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Abstract 

This thesis presents an extensive study of the kinematics of paraflel manipu,-
, or, 

\ lators., The latter are considered' here as a subset of a' more general class of kinematlc 

Il .. ,~ 

• J 

chains called comp/ex klirematic chains which are defined as chaios ln which there exists at , -

least one lin~having a degree of ,connectivity greater than or equal to three. The degree of 
~ """ ~ t ' 

conn~ctivity 11of a link is defined here as the number of rigid bfdies that are directly attached 
\ 

, to this, link by kinematlc pairs. 

.' f,' 

The first portion of the thesis is' devoted to the study of' simple kinematic 

chains which are the basic elements from which complex kinematic chains. and hence , 
-

parallel manipulators. are constructed. The analysis of complex kinematic chams is ~then 

pursued through-"'their graph representation and through the derivation of the associated 
< • 

Jacobian matrix. The three types of singularities pertaining to this class of kinematlc 

chains are identified using the latter concept. They are illustrated with Sorne examples. 

This also leads to an unambjguous definitlon of paraI/el manipulators based on their graph 

representation. ).~,,\ . ' 
t: 

, 
ParaI/el' manipulators are then °analyzed ln detai/. The ~nalysis Includes the 

solution of the direct and inverse kinematic problems. the velodty and acceleratio'n inver-. ) 

\ 

sions and an investigation of the singularities. These problems are discussed in a general 
0: 0 _ 

,\ 

'fr,amework beforeH,special cases are introduced. The kinematic deSign optimization of par-

aI/el manipulators is then u'ndertaken using some performance criteria such as symmetry. 
; . , 

workspace. local dexterity and global dexterity. A new performance index cal/ed gloQa/ 

conditioning index (GC/) is al~o defined 

. ----- . -' 
\ 

Final/y. the kinematic inversion of redundant parallel manipulators is approached 

as a local dexterity maximizatio!, problem .. The c~ncept of traject~ry map is introduced 

and an algorithm for. the generation of smooth traje,etories is given. 
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Cette thèse présente une étude détailléè de la 'cinématiql:Je des manipulateurs à 
, ' . " t } . 

architecture parallèle. Ces manipulateurs constituent en fait un sous~~semble '<l'une classe 
, -

plus ~énéraJe' dè chaînes cmémat,lques que l'on appelle chaÎnes cinématiques complexes. ces _ 

dernlèr-es .étant définies comme les chaînes cinématiques possé-dant au moins un membre 
, . 

dont-le degré de connectlvlté est supérieur ou égal'à trois Le degré de connectivité d"un 
, 

membre est défini ici comme le nombre de membres lUI étant directement attachés 'par des 

liaisons ciném'atiques. 
1 

~ ~ ~ 

~--.' La première partie de la thèse traite des chaînes cinématiques simples. celles-ci 
- - ' 

étant les éléments de base à partir ,desquels les chaînes cinématiques complexes et. par . 
conséquent. les manipulateurs parallèles sont construits. Ce~!e section permet d'introduire 

, e 

. des concepts importants tels que la mobilité des mécanismes, l'optimisation de la qualité-' . . 
de transmission et l'identification des différentes configurations ou ramifications. 

L'analyse des chaînes 'cinématiques complex~s est alors entreprise grâce au 

concept de graphe associé et de matrice Jacobienne associée. 0 Cette dernière méthode 

permet d'identifier les troIS types de Singularités pouv~nt être rencontrées dans les chaînes 
"-

cin~matiques complexes Des exemples sont fournis 'afin d'Illustrer ces trois __ catégories, De 
-

pius, l'approche basee sur la théori'e des graphes conduit à une définition non éqUivoque des ; , ~ 

manipulateurs para11eJes en tant que sous-ensemble des éhaînes cinématiques complexes, 

Les manipulateurs parallèles sont ensUite analysés de fa~on approfondie. Cette 

analyse inclut la solut'ion des problèmes cinématiques direct et Inverse de même que la 
, / 

dérivation des ~elations inverses de vitesse et d'acèélération. Une étude des singularités e'st 
~ . 

également présentée. Ces problèmes sont d'abord disc,utés dans un contexte général, pUIS 

des cas particuliers sont introduits. les manipulateûrs çonsidérés sont de type: plan à 3 
- )1 ')( '- \,\0 

degrés de liberté, sphérique à 3 degrés de i-lit{erté. spàtial à '3 degrés de li~erté et spatial à 
_..:: r : l ' '\ ,'';:1.. , ,) \ ' ~, - D _ l 

J," 6udegrés de liberté. '" 0, 

,( 0 ., 
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L' optimisation cinémat~que des manipulateurs parallèles ~~t alors entreprise en 
l \ (1 

utilisant des cr'itères de performance tels que la symJhie .. le vol",me d~ travail. la dextérité , ~ 

localeoet la dextérité globale. lIn nouvel indice de p~rformance appelé indice de condition 
• ' 1 

global est ég~lement dé~ini. Des, solutions 9ptimales sont obtenue~.po~r les. cas particuliers 

de- manipulateurs mentionnés au paragraphe précédent. l'i 
f 1 

Finaleme-'!!: l'inversion cinématIque des manipulateurs paral~,èles' redondants est ... 

considérée comme un problème de maximisation de Ià"dexfé;ité lo'cal~. (~e concept de carte 

de trajectqire est i~trodujt et un algorithme permettan~ de générer des tr~~ectoires continues 
1 

est donné. 

, 

l 't 
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0" Cfaim of Originality 

<, , 

The author -ëlaims the originality of the ideas expressecl" in this thesls The/ 

followmg contrjb~t,ons are of partlcuJar interest 

(i) the graphical representatlon of the mobl/fty reglons of p/a~ar ~bnd sphedcâl four­

bar"linkages 

{ii} the optlmizat;on of planar and ,spherical four-bar I1nkages as mlO,mum-defect 

Imkages using the orthogonal-decomposition method 

(iii) the so~ution of the b~anch identification problem -for wrist-partiti?ned manil:?u­

lators using the eigenvalues of the Jacoblan matrix . 

(iv) a geoeral method to determine the degree-of-freedom of complex kinematlc 

chains based on their topology and geometry 

(v) a classification of ail possible slAgularltles encountered in' complex kinematic 

chains in three different groups 
. , 

( yi) a com~lete kmematlc analys;.' and C~lngula"ty analys;s of I~S 01 parallel 

manipulators 

(vii) the definitlon of a new performance Il;dex (Global condjtioning index) for the 

optimization of the global dexterlty of seriai or parallel manipulators ., 

(viii) a workspace and dexterity optlmlzation' of four types of parallel manipulators 

q 

(ix) j)n algorithm for the kinematlc inversion of redundant parallel manipulators using 
1 

Jacal dexte"ty maxlmization and the concept of trajectory map. 

Sorne of the results reported in thls thesis have been partly presented in the 

following publications and communications: Angeles et al. (1987). Gosselin and A~geles 
, , 1 

(1987a). (1987b). (1987c). (1987d). (1988a). (1988bL.J1988,c) and (1988d). 

1 
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Chapter 1 INTRODUCTION 

The constant evolutlon of the variety of produclS and goods to be manufactureo 
'T,.~ 

. 'and the evergrowing need for better efficiency lead to the development of new methods of 

production This also 'lPplies to the manufacturing -processes that make use of 'robotlC 

manipulators to perform -certain tasks 

Indeed. there is' a great deal or effort directed towards the development of robots 

exhib,iting better characteristics. e.g. the speed of operation. load carrYTng ·capacity. dy·· 

namic propertles. rellability and repeatability. Apart from the work belng done in control 

systems. algorithms and sensors. which will not be dlscussed here. researchers have been ' 

rnvolved at two different levels. to aim at the foregoing objectives 

The first trend conslsts of the improvement of the performance of the different 

elements of a mampulator such as its actuators. The introduction and the development 

of direct-drive robots is an exa~ple of the research conducted at this level. (Asada et al 

1982: Asada and Kanade 1982: Asada and Youcef- Toumi 1987) . 
':"i 

On the other hand. sorne researchers have been considering '~h'~ possibility of 

designing robots with new kinematic architectures. As a matter -Df facto most of the 

manipulators that are currently- in use are of the seriai type. i;e .. their kinematic structure 

is simple and open. In such an architecture. each of the links is binary. i.e .. it is attac.hed to 

two other links. e~cept for the end-effector and thè base that are attached to only one other 
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1 INTRODUCTION 

rink. However. afthough Ît readily leads to anthropomorphic arms and to simpler kinematic 

equations. this structure has sorne drawbacks. namely: tl 
'11 0 

, 
(i) only one of the motors is fixed: the remaining ones. accounting for a substantial 

part of the jnettial load. are moving' 

(ii) .due to the cantilever type of the links. the elastic' f/exibility is generally high 

which introduces pos/tioning inaccuracies 'and undesrred dynamical side effects 
, , ,1 

Since some applications reqUire very sti(f arms with important load-carrying 

capacities. the possibility of incJuding cJosed kinematic :hains into a' robotic manipulaior 

(Asada and Youcef-Toumi 1984: Bajpai and Roth 1986. Stoughton and Kokkinis 1987; 
~ , 0 

Mohamed 1987). or even to build manipulators with a fully parallel architecture (Hunt 

1983: Yang and Lee 1984; Mohamed and Duffy 1985: Fichter 1986: Inoue et al. 1985: 

Sugimot,o 1987. Shtrkhodaie and Soni 1987; Lee and Shah 1987). has been considered. . . 
Parallel robotic manipulators are characterized by the fact that the gripper is attached to 

-
the ground via several kinematic chains leading to a structure with multiple closed-Ioops. 

Parallel manipulat~9'S are expected .to yie/d the followjng resu/ts: 

(i) by allowing ail of th'~ir n1.otors. or at least the heavier' ones. to be fixed. larger 
, , 

. '. amounts of power will be available. th us increasmg t-hEr'load-<;arrying c~pacity 

and the speeds of operation' 

(ii) by full elimtnation or. at least. reduction of gear drives. accuracy will be in~ 
.1 

creased. wilile production costs will be /owered 

\ 
~ 

(iii) hy elimanation of cable transmissions. accuracy ~nd ~eljability will be incr~ased. 

c 
, ' 

Moreover. parallel ma.!lipulators find applications in other fields such as flight 
, 

simulators. walking m~~hines and robot hands. In fact. the two latter mechanical systems 

can be considèred a'~ parallel manipulators with time varying kinematic parameters. 
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1. INTRODUCTI" 
..... 

ln this thesis. the kinematics of parallel manipulators is studied in detai!. The . -. 

objective is to obtain the kinematic equations constraining the motion of these mal1ipulators 

,and to use them to optimize the kinematic properties of the said manipulators with regard 

t~ two issues. design and programming. The approach adopted here is to consider this 

cla~s of manipulators as a special case of a more ge~eral;~ass of linkages called complex 

kinematic chains. Therefore. the next two chapters ~I b devoted to a review of sorne 
'\" . 

propertÎes of 'simple and complex kinematic chains. 

, / 
:' Some aspects 1 simple ki~ematic ch~i.ns. such ,S mobility. transmission quality 

and branch identi~ication. are, critically reviewed because of their relevance to the study of 

parallel manipulators. This issue is covered in Chapter 2. 

• 
ln Chapter 3. complex kinematic chams are regarded as a very general class 

of Ijnkages. The graph representation ~f their topolo&1 is introduced and completed with 

a geometric representation. based on the Jacobian matrix. which leads to a method of 

determining the degree of freedom of any general complex chain for any of its configurations. 
, 

The method is also applied to the investigation of singularities. which are shown to be of 

three different possible tYR,es 
1 

, 
, 

Having discussed complex klnematic chains in general. parallel manipulators 

ar~ introg,uced as a 'particular subset of these. their study bemg of greater interest in the 

coritext of robotics. Chapters 4 and 5 address the problems of analysis and optimizatlon 

of these manipulators. The major issues in analysis are the solution' of the direct and 

inverse kiriematic problems'. velocity and acceleration inversions. and singular,ity identlfi~ 

cation Planar. spherical and spatial three-degree-of-freedom manipula tors are considered 

together with a spatial six-degree-of-freedom manipulator. These particul~ manipulators . , 

have been chosen for they have emerged as the most promlsing cases according to a survey 

of the different possible parallel architectures for robotie applications (Hunt 1983). The . 
optimization. dicussed ln Ch~pter 5. focuses on the optimum 'design of manipufators based 

on performance indices related to wodsspace and dexterity. The concept of dexterity is 
1 ~ (1 1 ) 

defined here as a function of the condition number of the Jacobian matrix. A clear distinc~ 

6 4 .. 

\ 
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. . 
tlon is made between ocal and global dextenty. the latter. also termSl(Global Conditioning 

. 'Index (CC/). being a ontribution of this thesis. ThIs approach follows prevlOus work on 

the subject (Salisbury and Cralg 1982: Yoshikawa 1985: Angeles and ?,as 1987: Klein and 

Blaho 1987). The m in objectIve of Chapter 5 is to o~taifl design guidel nes for the parallèl 

manlpulators mentI ned above. based oh the foregolng criteria , , 
" , 

-
Slnce e tasks to be performed by a certam manrpulator are. m general. un--

known a priori. the design has to be based on criteria such as the ones presented above 

However. a different problem arises when a glv'en robot is reqUired to produce a certaIn 

traJectory in the task space If the' number of controlled axes, of the robot 15 equal to the 
'. .. 

, c 

number of van'ables associated wlth the given task. then the Inverse kinematlc algonthm 

;s directly used for the programming of the robot. On the other hand. It'the number of 

controlled axes, of the robot is greater than the number of variables associated wlth the 
ri ~ 

task. then the manlpulator is said to be redundant wlth respect to thls partlculG task and 

its motion can ther~fore be optlmized because of the extra axes. Thè p~ammlng of these 

robots deserves spe'ciaJ attentIon. Examples of such paraI/el robots ar€Pen ln Chapter 6 

where this problem Îs addressed The trajectory is optlmized using the local dexterity as 

an optimizatrorliGrlterion and usmg the conce~t of traJectory map developed here 

1 
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Chapter 2 SIMPLE K(7ATIC CHAIN~ 

At the prelimonary stage of thlS work .• t is of ,nteres! to revlS,t sorne of t 
propertles of simple kmematlc chams, Simple chams are defined here as kmematlc chains 

contammg links havmg a degree of connectlvlty smaller than or equal to 2, It 15 recalled 

that the degree of connectivity of a link IS understood here as the number of ngld bodies 

that are directly attached to the said hnk by kmematic pairs. Therefofe. simple kinematlc 

chams encompass both seriai manipula tors and closed single-Joop linkages, The former have 

bmary links and two links of connectlvlty one (the base and the el1d-effector). whereas the 

latter have o,nly bmary links 

The properties of kmematic chams studied in tli'is chapter have be.en chosen for 

'their partlcular relevance in the analysis or optlmlzation of parallel manipulators They allow 

the introduc~ion of sorne concep~s that wiU De extended or used as .?uch m the forthcoming 

chapters. ~ namely' 

(i) the mobillty analy.s~s of planar and sphertcal four-bar linkages presented here IS 
.::. "t.. -

based on th .. concept of linkage discriminant which will be used later for ~ 
L. ' 

workspace analysis of planar and spherical parallel·manipulators. 

~ , 
. . (ii) there IS a conn~ction between the concept of transmission quality u~d here to 

optimize planar and spherical four-bar linkages and the local and glob~1 dexterity 

of paralleJ manipulators which wiU .be defined in Chapte.r 4;-
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2 SIMPLE KINEMATIC CHAINS . 
(iii) the branch identification problem 15 discussed here for seriai manipula tors ta 

stress its impôrtance ln the kinematlcs of manrpulators in general. As a mat­
tif 

ter of facto parallel manlpulators usually have many more branches than the 

correspondlng senal manlpulators 

2.1 Mobility Analysis of Planar and Spherical Fj)U;-Bar Linkages \, 

The Identification of. the mobility reglons 'of Imkages constltutes an Important 

aspec~ of linkage desIgn ), the context of CAO. the graphlcal representatlon of these 

regions '5 therefore an ,tem of the utmost Importance The mobiJity region of a linkage IS 
, , 

defined as the reglon. In the space of its parf)meters (or ln a space defined with functlons 

ot these parameters). In which thé input Itnk has full rotatablltty. Le .. It can undergo a full 
\ 

rotation of 271 However. It IS often destrable to find the reglon in which the output link 

IS fully rotatable. When these two regions are known. we can infer the region ln which 

both the input and the output are fully rotatable. Le,. the crank-crank region by finding 

the IntersectIon of the aforementloned reglons ln a s,mt/ar fashion. we can subtract the 

Intersection from each of the original regions of rnoblhty to obtam the crank-rrJcker and 

rocker-crank reglons 

The mobihty of planar and sphencal linkages has been studied extenslvely in the 

pasto Grashof (1883) first proposed inequahties descnbing ~he mobihty of planar Imkages. 

Further work on the subJect produced other geometric (Gupta and Radcliffe 1971: Midha 
~ . 

et al. 1985) and algebraic-geometric (Gupta 1980) criteria These were meant to incor­

porate mobihty conditions in design procedures. Simllar mobi/tty criteria were developed' 

for spheriçal linkages -(Freudenstein. 1965: "Savage and Hall. 1970: Soni and Harrisb~rger. 

1967: Ouditza and Dittrich. 1969: Gupta 1986b). , 
--

More recently. the need for graphical representations of the mobility regions 

arose. the objective being to inc/ude ther:n in CAO packages for linkage design. Risb~urg 

(1983) gave a full description of t,he different regions for planar linkaies based on Grashof's 

1 
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2. SIMPLE KINEMATIC CHAINS 

jnequalities. 8arker and Lo (1986,) presented a similar descripti~n' and representati6n for 

spherical mechanisms. 

.. 
The mobihty analysis used here is an extension of the one given in (Gosselin and 

Angeles. 1987 a). This IS based on the concept of linkage discriminant which was first used 

ln (Angeles and CalleJas. 1984) for planar linkages and extended in (Angeles and Bernier. 

. 1987a) Q'ther studies using the concept of linkage discriminant for linkage mobility are 

(Wi~hams ,and Reinholtz .. 1986 & 1987). ! 

_ The mequalities obtained by the mobility analysis of planar and spherical link­

age; lead to polyhedra ln the 3-D space ~f linkage parameters. Moreover. these polyhedra. 
-.. 1 

as shown here. have surprisingly symmetrical shapes and are formally identical for planar 

and spheri,al linkages, 

2.1.1 P lanar Linkages 
1 

The linkage parameters kt! (i = 1,2,3) used here are essentially those proposed 

flrst by Freudenstein (1954.1955). Moreover. they are identical to the ones used in (Angeles 

)a.nd Calle jas. 1984: Angeles and Bernier. 1987a: Gosselin and Angeles. 1987a) .. They are 
- . 

recalled here for quick reference. A planar mechanism IS shown in Fig. 2.,1. where the link 

lengths are glven by at , (z = 1.. ..4). The linkage parameters kt, (z = 1,2, 3) are then 

defmed as: 

(2.1) 

The inverse transformation is given as follows: 

Jk~ +<k~ + k~kj - 2ktk2k3 

a3 = ~ Ik2 k3 1 ' 
(2.2) 

The input-output eqyation of the planar mechanism car:' then be expressed as: 

A(1jJ)T2 +2B(t/J)T + C(.,p) = 0 (2.3) 

8 
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Figure 2.1 Planar four-bar linkage 

~ 

.4(0) == k1 - k2 + (1 - k3) cos tL· 

B(t:) == - sm 1;.' 

C(ll.·) == k1 + k2 - (1 + k3) cos tU 

T == tan(6f2) 

2. SIMPLE KINEMATIC CHAINS 

-... 

1 
.) 

1 
1 

1 
1 , 

(2.4a) 

(2.46 ) 

(2.4c) 

(2.4d) 

,,' 

in which 'IJ.' and 0 are' the mput and output angles respectively. The dIscriminant of the 

quadratic equation (2.3), known as the linkage discriminant (Angeles and Bernier 1987a). . 

can be written as: 

(2_5a) 
. 

(2.5b) 
1 

which can be simplified to: 1 
• > 

~ 

J 

(2.5c) , 
. 9. 

'. 
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. 
The mput link has full mobility if the discriminant is positive for every value of 

tJJ. i.e .. for -1 :s; cos tp ~ 1. Since eq.(2,5c) represents a parabola with negative curvature, 

this is the case if z(O) :2: 0 and z (11") ~ O. If we denote by ';:1 and Z2 the values 'of .; (1)') for 

cos U' = +1 and cos If· = -1 respectively. we have' 

mm .:;( cos t') = min (':1' ':2) 
-1'- cos l ':: 1 

... 
"~nd the full rotatabillty IS attalned if and only if min (zl- =2) .: 0 where. 

, 

':;1 == ;(rr) = (1 + k2)2 - (1.'1 + J.·3)2 

,':2 == z(O) = (1 - k2)2 - (k1 - k3)2 

(2.6) 

{2. 7a) 

(2.7b) 

It I,S then stralghtforward to show that these expressions lead to the follt>wing inequalities: 
"- / 

(2.80 ) 

and 

(2.8b) 

Each of these Inequalitles represents two regions of the (kt. k2' k3 ) space which 

are bounded by two orthogonal planes The line of intersection of these planes is parallel 

tn plane k1 k3 and is located at k2 = -1 for mequality (2.8a) and at k2 = + 1 for inequallt, 
• 

(2.8b r . Moreover. the proJectfons of these two lines on plane k1 k3 glve two lipes orthog­

_ anal ta eacJathi and passIOg through the arigln with an angle ~f +45 and -45 degrees. 

respectively. as sJi'own ln Fig. 2.2 - , 
< 

, Hence. the intersection of the 'regrons defined by inequalities (2.8a) and (2.8b) 

i~ given b~ a ~eg~lar tetraheG;o~ ha~i'ng ~ntroid a,t the ongm and having edges of ~.-~ 
length 2,,'2 ·and two open convexes (wh~ unbounded on one side) each sharmg a ~ 
common e"dge with the tetrahedron. This is represented in Fig. 2.3. The set of points of 

the (kt- k2, k3 ) sp~~ê located within these limits corresponds to the set ot'planar four·bar 

linkages having a fully rotatable input. It is pointed out that the origin of the (kt. k2• k3) 
" . . 

, , 

spàce: wtUcn is located, inside this region. corresponds to th~ set of degenerate cases of 

10 
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2 SIMPLE KINEMATfë CHAINS 

Figure 2.2 Projection. on the kt k3 plane. of the Unes constituti~g the intersection 
of the planes defined by eqs.(2.8a&b) 

méchanisms for which a2 -- oc. a3 -+ 00 and a4 -+ 00. i.e .. the planar PRRP mechanisms 

where the .axes of the P pairs are parallel. 

The mobility region is also represented in Fig., 2.4 where the tetrahedron IS 

shown in yellow and the two open convexes in blue. 

The foregoinganalysis can now be applied to the outputlink by exchanging the 

11 
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, , 
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'I~----------,----------------------~----~ 
Figure 2.3 Mobifity region for the input link pf plana~ four-bar linkages 

role of the input and output links-,of the mechanism. To this'end. eq.(2.3) is rewritten as' 

where 

A'(d>}T2 + 2B'(a»T + C'(a» ;; 0 

A' (cP) =- kt + k3 + (~2 + 1) cos (!) 

B,~ (cP) -' - sin a> 

C'(cP) == k1 - k3 + (k2 - 1) ~os"tP -

T=tan{1P/2) 
- - ,. ~ ---...... - - t' 

The new,discriminant obtained can the" be ~xpressed as: 

dli» ;:::'[B1(cP)]2 - A'(4))C'(~) 

= (1 - ki + k~) + 2(k3 - 2ktk2) ~os tiJ - k~ C05
2 cP 

(2.9) 

(2.10a) 

(2.10b) 

(2.l0e) 

. (2.10d) 

(2.11) 

12 
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\ 

Figure 2.4 Mobility regions of planar four·bar linkages (rank·ela.pk rcglon~ ,He 
shown in yellow and crank-rocker regions in blue 

The reasomng usèd above can be repeated, here since we are agaln in the presence of il 

quadratic' equation havrng a negative curvature. Therefore .. the conditions for full mobillty 

of the ôutput Im~ are dO) > 0 and ç(1I") ~ O. They.lead to the followlng Incqualities 

and 

(2.12/1) 
. 

This result could have been expected since the exchange of the input and output links 'rn 
eq.(2.1) is equivalent to exchanging the roles of k'} and k3 

The reglon ·described by inequalitj~s (2 12a) and (2.12b) is shOWR-- in Fig" 2,5, 
\ 

Moreover. 'the c~ntral tetrahedron (,n yellow) of this figure is regular and is related to that 

1 

• Jo .... , 

of Fig. 2.4 by a rotation about the origin ihat is a member of the symmetry group (Angeles 'l" 

1982) of the tetrahedron' of Fig. 2.4. Hence. the central tetranedra of Figs. 2,4 and 25 

13 
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are one and the same. -Furthe~.!'!l_ore. the two open convexes (ir;J red) 'are simllar to the 

ones shown in blue in Fig 24 Thus. the reglon defined by the tetrahedron 15 the one . 
where both the input ilnd output links have full mobillty. 1 e. where the Imkages are of the 

crankJcrank type. The -open convexes then r§lpresent the reglons where the linkages are of 

tilt crank-rocker t pe (In blup) and of the rocker-~rank type (In red). respectlvely 

1 

l' 

\ 
-~--~ - ------- -- - - ._------

Figure 2.5 Mobility rcglons of planar four-bar linkages clank-crallk regions are 
showlI in vellow and rocker·crank regions in red 

\ 

It can be observed that the open convexes are attached to the tetrahedron by 

• Its edges. To complete the symmetry of the whole spatial representation. we can d,eflne 

another set ,of open convexes (FIg. 2_6) attached to the tetrahedron by the two, edges that 

are still free. Although thls has 'not been shown. it IS conjectured that thls reglon (in . ' , . 
green) contams unf~sible linkages The rest of the space would then contain linkages of 

- ~ . 
the rocker-rocker type. The proof of this hypothesls would require f'urther work. , . 

Notice that. in order to help the reader to grasp a global idea' of the mobility 

14 
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--Figure -2.6 Mobility reglons of planar four-bar linkages. crank-crank regions arc 
shawn in yellow and the regions containing unfeasible linkages in green 

1 

l -~~ 

1 

regions in space. the edges of the tetrahedron in Figs. 2.4-26 have been} drawn with the 

color of the open convex attached ta it. 

2.'1.2 Spherical Linkages 

Again. the linkage parameters kp (i = 1,.,. ,4). are identical to the ones used 

in (Angeles and Bernier. 1987â; Gosselin and Angeles. 1987a). The spherical ,mechanism 

is shOwn ln Fig. 2.1. where the link angles are given bY etz, (i = 1,., "A) The linkage 

parameters are then defined aS: 

k = ~ al cos 02 COS a4 - cos Ol 
( 1 sin al cos Q2 sin 04 

k tan Q2 k tan °2 
3=·,4=-­

sm al tan.al 

k _ tan °2 
2 - tan 04 

(2.13) 

15 
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~ 

A possible inversion of thés transformation is given by: 

(2.14a) 

k2 cos Q4 = , 
, -1 k2 + k2 _ k2 V 2 3 4 

111 this inversion. it is assumed that: 

(2.14b) 

The input-output equation of the spherical mechanism can then also be written 

as the following quadratic equation: 

where 

A(t/J)T2 + 2B(t/J)T + C (1/1) = 0 

A(tIJ) = kt + 1-+ (k2 - k4 ) cos tP 

B(t/J) = k3 sin tP 

C(,p) = kt - 1 -:+- (k2 ~ k4 ) cos t/J 

T = tan(4)/2) 

(2.15) 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

in which tP and 4> are the input and output angles. respectively. The discriminant of the 

- quadratic equation (2.15) is then the linkage discriminant for the spherical mechanism. It 

is given by: 

z(Tb) = B2 (Tb) - A(tb)C(tb) 
(2.17) 

. '16 ' 
r'l 
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Figure 2.7 Sphencal four-bal"linkage 

where the coefficient of cos? t/J can also be written as; 

-, , 

-(2.18) 

/ 

which c1early shows that it is negative defrnrte. and hence the discri~inant of equation 

(2.15) is _~~ parabola in cos t/J with hegative curvature. such as the _ discriminant appearin~/ 

in eq.(2.5). 

The argum'ê~ts used in Section 2.1.1 for planar linkag~~ can be repeated here. 

The full mobility of the input link is guaranteed by the positive definiteness of the discrimi-

11 
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nant over the whole range of values that tjJ can attain. ti.e .. 0 $: t/J ::; 211" or .:..-1 :S cos t/; :::: +1. 
, , , --

if we denote by Zl and Z2 the values of z(t/;) for cast/; = -1 and ~osJ; = +l-l.e. z(O) 

and z( 11" )-~espectively. the mobility conditions become: ~ 

where 

whic-h lead ta .. 

and 

... 

min .:(cos 'Il!) ::: min(':1' =2) ;:: 0 
-1:: <.os v~ 1 

z1 F z(-l) ::: (k4 + 1)2 - (k2 - k1)2 
1. 

z2 == z(+l) = (k4-- 1)2 - (k2 + ktl 2 

(2.19) 

(2.20a) 

(2.20b) 

(2.21à) 

(2.21b) 

Inequalities (2.21a&b) are very similar ta inequalities (2.8a&b) and the a~sociated reglon . 
. ( 

which IS shawn m Fig. 2.8. 15 geometrically identical to the one obtained for planar linkages 

, 
It is pointed out that. m thls case. only three of the four parameters that we 

had defined (k,. 1 = 1 ..... 4) play a raie in the mobility. which allows us to obtaln a 

tridimensional representation ln the (kt. k2' k4 ) space. The set of points located mSlde the 

" limits of the tetrahedron and the open convexes correspond ta the set of spherical four-bar 

linkages having a fully rotatable input link. The origin of the space used here represents the 

set of spherical mecham5ms for which al = a3 = 04 = 90c
• I.e.. the spherical equivalent 

ta planar PRRP linkages (Lichtencheldt and 'fck 19,79). The mobility region is also shown \ 

in Fig. 2.9. ) ___. 

The analysis is repeated' by exchanging the role of the input and outpuf links 

Equation (2.1S) is rewritten as:-

(2.22) 

18 
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Figure 2.8 

where 

Mobtllty region for the input link of spherical four-bar linka~es 

A',(dJ) = k1 - /..-2 - (1 -+: k4 ) cos 0 

B' ( ct» = k3 srn CI 

C'(ItI) = k1 .,.. k2 - (1 - k4) cos 0 

T := tan(i' 2) 

the ~e~u:hscnminant obtarned can then be expressed as' 

ç(a» := (B,'(ItI)]2 - A'(4))C'(4>) 

:= (kl- k~ .- 1) cos 2 4> + 2(k1 + k2k4}-cos4> + (kJ - kf + k~) 

where the coefficient of cos2 4> can be rewritten as: 

'/ 
"" 

1 

- 1 

. (2.23(1) 

(2.23/)) 

(2.23(') 

(2.23d) , • 

(2.25}-

19 , 
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- - - - --- - ---~ -- - - - - - --- - --- - -----

---~-----~-

Figure 2.9 Moblhty regions of spherical four-bar linkages crank-crank reglons are 
shown in yellow and (rank-rocker regions in blue 

! 
J 

whlch clearly shows that It IS negative deflnite. thus I~admg to the same conclvsion as ln 

dealtng wlth the dlscrlmtnant of eq (? 17) 

The conditions for full mobility of the output hnk are dO) ? 0 and ç(nl2: 0 

They le ad to the followmg Inequahtles' 

(2.26a) 

and . 
(k2 - k4)2 ? (1 + kl)2 (2.26b) 

The reglon \described by inequalitiel (2 26a&b) constitut~s a set of four open. 

conve)tes which are sh;wn i~ig. 2.9 (in yellow) and Fig 2.10 (in ~ed) 

It is now. apparent that the open conve)tes shown in Fig. 2.9 (in yellow) are . -
the common intersection of the regions described by inequalities (2.21a&b) and (2.26a&b). 

20 
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Figure 2.10 Mobll/ty regions of sphcncal fOll/-b.l/ linkages CI.lllk-rockc/ /e!\/al1~ MI 

shawn III bille and rocker-crank reg/ons III rcd 

Thu5 thls reglon 15 the one where both the Input ,lfld output IJI)ks hdve full mobdlty II.: 

where the linkages are of the crank-crank type The tetrahedron then rcprp«'f>nh IIH' rl'~!,/OI1 

\{\!ller€' the linkages are of the crank-rocker type (Ill nillE') and tl1(' open (onV(·.l1e~ ... llOWIl ln 

Fig 210 (111 tl'd) r,epresent the reglon tontalnlng rnedldnlsrn~ of tl1(' (Olk(', (f,Jok lypl 

Aga/,n. to complete the synlfnetry of thE" whole 5Pdtl.1l repre'îfntdll(lIl. VJ(· (0111 

defme another set of open convexes (Fig 211) attached to thf- letrâhedroll by tlll hAlO 

edges that are still free. In thls ç~se also. although It 15 not shown herE:. It 15 cOIIJ(;(luyc·d 

that thls reglon (Ill green) contams unfeasible Imkag\es The rest of the spa(.f~ WOLJld th('11 

! contaln linkages of the ,ocker-rocker type. The proof of thl5 hypothesls would JI.,o reqUlft' 

a deeper IIlvestlgatJon that -may require tools other than the d,~ulmlnant lfC.hmqlJe 

2.1.3 Example 

\ 

An example problem making use of the mob,IIty regJons derlved above J!' now 
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,1 

1 

_______ ~ ________________ -'-__ '_,' ___ -'----lI 
Figure 2.11 Mobility regions of spherical four-bar ,linkages crank-rocke~ regions are 

shown in blue and the regions containing unfeasible linkages in green 

discussed ThIS example. whic~ was presentee! in (Gupta 1986b). deals with a spherical 
. , 

robot wrist The problem consists of deteimining the set of orientations of the end-effector 

that will allow It to undergo a full rotation about a given axis whlch IS concurrent with 

llhe other three axes of the wrist. The angle defining the orientatIon of the end-effector. 

whlch becomes the unknown of the J?roblem. is then associated with 'the value of al, i.e .. --, 
the frxed link It, is assumed here that 00 ~ al S 180" . The other angles of the wnst are 

given as 02 =:: 30" .a3 = 80' . and 'a4 = 75°. Therefore. we have 

where 
Cl =:: 0.26794 

C3 = 0.15470 

k - c4 
4 - tan QI 

C2 = 0.20759 

C4 = 0.57735 

(2:27a) 

- (2.27b) 

which represents a curYe in the (kt, k2, k.) space. The values of angle -nI,. corresponding 

to the porti~ns of this curve that are inside the mobility region of the input link (~ig. 2.8) 
e 

) -
22 
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are the values of Ql for which the end-effector can, undergo. a full rotation, Notice that 

~he end-effector is considered here as the input link of t~e spherical mechanism having a 

'~dimension of Q2' Inequalities (2.i1a&b) lead to: 

(2.28a) 

and 

---'--=--=- - + . - + -:--- + 1 - c > 0 ( (C1-C~) c~ 2clc2 2(C4+CtC3) 2c2c3 2) 
tan 2 01 sin2 Ql Sin Ql tan Q1 tan 01 sm 01 3-

(2.28~) , 

The following substitution is then intrôduced: '-

. 2T 
sm °1 = 2 

1 +T 
(2.29a) 

. 
where 

(2.29b) 

and inequalities (2.28a&b) can therefore be rearranged. which leads to: . \ 
\ 

(2.30a) 

AT4 + BT3 + CT2 - DT + E 2: 0 (2.30b) 

where: T 

A = c~ - (cl + c2) 2 

B = 4(C4 + cl c3 + C2 C3) 

C = 2( ci - c~ :- 2c~ - ~l f 2) 

D = 4(C4 + Cf C3 - C2 C3) 

E = c~ - (Cl - C2)2 

.' 

9~ f 

(2.31a) 

(2.31b) 

(2.31ç) 

(2.31d) 

J2.31e) 

.. Since we have 0° ~ 01 ~ 1800. then the rang~ of interest .of the variab,le T 

in inequa!ities (2.30a&b) is restricted to T' 2: O. The correspond;ng 'functions are plotted 

in Fi~s. 2.12-2.14. which' clearly shows the different regions in which the Înequalities are 
.' . 

verified. 

l , 
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~200 

G(T) 

600 

, 
1 

Figure 2.12 Function defifled by the left-hand side of eq (2.30a). 

Not.ice that Fig. 2.13 is a~ zoo~ of Fig. 2.12 in the neighbourhood of the origin: 
, 

ihe ranges of values of T- for which the inequalities are not verified are:'-
, Q 

O~222 ~ T ~ 0.315 .and 1.92 ~ T ~ 22.9 (2.32) 

Le. 

(2.33) 
... . 

which is in' full agreement with 'the results reported in (GtJpta 1986b). 

Finally. since the value of' k2 is constant. the curve desG:ribed ~Y equations 

(2.27a) cap be represented in the plane given by k2 = 0.15470. i.e .. using a cross-sectional 

view of the solid of Fig. 2.8. This view is shown in Figs. 2.15 and 2.16. Port,ions AB an,d 

CD of the curve are clearly outsidé-ôf the mobility region. 

24 
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r---"~--------------------'-------~--' --, .. 
2 

G(T) 

1 1 

1 

T 

.~ - 1 

Figure 2.13-- Zoom of Fig 212 in the neighbourhood of the origin 

2.2 Optimization of Transmission-Quality .. 

-The lin ge optimization prob/em aimed ar maximizing the quality of transmis-
, ' , 

sion has been giv~n/~ue attention by many a researcher. Sorne of the authors that 'reported 

on the subject hav used design charts (Hain 1967; Hall 1966: Son; 1974) white others used . -

algeb"raic method 1 (Freudenstein and Primerose 1973; 1 Gupta 19.77) 01 numerical methods 
1 

(C/eghorï aïd Fe/ton 1984) to tackle this prob/~~~ A cru~ial development in this con~ext is 
",' ~ \'.J-,. • 

~' ., -; 25 
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.2 

F(T) 

.1 

.1 .2 .3 .4 .T .5 

.f .-
Figure '2.14 Function defined by the left-hand side of eq.(2 30b) 

the concept of transmission index. introduced first by Sutherland ~nd Roth (1973). which 

allows us to extend the concept of transmIssion angle to any spatial linkage. Moreover. 
-. 

it is shown in the foregoing reference that the maximlzation of the transmission- quality 

is equivalent to a minimization of the position mg error. a result whlch is not to be ne­

glected. e~pecially when considering the extension of the concepts stud~ere to multiple 

degree-of-freedom systems. On the other hand. Gupta (1980) introduced a method of 

planar-linkage synthesls wlth an mput crank. whose transmission angle IS constramed to 

lie between 45° and 135°. This method was then extended to the exact synthesis of RSSR 

26 
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Figure 2.15 Curve defined by eq.(2.27a) in the plane k2 = c3' and the mobimy 
- regiotls in that plane. 

~- 1 , 

linkages (Gupta and Kazerounian 1983). Furthermore. Tinu,bu and Gupta (1984) showed 
~ 

that a linkage optlmizatlon based on minimizing the structural error. rather than the de-
-~,,~ 

sign errar. leads to branching-defect elimination. Moreover. the optimization of planar . . 
sphericaf. and _ spatial linkages ha vin: a lfTildratic input-output equatian. with a minimum 

design error and a maximum transmission quality. was presented ln (Angeles 1986a). In 

this reference. the- method used by the author is based on the Newton-Gauss algorithm 

for nonlinear least squares-see. for instance. (Wilde 1982 & 1983). On the other hand. 

the concept of linkage discriminant. which was used for the determination of the linkage 

27 
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1 
1 . 

. ! 

Figure 2.16' Zoo,!, of Fig 215 in the neighbourhood of the origin. 

mobility region in Section 2.1. wa~ applied to the oPtirnization of linkages wÎth rriaxirnum 

transmission quality and prescribed mobility characteristics (Angeles and Bernier 1987b) 
/ 

. 
ln this section. results concerning the transmission quality of planar and spher-

ical linkages are derived. A partlcular class of linkages. called here zero-mel'h linkages. is 

defined and analyzed ln detail. Their mobility regions are introduced as a particular case 

, ~of the orles presented in Section 2.1 for general planar and spherical 4-bar linkages. Sorne 

important theorems governing their mobihty characteristics are also stated and, guidelines 

for the;r design are given. 

28 
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A more general class of linkages. called minimum-defect linkages. is also defined 

and this concept is applied to. the design of quick-return mechanisms using the orthogonal­

decompositlon méthod. presented in (Angeles' et al. 1987). 

2.2.1 Definition of the Transmission Quality 

The transmissIon quality of a four-bar linkage. which is to be maximized. WilS 

defined in (Angeles and Bernier 1987b) as the square root of the following pdsitive definltc 

quantity' t; 

i la 2
1l' • ;: = - sin 2 Jldljl 

21i 0 
(2.34/1)\ 

wl:1ere Jl represents the transmission angle of the function-generating linkage under study 

For ,brevity. the transmission quality is defined in what follows as :: itself. rather than Its 

square fOOt. The complement of the transmission quality. which is to be mmimized. is thus 
~ 

defined as' 

;:' = ~ r 2rr cos 2 Jldt/) 
21i Jo 

and is termed the transmission defect. Hence. 

:: + :;' = 1 

and 

0·- :;' ~ 1 

(2.34b) 

(2.34(') 

, (2~34d) 

Of course. in these definitions. the, input link is assumed to be of the crank type. for the 

associated integrals are not defined for Input links of the rocker type. In the particular 

cases of planar and spherical linkages. the cosine, of the transmissÎon a"ll~ can be wrÎtten 

as follows: 

. ' cos Jl = cl + c2 COS tI' (2.35)- ,,-

-',.. where cl and c2 are constanti depending only upen the-.Jinka-ge paramet~rs, expressions 
. ' 

for which will be given pr~se!ltly. Thus. for planar and spherical linkages. ;:' becomes 
, , 

. 1 
.. ' = /ll + -c22 .., 2. (2.36) 

29 
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where c~ and c~ are 'positi~e semidefinite and p!,sitive definite quantlties. respectlvely. as 

shown next. i.e .. 

c~ ~ 0, (2.37) 

From the foregoing diScussion. it is apparent that the transmlssioJl quality 15 maximlzed If 

the transmission defect is minimlzed. The practlca~- application of this fact is that linkages 

with maximum transmiSSIon qualtty can bè found usmg least-s~uare based optlmization . 

algonthms. wh,ch aim mtrinsically at mimmlzlng a positive semidefinite performance Index. 
" 

rather than at Its maximlzation 

For a general planar linkage as the one shown m Fig. 2.1. the cosine of the 

transmission angle is glven as (Gupta 1977). 

a~ + a~ ~ a~ - a~ + 2al fl2 cos 1.-' 
cos Il = ~---~--~---~-----------

2a3a;r 
(2.38a) 

, 
or. in terms of the parameters (kt, i = 1,2,3) defmed in the previous section. as 

(2)8b) 

Constants Cl and c2 appearing in eqs.(2 35) and (236) are. then. 

(2.39) 

frpm which it is apparent that c~ is positive semidefinite. whereas c~ is positive definlte. 

r;or a general -spherical linkage as the one shown-'m Fig. 2.7. where frt. for 

t' = 1, ... ,4. denote the linkage dimensions. the cosine of j:he transmission angle. glven 

in (GuP~'~ 19'8i-(is multiplied by factor \/(1 - cos a3L'2. in order ~o render It compatible 

~ith the general definition of transmission index.given in '(Soylemez and Freudenstein 1982).-

This produces. the following: . " 

cos _ 1 1 - cos al cos 0:1 cos a2 - cos 03 cos Q4 + sin al sin a2 cos t,..' 

J.l - V 2. . ", sin al sin 0:4 . ~,. (2.40) 

30 
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Constants ct and c2 of eqs.(2.35) and (2.36} are now defined by: 

c ~ . /1 - cos a3 cos 01 co~ a2 - ~os a3 cos a4 

1 V 2 - Sin 03 Sin a4 
(2.41a) 

c = /1 - cos 0a sin al sin a2 

2 \t 2 sin 03 sin a4 
(2.41b) 

or. in terms of the parameters (kt! t = 1, ... ,4): 

(2.41c) 

where 

.~. ! Ikll )11+ k~ - kI)(k~ +k~ - kIl - k2 k4 + ktlk~ - kll 

\ 21k3 1 J (1 + k~ - k~)(k~ + k~. - kt) '.,~, 
(2.41d) 

and 
k1k2 + k4 

1 - -r================================= 
1 - Jk~ + k~(1 + k~) + 2klk2k4 + (k~ - kl)(~1- kI) 

(2.41e) .~-

k2 + k2 - k2 
12 = '2 3 4 

Jk~ + ~(1 + k~) + 2klk2k4 + (k~ - kl)(k~ - kI) 
. (2.411) 

.;.;t 

If none of the angles at • for t' = 1, ... ,4. is allowed to vanish. an issue that 

IS given due attention in Section 2.2.3. it is <!Iear that c~ IS positive semidefinite. and 

c~ Is--positlve definite-the positive definiteness of c~ can also be readily realized trom 

conditi,on (2.14b). From expression (2.41d). neither ct nor C2. and not even their squares. 

are smooth functions of th~ linkage--parameters (kt! l = 1, ... ,4). This would prevent us 

trom minimlzing z' using nonlinear least-square techniques. wnich rel y on such smoothness. 

ThiS is readily overcome by formulatirïg the problem- in the space of linkage dimensions. 

al: 0:2, a3' Q4. In whi~h. from eqs. (2.41a&b). Cl and C2 are smooth functions~ 

2.2.2 Zero-Mean Linkages a~~ their~Propert~el 

Minimu01-defect linkages are d~fined as linkages havi"g an input crank. far which 

the transmission defect. 'as' give,; by equatian (2.36). is a minimum. It has been shown 

... , 
"..,-

/, 
31 
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in Section 2.2.1 that the s~cond term of the right-hand side of eq.(2.36) cannot vanish. 

whereas the first one cano This /eads to the definition o_f a specifie class of linkages. called 

- zero~mean linkages. for which the value of ct is equal to zero. From eq (2.35) it is apparent 

tha t Cl and ~ c~ are. in fact. the expected value and the variance of the cosine of the 

transmission angle. 1 e . 

Cl =E(c@s /.1) 

1 2 2 2C2 =E[(cos Ji - cd J == Var (cos Jl) 

and hence the zer~mean adjective for finkages having a vamshing ct 

2.2.2.1 P-Ianar Zero-Mean Linkages 

For planar linkages. the zer~mean condition lea~s to 

Thus. the transmission defect can be expressed as. 
Q 

\ 

(2.42a) 

(2.42b) 

(2.43) 

(2.44) 

and the mobility conditions for an mput crank denvedom Section 2.1. 1 e.. mequalitles 
~ 

(2.8a&b) . reducè t6 the following' 

(2.45a) 

(2.45b)) 

The two foregoing in~qualities cal'} be readily re-duced to a single one. namely. 

(kr - 1)(1 - k~) ::; 0 ! (2.45c) 

w~ic~ represents the' dashed region of the kt-k3 pJan~ shown ln Fig. 2.17. This region 
1 

repres~nts the damain of definition of zer~mean linkages. i.e.. linkages having an input 

cran..k and for which Ct = O. 
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r-----------------------~ --.---~---. -,----
) .. 

, Figure 2.17 Domain of deflnltion of- planar zero·mean linkages 
, 

Moreover. one can readily prove the follo~ing: 

./" 
Theorem ~.1: Zero-mean planar linkages are of the drag-link type when they correspond 

r 

to points located in the inner.,square of the region of definition and of the ~~~nk-rocker type 

when they correspond to points located elsewhere within the said region. 

J 
Prooe The conditions under which a' planar four-bar linkage has a fully-rotatabte output 

link are given in inequali!i.es (2.12a&b). SubstitutioF! of the. zero-mean condition in these 
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"il - expresssions leads to: 

(2.46a) 

and 

(2.46b) 

which can be reduced to 

(2.47) 

Therefor~. only the zero-mean linJ<ages correspondlng to pOints located ln the Inner square 

have a fully-rotatable output link. i~e .. they are of the drag-link type. The other subreglons 

represent zero-mean linkages of the crank-rocker type since thelro Input link is a crank but 

their output lin«- IS not. This completes the proof 

A functlon-generation problem that arises rather frequently ln applications calls 
Q 

for quick-return mechanisms ln thjs case. one i~ -rather interested in linkages of the crank-

rocker type. The motion of such Ifnl\tdges IS defined by the tlme ratio of ItS two phases. If 

the first phase takes place as the mput link sweeps an angl~ 1T + !::l.'lj). whereas tKe second 

phase-the return-as the Input link sweeps an angle Ji - f::J.w. the tlme ratio TR IS defined 

as: 
7i + !::l.'lJ: 

FR= ---
7i - ~'l' 

(2.48) 

It was mentioned in theorem 2.1 that planar zero-mean linkages can be of the 

crank-rocker type. The following theorem IS now proven: 

Theorem 2.2: Planar zero-mean linkages which are of the crank-rocker type have a tlme 

ratio of one. 

. ~-~ 

Proof: Co~sider the two geometric constructions of Fig. 2.18 where a planar crank-rocker "-

linkage is shown in its two extreme positions. Moreover. the angle !::l.w as d.efined ln 

eq.(2.,48) is given by: 

(2.49a) 
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" 

where 1f.Jl and ti'2 are assumed to h~ bound.ed as follows: 

(2.49b) 

Usmg the law of cosmes. Wf? can write: 

(~.50al 

and 

(2.50b) 

,œ 
(a) 

( 

(b) 

.. 
Figure 2~18 Limit positions of a planar four-bar linkage of th~ crank-rocker type. ~ [ 

~ - t 
If we now impose the zero-mean' condition. I.e .. if we substitute a~ + a~ y 
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2 2 b' a3 + a4• we 0 talO: 

cos.,p1 = cos t/J2 = a3 (2.51) 
al 

which. by virtue of relations (2.49a&b). Jeacfs to . .6t/J = 0 and. from eq.(4.48). we have 

T R = 1. which completes the praof 

Therefore. planar zero-mean linkages of the crank-rocker type cannat be candl-

dates for q'uick-return mechaOlsms 

Planar zero-mean linkages which are of the drag-link type can be optimized by 

finding the minimum transmission defect for a given minimum value of the mechanism' 5 

dimensional balance. This is defined as the followmg real number 

b == (a4 )2 + (a3)2 _ 1 
a2 a2 

(2.5 2a l 

which turns out to be positive definite. for 

(2.52b) 

It can be readily sho~n that 0 < b'<. 1 for zero-mean linkages of the drag-link 

type slnce for these we have Ikt S; 1 and lk3 1 ::; 1 Lines of constant balance and of 

constant transmission defect are p/atted in Fig 2.19 The optimum drag-link mechanlsm. 

far a given miOimum balance bm . is found at the pOint af tangency af the contour b = bm 

wlth a contour of constant transmission defect. This point can be readily determmed ln 

clased form. Indeed. linkages with a èlimensional balance bm verify the following equation: 

. (2.53a) 

whereas zero-mean linkages with a constant transmission defect =b verify 

(2.53b) 

The ,solution of the nonli~ear system of equations obtained whèn minimizmg ;;0 
in eq. (2.53b) subjected to the constraint (2.S3a) is the Jollowing: 

" . 
(2.54a) 
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.----------------------------- ----_._--_., 

b = const 

k3 - , 
Z = const 

1 

9/12 

1 

4 

5/12 

1/12 
j.~y 

-1 1 
1 

- 1 5 
12 12 12 -1 

> < ,--.--------, 

Figure 2.19 lines of constant dimensi a ance and of constant transmission 
defect for planar drag-link ze an linkages, l:l;' 

~ ,r' 
" 

and 

(2.54b) 
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2.2.2.2 SphericaJ Zero-Mean Linkages 

For spherical linkages. the zero-mean condition leads to: 

(2.55) 

and the transmission defect can be written as: 

z' = 1.c~ = !AB 
2 4 

(2.56a) 

where' 

(2.56b) 

and ' 

(2.56c) 

The mobility conditions.-Ieading ta an input crank. i.e .. inequaliti~s (2.21~&b). 

take on the form that follaws. under condition (2.55): 

and 
r 
1 

which are equivalent to the following single ihequality. . ., 

(k~ - 1)(1 -; k~) ~ 0 

(2.57 a) 

. 
(2.57b) 

(2.57 c) 

The region of the k1 k2 plane defined by the far,egaing inequality is- represented in Fig. 2.20. 
-. 

1 This is the domain of definition of spherical zero-mean, linkages. One now can praye the' 

foll~wing: 

" '",- ~-J '. 
Theorem 2.3: Zero-mean spherièallinkages are of the crank-rocker type when they corre-

spond to points inside the inner square of the region of definition and of the drélg-link type , 
when they correspond to points located elsewhere within the said region. 
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1 

Proof: The c[ ndit~ns under ~ the spherical li~~kage has a fully rotatable output link 

were derived in Section 2.1 and are given in inequalities (2.26a&b). Upon substitution of 
1 

the zero-mea co~~ition. ~e obtain: 

"(2.58b) 

(2.59) 

Therefore. the hnkages associated wi~ points located in the peripheral sections 
, . 

of the mobility region are of the drag-link type and the ones cprresponding to points inside 

the inner square are of the crank-rocker type. The proof is then completed. 
1 .. ~ ~ 

Moreover. one h~s the following' , . 

"' 

Theorem 2.4: Z ero-mean sphericallinkages that are of the crank-rocker type have a time }-

ratio of one. 

Proof: Consider now the two extreme configurations 'of the spherical linkage shown III 

Fig. 2.21. In this case. the angle ~'lII. defined in eq.(2.48). can 'be expressed as: 
, , 

(2.90a ) 

where ttJl and t/J2 .are constrained as follows: . " 

(2.60b) 

Using the law of cosines for spherical triangles. one can also write: 

J2.61a) 
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Figure 2.20 Domain Or defmition of sphenc;al zero-mea-n' linkages 

and 

(2.61b) 

If we now introduce the ~zero-mean condition. i.e., if ~e substltute cos 114 by r. where r-IS 

,defined as 

thë following is derived: 

cos Ql cos Q2 
r = -~=----= 

cosa3 

cos 'Pl :::: cos ""2 = cot Ql tan a3 
.# 

(2.62a) 

(2,62b) 
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",-

which. similarly .to the planar case. leads to At/J = "''ô''~nd therefore Tn = 1. thereby 

completing the proof. 
::-'1::_ 

1 
1 
1 

, 

1 
\ 

a2 + aj- f" 
1 -~ ... 

a4 
-1 

(a) 

o 

(b) 
1 . 

Figure 2.21 Limit positions of a spherical four-bar linkage of the crank-rocker type 

The fact that zercrmean crank-rocker linkages have a time ratio of"unîty disables 

them trom being candidates for quick-return mechanisms, Hence, the optimization of quick-
--

return mechanisms should be 'tackled with an alternate approach. whicp is done in the 

follôwing Section. 
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%.2.3 Optimization of Quick-Return Mechanisms as Minimum-Defect Linkages 

Quick-return mechanisms. as definecf in Section 2.2.2. will now be designed 

• using the concept of mÎnimum-defect linkages. The problem then consists of minimizing . . - \ ' 

the ,quadratic form of eq.(2.36) subjected to constraints on the time ratio and output sWing 

angle of the linkage. 

2.2.3.1 Planar Linkages 

ri 

This is based on the approach introduced by Cleghorn and Fenton (1984). In or­

der to set up the constraint equations of the probJem at hand. ,the following transformations 

of the link lengths are introduced: 

and 

. -

:::.=.- ..::::... 

(2.63) 

(2.64a) 

(2.64b) 

The two extreme 'positions of the outppt link give ris~ to the geometric constructions of 

Fig. 2.18. Application of the cqsines law to these triangle~ gives the following constrair:tts 

(Cleghorn and Fenton 1984): 

, 0 

or. in vector form. 

gl = ri - 1 - d + 2q2 cos tP1 = 0 
2 2 . 

g2 = r 4 - 1 - q1 + 2ql cos tP2 = 0 

g3 = q? - 1 - ri + 2r 4 cos <1>1 = 0 

94 = ql- 1 - ri + 2r 4 COS <1>1. = 0 

95 = tP2 - tPl - At/J,= 0 

g6 = rP1 -' ·rP2 - ll.<I> = 0 , 

1=0 

(2.6SaT" 

(2.65b) 

(2.65c) 

(2.65d) 

(2.65e) 

(2.651) 

(2.65~J 
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. 

where gt den otes , the i-th component of the 6-dimensional vector g. the time raJio being 

defined as in equation (2.48). ~ 

• In"the foregomg discussion. 116 is the prescribed output s~ing angle. and 11,· 

IS as 7ined ln eq.(2 49a) Moreover. 1"1' l'2' 01 and 02 are defined in Fig. 2.18. 

{ The vector of deSign varrables x will therefore be defined as: 

(2.66 ) 

The obJett{ive functlon to "be mintmlzed 15 defined as the 1inkag'é defect. Le". as ::'. which 

can'be readily expressed as the following quadratic form: 

and 

='=~fTWf 
2 

w = [2 0] 
- 0 1 

(2.67(/) 

(2.67/1) 

(2.67 c) 

(2.67 d) 

The Jacobians of f and g with_~espect to x. F and G:, respec!ively. are then r:~dï derived 

as the following}. J 7 and 6 j' 7 matnces: -

~ where: 

l' ' F = r 111 f 12 f 13 0 0 0 0] 
L hl f 22 123 0 0 0 0 

111 =[-.\>"rt + 2] 1 (ql + q2) 

f12.=[-S,'(ql"'" q2) + Q2],'r4(ql + Q2) 

113 =[-S/(ql'+ q2) + l]lb'r4(qt + q2) 
2 • 

121 =(qt - q2)!r4 (qt + q2) 

122 =f(ql -=-,.92)/(Qt + q2) -'1}1r4(91- + q2) 

123 =[(qt - q2)!(ql + q2) + tJ/r4(qt + q2) 

1'1 =Ql'Q2 + rI - 1 

(2.680 ) 

(2.68b) 

(2.68c) 

(2.68rl) 

(2.68e) 

(2.68.1) 

(2.68g) 

(2.68h) 
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. and 

(2.69a) 

where 
4' ---\ 

2r4 0 - ~q2 + 2'<::05 'IL't 

2r4 -2ql + 2 cos 11'2 0 

- 2r4 + 2 cos ~1 0 2q2- " , 

- 2r4 + 2 cos (/)2 2ql 0 

0 0- 0 

(2.69b) 

Î 
0 0 0 

and 
-2q2 Sin u'1 0 0 0 

0 -2ql sin th 0 0 
0 0 - 2r 4 sm (/)1 0 
0 0 0 - 2r 4 .sin <P2 
-1 1 0 o 0 

.. 0 0 1 -1 

which completes the formulation of the problem. This problem was solved numerically 
, . 

using the orthogonal-decomposition method (Angeles et al. 1987)~, This method is meant 

to minimize an objective function which is an m-dlmensional quadratic form of n variables 

subjected to p nonlinear equality constraL~ts, ln thls case. we have m = 2 wlth n =' 7 

variables subJected to p = 6 constraints. 

Twô examp'ies of application of this method are presented here. They are 

taken from (Gupta 1977) for pur poses of comparison, The results obtained usmg the 

: aforementioned procedure are glven in Table 2.1 and they are in. full agreement with the 

<\; 

results reported in that r~ference. 

Several tests performed with thls formulatlôA of thd problem for the design of 

plaflar linkages show that the procedure usually' converge~ within 1S iterations , 

2.2.3.2, Sphe~ical Linkages 

The formulation of this problem is similar to the one used in the planar case. 
_ .. -- .. 

Ttîe constramts are established using tre extrem/e positions. which are shown in Fig. 2.21. 
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1 
--

Optimum Case1 
, 

Case2 

1 

, 

parameters b.4> = 40° b.t/J = -200 ! b.cb = 64° At,'· = 28~' 

al 1 1.342 1.041 --1 

a2 1 0.323 0.494 
~- -~---- - - .. ------- ..... -

" , 
0.729 0.936 Q3 , 

~-~-_.-------_., ------- -_._---- - ._- -- - ----~-~ 

a4 1.000 1.000 --- " ----- ~-- ----
1 

-0.2564 0.2929 Cl 
-. ----

c2 ' , 0.5946 1 0.5494 , ___ ~ ___ ~ ______ ... _r;_- __ 
-' 0.2425 0.2367 - , 

Table 2.1 Optimum planar four-bar linkil~cs 

The cosmes law for sphencal triangles IS applied on these two configurations. Moreover. 

since the link dimensions are now angles. the deSign variables will be chosen as the stn€::. 

and the cosines of these. rather than as the angles themselves. -This will simplify the for­

mulation and will enhance thè numerrcal stability of the problem. blt will require additlonal 

constraints. The global set of constrarnts will then be' 

\ 

91 = U4 - Ud u\U3 - v2 l '3) - vdu2v3 '+ t'2 U 3) cos 1j Jl = 0 
\ 

92 = U4 - Ut (U2~+ v2t'3) - Vl (u2 t13 - l'2 u3) cos 1,'2 = 0 

• 93 = u2u3-~ v2 v3 JI u4 - v1 v4 cos !Pl = 0 
\ 

~4 =u2 uJ + "2 VJ'-\~U4 - VIV4 cos 1P2 ,= 0 

95 =11J1 - 1,)2 - Lkt 0 ~~ 
g6 = !Pl - Q)2 ~ 6.0/= 0 

~. 1 

g7 = u~ + vi - 1 ± 0 
1 

9S = u~ + v~ - r = 0 ~ 

g9 = u~ + v~ -;/~ = 0 
-... :-

1 

g10 = uj + v}L 1 = 0 

wher~ 
pl 
/-

t't = sin a:; .,-:::--1.: ..• 4 

t .. ~ .~If..' 
,- , 

" 

(2.700 ) 

(2.70h) 

(2}O(') 

(2.70tl) 

(2.70t;) 

(2.701 ) 

rf.70!/ J 

V(2.70h) 

(2.70l) 

(2.70j) 

(2.70k) 
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or, in vector form. 

g=O (2.701) 

where gi i5 t~e ith component of the 10-dimensionaJ vector g. The output swing angle is 

~iven by /::"r/J and /::,."p is related ,to the time ratio_~y eq.(2.48). Angles tPl' "p2. <1>1 and fb2 
, 

are defined in Fig. 2.21. 

The objective- function to be mmimized will be the transmission defect. However. 

tests run with the program implementing the orthogonal-decomposition algorithm shQwed 

that the procedure is very strongly attracted by the degenerate case for 'which nI J_ a2 = 

a3 = Q4 = O. One can easily verify thaC in this case. ail the constraints are satisfied-... 
providing th - 'l/J2 = AtP and <Pl - <1>2 == Ati>-and that the objective function gues to 

• W 
zero. T 0 overcome this problem. we augment the objective function w;th the square~, of the 

. . 
cosines of the link angles. This will force the angles of the mechanism to be as close as 

possible to 90°., which will lead to dimensionally we!l-balanced mechanisms ihe objective 

function then becomes: 

(2.71 ) 

where 

.,;:\ (2.72a) 
-

Matrix W allow~ one to !~troduce sorne weights in the quadratic form. For example. If one 

assigns less importance to the dimensional balance of the mechanism-and gets closer to 

the original problem-. then W can be defined as 

W == diag[l, 1, w, w, w, w] (2.72b) '_ 

where w is a positive quantity smaller than 1. 

Notice that. i':1 ~~is cas,e. the vect~r of 'design variables will be defined as: 

x = 1 Ut, vç.)~, v2, U3, V3, u4, V4, "pt, tP2' <1>1" 4>21 T (2.73) 
~.'-. ... 

Therefore. the, Jacobians of f and g with respect to x. denoted by F and G. respectively. 
r ~lJ~ T. 1 

are written as the following 6 x 12- and 10 x 12 matrices: li' 

(2.7.4a) 
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where 

J2Qu2 
v3 v4 

0 

FI = 1 
0 -
0 
0 

.. 
0 /2Q«1 0 

l'3 v4 
~ 0 QVI 
lI3 L4 V3 V 4 

0 0 0 
0 1 0 
0 0 0 
0 0 0 

~-

v 2Q( tL3 u4 - Ut Il')) 

t'~t'4 
-Qvl u2 

U4V~ 
o 
o 
o 
o 

_1--" +' ~~':~21) 
-~-4Qt'3 1'4 1 

o 
o 
o 
o 
1 

-

-~'E2_ 
4Qt'3t'4 

o 
o 
1 
o 

~J<..]( 1:J.
ll4i_'!J ~) 

13 14 
- Ql't !i2 

2 
t3 t 4 
o 
o 
o 
o 

ln which 06:.<4 denotes the 6 , 4 ~ero matrl~. and Q IS defmed as 

1 -- U3 
Q = \ --2-

wlth 

where 

(v2 v3 - u2 u3) -(u2 v3 + v2 u 3) cos l1.Il -(ull1) + t'l"'3cOS '/JI].} 
-(u2 u 3 + v2 v3) (v2 u 3 - U2 v3) cos 'lJJ2 ( u 1 113 + IJ 1 v 3 cos ltJ2) 

-u4 -v4 cos 4>1 u3 
-u4 - tJ4 cos t1>2 U -1 

J 

Gl = 
0 0 0 
0 0 0 

2ul 2Vl 0 
0 0 - 2u2 
0 0 0 
0 0 0 

\' 

(2.7411) 

1 

(2.74(') 

(2.74d) 

(2.741') 

(2.750) 

.-
(2.75b) 
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(u t v3 - Vt U 3 cos Wl) -(ulu2 + Vl v 2 COS tPl) (.ul v2 - Vt u2 cos Wt) 

(-!LI u2 +'~1 v2 cos tP~) (-UI v3 + Vt u3 cos th) 
-113 

v3 
0 
0 
0 

21'2 

0 
0 

) 0 
1 0 

-u1 -VI cos <D1 

"- -u1 -v1 cos 92 

G3 = 
0 0 
0 0 

0 0 
0 0 
0 0 

2u4 2v4 

'" 0 

Pl (u2 v3 - t'2 U3) Sin V2 
o 
o 
-1 
o 
o 
o 
o 
o 

-(Ut v2 + vI u2 cos W2) 
u2 

u2 

0 
0 
0 

0 

2u3 
0 

1'1 (u2 v3 + t'2 U3) Sin 'lJJl 

o 

0 
0 

o 
o 
1 
o 
" o 
o 
o 
o 

1"1 v4 Sin <Dl 

0 
0 
0 

-1'2 

v2 
(} 

0 

0 
Or 

21'] 
0 

0 f't t'4 Sin 02 

0 0 
1 -1 
0 0 
0 0 
0 0 
0 0 

(2.75G) 

(2.75d) 

, ~,(2.75e) 

/ which completes the formulation of this problem. Notice that. In this case. we have n = 
~ 

12 variables subJected-to p = 10 constrarnts and that we are aiming at minimizlng a 

perfurmance in'dex for whiclT m = 6, 
o • 

Toree examples are presented for this case. the results ippearing'm Table 2.2 . 

. Notice that in the !irst two examples given ior tris problem. \:ve speetfie(.~he same_ time 
\ 

" ~ 

ratio and output swing angle. However. in the second one. we have used sorne weights to 

give less impo.rtance to the terms cos2 ~ in the objective function. T~e' optimum linkage 
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Optimum 
! 1 , 

parameters Casel , Case2 1 Case3 
1 

6q; 1 700 70° 1 90G 
, 

~tJ' 20c 20° 30~' - ----- ----------
Welghts 1. 0.1 0.1 

----------- - --- ----
oddeg) 104.1 97.6 80.2 -----------
°2(deg) , 33.i 34.3 152.4 

-,----

(}3(deg) 1 83.4 56.0 46.9 . __ . 
0:4 (deg) 1 88.7 89.8 88.7 

cl -0.13749 -0.06312 -0.09061 

C2 0.36078 ! 0.31653 1 0.24891 

::' 1 0.08399 : 0.05408 0.03919 

Table 2.2 Optimum spherical four-bar linkages 

obtained. then. has a oetter transmission quality. but is dimenslonally less balanced. 

'" ln the case of spherical linkages. convergence usually ocèurs wlthm abou.t 25 

Iterations. 

2.3 Branch Identification for Regional Structures of Open-Loop 

Manipulators 
.\ 

This section concerns open-Ioop simple kinematlc chains. I.e .. senal manipu­

lators. The problem addressed here is known as branch identiFIcation This arises 'from 

the solution of the inverse kmematic problem for seriai mantpulators which mây lead to 

many branches. However. when the robot is required ID produce a certain trajectory ln the 

Cartesian space. it is necessary. when obtaining the correspond mg joint coordinates. that 

each of t.1 points of the traJe_ctory-in the joint space-belong to the sa me branch. It will 
o 

be 'realized. in Chapter 4. that the branch identification problem for parallel manipulators 

can be solved as â series of such problems for seriaJ rhanipulators This is the ration ale 

behind the discussion presented in this paragl.Jph. 
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It has been shown in (Pnmrose 1986: Lee and Liang 1988) that the solution of 

the inverse kinematic problem for an arbitrary 6-axis seri~1 manipulator can produce up to 
~ 

16 different solutions. i.e .. 16 branches. Sandor' et al.(1986à) have developed inequalities 

that allow tQ identify the different branches . 
.. 

An alternate method is denved here. based uniquely on the Jacobian matrix. 

The idea is to obta," a method to identify the branches by performmg certain tests or 

computations ,\n ~ Jacobian matrix. There should exist frame invariant pr~perties of thls 

matrix that wo~from one branch to another and which we could exploit. Sorne 

properties of a matrix that naturally arise are. its determinant and its eigenvalues. These 

quantities are obviously frame independent since the determinant repres~nts the local ratio 

of vol~me of the mapping defined by the matrix and the eigenvalues remain unchanged 

under similarity transformations. The problem is now reduced to reglonaJ structures of 

manipuJators . i.e .. three-degree-of-freedom kinematic structures used to position a point 
J 

in space. This type of structure has a particular reJevance for it is possible to treat wrist-
j 

partitioned manipuJators as a reglonal structure plus a wnst that is used to orient the 

end-effector. The branching probJem associated with the wrist is straightforward since the 

sine of the second angle of the wrist bears a different slgn in eac~branch. 

in fact: the transmission angle of the equivalent spherical four-bar linkage. 

This angle is. 
\ 

"-
? 

The branching problem of the regional structure. which in general may have­

up to four branches. is now solved using the properties of the Jacobian matrix mentioned 

above. Four cases may arise . 

. 
(i) the eigenvalues are ail real and the determinant is positive 

(ii) the eigenvalues are ail real and the determinant is negative 

(iii) only one of the eigenvalues is real and the determinant is positive 
'. 

> ( 
" / 

.·(00 only one of the eigenvalues is real and the c:f~terminant is' negative 
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2, SIMPLE KINEMATIC CHAINS 

An example of application of this method to a 3R r~gional structuré taken from 

(Rastegar ~nd Deriwi 1987) is shown in Table 2.3. Unfortunately. the extension of this 

concept to a general 6-axis manipulator is not trivial. 

\ 

<, 

Solution # \1 
! 2 3 4 

0.2~2.93.J 
, 

Eigenvalues ' 0.03 + 0.74.1 --2.31 . -0.68 
-------

0.20 -- 2.93.1 , 0.03 - 0.74) 3.72 0.81 - ...... _-------~ - - --
0.87 -0.87 0.87 '- 0.87 

-----~~~---- -~-

Determinant 7A5 -0.48 - 7.45 1 0.48 

Table 2.3 Branch identification for a 3R rcgional strllcture wlth III = 3, "2 =: 2, 
<13 = 1 hl = h2 = 03 ::;; 0 Q 1 ::;; 0 and 02 =: Tr /2 for the conhAuratiCiflS obtalllCd 
when l =: 4 Y =: 1 ilnd :: = 1 2 

C> ___ _ 

> 

"-

\. . ' 

51 



.. 

c 

1 

. ,,"' 

-' 

Chapter 3 ANALYSIS OF COMPLEX KIN~MATIC CHAINS 

", 

The subject of this thesis being the study of parallel manipulators. it i5 neçessary 

ta derive som~ results concerning the general class of linkages to whlch these mampulators 

berong. i.e .. complex kmematic chams. It is recalled that these chains are defined as those 

contai~mg ~t least one link havthg a degree of connectivity greater than or .equal to three. 

However. if the only link of the cham havmg a degree of connectivity greater than or equal to 

three is the fixed link. then the cham can be treated as a set of uncoupled ~_Imple kmematlc 
, ' 

chains. Le, .. it can be broken down into a number of cases similar to ,the ones that were 

studied in Chapter 2. 

The possibillty of apphcations of complex kinematic chal~s are numerous. Ex­

amples can be found even in thé ear/y work on machinery. Watt' s and Stephenson' s .IInk­

ages. for instance. clearly constitute 'planar 6-link complex kinematic chains (Hunt 1978). 
, . 

1 

MoreArecently. with the advances in computer-aidéd synthesis of linkages. researchers hav~ 
-, Q 

started ta consider the use of complex kinematic chains.as hard automation modules which 
A 

are designed to perform a precise repetitive task. The Inherent rigidity of complex kine-

matie èhains i5 one of the important motivations pehlOd these. because it leads to high~r 
,è; 

accuracy and load-carrying capacity. Some of the designs even include a certain flexibih~y. ,. 
i.e.. provision to perform alternate tasks by a simple change-which can be done within 

minutes or even secorrds-in their linkage parameters: for instance. changint the distance , -~ . 
or angle between two jointsr-of the fixed link. Examples of the results obtained wlth this 

approach are found in (Sandor et al. 1984. 1985: 1986a. 1986b. Wang et al. 1987) 

\ 
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3: ANAlYSIS OF COMPlEX KINEMATIC CHAINS 

ln this chapter. three aspects of' the al1a1ysis of complex kinematic chains will 
1 

be treated: the graph representation of their topology. the determination "'of their degree 

of freedom based on topology and geometry and their singularity analysis. A distinction 

has to be made 'here between the topology and the geometry of a kinëmatic chain. the 

former being the description of the chain through the type of kmematic pairs and the rigid 

bodies constituting the chain together with their r.elative connèctivities. whereas the latter 

defines more precisely the li,nkage by giving its physical relative dimensions. in th~ form 

r of its Hartenberg-Denavit parameters (Hartenberg and Denavit 1964) for instance. The 

final section of the chapter will be devoted to the introduction of parallel manipulators as 
. 

a special case of complex kinematic chains. 

3.1 Graph Representation of Complex Kinematic Chains 

~. 

A kinematic chain can be described as a set of rigid bodies attached to 'each 

other by kinematic pairs. resulting in a mechanical "network containing joints and links. 

Moreover. when at least on'e of the links but the fixed one has a degree of connectivity 

greater than or equal to three~. the chain is said to be complex. The network defined by 

thé chain is topologically analog to electrical !1etworks made up of nodes and Impedances 

(Davies liai). Hence. graph theory offers a syst~matic way of representing the topology 

of complex kinematic chains. This is now shown and the results obtained here concerning 

the topology will be used in the next section for the derivation of a method allowing one 

to-find the degree of freedom of any complex-kinematic·chain . .. Q 

'l' 

- For the sake of consistency. and to render the presentation more systematic. we 
1 . ' 

wil!lefine a joint as a kinematic pair coupling ~wo tigid bodies and allowing no more than . 

three degrees of freedom. Cylindrical (C). planar (E). screw (H). spherical (5). revolute (R) , 

and prismatic (P) pairs are examples of joints. Once this is c1ear. we can write the graph 

associated ~th the kinematic chain. in which a point of the graph corresponds to a rigid 

body and an edge to a joint. A few definit;ons pertaining to graph theory (Harary 1969) 

are now recalled. 
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS .. 
l' 

Definition 3.1 A graph G consists of a finite nonempty set' V = V (C) of p points together 

with a pres_cribed "set X of q unordered pairs of distinct points of V. Each pair 

x = {u, v} of poi~ts in X is a fine or edge of C. and ?C is said to join u and v. 

We say that u and t'are adjacent points of the graph. 

Definition 3.2 A subgraph of. G IS a glraph having ail its points and fines in G. 

Definition 3.3 A spanning subgraph of G is a subgraph containing ail the points of G. 

, 

Definition 3.4 A walk on a graph is an alternating sequence of points and edg~ beginning 

and ending with points. in which each edge is incident with the two p~ints' 

immediately preceding and following it. 

Definition 3.5 A pa th is a walk with ail its points (and thus _~ecessarily ail its lin es ) distinct. 

, . 

Definition 3.6 A graph is saia to be connected if every pair. of points are joined bi,' a path. 

Definition 3.7 A cycle or loap IS defined as a path beginning and ending at the same point and 

including ât lfas t three points. 

-. 
Definition 3.8 A tree is a connected graph which ..nas no cycles. 

,~ 

As shown in (Davies 1981),' only connected graphs in which every edge belongs 

to at least one cycle are needed. since the other cases represent trivial additions to the 
-

problem addressed here. They correspond to complex kinematic chains to which an uncou-

pied independent simple kinematlc chain is added. An important issue to be covered now IS 

the determination of the number of independent loops in é! kinematie chain. This quantity 

is of great importance sinee it allows us to find a basis having a minimum cardinality for 
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3 ANALVSIS OF COMPLEX KIN'EMATIC CHAINS 

the kinematlc constraints of the chain. the c~!~inality of a set 'being defined as the number 

ofl:'el~ments that It contains. We can .determine- the number of independent loops in the' 

kinematlc chain by"counting the number of independent cycles in the associated graph. The 
~ 

nu~ber ,of independent cycles in a connected graph is given by Euler's formula for graphs 

(Harary 1969). namely: 

k=c--l'+l 13.1 ) 

where e is the numbèr of edges and t' is the number of points (vertlces). Notice that this 

equation has already been used in the context of ktnematic chains. namely in (Davies 1981: 
, ' 

Sheth and Uicker 19i2: 'Kleinfinger and Khalil 1986). 

The next step is now to identi.fy a set of rndependent loops, 1 e .. a cycle basis 

of the graph. This can be done systematlcally by findrng a spanning, tree of the graph 
" 

and_ then using the chords to complete the fundamental indepèndent cycles. The following 
. 

definition is needed: 

- . 
Definition' 3.9 A SiJàôriirrg tree of a connected graph is a connected subgraph in wilich ail the , 

points, are present but ln which there are, no cycles. The omitted edges are 
-~ -

cal/ed 'ilhords and eac,h of the chords, added to the tree completes a fundamentill 

mdependent cycle otthe original graph 
ii 
J 

The topological analysis of complex ktnematlc chains IS therefore completed 

since we have obtained. from ItS associated graph. the number of inciependent loops and a . 
basis for these loops. It IS to be n0ted that this basis '1eed not be unique and th.at the use 

~ 

of any of the bases ln setting up the ktnematlc constraint equations will le ad to equivalent 

systems of equations 

As an example~ Watt's linkage i~-shbwn in Fig. 3.1 toget~r with its associated 

graph. A spanning tree and -the corresponding chords. which âllow us to identify a set 

of inde pen dent 

1 
j 

--
loops. are also included. It is recalled that the graph associated with a . ' 
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3 ANALYSIS/0F COMPLEX KINEMATIC CHAIN$' 

f) 

c E 

8 F 

(b) 

Figure 3.1 (a)Watt's linkage (t,)assodated graph (c)a spannÎllg tree (d)the corre­
sponding chords and.( e)the associated set of indeperident loops 

kinematic chain. although very useful m~the topolQgical analysis. does not contain any 

information on its geometry, 

, -
One more impopant concept. iri the context of graph representation of kiriematlc 

chains, is now defined. 

Definition 3.10 The non-pôwered subchain of a kinematic chain is the subchain obtained when 

C ali the actuated joints are locked. i.e .. when ail the adjacent bodies connected: 
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3. ANAlYSIS OF COMPlEX KINEMATIC CHAINS 

.- by actuated joints -are rigidly coupled. When the linkage is in a non-singular 

configuration. the non-powered subchain has a degree of .freedom of zero. 

This concept can be iIIustrated by the following example: A two-degree-of-. 
- . 

freedom planar complex kinematic chain, is shown in Fig. 3.2a. The non-powered subchain 

shown in Fig. 3.2b is the one obtained when the actuated joints are the ones whose rotation 

angles are given by 9 and t/J; .:rhe correspondin~aph is shown in Fig. 3.2c. It is pointed 

out that. in this case. no c1osed-f~rm solution for the output angle 4> can be writte.n in 

terms of the input angles. However. when the actuators are located on the joints whose _ 

rotation angle is denoted by 0 and tP. t.he non-powered subchain becomes the one shown 

in Fig. 3.2d'''Iwith the associated graph of Fig, 3.2e. In this case. we can obtain a cJosed­

form solution for the output angle t/J in terms of the input angles () and 4>. This is due 
p - ._.-

to the fac~ that the fixed link of th~ non-powered subchain and the ternary floating rigid 

body are directly connected to each other by a kinematic pair. which generates the short 

path be,tween the end nodes of the associated graph. tndeed. it can be readily seen. from­

Fig. 3.?a. that. given angles 0 and' tP. the position of point F can pe computed using the 

input-output equation of the planar four-bar linkage. The position of points F and fI being 

known. it is then straightforward to compute the position of point Gand· to determine 

. angle tf; by making use of the four-bar linkage equ~tion again. 

3.2 Degree of Freedom of Coruplex Kinematic Chains 

. The determination of the degree of freedom (dof) of kinematÎc chains has at­

tracted ,the attention of researchers for many years. The weil known generalized Chebychev-
• 1 -

Grübler-Kutzbach formulae. which rely only_on the topology of the chains. can be used to 

find the dol of many simple and complex kinematic chai.os . .f~n expression for this crfterion, 
-... ""'). .... - ~ 

referred to as "the\:ieneral mobiliiy criterion (Hunt 1978). 'éan be written as: - , 

9 1 

1 = 6( n - g' - 1) + L /1 (3.2) 
1=1 
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3 ANAL YSIS OF COMPlEX 'KINEM~'IC CHAINS 

D 

A 

(a) 
G 

A G' 

(b) 

D 

B 

-"{ C) (d) G (e) 

.. 
Figure 3.2 (a)Example of a 2 dof planar complE:x kinematic chain (b)non-powered 

subchaln obtained when the actuatêd joint angles are e and t/J (c)corresponding­
graph Id)non-powered subchain obtained when the actuated joint angles are e and 
.:p and (e)corresponding graph, 

, . , 

1 

\ 

, i 
! 

where 1 i$ the "tota.' ~urnb~ of degr~es of freedo~the kinem.atlc c~_ai?,: n is the numbe"r 

of rigid bodie's in the chain. 9 is the nurnber of joints. and ft is the mlnber of degrees of , 

freedorn allowed by the itQjomt. 

However. this type of formulae are known to fail in cases such' as the paradoxical 

kinematic chains (Hervé 1978). :fhese exceptions aris~ w,-h~n sorne special geofT'etries are 
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS 
~-

present. as in the case of Bennett's (Bennett 1903) and Goldberg's mechanisms (Goldberg 

1943). which are probably the best known examples. This suggests that general methods 

fOL the determÎnatlon of the dof of kinematlc chains should take into account their geometry 

as {weil as. their topology (Eddie Baker 1980b. 1981: Davies 1981: Angeles 1987). The 

problen:' of fmdlng the dof of complex kinematlc chams. I.e .. chains wlth multiple cl05ed­

loops. has also been 'addressed ln thls context (Eddie Baker 1980b, 1981. Davies 1981J 

• Using the results obtamed on the .topologlcal descriptlon of complex kmemlltlc 

cham~. we will now denve a general method allowing us to detcrmme the degree of freedom 

of any complex kmematic chain. It IS assumed here that the graph associated Wlth the 

complex kinematic cham has becn obtained and that the independent"ioops have been 

identified. according to the procedure presented m Section 3.1. 

The method devcloped here 15 an extension to complex klnematic chams. of the 

method described in (Angeles 1987). for simple closed kinematic c~~ins. This method is 
, 

based on the Jacoblan matrix of the kinematic chain. a concept that is weil known in the 

conte.xt of robot manipulators (Renaud"-1980)., and that was applied to closed kinematic 

chams in (Angeles 1987). It is interesting to notice that the idea of using t~e Jilcobian 

matrix to fmd the degree-of-freedpm of kmen'tatlc chains was flrst suggested m (Freudcn­

stein 1962) The method developed m (Angeles 198~) ~il.1 be recalled bdefly here. for qUlçk 

referènce. It will then be formally extended to multiple closed-Ioop kmematlc chams. An 

example of a Imkage and two examples of parall~1 manipulators will be stuqied. T.hese ex­

amples will bnng about another Interesting feature of the method. i e:. its ability to describe 

the singularitles of multiple closed-Ioop manipulators 

3.2.1 Degree of Freedom of Simple Kinematic C-hains 

• • 1 

The met ho a presente~ in (Angel~s 1987) for the determmation of the detree of 

freedom of simple kinematic chains can be summarized as follows: 
, 

Let a simple open kin"emati'c chain be buil~ 'with rotational' (R) or prismJtic (P) 
1 

, , 
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS 

" 
pairs. As a matter of fact. screw (H). éylindrical (C). planar ,(E). and spherical (5) pairs can 

be synthesized as combinations of Rand P pairs. Moreover. let this chain be constituted 

of (n+1) rigid bodies. The aXIs QI ~~e zth joint is defined by a point 0t on this axis and a 

unît vector el along this aXIs (Hartenberg and Denavit 1964). The motion of the (1 + 1)st 
(1' 

rigid body with respect to the zth one IS then defined by the rotation angle 0; about thls 

axis If the /th Jomt IS rotatlOnal. or by the displacement .51 along this aXIs If the lth JOint 

IS prrsmatic. 

ln particular. the motion of the (11 + 1)st rigld body. ca lied the end-effector. 

is described by the position vector r of one of its points P and by the orthogonal tensor 

Q giving Its orientation. Velocltles are then glven by rand ",'. the angular veloclty of the 

end-effector. If we denote by ÎJ the n-dlmens/Onal vector of joint ra..tes and t = [i.<...T.iT)T 

as the 6-dimensional twist vector. then we can wnte' 

JO = t (3.3) 

where J = J (e). the Jacobian matrix. IS a function of the configuration of the cham Marnx 

J is then defined as: 

J = [, el e2 en ' 1 (3.4) 
el y r1- e2 x r2 en '>r, rn , 

where rz is the position vector of point P with respect to °1 , If the ith joint IS prrsmatlc. 

then the ith column ~of J is changèd to: Cl = [OT. e;JT. ~here 0 IS the 3-dlmen~lonal zero 

vector. 

For simple c10sed kinematic chams. the end effector 15 coupled to the first link 
, - , 

w~h a rotational or prismatic pair or a combination of these. The twist of the last link can 

then be written as: . 

t' = --.81'1+1 Cn+1 ,(3.5 ) 

where Cn+1 is define~ similarly to Cl The vector of joint rates ê c,an then be redefine(j as 

an (n +.1)-dimensional ve~tor having Ôn+1 as its last component. The Jacobian matrix is 
f / "-

corJespondingly redefined as an augmented 6 ). (n._+ 1) matrrx whose I~st column is cn+'1-

Equation (3.3) becomes: .. 

'. 
JO = 0 \ 

l' 
(3.6) 
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3 ANALVSIS OF eOMPLEX KINEMATIC CHAIN 
-

The degree of freedom (1) d the chain is theri ~qU;1 to the dimension of the n~lIspace bf 
J. i.e.: 1 

L= dimlJ/(J)], 

where N IS the nullspace of J. The problem of finding the degree of freedom of a sim/pie 

closed kinematic chain is then reduced to the determination of the d;mension of the nullspace 

of a 6 x (n + 1) matrix. which is a common problem of num;rical analysis. There aré many 

ways of solv'mg this problem. For instance. one can apply a Householder reflectioo techrlj\que 
, 1 

to reduce the Jacoblan mat ri x to a slmpler form (Golub and Van Loan 1983). i.e .. 

Hr ... H1J~ [~l '(3.8) 

where T IS an r x 6 m~trix and 0 an (n - r + 1) x 6 zero matrix. Moreover. T is of th~ 
T = [S, U] where S IS an upper-triangular r x r matrix and U)s an arbitrary r y (6 - r) 

matrix. r being the rank of J. 

The method described abov~ l'las been successfully used in (Angeles 1987) for 

the determination of the dégree of freedom of the Bennett mechanism which is a paradigm 

of mechanisms elusive to Chebychev-Grübler-Kutzbach formulae. 

" 3.2.2 Extension to Complex Kinematic Chains 
~ 

The extension. of the method to complex kinematic chains IS based essentially 

on the topological analysis of Section 3.1'. "ndeed. when aiL the independent loops of a 

complex' kinematic chain have be:n fou~. the procedure described abo~e is applied to each 

.of these loops. which leads to: 

'" J l iJ = 0, i = 1, ... ,k (3.9) . 

~here k is recal/ed to be the number of independent loops and vec!or il includes àll the 

joint rates of the wh~le chain. Joints which are not included in the ith loop' will lead to a 

4correspondinl? 0 column i~ the subjacobian matrix J l • It is also important. for cOAsistency, 

to make sure that the positive direction of rotation around the axis (Hartenberg and Denavit 
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3 ANAt YSIS OF COMPLEX KINEMATIC CHAINS 

2 6 

l 5 

Figure 3.3 Special case of Watt's linkage alllihk lengths'are equal . 
1964) of the-tth joint be the same for each of the loops. 1 e .. that the deflnltl,on of the JOint 

ratesjs the sa me on 'each of the loops. The Jacobian matrlx of the whole chain J can now 
'VI, .~ 

~ 

I::)e assembled as: 

, [Ji] 
J - ' (3.10) 

. - J:
k 

_ " 

and hence. tJ1e kinèmatlc JOint-rate constraints of the overall chain can be written as 
; , L '" il 

JO = 0 (3.11) 

and hence 

1 = dim(N(J)) (3.12) 

I.e .. the do~ / of the complex kinematic ch~in 15 equal to the nullity of J. ThIs method will 

now be applied to the analysis of three different corilplex kinematlc chams. 

3.2.3 Examples 

) 

Application to W~tt's linkage 

, 

o 
,~ 

This linkage vias d~scribed in Sec~ion: 3.1 -and a set of. independent loops .was 

iQentifi~d in Fig. 3.1. Th~ dimen~io'ns of th~ li,nkage considered here are shown in Fig,. 3.3. 
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3. ANALYSIS OF <:OMPLEX KINEMATIC,CHAINS' 

Since the topological analysis is already completed. we can directly apply the 
t ,) 

Jacobian method. The subjacobians will be 3 x 7 matrices for we have seven Joints and the 

klnematlc chain 15 planar. This is 50 because the angular velocity constramt leads to ollly 
\ 

one equatlon ln a planar system. and the linear velocltles are two-dlmensional vectors As 

a matter of fact. If we use camplex n'umbers to denote the vectors ln the plane. we have 

( 3.13) 

. 
where e = lo.a.lf IS a Unit vector orthogonal"to the plane and e IS the basls of tlle natur<.ll 

logarithms Therefor~. if we denote the Joints as in Fig 3.3. we denve: 

Ji = [ 0\ 
1 1 1 a a a l 

el;; 2t2 e.J l'ô 2r3 rJ ;; 2 t 4 O2 O2 02 J 
(3.140) 

for the' flrst loop and 

J 2 = [0
0

2 

0 .0 1 1 1 
el .:2'7] °2. 

O2 eJ1r / 2r' °2 
eJ 10 (2 r' , 4 6 

" 

for the second loop. where O2 derïotes the two-dimensionaJ zero vector. The first row of 

the foregoing matrices arises from the anglJ!ar velocity constraint-this is how the unit y . 
entries are obtamed-and rt and r: are the vectors connecting. the lth joint te. the 1st and 

5th one re'spectlvely These expressions can be re Nntten ln terms of angle 0 (Fig. 3.3) as: 

and 

Ji = [~ Sl~ 0 
o. cos fi 

[

0 0 0 1 1 
J2 = 0 0 0 -/3,'2 0 

o 0 0 1:2 a 

1 
(sin 0 -1- v:3 '2) 
(cosO -=-1 '2) 

1 
sm (27i /3 - 0) 

-<:05(211"/3 - 0) 

r. The matrices can now be ~ssemoled as: 

(3.150) 

(3.15h) 

\ . 
(3;16) . 

/ 

1 

where the global Jacobian matrix J 15 of 6,/. 7. Therefore. if J is of full rank, its nullity Îs of 

djmension ,1 and the mec~anism\, has a ~egree of freedom of 1. which. is hue in general. We 
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3 ANAtYSIS OF COMPLEX KINEMATIC CHAINS 

will now consider the link connectrng jOints 1 and 2 as the input hnk-the fixed hnk being 

the one connecting jOints 1.4 and 5-and try to find configurations m which the mechanism 

would acquire an extra freedom -To this' end. we will equ~te the jomt rate corfespondmg 
, 

to the input. i.e .. 01, to zero, _ This can be accom,:;lished by'dropping the first column of J. 

which leads to: . 
1 1 1 0 0 '" 

0 l (Sin () + \ :3 2) 
--

sm 0 \ 3 2 0 0 0 
.' cos 0 (cos 0 ~ 1 2) --1 '2 0 0 0 

J' = 0 0 1 1 1 1 
0 0 \"3.'2 0 sin (27r /3 - 0) Ism(2r.,3 - el -r \1'3,2] 
0 0 1'2 0 - cos (27r /3 - e) 11,2 - cos(2r. 3 - V)] 

( 3.17) 

The expansion of the determinant ~ of J' can then be reduced to: 
p-

a .= - sin D( ~ sm f} + \J~3 cos D) (3.18) 

and the zeroing of thls quantlty lead tà four solutions for D. namely . 
. - "-

'" 
< '0= -7r/3.0,2n-j3,7r 

"-, 
(3.19) 

, \' 

Each of these values of the input angl~ correspond, to a configuration in which the linkage 

i~stantaneously acqui~~s an extra degr~\~~,f freedom. i.e~. in which we car have a nonrer~, 
vector of joint rates even if the' joint rat~ of t~e input IS zero, r 

, ------:----/ 
3.2.3.2 Planar Three-DOF Parallel anipu)ato~ 

\ 
\ 

l , A thr~e-degree-of~freedom )plan r parallel ~a",pulator is shown in Fig, 3.4. 

The three motors A1~. M2 and A13 are Rx d and placed\on the vertlces of an e'quilateral 

triangle. Moreover. the ~orrespond,"g link 1 rigths on eac~ the legs are the same. i.e. 

the manipulator is symme\ric. This manipu ~tor will, be stuaied in detail in Chapters 4 

and 5. and the reader is referred to these ch pters for a more detailed description of its . 
characteristics. 

, . 
( 

.In or der to apply the method derived hefêt-o this manipulator. the' associated 
, 1 

graph has ~en drawn. This is shown in Fig. 3.Sa. A spanninli tree is show~ in \ Fi'g. 3.5b 
: , 

. \ 

and the associated independent loops are identlfied on Fig. 3.5e. \ 
\ 

\ , 
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3 

9 

'. 

5 

l ~-.·l 

l 

• fixed joint 

.0 
--:.-

Figure 3.4 Planar three-degree-of·freedom parallel m<:nipulator. 

, J 

... .J 
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Figure 3.5 (a)Graph associated with the manipul~!or shown in Fig, 3.4 (b)a 'p'o-
oing tree and {c)the corresponding independent loops. • 
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3, ANAlYSIS OF COMPLEX KINEMATIC CHAI,NS"" 

Since we have nine joints o/'d the kinematlC"chain is. ag~in. a planar chain. the 

subjacobians will be 3 x 9 matrices. If we use a notation identicaJ to the one presented , 
above, and if we denote the joints as indicated in Fig. 3.4. we derive: 

1 0 0 0 1 
1 

02 O2 '02,02 .1 
(3.20a) 

and 

(3.20b) 
~' 

-: where. agam. the first row of the subjacobian matrices anses from the angular velocity 

constraint and where r1 and r; are the two-dimensional vec~ors connecting th:e ith jomt to 

the 6th and 9th one. respectively . 

... .,. ... 

. 
.... r 

1 8 

5, 

Figure 3.6 Definition of angles 1,(11' 1:-'~ and 1P3 
• 

Moreover~ angles wl' 1;-'2 and 11)3 ar~ defined as shown in Fig. 3.6. which leads -1 
• 1 

~ 1 

l '.~ 

(3.21a) 

(3.21b) 
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3 ANALVSIS OF COMPLEX KINEMATIC CHAINS 

r = - [X - 1] + 1 [C~s Q'>1] 
3 Y 3 Sin chl 

r = - [X - 1] + l ' [C~s ~2] \ 
4 Y 3 Sin (/)2 

r = _ f- X - 11 + 1 [cos (J)21 _ 1 [COS(<i>2 + t"2') 1 
5 L y J 3 sin 02 J 2 sm (02 + l, '2) J 

cP1 = ch + 11" /6' 
1 

ch2 = <i> + 5;1r /6 
1 

\ d>.3 = (/J - '11 ,12 

~ 

" 

(3.21c) 

-", 

(3.21d) 

(3.21 t') 

~> 

. 
(3.22(1 ) 

(3.22b) 

( 3.22c) 

, (3.?~d) 

(3.22e) 

(3.23) 

angle 6 bemg th angle defining the orientation of the gripp~r and i and 11 being the 

coordinates of the, centroid of the grlpp~r Equatlon~ (3.20fL) and (3,20b) lead}o: 

\1 1 1 1 1 0 00 
-Y2 -Y3 -Y4 -Ys 0 0 0 0 

J = .7;.2 x3 x4 Xs 0 0 0, 0 
o '0 0 l' 1 : 1 1 1 1 

(3.24) 

o 0 0 -y~ -Ys -,v3,~ '-Y7 -Ys 0 
o 0 0 x' x' -1/2 x' x' 0 , 4 S 7'~ 

, "It.. , ' 

where Xl' Yt and x~. y: are t~e x and y components of vectors ft and < respectively. 

\ 1 

, Since J is a 6 / 9 matrix. its nullity will be 3 if J is of full ra,nk. I.e" the 
, ~.~ 

m~nipulator has. in general. three degrees of freedom. To analyze the singuJarities. we will 

- set the rates of the powered joints to zero and see under whlch conditions the nullity of the .. 
'reduced matrix can be greater than zero, It will become clear. In Section 3,3. that this type 

. .) \ " 
-" \ 
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3 AN-Al YSIS OF COMPLEX KINEMATIC CHAINS 

J 

ot" singularity correspOnds to a singularity of thé, second type. discussed ln ·that seation. i e .. 
, , 

a s'ingularity for which the Cartesian rates of the gripper can be nonzero while the motor 

rates are zero. The z~roing of thé motor rates can be -accompli~hed here. by dropping the 
. -

lst. 6th and 9th columns of J. which leads to: 

1 1 1 
-Y2 -Y3 -Y4 

:J' = x2 x3 X4 
::-lJ' 0 0 1 

o ~-, 0 -Y~ 
... ,0 a x' 4 

1 0 

-YS 0 

x5 0 
1 1 , 

y' -Ys - 7 . , 
x' Xs 7 

", 

0 
0 
0 
1 
y' - 8 

x' 8 

(3.25) 
f 

The foregoin~ Jacob,ian can be properly reduced by performing elementary "opera!ions on 

J/-withc;>ut affecting its rank-. whlch leads to: 

1 1 1 1 0 0 
~ 0 (Y2 - Y3) 

<::J 

. (Y2 - Y4) (Y2 - Y5) 0 0 

JI "" 0 (xl' - x3) (x2 - X4) (X2 - X5) ° ° (3.26) 
0 0 1 1 1 , 1 , .' . 
0 0' 0 (Y4 - Y~) (Y~ - Yt) (Y~ - Y~) 
0 0 0 (x~ - xs) o (x' _ 7) 4, 7 (x' x' ) ,4 - 8 

Substituting eqs.(3.21) and (3.22) in eq.(3.26) ànd expanding the detèrminant I:l will lead. 
. . 

after many simplification:;. to the following: 
, 

I:l == sin(27it3 + U'3 - '1.:2) [Sin li'l - sin(t)l - 27i, 3)] 
(3.27) .. 

+ sin (1;:)1 - u'2 -, 27i,'3) [sin(v3 + 27i, 3) - si~ ~'3] 

which is next further redtJced and set equal to zero as fol/ows: 

I:l == sin (ti11 + 1P2 + t/J3) + 4 sin 'wl sin ('2 sin w3 ~ a ,{3.28) 

\ 

,There are two J:onditlons under which this 'equatlon can be sâtisfied: 

" . 
1. If tPl == t1J2 == ~ == mf. n = 0,1,2, ... , then eq.(3.28) IS obvlously satlsfled. 

• 1 • 

This solution corresponds to conftgurations in which the secondary links of the . , 

three legs are concurrent These link~' are defined as the ones JOlnlng the drivmg 

links to the gripper. 

\ : . 
Il 1 
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3 ANALVSIS OF COMPLEX KINEMATIC CHAINS , 

" 
2. If 'fIJl - W2 =, -7r 13 and tP2 - lb3 = 27r.l 3 then. substitution of .these two equalities 

in eq.(3.28). 'Ieads to: 

s1n(31.l'd + 4 sin3 tPl - 3 sin tPt = 0 -(3.29) 

which is a tr,igonometric identity, This .s9lution corres~onds to the configura­

tions (or which the secondary links of the three legs are parJllel. 

These two cohditions "ar~ exactly the same as the on~~ -""âerived in '( Hunt 1983) 

using screw theory:Jhat i5" the planar three-do( p'arallel manipulator is singular whenever its 
\ -

three secondary links are éither concurrent or parallel. These results will also be confirmed 
\ 

in Chapter 4. where the s"ngularities o( the planar manipulator are analyzed following a 

different approach. 

3.2.3.3 1 Spherical Three- OF arallel Manipulator 

~II be stUd::~~e:::~ i :~:e~J;:.t"~e~:a;iP~::o:h~se:h::t::: ~;. ~; ::s ::~;.u:::~ 
. and placed on the vertices of af equi.lateral trianglé. Moreover. the manipulator is symmetric 
and ail joint axes are concurrept. Furthermore, we deno~ by Ul , Xl and wt the unit vectors 

along the axis of the ith moto! the ith joint attached to the gripper and the ith Inter media te f 

joint. respectlvely 
r , _il 

The graph associa ed with this manipulator is identical to the .one shown ln 

Fig. 3.5a, and therefore, the e are two independent loops. However, the linear velocity 
, -

, equations- are ,i,rrelevant here s nce, ail the joint axes intersect and only the angular velocity 

constraints nee;'~~ 'b'~ ~on~j, ~ed. This leads to' -~, 
'1 

~ (3.30a) , 

'and 
" 

J2 = [0 0 0 U2 W2 V2 U3 W3 'V3 ) 
\ 

(J.30b) 

.... 

\ 
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3 ANAL YSIS OF COMPLEX KINEMATIC CHAINS 

\ 

C 

"-
Figure 3.7 

" \ 

Spherical three-degree-of-freed'om paralJel manipulator 

'",These are next _assembled as: 

~ 1 "J=[~~J ' (3.31) 

. Àgain.l,.". J is of ~ , 9. which means that. whe~ it is of full rank.,its "ullity . 
•. is 3 and the kinematlc chain has three dof. as it should To analyze the singular!tles. we 

- ~ . 
~ i set the motor rates to zero. as ln the prevlous example. which leads to' 

J' = [Wl VI w2 v2 0 0 l 
o 0 w2 v2 w3 v3 1 

(3.32) 
, 

and the condition under which det (JI) IS equal to -zero can be shown to be' 

(3.33) 

This result will be reproduced and mterpreted" ln Chapter 4. where the singu­

larities of Ithe spherical parallel manipulator will ne analyzed in detail following a different, 

approach. 
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3 ANALYSIS 9F COMPLEX KINEMATIC CHAINS 
.-

3.3 Singularities of C~osed-loop Kinematic Chains 

The study of the kinematics of mechanical systems leads inevitably to the 

problem of singular conflguratio~s These special configurations are defined as the one!> 

in whlch the Jacobian matrix. i e .. the n1atnx relating the mput rates to the output relte!>. 
. ; 

becomes rank deficient. They correspond to conftguratlons of the system that ëlre usuùlly 
~ 

undeslrable smce the degree ofJreedom IS' mstantaneollsly changed. As.a matter of facto thls 

IS how the methôd 'presented in Section 3.2 allowed us to Identlfy smgular configuratIOns. 

Fo! senal mantpulator~. the smgulartty problem has been addressed by several authors. for 

instance: Sugimoto a'~d Duffy (1982): Lai and Ya,{g (1'986)': Litvin and Parenti Castelli 

(1985): 'Waldron et al. (t985): Lltvin et al. (1985 & 1986):' Hunt (1986 & 1987): Wang 

and Waldron (1987) Sorne researchers have also worked on the singularities of simple 

closed-Ioop kinematic chams (Eddie Baker 1980a: Sugimoto et àl. 1982: Lit".in at al. 1986 

& 1987: Litvin and Tan 1987. Litvin and Fanghella 1987: Litvin and Wu 1987). . ~ 
A singulartty anâlysis for closed-Ioop kinematlc chains is presented in thrs--sec-~ 

tion. As demonstrated by the examples mcluded here. this anaWsfs is applicable to simple 

and complex c1osed-loop kinematic chams in general. The technique will be used in Chapter 

4 for the stngulartty analysis of parallel manipulators. 

1 3.3.1 Singularity Analysis 

A complex kinematic cham cônslsts. of a set of rigÎd bodies connected to each 

other with joints and where the conditions' speclfled in the first paragraph 'of thls chap~er 

ar'@\. satisfied. The cham is also characterized by a set of inputs. denoted here by an 

n,dimensional vector e. whlch corr~spond to the powered joints and by a set of output 

coordin-ates. denoted here by an m-dlmenslonal vector x Th'ese mput and output vectors . ' 

. depend on the nature and purpose of the kmematlc cham. For Instance. m a pdrilliei 

manipulator. the input vector () represents the set of actuated JOtnts and the output vector 

x represents the Carteslan coordinates of the gripper. However. m general. the output does 

"',-
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ANAlYSIS OF COMPLEX KINEMàcHAINS 3 

not need' to be a set of' Cartesian coordinates and can also correspoMI to jOint angres or 

~disp'acements. Furthermore. although the number of inputs and outputs does not have 

to be equaf. the number of independent inputs and outputs will always be the same and. 
- - t 

therefore. vectors 0 and x can be reduced or augmented to vectors of the same dif!1enslOn 
. ~ -
which will be equal to the degrpe of freedom of the linkage The input and output rates are 

then related through the Jacobi an matrix of the cham as 

(3.34) 

- ,-
"As opposed to the convention used for seriai manipulators. the Jacobian matnx is defined 

here as the one mapping the o.utput rates into' the input rates. The reason for that will. 
- -, 

become dear in Chapter 4. Moreover. eq.(3.34) ca~- also be weltten as: 
.! 

J x = KO 

'where K = r 1\J a~d K being configuration dependein. 

(3.35) 

As stated above. singuJa-tities occur in -configurations where J is rank d.eficient. 
"- ~ 

However. for general \complex kinematic chains. a distinçti6n can be made between three 

types of singularities. which have different physical interpr~tations . 

. 
-- (i) The first t1Pe of singularity occurs when the following conditions are verified' 

det{K) ~ ,0 (3.36a) 

i.e f 

det(J) - 00 '. (3.36b) 

The corresponding configuration is one in which the chain reaches either a 

boundary of its workspace. or an internai boundary limiting different subregions 

of the workspace where the number of solutions is not the same ln other 

words. this type of slngulanties consists of the set of points where different 

branches of the inverse kinematic pTob/em meet. the inverse klnematlc problem 

\ being understood here as the computation of the values of the lJ:lput variables 
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from given values of the output variables. Since the nullity of K is nonlero. we 

can find a set of vectors iJ for ~hich x would be equal to zero ilnd therefore 

sorne of the velocity vectors x cannot be pro~ed at the output. Typically. 

these would be velocities orthogonal to the boundary and directed towards ~he 

outslde of the workspace 

(il} The second type of singularity occurs when we have the following: 

det(J) = 0 

Le. 

det(K) - x 

''''­, 

~/ 

",,' 
, 1 

(3.371/ ) 

This corresponds to configurations in which the chain remains !Jncont~ollable 

even when ail the actuated joints are Iccked. As opposed to the first one. this 
-

type of singularity lies within the workspace of the chain and corresponds to (J 

-
point or set of points where different branches of the direct kinemat;c problem 

meet. The direct kinematic problem is the one in') which it is de . ed to obt'ilin 

the values of the output variables from given values of the inp,u variables, Since 

the nullspace of J is not empty. there exists a set of output rate vectors x which 
tIo 

will be mapped into the origin by J. i.e .. whlch will correspond to il veloclty of 
'" 

zero, of the input· joints. The input rates are therefore not irléfependent. 
,l' 

.. = "" .. , 
Both th~ first and second types of singularities correspond to configurations 

that can .happen in a general complex killematic chain 

l' 

'(iii) The third type of singularhy IS of a slightly different nature than the first two. 

since it requires conditions on the linkage parameters. Indeed. if sorne specifk 

conditions on the linkage parameters are satisfied. the chain can reach configu­

rations where the first two typf!S of s_ingularities meet and the Jacobian matrlx 
, 

then becomes indetermlnate. ThiS corresponds to configurations ln which the 

chain can undet~o finite motions when its actuators are locked or in which il 

73 



c 

.- . 
~ . 
:l>!' ' .. 

; 

3 ANAlYSIS OF COMPlEX KINEMATIC CHAINS 

, finite motion of the inputs J4oduce,s no motion' of the outputs such as. 'for 10-

stance. a linkage having' a cctstant branch (Russell 1988). For linkages having 

a quadratic input-o'utput ~quatjon. tbe ,l:hird type of singularity also cOlJesponds < 
, ' 

to a case 'for which ail three coeffiCients of the quadratic ~re equal to zero 

The three types 9~ smgularities will now b~ illustrê.!ted wlth some examples o~ 

c1osed~loop simple and complex kmematlc chains 

3.3.2 Example 1: Planar RRRP Mechanism 

A_planar RRRP mechanrsm is shown ln Fig. 3.8 ThiS one-degree-of~freedom 

mechanism 'is ofte~ re(erred' to as a crank~slider' four-bar linkage. The crank angîe () is the" 

input variable and the dis~lacement of the sllder. denoted as x.-(s the output 

N 

l 
l 

1 

) 

Figure 3.8-"" Planar RRRP mechanlsm 

\ , 
\ 

" Therefore. in this case. the Jacobian is al> 1 matnx. I.e.~ a scalar. and will be ; 
, -

denoted as J or K. From the geometry of the linkage. we can write: 
, " 

..", 

~3.38a) 

and 

R sin 9 = 1 sin tb (3.38b) 

'0 74 
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS 

su~st>ltution of eq.(3.38b) into eq.(3.38a) ;Ieads to: 

x = R cos () ± 1\/1 r 2 sin2 (J , (3.39a) 

where 
R 

r .ë-

and where the double sign anses from the fact that the direct klllematic problem has two . -
branches. Upon differentlaÙo'n wlth respect -to tlme of eg (3.390) one obtallls 

(3.400) , 

where 
" [ " r, Sin 0 cos 0 _] 

J\~=: '!i sinO::. - --
~ ~- \1-~29in20 

(3.40b) 

\' , Therefore. thê first typ~ of smgûlanty an~es when 11' = O. i.e. when () =' 0 or 

1i.' In th.,s configuration. eq,(3.3~) becomes 

. 1 
x = =.R ± 1 (3.4,la) 

and the links of length R and-[ are·~ligned. which corresponds to the limlt of the workspace. 
( 

Since K is equal to zero. the value of x will be equ~1 to zero. whatever tne value of bis. 

, 

The seçond 'type. of smgulanty occurs' when J = O. i.e. when the de~ommator 
,1 ' 

of A" goes to zero This condition leads to: . 

If? . l 
sm () = Ti ,P.4,l/}) ., 

The correspond mg configuration IS shown in Fig. 3.9. ThIs 'configuration is clearly witbin 

the rang~ of mo\ion of the output. i.e .. within the wot"kspace. 'Moreover. slnce th~ second 
; 

term M.eq.(3.39a) vanishes. the two branches of the direct' kl.ematic problem ,rneet The , 

output can undergo inf,mites',maJ motIon even If the ipput is JocÎ<ed. / . 

As stated abov~.1h" third type 01 SingUla"t~ requires' ~hat cer/al~ conditions. 
_ J' t ~ ~ & / ... 

on theJlinkag~' parameters be satisfied. 'For the eltample treated here:;the #ondition 'IS that 
, t 

the iJlPut and coupler' jinks have the sa me length. i.e.. ' ) 
1 

R =1 (~.42) , 

/' 15 0 

, , 
1 
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1. 

Figure 3.9 Second type of singularity for the planar RRRP mechanislll 

Und'er thls assumption, eq.(3 39a} can be rewritten as 

x = R cos 0 ± R cos 0 
... 
(3.43a) 

or 

x = {~Rcos 0 (3.43b) 

whlch clearly shows that the mechanlsm has a constant branch. Therefore, when x IS equal 

to zero. the input can undergo arbltrary rotations while the output remalns at rest. , 

3.3.3 Example 2: Wa'tt's Linkage 

A linkage of thls type is shown in Fig. 3.10. The link lengths used here are 

) 
slightfy more general than the ones uséd ln Section 3.2. The mechanism has one degree 

\.-
of freedom, and the input and output variables are angles 0 and </J. respectively. Agam. the 

/ 

Jacoblan is a scalar quantity. 

From the geometry of the linkage, we can write' 

Xl = - cos(w + 1T' /3) (3.44) 

and 

(3.45) 
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~ 

and also 

where 

and 

2 

."'-... 

l 1 7 
'y 

Figure 3.10 Watt 5 linkage 

-1 ( YI ) 
Q = tan x; 

x~ == xl - 1 2 

d = tan -1 ( LI Sin 0 - \ 3 2 ) 
11 cos~1 2 

\ 

6 

x 

Moreover. usmg the lawof cosmes. we obtam 

12 12 1 2 2 21 1 2 2 ( ) 4 =: 3 + xl + YI - 3 \. Il + YI cos 0: - aJ 

" 
and 

I~ =1 + (/1 cos 0 + 1 '2)2 + (Il sme - \ '3 2)2 

- 2\' (/1 cos 0 + 1 2)2 + (lI sm 0 - v 3,'2)2 cos(~' - 8) 

(3.46a) 

(3.46b) . 

(3.47) " 

(3.48) 

(3.49) 

Given a certain value of the mput angle O. angle t-' can be computed from eqs.(3.47) and 
. . 

(3.49) and then angle CD is obtained 'lrom 'eqs.(3.46) and (3.48). Upon differentiation of 
• 'i , 
these equations with respect to time')the following IS obtained 

w=8+ 0 
. . [(V3/1 sin 0 - 11 cos 8 - I~)( -1 1 2 fI' sin 0 - -/3/2/1 cos 8)] . 

2sin(lil - ~)((1/2 + 11 cos 8)2 + (11 sin 0 - v'3/2)2]3/2 
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" 

J= () , . [ li + 1;' 2/1 cos (J -.- " j / 2/1 Sin 0 J' 
(11 cos 0 + 1/2)2 + (lI ~in (J - ,,'3,'2)2 

(x1
2 + yf + II - l~)(r; :r~. ~ J'jYtl 
2/3 sin(o - <p)(r,1 2 + yi)3 2 

1 
Il YI - !ll.rl 

'0 = --2 ---
.r' + y2 1 1 

(3;50b) 

(3.510) 

, Trrerefqre. the relation between the Input and outpth velocltles can be wntten as: 

(3.52) 

where 
/ 

(3.53a) 

and 

IV I ~(l1 cos () - Y311 sin 8 + li + 1~)(1I211 Sin 0 + vlj,'21 1 cos 0) 

·n + 2 Sin (w - {3) (li _+ 1/2/1 cos 0 - J2 /211 sin 0) 

1 
,f \/1 ;-- V3/1 Sin () + 11 cos 8 + li (3.53bf 

S2 = - sm 1,CJ(x1 2 + yi + [1- I~) - ?13 SIn(O - 17>)(1 + COS',!·) \ :r;2 +,yf (3.53(') 

Dl =2sm(~' - 8)(1 - ,,'3/1 sm 0 + Il COS 0 + li)3'2 (3.53d) 

D2 =213 sin(a - <t>)(x1 2 + yi)3 '2 (3.53t) 

The first type of stngul~rity ocêurs when !{ = 0 I.e., when 

SI = 0 . or (3.54) 

The first condition corresponds to the set of configurations in wh,ch links /1 and 12 are 

aligned. which c!early defines a boundary of .... the ~orkspace The se~ond condition corre­

sponds to._configurations where link '4 is alig~ed with the line èonnecting joints 4 and '5. 

which agé)in defines a limit posÎtion of the output link ln these configurations, the veloclty 

of the' output is always zero. whatever the input velocity is. 
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" 
The second type of singularity. i.e .. · the one in which the velocîty of the output 

link can be nonzero even if the input v~locity vanrshes, occurs here when the denommator 

of K is equal tà zero. i.e.: 
J 

(3.55) Dl = 0 or 

The flfst èondttlôn can be rewrrtten as' 

sin(1;' - 3) = 0 (3.56) -

whlch cor;esponds to configurations ln whlch Itnk 12 15 aligned wlth the Itne connecttng 

joints 3 and 4. This type of configuration 15 shown ln Fig 3.11. where It 15 cleartli'ât the 

output link can undergo an infinrteslmal motion even If the Input 15 locked. Tbe second 

conditIon cano In turn. be reWrttten as' 

sin(o: - cp) = 0 (3.57) 

which corresponds to configurations ln which links 13 and 14 are aligned 

5 

1 

1 

Il -

Figure 3.11 Second type of singularity for Watt's linkage 

The conditions on the link lengths required. for the third ty.pe of singulanty are 

given by the following: 

or (3.58) 
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, 
When the first equality above is verified. the mechanism can reach configurations where 

joints 2 and 4 -are superimposed. and the output can then undergo finite motions whlle the 
~~ 

. mput is at rest.' As a matter of facto since links il and 12 are aligned with the lines connecting 
j '-

joints 1 and 4 and jOints 3 and 4 respectively. they become kir.'lematically irrelevant and the 
, ~ 

, ; 

whole linkag.e IS reduced to a four-bar planar linkage. 

On the othe'r hand. if the second equality of eq.(3.58) is verifie? the mechanÎsm 

can reach configurations where' JOints 4 and 6 are superimposed. In thi$ case. links /3 and 

/4 become irrelevant and the linkage has 'a constant branch. Le.. a branch on which the 

output link remains at rest. 

3.4 Characteristics of Parallel Manipulators 

The purpose of this section is to introduce parallel manipula tors as a subset of 

complex kinematic chains and to derive their characteristics. 

'First of ail. the graph representation of parallel manipulators is always ~the 

type shown in Fig. ~.5a The g~aph is compo.sed of a set of parallel paths. connecting [WO 

poles. the poles bemg the base hnk and the gripper. Therefore. the se two links are the o'nly 

ones having a degree of connectlvlty greater than .. or .... equal to three. The number oJ jOints 

in each of the parallel paths and the number of paths can vary. 

Moreover. for the general case of a spatial manipulator. the number of loops 
, ' -. " 

~\ can be related to the degree of freedom usmg the general mobility criterion (eq. 3.9) as: 

l == 6(1 + pn) - 5p(n + 1) (3.59) 

where 1 is the number of degrees of freedom of the manipulator. n is the number of rigid 
- . 

bodies per leg of the manipuJator disregarding the base and the end-,ffector and assumlng 

that each joint has only one do( and p is the nu~ber of legs. which corresponds to the 1 

~ number. ~f paths connecti~g the"'two poles of fhe graph. Moreover. if we ~ant to have a 
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fully par,alJ~J m~nipuJato~. i.e .. one in which ail the motors can be fixed to the ground. we 
Q -, 

need to have only one motor per leg. which leads to the followlng condition: 

l=p (3.60) 

q \ 

By substitution of eq.(3.60) ln eq.(359). an equality descrrbing ail spatial fully parallel 
L'" ~ ::;.~ 

manipulators is obtained. This is expressed as. 
, 

i Jo. 

pIn -6) =-6 (3.61 ) 

The solutions of th,s equatlon that are physlcally meanmgful. i.e .. the ones that correspond 

to feasible manipulators. are shown ln Fig. 3.12. POlnt.4 is assoclated with the weil 

known six-degree-of-freedom parallel devlce referred to as the Stewart -platform (Stewart 

1965). Poiont B. in turn. corresponds' to a three-degree-of-freedom manlpulator such as. 

for instance. the parallel part of the AR TlSAN mampulator studled ln Chapter 4. Point Cl 

is associated with a two-degree-of-freedom simple closed kinematlc chain 

P 

6 o A 
" 

.' 

4 

oB Il 

2 0 
C 

2 ,4 6 n 

Il 

Figure 3.12 Spatial fully·parallel manipulators. 

Although this thesis is devoted to the" s.tudy of fully" parallel manipulators. It " 
, / 

is, worth mentioning here that some researchers have proposed partially parallet structures / 
1 ~ ,1 

for manipulators. Earl and Rooney (1983) have presented a topological investiga(ion that 
'\ \ 
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3 ANAlYSIS OF COMPlEX KINEMATIC CHAINS 

considers ail' these possibilities. In order to character:lze the kinematic structure of such 

manipulators. the following i~dex is now defined: 

,,-
(3.62u) d=-

1 - 1 

with 

O'~:. d . 1 (3.62h) 
y 

where d_Js called' the degree of parallelism of the manipulator. k is recalled to be the 
- ~ 0 

number of mdep,endent loops in the manrpulator's graph. and 1 IS the degree of freedol11 
/ 

of the manipulator. The application of thls criterlon to a fully parallel manipulator gives 
, 

a degree of parallellsm of 1. whereas a degree of par~llelism of zero is obtained for il 

seriai manipulator. Intermedlate architectures will glve other results. For instance. the 

manipulator dl5cussed in (Bajpai and Roth 1986) glves a degree of parallelism of 500/0 

when the foregomg cntenon IS used The index has a smgularlty when the degree of 
\ 

freedom of the cham 15 equal to one. in whièh case the value of fi IS one if there is at least 

one "Ioop and zero otherwi5e 

/ 
/ 

1 
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Chapter 4 

'\ 

ANALYSIS OF PARALLEL MAi~IPULATORS 

II 

Sorne plarfar. spherical and spatial manipulators are mtroduced ln thl~ chapter 
o 

" , 
They ail satisfy the definition gJven iA Chapter 3. I.e . the y ail have a qegree of paralleltsm 

of one, As pointed ott ln Chapter t the advantages of parallel manipulat~rs make them 

suitable for many potential applications However. "since their structure. tS fundamehtally 
0, , ' 

different from the Li~~1 se't'ial architecture, it IS required that a detaile/kjnematic analysis 
" 

be pbrsued. Tlis an~lysls will allow us to obtaln the equatlons constrainmg their motion. 

which ir.1c1ude solutions to ~he direct and inverse klnematic problems as weil as veloC/ty 

and acceleration inverSions. These res~lts are of a pnmary importance for the control and 

tr~jectory planning of the manrpulators. Moreover. the der/vatlon of the Jacoblan and the 

investigation of singularities presented here Will be used ln Chapterl 5 for the optimizatlon 

of the kinematic parameters of the manipulators ' 

\\ 

As in the"case of seriai mantpulators. the direct kmematic problem IS'- defined here 
c"" c" \ 

aS' the..-one, in which the Cartesian coordinates of the gripper are obtallled from the powered-

joint ~ngles The inverse kjn~matjc problem is thertfore the one in, whlch the power~d-joint 

angles\~are, computed from the Cartesian coordinate; of\h'e gripper. It is pointed out that 

the degree~~of difficulty involved in finding a solutio'" to the direct kinematlc problefl1 of 

parallel manipula tors differs from the one involved ln the solution of the same problem for 
'. 

'correspod'ding seriai manipulators. The term corresponding seflal manipulator used here 

refers to a seriai manipulator having a kinematlc structure identical to one of the legs of a 

givèn par'allel manipulator. Therefore. the degree of difficulty involved in flnding a solutIon 
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t~ the inverse kinematic problem of corresponding parallel and seriai manipula tors is the \< 

same. with the ditTerence that. in the case of the parallel manipulator, only one joint angle 

per leg is needed and that the solution has to be repeated for each of the legs. However, the 
" 

.. 
degree of difficulty involved in fin ding a solution to the direct kinematit problem of a parallel 

manipulator IS much higher than for a corresponding senal mampulator. As a matter of 

fact. the solution of the direct kinematic problem for seriai manipulators is straightforward 

since It amounts to a senes of matnx multlplicatlOns and vector additions, whereas the 

solution of the sa me problem for the corresponding parallel manipulators usually requires the 

utilization of a numencal method. closed-form solutions being impossible to obtain. This 

is so because the graph representation of their non-powered subchain is usually symmetric 
, • 0 

and the gnpper cannot be related directly to the fixed link of this subchain by any of the 

legs. Therefore. for parallel manipulators, the solution of the direct problem is, in general,,, 

not unique and both the inverse and the direct problems le ad to multiple branches. 

The velocity inversion gives the relationship between powered-joint rates and 

Cartesian rates of the manipulator's gripper and the acceleration inversion relates the cor­

responding accelerations. The Jacobian matrix derived for the velocity inversion is used in 
j 

the si':1gularity analysis and the results obtained are shown to be in agreement with those 

presented in Section 3.2. 

4.1 Pla·nar Three-Degree-of-Freedom Manipulator with Revolute 

Actuators 

A p-I~nar parallel manipulator is represented in Fig. 4.1. ail ôf whose joint;s are 

.of the revolute type. and the three motors Ml,M2, M3 are fixed. The manipulator consists 

of a kinematic cham with three closed 400ps. namely MIDABEM2' M2EBCFM3' and 
At 

M 3FCADM1. the gnpper being rigidly attached to triangle ABC It is pointed out aga in 

here that only two of the aforementioned loops are kinematically indepen~ent according to 

the definition given in Chapter 3. This is clearly seen from the associated graph which was 

shown in Fig. 3.5a. 
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-' 
~--------------------------------~------------------------~--~ 

lA 
F~ __ ......J... __ ~ 

E 

• fixed joint 

Figure 4.1 Planar three-degree-of-freedom parallel manipulator with revolute actu­
ators 

i 
J 

-r-
I 
1 

Unlike the case of a mechanism. which. most of the time. is designed for a 

specifie task. the tasks to be perforr:ned by a manfpulator are -unknown and unpredlctable a 
, 

'priori. As a matter of facto the manipulator studied here will be asked to arbltrarily position 

and orient the gripper in the plane of motion. followlng a certain traJectory that will be task 
\ 

dependent. Hence. ~here should not be any preferred general orientation for which the 

manipulator would have better properties. This suggests that the mampulator should be . 
symmetric. Therefore. the mcAors Will be located on the vertlces of, an equilateral triangle 

and the link lengths will ~e the same for each leg. i.e .. 
\ 

(4.1) 

This assumption will be used throughout. Moreover. in what follo\l65. the dis-
) 

tance ~etween any two of the motors will be set equal to ~~ity. for normalization purposes. 
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-
Triang]~~ ABC will be referred to as the gripper. for It IS kinematically equivalent to this. It 

, 1 <, di-
could be''feferred to as the end-effector. as weil. but due to the kinerhatic structure involved. 

the gripper IS not an end link 
;. 

The potentlal applicatIOns of thl~ manlpulalor include plck-and-place operatlon"­

over a plane surface. machmmg of plane surfaces. mobile base for ~ spatial manipulator 
1 • 

..,. .... .;. 1-

and mQvlng platform for a terrestrlal vehlcle slmulator 

4.1.1 Inverse Kinematic Problem 

As stated above. the manrpulator al ms at guiding the gripper through il certam 

, traJectory 111 the Cartesian space. the Carteslan coordinates of the gripper belng given by_ 
<1> _ 

the position of its centrold C (x, y t ahd the angle c> defining its Orientation (F Ig 4 1) The 

inverse kinematic problem. th{refore. consists of determining 01. O2 and (}3 for glven values 

of x. y and <1J It can be readily sl10wn that the solution to thls problem contains eight 

different branches. In fact. the solutions for the input angles 01. ()2 and 03 élre uncoupled 
, 

and. moreover. the solution to each of these angles can be obtained from the input-output 

equation of a planar Tour-bar linkage for each leg. thus glVlng me to il quadratlc Input-

. output equatlon. whlch thus contalns two solutions. as shown. e.g .. In (Angeles and Bernier 

1987a) For ';nstance. the solution for the tlrst leg 15 shoJVn ln Fig 42 -In thls figure. fen 
the Carteslan coordmat.es (x.Y,9) are s-peclfied. we can conslder the chain CAIJA!t a!:>-d 

four-bar linkage for whlch the pOSition of the Input link. '3. IS glven. Angle 01 can therefore 

be computed uSlflg th .. e Input-output equatlon mentloned above 

., 

The, same reasoning can be applied to each of the legs ând a general solution 
\ 

IS given here. for..leg i. by: 

() - '", - ,I, l' - 1 !l--3 
t - '-"'1 - '" 1 • • - , L, (4.2) 

(4.3) 
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x 
Et fixed join t 

Figure 4.2 Analysis of t~e tlrst leg 

(

i2 - [2 + x2 ~~ y2 ] t/J. = cos -1 1 2 2t 21 
1. . 1 2 2 

. . 211 V x2t + Y2t 

(4.4) 

angle 1/;1. being chosèn on the main branch of the inverse cosine function. i.e .. 0 ::; 1/-\ :::; Ti 

Moreover. coordinates x2i and Y21. are defined as: 

(4.5a) 

.. 

J (4.5b) <l': 

where~s angles {<pd~ are given by 

<Pl = <p + 1r76 (4.6a) 
, . 

',-
<P2 = <p + 57r /6 (4.6~) 

. .. <P3 = <p - 1r/2 (4.6c) 
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and ,';;., ;"\ 
.', 
~. 

{xol}i = {O,1.1j2} 
) 

{YoJi = {O, o. J3/2L." 

.(4.7a) 

(4.7b) 

are the ppsltlons of the centres of the motors This completes the solution of the inverse .' 
kmematic problem, 

• J 

4.1.2 Direct Kinematic Problem 
t 

t{pomte~ out ln the introduction of this chapter. the direct klnematic problem 

for paraJlel h,ampulators IS more inv~lved tha'n the inverse problem. Indeed. even for the . ' 

simple three-degree-of-freedom planar mampulator discussed here. no closed-form solution 

can be found However. the following the:P,rem was shown ln (Hunt 1983)' 
~ 9, • < 

Theorem 4.1: The solution of the direct kmematlc problem for the planar three-aegree­

of-freedom paraI/el man/pulator leads to a maxImum of 6 different branches 
.... 

Proof' This result is obtaineq with the follpwing reasoning: referring to Fig. 4.1. if the three '1> 

Input angles-i.e. the powered-jolnt angles-are specified. then the positions of points D, 
, 

E and Fare readlly computed. Moreover, we can thmk of the cham DA BEas a four-bar ," ) 

linkage of which C rs a pOint of the coupler hnk, generatmg a coupler curve A solutl,on for 
'" - - 1 

the closure of the whale kmematic cham (manipulator) IS obtalned wnenever the coupler. 

curve described by the motion of p~int "0 intersects the clrcle dehned by the rotation of link 

Fe around point F Slnce the equation of the general coupler curve o~ a plaQar four-bar 

,l1nkage-also called the tnclrcular sextic-' is of the slx~h degree (Hartenberg and Denavit 

1964). the intersection of this curve with a circle has a maximum -of SIX solutions, and 

hence. the direct kinematic problem of the planat three-degree-of-freedom manipulator has 

a maximl;Jm of six solutions. and the proof is completed. 

The foregoing principle is now used to derive the equations that will lead to 

a simple formulation of 'the direct kinematic problem which is suitable for a numerical 

, " 1 88 
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4 ANALYSIS OF PARALLEL MANIPULATORS 

solution The rTôtatlon used here IS similar to the one used ln (Ma 'and Angeles 1987) The 

four-bar linkage consldered rs shown rn Frg 4 3. 

~----------

c B 

E 

l 
D 

Figure 4.3 Planar four·bar linkage 

The position of pOint C of the coupler càn be wntten as ,./ 

I(' = ID + /2 COS(LlJ + l') + V 3/3 cos(a1 + 0.2 + e) (480) 

-
Y(' = YL> ...... /2 SIn(01 -r 1.') ~ \ 3/3 SIn(ol + 02 + el (4.8b) 

where 

nl = r. 3 ~ (4.9) 

IYE-YDl (4.10) al = atan2 ' ------"- 1 
l XE - 'I D r-

and 

8 2 -1 '[ B := \ El - Acj- (4.11 ) 1.2 = tan A 

with 

A = ml - m2 + (1 + m3) cos 'I/J (4.12a) 

B = sm t,' (4.12b) 

C:::: ml + m2 + (m3 -l)cosl/.>. (4.12c) 
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and 

--d2 _ 3/ 2 
ml = ----) 

2\, 3/2') 

d 
7rI')= 

- /2 

d 

Therefore the nonllnear equatlon to be solved IS glven by 

(4.1311) 

( 4.131') 

( 4.13d) 

(4.14 ) 

Equation (414) can be solved for angle II' usmg a numencal procedure, The secant method 

(Forsythe et al 1977) has been Implemented here Moreover. the range of valJdlty over 

whlch eq (4.14) has real solutlonsÎ'lis determmed by the posltlve-semldefmlteness of the 

quantlty under the square root I,n eq.(411). le. 

B2 - 11(,' 0 
/' ..... ' ( 4.15) 

whlch ln the Irght of eqs (4 12a.b.c), leads to 

(4.16/1) 

where 

.\' = cos l.' ( 4.16b) 

5mce the left-hand side of eq (4.160) represents' a parabola with, negallve curvature. the 

roots o! thls parabola will gwe the hmlts of the ~nge of valldlty of X from whlch the rang(~ 

of valldlty of 1,,' can be found Du~ to the cosine funct;on IOvolvep ln eq.(4.16b). Il may 

, happen that we obtam two distinct ranges of vahdlty for angle lt,.'. both of which should be t 

considered. The roots of t~e parabola can be wrltten as. 

~----

(4.17) 
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A c 

B 
B 

( a) c (b) ( c) 

B 

·c B 

c 

A 

(e) 

Figure 4.4 The six solutions of the direct kinematlc probfêm for a glven planar 
three-degree-of-freedom parallel manipulator in a glven confIguration 

B 

A 

Once the range of validity of 1{.' is known. we can use the secant method to obtain the 

solutions for angle -'1/;. By varymg the value of the initial guess., we can obtain different 

solutions and. providing that a sufficient nllmber of initial values is used. get ail possible 

solutions. An example is shown ln Fig. 4.4. where the configurations corresponding to each 

of the six solutions are displayed. 

4.1.3 Velocity Inversion 

_ The Jacobian matrix of a manipulator is generally defined as the matrix repre­

senting the transformation mapping the joint rates into the Cartesian' velocities. However. 

since in the case of the c\osed-Ioop manipulator the inverse kinern~tic problem is easier 
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to solve than the direct one. the Jacobian matrix will be defined in terms of the inverse 

transformation. i.e .. 

(4.18) 

where é 15 the vector of Cartesian velocitles. glven here by è :::; l.r. y. <pIT and iJ is. the vector 

of JOint rates. glven here by 0-= !Ol.iJ2. (J3]T 

For the planar manipulator under study. the Jacoblan matnx can be obtamed by 

d,fferentiatlon of eqs.(4 2-45) with respect to tlme This leads to the followmg: 

where 

bl ,' dl 
b2 ,'d2 
b3 d3 

2l 1 2 2· E 
at :::; 1 Y21 V x 2t + Y21 Sin 1/lz + Il • 1.r21 

bt :::; - 2/1 :2t V~X~t + Y~t sm 1/-'1 + ~/1 El Y21 

.. 

21 1 / 2 2' ( . ) 
Ct:::; 1 3 V x2t + Y2t sm 1/Jt X21 cos c1?, + Y21 sm <1>1 

+ ,,,,It E t I3(X2t sincP1 - Y2l cos cPz ) 

dt = -,2/dx22 + Y22 )3/2 sm U'1 , t t 

(4.19) 

(4.20a) 

(4.20b) 

(4.20r) 

(4.20d) 
4 

and ) 
(4.21 a) 

Moreover. 

~I - ~1 
'1 - -- (4.21bl 

is a factor that depènds on the branch we chose for the 1th leg in the solution of the inverse 

kinematic pro.blem 

However. the -constraint on the kinematic clos ure of the ith leg ~n also be 

written cas: l 
(4.22a) 
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, 

X31 = xm + 11 cos 01 

X41 = x - '3 cos cJ)1 

(4.2~b) 

(4.22c) 

(4.22d) 

(4.22e) 

Different,ating both sides of eq. (4.22{1) with respect to t.me. the J(!cob.an matr-,x ·can be 

rewritten as in eq.(4 19) w,th 

• 
Cl = -/3 [(y - Y,n) cos cJ)/ - (x - xm ) sin tJ)1] + l113 Stn(O/, - ç:>J 

dl = 'd(Y - Ym) cos °1 - (x - Xm ) sm °1 ] + '1'3 5tn(02 - <Dl) 

o 
1 

(4.23a) 

(4.23b) 

(4.23c) , 

(4.23d) 

which is equi~alentto eqs.(4.20a-d). except that no(,both t,he Joint angles and the Carte-

sian coordinates are included in the expression. T~tation of the Jacobian matnx 

using thls method. therefore. requires that the inverse kmematic problem be solved first. 
1$:) 

-- ~ 
;/-

4.1.4 Acceleration Inversion 
> , 

. . ' , 
The relationshlp between the jo:~t ~nél Cartes,an accelerations can b~ed 

by differentiation of eq.(4.18). The follo,Wtng is obtall1'ed: . .- --_:,~ 
(4.24 ) 

where ë = [x,jj.~jT·and (} = [81.02.831T , The other quantlt,e~assumed to be known 

from the veloclty inversion. Therefore. the only matrix that has ndt been defined yet is the 

time derivatlve of the Jacobian matrix. denoted as·-i The dlfferentiatlOn of eqs.( 4.19) and 

(4.23a-d) leads to: 

[ Al 
Bl CI] 

j = A2 B2 C2 (4.25) 

A3 B3 C3 '.\ 
.. 

~ 

'" 
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where 

\ 

. 
with' 

.' 

al =x + llOl sin 01 + 12<D$in (J) 
'1( 

"1 =y - 1101 cos O( - /2icos (/) 

, .'< 

Cl =/301(.r - I,I/) cos 01 + (y - Ym}sin cPtl +"31i-SIn<D1 - yeos C),I 

+ll l3(81 - à,)COS(OI - C])l) 

dl = - 'l(q(.r - Xm ) COS ()l + (y - YIlt) sin 01] - ltlxsin 0) - ùcps (J, 1 

+ '113 ( iJ t - ~) cos (0'1 - C> 1 ) 

thereby completmg the aceeleration inversIOn. 

4.1.5 Singularity Analysis 

(4.26(1 ) 

(4.26b) 

(4.26<,) 

(4.26d) 

(4,26,') 

The three types of singularitles discussed in Chapter 3 are now derived for the \ 

manipulator studled here The physical significance of each of these type~ of singularities \ 

is also presented 

-

First type of singular,ities 

It is recalled that the flrst type of slngularlties corresponds to the limlt of the 

workspace and that it occurs when the determinant of the Jacoblan matrix tends to mfinity 

This' condition is encountered here when one of the denominator!?, involved in the expression 

of the Jacobian tends ta zero. From eq, (4,19) it is clear that thls corresponds to: 

1 = 1 or 2 or 3 ( 4.27) 

which. from eq.(4.20d). leads to: 

sin tPt = 0 or 'Ir. i=lor20r3 
1 

(4.28) 
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This type of configuration is reached whenever the links of lengths II and l2 of one of the legs 

are align~d. as one can readily infer by inspection of Fig'. 4.2._ Moreo,ver. since the solution 

of the inverse kinematic problem leads to two branches per leg. the corresponding quadratic 
- , 

equation leads to two solutions when the input Cartesian coordinates are located Inside 

the workspace of 'the manipulator and to no real solution when the prescnbed Carteslan 

coordinates are not withln the workspace. Therefore. the limlt of the workspace is defmed 

by the set of points for which the q~adratic equation will le ad to only one solution. I.e. 

when we have the followlng condition in eq.(4.2): 

n = 0,1,2, ... i = 1 or 2 or 3. (4.29) 

which is equivalent to eq.(4.28). Since in thls type of configuration the ith leg IS fully 

extended or folded. the set of Cartesian velocities of the gripper that correspond to a 

velodty of the point of attachment of the tth leg to the gripper along the folded or extended 

leg cannot be produced. ThÎ's set of Cartesian velocities is given by the set of rotatIons of 

the gripper about an arbitrary point of a line passing through the ith point of attachment 

of the gripper and orthogonal to the ith leg. 
'~ 

Second type of singularities 

The second type of singularities. whi,ch is located rnside the worksp~ce of the 

manipulator. occurs when the determinant of the' Jacobian matrix tends ta zero. For this 

type of configuration. the different motor rates are -not independent any more and there 

exists a set of Cartesian velocities è which are mapped into the zero vector by J. These 

Cartesian velocities are then possible even wh en the rates of ail motors are zero. These 

configurations can ne inferred from eq.(4.19) by imposing tbe linear dependence of the 

cotumns of J. i.e .. 

i = 1,2,3 (4.30a) 

for sorne real values of kt. k2. and kl for which . . 

Ilkll#=O (4.30b) 
, i< 
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where 

(4.30r) 

\ 

By i~spection of eqs.(4.30a) and (4.23a-d). two different cases for which the 
, 

conditlon,_given by eqs.(4.30a&b) is satlsfled can be identified. The first one is obtained 
~ . -

when th~ 'Iines along each of the thr~e links of length l} intersect at the centroid of the 

gripper. In this case. we have 

q ,= C2 = C3 = 0 
, , 

/ 

(4.31) 

and hence. eq.(4.30a) can be satlsfied with k 1 = k2 = 0 and arbitrary k3' The'last column 

of the Jacoblan matrix is equal to zero and hence. the nullspace of J is given by riO, 0, lIT 

, for any real r The nullspace corresponds here to the set 'of pure rotations of the gripper 

about its centrold This set of veloclty vectors will produce motor rates ofl" zero. du~ to the 

transitory additional degree of freedom, A configuration of this type IS' shown in Fig. 4.5. 

,--------------------------------,--- '. -----, 

! 
• 1 

Figure 4.5 An example of the second type of singularity for the planar three-degree· 
of-freedom paraileJ man.pulator 
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The second case for whlch eq.(4.30a) can be verified is the set of configurations 

_ for which the three links of length '2 are parallel. Indeed. by inspection of eq. (4.23a&b). 

we can define a set of vectors Vp l = 1,2,3 as two-dlmensional vectors: 

( 4.32) 

-;~jfere rt IS c1ear that VI is the vector connectrng the JOint common to links _il and l2 of 

the 7th leg to the pOint of attachment of "nk '2 of the same leg to the grrpper. 1 e .. VI'S a 

vector along the two jOint centres of the link of length '2 Therefore. when the three links 

of length 12 are parallel. we have 

(4.33) 

and the second column of J is a multiple of the first one. In thls case. the nullspace of J 

represents the set of pure translatjons of the gripper along a direction orthogonal to Vt • 1 e . 

orthogonal to the three links of length L2' A velocity of the gripper of that nature would 
-; 1 f1 

produce motor rates of zero. 

It is to be noticed that the results presented above for the second type of 

~ngUlarities of the revolute-based ~Ianar three-degree-of-freedom m~lator are in full 

agreement with the ones obtained in Chapter 3 wlth a different approach. T~ 50 because 

the configurations derlved here are the ones for which the manrpulator Il'lstantaneously 

acqUires an additional degree of freedom. 

Third type of singularities 

This type of srngularrties 15 characterized by the rndeterminacy of the Jacoblan 

matrrx. In other words. sorne of the ·:quantities Involved ln the expression of matnx J take 

on the form 0 'O. 

b-
As mentloned in Chapter 3. this singularity is not only configuration- but also 

architecture-dependent. For the planar manrpulator studled here. two situations may render ,1 

the Jacobian matrix indeterminate. One of these two cases happens when we have: 

(4.34) 
'r, 
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4 ANALYSIS OF PARALLEL MANIPULA TORS 

Wlth these constramts on the link lengths: we can reach a configuration where' the lip 

of each of the three links of lèng!b? L1 meet at the centroid of the base 'triangle which 

coincldes with the centroid of the ~ripper. 'sincè 12 = 13 The gripper can then undergo 

arbltrary rotations about its centrold w.hlle the motors remalllatrest.Thls indeterminacy 

IS due to the zeromg of both the (',:s and the d 's when the gripper is orrented such thilt .A 

. 
0= O .. At thls partlc~lar point. both the flr~t and second type of singularltles meet. 

tlons. 

---./ 
The second case of degeneracy of'the manlpûlator req~ires the followmg candi' 

and 
v'3 

13 = --
3 

(4.35 ) 

ln that case. the gripper is of the same size as the base triangle. Therefore. when the 
Q 

three vertlces of the gripper are located at the centroid of the motors. and when angle l'. 

is equal to zero. the motors can undergo arbltrary rotations whde the gripper remalns al 

rest. Agam. the flrst two types of singularrtles meet h~re. I.e" when angles 01' 02, and 0) 

take on the values -150°. -30c
• and 90'- respectlvely. then both the Cl 's and the dl 's are 

equal to zero 

. 
4.2 Planar Three-Degree-of-Freedom Manipolator with Prismatic 

Actuators 

\ -
-

The planar three-degree-of-freedom parallel manipulator studied in SectÎoh 4,1 

can also be built using prtsmatic actuators The 3R architecture of the legs 15 changL to 
, 

an RPR architecture where.the prismatic jomt IS the one that IS actuated, This IS shawn Ifl 

Fig. 46. where. agall1. the distance between each of the .H, 's-whlch do not refer to motor') 

here but to free pm Joints-is set equal to unit y The assumption of symmetry IS also made 

.T 

here for the same reasons that were mentloned ln Section 4.1 The potentlal advantages of l' .... 

this manipulator over the one based on revolute actuators are "simpler kinematlc equatlons 

and reduced mechanical interference. The applications for which thl-s manipulator could be 
. 

used are essentially the same as the ones menironed for J~e revolute-based manipulator, 
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c 

, Pl 

'~ • fixed joint 

--
Figure 4.6 Planar three-degree-of-freedom parallel manipulator with prismatic ae-

tuators 

4.2.1 Inverse Kinematic Problem 

Referrmg to Fig. 4.6. we denate by 13 the dimension of the gripper. by Pt the 
'J 

';-~ngth of the ith leg or actuator. and by (Xl' Yt) the coordinates of the point of attachment 
l ,_ 

ôl the ith leg to the gripper Moreover. the position of the point of attachment of the tth 

leg to the base is 'kiven by (xoPYOt). quantities that are given in eqs.(4.7a&b). As in the 

(case of the manipulator with r~volute actuators. the Cartesian coordinates are given by the 

position of the centro.d of the gripper C(x, y) and by its orientation. defined here by angle 

<1>. We can then write 

Yi = y :- 13 sin <Pt - YOt' i = 1,2,3 

(4.36a) 

(4.36b) 

where angles <Pi and the pairs (x""yOt ) are given byeqs.(4.6a-c) and (4.7a&b) respectively. 
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The inverse kinematlc problem. which has only one solution here. can then be solv~d usÎng: 

P = V/x2 + y2 l't 1 • ( 4.37) 

Therefore. given a certain position and Orientation of the gripper. the reqUired 

lengths of the actuators can be computed directly from eq.(4.37) 

4.2.2 Direct Kinematic Problem 

\ 

The solution of the direct kmematlc problem for the mal1lpulator with pris ma tiC 

actuators IS' baslcally identlcal to the one encountered for the mal1lpulator with revolute 

actuators. As a matter of facto when ~he actuator lengths Pl' P2' and P3 are specified. 

pOint C can be consldered as a pOint on the coupler of the four-bar Imkage All:l n.\! 2 The 

solutions of the direct kmematic problem are obtamed when the curve described by thl~ 

point of the coupler II1tersects a clrcle of radius P3 centred at A13 The problem leads to il 

maximum of 6 branches' as shown in Section 4 1 2. The formulation glven m that section 

\can also. be used here provldeq,that some of the equatlons are rewritten. Indeed. for the 
~ , 

four-bar Imkage considered here. eqs.(4 8a&b) become 

-
xc = Iu1 + Pl COS'l' + v 3/3 cos(n2 + 0) 

-
YC = Yol -r Pl sin t: + \ 31 3 sin(02 + 0) 

where 

(4,38a) 

(4.38h) 

(4.38(') 

and () can be obtamedfrom eqs.(4.11) and (4.12a-c), in whlCh the m,'s are redefined as 

1 
m2=­

Pl 
1 

m3 =-=--
- \l"3l 3 

(4.39(/) -

(4.39b) 

(4.39 t') 

. 
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( 

Therefo're., the nonlinear equation to be solved becomes 

Equation (4.40) is ~imilar to eq. (4 14) and can be ~olved for angle tf; uSlng a numer/cal 
, 

procedure. The ranges of vahdlty of angle L'. 1 e . the ranges over whlch we ean expeet to 

fmd real solutions are found us mg eqs (4 15) to (4 17). 

4.2.3 Velocity Inversion 

The Jacoblan matnx of the planar manlpulator wlth prlsmatle actuators IS de­

fmed similarly to the one of the manrpul;:Jtor with revoJute actuators glven ln eq. (4 19) We 

defme: 

Jë = P (4.41) .' 

wnere ë = lx. y. ~IT 15 the v~ctor of Cartéslan velocltlfs and Il = [Pl, P2' P31 T is the 
. 

vector of hnear actuator rates The, differentiation of eq.(4.37) leads to the followlng 

Jacobian matnx: 

where 

(lI = :r - :r Q7 .....:·-t 3 cos (1)~ 
. \\ 

bl = Y - Y/li - 13 sin 07 

'" 

ct 'Pl] 
c2,' P2 

c3.' P3 

(4.42) 

( 4.43a) 

(4.436) 

(4.43c). 

and the ar:lgles 0 1 , for 1 = 1. 2. 3. are defined as ln eq. (4 6a-c) The derivation of the 

relauonsnlp ~~ween Cart~slan veloelties and Joint rates IS thereby completed . 
4.2.4 Acceleration Inversion 

The differentiation of eq. (4.41) leads to the equatlon relating Cartesian acceler-

ations with joint accelerations. Again. we.obtain: 

(4.44) 
• 
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where c = [x. ij', 6]T i'S' thE! vector of Carte~ian accelerations and il = liit- jJ2- j;31 T is the 

-vector of Joint accelerations. The time derivative of' the Jacobia.n math)\,; j. IS obtained by 
, 

difTerentlatlon ,of eqs (4'4~) and L443a-c). Separatmg the dlfferent tèrms. we can write 

where ~. 

J = J1 J2 

\J 
(4.450 ) 

[ Al 
Hl 

{'1 1 
J1 = .-\2 8 2 ('2 ~ (4.45/1) 

..13 1:33 ('3 

and ., 

(4.45(' )-

wlth 

1 
Al =-(x+ '3<])SIfJ61 ) 

Pt 
1 

Et =- (y - 13tP cos !Pl) 
Pt 
1 

Cl =-(xl) sm 4J1 + (x - xm)l) 4> cos f!J, 
Pt 

- yb cos <])/ + (y - Y"1)'3~Stn dJ,) 
1 

Dt =2(01{Jt) 
Pl 
1 , 

El =2 (btP,) 
P, 
1 

FI =2 (Ct Pl) 
P>t 

which completes the accèleration inverSion 

4.2.5 Singularity Analysis 

(4.46b) 

(4.46(' ) 

(4.46'/) 

(4.46" ) , 

(4.46/) 

The smgulan~ies of the planar manipulator with pnsma'tlc' actuators are now 

derived. Since the expression of the Jacoblan matrix of this mampulator has similaritles 

with the one of the mampulator with revolute actuators .• t IS expectedlhat the singularitles 

will occur in co~figurations of the same type. 
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4 ANALYSIS OF PARALLEL MANIPULATORS 

First type of singularities 

If we assume that the pris ma tic aetuators of the manipulator have an Infinite 

.range of motion. the result IS an infinitely large workspaee and the first type of singularities 

occurs only when one of the aetuators has a Jength of zero. I.e .. 

PI = 0, l = 1 or· 2 or 3 (4.47) 

From eq (4 42). It 15 readlly seen that this situation produces a Jacobian matrlx whose 

determmant tends to mfmlty This is so beeause the direction of the pris matie joint i!; 

undclmed Ijthese configurations 

However. In a real manlpulator .. the aetuators have a fimte range of motion. i.e. 

Pmtn ..... 1 Pt < Pmax (4.48) 

and where Pmtn IS. In general. different from zero. In thls case. the flrst type of singularities 

\2:-;,:,ha ppens when one of the actuators reaches one of its limlts. i.e .. 

Pl = Pmtn or Pt = Pmc;x, t = 1 or 2 or 3 (4.49) 

whlch corresponds to the limit of the workspaée Smce one of the actuator5 cannot move 

further I~one direction. a certain set of gripper v,eJ~e5-pure rotations about an arbitrary 

pOint of a line orthogonal to the Ith leg and passlng through the point of attaehment of , 

that leg to the grlpper-cannot be produced. 

Secon~ type of singularities 
t 

For purposes of analysis of the second type of singularities. we defi e a set 

of three two-dimensional umt vectors which are. respect~yely. orthogonal to the thre hnes 

conneeting the centroid of the gripper to the points of attachment of the legs to the g ipper. 

These vectors are given by 

[
sin cp, 1 

Ut = _ cos 4>\ ' l = 1.2,3 ( .50) . 
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$fixed Jomt 

______ f .......... _____ _ 

Figure 4.7 An example of the second type of slIlgularity for the planar three-de).\ree 
of-freedom parallel m3nlpulator wlth pnsmatlc actuators 

1 -

Srmllarly. we defrne a set of three vectors connecting the centrord of the gripper with the 

fixed prnned Jornts as 

- [X-Xml VI -; • 
y - Yt)! 

1=1.2.3 (4.51 ) 

Usrng these defrnrtions. we can express th"e ele~ents of the thrrd column of the Jacobian 

matrrx as 
13 

.J t3 = - (u1 • v'(). 
• PL 

1 = 1.2.3 (4.52) 

Therefore. when vectors Ut and v1 (i = 1,2,3) are orthogonal. i.e .. when the three lines 

along thèiegs ir,ltersect at the centroid of the gripper. the last column of the Jacobran matrix 
, , 

vanishes and the determinant vanishes. The nullspace of the Jacobian matrÎx is spanned 

by vector 100 1] T. which means that Cartesian velocities assocrated with pure rotat ions of 

the gripper about its centroid will produce zero velocities at the actuators. The resulting 

confiwration is shown in Fig. 4.7. 
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4 ANALYSIS OF PARALLEL MANIPULATORS 

As in thé case of the manlpulator wlth revolute actuators. there eXlsts, a second 

type of conftguration whlch will cause the second type of smgulantles. Indeed. when ail the 
• 

'legs are parallel. the second column of the Jacoblan matnx IS proport1Onai to, the flrst one, 

whlc'~ results ln a singulanty The proof of thls f act '-Yas already glven ln Sectl~n 4 1 5 

The'îSet <;>f Carteslan veloclties that produce vanlshlng J,omt rates 15 glven by the set of .e,ure 

translations along a directIOn orthogonal ta the legs 

Third type of singularities 

<-The conditlon on the kmematlc parameters of the manrpulator that are reQulred 
" 

for the thir:d type of smgularltles to occur IS now glven as''':' 

/ 
(4.53) 

ln other words. the gripper tnangle has the same dimension as th1 base triangle. Therefore; 

if the three legs are extended to the same length and are ail parallel to each other. I.e : 
" 

Pl = P2 = P3 and <p = 0 ( 4.54) 

then the four-bar ImkaE"e AIl ABA12 IS a parallelogram and pOint c: of Its coupler will trace 
" 

a circle of r,adius P, and centred at pOint A13 The resulting Imkage, whlch is shawn m 
, 0 

Fig 4,8 can then undergo finlte motIOns white the actuatÇ)rs are locked 
"0 

4.3 Spherical Three-Degree-of-Freedom Manipulator 

Prevlous research on parallel manipula tors has' been contmed. almost exc{u-

sively. to the consideration of planar and spatial ktnematlc chams' while spherical parallel 

maniputators have received litt le attention As a matter of> facto the only' referenc~ that 
i 

the author coul_~ find on a spherical ~arallel manipulator is (Asad a a~d Cro Grantto 19,85), 

where a mechanlsm similar the the one stu.dred here is bnefly mtrod ced. A sphericaJ par-
• -1'"' ~-I 

allel man:pulator could be applied as an ;~i~ntation wnst in robotles'. -~plieat,ons outslde Ç} 
" 1 \ • 1 

of robotics. that could be mentioned. are mechanisms for the Orientation of machine-tool 

1 

, 
, '/ 

, 1 
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• 
i 

1 

,1 Ml 

---------, 

~------itJB 

1 
1 

1 

1 

~-----------------------------------

/ 

Figure 4.8 -=F-hlrd type p( slngulanty for .the planar 'three-degree-of-freedol11 parallè~ 
manipulator wlth prismaflc actuators 0 

beds and workpieces. solar panels. antennas. etc. H~nce the motivation t~ study this type: 

of kinematic chains 

A spherical parallel manipulator IS represented in Fig 4,9, ail of whose joints are 

of the revolute type. and the three motors M 1 ... \1. 2. M 3 are flxed. The mampulator conslsts 

of a kinematlc chain wlth three closed loops, namely .\111).'113 E.H 2, .~f2/JïJ(' FA/3. and 

M3FCADM1' and the gripper IS ngldly attached to trtangle A/If' Agilm, only two of 

the ioops are irydependent For reasons that were explamed ln Section 4 1, a symmelric 

layout has beln chosen here, By. symmetry. then .. the axes of the motors will be 10c..Jted 

in a common plane. mtersecting a, pOint deflnlng the centre of the sphencal manlpulator 

fy1oreover. the JOints attach~d to the gripper ,have the same relative Orientation. and the lmk 

angles will 'be the same for each leg. i.e .. 

These ~ssumptions will be used throughout. 

4.3.1 Inverse Kinematic Problem 

e Since the spherical manipulator is aimed at orienting a rigid body 'in space. 
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, . 

t U3 

.. 

Figure 4.9 ' Spherical three-de'gree-of-freedom parallel manipulator 

the Cartesian coordinates of the gripper are given by Îts onentation only (with respe.ct to a 

reference configuration CO), wl}ich can be described by a rotation tensor Q or. alternatively. .t" 

by the linear vector and scalar Invariants of this tensor (Angeles 1985). which are' defined 

as follows: 

where e is a unit 

v ' 

o q = vect(Q) = e Sin t1J 

tr(Q) - 1 
qÔ = = cos dJ 2 .. 

vector along t~axis of rot~tiOri a~d 

(4.56a) 

(4.56b) 
, 

<p is the angle of rotation. A 

-:èJiscussion on the linear Invariants is presented ln Appendix B. These invariants are related 

through 

(4.57) 

( 

The inverse kinematic problem for this manipulator consists. then. of finding 
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-the motor angles corresponding to a glven orientatiop,.;.~l the gripper. The solution of this 

problem contains eight branches. I.e .. two branches per leg. since the solutÎons ·for the input 
) , - ~ . , 

motor angles. °1.°2 .°3. are decoupled. The situation is simllar to the one encounfered in 

the case of the planar manipulator wl~h revolute actuators except that. in this case. cath 

of the legs can be thought of as il spherKal four-bar mechanism 

-Let us derme U1 as a Unit vector along the axis of ~he ith' inp~r. ilnd VI ,1S 

'a unit vector along the aXIs of the revolute jomts connecting the gnpper and the adjélccnt 

--'-lTnk (Fig. ~.10). for l = 1,2,3 . 

.. 

1 
f , 
1 

1 

1 Ut 
1 u2 
1 '-

1 
1 

1 
1 
1 
1 
1 • 
1 

Wl i 

---~-~--------- -

Figure 4.10 Definition of the unit vectors UI ' VI and W" for 1= 1,2,3 

, , 

Moreover~ let us, de~ote by Qi and 0:2 the link\anglet and cho~ the reference 

configuration as the one in which U1 = vt fou·= 1.2,3 (Fig. 4.11). 
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1 
,1 

1 

I-
I 
j 

Figure 4.11', Reference conf/gurat/oll for the spherical three-degree-of-freedom par­
allel manipulator , 

We can define another set of Unit veGtors w1 ' for l = 1,2,3. along the axes of 

the intermediate revolute pai~s of each leg These are glven by 

[ 

c~s 'h cos ()t ~m al + sin ~1 cos al J 
w t = sm 'h cos 01 Sin al - cos 117 COS al . 

sm 01 Sin fi 1 

2 = 1,2.3 (4.58) 

where 

'\,J 111 = 7[/2,112 = -Sr./6, ~3 = -n: /6 " (4.!59) 

and 01 is the angle of rotation of the lth motor where we have chosen 

(4.60a) 

or. explicitl~, 

Ul, [ -1 '2 J [ -1 '2 J "t2 u3 = - 'v~i/2 . 
• 

Ut = u2 = (4.60b) 

The solution to the inverse kinematic problem IS then obtajned by writing the cJosure 

equations as follows: 
J' 

(4.61) ~ 
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which. for e.ach leg. leads to a quadratic equation of the form: 

AiT12 + 2Bt T1 + Ct = O. t = 1,2.3 (4.62) 

where 

- and 
n 

At = (sin 77tVtl - COS11t'L't2)COSQl - (COS11tV~l +sin 11tVt2) sin 0'1 - cosu2 (4.63/~) 

(4.63(') 
-

Ct = (sin 77t Vt 1 - cos 11t vt 2) cos Ql + (cos Tlt Vtt + sin 11t tlt2) Sin Hl -- COS n2 (4.63d) 

Vt ) being the Jth compone nt of vector Vt. The solution of the Inverse kinematic problem 

is therefore completèd by solving the quadratic equation above for each of the legs. whlch -

leads to: 

(4.64) 

The spherical parallel manipulator mentioned in (Asada and Cro Granlto 1985) 

exhibits a kinematic structure slightly different from the one shown in Fig. 4.9. Indeed. in 

the former arrangement. the three powered revolute joints are mounted on a c.ommon axis, 

i.e .. uSlng concentr'ic shafts. while the rest of the structure remains essentlally unchallged, 
-The equatlons for the solution of the Inverse kinematlc problem ha\1e to be consequently 

modifled. We now have: , 

_ _ [COS (J7 Sin Qi] 
J W t = sin (JI sin Ql . 

- cos Ql 

z=1.2.3 • 
(4.65) , 

since the shafts of the three motors are now aligned with the unit vector: 

5 = [0, 0, lIT; , (4.66) 

Using eq.(4.61). a quadratlc .equation similar to the one given in eq.(4.62). i~ obtained wlth 

coefficients At. Bt and Cl defined as follows' 

(4.67 a) 

(4.67b) 

(4.67c) 
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the solution' of which is obtained using eq, (4,64). 

4.3.2 --Direcl Kinematic Problem 

The solutIon of the dIrect klnematlc problem for the spherical manipulator can 

be derived uSlng an ap~roach slmllar to the one used for the planar mampulator The 

rèasonJng allowlng us ta \establish the number of expected solutions can be repeated ~ere 

by replaçlng planar four-~ar linkages wlth sphencal four-bar linkages However. slnce Ithe 
1 l _ ~,. 

equatlons describmg the motIon of a pOint of the coupler of a sphencal four-bar mechanlsm 
, 

• take on rather complicated forms. the formulation denved here for the numerical solution 

of the direct klnematlc problem IS slightly dlfferent 

First of ail. when the Input angles are known. the vectors along the mtermedlate 

joints ol each of the legs w1 , 1 = 1. 2. 3. are r~adily computed from eq.(4.58). or\alternatlvely 

from eq.(4.65). If the manlpulator nas the klnematk structure presented in (Asada and Cro 

Granito 1985). Therefore. the equations' to be satisfled are 

1 = 1.2.3 . 

(4.6~a) 

(4.68b) 

(4.68c) 

wryich thus lead id nlne equations in nine unknowns. 1 e . th~ three components of each of. 

the three vectors VI' 1 =-t. 2.3 where three o~ the equatlons ar~_, hnear The solutIon of 

this problem can be computed usmg. for Instance. the Newton-Raphson method Once the 

three vectors v;. 1 = 1. 2. 3 are obtamed. the rotation matnx Q describmg the onentatlon 

. t e gripper can be computed usmg. for Instance. the procedure descnbed in (Angeles 

1986b). An example IS shown ln Tablé. 4.1 where the six solutIons of the direct kinematlc 

oblem for a partlcular confIguratIon are given. 

4.3.3 

The definition of the Jacobian matrtX of the spherical parallel manipulator is 

111 

~. 

.. 



) 

1 

o 

4 ANALYSIS OF PARALLEl MANIPULATORS 

Solution # 1 2 1 3 1 4 1 5 1 6 1 

vl~ 
, 

.407 .149 1 .963 l -- .560 ! - .244 l .980 1 _ -------~-_M ____ I- _ ~ _.~ ~ 

1 
1 

.197 vlu .588 -.202 1 -- .030 1 .829 .060 1 -
, 

- - --r---.---L---. ___ L ______ 

vl.:- -.699 1 .968 -.269 1 .000 1 .968 1 .000 
----- ----~---- -, - - --- -

V2 - .101 .455 .713 '.438 .714 .319 
1-----.------ -----.- .- . -._-- -+-- -- - -- -

V211 230 849 .059 . 899 .035 .948 . 
------- -- ~-- - -- - . - -. --- -

V2.:- 968 269 .699 .000 .699 000 
.------- ---- -- -- -- - . - "' 

, v3- .508 .307 250 .998 .959 .661 
- ---- .- - - .- - , , H. -

v3l/ - .818 .646 - .028 .070 .094 .750 -- ---- - . - - -- -

v 3.:- -.269 -.699 .968 .000 .269 .000 

Table 4.1 The SIX solutions of the Inversc klllcm.llle problcl11 lor .1 <;phl'IIC,ll Ihrel'­
degree-of·freedom parallel manlpulator wlth "1 = :; 3 .1IId "2 = 1r: 18 whcn ' 1 = 
"2 = /'3 = 30-

simllar to the. one used for the planar manipulator. 1 e .. It IS deflned as the matrrx repre-.. 
senttng the transformation ma pp mg the Carteslan velocitles mto the jomt rates. This i~ 

written as 

J",,' = 0 (4.69) 

where w is the angular velocÎty of the end effector and 0 IS the vector of açtuated joint 

rates. The lacoblan matrl; can be found by differentiation of both 'sides 01 eq.( 4.61}. whlch 
; 

leads to' 

(4.70) 

Now, the followmg relations are mtroduced' , 

(4.71a) 

and 

(4.71b) 

with 0 defmed as the followmg skew-symmetric matrix 

(4.71r) 

for any a. Thus. 
-

vect(-O) = "",' (4.71d) 
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4 ANAL YSIS OF PA~AllEl MANIPUlATORS 

We 'now write the time derivatlve of vectors w 1 as 

(4.72) 

Moreover. the differentlatlon of both sides of eq.(4 71a) leads to the followmg. when 

eq.(4.71b) is used. 

(4.73 ) 

Therefore. eq.(4.70) can be rewrrtten as. 

(4.74a) 

or 

(4.74b) 

. which leads to 
. (W) 'v ) . w 
fJ - t t 

t -
(Ut X wt ) • v1 

(4.75) 

• The ith row of the Jacobian. J;' can then be written as 

(4'.76) 

which completes the velocity InverSlon-

It is pOlnted out that the essence of the denvatlon given above Îs a/50 va/id for 
• the kinematlc structure of, the sphencal manlpulator studled ln (Asada and Cro Granlto 

1985). However. a few changes ln the expressions anse Indeed. eq (4.72) has to be 

rewritten as 

1 [-smfJ1 sln01]" 
(ioN l = cos 81 sin Ql =: S x W 1 

1 < 0 . 
(4.77) 

< 

and the ith row of the Jacoblan matrix then becomes 

(4.78) 
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4.3.4 Acceleration Inversion 

, 
The acceleration equation is pbtained by ta king the ti 

of .. eq.(4.69). which leads to 

(4.79) 

where ail the entities are known except for the time denvative of the Jacobian matrix. 

which can be obtained by differentiation of both sides of eq. (4.76). The ith row of matrix 

J. denoted by k;. is then written as 

where 
J 

and 

(4.8011) 

( 4.80b) 

(4.80c) 

The time derivatives of vectors vt and W t can be obtamed from eqs.(4.72). (4.73) and 

(4.77) . 

The equivalent expression for the kinematic structure presented in (Asada and 

Cra Granito 1985) is obtained by replacing vectors Ut by vector s in the above equations. 

4.3.5 Singularity Analysis 

First, type of singularities 

The fjrst kind of singularities is known to he on the boundary of the workspace 

and appears whenever det( J) -+ 00. The conditions under which this type of singularities 
- - . 

arises can be obtained from the expression of the Jacobian. i.e .. eq.(4.76) which produces: 

(u~ xwd'Yt=O, i = 1 or 2 or 3 (4.81) 

, 
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4 ANAL YSIS OF PARAlLEl MANIPUlATORS 

Equation (4.81) states that vectors Ut. vt • and W 2 are coplanar. 1 e . that 'thé corresponding 

leg ;s totally unfolded or folded. In the case of the seéond kmematlc arrangement (Asada 

and Cro Granito 1985). vector Ut IS replaced by vector S ln the above expression When such 

a configuration IS attained. a certain set of velocltltes of the gripper cannot be prÇ>duced 

This set of velocltles corresponds to the motions of the gripper that mvolve a veloclty of 

the POint of attachment of the fully extended or folded leg to the gripper ."along the direction 

of the leg. 

Second tY~e of singularities 

; ~ . 
The second type of singulanties-which occurs when det( J) = O-appears ln 

configurations ln whlch the different motor rates are not mdependent T-hls type of config­

uration should be avolded for the mampulator is not controrlable in such a configuration 

An addltional proof of that IS now glven 

If we regard the manipulator as a control system where the orlentatlo.n of the 

gripper is the state va~iable vector an~ Ô the input variable vector. then eq.(4.69) can be 

rewritten a" 

.;.: = KU (4.82) 

where K = J-l. Moreover. usmg the followmg relation between ' ... ; and ~ (Angeles 1985) 

~ = A'..J..' (4.830,) 

where 

A = [~(1trQT- ~)! 
-q J 

P(4.83b) 

- eq.f4,~2) can be rewritten in standard state-varlable fOTm as 

~ = AK8 (4.84). 

where ). is the four-dimensional state variable and iJ is the three-dimenslonal input variable . .. 
Therefo.re. for this system. the 4 x 12 controllabihty matrix (~onham. 1979) is glven by 

R = [AK,O,O.O] (4.85) 
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4 ANALYSIS OF PARAll.EL MANIPULATORS 

where 0 IS a 4 " 3 zero matrix. If A IS of full rank. which is the case If the angle of rotation. 

(/). is different from 1T. then rank(J\K) = rank(K). The rank of the controllability mntnx 

R' IS then equal to the rank of K and hence the system becomes uncontrollable when K 

becomes singula~ 

. 
For the spbeflcal mampulator. the conditIOn under whlch det(J)=O C<lll bc de 

rived from expression (4 76) obtallled for the Jacoblan Smce. by deflnltioll. veltors w, .Hld 

v; cannot be Identlcal. then thls condition is that the tlnee veetors (w . v,. 1 = 1.2.3) 

are' -cbplanar Smce vl' v2 and v3 are coplanar. thls conditIOn states that the thret' pl,lne~ 

deftned. resp{ctlvely. by thè pairs of vectors (vt • W 1 ). for 1 = 1. 2. 3. elther have é1 common 

intersectIOn a\ong an aXIs or are identlcal. This corresponds to configuratIOns in whlCh the 

hnks of dimension 02 either he on the plane of the grtpper or are orthogonal to thls plane 
. w 

It IS pOlnted out that thls result IS ln perfeet agreement w\~h the one obtatned ln St'ctlon 

32 3.3 wlth an alterna te approach 

Third type of singularities: 

Two sets of sphertcal manlpulators for whlch the thlrd type of smgularttles can 

occur are Identlfled here. the second one berng a subset of the flrst one 

Flrst. for the set of spherieal manrpulators havllig 01 = (12 the configuration 

that we defmed as the reference cQnflguration IS attalnable and It constltutes il special CilSt' 

because condition (4 81) IS verrfl~d for ail three legs, Therefore. In thls case. any motion of 

the Input links will not affect the gripper since the former are Just rotatmg. -together wlth 
\ 

the intermedlate link. around the aXIs defrned by vectors u, = v,, leavlng the gripper at 

rest The rank of K IS then equal to zero ln thls configuration. whlch means that system 

(~ 84) IS completely uncontrollable. 1 e .. none of the three (arteslan components of _' Ciln be 

produced ln the said configuration, Moreover. If 01 = 02 = 03 = 0 or If °1' = 02 :;:= Q3 = Ïo 2. 

from the discussion above. the first and the second type of singularities meet 

Furthe,rmore. if we have. more speclfically. Ül = (12 = Ji /2. ail the configuratlon's 

for whlch vi, v2, v3 are coplana'r to ul' u2' u3. are singular. This set of configurations Îs 
1 
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4 ANAlVSIS OF PARAllEl MANIPUlATORS 

characterized by the fact that the gr'ipper can be rotated around the aXIs described by the 

unit vectar (0,0, l)T without movmg the mput links. 

ln order ta illustra te the foregoing comments. a plot of the reclprocaJ of tho/ 

condition number for a full rotation of the gripper of a spherical mampuJator having al ~ 
t.. , \ 

a2 - rr /3 is glven ln Fig. 4.12. The reciprocal of the condition number can be thought " . 
.... 

of as a measure of the 'distance' of the Jacobian to a singularity. This concept will be 

c1arified in Chapter 5 

l 

1. 

Figure·4.12 ReciprocaÎ of the condition number for a full 'totati~n of the gripper 
of a spherical manlpulator with Ql = C'.2 = 1r /3. The axis of rotation is along 

e = 100111' 

lb 

4.4 Spatial Three~~reedôm Manipulator 
.' 

A spatial three-degree-of-freedom parallel manipulator. is shawn ln Fig, 4.13. 
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4 ANALYSIS OF PARALLEL MANIPULATORS 

The movmg platform is attached to the base tink by three legs which constitute kinematic 

chams of the RPS type. Only the pnsmatlc joints are actuated. Therefore. by varying the 

length of each of the three legs. the position and orientation of the platform is modified. 

However. sance the platform has only three degrees of freedom. the six coordinates defining 

ItS position and Orientation are coupled and cannot be speclfjed arbitrarily. 

,----------------------------- --- --------
-1 

i 
z 

1 

',-1 ___ _ 

Figure 4.13 Spatial three~degree.of-frcll.dom parallcl manipulator 

ThiS type of ma.o.ip~Jator has been proposed by Hunt (1983) and revisited by 

Lee and Shah (1987) and Waldron et al. (1988a & b). In the la_5_t two references. a ten­

degree-of-freedom manipulation system cal/ed AR TlSAN. which IS a hybrid serial-parallel 

manipulator. is dlscussed. The paraI/el I}art of AR TlSAN is of the type discussed here. It 

~ IS termed, a micro-manipulator becalise of its relatively small physical dimensions and it is 
t • 

intended for fine accurate motion. 
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4 ANALY51S OF PARALLEL MANIPULATORS 

The potential applications of. the spatlal- mampulator de$cribed here anse' when 

the demand on workspace and maneuverability is low but the dynamic loadlng IS severe and 
i 

lligh speed and precision motIOn are of pnmary concern For instance. it could be used as 

a regional structure for a mampulator which would be completed by mountmg a sphencal 

parallel manlpulator of the type descrlbed ln Section 43 on the pl!tform. thereby leadmg 

to a hybnd structure However. for thls type of applJcàtlon. and whenever It 15 mtended to 

use the spatial three-degree-of-freedom mampulator as a positlonlng devlce. It IS necessary 
, .. 

to solve the Inverse kJnema~ problem where the positIOn of a- pOint of the platform-for 

Instance Its cent~old-IS Pls~ribed and It IS deslred to compute the correspondmg aètuator 

motions. ThiS problem remams unsolved in the reference~ glven above slnce. in ail of them. 

the Carteslan coordlnates speclfied for the platform contam at least one variable describmg 

the'onentatlon The solution of thls problem IS glven here and It will be shown in Chapter 

.' 5 that ft leads to a simple descrrptlon of the workspace of the mampulator 

4.4~1 Inverse Kinematic Problem 

The notation used to describe the kinematlcs of the manlpulator IS now intro­

duced, Refemng to Fig. 4.13. we conslder a coordtflate system flx€d to the base of the 

màl'lipulator wlth ItS :r and y axes Iymg ln the plane of the base and ItS :; aXIs normal to 

that plane, Moreover. the x aXIs is placed along the line Jomlng the centroid of the base 

triangle-which IS the ongm of the coordlnate system-to the revolute JOint at the base of 
1 

the first leg. Thel'efore. if we denote the position vectors of the points of attachment of 

each of the three legs to the base by 51 = Ix l • y? :;~]T. we will have. 

51 = Du? (4.86) 

where L IS the distance from the centrold of the .base to each of the legs and the unit 

vectors u1 :, = 1.2.3 are deflned in eqs.(4.59) and (4.60a). Moreover. we defme three 

coplanar Unit vectors VI as the vectors àttached to the movmg platform am~ directed along 

the three lines connectmg the centroid of the platform. P(x. y. z). {AJlth the spherical JOints. 

As in the case of the planar and sphencal manipulators. symmet~y IS al~ )Ssumed here so 
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4 ANAL VSIS OF PARAllEl MANIPUlATORS 

the base triangle and the platform are equilateral triangles. The exteOnsion of each of the 
~ 

f 

three actuators is glven by Pl' 1 = 1. 2. 3. and -the position of the three spherical Joints 15 

denoted by s' = [T', y', =,]T. Similar to the ,case of the sphencal manipulator. the reference 
1 l 1 l, .J f ~" 

onent'!tlon for the platform 1S chosen as the one for wh,ch v :;;: u
1

• 1 :;;: 1. 2.3. Thereforf;", 

If Q den?tes the rotation tensor representlng the attitude of the platform with re~pect to 

the reference frame. we have 

? = 1. 2. 3 

ln what follows. we will denote the (l, j) component of tensor Q. In the given reference .. ' 

frame. by qIJ'A 

As specifled in th~ Introduction of this section. Il 15 now desired to solve tl~ 

Inverse kmematlc problem for the posltioning of the platform. The tnp!Jt variabjes are then 

the coordlnates glVlng the position of the centroid of the platform. '1 e .. .c. y. and ::, and 
-. \ 

the corresponding values of the actuator extensions Pl' P2 and P3 are the output variables 

to be computed. If we assume that the orientation of the platform IS known. we can wnte. 

[if ] [ ~] + Lv, . 1 = 1. 2.3 (4.88) 

where , IS the distance between the centrold of the platform and each of the sphencal jOlllt~ 

and VI is giVen by eq.(4.87). The extensions of the actuators are then comj:>uted as the 
-. 

distances between the points of .attachment on the platform and the base. I.e . as 

1=1.2.3 (4.89} 

whlch leads to a unique solution for each of the legs. 

" 

However. before thls solution can be used. we have to 'compute the rotation 

tensor Q corresponding to a glven position of the platform Because of this intermediatc 

step. the inverse klnematic problem. as defined here. might have multIple solution!', as Will 

be shown later . . 
- ,'l, 
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4 ANALYSIS OF PARALLEl MANIPULATORS 

The structure of the manipulator allows us to wr!te sorne constramt equations 

that will' lead to the derivation of the rotation tensor. Indee~ the revolute joint at 

the base of each' leg. the tip of the leg. i.e .. the spherical joint. Js constraine~ to move on a 

plane orthogonal to the axis of rotation of the, revolute. This leads to a constramt for each 

of the legs. namely. 

-'~ :1 

" Y~ = 0 

V3X2 + Y2 = 0 

V3X3 - Y3-= 0 

Moreover. using eqs.(4.87) and (4.88). w: obtain:' . 

y~ = y + lq21 

x2 =: x + 1(-lj2qU + V3/2Q12) 

Y2 =y+l(-lj2q21 +V3j2q22) 

<> x~ = x + l(-lj2Qu - V3j2q12) 

Y3 ~y+l(-lj2q21-V3/2q22) 

/1 
(4.90a) 

~.90b) 

(4.90c) 

(4.91a) 

(4.91b) 

(4.91c) 

(4.91d) 

(4.91e) 

Substitut'jon of the foregoing expressions. (4.91a-e). into eqs.(4.90a-c). _Ieads to: 
, 
" 

«' /' 

• q211 = -yll 
J. 

.j3 ( - qu + V3Q12 + q22) = - 3y - 2V3x 

V3( -qu - V3q12 + q22) = 3y - 2V3x 

which can be rearranged to give: 

q21 = -yi! 

q12 = q21 = - y / 1 ~ 

Qll - Q22 = 2xjl 

(4.92a) 

(4.92b) 

(4.92c) 

. (4.93a) 

(4.93b) 

(4.93c) 

,Furthermor-e. since the rotation tensor Q is orthogonal. its components are constrained by , 
, the following: 

3 

,\ Lq~J = 1, i=1,2,3 
1 

,1(4.94a) 
3=1 1 

1 
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1:;=). i,j = 1.2.3 

If we now conslder the first two rows of Q. 'substjtution of eqs.{4.93a&b) into eqs.(4.94a&l,r 

allows us to wnte: 

- qu y 1 - Cf22 Y 1 + lI13 </23 = 0 
1 

(dl + qf3 + (y ''1)2 = 1 

q~2 + ~~3 + (yln2 = 1 

(4.9511 ) 

(4.95/') 

(4.951') 

whlch. together with eq. (4 93c). constltutes a system of four nonlinear equations in four , 

unknowns. q11' q22' Q13' Q23· ln ord~r to solve this system. we fi.rst substltute eq.(4.93(') 

into eqs.( 4.95a&b) to ~lImlnate qu Then', expressions for qi3 and q~3 as functlons of lIn 

only: are derived from eqs (4 95b&c) and substltuted into eq.(4.95a). This results !Ilto li 

quartic equatlon ln Q22 that can be wfltten as 

where 

with 

- t. 

A =4X 

B = 4.X" 2 - 2}" 2 - 2 

ç = -4X (1 + }'"2) 

D = y4 - 2y2 - 4X2 + 1 

-,~ X = xII and • }C~-= yll 

(4.9611) 

(4.96b) 

(4.96(') 

(4.96d) 

(4.96t'j 

(4.96f) 

The foor roots of thls equation. which are ail always real. can be found using the procedure 

described in Appendix A and c~n be wfltten in closed form as 

(q22 II 2 = J X 2 + Y 2 - X :t: 1 

(Q22h.4 = - y' X2 + y2 - X ± 1 

(4.97 (),) 

(4.97") 
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4 ANALYSIS OF PARALLEL MANIPULATORS 

However. because of the nature of the unknown Q22' we must have 

-1 ::: Q22 ::; 1 (4.98 ) 

Therefore. only 2 out of the 4 solutions are acceptable-the other 2 solutions do not f ail 
, 1 

lOto that ~ange-and they are glven- by. 

( 4.99) 

The value of ftll corr~sponding to each of these two ~blutlons IS obtarned from eq (4.93(') 

and hence 4 c;>f the entrtes of Q are known. 1 e .. Qll. Q12. q21 and Q22' The absolute 

value of ail the remaming components-I e . the last row and the last tolumn~Q-can be 

computed usmg the fact that the columns and rows of Q should have a Unit E~cI!Jean norm 

There wIll remarn a sign amblgulty on each of these -Quantltles but. as shown m Appendlx 

C. only two solutions for matrix Q can anse due to the constramts on the orthogonallty of 
\ 

the rows and columns of Q As a matter of facto It 15 also shown. in the aforementloned 

appendix that. when a solution for Q IS found. the second one can bë- obtained by changrng 

the signs of q13 ~ ?23. q31 and q32 

It fS pomted out that the two sets of two solutions each .. obtained by choosrng­

the plus or mmus slgn ln eq.(4.99). correspond to two different geometnc mterpretatlons 

Jo explain th.at result. we will defme a unGtor z' attached to the pla~form as' 

(4.100) 

This unit vedor is orthogonal to the plane of the platform and pornts along the positive 

direction of the :; aXIS ,when the platform IS m lis reference configuration 

It can be shown that the two solutions of the Inverse klnemàtlc problem obtarned 

when the positive sl~n is chosen in eq (4.99) correspond to configurations for which the 

following holds: 

(4.101) 

where ej = 10, O. l]T. i,e .. e3 IS a unit vector along the positive direction of the z ~XIS 

Hence. in these configurations. the upper face of the platform IS facing down.· Moreover. 
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1 

for these two solutions. we have 
! 

and 923 = 932 (4.102) 

whîch léâë:ls io 

vect(Q) = 0 (4.103) 

and the angle of rotation assoclated wlth Q is equal to 0 or 180 

On the other hand. the two solutions obttlll1ed when the negative sign IS chosel1 
c 

in eq.(4.99) correspond to configurations for which 

(4.104) 

I.e .. configurations for whlch the upper face of the platform IS facrng up, ln il practlclIl· 

situation. these would be the solutions of IIlterest For these two solutions. we have. 

and î 
(4.105) 

which may lead to any value for the angle of rotation However. we have 
" 

vect(Q) = m (4.106) . 

where a and b are arbltrary real numbers Hence. the lIXIS of rotation 15 alwéJYs contamcd 

rn the plane'of the base This is 50 because (112.15 <llways equal to 421' and hel1ce, the t/lIrd 

compo.nent of vect(Q). I.e .. eSIIl 7. valllshes. whlCh means that c Iles III the I.y plane 

1 

ln summary. the Inverse krnematic problem, as defrne.d here for pomt posltioning. 

leads to up to four solutions Two of these solutions correspond to configurations in which 

the platform 15 facmg down and the two rèmainmg ones correspond to configurations il! 

wh,ch the platform IS facmg up. J 

4.4.2 Direct Kinematic Problem 

The solution of the direct kinematlc problem, as III the case of the,other manlp­

ulators. necessltates the utilization of a numerical procedure. The formulation developed 
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4 ANAL YSIS OF PARAllEL MANIPULATORS 

here consists of considering the coordinates of the three spherical_joints as the unk,,!owns 

of the problem. This /eads to a system of ni ne equations in nine unknowns. i.e .. the coor­

dinates x'. y' and z'. for i = 1,2,3. The first three equations constraining these unknowns 
~ ~ ~ -. 

are eqs. (4 90a-c). whic~ state that the legs are forced to rotate on a fixed plane. The other 

equations are obtained by imposing the length of each of the legs. Pt. for l = 1,2,3. and 

by forcing the three spherical joints to remain at a constanf distance v'3l from each other 

This leads to: 

and 

Il St - lUt Il = Pt, 
\ 

. \ 

ils' - s'II!::: v'31. 
t J ' 

i ;::r"1,2,3 (4.107a) 

z',J=1,i,3 (4.107b) 

Furthermore. this system can be reduced. since the first three equations. i.e .. eqs.(4.90a-c) 

are simple hnear relatlonships and can be easily substltuted into the other equatlons. which 

then leads to a system of S4x equatlons in six unknowns. x~. x;. x~. z~. z~ and ?~. The 

resulting system of equations can be written as 

where 

il = (x~ - 1)2 + ZJ 2 - pi 
h = 4(x; + 1/2)2 + z~2 - P~ 

h = 4(X3 + 1/2)2 + Z3
2 

- P~' 

1 - ( , , ) 2 3,2 (' , ) 2 3Z2 
4 - xl - x2 + x2 + zl - z2 -

15 '= (x~ - X3)2 + 3X32 + (f~ - Z3)2 - 312 

16 = {x2 - X3)2 + 3(X2 + X3)2 + (Z2 - Z3)2 - 3/2 

(4.108a) 

(4.108b) 

(4.108c) 

(4.108d) 

(4.108e) 

(4.1081) 

(4.1~ 

which can be solved usmg. for instance. the Newton-Raphson method. Due to the nonlin­

earity of the equations involved. It is hard to predict how many solutions could be obtained. 

A reasoning similar to the one used for the planar three-degree-of-freedom mampulator could 

be used by virtually disassemblmg one of the spherical joints. The resultmg linkage would 
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be an RSSR linkage and the solutions of the direct kinematlc problem would correspond 

to the intersection of its coupler surface-obtamed !>y rotating the input link of the RSS/? 
J 

li.nkage' through Its range of mobillty and by rotating its coupler hnk about the axis COll· 

necting its .sphencal pairs. i e., exploit mg the two real degrees of freedom of the RSSR 

hnkage-wlth a wcle. In a three dlillensionai space An example of solution is glven III 

Table 4.2. where the Newton-Raphson method has been used ',md four different solutiolh 

were found by varylng the initiai guess 

Solution # 1 2 3 4 

x' 0.482 1 -0.080 1 0.607 , 0.560 '1 1 

x' ! -0.254 1 -0.275 1 

--f---- --
0.110 ; . 0.218 2 .- -- -- ---

x3 ' -0.243 ! -0.223 ; -0.187 J.- O·~Tl . 
-' 
"'1 1 1.082 i 0.523 1 0.113 1 0.112 

, 
1 

-r---- ---
_1 1.203 1 1.220 0.450 , 1.171 "'2 1 1 .-- -~~ 

.,1 
"'3 i 1.302 

1 
1.285 

1 
1.253 '1 0.401 

Table 4.2 Four solutions found to the inverse kinematic problem of il sPiltlill tlHec, 
degree-of-freedom parallel manlpulator with 1 = 05 and"",when 11 = 1 2. 1/2 = -1.3. 
1'3 = 1 4 . 

4.4.3 Velocity Inversion 

The relationship between the Cartesian and 

lator under study IS glven by the Jâcoblan matrrx. 

of the manlpu-

(4.109) 

where Ji = [~, y, .if and p = [Pl, P2' P3]T, ThiS equation IS obtained by differentiation of 

the solution to the inverse ktnematic problem glven in Section 4.4.1. We first take the tlme 

de'rivative of both sides of eq.(4.89) to obtain: 

i = 1.2.3 (4.110) 
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The expressions for the time derlvat!yes of the coordinates of the spherical jOints are thÊm 

obtained by differentiation of both sides of eq.(4.88} as: 

1 = 1,2,3 (4.111a) 

or. In component form. 

[ ~!] = m + 1 cos Î, [
qu] 
!i2l + 1 sin ~;I 

Cf31 ' 

(4.111b) 

where 

Îl=2(i-1)iT,3. 1=1.2.3 (4.111c) 

Moreover. the tlme derivatiV€s of the components of the rotation tè'nsor Q Involved in the 

foregoing equation can be obtamed by differentiatlon of eqs.(4.93a-b). (4.99). and (495b­

c). which leads to 

. x (xx + yi! ) 
qU = - ± 

l h/x2 + y2 

q12 = -Yll 

i/2; = - l _ ( XI + yi; ) 
el - 1\'.r2 +y2 

-1 (' . 1 q13 = - q11 qll + ql2q12 
q13 

-1 
-q23 = -(q21 q21 -t- qnq22] 

q23 

(4.Ù2a) 

(4-.112b) 

(4.112c) 

(4.112d) 

(4.112e) 

(4.1121) 

Th~n. substitution of eqs.(4.112a-1) into eq.(4.111b) allows us to rewritE? eq.(4.111b) as 

where 

., CF' . 
Zl = t'x + tY + z 

(4.113a) 

(4,113b) 

(4.113c) 

(4.114a) 
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:r 
Tix = -;::::;;:==~ 

V
l

X2 + y2 
y 

Tu =" --=~_:: 
V'X2 + y2 

(4.114b) 

( 4.1141') 

(4.1141/) 

(4.114,') 

(4.114fl 

(4.115a) 

(4.115b) 

and hence the ith row of the Jacobian matrix, f[. can be wntten as 

jl=![\l' À12 . (:':-Zl)]T 
Pl 

with 

(4.1160) 

( 4.116h) 

(4.1161') 

'and the velocity Inversion is completed. 

4.4.4 Acceleration Inversion 

o 

......... G The time derivative of eq.(4.109) leads to the expression relating the Carteslan 

.' and JOint acceleratlons. whlch IS wntte,n __ as 

p = Ji> + jp (4.117) , 

where the acceleration /vectors ,are defined as P = [Pb P2' P3f and il ,= [x. jj. :]1'. Ta 

complete the acceleratlon inversion. the tlme derivative o( the Jacobian matrix. i has ta 

be derived. This leads to the following expression for""k';. the ith row of this matrix 

, 1 . . 
., [\ À '\ ).. ., (" )JT (4118) 
""t = 2 Pt"tl - tlP,p Pt"t2 - t2PI' Pt Z

t - Pt Zl - =t . 
Pt 
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where the time derivative of the At' s have not been derived yet. They are obtained from 

eq.(4.116b&c) and can be wrÎtten as; 

, where 

with 

and 

• 1 • ·1 1 • 
Ad == (xz - xz)At + Atxz + (Yt - Y'IJBt 

"B ., (1 ) CC' , + 1 y? + El - Zt 1 + 1 Zt 

. , . . , , 
AI2 == (xt - xz)Dt + DIX! + {Yz - yt)Et 

+ ElY; + (z: - Zt)FI + Ftz: 

Ct = ±wI cos It (-ql1 /q3d + tl cos It (1 ± rx) 

± Wl sin It (-q22/q32) + t2 sin lt (-1 ± 'x) 

Ft = cosltl±w2(-QU/q3d ± rytl +t3J 

+ sin't[±w2(-Q22/Q32) ± ryt2 +t4] • 

(4.119a) 

( 4.119b) 

(4.120a) 

(4.120b) 

(4.120c) 

(4.120d) 

(4.120e) 

(4.1201) 

(4.121a) 

(4.121b) 

(4.12id) 

(4.121e) 

(4.1211) 
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4.4.5 Si!1gularity Analysis 

o · 

, , 

o 

First type of sing1Jlarities: 

Under the assumption that the linea,. actuators have an mflnlte range of motion. 

the first type of smgularitles would occur only when one of the-legs has a length of zero. 

1 e . 

1 = 1 or 2 or 3 (4.122) 

• 
This result IS obtalned from eq.(4.116a). whlch clearly shows that such a situation produces 

a Jàcobian matnx whose determlnant tends to inflnlty 

However. In a real manrpulator. the actuators have a flnlte range of motion. I.e . 

PmlT1 .; Pl '- Pm<JI, 1 = 1,2.3 (4.123) 

Il 

where Pmtn is. m general. positive ln thls case. the flrst type of smgularlties occurs when 

one of the actuators reaches one of ItS limits. I.e 

or Pl = PmlLT' 1 ::: 1 or 2 or 3 (4.124) 

whlch. again~ corresponds to the hmlt of th~ workspace 5mée one of the actuators cannat 

move further in one direction. a certain set of vel9cltles. correspondmg to that ,motion of 

the actuator. cannot be produced 

Second type ôf singularities: 

The second type of slngularities occurs in configuratIons where we can find a set 

of velocitles of the platform that produce vanishing jOint vè'locity vectors. In other words. 

this type of smgularities happens when there exists a set of veloclties of the paltform that 

will correspond to velocities of the spherical joints which are orthogonal to the leg to which . -
they are attached. 
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"Ii 
,- ---- --------------------------------

-~ 
z 

f 

Figure 4.14 Example of the second type of sin gt'fl..an t y for the spatial three-degree-­

of-freedom parallel manlpulator 

An example of thls is shown ln Fig. 4.14. where the first leg IS contained in the 

plane of the platform. Therefore. a rotation of the platforni around the axis connecting 

the spherical joints attached to legs 2 and 3 wIll produce a vanishing Joant velocity vector. 

Another example 15 represented ln F",g 4.15. where the who/e manipulator is contained 

in t~_e base plane ln that configuration. a translational veloclty of the platform along a 

direction perpendlcular to the base plane will produce a zero Joint yeloclty:vector 

Third type of singularities: 

For this type of manipulator. the thlrd type of s,mgularities occurs when the base/- .­

triangle and the platform have the sa me dimensions. Le .. when 1 = L. The first two kmds 

of singularities can then meet ""hen ail the legs have a length of zero but since this would 

not be possible in a real manipulator. this type of singularities will generally not happen. 
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4.5 

-'- z 

Figure 4.15 Example of the second type of singulanty forl(he spatial three-degrce­
of-freedom parallel manipulator 

SP~~I Six-Degree-of -Freedom Manipula tor 

A general six-degree-of-freedom paraI/el manipulator is shown ln Fig 4 16. Each 
. ",-

of the six legs connecting the platform to the base are kmematic chams havmg six degrees 

of freedom, i.e., they are equlvalent to a six-axIs manlpulator. This type of devlce has 

been the subJect of more mtenslve research than the paraI/el mampulators studied ln the 

preceedmg séctions of thls chapter because of ItS use as a fllght simulator. This application 

was suggested by Stewart (1965). although It would seem that the ftrst machine of th,s 

~ype was bu,lt by Gough in 1949 (Stewart 1965) and was used to test tires 

,~ 

However, only rather recently. namely. in the seventies. researchers started con-

sideril1g to use this k,nematic structure as a robotic devlce The idea seems to have been 

suggeste~ by Hunt (1978)-although Tinctale (Stewart 1965) had already suggested to 
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1 

platform 1 
1 0 

Figure 4.16 General srX"degree-of-freedom parallel manipulator 

use the platform as a machme tool-and it was further developed in (Hunt 1978. 1983: 

MacCaliion and Pham 1979: Yang and, Lee 1984. Mohamed and Duffy 1985-: Inoue et al 

1985. Flchter 1986. Merlet 1987. 1988: Reboulet 1988) and ted to r-obotlc systems based on 

thls archItecture such as. for instance. the SPACE-l system (Système POIgnet à Contrôle 

d'Effort) developed In~-France by CERT (Centre d'Et~des et de Recherches de Toulouse). --

HO,wever. In ail the aforementioned references .. only special cases of spatial six­

degree-of-freedom parallel maO/pulators are,consldered ln fact. the complex~ty of a spatIal 

paralleC manipulator can be described by the number of branches that can possibly be 

.obtained in the solutIon 9f the Inverse kinematic problem. ThIs number is glven by b6 . where . 
b denotes the number of branches for each of the chains constitutmg the legs. since there are 

" ~ 

six legs. The total number of branches for different c,ases of chains is shown- in Table 4.3. 
1 

ln the .:most general case. a six-degree-o'f-freedom seriai manipulator leads to 16 solutions-
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, 
(Pnmrose 1986: Lee and ~Iang 1988) and therefore: the fully-general parallel rnanipulator. 

may lead to roughly 16 8 million solutions. In ail the references mentÎoned above but olle. 

the slmplest case of parallel mampulator. ha"ing only one branch. IS considered It is only 

in (Inoue et al 1985) that a manipulator of the second type (two solutions per leg,) l!'t 

consldered and no reference was found where cases of greater complexlty are handled, 

b 11 

1 1 _---t--_. _____ ---
2 64 

---' ------.-
4 4096 

1 

8 1 262144 
1 ---

16 , 16777216 1 

Table 4.3 NlIl1lber of branches .( n) in slx·dc~ree·of·freedom slx.le~ parallcl manip· 
ulators as a functlol1 of the number of branches of each of the Ic;!,s (1,1 

~' 

4.5.1 Inverse Kinematic Problem 

T~e solution of the inverse kinematlc problem of a spatial. slx-degree-of-freedonl 

'parallelmanlpulator IS very slmrlôr to the solution of the same problem for a seriai six·axl'" 

manlpulator Indeed, when the pose-position and orientation-of the platform I~ gIVPI1,-
" 

the solution of the Inverse klnematlc problem conslsts of computlng the Jomt ,~oordln;:ltl!~ 

for each of the legs Therefore. the solutIOn of the Inverse klnematlc problem for CJch of 

the legs' IS analogous to the solution of the Il,!verse KÎnematlc proble,m of a seriai six-axIS 
--------mampulator. except that only bne or-the Joint coordlnates, on each leg, IS really required' 

for control ln general. however, the computation of one of the JOint coordlnates entails the 

computation of ail of them The solution of the inverse 'kll1ematlc problem for the par;jllel 

six-degreE!-of-freedom mal1lpulator IS thefeforê. In the most general case a repetltlOn (SIX 

_Jimes) of"the solutl~n of the: Inverse kmematlcs of a Six-aXIS seriai manlpulalor, The 

general numencal methods of solution of the Inverse kmematlc problem developed for seriai 

manlpulators (Tsal and Morgan 1985: Takano 1985. Angeles 1985: Gupta and Kazerounlan 

1985) are then also applicable to parallel man~pulators. 
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ln some particular cases. hke the Stewart platform. i.e .. case 1 in Table 43. the 

solut~n of the mverse kmematlc problem of a paraI/el six-degree-of-freedom man/pulator 

becomes very simple. It IS emphaslzed here that thls IS the case bec<luse e~ch of the legs 

of the man/pulator have a very simple klnematlc structure. whlch leads to simple elosed­

form solutions for the Inverse klnemat)c problem of the correspondlng seriai mampulator 

The kmematlc equatlons of such an arrangement ,can be found ln many references on the 

subJect ,They are Included here for qUick reference 
/ 

The term Stewart platform IS generally used to designate a slx-degree-oJ-freedom 

paraI/el manipulator of the flrst type ln Table 4,3. Le .. a manlpulator for whlch each of the 

legs I~ eqUivalent to à klnematlc structure of the 5 PS type It Îs pOlnted out that both 
<. 
~pherical jOints are not necessary and one of them 'can be replaced by a Hooke jOint. 1 e , 

two revolutes wlth Intersecting axes A manlpulator of thls type IS shown ln Fig 4 17 a. 
, 

where the notation used IS now descnbed. Agam. symmetry is assumed and the pOints , 
of attachment of the legs. i.e. the centres of the sphencal JOints. are located on the base 

and on the platform as shown ln Flgs. 4.17 b & c. I.e. on the clr<7umference of clreles of 

radii Rn (base) and Rp (platform). respectively The pOints of attachmeiii are grouped 

by pairs whlch are uniformly spaced along the clr~le .' The angles bet~een the pOints and 

the average pOSition of each of the pairs along the circle are glven by (J)B (base) and Op 
• J 

(platform) Moreover. the pOints of attachme.ht of the legs 6n the base and the platform 

are denoted by BI and PI' for 1 = 1.,. .6. respectlvely Furthermor~the position vectors 

of pOints Hl and 1)1 are glven by vectors b, and P1' for l = 1. ,.6. respectlvely. In a 

coordinate frame f,lxed ta the basë of the manipulator. wh de the position vectors of pomts 

PI in a coordmate frame hxed to the platform are glven· by vectors p~. for 1 = 1. .. 6 

! 

/ We can then write 

i == 1, ... ,6 (4.125a) 
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~--------------------------------------------------------, 

where 

z 

E2 Y . P2 Y 

~ 
BI \ 

\ Pt 

x 

1 Po 1 
1 

/ 

./ 
8 5 --, "( b) 

Ps (c) 
----~ 

r.~ 

Figure 4.17 (a}Stewart platform (b)position of the joints on the base (c)positiol1 
of the joints on the platform. 

'h 4>8 
JJ2 27f /3 - 4J8 

(J= 
(J3 

= 
27f/3 + 4J8 (4.125b) 

(J4 47f /3 - 4J8 
(Js 47f /3 + 4J8 

'~ .1 86 -(/)8 
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4 ANALVSIS OF PARALLEL MANIPULATORS 

and ' 
,[ Rp c~s rJz ] 

P~ = ,Rpslnrh , 
-0 

z = 1, ... ,6 (4.126a) 

Moreover. 
7]1 (j) P 

"2 2" 3 - op 

'7 == '/3 :_ 2rr '3 + op (4.126b) 
'74 4" 3 - op 

7]5 4,,:3 -1- 9 P 

'/6 -0 P 

We denote the pOSitIOn vector of the centrold of the platform by x. white the rotation tensor 

defining the orientation of the platform by .Q. The posItion of each of the sphencal joints 

attached to the platform 15 therefore wrrtten as. 

Pl = x + Qp~. (4.127) 

Subtracting vector bl from both sides of eq.(4.127) leads to 

i = 1. .... 6 (4.128) 

Now. taking the Eucltdean norm of both sides of eq.(4.128). we finally derive 

-- Il b ' + Q 1 b Il "- 1 6 ~ ~ 1 Pl - ~ 1 = X P, - l 1 " Cl , l = , .. , > (4.129) 

where Cl is the length of the lth leg. 1 e" the value of the zth joint coordin~te The solution 

of the invets.e kinematlc problem of the Stewart platform l!ô therefore completed and can 
1 -

be rewntten as 

where 

1=1 .... 6 

["1 = l + q11 Rp cos 7]t + q12~ Sin 7]1 ..:.. RB cos 01 

CI := y + Q21 R p COS 7]1 + Q22Rp Sin rJ/ - RB Sin 0, 

(4.1300) 

(4.130b) 

(4.130c) 

(4.130d) 

'in whrch variables x. y. z and Qt). for 1. J := 1.~. 3. are the components of the Carteslan 

toordinates. i.e .. vector i and matrix Q. Thus. in the~oordinate frame flxed to the base. 

x = [XzY J and Q = [:~~ :~~ :~!] ,(4-!3~) 
q31 q32 q33 u 
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4.5.2 Direct Kinematic Problem 

The ptoblem of ~indmg the Cartesian position and orientation of the platform. 

associated wlth glven actuator lengths IS now discussed This problem CO(lSlstS. in I.let. 

of the solution of the nonlmear system of equatlons glven If) eq.(4 130u) for tlH' C.;lIte~I.l1\ 

coordmates The problem can be formulated uSlllg <lny kllld of convention for tilt' reprt' 

sentatlon of the Orientation of the platforrn. For Instùnce. a formulation bélscd on EulPI 

angles IS presented m (Dieudonne et al 1972). where numerrc<l1 results obtilmed with tilt' 

Newton-Raphson method are shown ln the aforementloned f~.rmulatlon. a system of SIX 

1 

equations in SIX unknowns IS solved. the unknowns belllg the position coordinates .r. y. :-

of the centroid of the platform and three Euler angles Il'1.1:'2.1;'3 glvlng the attitude of the 

plat16rm. This Implies. of course. that we hat' expressed the rotation tensor a_ 

(4.132) 

using a Euler angle conventÎon. 

Alternatively. the orientation of the platform could be represented by .111 the 

components of the rotation matnx or by some of Its invarrants. ThiS formuJatlon would 

lead t6 a lar.ger system of equatlons since the constrarnts on the orthogonal matnx. or 011 

the, sa id Invarrants. w'ould have to be Introduced as additlonal equJtlons ThiS formulatlo/l 

would have the ment of elrrTlInatrng the slngularities Introduced by the Euler angles. but. 

dependrng on the IIlvarrants used. other slllgulanties may be IIltroduced (cL Appendlx B) It 

IS to be noted that the use of Euler parameters does not IIltroduce any spurrous ~,lIlguIJrrty 

4.5.3 Vel~city Inversion 

.. Agam. we can wnte the relatlonshlp between the Carteslan .and jO/llt velocltles 

as follows: 

é::t:: Ji (4.133) 
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where é and x are defined as ë = [é1, ... ,é6JT and x = [x,Y,Z,..vl,W2.W3JT. en whlch the 

angular velo~jty of the platform 15 defined as!.l) =J.v1,W2,W3JT . This equatlon. and hence. 

an expression for the Jacob,an matnx J. is obt~'uned by dlfferentlatlon of éqs (4 130a-d). 

Moreover. we c~n again make use of the following property of the rotation tensor 

Q= nQ (4.134a) 

where 

(4.1346 ) 

to obtaen the time derivative of this tensor A/50. we define a set of vectors w{. for 

i=1 .... ,6as 

(4.135) 

" .. , 
where el is a unit vector a/ong thEuth leg. pOlnting From the base to the platform The 7th 

row of the Jacobian matnx. j:' can then be written as 

2=1, ... ,6 (4.136a) 

where 

(4.136b) 

and the velocity Inversion is completed. 

4.5.4 Acceleration Inversion 

Dlfferentlation wlth respect to time of boto sides of the veloclty equatlon. I.e .. 
v 

eq. (4.133). leads to the expression relatlng Carteslan and jomt accelerations for thls ma-

nipulator. namely. 

ë = Ji + jx (4.137) 

where the time denvative of the Jacobian matnx needs to be defir:Jed. The ith row of this 

matrix. denoted as kT. can be obtamed as 
t 

i = 1. ... ,6 (4.138a) 

'139 

, 



o 

t 

o 

4. ANAl'fS1S OF PARALlEL MANIPULATORS 

where 

and 

Wt = 1 ' w·t ,: 

with 
\ 

( 

· [X + (W2Q31 - w3Q2dRp cos Tit + (w2Q32 - w3Q22)Rp sin TJt 1 
wl = il + (W3Qll - wlQ31)RpcosTJt + (w3Q12 - wlQ32)Rp sin 17t 

Z + (Wl Q21 - w2Qll)Rp cos TJt + (wl Q22 - w2Q12)Rp sin TJt 

which coinpletes the acceleration inversion. 

4.5.5 Singularity Analysi~ 

First type of singularities: 

(4.138b) 

(4.138<') 

- (4.138d) 

(4.138e) 

Since the actuators of the Stewart platform are prismatic. the first type of 

singularrtles occurs when one of these actuators reaches its limit. just as in the case of th' 
i 

three-degree-of-freedom spatIal parallel manipulator .-

Second type of singula rities: 

The singularitles of the second type for the Stewart platform have been dis­

cussed ln some references. namely (Fichter 1986: Reboulet 1988: Merlet 1988). In the 

latter reference. several types of configuratiqns in which the platform' 5 J acobian is singular 

are described in detail. For each of these configurations. there exists a set of velocities of 

the platform that will produce vanishing velocities at ail the actuators. 
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Third type of singularities: 

The situation is similar to the one encountered in the case of the three-degree­

of-freedom spatial parallel ·manipulatqr. i.e .. the thlrd type of singularities occurs when the 

platform and the base have the same dimensIOns. f e .. 

(4.139) 

If this IS the case. the mantpulator becomes uncontrollable when ail the actuator lengths 

are the same. Indeed. the pfatform can undergo pure translations when ail the actuators 

are locked and the manrpulator is in the sa Id configuration. , 

~. 
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Chapter 5 'OPTIMIZATION OF PARALlEL MANfPUlATORS 
1 

, 

1 • 

The kinematic optimization of parallel manipulators IS addressed ln this chapter 

The detailed analysis of the ki,,!ematlcs of the parallel mantpulators conducted ln Chapter 

4 will now be used to dehne tJn~ optimlze théir propertles 1 

An Important question that anses ln the process of deslgnrng robotic manipula 

tors is the cholce of the optlmlzatlon crltena ln the- context of krnematics. several concepts 

have been used as design guidellnes ln fact. 1110st of the serrai robots CUHentJy ln use have 

been designed conslderlng rnvertlbdlty as a constralnt. I.e. requrrrng thal the solution Lo 

the inverse klnematlc P,foblem be avadable ln closed-form Many a'uthors (Cwitlkala .1Ile! 

Lee 1985. Kohl! and Spanos 1985: Lm and Freudenstern 1986: Gupta 1986a, KumiH ilnd 

Patel 1986) have also analyzed the workspace of manrpulators and have sometlmes u~ed Il 

as a deSign crltenon Other authors (VIJaykurnar et al 1986. Yang and Lai 1985, Yoshikawd 

1985) have Investlgated the possibility of definlng dexterity or m~nlpulabrlity indices whlch 

could be used for optlmlzatlon ~ revlew of these IS glven ln (Klein and Blah0 7 ) 

Th~ recent development of numerlcal algorrthms (T sai ilnd Morgan 1985: T akano 

1985: Angeles 1985. Gupta and Kazerouman 1985). capable of invertmg seriai manlpulators 

of arbitrary architecture. allows designers to relax the constramt of mvertibdlty and thus 

opens the avenue for new design cnteria Moreover. Slllce thlS thesls IS devoted to parallel 

manipulators which exhiblt. most of the tlme. a simple closed-form solution to thelr inverse 

kinematlc problem. the invertibility constraint disappears. 
" 
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ln this ehapter. we will be mainly considering two optlmlzation Crltena. i e . the 

workspace or reachable volume and the dexterttyof robotie manlpùlators. Ihe dextenty 

index used here is based on the conditIon number of the Jacoblan matrix of the mampulator. 

'~ quantity that has attracted the attentIon of some researchers (Salisbury and Craig 1982. 

Angeles and ROjas 1987. Angeles and L6pez-CaJun 1987) A diScussIon on the condition 

number can be found m Appendix D. It IS pOlnted out that thls concept was already used 

for the kmematlc optlmizatlon of a closed-Ioop mampulator by Stoughton and Kokklnls 

(1987). 

The aforementioned condition number. whlch can also be termed local dexterity. 

IS of great interest for the planning of optImum tréuectOrles of glven robots. as Will be 

shown. in Chapter 6. However. for the task at hand. 1 e . the optimum kmematlc deSign of 

a manipuJator. one may be interested ln an Index that represents a global property of the 

manip41ator ThiS m6tlvatés the mtroduction of a néw performance Index whlch IS defmed 
, ".t~~" • f 

here and termed the global èondltloning index (GCI) ThiS Index is based on the distributIon 

of the conditIon number of the Jacobian matnx. I.e .. It IS a measure of the conditionlng of 

the mani~lator over the whole .work~pace. 

The first section of thls chapter Will be devoted to a diSCUSSion \:ln the dextenty 

of manipula tors and to the defmltion of the GCI Then,' the two design criteria mentloned 

above. i.e .. workspace and dexterlty. Will be apphed to the kinematic optlmization of sorne 

of the parallel manipulators presented ln Chapter 4 

5.1 Dexterity of Robotic Manipulators 

(" '1 

• 

As stated in the introduction of this chapter. the dextenty index defined here IS 

based on the condition number of the Jacobian matnx. ThIS quantity, which is a measure 

of the lo.cal dexterity. can be used for both seriai and parallel manipulators as will now be 

shown. 
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The Jacobian matrix of a seriai-type manipulator is def!ned as the matrix rep· 

resenting the transformation mapping the joint rates into the Cartesian velocities. This 

transformation is written -as: ' 

.~ JO = i 
-

where () is the vector of joint rates and i is the vector of Cartesian velocities. However. as 

we have seen in Chapter 4. it is more convenient to define the Jacobian matrix of closed-Ioop. 

mampulators in terms of the inverse transformation. i.e .. 

(~.2) 

The accuracy of the control of the manipulator is dependent on the condition 

number of the Jacobian matrix (Salisbury and Craig 1982: Angeles and Rojas 1987: Angeles 

and Lapez-Cajun 1987). This IS so because the condition number represents the amplifi­

cation factor by which the error on the Input vector of a linear system are multiplied when 

the solution vector IS computed (Strang 1980). In the case of a manipulato •. th'e condition 

number is therefore an indication of the amplificatIon of the error on the position or the 

force at the. gripper for a given accuracy of the actuators. This number IS to be kept as 

small as possible. the smallest value that can he attained belng 1. which is obtained by 

rendering the matrix Isotropic. The condition number of the mampulator is defined as: 
() 

(S.3a) 

where Il . 1 denotes any norm of its matrix argument. In this thesis. the following frame--' 

Invariant Euclidean norm is adopted throughout: 

(5.3b) 

W being 'deflned as w1 where w = lin. and n 15 the dimension of the square matrlx J 

Of course. the same definition applies to K. A more detailed discussion on the condition 

number can ~ found in Appendix D. The local dexterity index can now be formally defined 

: as the reciprocal of the condition number of the Jacobian matrix of the manipulator. i.e .. 
1 

v = (~) 
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It is Important to notice that. slnce the Jacobian is configuration dependent. ItS condition 

number IS a local property of the manipulator-whlch IS the reason behind the term local 

dexte"ty index-and therefore bears information on the accuracy of the control ln thls 

particular confIguration only This crltenon can be used for deSign by mtnlmiztng the 

conditIOn number over the ,space of manlpulator parameters together \lllIth the space of 

configuratIons Isotropie configurations can then be Isola,ted and the eorrespondtng deSigns 

are termed Isotroplc. H~wever. slnee Isotropy IS a property of a "mlted subset of the 

workspace. elther a curve or a surface wlthm the man/pulators workspace (Salisbury and 

Craig 1982. Angeles and ROjas 1987). It does not guarantee rn general that the overall 

conditionrng of the man/pulator IS optImum 

" 
To obtarn a measure of the global behavlour of the condition number of the 

manlpulato1. the 'followlng global conditlOning index 1] IS now proposed 

where 

and 

A 
T) = -

B 

B = / dll 
.1 t, 

(S.Sa) 

, " (S. Sb) ':; 

(5.5c) 

ln whlch 1\ IS the condItIon number at a partlcular pOint of lr. the manJpulators workspace 

and the denominator B IS the volume of the workspace The reclprocal of the condition 

number. i.e .. the local dextertty mdex v has been used for It IS better behaved than K Itself 

over the Whole workspace. In fact. It IS bounded as follows 
7~ 

\~ 
which thus produces a bounded performance index, I.e .. 

/' 

An alternative definÎtion of A can also 'be gÎven as: 

, , 
1 
, 1 

A = r (! ) 2 dIV = r v2dW 
Jw K Jw 

(5.6) 

(5.7) 

• 

(5.8) 
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The squarlng of the local dexterity index is not necessary here. slnce the condition nUlllber 

15 a 1 positive deflnlte quantlty. However. the deflnitlOn given ln eq. (5.8) can sometime~ 

simplify the algebra s'lIlce the condition number. a~ defmed in eq. (5. 3û). is glven by the 

square root of a product Both tjefmltions are acceptable ., 

ln _the context of the optimum design of robotlc manlpulators. the GCI IS to be 

maxlmlzed over the space of manlpulator parameters Thus. the closer to unit y the Index 

IS. the better the overall behavlQur of the condition number and hence. of the manipule or 

The normallty condition necessary for a statlonary value of rI IS glven by' 

07] 
- =0 
dh 

/ 

(5.911) 

V'Jhere h 15 the vector contall1l11g the parameters deflnlllg the architecture of the manlpUléltor 

For example. for an n-axis seriai manlpulator. these para met ers can be those of Hartenberg 

and Denavlt (Hartenber~ and Den.avlt 1964). I.e . 

.. ,an. bn. nJT 
SlI1ce the Hartenberg-Denavlt pararneters are not appropriate for the descriPtion of parallel c J 

mal1lpulators (Klell1fmger and Khalil 1986). for thls class of manlpulitors. vector h may 

repOresent an alternative set of klnem-etlc parameters that fully descrrbe the m,lnlpulator 

Application of condition (5.90) to eqs (5 50 .11&c) leads,.to the normahty condi­

tion glven below 

~
. a (1 

-- - dH 
w ah f~) 

(JB 
;-- TJ ah = 0 (5.10) 

The integration over the workspace can be performed ln the Cartesian space 

providmg that ItS boundary 15 known This will be dons m the examples presented here. 

which involve c1osed-loop manlpulators However. for current open-Ioop manlpulators. the 

workspac~ is not always known in the Carteslan space and it 15. in general. much easier 
~ , . 

" to descrlbe it in the jomt space If. we want the GCI to still be a measure bas~d on the 

Cartesian space metric. "the transformation from one coordlnate system to the other can ~e 
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5 OPTIMIZATION OF PARALLEL MANIPULATORS 

introduced in the integral where '!le have to include the absolu te value of the determinant 

of the Jacobian matrix. l::l. The normahty condition. e,q.(5.10). then becomes. 

(5.11) 

where R denotes the workspace (10 jOint coordlnates). and each of A and B are computed 

accordingly. i.e .. as 
Jill 

(5.120) 

and 

(5.12b) 

It is pomted out that an alternative defmitlon of the Gel based on the Jomt space metnc 

would take away the determinant of the Jacoblan from the above integrals This GCI would 

have a slightly different. but also meanirigful interpretatlon and in many Instances It may 

be easier to handle mathematically. when seriai manipulators are consldered 

, 
As a demonstratlon of its applicability. the concept of global conditioning index 

will now be used on two different sefÎal manipulators for which optimum .de-sÎgns will -"}je 
, , 

obtained. We will also use the GCI 10 the forthcoming sections of this 'chapter. where the 

kif1!!matic optimizatiQn of parallel manipulators IS addressed '" 
5.1.1 Examples 

5.1.1.1 Planar, Op~n-Loop, T~o-Link Manipulator 

The ope!,-Ioop. two-link manipulator under study is shown m Fig. 5.1. ThiS 

manipulator is capatile of position mg a pOint on its p.~ane. 

The Jacobian matrix. as defin~d in eq.(5.1). can be written in a coordinate frame 

attached to link 1 as: 
~ . 

-a2 sm (J2 l 
a2 cos (J2 J (5.13) 
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-, - Figure 5.1 Open-Ioop planar two-link manipulatQr 

Therefore. we have. 

(5.14) . 

where 

(5.15 ) 

The condition number of J. ca~ then be computed from eqs.(5.3,~&b) (Angèles 

and Rojas 1987). and is ~iven by: 

" 

l'i, = (a~ + 2a~ + 2al a2 cos 02) / 2al a2 sin (}2 (5.16a) 

or 

(5.16b) 

where' 

(5.16c) 
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Some plots of. the condition number agaÎnst ()2 are shown in Fig 5.2 for a few values of 
, \.. ~ 

I.X. It can be seen that the only value that leads to an isotropie manrpulator i5 0: = V 2,'2. 

cr fact that was pomted out in (Salisbury 'and Craig 1982).~l:to'!llever'. 1t IS interestlng to 

notice that. from a figure presented ln the latter reference. It IS not obvlous that thls vah,Je 

of (} glves the best GCI The curVeS shown ln Fig 52 are plotted agalnst 02 and thls way 

of presëntlng the curves allows us to see that the-Îsotrople manrpulator 5hould leaCJ to an 

optimum Gel slnce the value of the condition number for thls value off Cf. IS always the 

lowest. 

Now. in or der to compute the manlpulator's GCI. we have to,integrate the 

reciprocal of Ji over the workspaGe.. ,Since we have expressed the condition number as a 

furyction of Jomt angle °2 and the Imkage parameter Q only. it 15 convenient to evaluate the 

integrais descrrbed in eqs,(5 5a-c) ln the joint space. i.e .. to use the formulation developed 

in eqs.(5.12a&b). We coyer the workspace of the manipulatôr by integrating on one of the 

two branches of the manrpulator For example. lettlng angle 02 vary between 0 a~d 71'. we 

have: 

(5.17) 

which leads to. 

'- 1 10 2-i r
( c 2Sin~2) , 

1] = - --~ il al (L2 sin 82d82d81 4'1la lu20 .0 1.0+20+2cos02 _. 
(5.18) 

and can be f~rther simplified to' 

Tl _ l;r (', - sin 
2 °2 ') dO 

- 10 ,1 0 + 20 + 2 cos 82 2 
(5.19) 

Then, taking the derrvatlve wlth respect to the only parameter involved. i.e .. 0:. and settmg 
J 

it equal to zero. one obtains 

(2 - 1. 0 2) r ~ . sin
2 H2 d82 = 0 

la (1; œ+ 20 + 2 cos O2)2 
(5.20) 

The integrai"in eq.(5.20) IS a positive deflmte quantity. Therefore. this equation 
1 \ 

is satisfied if. and only if. 
\ v/2 

Q=-
2 

(5.21a) 
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( \\. 

1-

1. 
/ 

a= 
2 

(~) 

1. .5 

a = 1.8 -
O.2iï78 

.. 
Figu.re 5.2 . Reciprocal af the condItion number of the plilflilr two-link milnipufator 

as a functlon of B2 for three dlf~erent values of u ,-

The investigation of the denQ(l1mator of the integrand in eq.(5.20) shows thfjt the integrand 

does not suffer from any slngulanty. In fact. the condition under whlCh the denominator 

1 ~ishes can be wntten as' 

which leads to: 
~ 

and cannot be satisfied for real a. 

. 1 
cos f)2 = --(0 + -) 

20: 
(5.21b) 

(5.21(') 
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ln this case. the ,optimum design in the sense of the global conditioning {ndex is 

found to lead to the isotropie manipulator already discussed in (Salisbury and Craig 1982. 

/ Angeles and ROjas 1987). __ The global conditioningi,?dex of the two-link manipulator as a 
, 

function of Cl: is shown in fig. 5.3. Its maximum value- is T]~ax = 0.6506. for Q = v'2j2. 

/ 
Gel 

1. 

,'. 

.5 

2. , 4. 

Figure 5.3 Glob conditioning index of the planar two-link manipulatbr for different 
v~lues of ci 

\, 1 

, , 

, \ 
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5.1.1.2 Spherical, Open-Loo~, Three-Oegree-of-Freedom Wrist 

A spherical wrist is shown in Fig. 54. Since the axes of the three joints intérsect 

at a common pOint. the p'}lameters defining' the arçhitecture of the wrist are reduced to 

the angles 0:1 and 0:2' We then have: 

(5.22) 

, 
j 

i 
( 

. ' 
Figure 5.4 Open-Ieep th-ree.degree-ef-freedom wrist. 

If we denote by el. e2 and e3 the three unit vectors àlong the kinematic pairs 

of the wrist. we can write the Jacobian matrix as: 
4fi 

(5.23) 
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v . 
This matrix is now represented,-in a coordinate frame attached to the second link. i.e. 

" , 

from wh/ch we can write: 

sin °2 sm 0.2 J 
o ~ - cos (}2 Sin 0.2 

cos a2 

o 

1 
(5.24;: 

(5.25 ) 

. 
Using eqs (5.3a&b) one can then derive an expreSSion for the condition number (Angeles 

1 and Rojas 1987). which gwes. 

where 

\ 

3S 

D 

~ ~nd , i _._ 
D = sin 2 al {1 + COs

2 (}2) + sm 2 02(1 + sin 2 (J2) + CQS2 al sin 2 0:2 cos 2 (}2 

+ 2 cos al sin,al cos a2 sin 02 cos (J2 ~ f 

(5.26a) 

(5.26b) 

(5.26c) 

:t 
As in the case of the first example. the spherical wrist has two branches '~,~e integratlon 

.. "-. '" 

can be performed on one of them For instance. we can choose the branch for wh/ch the 
/ 

determlnant of the Jacoblan matnx IS positive. 1 e . Integrate over 82 from 0 to r. Now 

~eq.(5.10) __ Wllllead to two equatlons Slnce h IS'of dimension 2 The Integran~ of the,flrst 

\ term of each of these equatlons can be written as: 

3 C • l 
D2 l3 sm 2 

Dl cos Q41 sin 3 
a} sin 3 (h D -;. 25m3 

Ql sin 3 
a2 sin 3 

(}2 D' J 

(5.27a) 

where 

and 

8:1 [( ~ ) 2 li 1 = ~2 [3 sin
3 

"1 sin
2 

"2 cos "2 sin
3 

82D - 2 sin
3 

"1 sin
3 

"2 sin 3 02 D"] 

(5.28a) 
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where 
D" = sin Ql cos Q1 cos 02 cos 2ü2 + sin 02 cos 02 cos2 (\1 

+ sin Q2 cos a;(sin 2 02 + cos 2 01 cos 2 02) 

Moreover. the second term of each of the normal equations. eq. (5.10). contains il filCtor~' , , 
âB ah whose mtegrand. for the' flrst equatlon. IS glven by. 

d6 / 
---- = cos (11 sm (\2 sin ()2 
d(lt 

and. for the second equatlon. by. 

.J 

(S.29b) 

By mspectlon of eqs.(~ 27a-5 29b). it becomes obvious that the normaïity con­

dition is verifled If al = 0:2 = 7i 2. Therefore. these angles constltute an optimum design 

in the sense of the global conditloning mdex. Agam. thls des!gn 15 found to be an isotroplC 

manipulator which has been dlscussed m (Angeles and ROjas 1~87). 

The results obtamed for these first two examples can be reproduced using a GCI 

oased on the joint space metnc. whlch actually leads to simpler mtegrals The procedure 

is identlcal ta the one described above 
."' 

\ . 
5.21 Planar Three-Degree-of-Freedom Manipulator -with Revolute 

Actuators 

\ 

The workspace and dexterity of the planar three~degree~of~freedom parilllei ma· 

Ipulator studled in Section 4.1 will now be optimlzed The symmetry assumptions LJsed 

in Chapter 4 are mamtamed here. 

5.2.1 Workspace Optimization 

The ,mobility region can be found for each leg of this manipulator. t~IS reglo-n 

being bounded by the singularity curve which is the closed curve separating t.he reglon 
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5 OPTIMllATION OF PARALlEL MANIPUlATORS 

where the ,Ieg. has mobility from that in which it does not. For the ,points of the ~orkspace 

located on this curve. the solution of the inverse kinematic problem is unique since the two 

)branches meet. Indeed. for a given leg to have mobllity for prescnbed Cartesian coordinate~. 
\ 

the expression in brackets in eq.(4.4) has to have a magnitude smaller than or equal to 

one. Thus. the singularity curve. i.e .. the limit of the workspace. for the zth leg is obtamed 

by writing\ 

~.30) 

The workspace of the manipulator. dashed in Fig. 5.5. is then obtained by the intersection 

of the three foregoing mobility regions. Those regions are. in facto annular regions in the 

x-y plane described by the following equations: 

where 

Xl = 13 cos (4) + 11'/6) 

Yl = 13 sin(4) + 11' /6), 
f 

x2 = 1 - 13 cos (cf> - 11'/6) 

Y2 = -13 sin (4) - 11'/6) 

X3 = 1/2 Ff-13 sin cf> 

Y3 = .J3/2 - 13 cos 4> 

a result that 'is derived directly from eq.(5.3q( 
). ~J 

, , 

(5.31a) 

(5.31b) 

(5.31c) 

(5.31d) 

(5.31e) 

(5.31!) 

(5.31g) 

Each 6f the three annular regions is bounded by two concentric cirdes whose 

c~ntres. Ct. have coordinates (xpYt) (or i'-1,2,3. This is shown in Fig. 5.5. 
, 

The concentr;c drdes are obtalOed by chooslng alternatively the plus and minus 

sign in eq.(5.30). which giv~~ rise to drdes of radii (l1 +[2) and III -121. From the particular 
o & J 

form of the expressions of the coordinates of the cèhtres. Cl' given in eqs.(5.31b-g). it can 

be realized that these are located on the circumference' 'of three other cirdes of radii 13, 
, 
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------------------------- -- ---~-------, 

Figure 5.5 Workspace of the planar manipulator for 11 = 0355. 12 = 0.15 and 
13 = 0.125 when 1/; = DÛ For this value of 1'. the annular regions whose intersection 
forlll the workspace are centred at points Cl' ('2 and ('3 respectivcly 
" . 

1 

1 

'1 

1 

1 

- 1 

1 

1 

centred at the drlven JOints Their location on thls circumference de pends on the gripper 

orientation, which IS glven by angle cp. Fo~ example. if tb IS equal to zero. the centres (', 

are located as shown ln Fig. 5.5. Le .. bringmg the annular reglons as clOSé as possible to 

each other. As (j) IS incremented. centres Cl will move around the circles of radii '3 and. for 

q> = 1l'. they reach the configuration shown in Fig. 5.6. i.e .. the one for which the annular 

regions are as far as possible from each other. The geometric construction of Fig. 5.5 can 
, - . ') . 

then be redrawn for any angle 4>. It can be realized. from the foregomg discussion. thal the 

area of the workspàce will be a minimum when angle 4> is equal to 'Ir. since in thls case{he 

-~ 1~ 

-
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distance between the regions. whose intersection defines the workspace of the mampulator. 

is a maximum. 

., 

Figure 5.6 Same con~tr\lctlon as in Fig 55 but with .p = 7r. The workspace 

\ vanishes 

\' One important criterion for fhe usefulness of the 'mOtor is that we have 

a non-vanishihg workspace for every angle 6 This can be achleved ~by imp.os1n& a non­

vanishing workspace for (j) = Tt. i e . ~Y setting <j) ::: Tt in equations (5 31a) an€! the condItion 

that the intersection of two of the circJes definmg the outer boundary of the annular regions 

be inside the third ~ne and that the th~ee circles defi\l~g([rrn1nner boundary of the an'nular 

regions do not have a common Intersection. This leads to: 
.. 

'0 

(S.32a) 

l , 
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and 

\ 

( 

. (5.32") 

The manlpulators verifylng these conditions will have a non~vanishlng work~pace . , 

for every angle 0 

The global workspace of the manlpulator can now be represented as il VOIUr11e 

ln the (I. y. <1» space. as shown ln Fig 5.7. wh~ the orlgln of the coordinates. has been 

placed on the centroid of the base triangle formed by the motors Ml' M 2' ,\1 3 ThiS figure 

has been obtained by rncrementing <p and calculatrng the corespondlng workspace III the """'­

(I. y) plane. for every angle 0 The volume of the workspace. H . can then be approXllllilted 

numerically usrng dlscrete integration over Q from 0 to 27i The introduction of Simpson' s 

rJ.lle. for example. leads to 
• 

(5.330 ) 

where 

!:lo = 1T 1 17, 1 = 0,1, ,27/ (5.3311) 

and .4 1 = area of the workspace for (]) = 0, = [!:lo. 1 e .. A, IS the area of the reglon 11(0 ) 

and n can be chosen large enough ~o provlde an acceptable accuracy. 

Equation (5.33a) requrres the €valuatlorf of A, for many different values of 1;1, 

ThiS can be done more efflclently by res;rtlng 10 integratlo~ on the boundary' usrng the 

Gauss Di'tergence Theorem (Brand 1955). Tlfe applicatIon of thls theorem to the planar 

region 0(4)) glves. 

1 j' A(d» = - s . nddO 
, 2 an 

(5.340) 

where 

an t,he boundary of the region 0(0) 

,-- 6 ' 

s ; tpe position vector qf an arbltraly oint of an 
~' 

158 

i 



... 

'. 

o 

, 
• 

5 OPTIMIZATION OF PARAllEL MANIPULATORS 

y 

Figure 5.7 Workspace of the planar manipulator as a volume in the (x,y,,p) space 

obtairred for II = l2 = v7./4 and 13 = o.~ 
n : the outward unit normal vector to the curve an 

~ , 
This integral is more easily evaluated, by first computing the area of region 

M'N P and then subtracting three times the '3rea of region PQR. w~ere M, N, P, Q. and 

R are as indicated in ~ig, 5.8. This ,ives: 
o 

(5.34b) 

The first line integral'Add>rcan be brioken down into three pàrts. one for each . . 
159 
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of the three arcs formlng the border of this region. This leads to: 

Ad1J) = ~ {a[sm OJ~;11 - blcos OJ:~: + R(O.v; - 0 pd} 

R ~P3 ~P3 
+ I{elsinot'.\13 - f[cos ot\f3 + H(Op3 - O,\I3)} (S.35a) 

H·, " , 
+ "2 {cisin Olr.;~ i -, dlco~ 0L. :~~ ~ T H( () \/2 O.\'2)} 

where ((]. h), (('. d), and (f. f) are the coordlnates of the cent'res of clrcle!> corresponding to 

the flrst. second and thlrd clrcle. respectlvely and () \' 1 IS the angle assoclated with point ,\ 

when consldering the 'lth clrcle. (j Pl and 0M / are defmed simllarly to 0x /. ail angles bell1g 

measured from the positive direction of the X aXIs. and R = /1 + /2' The area of reglon 

PQR IS computed ln a similar fashlon. as 

.42(<b~ ~ ~ {a[sin OJ::~~ - b[eos OJ::~~ + R(ORl {}1'1l} 

+ R
2 

{e[sln'O(P3 - f[cosO!::P3 + R(Op3 0Q3)} (5.35b) 
"Q3 l Q3 -> ._, 

r uQ2 IIQ2 . ~ 
+-2{c[sinO}" -d[cosO}L. +r(OQ2- 0U2} 

u H2 u H2 1 • 't 

. where OR? and 0Ql are defmed slmllarly to 0Mt. 0N, and 0PI' while r't 11~·-.12I, • 

1 

The sine afld eosine functions involved m eqs.(5 3511&b) can ~e readily caleulated 

~smg sImple differences between abscissae, and ordmates, and the diff1rence bet~een the 

angles can be evaluated using the Inverse sine function These considerations allow us to 

wnte these equations in a form that IS more efficient for computatlonal purposes. Equations . 
(5 35a&b) can th en be rewrit'ten as' 

and 

1 
.41(6) =ï[a(ys - yp) - b(.r.S - xp) + e(yp - YM) 

L [(I[' - xJ\,,) ï c(YAf - !lN) <- d(rA4 ;t'-N)J 

~ 3R2 SIn -1 ( ~ ) 0 , 

1 ' - ' 
ï[a(YR - yp) - b(XR --,xp) + e(,yp - YQ) 

:- f(xp - XQ) + C(YQ - YR) .- d(xQ.- xn)) 

, '+2R2sin-l(~)+r2sm-l(~) 
2R' 2r 

(5.36a) 

(5.36b) 

160 



c 

, 

5 OPTIMIZATION OF PARALLEL MANIPULATORS 

,,"-- -----.-._---~-----------------------

- r ____ ~:::7 

Figure 5.8 Workspace ü(,:') o~tained fbr Il = 11\'2,'32, l2 = 5v'2 '32 13 = 0 125 
and .: = 0- The centres of th~ I,ntersecting annular regions are denoted by (<2 l,), 
(r,d) and .1-, f) The curve ,m IS the boundary of the workspace , 

where (X.H' y,\[ J, (XX.<yS)' (r p. y p J, (xQ' YQ). (x R. YR) are the cdordmates of points .\1, 

,V. p, Q. and R The quantlties D and d are th~ distances between any, two of the pomts 

.\1. S, ~t?''d ariy two of the points P. Q. R. respectlvely 

We can thus evaluate the volume n' of the workspace of the manipulator ln the 

(x, y, <1» space. It can, be seen from Fig 5.8 that. for a given value of R. there IS a maximum 

value. of r for which the workspace is glven slmply by the intersection of the three larger 

circles defining the outer boundary of the annulai' regions. If r is larger than thls value. 
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the workspace is reduced que to reglons similar to regiQn f;Q Il in Fig 58. Moreover, it 

becomes obvious, from eq.(5 31a) that the volume of the workspi'.1\-:e will be monotonic'llly 

increaslng.wlth R since thls 15 the radius of the larger Intersec_!!n~ circle!:> The optll1ll1iltion 

problem will then be to find, for a glven value of -H, the vaiue of /3 that lllilXlll1lle~ the 

workspace, and then compute the ';a~imum value of r that IS acceptable The optimum -

value of '3 is found uSJng a numencal one-dlmenslonal direct search where tlw stt\P ~l/t\ 

is hatved whenever the centrepomt of the current Inter val glves a larger workspace volullw 
1 

than the extreme points of the ~aid. mterval. This method converges lo a 10c,)1 maXlIllUIll 

The maximum acceptable value of r IS then computed from this Optl um deSign. The 

results of this optlmlzatlon procedure are shown in Fig. 5.9. POints 0 the curve represenl 

manipulators havmg maximum global \1forkspace. It IS interestin to note that when U 

is larger than 1\ the eptunum design IS obtained wlth 13 =- O. n the other hand. whcn 

R -+ O. then 13 -+ V3 /3. which corresponds to the case or?, fixed gripper having the 

sa~e dimensions as the base triangle., It also turns out that jie maximum acceptable value 

of r assocla"ted wlth these optimum deSigns 15 always 1;1,.0. whlch meilns that we have 

il = i2 ::: R/2 for the optimum designs. 
\ 

- --- ---- -i -- - - : 

1 

,3 

.75 R 

Figure 5.9 Optimum values of i3 wl:)ich maximize the w(>rkspace for a given value 
of R 

." 
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5 OPTIMIZATION OF PARALLEl MANIPUlATORS 

5.2.2 Isotropy of' the Jacobian Matrif 
\ 

It is recalled from. Çhapter 4 that the lacobian matrix of this manipulator is 

defined as 

Ji; = Ô (5.37) 
" 

where ë'= Ix,y,tÏ>]T is the vector'of Cartesian velocities. and 0 = [ObÔ2,03JT is the vector 
~ 

of jOint rates. Moreover. an expression for thls mf)trix was given as 

where 

a t = -g.i)~Q(x ~ xot ) + 92 cos O~ + 91 cos <Pt 

bt :!::: -9192(Y -: Ym) + 92 sin 0t + 91 si/1<Pt 
- , 

Ct = 91 [(y': Yot ) cos 4Jt - (x - X qt ) sin 4JtJ - sin(Ol - <Pt) 

dt =·-92[(Y - Y~t) cos Ot - (x - xoi) sin 0i] - Sih(Ot - <Pt) 
• 
1 • 

with g1 and Y2 defined. in turn. as 

/ 

• l , 

, 

(5.38) 

(5.39a) 

(5.39b) 

(5.39c) " 

(5.39d) 

(5.3ge) 

p" ~ 

(Xf11' Yt'1) belOg the coordinates a! the centre of the ith motor and angles 4Jt ~eing defined 

as 

4JL= 4J + 571" /6 

'<1>3 = <P - 71" /2 

(5.40a) 

(5.406) 

(5.40c) 

~ It is now desired to -find is-~ropic deSigns for this manipulator. i.e.. kinematic 

parameters that will le ad ta mampulators for which at~teast one point of the workspace 

\orrespondS to a COnfigUr~tion for which the condition number IS equ,al to unit y One 
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5 OPTIMIZATION OF PARAllEL MANIPULA l OHS 

simple way of obtaining this minimum value of the condition number is to render the rn.ltnx 

proportional to an orthogonal matrix. Indeed. it is known (Strang 1980) that orthogo'''ll 

matrices and their multiples are the only Isotroplc matrices. i.e .. the only on es havlllg .1 

condition number of 1 This. however can be done only 111 specifie configurations ~1I1( (' 

the Jacoblan matnx IS configuration dependent The mobillty reglon shown ln FI~ 5 7 ~ 

being symmetnc about the centrold of the triangle defllled by the motors. thls point of tilt' 

x-y plane IS the one where the mal1lpulator attall1s the I;lilxlmum mobillty III terrns of the 

different values of the angle cI> that It can reach Therefore. thls position IS one in whi<.h 

we would like the Jacoblan to be ISOtroplC We cilll thls position the home configuratIOn 

This is then defined as that III which the centroid of the gnpper IS located at the centroid 

of the base tnangle and. for example. <) = 0 If we wnte the Jacobilln matnx III thi5 

configuration we will denve expressions 111 Yl, 92.°1,°2.°3, However. due to the symmetry 

of the mampulator. 02 and 03 will be related to 01 by 

(5.41 ) 

which leaves us wlth only 3 vanables namely fil' Y2. an€l °1,. If we now want the Jacoblan 

to be proportlonal ta an orthogonal matnx. then we have tOI specify that its rows be of 

equal norm and orthogonal' wlth respect to each oth~,r. the Sllme "holding for Its c~lurnns 

This bnngs 12 potentlal equatlons. sorne of which are fedundllnt ln fact. Hl thls G.lse. dlJ(! 

to simplificatiOns. that anse. we end up wlth only one mdependent equatlon. 1 e . () 

(5.42) 
,'!il 

We can think of the left-hand side of thls nonlmear equatlon as bemg a function of /1'/2 J~. 

slnce 01 will bear the information on l2 We can therefore slmultaneously specify isotropy 

ln other configurations. To satl~fy our need f'Or symmetry, we Will choose two other conflg-
, 

urations whlch have the same> posItion of the gnp-per but 111 which the angle t!J IS 2rr '3 and 

47r /3. Moreover. since eac~ of these also leads to only one II1dependent equation. we will 

end up wlth as many'equatlons as unkn~wns and exact solutions. wlthin roundoff errors. 
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5 OPTIMIZATION OF PARALLEL MANIPULATORS 

of course. should be possible. The condition for Isotropy ln the two last configurations can 

~'e expressed as 

2 2 r.:. ,_-1" 

91 92 V 3 1 91 2 J l' ~ ";1. 2 -ï). , --(-+-92+-)+~(92+v392-1)co 81 + ,.,\-g2- 92- v3 sln0l 
233 22 23 

v 3., , 1 1 2 i /, ' (3 1 2) . 2 8' 0 ' 
-t- TSin 81 cos 01 + (4 -- 292 ) cos 81 + 4 - 292 Sin 1 = 

- ~5.43) 
) 

and 

(5.44 ) 

..... , 
.'. 

Equations (543) and «5.44) seem to intoauce two new unknowns. namely. 

/1 and Or, whiclr represent the value Ibf the flrst motor angle in configurations 2 and 3 

respectively. However.· they are not 'fdependent variables since the value of 12 has to be 
. , 

the same ln the 3 configurations For' computatlonal purposes. we will ~eep these variables 

as i~ they were independent. and wj'te the equations constraining them. i.e .. 

'

(1) _ [(2) _ [(3) 
2 - 2 - 2 (5.45) 

where 1~1) denotes the value of i2 m- the zth configuration. Equation (5.45) leads to the 

followmg. 
.1 

and 

- -
( " (J)' - -, 0 - \. 3 . Il • /1) -

92 c0581-cos 1 +\·3C05 1-\·391+Tg2(sm81-SmOt)-;t-(smOt+2sm.Ol =0 (5.47) 

1b-

Now the slnes and the cosmes of the angles appearlng ln eqs (5.42-5 44)' and 

(5.46-547) are considered as Independent variables as weil. Thus. the following constralnts 

are adjoined. 

(SAS) , 
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5 OPTIMIZATION OF PARALLEL MANIPUlATOR~ 

sin201 + cos 2 01 - 1 = 0 

sin201 + cos 2 01" - 1 l!:: 0 

(5.49) 

(5.50) 

Equations (5.42-544) and (5.46-5.50). therefore. constltute a system of 8 nonlmear ëqlJ<l- .. 
! 

tÎons in 8 unknowns The solution. If there IS any. may then not be unique. This problem 

has been solved usmg the Newton-Raphson method and convergenc~ has been obt.lineo 

to 8 different solutions. The correspondtng link lengths are glven Hl Tllble 5 1 ilnd PH-' 

manipulators are shown III Fig. 5.10(a)-(h) 

" Solution "# '1 ! 12 13 

1 1 0.783261 i 5.896342 - 5.399776 - ---- .. - - -

2 1.166456 1 5.054792 -5.393759 
-- ----~~-- ~ 

3 1.154665 1 3.722528 -4.041159 
--- . 

4 2.010278 1 2.518945 ! 1.240155 - _. 
5 1.265630~ 724 70 1 6.767731 

-----~ T - ._- ._- ----

6 1.344719 1 3.8288 1 3.257859 
1 ------

7 -7.942812 1 7.854237 1 0.780640 

ri 

1 

--
8 1.575610 1 2.587595 -1.185050 

Table 5.1 . ~Ink Icngths for the Isotropie mal1lpulators (8 solutlollS) 

iJ 

The solutions converglng to a positive value of 13' correspond to manlpulators 

whieh are isotropie m the home configuration wü~h f/J = 0.271 :3.471 '3. whlle t~e one·~ 

having a negatlve value of [3 represent mantpulators for which the third Itnk length IS '1 
but whlch are Isotroplc III the home eOhflguratlon when (J) = 71 13.71.571" 13 Both re<;ults 

are acceptable It should be ~otlced also that the slgn obtall1ed for '1 has a well-deftned 

geometrrc mterpretatlon. but thls Itnk ~n~th should always be taken as positive. of course 
) 

5.2.3 Global Conditioning Index 

Unlike' the senal manipulators studied in Section o 5.1. it 15 not possible to obtain 

a closed-form expre~slon for the condition number of the Jacoblan matrlx of the planar 
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5. OPTIMIZATION OF PARAllEL MANIP~lATORS 

, (b) 
-- -J' ~ 

(d) (e) 
, 

. '--

+ fiud JOInt' 

Figure 5.10 Representation of the eight different man ipulators that were found to 
be isotropie ln the home pOSitIOn and for three dlfferent orientations. They are 
shown here III on; of their Isotroplt conflguràtions 

parallel manipulator This forces us to resort to a numerical integrat)on in order to evaluate 

the GCI. The integration has been carned out over the workspace in the Carteslan space. 
, 

The algonthm to compute the volume of this workspace. B. developed in Section .5.2.1 

was used and a triple numerical integratlon was introduced to compute the numerator of 
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17. 1 e .. 

.4 = r r j' (!) dxdydd> 
l'Ilu .r h \ . \ 

(5.51 ) 

The optlmization was then performed usmg the complex method (Box 1965). Optimum 
1 

results are shown rn Table 5 2. w~ere three cases are reported The flrst one represents 
- \ 

the solution obtamed when no constramts are Imposed on the mc.lximlzation of the G-CI, 

However, the manipulator then obtarnecf has a rather' Irmlted workspace. Therelore, cl 
1 

second optimlzatlOn was conducted wlth a constramt on the workspace ThiS presentg 110 

partlcular problem srnce the optlmlzatlon method used 15 wefJ suited for handling inequality 

const15aev ery 

angle (/) of the grtpper. a crrtenon that was mtroduced rn Section 5.2.1 where the ilssoclateu 

• meqûality constraints were derived The solution obtained for thls problem is identifled a~ 

case 2 rn Table .5 2, The correspondrng optimum manipulator now has a mllch larger 

wor~space. However. the link lengths are quite long. whkh may rnduce major mechanrcdl 

interference problems. A new optlmization problem can be set up by Imposing additlonal t-, 

inequality constraints in order to remedy thls Situation For mstance. case 3 of Table 52 . . 
shows the solution obtained when the Irnk lengths are forced to be less than the distance 

-
between the motors. 1 e. (0 -: 11 -: 1, i = 1. 2,3) and the constraint on the workspace 

used ln cas~ 2 IS imposed. Notice that the Introduction of the constrarnts has Icd to él 

1 reduction of the GCI. The three cases reported here are obvlously not the only possiblt 

deSigns and the y are shown to illustrate how one can use the GCI to optlmlze a manrpuliltor 

while meeting other de5.lgn constramts assoclated wlth a partlcular problem, 

Parameters Case1 Case2 Case3 

'1 0.9940 1.1855 0.9968 
---- -~~-

22 1.3274 4 S987 0.7838 
--- - ... -------.-

'3 
1 2.6293 5.1739 0.9719 

'ri 0.79156 0.69691 042961 

Table 5.2 Planar three-degree·of·frcedom parallcl manlpulators having an ~Iltimum 
-Gel 
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5 OPTlMIZATlON OF PARALLELl~ANIPULATORS 
, ~\" -

5.3 Pla~nar Three-Degree-of-Freedom Manipulator with Prismatic 

Actuators • 

5.3.1 Workspace Optimjzation , 

The properties of the workspace of thls manipulator are v~ry similar to the cnes 

of the mantpulator wlth revolute actuatOrs Indeed. the hmlts of the mobllity reglon of each 
..... ~ 

of the legs is obtamed by settlng the actuator t~ngth equal to Prmll and Pma]' respectlvely 

i.e .. the minimum and maximum value that the actuator length can take. This leads to an 

,equation slmllar to eq.(5.31a) with the difference that the radi.i of the two toncentric clrcles 

a:: replaced by p"",!nd Pmax. 1 e.. ' 

. " ( -,)2 + ( )2 _ 2 x - Xl Y - Yt - Pmm , l = 1.2.3 (5.52a) 

and 

i=1,2.3 (5.52b) 

where the xl·s. y1 ·s. for l = 1.2.3 are defined ln e.qs.(5.31b-g). The graphical representation 

'" of the workspace IS therefore identical to the one shown ln Figs. (55-5.8) in which (Il +12) 

and III -- /2 should be replaced by Pmax and Pmw , ' 

,..' . 
. 'The condition under whlch the m\mpl!lator has a non-vani~hmg workspace for 

'every angle? can also be deflved by Imposlng" non-vamshmg worksp~ce for, (j) =./t. This 

leads to two conditions ana log to inequalitles (5~a&b) and that can be wntten as: 

2 ,- 2 
',3Pmax 2:(,,3l3 +1), (5.530) 

and 
, ,r \ 

3P~ln :S (y/3/3 - 1)2 . (5.53b) 
~\ - ' " 

The mani~ulators \ierifyin'~ these conditions will have a non-vanishing workspace for every 

angle c>. 
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5 OPTIMIZATION OF PARALlEL MANIPULATORS 

\ 

As tated above. the workspace of thls manipulator is very similar to the one of 

the planar man ulator with revolute actuators which 1; shdwn in Fig. 5...J'7 Therefore. the 

evaluation of th volume of the workspace presented ln eqs.(5.33a-5.36b) IS also applicable 

to the manipulator with prismatic actuators provided that the variables rand H are redefined 

as follows: 

r = Pmt tl and R = PH/ct:r (5.54) 

Th.e optimization performed on the global workspaCEYl>f the manipulator in' Sec 

tion 5.2.1 can be repeated nere. leading to the same optimum curve. i.e .. the one plotted 
, rs'! -

in Fig .• 5.9. where the values of l3 that correspond to a maximum global workspélce of 

the manipulator. for a glven value of R = Pmax. are shown. The fact that the maximum 

acceptable value of r associated with these optimum designs is equal to zero is now inter­

preted as that Pmt7'! should be as sm~JI as possible for the volume of the workspace to be 

a maximum. 

5.3.2 Isotropy of the Jacobian Matrix 

It is recalled from Se~a{the J~CObian matri. of this manipulator" 

defined as' =~, 

Jê = P (5.55 ) 

where ë = [x,Y,~1.T and p = [Pl,P2,P3]T are the vectors of Carteslan and joint rates. 
, 

respectively. and the expressJon for J is given in eqs. (4.42-4 43c). 

Contra~y to the case of the manipulatôr \vlth revolute actuators. the configu­

ration in whlch the centroid of the gripper is located at the centroid of the motors. I.e. 

x = 1/2 and y = J3/6. and for which (/J = QC-which we termed the home configuration 

in Sedion 5.2.2-is a slngular configuration for the mar:lIpulato'r wlth pnsmatJC actuators 

for any value of l3 and Pmax This IS 50 because. In th.s configuration. the Ilnes along 
Il 

.the three legs intersect at the centroid of the gnpper. which leads to the second type of --

singularity. as mentioned in ~Section 4.2 5 It IS therefore impossible to render the Jacobian 
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5 'OPTIMIZATION OF PARALLEL MANIPULATORS . 
matrix isotr~pic in the home .configurat~n. This is c1early seen ln Fig. 5.11., Y"here plots of 

, ) . 
the local,dextenty wlth respect 'to the orientation angle cP are glven for x = 1/2., y = J3j6 

( 

and for differ~nt values of 13 It 15 clear that. for any value of '3. the Jacoblan matrix 15 

slngular when 0 = 0 or (il = 7r ln the h~flguratlon Moreover. the configuraÙDn for 

whlch the condltlo~ number ls a minimum 15 attamed when .r = 1,'2. y = \1''316. (J) = 0.75 

rad .and '3 := 0.79. whlch leads tf 
close to Isotropy 'S obtalned. 1 

a dexterlty. Index of 0.98. I.e .. a Jacobian matnx very 

1. 

, .5 

1 1'\ 

(~) \ 
~. 

\ 

\ e, 
-9t 

l3 = 1. 

.,. 

~-

Figure 5.11 Reciprocal of the condition number 'of the planar manlpulator wlth 
_ prisma~c actuators as a function of the angle of'orientation .p when x = 1/2 ~and 
!i :: ,,'3 ,"6. i e . when the centroid of the gnpper is located at the centroid of the 
motors. for different values of i3 

'1) 
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f 

5.3.3 Global ConditioniO'g Index 
, / 

1, 

Agal~. the G,Cf' has been ~sed and the integration jarried out numérically over 

the workspace' in the Cartes.ian .space. using eq.15 51). A graphical representatlon of the 

.GCI/~f the manlpulator as a function of 13 and Pm'II IS shown ln Fig. 5.12. ~he maximum 
~ #' • • 

value or the Gel I~ attained when 13' = 4.2 and l'maI = 4.6. ,which leads to a Gel of 

0.4~8 when a valye of Pm171 = 0..1 is assumed. It IS pointed out that this value of the global 

dextenty is lower than the ones that were found for the manipulato(1f'>with revolute·actuators. ~ 

which sl,Iggests that the manipt.Wetor wlth revolute actuators is better conditioned. 

1 

'" GCI·· ! 
l 

,\ 

.2 

2 

4 

( Pmg,x .. 

, 11 

, ~ 
Figure 5.12 Gel of th~ planar manipulator with prfslJlatic actuators as a function 

of [3 and pmax 

// 
,/ 

J / 

5;.4 Sphe
1

rical Three-Degree-of-~~edom M,anipulator ' 
/ - -:: 

( ,., 

1 

1 

1 
1 
1 

I~ 
,1 

• __ .1 

The spherical manipulator studied in Section 4d will nQw be optimized for 
( , 
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5 OPTIMllA liON OF PARALLl:L MANIPUI.A' O~~S 

~ . 
ItS wOJkspac.e and dexterlly The symmetry assumptions used ln Chapter 4 are .lgam 

maintained here 

5.4.1 Workspaée Optimization 

'" Smce the purpose of thls' manlP:1lator IS to Orient a rrgid body ln space. 1 e . Wt\ 

~ 1 
are concerned wlth the Orientation of the gripper only. the workspilce of the milnlplJl~tOt will 
~ . 

be embedded ln the' space of ngld body rotations whlch can bp represcnted. for Imt,lIl(.(l. 

uSlng the IInear Invarrants of the rotation matnx Q. tntroduced Ir\ Chapter 4 and tle~c.nbt!d 
-

m Appendlx B Agam. the workspace is foun~ b,Y computmg the IIltcrsectlon 01 the mobillty 

reglon of ail the legs The moblltty reglon for each IIldlvldûal leg I~ glven by the .... (Il of 

possible ortentatlons that the gripper can attam. glven the IlIlk dlmenslon~ Qf tI\I~ leg 

ThiS reglon IS bounded by the smgulanty surface. whJCh can be lound for cach leg as 
"" 

the c\osed surface separatlng the reglon where the leg haS' mobtllty Irom th<lt ln whlch 

It does not The global mobdlty reglon Will then be the intersection bf ail these three 

regions. As prevlou51y stated. we can represent the set of ail pos~lble rotations u~lIIg 

the iinear Inv;rtants. whlch can -be grouped ln a 4-dlmenslonal vector ,\ ::;; IqT 1{01 T 

.wlth q = [Ql' Q2. Q31 T One p05SIblitty for \h15 representatlon conslsts of U~tng the tlHce 

dlmenslonaJ subspace (qO' q1' (12) ln whlch the ~et of pOints localed 1Il~lde or on the surf dl<.' 

of the Unit sphere centred at the ongln. represent ail possible rotations. the dlst<lnc.e !rOIll 

a glven pOint to the origln bemg equal to \ '1 - -qj 

The singulanty surface c'an be obtalned lIsing eq.(4 64): where ... we set th(~ OIS­

crlmlnant equal to zero 

." - B 2 AC' - 0 "'1 - 1 - 1 1- (5.56) 

-
ThiS ,equation. wntten for the first leg. leads ,to 

(5.57) 

which represents two circles in the (qO' qd plane ( Fig. 5.13). or two c y linoers ln the 

(q(h.qr~2) space (the Imler cylinder IS snovm ln Fig. 5.14). 
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,} 

Figure 5.13 Mobility region for the flrst leg of the spherical manipulator 

The equations describing the se cirdes are obtain~d by choosing
j 

alternatively 

the ,~Ius and minus signs in equatipn (5.57). whlch gives: 

(5.58a) 

'Thus. eq.(5:58a) represents a clrcle of radius ![1 + cos(a1 - (2)] centred at a point of 
F: , 

coordinates (C, 0). where 

(5.58b) 

and 

(5.59a) 

Similarty. eq.(5.59a) represents a circle of radius ![1 + C0'5(0:1 + (2)] centred at a point of 

coordinates (C', 0). where: 

" (5.59b) 
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5 OPTIMIZATION OF PARALLfL MANIPULA 1 ORSr . , 

~ver. it car;)., be shown that the" reglon located between the~e circ les;: is ttle o~: where 

the leg has moblhty. I.e .. ~here the discriminant 15 posltive-thls region Îs hatched on 

'Fig. 5 13 

Figur~-5.14 Inner cylioder deflllllll-\ thé moblhty règlon of the flrst l.c~ of the sphcrlc.;)1 

manipulator ln the ('10' '11 '12) spacc 

A slmllar analysls IS repeated for each of the legs This defmes two other p;m~ 

of cyltnders. which also have thel! axes ln a plane parallel to the (1/1 -112) pl.me Thesc i1,'(e~ .. 
intersect the flrst ones on the flo aXIs wlth and angle of . 60 and the global mobdlty reglOf] 

IS therefore completely defmed It can be seen from equatlons (5 58(J) élnd (5.59(1) th<11 the 

\, conditIOns under whlch the manipulator is capable of producJng ail possible rotatIOns are 

(5.6011) 

and 

(5.60b) 

175 

1 



, " 

( 

( 

( 

;' 
;' 

/ 
5 OPTIMIZATION OF PARALlEL MANIPULATORS 

whlChjeans 

/ Ql =:= 0:2 = rr/2 ' (S.60c) 

If t~,S condition is met. the- swgularity surface clegenerates Into three singulartty curves 
,-

whlc'lî' àre major circles on the surface 'o~,the Unit sphere ln the (qO' Ql' q2) space at 60: 

Jrom each other as shown ln Fig. 5 15 A projection of thl5 flg~re onto the qi - q2 plane 

15 glven ln Fig 5 16 for c1anty ThiS result 15 slml/ar ta the one obtamed for an open-la cp 

three-axis Spherlcal Wrlst (Gupta and Roth 1982), for whlch conditIOn (5 60c) has to be 

.. ,met If we want the wnst to be able ,ta reach ail 'pOSSible orientations Notice. however, 

that in the case of the open-Ioop Wrlst havlng Ql = (12 = 7r /2, there .--.WGuL~ be only one 

smgùlanty curve on the sphere of Fig. 5.15. " n 

.qo 

1. 

( 

.r 

Figure 5.15 Singulanty curves for a manlpulator with ùl = ù2 = 90° 

Furthermore. notice that. in the case of a manipulator havln 
, 

\ 
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5 OPTIMIZATION OF PARALLEL ~'NIPUL'\ rOHS 

the solution to the inverse kinematic problern simplifies to, 

(S.51) 

where the 171'S and the 1)l)'S are deflned in Section 43. 

~-------'-----"'------- ----- - ------

<:;. 

r 
\ 

~~~~-+----~~-----4------~~---4~--~~~f 
ql 

1 J 

~---'--;---~~~~_:::_--- ---.------- --- -------

Figure 5~16 ProjectIon of the slngularrty curves of Fig 515 ln the)'/t, !/21 plane 

o 
Il 

5.4.2 Isotropy of the Jacobian Matrix 

The definitlon of the Jacoblan matrix of the spherical parallel manipulator wa'i 

, ~<glven in Chapter 4. It is repeated here for qUlck reference We have defmed: 
• 

1 1 
1 

Jw = il (5.62) 
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where w is the angular veloclty ~f the end-effector and Ô IS the vector of powered jomt rates 

and J is given as 

(5.63a) 

with 

(5.63b) , 

A dlrect-search method has been rosed to mmlmlze the condition number of thls 

Jacobian matnx The mlnlmizatlon method referred to is that of blsectlon (Brent 1973) 

on one of the variables. while t~e other one!ù~re kept fixed. The procedure is repeated 

~ alternatively for each of the variables untll cohvergence IS reached. This has been done for 

the ,general case of a manlpulator with arbltrary link angles and also in the case where the 

link angles are assumed to be both of 90° due to the particularly interesting propertles of 

this design that were discussed 10 Section 5,4 1 The results are given 10 Table 5 3. It IS 

pointed out that the manipulator ·cannot be rendered isotroplc wlth any Imk. angles. 

, 

Solution # . 0:1 0:2 el e2 e3 1 <P 
1 K" 
1 

1 c ' 99.10 90.00 -.2363 .8818 .4081 : 135.60 ! 1.1103 
" 

2 91.17 128.~6 1 .8827 .4700 .0000 ! 130.22 1.2073 

3 1 123.36 i 60.00 : .6411 
1 1 -.3176 .6986 1 63.43 1.5502 

1 140.02 
, 

1 i 4 100.00 .5443 i .3594 .7580 40.05' : 1.9431 
1 

1 

. 1 

) ::: 1.0000 1 .0000 J 137.36 5 90.00 1 90.00 .0000 1.5728 
1 1 

6 
1 

90.00 
1 

90.00 : ± .8660 1 :::: .5000 
1 

.0000 i 137.36 1.5728 i 1 1 
1 

1 r 

.9217 1 -.2470 
1 

(JJ r 90.00 90.00 1 .2992 ! 146.69 1 1.1559 ' : 
8 1 90.00 1 90.00 

1 

.2470 -.9217 1 .2992 1 146.69 
, 

! ! 1.1559 

Table 5.3 Solutions correspondlng to local minima of the condition number of the 
spherical manipulator Solutions 1-4 are unconstralned wh Ile solutIOns 5-8 have 
been obtalOed when hnk angles of Qi = Q2 = 90° are assumed 

5.4.3 Global Conditioning Index 

The workspace of the spherical mampulator was described in Section 5.4.1 as 
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. 
3 reglon ln the (QO, Ql. Q2) space. A numenc'al integratlon can then b~ carried out on thl~ 

workspace ln order to evaluate the .Gel. This IS done as: 

wlth 

and, 

" 

1 

,1 

. . 
" 

TJ 

9rr /10 

A 
'1 = B 

511) 10 

-------------------- ------~---- -- -- -- - -- ----

Figure 5.17 Gel of the sphencal parallel rnanlpulator as a functlon of I~l and '/2 
, 1 

(5.64(/ ) 

(5.G4h) 

(5.64(') 

These mtegrations were performed for d.fferent values of 01 and 0] and tht: 

results are glven ln Fig 5.17 where the GCI IS plotted as a funct.on of 01 and ft] It I~ 
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5 Op;rIMIZATION OF PARALLEL MANIPULATORS· 

1 

interesting to note that the maximum Gel (rI = 0.52). IS obtamed for 0::1 = 771,30 and 

02 = 1371 /30. approxlmately A symmetry about the central pOint 0::1 = DL = 71 '2 15 also 

-observed ThiS p0mt IS found to be the one h~g the<'mlnlmum G~,I (Tl = 0.056). whl~h , 

mdicates that. for thls man~'Pl1lator. the oPtlmlZ~ the GCI co~fllcts 5errously ~Ith 
1 

the maXlmlzatlOn ~of the workspace Indeed. It was shawn ln the workspace optlmlzatlon 

performed III thls, chapter. that the central pOlnt,of the nI (12 reglon of rntere5t. shown ln 
1 1 

Figs 5 17 and 5 18. 15 the one havlng the maximum work5pace ThiS can be clearly seen 

~. "' Fig, 5 18. where the volume of the workspace of tl)e manlpulator 15 plotted as. a functlqn 

of (}1 and ü2. accordmg to the re5!-11ts of Section 54 1 

5.5 

/. 

9rr /10 

571' /10 
/ 

. 71/10 'Tf /10 
/ 

Figure S.18 Norrnailzed workspaee of the spheneal parallel manrpulator a~ a fune­
tlon of rI ana u2 

./ 

Spatial Three- Degree-'of-Freedom Manipulator 

The workspace and dexterrty of the spatlaJ three-degree-of-freedom manlpulator 
1 
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5 OPTIMIZA fiON Of PA!.?tAL LE l MANIPlll;\ 1 OR~ , 

will -now be optlmlzed. The 'approach used here IS slmilar to the one l/sed for pl<lnar and 
; .... , 

" spherical,manipulators. 1 e .. it is based on the analysls performed in Chapter 4 

5.5.1 Workspace Optimization 

ln the flrst stage of the analysis. we will assumE> that thE> actu<ltors have> .Hl 

~ l '" irlfmlte range of motion and denve the correspondmg work5pace of the milmpulalor. 1 l' 
, 

t~e region that It can attam when only the constr,lInts due to the a~thIU\ctur(' of tll<, 
1 

mal1lpulator are con51dered It 15 recalled from Chapter 4 thtl( the solution 01 thC' IIlVN"C' 
r;:;-

kmematic problem 15 obtamed through two of the solutions of a quartlC equatloll 111 lIn-a 

component of the rotatIOn matnx Q defimng the Orientation of the pltltform- -. et)ch 01 

\o/hlch leads to two solution for the global problem The roots of the quartlc cqudtlOn are 

glven ln eq (4.99) and repeated here for qUick reference 

", 
where 

.Y 

X==xl/ and Y==y/l 

" 

~5.65(J) 

(5.6511) 

~ ,,: '~, The other components of the upper left corner of matnx Q are computed as follow,> 
~'\:l 

" (5.660) 

-and , 

- (5.6Gh) 

.. 
while the last row and o the last column of Q are computed uSlng the properlle~ of tlJ(~ 

orthogonal matnx (Appendlx C). 

The workspace of the manlpulator can be determmed by notmg that tht solu­

tions glven above are components of an orthogonal matnx and hence have to be comprlse~ 

withm the followlI1g range: 

,,) 

2,) == 1,2,3 (5.67) 
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The foregoing constraint is now applied to each of the roots given ln 'eq.(5 65a) 

Root 1. 

We obtain 

'. 

'Q22 = v' X2 + y2 - X - 1 

911 = vi X2 + y2 + X -'1' 

q12 = q21 = -y 

a~d ~he flrst J constrë;lint '0 be applied IS 

" J , qi3 = q~l == 1 - qf1 - 9i2 >·0 

Upon substitutIon of eqs.(5.68b&c) into eq.(5.69); this equatlon 'becomes 

_2y2 - 2X2 +2X - 2(X - l)V X 2 + y2 2: 0 

which can be further simplified to lead to 
~ ,:' 

t/ 

( (5.~8a) 
...... ~ 

(5.68b) 

(5.68c) 

-
(5.69) 

(5.70) 

(5.71 ) 

Since the second factor on the left-hand slde of eq.(S.71) 15 a positive semldefinite quantlty. 

we are left with only 
, ' 

1 - J X2 + y2 2: 0 (5.72a) 

i.e. 
, 0 "'1 ' 

\ 

(5.72b) - /_-

The ~econd constraint to bé applied can be written as • 

(5.73) 

Upon substitutIon of eqs.(5.68a&c) Into eq.(5.73). this equatlon becomès 

(5.74) 
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'" which can be rewntten as 

(5.75) .' 

-
Si~ce the second factor, on the left-hand SI de of eq (5.75) IS a negatlve semidefilllte quantlty. 

eq.(S.7S) leads to 

le 

Root 2 

• 
We obtaln 

CI 

\ X 2 + }'2 - 1 a 

- q22 = - V':\'2 +}-2 - .\' + 1 
1 

qll = ~V/X2 +},'2'+ X + 1 

q12 = q21 = -}' 

...... , r ~-. 0 

Agam. the first constt-alnt is written as 

a 

Upon substItutIon of eqs.(5.77b&t) Into eq.(5 78). th/s equatlon becomes 

, , 
which IS Identlcal to eq.(5.74) a'nd hence. the flrst constramt leads to 

"­The second constraint applied on the second root 15 

1 _ 

(5.76(/ ) 

(5.7Gb) 

(5.77(/) 

.(5. 77b) 

'77e) 

(5.78) 

(5.7~) 

(5,80) 

/ 
/1 

(5.81) /(\ 
ri \ 

18/ - . 
./ 
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" / 
Upon substitution of eqs (5.77a&c) inta eq.(5.81). this equatlon becomes 

j~.82) 

which is identical to eq.(5.70) and hen~e. the second constraint leads to 

(5.83) 

Since ail the constramts lead to one and the same inequality. i.e .. eqs.(~ 72b). 
- . 

'5. 76b). (5.80) and (5.83). which' are ~II identical. this inequality defines the ~ounda'ry of 

the wor'kspaëe which is. m thls case. a Clrcular cylinder of radIus l whose axis of symmetry 

is the z axis. I.e. an aXIs orth'ogonal to the base plane and located at the centroid of 

the base triangle Hençe. if the actuators have an mfinite range of motlop. the foregomg 
\, 

cylinder represents the set of points that the centrold of the platform can attam when ail 
~ 

mechanical interferences are neglected. 

• fJ ' , .. 
ln a -real manipulator. however. the actu~tors have a finite range of motioh and 

the workspace is consequently reduced. To find the workspace of a manipulator whose actu­

ators have limited motion. the cylinder described above wIll be dlscretlzed and a descriptIon 

of the accessible reglon will be obtalned in terms of a sum of elements of volume 
, 1 

~ 

First of ail. we have to compute the minImum and maximum height. from thé 

_Rase plane. that the platform can reach in z. This' is "given by 

h = V-P2 - (1 - l)2 mtn. rrtln 

... _·t'r 
if Pmtn < Il - li ( 

(5.84) 
otherwise 

and 

(5.85) 

This potential region can dien be divided in a certain number of sections. or . 
, f 

·sli~es·. parallel to the base plane and located between z = hmtn and z = hmax . In each 
~ 

of thesè sections. the trace of the workspace on a plane parallel to the base is found usmg 
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S OPTIMIZATION or PAH~\LLEl MANIPtlLAfORS 

the followrng algorithm A certain nu'mber of r<lys origmatlllg f rom the pOll1t r ":::: y":" 0 .Ire - . 
equally spaced around a clrcle centred àl thJt pomt. For ellch of the fays: il dlrect-scareh 

method is used to loc~te ItS intersection wlth the boundary of the workSPilCt The surf<lC(' 

of the.element IS thén appr~ximated by a. sector of cl clrcle. I,e . 

'-
.... -
-./- 2 

(5 

where () ~s the angle- between two consecutive rays- and r,! 15 thE:' raèllus wlLh d 

" given element This 15 illustrated ln Fig. 5.19 It 15 pomted out thtlt. due Lü tl1(> sYllllllêtry 

of the workspace. only one th/rd °of the rays need be actually computed · The stHI,le (loi 

ail the elements of a planar region-or 'shc~'-are then summed JndAmultlplied by tl1(' 

Increment ln Jt to g/ve the volume of that 'sllCe' of th~ workspace .. whlch I~. In {urn, added 
~ ~ 

to the volume of the other elements ~ -. 
----------._-----------

y 0 

~ , '- -, 

x 

• 

, () -

Figure 5.19 Discretization and approximation of the workspacc oftlie spatial thrc~­
degree-of-freedom malllplfiator 

'-,..-:r-'l-iJ. An example of the workspace of a mampulator. with actuators tiavlrlg Iimited 

motion. /5 plotted ln Fig 5 20 T.he workspace j~ represented by the projection of lb 
/ 

boundary. onto the. base plane. for different values of z. or :slices·. use? ln the numertcal 
, 

evaluation of the volume 
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5 OPTIMIZATION OF PARALLEL MANIPUlATORS 

- --,------ _._-------

-+ Z = .559 .Â 

2 z ~ .702 
'y 

-+ 

3 -+ z = .844 ;' 

4 -t Z = .987 
~ 

5 -+ z = 1.129 
"-

6 -+ z = 1.272 
..... 

2 

--------~~~~~--------~~+-~--~--~------------~ 
x 

/ 

- -------------------------,---------------~ 

Figure 5.20 Exa;nple of the workspace of a spatial three-degree-of-freedom paraI/el 
man'pulator with 1 = 05 and l'max = 1 5 The workspace i~ represented by the 
projection of its boundary ln the base plane. for different values gf z 

-.... 
The problem of the optimlzatlon of the workspace is now formulated as follows 

'1 
F?r a"given value of the range of motion of the actuators. ftnd the value of 1. the characteristlc 

dimension of the platform. that will produce the workspace with a max.lmum volume 
, 

.• This problem will be solved as' a sert~s_ of workspace max.lmlzatlon problems obtained by 

incrementing the value of the maximum extension of the actuators Pmax The minimum 
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extension of the actuators 15 assumed to be glven by 

. 1 
PmHI = 2 Prn<l r 

-. 
(5.87) 

For a glven value of l'm.lT' we can compute the volume of the worksp.lCe (orrt> 

" sponding to a cert;~I0_ value of 1 and. therefore.l1use a search technique to fllld tht> value of 1 

that leads to the maximum workspace The results for dlfferent values of P''',II are ~howll 

10 Fig 5.21. where the values of 1 correspondlng to il maximum workspa<..e are plotted vs 

Pma:J' 

.Â. 
1 

1.5 l 

1. 

.5 

~r---------------------------~---------4---------+--~ 
l 2 3 4 

PmllZ 
5 

----------'---------------~- --- -._-

Figure 5.21 Optimum values of 1 that maximlze the volumc of ~hc workspac:c a5 .1 
function of l'max 

~ . 
5.5.2 Isotropy of the Jacob.ian Matr;x 

1 

'1 

The Jacoblan matrix of the spatial three~degree-Qf-freedom paraI/el manipulator 

is defined ln eq.(4.109) and an explicit expression for this rryatrix is given in eq (4.116a)~_ 
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It IS now des/red to find Isotropie designs. I.e . to find kinemat/c parameters for 

which at least one pomt of the workspace corresponds to a configuration for which the 
J 

condition number of the Jacobian matrix IS equal to unity. 

As a f,rst analysls. the complex method (Box 1965)"was used to mimmlzè the 

condition number over the variables x, y, z and l. I.e .. over the whole set of kmematic 

parameters and position variables. lt was then observed that the mm/mlzatlon procedure 

tends to converge to pomts for whlch x = y = 0 Therefore. a more detaiJed investigation. 

of these pOints was undertaken This is shown ln Fig 5.22 where curves of the reclprocal of 

the condition number as a function of z are shown for a few values of l and for x = y = O. 

1. 

(~) 

.. ) 
l - 1 =- 05. 1.5 

2 -+ 1 = l.0 

3 -.-; 1 -;: 2.0 

-1 -.. 1 = 2.5 

.) - 1 = 3.0 

2 

2 4 
z 

Figure 5.22 Reciprocal of the conditioll number of the spatial three-degree-of­
freedom paral~1 manlpulator as a function of z. for x = y = 0 and for a few 
values of 1 ~ 0 

r 
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The followmg 15 readily observed for (ery v<llue ot tI~ ChMtl( tt'rI~ltt C,llIllCIl!:>IOIl 

IAhere eXlsts an Isotroplc pOint located on the::: aXIs. I.e. the aXIs detmed by .1 "::!I - O. 

'at a certain helght ::: ~ Moreover. the value of ::: ~ 15 il Itnear f unctlon 01 1. cl!'> Il t<lll c!t'tlrl y lw 

s-een in Fig 5 23. where the value of ::: .. 15 plotted as a funcllon of 1 TI·lIs plot W,lS obt,lIIH'd 

by mlntn1lZ1ng the condition number over :: for e'very value of 1 The hneJr rCI<ltloll~llIp (.111 
.. 

be expressed as 

where 

z 

_ - a/ b 

-
a=b=,,2 

J \ 3 

2 

1 

\ 

l 2 

Figure 5.23 Values of z- 1 e values of z for whlCh th(i spatIal thr~c-degrcC:_2t­
freedom parallel manlpulator IS isotroprc when x = '-1 = 0 as a tunctlon of 1 

! 5.881/') 

(S.88h) 

l 
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5 OPTIMIZATION OF PARALLEL MANIPULATORS 

No other pOint of the workspace was found to be Isotropie As an example 

of the behavrour of the conditIOn number over the workspace. thls quantlty IS plotted as 

a function of :; ln Fig 5.24' for x = y = 0.2. and for a few values of the charaetenstlc 

dimension 1 
___ ~_~ ____________ ~_L_...._ ___ _ 

(~) " 

1. 

1 

.5 

" " _. l , ./r' 
',' 1 --Jo l'=",0.5 

, , 
2 --Jo l = 1.0 

~ , 

3 --Jo l = 1.5 

4 --Jo l = 2.0 

5 --Jo l = 2.5 

;./ • < 6 --Jo l = 3.0 
,~ 

- 1 2 3 4 
z 

---~ -

Figure 5.24 Reclpro~al of the condition nUl1lber of the spatial three-degree-of­

frcedom pa~lIcI manlpulator as a function of ::: for I = li = 02 and for dlfferent 
villues of : ' 

5.5.3 élobal Conditioning Index 

5 

3 
4 
5 
6 

The global condltlonmg Index of the spatial three-degree-of-freedom mampulator 
i' , 

can be evaluated by resortrng to a numencal integration over the workspaee It IS knowll. 

from Section 5 5 1. tha~ the workspace IS included ln a elrcular cyhnder of radius and 
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length h'ZlaI --h rmn whose axis of symmetry IS along the:: aXIs. Therefore. tlll~ volume 

can be discretlzed and a test can be performed on each of the clements then obtalllcu 

to check whether or not It IS part of the workspace When the elenwnt 15 pMt of tilt' 

workspace. the condition number of the J<.IcobliJn matnx IS cornputed. for one pOlilt of tlw 

element. as weil as the volume ot the element Thesc quantltles .lr(' thrll ~lIll1/lwd OVl'1 

ail the elements to lead to the values of \ and 11 as defmed III rqs.{5 5/J&c) 511\((' tilt' 

integration IS performed over a cyllnder. It IS natural ta choo~e a cylllldncili (OOrdlll,llt' 

system After dlscretlzlng the potentlal workspace as ~hown III Fig. 5 25. the II1tcgrtll~ lo 

be performed can be wntten as the followmg sums where, It IS recalled.' eilch clement h.J'> ... 

to be tested before It IS tncluded é, 

TI;:; 17 ~, 

)~ \--- 1 
A ::-: "('I~!:lh 

.:..- i-..J 
(5.8911 ) 

1=1 J=l 

and 
Tl;: TI(I 

B = LL81~!:lh (5.89b) 
1=1J:;=1 

where 
nr 

,A L 
SI) = {lI] f.. (5.90I/t 

k=l " .. 
and 

/Ir 

\ Sl~ = L b'lk (5.9011) 
k=l 

with 

( 1 ) 2 al) k ::;: -~ (r 
K ),+1 

1J k-

2) !:l() 
r f . . 2 (5.910) 

if element i] k IS ln the workspace Otherwise. 
( 

al) J: = a r ~~ ~"r 

(5.91/J) '. \ 
1 

Similarly. • 

2 2 !:lO 
b1)k = (rk+l - rd 2 , (5.92(J) 

if element iJ k is ·in the workspace Otherwlse. 

b!) k = a \ (5.92/)) 
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5 OPTIMIZATION OF PARAlLEL MANIPULATORS 

ln the above expressions. we have 

r~=I(l-l)lnr 

and ' 

(5.93) 

(5.94) 

(5'.95) 

the variables TIr. nI. and n:: representing the number of elements chosen when discretlzing 

in r. 0 and :. respectlvely It IS pointed out that the symmetry of the workspace allows us 

to integrate on only one thlrd of the actual workspace. a fact that is taken lOto account by 

eq.(5.95). 

\ 

\ 

'-----------

\ 
\ 

R = 1 

z 

r~h 

Figure 5.25 Discretization of the workspace of the spatial three-degree-of-freedom 
parallcl IllJ/l iplilator 

---1 
1 

The algorlthm descnbed above was used to compute the global conditlonlng 

index of the manipulator under study for dlfTerent values of Pmax and 1. Again. the relation 
/ 
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given in eq.(5.87) was assumed. The results are shown graphlC.llly III Fig 5.26. wlH're the 

Gel IS ploPl:ed as a functlOn of the two variables. The best deSIgn 15 ootall1ed when wt' 

have Pm,zx = 1.2 and 1 = 1.4. whlch leads to a Gel of 0.5783 

---------------------------_ .. -

GCI 

1 

l ' 

.2 
Pmtlz 

l.8 

Figure 5.26 Gel of the spatial thrce-dc~rce·of-frccdorn parallcl 1I1afllpulator .. 5 a 
fUflctlOfl of 1 and T'rrIllI 
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KINEMATIC INVERSION AND TRAJECTORY 
• 1 

Chapter 6 PLANNING OF'REDUNDANT PARALLEL 

MANIPULATORS 

w~ 
The krnematics of mampulators rn the presence of' redundancles has a~}racted 

the attention of many researchers over the past decade. LiégeoIs (1972), Klein and Huang 
() ~ -

(1983). 8aillieui (1985. 1986) and StaÎlIi;,é and Pennock (1985)'. among other'?:have tackled 

the assoclated Inverse kmematic problem consldenng vanous types of approaches and optl-

" mlzatlon enterla This problem IS still a subJect of current research (Anderson and Angeles 

1987. Suh an" Hollerbach 1987, Wampler 1987. Mayorga and Wong 1987 Chevallereau 
>-

and Khald 1987. Nakamura et al 1987) Klein a~d Blaho (1987) presented a revlew of 

different optlnllzatlon cnterla that have been used for the deSIgn and control of redundant 

m,Hllpulators However. to the knowledge of the author. the 5tudy ~f redundancles has 50 

far been limited to senal manlpulators only 

I~ 

The krnematlc problem addressed ln thls chapter IS assoclated wlth parallel ma-

n/pulators ln many Instances. It may be deslrable ta -use- a parDI/el man/pulator wlth a' 

degree of freedom greater than the number of Carteslan coordinates to be controlled This 

allows one ta optlmlze a performance Index ln the process of solvmg the Inverse kmematlc 

problem After having formulated this problem as one of condltlon-numbN mrnlmlzatlOn~ 

It will be shawn that the optimum value of the free parameter that mrnimlzès the condition 

number 15 not a contrnuous funetlon .of the prescnbed Carteslan coordlnates ln facto the 

" 
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6 REDUNDAN r PAI~ALU.:1 MANIPlILJ\ l OI~S 
~ 

performance index used. 1 e. the condition number of the Jùcoblan matnx 01 the m~HlIp 

ulator. IS a measure of the local dextenty. as stated ln Chapter 5 ln ordpf to opt 1Il1l/(, 

thls Index along a partlally prescnbed Carteslan trajedory. the conce~t 01 tr.ll(·ctor)' 11I,IP 

is rntroduced The Carteslan traJectory to be followed 15 S\lld to bt' pJltlally ple;( nll\'d 

because. as stated above. the task to be perforrned-alld hC!l(f' tlH' CJrt(,~la/l t r ,l/('ct ory to 

be followed-requlres less degrees,of freedolll th,ln tlH' lll'Il1lpul.ltor can provld(· TIH'I('t<lI\', 

.ihe descnptlon of the task Itselt does not cornpletely dcfllw the as,>ocl.I1<·d moLl011" ot tilt' 

manlpulator The traJectory map IS. In fact a represenliltlO/l of the Iwld 01 pO~~lblt· ~olll 
1 

tlons over whlch the optImum trajèctory wl,11 be chosen III order to fully speclfy the nlOt1()1l 

of the manrpulator 

wlth th,s 

o 

An on-Irne traJectory plannrng solution IS then denved and the results obt .lilll'd 
\ 

method for tl planar three-degree-of~freedom pmallel mtlnlpulJtof and J !>plH'fICal 

three~degree-of-freedom paraI/el mantpulator. whlch were studled ln Chtlpters 4 alld 5, .ut' 

glven 

6.1 Problem Formulation 

The problem to be solved h~re can be descrrbed as follows: Glven an J/KOIII 

pletely speclfled trajectory ln the Carteslan space of the manlpulator, fmd the JOlllt 111', tone-. 

that will produce this tra)ectory while optlmlzlng il certain performance Index. 01 cour<,(; 

the cholce of thls performance Index will strongly affect the resultlng JOint hlstorl(,s Il 1'> 

therefore crucial that the mdex chosen be a relevant meallmgful- quantlly The cOlldltlOtl 

number of the Jacoblan matnx of the manlpulator wdl be used here cl~ J performJn(e Index 

to be mmlmlzed It IS recalled. from Chapter 5. thal the conditIOn numbN of the JilcobliHl 

matnx of a manlpulator IS a measure of the accuracy of the kmemaLJc c.ontrol of tlw, manl!> 

ulator (Salisbury and Craig 1982), whlch makes It a very slgrilflcant tndex Moreover. Slnc.(! 

the 'conditIon number becomes tnfJnlty at srngularttles. the mJnlmlzatlon
o 

of thls qUdntlty 

will tend to keep the mampulator away from these undeslrable configurations Ill., pOlrlted 

out here that the approach used ln (Anderson and Angeles 1987). consistlng of mini mll-

1 
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... 
mg the dev,at,on of the JOint angles trom a certarn value-thls measure IS terme~ JRAE 

, 
rn (Klem and Blaha 1987)-. produced unsatlsfactary results when tested on the planar 

parallel manlpulatar Hence. known results far serraI manrpulators cannot be extrapolated 
, 

to parallel manrpulators 

6.1.1 Planar Three-Degree-of-Freedom Manipulator 

The planélf three-degree-af-freedom parallel manrpulator cansldered here (Fig 

4.1) was studled ln detad rn Chapters 4 and 5 This manlpulatar can be thaught of as a 

-- redundant manlpulator If one IS rnterested ln posltlonlng a pomt of the gripper on the plane' 

dlsregardrng ItS Orientation That, case would arise. for rnstance. when the manlpulator IS 

used to gUide Cl mil!. J drill or any other aXlally symmetnc obJect The partlally prescnbed 

Carteslan trajectory IS therefore glven by the position C(x. y) of the centrold of the gripper 

The rnverse krnematlc problem fDr thls manlpulator can be solved III closed form as shown 

III ChaRter 4. ItS solution 0 berng represented here as 

o = O(x, y, c1» '- (6.1 ) 

where 0 IS the 3-dlmenslol~~ vector of actuated Jornt coordmates The problem consists. 

tl1en. of generôtmg the jornt histones that will guide pomt : of the gripper through the 

prescibed positions (\.9) and will mlnlmlze the condition number of the' manrpulator over 

the free vJrlable 1 e. angle (J'Once thls angle IS speclfled. we can expllcltly compute 

the jomt variables () uSlng the kmematî'c, In\terston mentlaned' abùve Slnce thls inversIOn 

~ leads to two solutions per leg. we Will choose these solutions so 'that the m~nlpulator 

remalns on the same branch. the procedure berng then capable of avoldmg undes/rable 

branchrng effects ln the diSCUSSion that follows. a coordrnate t~a e IS d~flned flxed to the 

manlpulator' s base wlth Its Orlglll 0 located at the centrO/d of langle Al 1 :'~hJf 3 of Fig 

4 1 Moreover. the .\ and}' axes of thls frame he III the plane of motIOn and}' IS dlrected 

from 0 to .\/3 The branchlllg of the planar mampulator can be readdy venfled as follows 

We first defme .\1, (Im' y,n) )Jr11' Yh) and Cl (X21 'Y21)' for 1 = 1. 2, 3. as the centres of 

the dnven Jomts. the mtermediate Jomts and the Jomts attached to the grrpper. respectlvely 
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T YII'O} ,'which ,m' . 

the v~ctors cannectmg /1 to Cl and /1 ta MI' respectively We can then wnte. 

(6.2) 

where e3 = [O. O. 1 JT and 
."', 

The sign of QI wIll tell the branch far the lth leg ancl' therefore. by recordlllg thls qUllnllty 

for ~ach of the legs, at every canflgur,atlan. we can ensure that the manlpulator rem,llno., 

on the same branch A ~hange ln slgn ~f thls quantlty would mean that wC' i,.lVe ch()~el1 
the wrong root of the quadratic equatlon arlslng ln the solutIOn of the Inverse klllcmiltic 

problem. 

6.1.2 Spherical Three-Degree-of-Freedom Manipulator 

The sphencal three-degree-of-freedom par<lllei mantpulator considered here 1'> 

represented ln Fig 49. This manlpulator was studled ln detad m' Chélpters 4 and 5, where 

it was shown that It can be used to onent il gripper ln the three-dlmcllsloflal ~pac(', Howl'vpr 

we would Ilke to use It here to onent a Ime of the grtppe'r, rcgilrdlcs~ 01 tI~e onelltlJtloll 01 

the gnpper Itself about the sald Ilne ThiS task requlres anly two degre,e~ of frPNlom, wlllch 
> 

allows us to optlmlze a performance Index AppltcéltlOns reqUlnng such cl tllsk dcflllltlOIl 

comprise. e.g . the Orientation of solar panels. radar an~ennas and telescapes 

'In what follaws. a coordlnélte frame IS defmed flxed ta the rnanlpulatar'.., bd~(: 

~Ith ItS ongm 0 located at the pOint of the gripper that remams flxed, with Its X and }_ 

axes ln the plane of the motors Moreover " the X aXIs IS defmed-" along the aXIs of one of 

the motors We cano therefore. deftne the unit vecto~5 U1 ' l 1.2. 3 along the mators 

axes (Fig 4 10). I.e . 

1=1.2.3 (6.4(J ) 
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(6.4b) 

The orientation of the gripper 15 descnbed by three unit vectors VI' for i == 1. 2.3. flxed ta 

the gripper and dlrected from () to the JOints attached to the gripper. whlch are represented 

by pomts J. li. (' m Fig 4.9 

. ~ , 
Let us assume that the Ime to be onented 15 parallel ta the unit vector g. whlch IS 

l:' 

FI 
orthogonal to the plane defmed by vectors vl V2' V3 (Fig 49) ln Chapter 4. the refere~ce 

configuratIOn of the ITlanipulator was deflned as the one ln whlch u, = v /. for 1 = 1. 2.3. 
-' 

and thèrefore. In thls configuratIOn. the unit vector g would be cOlncldent wlth the z aXIs. ( 

sJnce vectors u" for 1 = 1. 2. 3. are located ln the xy plane 

We can then wnte tensor Q. descnblng the 

"reference configuration to the current configuration. as 

gripper from the 

o two rotations 

The flrst one. represented by the rotation tensor Q1' IS speclfled as a rotation mappl~g 

vector e3 into g and vector ul Into a Unit vector r whlch IS orthogonal to g and IS located ln 

the ,ry plane This flrst rotation 15 fully speclfled. for the task to be accompllshed here. and 

is equlvalent to a rotatIOn carrylng vector.J!, Inro ItS deslred Orientation wlth an arblt~ary 

rotation about ~n aXIs parallel to g The second rotation. represented by tensor,- Q2. IS a 

rotation of a certalll angle l' about vector g We can then wnte 

(6.5a) 

The rotation tensor Q1 IS. IQ turn. wrltten as 

Q1 = Ir h g] (6.5b) 

where 

h = g ': r . (6.5c) 

which follows from the defimtlons of vectors rand g. Indeed. we want the umt vector 

r = (rI' r2' r3]T to -be orthogonal to g and located in the xy plane. which leads to. 

(6.6a) 

--
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Ti+r~+r~=l (6.6b) 

(6 6(') 

. 
The sol ut/on of these equat/ons can be wriUen as' ( ) 

, . yi rHI! ~ 
rI ::: : \ Yr~ !li' r2::: !l2 " _ i 16.7) 

_To ensure cont?itY of the angte oi rotatIOn I\bout the axIS parollel 10 g ln ""trlx Q1' Wl' 

will choose the pos Ive slgn ln eq (6 7) when 92 0 and the negat/ve sign when y'} () 

Two special cases ay also anse. 

1) If 92 ::: O. then we wIll have. from eqs.(6.6) rI:: O,and r2 ::: Wc will 

choose the positive sign when 91 ' 0 and the negatlve sign when fil '0, 

27'), If gr + g~ = O. then we necessarlly have 93 ::: :-1. in whlch case we will ~peclfy 

that r = ,:::ul 

We can now write the second rotation,' I.e, the rotLltlon t'hrough an Llngl€:! l' 

about an aXIs parallel to vector g. as (Angeles 1982) 
~ 

'f!f.31J ) 

where 1 denotes the 3 

~ 
3 identlty ten~or Therefore, eq (6 5a) can be wrrtten as 

-
Q ::: Q2(V)Ql (6.8h) 

from whlch It becomes obvlous that once vector g IS spcclfled, mattlx Q beeomes il funetlon 

--- of angle_ !L', over whlch the optlmlzatlon will be performed. ~rnce Its vaILle does not dtfCll 

the orientatIon of vector g. 

Once the optImum angle 'Ij: has been determmed, matrrx Q can be computcd 

and the joint varrables can be obtamed from the krnematlc il1verslon Agaln. tl1ls inverSIon 
, ' 

leads to two solutions per leg and we wIll choose the solutIons 50 that the manlpulator 
~ 

.J always remalOs on the same qranch The branchrng of the spherrcal man.pulator can be 
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6 REDUNDANT PARALLEL MANIPULATORS 

verified as follows. we defme two vectors tt-r't are tangent to the unrt sphere assoclated 

with the manrpulator at the tip of w1 .jt The~fore. these vectors are orthogonal to wt and 

can be written as 

(6.9a) 

(6.9b) 

These vectors play the same role as the correspondlng ones for the planar manrpulator We 

then have. 

(6.9c) 

-") 

Agam. the sign of 01 will tell t~e branch for the lth leg 

6.2 Local-Dexterity Maximization 

As pornted out in the introduction. the optimlzation performed along the. tra­

jectory will consist of a mrnimizatlon of the condition number of the Jacoblan matrrx of 

the manlpulator. Slnce we are dealmg wlth para/lei manrpulators. the Jacoblan matrrx 15 
,f 

defined as the matrrx mapping the Carteslan velocitles into the jOint rates For the plarar 

-mllnlpulator. we can wnte 

(6.10) 

where;c = li'. il. 9] IS the vector of Carteslan velocitles and f) is the vector of jOint rates .!>-

For t-l:!e spherical manipu/ator,. we have' 

(6.11) 

where .... : ·is the angular-veloclty vector of thé grrpper and il 'IS the vector of JOint rates 

The expressions ,of thesè matrrce~ are glven in Chapter 4 as functions of the 'Carteslan 

coordrnates and the 'JOint angles They are repeated next for qUlck reference 

[ -al'ci -bl Cl -dl, <Il 
),;= -a2! ('2' -b2 ('2 -d2 c2 (6.12) 

-a3/ c3 _-b31 C3 -..-d3:'C3 
J 
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where 

bt = -glg2'(~ - '!lm) + 92 sin 01 + !Il sm $1 

(6.13 ) 
Cl = 92[(Y -: YO!) COS (), - (I - l''I) sin 0,1 + sm (01 - (J)t) 

dl = 91 [(y - Ym ) cos 0, - (I - l''l) Sin °1 ) - sm (t', - 0 , ) 

wlth g1 and 92 defined. in turn. as 

(6.14) 

(X ot ' YOt) being the coordinates of the centre of the tth mot or . angles é>, being defmed <lS 

<Pl = <1> + 'Ir /6 . 

(/)2 = <1> + 5 'Ir :6 

<P3 = <P - 'Ir /2 

j (6.15 ) 

For the ~pherlC~1 manipulator._the ith row of the Jacobiàn matrix. '(j~")T. can be wntten <lS. 

(6.16) 

where uz• vz' W I are the Unit vectors along the axes of the driven Jomt. the gripper Joint <Incl 

the intermediate jOint. respectlvely. for the üh leg 
, 

We have chosen. as an optlmlzatlon crlterion. to mlllln11Ze the value of tlll' 

condition number of the Jacoblan matrJx This quantlty was introduced ln Se~tlon 5 1 

where it was ca lied the local dexterity 'of the malllpulator. The! deflnltlon of the condlLJoll 

number IS recaJled to be: 

K= (6.17) 

where the norm IS the same as the one used ln Chapter 5. i.e .. 

,._-

i:J:, = \/tr(JTWJ) (6.18) 

with W = ~ 1. n belng the dimension of the square matrlx J From eqs. (6 12-6 18). W(, 

can see that.' given a set of fully speclfred Carteslan coordinates (from whlc.h wc derlvl~ 

the joint coordlnates -using the klnematlc Inversion). It IS straightforward to compute the 
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condition number of the Jacoblan matrix However. to compute denvatlves of the condition 

number wlth respect to the free variable of a redundant manipulator wou Id be a tremendous 

task. Therefore. It was declde,d to use a dlre~t-search technique to mu'lImlze the, condition 

number over the free parameter. The method used was taken from (Brent 1973) where It 15 

feferred to' aS the laca/mm procedure. This method combines the golden-search technique 

and successive parabolic interpolatIOn It leads to an algonthm retalnlng the advantages of 

both of these methods. 1 e . superllnear convergence IS garanteed 
~ 

Stnce the condition number of a matrlx becomes Infmlty when thls matriX IS 
, 

singular. It IS preferable to use the reclprocal of ,the conditIOn number as an optlmlzatlon 

parameter, Indeed. as stated ln Chapter 5. thls quantlty has a very convement behavlour. 

for it is bounded as follows; . 
(6.19) 

However. thls quantlty. whlCh can be thought of as a measure of the distance to 'smgularity. 

should be maxlmlzed and. since the direct search te~h!,lIque we are usmg 15 devised to 
f 

minimlze an objective functlOn. we will rather use the complement of thls quantlty. whlch .. 
. can be thought of as a measure of the distance to Isotropy for a certain matnx and which. 

~ 

theref~re, IS to be mllllmized It IS recalled that Isotropie matrices are the ones whlch have 

a condition number of 1. 1 e . the low'est value -that thls quantlty can attain As stated ln 

Chapter 5, only orthogonal matrices and then multiples have thls property (Strang 1980) 

The objective functlOn te mllllmize IS then wntten as 

;=1-(!') 
K 

(620) 

The procedure conslsts of mmlmlzlIlg thls quantlty over .the free variable for 

each point of the partially prescnbed Cartesian traJectory For the planar mampulat.or. this 

amounts to a mlllimlza,tlon over the angle of Orientation <J) when x and y are speCifled for 

each of the m pomts of the traJectory. 1 e . 

min [1 - ~l 
01- /'Ct 

(6.21a) 
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where 
Ilrr 

-. S.t. :r = .I" Y = Y1 • i = 1. 

2/T 

• ni (6.21b) 

(6.21 l') 

Once th.e m'values of o. {o }1/1. along the trlliectory are obtllined. we C,Hl computt' tilt' 

Jomt histones O. (t). I~r .1 = 1. 2.3 

The procedure used for the sphertcal manlpulator 15 very slnlliar Agam. we do 

'-. 

- ~ 1 -" 
mm Il - -- 1 

~ L "'-, .J 
(6.2211) 

/ . . 
\ 

S.t. g = gl' 1 = 1. . III (6.22h) 

where 

27r (6.22(') 

Once the m values of '!y', {tPl }i. are obtain~d. the Joint hlstor~es O} (i) can be computed. 

for) =1.2.3. 

6.2.1 Undesirable Side Effects 

The ge~eral Idea presented above has to b"-·ud:ed III more detarl beforc wc C.dll 
1 }~, 

Implement a stabfe algonthm thal woulcl manlmlze the condItion number Jlong il pdrtl.llly 

prescnbed Carteslan tra}ectory 

The reclprocal of the condition number of the planar mampulator I~ plottec! 11\ 

Fig. 61 as a functlon of angle r) for three c.onsecutlve pOints of cl clrculil~ traJectory Two 

Important problem5 can anse. as shown by thls grllph 

J 
Flrst of ail. one can reallze that. In the case shawn here. there are two feaslble 

~ 

regions. I.e . two ranges of values of () that are attamable for a glven pOint of the tralcctory. 
IJ 

and that these reglons are separated by unfeaslble reglons whlch have been asslgned a value 

of (1,1 /C) = 0 on the plot. Therefore. when computrng optimum values of Ij', for consecutIve 
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1. 

.5 

(~) 

M" M 

first pOint 

second point 

thir~ point 

Figure 6.1 Rcclproca/ of the condition number of the op/anar mampulator as a func· 

tlOIl ot thc illl:.\le of ortClltJtlOIl '-' for three consecutlvc pOints of a given traJectorv 

2n 

pOints of a traJectory. one must avold unfeaslble reglons and Jumpmg from one feasible 

reglon to another dlsconneêted. one 

Moreover. even ~hough ln the case presented here the solutIons for the optImum 

values of () rematn wlthln the same feaslble reglon. dlscontrnultles can arise ln these solu­

tions ThIs 15 clearly,shown ln FIg 61. where pOInts .\1 . . \J' and .\1" den ote the optimum 
, , 

values of 0 for each of the three traJectory pOints It can be reallzed from thls plot that. 

although the curve undergoes sltght variatIOns from pornt to pOint. there IS a large 'Jump' 

of the optImum value of rI> (from point Al' to .H") between the second and thlrd pomts 

Hence. as a result. the optImum value of Q that maximlzes the reclprocal of the conditIon 

number is not a contmuous function of the prescnbed Carteslan coordinates 
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The foregorng considerations will have to be taken mto' account in the traJcctory­

planning procedure. 

6.2.2 Trajectory Maps 

, 

As pOlnted out above. there may be values of angle (fJ that ~re""ot .\ttam,lblf' for 

a glven pOint of the partlally prescribed Carteslan traJe<.tory We C<ln identlfy these rt'glons 

for each of the pomts and draw the resultlng diagr<lm whlch IS here termed trajectory 1""11 

Examples of these maps are shown in Fig 6.2 and Fig. 63 The reglons Identlfled wlth il 

minus sign are the unfeasible on~s. The traJectoriês correspondmg to these maps will he 

descri bed later 

The map shown in Fig. 6.2 was obtamed for the planar manlpula.tor ln- thls CI1~C. 

It is possible to obtaln a closed-form expression for the limlts of the worksp<lce for il gIV(!f1 

pOint of the trajectory. It was shown rn Chapter 5 that the boundary of the worksp<lcc CiHl 

be obtained by settmg the dlscrlmmant equal to zero ln the qUëldrëltlc equatlon tlMt ,lflS(,~ 

in the solution of the Inverse krnematlc problem for each of the legs of the milnlpulé1tor 

ln the aforementioned cfupter. the equations obtalned when equatlng the dlsCrlmlflùnt t<J 

zero are. 

(Xt - xtf + (YI - Yt)2 = (il + 12)2, . -. 1 = 1.2.3 (6.23(/) 

(Xl - Xt)2 + (Yt - Yl)2 = (l1 -/2)2, . 1=1.2.3 (6.23h) 

wh~re 

(6.24(J ) 

(624h) 

(G.24(') 

Yt = y - Yat 1 t = 1, 2, 3 j6.24(6) 

and 

(6.25 ) 
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optimum trajectory --+ 
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271" 

Figure 6.2 A traJcctory l11ap for the plal1<lr Ol:lnlpuliltor of cXilmple 1 

It 15 recalled that (.r, y. G~) are the Carteslan coordmates of the grtpper Expansion of 

eqs.(623a&l1) leads to 

1 = 1. 2. 3 (6.260) 
Ij 

1=1.2.3 (6 26b) 

wlth 

1 = 1.2,3 (6.27 a) 
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" = \,2 + ),2 + ,2 (1 1)2 
, 1 • 1 1 3 1 2· 1 = 1.2.3 

~ --' ---------

\ 

It is then deslred to flnd. for glven values of .r and JI. the values of (1 for whlch .lIly nlH' 

of these SIX equatlons (6.26(1&/1) can be satÎsfled Thereforc. wc Illtroduce tl1(' lolloWII1)! 

substitutions 

and 

where 

J , 
.' 

2'1' 
srn(<D+GJ)= --'~'. 

• 1 1 + '1'2 

which leads to SIX quadratlc equatlons. namely. 

The solutions of these equations can be wntten as. 

and 

2} , 1 . 4} 2/2 (lf2 
i3 - \ 1 3 

------- -

Ir7. -\- 2.\)/3) 

1=1.2.3 

1=1.2.3 (6.28/1) 

1 = 1.2.3 (6.29) 

1 = 1.2.3 (6.30t/) 

1=1.2,3 (6.3011) 

1=1.2.3 (63111) 

1=1.2.3 (6.31 h) 

We therefore have a maxImum of twelve solutIons 1 e a maximum of four ~olLJtlOn<., pi·r 

leg Equations (6 31(]) and (6311» have been used to generélte thr trdJN;tory n1dp "hoviIrI 

rn FIg 62 

The equatlons de~cnblng the motion of the spherlcal manlpulator b('lng mm(' 

compllcated. It IS not possIble to obtarn closed-form expresslon~ for the lImIte, of tll(· 

workspace and hence. the traJectory map shown ln Fig 6 3 has been gereratcd by n!l'rI' 

scannrng of the values of angle 1f) for each of the pOints of the traJectory 

• 201 



f 

J 

\ 

j 

6.2.3 

6 REDUNDANT PARALLEL MANIPULATORS 

l00~------------------~--~----------------~ 

>, 
~ 

o· -u 
Q) ..... 
IV .. -Q) 

.J::. -

50 

+ 

optimum traJectory -+ 

br 
-, - -- - --------------------

Figure 6.3 A tlJjcctory Illap for the sphcncal manlpulator of example 2 

On-Une Programming of Smooth Trajectories 

Once J traJectory IS declded upon and the correspondlng traJectory map IS 

obtarned. It IS deslred to compute a smooth path that would go from the bottom to the top 

of the map whlle mlnlmlzrng the condition number of the mampulator This 15 accompllshed 

uSlng the algonthm show,n ln Fig 64. where superscnpts denote the step numbers 

This algonthm seeks optimum values of the condition number whlch are wlthm 
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,.------------------------------ - --------

1 

ALGORIHIM 

.; 

1 "' . -, 

(' urrent traJectory pomt .p'+! 
JJ' . 
t mi\.)(. 2nd derivntive 

define target range îlOloothingç.filter 
( cP' - ArP) S 4>'+1 S l.p' + A.p) 

~" 

:~ 1 
//" doc:; the < 'tar!l:et range no use localmin over ... 

-- Id " ---- complete target range ~u e ro~~:/"-----
.......... , .... ;.,.,-

yes] 

<2;'~ yes 
use localmin over 

~IitY range? ..-- red,uced target range 
/"-

,i • .......-------
j' 

- nol f' 

1 fincl c10sest 
mobility range 

,r - -

-
use JocaJmin over 

reduced target range 

1 .. 
L..-________________________ . _____________ _ 

Figure 6.4 Aigonthm for the on-Iln,e planning of smooth traJcctoncs for rcdundant 
parallel manlpulators 

_1 

a certain nelghbourhood of the current value ofl the free vanablè ThiS nelghbourhood. or 

target range. IS deftned as: 

(6.32) 

where 1:l.<J) is spedfied for a glven trajectory or manlpulator The occurrence of roots. 1 e . . , 

of boundanes of the accessible reg,on. wlthm the target range is also ver/tled Should roots 

be present. the procedure would. stIll garantee that the solution rematns in a contmuou~ • \ 

feasiblhty region. ThIS. is accomplished by reducmg the target range. 1 c .. by keeping only 

2 (y) 
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6 REDUNDANT PARALLEL MANIPULATORS 

the portion of thls range /ylng 10 the, feaslb/e reglon which 15 contlguou5 to the current 

trajectory pomt The dlrect-search procedure (Iocalmm) described ln the flrst part of thls 

section "'5 then used Fmally. one last stage IS added ta the procedure ln order to smooth 
~ 
~ the jumps that cou/d occur wlthm the feaslb/e reglon. as descnbed ln Section 6 2 1 This 

" 
procedure conslsts of Imposmg a maximum value of the second denvatlve of the free variable 

with respect to a norma/ized tlme. 1 e .. wlth respect to the progressIOn a/ong the traJectory 

The second deflvatlve 15 approxlmated uSlng central fmlte dlfferences We have 

(6.33 ) 

At step t + 1 of the trajectory. this quantlty IS computed If Its magnitude is greater than 

the prescnbed tolerance. we then use 

xt+l = sgn(d
2 
Xl)X" + 2Xt _ X 1 - 1 

dt 2 max (6.34 ) 

where X~ax denotes the prescribed maximum value of the second derivat.ve. nus com­

pletes thls algorithm 

6.3 Examples;., 

, 
Two examples of the application of the method proposed above are dlscussed 

here 

planar mantpulator i'1 = 2.01 12 = 252 '3 = 1.24 

spherrcal mantpulator 1 Ql = 60° Q2 = 60= 

Table 6.1 Link lengths and angles lIsed ln the examples 

The first example deals wlth the planar parallel mantpulator The problem here 
, 

conslsts of guiding the grrpper along the contour of a cam that' i5 to be cut wlth a mlll 

The orientation of the gripper is therefore Irrelevant to the ta5k slnce the tool IS aXlallly 
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, 
----~------------------ -----.. --_. -. - --

Figure 6.5 Cam contour used as il traJectory for the pl.1nar para"!:)1 manipulator 
(example 1) 

symmetnc The cam contour is shown ln Fig 65. where the location of the fixed /omts of . 

the mampulator 15 a/50 represented 

. The Imk lengths of the mampulator are glven ln Table 6 1, The lraJcctory nldp 

and the optimum path were computed and are represented ln Fig 6 2 The nelghbourhood 

of a current pOint was taken as /).0 = 05 rad and. for the tréJJectory showll hcre. no JIIIIlP 

dlscontlnUlty was observEd, 1 e, the fdterlng based on a maximum value of the 'iccond 

dellvatlve was not used The reCiprocal of the condition number obtamed along the optlrTllHIl 

traJectory IS shown ln Fig 66 

The second example presents an applicatIOn of the method to the sphem,..ll 
," 

manipulator. The trajectory along whlch the manlpulator 15 to be gUlded IS prescnbed a~ 

[

COS,) cos À1 ] 

g = cos Ji sm À( 

smd 
(6.35(1) 
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6 REDUNDANT PARALLEL MANIPULATORS 

(~) 

,time, 

Figure 6.6 Reclprocal of the condition number along the optimum trajectory for the 
planar manlpu lator (example 1) 

3 = 7T/6. Al = (1 - 1)r.'50, l = 1. 101 (6.35b) 

The Imk angles of the mampulatbr are given ln Table 6.1 The tra]ectory map and the 

optimum path were coniputed and are represented in Fig 63. The value of b.i: used to 

~ define the target range was taken as,O 5 rad The rèclprocal of(the condition number along 

this tJajectory is plotted ln Fig 6.7.: 
1 
1 
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Figure {J.7 . Recip'i"ocaf of the cooditio'n number along the optimum trajectory fo(the 
sphefjcaf paraI/el manipûlàtor (exampfe 2) 
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CONCLUSIONS AND RECOMMENDATIONS 
Chapter 7 

FOR FUTURE RESEARCH 

This thesls has presented several results concernmg the kmematic analysis. 

optlmiza-tion and. programming of parallel manipulàtors. 

As, a prelude to the study of these manlpulators. some properties of simple 
\ 

"'\.kmematic chams were revislted. whlch led to' a graphlcal representatlon of the mobility 

regions of planar and sphencal four-bar linkages and wl'ùch allowed the formulation of 

the transmiSSion qualtty problem for these linkages as a, mlnlmlzation -of the transmission 

defect Further investigations could be camed on to apply these concepts to spatial linkages 

HQwever. the simple graphlcal representâtlon obtamed here for the mobliity reglons of" 

planar and ,sphenctll linkages would not be possible due to the larger number of kmema_tlc 

parameters Involved Moreover. the concept of linkage diSCriminant used here takes on 

- more compllcated 1 forms when the mput-output equatlon of a mechanlsm ois of a degree 

~Ighêr than two 

p " 
"., A solution of the branch Identification problem for w!!st-partitloned manlpula-

tors whlch makes use of the elgenvalu-ec; of the Jacoblan matnx was glven The Jacobian 
1\, 

matnx bemg the representatlon of the transformation mappmg the jomt rates of a senal 

manipulator lOto the (arteslan velocltles of Its end-effector. It 15 conjectu~ed that the elgen­

values and the determmant of thls matrlx contam;; the mformation neces5ary to Identify the 

branches, a fact that was verifled for a 3 ' 3 posltionlng Jacobian. leading to the solution 
Q 
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mentioned above. However. in the case of a general six-axIs manlpulator for which the Ja­

cobian matrix has to be written as a matrlx of order six. whlCh contams information on the 

position and onentatlon. the eigenvalues and the determmant were found to be Insufflcient 

for branch Identification since dlfferent branches led to elgenvalues and determll1ants of the 

same nature. A more detatled study could be pursued to flnd a functlon of the eigenvalues 

or' of other Invarra.nts of the Jacoblan matrlx that would distingUish between the branches 

'\ Complex kmematlc chams were then analyzed and a method to determme thclr 

degree of freedom was denved. The fact that thls method is based on b~th the topology 

and the geometry of the chain makes It very general and apph~able to any kinematic cham 
, 

A detailed analysls of the slngulanties encountered in a complex kmematlc chain wa~ then 

performeq and led to the classIfication of ail possible slngulantles Into three types. The 

physical interpretatlon of each of these slngularitles was also glven The classification 

of singulantles developed here provides a systematic way of describing the singulanties 

of complex kinematic chalns and. hence. of parallel mampulators. wh;ch IS of primary 

importance m both analysis and design of robots 

~ 

The kinematic analysls of flve types of parallel. mampulators was conducted , 

The direct and Inverse klnematié problems were dlscussed together wlth the veloclty and 

acceleratlon inverSions and a smgularity analysis based on the c!<lssification mentloned 

·above. , For most of themalllpulatorsdiscussed.asimple c1osed-form solution of the Invers-e 

kmematlc problem can be found. However. it was pOlllted out that a six-degree-of-freedom 

paralleJ manipulator wlth fully general architecture would not exhiblt such a solution Ir 
~b 

was also shown that the direct kmematlc problem does not le ad to closed-form solutions' 

even for the simplest cases of parallel manipula tors Numencal methods have to be used 

and methods of reduclng the order of the systems of equations to be solved were discussed 

The optimlzation of the deSign of parallel man/pulators presented was based on 

two main performance cnterla. i.e .. the workspace and the dextenty. Workspace represen-. . , 

tatlons were obtamed for four types of paraI/el manipula tors and optimum deSigns were 

derrved. The dexterrty cnterron led to the definition of a new performance mdex for tbe 
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optimizàtion of manipulators which was shown to be applicable to bath senal and para"el 

manipulators This index IS based on the conditIon number of the matnx representlng 

'the mapping between the Carteslan velocitles and the Jornt rates-whlch 15 also an indI­

cation of the force transmissIon quality-over the whole workspace of the man/pulator. 

as opposed ta existlng indices which are based on the propert/es of the man/pulator at 

sorne particular pOints of the workspace. The new rndex seems to be more appropriate 

ta the deSign of manipulators slnce the tasks ta be performed by a robot are unknown, a 

Pflori. The optlmlzatlon of the workspace of a fully general six-degree-of-freedom para"el 

manipulator-whlch ha5 ta be described ln a slx-dlm'enSlonal space-and the study of Its 

singularrtles and dextenty presents a formIdable challenge. ThIs 15 a. subJect for future 

research However. it was pointed out ln Chapter 4 that thls problem can be approached 

as a set of seriai manipulator analyses 
\' 

The programming of redundant parallel manipulators was dlscussed and an 

algorithm for the trajectory planning of these robots was glven The cases on which 

the algorrthm was tested Involved manrpulators with a degrce of redundâncy of < unit y 
," \ 

The sc he me developed here could. be extended to manipulators for whlch the degree of 

redundancy wlth respect to a certain task 15 greater than one, rn which case the' local 

dexterity maxlmlzation would have to be performed over a set of variables ThiS 15 an 

avenue to be explored ln the future 

Flnally. It Î5 pomted out that the analyses and 0ttlmlzations presented in thls 

thesis Involved only the krnematlcs of paraI/el manipula tors and that the dynamlcs of these 

manipula tors still remams a subJect which bnngs about several unsolved problems 
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Appendix A. Solution of a Quartic Equation 

The solution of the Inverse kinematic problem of the spatial three-degree-of­

freedom parallel manipulator given ln Chapter 4 IS derrved through the solution of a quartic 

equatlon A method of solution of sucn an equatlon JJJ.~esed-form is given here whlch was 
/' 

taken from (Selby 1971) -~, 

Let a general quartic equation be given by 

This equatlon has a feso/vent cubic equation. which can _he written as 

Now. let y Ile any root of this equation. and let 

( 
Then. if R ::: O. let 

j3a2 4ab -' Bc - a3 
D = \ - - R2 - 2b + 

4 4R 
/ 

E = \/3a
2 

_ R2 _ 2b'" _ 4ab - Bc - a
3 

1 4 4R 

If R .0, however. we will define 

Then. the four roots of the original equatlon are given by 

a R D 
x = -- + - ±-

422 

(A.i) 

(A.2) 

(A.3) 

(A.4a) 

(A.4b) 

(A.Sa) 

(A.Sb) 

(A.6a) 
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and 

( ..\ ,611) 

This ~olution entails the computation of the roots of the resolv,ent cubic equd-

tian This ean be ~on~ as follows. Let cl general cuble equatlon be written as 0 

, 
This equatlo(1 can be reduced to the form 

where 

.: 3 
1- U': + l' = 0 

1 
u = - (3q - /) 

3 
1 ' 

t' = 27 (2p3 - 9pq + 27r) 

by uSlng the followrng substitution: 

Now. let 

and 

p 
y=:;--

, 3 

t: .... l ... ______ -- ----

3 /! 1. 2 lJ3 

B = \ -- 2 - -\ 4' + 27 
then the values of the roots of eq. (A. 8) will be glven by 

A+B A-B 3 
z2 = - +, ----\ 

2 l' ' 2 

.. 
A + B A -- fj .--

z3 = - ----- \' -3 
2 2 

" 

(. \. 7) 

(. \.8) 

(A.9(/) 

{. \.9h) 

(:\.10) 

(.\.1111) 

(A.11/J) 

.. ~ 

G (:1.12(/) 

( /1.126) 

(A.12(') 

, 
and the values of the roots of the original cubic equation are readily computed usrng 

eq.(A,10). 
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Appendlx B The LlIlear Invanants of a RotatIon Tensor 

Appendix B. The Linear Invariants of a Rotation Tensor ., 
" 

Given any 3 . 3 tensor A.;: whose representatlon m a glven coordmate frame 

comprises the array of real numbers al) fQr·z.} := 1. 2. 3. ItS Imear mvanants are deftned as 

Ils vector, represented as vect(A) and ItS trace. represented as tr(A) Let a denote vect(A) 

ItS representatlon ln the glven coordmate frame comprtsmg the array of real numbers (J. 

for 1 = 1. 2.3 .Resortlllg to Index notation. the aforementloned invariants are deflned as 

ln displayed form. we have 

1 
. vect(A):::= a =-

2 [

a3;-023] 
au - (131 

a21 - 012 

(B.l ) 

tr(A) == all + 022 + 0'33 (B.2) 

Moreover. from the foregorng deflnltlons. It IS apparent that the vector of a symmetnc 

tensor vanishes. whereas the trace of a skew symmetrlc tensor vanlshes. 

'" . Now. If the 3 . 3 tensor IS a rotatIon tensor. denoted by Q. I.e .. a proper 

orthogonal tensor. It can be expressed as 

Q := ee T + cos 0(1 - eeT ) + sm 0(1 ' e) (B.3) 

, 
wher.e e IS the Unit vector parallel to the axis of the rotation assoclated wlth Q and 0 IS 

the angle ,of that rotation Since the flrst two terms of the representation of Q glven ln 

eq. (B 3) are symmetnc. we can wnte the vector of Q ~s 

vect(Q) = vect(sln 01 . e) = Sin oe (B 4) 

Furthermore. the last term of the representatlon of Q glven ln eq. (8.3) being skew sym­

metric. we can wrlte the trace as 

TT' -
tr(Q)=tr[ee +coso(l-ee )1=e·e+cos(])(3~e·e)=1+2cos(j) (B.5) 

The vector of Q can be deno~ed by q = Iq1- q2- Q3]T. and rather than usmg tr(Q) as the 

other linear invanant. qo == cos (/). lS mtroduced to refer to the Imear invariants of the rotatIon 

230 



. , ... 

Appendlx B The llllc<lr hlv.HI"nts 01 .l Hot.ltlon lell!>01 

tensor. HecKe. the rotation tensor IS fully defmed by rom scalar parr1meters. namely {I/, } t~. 

whlch can be convemently stored in the four-dlmenslonal arrély ,\. defmed as 

( IJ.G) 

where 
, tr (Q) 1 

1/0 :::. 
2 

( R7) 

It is pOlnted out. however. that the four components of ,\ are not independent. for tlwy 

must obey the followmg 

Il '-12 - 2 2 2 2 ~ 112 2 - 2 2 - 1 
1\ 1 - qo + qt + fJ2 + 13 =- q + flO - Slh <1> + cos 1/)- (/J.8 ) 

The rotation of a rigld body about a ftxed pOint can therefore be descnbed III il lour 

dimenslonal spaCe by the motl-On of a pOint of pOSItion' ve~tor À that moves on the sUJface 

~f the Unit sphere centred at the ongln of the sald space 

~\ 
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Appendlx C Computation of a Rotation Matnx Given Its Four Upper-Left Entnes 

Appendix C. Computation of a Rotation Matrix Given its Four 

Upper-left Entries 

ThIS problem arose from the solution of the Inverse krnematic problem for the 

posltlol1rng of the spatial three-degree-of-freetlom mampulator presented ln Section 44 1 

ln the aforementloned solution. the four upper-Ieft entrles. 1 e . Qll. Q12. q21 and q22 of the 

rotatIOn matnx ,0 representrng the Orientation of the platform are found from th,-"> solution 

of a quartlc equatlon It IS then deslred to flnd the rotatIOn matrlx or the set of rotation 

matrices that are compatible wlth these four entne)\ The absolute value of each of the 

entnes of the last row ,and the la st column of Q can be computed usrng the fact that each 

of the rows jlnd columns of 0 should have a Unit Euclldean norm We can wnte. then. 

(C.la) 

and 

l = 1,2,3 (G.lb) 

Therefore. because of the slgn amblgUitles on f,ve of the components of Q. a set of up 

to 32 matrices can be found that will satlsfy the column and row unit norm constramts 

However. srnce Q must be an orthogonal matrlx. Its rows and columns must be orthogonal 

to eaüh other ThiS addltlonal constrarnt can be used to frnd whlch of the 32 matrices are 

orthogonal and moreover. the determrnant can be used to flnd whlch of these are proper 
1 

orthogonal matrices The followll1g IS next shown 

Theorem C.l Only up to two of the 32 matfl~es mentloned above are proper orthogonal 

matnces 

Proof: 

Let Q be a proper orthogonal matnx whlch satlsfles ail the c0'lstraints described 

above and let 
/ 

(G.2) 
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Appendlx C ComplltJtlOIl 01 .) RotJtlOIl rvlJtliX GIVCIl Its IOUI UPP('t l dt f nttH" 

It is now deslred to fmd other matrices obtamed from Q by changing the slgn~ 01 ~O/1W or .111 
" 

~ 

of the entnes of the last row and the last column and that would still be proper orthogoll.d 

matrices It is clear that If the slgn of only one or two of the entncs of Q IS (halll~t'd. 

the orthogonallty between the rows and the columns cannot be pre"rrvpd Furthel mOI (' 

If the sign of three of the entfles of Q IS cl1.mged. the orthog.on.llrty 01 tlll' IOW'" .IIHI 

columns IS agam lost unless the three entnes Jre chosen 011 (\ S<1IllC ;ow or (OIUlllll. 1 (' . ri 

we change the sign of the entrles of the tlmd row or the thu d c..olllll1n Howpver." 1 1\1''''(' 

slgns are changed. the slgn of the determlnant will be ch;lIlged .1Ild tll(' H'~lJlllIl!~ Ill.!1 rlX 

Will be Improper orthogonal. 1 e , It will represent a reflexlon 1 CJther than il rotdtloll (lIld Il 

Îs therefore not an acceptable solutIOn. It IS also readlly secn that t!w orthogoll.lllty 01 lIw 
1 

rows and columns cannot be preserved when the Slgn of ail the entrre~ of t!w I,l~t row ,\lHI 

the last column of Q are changed Fmally. there IS only one posslblilty th;)t Will prc~prVt' 

ooth the orthogonahty and the determmant an,d that IS. when the slgn~ 01 1/13' 1/23, 1/ ~ 1 .Hld 

q32 are changed, 1 e , 

If ',3) 

Indeed. the orthogonaltty conditions, on the columns of thls new matnx Q' can then be 
Cl 

wntten as 

(r '.41/) 

(r '.4h) 

(i '.4r·) 

whlch are equivalent to the orthogonallty conditIOns of Q and the determinant Ciln b(~ 

wntten as -" 

.6.(Q') =qll(q22q33 - 'I23fJ32) -- 1/2t!fl12<!33 f/13iJ32) 

- q3d -q12(J23 + rtB(/22) 

=.6(Q) 

and hence, only up to two sqlutlons to the original problem, Q and Q', can anse. 

, , 

(('.5 ) 

21'1 
J ) 
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Appendlx D Condition Number of a Matnx 

Appendix D. Condition Number of a Matrix 

Let us conslder the followmg Itnear system 

Ax = b (iJ.1) 

where A IS an /1 1/ matnx and x and b are n-dlmenslonal vectors The condition number 

of the matnx A 15 a measure of ItS natural reslstance to roundoff error when the solution 

of the Itnear system IS computed This reslstance IS expresseçJ by the amplifICation factor 

by whlçh a relative error ,:b b', b ln ~he data I~ multlplled\ to lead to a relative error 

,Il x ,~: IX ln the solution and It 15 called the conditIOn number qf the matnx We can wnte 

the followlng 

A(x + bx) = b + bb ( D.2) 

or. by subtr<lctlon of eq.(D.l). 

A(bx) = cSb (D.3) 

or 

(D.4) 

We now defme the norm of a matnx as ItS ampltfymg power. 1 e . 

Ax A x'. for ail vectors x (DS) 

and equallty holds for at least one nonzero vector We can then wrlte. from eqs (D 1 & 

D 4). 

" (D.6) 
" 1 .,' 

(DJ) , 

(D.S) 

(D.9) 

\ 2'3tr' 
\ 
\ 

\ 
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Appendlx D londltloll NlIllllll'l ot .1 l'vl,ltlix 

15 the condition number of A. whlch defmes Jn upper bound for the ,1InpllfKJtr'OIl 01 the 

relative errar This deflmtlon of the condition numbet can be used wlth diHerent m,ltrix 

norms. In thls thesis. the Euchdean -or FrobenllJs~ norm was u~ed. whlch is dt'tlllcd (1~' 

where 

'A = \ tr(AWA 1 ) 

w = 11 
Il 

( 1 ) 1 Ou ) 

(/),.1 Oh) 

and A IS assumed t be 1/ . ri Other deflnltlons for the norlll could be t1dopted For 

Instance. the square root of the largest elgenvalue of AT A 15 often lIsed ThiS detHllt 1011 

has the' advantage Cff being applicable to non-square mdtflce~ When thl'> cjpfllllllOIl 1'> 
1 

adopted the condltlhn number, of a matrrx A becornes the squ.nc root of tlle (,ltIO of the 

largest to the smallest elgenvalue of the rnatrrx ATA The Euclide,lIl norm W<l!> u~ed herp 
, 

because It IS frame-mvarlant· and It 15 also very easy ta compute 
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