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ABSTRACT

One of the principal functions of static var compensators (SVCs) in a transmission
system is the voltage control at the point of connection. As power and transmission
systems have grown considerably in the last decades, many systems have been
interconnected for economic reasons. The use of SVCs became more important as the
systems were required to operate at higher power levels, which led to a reduction in
the stability margin. Increasing the number of SVCs in a network is one of the
solutions, but it leads to undesirable interactions among them, which affect the
stability limits. Control coordination of these SVCsis considered a good alternative to
allow power systems to operate at higher power levels with the required stability

margin, as well as to increase the damping of critical modes of oscillation.

This study presents the possibility of improving the effectiveness of SVCs in a
system through the concept of SVC control coordination for voltage regulation, in
linearized power systems. A concept of coordination of several SVC units, operating
on the same system bus of a network, based on averaging the SVC current outputs
according to their dynamic reactive capabilities as defined by their slope reactances,
has been elaborated. Then, a control coordination concept relevant to many SVC units

connected to different buses of the system has been presented and described.

The methodologies used to describe these concepts have been explained, and

stmulation results were presented.



Une des principales fonctions des compensateurs statiques (SVCs) dans un 1éseau

de transport d'énergie est la régulation de tension des barres ou ils sont connectés.
Comme les réseaux de transport et de puissance ont considérablement grandi durant
ces derniéres décennies, plusieurs systémes ont ¢té interconnectés pout des raisons
économiques. Le besoin d’opérer ces réseaux pour transporter de grandes quantités
d'énergie a ~ntrainé une diminution substanticlle de la marge de stabilité, ce qui a
permis I'emploi grandissant de compensateurs statiques. Lutihsation d'un grand
nombre de compensateurs statiques est unc des solutions possibles, mais a pour effet
I'existence d’interactions mutuelles entre ces dispositifs cux mémes. Cela affecte aussi
les limites de stabilité des réseaux. Aussi, une coordination de controle de ces
compensateurs statiques peut-&tre considérée comme une bonne alternative pour
permettre de transporter de grandes quantités d’énergie tout en préservant les marges

de stabilité requises et améliorer 'amortissement des oscillations des modes critiques.

Cette étude présente au moyen de concepts de coordmation de controle de
compensateurs statiques relatifs a Ja régu ation de tension pour des réseauxlinansés,
une possibilité mtéressante d'améliorer 'efficacité de ces disposttts dans un 1éscau
d'énergie. Un premier concept de  coordination de controle de plusicurs
compensateurs statiques opérant en parallele sur une méme barre du réseau, a ¢té
¢laboré. Ce concept est basé sur la prise de moyenne des courants de sortie des
compensateurs statiques, relatifs a leurs capacités réactives dynamques défim par
leur pente respective. Ensuite, un concept de coordination de controle de plusieurs
compensateurs statques localisés sur différentes barres du réseau a Cté présenté et

décrit.




Les méthodologies utilisées pour décrire ces concepts ont été clairement expliqués

et des résultats de simulation présentés,
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CLAIM OF ORIGINALITY

To ihe best author's knowledge, the following contributions are original :

- a proposition of the concept of coordinating several SVC units, operating in
parallel on the same system bus, with regard to voltage regulation of linearized power
systems, by means of averaging the SVC current outputs according to their dynamic

reactive capabilities, as defined by their slope reactance.

- a proposition of the concept of coordinating many SVC units located at various
buses within the power system, with regard to voltage regulation of linearized power
systems, by means of a structural change to the SVC controller dynamics, which
minimizes the mutual interactions among the SVC controllers and improves their

dynamics and stability margin.
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CHAPTERI

INTRODUCTION

1.1. STATIC VAR COMPENSATORS AND THEIR APPLICATIONS

Static var compensators (SVCs) are fast acting devices which are being increasingly

applied to power systems for a variety of purposes :

- voltage regulation and increasing voltage stability limits (preventicn of voltage

collapse),
- increase of transient stability limits and power transfer capability,
- increase in power system damping,
- providing of the reactive requirement of HVDC terminals,
- control of voltage flicker,
- phase unbalance of fluctuating loads,
~ control of temporary overvoltages, and
- damping of subsynchronous resonance.

At present, the controls of such devices are local and independent. As more and
more of these devices are installed within one system, undesirable interactions
develop. Such interactions reduce, in general, their stability imits, increasing risks of
nstability (mutual hunting). For these reasons, slower control settings and dynamics
have to be adopted. Some studies indicate that the number ot such devices has to be

limited in order to ensure their stable operation.




1.2. STATIC VAR COMPENSATORS FOR YOLTAGE REGULATION/

LITERATURE SURVEY

Voltage regulation in power systems has been always a subject of importantinterest
as power systems are sensitive to load variations. Fast voltage regulation in power
systems relies primarily on automatic voltage regulation (AVR) of synchronous
machines for power generation. Synchronous condensers were the only traditional
means for voltage regulation in power transmission systems. Recent development of
Static Var Compensators has proved that a relatively inexpensive and reliable fast
voltage regulation devices can be build and applied to improve the operation of power
syster-s and extend their transmission capabilities and their transient stability lim.ts

[1-8].

Shunt reactive power corppensation by means of SVC based on
thyristor-controlled reactors (TCR) and thyristors switched capacitors (TSC) as their
variable reactive power devices, is now applied in many interconnected power systems
as a new and efficient tool for maintaining voltage deviations within specified

tolerances.

In conventional SVC systems, thyristor-controlled reactors (TCRs) and
thyristor-switched capacitors (TSCs), as variable components, are controlled such as
to operate as reactive current sources. SVC systems in development employ gate turn
off (GTO) thynstors for forced-commutation of capacitors and reactors, acting as

reactive voltage and current sources, respectively [12].

Conventional SVC systems for voltage regulation employ controllers based on
local voltage and current measurements. The operation of their TCR, TSC
components and GTO thynsi _rs requires phase synchronization, most often based on

phase-locked loops (PLLs). Generally, a proportional integral (PI) controller or




lead/lag controllers are employed. A PI controller has an internal feedback loop based

on the internal (or external) SVC current signal fed through the siope reactance of the

SVC. Such control systems are adequate when the number of SVC units is small.

H. W. Schweickardt et al. [9] demonstrated that thyristor-controlled static var
compensators meet all transmission system requirements due to their fast control
capabilities to regulate the voltage and improve system dynamic performance and its
transient stability. They showed also that the SVCs can be controlled so as to enable
the damping of system power oscillations. R. L. Hauth et al. [10] and D. McGillis et al.
[11] considered the benefits of static var systems in high voltage power systems
applications. R. Elsliger et al. [13] presented the strategy of optimization when the
shunt compensation is to be applied on a large scale, with a considerable number of

SVCs in the system.

L. Gerin-Lajoie et al. [14] considered application of 30 static compensators to
Hydro-Quebec power system using the eigenvalue technique. They discovered that
when the system becomes weak (i.e, loss of two lines in a section), the SVCs tend to
become unstable and in order to preserve the system a recourse must be made to local

and remote SVC tripping .

A. J. P. Ramos et al. [15] confirmed, by means of transient nctwork analyzer
(TNA) sstmulations, that the network-SVC and SVC-SVC interactions can develop in
a weak power systern which is radial and heavily shunt compensated, wich three static
var compensatcrs of relatively large ratings, installed at short distances from each

other.




PR

In order to achieve the best use of static var compensators in a power system, it is
necessary to select their strategic locations and ratings. This has been the subject of
many technical papers. R.T Byerly et al. [16] considered the application of static var
compensators to power transmission systems with an emphasis on stability, regarding
to SVC specifications of SVCs, locations, slope reactances, peak reactive power
requirements, and control modulation. M. O’Brien et al. [17] proposed a
computational by efficient procedure for the determination of SVC locations so as to
maximize the damping of electromechanical oscillations. The proposed location
criterion is independent of the SVC control scheme to be used. N. Martins et al. [18]
developed efficient algorithms for solving two important problems of damping of
clectromechanical oscillations in large scale systems. The algorithms :nable the
determination of the most suitable generators for installing power system stabilizers
and the most suitable buses in the system for placing static var compensators in order
to damp the critical modes of oscillation. S.Granville et al. [19] developed a software
named PLANVAR, to be used for improving the voltage profile by means of optimally

located shunt var systems.

Optimal control theory has been applied to design optimal controllers, [20-23],
SVC controllers in particular |24] . But, it has been chown that optimal control theory
assumed a centrahzed control structure, which requires a great number of feedback
loops when the number of SVCs is large. This 1s a serious drawback from the view
point of practical realization. R. L. Kosut et al. [25] proposed a method for designing
controllers for linear time-invanant systems whose states are not all available or
accessible for measurement and where the structure of the controller is constrained to
a linear time-invariant combination of the measurable states of the system. M. M. El
Metwally et al. [26] considered the design of decentralized optimal controllers of
multi-area power systems. In oider to offset the measurement and transmission

problems associated with centralized optimal control, localized optimal controls




based on the method of minimum error excitation were developed and their

performance analyzed as a function of tie line power level. In addition, the effect of
feeding back some of the reduced number of remote state variables, on the response of

decentralized optimal controls was investigated.

M. Brucoli et al. [27] proposed a decentralized suboptimal control with SVC
controllers feeding back only locally available variables. Although some effort has
beenmade to develop SVC adaptive controllers [28-32], the problem of coordination

of SVC controllers for voltage regulation is just being recognized.

1.3. CONTROL COORDINATION OF SVCs FOR VOLTAGE

REGULATION

Electric utilities are becoming increasingly constrained in regard to construction of
new generating plants due to regulatory procedures. There is an increased pressure to
build plants far from the major centers, while it become= more and more difficult to get

rights of way for transmission lines.

Power systems become more interconnected for economic reasons. As
transmission systems are required to operate at higher power levels, the margin of
stability reduces. For these reasons, utilities are increasingly employing static var
compensators, series compensation [33], as well as HVDC systems. Therefore, the
number of fast voltage control devices ona systemis continually increasing, in addition

to existing fast, high nitial response excitation systems and power system stabilizers.

Control coordination of voltage control devices can reduce undesirable
interactions, increase their stability limits, and allow power systems to operate at
greater power transfer levels, yet with required stability margins In addition they will

increase damping of critical modes of system oscillations.




e
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Control coordination of static var compensators for voltage regulation can provide
a stable and efficient operation especially when their number becomes significant. In
the present study, control coordination concepts of static var compensators located on
the same bus or various buses of a system, are proposed with regard to voltage
regulation of linearized power systems. Such a coordination can be associated to SVC
functions, such as coordinated system damping function by static var compensators in

support of power system stabilizers and HVDC systems.

1.4, SCOPE AND ORGANIZATION OF NEXT CHAPTERS

Chapter II introduces the power components such as transmission lines,
transformers, reactors, capacitors and filters including generators, loads and SVC
systems and their linearized representation required in transient and small

perturbation studies.

Chapter I1I gives an introduction to SVC conirol systems for voltage regulation .
Linearized power system with single SVC unit was considered and a modal analysis

in s-plane and time domain analysis of that system was presented.

Chapter 1V describes the concept applied to coordinate many SVC controllers
operating on the same bus of a power system, using linearized single bus equivalent

system.

Chapter V presents the concept of coordination of many SVC controllers when the
SVC units are connected to different buses within a power system. Analysis of SVC
systems with coordinated controllers in s-plane and time domain was made in the case
of the hneanzed JEEE 30-bus power system with up to five SVC units. The results of

this analysis are given in Chapter Vi.




The conclusions of this study and suggestions of future development were

presented in Chapter VI

3




CHAPTER 11

POWER SYSTEM AND STATIC VAR COMPENSA-
TOR REPRESENTATION

2.1. INTRODUCTION

This chapter deals with the representation of the power system and the SVC sys-
tems to be used through this study. Representation of power system components,

transmission hnes, transformers, reactors, capacitors, filters, generators, loads and
SVC systems are described.

P

2.2 POWER SYSTEM REPRESENTATION

2.2.1. Transmission Lines, Transformers, Reactors and Capacitors

Transmission lines considered in this study are represented by their x -equivalents.
One such representation is given in Figure 2.1,

Z

vl 1
>l 1

]~

= Yt

Fig 2.1. w - equivalent line representation




—

The characteristic parameters of the x -equivalent of the line are :

Z; - the series impedance between the line terminals, and

Y, = Y/2 - the shunt admittance at each line terminal.

A transfoumer with a fixed tap setting @ can be assumed to consist of its leakage

impedance Z,; connected in series with an ideal autotransformer. The 7 - equivalent

of the transformer is shown in Figure 2.2,

Fig 2.2. 1 - equivalent transformer representation

On-load tap changing transformers and phase shifters can also be represented by

similar 7 - equivalents.

Linear reactors, capacitors and filters are represented by their relevant imped-

ances.

2.2.2. Generators

Generator dynamics associated with the rotating mass are too slow and do not af-
fect the dynamics of the static var compensators. Even the dynamics of the generator
excitation system are relatively slow as compared to the SVC dynamics (ten imes slow-
er), so that they can also be neglected, including the dynamics of the associated auto-

v matic voltage regulator (AVR). Therefore, the generator can be represented by an

equivalent infinite bus behind an internal reactance as shown in Figure 2.3 ,




Fig 2.3. Generator representation

where E" is the voltage behind the subtransient reactance, and

X" is the subtransient reactance.

The generator which is considered as the slack bus in load flow studies can also be
represented by a corresponding infinite bus behind an internal reactance as any other

generator within the system.

2.2.3. Loads

Loads consist of thermal and motor loads. Thermal loads are stationary while mo-
tor loads are dynamic. However, the dynamics of the motor loads are too slow as com-
pared to SVC dynamics, so that they could be neglected. Therefore, the loads are also
considered to be stationary. They are nonlinear with regard to applied voltages. In

load-flow studies, the loads are considered in general as,

P =P, (—K)" n € [0,2]
Vo

— Vn
Q _QO(VO')
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For n = 0, the load becomes a PQ bus since its active and reactive power are con-

stant.

For n = 1, the load becomes a 1-bussince its active and reactive currents are con-

stant.

For n = 2, the load becomes a Z-bus since its impedance is constant.

Insmall signal studies of SVC dynamics, the linear representation of the load hasto
be assumed. Therefore, either a constant current and/or a constant impedance load
representation has to be chosen. Load buses are by far the most common, typically

comprising more than 80 % of all buses of a network.
2.3 SVC REPRESENTATION

A detailed analysis of SVCs, their functions, characteristics and applications of
SVCshas already been elaborated [ 7]. The sections which follow present a brief review
of typical SVC types (TSC and TCR types) as the basis for the SVC control coordina-

tion concept.

Then, before establishing the SVC model for transient stability and small distur-
bances studies, it will be useful to review the SVC representations in load-flow and

electromagnetic transient studies.

2.3.1. SVC Functions

In general, static var compensators are used in power systems where continuous
and fast reactive power control is required. This requirement has to meet one or more
objectives such as (1) improving system voltage condition, (2) providing voltage sta-
bility margin, (3) increasing power transfer capability, (4) increasing transient stability
margin, and (5) supplying reactive power to AC-DC converters. In addition, they are

aprlied to functionally modulate the voltage in order to (6) damp power system oscil-

11




lations, (7) damp subsynchronous resonance, (8) balance phase voltages, and (9) con-

trol system overvoltages.
2.3.2. TCR / TSC Static Compensators

Among various static var compensators, TCR/TSC types are most often applied,

for which reason they will be considered in this study.

ATCR consists of a reactor inseries witha bidirectional thyristor valve as shownin

Figure 2.4 ,

Iy X=ol

|

Fig 2.4. TCR configuration

The fundamental frequency current component through the TCR reactor is phase-
controlled by closing of the thyristor valve with respect to the zero-crossing of the
applied voltage, at angles a between 90° and 180°, at each half-cycle,

( Figure25.a),

i2
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Fig 2.5.a TCR wavetorms
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Fig 2.5.b Fundamental current of a TCR as function of the
firing angle

X The fundamental component /, , shown in Figure 2.5.b, as a function of the phase

a is given by the following expression ,

i 1



L = —Jl;[Z(n -a)-sin2(n-a)] pu.

Three TCR units connected in delta comprise a 6-pulse TCR unit which has its tri-

ple harmonics (3n - th order harmonics) cancelled. A 12-pulse TCR unit consists of

two 6-pulse units, one a wye-connected secondary, the other a delta-connected second-
ary of the coupling transformer. The 12-pulse TCR unit has its 3rd, 5th and 7th har-

monics cancelled, the (6n + 1)th order harmonics in general.

ATCR/FC compensator consists of 6 or 12 pulse TCR unit with a fixed capacitor
bank, a filter (if necessary), a coupling transformer and a controller including the firing
(syrchronizing) system, the PI or phase lead/lag error processor, internal or external

current feedback and the voltage (and current) measurement system, (Figure 2.6),

nTy\ wlw
. T

Controller le— Uy

Il
T

[T

Fig 2.6. Thyristor-Controlled Reactor Compensator

Thyristor-switched shunt capacitor (TSC) consists of a few parallel capacitor banks
which are switched on-off individually, using anti-parallel connected thyristors as

switching valves as shown in Figure 2.7.

14
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Fig 2.7. TSC configuration

The purpose of the small reactor is to limit the rate of change of the capacitor cur-
rent. A parallel resistor improves the damping of inrush current transients. In some
SVC systems, the limiting reactor is ti.ned with respect to the capacitor in order to
form a filter for a particular harmenic and in order to reduce requirements for addi-

tional filtering.

While a TCR reactor unit is characterized by a continuous control, a half-cycle
delay (max) response, negligible switching transients and harmonic generation, a TSC
is characterized by a stepwise control, a cycle delay (max) response, switching tran-

sients but no harmonic generation.

In many applications the SVC systems consist of 6-pulse TCR combined with TSC
units as solutions to provide a continuously variable reactive output from fully lagging
to fully leading current, while their response is fast and harmonic generation reduced.

Such an SVC is illustrated in Figure 2.8,

15




1 TCcR control

TSC onl/off

Fig 2.8. TSC/TCR static var compensator

2.3.3. Load Flow Representation of SVCs

The main objectives of a load-flow study are to determine the bus voltages, the ac-
tive and reactive power flow in transmission lines and transformers, the power losses,
the power at the slack bus and the reactive power of generators and shunt elements (e.g
SVCs) for a given power system configuration with generators specified as PV buses

and loads specified as PQ, I or Z buses.

A load-flow study concerning the SVC applications enables primarily :
- determination of SVC location and preliminary ratings,

— analysis of SVC effects on the system active and reactive power flow and system

bus voltage,

- determination of the steady-state for transient stability and/or small perturbation

studies.

In a load-flow study, each node of the system is represented either by a PV bus, a

PQ bus,an I bus,a Z bus or aslack bus (E bus).

16




The basic SVC model in load-flow studies is a PV bus where P = 0 and

V = Vs behind the SVC slope reactance (internal reactance) Xy (Figure 2.9) ,

Vv

stci Xd
Ver, P =0

Fig 2.9. SVC model in programs for load-flow studies

The nominal operating range of an SVC is (Q.., and Q...)

1-Xg Quecm SV =14+ Xy Qacim in p.u on the SVC base,
where Qwebae = MaxX (QseLm » OsveCm)
Vive base = me

Outside of thisrange, the SVC operates as a shunt reactor or capacitor depending

on its operating point ( Figure 2.10),

Vv

Osve ¢

B.wc Lm { } B.wc Cm

Fig 2.10. SVC model for operation outside nominal range

-~
I.wch

1 +Xsl lschm

For V> 1+ Xqlgyc1Lm Bye = =Byctm = -
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P

1 sveCm

For V < ]_XSI ,.\'VCCIﬂ B.WC = DgpceCm &=

—Agl l.wc Cm

stc Lm

where Ieim =

1+ Xsl stc Lm

Q.\'vc Cm

and locom =

1 ‘Xsl Q.wc Cm

The reactive power Q,. at the coupling bus is absorbed/generated according to

the SVC characteristic as seen in Figure 2.11 ,

Voltage ‘

VI]pu)

----------------

inductive

— — S ———————— —— —

P

l.wc Cm

Fig 2.11. Basic

]:chm I.wc [p.u ]
Total SVC current

SVC characteristic
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2.3.4. SVC Representation in Electromagnetic Transient Studies

SVC models in electromagnetic transient studies must accurately represent SVC
characteristics in steady-state and transient conditions, for which reason they are
three-phase. Depending on the simulation technique being utilized, SVC representa-
tion can be a.ialog, digital or a hybrid. Digital models of the SVC power system compo-
nents consist of implementation of differential and algebraic equations [34], while
relevant analog models consist of reactors, capacitors and linear and saturable trans-

formers [35].

Thyristor valves in analog simulation are represented by bidirectional thyristor
pairs. Snubber circuits are modelled by passive components. Improved modeis of thy-
ristor valves employ negative resistance for compensation of excessive voltage drops
across their thyristors. Thyristor valve models, based on Field-Effect transistors

(FET’s) are used in digital simulation, instead of thyristors modelled as ideal valves.

SVC controllers in analog and hybrid simulation are represented either by a physi-
cal or an analog or a digital equivalent. Modern digital models and controllers employ
microprocessor technology where signal model processing is defined almost entirely in
software. The essential component of a digital representation control system is shown

in Figure 2.12.
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Fig 2.12. Bloc diagram of an SVC model employing a
digital controller model

SVC controllers are represented in digital simulation by an equivalent implemen-

tation of all controllers, differential, algebraic and logical equations.

2.3.5. SVC Representation for Small Disturbance Studies

Based on SVC modelling in steady-state and electromagnetic transients studies,
SVCrepresentation for small disturbance studies has been deduced. This model repre-
sentall the relevant dynamic characteristics of the SVC control systems to be analyzed
in small disturbance studies. The general block diagram of this model is given in Figure

2.13.




)

V] Voltage

measurement
circuits
6 Sync!lrm)izing
Circuits
Slo ISVC Current
Xs;ie < measurement [*
.- . circuits
L]
: Vel
Contro! | . SvC v .SV‘C ,
Signal  |--» power control |->&) » rc‘udrtn::i‘:
Processor model + source
j g Vel?

Additional Control Signals

Fig 2.13. Principal SVC Model for Small Signal Studies

Digital computer programs for transient stability and small disturbance studies are
based on lumped transmiss‘on system components where impedances are considered

to remain at their values at nominal frequency during the transicnts.

In transient stability programs, the power system is described by a set of nonlinear
algebraic equations (Ioad-flow problem) and a set of nonlinear differential equations
(dynamics of electromechanical system components), which are solved alternately.
The load-flow equations are most often solved by Newton-Raphson or Gauss-Seidel
methods, while the integration of the differential equations is done insmall time steps

using trapezoidal techniques.

In programs for small signal stability studies, all system components are lincarized
around the steady-state operating point, so that the system behavior could be analyzed

in Laplace domain, based on system eigenvalues and eigenvectors.
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Present SVC controllers are mostly of proportional-integral (PI) type. In some

cases proportional controllers are applied with lead/lag filters for an optimal tuning
phase processing of voltage error signal. In such cases, the overall controller gain is
inversely proportional to the slope reactance,
Al 1
AV Xy
Integral type voltage controller is frequently applied with the current ( reactive
power) feedback with a slope reactance as its gain, as an adequate solution instead of

proportional-integral controller.

Supplementary control signals related to variation of the system frequency, power
flow and phase difference may be also used when SVC systems are applied to improve

transient stability and/or system damping.

The nonlinear relationship between the SVC output and the firing angle is com-

pensated by means of a linearizing function in the thyristor phase control circuits.
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CHAPTER 111

POWER SYSTEM WITH A SINGLE SVC UNIT /
MODAL AND TIME DOMAIN ANALYSIS

3.1. INTRODUCTION

The purpose of this chapter is to describe the control model of a single SVC system
connected to a power system equivalent, with regard to voltage regulation. The modal
analysis of the SVC system in the s-plane is presented as well as step responses in the
time domain to various disturbances such as voltage reference variation or load

current disturbance.

A review of the significance of eigenvalues, eigenvectors, poles, zeros and residues
through modal analysis of linear time-invariant dynamic systems is given in

Appendix A.

3.2. POWER SYSTEM WITH A SINGLE SVC UNIT

The linearized power system with a single SVC unit is given in Figure 3.1.
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Fig 3.1. Linearized power system with single SVC.
Power System Representation
In this case, the power system is represented by an equivalent impecance block
denoted by Zs. In more details the block Zs is shown as follows, in Figure 3.2,
iy
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V]

T

Fig 3.2. Linearized power system block diagram

The voltage magnitude |V’| and the phase 6 represent the outputs of the power

system, while the inputs are the SVC current Iy, and the reactive and active load

curients Iy and Iz. These outputs are eapressed by the following linearized

equations,
i = A e+ e+ 2 6.
9=%|olm+5"[ﬂx|olx+%|om (3.2)
where aail;' = aal;;l = f% Z,-Z,],
AN - @z,




At a selected operating point, V; is constant, as well as |Vp| . The power system
block diagram, is therefore clearly defined as linear since the system outputs

|V] and@ are linear functions of system intputs I, Irand Iy.

SVC Representation

SVC systems considered in this thesis are represented by a generalized block
diagram shown in Figure 3.1. It comprises a TCR/TSC block, a valve firing unit, a
phase-locked loop unit, a PI controller, a slope reactance feedback and a voltage

measurement unit.

The voltage magnitude is filtered, then compared to a reference signal, the
difference being the input to the PI controller. The PI controller has an internal
feedback loop based on the internal (or external) SVC current fed through the slope

reactance of the SVC.

The phase-locked loop is assumed to consist of a voltage controlled oscillator, a PI
controller, a filter and a phase discriminator. The VCOis represented byan integrator,
a PI controller and a filter, while the phase discriminating multiplier is linearized as

shown in Figure 3.3,

I
0 + Af aé
’—’& Kg] "
—T ome.c
1 Kq
; Tgs+1

Fig 3.3 Linearized block diagram of the PLL

The TCR/TSC valve triggering is performed takin g the voltage zero-crossing for its

reference which is provided by the phase-locked loop (PLL). However, the PLL circuit
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introduces a phase tracking delay A9 during transients. This causes a disturbance Iag

to the current order. The linearized PLL circuit is represented by a second order

system. Details of the PLY. models have been elaborated in reference [36].

The SVC current is finally realized by TCR/TSC components with a response time

constant T,.

The admittance of the TCR/TSC block is a nonlinear function of the controlled
firing angle and the PLL synchronization error of their valves. In order to present the

linearization of a such function, a TCR/FC block is considered for simplicity.

The controllable susceptance of the TCR is given as follows :

-g—l - -17; [(B-A0)  sin (B—A0)] (33)
where B; is the susceptance of the reactor,

B is the valve conduction angle, and

A6 is the PLL phase synchronization error.

The susceptance of the FC is expressed by :

(3.4)

»|w
|

o

where ¢ is the capacitor bank susceptance.

For the combined TCR/FC systems of equal inductive and capacitive ratings, the

controllable susceptance is given by the sum of (3.4) and (3.5) , which is :

B = u% [(B-A8 ) - sin (B-46)] (3.5)
when B is the TCR/FC susceptance in p.u. values, its base being
B
Bpge = B, = —
base ¢ 2

2]




From Figure 3.3, the following relation can be deduced :

oB
= Ko A = |Vy| — A9 (3.6)
Iso = Ko 86 = Vol —=
where %g is the SVC susceptance sensitivity constant coefficient, as
Vol is the steady-state voltage magnitude

For small PLL synchronization errors A9 around the steady-state values Sy and

A6y = 0, the following linearized expression can be deduced from expression (3.5) :

8

2
AD lgo, 00 =0 = p (1-cosBo) (3.7)

Therefore we have :

2
Ka = Vil = (1-cosfy) (.8)
On the other side, when A is small, the expression (3.5) reduces to :

B=1-2ip-snp)=7(p) (3.9)

The nonlinearity f ( # ) is eliminated by means of the linearizing function f 1(B)
which is regularly implemented on the SVC controllers.
The TCR/FC response dynamics is represented by a simple delay as shown in Figure

3.1,

3.3. STATE-SPACE SYSTEM REPRESENTATION

In general, this block-diagram representation (given in Figure 3.1) can be

,a- transformed into a state-space form where load currents /g and Iy as disturbances

#

and |V, as voltage reference are the system inputs, and the variables such as the
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SVC currents, the voltage magnitude at the bus, etc.. are the system outputs as shown

in Figure 3.4 :

u”—_) A B E
w:$CDF

m—

Fig 3.4. State-space block diagram

The general form of this state-space form is given by the following equations,

x=Ax+Bu+Ew (3.10)

y=Cx+Du+Fw (3.11)

where u = [|V]egl and w = l:;f}jl are the disturbance inputs,

|Vl

Ic |
is the output vector,

<
I

x is the state variable vector, and

A, B, C and D  are the system matrices.
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The system matrices were formed by simulation using MATLAB software. For
reasons of illustration, the state-space representations of the principal dynamic blocks

of the system given in Figure 3.1 were derived analytically and presented below.

Voltage Magnitude Measurement Block

The state-space representation of the voltage magnitude measurement block is

given by the following expressions :

Xm = Am Xm + By up (3.12)
Ym = Cnxm + Dy (3.13)
V .
where Xm = |Vlmes is the state vector,
,VIMCS
Un = |V] is the input vector,
Y = |Vlmes is the output vector, while the system matrices A,,,

B, , Cnand D, are :

0 1 0

A, =
" _w'zt "'2€wn ’ Wy

1
o
3
]
)

Cn =[1 0] and Dn =[0].

PI Error Processor Block

The PI error processor can be represented as follows :




w e~

l Vl dem,

Fig 3.5. Developed PI controller representation

The state-space representation of the Pl error processor block is given by the

following expressions :

xp; = Apixp; + Bp upy (3.14)
ypi = Cpyxp; + Dj; upy (3.15)
where xpr = |Vldem, is the state vector,
up; = AV, is the input vector,
Yer = |Videm is the output vector, while the system matrices Ap;,

Bp;, Cprand Dpjare :

Ap[ = [0] , BPI = [1]’

Crr = (1] and Dp; =

TCR/FC Block

The TCR/FC state-space representation is given by the following expressions :

Xq = Agxq + Byuy

Ya= Cagxq + Dgug

where x4 = [y, is the state vector,
IX.rvc : :
= ut vector,
Uy [ Ino is the inp
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Ya = lgye,, is the output vector, while the system matrices A4,

B4, Csand Dy are:

Cd = [1] and Dd = [0 0].
where T, represents the TCR/FC response time constant.

Ph cked- Block

The phase locked-loop state-space representation (Figure 3.3) is given by the

following expressions :

xg = Agxg + By ug (3.18)
Yo = Coxg + Dy ug (3.19)
where xp = [ 0’"“] is the state vector,
0”!!3
ug = 6 is the input vector,
Yo = AO is the output vector, while the system matrices Ag , By,

Cgand Dy are :

Ag

0 1 0
K 11, Bg = [ﬁ] :
Ty Ty Ty

[-1 0] and Dg = [0].

Co

By combining the state-space equations of the described blocks (equations3.12to
! 3.19) with the algebraic equations for A{V] and A|V], deduced from Figure 3.10ne can

form the state-space equations of the SVC system. Then interconnecting this SVC
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system state-space representation with the power system (equations 3.1 and 3.2), the

complete state representation of Figure 3.4 is defined.

e

Using the MATLAB software and its Control System Toolbox [37]. the system
matrices were formed in two steps. First, the state-space representations of the
controller and the PLL were formed from their block diagrams using the ‘transfer
function-to-state space’ conveision function. Secondly, the state-space representation
of the whole system was formed by interconnecting the controller and the PLL
state-space representation with the power system into a complete system using the

‘connect’ function.

3.4. MODAL ANALYSIS OF THE POWER SYSTEM WITH A
SINGLE SVC
The principal phase of the modal analysis consists of determining the system
eigenvalues. The oscillation frequencies (modes) are associated with corresponding

complex eigenvalues pairs, while aperiodic transient components arc associated with

real eigenvalues,

The eigenvalues of the system are the roots of the characteristic equation associated

with the system matrix A.

For example, a power system with a short circuit power of 14000 MVA, a system
voltage of 735 kV and an SVC of 660 Mvar are representedin p.u. values based on the

SVC rating by the following parameters:

Impedance of power system equivalent : Z; = (0.942+,47.115).107 p.u.
Slope reactance of SVC: x, = 0.03 p.u.
Filter parameters: w, = 200; ¢ = 0.3;

PI controller parameters: K, = 1;/, = 800;
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Suaasly

Time constant : T, = 0 005;

Phase-locked loop parameters: K, = 533; P, = 1; T, = 0.0038;

Using MATLAB, the following system eigenvalues have been determined

(Figure 3.6) :

[-29.95, -244.89. -30.64 = j209.81, - 266.52 =+ j263.02]

300 T T T T LI

200} : , . .

100+ =

Imag
S
1

2200 - : S

_"OO n t ' 1 L
77600 -500 400 300 -200  -100 0
Real

Fig 3.6. Eigenvalues of a power system with single SVC

From Figure 3.6 two oscillatory modes can be revealed, represented by the two
pairs of complex eigenvalues and the two aperiodic modes represented by two real

cigenvalues.

The position of eigenvalues in the s-plane determine the system stability and its

dynamics. These eigenvalues move when parameters vary, whether those of the system
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(i.e the equivalent impedance Zs of the network due to its topological changes), or

those of the controller (i.e gain, integration constant, PLL parameters, etc..).

Root loci for different parameter variations reveal impact of various parameters
upon the system dynamics. Such root loci are given on Figure 3.7 when the impedance

of the equivalent network is varied.

Lege;d ' ‘ ' ' Lo
600F, Starting point ) 7
+ Locus  point
» Final point
400 : ‘ - ¢ -
N +
200k . . : o . J
g OL - + + +o0 . do . - 1
-200+ 0. =
¢ +
-400 - - * -
600} \ . ‘ , 1

-1000 -800 -600 -400 -200 0 200 400

Real

Fig 3.7. Root loci when equivalent of the network imped-
ance with a single SVC system is varied

Figure 3.7 illustrates the displacement of the eigenvalues of the studied system
when the impedance of the equivalent network increases two to five times the original
value of Z;. We can see that as the system impedance increases, (i.e. the power system

I becomes weaker), a pair of complex conjugate eigenvalues (due to the measurement

filters) move to the right, the system becomes less damped while its margin of stability
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diminishes. The other pair of complex eigenvalues (due to the PLL) remains
unchanged, but the real eigenvalues move. One of these real eigenvalues is shifted far
to the left half plane which gives to its corresponding aperiodic response a shorter time
constant. The other real eigenvalue is shifted slightly to the left,, yielding slightly

shorter time constant to the relevant aperiodic mode.
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Legend

o Starting point ¢

+ II:'oallS po_m[t d/

» Final  poin
200+ . R 4
100 - . -

[=V1]

g 0t W b+ * ) —
100 : : .
-200 - +\ .

*
_300 ) L 1 i 1
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Fig 3.8. Root loci of the system eigenvalues for a variable
controller gain

Figure 3.8 illustrates the root loci of the system eigenvalues foi varying controller
gain K, from 100 to 0 by steps of 5. The plot shows that for higher gains the system has
smaller stability margin. If the gain is increased somewhat above 100, the system

becomes unstable since the pair of complex eigenvalues move to the right half plane.
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>




The pair of complex eigenvalues due to the PLL remains unaffected. A decrease of the

gain moves one of the real eigenvalue to the right, while the other 1s moved to the left.
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Fig 3.9. Root loci of the system eigenvalues for variable
integration constant of the SVC controller

Figure 3.9 shows the root loci for variation of the controller integration constant
I, as it decreases from the value 10000 to 20 by steps of S00. The system is taken from
unstable to stable region. since the critical complex pair of cigenvalues move from the
right half plane to the left half plane. Another complex pair of ¢igenvalues transtorms
into two real eigenvalues, one moving to the left, the other to the nght from double
value position on the real axis. The complex pair of eigenvalues due to PLI remains at

its original location.
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Fig 3.10. Root loci of the system eigenvalues for variable
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Time constant T; due to delayed reaction of the thyristor valves does not have a

great effect on the stability of the system as shown in Figure 3.10 when it was varied
from 0.0005 to 0.1 seconds by steps of 0.0025, as shown in Figure 3.10. The controller

parameters were chosen to provide a stable operation to the system.

3.5. STEP RESPONSE OF THE SYSTEM WITH A SINGLE SVC UNIT

Dynamic petformance of an SVC system is often specified in time domain. For that
reason, step responses of the systems to reference and disturbance inputs are of prime
interest to system engineers. Time responses are determined by system eigenvalues,

their locations and types, as well as by location and magnitudes of system disturbances.




Real eigenvalues correspond to aperiodic modes, while pairs of complex eigenvalues

correspond to oscillatory modes.

Applying step disturbances, one can determine, using numerical simulation, how an

SVC responds in time-domain to such disturbances.

Different step disturbances and relevant system responses have been determined
and given in the following figures. The system and controller parameters are chosen to

be the same as those selected in section 3.4,
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Fig 3.11. Time responses to the reference voltage step variation

for various network impedance values (Z/Zs = 0.5 p.u. t0 2 p.u))

(a) voltage magnitude
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Figure3.11 shows the time responses of the voltage magnitude and the SVC current

to a reference step variation of V., = 0.03 p.u. when the impedance of the equivalent

network varies from EZ— =05 pu. to 2 pu., where
£

Z, = (0.942+j47.115).1072 p.u. . As the impedance Z, increases (the network
1% P

becomes weaker), the voltage magnitude and the SVC current change from almost
aperiodic to oscillatory, revealing a significant degradation of the damping of the

system.

The slope can also be verified using the following expression,

Xslope = 7—' (3 '20)

e,

where I, and AlV| (see Figure 3.1), are to be taken after being settled to their

steady-state values.

For example, for the case given in Figure 3.10. when the equivalent impedance of

the network is Z; = (0.942 +j47.115)1073 p.u., one obtains the following values :
AlV] = 0.0117 p.u.
Ieye, = 0.3890 p.u.

which gives X;0p = 0.0301 p u. or3.01%, equal to the value that was originally set.
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Fig 3.12. Time responses to a step variation of the reference voltage
when the controller gain varies

(a) voltage magnitude

Similarly, an 1dentical step voltage variation isapplied to the power system when the
controller gain K, varies, and the resulting time responses are ilustrated in
Figure 3.12. One can see the effect of the increase of the gain. When K, = 0, both of

the measured voltage magnitude and SVC current are aperiodic, but when itincreases,

the output responses become more oscillatory.

Once again, a similar step voltage reference isapplied, but this ime the integration

constant J, varies as shown in Figure 3.13.
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In a similar way, we have applied other disturbances to the system, without varying
any of the parameters of the controllers or the system. The system and controller
parameters are chosen to be the same as those selected in section 3.4.

Figure 3.14 and 3.15 show the step responses of the measured voltage magnitude
and the SVC current to a vanation of the reactive load current Ix = 0.9 pu..anda
variation of the active load current /x = 0.9 p u.One can see that the time responses
are not well damped. For the chosen set of controller parameters, it is important to
notice that the effect of the reactive load current variation is significantly greater than

I that of the active load current variation. The slope was also verified by input-vs-output

measurements and 3% was regularly obtained.
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For curiosity reasons, we have applied (Figure 3.16) a combined step disturbance of
active and reactive load current / = 0.9+,0.9 p u. . As seeninFigures3.14 and 3.15,

the reactive load current variation has a dominant impact upon the system responses,

while the impact of the active current variation was small.
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Fig 3.16. Time responses to a step disturbance of the active current
combined with the reactive load current
(a) voltage magnitude (b) SVC current

Finally, a disturbance has been applied, consisting of a step variation of the

Vley = 0.03 p.u. and a complexloadcurrent 1 = 0.9+;0.9 p.u.,

reference voltage
illustrated by Figuie 3.17. As the impact of the active current variation is small
(Figure 3.15) the response obtained in Figure 3.17 is mainly due to the effect of the

reference voltage and reactive current load disturbance.
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Fig 3.17. Time responses to simultaneous step changes in the voltage
reference and active and reactive load current
(a) voltage magnitude (b) SVC current
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CHAPTER IV

CONTROL COORDINATION OF SVCs IN
PARALLEL OPERATION

4.1. INTRODUCTION

This chapter deals with coordination of several SVCs operating in parallel on the
same system bus. The coordination concept of such systems, proposed in this thesis is
based on equalization of the SVC outputs, accoruing to their dynamic reactive
capabilities as defined by their slope reactances. In this case, the SVCs can be
considered as operating in parallel on a single bus equivalent system without any loss

of generality.

4.2. POWER SYSTEM WITH TWO OR MORE SVC UNITS OPERATING

ON THE SAME BUS

In many SVC applications, more than one SVC unit are installed on the same bus.
Many reasons can justify that, the most important being an increased reliability of
multi-unit systems, especially on high voltage systems for large bulk power

transmission.

Insuch cases, SVC units are designed to operate in parallel, independently, without

any control coordination.

4.2.1. Uncoordinated SVC Units Operating on the same Bus
Let us consider two SVC units similar to the one in Figure 3.1, to be connected to

the same bus as illustrated 1n Figure 4.1 :
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Fig 4.1. Block diagram of a power system with two uncoordinated SVC units

The two SVC units with identical controller parameters were chosen as those
presented in Section 3.4, each of them rated 330 Mvars, half the rating of the single
SVC unit chosen in Section 3.4. Therefore, the equivalent SVC has a rating of 660
Muvars. It is interesting, for a chosen SVC power rating, to compare the behavior of a
single SVC unit with the two equivalent SVC units operating in parallel on the same

bus.

For a power system with a single SVC, the eigenvalues describe the dynamic
interactions between the SVC and power system, while for two or more SVCs, some
eigenvalues describe SVC-power system interactions while others describe the

interactions among SVCs, as tllustrated in Figures 4.2 and 4.3. Figure 4.2a shows the
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eigenvalues of a single SVC unit, describing interactions of the SVC with the power
system. Figure 4.2b illustrates the case of two identical uncoordinated SVC units,
where some of the eigenvalues are located identically as those shown in Figure 4.2a,

which means that the equivalent SVC which consists of the two identical units

operating on the same bus exhibits identical interactions with the system as the single
| SVC uni: >f equivalent rating. Other eigenvalues shown in Figure 4.2b are associated
with mutual interactions between the SVC units themselves. It should be noticed that
pair of complex eigenvalues due to the phase-locked loop (PLL) is double. Figure 4.3

is similar to 4.2 and it shows the poles of Figure 4.2a and 4.2b on the same plot.

300 -+ . 300 r T
* dduble
200 - + 200 -~ Y ©
100 - 4 100} -
g 1] + + g 0F o o oo
-100+ 1 -100+ i
22001 . 2004 ° o
+ dguble
-300 ! : 300 - :
-600 -400 -200 0 -600 -400 -200 0
Real Real
(a) (b)

Fig 4.2. (a) Eigenvalues of a power system with a single SVC
(b) Eigenvalues of the power system with two identical
uncoordinated SVC units
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Fig 4.3. Eigenvalues of a power system with a single SVC or two identical
uncoordinated SVCs

Table 4.1

Single SVC unit

Two identical uncoordinated SVC units

-29.95 -16.03
-244.89 -29.95
-30.64 = j 209.81 ~200.00
-266.52 * j 263.14 -244.89

~30.64 + | 20981

~60.00 = j 190.72

~266.50 * j 263.02

-266.52 * ) 263.14
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The calculated eigenvalues of the single SVC unit and the equivalent system

consisting of two identical uncoordinated SVC units are given in Table 4.1.

The eigenvalues shown in Figure 4.2b which are not associated with interactions of
the SVCs with the power systemn, describe the mutual interactions between the SVC
units themselves. Therefore, if the parameters of the two identical uncoordinated SVC
units are kept unchanged, the eigenvalues describing their mutual interactions remain
unchanged when the network equivalent impedance is varied. However the
cigenvalues describing the interactions of the SVCs with the network change (move).
This is well illustrated by Figure 4.4, which shows that the eigenvalues due to mutual
SVC interactions do not move while the network equivalent impedance varies when
the network becomes too weak and when the eigenvalues cross into the right half

plane (unstable region).
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3 Fig 4.4. Eigenvalues system with a two 1dentical uncoordinated
SVC units for various values of the network equivalent
impedance
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% 4.2.2. Coordinated SVCs on the same Bus / Coordination Concept.
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Fig 4.5. block diagram of a power system with two coordinated SVCs

Coordination bloc Xy

The coordination of SVC units operating in parallel on the same bus is realized by

coordination blocks as controller extension units, Each coordination block forms an

equivalent SVC controller output /;,., which is multiphed by the factor X;/X,, in

order to form the coordinated controller output [y ¢,

Xsl

,svc co, = ‘X—S;Iwc, (41)
n
where [.wc, = ,.wc,,
=1
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The block diagram representation of the network with two SVC units with their

coordinated controllers outputs is given in Figure 4.5.

The coordination or action coordination was made possible by averaging the SVC
currents at the output of their controllers. The current output of each SVC controller
was first summed with other SVC outputs, then multiplied by the ratio of its slope

admittance and the equivalent slope admittance relevant to the SVC units all together.

The proposed coordination modifies the general <tructure dynamics of the SVC
units operating on the same bus of the system. It has for effect to reduce the
interactions among the SVC controllers and tends to transform the SVC unitsinto one
equivalent. In fact it will be shown in Figures 4.8 and 4.9 that this coordination achieves
a relatively good regrouping of the eigenvalues in the s-plane, approaching the
situation of a single SVC unit operating on a bus bar. It will also be shown that with this
coordination the SVC current outputs behave in phase although the parameters of the

SVC controllers can be totally different.

4.3. MODAL ANALYSIS OF POWER SYSTEM WITH TWO OR MORE

COORDINATED SVC UNITS OPERATING ON THE SAME BUS

The series of plots below show the effects of the proposed SVC coordination with

regard to the system eigenvalues location in the s-plane.

To implement the effect of this coordination, an example of two SVC units
connected to a single bus s conside ed. In the case of identical SVCs with identical
control parameters and ratings, the coordination cannot improve the system dynamics,

as shown by Figures 4.6 and 4.7. Controller parameters, ratings and power system




Imag

parameters . taken equal to those of the SVC umt considered in Section 3.4, From
Figures 4.6 and 4.7, one can see the identical locations of the eigenvalues for the

system with coordinated and uncoordinated SVC units.
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Fig 4.6. Eigenvalues of a power system with two identical SVC units
(a) SVCs with coordinated controllers
(b) SVCs with uncoordinated controllers
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Table 4.2

Coordinated SVCs

Uncoordinated SVCs

-16.03 -16.03
-29.95 -29.95
-200.00 -200.00
~-244.89 -244.89

30.64 % 209.81

-30.64 + j209.81

-60.00 = 190.79

~60.00 = [ 190.79

-266.50 *)263.14

2266.50 *+ | 263.14

2266.52 +j 263.02

2266.52 % j263.02

54




Table 4.2 displays identical eigenvalues for the three coordinated and

uncoordinated SVC unit systems.

The coordination effect appears when the dynamics SVC controllers are different.

Figures4.8 and 4.9 show the case when controller parametersare set tobe different
from one SVC unit to the other (Parameters of the system and the SVC controllers are

given in Appendix C).

Table 4.3
Coordinated SVCs Uncoordinated SVYCs
~224.16 ~272.53
-999.54 ~999.69
~46.45 +j 112.02 ~28.26 =+ j119.19
-78.59 +j 109.02 ~101.25 £ j72.23
-202.43 + 372.77 -182.15 £ j96 18
-210.92 +j 24.42 ~202.36 + j372.76
~266.40 +j 263.10 ~260.50 = j 263.08

The eigenvalues of the two different SVC units for coordinated and uncoordinated

SVC unit systems are shown in Table 4.3.

Figures 4.8 and 4.9 illustrate the locations of the system eigenvalues of the
coordinated and uncoordinated SVC units. One can see a relative regrouping of
eigenvalues for the coordinated system. One can see also an improvement in the
margin of stability considering the ergenvalues which are closer to the imaginary axis of

the s-plane.
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Fig 4.9. Eigenvalues of a power system with two different SVC
units with coordinated and uncoordinated controllers

To prove the impact of the coordination effects, let us consider a variation of the
equivalent admittance of the network. Figures 4.10 and 4.11 illustrate the movement
of the eigenvalues in the s-plane when the network is weakened (one to five times the

value of Z; ). One can see that for the third step of variation, the coordinated system

remains in the stable region while the uncoordinated system cross to the unstable
region. On another hand, the coordinated system eigenvalues of Figure 4.11 are kept
relatively regrouped and therefore maintain reduced interactions among SVC units,
while Figure 4.10 show through the distribution of the uncoordinated system
eigenvalues a greater effect of the mutual interactions which subsist among the SVC

units.
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Fig 4.11. Eigenvalues system with two different coordinated
SVC units for various values of the network equivalent
impedance
Let us analyze some other root loci through different variations of the controller

parameters. One can see from Figures 4.12 and 4.13, the illustration of the variation of

the integrator constants I, and I, . I,, is increased from 3000 to 13000 while 1, 18

decreased from 10000 to 0. One can see that a pair of complex eigenvalues (relevant to
the phase-locked loop) remain unchanged while others move. In the coordinated
system (Figure 4.13), a pair of complex eigenvalues transform to two real eigenvalues
which eliminate the oscillations of their relevant time responses, while the
uncoordinated system (Figure 4.12) show the same pair of eigenvalues kept complex.
For the other eigenvalues, the movements are relatively simlar for both coordinated

and uncoordinated systems.
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Fig 4.13. Root loci of the system eigenvalues for variable integration
constants of the two coordinated SVC controllers

Let us now vary the gains of the SVC controllers. Figures 4.14 and 4.15 illustrate an
increase of K, from 2 to 7 while Ky, is decreased from S to 0. Once again the
coordinated system of Figure 4.15 shows the transformation of a pair of complex
eigenvalues to two real eigenvalues, while the same cigenvalues are still complex in the
uncoordinated systern of Figure 4.14. Some other pairs of complex eigenvalues do not
move or move very little, while the remaining eigenvalues have relatively simitar shufts

in both the coordinated and uncoordinated SVC unit systems.
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Instead of varying differently the gains K, andK,, , let us vary their sum K, + K|,
. .eping their ration constant. It is assumed that the sum K, + K,, corresponds to the

gain of the two SVC unit equivalent system. Figures 4.16 and 4.17 show the root loc

corresponding toan increase of Ky, + K,, fromone to tentimesits original value. One

can see that in both coordinated and uncoordinated systems a pair of complex
eigenvalues transform into two real eigenvalues. An other pair of complex eigenvalues
remain unchanged, while an other one move shghtly 1n both of the Figures 4.16 and
4.17. The last pair of complex eigenvalues show an improvement of the margin of
stability in Figure 4.17 (coordinated system) without affecting the damping, while from

Figure 4.16, (uncoordinated system) the move of the same pair of complex eigenvalues
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improve the stability but deteriorates its damping. The real eigenvalue, in both

coordinated and uncoordinated systems show similar displacement.
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Fig 4.16. Root loci of the system eigenvalues for variable equivalent gain
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Fig 4.17. Root loci of the system eigenvalues for variable equivalent gain
of the two coordinated SVC controllers

The presented illustrations demonstrate that the coordinated SVCs have an advantage
over the locally controlled SVCs with regard to their stability margins. This is
particularly important for system contingencies when the network becomes weak and

when stability of SVCs 1s of prime concern.

4.4. STEP RESPONSES OF POWER SYSTEM WITH TWO OR MORE

SVC UNITS ON THE SAME BUS

Applying step disturbances to the voltage reference input, the responses of various

system variables 1n time domain are generated by MATLAB. This is illustrated by
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Figures 4.18 to 4.20 for two 1dentical SVC unit systems and by Figures 4.21 to 4.23 for
two different SVC unit systems. One can observe the comparisons between the time
responses for systems with coordinated SVC units and systems with uncoordinated
SVC units. The SVC coordination, when they are different (frequent case in practice)

improves significantly the power system stability.

I'igures 4.18 to 4.19 display step responses of a power system with two identical SVC
units. All parameters are identical and correspond to the parameters considered in the

single SVC unit example of Section 3.4. An identical voltage reference vc ‘age

variation |V|,, = 0.03 p.u. is applied to each of the two SVC units of the system.
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v Fig 4.18. Magnitude voltage response to voltage reference step variation
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Figure 4.18 illustrates a step response of the magnitude voltage of the system. One

can see an identical response for both coordinated (Figure 4.18a) and uncoordinated

(Figure 4.18b) SVC unit systems with identical parameters.
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Fig 4.19. SVC current responses to voltage reference step variation
(@) system with two identical coordinated SVC units
(b) system with two identical ur coordinated SVC units

Figure 4.19 shows the SVC current step responses to the same voltage reference
variation |V}, = 0.03 p.u. applied to all SVC units. Similarly, the response is 1dentical
for both coordinated (Figure 4.18a) and uncoordinated (Figure 4.18b) SVC unit
systems. Morcover, the curves seen on Figure 4.19a and 4.19b represent only the

current outpui of one SVC unit. Within one system, the two current SVC outputs are

identical.
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Fig 4.20. Total SVC current responses to voltage reference step variation of the
system with two identical coordinated or uncoordinated SVC units
Coordinated system
........... Uncoordinated system

Figure 4.20 illustrates the total SVC current response of the system. One cannot
distinguish on this figure the coordinated from the uncoordinated response. For
identical SVCs with 1dentical parameters, the responses show no difference, as for

responses of Figures 4.18 and 4.20. Figure 4.20 show the total SVC current, which is

the sum of all SVC currents.In addition. it has been verified for each SVC unit, that the

relation (3.21) gives the same value (3%) for Xsope than what was originally set.

{§ The next figures consider the same example of power system with different

parameters of the SVC umts (Parameters of all two SVC units are given in
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Appendix C). The disturbance considered is also a step voltage reference variation

|V];er= 0 03 p.u. applied to each of the two SVC units of the system.

0.035 — 0035 —— ~ e e — = o
0.03 . 0.03F .
0.025+ - 0.025 - y
4
0.02} 4 £ o} ~
0.015} . 0.015- .
0.01F - 0.01F .
0.005F . 0.005F -
0 0 - e e )
0 time (s) 0.5 0 time (s) 0.5
(a) (b)

Fig 4.21. Magnitude voltage response to voltage reference variation
(a) system with two different coordinated SVC units
(b) system with wwo different uncoordinated SVC units

Figure 4.21 shows the magnitude voltage step responses. One can sce the effect of
the coordination by comparing with the response waveforms of Figure 4.21a and
Figure 4.21b. The coordinated response present a better damping waveform with a

reduced maximum percentage overshoot over the steady-state response.
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Fig 4.22. SVC current responses to voltage reference step variation
(a) system with two different coordinated SVC units
(b) system with two different uncoordinated SVC units

Figures 4.22a and 4.22b illustrate the SVC current output of each umit for relevant
coordinated and uncoordinated systems. As noticed, the coordinated responses give a
better damped waveforms, and the coordination acdion of the controllers dynamicsis a
rcal improvement for coordinated SVCs as their reactions are synchronized. One can
also see that the corresponding SVC currents have the same steady-state value for both

coordinated and uncoordinated systems.
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Fig 4.23. Total SVC current responses to voltage reference step variation of the
system with two different coordinated or uncoordinated SVC units
Coordinated system
e Uncoordinated system

Finally. Figure 4.23 shows the total SVC current responses for coordinated and
uncoordinated systems. the percentage overshoot is scen to be reduced with
coordination and the damping has been improve. . Once again, one can also sce that
the steady-state value is identical for both cases. In addition, it has also been verified

that the relation (3.21) gives the same value (3%) for X, than what was originally

set.

The coordination has not changed the steady-state value of the time responses. It
shows clearly the structural modification of the SVC controllers dynamics by

synchronizing their reaction and improving the damping of the oscillations.
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CHAPTER V

CONTROL COORDINATION OF SVCs
CONNECTED TO VARIOUS EUSES WITHIN THE
POWER SYSTEM

5.1, INTRODUCTION

SVCs are required to support the system voltage at various locations within the
transmission system in order to stabilize the voltage and its power transfer capability
and to increase its transient stability margin. The fast acting SVCs provide fast
responses to system voltage disturbances. However, their speed is limited by stability
constraints relevant to interactions among SVCs as well as SVCs interactions with the

system.

Some studies were addressed to these issues in order to enable parameter
optimization of the SVC controllers as well as to enable an identification of other
problems related to addition of series compensation, or interactions between SVCs

and the HVDC systems.

5.2. VOLTAGE REGULATION AS A MULTI-INPUT/MULTI-OUTPUT

CONTROL PROBLEM

5.2.1. Problem Statement and Linearization

Assuming that all the hnear components of the network are represented by

constant impedances and by voltage or current sources, if the voltage sources are
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represented by their current equivalents, the voltages on the system buses are

described by the Norton equation,

YV = lg-Ihwve -1,

where Y

\%

I, Isve, L

1s the system admittance, (matns),
is the bus voltage, (vector) ,
are the respective generator, SVC and load

current, (vectors),

It the voltage 1s expressed in terms of its otientation and magmtude vectors | the

following equation is obtained,

Y| V] = v[(Irg -~ Tr)) + j(Ixg = Ixove— Ix1)] (3.2)

where v=¢I9

[V

IRy Ixg

Ip, Ixg

[ch

is tize voltage orientation, (diagonal matnx),
being the voltage phase (hagonal matrix),

is the voltage magnitude, (vector),

1s the active and reactive generator curient,
(vectors)

1s the active and reactive load current, (vectors)
is the SVC current, (vector) with all currents

referred to the bus voltage.

When equation (2) is resolved, the following two equations are obtained for the

voltage magnitude and orientation as functions of the load and SVC current,

. V] = Re(v'Y W)(Igg - Irp) - Im(v Y v)(Ix; - Ixove ~ Ix) (5.3)

0 = Im(v'Y W)(Igy- Ir1) + Re(v Y V)(Ixg - Ixowe ~ Ixi) (5.4)
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If cquation (5.2) is lineansed 1n terms of the voltage magnitude and phase
variations as well as the variations of the SVC andload current around the steady-state

operating point, the following equation is obtained,

Yvo (V] +jIVel0) = = volln * jlxge + Ix)] (5.5
where V] is the voltage magnitude variation, (vector),
| Vol is the voltage magnitude at the steady-state operating point,

(diagonal matrix), and
0 is the voltage phase variation, (vector)
Iri. Iy is the active and reactive load current variation, (vectors),

and

Ly is the SVC current variation, (vector).
Lincarized form of expressions (5.3) and (5.4) are obtained by solving equation
(5.5)for [V]and 9,
[V] = = Re(voY Vo)l + Im(voY o)(lxy + Lygc) (5.6)

60 = - | Vo] [Im(veY o) & + Re(voY o)y + Lxec)] (5.7

The voltage regulation problem of the linearized system described by equations

(5.6) and (5.7) is stated as follows:

Control the SVC cuirent variation so as to maintain the voltage magnitude
variation as close to the reference voltage variation as the SVC slope reactance

permits, as defined by equation (5.8), in order to reduce the effects of load variation,

AlV] = ]VIn'f‘ V] = Xa Ive (5.8)
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where AV is the voltage magnitude error variation, (vector),
[Vles is the reference voltage magnitude variation, (vector), and

X is the SVC slope reactance, (diagonal matrix).

5.2.2. Controller Optimal Adjustment

Optimization of the controller adjustment is based on a performance index defined
in terms of the output vector which gives the measure of the system behavior in the

time domain for a specified disturbance.

The most commonly used performance index is given by the following expression

1 T
y=3 v ena (59

~ 0
where Q is a positive semidefinite symmetric matrix,
(the factor 1/2 1 the integrand is sometimes omitted. Its presence merely

indicates an averaging of the integrand).

An optimal controller performance is achieved when the controller parameters are

chosen so as to minimize the specified performance index, as defined by the following

expression,
€0
min [ AV g AV, di (5.10)
0
where AlV|y = AlV]|-A|V]~» isthe transient voltage magnitude
error variation, (vector),
qy are the weighting factors (diagonal matrix).

Another performance index which includes input vector 1n addition, 1s also apphied

frequently. This performance index 1s defined by the following expression,
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min ]0 AVl @ BIV]w + Aloe 1, Alxse) dr (5.11)

where  A|V|, = A|V|-A|V|i~e is the transient voltage magnitude

error variation, (vector),

Alvge = Ixsve = Ixse 1= o is the transient SVC current variation,
(vector),

q, and r; are the weighting factors (diagonal
matrices).

The voltage regulation in power systems is obviously a multi-input/multi-output

control problem.

5.3. SVC COORDINATED CONTROL

Analysis of expressions (5.6) and (5.7) reveals that the voltage magnitude is mostly
affected by the reactive load and SVC currents, while the voltage phase is mostly
affected by the active load current, due to negligible transmission losses. It is important
to notice that a control action of an SVC current by its reactive current affects the
voltages on all other buses. This is why the locally controlled SVC systems mutually

interact.

5.3.1. Control Coordination Concept

In order to eliminate mutual interference, the control concept presented in this
thesis assumes a coordination of SVC currents in order to decouple voltage control
actions, as the first design step. The derivation of the control coordination expression
1s based on expressions (5.6) and (5.8). The voltage magnitude variation caused by the

SVC current according to expression (5.6), is given by,
VI = Im(Vy Z Vo) Ixsve (5.12)
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where Z=Y!

In order to produce this voltage magnitude variation, taking into account the

voltage drop across the slope reactance, the following voltage demand has to be made,

lVldem = lV] + Xy 1, (5.13)

As variations of I, lead to negligible variations of Iag, one can assume that
Ixsc = I.. Hence, introducing equation (5.12)into (5.13) , the following expressions

for [V|4m and 1. are obtained,

lVI dem = [I‘n(v(‘) Zv, + ]th)] I,

I = BcolVldem (5.14)
where B, is the coordination susceptance, (matrix), with
B, = [Im(v; (Z + jXy) "o)]_1 (5.15)
ol., .
In general, B, = [ ———— ] . (Jacobian matrix).
0 l Vl dem,

This control coordination requires a communication network interconnecting all

SVC controllers, similar to those applied in DC transmission.

5.3.2. Power System Representation

The linearized power system block dagram is represented by Figure 5.1
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Fig 5.1. Block diagram of the power system

The voltage magnitude | V] and the phase 6 represent the outputs of the power
system, while the SVC current Iy, , the reactive and the active load currents Iy; and
Iri represent its inputs. The expressions of the linearized outputs as given by

expressions (5.6) and (5.7) are as follows :

0

VI = - Re(voY o)l + Im(voY o)(Ix7 + Ixc)

0= - Ivolvlﬂm(vrjynlvo)lm + RC(V(.)Y']VO)([XI + Tyae)]

5.3.3. SVC System with Coordinated Controllers

The block diagram of the SVC system with the coordinated controllers is given in

Figure 5.2
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Fig 5.2. Block diagram of the SVC system with coordinated
controllers

In each SVC unit (as assumed in chapter IIT), the bus voltage magnitude (scaled to
its p.u. value) is measured and filtered by a second order low pass filter. The voltage
drop across the slope reactance assumes SVC current which is cither measured or
computed internally. The measured voltage magnitude and voltage drop across the
slope reactance are subtracted from the reference voltage magnitude to form an error
signal. Based on this error, proportional and integral terms form the voltage
magnitude demand. The controller subsystem consists of Pl error processors where
K, are the controller gainsand 7, are the integration coctficients. The internal current
fecdback loops have the slope reactances as their gains. The notch filter blocks are
included to eliminate undesired eftects of the lowest system resonance frequencies in

the measurement of the voltage magnitudes.

In order to achieve a coordinated voltage control acticn, each controller

communicates its demand to other SVC controllers, and also it receives theirs. Each
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controller can now compute its reactive current demand Ic don according to

[

equation (5.14) in order to satisty voltage demands of all other controllers.

The control coordination concept is therefore based on equations(5.14) and (5.15)
with the coordination susceptance matrix B,, being of the principal importance

(Figure 5.3).

l V' dem I Xsve

—> B. ] K —>

Fig 5.3. Control coordination block diagram

The current order of each SVC unit is computed according to expression (5.14),

Ixoe, = ki Beo, [V dem (5.18)
where B, is the relevant coordination vector, (i-th column of matrix
B.,), Bio, being its transpose
k, = ——= is the factor for p.u. base conversion from system to SVC

values.

The SVC coordinated control system as a multi-input/multi-output system consists
of an assembly of classical local controllers and coordination blocks, which
interchange their local voltage magnitude demands so that each controller determines
its current so to respond correctly and immediately to all voltage magmitude demands,
as specitied by equation (5.18). In the absence of this communication, each controller

. determines its current order in response to its local voltage magnitude demand only,

according to the following expression,
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s

IX.wcx =Kk, Beou IVJ dem (5-19)

where Beou is the relevant coefficient, (diagonal element of the

coordination susceptance matrix B, ).

In this case, the SVC coordinated control system reduces to the SVC

uncoordinated control system, which consists of an assembly of classical local SVC

controllers.

The SVC system is a dynamic subsystem which can be defined in state-space in the

same way it was shown in Chapter I1I.

The global state-space of the system including the active load disturbances input

will be represented by Figure 5.4,

5.3.4. State-Space Representation of the System with SVCs
|
|
|
|

u:> ﬁ:>y

Fig 5.4. State-space block diagram of the complete system

The state-space representation of the complete system is given by the following

cquations :
7 x=A.x+B, u (5.20)
S
v=Cx+D,u (5.21)
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9’ nes

Ornes

where X

x,u,y beingthe state-space, input and output vectors, and

Ay, B,. C; and D,

For a power system having n SVCs, the order of the system of equations (5.18) and

(5.21) becomes 6n .

Details of the complete mathematical derivations of the state-space matrices of the

complete system are given in Appendix B.

The system matrices were formed by means of MATLAB software. First, the
state-space representations of the controllers withouu their coordination umts were
formed using the block diagram to the ‘transfer function-io-state space’ conversion
function from the MATLAB software and its Control System Toolbox |37). Secondly,
the state-space representation of a complete system was formed by interconnecting all

the controllers with the control coordination and power system blocks using the

‘connect’ function.

C [V | s |
[V | mes

| VI dem
B ]X.wc J

IV‘n’f
Iy
Iri

52
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CHAPTER VI

ANALYSIS OF THE SYSTEM WITH
COORDINATED SVCs AT VARIOUS LOCATIONS

6.1. STUDIED SYSTEM

In order to analyze and evaluate the proposed control coordination concept, the
IEEE 14-bus and the IEEE 30-bus power systems were chosen [38]. Various nurnber
of SVCs were considered on each system. For a chosen number of SVCs, tests were
made with different types of disturbances such as active, reactive step variations,
voltage reference step variations and combinations of them. However, only the results
concerning the IEEE 30-bus system with five SVC units are presented, since the tests
with different number of SVCs gave similar results in principle. The IEEE 30-bus

power system is specified in Appendix D.

As shown in Figure 6.1, tive SVCs units rated at 5, 5, 5, 10 and 1 Mvars, were
connected to buses 2, 13,15, 19, and 23, respectively. The slope reactance of each SVC

system was assumed to be 3% on its rating. The determination of the SVC locations

and ratings were based on the load flow study made with the objective to minimize the
total reactive power required for voltage regulation. The load flow program was also
applied to determine the system voltage magnitude |V|, and phase 6, at the
! steady-state operating point. Next, the system admittance were formed, while all the

voltage sources and were linearized and transformed into relevant current sources.
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Fig 6.1. 1EEE 30-bus power system with five SVC units
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Then the system was reduced to an equivalent system containing only those buses
where SVCs were connected. This reduction is not necess. :'y required, but it is
advantageous in computation while it does not have any effect upon neither simulation
nor analysis. However, this reduction limits the disturcances to the retained buses of
the considered system. It aload distutbance is assumed at the bus where an SVCisnot

connected, the complete network has to be considered.

The SVC coordinated controllers were assumed with the following filter and PLL
patameters :

w, =120; §=0.70,;

Ko = 533; Ty = 0.038;

Kor = 0.955 rad’?;

The assumed TCR/TSC response time constant is :

T. =83 1035,

The proportional and integral gains of the controllers were considered adjustable.

The control coordination susceptance matrix B, was calculated, from which the

coordination susceptance vectors B,,, _ .. equation (5.18) were deduced.
Ol =12, 5)

For comparative evaluation the uncoordinated SVC controllers were considered
as an alternative, with the same fixed parameteis, while the diagonal elements of the
coordination susceptance matrix were taken as susceptance factors coefficients,

equation (5.19). The proportional X, and integral gains [, of the uncoordinated

controllers were also considered adjustable.
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Block Diagram of the SVC System with Improved_Coordinated Controllers

The coordinated SVC controller system has also been improved (Figure 6.2) by
adding a {ilter 1n the slope block of each controller . These filters are identical to those
used for voltage magnitude measurement. This allows for an effective dynamic
decoupling of the coordination operation, so that each SVC controller reacts as an
equivalent isolated single SVC uni: system. An attractive alternative is to relocate the
measurement filter to filter the voltage error A|v|,. Of course, the added filters
increase the number of eigenvalues, without deteriorating the performance of the

coordinated SVC controllers with regard to voitage regulation.
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- Fig 6.2. Block diagram of the SVC system with improved coordinated
controllers




6.2. COMPARATIVE SYSTEM ANALYSIS AND EVALUATION

Analysis and evaluation of the SVC systems with and without control coordination
was performed ins-plane and time domain, by means of the MATL.AB software and its

Control System Toolbox.

It is well known that when the system short circuit impedance increases (weaker
system), the SVC dynamic performance as well asitsstability margin would degrade. In

extreme cases, this results in the loss of stability.

When tvwo or more SVC units operate on the system, they r .utuzally interact. This
interaction degrades their perfo:mance, reducing their margin of stability. To illustrate
this, a comparative analysis was done of the SVC systems comprising one to five locally
controlled SVC units. In each case, the SVC controllers were optimally adjusted,

according to the expression

min[ AlV| q, AlV] dt
0

with regard to their integral gains (proportional gains wer. kept atzero), asitis usually
done in SVC controllers with internal current measurements. The optimai adjustment
of the SVC controllers was done in the time domain applying the Monte-Carlo

techmque.

The minimization process of the performance index defined above, not only
allowed to determine the optimal values of the integral gains of the SVC controllers,
but also to compare the optimal performance indices obtained for the coordinated and

uncoordinated systems.

The cumulative performance index which provides an evaluation of the sys em of
S¥('s with regard to the step-inputs apphed to every SVC reference voltage in

sequence, consistsof a sum ot the performance indices. The optimal paraineters of the
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SVC controllers (integral gains, for example) are determined so to mmmmize this

performance index as defined by the following expression :

n
minJ = min ZJ, (6.1)
=0
X
where J, = I AV gy AV, di is the performance idex with
0

step input set only to the voltage reference of the i-th SVC unit (among the n SVC unuts

connected).

I_et us analyze now the system of uncoordinated SVCs in the s-plane and time domuain,

140F  Legend
°1SVC »
120F = 28VCs B 1
“38VCs ’
10F *+48vCs . 1
X
*5SVCs . .
80+ hy ]
g
T e0f -
40+ .
20+ .
Or ¢ X e * e .

160 140 120 -100 K0 60 40 220 0

Real

Fig 6.3. Eigenvalues of the system with 1, 2, 3, 4 and 3
uncoordinated SVC units.
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Figure 6.3 gives the displace:nent of eigenvalues of the system with 1,2,3,4, and 5
uncoordinated SYC units, in the upper left quadrant of the s-plane. In all these cases,
the controller parameters were chosen such that they optimize their relevant
performance indexes as defined by expression (6.1). It can be seen that the system with
five uncoordinated SVC units has much smaller stability margin than the system with a
single SVC unit. This indicates that, due to mutual interactions, the stability margin

reduces when the number of SVC units increases.

0.8 .
0.6t .
)
0.4} -
02t 4
0 e
_0.2 A A A L L
0 005 0.1 0.15 02 025 0.3
time (s)

Fig 6.4. Voltage error step response A|V|sveq rans Of the
system with 1, 2, 3, 4, or 5 uncoordinated SVC units
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Again, for all cases of Figure 6.4, the controller parameters were chosen such that
they optimize their corresponding performance indices. The figure shows the transient
components of the voltage error step-responses of the first SVC unit when it operates
alone and together with 1,2, 3, and 4 other uncoordinated SVC units, As the number of
SVC units increases the step response uecomes more oscillatory. For many SVC units

the system could become unstable.

Based on expression (6.1), the minimization of the performance indexes was
carried out for the case of five uncoordinated SVC controllers, with the following

integral gains obtained :

I,, = 15022
I, = 10218
I, = 73.64
I, = 12424
I, = 44.23

the performance index J,,,o min being:

Juno:omm = 0.2546

Before considering the parameter optimization of the coordinated SVC umits, let
us use the integral gains determined previcusly for uncoordinated SCV units and
calculate the performance index J, for the coordinated SVC umts. The value

obtained 1s :

Jeo = 0.1663

For both, coordinated and unccordinated SVC system, the voltage reference

step-input to each SV unit was equal to 1 p.u.
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One can already notice that J., has a lower value than J,,e, mn . This indicates

that the integral measure of the voltage error vanation 15 smaller i the coordinated

systemn than in the uncoordinated system,

A comparative analysis and evaluation in the s-plane and the time domain was
carried out for the systemwith five coordinated SVC units and with five uncoordinated
SVC units.. The cigenvalues of both systems are given in Table 6.1, and shown in

Figures 6.5 and 6.6.
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Fig 6.5. Eigenvalues of the system with five SVC units
(a) SVC units with coordinated controllers

? (b) SVC units with uncoordinated controllers




Table 6.1

Coordinated SVCs

Uncoordi nalcd@VCs

~46.13 —40.74
~87.13 ~56.24
~120.48 ~92.90
~120.48 ~12048
~120.48 ~120.48
~120.48 ~120.48
~120.48 ~120.48
~124.36 ~120.48
] 214546 3002 T
~16439 ~189.59 -

~28.90 = 105.54

-16.43 + j129.47

“42.80 +j 106.61

4499 x ;9088

-58.80 * 93.07

~63.55 * 8419

~74.39 £] 84.62

78.55 + | #2.49

~83.24 * 84.15

83.56 + 84.19

-263.37 x£) 263.21

~263.44 % j263.23

-263.87 %) 263.10

—263.85 + 1263.18

-265.62 =j 263.15

-265.63 — j263.15

226625 *j 263.14

2266.25 + j 263.14

266.34 = 263.14

266.34 *+ | 263.14
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Fig 6.6. Eigenvalues of the system with five coordinated or
uncoordinated SVC units

Analysis of the eigenvalue displacement reveals that the system with coordinated
SVC controllers has much greater margin of stability than the system with local SVC
controllers. Figure 6.6 also shows that eigenvalues of the coordinated SVC system

have a tendency to regroup which can attributed to the coordination which eliminates

the mutual interactions among SVCs.

Figures 6.7 and 6.8 show respectively the step responses of the measured voltage

magnitude [V],,s and the transient voltage error of each SVC controller with and

“ without coordination, the step-input being applied to the reference voltage of the

fourth SVC unit. As it can be observed, the step responses of the coordinated SVC
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of the local SVC controllers.
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Fig 6.7.
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controllers are much more damped, with smaller overshoots than were the responses

time (s)

(b)

Measured voltage magnitude to voltage reference

variation of the system with five SVC units
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Fig 6.8. Voltage error step-responses A|Vlsvei trans
of the system with five SVC units
Coordinated SVC units
........ Uncoordinated SVC units

Figure 6.9 shows the step responses of the currents of coordinated and
uncoordinated SVC units with the integral gains optimized for the uncoordinated

SVC units system only. As before, a superior performance of the coordinated SVC

controllers can be observed.
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Another interesting point in evaluation of the proposed coordination concept is to
analyze the stability of the system with many coordinated SVCs as compared to the
same system with a single SVC when the integral gain of a single SVC unit is

optimized.

So to minimize the performance index defined by expression (6.1), the following

integral gain was obtained :
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yielding the following performance index of the single SVC unit system :

Junglemm = (0.0172

In the case of a five coordinated SVC units, the controller actions are fully
decoupled. For that reason, each of the controller appears to be equivalent to a
controller of the single SVC unit. The step-input applied to the voltage reference of
any SVC unit results in the voltage error variation of that unit only. Therefore, the
optimal integral gains of the coordinated controllers, (the proportional gains set to

zero), are equal and assume the value identical to the one obtained for the optimal

controller of the single SVC unit,

I, =10 [i=12 ..,5]

:

‘The relevant optimal performance index of the system with optimized controllers, for
the unit step-input applied to the voltage reference of anyone out of five SVC
controllers (SVC unit connected to bus no.19, for example), assumes the value

identical to the one obtained for the optimal controller of the single SVC unit :

Joomn = 00172

The optimal cumulative performance index (expression 6.1), with regard to the unit
step-input applied to the voltage reference of each SVC controller in sequence,

assumes a five times greater value :

Jeomn = 0.0859

Letus now see the comparison of the five coordinated SVCs systein with the single

SVC system in s-plane and time domain.

One observes clearly f,om Figure 6.10, that the system with five coordinated SVCs

hasits eigenvalues, five times repeated, and at identical locations as those of the single
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SVC system. This indicates thai each of the coordinated SVC system performs as an

equivalent single SVC unit.
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Fig 6.10. Eigenvalues of the system with five coordinated SVC
units compared to a system with a single SVC unit

Similarly, the dynamic performance of the coordinated SVCs illustrated in ime
domain shows the voltage decoupling achieved, and its dynamic performance identical

to that of the system with a single SVC unit.
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Fig 6.11. Magnitude voltage to voltage reference
variation of the system
(a) with single SVC unit
(b) with five coordinated SVC units

Figure 6.11 illustrates the measured magnitude voltage response of the system
with five coordinated SVC units with the magnitude voltage of a system with a single

SVC system. Although the number of SVC units is five, one can see that the responses

obtained in Figure 6.11a are not more oscillatory than the one of Figure 6.11b which
corresponds to a single SVC case. One can also notice that the magnitude voltage
appears within all the SVC controllers, which is not the case of the voltage error, as

result of the compensation introduced by the added filters in the slope blocks.
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Fig 6.12. Voltage error step-response A|Vlwer rans Of the system
with five coordinated SVC units

with single SVC unit

Figure 6.12 shows on the same plot the five voltage error step responses of the
system with five coordinated SVC units and the voltage error response of the system
with a single SVC unit. It is interesting to notice that the voltage error appears only
within the SVC controller to which the step-input is applied, while other four remain

undis:urbed. Hence, the controller reactions are fully decoupled.
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0.5

Figure 6.13 is extracted from Figure 6.12. in this case, only the oscillating voltage

error response of the system with five coordinated SVC units was selected for

comparison with the response of the system with the single SVC unit. The two

responses match identically.

Once it wasproven that the proposed coordination made the SVC units performing

as a system of the decoupled equivalent SVC units, it would be interesting to compare

the coordinated SVC units system with the uncoordinated SVC units system, each

assuming its relevant optimal controller parameters. The eigenvalues of both

coordmated and uncoordinated system are shown in Table 6.2.
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Table 6.2

—

Coordinated SVCs

Uncoordinated SVCs

~119.64 ~40.74

~119.68 ~56.24 T
~119.72 -92.90 o
~119.72 ~120.48 ]
~119.73 ~120.48 o
~120.48 ~120.43 )
~120.48 ~120.48

~120.48 ~120.48

~120.48 ~139.02

~120.48 ~189.59 |

24.96 +88.31

~16.43 x ) 129.47

22497 +] 88.30

~44.99 + j99.88

-24.98 + 88.29

~63.55 + } 84.19

-24.98 = 88.29

~78.55 + 1 82.49

-24.98 * 88.29

~83.56 = j84.19

~84.84 +88.29

-263.44 %= 1203.23

~84.84 *8829

26385 + j 263.18

~84.84 +] 88.29

~265.63 + j263.15

~84.84 =] 88.29

2266.25 = ) 263.14

8484 = 88.29

~266.34 + 1 263.14

-263.29 *j263.19

—263.82 £ 263.17

2265.63 +1263.15

226625 +j263.14

~266.34 = 263.14
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Fig 6.14. Eigenvalues of the system with five coordinated
or uncoordinated SVC units

Figure 6.141llustrates the ergenvalue locations of the system with coordinated SVC
units and the system with uncoordinated SVC units. Comparing only the eigenvalues
relevant to the same dynamic blocks in both coordinated and uncoordinaied systeias,
one cansce that the repeated eigenvalues of the coordinated system (at the far right of
the left half of the s-plane) showan improvement in margin stability and even damping.
While the uncoordinated system has its eigenvalues distributed, the coordinated

system has its eigenvalues at identical locations
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Figure 6.15 shows the step responses of the measured voltage magnitude of cach

SVC controller with and without coordination, the input being the reference voltage of

the fourth SVC umit. One can see again that the coordination improves the damping of

the responses and shows smaller ~vershoots than the responses of lowal SVC

controllers.
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Fig 6.16. Voltage error step-responses A|Vlse trans
of the system with five SVC units
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Figure 6.16 1llustrates the step responses of the transient voltage error of each
SVC contioller with and without coordination. It shows clearly that the coordinated
system presents only the fourth transient voltage orror step response oscillating while
all others are null. This 1s due to the achieved voltage decoupling. As a step input was
set to the fourth voltage reference, only the relevant transient voltage error oscillates.
The sttuation 1s different for the uncoordinated SVC units system, as all transient

voltage errors oscillate.
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Fig 6.17. SVC current response I, of the system
with five SVC units
Coordinated SVC units
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Figure 6.17 shows the step responses of the SVC currents of coordinated and

uncoordinated controllers.

The relative superiotity of the coordinated controllers over the local controllers
increases with the number of SVC units, especially when the system stability becomes

the prime concern.
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6.3. IMPLEMENTATION ASPECTS

The control coordination concept relies on the coordination susceptance matrix

B., (jacobian matrix) which is a function of the system impedance matrix and the

voltage vector at the operating point as shown by previous expression (5.15).

B, = [In(v, (Z + jXg) vo)]! (6.2)

B, is a full matrix which includes all the possible links when communication hasto
be exchanged among SVC controllers with regard to the required SVC current so that
it satisfies the demanded voltage magnitude of all of them. A full matrix B,
corresponds to a full control coordination. A topological change in the network or a
failure in the communication links are directly reflected on this susceptance matrix

B.,. For example, if the communication link between buses i and j fails, the
off-diagonal elements B.,,; and B, become zeros, and the coordination is then

reduced, as B, is no more a full matrix.

Reduced coordination can also be applied to a subset of SVC controllers within the
power system, while others remain locally controlled. In this case, the only
off-diagonal elements of the coordination susceptance matrix which concern the
coordinated SVC controllers are non zero, while all other off-diagonal elements re
null. The total reduction 1n coordination leads to the uncoordinated SVC units

operation when all off-diagonal elements of B, are zero. The diagonal elements

represent the relevant susceptance factors for locally controlled SVC units.

In order to achieve an efficient control coordination at any system operating point
(1.¢ load flow), the voltage phase provided by PLL circuits has to be communicated to
all SVC controllers in addition to the voltage demand. In this way, the control

coordimation becomes load flov ~daptive. Adaptation to system impedance variation
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due to topological changes (system contingencies) requires either a direct
measuremnent of the driving point and transfer impedances or a computation of these
impedances based on the monitored topology. In both cases, relevant processing has to

be added to the SVC controllers.

The control roordination concept proposcd in this thesis is very convenient with
regard to its implementation and operation. [t applies to new as well as to existing SVC
controllers as an add-on function. The concept also enables a gradual implementation
to suit growing needs for SVC control improvements. It is very impottant that the
control security is not degraded : when a communication link fails, the relevant

controller looses its performance improvement provided by the control coordination.

The following example illustrates the possibility of reduced coordination of the
SVCsinstalled in a power system. Instead of coordinating all the SVC controllers as
done before, let consider the case of coordinating only some of them, while the others
operate individually. The choice of the subset of SVC units to be coordinated con be
made on the judgement based or.the relative proximity of the SVCs within the system.

This proximity can also be evaluated by considering the off-diagonal clements B, , of

the coordination susceptance matrix B, , defining the strength of the links between

the SVC units. Greater their values, the sttonger the links between the corresponding

SVC units in the system.

In the five SVC'’s system case, the analysis of the off-diagonal elements of the
susceptance matrix led to the SVCsat the buses 15, 19, and 23 out-of-five existing SVC
units to be chosen for coordination. Based on the performance index (6.1), the
controller parameters (integral gains) were optimized as it was done when S SVC units
were considered. However, only the coordinated SVC controllers have identical

“ameters, while those controlled locally have different controller parameters. We
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note that the general block diagram used is a combination of Figure 6.9 (for

coordinated SVC controllers) and Figure 5.2 (for uncoordinated SVC controllers).

The calculated eigenvalues of the system with reduced coordination of the SVC

units are given in Table 6.3 with the cigenvalues of the system with uncoordinated SVC

units.
Table 6.3

Coordinated SVCs Uncoordinated SVCs
-119.60 -40.74
-119.72 -56.24
-119.72 -92.90
-120.48 -120.48
-120.48 -120.48
-120.48 -120.48
-120.48 -120.48
-120.48 -120.48
-124.94 -139.02
-164.38 -189.59

-24.96 +j 88.31 -16.43 £ j 129.47

~-24.98 +j 88.29 ~-44.99 * j 99.88

-24.98 +) 88.29 -63.55 + j 84.19

-38.62 =) 111.13 -78.55 + ) 82.49

-56.13 +j93.36 -83.56 + j 84.19

~-83.84 +) 84.87 -263.44 + j263.23

~-83.84 +j 8487 -263.85 + j 263.18

-83.84 =) 84.87 -265.63 * j 263.15

-263.32 £ 263.19 -266.25 + j 263.14

-263.86 = 263.18 -266.34 + j 263.14

-265.63 =5 263.15

-266.25 +j 263.14

-266.34 =) 263.14
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Figure 6.18 illustrates the eigenvalues of the system with a reduced coordination of

its SVIC units together with the eigenvalues of the system with the uncoordinated SVC
units. One can see that the control coordination, although limited to three out of five
SVCs (other two SVCs are with local controllers), provides an improved performance
anda larger margin of stability as compared to local control. One cans also see that the

three coordinated SVC units have identical eigenvalues while the two uncoordinated

others have diffe
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Fig 6.18. Eigenvalues of the system with five SVC units
(a) system with three coordinated and

two uncoordinated units

(b) system with five uncoordinated units
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Figure 6.191llustrates the responses of the voltage error of every SVC controller of
the system with reduced coordination and without coordination, the step input being
applied at the reference voltage of the fourth SVC unit. One can also observe the
decoupling achicved with reduced coordination as compared to the system with

uncoordinated SVC units.
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Fig 6.19. Voltage error step response A|V|syi rans Of the system
with five SVC units
Three coordinated and two uncoordinated SVCs
........ Five uncoordinated SVCs
¥
el The SVC coordination of all the SVC units gives the best SVC improvement as well

as the greatest increase of the system stability margin.. However, when a full
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E coordinatio s is not practical, a reduced coordination can be justified. as illustrated

above,.
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CHAPTER VI

CONCLUSIONS

Static var compensators for voltage regulation in power systems employ controllers
which are local and independent. As more and more of SVC units are installed within
one power system, undesirable interactions develop. Such interactions reduce, in
general, their stability limits, increasing risks of instability (mutual hunting). For these
reasons, the slower control settings and dynamics has to be adopted. Some studies
indicate thar a number of such devices has to be limited in order to ensure their

operation stability.

In order to overcome the constraints imposed by such a concept of local and
independent SVC controllers, two new concepts for coordination of local SVC

controllers have been developed within the framework of this thesis.

The first part of the thesis presents a coordination of local controllers of SVC units
operating on the same system bus. When the SVC units are uncoordinated, their
dynamic participations 1n voltage control rely on static and dynamic characteristics of
their controllers. When such controllers are different (with 1espect to their structures
and/or parameter settings), SVC controller interactions deteriorate the dynamic
performance and reduce stability margin of the entire system. The concept of control
coordination developed in this thesis is based on averaging of the SVC current orders
at the outputs of their controllers. The current order of each SVC controller is first
summed with others, then multiplied by the ratio of its slope admittance and the

equivalent slope admittance corresponding to all the SVC units together.
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This proposed coordination concept improves  dynamics of the SV units

operating on the same bus of the system, eliminating nterachons among the SVC

controllers.

The second part of this thesis presents a coordimation of local controtlers of many
SVCs installed on different buses of a power system, based on coordination of focal
controllersin order to achicve a decoupled voltage regulition. In order to evaluate the
conceived SVC control coordination, the ILEE 30-bus power system with five SVC
units was analyzed. A comparative analysis and evaluation of the SVC systems withand
without control coordination was performed in s-plape and time domain. It was
determined that supertotity of the coordination over local controllers increases with

the number of SVC units, especially when the system stabality 1s 1n question.

The control coordination concept can be conveniently implemented to newas well
as existing SVC controllers as an add-on function, to suit gradually growing needs for

SVC control improvements.

Another important aspect is that the control security is preseived when a
communication link fails. The only consequence is that the alfected controller looses

the performance nnprovement provided by the control coordination.

The first step in further development of the concept is to extend the control
coordination efficiency to become load flow adaptive. To achieve this, voltage phases
have to be communicated in addition to voltage magnitude demands, to all SVC
controllers. Adaptation to changes of the systern topology requires a contimuous
updating of the driving point and transfer impedances between SVC units, either by

direct measurement o1 by computation based on monitored topology.
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APPENDIX A

MODAL ANALYSIS OF LINEAR
TIME-INVARIANT DYNAMIC SYSTEMS

Linear time-invariant (LTI) systems are very important in system modeling and
analysis. Indeed, for small signal variations around the equilibrium point, continuous
dynamic systems can be adequately modeled by linear time-invariant systems. Non
linearities are usually ignored in the first phase of the control system design whena LTT
system representation is used to elaborate control principles. In the second phase, the

control system design is extended to the system with all nonlinearities included.

Since this approach is taken in this thesis, it is impoitant to review the significance
of eigenvalues, eigenvectors, poles, zeros and residues to control system analysis and
to reveal what conclusions can be deduced from these system characteristics with

regard to system dynamics in general.

A linear, time invariant system can be described in a state-space form expressed by

the equations,

x =Ax +Bu (Al)
y =Cx +Du (A2)

where  x is the state variable vector,
y is the output vector, and
A. B, C and D are the system matrices.
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The solution of LTI systems consist of two components :

ST

the zero-input response which satisfies

A Xz

Xut
4 C xy (A3)

Yai

[

with the initial state x,{0) = x,;p and

the zero-state response which satisfies

Axy;+ Bu

Xzs
Cxy+ Du (A4)

Yzs

I}

with x;'0) = 0.

The zero-input response is best studied by means of Laplace transforms. Then,

i equation (A.3) yields to,
s X(s)-x(0) = A X(s) (A5)
or  (s1-4) X(s) = x(0) (A6)
and  X(s) = (s/-A)"! x(0) (A7)

The solution derived from the zero-input equation is of the form,

x(f) = e x(0) (A.8)
Comparing equation (A.7) with (A.8), we obtain
tled] = (s/-A)! (A.9)

To determine the dynamic modes of the systems, we may wnite

Adj (s]-A)

6T =AY = T )

(A.10)
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The determinant is an nth-order polynomial. The co-factors of (s/-A)~! are also
polynomials, of degree n-1 at most. Therefore, any particular element of
(s1-A) ' can be expanded by partial fractions into an expression of the form

A A A An
(s-51) (s-s1)° (5-52) (5~52)°

+ .. (A.11)

where s; .52 , ... are the roots of the determinant, some of which may be multiple.

Using the inverse of Laplace transforms, we obtain an expression of the form

Anes'+Aptes' + ... + Ay e+ Aptest+ ... (A.12)

The elements of ¢’ are sums of exponentials or time-weighted e onentials,
Xp g Xp

whose exponents are the roots of the determinant.

Eigenvalues and Eigenvectors

Roots 51,52 , ... satisfy the equation,

det (sI-A4) = 0 (A.13)

These roots are also called the eigenvalues of the matrix A. These eigenvalues

characterize system modes in time domain.

An eigenvector v, (modal vector) which is associated with the eigenvalue s, is

defined by the equation,

Av, =35,V (A.14)

v, is also an eigenvector of matrix e A’ | which is the solution of equation (A.13),

with eigenvalue ¢ %' as it is shown that

Ar

eM vy, =Sl oy, (A.15)
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The significance of this relation is that the zero-input response to an initial state

Xp = v, isx(f) = e%' v;. This means that the only excited mode is s, .
Residues, Poles and Zeros

The zero-state response is often studied by means of tran fer functions in Laplace
domain. In order to derive input-output transfer function from the state equation, the

following transformation were carried out,
s X(s) = A X(s) + B U(s) (A.16)
or X(s) = (s1-A)! B U(s) (A17)
where initial conditions x(0) = 0 are being assumed.
The output equation yields to,
Yis) = [C(sI-A)! B + D] U(s) (A.18)
The transfer function is derived as follows,

Gis) = % = C(l-A'B+D (A.19)

Fora multi-input-multi-output (MIMO) system, G(s) has m rows( the number of
ouputs) and r columns (the number of inputs). For a single-input-single-output (SISO)

system,m =r = 1.

The time domain equivalent to equation (A.18), is given by the convolution integral,

y(t) = f CeA®D B u(ry dr + D u(r) (A.20)
0
For a MIMO system, i.j element of the matrix G(s) is given by,

128




¢/ Adj (sI-A) b, +d ,; det (sI-A)

det (sI-A) (a2l)

Gij () =
where ¢, isthe { - throw of matrix C,
b, isthe j-th column of matrix B and,

d,j is the i j-th element of matrix D .

The denominator det (s/ —A) of the transfer function G,js) is a polynomial of

degree n, so is the numerator due to the term d,;det (s/-A), while the term

c! Adj (sI-A) b, isof degree n-1.

Since the roots of the denominator are the eigenvalues of A, it follows that all
poles of G(s)are eigenvalues of 4. The converse does not necessarily hold. If
det (s/-A) hasafactor (s -s5,)*, where k is the multiplicity of s; , it is possible that
G, j(s) also contains this factor in its numerator, so that a cancellation takes place,

hence s, vanishes as a pole. We note that B, C and D do not influence the pole

locations at all. They do, however, influence upon the system responses since they

enter into the numerators.

Let the transfer function G(s) be expressed as

K (s-21)...(s-2p)

(6 -p1)(s = p2)...(s — ) (A22)

G(s) =

where z; , ..., z, are the zeros, p; ,...,pp are the poles of G(s) with m < n and K

is a coefficient factor.
Equation (A.22) can be transformed to,
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nk
G(s) = ,-; G _’p 3 (A.23)
where k; are residues at poles p;.
The residues are calculated as follows :
if poles are simple, then
k, = resG(s) = lim (s-p) G(s) (A.24)
=0 S=*p
For higher order poles, one has
1 m-1
b = [866) = gy lim Toleon)l GOl (A29)

The residue £, at pole p, corresponds to a transient component k, e @1 ay the

system response to the pulse output. Therefore, the significance of the residue is that

its magnitude is equal to the initial value of the corresponding transient component.
Given an input U(s) , the output of the system is as follows,
Yis) = G(s) UGs) (A.26)

Expanded by partial fraction expression (A.26) becomes,

n k r k
G(s) Us) = J k A27
(s) UGs) ,=21 c-m + k; ) (A.27)

where n is the number of poles of G(s) and r is the number of poles of U(s). The
inverse Laplace transformation of this equation is,

n r

W)y = Dk et S Ky err! (A.28)

=1 k=1
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In frequency domain, the interpretation of poles and zeros is the following. The

I transfer function (equation A.22) has parallel resonances at frequencies
corresponding to its complex poles (high gains) and series resonances corresponding

to its complex zeros (high attenuation). Therefore, the system amplifies the output

signal around the poles frequency and attenuates the output signal at the zeros

frequency. The real poles and zeros produce non-discriminate effects upon the input

signal at all frequencies, as it could be easily seen from equation (A.22).

s
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APPENDIX B

STATE-SPACE REPRESENTATION OF POWER
SYSTEMS WITH SVCs

The details of the mathematical derivations of the state-space matrices of the

complete system A,, B,, C, and D, are presented in this appendix.

The state-space representation of the SVC system (Figure 5.2) is expressed by the

following :

x = Ax+ By |Vl + By |V| + B30+ B4l (B.1)
AlV] Cy Dy Dy, Dy; Dy )
‘Vldem = |Colx + | Dy ]Vl,ef+ D2 IV! + D310 + | Dujl, (B.2)

A6 Cs Dj D3, D3 34
From Figure 5.2 we also derive :
7 V aen
I = K Beo[Vlgem = [E 0] [' la ] (B3)

As a part of equation (A.2), we have :

IV'dem‘l _| G2 Dy D D33 D2
[ AG | =1c; v + D3y [V s + D (V] + D3 0+ Dss 1,
(B.4)

which can be rewnitten as following :
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V D V1 den
[“25""] = (23 x + D3y lV‘rgf"" DDB[IGI} + [Dii][Ev 0][' Alge 'J

(B.5)
lv-D24Ev 0- IVIdm _ IVI B.6
here  [IDE] FIV'Dz4Ev 0 6.7
W +] = .
"D34Ev 19

with I, being the identity matrix of dimensions (N X Nyc). Ny is the number

of SVCs instaleed in the power system.

From expression (B.6), we deduce :

[“ng'"] = IDE™ Coyx + IDE" Dp3y |V]ws + IDE™! DDy [“9"]

(B.8)
4 v
or l:l Alg”"] = IDC x + IDDy |V|ns+ IDD [l()l} (B.9)
The total SVC current as shown in Figure 4.5 is the following :
I.m', =1l +Ipp=K BcaIVI dem + Koy AO (B.10)
V) den v
or lsu‘, = [Ev E0 ][I Algc’ '] = EvO [I AlgemJ (Bll)

On an other hand, deriving the magnitude and phase voltage from mesurements

gives the following expression :
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lVl —_ JRV ij JX |
[0 =T | Rt T | 0T |1 | K e (B.12)

where Jg,. . Jrg. Jxy and Jxp are the jacobian matrices linking the magnitude and

phase voltage with load and SVC currents. Infact as shown in the power system bloc ot

Figure 4.5 we can derive the expressions of the jacobian matrices as follows:

Jrv = - |V| Re[V! Y V]]V|! (B.13)
Jx, = |V| Im[V? Y1 V]|V|] (B.14)
Jre = - Im[VI Y1 V]|V]|! (B.15)
Jxp = - Re[V! Y 1 V]|V|! (B.16)

Equation (B.12) can be rewritten as :

[Ho/l] = Jrplg+JIxIxi+Jx K Eyp IVAlgc’m (B.17)
» .
or [Igl] = Jp Ip + Jx Ixy + JKE “25"'" (B.18)

Substituting equation (B.18) into (B.8) leads to :

[“25""] = IDC x + IDDy |V| s+ IDD Jg Ig + IDD Jx Iy + IDD JKI:‘[ “;\‘gf'm}

(B.19)

which can be rewritten as following :
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Lo - IDD . JKE WVldem | _ IDC x + IDD |V} + IDD Jg Ig + IDD Jx Ix
A0 f
g__.__v____J

IDK
(B.20)

Deriving the magnitude and phase voltage variations from expression (B.20),

gives :
I Vl l Vl ref
dem | = IDKC x + IDKJ | Iy (B.21)
A®
Ix
where  IDKC = IDK™Y IDC (B.22)
and  IDKJ = IDK™' (IDD, IDDJ, IDDJ)] (B.23)

Resubstituting equation (B.21) into (B.18) gives :

IVl i IVI ref
0 = Jg Ig + Jx Ix; + JKE IDKC x + JKE IDK]J ;RI (B.24)
Xi
|V| lVl ref
or 0 =Jplgy+Ix I+ KICx+ K| I (B.25)
Ix
where K] = [Kl)y Kl KiJ3) (B.26)
Then we can rewrite equation (B.24) as :
14 - Ve
0 = KICx +[KN1 Jp+ Kl Jx+ KI5) | Iy (B.27)
Iy
, l,'l ; N I VI ref
or o | = KIC x + Ky, ;RI (B.28)
Xl



_ K]C1 — I\:]h'l
where KIC = [ Kl(‘z] and Ky, = [ I\’J;‘g]

The total SVC current can also be rewtitten by substituting equation (B.21) into

(B.11) as following :

l Vl ref
Ive, = Eyo IDKC x + E, IDKI | Iy (B.29)
Ix1
|V| ref
or Iy, = EDKx + EDJ | I (B.30)
I
Rewritting expression (B.2) gives :
[V 0]dem| = C x + DaDs 0 + D |V] ref Dy 1., (B.31)
Af

and substituting the expression (B.27) leads to :

A l V' IVIrcf | V'rcf
| Videm| = Cx + DDy KIC x + D2D3s K| Ipy | + Dy I | + Dol
A9 Iy Iy
(B.32)
where Dy =[D; 0 0] (B.33)

Then replacing the expression of the total SVC curient and regiouping the

coefficients of similar elements gives :

=Cyx+ Dal| In (B.34)

AlV
l Vl dem
A6 Iy

l Vl R'f:]

(B.34) represents the expression of the state-space output equations, but can be

rewritten in more global torm including other selected ouputs of the system, such as
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thetotal SVC current Iy, and the measured voltage magnitude |V| . The more global

expression is given as following :

AlV]

IVldem [ Cn :' [Dul ] [I V|r€]]
A@ | =|EDK|x + | EDJ Iry
/ Ve KJ Cl KJ byl I Xi
V]

which is:

AlV|

I Vl dem [, Vl ref]
A |=Cox+D,| In
lsvc, ]Xl
Vi

(B.35)

(B.36)

The state-space form requires also to define the dynamic equations which are

following. Back to expression (B.1), we have :

'Vlref
v=ax+ (B Bl W+ 18 0 o) Iy |+ Ba Ixee (B.37)
Ina
Substituting equations (B.27) and (B.3) into (B.37), leads to write :
|V| ref
x = [A+ By.KIC + B4.Ev0.IDKC] x + [BB'KIbv + B, + B4.EV()JDK/] Ir
Ixy
(B.38)
If we denote B; and E,q as,
B.=[B 0 0] (B.39)
7 and Ew = [E. 0] (B.40)

we obtain the following dynamic equation,
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IVIref
X = Ax X + Bu IR] (R'41)
I

which complete the state-space analysis by defining both expressions of the

dynamic and state-space output equations.




APPENDIX C

CONTROLLER PARAMETERS OF TWO SVC
UNITS OPERATING ON THE SAME BUS

SVCi SVC2
Pove (MVars) 220 440
Koi 0.955 0.955
Xsl (%) 3 3
Wn 200 80
4 0.707 0.5
K, 2 5
Iy 3000 10000
Ty 0.005 0.001
Kg 533 450
Py 1 0.9
To 0.0038 0.0025

g
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APPENDIX D

DATA OF THE IEEE 30-BUS SYSTEM

INCLUDING FIVE SVCs

IMPEDANCE AND LINE-CHARGING DATA (100-MVA basc)

Line Resistance Reactance Line charging

designation (p.u) (p.v) (pu) *

1-2 0.2399 0.4533 0

1-27 0.3202 0.6027 0

2-27 0.2198 0.4153 0

3-4 0.0132 0.0379 0.0042
3-30 0.0452 0.1852 0.0204

4-6 0.0119 0.0414 0.0045

4-12 0 0.2560 o
4-29 0.0570 0.1737 0.0184

5.7 0.0460 0.1160 00102 |
5-29 0.0472 0.1983 0.0209

6-7 0.0267 0.0820 0.0085

6-8 0..0120 0.0420 L 0.0045

6-9 0 0.2080 0

6-10 0 0.5560 0 o
6-28 0.0169 0.0599 00065
6-29 0.0581 0.1763 00187 |
8-28 0.0636 0.2000 00214
9-10 0 0.1100 0o
9-11 0 0.2080 o
10-17 0.0324 0.0845 0
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10-20 0.0936 0.2090 0
10-21 0.0348 0.0749 0
10-22 0.0727 0.1499 0
12-13 0 0.1400 0
12-14 0.1231 0.2559 0
12-15 0.0662 0.1304 0
12-16 0.0945 0.1987 0
14-15 0.2210 0.1997 0
15-18 0.1070 0.2185 0
15-23 0.1000 0.2020 0
16-17 0.0824 0.1923 0
18-19 0.0639 0.1292 0
19-20 0.0340 0.0680 G
21-22 0.0116 0.0236 0
22-24 0.1150 0.1790 0
23-24 0.1320 0.2700 0
24-25 (.1885 0.3292 0
25-26 0.2544 0.3800 0
25-27 0.1093 0.2087 0
27-28 0 0.3960 0
29-30 0.0192 0.0575 0

) Line charging is one-half of the total charging of line.

OPERATING CONDITIONS

Starting bus voltage Generation Load

';”5 Magnitude | Phase MW MVar MW M
UM- angle

BFR (p-u) degrees

1 1.00 0 0 0 24 1.2
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2 1.00 0 0 0 7.6 1.6

3 1.00 0 0 0 94.2 19.0

4 1.00 0 0 0 0 0

5 1.00 0 0 0 228 10.9

6 1.00 0 0 0 30.0 30.0

7 1.00 0 0 0 0 0

8 1.00 0 0 0 5.8 2.0

9 1.00 0 0 0 0 0

10 1.00 0 0 0 1.2 75

11 1.00 0 0 0 0 0

12 1.00 0 0 0 2 1.6

13 1.00 0 0 0 8.2 25
14 1.00 0 0 0 3.5 18

15 1.00 0 0 0 9.0 58
16 1.00 0 0 0 2 0.9

17 1.00 0 0 0 9.5 34
18 1.00 0 0 0 22 0.7

19 1.00 0 0 0 17.5 11.2
20 1.00 0 0 0 0 0
21 1.00 0 0 0 3.2 16
22 1.00 0 0 0 8.7 6.7
23 1.00 0 0 0 0 0
24 1.00 0 0 0 3.5 23|
25 1.00 0 0 0 0 0 |
26 1.00 0 0 0 0 0
27 1.00 0 0 0 2.4 0.9
28 1.00 0 0 0 10.6 1.9 |
29 1.00 0 40 0 21.7 127 ]
30 1.06 0 0 0 0 0 * |

TRANSFORMER DATA

Transformer designation

Tap sctting’

4-12

0.932
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6-9 0.978
6-10 0.969
28-27 0.968
STATIC CAPACITOR DATA
Bus number Susceptance (p.v) *
10 0.019
24 0.043
*) Susceptance in p.u. on a 100-MVA base.
SVC PARAMETERS
SVCi SVC2 SV(C3 SvVC4 SVCS
| . 5 5 5 10 1
(MVar)
Ko 0.955 0.955 0.955 0.955 0.955
K 20 20 20 10 100
Xsl (%) | 3 3 3 3 3
Ysve p.u 1.6667 1.6667 1.6667 3.3333 0.3333
W, 120 120 120 120 120
¢ 0.707 0.707 0.707 0.707 0.707
K, 0 0 0 0 0
I, 159.22 102.18 73.64 124.24 44.23
Kg 533 533 533 533 533
Ty 0.0038 0.0038 0.0038 0.0038 0.0038
T, 0.0083 0.0083 0.0083 0.0083 0.0083
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