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Abstract 

ln this thesis we consider a number of issues in developing techniques and algorithms 

to automate the visual tracking of deformable objects in the plane. We have applied these 

techniques in cel! locomotion and tracking studies. We examine two classes of computer 

vision problems. First, we consider the segmentation of a noisy intensity image and the 

tracking of a nonrigid object. Second, we consider the shape analysls of an amorphous object. 

ln evaluating these nroblems, we explore a new technique based on an active contour model 

commonly called a "snake". The snake permits us to simultaneously solve, in constrained 

cases, both the segmentation and tracking problems. We present a detailed analysis of the 

snake model, emphasizing its limitations and shortcomings, and propose various improvements 

to tht, original description of the model. Then, we study the two complementary types of shape 

de.>criptors: Loundary- and region-based. We propose to combine these within the context 

of the grassfire transform. Two new algorithms are described. First, we present a contour 

segmentation technique using mathematical morphology on the curvature fl/nction. Accurate 

localization for different scales of curvature features is achieved. Second, the snake model 

IS used to simulate the grassfire transform using the previously extracted contour features. 

This permits us to produce a multiscale skeleton representation of shape which is based on 

the Euclidean distance metric. New significance criteria for our shape descriptors, such as the 

"region-support" of curvature extrema and the "ridge-support" of skeleton branches are also 

proposed. Finally, numerous implementation details are discussed; for example, the description 

of an optimized sequential Euclidean distance transform. 
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Résumé 

Dans cette thèse nous considérons différents algorithmes et techniques afin d'auto

matiser le suivi visuel d'objets déformables dans le plan; nous avons appliqué ces techniques 

dans l'étude du mouvement de la cellule. Pour ce faire, nous examinons deux classes de 

problèmes dans le cadre de la vision peH ordinateur. Premièrement, nous considérons la seg

mentation d'image et le suivi visuel d'un objet informe. En second heu, nous considérons 

l'analyse morphologique d'objets informes. Afin de résoudre ces problèmes, nous explorons 

une nouvelle technique basée sur le concept d'un "modèle de contour actif", communément 

appelé snake. Cette technique nous permet de solutionner simultanément la segmentation 

et le suivi visuel. Nous présentons une analyse détaillée du snake, mettant l'accent sur ses 

limites d'application et ses défauts, et nous proposons plusieurs améliorations relativement à 

la description du modèle original. Par la suite, nous étudions deux types complémentaires de 

descripteurs de forme, basés respectivement sur les notions de contour de l'objet et de région 

Intérieure à ce contour. Nous proposons de combiner ces descripteurs par l'intermédiaire de la 

transformée dite du grassfire. Deux nouveaux algorithmes sont alors décrits. Nous présentons 

d'abord une technique de segmentation de contour utilisant la morphologie mathématique 

appliquée à la fonction de courbure. Nous obtenons ainsi une localisation précise de certaines 

caractéristiques de la fonction de courbure, tels ses extrema, et ce, pour différentes échelles 

Ensuite, le modèle du snake est utilisé afin de simuler la transformée du grass(,re tout en util

Isa nt les résultats obtenus lors de la segmentation du contour. CecI nous permet de produire 

une représentation de forme par son "squelette" à différentes échelles, tout en utilisant une 

métrique de distance euclidienne. De plus, de nouveaux critères de sélection sont proposés 

pour nos descripteurs de forme. Finalement, plUSieurs problèmes de mise en application s0nt 

discutés, entre autr~s la description d'un algorithme de tranformée de distance euclidienne, 

optimisé au niveau de sa complexité numérique. 
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Chapter 1 1 ntroduction 

It 'S alive! 1 S('C il. Illovillg! 

This thesis addresses a number of issues in developing techniques and algorithms to 

permit the computenzed automation of the visual tracking of defprmable abjects ln the plane. 

We seek ta glve the computer the c.apacity to recognlze, identify apd descnbe nonrigid objects 

as they deform and move. More speclfically we are interested ln the visual tracking of living 

cells, such as human flbroblasts [Noble86] as they move on a planar surface such as glass. We 

think of such lIVing ceUs as constituting an ideal amorphous object for testing our algorithms 

Sin ce their boundary can deform simultaneously at different subparts t:l take vlrtually any form 

(Figure Il). 

Figure 1.1 Example of vanous fcrms taken by a living cel! 

Our interest in the study of ce" movement arises from a long term research project to 

characterize the dynamic behavior of those living human cells which use pseudopods, that 
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15, protrusions of their cellular membrane, as a mean for locomotion. 1 Cel! movement is a 

fundamental process of importance to cell biology [Noble86, Lackie86] Comprehension of 

aspects of cell blology as diverse as migrations of cells in embryologlcal development and host 

defense mechanisms is directly dependent on th'! study of cell movement IYoussef82] Such 

a study may be performed by flrst recording sequences of Images of ce"s obtalned with a 

digitizing Lamera mounted on a microscope. Cel! tracking is then achleved, and the cells are 

followed from frame to frame (Figure 1.2), in order to detect changes ln position and variation 

in shape properties, that is, shape attributes of the ceU's body and subparts or pseut.:opods 

Cell dynamics can th en be characterized by these variations i.l time of the cells' shape features 

(b) 

(f) (c) ( ri) 

Figure 1.2 Example of an image sequence of a deforming and movlng cell 

) This project has emerged From a collaboration between the faculties of Dentistry, MediCine and Engi
neering at McGili University The following reference list constltutes a good summary of the research 
wOlk whlch has been accomplished ln our group du ring the last thirteen years [Boyarsky77. r erm79, 

Levint:80, Ferrie82, Youssef82, Levine83, Noble86, Di1l87] 

2 



1. Introd uction 

1.1 The Cell Tracking Problem 

Imagine being a technician or researcher in a physiology laboratory, performing visual 

analyses for experiments on cell motion 8elow follows a brief summary of a typical day in 

"your" life: 

Here you are agal/l. Fixmg your eyes to the eyeplece of the micloscope. For 
hours you have bcen metkulously notlcmg any change in the cell's fonn, seeking 
any specIal event that will reveal why and how It moves, sleeps and deforms, 
or reacls ta the presence of an mtruder or a companion, or catastroplucally 
divides Itself glvmg blrth ta two new sisters 

The work IS pamful The Images are sometimes c1ear, sometimes blurred 
or corrupted by extrancous moving abject., and nOIse The expenments be
come worth will le whcll trackmg many of the "compa/llon" ce Ils lIow can one 
charactcnzc the shape of thcse amorphous lIving bemgs? 

It IS latc at IIIght 1I0W But you must contmue as the results of your work 
lIIay be conslderably Impoverished If YOU lose contact wlth one of the cells and 
start to nllstakenly track another Vou cannot use a rachoactlvc Isotope to 
mark the eells and hclp your sleepy visual system smce Jt would corrupt the 
ccll's behavior. 

Vou start thinkmg that you still have ta repeat sueh an experiment tens of 
times and for tens of dlfferent cells m dlfferent chemical enVlronments A na
lyzlIIg the data is the essence of your work, but It seems now to be a long term 
goal Vou close your eyes 

The engineering problems we are facing can be situated at two levels Flrst is the need 

for automation. It should now be eVldent that the visual analysis of cell motion requires 

ilS automation on a computer to perform numerous tedious computations, such a job being 

impractical for a human to realize efficiently. This automation system should provide the 

human experimenter wlth reliable qualitative as weil as quantitative informations, such as 

shape deformation dynamics, average motion or multicellular interactions. In a sense, we can 

think of this system as a tool ta extrdct and summanze, from the raw data, the essential 

Information of the tracking for the beneflt of the experimenter. 

At a second and more profound level, is t ' e need to develop "qualitatively accurate" as 

weil as "numerrcally efficient" techniques. Such methods should permit us to solve a number 

of essential computer vision problems. By qualitatively accurate we mean to say that we are 

looking for techniques and processes giving us meaningful qualitative information, such as the 

position of relatively significant corners, bumps and parts of a cell's shape Furthermore, sud 

Information should be robustly computed in the presence of noise Numerlcal efflciency refers 

ta our need to provide algonthmlC implementations which are optimized for speed, since the 

3 
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amount of data to be processed is enormous. In our particular case we will restrict ourselves 

to algorithms for sequential computers. Within the objectives of this thesis, we will try to 

address two classes of computer vision problems summarized in the following two questions . 

• How to segment an image and track significant events of a nonrigld object as It deforms 

and moves? 

• How to identify and describe the shape of an amorphous object in both the static and 

dynamic cases? 

1.2 Approach and Motivations 

Until recently there has not existed a method for quantifying the observable changes in 

the shape of a cell membrane that occur during locomotion [Noble86, Oliver89]. Changes ln 

cellular membrane shape activity, such as the formation of pseudopods, are the first morpho

logical events visible as the cells respond to chemotactic agents. Moreover, many Important 

types of cells, such as polynuclear leukocytes (PMN) and lymphocytes are known to use their 

locomotory organs, the pseudopods, to locomote. Little is known of the pseudopod klnetlcs of 

these cells during locomotion [Noble86] Many attempts to study and charactenze locomotory 

paths, considenng cells as points moving on a planar surface2, have lead to advances in the 

understanding of chemotaxis3 and chemokinesis4 . However, it 15 only recently that an image 

interpretation system capable of descnbing and quantifying, not only the propertles of loco

motion of a moving cell, but also its shape and structural dynamlcs, has been designed and 

implemented on a computerized enVIron ment [Ferrie82, Youssef82, Levlne83, Noble86, Dtl187]. 

It is on the basis of the results of this research that we have decided ta approach the 

2 looking at cell movement without regard to Its membrét,le activlty constitutes the large maJ0rlty of 
the research done so far, for example, see [Ramsey72, Boyarsky77, Bell79, levine80, Zlgmond81. 

Boisfleury89] 

3 Chemotaxis Reaction by which the direction of locomotion of cells is determined by substances in their 
environment [Noble86] 

4 Chemokinesis Reaction by which the direction of locomotion of cells and/or the frequency of turning 

of cells, moving at random, is determined by substances in thelr environ ment [Noble86] 

4 



( 

1. Introduction 

problems of "tracking and describing deformable objects" such as living human Ct"s. We have 

decided to focus our attention on the essential first processing steps of image segmentation 

and shape description and not consider higher level tasks, such as the feedback monitoring 

and the control of a complete image understanding system (for examples of such systems, see 

[Ferrie82, Youssef82]). Image segmentation and shape description are two basic, but complex, 

domains of research in computer vision; and even if many attempts at providing solutions to 

them have been proposed in the past, no definitive answers have yet been given [Levine85]. 

Segmentation of an image to extract ce" boundaries or contours is the first task required 

to identify what is a cell and what is not in a digitized image Many techniques are actua"y 

available. Techniques based on "classical" segmentation algorithms, such as reglon growing, 

edge detectlon and relaxation labellOg, usua"y require too much computation to obtain accu

rate results [Garbay86]. Therefore, we have explored a new segmentation technique based on 

the work of Kass et al. [Kass87] which rntroduces the concept of an active contour model, 

also commonly ca"ed a snake. We are interested in this new concept, because the snake 

permits us to simultaneously solve both the segmentation and tracking problems. Snakes can 

be represented as energy-minlmizing splines gUided by external constraint forces and image 

forces such as lines, edges, subjective contours and region homogeneities found 10 the image 

Furthermore, internai spline forces impose smoothness constraints on the modeled contours. 

By comblning and integratillg various types of information found in an image, snakes can lead 

to results at least comparable to other image segmentation techniques. But it is the dynamic 

behavior of the snakes which IS mainly of interest here. From frame to frame, a snake w;U 

stick to the cell contour by fo"owing any small deformations which may occur when a cell 

moves However, an essential assumption IS required. a cell can move only a sma" distance 

between frames. This is needed because the snake is in some sense relatively "blind" in its 

search for the optimal contour The snake :s able to track only small deformatlons on ItS own, 

that is, wlthout the help of hlgher level or more complex processes. Consequently, most of 

the processing time requlred by the snake to converge to the cell boundary is consumed in the 

lOitial frame. In addition, some amount of user interaction to provide an initial position for 

the snake IS reqUired ln the flfst analyzed frame Then, snakes implicitly take care of tracking 

the ce" by dynamlcally sticklng to boundaries. 

Shape description is considered once the cell boundaries are availa ble, that is, when they 

are segmented from the digitlzed image. Following the research of our predecessors [Dill87], 

5 
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we have tried to optimize shape description algorithms based on the notion of the skeleton of 

a shape, that is, on its representation by "idealized thin lines" that retain the connectivity or 

topology of the original shape. The skeleton is believed to be the most powerful representatlon 

available at present for characterizing the shape deformations and evolution of shape subparts 

of nonrigid natural forms [Noble86, Oi1l87]. The skeletonization of a shape, that is, the process 

by which the skeleton is obtained, permits us to explicitly relate signiflcant boundary features 

to the internai structure of an object. In particular, we have used, as a skeletonizatlon process, 

the grassfire transform where an object's boundary is taken as an initiai flre front which 

propagates within the object's interior region. Points, where the flre front folds or Interacts 

with Itself are retained as indlcators of shape features such as symmetries, subparts, protrusions 

and depressions. To simulate the fire propagation we again use the snake model and show 

its advantages over previous approaches for shape skeletonization [Leymarie89a]. However, 

our shape skeletonization method requires sorne initiai processlng of the obJect boundary to 

identify those curvature extrema where the flre front cOllapses as soon as we "ignlte" the 

fire. To do so we have deslgned a new method for extracting contour features on the basls of 

morphological operators applied to the eurvature functlon of the boundary [Leymarle88]. 

1.3 Overview and Contributions 

Our goals are twofold Flrst we wish to provide and implement robust techniques for 

the segmentation and tracking of nonrigid objects such as cells, as they deform and move. 

Second we must consider the shape description problem. Sinee the keystone of our approach 

to these problems relies on the notion of an active contour model, we flrst discuss thls topic ln 

Chapter 2. There we give a detailed analysis of the model in both the continuous and dlscrete 

domains. We have included this material beeause of the lack of such a detailed description in 

the existing literature These insights lead us to propose various Improvements to the original 

model ln particular, we demonstrate the need for normalizing the forces acting on the snake 

50 that it remains stable under adverse conditions. We also propose a new crlterion for the 

optimization of the search of the image contours whlch is based on topographlC concerns, 

where the intensity image is seen as a kind of topographie map (Figure 13). Finally, we 

emphasize the limitations of the active contour model whlch requlres powerful initlalization 

processes and which arbitranly imposes certain smoothness constralnts on the raw data. 
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1. Introduction 

(a) (b) (c) (d) 

Figure 1.3 Intenslty Image seen as a topographie map This three-dimensional (3-D) 
surface representation is produced by taking the intensity values as heights White is 
considered the zero level height, while black is the highest level ln (a) IS shown the 
image of a cell blurred using a Gaussian fllt::r ln (b) is shown its representation as 
a 3-D surface ln (c) is shown the gradient of the image ln (a), and in (d) is shown 
its representation as a 3-D surface 

We then consider in Chapter 3 noisy l'1tensity images and use the snake model to perform 

image segmentation The first step consists of producing a potential surface or topographie 

map representation of the image (Figure 1.3). This surface is flltered to emphasize those 

features we wish the snake to be sensitive to (e g , edges, lines). Therefore, in Chapter 3, we 

first consider the problem of efficient Image frltering. We study a certain class of algorithms 

known as Hierarchical Discrete Correlation [Burt81] and propose sorne Improvements especially 

suited to the snake mode!. Once the image is appropriately filtered, we Impose the snake on Its 

potential surface representation to perform the segmentation of the obJect's boundary in the 

intensity image (Figure 14). Although our results for the image segmentation of a nonrigid 

object are promistng, we do demonstrate that the snake model fails in certain particular cases 

due to its lack of abillty to accurately sense the local shape of the potential surface. 

We then apply the snake model to the tracklng of ce Ils as they deform and move (Figure 

1.5) ln general, the snake model provides satisfying results, but fails in certain adverse cases. 

ln particular, a cell may locally and temporarily leave the focal plane (e g., a pseudopod grows 

above the glass surface). When the ce" returns to the focal plane, the snake may be unable 

to track what corresponds to large deformations. 

After image segmentation and tracklng, we consider the shape description problem. In 

Chapter 4, we tirst present a new method for extracting contour features such as extrema of 

curvature and straight "ne segments (Figure 1 6). Our new method is an application of math-

7 
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(a) (b) ( c) 

Figure 1.4 Image segmentation using the snake ln (a) is shown the original intensity 
image ln (b) is shown the line drawing obtained from the optimal snake posrtion 
ln (c), the snake in (b) is superimposed on the image in (a). 

(a) (b) (c) 

(1) (e) (ri) 

Figure 1.5 Cell tracking using the snake model Ali frames have thelr optimal snakes 
superimposed to show the extracted contour ln (1) are shown the extracted contours 
in the flrst frame (grey dotted contour) and the last one (dark connected contour) 
to illustrate the total deformation that was recovered from the observed sequence 

ematica/ morph%gy to funct:ons [Serra82] used to process the curvature functlon of an obJect 

contour. The main contribution of this approach is a new scale-space representation, obtamed 

with the use of nonhnear morphological operators, whlch possess a number of advantages over 

the more traditional representations based solely on Gaussian smoothlng 
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Figure 1.6 Segmentation of a contour We use mathematical morphology operators 
on the curvature functlon to help us extract contour features ln (a) are shown 
the initiai object oulline on the left-hand-side and its smoothed discrete curvature 
function k(jeu) on the right-hand-side ln (b) are shown the extracted peaks of 
the positive part of ko{ü) These will correspond to signiflcant convexitles along 
the boundary ln (c) are shown the extracted peaks of the negative part ofku(ü) 
These will correspond to signiflcant concavities along the boundary Flnally, in (d) Îs 
shown the resullmg segmentation of the object outline in terms of arcs and curvature 
extrema 

lire 6 

121 

Fmally, in Chapter 5, we combine the extracted contour features with a new Implemen

tation of the grassfire transform, slmulated uSlng the snake model (Figure 1 7). This permits 

us to explicitly relate boundary and region information, a departure from most shape descrip

tion techniques found in the hterature. We also make other more practical contributions. 

Speciflcally, we propose the new cOllcept of adynamie skeleton (1 e., a deformable skeleton), 

we address the subject of branch slgnificance of a skeleton and propose the concept of ndge 

support to characterize It. We also consider a number of implementational issues. In par

ticular, we provlde details of an optlmized implementation of an Euclldean distance mapping 

algonthm, which glves us a suitable potential surface representation for the snake model when 

simulatlng the grassfire transform (Appendix D) 
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1=12 1=28 i =:16 

Figure 1.7 Simulating the grassflre transform (1 e, shape skeletonization) uSlng the 
snake model The potential surface is shawn at the top nght corner The flre is 
ignited at time l = 0 where time corresponds ta iteration The stable state OCcurs at 
I::::: 36 iterations This la5t picture shows the final result when the number of snake 
elements IS increased so that the snake IS spatially connected, that IS, without any 
gaps 
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Chapter 2 The 5 na ke Model 

The snake model arose from the regularization paradigm applied to computer vision in 

which vision IS seen as a problem of inverse optics [Terzopoulos86], therefore being in general 

underconstramed. Within this regularization framework, the problem is further constrained or 

regularrzed by imposlng smoothness constraints on an object fittlng the data. A measure of 

the discrepancy between the data and the fitted object is also used to relate the model to this 

data in an attempt to recover the embedded features. 5lnce we are malnly interested in the 

problem of reconstructing or recoverrng contours of cells ln images, we have only considered 

one-dimensional (l-D) obJects Such an object IS the active contour, also called "snake" , first 

proposed by Kass et al (Kass87] as a possible tool for solving the segmentation problem. It 

consists of an energy-minlmizlng spline guided by external constralnt forces and influenced 

by potentlal field forces toat maneuver it toward desirable features. Furthermore, internai 

constraints can be used to enforce smoothness or to mtroduce a discontinulty at a point on 

the snake The snake model was origmally intended to be applied to graph of functions when 

searching for local minima of these graph of functions. Speciflcally, an image can be seen as 

a 2-D function (see the following section for more details), and, by an appropriate filtering 

scneme, signlflcant image features such as edges and contours will correspond to local minima 

of the graph of this function. 

The snake IS made active by always minimizing ItS energy functlon. If it IS positioned 

"close enough" to significant contours in the image, that is, close enough 50 that potential 

field forces exist in relation to these contours, the snake will move and ultimately reach a local 

energy minimum corresponding to that image contour. Therefore, the snake relies on external 

mechanisms to place It close to salient contours. Although this approach does not completely 

solve the image segmentation problem, the snake's dynamlc behavior and implicit connectivity 

prove to be key factors in the decision to use it for cell tracking. or more generally for the 

tracking of deformable shapes. 
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2 The Snake Model 

The problem of selecting an initial position for the snake becomes almost ne~hglble 

when one ccnsiders a sequence of images; for example, when attempting to perform a motion 

analysis of deformable shapes. In such a case, only the very first frame or image causes a 

real initialization problem, which can always be solved by permitting user interaction. For 

the following frames, the "optima!" snake position found in the precedmg frame may be used 

as a good initial position for the analysis of the current frame. This technique will work 

quite satisfactorily if one assumes that "large deformations" will not t'ccur from frame to 

frame. By "'large deformations" we mean to say deformations for whlch potentlal field forces, 

corresponding to the newly deformed contour, will not influence the snake. These field forces 

may be situated far enough from the snake, as an effect of the deformation, so that the snake 

is out of range from them ln the case of cell tracking "large deformations" will, in general, not 

occur as a cell deforms dowly and continuously. Other advantages will also become apparent 

wh en the snake model will be effectively applied to problems such as contour extraction and 

the tracking (Chapter 3) and shape description (Chapter 5) of deformable objects such as 

cells. 

ln this chapter, we first introduce the basic concepts of the snake modelln section 2 1 

The next two sections, "Dynamics of the Snake in the Continuous Domam" and "Discretiza

tion of the Model", constitute a complete summary of the roots of the snake model insplfed 

by the very first papers on the subJect by Terzopoulos and Kass et al [Terzopoulos87b, Ter

zopoulos87c, Kass87]. Section 2.4 concernmg "Solving the Discrete Equations of Motion" IS a 

brief summary of an efficient algorithm for matrix faclorization proposed by Benson and Evans 

and referred to by Terzopoulos [Benson77, Terzopoulos87c) The followmg section, "Snake 

Parameters: the Original Model", is a discussion that arose from our experience galned with 

the original snake model and which has its basis in papers by Terzopoulos and Kass et al 

The real contribution to the subject though, cornes in the last two sections, "The Onginal 

Snake Model: Advantages and Limitations" and "Improving the Original Snake Model", and 

in Appendix B dealing wlth the "Normalization of the Snake Forces" Fmally, Appendlx A, 

entitled "Inserting DiscontinUities Along the Snake", is Inspired by a paper by Terzopoulos 

[T erzopoulos83j . 
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2. The Snake Model 

2.1 Basic Concepts 

A snake is a model of a deformable curve or contour (if closed) composed of abstract 

elastic materials This elastic contotlr, in the model, is made of two types of materials: strings 

and rods The former make the snake resistant to stretching while the latter make it resistant 

to bending. Such a deformable curve is activated by making it sensitive to the graph of a 

function of two variables (e g., the graph of an image I(x, y)) embedded in ~J. Such a graph 

can be seen as a three-dimensional (3-D) surface, H. The snake is constrained to lie on JI 

under the action of sorne gravitation al forc~ g. In other words, a weight is assigned to the 

snake to make it fall down the slopes of the surface H. 

DependlOg on the nature of the surface considered in this thesis, the snake will be used 

for different purposes. A typical case 15 to treat the image data as the surface H. The 

image I(x, y) can be represented as a 3-D surface with coordinates (x, y) used as the planar 

Carteslan reference system. Then, the surface H(x,y) may corresponds to image intensities 

(i.e., Il = ±I(x, y)) or to contrast values (e.g., H = V I(x, y)). Once JI is determined, the 

idea is to have the snake lie on the surface allowing it to deform according to the surface 

topography, while under the influence of g. An illustration of how the image mdy be seen as 

a 3-D surface is given in Figure 2.1. Throughout this thesis, we will fix the magnitude of the 

gravitational force to be constant, that is, Igl = 9 = mg, where m is the consta nt mass of 

the snake and 9 is the magnitude of the constant gravltational acceleration. 

(a) ( b) 

Figure 2.1 Image seen as a 3-D surface. In (a) is shown the image of intensities 
of a blurred rectangle ln (b) is shown its representation ... s a 3-D surface This 
representation corresponds to the graph of the function - I( x, y) 
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Other useful types of su rfaces can be obtdined from ra nge data [Ferrie89], dista nce trans

forms applied to shapes or regions (see Chapter 5), and tangent fields [Zucker88, David89a, 

David89b]. The snake is positioned on such a surface, and, under the Influence of gravit y, will 

seek out valleys or ridges of the 'iurface until it achieves sorne sort of equlllbrium state. 5uch 

behavior is obtained by associating w;th the snake an energy function that depends on the 

height of the surface at the snake's location (similar to a potential energy) The snake will 

then attempt to minimize ItS energy by seeking out local minima in height in a nelghborhood 

around the contour. 

A critical step in the process is obtaining a surface where deep valleys correspond to 

significant events or features of the function represented by that surface. For example, let 

us again consider the function H = ±I(x,y), the intensity values of the image. 5ignificant 

or interesting features in an image are edges and contours, that is, regions of high contrast, 

or homogeneous regions possessing sorne uniform characteristic. A proper surface should 

have valleys positioned at places corresponding to su ch features as edges, contours or reglons 

boundaries. Therefore, in general, the original data, such as image intensities, will first have to 

be filtered in an appropriate way to enhance such features An example of the kind of flltering 

used on an image to obtain an appropriate surface for an active contour model is glven in 

Figure 22. More details and exampies will be given in Chapter 3 when applying the snake 

model to the problems of segmentation and tracking. 

An obvious question arises: what if the snake gets "stuck" at sorne local minimum or 

valley corresponding to noise or sorne other undesirable feature in the image? The original 

snake model [Kass87} provides an "indirect" solution to such problems by permittmg the 

addition of external constraints or forces that will push the snake away from undeslrable 

features. A complementary kind of external force is also provided, whlch permits the snakes 

to be pulled towards significant features. 

5uch a method of imposing external constraints or forces IS indirect because it relies on 

other external mechanisms, such as a pre-analysis of the image data or user interaction to place 

these constraints near the identifled features. ThiS process of Imposlng external constralnts 

will be clanfied with examples of Image segmentation (Chapter 3) and shape skeletonlzatlon 

(Chapter 5). 

14 



( 

( 
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(a) (b) (c) 

Figure ~.2 Ex~.nple of a surface, obtained by filtering an image, to be used with a 
snake. In (r.) ie shown the image of intensities of the gradient of a blurred rectangle 
ln (b) j~ shown its represent:ltion as a 3-D surface This representation corresponds 
tl"> i.ne graph of the function -/V'/(x,y)/ ln (c) is shown the position of a snake 
superimposed over the image of intensities (a) This !>nake has crawled down the 
3-D surface until it reached the bottom of a valley of the surface Note that the 
snake is not perfectly symmetrically positioned because of discretization effects 

ln summary, we have an elastic contour positioned on a 3-D surface, and on which 

external forces can be imposed ln addition, a mass is assigned to the snake which IS then 

embedded in an uniform gravitational fieldl . Furthermore, the surface, H, on which it lies can 

be seen ta specify its gravitational potential energy function2. Hereafter, in this thesis, we will 

refer to such a surface by using the term potential surface, to make clear how It influences 

the snake motion. The gravitational field is defined spatially by the surface coordinates (x, y), 

while the gravitational potential energy values are given by the surface height, z = Jl(x,y). 

Depending upon where a snake is positioned on the potential surface, that is, at a certain 

height, it will have a given gravltational potential energy term. Other Influences will also come 

from the previously mentioned internai and external constraints (Figure 2.3). 

We observe th.H a natural way of causing the snake to move in order ta reach a lower 

gravitational potentlal energy, by seeking valleys in the potential surface, is to convert pot en-

Gravitational field A region of space in whlch a body (e g , the earth) exerts a force, g, on another 
body (e g , the snake) through spa ce, !h\3 We consider in the case of the snake model that the former 
body IS much more massive than the second one, the snake, and that it exerts a constant force ai 
magnitude 9 = mg on this snake 

2 Gravitational pot!!ntial energy The work an object at height can do by falling under the influence of a 
gravit y force The "gravltational potential energy function" is then obtained as the possible states (or 
heights) this object can assume in a gravitational field. In the case of the snake model these states ale 
flxed by the surface II on which the snake is constrained to lie on 

15 



........ 

2 The Snake Model 

(a) ( b) 

Figure 2.3 The snake and t~e forces acting on it ln (a) is shown the potential 
surface H obtained from the gradient of the blurred rectangle shown in Figure 22 
Aiso in (a) is shown a closed snake positioned on the verge of the valley of Il (contour 
in black) A small square window (in (a)) has been selected to illustra te (in (b» the 
different forces acting on the snake ln (h) a portion of the snake is shown Points 
of the snake are shown JS circular dots The black links between the snake points 
represent the internai constraints of elasticity that ex.ist between them (1 e , ~ntl 
A square dot represents the position of an external constralnt (acting on one snake 
point here) A white link represents the external force Ci e, Fext} FII1 a lIy, Ffleld 
represents the gravitational force which will have a tendency to make the snake crawl 
down the slopes of H 

tial energy to kinetic energy The: potential energy of the snake IS given by the sum of its 

gravitational potential energy and of the potential energy ter ms obtalned from the internai and 

external constraints âcting on it. Then, the kinetic energy is disslpated by damping, resulting 

in the snake reaching a new lower equilibrium, that is, lower ln terms of potentlal energy and, 

thereby, lower in terms of height. By following su ch a natural description of the dynamlcs of 

an active contour, the snake model was first described in terms of a Lagranglan formulation 

of the motion [T erzopoulos87b]. The dynamics of the snake defined within such a formallsm 

in the continuous domain are described in the next section. A discretlzation of the model for 

practical implementatlon will then follow. 

2.2 Dynamics of the Snake in the Continuous Domain 

Consider a deformable curve v(s,t), with parameters s (spatial index) and l (time), de

fined on given open intervals n and T respectively Let us consider this deformable curve to be 

a function of two variables x and y (e.g., spatial coordinates) having the same parametrizatlOn 
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2. The Snake Model 

as v; 

V(s,t) = (x(s,t),y(s,t)) ; sEn, t ET. (2.1) 

The potential energy function of the snake, Esnake(V), is defined as [Kass87]: 

Esnake(V) = ~ ln [ Eint(V) + Ee:rt(v) + Efield(V) ] ds , (2.2) 

El7Il represents the internai potential energy of the snake. It is a function of both bending and 

stretching forces applied to the snake. Eext gives rise to external constraint forces. E field 

gives rise to gravitational field forces. 

The internai potential energy of the snake, Eint, is defined as follows' 

(2.3) 

where Vs = ~ and Vss == ~~2' The first order term, wl(s)lvsI2, makes the snake behave 

like a string (i.e. resists stretching), while the second order term, w2(s)lvss I2, makes the 

snake behave like a rod (i.e. resists bending). The weight Wl(S) regulates the tension of 

the snake, while W2(S) regulates its rigidity. Two types of discontinuities, position or tangent 

discontmuities, may be introduced along a snake by setting these weights to zero [Terzopou

los87b). If we set W2(SO) = 0, thereby removing any rigidity constraint at so, a tangent 

discontinUity can occur at this point, or element, on the snake. Furthermore, if we set both 

Wl(SO) = W2(SO) = 0, no internai constraint exists at so, forcing a position discontinuity at 

this snake element. Hereafter, ln this thesis, we will refer to such points or elements of the 

snake by using the term snaxe/, a contraction of the two words "snake element" . 

The external potential energy, Ee:rt, arises from two complementary types of forces: 

spnngs and volcanos. A spring force, fsprmg = -kspring(PI - P 2), may be created between 

a fixed point P1(Xl, YI) on the potential surface and a snaxel with coordinates P2( X2, Y2) by 

adding the energy term, Esprl7lg = -1k.ivrmg(Pl - P2)2, to Eext. A vo/cano or cone of 

energy may be created by defining a repulsive force, fvolc = 1~, where r represents the 
r 

radius of the volcano base. The effect of this volcano force is implemented by adding the cone 

of energy associated with the force, E vo1c = -~, to Ee:rt. This cone of energy can be 

seen as a small conic surface or patch which can be used to fill-in valleys and to crea te mounts 

or peaks on the potential surface. Springs are used to force the snake to attach to desirable 

features, su ch as curvature extrema of a contour, while vo/canos are used to push the snake 
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away from undesirable local minima of the potential field, like those due to noise. Hence we 

set' the complementary nature of the spring and volcano forces, the former being an attractive 

force, while the latter is a repulsive force. 

The potential field energy, E field, ca n be derived from the classical gravitationa 1 poten

tial energy equation (see for example [Goldstein80)) in a point-by-point fashion as follows: 

Efield(V(S,t») = J1 9 z(v(s,t)) , (2.4) 

where p is the constant mass densityof the snake, 9 is the magnitude of the gravitational 

acceleration discussed previously, and z( v(s, t)) is the height or potential value at snaxel 8 and 

at time t on the potential surface H. 

Given the potential energy function, Esnake (equation (2.2», for a specifie Initial POSI

tion, a minimization procedure can be applied to reach a more stable energy state by converting 

potential energy to kinetic energy and then dissipating this kinetic energy through an energy 

dissipation function [Terzopoulos87bJ. 

The minimization process can easily be seen as a problem of classical mechanics Ac

cording to the principle of least action [Goldstein80], the motion of a deformable curve under 

the influence of conservative forces, that is, derivatives of a potential function, dunng a tlme 

interval T, is described by those functions v(s,t) for which the line integral IL: 

(2.5) 

IS a minimum. The La3rangian L(v) is, by definition, given as L( v) = T( v) - U( 11), where 

T( v) expresses the kinetic energy of the curve, v, and U( v) is its potential energy The kinetic 

energy function T( v) is defined as: 

(2.6) 

where VI = !JJf. The potential energy function U(v) is the previously defined E.sTUlkr'(v), 

that is, the total instantaneous potential energy of the snake. Therefore, combining equatlons 

(2.2), (2.5) and (2.6), Ir can be rewritten as the double integral: 

(2.7) 
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From the calculus of variations, it is known that an extremum of ft must satisfy the 

Euler-Lagrange equations. From equations (2.3), (2.4) and (2.6) we have that the Lagrangian 

is a function such that: 

(2.8) 

ln such a case the Euler-Lagrange equations of motion are the following [Forray68J: 

a 8(0) 8(0) 02 (0 ) 
ax(L)- 8l OXt(L) - os 8x/L) + os2 oxss(L) =0, 

a a ( a ) 8 (0 ) 02 (0 ) ay (L) - al oYt (L) - as 8ys (L) + os2 8yss (L) = 0 . 

(2.9) 

These equations describe the motion of a conservative system, that is, a system where ail the 

forces acting on it are derived from a potential function. With su ch forces, potential energy 

is transformed solely into kinetic energy, leading to a constant increase of speed. In order to 

reach a new lower equilibrium, in terms of potential energy, at a rest state (Vt = 0), kinetic 

energy must be dissipated by damping. A natural and simple way of describing such behavior 

is by including within the equations of motion, obtained for a conservative system (equations 

(2.9)), the effect of additive fnctional forces proportional to snaxel velocltles, that is, forces 

not derived from a potential function or, eq uivalently, non-conservative. Frictional forces of 

this type may be derived from Rayleigh '5 dissipation function [Goldstein80]: 

(2.10) 

where, is the constant damping density or viscosity factor. Then, the frictional forces acting 

on the snake are derived as: 

Dj(xt) = -a~t (D(vt}) = -,Xt , 

Dj(yt} = - 8:t (D(vd) = -,Yt . 

Incorporating these forces into the Euler-Lagrange equations of motion, gives: 

a a (8 ) 0 (a ) 0
2 (a ) a.r(L) - al 83.)L) - Os 8x s (L) + 8s2 8x ss (L) = -''{Xt , 

a a (a ) a (a ) a
2 (a ) 

(}!J(L) - at 8Yt(L) - as ôYs (L) + ôs2 8yss (L) = -,Yt . 

(2.11) 

(2.12) 

Using equatlons (2.2), (2.3) and (2.6), we can replace the Lagrangian L by T - U as follows: 

/., = T - U = ~ ln [Jllvtl2 - wl(s)lvsI 2 
- W2(S )Jvssl2 

- Eext - E field] ds (2.13) 
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2 The Snake Model 

Then, replacing L in equations (2.12) by this last equation (2.13), and after a few manipula

tions, these equations become: 

fLXtt + ,Xt - ! (Wl(S)xs) + !22 (W2(S)xss) = -~ ( Eextx(v) + Efie/dx( l')) , 

fLYtt+,Yt -!(Wl(S)YS) + ::2 (W2(S)YSS) =-~(Eexty(v)+Efjl'ldy(l1)), 
(2.14 ) 

where Xtt = ~:~, Ytt == ~~~ , Eext;c = fx(Eext}, Ecxty == -§y(Ee;ct}, E firid J• == fh(J~'flClcl) 
and Efie/dy == Sy(Ef,e1d )' Note that associated with such differential equations are ap

propriate initial and boundary conditions, at t = 0 and at the extremlties of the interval Q, 

respectively. We will address this issue in the next section when discretizing the equations of 

motion. 

let us summarize the way these equations model the dynamics of the snake. On the left

hand-sides (LHS's), the first two terms represent inertial (/-lVIt) and damping b"/) influences; 

the former is proportional to acceleration and the second is proportional to speed, as one 

would expect. The next two terms represent the elasticity forces between snaxels in terms 

of tension (WIVs) and rigidity (W]vss). We will see that the former IS proportional to the 

spacing between snaxels, while the later is proportional to curvature On the right-hand-sldes 

(RHS's), the first term represents the influence of the external constr~ints as a function of 

the first spatial derivatives of the energy Eext (i.e, giving rise to external forces) The second 

term represents the infl uence of the potential su rface as a function of its negative slope in the 

x and y directions The latter will force the snake to follow the potential surface topography 

in the direction of highest negative slope in a fashion similar to a steepest descent technique 

Therefore, the lHS's represent the intrinsic forces acting on or wlthin the snake, while the 

RHS's represent the extrinsic forces whlCh are independent of the snake's nature. 

The description of the dynamlcs of the snake model in the continuous domain is now 

complete. Only the solution of the differential equations of motion remains. However, for the 

purposes of practical implementation, the model must first be discretized. This Îs the subject 

of the next section. 

2.3 Discretization of the Model 

Bec.wse today's computers are mostly based on digital devices, any problem which is to 
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be solved using the computational power of these computers must be specified in a discrete 

fashion. For the snake model, the space and time domains, the external forces, the snake 

itself and the equations of motion must be discretized so that the model is compatible with 

the digital nature of the computer. 

Let us first consider the dlscretization of a region E of the space, ~3, in which the 

potential surface, H, is defined. This region, E, can be discretized by defining three discrete 3 
.. 

sets, X and Y, for the spatial coordinates, and Z for the field values or valid potential surface 

heights. This permits the confinement of the triplet values, (x, y, z) E E, to a restricted set 

of values, (x,y,ï) E E, where E representsthe restricted discrete domain. The sets, X and 

Y, consist of integer values varying from 0 to sorne given maximum indexing values, .M~\ and 

Af'y' respectively: {x E X : X = {a, .. ,Mx}} and {y E Y : Y = {O, ... ,My}}. These 

two sets define indices on the potential surface. A third set is then defined for the surface 

values. It consists of real numbers varying from a given minimum, Zmin, to a given maximum, 

Zmax, such that {z E Z : Z = {Zmin, ... , Zmax}}. Examples of such discrete domains E 

that will be used in this thesis are the image domain, I, containing digital intensity images 

(/(x,]7) and thelr filtered versions, and the distance transform domain, DT, contaming digital 

distance transforms of 2-D regions or objects (DT(x, y)). 

Like the region E, the external forces must also be spatially discretized. This is done by 

using the same discrete spatial coordinates ((x, y) : xE X and y E Y) wh en evaluating the 

spring and vo/cano forces. 

Unlike the previous cases, the snake must be discretized in not one, but two domains: 

space and time. The spatial discretization is done by regularly tessellating the interval Q into 

Ms nodes (i.e., Ms snaxels), leading to a discrete set Q ({s E n. Q = {D, ... ,Ms-I}}). 

We use the symbol t:::.'S to represent the distance or spatial step between successive snaxels. 

The time discretizatlon IS achieved by considering a discrete time interval, T, defined to 

start at time D It conslsts of values l regularly separated by a constant time-step, t:::.I. For 

example, D.I may represent the inter-frame time interval wh en analyzing sequences of images. 

Theoretically we can activa te a snake for an infinite period of time; therefore T is the open 

set: {ï E T : T = {O,D.I,2D.I, ... }}. Having discretized the two parameters sand t which 

3 Throughout this thesis, barred symbols will refer to discretized variable (e g , (x, y) ~ (i, Y)) 
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2 The Snake Mode! 

df:scribe the snake (equation (2.1)), its discrete version can now be stated as follows: 

ü(s, I) = (x(s, I), y(s, I» . (2.15) 

This spatially relates the discrete snake to the same grid (x, y) used to discretize the domain 

E and the external forces. 

The next step involves the discretization of the equations of motion of the snake (equa

tions (2.14». As previously, a discretization in both space and time is required. For such 

differential eq uations we use the finite difference method as the discretlzatlon tech niq ue to 

approximate the flrst and second order derivatives in equations (2.14), in both space and time. 

First, let us consider the time derivatives (the first two terms on the LHS's of equations 

(2.14)). Since we do not have a priori knowledge of the future positions of the snake, we will 

position ourselves in time at t = I - ô.I, that is, at a known position, looking for the next 

new position, at time t = l, that will present itself as a solution to equations (2.14) This 

has the adva ntage of allowing us to use central differences in time, centered at 1 - Ô. 7, when 

evaluating time derivatives, as follows: 

J-lVtt(S, t -llI) ~ (~)2 [v(s,t) - 2 v(s,t - bol) + ü(s, I - 2boI)] , 

,Vt(s,I -llI) ~ 2~I [v(s,I) - ü(s,t - 2Ô.I)] , 
(2.16 ) 

where the two initial positions at l = -bol and l = -2l:l.1 must be given. Following [Ter

zopoulos87c] and [Kass87] we consider constant time-steps and replace l:l.ï by 1 to slmplify 

equations (2.16). We must keep in mind that to achieve good numerical stability, relatlvely 

small deformatlons of the snake are needed. This is the same as havmg a relat/vely small 

time-step bot, keeping the numerical errors (proportional to (lll)2 in equations (216» rela

tive/y smal!. Therefore, replacing bol by 1 and combining the two equations (2.16) leads to 

the following: 

(2.17) 

where the two initial positions ü(s, -1) and ü(:S, -2) must be glven. From thls equation, 

we can conc/ude that the discretization of time derivatives has the effect of averaglng the 

combined influences of inertia and damping over the present and two previous snake positions. 

This takes effect over ail snaxels. 
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2 The Snake Model 

We now consider the derivatives in the spatial coordinates, s, of the snake, for the last two 

terms on lHS's of equations (2.14), at time t = l, that is, at the new snake position. Assuming 

that we have access to the local neighborhood around each snaxel, we can use forward, 

backward or central differences, or even combinations of these. For reasons of symmetry 

and direct local influence, we combine forward and backward differences when approximating 

cÎ (Wl (s )vs) , and use central differences for ~(W2(S )vss ). If we make another choice, such 

as using only central differences, we may not necessarily have direct relations or links between 

snaxels as a function of Wl, or we may not have sym metric relations. We a/50 assume that the 

snake forms a loop or closed curve in order to have simple cyclic boundary conditions. The 

insertion of position discontinuities, considered in Appendix A, will permit us to model open 

active curves. We therefore obtain the following discrete equation: 

a 82 
- as (Wl (s)vs( s, t)) + 8s2 (W2(S)VSS(s, t)) ~ 

(1J.~)2 { Wl (s) [v(s, I) - v(s - ils, I))} + 

(1J.~)2 {Wl(S + IJ.s) [v(s, I) - v(s + IJ.s, I)]} + 

(6~)4 {W2(S - ils) [v(s - 2f:!,.s, I) - 2 v(s - f:!,.s, I) + v(s, I)]} -

(6~)4 {W2(S) [v(s - lls, I) - 2 v(s, I) + v(s + l:!.s, I)]} + 

(6~)4 {W2(S -t- IJ.s) [v(s, I) - 2 v(s + 6.s, I) + v(s + 21J.s, I)]} , 

(2.18) 

where the cycllc boundary conditions require that ü( -2lls,t) = v(Ms - 2ils,t) , v( -Lls, I) = 

ü(Ms - l:l.s,ï) , v(Ah,I) = ü(O,7), v(Ms + f:!,.s,I) = v(6s,t), W2( -f:!,.s) = w2(Ms - 6.8), 

w2(Ms) = W2(O) and Wl (AIs) = Wl (0). As in the case of the time derivatives, we consider the 

spatIal step-size, l:!.s, as constant and replace it by 1 to simplify equation (2 18) [Terzopou

los87c, Kass87]. However, to achieve a good approximation of the derivatives, we must keep in 

mind that the distance between snaxels, 6s, should remain small and relatively constant. This 

will keep the numerical errors, proportion al to (lJ.s)2 for the approximation of fs (Wl(S )vs) 

and (6:<;)4 for the a pproximation of :s~ (W2 (s )vss ), re/atively sma". Therefore, replacing l:!.s 
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by l, and rewriting equations (2.18) in terms of v leads t~, Lile following: 

-! (Wl(S)VS(s,t)) + ::2 (W2(S)VSS(s,t») ~ 
V(8 - 2, I) W2(':S - 1) + 
V(8 - 1, I) [-2W2(S - 1) - 2W2(:S) - Wl(:S)] + 
V(8, I) [W2(8 - 1) + 4W2(S) + W2(:S + 1) + Wl(S) + Wl(S + 1)] + 
V(8 + 1, I) [-2W2(8) - 2W2(8 + 1) - Wl(:S + 1)] + 
V(8+ 2, I) W2(:S + 1) , 

(2.19) 

where v( -2, I) = v(Ms - 2, I), li( -1, I) = v(Ms - 1,1"), li(Ms' 1) = v(O, I), v(AJ7i + 1, ï) = 
v(l, I), W2( -1) = W2(M8 - 1), w2(Jltfs) = W2(O) and Wl(Ms) = Wl(O). With such boundary 

conditions, equation (2.19) holds for ail 8 and can be rewritten as a system of hnear equations 

for ail 8 in a more convenient matrix form' 

(2.20) 

where f(, the stiffness matrix. representing ail internai elasticity relations of the snake, is 

defined for s = 0, ... , Ms - l, as follows: 

co bD aD aM--2 bM_- 1 s s 
bD ct bl al aM--I s 
aD bl c2 b2 a2 

](= 
al b2 c3 b3 a3 (2.21) 

aMs-5 bMs-4 CMs-3 bMs- 3 (lMs-3 

aM--2 aM--4 bM--3 CM--2 bM--2 s S s s .~ 

bMs-1 aMs-l aMs-3 bMs- 2 cMs-l 

This matrix is symmetric and pentadiagonal which will prove to be useful when solving the 

discrete equations of motion of the snake. The following identities are used to relate f{ to 

equation (2.19): 

as = W2(S + 1) , 

lrs = - 2W2(S-) - 2W2(S + 1) - Wl(S + 1) , (2.22) 

CS = W2(S - 1) + 4W2(S) + W2(S + 1) + WI('S) -1- Wl(S- + 1) . 

Finally, the vector V contains ail snaxel positions at time l: 

V(s,I) = (v(O,I) v(l, I) ... v(Ms-l, I») T . (2.23) 
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2 The Snake Model 

where T stands for the transpose. From sllch a system of equations we can observe the 

effect of discretization in terms of first and second order differences, on the types of relations 

linkmg the snaxels. Each snaxel (s) is directly linked to at most its four direct neighbors 

(s - 2, s - 1, s + 1 and s + 2; see Appendix A) The weights given to each link, in terms of 

Wl and W2, are symmetrically distributed around each snaxel. Sud properties of direct local 

influence and symmetry are desirable to obtain an isotropic behavior of the snake and to be 

able to apply fast methods for solving such a system of equations. Also, due to the local 

nature of the links between snaxels, discontinuities may easily be introduced along the snake 

by breaking these links. With the kinds of links we use, that is, Wl and W2, two useful types 

of discontinuities can be introduced. tangent and position breaks. A tangent discontinuity is 

enforced by breaking the rigidlty links (W2 = 0) at a given snaxel. A position discontinuity 

is enforced by breaking both the rigidity and the tension links (W2 = Wl = 0) between two 

given snaxels. A tangent discontinuity permits the snake to take the form of a corner, while 

a position discontinuity permits the creation of a snake which forms an open curve. The 

introduction of such discontinuities can be achieved by simply modifying certain entries in the 

matrix f{ corresponding to the broken links A detailed analysis of how to retrieve the matrix 

entries that need to be modified is presented in Appendix A. 

We are stilileft with the discretization of the RHS's of equations (2.14). Since we have 

already considered the discretization of the external forces and the potential surface, it remains 

to approximate the drrectional derivatives in x and y. Again, we do not have a priori knowledge 

of the future positions of the snake, 50 we can at best approximate these derivatives by the 

last known snake position, that is, at time l -1. We will consider how to efflciently implement 

these approximations in subsequent sections. Therefore, we use the following notation for the 

discrete version of the RHS'5 of equations (2.14): 

Eextx(v(s, t» + Efieldx(V(S, l)) ~ Eext-x{'v(s, l -1») + Efieldx(V(s,I -1)) , 

Ecxty(u(s, t» + Efieldy(V(S, t)) ~ Eexty('v(s, l - 1)) + Efieldy(V(S, t - 1)) . 
(2.24 ) 

We can now write the discrete version of the equations of motion for ail sr.axels. This 

results in a set of two systems of Ms linear equatlOns. Using equations (2.17), (2.20) and 

(2.24) we can write these two systems of equations as follows. 

A X(s,7) = B-x(s, l - 1, l - 2) , 

A Y(s, I) = Ry(s, l - 1, t - 2) , 
(2.25) 
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where on thé LHS's we use the following identities: 

A= [(t+ Jl ) 1] +/(, 

X(s,I) = (x(O,I) x(l,I) ... x(Ms -1,I») T , 

Y(s,I) = (y(O,I) y(l,I) .. , y(Ms-l,I») T , 

2 The Snake Mode! 

with 1 denoting the identity matrix. Note that the matrix A has the same off-diagonal elements 

as I<; the only differences occur on the principal diagonal where the term [1- + Il] 15 added to 

the diagonal elements of J(. Therefore, A like J( possesses the properties of being symmetric 

and pentadiagonal. Furthermore, A can be shown .:0 be positive definite4 On the RHS '5 of 

equations (2.25) the following identities are used: 

Bx(s, 1- l,I - 2) = 

-~ (Eextx(v(s, 1-1» + Efzeld7f(V(S, 1-1») + [2p] x(s, l -1) + [~ - Jl] :r(:<ï, ï - 2) , 

By(s,t - 1, 1- 2) = 

-~ (Eexty(v(:s, t -1» + Efieldy(V(S, t -1») + [21l] ]j(s, l -1) + [~ - Il] y(~, ï - 2) , 

with :s = 0, ... ,Ms - 1. Note that the RHS's de pend on two prior snake positions, at ï -1 

and l - 2. Then the solution of the system of equations (2.25) can be obtained by retnevlOg 

the new snake position at time I: 
- -1 
X=A B7f' 
- -1 Y=A By. 

How to solve equations (2.25) is considered in the next section. 

2.4 Solving the Discrete Equations of Motion 

Equations (2.25) can be solved in linear time (O(Ms» by using efficient factorlzation 

techniques to obtain A-1 Bx and A-l By indirect/y. These techniques take full advantage of 

the properties of matrix A being pentadiagona/, symmetric and positive definite. For examp/e, 

the a/gorithm of Benson and Evans [Benson77, Terzopou/os87c] proves to be useful for our 

-T - -T-
4 The easiest way to prove that A is positive defmite is by showing that X A X > 0 and Y A Y > 0 

hold for any X f; 0 and Y f; 0, respectively 
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problem. The basic idea of their algorithm consists of using certain matrix A properties to 

factor it into A = DLU D, where D is a diagonal matrix, L is a lower triangular matrix and 

U = /,T is an upper triangular matrix. The system of linear equations A X = Ex (similarly 

for y)5 becomes DLU DX = Bx which can be directly reduced to LU DX = D-l Bx = Q. 
The next step conslsts of solving for Z = D X in the system LUZ = Q. This is do ne in 

two stages by flrst doing a forward substitution for P = U Z = L -lQ. Then a backward 

substitution for Z = U-l P can be performed. The final step consists of solving for the 

system X = D- l Z. Such a factorization scheme proves to be most efficient for iterative 

processes where the matrix A does not vary at each iteration [Benson77]. This will be the 

case for the snake model in most situations, where the mass density J-l and the damping density 

'Y are considered to be constant, and where the elasticity constraints or links Wl(S) and W2(S) 

will be set to be constant most of the time (see section 2.5). In the case where the matrix A 

changes with each iteration, for example, by varying the elasticity properties of the snake for 

every f::.f, the Choleski factorization6 (A = LU) will be more efficient [Benson77]. 

We have now covered most aspects concerning the implementation of the snake model. 

But there remalns one important aspect to be dealt with in order to obtaln a desirable behavior 

for the snake (I.e., stable, accurate, fast): how to fix or set values for the different intrinsic 

and extrinsic parameters l' Ji, Wl, W2, Eext- and Efield-? We discuss this important subject 
x x 

in the following section. 

2.5 Snake Parameters: the Original Model 

ln this section we consider how to fix the different snake parameters in the discrete 

equations of motion (2.25) following the original ideas of Kass et al. and Terzopoulos [Kass87, 

Terzopoulos87b). In subsequent sections, problems emerging from these original descriptions 

of the snake model will be considered and solutions to them will be proposed. For now, let us 

examine the original framework in detail. 

5 ln the following sections. we refer to the equations of motion of the snake often by solely using variables 
in x The equations in Ii are simply obtained by replacing x by y and X by Y 

6 The complexity of the Choleski factorization is also linear in time (O(Ms)) See, for example, Jacobs 
[Jacobs77] for a complete discussion of this technique 
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By observing the discrete equations of motion (equations (2.25», one notes that Il and 

ï are primarily important to implement a memoryeffect by averaging the actual snake position 

VeIl with the two prior positions V(I - 1) and V(I - 2). Both Il and , ar~ posItive or nuit 

real numbers: l1,ï ~ 0 : p" E ~. By varying their combined effects, more or less weight 

will be put on the existing or prior positions, or on the differences between these positions By 

setting both of them to zero, the memory effect is lost: the sna ke moves solely on the basls of 

its elasticity constraints and the extrinsic forces. It is worth notlng that both IL and') are set 

to be constant in the original snake model in order to slmpllfy the equatlons of motion of the 

snake and the factorization stage. This constraint could be removed to define a more general 

active contour mode!. For example, ï could be a function of s to slow down snaxels one by one 

depending on their individual speed. The main drawback of such a technique would be that 

a less efficient factorization method would have to be used. Also, since this would Imply the 

introduction of other derivatives in the equations of motion (equations (2 14)), It is not clear 

that it would help the stability of the model since we approximate denvatlves by differences, a 

further source of instability. Therefore, it is in general better, from a numerlcal point of view, 

to keep Il and ï constant. 

Let us consider the other two parameters which provide some control of the Intrinsic 

behavior of the snake: the tension and rigidity weights, Wl and W2. To understand the effect 

of varying these welghts, consider the internai potential energy Emt(v(s)) = wl('~)IIIBI2 + 
w2(s)lvssI2 (equation (2.3)). By minimizing Eint over ail snaxels, that IS, mmimizing /1111 = 
Jn Emtds, we can deduce how Wl and W2 affect the behavior of the snake Let us conslder 

each effect, sepa rately: 

/Wl = ln w}(s)lvs I2ds , 

/w2 = ln w2(s)l vssI 2ds . 

where /Wl + /W2 = fint· If Wl(S) > 0, th en /Wl > 0 and to reduce it, Ivsl2 (= :r~ + ut) 
must be reduced. In the discrete domain, this means that L:l'fP must be reduced or that 

the average d;stance between snaxels must be decreased; thus the snake shrinks. On the 

contrary if Wl(S) < 0, then /Wl < 0 and to reduce it, Ivsl 2 has to increase. Therefore, in 

the discrete domain ll'fP must increase or, equivalently, the average distance between snaxels 

has to increase; here the snake dilates. Let us now consider /w2' If W2('~) > 0 then /W2 > 0 

and to reduce it, IVss l2 (= x~s + y~s ~ 0) must be reduced. This implies that both lx hS 1 
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and IVssl have to be reduced or equivalently that the curvature of the curve vis reduced. 7 If 

W2('S) < 0, then /W2 < 0 and to reduce it, Ivssl2 must incrE'ase. In this case we can hardly 

predict the behavior of the snake since even if the sum x ~s + y~s increases, it does not describe 

the behavior of the curvature of v in a trivial way. 

The previous analysis provides us with some understanding of how Wl(S) and W2(S) may 

affect the snake behavior. Still we need some sort of rules to fix the values of these weights. 

Since Wl (8) is linked to the notion of distance between snaxels, Terzopoulos [T erzopoulos87b] 

has proposed to associate with the snake a point-wise metric function C(s) used to prescribe 

the "natural arc length", that is, the "desirable" step-size 68 between each snaxel. Then, the 

tension weights Wl (s) can be fixed with respect to .c(s) as follows: 

Wl (s) = D.s(s) - C(s} , (2.26) 

where Dos(s) = J Dox2 + D.y2 is the actual distance between snaxels. Therefore, when snaxels 

are too far apart (i.e., 68"(s) > C(s)) Wl(S) is positive and the snake should shrink. For 

snaxeis too close to each other, Wl (s) is negative and the snake expands. Aiso proposed 

by T erzopoulos [T erzopoulos87b} is a point-wise metric function C(s) used to prescribe the 

"natural curvature" at each snaxel. Then, similarly to the tension, the rigidity weight W2(S) 

can be fixed with respect to C(s} as follows: 

W2(S) = k(s) - C(s) , (2.27) 

where k(s) is the actual discrete curvature at snaxel s. There are advantages as weil as 

disadvantages that arise from such techniques used to set Wl(S) and W2(S). These will be 

considered in subsections 2.6.1 and 2.6.3. 

A final subject that must be examined with respect to the parameters Wl(8") and W2(S) 

is the introduction of discontinuitles. In previous paragraphs, we mentioned that two types of 

discontinuities were defined: tangent and position discontinuities (section 2.3). The former 

corresponds to fixing W2(S) to 0 at snaxel s, while the second corresporJds to fixing both W2(S) 

and Wl ('s) to O. T wo importa nt questions remain: where to position discontinuities and how 

7 The curvature of v (in the parametric form) is given by. k = XSYSS-!SXSS As XSS and yss tend 
Vs 

toward zero, the curvature k will tend to zero 
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to choose these locations? Since a position discontinuity is primarily used for obtaining an 

open active curve, the particular snaxel at which one introduces such a break can be chosen 

arbitrarily. On the other hand, tangent discontinuities were incorporated withm the snake 

model to be able to track or fit corners or cusps wh en these were recognlzed in an image at 

a higher level of processing [Kass87]. Therefore, tangent discontinuities, although useful for 

obtaining a closer fit to the data, that is, matching valleys or folds of the potential surface 

forming corners or cusps, require a prior interpretation stage which is able to recognlze the 

need for introducing such breaks. Such an interpretation stage can be implemented by looking 

for a minimization of the energy function Esnake wh en introducing a ta ngent break. For 

example, after a snake reaches a stable state (e.g., vI = 0), one may examine its curvature by 

looking for a region where the snake bends considerably. Tangent breaks can be introduced 

at these locations. Wh en the snake reaches its new stable state, if any changes have occurred 

in position and energy, we can assume the validity of creating a corner or cusp at the chosen 

position. Such a scheme of reducing the energy of an active contour by introducing tangent 

or even position breaks IS similar to the Idea of Blake and Zisserman [Blake87] who deflOe 

a penalty function which permits breaks in the active curve if it leads to a reductlon of the 

energy of the curve 

Similar to the introduction of discontinuities, external forces have to be situated and 

activated based on some other processing level ta identlfy those pOlOts or reglons where 

external forces are needed. Attractive forces, such as springs, may be used to attach the snake 

to edges found in a flltered imdge or to corners of identified objects. Simllarly, repulsive forces, 

such as volcanos, may be used to push away a snake from sorne identifled nOlsy reglon or 

isolated edges. 

After knowing where to use external forces cornes the question of how to efficiently 

measure or create them. The spring effect is best implemented by directly cons;dering the 

spring force rather than the energy term it gives rise to. This is so because only two known 

points, the concerned snaxel and the fixation point, are involved in the computatIOn of the 

force linking them which can easily be evaluated based on the distance separating them. The 

case of a volcano constraint may be considered differently. Because a volcano constramt 

involves a region or neighborhood of points, it is not practical to dlrectly evaluate the possible 

repulsive forces between the volcano and each snaxel in its neighborhood Instead, the cone of 

energy Evolc = -~ may be added to the potential field energy l~ fIeld The evaluation of 
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the slopes on the modified potential surface will th en activate the repulsive effect of a voJcano. 

Such a method for mixing volcano energy with potential field energy avoids keeping track of 

a voJcano and reduces the two evaluation steps, Eext'X and Efie/d'X' to a single one. We can 

mix these two kinds of energy terms because they are both represented as surfaces, a cone for 

!!J'volc, a potential surface for E field; this is not the case for the spring energy which is better 

defined in a point-Wise fashion. 

Finally, let us consider the essential subject of evaluating field forces constrained by a 

potential surface. These forces emerge in the discrete equations of motion (2.25) from the 

directional derivatlves of the potential energy terms, -Efieldx and -E'teldy ' They are best 

understood as the slopes, in the X and Y directions, evaluated at each snaxel s for the last 

known snake posit;on, that is at time t - 1. Therefore, the effect of evaluating these field 

forces is to make the snaxels move by following the steepest slope of the surface evaluated in 

the neighborhood of each snaxel. Depending on the direction of the gravit y force g, that is its 

sign, the snaxel will fall towards valleys, the physical case of a gravit y force directed downward, 

or will climb mountains. Since the goal of the snake approach in solving minimization problerns 

is to find these extrema of the potential surface, a critical step in the method will be to obtain 

"adequate" surfaces H(-x, y). Adequate here means that these surfaces must possess suitable 

properties ln order for the snake approach to be applicable. An essential property IS that 

valleys, or peaks, and folds of the surface correspond to significant features of the function 

represented by that surface. In general, the surface H(7i, y) will first have to be fdtered in 

order to emphasize those valleys or folds whlch may map to the desired signiflcant features. 

ln the previous applications that can be found in the literature, only the image domain 

1 was considered Kass et al!Kass87J have proposed to use a combination of dlfferent filtered 

versions of an image 1 to construct the potential surface For example, smoothed versions 

as weil as gradients of the image can be used to attract the snake to lines and edges. A 

scale-space scheme mlght be used in a first step at a coarse scale to get closer to the global 

energy minimum represented by the significant searched contour. This rem oves most of the 

noise effects. In further steps, the optimal valley or contour would be sought at finer and 

finer scales On the other hand, Zucker et al [Zucker88] propose ta bUild the potential surface 

il'dmctly from the image in a second stage Involving reconstruction of the image contours. An 

initial image analysis stage IS used to recover the discrete trace of a curve or contour on the 

basis of a relaxation labelling scheme. Points which have a "good" support with respect to 
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their eventual curve point neighbors in terms of orientation, curvature, contrast and proxlmity 

are retained as potential curve points. The potential surface is then bUilt by digging liule 

oriented pockets at each of these points in an initially fiat surface The snake model IS then 

used to interpolate the curve points by following the valleys obtained from the successive 

pockets. 

Once a relatively adequate potential surface is obtained, the last step consists of evalu

ating the directional slopes iteratively at each snaxel position. In general, only coarse approx

imations of the first derivatives in x and fj are used. 

We have covered ail of the aspects of the original snake model from an informai de

scription of the snake, to the description of the dynamics of the snake in the contlnuous and 

the discrete domains, to finally sorne observations on how to fix the snake parameters ln the 

following section, we summarize the advantages and problems associated with this original 

snake model. 

2.6 The Original Snake Model: Advantages, Limitations and 
Shortcomings 

The snake is best understood as an active curve possessing an energy function "whose 

minima [hopefully] comprise the set of alternative solutions available to higher level processes" 

[Kass87]. Such a model possesses advantages as weil as limitations when applted to problems 

pertinent to spaces of functions such as the image domain I. These are summarized in thls 

section. Furthermore, shortcomings related to the original deSCription of the model are also 

emphasized. Solutions to them will be proposed in section 2.7. 

2.6.1 Advantages 

When applied to the image domain I, the snake model possesses numerous advantages 

over more traditional methods of recovering image contours. Within the snake model frame

work, images are consldered as potential surfaces that may require sorne flltering technique 

to emphasize some of thelr features. Thus, the extraction of these features IS based on a 

minimization procedure which retains ail the relevant information that may be present in the 

Image. This is radically different from most techniques used to extract contours or edges in 
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intensity images which usually assume "ideal" models for these features, su ch as step edges or 

roof edges [levine85], and which rel y on global measures of significance to fix threshold values 

to identify valid edges or contour points. Such methods are generally too specifie in their way 

of imposing ideal feature models, and too global in their way of choosing threshold values. 

The snake model offers the advantage of extracting the same features without committing 

itself with respect to the exact nature of these features and ta their required significance. 

Another advantage of the snake model over the traditional edge and contour extraction 

methods is its intrinsic connectivity. Being a connected contour, information along the length 

of the snake is integrated ln an implicit manner. This is useful when analyzing noisy images 

or natural scenes. In such cases one often encounters contours with missing parts, such as 

edge ga~s, generated by regions along the boundary of an object having low contrast or 

significantly corrupted by noise. Applied to su ch problems, an edge-linking or gra ph search 

technique [levine85] will generally fail, being unable to bridge the gaps, while a snake will 

often encompass such problems thanks to its intrinsic connectivity. 

A snake may also be used to extract subjective contours [Kass87]. This capability is 

obtained, again, as a result of the implicit snake connectivity and also because of the energy 

minimization scheme used to recover the best possible solution given the available data and 

snake constraints8. The snake model is one of the few technique that addresses the problem 

of the extraction of such features 

Due to its explicit description of external forces and the possibility of modifying its 

intrinsic constraints by varying its elasticity properties or by introduclng discontinuitles, the 

snake model provides the ability to easily interface it to higher levels of processing. Of course 

this also imposes limitations on the application of snakes (see subsection 2.6.2). But, the 

intervention of other higher computational levels becomes necessary for many difficult appli

cations, especially in computer vision. Such higher computational levels ca n be used to set 

intrinsic elasticity constraints and to position external forces. These higher level interactions 

can also be seen as ways of introducing some Interactive capabilities into an automatic image 

understanding system. 

8 Note that for such features as subjective contours, ether energy constraints are imposed on the snake. 
For example, constraints relating the snake to contour terminations may be used [Kass87] 
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Due to its dynamic behavior, the snake is a contour model that is weil suited to tracking 

continuous deformations or movements of nonrigid natural shapes. The snake will follow the 

same local minimum or image contour from frame to frame in a video st'luence, assuming that 

the deformations are not "large". The same idea has been applied in an attempt to solve the 

correspondence problem in stereo vision, where the video sequence uses the two frames given 

by each eye and where an additional energy term is employed to account for the disparitles 

that occur between views [Kass87). This ability to track deformations also flnds applIcation 

to the scale-space analysis problem [Witkin86) where the different versIons of an image are 

obtained at different scales. A sequence of frames may then be ordered from a coarse to fine 

scale. 

The snake model is one of the few that has emerged in the computer vision Ilterature that 

provides a general framework for solving different, but related, visual problems Essentially, any 

problem for which the set of possible solutions can be represented as a potentlal function can 

have a snake approach applied to it, the main constraint being that this potentlal function must 

be smooth "enough" 50 that a snake is able to crawl and seek significant valleys. The snake 

approach can be applied to va rious problems sud as extracting contours, tracklng contours, 

stereo matching, motion correspondence, shape skeletonization, scale-space tracking, range 

image segmentation, path planning for robots. Furthermore, it can be genera/ized to h/gher 

dimensional problems. In this thesis we consider only 1-D snakes, that is active contours, 

but the model has been generalized by Terzopoulos to higher dImensions [Terzopoulos86, 

Terzopou/os88a]. For example active surface models can be defined to reconstruct or extract 

surface regions rather than contours [T erzopoulos88b). 

2.6.2 Limitations 

There are of course limitations to the usefulness of sud a model based on a regularization 

principle [Terzopoulos86, Terzopoulos88a). The latter assumes smoothness constraints wh en 

fitting the data that might be unrelated to their nature. The snake model requires potent/al 

surfaces that are sufFiciently smooth, mainly for two reasons 50 that the snake does not 

remain blind to the desired solution, and so that the computations involved at each iterat/on 

remain numerically stable. We will see later, in Chapter 3, that even when using smoothness 

constraints, the snake may remain "blind" to sorne extent (e.g., the snake is trapped in a local 
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minimum). Clearly, this limits the application of such a model to non-textured images. In 

general, even raw data such as the intensity image I(-X, y) of a scene containing only smooth 

surfaces or objects cannot be directly used because of its "roughness" due to quantization and 

sensor nOIse. 

Another strong limitation of the model is the fact that it requires powerful initialization 

processes which are able to position a snake close enough to the desired solution. This 

especially pertains to the static image segmentation case where the problem of extracting an 

approximation of the trace of a contour is difficult since it is underconstrained. In the dynamic 

case though, especially for tracking deformable shapes in long sequences, this limitation is not 

as important if some interaction with higher level processes is permitted for the initialization 

(see Chapter 3). 

The fact that the sna ke model relies on higher level processes or a priori knowledge to set 

most of the snake parameters, to introduce discontinuities, and to position external forces also 

imposes limlts on the usefulness of the snake model when applied to complex problems where 

such knowledge is not available. This is usually the situation in the image domain, particularly 

for the static case, where no a priori knowledge is assumed available except, possibly, through 

an extensive analysis. In other words, the segmentation problem often requires a priar solution 

in order to fix appropriate values for the snake pa ra meters or to introduce discontinuities! The 

snake model seems better suited for mare constrained problems where knowledge is available 

about the features berng sought or for dynamic situations where previously analyzed images 

may be used to provide the required knowledge, and this is the case for the cell tracking 

prablem. 

2.6.3 Shortcomings 

Besides the limitations of the snake model that restrict its applicability, the original 

description of the model possesses a number of difficulties at the implementation level which, 

if carefully considered, can be solved, leading to a more efficient algorithmic descrrption. 

The most important shortcoming that arises from the original descrrption of the snake 

model is its relatively unstable numerical behavior. Major instabilities emerge from the fact 

that the terms of the discrete equations of motion (equations (2.25» are unrelated to each 
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other with regard to the amplitude they might reach. This is best understood by considering 

equations (2.25) in detail. Consider the first system of equations in x' AX = Br (similar 

results are derived by symmetry for the system in y). Take a particular equation for snaxel 

s == i of this system: 

ai_ix(i - 2, I) + bi_1X(i - 1, I) + Ci* x(i, I) + b{x(z + 1, I) + aix(i + 2,1) 

-~ (Eextx("v(i,t -1» + Efieldx(v(i, l -1») + [2Jt] x(i, l -1) + [~-IL] X(I,f - 2) , 
where Cl * = Ci + ~ + p. Such an equation may be rewriUen by isolating :r( l, ï), the snaxel 

coordinate that comes as one solution of the system of equations (2.25), in terms of three 

interaction groups that apply different types of forces to the given snaxel This is done as 

follows: 

x(i,I) = ~{Fpot-(v(i, t -1)) + Fmemo(x(Z, l -1, l - 2))+ 
Ci* x 

Fstzff("x(z- 2,i -l,z + 1,i + 2,I))} , 

where the following identities are used: 

Fpotz- (v(i, l - 1») = -~ (Ee.ctz-(v(i, 1- 1)) + E fieldx(v(i,t -1») , 
Fmemo(x(i,I -1,1 - 2») = [2p] x(i,I -1) + [~- Il] x(i,I - 2) , 

Fsti f f (x( i - 2, z - 1, Z + 1, i + 2, I») = 

- (ai_2x(i - 2, I) + bi-Ix(i -1,7) + biX(Z + 1,7) + atT(i + 2, I») , 

(2.28) 

where FpolX; indicates the effects of the extrinsic forces that derive from a potential, F lII('711O 

indicates the memory effects due to inertia and damping and :F.~llf f indlcates the elasticlty 

constraints that directly link snaxel s = Z to its four direct neighbors A number of observatIOns 

can be made from the analysis of equation (2.28). First, we note that these forces are of two 

distinct types, depending on whether or not they are dependent on the coordlnates (x, y). 

Fmemo and Fstiff are explicitly related to x (or "fi), being functlons of It, wh/le Fj}()/y /s 

not, with the exception of one of its components, the spring force (section 2.2) Therefore, 

Fmemo and Fstiff can easlly be limited in their extent by imposlng on them saturation 

values ensuring that a new coordlnate position (x( i, I), y( z, I» will in general remain within 

the permitted discrete intervals X and Y (see Appendix B). Under the influence of F lII f'1l1o 

and Fstiff problems may occur only near the border of the discrete gnd defined by X and Y 

where snaxels might be pushed out of the grid by these forces On the other hand, extnnsic 

forces obtained from the directional slopes of a potential surface, that is, field forces and 
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repulsive vo/cano forces, can be the cause of major instabilities because their amplitudes may 

assume unlimited high values without any respect for the permitted values of x and y (i.e., 

values within the discrete intervals X and Y). The maximum possible amplitudes of Fpoix (or 

Fpot-) are obtained for vertical orientations of the potential surface where the slope takes an 
y 

infinite value; for e,l(ample, vertical cliffs on the potential surface will occur in correspondence 

to step edges in an image I(-X, y). Such high force amplitudes may drive a snaxel, a group of 

snaxels, or the entire snake, out of bound!>, that is, out of the spatial domain defined by the 

discrete grid. 

Another different source of instability, which results in an osci/latory behavior of the 

snake emerges from the iterative way in which some snake parameters may be fixed. Consider 

the tension and rigidlty weights Wl ('s) and W2(S). If one uses equations (2.26) and (2.27) as 

proposed by Kass et al [Kass87]. Wl (8') and W2(S) will in general be modified at each Iteration 

and for ail snaxels This has the effect of maklng the snaxels osci/late around the values 

prescribed by the natural arc length function C(s) and the natural curvature function C(s).9 

Furthermore, equatlons (2.26) and (2.27) impose no limitations on the amplitudes wd8') and 

W2(S) may reach, which can be the cause of unrealistic displacements of the snaxels. 

The approximations of the derivatives that have to be used to discretize the optimization 

process and to solve it on a digitized grid are in general of an unstable nature and inaccurate. 

The same problems apply to the approximations of the derivatives used for fixing parameters; 

for example, when approximating the local curvature k in equation (2 27). Furthermore, the 

assumptlOn we made, following Terzopoulos [Terzopoulos87c], that the step-size l::.s between 

snaxels 15 constant and small and can be fixed to 1 to simplify the discrete equations of motion, 

may be an Incorrect approximation If no mechanism is implemented ta enforce snaxels ta stay 

close to each other with an almost constant inter-distance or step-size l:1s. 

Besides numerical instabilities and oscillatory behavior, another important problem exists 

with regard to the optimlzation process used to activate the snake Followmg the original 

description of the snake, one usually uses as many iterations as necessary until the snake stops 

9 This oscillatory effect due to variable stiffness parameters is different from the oscillation of the snaxels 
going up and down in height on the potential surface wh en crossing the bottom of a valley This other 
type of oscillation is progressively reduced as a result of the damping introduced in the equations of 
motion 
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moving, that is until no snaxels move. This is equivalent to having the snake reach its lowest 

possible total potential energy, Esnake' given an initial configuration on the potential surface. 

This criterion of having to reach a steady-state (Le, ""V-t = 0) provldes an excessively strong 

stability condition for the optimlzation process that often results in the snake "mlsslng" the 

desired solution. By this is meant that the snake might traverse the desired valley of the 

potentlal surface at sorne point during the iterative process, but rnight, in further iterative 

steps, recede from that desired position. This may happen whenever the bottom of the valley 

is not at the same height ail along its length. 1 n su ch cases, snaxels will have a strong tendency 

to pile up [Amini88b] in the deepest pockets of the valley whlch may lead to an inaccurate 

final solution. There are two major reasons that explain this behavior of the snake First, the 

snake is always seeking to reach the lowest possible point of the potential surface because of 

the effect of minimizlng Efield in equation (2.2). The other constraints Bmt and }-J('xt may be 

used to counteract partially this effect, but this only makes the snake more unstable Second, 

because we try to minimize E field ail over the length of the snake, there is an arbitrary bias 

to favor shrinking snakes, that is, shorter snakes. In summary, using the steady-state criterion, 

we cannot ensure the snake will converge to the desired solution. 

Even if a valley possesses the extraordinary qua lit y of being at the same height ail along 

its length, the snake Will in general attain steady-state long after havrng reached the optImal 

spatial solution. This is due to the prevlously mentioned problems of numencallnstabrlity and 

oscillations. Furthermore, shrinking snakes are still favored. This again emphasizes the fact 

tl1at the steady-state crlterion is inadequate as a terminating condition for the optlmlzatlon 

process used to activate the snake. 

ln the following section, solutions are proposed for the problems arislng from the original 

description of the snake that were discussed in the above paragraphs. 

2.7 Improving the Original Snake Model 

Let us first consider the major source of instability created by possibly high amplitudes of 

:Fpot-x (similarly for Fpolfj) acting on each snaxel. The most obvious solution to thls problem 

is to normalize or restrict the permitted values that a ny components of FJloly might take 

The directional slopes in x and yof the potential surface must be normallzed ln sorne way, or 
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have to be redistributed on a range of values compatible with the other force values and with 

the intervals X and Y. 

The problem with redistributing the directional slopes of the potential surface H(-X, Ji) is 

a non-trivial one because a positive slope function varies nonlinearly from 0 to infinity (Figure 

2.4.(a». Similar results are obtained for negative slopes by symmetry. This possibly infinite 

value, corresponding to a vertical orientation of the potential surface, will of course make the 

snake completely intractable. In fact, a quite broad range of almost vertical slopes will have 

the same effect. There are many ways of solving this problem. The solution we propose for the 

snake model consists of c1ipping the absolute value of the slope functlon for sorne saturation 

value SlIlUX (Figure 2.4.(b)). This is an adequate transformation for the snake model because 

in order to make the snake seek signiflcant valleys, what is principally nE'eded is information 

about where it should crawl to. Therefore, the clipped version of the slope function fits our 

need and it is a simple solution. This c1ipped slope function starts by increasing slowly for 

small slope values, making the snake rather somnolent. Then, it increases faster and faster 

for higher slope values, until it saturates for sorne maximum value Smax. This saturation 

value, Smax, being the maximum amplitude for the group of forces Fpo.!-x' disregarding the 

spring forces which are set with respect to the spring constant kspring, its maximum value 

should be chosen to relate it to the maximum desirable or permitted movernent for a snaxel. A 

constraint on the minimum value for Smax can also be formulated by considering the minimum 

slope that should be accepted as significant before c1ipping the slope function. This minimum 

should not be too small because one does not want to put gentle slopes on the same level 

as steep slopes. We propose to use a slope of ±1 (i.e., angles of ±45°) as the minimum for 

Smux. This seems to be an appropriate choice for most applications. For example, in the 

Image domain I this means that roof edges with angles of ±45° are secn as the minimum 

acceptable type of significant edges. We have used a value ±2 (i.e., angh~s of rv ±63.4°) as 

the maximum for Smux. This means that angles from rv ±63.4° to ±90D are considered as 

having slmilar significance (Figure 2.4.(b)). The maximum possible Smax value should not 

be too large because of the exponential growth of the slope function where similar angles 

may have very different stope values. By restricting Smax and other snake parameters (see 

Appendix B), the maximum possible horizontal position displacement due to the influence of 

F1JOt)f can be fixed to a desirable number of horizontal discrete steps (sümilarly for vertical 

position displacements). Therefore this method of clipping the slope function of the potential 

39 



.... 
-

-

2 The Snake Model 

surface offers a simple solution to the redistribution of this function to prevent arbitrarily large 

forces to be applied on the snake. 

I~I 
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Figure 2.4 The slope-amplitude problem ln (a) is shown the absolute values of the 
slope function This function is asymptotic to inflnlty at an angle of 900 ln (b) is 
shown the clipped version of this function for <Snax = 2 

Let us now consider the problem of fixing the stiffness parameters wl (8) and W2(S) 

Applying equatlon (2.26) to set values of WJ. ('8) permits us to have snaxels at relatively constant 

and small distances apart from each other, thereby ensuring small numerical errors for the 

approximation of derivatives in the equations of motion. But, as mentioned previously ln 

subsection 2.6.3, equation (226) imposes no limlts on the values Wl(S) may reach. This 

might be the source of unrealistic or arbltranly large snaxel displacements A solution to thls 

problem is to apply the same "clipping" idea that was used for the slope functlon of the 

potential surface, but this time to a tension functlon T used to determine Wl(S), This tension 

function T is added to equation (2.26) as follows: 

Wl ('8) = T ( Ll'8(:5) - [(:5)) (2.29) 

The function Twill be clipped for dlscrepancies between the snaxel inter-distance Lls and the 

metric function .L:('8) larger than a given distance SC, this at a maximum tension value T11IllJ" 

T may take different forms. For example, David [Oavid89a, David89b] proposes to use for T a 

dipped ramp function. In such a case T is defined as follows: 

T = T~~X ( Ll8'(8') - [(8')) if ILl8"(8") - .L:(8") 1 < Sc , 

T = Tmax if Ll8"(:5) - [(8") ~ Sc , 

T = -Tmax if Ll8"(8") - [(8") ~ -SC, 
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Applying equation (2.27) to spt:cify ""2('8) in the discrete domain is not a trivial task; the 

curvature k(s) must be approximated by second order differences, a further source of numerical 

instability. Also, since the weights Wl(:S) and W2(S) are now varying in space and in time, the 

factorization step has to be recomputed at each time step. To keep the computations as 

simple as possible, we recommend fixing W2(:S) to sorne small positive value to enforce sorne 

small degree of smoothness, that is, a weak tendency to straighten. 10 This decision can be 

interpreted as a least commitment rule that implies sorne degree of smoothing of the data 

combmed with the advantage of avoiding the computation of k. A positive value of ""'2(8) 

also offers the advantage that the snake will have Jess tendency to fold on itself. 

The updating of Wl(:S) using equation (2.29) can be performed only occasionally rather 

than at every time step III to reduce as much as possible the number of times the factorization 

of matrix J( has to be performed and also to reduce the oscillatory behavior of the snaxels. 

This updating rule finds its justification in the fact that for a stable snake every snaxel will 

move only in its immediate neighborhoùd. In general, the distance between snaxels will remain 

stable and the stablhty of the snake will be ensured by the normalization of the snake forces 

(Appendix B). In fact, we can push forward this idea of updating Wl(S) occasionally by, instead, 

keeping it always constant and by, rather, updating occasionally the snaxels sampling, that 

is, the number of snaxels per arc length unit. For example, every N iterations, for sorne 

integer N, we can update the sampling of the snaxels by spatlally reinitializing the snake. 

Reinitialization is performed by keeping the snake at its actual position and by enforcing 

snaxels to be equally spaced. l1 By keeping Wl constant, this last updating rule permits 

us to simplify the computations while obtaining the desired effect of having a snake with 

snaxels approxlmately equally spaced in time. We have therefore three possible updating 

rules for Wl(:S) We can update its values at every snaxel and for every tlme step III using 

equation (229). Or we can perform the updating only occasionally, every N iterations for 

example, still for every snaxel. Or we can keep Wl(S) constant and rather spatially resample the 

snake occasionally. The first updating rule is the most accu rate but also the most expensive 

computationally, while the last one is the coarsest one but the simplest one numerically. 

10 ln our experiments we have use a value of 0 01 for ""2(8) 

11 See Appendix D. section D 3. for a variant of such a "snaxels resampling" updating rule. 

41 



--------_ •.... _._---- . 

2. The Snake Model 

The approximations to the derivatives that are used in the snake model are a significant 

source of numerical errors. In general, the presence of such errors is unavoidable. The best we 

can do here consists of reducing by as much as possible the coarseness of the approximations. 

Firstly, the numerical errors associated with the approximations of the spatial derivatives in

volving the stiffness constraints ( -i;(Wl(S)Vs) + ts22 (W2(S )vss)) can be kept low by using 

one of the previously mentioned updating rules for fixing the ten!)ion between snaxels This 

ensures a relatively constant and small spacing between snaxels. Also, negative values of W2 

should be avoided, since the bending of the snake using negative discrete rigidity constraint is 

of an unpredictable nature. On the contrary, positive values of W2 are a factor apropos stability 

since they enforce smoothness constraints. This is in agreement with our prior rule of fixing 

W2 to some constant small positive value. Secondly, the numerical errors associated wlth the 

approximations of the time derivatives, involving the inertial and damping constraints, can 

be kept small by enforcin~ only relatively small movements for each snaxel at each time-step. 

This is best performed by normalizing the forces acting on the snake (Appendix B). Flnally, the 

numerical errors associated with the approximations of the slope of the potential surface can 

often be lowered by performing sorne smoothing filtering of the surface while extractlng the 

directional slopes. However, there are sorne exceptions where the approximations of denvatives 

can be bypassed. This is the case whenever a symbohc derivation eXlsts For example, sprlng 

forces can be exactly derived from the energy of spring links between fixed pOints and snaxels 

Another notable exception is the case of potential surface obtained ln the distance transform 

domain, 'DT. Their, the slope can be exactly determined for most pOints (Appendlx D, section 

D.3). 

As we have seen previously in subsection 26.3, the steady-state criterion proposed ln the 

original snake model as a terminating condition of the optimization process IS an inadequate 

one. We propose a different criterion which is called the steady-support crlterion T~e basls 

of this criterion consists of examining the data for which we are seeking the features For 

the snake model, we have the potential surface R(x, y), and the features we are seeking are 

the valleys and folds of R(x, y). Instead of seeking a minimum of the total energy of the 

snake Esnal:e' as a terminating condition of the optlmization process, we propose to search 

only for a minimum of the potential field energy Efzeld ln other words, the stabllity criterlon 

for the snake becomes one in which we seek a minimum and stable helght of the snake on 

R(x, y) based solely on R(x, y) topography and not on other snake constralnts (i e., 1~'l11l and 
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Ee:ct}. A simple implementation of this stability criterion, that provides an adequate solution 

to finding this minimum of Efield, consists of summing the local heights of the snake ail 

along its length and of dividing this sum by the snake length. This summation is computed for 

each snaxel and each snaxel interval interpolating pairs of snaxels. Experimentally, we have 

used simple straight lines between snaxels for the interpolation, which is sufficient for most 

applications. We therefore seek to really mini mile only the averaged potential field energy 

term, E field, in equation (2.1); that is, we wish to find a minimum of the following energy 

function: 
Jn E field( v) ds 

Esnakefieliv ) = Jn ds (2.30) 

We average Efaeld over the length of the snake so that this length has no effect on the 

selection of a preferred stable state. This averaging is our solution to the bias toward shrinking 

snakes that was present in the original optimization scheme. Although we seek a minimum 

of ES7Iflke field( v) the snake still remains constrained by the internai and external potential 

energy terms, Eint and Eext. The mmimum of Esnake field ( v) is used to provide a terminating 

criterion for the snake activity which is still being governed by equation (2.1). In general, 

this simple criterion provides a way for the snake to avoid the problem of "missing" the 

desired solution. This is because wh en the snake traverses a valley, its global height remains 

constant for a few time-steps, a "steady support" we can use as a terminating condition for 

the optimization process. Using such a topographical criterion also permits us ta bypass the 

instabillty problems caused by the snake oscillatory behavior. 

A final problem that needs ta be examined is the border-effect. The border of the 

discrete grid definlng the domain of survival of the snake should be considered with particular 

attention in order to ensure that the snake will not traverse it. A simple solution consists of 

ensuring that snaxels will not cross the borders of the discrete grid by adding wells or cliffs to 

the border of the potential surface. This will have the effect of pushing the snake away from 

these borders whenever it cames too close to them. Such a solution possesses the advantage 

of reducing the time :::omplexity of the iterative process which governs the snake motion by 

avoiding the testing of snaxels coordinates ta detect their proximity from the border of the 

discrete grid. 

Let us summarize the modifications to the original snake model that we have proposed 

in order to improve its efficiency and accuracy: 

• Normalization of the slopes of the potential surface with respect to the other forces 
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acting on the snake and to the limits imposed on snaxel movements. 

• Fix W2(S) to some small positive value (Ieast commitment rule). Update W}(s) follow

ing one of the three proposed rules: 

(a) Update W}(s) for every time-step, Ill, and every snaxel, on the basis of a 

tension fu nction T. 

(h) Update W}(s) relatively infrequently using the snaxel inter-distance stability 

assumption and on the basis of a tension function T. 

(c) Set Wl(':S) to be constant (= wd and resample the snake occaslonally. 

• Keep numerical errors due to the approximation of derivatives as low as possible using 

simple ru les. 

• Use a steady-support criterion as a terminating condition ')f the optimization process 

rather tha n a steady-state criterion. 

• Solve the border-effect problem by preprocessing the border of the potential surface 

H(-X,y) 

With such improvements, the snake model will prove to be a more powerful and adequate 

framework for solving both the problems of tracking and describing the shape of amorphous 

objects su ch as cells. In the following chapter, we address the first problem of tracking the 

trace of cells contours in noisy intensity images using the snake mode\. In a followmg chapter 

the shape description problem will be addressed by also using the snake model (Chapter 5). 
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Chapter 3 Image Segmentation and Cell Tracking 

3.1 Introduction 

ln this chapter, we address two fundamental issues related to the image analysis of 

deformable objects such as cells, namely image segmentation and tracking of deforming and 

moving objects. We make use of the snake model as the main tool to solve these problems. 

We also consider hlerarchical filtering techniques useful within the context of the snake mode!. 

3.1.1 The Segmentation Probll'm 

First, we consider the segmentation pl'oblem which consists of extracting the trace of 

a closed contoured cell membrane in a noisy image (Figure 3 1) The image was obtained 

from a video camera mounted on a microscope. It is first dlgitized and then transmitted to 

the computer where a real-tlme analysis can be performed. Alternatively, the image may be 

recorded on video tape or stored on the computer's disk system for a more detailed analysis, 

non real-time (Figure 3.2) 

Many difficulties can arise in acquiring and segmenting images. They can be noisy and 

suffer from une':!en illumination (Figure 3.1). Due to variations in the shape and thickness of the 

cell, the grey level intensities along the cell membrane may not be homogeneous (Figure 3.1). 

The tell is really a 3-D entity, which partially explains why its boundary is not homogeneously 

defined. Variations in the cytoplasm constituents and noise in the imaging process are other 

reasons which explain the nature of this problem. The intensity values within the cell may 

be similar to the values of the background (Figure 3.1). The cytoplasm might also contain 

organelles with strong edges that make the segmentation problem even more difficult to solve. 

The scale, or range of scales, at which the trace of the cell membrane is best defined and 
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Figure 3.1 Example of a digitized cel! image The image is quantized into 256 grey 
levels usÎng a frame-grabber and Îs normalized 

perceived in the scene is unknown a priori. Finally, we must cope with a general problem found 

in "applied perception-cognition fields" (e.g., A.I., computer vision, or pattern recognition) 

where no weil established criteria exist to judge the quality of a machme segmentation result. 

There are essentially two reasons for such a lack of agreement on criteria to Judge the value 

of a segmentation result. First, experiments in psychophysics have not yet Ylelded a general 

understanding of the perception processes. Second, the "applied-science" communlty has 

not yet agreed on general criteria for the evaluation of machine-based image segmentations. 

Neither has produced sets of images on which to test the extremely large variety of proposed 

segmentation algorithms. 

3.1.2 The Tracking Problem 

The other important issue we are concerned with in this chapter is the trackmg of 

nonrigid shapes such as cells in sequt:!nces of digitized images We are mterested in trackmg 

a cell from frame to frame as it moves on a fiat surface and as It deforms while moving 

The sa me difficulties that exist in the static case for the segmentation problem eXlst here 

The major difference, though, is that we can use segmentation results and motion knowledge 

derived from previous fra mes to facilitate the segmentation process ln each new frame and 

thereby also facilitate the tracking. An example of an image sequence of a deforming and 

moving cell is shown in Figure 3 3 
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Figure 3.2 Laboratory set-up consisting of a computerized video recording system 
First, an analog image is obtained from a phase-contrast microscope using a t. v • 
camera Then, the image is digitized using the frame grabber Motion sequences are 
recorded, on disk or on tape, using the time-Iapsed video technique Adapted from 
[Noble86], Figure 7, Chapter 4, p 57 

(b) 

(f) (e) (d) 

Figure 3.3 Example of an ima6e sequence of a deforming and moving cell. 

3.1.3 Assumptions 

With such difficult problems as segmentation and tracking, it is necessary to make a 
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number of assumptions if real-time image analysis is to be achieved. Therefore, we require 

the following two assumptions: 

(a) Only "small" deformations and movements of the cell occur from frame to frame. 

(b) User interaction, external constraints and a priori knowledge are permltted to initialize 

the first frame of the tracking sequence. 

Assumption (a) is necessary because only small deformations, that is, of a few pixels, can 

be tracked using the snake. This is required as the snake must be on the slope of the valley 

corresponding to the newly deformed contour to effectively track this deformation. Assumption 

(a) is achievable for otT-line analysis since we have control over the sampling rate at whlch 

cell images are acquired. For real-time analysis, this "small deformation" limitation will not 

be critical for many of the cell types we are studying since they move relatively slowly For 

example, lymphocytes and neutrophils move at most a few microns per minute, they also 

often stop locomoting for various periods of time [Noble86]. Furthermore, assumptlon (II) 

relies on a more general assumption about livillg organisms such as cells by whlch the motion 

and deformation of the cell's body are assumed ta occur ccmtinuously ln tlme. Therefore, we 

should always obtain small deformations by sampling a motion sequence at a high enough rate. 

ln our case, the hope is that the cell will always remain flé.t on ItS surface, thereby justifying 

the simpler 2-D image analysis. If the cell moves ln height as weil, exhibiting 3-D motion, 

assumption Ca) will remain valid, but in a 3-D space. This may create problems for our 2-D 

analysis scheme ln subsection 3.4.3 we will give an illustration of thls problem. 

Assumption (h) is in general not a critical one for the tracking of nonrigld shapes It IS 

the automation of the image analysis process over tens or hundreds of Image frames which 

must be achieved. The effort spent on the first frame to initialize the process is of Iittie 

concern if the correct tracking of the cells can be secure-d However, assumptlon (h) is also 

seen as necessary in the context of real-time image segmentation at a video rate. Therefore, 

we have to ensure that the initialization is done fast enough 50 that cnterlon (a) 15 still met. 

3.1.4 Quality Criteria 

Besides computation efficiency requirements we need to address the issue of judging the 
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quality of the results. Since no well-defined criteria exist for such a purpose we will rely on 

experimenter judgement. To do so we propose the following two criteria: 

(a) A machine-vision segmentation result will be judged "good" if the line-drawing 

obtained from the boundary of the segmented object permits the experimenter to "qual

Itatively" describe the cell shape in the same way he wou Id by looking directly at the 

intensity image. 

(b) A machine-vision tracking result will be judged "good" if the deformations on the 

boundaries of the segmented object, obtained from the analysis of a sequence of images, 

correspond "qualitatively" to shape deformations, such as the formation of pseudopods, 

wh en observed by the experimenter. 

Such "qualitative" criteria are considered to be sufficient for solving the segmentation 

and tracking problems by giving results which are useful, but not necessarily spatially accurate. 

The "qualitative" basis for these criteria also finds its motivation in psychophysics experiments. 

These suggest that vision is primarily concerned with "determining the general spatlallayout 

of obJects in the world" rather than a "detailed quantitative description of the visual scene" 

[Ramachandran87] . 

3.1.5 Solutions 

T 0 solve both the segmentation and the tracking problems, we propose to use the sna ke 

model, presented in detail in Chapter 2. The main motivation for using this model emerges 

from its active or dynamic nature. This permits us, first, to link both problems by solving 

them simultaneously and, second, to simplify them by reducing the space of possible solutions. 

The snake model permits us to reduce the search within the space of possible solutions by 

the use of heuristic constraints; that is, constraints imposed by elastic and external forces and 

limitations imposed by the small deformations assumption. 

The potential surfaces on which the snake crawls are obtained from the image domain, 

I, for the two problems of segmentation and tracking. Digital intensity images or filtered 

versions of them are used for this purpose. Since filtering is an essential step in obtaining 

a useful potential surface, that is, one where valleys correspond to interesting features of an 
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image, we consider the subject of intensity image filtering in the next section (3.2). Once we 

have shown how potential surfaces are obtained, experiments on the image segmentation and 

tracking of cells using snakes will follow in subsequent sections (3.3 and 3.4, respectively). 

3.1.6 Contributions 

ln this chapter, one essential contribution is made: 

• We show the usefulness and limitations of the snake mode! for solving both the image 

segmentation and tracking problems in the case of nonrigid bodies su ch as cells. We give 

typical cases in which the method fails and we explain why it does so 

A number of less important contributions are also made. They are summarized below. 

• We give clear expia nations of what image filtering is, of its links to scale-space repre

sentations (subsection 3.2.2), and of how to efficiently implement it by the use of a particular 

class of pyramidal image representation called the Hierarchical Discrete Correlation or HOC 

(subsection 3.2.3). 

• We propose a refinement procedure for thè implementation of the H DC which improves 

its descriptive power by combining it with the cascaded correlation technique (subsection 

3.2.3.4). 

• Finally, we define the notion of a family of potential surfaces which are weil sUlted 

within the context of the snake model (subsection 3.2.4). 

3.2 Image Filtering 

3.2.1 Introduction 

Digital image filtering is a fundamental task which is used extensively in computer VISion 

applications [Burt81, Levine85]. Filtering can be understood as the processing of an image 

in order to discriminate, modify or compare its attributes. In contrast to a pOint operator 
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which affects brightness or contrast, filtering serves to affect the spatial information in the 

digitJI image. Forexample, digital filtering is used to enhance boundaries and for the removal 

of noise. Flltering can be implemented by having a filter, or discriminating devlce, applied 

to every sampled signai point or element [Proakis88]. In the image domain, I(x, y) is a 2-D 

discrete signal and the filter is known as a mask or kernel. An example of digital filtering is 

dlscrete correlation. The correlation operation involves comparing the filter ta pixels within 

the digital image ta measure their degree of similarity [Proakis88]. 

Within su ch a filtering scheme, essentially two forms of computation may be performed: 

global and local. Global filtering is principally used to correlate an image with models of 

structures or objects that it may be desirable to recover in that image; this is the case in 

image matching [Rosenfeld82]. In local filtering, small masks are correlated with the larger 

image in order to extract or modify some of the local properties of that image [Burt81]. For 

our needs, that of prod ucing useful potential surfaces, we will consider the latter form. 

Essentially, we shall use two types of local image filters: lowpass and bandpass. The 

former Will be necessary to remove noise and to smooth the original image data, while the 

latter will be necessary to emphasize image features su ch as edges, contours or region limits 

As we shall see in subsequent sections, these two types of local filtering can be efficiently 

combined mto a hlerarchical method. However, before proceeding to a description of the 

flltenng algorithm, âle notion of scale will need to be examined carefully As we will see in 

the following subsection, scale and filter-size are directly related notions. 

3.2.2 Image tiltering and the Notion of Scale 

ln computer vision applications, scale can be defined as the perceived size at which an 

object or structure is best isolated and identified in a scene. For example, let us consider one 

frame of a cell motion sequence (Figure 33.(a)). The maximum scale (b max ) is bounded by 

the size of the Image, whereas the minimum scale (bmm) 15 limited by the pixel slze. Between 

these extrema there eXlsts a ra nge of scales in which different abjects or structures are best 

descnbed at their specifie natural scale. Natural scale refers to the scale or perceived size at 

which a structu re ln a scene emerges. A cellis described at an i ntermediate scale (6 ceU < bmax ) 

which is related to its size. An intra-ce/lular organelle would be described at a smaller scale 

(801'<1<lllcllc < becl/)' The cellular membrane segments are described at an even smaller scale 
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(bmembrane < borganelle)' Artifacts in the scene such as other orga nisms, gel constituents 1, 

glass impurities, and shadows are described at yet smaller scales (b/crI Ul' c < blllemb"a'H')' 

Aiso noise events arising from the imaging process (sensor) and the quantization process 

(digitization) can be described at small scales (bnoise ~ 8texture). The visual perception of 

these different structures or events can thus be understood as one of discrimination where we 

wish to "separate events at different scales" [Witkin83]. 

As mentioned previously, local image filtering can be used to discnminate between various 

image structures. It is by varying thewidth or size of the filter mask that the discrimination can 

be achieved for different image structure sizes. Therefore. we can estabhsh a direct relation 

between the mask size of a filtering process and the scale at whlch we may deslre to seek 

image structures or features. Such a mechanism of seekmg image structures at vanous scales 

by performing image filtering for varying mask sizes has been described in the computer vision 

literature [Marr82, Burt84, Levine85] Events at different scales are discnmmated dependlng 

on the frequency response of the filter. Basically. two types of filtenng methods are IJsed 

for scale discrimination. Lowpass filters of varying mask size are used to blur or average 

details at varying scales, while bandpass filters of glven sizes can be used to extra ct features 

at corresponding scales. A popular example of the former filter type IS the Gaussian blumng 

scheme in which Gaussian filters of varying size are used to blur the image by "averaglng" 

image details at scales smaller than or similar to the filter slze [Levine85] Popular examples 

of the latter filter type are obtained by the use of the Difference of Gausslans fdters and the 

Laplacian filters which permit us to extract or emphasize structures at varying scales [Brady82, 

Levine85]. 

Although filters of varying size can be used to perform image analysis or description 

at varying scales, the problem of setting the filter mask size remalns How can one know 

at which scale to process an image in order to identify events or Image structures whose 

sizes are unknown a priori? The most valuable solution to this problem proposed ln the 

literature consists of filtering the image at many scales simultaneously to retain "ail avadable 

structure" [Koenderink84]. Furthermore, by continuously varying scales, thereby creatlng a 

1 The gel is a lattice of collagen f,bers immersed in a growth media which keeps the cells viable and allows 
them to move and grow Sorne constituents of the gel may be opaque creatlng wire-Ilke shadows or a 
texture 
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continuous "spa ce" containing ail these filtered versions of the original image, a scale-space 

image representation is defmed. This image representation is simplified by implicitly "relating 

one scale to another" [Witkin83], due to the intrinsic continuity along the scale axis of the 

scale-space. 

It is by introducing such a scale-space representation of an image that we will generate 

a sequence or hierarchy of potential surfaces ordered from a coarse scale for large filter mask 

size to a fine scale for small filter mask size. Optimal image feature extraction, su ch as the 

extraction of the trace of a cell contour, will then be obtained by a continuation method 

[Witkin86, Terzopoulos87a] of tracking the given feature from a coarse scale to its fine natural 

scale. In the following section, a computationally efficient scale-space representation will be 

described in order to generate such a hierarchy of potential surfaces. With this hierarchy or 

famlly of potential surfdces, a continuation method using the snake will be used to recover 

the trace of the cell contours and to track cells from frame to frame. 

3.2.3 Efficient Local Image Filtering 

For the purpose of producing potential surfaces which have valleys corresponding to 

significant events in the image domain, we must processorfilter theoriginal image to emphasize 

these events or features. Furthermore, this filterin~ should be performed in a multiscale fashion 

since the natural scales of the events we seek are unknown a prion Finally we need to perform 

two types of fdtering. lowpass and bandpass or differentiatlon filtering. 

There exists a filtering framework, known as the pyramid, which exhibits ail the char

acteristics we are seeklng. 2 Furthermore, it provides computationally efficient methods of 

performlng multiscale image correlation or filtering. For example, correlation using pyramid

like fdtering methods can be performed in one to two orders of magnitude faster than with 

the Fast Fourier Transform method [Burt81] ln the following paragraphs, we briefly describe 

how to produce familles of potential surfaces ordered by scale uSlng a generalized pyramid 

flltering method called the Hierarchical Discrete Correlation method originally proposed by 

2 The pyramid also provides an image representation scheme which shares some links with the human 
visu al system and the so-called "multichannel model" [Wilson 79] in which a flxed number offrequency
tuned "channels" are used to carry representations of an original image at varying scales before additional 
high level analysis is performed [Burt84, levine85]. 
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Surt [Surt81]. We will also propose to make this method more flexible by combining it with 

the cascaded correlation technique [Crowley84, Wells86]. 

3.2.3.1 Hierarchical Discrete Correlation 

Hierarchical Oiscretc Correlation (HOC) is a filtering method performed on a digitized 

image, I(x, y), to produce a family of different filtered versions of that image. Following 

Surt's notation [Surt83b], a sequence of HOC images {gO, gb 92, "'}' can be produced as 

follows: 
go(x, y) = I(x, y) , 

(3.1) 
91 (x, y) = W,(ml' n,) ® 90(x, y) , 

where 1 indicates the level in the hierarchy or sequence, W, is the weighting function or mask 

of dimensions (ml, ni) proportional to l, and ® is the correlation operation. A typical example 

of weighting functions are the discrete Gaussian kernels of varying slze (Figure 3.4) As the 

mask WI gets larger the C'orresponding HOC image 91 becomes more and more blurred, this 

HOC family produces a sequence of lowpass filtered images Since direct correlations wlth 

increasing mask sizes are computationally expensive [Burt81]. another way of generatlng a 

HDC sequence is required. The HDC method itself offers a solution to thls problem Sin ce "the 

correlation of a function [or signal] with certain large kernels can be computed as a welghted 

sum of correlations with smaller kernels" [Burt81]. Therefore, a hlerarchy can be produced 

by recursively ftltering HDC images with a small mask, w(m,n). offlxed dimensions, (1II,1l). 

We cali this recursive property of the filtenng process the chain rule3 Again, following Burt 

[Burt83bJ, equatlon (3.1) can be rewritten as follows: 

90 (x, y) = I(x, y) , 
2 2 

9'(x,y) = L L {w(m,n) * 91_1(x+m2/- 1, !l+ n2/-1)} , 
(3.2) 

m=-2n=-2 

where a 5 x 5 mask is used as the recursive filter. Other mask sizes can be used, but a 5 x 5 

mask has proven ta be adequate with respect to efficiency and quality of the results for many 

image filtering applications [Burt83b). In similarity to any di:;crete flltertng process, special 

care must be taken near image boundaries where the mask may require sample pOints outside 

3 This recursive property is also shared by certain morphologlcal fllters that will be used to process the 
cell contour in Chapter 4 It is within the mathematical morphology context that thls property IS called 
the "chain rule" property (Appendix C. section (2). which explains its use here 
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the image domain. One satisfying solution to this problem is to assume reflections along the 

image boundaries by applying the so-called mirror effect [Burt83b). 
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Figure 3.4 Equivalent 1-0 weighting functions (here ~/' along the X axis) con

verging to a 1-0 Gaussian kernel (adapted from [Burt81], Figure 2) 

Equation (3.2) imphes that from level to level in the hierarchy, the sampling distance dl 

between elements (at levell-l) that contribute to the new HDC image (at level /) is doubled 

with each iteration Sampling rates other than 21 can be used to produce different typesof HOC 

structure [BurtSI]. In the HOC method, the weighting mask w( m, n) is constrained to possess 

certain characteristics that ensure normalization, unimodahty, symmetry, a centered position 

of this mask and convergence of the recursive process [Burt8!). To make the computations 

simpler, an additional constraint may be enforced by having the weighting mask w(m, n) 

separable [Burt8I]: 

w(w, n) = w x(m) 0 w y(n) , (3.3) 

where w x and lU y are 1-D masks of length five used to filter the HDC images in the X 

and Y directions, respectively. This reduces the computational complexity of each correlation 

evaluated at any sample point from O(m * n) to O(m + n). In terms a 256 x 256 size image 

this represents a decrease of one order of magnitude in complexity. Figure 3.5 illustrates how 

the HOC is built ln the I-D case (in the X or Y direction) with a sampling rate of i. 

With these charJcteristlcs and constraints, the welghts of the w z mask (similarly for 
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Figure 3.5 A sketched representation of the HDC method (I-D case) The letters 
a, band c represent the weights of a mask (w x or w y) of length flve The arrows 
represent the neighborhood relations from level to level of this recursive flltering 
method (i e , how one level is built from the preceding one) Here nodes represent 
sample points of the H DC image Adapted from [Burt81], Figure 1 

W y by symmetry) are as follows [Burt81]: 

W x(O) = a, where 0.25 ~ a ~ 0.5 , 

W x( -1) = w x(l) = b = 0.25 , 

W x( -2) = w x(2) = c = 0.25 - 0.5a , 

(3.4) 

wherc a is a real value parameter to be chosen. Setting this value generates different 

convergence effects for the HDC method. For example, Burt [Burt81] has shown that a 

value of a ~ 0.4 makes the HOC weighting functions converge to a Gausslan·like kernel. 

This convergence is best visua lized by looking at the effects of recursively convolvlng the 

mask w x (similarly for w y) with itself to produce the sequence of welghtlng functions4 

{WX1 ' WX2 ' WX3 ' •.. } (Figure 3.4). 

A final subject of interest for the construction of potential surfaces using a method 

such as the HOC is its computational complexity. It has been shown by Burt that the HOC 

method is at ieast one order of magnitude faster than conventlonal correlation methods or even 

the Fast Fourier Transform method [Burt81] wh en correlation results are needed at a single 

4 Since w(m,n) is separable (equation (33)), W/(m/,n/) is also separable ThiS can be expressed as 

follows W/(m/, ni) = Wx/(ml) <9 Wy/n/} 
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specifie scale. If measurements are needed at different scales, then the HDC becomes even 

more advantageous over other traditional techniques [Burt83b]. In the following subsection 

we describe a particular class of HDC structures based on the use of Gaussian-like kernels, 

thereby producing lowpass filtered versions of an image. In subsection 3.2.3.3, another HDC 

representation will be described to produce bandpass filtered versions of an image. 

3.2.3.2 Gaussian HOC 

Using the original HOC method as defined in the preceding section, we can construct 

a structure of H DC Images which constitutes a sequence of lowpass filtered versions of the 

original image. The particular structure of HOC images built by choosing the weights of the 

mask w(m,n) to approximate Gaussian kernels (equation (3.4» is named the Gaussian HOC. 5 

Each level 1 of the Ga ussia n H OC ca n be seen to correspond to a filtered version of the 

original image I(x,y) at a different scale hl. A particu:"r levell can be seen to be equivalent 

to a correlation of I(x, y) with the weignting function WI' Moreover, Wl approximates a 

discrete 2-0 Gaussian kernel CI as fo/lows: 

1 _(x2 +-2) 
WI(ml, ni) ~ Glx,y) = V21r exp [ 2 Y ], 

<T/ 21r 2<T/ 
(3.5) 

where fIL stands for the standard deviation of the approximated Gaussian kernel at level J. 

By climbing ln the HOC structure, coarser and coarserversions of I(x,y) (~ Gl ®I(x,y)) 

are obtained. where image structures at scales smaller than a scale hmml' where lJmm[ is a 

function ofthe sizes (ml, ni) ofthe weighting function, WI, are completely blurred or averaged 

with respect to nelghboring Image structures. An example of a Gaussian HDC created from 

one frame of a cell motion sequence is shown in Figure 3.6. Because the fixed sampling rate 

of two was used to generate HOC images, each one of them has a band limit which is one 

octave lower than the one of its predecessor [Burt83b]. This can be shown by deriving the 

values taken by the standard deviation <TI of the approximated Gaussian kernel CI at each 

level of the Gaussian HDC. Burt has derived the following equation for the standard deviation 

[Burt81] : 

(3.6) 

5 Note that the constraint of separability we have enforced on the HOC fllters does not interfere with the 
approximation of a 2-D Gaussian f.lter sinee separability is a property shared by the latter [Wells86J 
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1. 2 3 

Figure 3.6 Example of a Gaussian HOC The original image (level 0) corresponds 
to the flrst frame in the cell motion sequence given in Figure 3 3 (a) 

• 

Since (JI gives us the degree of blurring or averaging obtained by Gaussian filtering, it 

can be used to approximate the scale of the smallest meaningful structuras in an HDC image. 

This scale bminl can be viewed as a linear function f of (JI, that IS, b71l in[ ~ f(r-d. Therefore, 

using equation (3.6), we obtain the following relation between the minimum scales at each 

HDC level: 

(3.7) 

where r 0 . represents the inter-Ievel minimum scale ratio of the H OC and where, at level 
mm{ 

0, bmino = bmin, that is, the pixel size. 

The Gaussian HDC can be seen as a technique for producing a "discrete" version of the 

so-ca/led "scale-space", where each level has its scale related to the scales of its nelghborrng 

levels by eqlJation (3.7), but with quantized scales.6 For our need to produce families of 

potential surfaces, a discrete scale-space representation will prove to be sufficient. 

3.2.3.3 Bandpass HOC's 

We have obtained a multiscale image representation with the Gaussian HOC in terms of 

lowpass transforms of the original image l(x, y). What would be more useful for our needs 

6 Note that "continuously varying scale" versions of HOC-like methods have been studled in the literature, 
see for example [Koenderink84, Hummel87] 
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is to have a multiscale representation in terrns of bandpass transforms of I('X, y) in order to 

emphasize certain image structures su ch as edges and contours at different scales. One simple 

possibility is to take each level of the Gaussian HDC and apply a differentiation fllter to it, 

for example the Sobel operator7 ILevine85), to produce approximations of the gradient of the 

Gaussian filtered images (~ VI/(x, y) 0 Gll). We cali this multiscale image representation 

the "Gradient of a Gaussian HOC" or GGHDC (Figure 3.7). Masks other than the Sobel may 

be used. For example, Burt has proposed using simple first difference masks on the Gaussian 

HOC to approximate band limited directional derivatives [SurtSl). 

L 
1 Levels 2 3 

Figure 3.7 Example of a Gradient of Gausslan HOC (GGHDC) for a constant inter-
level minimum scale ratio (r·cS . = 2) The original image was obtamed from the 

mml 
fHst frarl1e in the cell motion sequence shown in Figure 33 (a) The corresponding 
Gaussian HOC (Figure 36) is flltered at each level with simple 3 x 3 diHerenti
ation masks (here the Sobel masks) at each of four possible discrete orientations 
(0°,45°,900 and 135°) [Levine85] The maximum response, or the sum orthe (our 
orientation responses, may then be taken as the new sample value (here we take the 
maximum) 

• 

Another bandpass transform derived from the HOC model has been proposed by Burt 

and Adelson IBurt83a). They use a weil known property of Ga ussian kernels that permits 

the approximation of the second derivative of a Gaussian by the Difference of Gaussians 

(OoG's) [Marr82]. By comparing two successive levels in the HDC, a Laplac/an Pyramid or 

LaplaCian HOC can easily be built [Burt83a, Burt83b). Such a structure also generates a 

multlscale Image representation, but this time it produces approxim"tions to the Laplacian 

7 Note that the Sobel operator also possesses the separability property which can be used to improve the 
efflciency of ItS fdtering implementation [Wlejak85] 
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filtered images (::::: V'2(I(x, y) @ Gl»' The Laplacian HOC could be used in conjunction with 

the snake model to recover valleys which map to zero-crossings of I(x, y) [Kass87), rather 

than extrema of [(x, y) as is the case with the GGHDC. 

Both the GGHOC and the Laplacian HOC, if taken as the generators of families of 

potential surfaces, will require a subsequent slope evaluation in the X and V directions in 

order to make the snake active. 

3.2.3.4 Cascaded Correlations and the HOC 

One limitation of the HOC method described in the previous palagraphs IS the fact that 

the inter-Ievel minimum scale ratio r6 . of the HDC is fixed at two as shown in equatlon 
mWI 

(3.6). This limlts the "resolution" or fineness of the H OC structure, by hav,ng scales hill/III 

t hat increase rapldly with l, thereby giving a dlscrete sca le-spa ce whlch may be "too coarse" . 

If we require a finer scale-space representation, one obvlous option IS to reduce and flx the 

sampling rate between successive HDC levels By fixing the sampllng rate to be constant the 

H DC method becomes equlvalent to the cascaded correlatlOn8 method, where a new frltered 

image or signal is produced by recursively flltering it with the same Gausslan kernel ln the 

ln the discrete domain the easiest chO/ce IS to reduce and flx the samplmg rate from 21 to l. 

However, Burt has proposed varrable sampling rates other than Integers for the HDC model 

He describes how fractlonal sampling rates (between 1 and 21) can be deflned to construct a 

Fractional HOC [Surt8I]. We do not consider such types of HDC structures because they are 

more difficult to implement and process, and because the image representatlon h,era rch,es we 

have discussed 50 fa rare sufficlent for our needs 

We propose to combine both methods, the original HOC and the cascaded correlation, 

to produce a "hybnd" HOC, where the inter-Ievel minimum scale ratio, rh ' can vary If 
1/1 "'1 

required. ThiS can be useful if potential surfaces or frltered Images ale requrred at or around 

a certain smoothing scale, (7* Then, an expandrng samplrng rate of 2' could be used to 

rapidly approach (7* (e.g, up to level 1*), and a flxed samplrng rate of one could be u!:>ed to 

8 Note that, in general, "cascaded correlation" IS referred to as cascaded (onvolutlOn ln the Itterature 
For symmetric kernels, such as the Gaussian, both flltering operations, correlation and convolution. 
are equivafent Image hlerarchles based on the idea of cascaded correlation have been studled in the 
literature [Crow/ey84, Wells86] 
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produce HOC levels with smoothing scales around the desired u* (Figure 3.8). In such a case, 

equations (3.6) and (3.7) are valid only up to levell*. 

5 

3 

2 

1 

IJ 

level 

• •••••••••••••••• 

. dl~ 
• •••••••••••••••• 

. dl~ 
• •••••••••••••••• 

. ~A!~. 
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Spatial position 

Figure 3.8 Construction of a "hybrid" HDC An expanding sampling rate of 21 is 
used up to a level 1* (= 3, for example) to obtain HDC levels to rapidly reach a 
given smoothing scale (1* (> (13, in this example) Then a flxed sampling rate of 1 
is used t. roduce HDC levels possessing smoothing scales around this (T* 

3.2.4 Families of Potential Surfaces 

ln this final section related to image filtering we give a definition of the notion of a "family 

of potentlal surfaces" that we will use within the context of the snake model 10 subsequent 

sectIOns. 

We have seen ln this section how the HDC model could be used to produce computa

tionally effiCient discrete scale-space image representations in terms of lowpass and ba ndpass 

Ima",è transforms We Will use such hierarchies to produce potential surfaces at varying quan

tlzed scales on which a continuation method will th en become applicable to recover the trace 

of image contours. 
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3 Image Segmentation and Cell Tracking 

For each image or 2-D signal to be processed using the snake model and where a 

multiscale analysis is required, the Gaussian HDC or the GGHDC will proriuce a potent/al 

surface famtly 'H (?i[GH DG] or 'H[GGII DC])' where each H DC level corresponds to a potent/al 

surface member ?il of the family Each member 'HJ possesses a child (at level 1 + 1) and ù 

parent (at level 1 - 1), with the exception of the patriarch (l = 0) whlch has no parent, and 

the youngest child (l = [max) whlch has no chlld. Each child of the famdy will be fdtered 

at a larger scale than its parent A continuation method will then flrst be used to extract 

the trace of an image contour for a young member of ?i (11('1, fi) = 111*; 1 e., at a coarse 

scale bmin*). Once an optimal solution has been reached for HI* uSlng the snake model, thls 
1 

solution will be used as an Inltiallzation step for the direct parent 'H1*_1 Agam an optimal 

solution will be found and used as an initlalizatlon step for the next parent ln the famlly 

(?iJ*_2) By "continuously" tracklng the best solution from generatlon to generatlon, a fmal 

solutio!1 will be generally reached wlth the eldest chlld (Ievel 1) of the famlly Termmatlng the 

continuation method before attaining the patnarch (Ievel 0) can be understood as a need for 

discriminating edge or contour structures (at 8mml ;::;:: 8mrlll ln'(l1'(') from nOise and artlfacts 

(bml7lJ ;::;:: btc.xture ~ bnOlse ) NOise and artlfacts usually have thelr natural scale at the pixel 

level (8110 / 5C ~ 8texlllf'c ;::;:: 80), wh Ile segments of the trace of the cellular membrane are 

generally defmed at a larger scale (i e , bmc71Ib1'(l71{ > b"U1H or b/ I ,) /111'/') Also, an Image will 

ln general reqUire sorne degree of smoothlng or blurnng so that the snake remalns stable on 

valleys correspondlng to Image contours. Therefore, we will generally end the continuation 

method at level lof the HDC structure, or at hlgher levels, unless we have a pnorl knowledge 

about the degree of smoothness of the original image 

3.3 Image Segmentation 

ln the following paragraphs we Will show how the snake model comblned wlth the HDC 

method can be used to recover the trace of a cell membrane in a nOlsy dlgltlzed Image, thereby 

solving the segmentation problem We note that sorne a pf/on knowledge will be assumed or 

that some user interaction will be permltted to spatlally Initlallze the snake The hybnd HDC 

method of flltenng, combined wlth a continuation method from coarse to fine scales, will be 

used to dlscnmlnate nOise and artifact from the trace of the cell membrane The snake model 

will be helpful ln bypassll'lg to sorne extent the dlfflcultles caused by unhomogeneous contrast 

along the trace of thF: cell membrane It will also permit to extract a connected curve whlch 
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approximates the trace of a cell membrane. 

3.3.1 Initialization of Image Segmentation 

Typically, the scene we are looking at contains more than one cell As a first initialization 

step, we assume that a window is centered on each of the existing cells in the scene, the 

windows being positioned wlth the help of sorne high level interaction. Secondly, a closed 

snake Îs coarsely positioned by high level user interaction around the perceived cell contour in 

each of these windows. For example, this initial snake position can be drawn on the scene as 

a polygon by mteractively specifying a set of points around the cell (Figure 3.9). Note that 

the snake IS mitlally positioned close to the solution we seek to recover This IS necessary 

because the snake IS relatlvely bhnd in its search for a best solution. Otherwlse it could easily 

be trapped 10 local minima of the potential surface which do not correspond to the trace of 

the cell membrane. 

3.3.2 

Figure 3.9 Inltlaltzatlon of the segmentation process where an initiai polygonal snake 
positioned around the cell IS shown superimposed on the Image This image corre
sponds to the flfst frame in the cell motion sequence shown in Figure 3 3 (a) It was 
selected interactively ln a larger scene containing many ce Ils by deflning a square 
wlndow approxlmatively centered on the cell The polygonal snake was inltia"zed by 
the user who selected a number of knot points around the cell 

Building the Potential Surface Family 

Once the initialization procedure has been completed, we apply the H DC method to build 

63 



3. Image Segmentation and Cell Trackmg 

a family of potential surfaces 11.. For example, Figure 3.6 and Figure 3.7 show the Gausslan 

HOC family (1i[GH DG]) and the corresponding GGHDC family (11.[GGII DC])' respectlvely, for 

the initial frame of the cell motion sequence illustrated by Figure 3.3 Figure 3 10 I/lustrates 

how one member of each family, 1i[GH DG] and 11.[GGH DG]' can be visuallzed as a 3-0 surface 

on which the snake will crawl seeking valleys. 

(a) (b) ( c) (a) 

Figure 3.10 HOC images visualized as 3-0 surfaces ln (a) IS shown the HOC family 
member 1i[GHDCh as an image of intenslty This HOC level was obtamed from 

the origmal frame in the cell motion sequence shown in Figure 33 ln (li) IS shown 
the sa me family member 1i[GH DCh as in (a), but thls tlme represented as a 3-D 

surface where helght corresponds to the grey level mtenslty White 15 consldered the 
zero level helght, while black IS the highest level ln (r) 15 shown the HDC famdy 
member 1i[GGH DGl] as an image of intenslty This HDC level was obtalned from 

1i[Gll DGh uSlng the Sobel edge operator ln (d) is shown ItS representatlon as a 

3-0 surface (same convention as (b)) 

3.3.3 Finding an "Optimal" Solution Using a Continuation Method 

ln order to recover the best possible approximation to the trace of the cell membrane, 

we start at a coarse HOC level /* This permits us to have the snake converge to the deslred 

feature, the valley of 1i At such a coarse level, the valley 15 wide enough because of the 

blurring so that the snake will be able to foliow the slope of the valley and crawl toward Its 

bottom. We assume that the IIlltializatlO!1 step, in whlch the snake IS posltlOned around the 

cell, is done in a coarse fashion, this IS a kmd of least commitment assumptlon ln ail of 

our experiments with cell scenes, only three levels of a GClussÎan HOC were necessary (1 e , 

lmax = l* = 3), with samphng rates of 2/ for the flrst tvVo levels (1 e , l'hl = 1'h
2 

= 2) 

and a sampling rate of one for the last level For other types of Images, such as these wlth 
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different noise levels, artifacts or contrast properties and different initializatlon mechanisms, 

other amounts of smoothing may be required. 

Flt?;ure 3 11 shows the result of applying the improved snake model presented in Chapter 

2 to the potentlal surface 1i[GGJI DCh' With the GGHDC family, the directional slopes in the 

X and Y directions are evaluated by simple tirst differences of the potential surface values at 

each snaxel position Aiso shown in this figure is how the potential field energy of the snake, 

EsTlllke fze/d(v) is minimized by the iterations. As we can observe, as the snake crawls down 

the potential surface starting from its initial position shown in Figure 3.11 (a), Esnake fzeliv) 

IS gradually reduced. The final position shown in Figure 3.11 (b) corresponds to the optimal 

one when starting from the position shown in (a). Here optimality refers to Esnake Ildiv) 

which is then at a minimum. 

Il'' .... '' .. ns 

(a) (b) (c) 

Figure 3.11 Finding the best solution at a coarse HOC level (1 :::: 3) ln (a) is 
shown the initiai position of the snake superimposed .)ver 'Ji [GGll DCh This 

initial position was flxed interactively ln (b) IS shown t:,e optimal position for this 
snake wh en startmg from the position in (a) This position is optimal wlth respect 
to the snake energy term Esnake 1 Cv) wh,ch IS then minimized The evolution 

fze d 
of E's71ake !lc/cI(v) as a function of Iteration is shown m (c) Note that ln (c) 

EMWkc !lcld(ïi) was normalized so that its minimum is the zero energy level 

The same process can be repeated on the potential surface 1i[GGH DC12 , but this time 

using the optimal solution obtained at the previous HDC level, tl1at IS, for 1i[GG/l DCh' as 

the initiaI snake positIOn. Results at this intermediate level (1 = 2) for the recovery of the 

ce" contour are shown in Figure 3 12. It is worth noticing that tl1is time only five Iterations 

were sufflclent ta reach the minimum of Esnake Ize/iv) (Figure 3 12.(c)) whde twenty-six 

Iterations were required for the preceding child level'H[GGH DCh (Figure 3 11 (e» This IS 
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due to the fact that in the case of H[GGH DCh the initial snake position was relatively far 

from the bottom of the valley (Figure 3.11.(a», in comparison to the case of H[(,'(,'I/ /)('12 

(Figure 3.12.(a)). Then, when starting from the position shown in Figure 3 12 (n), the snake 

crawls down on a relatively short distance to reach its final optimal position shown in Figure 

3.12.(b). Because we were initially close to the optimal solution, the deformatlonsof the snake 

shown in Figure 3.12, from (a) to (b), are relatively small (compare to Figure 3 lI, (a) and 

(b». 

(a) (b) 

-r--~-~~- -~ - -; 

" 
--~_ .. ~--~ 

1 
1 

~ .. . " '" 
Il ..... 1 .... 

Figure 3.12 Findlng the best solution at an IOtermedlate HDC level (l = 2) ln 
(a) is shown the initial position of the snake superimposed over 'H [( ,'(,'//1)( '12 
This initial position was obtained as the optimal snake position at the precedlOg 
level in the HDC family (i e, for the chi Id 1i[GG/I DCh' see Figure 311 (b)) ln 

(h) is shown the optimal position for this snake when startlOg from the position in 
(a) The evolutlon of Esnake. (v) as a functlon of Iteration IS shawn 10 «(.) 

fIeld 
(Esnake /d(v) normallzed) 

fiC 

Flnally, for H[GGII Deh' the same process is repeated uSlng the optimal result obtalned 

on 'H[GGH DCh as the initial snake position (Figure 313). Agaln, relatlvely few Iterations are 

required (ni ne here, see Figure 3 13 (e» compared to the initiai case of H[(,'(,'/I !J('h Slmdar 

to the case of H[GGII DCh' the initiai snake position for H[G(,'/I /J('lI 15 relatively close to 

the bottom of the valley (Figure 3 13 (a» Then, startlng from thls position, the snake crawls 

down on a relatively short distance to reach ItS final optimal position shown ln Figure 3 13 (h) 

Seing initially close to the optimal solution, the deformatlons of the snake shown ln Figure 

3.12, from (a) to (b), are relatlvely small as expected Note that becaus(. Ne are at a low 

level in the family hlerarchy, the bottom of the valley on whlch the snake crawls 15 relatlvely 

narrow. This explalns why .b~nakefle/iv) in Figure 313 (r) 15 not as weil behaved as It was 

the case for the two preceding chi Ids ln the hlerarchy (comparewlth Figure 3 12 ((') and Figure 
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(a) (b) (c) 

Figure 3.13 Findmg the best solution at a fine HDC level (1 = 1) ln (a) is 
shown the initiai position of the snake superimposed over 1l [CClI DCh This 

initiai position was obtained as the optimal snake position at the precedmg level 
in the HDC famlly (le, for the child 1l[GGHDCh' see Figure 312(b)) ln (b) 
is shown the optimal position for thls snake when starting from the position ln 

(a) The evolution of Esnake . 1 (v) as a function of iteration IS shown in (c) 
fzed 

(Es7Iake fleliv) normalized) 

Such a process of tracking the best solution from coarse to fine scales in a scale-space rep

resentation of the signal, here an image, defines the so-called continuation method [Wltkm86, 

Terzopoulos87a] We have shown here, and in other expenments we have conducted, that a 

dlscrete version of this continuation method is sufficient ln most cases to recover the trace 

of an obJect in a noisy scene under appropriate assumptlons. 9 Furthermore. we daim that. 

under the "small deformatlOn" and the "lnitialization" assumptions, such a technique provides 

us with "good" segmentation results that satisfy our quality criterion, that 15, criterlon (a) in 

subsectlon 3.1.4 The snake model provides a line drawing representatlon of the ce" shape 

which permlts the experimenter or observer ta produce a qualitative shape description simdar 

to the one he obtains by looking directly at the intensity image (Figure 3.14). Although. in 

general. the snake model combined with a discrete continuation method glves good results, 

counterexamples can be glven where the method we have described so far may fail We discuss 

the limitations of the snake model for image segmentation in the fo"owing subsection 

9 It IS interesting to note that such results could be in agreement wlth the multichannel model of human 
vision which may also be seen as a dlscrete or quantized version of a scale-spac~ image epresentation. 
where only 4 or 5 channels are used to send scaled versions of an image to other brain processes 
[Levlne85] 
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(a) (b) ( c) 

Figure 3.14 Judging the qua lit y of the segmentation ln (a) IS shown the line 
drawing obtained from the optimal snake position (i e , for 1l[GG If Dell' see Figure 

313 (b» ln (b) is shown the original intensity image (i e, unblurred) ln (c), the 
snake in (a) is superimposed on the image in (b) From (c), we claim that the 
segmentation obtained using the snake model is "close" enough to the percelved 
shape of the cell, when a human observer looks at the image ln (h), to judge the 
segmentation good 

3.3.4 Image Segmentation Using Snakes: A Critique 

We have shown ln the previous sections how the snake model can be combined wlth a 

quantized or dlscrete multlscale image representation to recover an "optimal" approximation 

of the trace of the contour of a blob-like shape, where optimality IS deflned ln terms of the 

"steady-support" criterion 

An advantage as weil as a limitation of the snake model emerges from the global way ln 

which an optimal solution is evaluated. This approach to the segmentation problem makes the 

active contour or snake seek a global minimum of its energy functional (equatlon (2 2), section 

2.2). It offers the advantage of Integrating information about the denved potentlal surface 

feature along the entlre length of the closed snake This IS Implemented by seeklng a global 

minimum of this snake energy functional As pointed out in Chapter 2, this IS an attempt 

at having the snake "bridge" the gaps in regions of low contrast, along the cell contour ln 

other worcls, It should permit the snake to hnk two ends of deep valleys using the best "pass" 

between them. Note that this bridgmg capabiIJty IS better implemented If one adopts the 

"steady-support" cntenon rather than the original "steady-state" crltenon 

The "globality" of the energy minlmlzation process also points out a weakness related 

to the efficiency of the snake model for segmentation. In the onglnal snake model we saw how 
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the "steady-state" criterion could result in the snake missing a desired solution. Alternatively, 

it could force the snake to require an excessive number of iterations before reaching a sta ble 

state. It could make the snake shrink artificially by causing snaxels to pile up in deep pockets 

of a valley of the potential surfaced. To remedy these difficulties we proposed the "steady

support" criterion which proved to be better suited to that purpose. Still, even this more 

"intelligent" energy minimization criterion possesses certain limitations. 

ln our attempts to improve the original snake model, the "steady-support" criterion 

was suggested as the global energy function to be minimized. This was proposed in order 

to stay as close in spirit as possible to the original definition of the sna ke model It was 

computed by summing the support of the snake (i e., its height) over its entire length (equation 

(2.30)). Because thls minimization is performed in a global fashion, due to the summation 

of the support of ail points of the snake contour, we cannot ensure ln a strict sense that the 

"best" possible solution Will be retained during su ch an iterative minimization process. This 

is because we have no effiCient way of discriminating a "good" individual snaxel displacement 

from a "bad" one. By "good" we are referring to a snaxel movement that reduces the 

energy l'.t'snake flcli v). Similarly, "bad" refers to a sn~xel movement that increases the energy 

[~'b7lfÛ:1' fleli v). Therefore, the effect of snaxels which make E snake fzeli v) increase could 

be counteracted by the motion of other snaxels along the snake contour which would make 

R.~nakc fIeld ( v) decrease by a larger amount Thus, the summation of both effects would result 

in a better energy value although, locally, only the latter of the two effects is deslrable. 

Figure 3.15 "Iustrates how such a malfunction of the snake optimization process mlght 

occur Here contour regions of low contrast exist at the tip of cell pseudopods. The corre

sponding segment of valley in the potential surface is at a relatively hlgh height wlth respect to 

its neighborhood, slnce we are at a pass between two relatlvely deep valleys Eisewhere along 

the snake contour, snaxels may be positioned on the slope of relatively deep valleys, such as 

when a snake IS Inltialized using the solution obtained from another potential surface. Thus, 

a first group of snaxels posltioned at the tip of the pseudopod may have a tendency to move 

down one or both deeper sides of the pass. In such a case the corresponding continuous snake, 

obtained by linking snaxels by straight lines, would be forced to cross a plateau rather than 

the pass itself thereby Increasing Esnake fleld(v) (Figure 3.15) The second group of snaxels 

moving down the slope of a deep valley might mask this local increase of Esnake fzeli v) at 

the tlp of the pseudopod. Therefore, the locally better approximation of the trace of the cell 
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contour at the pseudopod tip could be lost due to an overall decrease of the global snake 

potential field energy. 

(a) (b) ( r) 

Figure 3.15 Example iJ/ustrating where the minimization process could fall due to 
its global deflnition ln (a) is shown the original image (note the two pseudopod tlpS 
at the top of the cell which have relatively low contrast boundaries) ln (b) is shown 
the solution obtained from a previous frame ln (c) is shown the final solution We 
note that the pseudopod at the top-Ieft of the cell is almest completely lost by the 
snake, while the pseudopod on the top-right of the cell IS partlally recovered 

The limitation of the applicability of the "steady-support" criterlon as first deflned ln 

Chapter 2 represents our best attempt within the scope of this thesls, that is, under the 

constraint of assumptions (a) and (b) of subsection 31.3, to solve the image segmentation 

problem. With this stability measure we were able to achieve relatively good segmentation 

results with an implementation which lent itself to real-time applications although, as we 

have seen, we cannot certify that the snake will find in ail cases the solution we seek Thus 

a complete understanding of this problem should provide a general method for refinlng the 

"steady-support" criterion What is missing is sorne "local" constralnt on the global energy 

function Esnake fleli v). The notion of support should be refined to become more descriptive 

of what is meant by "good" local support for each snaxel and its intermediate joining segments 

We have defined a Simple but excessively "coarse" definition of support based solely on the 

notion of height or potential energy. A more complex model should incorporate a measure 

of the shape of the bottom of a valley or a pass. That is, we should evaluate the support 

of a candidate contour pOint not only with respect to a global potentlal energy but also with 

respect to the actual local topography or shape of the surface on which the point lies However, 

70 



,( 

3. Image Segmentation and Cel! Tracking 

maintaining optimality in the strict sense remains a difficult problem. 

A few different implementations of the snake model and other similar active contour 

models have been proposed in the recent literature in an attempt to solve sorne of the short

comings of the snake model or to provide possibly better models. In his "alternative snake", 

Scott [Scott87] defines a snake energy function Esnake in the Fourier domain. Although 

he daims his snake gives him a more powerful contour representation, where the shape is 

summarized by the Fourier coefficients, his model also lacks the ability to recognize locally 

significant features: "the snake cannot [always] smell" [SeouB7] ail of the signifieant contour 

points. Staib and Duncan [Staib89) also propose a parametrization of the snake in the Fourier 

domain. Leclerc and Fua [Leclerc87, Fua88] use an active contour model similar to the Original 

snake model. They rely on the direction of the gradient to make the snake active, as is the 

case with the Kass et al. model [Kass87]. Amini et al. [Amini88a, Amini88b) use the model 

of Kass et al., but with a different implementation of the minimization procedure based on a 

dynamic programming framework. Their model relies on the direction of the gradient of the 

potential surface to activate the snake. 

Ali of these other similar techniques share the same lack of ability to accurately sense 

the local shdpe of the potential surface. Therefore, aside from the fact that they also are 

constrained under assumptions (a) and (b), they are also limited in their applicability. 

3.4 Tracking Deformable Shapes 

After having demonstrated how the snake model can be used for image segmentation to 

recover the trace of cell contours in noisy images, we now show in the following paragraphs 

how the same model leads to an automatic tracking method for deformable objects such as 

cells We also present the limitation of this method for cell tracking. 

The Image motion sequence we will analyze consists of an ordered list of frames: 

fI, 12, 13, ... ,f N· For the purpose of the present demonstration, a sequence containing 

N = 120 frames was used as a test (Figure 3.16). This sequence was obtained from a 

time-Iapse recorded video tape. A relatively fast moving cell was selected for this illustration 

of the snake model applied to tracking. It was only necessary to use a subset of the full 

sequence One frame out of ten was used to perform the tracking with the snake. Therefore, 
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only frames h, Ito, ho, ... , h20 were used, in total 13 frames. Figure 3.16 shows only flve of 

these selected frames to illustrate the deformation and motion of the cell during thls sequence 

of N = 120 frames. This same sequence was used in Figure 3.3 as an example of a deforming 

cell. 

(b) 

(I) (e) (d) 

Figure 3.16 The motion sequence used to demonstrate the ability of the snake 
model to pel'form the tracking From (a) to (e) is shown the cell in frames h, 
ho. 160, 190 and /120. respectively in (1) the cell in frame /120 is again shown, 
but with the "optimal" snake position found for frame fI superimposed on It This 
illustrates the actual deformation that occurred during the N = 120 frames sequence 

3.4.1 The Initial Frame 

Processing the initial frame (fd to recover the trace of the cell contour is performed 

using assumptions (a) and (h) and the discrete .:ontinuation method on a HDC famlly as 

described in section 3.3, Once an optimal solution is found at a fine scale, that is. for a HDC 

level 1 = 1, it is used as the input or initlalization data for the tracklng procedure. In other 

words, it is used for processing the following frame in the selected sequence (here frame .r 10)' 
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3 Image Segmentation and Cell Tracking 

3.4.2 The Following Frames 

let us consider a given frame ln (l < n ::; N). For simplicity we assume that there is 

only one window to be processed. If multiple cells require that more than one window must 

exist, the same procedure will simply be applied to each window. The initial snake position 

IS obtamed from the optimal solution found in frame In-l' Thus the first step conslsts of 

obtainmg a new family, H, of potential surfaces for the frame ln. As we explain in the 

following :->aragraphs, the filtering in a dynamic sequence can be performed in a much more 

efficient way than in the static case 

8ecause we are tracking relatively slow objects, and because of the assumption of "small 

deformations' less smoothlng will he reqUired to permit the snake to seek the new trace of the 

cell contour. For example, in the test sequence, we generated families of potential surfaces up 

to levellmux = 2 only, for frames fn following the initial one (i.e, n > 1). 

Furthermore, the filtering used to generate the potentlal family 1t in each frame, fn, 

can be restricted to a much smaller area than the entlre cell window. We Cé}n use thE" ,nitial 

snake position obtained from frame fn-l to delimit an area ln the vicinity of this closed curve 

tn order to spatially restnct the filtering. Here agatn we can use the HOC method to our 

advantage since the flltenng computations within the HOC context are always local Tnus it 

is not necessary to process the ful' image in order to complete an H OC computation [Burt81] 

Figure 3.17 shows the results of the tracking using the snake model for five of the th Ifteen 

frames of the a nalyzed sequence Ali deformations which occur are seen to be tracked with 

good accuracy; this result satisfles our quality criterion (b) (subsection 314). This illustrates 

the power of the snake method for tracking objects. 

3.4.3 limitations of the Snake Model for CeU Tracking 

ln this section we analyze a typical problem that illustrates the limitations of the snake 

model for cell tracking in 2-D 

Figure 3.18 shows a senes of four frames selected at every ten frames following the 

sequence previously presented in FIgure 3.16 (i.e, frames 1130, 1140, 1150 and 1160)' The 
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(a) ( b) 

(1) (c) (d) 

Figure 3.17 Cell tracking Ali frames have thelr optimal snake superlmposed on 
them to show the extracted contour The results for frames il, ho, 160, 190 and 
h20 are shown in (a), (b), (c), (d) and (e), respectlvely ln (f) are shown the 
extracted contours ln frames Il (grey dotted contour) and h20 (dark connected 
contour) to illustrate the total deformation that was recovf!red from the observed 
sequence 

growmg pseudopod at the bottom of the window (South slde) appears to be forming in a 

noncontinuous fashion since a sllghtly dark oval reglon first appears at the tlp of the pseudopod 

ln frame 1130 ln the following frames, this region becomes even darker and darker untd It 

merges with the rest of the pseudopod in frame h60, 

S uch discontinuous pseudopod formation does not correspond to the accepted blologlCal 

growth process which of course can only be continuous. What we are emphaslzlng here 

IS an imaging artlfact whlch is a result of the way ln whlch we look at the cell We are 

actually observing the cells ln only one focal plane, assumlng that they are fiat (2-D) obJects 

However, thls does not exactly correspond to reality slnce the cell,s really a 3-D entlty What 

is happening in the present case IS that the pseudopod continuously grows above the focal 

plane untd its tlp cornes back in contact wlth the glass upon whlch It 15 constralned to move. 

This is illustrated in Figure 3.19. 
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(a) (b) (c) (d) 

Figure 3.18 Illustration of the limitations of the snake model for tracking Frames 
/130, h40, 1150 and 1160 are shown in Ca), (b), (c) and (d), respectively 

Protrustan 

(a) (b) 

ProtruI1on 

(c) (d) 

Figure 3.19 Howa pseudopod, or protrusion of the cell's body, might form above 
the glass surface and consequently out of the focal plane 

Although a55umptlon (a) of "small" deformations 15 not vlolated ln reality, that is, the 

cell really deforms contmuously, but in 3-D, it is violated in the image sequence which only 

represents one 2-D slice of the 3-D world. Therefore we expect the snake to fail to track 

such deformatlons This IS Indeed what we observe (Figule 3.20) ln frame 1130 the snake 

remams on a contour nea r the end of the pseudopod, that is, where the pseudopod quits the 

glass surface or the focal plane The snake behaves in the same way in subsequent frames 

U140, hso)· Thus it remains blind to the actual 3-D deformation process of the pseudopod 

untll the complete pseudopod tip returns to the focal plane in frame 1160. In this last frame 

the snake segment ln the vicinlty of the pseudopod tip is now situated on a plateau of 'Ji 

Thus no contou r segment exists in the image in correspondence to these snaxel forming this 

snake segment. Because these snaxels are now too far from the tip of the valley to sense it, 
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the snake has no way to detect that it is wrongly positioned. Furthermore, these snaxels are 

immobilized by tension forces since this snake segment is now like an elastic stretched over 

the platea u. 

(a) ( b) (c) ( d) 

Figure 3.20 Illustration of the snake being unable to track the growlng pseudopod 
in the lower right part of the cell Frames 1130' h40' h50 and h60 are shown ln 

(a), (b). (c) and (d). respectively 

ln a sense the snake is rather blind in its search for the best valley Rather than sensing 

the potentlal surface, 'H, by literally looking at its shape or topography to recognlze the bottom 

of its valleys wh en crawling on It, the snake relies on sensmg only the slope of 'H ln a simple 

manner in the vlcinlty of each snaxel Again, as pOlntf>n j'1 subsectlOn 334, we see that we 

would need sorne kind of more powerful way to characterize the bottom of a valley in order to 

recover thls kind of feature in a potential surface 

3.5 Conclusions 

ln this chapter we have shown the abilities and limitations of the snake model for the 

image segmentation and tracking of deformable obJects such as cells We have shown that 

under appropriate assumptlons, which hmit the extent of the deformatlons and permit user 

initialization, the snake model is powerful enough to provide solutions to both the segmentation 

and tracking problems 

ln order to obtain potential surfaces to be used by the snake ln an effiCient manner, we 

have also described how the HDC method was weil sUlted for Image fdtenng and Image rep

resentatlon at multiple scales Furthermore, this leads to a dlscrete scale-space representatlon 
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to which a continuation method can be applied in a natural way to recover image features for 

which their natural scale was unknown a priori. 

We have abo demonstrated the limitations of such an approach based on the idea that 

computer vision problems may be embedded in a variational scheme which in turn can be 

solved by a dlscrete optlmization process seeking to minimize some global energy function. 

We discussed a counterexample to the snake model which showed its hmitations for actually 

recovenng or keeping track of "good" segmentation solutions. We have also demonstrated 

that the snake is relatively "blind" 10 its search for image features in the dynamlc case, when 

the feature formation can occur in a noncontlOuous fashion. These fallures of the snake model 

have lead us to the conclusion that the recovery of the trace of a contour in an image by seeking 

the bottom of valleys ln cl potentlal surface, needs a more powerful sensing mechanlsm than 

the simple gradient descent search favored by the snake approach and by the other simllar 

active contour models 

There IS yet another path that could be followed ln the dynamlc case to analyze a 

sequence of images Stnce we have the results of the previously analyzed images available, we 

could make better use of them Instead of simply considenng the trace of a contour ln the 

immediately precedtng frame to help us ln our search for future deformations of that contour, 

we coulcl make use of more complex Information For example, we could use the curvature 

extrema of the contour and other shape features of the deformlng obJect. Furthermore, this 

klnd of information could be tntegrated over many frames to detect growlng and shrinklng parts 

of the cel/In order to predlct possible future deformations. ThiS Information could then be used 

tv perturb or deform the snake when searching for a new solution. In addition, the integration 

of information over many frames could lead to the possibilitv of eltminating extracted contours 

in frames where they do not correspond to or match preceding and subsequent extracted 

contours 

ln hght of the above comments regarding descnptors of deformable objects other than 

sim ply the trace of the contour, we next address two complementary Issues ln obJect descrip

tion: contour analysis and region analysls ln the followlng chapter we conslder the extraction 

of contour features such as curvature extrema ln a subsequent chapter we will examine the 

subJect of reglon representation and analysis. 
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Chapter 4 Shape Features using Curvature Morphology 

4.1 Introduction 

Shape representation and analysis is fundamental to computer vIsion Wlthm the scope 

of thls thesis. our interest in it is an outgrowth of a study of the dynamlc changes 10 cell shape 

[Noble86]. c.oupled with the need for more informative shape descnptors than slmply the out

line of a shape 1 Of the many approaches to shape that have been proposed, the notion of 

curvature of planar curves has emerged as one of the most powerful for the representatlon and 

interpretatlon of objects ln an image [Levlne85. Asada86, Leyton88] Curvature I~> a measure 

of the rate of change in Orientation at each pOint along a curve There 15 psychophyslcal, 

physlologlcal. as weil as computational and mathematlcal support ln favor of uSlng curvature 

as a representatlon for contours Curvature extrema seem to be u5ed by the human visuai 

system to segment contours lOto meaningful parts [Attneave54, 8lakemore74, Hoffman84] 

Endstopped neurons 10 the vlsual cortex can be Interpreted as performlng local curvature mea

surements [Dobblns87] Local estimations of curvature and tangent information are sufflclent 

for the recovery of the trace of a curve in an Image [Parent89] From dlfferentlal geometry, 

the fundamental theorem of the local theory of curves states that any regular planar curve IS 

uniquely deflned by Its curvature [doC.nm076] - regulanty Implles contlnulty of a curve and 

its derivatlves Non-regular points of a curve are smgularones where, for example, the curva

ture goes to Inflnity, that 15, where the change in orientation 15 undeflned, or where there eXlst 

a break or step in curvature They often correspond to visually sallent contour features such 

as corners or protruslons Therefore, given the flnlte set of slngula r pOints of a contour, sorne 

of which can be represented as extrema and steps in curvature, as weil as the curvature values 

1 An early version of this chapter was flrst pubhshed as a technl<....J1 report [Leymarle88] Two shorler 

versions were also published recently as conference papers [Leymarie89b. Leymafle89d] 
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for ail intervening pOints, a contour is uniquely defined. This representation by curvature is 

Invariant to ngld motion, that 15, with respect to translation or rotation 

4.1.1 Contour Characterization by Curvature Features 

Curvature extrema can be used to characterize the outline of a shape, but not ail of 

them Will be perceptually salient. Depending on their importance or significance along the 

contour, curvature extrema will be perceptually selected or noticed. We embody the term 

"curvature extn'mum slgnificance" by appealing to two complementary notions: the relative 

amplitude or c/Jrvature measure and the region of support [Leymarie88]. Both measures are 

deflned ln the nelghborhood of each curvature extremum, along the contour. The "region of 

support" defmes how weil an extremum 15 isolated from other curvature extrema [Leymane88, 

T eh89] As we Will see in section 4 3, this notion of Isolation or localizatlon is c10sely linked 

to the scale or size of thls curvature feature 

Although slgnlflcant curvature extrema can be used to summanze a shape, they are not 

the only useful curvature features for thls purpose Other effective curvature features mc/ude. 

the flrst order discontlnUities or "steps" in curvature, the arcs of constant curvature, 2 and the 

zero-crossmgs of curvature. 

These four types of curvature features can ln turn be shown to correspond to specific 

contour features wh,ch characterize the outline of a shape. Let us first consider curvature 

extrema. In the dlscrete domain we define curvature extrema to consist of any signlflcant 

peaks of the dlscrete smoothed curvature function, ka (see section 4.2 for more detads) For 

each of these peaks the rate of change of the discrete onentatlon function to the contour 

IS maxlmized at a single contour point, Smax. Three cases are possible The tirst case 

is charactenzed by any contour point where the orientation changes smoothly but with the 

hlghest speed relative to a flnite nelghborhoocl on the contour ThiS corresponds to the 

def,nit,on of a curvature extremum ln the contlnuous domain (Figure 4.1.( a), or. the left) The 

second case 15 denoted by a contour pOint where there eXIst5 a break or step ln orientation 

2 Note that wlth respect to the other curvature features whlch are localized at single pOlOtS (1 e, O-D 
objects). arcs of constant curvature are further differentiated by the fact that they are deflOed over a 

connected set of pOints (1 e , 1-D objects) 
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and which is flanked by contour segments having curvature functions of the same slgn Three 

subcases exist: (i) both segments are of positive slgn (Figure 4 1 (a), central plcture), (il) 

both segments are of negative sign (Figure 4 1.(h), central plcture), (iii) both segments are 

of "no-sign" (i.e., zero curvature or straight line segments). The thlrd type of curvature 

extremum is defined bya contour point where there agaln exists a break or step ln Orientation, 

but which IS flanked by contour segments having curvature functlons of the opposite slgn 

Then, six subcases eXlst which correspond to the permutations of the pairs formed by positIve 

(+), negative (-) and zero (0) curvature segments (i e., the pairs (+, -), (-, +), (0, +), 

(+,0), (0, -) and (-,0), Figure 4.1.( a), on the nght, shows the case of ( -, +) for a positive 

curvature extremum, while Figure 4 l.(h), also on the right, shows the same case for a negative 

curvature extremum) Note that in the continuous domaln the last two cases would actually 

be described as curvature discontlnuities. But, since ln the dlscrete domain we lack the same 

notion of c.ontinuity, we do not need to distingulsh them Extrema can further be classlfled 

into two subclasses depending on the way in wnlch the change 10 orientation occurs If ln 

the neighborhood of an extremum location on the contour, the tangent to the contour, or 

orientation functlon (section 4.2), rotates by enveloplng the contour, that IS, from the exterlor 

of the shape, a corner or protruslon IS obtained (Figure 41 (a» On the contrary, If at the 

extremum location the tangent to the contour rota tes inwardly towards the shape, a conca vit y 

or depression is obtamed (Figure 4 1.(b». 

The second type of curvature feature, the "step" In curvature, corresponds to a smooth 

jaïn [Asada86], S'smoolh' where the orientation to the contour varies smoothly, but not the 

curvature Smooth joins can be classified lOto two types. Firstly, If the Jump ln curvature occurs 

between two flanking curvatures of the same sign we ca Il thls curvature feature a smooth JOIn 

of the first type Two subcases eXlst, Figure 41 (c) shows the case of two positive flanklng 

curvature segments Secondly, if the flanklng curvatures are of dlfferent slgn, we cali 11. a 

smooth join of the second type Again, two subcases eXlst, Figure 41 (d) shows the case of a 

negative flanking curvature segment followed by a positive one The thlrd curvature feature, 

an arc of constant C.lrvature, can agaln be classlfled mto two types A non-zero curvature 

arc corresponds to an arc of a Clrc/e, while a zero curvature arc corresponds to a strall!;ht 

fine segment Flnally, the fourth curvature feature IS the zero-cro~slng of curvature whlch 
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(a) ( c) 

(b) (d) 

Figure 4.1 Some cu rvature features and their contour counterparts in the dlscrete 
domain (a) protrusion, (b) depression, (c) smooth-join of the flrst type, (d) smooth
join of the second type Only segments of a contour are shown Contoui pixels are 
traversed in a flxed counterclockwise direction Therefore, the interior of the object 
delimited by the contour IS deflOed as being to the left of the traversai direction 
(shaded area) 

corresponds to an inflection poini3 of the contour 

4.1.2 Chapter Overview 

ln a typlcal computer vIsIon system, discrete traces of contours of objects are first 

3 Note that here we simplify the deflnitlon of an Inflectlon pOlOt to occur at any point were the curvature 
changes its sign This is valid ln the discrete domaln ln the contlnuous domain, there is a second 
condition at an inflection the curvature has to be analytlc (i e , regular point) [Bronshtein85] For 
example, a smooth JOIn of the second type is necessarlly also an inflectlon pOint (even in the continuous 
domam), whlle, 11'\ the discrete domaln, a corner and an indentation can possibly be situated at an 
inflection pOint (Figure 41, (a) anrl (b» 
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extracted From an image. The curvature of these discretized contours is then approximated 

and used to detect important features of the boundary of an object. Although curvature 

extraction from an object contour would seem to be a rather simple task, few methods exist 

that are simultaneously easy to Implement, fast and reliable in the presence of nOise ln thls 

chapter we will flrst propose a scheme for obtatntng the discrete curvature functlon of opened 

or closed planar contours based on the chain code representatlon of a boundary [Freeman64) 

This approach has been previously reported and we emphasize only our own attempts to 

optimize its implementatlon. 

We will also present a new method of extracting important features from the curvature 

function. We are interested irl localizing features such as peaks of curvature and arcs of 

constant c.urvature. Furthermore, we would like to differentiate these features based on thetr 

relative significance, that 15, by their degree of isolation from nearby features and thetr relative 

amphtude. Consequently, we seek methods for segmentlng the curvature functlon ,"to Its 

basic and significant events T 0 achieve this goal we propose usmg morphologlcal operations 

on functions [Serra82]. These operations permit us to create a representatlon of curvature, 

not only in terms of feature localization and identification, but also ln terms of slgnlflcance 

and scale. We Will demonstrate that morphologlcal operators can be used to locally remove 

insignlflcant detatls of a signal, in our case the curvature functlon This can be applted to an 

tncreasing sequence of sizes without blurring the shape of these detatls and whtle preservlIlg 

the global shape features. This property of morphological operations permlts us to suggest a 

new scale-space representatlon for curvature referred to as the Morph%g/cal Curvature Sca/e

Spa ce. Advantages over the usual scale-space approaches [Wltkln83, Asada86, Mokhtanan86, 

Mokhtarian88] will be presented. 

ln the following sections, we present a procedure for retrteving the dlscrete Orientation 

and curvature functions of the discrete trace of a contour from a chalO code representatlon 

ln this context, quantlzation errors and "protrusion-depression definttion" problems Inherent 

to the chain code representation are dlscussed We also Indlcate how smoothlng and dlf

ferentlation of the dlscrete orientatloil data should be performed to extract the curvature 

function, whtle at the same tlme m,"imlzlng nOise effec'~s. We then dlscuss the morphologlcal 

operations that are apphcable to curvature analysis. Certain morphologlcal measures are also 

introduced for the purp.)se of descnbmg Lurvature peaks extracted lIslng these morphologlcal 

operations. The Morphologir.al Curvature Scale-Space IS then deflned and ItS main advantages 
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are demonstrated. 

4.1.3 Contributions 

The following contributions on contour segmentation are made: 

• We demonstrate a problem inherent in the chain code representation whlch was not 

previously reported. We cali it the "protrusion-depression definition" problem. We also propose 

a procedure to detect its occurrence and a means of eliminating the possibility of errors 

(subsection 4.2.2) 

• We propose to apply morphological operators to the curvature functlOn to extract its 

main features. These particular operators are called "hat transforms" (subsection 43.1). 

• On the basis of the morphological operations performed on the curvature function of 

a contour, a new scale-space representation called "Morphological Curvature Scale-Space" is 

introduced. This multiscale representation of the curvature function possesses a number of 

advantages over the more traditional scale-space representations; it satisfies the three criteria 

of "causality", "immediate localization" and "piecewise smoothing" (subsection 4.3.3) 

A number of less important contributions are also made' 

• We emphaslze two quantization problems inherent in the chain code definition first 

mentioned by McKee and Aggarwal [McKee77]. but not often subsequently considered in the 

literature (subsection 422). 

• We describe how to efficlently filter, by smoothing, the orientation signal obtained from 

the chaIn code to compute the curvature function. We also emphasize that the smoothing 

must be performed in a conservative way to retain as much as possible of the relevant details 

of the curvature signal (subsection 4.23). 

• We define four morphological measures to describe extracted peaks of the curvature 

function (subsection 4.3.2). 
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4.2 From Discrete Contour ta "Not Too Smooth" Curvature 

Since any visual input to a computer is discrete as a result of qua ntlzation, contour 

extraction must address the issue of synthesizing a continuous representation from a discrete 

one [Link88]. This involves going from the discrete trace of an image contour (e.g., edge 

pixels) to a continuous or linked set of points through which the cur'Je passes. Essentlally, two 

kinds of encoding and representation schemes for smooth curves have been proposed in the 

computational vision literature: curve fitting algorithms4 and orientation chaining algonthms5 

ln the first approach, a set of curves is fit to the contour by minimlzing a certain 

error measure. The points where curves meet are retained as knot points and are essentlally 

arbitrary. Most such techniques employ polygonal approXimations, Clrcular arcs, or splines 

Their main drawback is that the knot pOints are not always related to our rJerceptlon of the 

sallent points of a contour, such as for example the curvature extrema F urthermore, the J 

priori assumption made about the nature of contour segments between knot pOints, that IS, 

that they are composed of straight Imes, circular arcs, or splines, can often be seen to be 

rather rigid. 

ln the second scheme, an opposite approach is adopted where onentatlon or curvatu.e 

along the contour is tirst approximated and then processed further to extract the knot pOints 

These points are usually obtained by exa mining the r",te of change of orientation (curvature 

function) along the contour. (urve segments can then be fitted between the knot pOints Since 

this representation seems to be supported at the physiologlCal level and IS also advantageous 

at the computational level, we have chosen it to encode and represent dlscrete contours 6 

4 The following constitutes a non-exhaustive reference li st of "curve fltting algorithms" covering the last 
flfteen years of research work on such methods [Pavlidis74. Pavlrdis82b, Wall84, Cordella85, Han89] 

5 The followlng constltutes a non-exhaustive reference Irst of "orientation chalnlng algoflthms" cover 
ing the last twenty-flve years of research work on such methods [Freeman64, McKee77, r reeman78. 

8rady84, Asada86, O'Gorman88a, Meer88, Smaman89] 

6 Sorne recent methods proposed in the IIterature: can be seen as a compromise between the two above 
mentioned schemes For example, Medionl and Yasumoto process cu bic /J-splines fltted to a contour 
by examining their curvature Extrema of curvature are then extracted and the flttlng process IS refmed 
[Medioni87] 
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4.2.1 Curvature Function Extraction 

Two different approaches have been reported for computing curvature of a discrete curve 

from orientation' filtering and differentiation (F D) methods; and difference of slopes (DOS) 

methods. F D methods evaluate smoothed local curvature by convolving a discrete orienta

tion representation of the contour with a template. The discrete orientation representation 

IS usually given by the well-known chain code representation of Freeman [Freeman64). The 

derivatlve of a Gaussian of variable size is often employed as the template in order to extra ct 

an approximation of the curvature [Asada86]. Alternatively, the orientation data can be dif

ferentiated by computlng the first difference of the angle formed by nearby points and then 

smoothed with a Gaussian filter to reduce noise effects. This can yield a multiscale represen

tation if a set of different sized filters is used [OiI/87]. However, this alternate method usuéilly 

has a poorer signal-to-noise ratio. This can be t .rr!buted to a specific reason: filtering discrete 

orientation data with a template that directly extracts the derivative greatly amplifies noise. 

ln DOS methods the curvature is estimated at each point by ta king the angular difference 

between slopes of two Ilne segments fltted to the data before and after each pOint [Rosenfeld75, 

Freeman77, O'Gorman88a, O'Gorman88b). This can be repeated for line segments of varylng 

length. 

For both F D and DOS methods, the extent of data smoothing is governed by the 

size variable, the template size for F D's and the line size for DOS's. DOS methods yield 

good results in the presence of boundary noise, but are computationally more expensive than 

F J) methods ln tilis chapter, we will propose an alternative FD method which requires less 

complex computations than most ctlrrent methods. But first, in the following subsectlon, we 

descnbe how the d,screte orientation representation is obtained 

4.2.2 From the Trace of the Diiscrete Contour to a Discrete Orientation 

Representation 

Let us consider the discrete trace of a curve on a square sampling lattlce with integer 

coordinates (Y', y) and denote it by ïJ(:S) = (x(:S), y(s)), with parameter s (spatial index). 

Because r conslsts of a connected set of points, the spatial step-size b..s between successive 

contour pOints should correspond to the distance between centroids of two neighboring pixels 
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4 Shape Features using Curvature Morphology 

On a square sampling lattice, /).8 should take the value 1 for vertical or horizontal neighbors 

or the value v'2 for diagonal neighbors. 

Given a discrete trace of a curve such as v, a common first step is to consider the 

chain code [Freeman64] of the bounding contour. We observe that the cham code is in fact 

a discrete representation of the orientation along the contour It can be stated as a vector 

of integers C(8), where each entry represems the discrete angle formed by adjacent pixels 

Due to the nature of the square sampling lattice, angles in the chain code are constralned 

to a discrete range of E!ight values (0, ... ,7) representing multiples of 45°. Contour pixels are 

traversed in a flxed counterclockwise direction. 7 Therefore, the figure or mterlor of the obJect 

is defined as being to the left of the traversai direction (Figure 4 2). 

3 

4 

5 

Ground 

Figure 4.2 Example of chain code generation 

Two quantization problems inherent in the chain code defi nition must be solved before 

embarking on further processing [McKee77]. First, the angle quantization 10 such a narrow 

range (0, ... ,7) may introduce angle discontinuities of more than 1800 when, for example, a 0 

follows a 7. The solution here 15 to avold su ch discontinultles by ustng a modulo 8 operation 

that puts a bound of 1800 on angle discontinuities For example, replace 0 by 8, If 0 follows 

7. This modifted chain code, C7l1 , is generated as follows' 

7 The direction of traversai is arbltrarily flxed as clockwise or counterclockwlse Either choice glves 
similar results It 15 essential to remaIO consistent throughout the traversai of the contour points and 
the assignment of the chain codes Otherwlse, the shape of the object could be erroneously Interpreted 
(cf the "protrusion-dep resslon" prob lem) 
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• Crn(O) = C(O), 

• If ICrn{s - 1) - C(s)1 > 4 then set Crn(s) = C(s) + 8 * c , 

where ICm(s - 1) - [C(s) + 8 * cJl :5 4 , 

• Otherwise, Crn(s) = C(s). 

The second quantization error is introduced by the discretization of the index s, which 

is usually simply incremented by one for each new pixel found while traversing the contour 

However, a diagonal step is v'2 times longer than a step along the grid axes. This can be 

corrected by counting two llnits (2s) for entries of Crn(s) with directions along grid axes and 

three units (3:5) for entries along diagonal directions; that is, we approximate a step-size of 

J2 by 1.5 while keeping integer values. We denote this normalization of the distance along 

the trace of the curve by u. 

ln addition to these quantization errors, there is a third source of error which is related 

to the definition of the chain code. Very sharp protrusions ending in a line of pixels of width 

one (Figure 4.3) could be erroneously defined as a depression, depending on the preceding 

values of Cm, as one gets closer to the tip of the protruslon. Therefore, protrus/On-depress/On 

definition problemsoccur at angles of ±180o or equivalently, where ICm(s - 1) - C(:;:;") 1 = 4 

The same problem can also occur for depressions, depending on how the trace of the contour is 

obtained.8 ln the general case, a protrusion or depression with an angle of ±180o that occur') 

at a contour pixel P(s) can be checked by examining a neighborhood of P(s) to ensure that 

the interior of the object is still defined to be on the 'eft of the direction of contour traversaI. 

A simple procedure consists of looking at contour pixels preceding ar.d following P(:s). The 

procedure is as follows: 

If ICrn(s - 1) - C(s)1 = 4, then 

• Compare the coordinates of the neighboring contour pixels P(s - z) and P(s + i) 

8 A simple object contour following algorithm used to extract the chain code from a segmented edge map 
would not usually tolerate, as part of the contour, depressions made of a string of pixels of width one 
A more "intelligent" contour following algorithm would extract contollr pixels ln two passes It would 
turn around the object (interior on the left) as weil as "around" the background (exteffor on the left) 
thereby generating sharp protrusions as weil as sharp depressions 
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4. Shape r eatures using Curvat'-lre Morphology 

adjacent to P(s) (i = 1,2,3, ... ) until two arefound which are located at different 

spatial positions . 

• Check whether or not P(s + i) is to the left of P(s - il. If it is, th en there 

is a protrusion. That is, Crn(s) = Crn(s - 1) + 4 (i.e., +1800
). Otherwise, 

Crn(s) = Crn(s - 1) - 4 (i.e., -1800
), indicating a depression. 

Ground 

2222 
7 p(~ 

88888 

P(ii-4) 

(a) P rotrusion (b) Depression 

:-igure 4.3 Protrusion-depression defmition problems A protrusion is shown in (a) 
where an angle of ±1800 occurs at the contour pixel pei) The right choice for t le 
chain code value is 12 If the usual chain code deflnition were used, a value of 4 
would be obtained, leading to an inconsistent deflnition of the tip as being part of a 
depression, as shown in (b) Using our proposed procedure, since pixel P(S' + i) lies 
to the left of pixel P(s - :), a protrusion is recognized ln (b), since pixel P(S' + l) 
lies to the right of pixel P(s - i), a depression is recognized 

ln summary, the original chain code C(s) must be corrected for three types of errors: 

discontinuities of more than 1180°1, arc length normalization, and protrusion-depression def

inition problems. These three types of errors can be detected in parallel by applying the 

procedures described above, thereby generating a modified chain code Cm(u). The following 

section describes how to obtain smoother orientation data and then derive an estimate of the 

curvature. 

4.2.3 From Discrete Orientation to a Smoothed Curvature Representation 

let us use the symbol 0(17) to refer to the modified chain code after both quantization 
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4. Shape Features using Curvature Morphology 

and protrusion-depression errors have been corrected, that is, O(ü) = em(u), to emphasize 

its equivalence with a discrete orientation representation of the trace of a boundary. We now 

must process e(ü) to obtain the curvature measurements. By definition, for a parametrization 

of the curve by arc length s, the curvature k(s) is given as the first denvative of the onentation 

function, O(s), that is, k(s) = O'(s). In the discrete case, we wish to retrieve k(ü) , whlCh can 

be approximated by k(ü) ~ (P(u). 

Noise amplification problems occur when differentiating a discrete signal such as 7J(ü) 

because it is coarsely quantized in 45° steps For example, a straight line at an angle between 

0° and 45° is represented by a succession of 00 and 450 orientations, a very noisy signal indeed 

This aliasing phenomenon cannat be alleviated unless the original samphng grid is reflned or 

the orientation sampling is done over a larger neighborhood Still, the effect of aliasing can 

be reduced by the application of lowpass or bandpass filtering to the signal. It Îs common to 

filter O(u) with a Gaussian template Gu [8rady84, Oill87], wlth standard devlation a, deflned 

as: 
1 (-2) GO'(s)s=u = PC exp -u2 . 

O'V 27l' 20' 
(4.1 ) 

Furthermore, the convolution theorem [Proakis88] can be used to differentiate the filtered 

signal: 

(O(u) * Gu)' = O(u) * G~ . (4.2) 

This approach is often used to obtain k(ü). The smoothing and differentiatlon of O(ü) with 

a bandpass filter G~ is performed concurrently [Brady84, Asada86]. However, in terms of 

computational complexity, there is an advantage to using Gaussian templates 10 an Initiai 

smoothing step instead of computing the derivatives of the Gaussian directly, as IS done ln other 

F D methods. Gaussian filtering can be efficiently implemented by combining Hlerarchical 

Discrete Correlation (HOC) techniques with cascaded correlation (Chapter 3, section 32). 

Reusing the convolution theorem and the cascaded correlation property of Gaussian templates, 

Wt\ can obtain a smoothed curvatule signal kO'(ü) as follows: 

ku(ü') = «(j(u:) * Gu)' = «(j(u) * GUI * G u2 )' 
(4.3) - - , = B(u) * GUI * G0'2 ' 

where 0'1 and 0'2 are the sta ndard deviations for the two Gaussian functions GO'l and 00'2' 

respectively, and 0'2 = 0'1 2 + 0'22. Therefore, in the first step we filter O(u) with a lowpass 

filter using an HOC-like algoriihm and denote this operation by' 

OUl (u) = O(ü) * GUI . (4.4 ) 
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4. Shape Features using Curvature Morphology 

Then in a second step, we filter 80'1 (n) with a bandpass filter to obtain its smoothed derivative: 

(4.5) 

The first step involving GO'l is efficiently computed using the H DC procedure. The second 

step is performed with a derivative of a Gaussian template, G~2' over a smaller neighborhood 

than for the original G~ in equation (4.2). Our complete procedure for extracting curvature 

from discrete orientation data is iIIustrated in Figure 4.4. 

C(j> 

r~cI.lhel Jbaod.e 
Contour 

, 
: , · • · l 

~ 

j 
1 ~~:!) 

Figure 4.4 From the trace of the discrete contour to smoothed orientation and cur
vature representations The object shown in here and its discrete smoothed curvature 
kO'(ü) will be used throughout this chapter to illustrate the complete curvature mor
phology approach 

Although Gausslan filtering is desirable to reduce noise effects and to evaluate the deriva

tive of O(ü) with a numerically stable procedure, this smoothing process must be performed 

in a conservatlve way. By "conservative smoothing" we imply that we wish to retain as far as 

possible the relevant details of 80'1 (ü) and kO'(ü). However, Gaussian filtering considers lIoise 

and peaks of kO'(ü) without distinguishing between them on the basis of size [O'Gorman88a). 

We wou Id like to describe the features of kO'(u) by detecting them without having to signif

icantly modify kO'(ü). Gaussian filtering cannot be used for this later purpose since peaks 

corresponding to features would be attenuated and blurred. In summary, linear filtering using 
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4 Shape Features using Curvature Morphology 

Gaussian templates and their derivatives is ineffective because the scope of the filtermg IS 

too global, that is, it is indiscriminate with respect to significant curvature features [Blake86, 

Perona87, O'Gorman88a, Leymarie89b1. 

We seek a description of curvature features in terms of thelr annihilation, as proposed ln 

the so-called scale-space approaches [Witkin83, Brady84, Koenderink84] However, instead of 

using Gaussian smoothing to generate a scale-space, which has an undesirable global effect, 

we propose the use of morphological operators [Serra82}. These permit the removal of details 

from a signal such as kO'(u) without modifying its global morphology. Since they exert only 

local influence, morphological operators have the deslrable property of generatlng unlform 

scale-spaces that are unambiguous and therefore easily interpreted. Morphology for curvature 

is the subject of the next section 

4.3 Curvature Analysis 

Although the curvature at each point along a curve uniquely defines its behavlOr, It is 

the morphology of curvature that p~rmits the retrieval of useful visual information. Thus, we 

would like a description ofku(u) in terms of any weil identified features. 

As mentioned earher, peaks in curvature correspond to the critical points of a contour 

and are useful for vlsual perception, as weil as mathematical and computational representatlon 

Constant regions are defined by straight lines (kO'(ü) = 0) and arcs of constant curvature 

(kO'(u) = constant). They can be used to compress information and reduce the complexlty 

of the interpretation process. Such constant reglons, along with thelr assoclated peaks of 

curvature, can also be used to compute region-based representations of an obJect Examples 

are the 50-ca lied skeletor.s or 5ymmetric axes (Chapter 5) and local rotatlonal symmetnes 

[Fleck86]. Zero crossings of kO'(ü) map to inflectlon points of a contour Since they are 

a natural way of segmenting the contour into convex and concave regions, we will separate 

ku(u) into two functions, ku+( u) for convex regions and kO'._('ü) for concave reglons (Figure 

4.5). 

ln addition to localizing the curvature features, we wish to be able to quantify their 

significance. This includes their relative dominance or amplitude as weil as thelr degree of 

isolation along the contour. This concept of feature significance leads naturally to a multiscale 
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Figure 4.5 Curvature function ku(ii) as the sum of twofunctions, ku-r('ü) (positive 
curvature values) and ku_Cu) (negative curvature va,lues) 

representation in which irrelevant details of ku(u) can be removed before its interpretation. 

Ali of these notions relatlng to fE:atu(e shape, 10cillization, size, isolation and scale are 

associated anr.i can be treated using the mathematicéll technique known as mathematica/ 

morph%gy [Serra82]. 

4.3.1 Curvature Morphology 

Mathematlcal morphology applied to discreti1:ed functions such as ku(ü) provides us 

with useful tools for the extraction of primitives or dominant shapes found in such functions. 9 

We have coined the name curvature morph%gy not only to emphasize the fact that we 

apply mathematical morphology operators to the curvature function, but also because thls 

method permlts us to study or analyze the "form" or morphology of the curvature functlon 

by segmenting it lOto Its essential primitives or features. It is also interf"sting to note that 

with curvature morphology we conslder the curvature function as an image to which we apply 

image processing techniques. This represents a rather different approach with reg a rd to other 

more traditional techniques of contour analysis. 

9 See Appendix C for mathematical deflnitions and properties of morphological operations on functions 
For further mathematical details about this subject, the reader is referred to chapter twelve of Serra's 
book [Serra82] For applications to grey level images, see the paper by Sternberg on grayscale mor· 
phology [Sternberg86] 
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4 Shape Features usmg Curvature Morphology 

Two dual operations, erosion and dilation, are the keystones of mathematlcal morphol

ogy. As their names indicate, erosion is a shrinking operation while dllatlOn IS an expandlng 

one. These operations are performed locally by observing the structure of the nelghborhood 

at each point of the function. The neighborhood over which local computations are performed 

is delimited bya structural element defined by a set of resolution cells constitutlng a specifie 

shape such as a line or square. This is analogous to the concept of a 2-D window that we can 

slide over an image to perform convolution-like computations ln our application to curvature, 

only fiat structural elements, that is, lines of increasing wldth, are consldered Furthermore, we 

employ symmetric fiat structural elements centered on curvature function pOints Therefore, 

we use only widths of odd values and the minimal width IS fixed to three arc length unlts Tï (see 

Appendix C, section C.4 for more detalls) $ymmetric fiat structural elements are sufflCient 

for the extraction of peaks and fiat regions of ka(ü). 

Eroding a function by a segment of length R is equivalent to replacing the functlOn 

values at every point by the minimum of ail the points in a neighborhood of size H. Llkewlse, 

rlilatmg a function bya segment of length R is equivalent to a maximum transformation over 

a neighborhood of size R. Examples of dilation and erosion applled to I(1"+(17) are glven ln 

Figure 4.6 (similar results are obtained for k<T_(ü)) 

By combining dilatlon and erosion, two new operations can be defined openmg and 

c1osing. Opening is the dilation of an eroded function, while closlng is the eroslon of a ddated 

function. ln both cases, by combining the two dual operations of dllation and eroslon, the 

original function is only partially recovered since some detalls are ellmlnated from It ln the case 

of opening, convexities or "bumps" of increasing size are removed wlth the use of dlfferent slzed 

structural elements Closing, on the other hand, is used to fill-in concavltles or holes These 

concepts are illustrated ln Figure 4 7 An openlng (closlng) will remove from the functlon ail 

details, such as peaks, that aresmaller than the structural element slze and whlch areoflented 

toward the top (bottom) of thls function. The result IS a new function which IS smoother t!1an 

the original one 

We observe that mathematlCal morphology provides us wlth a method for removlng from 

the signal ka(u) detalls of increasing size. This 15 indicated in Figure 48 (a) where we compare 

the function ka+(u) to its "opened" version ku+opcnCu) and thereby lsolate the peaks and 

bumps. Thus the residual kl7 +Cü)- k<T+open (u) is defined as the top-hat transform of krT + (ïi) 

93 



~ 

l 

, 
2.' 

:2 

1 5 

1 

• li 

• • 

:J 

2 li 

2 

1 Il 

• 1> 

4. Shape Feature .. using Curvature Morphology 

1 Stru~ural FJ~t: -1' , kcr+(ü) :11 
F~+di/Q (ü) : ~ + Il 

2 .. 3" •• 5" '" 7 .. ... 
(a) Dilation Operation 

[Structural FJernent: -1 k cr+ tu) : ~ + Il 
f~+erodtu) :_ 

1" 2" 311 .... UI '" 7" 1" 

(b) Erosion Operation 

Figure 4.6 Examples of dilatlon and erosion operations applled tokO'+Cü) (positive 
curvature functlon of the obJect shown in Figure 4 4) The structural element shown 
in (a) and (b) defmes the neighborhood over which local "min-max" computations 
are performed (here 21 arc length units wide) ln (a). a dilation is performed by using 
a maximum operation The new dllate:d curvature functlon is represented with the 
symbol ka + (lzla Cu) ln (b), an efJsion IS performed by using a minimum operation 

The new eroded curvature function is represented with the symborkO' +e7'od(ïi) 

SI' 

'SI 

We can also defme Its dual, the bottom-hat transform ln which ka+(ü) IS compared to Its 

"closed" version ka+c1ose('U) according to the resldual ka+(u) - kO'+c1ose(Ü). These two 

residuals are similarly defined for the negatlve curvature function as kO'_(u) - Ia-openCu) 

and kiT-Cu) - kO'-closc(Ü) respectlvely. The bottom-hat transform applied to I.-a_(ü) is 

Illustrated in Figure 4.8 (b). Both these operators will be used as the basic morphological 

operations for curvature. Hat-transforms are so callt>d because they can be visualized as a 

covering of peaks with a hat of fixed size. 

4.3.2 Peak Description 

Peaks with different slzed bases ca n be extracted by varying the size of the fiat structural 

elements. By increasing the width of a structural element, more detail can be extracted from 
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1i!1I 

(a) Closing Operation 

. i 

i· . 

2e9 31111 

(b) Opening Operation 

f,+{tI) : 

k"+di14 (iI) :. + ~ + Il 
k'+clœe (II) : ~ + III 

f,+(ü) :11+ ~+II 
k,,+uod(u) : tI1 
k"+opm(u) : 11+ ~ 

Figure 4.7 Examples of closing and openlng operations applied on a positive cur
vature functlon for a structural element of flxed wldth (here 21 arc length un,ts 
\/1110") 

'MiH 

the curvature signal, ku+(ü) or ker_(ü). Once a peak is isolated from the curvature signai, 

its morphology or shape can be analyzed. We define four morphological measures to descrlbe 

an isolated peak (Figure 4.9): 

• The extent of the peak, bü, which is equal to the width of the fIat structural 

element. 

• The maXimal peak amplitude or maximal relative curvature, kerUlal: 

• The average relative curvature of the peak, keratlg , given by the area under the 

curve defined by "f..k(T/8tï. 

• The shape factor, r, given by kumax/ku(lvg (r 2 1). 

Each of the four morphological measures derived from the pea k features kuuwx , bu and 

Lku can be used to describe the nature of the peak. For example, peak slgnificance can be 
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3 i i i i :ttiFlm .. _-----,..--
2 Ci Ikcr+(ü) -kcr+open(ii)/ 
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(a) Top-hat Transform 

-1 

-1 5 

-r 1 - t-- 1 - t t ---1 

-n ~ ker-close (u)f---ï- - t--- i-- -- r--. 1 .... _:. .. s.Sl1'W_~ 
-3~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~~~~ __ ~ __ ~ 

9 199 20B 3B9 4BB 599 OBB 7BI! Be9 91!0 

(b) Bottom-hat Transform 

Figure 4.8 Examples of hat-transforms for a structural element of flxed wldth (21 
arc length units wlde) ln (a) the top-hat transform is applied to ku+(u) to extract 
Its peaks ln the top-nght hand corner is shown the effect of removlng the extracted 
peaks from ka+('iï) This is equivalent to ku+open(iï) ln (b) the bottom-hat 

transform is applied to ka_Cu) to extract Its valleys ln the bottom-right hand 
corner IS shown the effect of removing the extracted valleys from ka _ Cu) This is 

equivalent to k(1 -c1ose(ii} 

Figure 4.9 The features used to describe an isolated peak of curvature 

determir:ed not only by largp values of kumax with respect to bu but also by the shape factor 

r_ Val".:s of r greater than one may indicate a very narrow and well-defined peak_ On the 
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other hand, a value close to one indicates a region of constant curvature (Figure 4.10 (a)) By 

examining its extent 6r;, a constant curvature reglon could be retained as bemg signlficant or 

be disregarded. The different possible kinds of shapes of peaks descnbed by the shape factor 

rare illustrated in Figure 4.10 Stable curvature peaks are those whose shape factor IS wlthln 

the range 1 < r ~ 2 (Figure 4.10, (b) and (e)). By "stable" we mean that if &u IS increased, 

kumax of the given peak will significantly increase. On the other hand, when 2 < r < ~, the 

peak tends to flatten for increasing o'fi (Figure 4 10.(d)). The case of 7' ~ bu corresponds to 

noise in the curvature data (Figure 4 10.(e)). 

~ l A § A '.1\''''''~ ~ 

~ ~ .. " ~"ll 

(a)7'=1 (b)1<1'<2 (c) r = 2 (d) 2 < r < bu (c) r = /lu 

Figure 4.10 The flVe possible types of peak shapes described by the shape factor " 
for given kumax and 8u. In (a) kuavg = k umax ln (b), (c) and (d) are shown 

the three most common types of curvature peaks ln (e) nu ~ kumar 

Although these shape measures seem to be useful, the scale or size at which they should 

be sought is variable and unknown il priori. Therefore, curvature morpholc.gy analysls IS best 

performed at different scales, where scale is defined as the variable size of the structural 

element. This leads to a multiscale representation of curvature whlch is developed ln the next 

section. 

4.3.3 Morphological Curvature Scale-Space 

We generate the multiscale representatlon of the curvature signal, kIT+{u) or rIT_Cil), 

by uniformly increasing the size of the structural element A sequence of peaks is generated 

us;ng the hat-transforms. A scale history can then be associated with each peak, startlng with 

the scale at which it appears and terminating with the scale at which it ceases to Increa!>e 

in height. As soon as a peak stops IncreaSlng, it no longer needs to be consldered as part 

of ku+(ü). We define the region of support of a peak to be the scale bïima,x at whlch It 

stops increasing. oïimax can be interpreted as the region of influence a peak has along the 
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4. Shape Features using (urvatur-e Morphology 

contour. 10 

Once a peak "as been removed from kIT + (ü), no other peak is permitted to grow over the 

extent of the former. This is simply because only one curvature feature should be associated 

with a given contour segment. An example of the scale-space generated in this way is given in 

Figure 4.11. Here, the position of an event, that is of a peak of klT+(ü), is given by the position 

li = u(bumax} of the maximal relative curvature value k(f = klTmax(h'umax} associated with 

the peak. 
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(b) Peak features 

1 

~ 

(c) Morphological Cu rvature Scale-space 

Figure 4.11 Example of the morphological curvature scale-space 

u k ... _a~ 
,.04 2 BI,.. 
414 • •• 75 ...- • •• a.s s ... .& 522a 
50 • · .. " 0'" • 25.7 
0'2 •• 21181 U,. • a.8C 
712 • e .... 
72. • 8628 , ... • .52. 
785 • •••• 714 8 •• 1 ... 
.03 • lIeG 04,. • •• 87 
.0& 

• 0437 .,2 • .573 

Our scale-space representation for curvature, referred to as the Morphological Curvature 

Scale-Space or AleS, possesses certain desirable adva ntages over previous approaches such 

as the "Curvature Primai Sketch" [Asada86J. For example, each branch in the scale-space 

diagram remains isolated, whereas in the usual scale-space approaches reported in the literature 

10 See [T eh89) for a variation of the concept of "region of support" for a curvature extremum 
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instabilities occur because of branch merges [Witkin83, Asada86, Mokhtarian86]. The AlC:L~' 

bea rs sorne si milarity to the kind of scale-space generated u nder the weak-continuityconstraints 

scheme of Blake and Zisserman [8Iake86, 81ake87], although in their representation, only 

discontinuities in curvature are tracked explicitly. Furthermore, the MC S satisfies the three 

criteria proposed by Perona and Malik [Perona87]. that a ny candidate paradigm for generating 

multiscale representations should satisfy.ll These criteria are: 

• Cau.'iality: No spurious details should be generated when the scale (~) is in

creased. 

~ Immediate Localization: At each scale, feature boundaries should be sharp (un

blurred) and correspond to meaningful boundanes at that scale . 

.. Piecewise Smoothing' At ail scales it is preferable that intra-feature smoothlng 

occur rather than inter-feature smoothing. 

The MeS is an elegant wayof removing noise fror" ku+(u) while pre.<;ervlng its slgnlf

icant features. Noisy elements of ku+('ü) which exhibit a short history at small 'icales in the 

MC 5 can be eliminated. Note that both the top-hat and the Q.">wn-hat transforms can be 

used here to remove smalt convex bumps and to fill-in sma" concave depressions of klT+(u), 

respectively. An exam..,le of filtering ku+(u) in this fashion is shown ir Figure 4.12, where the 

threshold on 8u for removing bumps and valleys was set at 12 in Figure 4.11 

A second threshold, this tlme on the minimal acceptable kamax value, IS also used for 

peak signiflcance This threshold was set at 0.20 in Figure 411. The same filtering process 

is also applied to k"u_(u). The combined results are shown in Figure 4.13. ThiS abllity of the 

l'vIC S tv deal with noise Justifies our previous conservative attitude toward Gaussian smoothing 

(section 4.2.3). 

The MCS can also be used to build a hlerarchy of slgnificant peaks Peaks with long 

histories starting at a small scale are classified as prominent. Peaks starting at higher scales, 

on the other hand, can be classified as corresponding to constant curvature regions because 

11 Note that scale-space representations based on the usual Gaussian blurring approach only satisfy the 
causa lit y criterion 
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Figure 4.13 Example of removing noise from kO' Llsing the ha~ transforms and the 
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their mitiallarger extent Su maps to a constant curvature arc. Once these pe~ks are extracted. 
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4. Shape Futures using Curvature Morphology 

they can be subtracted from the curvature signal. The resultant signal can then be further 

processed to isolate other constant curvature arcs. An example of this segmentation process 

applied to both positive and negative curvature signais is shown in Figure 4.14. 
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(a) Positive curvature segmentation (b) Negative curvature segmentation 

Figure 4.14 Segmentation of the curvature signal 

Once the main features of the curvature signal have been segmented, that IS when both 

positive and negative peaks and constant curvature arcs have been extracted, the contour 

of the object itself can be segmented. Peaks of curvature map to knot points of the obJect 

contour, while constant curvature arcs map to their respective contour arcs This is shown in 

Figure 4.15. Ali knot points are extracted and precisely localized Note that no knot pOint 

is identified between arcs 2 and 3 because there is no significant discontlnuity ln Orientation 

between these two arcs. Therefore, there is no peak in curvature wherE' these two arcs Join 

ln such a case a smooth jojn of the tirst type can be identified Constant curvature arcs are 

also weil identified (e.g., arc 3: a straight line). Gaps between identlfied arcs and knot points 

which are caused by filtering can be filled-in by extrapolation, while unldentifled arcs can be 

approximated by fitting splines or circular arcs between the bounding knots. The average 

curvature of these unidentified arcs, obtained by integrating the curvature signal between the 
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knots, can be used to impose a constraiot on the fitting curve segment. For example, between 

peaks 2 and 3 (Figure 4.15), if we integrate the curvature function we obtain a small negative 

value (kuavg ~ -0.0148). Therefore, we can approximatethis contour segment by a (slightly) 

concave arc. 
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Figure 4.15 Contour segmentation based on the previously extracted curvature fea
tures 

4.4 Conclusions 

8.1379 
1.1764 
1.1345 
8.8812 

ln this chapter we have proposed efficient ways of representing curvature and its fea

tures for object contours found in noisy images. We have discussed how the curvature function 

should be retrieved from the discrete trace of a contour using a modified chain code represen

tation. Special care has been taken with quantization errors, "protrusion-depression definition" 

probiems, and implementation issues. We have also presented a new method for extracting 

features from the curvature function employing morphological operations. 

Unlike linear transformations of functions sud as Gaussian filtering, morphological oper-
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ations are characterized by their local effect. They remove information of increasing extent as 

the size of the structural element increases without blurring the remaining important features. 

Therefore, signal processing through iterative morphological transformations can be thought 

of as i\ process of selective information removal, where irrelevant details are subtracted from 

the signal, enhancing the contrast of esselltial features. We have proposed such an iterative 

scheme by defining a new scale-space representation referred to as the Morphological Curvature 

Scale-Space (MeS). We believe that the MeS is a more powerful tool for the interpretation 

of curvature than previous scale-space approaches. There are four reasons: first, the MeS IS 

uniform and unambiguous; second, the MeS satisfies the three criteria of causality, immedi

ate localization and piecewise smoothing; third, morphological measures can be combined in 

the MeS [Leymarie88] to strengthen the analysis and interpretation of curvature primitives; 

and fourth, the MC S is a strictly local representation. 

Another important aspect of curvature morphology that compares favorably with other 

analysis approaches is its low computational complexity. The computations are simple and 

hierarchical (Appendix C, section (5), and lend themselves to applications where fast com

putations are imperative. This is the case when sequences of images need to be analyzed in 

real time [Noble86]. 

However, a nlJmber of issues still need to be addressed 50 that the approach we have 

proposed for contour segmentation can be viewed as being complete. In particular, we need 

to study the problem of determining how much smoothing is necessary in the first step of 

recovering a useful curvature function (section 4.2). We have suggested that smoothing 

was necessary but it should be done in a conservative way. We have not quantlfled and 

mathematically defined these concepts. Aiso we have not given a detarled analysis on how to 

choose the two thresholds on curvature extremum significance wh en performrng noise-frltering 

These Issues need to be addressed in detail. The purpose of our deSCription and analysis of 

curvature morphology was to show its feasibility, its performance and some of its advantages 

over other contour segmentation methods. 

Finally, it was mentioned in section 4.3 that curvature features of an object outline could 

be used to compute region-based representations of this object. We will consider this Issue in 

the next chapter. We will show how the shape features obtained using curvature morphology 

can help us to apply the snake model to the shape description of deformable objects such as 
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cells. 
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Chapter 5 Shape Description Using Snakes 

5.1 Introduction 

This chapter presents a new method for shape description of planar obJects in which 

both reglon and boundary features are extracted. We propose a ilew algorithm for shape 

skeletonization to achieve this. 1 Skeletons are object representations whlch are partlcularly 

appropriate for the description of the amorphous or biologlcal shapes commonly found ln 

nature for which other representational schemes based on ordinary geometry are Inappropnate 

[Blum73a). They can be used to encode visual eues sud as symmetry, shape primitives, wldth 

information and the process-history of deformable objects We argue that boundary informatIOn 

can be combined with a region-based representation such as the skeleton to produce a rlcher, 

more powerful and efficient shape representation. For example, extrema of curvature along 

the contour can be used to generate significant skeleton branches [DiIl87, Leymane89a]. 

Our method for shape description is an implementation of a 2-D dynamlc grassfJre that 

relies on a distance surface on which elastic contours minimize an energy fUl1ctlon A EuclJdean 

distance transform combined with an active contour model, sud as the snake, IS used for thls 

minimization process Boundary information is integrated into the model by the extraction of 

curvature extrema and arcs of constant curvature 

5.1.1 Biological Basis for Shape Analysis 

Within the context of this thesis, we are principally concerned with the notion of blologlCal 

shape or the shape of natural forms assumed by living organisms. How can we categonze 

1 An early version of this chapter was flrst published as a technical report [Leymane89a] T wo shorier 
versions were also published recently as conference papers [Leymane89c, Leymane8ge] 
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this notion of shape? What do we mean by the shape of an object? Foilowing the early 

ideas of 81um [Blum73a) we observe that biological shape is concerned with three klnds of 

problems. Flrst, is the "taxonomic" or descriptive problem concerned with a hierarchically 

structured representation of a form in terms of ItS primitives For example, a cell can be 

hlerarchically represented by a body and its subparts such as pseudopods. Second IS the 

"psychologlcal" or sociological problem; how do organisms perceive and characterize the shape 

of other organisms? Third, is the "developmental" problem which is concerned with how shape 

is coded internally by organisms. The aim of biological shape description and analysis is to 

provide models to solve these problems. There are at least two different classes of descrlptors 

that have been proposed in the literature, one based on the analysis of the external structure 

of forms, the boundary, and one based on their internai structure, that is, the reglon delimited 

by the boundary [levine85, Pavlidis80b). 

One may consider 2-D shape as "the outward form of an object defined by lits] out

line" [Collins86]. In essence, shape is interpreted as the form or features of the contour or 

boundary of an object that makes it distinct from other objects. Still, there IS an opposite or 

rather a complementary view when looking at shape description, in which the reglon or the 

mterlor of an object is considered in preference to the contour [levine85] On the basis of 

a region deSCription, visual cues such as symmetry, region pnmitives or subparts, and width 

or compactness are emphasized. An important advantage of reglon descriptors over contour 

descriptors is that they provide a correct topological representation of the object Indeed, 

contour descnptors lack the ability to describe how close in the plane contour points are to 

each other. In other words, contour "points which are geometrically close may be qUite far 

apart along the bounda ry" [Pavlidis80b]. As to whether or not there are actually explicit region 

descriptors used by the braln, the question remains open The best conjecture at present is 

that shape description at the physiological level is essentially feature-based [Desimone89). 

5.1.2 Region or Boundary? 

Are the two classes of descriptor, that is, boundary- and region-based, distinct or are they 

related? Can we express shape description bya continuum of information ranging from purely 

boundary descriptors to purely internai descriptors7 Can we exploit both thelr descriptive 

powers and relate them in natural ways or is this dlchotomy inevitable? Answers have been 
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proposed in the pasto For example Ley ton [leyton87, Leyton88] has shown that in the case of 

regular curves, there is a direct relation between boundary and region features More precisely, 

to each extremum of curvature, there is a corresponding symmetric axis which emerges or 

terminates at it. Furthermore, Ley ton has proposed that "shape [may bel understood as the 

outcome of processes that formed it". The "process-history IS recovered" by these features 

which are emphasized by both the internai and external descnptors, namely the curvature 

extrema and symmetric axes endings. 

Axes of symmetry of an object may be deflned in a nUPlber of ways in both the contmuous 

and discrete domains. Essentially, a point in the interior of a shape is a symmetry point (part of 

a symmetric axis) if it is at an equal "distance" from two or more boundary pOints, where the 

distance is any valid metric in the contlnuous or the discrete domaln An equivalent deflnltlon 

is ba~ed on the law of propagating wavefronts where the boundary of the shape IS taken as the 

source of a grassfire [Blum64, Blum73a). The skeletal points are then defmed as the locus of 

meeting wavefronts, here flre fronts, where the fire is quenched. The complete set of skeletal 

points forms the skeleton of the shape. With such definitions, the skeleton and the complete 

set of symmetric axes are equivalent [Blum73a). 

5.1.3 A model for shape description 

We are seeking a model of shape description that should answer three types of problems. 

developmental, perceptive and descriptive. We know from psychophyslcs and neurophyslolog

Ical experiments that shape in the visual cortex seems to be mainly feature-based and that the 

curvature along a curve or contour is a key descrlptor From top%glCa/ considerations, we 

know that contour-based descriptions a/one are not sufflclent to reso/ve bi%gica/ shape Fur

thermore, from psychophysical experiments, we know that any valid model for shape descrip

tion should be invariant under certain transformations, such as those arlslng from variations 

in illumination, color, rigid motion and scale [Attneave64). 

ln order to extract "pertinent" shape features we flrst need to transform the flgure

ground image, that is, transform the binary image (object - non-object) obtamed from a 

preceding segmentation step Extracted shape features should emphasize both the form of 

the obJect boundary and the structure of its interior. These features should also be invariant 

under the above-mentioned Image transformations 
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ln the subsequent sectior.s of this chapter we will propose a method for biological shape 

and its implementation that should address these needs. But first we will briefly survey the 

dlfferent techniques used to obtain the skeleton representation. Then, we will propose a novel 

implementation of the grassfire transform. We have adopted this formulation for the extraction 

of shape symmetries because it explicitly emphasizes the relation between boundary features 

and region features. We will see how the formation of the skeleton is initiated at curvature 

extrema or centers of curvature where, in some sense, the "shape is concentrated". Here 

the fire fronts start merging, or in other words, the transforming shape, under the grassfire 

process, starts mteracting with Itself. The issue of integration of boundary information in our 

shape model will be addressed. Following this we will describe how a graph representation of 

the skeleton is easlly obtalned uSlng the grassfire transform Such a hierarchical representation 

permit us to naturally keep only these branches of the skeleton which are significant. We will 

summarize the advantages of thls model for biological shape; variations in the implementation 

of the algorithm are also proposed. Finally, we will conclude this chapter by showlng how the 

proposed model for biological shape can be used for th·e tracking and description of deformable 

objects such as cells. 

5.1.4 Contributions 

ln this chapter, a number of contributions are made. They are summarized below. 

• We present a new method for representing and describing shape on the basis of an 

active contour mode!. This permits us to efficiently simulate the grassfire transform. For the 

first time the flre fronts are considered as distinct entities with regard to the field of grass or 

the mterior of a shape. 

• We emphaslze the relationshlP that exists between the grassfire transform and the 

notion of a "distance surface", a relation first mentioned by Blum [Blum73a] and for the most 

part ignored since. We take advantage of this relationship to efficiently simulate the grassflre 

propagation by an active contour. 

• The use of an active contour on a field of grass, represented as a distance surface, 

permits us to employ an Euclidean metric while bypassing discretization problems found in 

other skeletonlzation algorithms also based on the Euclidean metric. 
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• Our method for shape explicitly relates boundary information to reglon information, a 

departure from most shape description techniques found in the hterature. 

• The use of both types of shape descriptors gives us a powerful tool for obtainlng 

robust multiscale descriptions. In particular, this permits us to specify signlficance criteria and 

measures for each skeleton branch, thereby producing skeletons without spurious branches, a 

major advantage over most other skeletonization techniques. 

• We propose a new concept for branch significance based on the notion of local de

formation introduced by symmetry points on the distance surface. We cali thls the "ndge 

support". Furthermore, we show how the ridge support can be evaluated in terms of the 

veJocity of formation of a symmetric axis or in terms of the slope amplitude of the tangent to 

the symmetric axis 

• We propose the new concept of a deformable skeleton useful for trading deformable 

shapes. We refer to this as the "dynamic skeleton". 

• Fmally, we conslder a number of Implementation deta!ls to optlmize the numencal 

performance of our skeletonization algorithm. In particular, we giv€ the detalls of an optimized 

implemèntation of Danielsson's algorithm [Danielsson80} for computing discrete Euclldean 

distance maps 

5.2 Shape Description by Skeletonization 

A skeleton is a representation of an object by idealized thin lines that retaln the con

nectivity of the original shape [Hilditch69, DII187]. Skeletal points, wh en connected, form 

a skeleton. They can be defined in a number of ways in both the continuous and d,screte 

domains The first definition had its roots in the concept of nearest-pomt mappmg (or d,s

tance mapping; see subsectlon 53.1) for a closed reglon or set, 0 ln th,s case, the set of 

points ln the background with more than one nearest pOint ln 0, that 's, the set of skeletal 

pOlOts of the exterior of a shape, is cons,dered important for characterrzlng the geometry of 

o [Bouligand32]. This concept was further explored by cons,dering the locus of centers of 

osculating circ/es to 0 (from the exterior) at more than one point to characterize the convexlty 

or non-convexity of the set 0 [Motzkin35a, Motzkin35b]. Much later came Blum who turned 
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his attention to the interior of a region 0 [Blum61, Blum73a]. Inside 0, skelel.al points can be 

defined as the locus of centels of maximal inscribed circ/es, that is, circles in 0 not included 

ln any other circle. Such circles are touching the boundary of 0 at more than one point. 

An equlvalent definition is based on the law of propagating wavefronts where the boundary 

of the shape is taken as the source of a grassfire [Blum61, 81um62, Blum64]. The skeleton 

is then defined as the locus of meeting wavefronts. Brady and Asada [Brady84] define their 

skeleton as the locus of the chord midpoints of maximal inscribed circles. They cali this shape 

representation smoothed local symmetries (SLS). 2 Ley ton [Leyton88) defines skeletal points 

as the locus of arc midpoints of maximal inscribed circles or minimal circumscribed circles. He 

calls this representation process inferring symmetric axis (PISA). The process or transform by 

which the complete set of skeletal pOints is recovered is referred to by different names su ch as' 

SAT (Symmetric Axis Transform), MAT (Medial Axis Transform), grassfire transform, shape 

skeletonization and shape thinning. 

5.2.1 Aigorithms for Skeleton Computation 

Over the years, smce the first ideas of Blum emerged, various algorithms and Implemen

tations have been published. These can be c1assified into three different groups [Leymarie89a): 

1) direct thinning of an object, 2) analytic computation of a skeleton based on an approxima

tion of the object contour, and 3) ridge following based on a distance mapping of the obJect 

We briefly mention the characteristics of each c1ass of algorithm and its main drawbacks. 

Most algonthms in the literature are based on the thinning concept [Serra82) in which 

one Iteratively peels off the contour of an object; this 1.> an approximation to the grassfire 

process [Hlldltch69]. Sequentlal as weil as parallel algorithms exist.3 These are Iterative 

procedures whose computational time depends on the maximum width of the object. Thelr 

accuracy is limlted Slnce the flow of information when performing a peeling-off step is biased 

by the intrinsic connectivity of the digitlzed grid (4- or 8-connected grid ln general) 

2 Note that Blum also studled such a deflnition of skeletal pOints based on the locus of chord midpoints 
and called them symmetric chord coordinates [Blum73a] 

3 For example. for sequential algorithms see [Hilditch69. Arcelli78. Arcelli81a. Pavlidis82a. Oi1l87. Xu87. 
Xia89], for parallel on es see [Pavlidis80a, Oavies81, Hilditch83, Favre83, Chin87] 
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Another class of algorithm uses a direct (analytic) computation of the symmetric axes 

based on the polygonal approximation of a shape.4 Here the problem of accuracy IS more 

critical for biological shape description since a polygonal approximation is often not suff,c,ent 

Objects with noisy boundaries would require very fragmented polygons with short sldes which 

could have the effect of making the results less accu rate The computation of symmetry pOints 

is generally more complex than for the other two classes of algorithms ln addition, obJects 

with holes are generally difficult to process by su ch me-thods 

A third class of algorithm uses ridge following techniques based on DIstance Transforms 

(DT's) applied to the object shape. Different DT's can be used: the city block D'/' [Rosen

feld66, Arcelli89], the chessboard DT [Arcelli85J, the hexagonal DT (on an hexagonal gnd) 

[Meyer88, Borgefors88 J, chamferingand other quasi-Euclidean DT's [Montanari68, Dorst86a] 

and the Euclidean DT [Danlelsson80, H086, Klein87, Leymarie89a]. Skeletons based on the 

city block or chessboard DT can be computed very fast and are assured to be connected 

withtn a fixed number of passes This is due to the simpltcity of the connectivity of skeletal 

pixels [Arcelli86a, Arcelli86b, Arcelli87]. The drawback is that these two /)'/"s are not accu

rate, yielding a 40% to 50% errer ln distance values Furthermore they are not as consistent 

as their Euclidean or quasi-Euclidean counterparts, in that they generate art,f,c,al SpUrlOUS 

ske!eton branches. 5 Methods based on hexagonal and quasl- Eucltdea n or Eucltdea n Dista nce 

Transforms rely on ndge following on the surface of a distance map to obtaln the skeleton. 

They produce accurate6 and smoother results, but thickness and connectlvity of the skeleton 

branches must be carefully checked. For example, gaps often occur due to the spatial quan

tizatlon of the digital grid and must be filled in, perhaps by using gradient ascent methods 

[Dorst86a, H086, Klein87]. 

4 For example, see [Montanari69. Bookstein79. Shapir081. lee82. 8rady84. Pérez87] Other. more com

plex. approximations such as arcs of circles and splines may also be used 

5 These problems are also found in the flrst-mentioned class of "peeling-off" methods due to the facl 
that most of them rely on 4- or 8-connectivity as do the city block and chessboard DTs 

6 Worst-case error of Jess than 0 3 pixel unit in the case of Danlelsson's E DT algorithm [Danlelsson80] 
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5.2.2 Advantages of Aigorithms based on Distance Mapping 

The most attractive type of algorithm to date seems to be those based on distance 

transforms. The main advantages are: 

• Only simple computations such as mask convolutions are required, this for a fixed 

number of passes which are independent of the complexity of the object boundary. 

• The skeletal pixels are labeled directly by the DT. The distance value from the 

background corresponds to the radius of a maximal osculating circle to the boundary. 

• On a computational cost performance basis, these methods yield more accu rate and 

smoothf', results than those of any other type of algorithm. 

Consequently, we have decided to study this c1ass of algorithm for shape skeletonization 

We have attempted to improve its performance in order to use it to track the shape of large 

numbers of cells in real time [Noble86J. This has lead to a new algorithm which is presented 

in the following sections 

5.3 Shape Skeletonization by Wavefront Propagation 

We now introduce a new algorithm for computing skeletons which combines the advan

tages of algorithms based on the Euclidean distance metric with certain important additional 

features: connectivity which IS implicitly ensured, integration of both contour and reglon In

formation, and a multiscale description which is immediately available. 

5.3.1 The Grassfire Transform as a Potential Surface 

Our method for computmg a skeleton of a binary image is based on an efficient imple

mentation in the discrete domaln of the original grassfire algonthm. It incorporates a physical 

analogy of grassflre propagation. This is achieved by igniting a "fire" on the object's boundary 

pOints which are the limits of the field of grass. The fire then propagates at constant speed 

withln the object. Points at which the fronts of the fire merge are retained as being on a 
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symmetric axis. These correspond to points that are at a maximal Euclidean distance from 

two or more boundary points, or equivalently, at the center of the maximal Inscribed circle 

If we consider the grassfire as a function of time, a space-time graph known as a two

dimen.~ional dynamic grassfire [Blum73a] is obtained This generates a 3-D surface, as shown 

in Figure 5.1, where the time variable is along the vertical axis, T, and where the X and 

y axes correspond to the fire front coordinates. Each (X - Y) plane at a parti~ula r tlme 

l contains the fire front at that time. We obtain a distance surface by replacing tlme by a 

distance coordinate.1 Sud a surface has a maximal directional slope of one everywhere except 

along ridges where it is undefined [Goodman64]. These ridges correspond to the locus of the 

skeleton (Figure 5.1). 

F1r. front 8t 11M. t = B 

= T 

Figure 5.1 2-D dynamic grassflre, where the vertical coordinate represents time 
or distance from the grouncl state The maximal directional slope of the obtamed 
surface, which is the reciprocal of the grassflre velocity, is everywhere one except at 
the symmetric axi .. locus (ridges), where it is undefmed Adapted from [Blum73a], 
Figure 11 

7 The reader is referred to [Goodman64] and to Appendix D (section D 2) for a mathemallcal defmitlon 
of a distance surface The 3-D surface represemation of the grassflre transform obtained by replacmg 
time for distance or height was flrst proposed by Kotelly [Kotelly63] 
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The resulting distance surface is equivalent to the distance map obtained by computing 

a Euclidean Distance Transform (EDT) on the initial figure-ground image [Leymarie89a]. A 

distance transformation on a binary image (object 0, non-object 0') produces a mapping from 

a double-valued function fI in a space SI (fI : hep) = 1 iff p E 0 and fI(p) = 0 iff p E 0') 

to a multi-valued function h in a space S2 of .dentical dimension. The mapping is applied to 

il by minlmizing a distance met rie dist(p, p'), where p and p' are two points in the space S1· 

The distance values of h are given by: 
Min 

h(p) = pl E 0' [dist(p, p')] , (5.1) 

where]J = p(-X,y) E O. Therefore, the first step in our method consists of computing the 

ED'!' of a discrete figure-ground image.8 A simple sequentiell algorithm exists for computing 

!~ f)'J"s [Danielsson80). In Appendix 0 (section 0.1) we describe a very fast implementation 

of thls algorithm which has a computational complexity comparable to the simple chessboard 

fJT 

The second step involves simulating the grassfire propagation. T 0 achieve this. we 

Inltiate an active contour, in our case a snake, on the figure boundary. A snake consists of 

an elastic curve that tends to minimize its energy by sensing the potential surface on which 

it is located. In our case the potential surface, H, is taken to be the negative of the dlscrete 

distance surface: 
Epot(p) = -h(p) < 0, p = p(x, y) E 0 , 

(5.2) 
= 0, elsewhere. 

This means that potentlal values correspond to nu\! or negative distance values It is necessary 

to mvert the distance map in this way 50 that the snake will reduce its energy by falling down 

the potentlal surface. Ground is taken to be at potential 0, the figure contour corresponds to 

potentlal values of -l, and inside the figure the potential values vary from -1 to the negative 

of the maximal possible di!>tance (Figure 5.2). We cali the space containing 3-D potential 

surfaces, lI, obtained from equation (5.2), the distance transform domain 'DT. 

Having initialized the snake on the locus defined by potential values of -l, it is then 

activated by sensing the potential surface (ignition of the fire). This is accomplished by 

8 ln our case. the flgure-ground image is easily obtained From the chain code representation of the 
boundary of an object (Chapter 4) after the image segmentation has been completed (Chapter 3) To 
do so we use a region-filling algorithm which takes full advantage of the chain code representation For 
a detailed description of such an algorithm see [T ang88] or [Ali88] 
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Figure 5.2 Example of a potential surface for a rectangular shape obtained by ta king 
the negative of the Euchdean distance transform 

observing the first directional slopes of the potential surface, H, in the X and Y directions9) 

and using a gradient descent approach (Chapter 2, section 2.5). At each tlme step ï of the 

iterative process, each snaxel position is reevaluated based on the gradient, the elastlc internai 

constraints and certain other external constraints (Chapter 2). Points on the potentlal surface 

where the snake folds into thin lines, that is, where the fire fronts merge, are retalned as the 

points of the skeleton. This occurs when the snake reaches an equilibrium, under the "steady

support" criterion, or stops moving. An example of the simulation of the grassfHe transform 

is glven in Figure 5.3. 

5.3.2 Simulation of the Grassfire Transform for Regions Containing Holes 

When applying an active contour model to planar regions that are not topologically eqUlv

aient to a disc, such as 2-D objects containing holes, a slightly more complex implementation 

of the grassfire transform is required. 

Essentlally we must define as many tire fronts as there are boundaries on the obJect. 

For each internai contour of a region, that is, each contour delimiting a hole, we need to 

generate a supplementary active contour. ID Therefore, given a binary obJect IImited byone 

9 ln the present case where H IS a distance surface, the evaluatlon of the directional slopes can be directly 
obtained from the EDT computiltion (Appendix D, section D 3) 

10 Note that sorne preprocessing of the binary object may be required to eliminate holes of an insignif-
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PoteoIJaI Surface 

1=12 1=20 1=36 

Figure 5.3 Example of grassflre propagation on a blob-like shape The potential 
surface is shown at the top right corner The dark lines superimposed on it represent 
the snake at its initial and final states The flre is ignited at time t = 0 where time 
corresponds to iteratlon The stable state occurs at t = 36 iterations This last 
picture shows the final result when the number of snaxels is increased so that the 
snake is spatially connected, that is, without any gaps 

external boundary and possibly N internai contours, where N is sorne fixed positive integer, 

we sim ply need to initialize N supplementary snakes on the potential surface, one at each 

internai contour position. Each of the N + 1 snakes will simulate a particular fire front. We 

then activate each snake in parallel a nd use the same gradient descent a pproach to simulate 

the grassfire propagation as for the case of a region without holes. Two types of skeletal points 

are then defined. First, as before, skeletal points are extracted where a given snake folds into a 

thin line. Second, skeletal points are also identified where two or more different snakes merge 

or meet each other. The final stage of the grassfire propagation also occurs when the snakes 

reach a stable state, that is, when the "steady-support" criterion is satisfied or wh en they stop 

movlng. 

Since the snake's activation and inhibition, by the use of the "steady-support" criterion, 

are dependent only on the forces applied directly to the snake itself (elasticity and external 

Îcant small size For example, mathematical morphology operations can be used to flll in holes of a 
predetermined size [Serra82] 
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constraints) and on the topography of the potential surface, but not on the presence or 

absence of other snakes in their vicinity, the actual simulation of the grassfire transform can 

be computed in a sequential fashion. This approach permits simpler Implementations on 

traditional sequential computers. Furthermore, we can activate the N + 1 snakes in any order 

since they are brought alive independently. An example of a sequential simulation of the 

grassfire transform for an annulus is given in Figure 5.4. 

o_~ .. 

1=0 1=0 

t ~ 
Polmlial Surface 

1=4 l= 6 

<0 t ~ 

Final ReaJlt 

1=17 1=17 

Figure 5.4 Example of grassflre propagation on an object containing an annular 
region. In the first column, on the left. is shown the flre propagation for a snake 
activated from the exterior boundary ln the second column is shown the flre prop
agation for a snake activated from the interior boundary delimiting the hole ln thls 
second column the result cf the flrst flre propagation is also shown as a connected 
snake (Iine of smaller width). In this particular case where the exterior and the in
terior contou r do not possess a ny protrusions, both snakes converge to the same 
solution 

5.4 Integration of Boundary Information 

....... The second building block of our method, the first being the grassfire process, IS con-

cerned with the integration of contour information within the skeleton computation. T 0 do 
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50, cr;t;cal points of the boundary or equivalently, positive curvature extrema are extracted 

from the original abject boundary. We refer to these positive curvature extrema by using the 

symbol C. Another type of critical point may exist within the interior of a shape, that is, the 

center of a maximal inscribed circle osculating 0 at a minimum of one connected set of points 

along the boundary (an arc of circle). We will consider this second type of critical point in 

detail in subsection 5.4.1. 

The snake is th en attachedll to those critical points, the G's, that will ultlmately 

correspond to the branch end points of the skeleton. It is necessary to attach the snake 

at C's ta keep track of them as branch end points and also to keep track of the complete 

branches they are part of. Otherwise. if a snake was not fixed, it would fall down along the 

ridge Critical points along the boundary define snake segments that correspond to individual 

fire fronts Figure 5.5 illustrates grassfire propagation uSlng an active contour descendmg the 

distance map of a rectangular shape and initlally fixed at the positive curvature extrema. 

The Idea of fixing branch end points at positive curvature extrema is justified by the 

fact that at these points fire propagation collapses right at the start of the grassfire process 12 

The extraction and use of positive curvature extrema as part of the skeleton computation 

was previously rcported and used in "peeling-off" methods [Arcelli81b]. The major difference 

here is we only need to extract positive curvature extrema on the initial boundary of the ob

ject. Curvature extremum extraction permits us to adopt a multiscale approach for generating 

skeletons, as previously proposed in [DiIl87], which has the salutary effect of elimlnatlng noise 

perturbations on the boundary. We have described in detail in Chapter 4 and in other publi

cations [Leymarie88, Leymarie89b, Leymarie89d] a new method, called CUfvature morphology, 

for extracting curvature features within the framework of a multiscale representatlon. In the 

remamder of this section, we emphasize its application to shape skeletonization. 

Once the curvature features are extracted (Chapter 4, section 4.3), a skeleton represen-

11 By "attached" we imply that the snaxel is pinned to the potential surface at the spatial position of 
the critical point using an external force This is achieved using the so-called spring model (Chapter 
2. section 2 5) Furthermore, a tangent discontinuity (Chapter 2, section 2 5) may be placed at that 
snaxel to en able the snake to easily fold along a ridge starting from the critical point 

12 The same idea applies to objects with holes Every boundary delimiting a hole is processed to extract 
its signiflcant positive curvature extrema at which a snake is attached. 
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o 

l 

t=20 

l 

t = 12 t=2A T=01 

Figure 5.5 Example of a grassflre propagation on a rectangular shape using an 
active contour model At ignition of the flre (i = 0) the snake is attached at the 
four positive curvature extrema labelled q, C2' C3 and C4 emphasized for display 
purposes Time t corresponds to iteration The stable state occurs at l = 24 
iterations The last plcture shows the final result when the number of snaxe/s is 
increased 50 that the snake is spatially connected 

tatlon at multiple scales can be obtained by employing different criteria for the signiflcance 

of positive curvature extrema. Our own criteria for significa nce are based on both maximum 

relative curvature amplitude and region of support. The latter addresses the Issue of whether 

a curvature extremum is sufficlently Isolated from other nearby curvature features (Chapter 4, 

subsection 4.3.3). Figure 5.6 provides an example of the implementation of grassflre propaga

tion cou pIed with positive curvature extrema extraction at two different scales. 

5.4.1 Fire Front Propagation from Circular Arcs 

""'" There exists one case where the curvature extremum cnterion is insufficlent for deter-

mining the branch end node. This is the case of boundary segments which consist of arcs of 
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(a) t = 42 (b) t = 36 (c) Potential Surface 

Figure 5.6 Skeletons obtained from grassfire propagation combined with positive 
curvature extrema extraction at two different scales ln (a) the four most signiflcant 
C's were retained ln (b) only the two most signiflcant C's were retained ln the 
latter case, a stable state is reach earlier because the flre fronts are slmpler. TimeT 
corresponds to iteration 

circles13 that have their center of curvature situated within the interior of the object, being 

also part of the skeleton (i.e., being a symmetry point), and furthermore being simultaneously 

an extremity of a ridge of the distance surface (i.e., being the end point of a skeleton branch). 

A simple procedure will be needed to stop fire propagation at the c10sest ridge point of the 

distance surface. Due to the uniformity of the maximal directional slope of the potentlal sur

face, a nd of the gradient descent technique used to update snaxel positions, we are assured 

that snaxels ignited on an a rc of a circle will reach the c10sest ridge points. This follows from 

the fa ct that snaxels crawl down the distance surface following the direction of maximal slope. 

It is easily shown that this direction is along a normal or a radialline to a boundary point For 

ail boundary points such lines necessarily lead to the nearest ridge point due to the minimal 

distance constramt of equation (5.1). Blum called these lines of steepest descent, leading 

necessa nly to symmetry points, pannormals [Blum 73a].14 

During fire propagation, it 15 necessary to check snaxels initially ignited on an arc of a 

13 We note that these arcs of circles are readily extracted using the morphological curvature scale-space 
representation (Chapter 4) 

14 Matheron used a similar concept where the normals or radial lines to the boundary are limited in their 
extent by the skeleton, that is, they emerge from the boundary and terminate at a symmetry point 
Matheron called such line segments edges [Matheron88] 
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circle to inhibit the fire propagation as soon as a ridge is reached. This is required to ensure 

that the end of the skeleton branch which corresponds to the center of curvature of an arc of 

circle on the boundary is retained in the case of a ridge starting with an increaslng dlrectianal 

slope, that is, a skeleton branch consisting of increasing absolute distance values with regard 

to the branch end. In this case, if a snake were not fixed it would continue tu fall down alang 

the ridge as shown in Figure 5.7. With the snake model, one way to check if a snaxel has 

reached a ridge is ta examine the directional slope which is used to actlvate the snake. If this 

slope is lower than one (i.e., the snaxel is on a ridge) or if it changes abruptly in direction (1 e , 

the snaxel went across a ridge), then we are in the vicinity of a ridge point of the potentlal 

surface (see Appendix D, section D.3 for more details). 

.. ' .............. 
........... •••• u .......... . 

" . 
... \ 

, ! 

i "" / \. l'4, , 

'. .,/ ..... , -, ", -..... """ -....... _ .... . 

(a) t = 4 

(b) l = 24 

Potentlal Surface 

Figure 5.7 Example of flre propagation on a shape made of two circular arcs Jomed 
by straight lines CAl and C A2 are the centers of the arcs ln the neigh borhood 

of CAl the ridge is made of increasing absolute distance values as shown by the 

potential surface If the snake IS attached at CAl the true skeleton is obtained as 

shown in Cb) Otherwise. the snake shrinks as shown in Cc) 

However, an even simpler procedure can be used to efficiently detect a centerof curvature 

which is also a symmetry point and an end of a skeleton branch Let us first examine pOints 

which are simultaneously the center of curvature of a circular boundary arc and a symmetry 
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poi nt. We will refer to these points by using the symbol C A. 15 We note that the following 

two properties are shared by snaxels that should uhimately be merged at a CA point. 

(i) From curvature morphology analysis, we can initially identify the snaxels on 

an arc of circle and thereby create a snake segment or fire front. We denote this 

snake segment SA. 

(ii) During the grassfire propagation, snaxels of SA should get closer as the number 

of iterations progress. 

Point (ii) arises from the fact that pannormals to the boundary arc SA ail merge at one 

point, the center of curvature of SA. Since along any pannormal the slope of the potential 

surface is maximal, snaxels follow such directions and ultimately converge to one point if such 

a point exists ln the interior of the object. This point of convergence is CA. Therefore, we 

propose the following extraction procedure for CA points which are also end points of skeleton 

branches' 

• If the snaxels of segment SA converge to one single point, CA, of the object 

interior 0, then: 

(a) CA is a ridge point (ma y be verified directly on H). 

(b) CAls the end of a skeleton branch if the snaxels that converged at its location 

are ail constituents of a single tire front, namely of SA. In other words, CA becomes 

a pOint at which the fire front SA collapses and gives birth to a symmetric axis. 

(c) We consider C A as a critical point like the C's (section 5.4). Therefore, the 

snake should be attached at CA, and, optionally, the number of snaxels forming 

the fire front SA can be reduced to one single snaxel. 

We now have ail of the elements required to obtain a skeleton made of merged tire fronts 

15 Note that a CA point, although being by deflnition a symmetry point, does not necessarily form the 
end of a skeleton branch (e g . think of an object with a "rounded-l" subpart or knee) Blum called CA 
points (mite contact symmetry points [Blum73a, Blum18] to emphasize the fact that they correspond 
to maximum inscribed circles which osculate the boundary at connected sets of contour points. 
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where the fire propagation is modeJed and simulated by an active contour model. 16 The next 

stage in skeletonization consists of creating a graph representation of the skeleton, a step rarely 

considered in the literature (but see [Blum78, Pavlidis80b, Montanvert86, Leymarie89a)) This 

is the subject of the following section where we propose a method which takes full advantage 

of the ensured ccnnectivity of our active contour mode!. 

5.5 Graph Representation 

The connectivity of our skeleton obtained by fire front propagation is ensured due to 

the internai constraints of the active contour model. l1 Thus, we can easily create a graph 

representation of the skeleton in terms of branches, end nodes, branching nodes as weil as 

relations between these elements (i.e, links). 

The graph is generated at the termination of the propagation process which is modeled 

by the snake segments (Figure 5.8). These are completely connected and have no gaps. The 

actual curve approximation to the snake can be easily improved by increaslng the number of 

snaxels once a "stable" skeleton has been obtained. Otherwise InterpolatlOll by straight hnes 

can be used if one is not looking for high spatial accuracy To obtain the graph representation, 

we first label each individual fire front, that is, each individual snake segment S' deflned 

between two consecutive cntical points (Figure 5.8). Critical points may be of two kinds, 

positive curvature extrema on the boundary, C, or the center of curvature of circular boundary 

arcs, CA, that map to ends of skeleton branches. 

The traversai of the snake segments from an initial curvature extremum (Iabelled (.'1 in 

Figure 5.8) is done by associating pairs of snaxe/s of different snake segments that correspond 

to the same skeletallocus. For example, in Figure 5.8 snaxels of both the first segment (label 

1) and the last segment (label 4) should be found at each skeletallocus on the flrst branch 

16 More detailed implementation issues are considered in Appendix D 

17 As mentioned in subsection 52 1, methods for skeletonization based on ridge following on an Euclidean 
or quasi-Euclidean distance map do not, in general. directly produce a connected skeleton This 15 

because distances are evaluated only at integer coordinates 
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CI C. c. C z 

3 
c. Ca c. Cs 

(a) l = 10 (b) l = 24 

Figure 5.8 Example of fire front labeling used to obtain a graph representation of 
the skeleton of a rectangular shape The points q. C2. C3 and C4 are "critical 
points" which are used to attach the snake Four snake segments Si. S2. S3 and 54. 
are deflOed by the four critical points in (a) The direction of traversai is indicated as 
clockwise ln (b), flve "branches" bl' b2' b3' b4 and b5. are defrned by flve pairs of 
snake segments, that is SI-54, Sl-S3. Sl-S2' S2-S3 and S3 -S4' respectively 
Frnally. "branch nodes" are deflOed where three or more snake segments meet Here 
nI and n2 are the junction of snake segments SI - S4 - S3 and SI - S2 - 53, 
respectively 

(e g., bd.18 This will be so until a point is reached at the branch where more than two 

labels are found. This point corresponds to a branch node (e.g .. nt). The traversai can then 

be pursued to identify other branches; for example, the b/'anch consisting of pairs of snaxels 

labelled 1 and 3 in Figure 5.8. The traversai terminates when the initial snaxel is reached. 

Four simple rules can be used to generate the graph 19 . 

• Each critica 1 point (C or CA) corresponds to a n end node. 

• Each branch point consists of two snaxels from two different tire fronts or sna ke 

segments (5 or 5 A)' 

• Each branch node consists of three or more snaxels from three or more different 

tire fronts. 

18 ln general, snaxels of different snake segments will overlap However, because we are using a digital grid 
to simulate the grassflre transform, ridges may be of thickness two (pixels) rather than one Therefore, 
snaxels of different snake segments may not always overlap but rather be (connected) neighbors A 
simple matching procedure then needs to be defmed by taking into account the cases of ('Iverlapping 
and connected nelghbors and using the spatial connectivity of the snake segments 

19 The same rules apply for objects with holes 
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• Links, that is the order relationship between branches are defined at branch nodes 

during the traversai of the snake. 

Branches are processed twice by traversing ail of the snake. However, this can be altered 

50 that the pairs of snaxel~ forming branches are visited only once. 

5.5.1 Graph Pruning and Branch Significance 

Not ail the branches of the skeleton are actually significant. 50 far the branches ter

minating at an end node have been generated based on the curvature criteria discussed in 

section 5.4 or based on the extraction procedure of center of curvature CA discussed in sub

section 5.4.1. In the case of the branches generated from positive curvature extrema, (.', If 

the thresholds on relative curvature amplitude and region of support were relaxed, we mlght 

obtain spurious branches. However, it is possible to evaluate the skeletal branches on another 

basis, that is, by considering the ridge support along the branch 

We examine ridge support computed at each skeletal pixel by looking at the local de

formation introduced by the ridge on the distance surface at that skeletal pixel position [Ley

marie89a]. If the deformation is limited in its spatial extent after a certain point along the 

aXIS bral.ch, then it is not "signlficant". The use of ridge support as a branch slgnlficance 

criterion is Justified by the fact that noise or sma Il deformations on the object contou r generate 

smalt deformations of the distance surface along the corresponding axis branch The relatIve 

number of skeletal pixels that lie on that part of the ridge that is changing slgnlflcantly can 

be used in combination with the curvature significance measures to dec,de whether or not a 

branch should be pruned from the graph (Figure 5.9). 

The notion of ridge support based on the local deformation rntroduced by a rrdge on 

the distance surface is an intuitive or qualitative formulation; we need an easily computa ble 

measure to apply such a notion for graph pruning. For this let us first go back to the work 

of Blum who first proposed the use of the velo city rf skeleton branch formation, that is, the 

speed at which fire fronts merge, as a measure of the "smoothness of [fire] fronts" as they 

collapse at symmetry points [Blum64, Blum73a]. We will refer to this veloclty of formation 

of a skeleton branch or symmetric axis by the symbol VA' 5moothness, as Blum refers to It, 

corresponds to our idea of local deformation of the distance surface. The distance surface 
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c. 

(a) (b) (c) Potential Surface 

Figure 5.9 Example to show how "ridge support" can be used as a "branch signifl
cance criterion" ln (a). ail possible branches have been generated Branch segments 
made of skeletal pixels Iying on a ridge that introduce very small deformations on the 
distance surface are shown as dotted lines. These dotted lines represent symmetry 
points for which the slope of the symmetric axis MA is greater than a fixed threshold 
(MA> M Amax' MA < 1. see text) ln (b). only the branches with high ridge 
support are kept 

is ln fact a kind of photographie memory of the complete grassfire propagation. Where fire 

fronts progress "smoothly" the distance surface is locally smooth. This corresponds to points 

of maximal slope of one. Where fire fronts collapse or merge with eacn other tne distance 

surface deforms and a ridge is created. The relative lack of smoothness of the deformation 

mtroduced by merging fronts depends on the angle at which they meet. Blum called sud an 

angle the generating angle IBlumM, Blum73a]. The sharper the generating angle, the greater 

tne velocity of formation of the symmetric axis, VA, and the local deformation of the distance 

surface The limlting case are for paraI/el fire fronts which merge at an infinite VA and create 

a maximal deformation of the distance surface (Figure 5.10). 

ln the continuous domain, VA can be defined as the time derivative of length along a 

symmetric axis, lA: 

VA - âlA 
- Bt . 

ln the discrete domain we can approximate VA by finite differences: 

(5.3) 

(5.4) 

where lAis the Euclidean distance of the discrete path along the symmetric axis from one 

symmetry point to another. But, since we are using a distance surface to "memorize" the 

complete grassfire we can replace time by the dista nce height of the distance surface obtained 
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x 

o~ 

(a) (b) Potentlal Surface 

Figure 5.10 The velocit~, offormation of a symmetric axis and ridge support ln (a) 
are shown fire fronts generated by two isolated points, Fi and P " for an unlimited 

1 
field of grass. The flre fronts are illustrated as an alternating wave pattern The 
vertical centered line between 11 and P , represents the symmetric axis (S.A) of 

1 
inflOite length, of the grassflre transform The symmetric axis is flrst created at a 
midpoint, RO' on a straight line segment joining the two excitatory dots, with an 
infinite speed (VA(RO) = (0) As the symmetric axis grows, its veloclty decreases 
asyrnptotically to the space 'Jelocity (VA -+ 1) For example. VA(Rl) = J2 Note 
that as one travels along the symmetric axis, away from the initiai symmetry pOint, 
the "generatmg angle" (see tExt) increases asymptotlcally from a completely closed 
angle of 0°, at RO' to a completely open angle of 1800 For example. at III the 
generating angle equals 900 Adapted from [Blum641. Figure 1 ln (h) IS shown 
the potential surface representation of this grassflre transform The only ndge on 
this surface correspond to ~he vertical S.A between 11 and P, Note how the 

1 
deformation produced by merging flre fronts (in (a)) varies along the .'J·A ln 
correspondence to the symmetry point Ra the deformation is maximal, at this point 
the surface folds with an angle of 900 The further away you are from nO along th/! 
S.A, the smoother is the deformation 

from the Euclidean Distance Transform, EDT: 

- lA 
VA = -fj.-E-D:"':-'T(-=l A=-) (5.5 ) 

As we have seen, in the case of parallel merging fire fronts, VA may reach infinite values. 

Furthermore, VA is always greater than one, that is, it is always greater than the space 

propagation velocity of non-merging fire fronts [Blum64, Montanari69]. Therefore, rather 
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than using VA directly as a measure of ridge support we propose20 to use its inverse, that is, 
- -1 -- -1 
V A (0 ~ V A < 1). 

ln fact, it is easily shown that the inverse, V A -1, is nothing more than the amplitude 

of the directional slope at a symmetry point in the direction of the tangent to the symmetric 

axis. 21 We refer to this slope amplitude by using the symbol MA: 

M
l l:1EDT(lA) 

A=== . 
VA lA 

(5.6) 

At A varies from null values (for parallel merging fronts) to unitary values at which no symmetry 

pOint can exist (i.e., MA < 1; see Appendix D, subsection 0.2.1). Fixing a threshold, MA max ' 

on the highest acceptable values for MA (MA < MArnax < 1) provides us with a simple 

quantitative criterlon for graph pruning on the basis of ridge support (Figure 5.9). 

Finally, we note that the slope amplitude at a symmetry point, MA, provides a good 

flrst approximation to the boundary-axis weight of Blum and Nagel [Blum78]. The boundary

axis weight is another kind of branch significance measure assessing the "importance of the 

[symmetry points in] representing the boundary" [8Ium78]. Essentially, the boundary-axis 

wcight is defined as a "Iimiting ratio of boundary length to symmetric axis length". Because 

thls measure is defined in the continuous domain within the framework of differential geometry, 

It is in general difficult to evaluate it accurately and use it for practical applications. In contrast, 

MA is easily evaluated in the discrete domain and provides for accurate results as a consequence 

of our use of an Euclidean metric. It can also be shown that MA is closely related to the 

boundary-axis weight and is even equivalent to it for straight portions of a symmetric axis and 

for symmetry points with infinite VA. 

20 Montanari has previously used V A -1 as a critericn for branch signifrcance [Montanari68] 

21 ~.ote that the directional slope of a symmetry point is not defrned (geometrica"y) on the same basis 
as the directional slope of the distance surface (see Appendix D) ln fact, at symmetry point locations, 
the directional slope with respect to the distance surface is undefrned (i e , the surface is loca"y non
regular) Rather the directional slope of a symmetry point is defrned with respect to a 3-D curve, the 
symmetric axis, rnstead of a 3-D surface 
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5.6 Advantages and Variations of the Proposed Skeletonizatiol1 
Aigorithm 

ln this section we flrst summarize the main advantages of our algorithm for skeletoniza

tion of planar shapes and then present extensions which show the flexibility of our approach 

5.6.1 Advantages of Our Method 

ln addition to the benefits of using an Euclidean distance mapping, our algortthm for 

shape skeletonization possesses new features and has advantages over previously reported 

algorithms, as described below. 

• The integration of boundary information permits us to reduce noise sensitivity and to 

obtain an explicit multiscale description in terms of boundary convexity significance 

• Our skeletons are always connected due to the nature of the active contour model 

we have used. We are actually fltting elastic strings to a potential surface, wlth these strings 

being implicitly connected due to their internai constraints. 

• Combining convexity significance with ridge support along a skeleton branch permlts us 

to further prune the skeleton graph, if necessary, thereby rendering skeletons with no spurious 

branches. 

• Due to the connectivity of our skeleton model, a graph representation can be eastly 

obtained. A hierarchical model of the object could be built by integrating the convexlty 

significance and ridge support of a branch with the gra ph representation 

• The active contou r model permits "friendly" user interaction when req Ulred. For 

example, in certain cases it might be useful to observe the effect of different curvature criteria 

on the multiscale representation. Also, we may wish to compare different kinds of skeletons that 

can be obtained: SAT-like, PISA-like [Leyton881, or augmented skeletons possesstng branches 

terminating at concavities (see subsection 5.6.2). New branches can be added simply by using 

a spring model to attach the snake to particular points on the distance surface Conversely, 

branches can be deleted by sim ply removÎng the correspondÎng sprlOg forces 
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• The active contour model al50 provides us with a natural way of defining dynamic 

skeletons. "Oynamic" refers to skeletons that evolve with time. This is especially important 

when processing nonrigid objects such as cells [Noble86, Oi1l87, leymarie89a]. With an ap

propriate sampling rate, senerally small deformations will occur from frame to frame and we 

can use the previously computed skeleton (at time l - âI) to initialize the snake on the new 

distance surface at time I. A stable skeleton is th en rapidly obtained since the snake is already 

close to the optimal solution. If larger deformations occur, that is, new curvature extrema 

appear or old ones disappear, we can use the previously computed skeleton as an initial guess, 

but must then add or delete spring forces to generate or drop branches, respectively (Figure 

5.11) 

• 

(a) (b) (c) 

(d) (e) (1) 

Figure 5.11 Example of the use of dynamic skeletons for the shape representation 
of a living cell in two successive frames, 10 and fI Springs used to fix the snake at 
curvature extrema along the boundary are Shown by dots ln (a) is shown the cell 
shap e at frame 10 with its skeleton (stable state reached after 35 Iterations) The 
new cell shape is shown at frame fI in (b) to (f) ln (b), the snake is initialized at 
the previously computed skeleton position The effect of the removal of ail springs 
correspond mg to the curvature extrema found at frame lOis shown in (c) ln (d), 
two new springs are used to attach the snake to the two most signiflcant curvature 
extrema An intermediate stage between (d) and the final result is shown in (e) 
Finally, in (f) we show the new stable state of the snake reached after only 15 
iterations 
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• In comparison to the fastest known seriai algorithms for skeletonization of 2-0 shapes 

based on distance mapping, our algorithm has comparable numerical complexity Our Imple

mentation of the Euclidean distance mapping is as fast as the chessboard distance mapplng 

(Appendix 0). The next step, grassfire propagation using the active contour model, necessl

tates less computation than most other methods. These require a "visit" to each pixel in the 

distance map to detect ridges, followed by an additional pass over the distance map to fill-in 

gaps between detected ridges ln general, a "visit" to a pixel of the distance map implies an 

access to the eight neighbors of this pixel. In our case, by using snake segments bounded by 

critical points, C's and CA 's, with a low spatial sampling rate, that is, using few snaxels, and 

due to the implicit connectivity of our active contour model, a solution is found ln fewer steps 

(see also section 5.6.2 and Figure 5.12). On the other hand, our method requires a supple

mentary step when compared with most methods, namely the extraction of curvature extrema. 

This step can be accelerated by using techniques such as the HOC to filter orientation data 

along the boundary (Chapter 4) and also by UStng the notion of ridge support to obtain a 

simple curvature significance criterion. Parallel implementation of our algorithm could also 

be achieved since both the EDT and active contour model permit a parallel computation 

Furthermore, in addition to being fast, our method is more accuratt~ and provldes a simple 

wayof building a graph from the skeleton. 

One of the most interesting advantages of our method is the flexibility that the active 

contour model provides in order to compute skeletons in different or more efficient ways This 

idea will become clearer in the next subsection. 

5.6.2 Variations of the New Aigorithm 

Since ail of the information about the skeletallocus is embedded or "memorized" in the 

distance surface and since we know the location of the branch ends by boundary curvature 

analysis, we can alter our active contour model to obtain even more efficient ways of computlng 

a skeleton . 

• The first obvious thing one can do is to compute an approximation of the grassflfe 

propagation by having a low spatial sampling rate between knot points, G's and CA 's. Once a 

stable solution is reached, one can increase the number of snaxels to obtain a better solution. 

This a pproach can dra matically reduce the computational time since the mitial propagation 
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step with few snaxels brings one close to a solution in a few short iterations; where the time 

to perform one iteration is proportional to the number of snaxels. Subsequently, only a few 

iterative steps using a large number of snaxels are necessary (Figure 5.12). 

(a) l = 15; 82 snaxels (b) l = 20; 164 snaxels (c) 1= 25; 328 snaxels 

Figure 5.12 Example of a grassflre propagation in three stages, with an increasing 
number of snaxels ln (a), a flrst coarse solution is obtained after 15 iterations ln 
(h), a more refln~d solution is then rapidly obtained by increasing the number of 
snaxels ln (c) i~ ,} ,wn the final result for a continuous snake 

• Another improvement to reduce time complexity is to check the formation of the 

symmetric axes as fire fronts or snake segments merge, If snaxels of different snake segments 

overlap or are connected neighbors they create a new symmetry point thereby implYlng that no 

further processing is required for these snaxels. This further implies that as fire fronts merge, 

the grassfire propagation will move faster in terms of computer time since fewer snaxels will 

have to be updated. The best way to implement such a grassfire simulation is by "shortening" 

the snake as snaxels from different snake segments merge. The removal of snaxels can be 

performed in two ways: introducing position discontinuities by breaking the snake in parts 

(Appendix A) or reinitializing shorter snakes, one for each shortened snake segment or fire 

front . 

• Different kinds of skeletons can be obtained by using boundary information. For 

example, if one locates the center of curvature of arcs of circles along the boundary, SAT-like 

skeletons are obtained. If instead, end nodes are placed at the middle of these arcs of circles 

(i.e., on the boundary), PISA-like skeletons are generated . 

• Our method seems to be naturally extendible to 3- D problems. In this case, the active 

contour model becomes an active surface model [Terzopoulos87d). The potential surface 
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becomes a potential volume and is computed using the same EDI' algorithm, but thls tlme 

for 3-D objects (for examples of DT's in 3-D see [Okabe83, Borgefors84, Tsa084]) Curvature 

information can also be used, this time by looking at the extrema of princlple curvature of the 

bounding surface22 defining the shape of the object [Yullle87]. The physical analogy becomes 

one of wave (surface) propagation in space instead of flre propagation on a planar surface. 

Loci where the waves merge define the skeleton in terms of three types of geometrical entltles. 

points, curves and surfaces . 

• Our method can be used as a refinement procedure for other fast but less accu rate 

algorithms. For example, using Arcelli and di Baja's algorithms based on the city block !Y/, or 

the chessboard DT [Arcelli85, Arcelli89], one obtains a connected skeleton which usually has 

many spurious branches or misses sorne significant ones due to the errors introduced by the 

use of a non-Euclidean metric This skeleton could be used a~ an initial solution for a snake 

The distance map would be recomputed usrng the EDT algorithm and a stable skeleton could 

then be rapidly obtained. The last step could consist of pruning the skeleton by examlning 

ridge support to compute branch signlficance measures as proposed ln subsection 55 1 This 

method of using a skeleton defrned on a coarse DT as an initiai guess provides a posslbillty 

of bypassing the stage involving curvature analysls to extract critical points, C's and (,'A's 

• Finally we note that an alternate sequential approach to skeleton generation based 

on the same main features we have used to implement the grassfire propagation algorrthm IS 

possible. This is based on a ndge following algorithm. The idea would be to allow snakes to 

"grow,,23 from curvature extrema towards local maxima of the distance surface Thus snaxels 

would descend along ridges of the distance surface as they are generated. Branches would 

therefore be generated one byone and the graph representatlon would be dlrectly obtarned 

However, problems might occur with the connectlvity of the generated graph Such "growing" 

snakes can also be used after the grassfire transform has been performed to segment a reglon 

into subparts For example, branches can be generated in correspondence wlth concavltles by 

22 Extracting curvature information from a 3-D surface becomes the most dlfflcult problem to solve ln 

comparison to the 3-D EDT computation and the simulation of wave propagation This mlght reduce 
the applicability of our method for 3-D objects 

23 This idea of using growing snakes has been previously reported and applled to the contour extraction 
problem in noisy images [Zucker88. David89a, Davld89b] 
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initially fixing snakes at negative curvature extrema and then making them grow by descending 

the distance surface in the steepest gradient direction. This provides a new way of segmenting 

a planar shape [Leymarie89a) (Figure 5.13). Note that since concavities generate pannormals 

which are radiais orthogonal to the boundary [Blum73a), there exists more than one direction 

(of maximal slope amplitude equal to one) for the snake to crawl down the distance surface 

when starting at a concavity. In Figure 5.13 we use the direction of the radial orthogonal 

to the average orientation at the negative curvature extremum. The "average orientation" 

may be obtained from the smoothed or averaged chain code representation of the boundary 

(Chapter 4). 

(a) Potential Surface 

(b) ( c) 

Figure 5.13 Example of the use of concavities for shape segmentation in the case 
of a shape of a cell The usual skeleton generated for the two most signiflcant 
convexities is shown in (a) Two branches are added in (b) by growingsnake segments 
from slgniflcant concavities ln (c) is shown the segmentation of the cell shape into 
its two main parts. that is, the cel! body (in black) and its pseudopod (in grey) 

5.7 Conclusion 

ln this chapter we have presented a new method for shape description of amorphous 

planar obJects on the basis of an active contour mode!. Such a model has permitted us 
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5 Shape Description Using Snakes 

to combine a class of contour-based shape descriptors (i.e., curvature features) witll their 

counterparts, a class of region-based shape descriptors (I.e., symmetry points) We have 

been careful in optimizing numerous implementation aspects of our shape description method 

We have used an Euclldean metric for optimal accuracy and the active contour model has 

permitted us ta bypass some of the discretization limitations inherent in using a digital grid 

We have performed noise fi/tering on the basis of both contour feature measures and reglon 

measures, that is, curvature ext.emum significance and ridge support, respectlvely, to obtaln 

"robust" shape descriptors We have also proposed other improvements and variations of the 

algorithmic implementation (section 5.6 and Appendix D). 

Our motivations for the design of new shape descriptors were an outgrowth of our need to 

describe the form of a cell in both the static and the dynamic cases [Noble86]. Furthermore, 

in light of the difFicu/ties inherent in the image segmentation problem (Chapter 3), shape 

descriptors are thought to be helpful to ease the segmentation and tracking of cells ln noisy 

intensity images. 

ln the following subsectlon we conclude by emphasizing the needs of cell tracklng in 

terms of shape descriptors. We also outline how the new skeletonlzation algorithm we have 

presented in this chapter should be helpful to address these needs 

5.7.1 Skeletonization for Tracking Deformable Shapes 

When tracking a deformable object such as a cell, two essential aspects of its morpho

logical description are of concern to us: the shape segmentation of a cell lOto its subparts or 

primitives, a nd the recovery of its "process-history" or, in other words, the recovery of the 

evolution of its primitives and local deformations The flrst aspect relates to the "descriptive" 

and "perceptive" problems of biological shape, and the third one, to sorne extent, to the 

"developmental problem" (subsection 5 1.1) Wlth the new tools descnbed ln this chapter we 

are capable of addressing these problems and provlding solutions to them, thereby achlevlng 

our initiai goal (subsection 5.1 3) ln the followlng paragraphs we summarize how our shape 

description method can be used ln solving "blologlcal shape problems" 

Let us flrst consider the hierarchlcal shape description problem of a cell Essentially, a cell 

is made of two types of primitives' its body or "central" shape subpart and ItS pseudopod(s) or 
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"protruding" shape subpart(s) [Noble86]. Pseudopods occur over a wide range of sizes (scales) 

and are "built" along significant or global convexities [OiIl87]. The SAT has been used in the 

past as the most efficient shape descriptor of protrusions [Youssef82, Noble86], and this for a 

continuum of scales [OiIl87]. The graph representation of the skeleton can then be used to 

segment the shape into its primitives [Blum78]. Also, the branch data along a symmetric axis 

can be used to further segment a skeleton: for example, by locating necks or saddle points 

[Montanvert86), or by using the ridge support crlterion (Figure 5.9). Furthermore, Slnce we 

have access to boundary features, the shape of an amorphous object can be segmented by 

relating concavities to the corresponding symmetnc aXIs (Figure 5.13). 

Segmentation of a shape using both boundary concavities and convexities also applies 

to the perception problem for which the outline of a shape is perceptually best summarized at 

these extrema of curvature (Chapter 4, section 4.1). As previously observed, it permits us to 

relate signtflcant concavities, where we inltiate segmentation, to the shape symmetries, along 

the symmetric axis, and, thereby, toward significant convexities. Also, our multlscale approach 

for defining curvature extremum signlficance addresses the issue of which extrema should be 

"perceptually selected" (Chapter 4, subsection 4.3.3). 

Finally, shape deformatlon in time and the evolution of pseudopods can also be favorably 

described bya skeleton-based approach. The "history" of the skeleton is used for this purpose 

For example, branches corresponding to convex deformations which persist over a long period 

of time are kept or labelled as signtficant historical events whlch have the potential to lead 

to the formation of pseudopods. On the other hand, branches which do not survive can 

oe removed from the process-history of a cell and are considered to be nOlsy events This 

suggests another meaning to noise ftltenng which should be compared to the ridge support 

and curvature extremum signiflcance critena. Pseudopod activlty can also be descnbed uSlng 

the skeleton representatlon. As the symmetric aXIs varies in ItS attributes, su ch as length and 

assoclated width function, or in comparison to other axes (e.g., pseudopod domina nce with 

respect to the cell motion [Noble86]), the process-history of the cell subpart can be recovered 

a posteriofl and predictions may be made, such as, future deformations, a nd motion direction. 

From the point of vlew of computation efflciency, our particular implementation on the basis 

of an active contour model permlts us to ease the tracking of deformations and the evolution 

of protruslOns (Figure 5.11) 
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5 Shape Description Using Snakes 

Following the path pioneered by Harry Blum, we have attained our goal, within the scope 

of this thesis, of designing and implementing a powerful shape description system particularly 

weil suited to tracking amorphous forms such as cells. We are now in a position to perform 

experiments with cell tracking in order to refine our understanding of the "social behavior" of 

cells and to achieve even more insight into biological shape problems. 
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Chapter 6 Conclusions 

6.1 Summary 

This thesis has attempted to address two types of problems associated with nonrigid 

objects deforming in the plane: (7,) image segmentation and tracking, and (ii) biological shape. 

We decided to use a new concept in tackling these problems, namely the active contour model 

or "snake". The snake model has many interesting features; one of which - its dynamic 

behavior - motivated us to explore its applicability to our needs. 

Flrst, in Chapter 2, we analyzed the snake model in detail, pointing out its limitations 

and provlding a number of improvements. The snake model has three major limitations: it 

reqUires smoothness constraints from the data, powerful initialization mechanisms, and high 

level processes to fix the numerous snake parameters. Of the few modifications we proposed 

to Improve the original snake model, two of them are seen as essential First, the different 

forces acting on the snake had to be normalized to ensure stability, and we profJosed dlfferent 

mechanisms to do so, for example, by imposing a saturation value on the slope values of the 

potential surface. Second, since the orig,inal terminating criterion of the optlmization process 

is inadequate, we proposed the "steady-support" criterion, based on a topography measure of 

the potentlal surface on whlch the snake crawls. 

Then, in Chapter 3, we apphed the snake model to the problems of image segmentation 

and tracking. Although we were successful to sorne extent in applying it to both problems, 

we gave counterexamples where failures of this method, in its present state, were unavoidable. 

T wo types of failures were detectcd. First, in the static case, due to the global nature of the 

optimlzation process and to the relatively simple "steady-support" criterlon, we demonstrated 

how the snake could miss or lose some of the details of the contour edges. Then, in the dynamic 
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tracking case, we showed how the snake was limited to following only small deformations of 

the potential surface, or equivalently of the trace of the object contour, as a consequence of 

the use of a gradient descent search technique. 

We were faced with two possibilities: try to improve the segmentation technique or 

explore other types of image analysis processes which may help the segmentation and the 

tracking. We opted for the second choice, looking at shape descriptors, motlvated by the 

results and conclusions of sorne of our predecessors [Youssef82, Noble86, Dill87). Thus, in 

the second part of this thesis we described the result of our research on shape; however, we 

were not able to extend this work to actually use the shape data to improve sE~gmentation and 

leave this for future work We studied the two complementary classes of shape descnptors: 

boundary- and region-based. Starting with the outline of an obJect, we proposed in Chapter 

4 a new method for contour segmentation. By combining linear filtenng techniques, such 

as Gaussian smoothing, with nonlinear ones derived from mathematlcal morphology, we were 

able to produce a contour segmentation technique invariant under rigid transformatIon, robust 

toward noise, and providing an explicit multiscale representation ln partlcular, we showed 

how our scale-space representatlon of curvature features of the contour was weil behaved ln 

comparison to more traditional representations based solely on Irnear filtering 

Finally, in Chapter 5, we dealt with biological shape problems by proposlng a method 

combining both contour- and region-based descriptors. This was done in an attempt to obtaln 

a more powerful representation for shape on the premise that both types of d€'scriptors pro

vided useful, and to some extent complementary, features. Our origInal solution conslsted of 

using the snake model to simu/ate the "grassfire transform" whlch implicit/y r'E'/ates contour 

features such as curvature extrema to region features such as shape symmetrles. The prinCIpal 

characteristics of our shape analysis method are the following' use of the Euclidean metrlC, 

invanance under rig/d transformations, a multiscale representation, an expliclt relatlonship be

tween contour and region features permittrng us to segment a shape into Its pnmltive subparts, 

a definition of significance measures for both types of shape descriptors - s!.Jch as the "region 

support" of curvature extrema and the "ndge support" of skeleton branches. 
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6.2 Future Directions 

6.2.1 Furthcr Improvements ta the Snake Madel 

The snake model requires further improvements. For one, convergence should be looked 

at carefully. Under which precise conditions will the snake converge to a desirable solution? 

Can we define more rigorously what a "desirable solution" is, other than just saying that it is 

the bottom of the "best" valley? What maximum deformations of the potential surface, fI, 

should the snake be able to follow or track? Our insights into this method for the extraction 

of curves or contours - insights gained from our understanding of the nature of the failures 

we were faced with - suggest that one should seek appropriate 3-D local shape descriptors 

of II. 

The snake model is used to recover the bottom of certain valleys of H, but this is done 

by simply relying on a gradient descent search technique. Furthermore, the bottom of a valley 

is characterized simply by minimal height or, equivalently, some gravitational potential energy 

measure. It seems that one should look at how to best characterize a valley or ridge of H. 

For example, measures obtained using mathematical morphology for a 3-D surface such as H, 

ln slmilarity to the measures obtained in Chapter 4 for the 2-D curve given by the graph of 

k(T(Ti) , may provide a useful solution. 

Another avenue which may be worth exploring is in the area of differential geometry for 

surfaces [doCarm076]. For example, the topography or shape of the bottom of a valley may 

then be efflclently characterized by its local curvature measures (e g., Gaus:':':1, mean and 

prinCipals curvatures). 

Besides modifying the way the snake senses the surface H on which it crawls, another 

Issue is to consider more sophisticated filtering schemes for obtaining proper potential surfaces. 

We have expended some effort in obtaining families of potential surfaces by the use of the 

HOC technique. Yet, some of the filtering stages could be easily refined. For example, instead 

of using the Sobel kernels in order to derive the GGHDC family, or, equivalently, the gradient 

maps of a multiscaled image, other filtering kernels or techniques may be more appropriate. 

However, we suspect that su ch an approach would likely only diminish the number of instances 

of failures, such as the ones di5cussed previously, but would still not provide for a completely 
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reliable segmentation technique. 

6.2.2 Shape Analysis 

On the subject of shape, many experiments now need to be conducted. Specifically, the 

dynamics of shape deformation should be studied and we believe that the shape descriptors 

we have proposed in this thesis would be useful in this regard. For example, in Chapter 5 we 

proposed to examine the evolution of skeletons to characterize the process-histary of a nanngid 

shape deforming in a plane. An interesting avenue to explare n1ight be one of producing a 

shape-history-space indicative of, for example, the survival in time of shape subparts, skeleton 

branches, or contour curvature features. Consider skeleton branches survlving far a short penod 

of time; these could be discarded from the process-hstory analysis uSlng a shape-hlstory-space 

Such a dynamic representation for shape primitives shares strong simllarities wlth a "scale

space". In the scale-space paradlgm one tracks features along the scale axis ta determine thelf 

significance. Instead, in the case of the shape-history-space, features are tracked along the 

time axis. Of course, the two should be combined into one composite representation. 

Another issue that should be explored is the subject of how to efficiently recompute 

distance maps for objects or regions undergoing small localized defarmatians. At present, as 

soon as an object defarms, a complete distance map must be recomputed. It would be much 

more advantageous to relabe/, if possible, only those object pixels ln the viclnity of a shape 

deformation, rather than ail object pixels. 

Finally, as pointed out in Chapter 4, when processing an object's contaur to retrieve sorne 

approximation of its discrete curvature function, the amount of smoathlng reqUired needs to 

be specified in sorne strict way. We have not addressed this important issue in thls thesls 

What we think IS needed though is sorne method that fixes limlts on the requlred amaunt of 

smoothing based on the nature of the datd (e.g., image resolution and object perimeter) A 

minimum level of smaathing, far partial noise removal, mlght be fixed based on the nature 

of the discrete contour orientation generation method, such as the chain code A maximum 

level might be fixed by deciding how much averaging should be permitted in order ta avoid 

the merging of neighboring peaks of the curvature functian. 
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6.2.3 Bottom-Up and Top-Down Approaches 

As was our original intention, we have considered in this thesis only a bottom-up approach 

to the computer vision problems we were faced with. That is, we have focused our attention 

on only the essential first processing steps of image segmentation and shape description, in 

that orner. Although we have suggested that, for example, information about shape could be 

used in a "feedback loop" to help the segmentation processes, we have not yet explored this 

other avenue. 

The need for relevant domain knowledge about our specifie task, cell tracking, may also 

become of interest, as the problems we are faced with, sud as the specifie failures of the 

snake model, become more precise and weil understood. 
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Appendix A. Inserting Discontinuities Along the Snake 

ln this appendix, we make use of the notion of computationa/ mo/ecu/es discussed by Ter

zopoulos [T erzopoulos83, Terzopoulos88a] which give an explicit visualization of the li n ks that 

exist between snaxels and which are useful to understand the effect of Inserting discontinuities 

along the snake by removing sorne of these links. 

A.t Computationa' Molecules for the Snake 

Let us reconsider the discretization of the stiffness constraints in the equations of motion 

of the snake. Assuming a constant step-size (j,s = 1, equation (2.18) is rewritten as follows: 

-!(Wl(S)VS(8,t)) + !22(W2(8)VSS(S,t») ~ 
wl (8) [ïT(s,t) - v(s - 1, I)] + 
WICS + 1) [v(:s,t) - v(:s + 1,7)] + 
W2(:S - 1) [v(:s - 2,1) - 2 v(:S - 1,1) + v(s, t)) -

2W2(:S) [v(:s - 1, I) - 2 v(:S, I) + v(:S + 1, I)] + 
W2(:S + 1) [v(:S, I) - 2 v(:S + 1, I) + v(:S + 2, I)] . 

(A.l) 

This equation can be understood as a nodal equation defining the elasticity links that exist 

at each snaxel or node, s, of the snake. The terms on the RHS of equation (A.1) can 

then be represented graphically as a set of computational molecules (Figures A.1 and A 2). 

These molecules are made of atoms, indicated by ellipses, representing the coefficients at each 

nodal position, v(s, I), in equation (A.l). Between these atoms are links which represent the 

adJacency relations between them. Each molecule is positioned with respect to a particular 

atom indicated bya dark contoured ellipse. This atom corresponds to the snaxel at which each 

term of equatlon (A.1) is defined Each snaxel possesses such a "molecular" description of its 

local interaction wlth its neighbors. Figure A.l.(a) shows the two string mo/ecu/es, SMI and 

5M2, representing tension links between snaxels (i.e., first two terms on the RHS of equation 

(A.1)). Figure A 2.(a) shows the three rod mo/ecu/es, RMl, RM2 and RM3, representing the 

rigidity links between snaxels (i.e., last three terms on the RHS of equation (A.l)). 

The formation of nodal equations at any snaxel scan be obtained by mo/ecu/ar summa

tion, where the primitive molecules combine centered at this snaxel :s. Coincident atorns sum 
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A. Inserting Discontinuities Along the Snake 

~ SM! 

5-1 

SM2 ~ E~:3> 
s 6+1 «-1 s 

(a) ( b) 

Figure A.l String molecu!es for the snake mode! ln Ca) are shown the two stnng 
molecules SM! and 5M2 deflOing the tension links. In (b) is shown the composite 
string molecule centered at a snaxel S obtained by the molecular summation of the 
molecules in (a) 

~RMI 

RM2~ 

ï -1 i Il ;-a i - 1 SIl 

(a) ( b) 

Figure A.2 Rod molecules for the snake model ln (a) are shown the three rod 
mo/ecules RM!. RM2 and RM3 def/Oing the rigidity links ln (l') is shown the 
composite rod mo/ecu/e deflned at a snaxel S obtalOed by the molecular summatlon 
of the molecules in (a) 

S + 1 

together their coefficients. In Figure A.l.( b) is shown the composite string mo/ecu/e obtal ned 

by molecular summation of the primitive string molecules SM! and 5M2. ThiS illustrates the 

fact that tension constraints on each snaxel are symmetrically distnbuted around them and 

are only influenced by the two direct neighbors ln Figure A 2 (b) is shown the composIte 

rod mo/ecu/eobtained by molecular summation of the primitive rod molecules RMI. RM2 and 

RM3 This i"ustrates the fact that rigidity constramts at each snaxel are also symmetnca"y 

distributed around them, but this time on a larger neighborhood made up of the four direct 

neighbors. By molecular summation of both the composite string molecule and the LOmposlte 

rod mo/ecule, the nodal equation (A.l) is recovered (Figure A.3). Such a composite molecule 

exists at every snaxel or node along the snake. 
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A. Inserting Discontinuities Along the Snake 

6_11 i-1 i.1 1.. a 

Figure A.3 The nodal equation obtained by molecular summation of both the com
posite string molecule and the composite rod molecule 

Computational molecules help us visualize the interactions between snaxels and how 

the stiffness weights, or atom coefficients, are distributed at each snaxel. The computational 

molecules are also useful for visualizing and implementing the introduction of discontinuities 

along the snake. Discontinuities which are breaks in the links or constraints between snaxels 

require mo/ecu/ar inhibition rather than molecular summation. Wherever a link is broken or 

removed, the molecular summation of the corresponding primitive molecule is inhibited. Such 

breaks correspond to setting the concerned tension, Wl('8), and/or rigidlty, W2(S), constraints 

to zero ln the two following sections, position and tangent discontinuities are defined uSlng 

molecula r inhibition in order to obtain the modified nodal equations. 

A.2 Introducing Position Discontinuities 

A position dlscontinuity between two snaxels ('8 = i and '8 = i + 1) consists of a 

complete break of ail the links that relate these snaxels, that is, the snake is cut. Therefore, 

bo~h the tension and rigid ity constra i nts or molecules existing between these two snaxels must 

be inhibtted when constructing the nodal equations. Since each snaxel has a nodal equation 

deflned on ItS four direct neighbors, four snaxels, at nodes s = i -1, i, i + 1 and z + 2, share 

sorne links between nodes 'l and i + 1. At node s = i - 1, one rod molecule, RM3, has to be 

dropped (Figure A.4.(a)). At node :s = i, two rod molecules, RM2 and RM3, and one string 

molecule, 5M2, must be inhibited (Figure A 4.(b)). 5imilarly, due to the symmetry of the nodal 

equation, at node :s = i + 1, two rod molecules, RMI and RM2, and one string molecule, 

SMl, must be inhiblted (Figure A.4.(c)). Finally, at node'8 = i + 2 one rod molecule, RMl, 

has to be inhibited (Figure A.4.(d». 
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1 
1 - • 

i 
1>1 

1 
1 -1 

(a) 

1 

"1 1 •• 

(d) 

1 
1. 1 

1 
1 -. 

1 
1 - 1 

1 .1 

(b) 

1 
1 •• 

(c) 

Figure A.4 Introducing position dlscontinuities by the molecular inhibition of rod 
and string moJecuJes A position discontinuity is enforced between two snaxels -; = 1 

and s = i + 1 ln correspondence, four snaxels (s = 2 - 1, i, i + 1 and 1 + 2) have 
their nodal equation modifled, that IS, the link they possess between nodes b = l 

and s = i + 1 is cut (indicated by a cross) ln (a), (6), (c) and (Ii) are shown the 
modifled nodal eq uatlons for snaxels s = 2 - 1, i, z + 1 and z + 2, respectively 

1., 

The corresponding nodal equation is modified accordingly for each of the four moleculi.lr 

Inhibitions. These modified nodal equations give us the entries of the stiffness matnx A' that 

have to be modified. At node i -1 the following three entries are modified. 

Ci-l = W2(i - 2) + 4W2(i -1) + Wl(Z -1) + Wl(i) , 

bi-l = - 2w2(i -1) -Wl(i) , 

ai-l = 0 . 

(11.2) 

At node i, four entries are modified, onE: of which was already mentioned previously (bI-d, 

leading to the following three new entries to be modified: 

Ci = W2 (i - 1) + Wl ( i) , 

bi = 0, 

ai = O. 

(11.3) 

Similarly, at node oz + 1, four entries are modified. Two of these were already mentioned 
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1 
1 - g 

1 1 
1 -1 1 t 1 1 +. 

(a) 

1 
1. 1 1.1 

(h) 

1. g 

Figure A.5 Introducing ta.lgent discontinuities by molecular inhibition of rod 
molecules A tangent discontinuity is enforced at a snaxel s = i ln correspon
dence, three snaxels (s = i -1, i and i + 1) have their nodal equation modifled, that 
is, the rigldity link they possess which is centered at s = i is inhibited from molecular 
summatlon ln (a) and (b) are shown the modifled nodal equations for snaxels s = i 
and i + 1, respectlvely The modifled nodal equation for snaxel s = i - 1 correspond 
to the case already IIlustrated by Figure A 4 Ca) 

previously (b l and ai- d, leading to the following two new entnes to be modified. 

Ci+1 = W2(i + 2) + W1(Z + 2) , 

bi+l = - 2W2(i + 2) - Wl(i + 2) . 

1 
1.1 

(A.4) 

Finally, at node z + 2, three entries are modified. Two of these were already mentioned 

prevlously (b'+1 and ad, leading to the following new entry to be modified: 

(A.5) 

ln total, for any position diseontinuity, ni ne entries of matrix ]( must be modified. 

A.3 Introducing Tangent Discontinuities 

A tangent diseontlnuity at a snaxel s = z eonsists of a break of ail rigidity eonstraints 

(""'2 = 0) at that snaxel or node. Only the tension links at that node are kept intact. Therefore, 

ail the rod moleeules that are eentered at snaxel i must be inhibited in the moleeular summatlon 

used to derive ail nodal equatlons Sinee a rod moleeule is deflned on a neighborhood matie of 

three atoms (Figure A 2), three nodal equations, at nodes s = z -1, i and z + 1, have to be 

modifled At node s = i -1, one rod moleeule, RM3, is dropped (same result as Illustrated by 

Figure A.4 (a)) Simllarly, at node s = i, one rod moleeule, RM2, is dropped (Figure A 5.(a)). 

Flnally, at node:s = i + 1, one rod moleeule, RM1, is dropped (Figure A.5.(b)). 
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A. Inserting Discontinuities Along the Snake 

The corresponding nodal equation is modified accordingly for each of the three molecular 

inhibitions. As in the case of position discontinuities, these modified nodal equations glve us 

the entries of the stiffness matrix]( that must be changed. At node i-1 the same three entries 

(Ci-l, bi-l and ai-d given in equation (A.2), for the case of a position discontinuity, are 

modified. This is because the same molecule, RM3, is inhibited from the molecular summation 

At node i, three entries are modified, one of which was already mentioned previously (b,_l, 

equation (A.2)), leading to the following two new entries to be modified: 

Ci = w2(i -1) + w2(i + 1) + wl(i) + Wl(i + 1) , 

bi = - 2W2(i + 1) - Wl(i + 1) . 
(/\.6) 

Finally, at node i + 1, three entries are modified. Two of these entries were already mentloned 

previously (ai-lo equation (A.2), and bi, above), leading to the following new entry to be 

modified: 

(11.7) 

ln total, for any tangent discontinuity, six entries of matrix K have to be modifled 
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l ... Appendix B. Imposing Limits on the Snake Forces Amplitudes 

ln this appendix, we give a number of heuristics to impose limits on the amplitude of 

snake forces. Such limits can be fixed with respect to variations in position. The goal of such 

a "normahzation" scheme is to keep these forces tractable 50 that the snake remains as stable 

as possible. 

B.1 Maximum Elastic and Inertial Constraints 

Consider equation (2.28) where both the external and the field forces are set to zero, that 

IS, Ecxl- = Eficld- = 0 == Fpot- This is done to examine the influence of the stiffness and 
.x x x 

memory constraints, Ysliff and Fmemo, in obtaining a new snaxel coordinate (here X(l,I» 

Equation (2.28) becomes: 

7( l,ï) == c 
1 
* {F me mo ( x( z,I - 1,I - 2») + Fstt f f ( x( z - 2, z - 1, i + 1, i + 2, I») } . (B.1) 

l 

Let us first consider the effect of stiffness. The amplitude of Ystif! is a linear function 

of the weights Wl(:S) and W2(:S) and of the spacing between the snaxels. Since we have fixed 

W2(:S) to be a small positive and const?~t value, the maximum amplitude of Fstiff will be 

essentially dependent on the maximum possible amplitude of Wl('S) Wl(S-) itself is a function 

of the spacmg between snaxels (equation (2.29» and its maximum value is given by Tl/IUX. 

Therefore, what we need to do is to impose a maximal possible value on Tmax. Because 

"'-'1(:;;) is used as a multiplying weight for the spacing between snaxels (equation (2.18)), the 

maximum value for TUIUX can be set to an expected or desired maximal spacing. We have use 

expenmentally a value of five for Tmax. 

The effect of memory is imposed by Fmemo. Its amplitude is a linear function of the 

constants Il and l' and of the motion, or spacing in time, of a given snaxel. Furthermore, 

l' and Î are used as multif'lying weights for the spacing in time of a given snaxel (equation 

(216). Therefore, t~_ maximum values for Il and 1 can be set in the order of magnitude 

of the t?xpected maximal spacing in time of any snaxel. Aiso, we can fix them so that their 

combmatlon gives a desired effect of damping. We have use experimentally a value of one for 

both l'and {. 
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B Imposmg Limits on the Snake Forces Amplitudes 

8.2 Normalization of the Field Constraints 

ln sections 2.6.3 and 2.7 it has been explained why and how the directional slopes ln :r 
and fi of the potential surface, that is, E fieldx and E fleldy ' had to be redlstributed on sorne 

acceptable interval. In this section, it is shown how one can normalize the field constralnts 

E fieldx using the "chpped" slope function of section 2.7 50 that the snake never undergoes 

unrealistic motion (similar results are derived, by symmetry, for fi) fu>ld-)' 
1J 

ln the following paragraphs 'Ne assume that the external constraints are inactive, that IS, 

Eext = O. Therefore Fpotx may be rewritten as fol/ows: 

Fpotx = -~Efieldx(i, l - 1) 

= -~ Jl 9 hx(X(l,t -l),Y(l,t -1)) = -Q hx(:r(z,t -1),]7(/,7 -1)) , 

where we make use of equation (2.4) and where 0' = Lf-. Then, followmg the diSCUSSion of 

section B.l, equation (2 28) may be rewritten as fol/ows: 

X(l, 1) ~ x*(i, I) + (~) !lx 
Ci* (/3.2) 

= x*(i, I) + !:lxfield , 

where x*(i, I) is the new snaxel coordinate obtained from stiffness and memory constralnts 

and where !:lx fzeld = (~) hx. Therefore the Influence of field constraints on a snaxel 

can be understood as a displacement contribution !:ly. fzeld (In pixel unrts) ThiS dlsplacement 

contn bution may be normalized with respect to a maximal permitted dlsplacement j) 1 (also 

in pixel unlts). Wlth respect to c1ipped versions of the slope function of the potentlal surface 

II a nd of the tension function T, the maximal possible dlsplacement contrrbutlon of field 

constraints (!:lÏfleld ) is given by 
max 

(/J.3) 

where Smax is the maximal permitted slope value of the c/ipped slope functlon of sectIOn 2 7 

and where Ci\nzn = 6w2 - 2Tmax + 1 + Il With glven constants W2, " l', S1/I (1 l' , T1/I(/J' and 

Dl, the magnitude of the gravitatlonal acceleration, g, can be flxed to ensure that any snaxel 

displacement due to a field force wil/ be limited in amplitude to a desirable value Ih 
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B Imposing limits on the Snake Forces Amplitudes 

B.3 Normalization of the External Constraints 

External constraints are of two complementary types: volcanos (repulsive forces) and 

springs (attractive forces). Since, as proposed in section 2.5, volcano forces are best imple

mented by incorporatlng them within the potential surface, they do not have to be consldered 

here. Spring forces, on the other hand, have to be normalized separately from the field forces. 

With no loss of generality, we may assume that the field constraints and the volcano forces are 

Inactive, that is, E field = Evo1c = O. Therefore Fpot-x may be rewritten as fol!ows (simllar 

results are derived, by symmetry, for Fpot-): 
y 

1 (' _ ) 
Fpot-x = -'2Espring-X z, t - 1 

1 
= -'2fsprmgl-x 

1 
= '2ksprmg (Xl - X2) , 

where we make use of the notation for spring constraints of section 2.2. Again, following the 

discussion of section B 1, equation (2.28) may be rewritten as fo/lows' 

( -) *( -) (ksprlTlfj ) ( ) X l, l ~ X l, l + c * Xl - X2 
1 (B.4) 

= x*(i, i) + b.xsprmg , 

where :r*(1, I) is the new snaxel coordlnate obtained from stiffness and memory constraints 

and where b.xsp1'iny = (kS~~!Tl!/) (:rI - X2) Again, the Influence of the spnng constraint on 

a snaxel can be understood as a displacement contribution l:!.xbprmg (in pixel units) This 

displacement contribution may be normalized with respect to a maximal permitted dlsplace

ment lh (also ln pixel units) ln order ta "mit the possible amplitude of the distance "snaxel 

- spnng fixation pOint", Xl - 'Y2, a clipped version of !sp7'lng should be used. Let us as

sume a saturation value b.:rl 2 for thls purpose Then, the maximal possible displacement , max 

contribution of a spring constralnt, b.XI>}iI'111g , is glven by' max 

(
k ) 6.~ - sprmg b.- < D 

1 .1 S}I7'I7IYlllax 1 - * 1 Xl.2 max 1 - 2· 
c, mm 

(B.5) 

Wlth glven constants c'\1ll1l' 6.'f1.2 max and D2, the spnng parameter kspring can be flxed 

to ensure that any snaxel displacement due to a spring force will be limited in amplitude to a 

desirable value /)2. 
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...... Appendix C. Morphological Operations for Functions 

Let j be a discrete function representing a signal, such as kO'(ü) , the curvature along a 

contour. The graph of this function is defined as a set of points (ü,J(ü». Let /3 be a (2-D) 

structural element indexed by a single parameter i. The superscript c in je stands for the 

complement of f su ch that je + f = constant; 8. stands for the reflection of IJ, that IS 8. 

= {z : -z E E}. 

Cl The Four Principal Operations 

C.1.1 Erosion 

An erosion is computed by taking the minimum of a set of differences. Its form is simllar 

to convolution, with the summation of convolution replaced by the minimum operation and 

the product replaced bya subtraction operation. The eroslon of j by H IS deflned as fo/lows 

EfB = f 8 B = mjn(J(ü - z) - 8.(z)] 
l 

(( '.1) 

C.1.2 Dilation 

Dllation can be performed by ta king the maximum of a set of sums Its complexlty IS the 

same as erosion and is related to correlation, where instead of doing summatlon of products, 

a maximum of sums is computed. Using the same notation as for erOSlon, the dr/atlon of 1 
by B 15 defrned as 

D f B = f ffi B = max(J(ü - l) + B( l)J 
l 

(('.2) 

C.1.3 Signiticance of the Erosion and Dilation Operations 

Erosion and dilation are dual operations but are not, in general, the inverse operation of 

each other. This is expressed below: 

fEBB8B=hf-f, 

j8BEBB=hf-f· 
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C Morphological Operations for Functions 

Furthermore, in general 

ftf:h· 

This is true whenever the function f is not too smooth or regular. A dilation (erosion) will 

remove from the top (underneath) of 1 ail those details that are srnaller than the structural 

element B which is of fixed size. The result is a new function Inew which is srnoother than 

the original functlon f. 

Wh en the protuberances of f are not covered by the structural element B, then the 

combinatlon of an erosion and a dilation becomes a reversible operation (Le. fI = h = f). 

Therefore, a combinatlon of an erosion and a dilation can give sorne information about the 

regulanty of a functlon. Combinations of this type give rise to two new operations, which are 

defined next 

C.1.4 Opening 

Opening is defined as the dilation of an eroded function. It is given by the following 

relation 

lB == (Jo B)(i) = (fe B ) œB = sup{inf{/(u):u E Bj}:j E al} (C.3) 

At the point 1, (J 0 B)(i) has the highest value of the infinima of f taken over ail the B's 

contalnlng z This rneans that the opening of fis a new functlon defined by the hi"hest points 

reached by any part of the 2-D (reflected) structural element as it slides under the whole 

extent of.r [Serra82]. 

C.1.5 Closing 

Closing is defi ned by the following relation: 

The closlng of a functlon can bt' interpreted as a new function defined by the lowest points 

reached by any part of the 2-D structural element as it slides over J [Serra82]. 
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C Morphological Operations for Functions 

C.2 Properties of the Four Operations 

The principal properties of the operations discussed above are briefly discussed in this 

section. These properties are important in order to understand the effects of erosion, dllatlOn, 

opening and closing on functions. 

• Increasing: 

Let f be a function smaller than another function F, that is f(ü) ~ F(ü), for ail ïi. 

Then: 

feB:::;FeB 

fœB:::;FœB 

foB~FoB 

f·B~F.B 

(C.S.a) 

(C'.S.h) 

( (,'.5.(') 

( (.'.S.d) 

The size of a function implies the size of the eroded or dilated function for a glven structural 

element B. Erosion and dilation are said to be Increasing operations. 5lnce erosion and 

dllatlon are Increasing operations, opening and closing are also increaslng 

• Expa nsivity: 

feE ~ f 

fœB?f 
foB ~ f 

f·B?f 

(C.6.a) 

(( '.6.h) 

(C 6.(') 

(( '.6.d) 

Erosion is antiexpansive, while dilation is expansive. The terms "erosion" and "dilation" have 

their origins in this property of E'xpansivity Opening IS antiexpansive, as IS its first constituent 

operation, erosion Closing IS expanSive, as IS dilation 

• Duality: 

f EB B = (Je 8 a)e 

f 8 B = (Je œar 
f 0 B = r. 8,c 

f. B = fC 0 8,c 

((.'.7.a) 

(C'.7.h) 

(C'.7.t) 

(C'.7.d) 
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( Morphological Operations for Functions 

Dllation IS the dual of erosion. Thus dilation (erosion) is the erosion (dilation) of the comple

mented function. Opening and closing are also dual operations The closing of f corresponds 

to the opening of the complemented function fe . 

• Chain Rule: 

(Jœ BI)œ B2 = fœ(Bl œ B2) 

(J 8 Br) 8 B2 = f 8 (BI œ B2) 

(G.B.a) 

(G.B.b) 

This implies that the erosion or dilation of a function f bya wide or complex structural element 

IJ (= rh EB 82) can be performed using the basic components of B, namely BI and B2. An 

Image processor l can then be built using only basic components to perform any kind of dilation 

or eroslon . 

• Idempotency: 

(J 0 B) 0 B = f 0 B 

(f • E) • B = f. B 

(G.g.a) 

(G.9.b) 

Opening and c10smg operations are performed only once for a specifie structural element. 

Then is no equlvalence to the chain rules of erosion and dilatlon As discussed prevlously in 

subsectlon C 1 3, openlng and c10slng are two ways to compute a "smooth" approximation of 

a functlon f by removlng detalls of a given size Applying these operations agam wlth the 

same structural element B does not further modify the filtered function. 

C.3 Significance of the Morphological Operations 

Unlike linear transformations of functions, morphological operations are characterized by 

their nOil-lnvertibility. They remove information of greater and greater extent as the size of 

the structural element Increases 

Image processors based on mathematlCal morphology operations have been successfully applJed to binary 
images since the early 1970'5 For ex,3mple, the "Texture Analyzer" [Klein 72] was the flrst system of 
its kmd in industry Its major advantage was its ability to extract quantitative measures of an image in 
real tlme Its major flaw was its limitêltion to binary image analysis 
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C Morphological Operations for Functions 

Signal processing through iterative morphological transformations call therefore be con

ceived as a process of selective information removal where irrelevant detalls are mecoverably 

destroyed, thereby enhancing the contrast of essential function features [Sternberg861. 

C.4 Application to Curvature: Flat Structural Element 

For the morphological analysis of a signal such as curvature where we are Interested in 

the extraction of peaks and constant regions, fiat structural elements (1-0) are used Erodtng 

a function bya segment of length R is equivalent to replacing the functlon values at every pOint 

by the minimum of ail the pOints in a nelghborhood of size El Likewlse, dllattng a functlon 

by a segment of length R is equivalent to a maximum transformation over a nelghborhood of 

size R. OpE:.nlngs and closings by fiat structural elements maintain the vertical boundanes of 

the functror they transform. 

Hat-transforms,so named because they can be visualized as a coverrng of peaks wrth a 

hat offixed size, can be used to extract sharp peaks and rrdges. The residual .r -.r lJ (where fil 
is the opened version of Jas defined in equation (C.3)) IS known as the top-hat transform and 

presents the possrbrlrty of extrac'ting peaks Its complement, the resldual f - flJ (where fil 

is the closed version of Jas defrned in equation (C.4)) , is known as the bottom-hat transform 

and provides a way to extract véllieys. Examples of the four morphologlcal operations and of 

the residual f - f B wlth a fiat structural element, are given ln Figure C 1 

u 

il li u 

Figure C.1 Examples of the four morphological operations and of the top-hat trans
form (a dapted from [Serra82]) 

165 



C Morphological Operations for Functions 

Morphological analysis of the residuals J - JB and J - JB, and of the filtered signais 

IIJ and JB, can then be performed to extract and classify peaks, valleys and the resultant 

flattened regions. 

C.5 Issues of Computational Complexity 

Morphological operations for a function such as ku(ü), using a fiat structural element 

IJ are sImple and easy to Implement as min-max operations. Erosion is equivalent to taking 

the minimum of ku(ü) over the neighborhood defined by the width of B (= R), while dilation 

IS equlvalent to taking the maximum of ku(ü) over the same neighborhood (sectIon Cl) 

Both erosion and dllation can be implemented as iteratlve processes by uSlng the chain 

fuIe property (equatlon (C.B)). ThIS property imphes that an eroslon or dllation with a rela

tively wlde structural element (e g 5 pIxels wlde) can be performed sequentially with smaller 

structural elements (e g two structural elements 3 pixels wide), giving a more efficient way to 

perform min-max operatIons However, the chain rule property does not apply directly to the 

opening and closing operations. These two are said to be idempotent (equation (G.g)). That 

IS, theH application to a given function with the same structural element does not further mod

If Y the flltered functlon Thus we can only take advantage of the chain ru le property for ~he flrst 

operation of an opening or a closing, that is, an erosion or a dllation, respectively Using the 

latter for the flrst constituent operation of the closing and opening operatIon, a hierarchical

hke scheme2 can be Implemented For example, consider the hlerarchicallmplementation of an 

openlng operation Let the basls ')f the hlerarchy be the positive curvature functlon ku+(u). 

Subsequent levels are built up of eroded and opened versions of ku+(u): ku+el'od(Ü,/) and 

I(T+OPfll(U, 1), where 1 corresponds to the hierarchicallevel and ku+opcu( u, 1) IS obtalned by 

drlatlng "f.(T+('1'od(ü,/) Therefore, an eroded version of ku+(ü) at a particular level in the 

hlerarchy, that IS, ka +c7'Od(U, l), can be obtall1ed efflclently (I.e., wlth a small structural ele

ment) by erodrng an eroded versIOn of ku+(ü) at a preceding level, that is, by the erosion of 

"f.(T+I'I'ot/(Ti,I-1) Such a hlerarchlcal scheme provides an efficient way of building the MCS, 

where each level ln the hierarchy corresponds to an increaslng bïi . 

2 Such a hlerarchlcal representaLun of morphological operations shares many similarities with the "Hier
archical Discrete Correlation" representation (Chapter 3) 
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C Morphological Operations for Functions 

Morphological measures are also simple to implement. Furthermore, due to the unifor

mit y of MCS features, morphological measures are more rapidly computed for existing peaks, 

that is, for peaks that were detected in a preceding level in the hierarchy or at a smaller 

scale &rr, since their localization is already known. Finally, this property of uniformlty permlts 

simple and easy interpretation, a major advantage ln terms of computations over tradltlonal 

sca le-spa ce approaches 

ln summary, three aspects of curvature morphology lead to low computational com

plexity. Firstly, only simple computations for both morphological operations and measures 

are necessary. Secondly a hieran.:hical implementation using the chain rule property is easily 

obtained. Finally, the uniformity of the MC Sand its simplicity of interpretatlon ylelds low 

computational complexity for the curvature morphology representation. 
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Appendix D. Euclidean Distance Mapping in the Discrete Domain 

A distance mapping on a binary image (I : I(x, fi) = 0 iff I(x, y) E 0'; I(x, y) = 1 

iff I(x, y) E D)l is produced by a distance transform, DT. A DT consists of a minimum 

operation on a distance metric dist(p,p'), where p E 0 and p' E 0' (equation (5 1)), applied 

over a given space or domain (e.g., an image 1). Different metrics, dist, commonly used in 

dlscrete Image processmg2 are. 

distcn(p,p') = Ixp - xp'i + Iyp - Yp'i , 

dzstChesAp,p') = Max(lxp - xp'l, Iyp -- Yp,1) , 

dlst Euclid(P, p') = V(xp - xp')2 + (Yp - yp,)2 , 

where p = p(xP,Yp) E 0 and p' = p'{xp"Yp,) E D'. The DT based on the metrlc distCB 

IS ca lied the city block DT. The DT based on the metric distChess is called the chessboard 

DT. And the DT based on the metric dist Eucild is called the Euclidean DT or EDT 

Applying a DT on 1 corresponds to "propagating" distances over 1 [Rosenfeld66]. Points 

in the background (p' E 0') are seen as sources from which distance values are propagated 

as waves over the complete Image, 1; for example, the propagation of circular waves in the 

case of an Eudidean metric. The flrst time an obJect point (p E D) is reached by a given 

wave it IS assigned a new label, that 15, a minimum distance value from D'. Obviously sud 

a \Nave propagation scheme is easily Implemented ln parallel (see for example [Yamada84]). 

But, it then becomes an iterative procedure, whp.re iteratlons correspond to distances from 

the punctual sources, dependent on the maximal width of the object O. However, for su ch 

a simple propagation transform, a sequential implementation is computationally preferable 

(1 e , Independent of the object's width) and provides equivalent results [Rosenfeld66]. Several 

sequentlal algorithms eXlst for computing a distance map on a discrete gnd. Essentially two 

categories of algonthms are avallable depending on the type of DT performed. EDT's or 

Weighted DT's sud as the city block and chessboard DT's (hereafter referred to as W DT's, 

followlng Borgefors notation [BorgefNs89]). Common to both kinds of distance mapping is the 

Notation 0 object or figure, 0' non-object or background {X' E X X = {a, ., MX}} and 

{Y E Y Y = {a. ,My}} 

2 For extensive surveys of metrrcs used in the discrete domain see [Borgefors84, Borgefors86] 
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D. Euclidean Distance Mapping in the Discrete Domain 

fact that they are based on information flow or propagation using smalt local neighborhoods 

(e.g., a 3 pixels x 3 pixels squared window). W DT algorithms require two passes over an Image 

to obtain the distance map, while EDT algorithms require three odour passes [Ragnemalm89). 

The optimal distance metric is the Euclidean one, that is, dist Eul'i,d' The other metrics 

give coarse approximations of a circ.ular propagation, that is, they approximate an Euclldean 

propagation. For example, the city block metric glves a diamond-shape propagation, whlle 

the chessboard metric gives a square-shape propagation [Rosenfeld68J. Dl"s based on non

Euclidean metrics (i.e., W DT's) have a long history in plcture processing ln most cases they 

were used because they were faster to apply than EDT's. This was true unt!! Danielsson's 

algorithm was published in 1980 [Dan;elsson80). In fact, only the city block DT can be eval

uated much faster than Danielsson's EDT. 3 This is because of its slmpler snatlal complexlty, 

though the prlce paid is poor accuracy (see subsection 0 Il). 

ln the foltowlng sections we will consider different aspects of the Implementation and 

application of Euclidean distance mapping to binary images. In section D 1 we glve a detalled 

analysis of an optimized implementation of Danlelsson's Euclidean Distance Transform (I~ nT) 

algorithm. In section 0.2 we define the notion of a distance surface and britfly mention some 

of its properties. Finally, in section D.3 we show how the snake model can take advantage of 

the distance surface when seen as a potential surface. 

0.1 Euclide"n Distance Transform 

ln this section we present an optimized version, in terms of numerical complexlty, of the 

sequential algorithm for computing the EDT first introduced by Danlelsson We also compare 

the computational complexity of this optimized algorithm to non-Euclldean JJ,/,'s I-ollowing 

Danielsson's notation, we consider a mappi ng from a bina ry image I(r, y) (a double-va lued 

function)4 to a multivalued image L(x,y) h order to eva!uate L, Danielsson prop0ses to 

3 This must be contrasted with the generally incorrect bel1ef appeanng ln the literature (even recently) 
that most W DT's are less comjlutationally expensive than E DT's (see for example [Borgefors84, 
Borgefors86, Dorst86a, Dorst86b, Arcelli86c, Arcelli88]) 

4 Initiaily, before applying the DT, objects points of 1 (i e , pixels p E 0) are assigned a large Integer 
value M (i e , I(p) = M) greater than the square of the maximum possible wldth of any btnary obJect 
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compute a multivalued vector image l, at which each pixel of the image is assigned a vector 

(a doublet) rather than a singleton (e.g, a distance value) as follows: 

l(x,y) = (Lx,Ly) , (D.1) 

where Ly and Ly will contain the minimum integer distance values in the X and Y directions, 

respectively, from the background 0'. Lis then simply obtained as the norm Il LII by computing 

the square root as follows: 

L("E,y) = /L~+L~= IILI!. (D.2) 

The propagation of distances over a complete image can be obtdined with a four-pass algonthm 

(see [Ragnemalm89] for a recent three-pass version). This is best visualized as a convolution 

of 1 with four masks (Figure 0.1) Sud a convolution is performed in two complete picture 

scans in opposite directions Masks 1 and 2 are passed downwards over the Image, while masks 

3 and 4 are passed upwards (Figure 0.1) Furthermore, each row IS scanned in both horizontal 

directions to ensure an Isotropic propagation of the dista nce values [Ragnemalm89] Dependmg 

on the required accuracy and numencal complexity, two versions of the EDT algorithm were 

descrrlJed by Danielsson (see also [Ye88]) The slmpler one, named the 4SSEDT, which 

stands for the "four-points Sequential Signed EDT", requires a visit to only the four direct 

nelghbors (1 e., horizontal and vertical neighbors) at each pixel p E 0 (Figure D.1 (a», while 

the 8 S'S' F; DT, whlch stands for the "eight-points Sequential Signed EDT" , requires a vislt to 

the 8 neighbors at each pixel p (Figure D.l.(b». The 8SSEDT is numerlcally more complex 

than the 4SSEDT, but it IS also more accurate 

Whlle scanning the image with four mdsks every object pixel, p, IS updated by comparing 

it to some of its neighborlng pixels (in a neighborhood defined by the masks of Figure D 1) 

Comparirg a pixel p to Its neighbors first implJes seeking the neighbor, Pmm (already visited at 

least once), havmg the minimum distance amplitude (incrementedjdecremented) and, second, 

asslgnmg the pair (L.r(Pmm), Ly(p1IIl7l») to Lep) plus the increments or decrements ln the X 

and 'f directions glven by the masks weights (indicating the relative position of Pml1l with 

respect to Il) Therefore, the complete updating procedure generates the vector Image L. 

Seeklng the mmimum distance amplitude requires numerically expensive computations for 

every vislted pixel p E 0.5 Furthermore, floatlng point numbers, rather than Jntegers, are 

that cou Id eXlst in 1 (e g , AI = /lfl. + M1) 
x y 

5 That IS, two integer adds, two integer squares (multiplications), one floating square root and, possibly, 
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Figure D.1 The four masks used in the sequentlal signed E DT T wo sets of masks 
are shown ln (a) are shown the four masks for the 48SEDl' ln (b) are shown 
the four masks for the 8SSEDT The masks are centered at pixel [1 (mdlcated by a 
white dot) The pairs ofweights in each mask «(:F, Y) pairs) represent the distances 
from p in horizontal and vertical steps or increments The reference frame (.\' and 
y directions) is shown to be positioned in the top-Ieft corner of an Image, 1 The 
arrows (next to the masks) indicate in which direction a given mask IS passed over 1 
The convolution of these masks over 1 is performed in two picture scans (mdlcated 
by dashed arrows) in opposite directions (here downward for masks 1 and 2, and 
upward for masks 3 and 4) For each row of 1 the pairs of masks (1,2) and (3,4) are 
moved in opposite horizontal directions so that the propagation of distance values IS 

isotrop i c (se e text) 

then required. For example, If we wish to compare p with a neighbor lJ+J' ln the positive 

X direction, then we must compare L(p) wltn L 7I(w(pt.l'), wnere !'71f'llI(,J+J') IS !'(]I+.r) 

incremented as follows: 

However, there IS a much better way to perform tnese computations using Integers only, 

getting rid of the multiplications and bypassing the square root operations completely.6 Since 

two assignments and one or two incrementsfdt:crements 

6 This optimized implementation was flrst brought to our attention in an unpublished work of one of our 
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D Euclidean Distance Mapping in the Discrete Domain 

we only wish to compare the amplitudes of L{p) and its neighbors (e.g., Lnew{p+x)), it is 

equivalent and sufficient to compare the squares of their amplitudes (e.g., L(p)2 and L~ew)' 

thereby saving the floating point operation. Furthermore, we can augment the vector image 

L by also assigning the sum Lf + L~ (= L2) to each pixel p [Cox86, Ve88], thereby obtaining 

a new vector image representation, l+, as follows: 

Then, Lncw(p+x) can be evaluated easily from the stored data as follows: 

Lnew(p+x)2 = (Lx{p+x) + 1)2 + Ly(p+x)2 

= (L-x(p+x)2 + Ly(p+x )2) + 2Lx(p+x) + 1 

= L(p+x)2 + 2 Lx(p+x ) + 1 . 

(D.3) 

Indeed, since now L2 is kept stored in Lt, we can ln this example (and simllarly in ail other 

cases; see equatlons (D.4» evaluate Lncw{p+x)2 using only one add, one left-shift (i e., a 

multiplication by two) and one increment7, We summanze ail the possibilities when evaluating 

1'//1'/11 for both the 4SSEDT and 8SSEDT in the following four equations' 

(Lx ± 1)2 + L~ = L 2 ± 2L-x + l , 

L}. + (Ly ± 1)2 = L 2 ± 2Ly + l , 

(Lx ± 1)2 + (Ly ± 1)2 = L 2 ± 2( Lx + Ly ± 1) , 

(Lx ± 1)2 + (Ly =f 1)2 = 1} + 2(±Lx=f Lw + 1) 

= L2±2(Lx- Ly±1). 

(D.4.a) 

(D.4.b) 

(D.4.c) 

(D.4.d) 

We can now evaluate the numerical complexity of both algorithms. Let us define the 

integer constant N2 to represent the total number of object pixels found in an image J. 8 

Let us flfst conslder the case of the 4SSEDT. Then, only equations (D.4.a) and (D.4.b) 

colleagues at McGi11 University [(0)(86] Since then a similar idea has been presented by Ye [Ye88] , but 
wlthout much detad 

7 An Increment (or decrement) IS usually faster to compute (or at least as fast to compute) on most 
machines than an add (or subtract) 

8 N2 = 2:= " where i = 1 iff 1 (x, y) E 0 and l = 0 iff l(x, y) E 0' 

(:r,m 
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are to be considered. The complete updating procedure will require for each object pixel six 

comparison operations, which we refer to by using the symbol C4SSE[),/" with the SIX nelghbors 

defined by the masks of the 4SSEDT (Figure D.l.(a»). A C4 SSF.[)']' operation represents 

one left-shift, one add (or subtract), one increment and one compare Therefore, fmdlng the 

minimum distance values in the case of the 4SSEDT will require a total of 6N2 ('4.'1.'1'!,,'IYJ· 

operations. In the case of the 8SSEDT the four equations (DA) are used The complete 

u pdating procedure will require for each obJect pixel ten comparison operations SIX of them 

a re Just the C4SSEDT operations 2S previously The four other comparisons are denved 

from equations (DA.c) and (D.4.d) where both Lx and Lfi are Incremented/decremented 

simultaneously. They are associated wlth the four diagonal neighbors (wlth respect to p) 

found in the masks of Figure D l.(b). We refer to these four companson operations using the 

symbol CaSSEDT' A C8SSEDT operation represents one left-shlft, two add(s)fsubtract(s), 

one increment/decrement and one compare. Therefore, flndlng the minimum distance values ln 

the case of the 8SSEDT will require a total of 6N2 C4SSEDT plus 4N2 ('as'L, .. /lWT operations, 

or in other words, lON2(left-shift. increment/decrement, compare) + 14N2(add/subtract) 

operations .. 

Once we have completely updated the vector image L+, the real Euclidean distance 

map is recovered by computing the square roots of l+'s tnlrd elements «('quation (D 3)) 

This accounts for N2 floating pOint operations However, in many practlcal cases the (Integer) 

squared distance values may be sufflclent Furthermore, since we know the maximum possible 

size of an obJect (::; ViJ = JM1- + Atff)' for fixed-sized images 1 (1 e , an Image of size 

l\Ix * My), we can store in a double-index look.:p table ail possible distance values l, [Ye88] 

This table can be indexed uSlng the absolute values of the tirst two elements of the vector 

Image L+, that is, ILFI and ILyl Such an approach is partlcularly useful for tlxe:J-slze Images 

if distance maps are to be evaluated cften. 

ThiS complet{:~ our detai!ed analysis of Oanielsson's algonthms optimlzed for numerical 

performance ln tne following subsection we show Îlow these algonthms compare to the non .. 

Euclidean ones (i e , the W DT's). 

0.1.1 ComparÎson between Euclidean and Non-Euclidean Distance Transforms 

Let us tirst consider the four simplest W DT's the city block D'/', the chessboard 1)'/', 

173 



D Euclidean Distance Mapping in the Discrete Domain 

and the chamfer DT's [Borgefors84] for the two smallest neighborhood sizes (i e., 3x3 and 

5x5). In Figure 0.2 are shown the masks used for these W DT's. Note that only two masks 

are suff,cient for each IV DT while four were used for the EDT (compare with Figure 0.1). 

This Implles that the propagation of distances will not be isotropic and will generate errors 

ln the distance map However, this type of error is negligible "compared to the difference 

between the Euchdean distance and the non-Euclldean approximations" [Ragnemalm89]. 

The chamfer DT's have different sizes and weights that can be chosen to satlsfy various 

needs A 3x3 chamfer DT is named chamfer-a-b where a and b represent the mask's welghts 9 

(Figure 0.2 (a)) The weights a and b are chosen to take into account accuracy and numerical 

efflClency Chamfer J)T's are scaled (1 e., multlplled) by a factor ï, usually by the welght a 

This rneans that the computed distance values need to be dlvlded by T", th,s to recover the best 

possible approximation to the Euclldean distance values The "optimal" weights, for accuracy, 

are a ~ 0.95509 and b :::::: 1.36930 [Borgefors86]. However, for practlcal applications, the 

weight~ (l = 23 and b = 33 are preferred,lO thls to malntaln only Integer computations 

[VossepoeI88] A 5x5 chamfer DT is named chamfer-a-b-c wnere an adrlltional welght c IS 

needed For such a neighborhood SIle, certain mask pixels do not contnbute to the distance 

value propagation (1 e , they are redundant) They are therefore suppressed from the local 

search for a minimum distance value (marked with a minus symbol (-) ln Figure 02 (b» 

Again the welghts (l, band c are chosen to satlsfy the needs of accuracy and n~merical 

efflclency The optimal accuracy is obtained for a ;::::: 0.98128, b ~ 1.40314 and c ~ 2 19529 

[VossepoeI88] For practlcal applications, the welghts a = 5, b = 7 and c = 11 are preferred 

to maintaln only Integer computations [Bargefors86, VossepoeI88]. 

For the city block DT (Figure 0 2 (a)) a complete updatlng procedur _ Will require for 

each abject pixel four companson operations, CCB A CCB operation Involves one Increment 

and one compare For the chessboard DT (Figure D 2 (b)), each object pixel will require 

eight companson operations, CCB (1 e , same operations as for the city block DT) Chamfer-

9 Note that the city block and the che5sboard DT's can be mterpreted as the chamfer-1-2 and chamfer-l-
1 [)'J"s, respectlvely (Figure D 2 (a)) ln the case of the city block DT the welght b becomes redundant 

(1 e , b = 2 * a) and the masks can be further reduced in size 

10 The welghts u = 2 and b = 3 may be preferred over a = 23 and b = 33 when the scallng by 1" = a is 
required ln thls case ,. = 2 and the dlvlde operation 15 5imply replaced wlth a right-shift operation 
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mask 1 

-+ 

(a) (b) 

Figure 0.2 Masks used for ,1-' DT's for the two smallest nelghborhood sizes (1 e , 
3x3 and 5x5) The masks are centered at plxeljl (lOdlcated by a white dot) The 
weights 10 each mask represent the (approxlmated, unslgned and scaled) distance 
from JI The reference frame (X and)" directions) IS shown to be posltloned ln the 
top-Ieft corner of an Image, 1 The arrows (next to the masks) Indlcate ln whlch 
direction a glven mask IS passed over 1 The convolution of these masks over 1 IS 
performed ln two plcture scans (lndlcated by dashed arrows) 10 Opposite directIOns 
(here downward for masks labelle'd 1 and upward for masks labelled 2) ln (a) are 
shown the mask!. for the 3x3 chamfer UT's where (/ and b are welghts to be optlm,zed 
(see text) The city block and the chessboard DT's can be seen as partlcular cases 
of 3x3 chamfer DT's, thal 15, the chamfer-1-2 and chamfer-l-l J)'/"s, respectlvely 
ln (b) are shown the masks for the 5x5 chamfer DT's where a, li and ( are three 
welghts to be optlmlzed, and where some mask pixels, shown by a minus symbol 
(-), are suppressed (see text) 

+ 

a-b DT's (Figure D 2 (c)) reqUire eight companson operations, ('rhalll!I,., per obJect pixel 

A CchamfeJ' comparison consist of one add and one compare Chamfer-a-h-c l)'f"s (Figure 

D.2.(d)) reqUire slxteen compansol'J operations, Cchamfcr' per obJect pixel (1 e, same opera

tions as for chamfer-a-b DT's) ln Table Dl we compare both the fj'f)'I"s and the iF f)'/"s 

we have studied so far from the ,)oint of view of both numencal complexlty and accuracy 

Let usflrst note that both the 8S'S'RD'/' and the4,',',";f';f),/, have maximal possible errors 

(MaxDlff ln Table D 1) expressed ln absolute pixel unit values, /1/1, whlch are less than the 

sampltng error of the digital gnd (±O 5]J11) Therefore, these errors can be cons·dered negllglble 

in the dlscrete domaln [Ragnemalm89] Moreover. as the distance values are augmented, these 
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Distance Numerical Complexlty Accuracy 

Transform Comparison Op. Floating Pt. (MaxDiff) 

8SSEDT 10N2 «<,+ + / - -, <) N2(~) -009 pu (1) 

+14N2(+/_) 

4SSEDT 6N2( «, +/ -, ++, <) N2(J) -0.29 pu (1) 

Cha mfer-a-b-c 16N2( r., <) N2(+) 

(l ;:.:: 0.981, b ~ 1.403, c ~ 2.195 Il " -1872% (2) 

(l = 5, b = 7, (' = 11 Il " 2175% (2) 

Chamfer-a-b 8N2( +, <) N2(+) 

(l ~ 0.955, b ~ 1.369 Il " 4491% (2) 

(J = 23, b = 33 Il " 6.209% (2) 

(l = 2, b = 3 Il (») 13 40% (3) 

Chessboard 8N2(++, <) None 414% (3) 

City block 4N2(++, <) None -586% (3) 

Table 0.1 Companson of Distance Transforms (EDT's and W DT's) for both nu
merlcal complexlty and accuracy DT's are ranked by accuracy performance For 
chamfer DT's, the best real and Integer weights are given For numerical complexlty 
performance, both comparison and flùating pOint operations are shown The slg
nlflcance of the symbols is left-shlft «<), nght-shlft (»), Increment/decrement 
(+ + / - -), add(s)/subtract(s) (+/-), compare «), square root (-vC), dlvide 
(+) For accuracy performance, the maximum possible dlfference (MaxDlff) or error 
wlth respect to the true Euchdean distance is given ln percent (%) or ln absolute 
pixel unlts, Jill (1 e , the distance between two horizontal or vertical pixel centroids) 
References for accuracy performance (1) [Danlelsson80], (2) [VossepoeI88], (3) 
[Borgefors84] 

possible errors become more and more negligible (In relative percentage), that 15, they tend 

rapldly toward zero. Also, these errors can only occur ln a few rare and sparsely dlstrlbuted 

locations [Danlelsson80] and therefore they do not propagate over the distance map. In the 

case of the II' f),/"s, ail errors are expressed as some percentage of the real Euclidean distance 

value Therefore, the contrary to the EDT's, as the distance values, L, augment the absolute 

errors do also Flnally, these errors generally occur at groufJs of pixels (1 e , non-Isolated) and 

propagate rapldly to corrupt large portions of the distance map 

Let us now conslder the numerlcal complexlty of these dlfferent DT algorJthms We flrst 

Ignore the floatlng pOint operations; thls eliminates the chamfer DT's that use real-valued 

welghts Thus, the fastest nI' IS the city block DT (because it lises the smallest masks), 
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but it is also the least accurate ln second place we flnd that the chessboard nT and the 

4SSEDT have similar numerical complexlty with a slight advantage for the chessboard I),/, 

The 4SS EDT is slightly slower than the chessboard DT, even though the latter requlres 

a visit to 25% more pixels, because the comparison operations for the 4."·.I.U~' nI' are more 

complex than in the chessboard case ln fourth place follows the chamfer-23-33 whlch has 

comparison operations as complex as the ones for the 4SSF; DT (If we neglect the left-shlft 

and the increment operations ln front of the addfsubtract operation), but whlch requlres a 

visit to 25% more pixels. In fifth place comes the 8S8EDT and ln last place IS the chamfer-5-

7-11 (followed by any other chamfer DT's defined on larger nelghborhood, e g , 7x7 chamfer 

DT's). 

If we do consider floatlng point operations, then the city block DT IS still the fastest 

followed by the chessboard DT (they do not reqUire any floating pomt operations) ln thlrd 

place cornes the chamfer-2-3 DT whlch does not requlre floatmg pOint operatIOns beca use 

the dlvlde operation IS a divIsion by 2 (=a) whlch IS simply Implemented wlth a nght-shlft ln 

fourth place comes elther the 45'S E DT or the chamfer-23-33 Irl' dependlng on whether or 

not a square root is faster then a dlvlde operation on a glven machine Il Then the 8SS r; 1 n', 
the 5x5 chamfer DT's, and chamfer DT's for larger nelghborhoods, follow ln that order 

ln the worst possible case, wlth respect to the numencal complexlty of the FI y/"s, 

where increment/ decrement operations are not signlflcantly faster than add/subtract per one 

'3nd square root operations are slower than (floating pOint) diVISions, we can still say that the 

4SSEDT IS faster than any l,V DT defined over nelg~lborhoods larger than 3x3 Similarly, the 

8SSEDT is faster than any IV DT defined over nelghborhoods larger than 5x5 Consldenng 

the Inaccuracy of HI DT's and their relative lack of speed Improvement compared to the 

E DT's it seems that for practlcal applications they have little to offer 

The only possible advantage of IV U1"s over /'.;' IJ }"s IS that they have lower mernory 

reqUirements. An efficlf'nt ImplementatIOn of <In FO'/' algonthm like the cne we have descnbed 

in section D 1, requires three tlmes more space than the IV f)'/"s (to store the vector Image 

11 For example. on our standard eqUipped SUN 3 workstatlon, square root operations are faster than 
(floating POint) divlde operations However, If we use a look-up table to hypass the square root 
computations (see section 0 1). the 4SS ED'/' IS defl nitely faster than any chamfer- fI-b that reqUires 

floating point diVisions 
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L+). However, the extra information we obtain might be very useful (other than the fact that 

L+ gives us exact Euclidean distances at a low numerical complexity). For example, because 

we store both the X and Y distance ,alues and thelr signed orientation (given by Lx and Ly), 

we always know the exact positi,on of the nearest background pixel for any object point. This 

mformatlon can become particularly useful wh en employed ln conjunction with the skeleton of 

the object (Chapter 5) This Information permits us to directly recover the complete boundary 

from the skel{'ton, thereby yleldlng the Inverse Grass{ire Transform [Blum73a). 

0.2 The Distance Surface 

ln this section we briefly give definitions and properties related to the notion of a distance 

surface See [Goodman64} for proofs and more extensive details. 

We cali a distance surface a surface z = 4>( x, y) such that 4> is a solution of the following 

differentlal equation 12 

(V~)2 = (fJ~) 2 + (fJ4» 2 == 1 . (D.S) fJx fJy 
Let C be the base set (or object contour) on whlch 4>(x,y) = 0 An associated set at 

4>(.r, y) = q, where q is a constant, consist ln planar curves Cq which are parallel to C at a 

signed distance q from C. The orthogonal traJectories (i e , the directions of maximal gradient 

of :: = ~) of these level cUl'ves are stralght lines These stralght Imes emerge from the base 

set C Therefore,::;:::: ~ 15 a ru/ed surface generated by su ch a set of Imes 13 These lir,es 

make an angle i wlth the .'l'-y-plane (1 e, the slope of a tangent to these Ilnes IS always of 

magnitude one) Furthermore,:: == ci> IS also i'I developable surface (i e , It can be rolled out 

fiat onto a plane) which implies that any of Its regular pOint has a nu" Gauss/an curvature 

[Bronshtem85) This IS easlly understood if we note that, at any regular point of :; = ~, one 

of the principal directions IS always along an orthogonal traJectory of a level curve Cq (1 e., a 

stralght IlIle) Therefore the corresponding principal curvature IS nul!. 

From equatlon (D.5) we have dlrectly that the gradient magnitude of z == ~ is constant 

12 This equatlon IS known as the elkonal equation in geometflcal optlCS [Goldstein80] 

13 The projection of these Ilnes onto the x-y plane correspond to the "pannormals" of Blum (Chapter 5, 
subsection 54 1) 
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and equal to one at ail regular pOints (i.e., 1\71/>1 = 1) Furthermore, the directions ln which 

this gradient magnitude of z = 4> is maximal and equal to one are, by definitlon, the directions 

of the orthogonal trajectories of the level curves Cq . Therefore,:; = 4> varres wlth the Euclrdean 

distance along these orthogonal trajectories (i e., straight lines of unit speed) ln other words, 

the maximal slope amplitude of z = 1/> is always along these orthogonal traJectorres (direction of 

maximal gradient) At singular points (i.e, non-regular points where M. and ~ are undefmed), 

z = 4> is the radius of curvature of C (1 e, the center of a maximal Inscribed crrcle) At 

these pOints the orthogonal trajectories emerglng from C ,"tersect We cali these pOints 

of intersectIon ridge points of the dIstance surface:; = cP ln the following subsection we 

demonstrate that the slope along successive ridge pOints IS always smaller in magnitude than 

the maximal slope at regular pOints of ::: = 1/>, this being a consequence of the fact that rldge 

pOints do not belong to the minimal path, that 15, a path of mrnimum distance, of any other 

point [LevI70]. 

D.2.1 Ridge Points of the Distance Surface 

Let us define a symmetric axis segment to be a finite length 3-D curve (opened and 

nonplanar) which trace consists of a connected set of ridge points. The trace of this curve 

IS constrained to be on the distance surface:; = 4>(.1', y). Srnce the orthogonal trajectorres 

of 4> are of unit speed, the slope magnitude along a tangent to a symmetric aXIs segment IS 

necessanly less than one This follows from the distance constralnt Imposed on ndge points 

(i.e., being part of :: = 4». For example, conslder two ridge pOints Hl and 1/2 separated by 

a distance lA (arc length) along the symmetric axis segment (Figure D 3) By deflnltion, Hl 

and R2 are at a minimal distance dl and d2, respectively, from the base set C Let us assume 

that R2 is farther away from C than RI; that IS: 

d2 > dl , 

or (/J.6) 

a2 = dl + IJ.d . 

At R2, because of the minimal distance constralnt, we have the following' 

(1).7) 

Therefore, combining equations (D.6) and (D.7), we get: 

(/J.8) 
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But the average slope magnitude, MA, along the ridge from RI ta R2 is simply: 

MA = 4>(R2) - 4>(Rd = f:1d . 
lA lA 

(D.9) 

Therefore, equations (D.8) and (D.9) imply that MA is necessarily lesser than one. The same 

result holds in the limit as R2 is chosen ta be doser and doser ta RI; that is, as lA tends ta 

1• f:1d(l A) 1 
mA = lm < , 

lA -+0 lA 
(D.IO) 

where mAIs the slope magnitude at any ridge point, and ~d( lA) is equal ta the differem:e 

between d2 and dl (equation (D.6)) but varies as lA tends ta zero. Therefore, mA 15 taken 

a/ong a tangent to the symmetric axis and IS a/ways smaller than one 

1 '" , 

. , 
, , 

S.A. 

, 
• , , 

1 
1 

1 

'e 

Figure 0.3 The slope magnitude of the symmetric axis (5 A) The figure shows 
two symmetry points (or ndge points) RI and R2 and their associated distances 
from the base set C. dl and d2. respectively (only segments of the arbitrary base 
set C are shown) T wo lines of minimal distance from C are shown to conv' rge at 
!lI and R2. respectlvely (correspond mg to the intersectlng orthogonal trajectones 

emerging from C. see text) lA is the length between RI and R2 along the ridge 
(or 5 A ) 

0.3 The Snake Model and the Distance Surface 

ln this last section we show how we can improve the computations when applying the 

14 If. as R2 ~ RI. cl2 becomes smaller than dl (i e . 4> is nonmonotonic along the ndge from R2 to RI)' 
we then slmply reverse the roles of R2 and RI and our result stll' holds 
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snake model to a distance surface seen as a potentlal surface (Chapter 5, subsection 5.3 1) by 

ta king advantage of the properties of such a surface obtained wlth an /.;/)'/' . 

• The slope of the distance surface is Impllcitly normahzed (In magnitude) At regular 

points it is bounded by one, while at singular points (or ridge pOints), If evaluated over a 

discrete neighborhood, it will always be smaller than one (i e., the steepest slope corresponds 

to an angle of i).15 Therefore, we avoid the "slope normalization step" that was reqUired in 

the general case (Chapter 2, section 27) 

• We can use a signed EDT algonthm to our advantage to dlrectly evaluate the slope 

at any regular points of the distance surface. We employ the three entnes of the extended 

image vector L+ (equation (D.3» which glve us the X (Lx) and }" ("y) directions (both 

signed) and the distance amplitude (1)) The dlrectional slopes ln the X and -r- directions 

(ch and </ry) are then simply evaluated as follows: 

L-
h= vi; , 

Ly 
4ry = JIJ . 

Obviously these equations are not valid at ridge points (where <Px and 4ry are undeflned) 

Novertheless, we can still evaluate 1>x and r/>y and observe variations from expected behavlor If 

these points were regular points For example, we can observe how the computed onentation 

of the slope (0 = angle given by (I.q;, Ly)) varies over the Iterations (when simulatlng the 

grassfire propagation) If we are ln a region consisting of regular points only, the onentatlon 

will change smoothly (ideally along an orthogonal trajectory or pannormal) However, ln 

the case of a nelghborhood centered at a ridge point, the orientatIOn 0 Will change abruptly 

(correspondlng to the Intersection cf pannormals) When such a case IS detected, we can 

backtrack (i.e, reset a snaxel to the prevlous position) and evaluate the dHectlonal slopes on 

the basis of flnite dlfferences 

• The spatial samphng of snaxels (i e , the number of snaxels per arc length unit) along a 

15 Note that thl5 15 not dlrectly rplated to the property of the slope of the syrnmetm aXIs of belng smaller 
than one as glven by eq uation (D 10) For example, we can evaluate the slope at a rtdge pOl n t by 
looktng at the flrst dlfferences ln both ~ and Y directions Because the distance surface folds at thls 
point mtr) two loral dIstance surface patches (1 e , patcher, of the distance surface made of regular 

points only) the slope IS averaged over both patches and 15 always less than unit y 
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snake segment can be efficiently updated by observing how the convergence of pannormals16 

influences the snaxels' inter-distance, ~s. Snaxels should follow the directions imposed by 

pannormals when evaluating 47 and 4>y. Therefore, for each snake segment, we propose 

the following two heuristics to reset snaxel sampling. If the average Ll.s (averaged over ail 

snaxels of a snake segment) becomes lower than a desired limit, then the number of snaxels 

is reduced. This may be the case of a snake segment initialized on a convex contour segment 

(e.g., circular arc). Othel"'lVlse, if the average l:l.s becomes larger than a desired limit, the 

number of snaxels is increased. This may be the case of a snake segment initia'ized on a 

concave contour segment. Furthermore, this resampling procedure permits us to keep the 

stlffness parameter Wl(S) constant thereby simplifying the snake computations (Chapter 2, 

section 2 7). 

16 Three cases are possible the pannormals converge (i e . they emerge from a convex contour segment). 
they remain parallel (i e . they emerge from a straight contour segment). or they diverge (i e. they 
emerge from a concave contour segment) 
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