for all cases studied. Therefore, an obvious choice is to
schect o large A, which mieans that the velocity feedback is more weighted, to obtain
. stability in all possible configurations and payloads.

Finally, the stability map of Fig. 4.4(d) presents the effect of the deadband limits
§ by seliing wy, A and 3 Lo 0.47 rad/s, 3 s and 5 N, respectively. As observed with
the model studied in Subsection 4.3.1, the stability zone increases with a larger 4.
However, for the fixed-parameters of wy, A and B, it scems impossible Lo obtain a
Mull stability area while keeping & in a reasonable range, because there is no § for
which the system is always stable for all configurations and payloads.

It is importani to libte that the maps of Fig. 4.4 are approximate, since only a
few f# and g3 values were studied. It should be possible to obtain more precise maps
by reducing the inierval of variation of the parameters for ecach stability analysis.
However, the conclusion would be the same, since we arc only examining the trend
ol increasing a certain parameter value and not specific point values.

The free-parameter values of Table 4.10 have been used, with the fixed-parameter
values of Table 4.1, to run the sinidation model. The results obtained are displayed
i Fig. 4.5. By examining the phase plane portrait of FFig. 4.5(a), we can see that the
amplitude of the motion is diverging since the initial error was 0.05 m. This behaviour
is typical of a type-1 instability. Moreover, we observe from IMigs. 4.5(b) and (c) that
the thrusters are firing continuously and that the total {ue! consumption is very high,
namely, 466.5 fuel units. A conclusion about stability can also be drawn by looking
at the slope of the fuel-consumption curve in I'ig. 4.5(c). Since the slope is non-zero,
we can conclude that the system is unstable according to the stability definition of
Subsection 3.7.1, which is the same conclusion reached with the describing function

method, looking at Fig. 4.4(c) for A =2 5.
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Table 4.10: Free-parameter values for a type-1 instability.

{a)
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0.1
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Figure 4.5: Simulation results for a type-1 instability. (a) Spacecraft. ervor phase
plane, (b) Thruster command history, (c) Fucl consutnption.
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4.3.3 Case 3: Model with an Asymptotic State Estimator

The use of an asymptotic state estimator, as in the model of Fig, 3,15, gives very
interesting results. Using the describing function technique, it was found that the
system was almost always stable for all  and ¢ values, and for all [ree-parameter
values studied. Only a few instability cases were obtained at Tow values ol A, There-
[ore, the performance of the reaction control system is increased signilicantly with
the use of this model. All the stable cases studied are reported in Table 4.11, while
the unstable cases in Table 4.12. For cases in Table 4.11, the stability conclusion is
valid for all 8 and ¢z values studied in this thesis. The results of ‘Table 4,12 e also
be illustrated with the stability map of Fig, 4.6, using w, = 0.7230 rad/s, B =5 N
and § =0.01 m.

0.35 I T 1 ] 1
03 b ' | | —e— a=0as
] || @ a=0a2s
025 : | A- - A=013 s
02 I _
i UNSTABLE
o 0.15 ‘ -
0.1 A - -
0.05 8 TN -
U STABLE -
-0.05 | | | | 1 | |
-140  -120 -100 80 -60 -40 20 0 20
q, (deg)

Figure 4.6: Stability map for the model with an asymptotic stale estimator.

The system was simulated using the parameters of Table 4.13, again with the
fixed-parameters of Table 4.1. The results are illustrated in Fig. 4.7. From Figs. 4.7{x)
and (b), it can be seen that a small limit cycle that is contained between the switch-

ing lines is ‘reached, corresponding to a stable case. One can note that the motion
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[wy(rad/s) | B(N) [ 6(m) [ Alfs)
0.2513 3 0.01 3
0.7230 0.1 0.01 3
0.7230 0.5 0.01 3
0.7230 I 0.01 3
0.7230 5 0.01 3
0.7230 3 0.01 0.15
0.7230 5 0.01 0.5
0.7230 3 0.01 1
0.7230 5 0.01 2
0.7230 5 0.01 3
0.7230 5 0.01 4
0.7230 5 0.01 5
0.7230 5 0.01 7
0.7230 5 0.01 10
0.7230 3 0.05 3
0.7230 5 0.1 3
0.7230 10 0.01 3

1 5 0.01 3
2 5 0.01 3
3 3 0.01 3
4 5 0.01 3

Table 4.11: Stable cases for the model with an asymptotic state estimator.

[wy (vad/s) [ B (N) [ (m ] s) | l ga (deg.) |

0.7230 5 001 ] 01 |> o 15[ -135 |
0.7230 5 0.01 0.1 >0.05{ -90
0.7230 5 0.0l | 0.1 | =005 -45
0.7230 5 001 | 0.1 |=0.05 0
0.7230 5 001 | 0.12 | > 0.1 -90
0.7230 5 0.01 | 0.12]>005]| -45
0.7230 5 0.01 | 0.12 | = 0.05 0
0.7230 5 001 |[0.13 | > 0.1 -45
0.7230 5 001 [ 0.13 |{>0.05 0

Table 4.12: Unstable cases for the model with an asymptotic state estimator.

80
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I ,13 I 4\ ] B l (g l w'y l Wasym l
10.3 [ 25 [5NJ0.00 m [ 27(0.049) vad/s | 0.7230 rad/s |

Table 4.13: Free-parameter values for a stable system.
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Figure 4.7: Simulation results for a stable system. (a) Spacccraft error phase plane,
(b) Spacecraft error phase plane (soom), (¢) Thruster command history, (d) Fucl
consumption.

appears to be concentrated at the left side of Fig. 4.7(b) in a spiral motion. However,
if the simulation is run for a larger period, the right switching line will eventually
be reached and thus, a firing will occur, then reactiving the small limit cycle. This
longer simulation run was not performed in order to maintain consistency in the
results presentations and, since the velocity is very small, the Lime required can be
quite significant. Figs. 4.7(c) and (d) are also typical of a stable system, since the
thrusters are not firing continuously and the fuel-consumption curve is flat, thereby
resulting in a near-zero rate of fuel consumption. In this case, the total fuel con-

sumption is very small, with only 7.6 fuel units.
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4.4 Conclusions and Discussion of the Describing

Function Studies

The conclusions of the parametric study of Section 4.3 arc the same for all three

models stndied. They are summarized below:

I. the cutoff frequency wy for the low-pass filters should be chosen as large as

possible to avoid instability;

2. a small velocity gain A can result in instability in the system; therefore, a large
A should be selected. However, one must be carelul, since a large A may lead
to a lype-2 instability for case 1, where the model with position and velocity

fillers is used;

3. the force level B of the thrusters should be chosen small for stability. Unstable
types of behaviour are more likely to occur for large B. However, one must
be careful because the system can be unstable for a very low thrust level as,
for example, in the case of the model with a velocity estimator and a position

filter (always unstable when B = 0.1 N);

4, deadband limits § should be chosen as large as possible to avoid instability in

the system.

Physical interpretations of these conclusions are given below.

A filter is designed to reject the noise in a signal. If a low cutoff frequency is
chosen, the filtering effects will be better, but lag will be introduced in the system.
This lag can have similar effects to delays, i.e., it can change the effective slope of
the switching lines—see Section 3.3.3. If this lag becomes so significant that the
slope of the switching lines becomes positive, then an unstable behaviour of type-1
is obtained, since the amplitude of the motion will always increase. Lag eflects can

also explain the increase of type-2 instabilities with an increase of wy. When lag is
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presert, more and longer firings are necessary to bring ihe system 1o equilibrimm,
Since the natural lrequencies are rather low, longer firing periods can more easily
excite these modes. As well, many firings are more likely to excite Hexible modes
than a fow firings. Thercfore, the first conclusion of the describing [unction analysis
secms quite reasonable physically,

The first part of the second conclusion can be explained by similar arguments.
If A is small, i.e., if the slope of the switching lines is large, a small lag can change
this slope to a large positive value, thereby resulting in an unstable system of type-1.
Increased chance for a type-2 instability when A is not very small scems also quite
reasonable. When A is large, which corresponds to a small slope of the switching
line, the chattering phenomenon introduced in Subscction 3.3.3 is more likely to
become significant, thereby resulting in more subsequent firings, and, therefore, in
flexible-mode excitation. However, this conclusion is not valid in case 2, where the
model with a velocity estimator and a position filter is studied. In this case, when
A is increased, there are less possibilities of obtaining a type-2 instability. “This
is contradictory and means that other phenomena play a more significant role in
the system. No explanation is currently available: more rescarch is required to
understand this phenomenon.

The third conclusion on the effect of the force level B of the thrusters can also be
explained physically. When the thruster force is large, a single impulse of thrusters
is more likely to excite the flexible modes of the system, since the impact is more
profound. However, the reasons why instabilities can result with very low force levels
are less obvious. A tentativeexplanation is that, if the force is low, then the thrusters
have to fire for a longer period. These longer jet firings can lead to low frequency
excitation, thereby resulting in an instability of type-2.

Finally, the fourth conclusion can be easily explained. If the deadband limits
are larger, then there is more off-time between firings, therefore resulting in less

subsequent firings. It is thus more unlikely to excite the flexible modes in the system.
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Throughout this scction, it was shown that the trend of the paramcter valucs
obtained by the describing function analysis make sense physically, This physical
nnderstanding is significant when establishing confidence in the approximate method.
Simulation results were also reported; these confirmed the relatively good accuracy

ol the method for behaviour prediction.

4.5 Importance of Hysteresis

In the describing function plots of Subsection 3.7.2, no hysteresis was included in the
controllers. However, il 20% of hysteresis is added to the controller of the example
for a type-2 instability, which means that A = 0.002 m (Fig. 3.5), the plot of Fig. 4.8
is obtained, where subscripts d and h refer to the relay without and with hysteresis
respectively. The describing function representing the relay without hysteresis is
also included for comparison. We can see that the intersecting points corresponding
to the two curves, with and withoutl hysteresis, are very close and correspond to
the same amplitude for the predicted limit cycle, i.e., A = 0.1393 m. The major
difference is that, if hysteresis is present, there is no possibility for a stable system,
while stable responses were possible in the case without hysteresis. However, as
cxplained in Subsection 3.7.2, the system is considered unstable because there are
possibilities {or unstable responses. Therefore, the conclusion on system stability is
the same and independent of the presence or lack of hysteresis.

Intuitively, the same conclusion is drawn by considering that hysteresis is actually
included in the control system to avoid excessive firings of the thrusters, as explained
in Subsection 3.3.3. However, when a large limit cycle is reached, the thrusters are
firing for quite a large period and, hence, the hysteresis does not play an impor\tant
role. Since we arc only concerned about system stability, it is not necessary to include
hysteresis for the research conducted in this thesis.

To verify this conclusion, the same model that was simulated in Subsection 4.3.1

using the parameters of Tables 4.1 and 4.9 was simulated including 20% of hysteresis
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Figure 4.8: Describing function plot with and without hysteresis.

to the controller. The results, illustrated in Fig. 4.9, are alinest the same as those
of Fig. 4.3 for the case without hysteresis. The total fuel consumption is slightly
higher in the case where hysteresis is included, i.c., 483.9 fuel units jnstead of 478.9
fuel units. Again, this shows that, for the problem al hand, hysteresis does nol play
an important role. Since this situation is typical of all cases studied, hysleresis was

not included further in this thesis.

4.6 Effects of Noise

In the describing function analysis of Section 4.3, it was not poessible Lo include noise
in the system. Therefore, to complete the study, the cffect of noise is investigaled
in this section by introducing white noise into the sensor readings of the simulalion
models. Since we are not dealing with any particular system, the amount of noise
is not known, because this is dependent upon the quality of the sensors. For this

reason, we assume some reasonable values for the parameters of the noise. White
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Pigure 4.9: Simulation results for a type-2 instability with an hysteretic controller.
(1) Spacecraft crror phase plane, (b) Thruster command history, (c¢) Fuel consump-
Llion. To be compared with Fig. 4.3.

noise is assuined: this means that the noise is normally distributed with a variance
Onoise and & zero mean fyoise = 0 m. The Simulink white noise generator block was
used Lo generate the noise into the models. The noise variance was selected to be
20% of the variance of a stable system motion, which is quite a large noise level,
since typical values are of the order of 10%. For deadband limits from § = —0.01 m

to § = 0.01 m, the variance of the stable motion becomes

.01) = (—=0.
Onotion = (0 0 ) 6( 0 01) = 0.00333333 m . (44)

The variance of the noise is thus chosen as
Tnaise = 0-201nah'an = 0-00066666 m. (4.5)

If the free-parameters of Table 4.14, corresponding to the most flexible case stud-
ied, arc chosen for the model with a velocity estimator and a position filter, the

resulting motion should be stable according to Fig,. 4.4(a), since wy > 1 rad/s, and
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Table 4.14: Free-parameter values lor the noisy stable system.

a small limit cycle is expected. The simulation model was run using these pavam-
eters and white noise of variance 0,455, = 0.00066666 m was added to the system,
The results shown in Fig. 4.10 indicate a stable system. Again, for consistency, the
model was run for only 500 s, resulting in motion near the zero velocity atl the right
of Fig. 4.10(b). However, a small limit cycle is expected il the molion is run for a
longer period. We can see that cven il the cutofl frequency of the filter is chosen
large, i.c., wy = 3 rad/s, which results in poor [fillering cffect and a fast response,
the motion is also stable with the addition ol noise. This result is typical of all
results obtained and indicates that it is not neccessary to have a large lilering to
obtain a stable system. However, in the case 2 where the model with a velocily
estimator and a position filter is used, the positioﬁ signal used to oblain an estimate
of the velocity must be filtered since a differentiator is used, which would result in
a very noisy estimate. This comment explains why the attitude controller of the
Space Shuitle uses a very small cutolf frequency of wy = 0.2513 rad/s for the rate
estimator, while using basically the unfiltercd measurement values for the attitude
(Sackett and Kirchwey, 1982). In this kind of nonlincar system, unfiltered signals
can still give good performance because they do nol pass through the controller as
ina liI:{ear system. The controller, which only has three output values, cither -1, 0
or —1 is, therefore, a very good filter as far as the noise reduction is concerned, and
thus, always has a clean output signal. |

For the case 1 where the model with position and velocity fillers is used, it
was shown in Subsection 4.3.1 that the system was always unstable for low cutofl
frequencies and can be stable for high cutoff frequencies. However, at the limit, il

the filters are completely removed, a stable system is possible even in the presence of



Chapter 4. Analysis and Discussion 88

x10” (2) x10” (o)
5
0
7 5
E 5 Eo
] B
-10
-15 -5
0z 0 002 004 006 001 -0005 0 0005 0.01
o {m) a(m)
) (d)
500
! 400
05 £a00
2 0Oh ,;
-1 100
s 0 42
" 100 200 300 400 0 100 200 300 400
Time {s) Time (s)
FMigure 4.10:  Simulation results for a noisy stable system (onise = 0.00066666

m). (a) Spacccraft error phase plane, (b) Spacecraft error phase plane (zoom),
(¢) Thruster command history, (d) Fuel consumption.

noise. Simulation results {or such cases are included in Fig. 4.11 using the parameters
of Table 4.15. The resulting motion near the equilibrium is obviously very noisy,
but still the system behaviour is stable, as seen in Fig. 4.11(d), by considering the
fuel-consumption curve. Therefore, the model with position and velocity filters can
still be useful, and possesses interesting performance, even if it was almost always
unstable in the study of Subsection 4.3.1. However, one must be careful with this
imodel, because, if the noise level in the sensor readings is more significant, let us
say, il the variance of the noise is 50% of the variance of the stable motion, i.e.
Tnoise = 0.00166667 m, the same system can become unstable, as shown in Fig. 4.12.
Hence, it is always more secure to use filters, even with a large cutoff frequency, to
climinate high-frequency noise. The actual usefulness of this model will depend upon

the quality of the sensors available.
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Figure 4.11: Simulation results for a stable noisy system without filters (oyuis, =
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4.7 Perturbation in the Model with an Asymp-
totic State Estimator

In Subsection 4.3.3, it was observed that the model with an asymptotic state esti-
mator was almost always stable. However, for this model, a dynamic repreéenta.tion
of the plant is required; it was assumed previously that this was perfectly known.
In this section, the eflect of perturbing the plant and adding noise in the system is
addressed.

To perturb the system, we will assume that the actual mass of the spacecraft is
My, = 250 kg instead of M) = 500 kg, as in Table 4.1. For the payload, its mass is
increased by 50%, giving M,, = 1.58M,. These perturbations are not realistic since
the mass properties are usually well known in space system, but are chosen to show
the robustness of this system to unmodelled uncertainties. The parameter values

of Table 4.13 are used to run the same case of Subsection 4.3.3, while employing
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the perturbed masses for the plant. Using N (2.16a), the first natural freqoeney is
wy, = 27(0.049) rad/s, which is the same as for the non-perturbed case. \White noise
with a variance of e = 0.00066666 m is also added to the system, The simulation
results of this perturbed-noisy system are presented in Fig, L 13 s noted that the
system is still stable because the rate of Tuel consumption is vear zero, The total (uel
consumption has increased somewhat from the non-perturbed system, el 20,2 (el

units instead of 7.6 [ucl units (Section 4.3.3). However, the important conclusion is

that the system remains stable even with very perturbed mass propertios and noise

addition.
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Figure 4.13: Simulation results for the model with an asymplolic stale estimator
with perturbed mass properties. (a) Spacccraft crror phase plane, (b) Spacecralt
error phase plane (zoom), (¢) Thruster command history, (d) Fuel consumption.

The performance of the asymptolic state estimator is thus very good and consid-
erably improves the stability zone of the actual controller used on the Space Shuttle.
Using this state estimator, the likelihood of actually exciting the flexible modes of
the manipulator is small, even when assuming large errors in Lhe mass properties.

Since all these mass properties are known precisely before sending an object in space,
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the performance cannot be worse than that studied - is section. Therefore, the
iodel with an asymptotic state estinator provides very good control characteristics

and is preferred over those stadied in this thesis.
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Conclusions and

Recommendations

5.1 Conclusions

This thesis examined the possible dynamic interactions between the attitude con-
troller of a spacecraft and the flexible modes of a space manipulator mounted on it.
The dynamic model of a two-flexible-joint planar manipulator mounted on a lree-
flying base was derived. Its natural requencies were oblained using data from the
Space Shuttle-CANADARM system. These frequencies were then used to determine
the corresponding spring stiffness and damping cocflicient of a simplificd two-mass
system that reproduced the relative motion of the payload (carried by the manipu-
lator), with respect to the spacecralt. A classical attitude controller based on phase
plane techniques was implemented to control the spacecraft. ‘This attilude controller
was integrated with the dynamic model of the simplified system in three different
simulation models, cases 1, 2 and 3. The first simulation model, case 1, assimed that
the position and the velocity of the spacecralt were obtained from sensor readings

and the signals were simply passed through second-order filters to climinate high
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frequency noise. In the second model, case 2, it was assumed that only the posi-
tion was available by sensors and a state estimator was employed, which basically
differentiates the liltered position signal Lo obtain an estimate of the velocity. This
model is similar to the one used on the Space Shuttle, Finally, the last model, case 3,
also employs the position data available by sensors; however, an asymptotic state
eslimator is used to obtain an estimate of the position and the velocity based on this
signal.

Since the altitude controller assumes the use of on-off thrusters, which are non-
linear devices, Lechniques for analysis ol nonlinear systems were required. The de-
scribing funclion method was used to analyze the characteristics of the three models
and to perlorm a parametric study investigaling the significant parameters of the
system. The results obtaired with this approximate method have been verified by
simulation using Simulink, a Matleb package. These results were usually in agree-
ment with these of the simulation and, therefore, we concluded that the describing
funclion technique is a very good tool to analyze this type of nonlinear systems.
Hence, the stability of a particular system can be verified quickly and easily using
Lhis mnethod. Lengthy simulations need only be performed to examine critical sta-
bility limits, which requires less effort. Moreover, the conclusions of the parametric

study were explained physically. These final conclusions are summarized below:

l. the cutofl frequency wy for the low-pass filters should be chosen as large as

possible to avoid instability;

2. a small velocity gain A can result in instability in the system; therefore, a large
A should be selected. However, one must be careful, since a large A may lead
te a type-2 instability for case 1, where the model with position and velocity

filters is used;

3. the force level B of the thrusters should be chosen small for stability. Unstable
types of behaviour are more likely to occur for large B. However, one must

be careful because the system can be unstable for a very low thrust level as,
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for example, in the case of the model with a velocity estimator and a position

filter (always unstable when 3 = 0.1 N):

4. decadband limits d should be chosen as large as possible Lo avoid instability in

the system.

These conclusions can be used as guidelines in the design of an attitude controller.
The describing function can thus be useful to readily find a stability margin ol the
chosen system.

From the three models studied, the case 1 where the model that asstunes that
the position and the velocity arc available by sensors is the one that gives the worst
performance. Due to the use of filters, lag is introduced in the system, which results
in an unstable system. However, when high-qualily sensors are available with o low
noise level, the need of filters with a low cutoll frequency is less important; adequate
performance can then be obtained with this model. It was shown that, at the limit,
when the filters are removed, a stable system is possible, even in the presence of
noise. The general poor performance of this system explains why velocity sensors
are not currently used in accurate attitude control manocuvres of the Space Shuitle.

The best performance case, out of the three models studied in this thesis, was
obtained with the case 3 which uses an asymptotic stale estimator. 1t was noted that
stable systems were possible for very large paramecter variations. In fact, stability
problems were only present for a very low velocity gain A, which corresponds, lo large
slopes for the switching lines. This estimator can be used to improve the performance
of the actual attitude control systems when flexibility is a major concern. Even in the
presence of large uncertainties in the mass properties, the performance obtained was
very good. However, this state estimator requires an accurate dynamic model of the
plant, even though it was demonstated in Section 4.7 that the controller performed
adequately when a significant perturbation of mass properties was introduced into
the model. This is not a large drawback, since accurate inertial propertics of a

spacecraft can be obtained prior to its launching into space. However, in the case of
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it space robotic system, the dynamics can hecome very complicated when [lexibility
in the links and joints of the robot, along with the payload flexibility, must be
considered. The computational time required for this complicated system becoines
significant, and the use of models running in real-time can become difficult and will
he dependent upon the available hardware. However, a simpler approximate model
may he sufficient to achieve good performance. More rescarch is thercfore needed on
the possible implementation of this type of controller.

I was obscerved that the model with a velocity estimatlor and a position filter, as
used on the Space Shuttle, did not provide very good performance. However, this
observer is simple to implement since no dynamic model is necessary. I this model
is selected for a particular system, the guidelines presented above can be used to
choose the parameters that will provide good performance in a variety of conditions.

[t should he mentioned that the stability of the system is also dependent upon the
initial conditions. In the simulations reported in Chapter 4, the system was assumed
to have a large initial error; it was attempted to restore it to within the deadband
fimits. Since the initial error is large, there is a high probability of exciting the flexible
modcs of the manipulator. In a more practical situation, the spacecraflt would already
be within the attitude limits and it would most likely be disturbed due to manipulator
motion, hence requiring reaction control. In this case, the correcting action would
take place when the error is small. Therefore, the thrusters would fire for a short
period, as for a rigid body limit cycle, which would not likely excite the flexible
modes. However, the rapid commanded motion of the manipulator could incur a
larger disturbance; therefore, the chances to obtain an unstable system become more
significant. In conclusion, even if the describing function method predicts an unstable
systein, a stable behaviour is still possible, but the motion must be executed slowly.
This is due to the fact that in most unstable predictions, a stable system was also
possible for small initial errors. In those cases, we concluded that the system was

unstable due to the instability possibility. The use of an asymptotic state estimator
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in these cases would allow [laster motions that are most likely expected i [uture

space exploitation.

5.2 Recommendations for Future Work

The problem addressed in this thesis was solved n a very simplilied lorm, There
p ]

exists a wide range of further investigations that could be performed as an extension

to this work. Some suggestions for [ulure activitices are outlined as follows:

[

Incorporate the dynamics of a two-fiexible-joint manipulator in the models,

instead of the dynamics of the simplified system,

Use an improved controller with optimum switching functions and velocity

limits drift channel instead of the simple switching lines used in this thesis.

Extend the simulation models to a three-dimensional case, as opposed to Lhe
one-dimensional case considered here. A three-axis controller should therelore

be developed.

In the case where the model with a velocity estimator and a position {iller mnst
be used, investigate the incorporation ol compensation techniques Lo push the
closed loop poles of the system to the left of the complex plane to eliminale

lag due to the filter and, thercfore, enlarge the stability zone of the system.

Study the implementation of the asymptotic stale cstimator for real-time con-
trol in the case of complicated dynamic models with limited computer Lime

available.

Investigate the use of a Kalman filter in the case where noise properties are

known.

Investigate the possibility of using pulse-width modulation techniques to con-

trol the position (attitude) of the spacecraft.
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Appendix A

Expressions of Coriolis and

Centrifugal Terms

The Nij(q,,q,) expressions ol Eq.(2.10) are given by
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where
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Appendix B

Transfer Function Derivation of

the Linear Elements of the

Simulation Models

In this Appendix, the transfer function of the lincar clements of Lhe three models
studied in this thesis are derived. This transler function is represented by (I(s) in

Fig. B.1. By examining Fig. B.1, we can write

o=~y
o= —C(s)u (3.1)
where u is the output of the relay nonlinearily, cither +1, 0 or —1.

Therefore, if an equation similar to E¢.(13.1) can be obtained, this means thal

the model is reduced into a suitable form for describing function analysis.

Ya=0 u° u

T
- N(A) H—— - C(S) e B

Figure B.1: A nonlincar system.
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B.1 Case 1: Model with Position and Velocity

Filters

The dynamies of the plant in the model presented in Fig. 13.2 is represented in

state-space form, The transfer function describing this dynamics can be written as
Gy(s) =E(sI-A)'b. (B3.2)
Using the expressions of A, b and E, defined in Eqs.(2.26) and (3.22), we obtain

Ci(s) = Gols) (B.3)
s(ip(s)

where (7,(s) is defined in £q.(2.57) and represents the plant transfer function.

Therefore, examining Fig. 3.2, with the use of Eq.(B.3), we can write

o = —fi — A
= —G(s)yr — AG;(s)in
= —Cy(s)exp ™ Gp(s)u — AG(s) exp™ ™ sG(s)u
= —(1 + As)exp™™ G {s)Gy(s)u
o = —Gher(s)u (B.4)
by defining
| Grner(s) = (1 + As) exp™™ Gip(s)Gis(s) .

Equation (B.4) is of the same form of Eq.( B.1) and therefore, Grjec(s) is the

transfer function of the lincar elements of the model with position and velocity filters.
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Figure B.2: Case 1: model with position and velocity filters.
B.2 Case 2: Model with a Velocity Estimator
and a Position Filter
Examining Fig. B.3, we can write

o= _!}I - /\g.|
1 af l 13
= ~Gtoln = M(sCu()5} + L 37)
= —G(s)exp™™ Gy(s)u

-—;\[sG’_,,,(s)(cxp'” CGy(shu — | B ) -+ iﬁu]

;EE“ 8 A’lf
- AB
= —-[exp e G',,(s)(G;(.s) + ,\sG'_.,.,(s)) + m(l - G'_,,:(s))]u
(e
0 = —=Grue(s)u (3.5)

by defining

A
Crae(s) = exp™™* G,,(s)(G‘ 1(s) + z\sG,c(s)) +a (1 _ c.'_,,_.(.q)) .
t
Equation (B.5) is of the same form of Eq.( B.1) and therefore, Grge(s) is the

transfer function of the linear elements of the model with a velocity estimator and a

position filter.
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Figure B.3: Case 2: model with a velocity estimator and a position filter.

B.3 Case 3: Model with an Asymptotic State
Estimator

The dynamics of the plant in the model presented in Fig. B.4 is represented in state-
space form, This dynamics is written in transfer function form in Subsection 2.3.2,
and the transfer function representing this dynamics is given by Gp(s) which is
defined in Eq.(2.57).

IFor the state estimator part, we have

% = A% + bu + k(y; — ')
= (A —ke")% + bu + ky,
'I‘ - 11
= A=k )%+ [ b k] . (B.6)
)

We also have

= Ex. (B.7)
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Figure B.4: Case 3: model with an asymptotic state estimator.
In transfer function forin, qs.(B.6) and (B.7) can be writlen as
i1 ) (
= GQ(S) (“.S)
hn n

where
e N\ =1
Gg(s)=E(sI—(A—k‘c')) [1, k] :
Using the expressions of A, b, ¢, E and k, which are defined in Bqs.(2.26), (2.27),
(3.22) and (3.18) respectively, we obtain
Ga(s) = gls) guls) (13.9)
ga(s) gnls)

with
gu(s) = Mys? +es+k
IS ="

CL1
M
kMqyLy + CM2L4)S 4 EM Ly + EMy Ly

D(s) !

M,Mz[Lls" + ( + Lz).sﬂ] + (kM, Ly + eM, Lyt

912(3) =
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Mas? + (c + L,Mz).s-'-' n (k + (:L[).s s
y!l("‘) = [)(S) 1

M, My s + (ch Ly = kMol + feMy Lyt

MLy Yot + (M Ly + KDL, )

-{/22(5) = 1)(3) b]
and
N L k L
D(s) = M M, [s“ + (E + I,,)sJ + (!—L + c’—l' + Lg)s2] +

(kM, Ly + EMyLa + cM Ly + M, L.i)s +EM Lo+ EM L, .

The block diagram of Fig. B.4 can therefore be represented as the one of Fig. B.5.

- Y
Cafs) A
- + + a T w K/
Yur=0 __:I‘ -!r 3% _‘Gp(S) -l o7 - Y
N relay

Figure B.5: Model with an asymptotic state estimator using transfer functions.

Examining Fig. B.5, we can write

o= —f — A

--[41]7]
=1 1] [ gu(s) gm(s)Hu]
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- gn(s)  gel(s) 1]
o[ ][

gn(s) gals exXpT T O s)u

3 [ _— ] anls)  ga(s) I
gai(s)  gan(s)
0 = =Gepm(s)u (B.10)

| exp™T (7l )

by defining

Gu.-\'ym(s) = [ 1 A ]
ga(s) ge(s) | | exp™™ Gpls)

where g11(s), 12(s), g21(s) and goa(s) are defined in Eq.(13.9).
iquation (B.10) is of the same form of Eq.{ B.1) and therefore, Glugm(s) is the

transfer function of the linear elements of the model with. an asymptotic estimator.





