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framework before:special cases are introduced. The kinematic design optimization of par-

- ‘% N o
This thesis presents an extensive study of the kinematics of parallel manipu-

- . s ' N .
lators.. The latter are considered here as a subset of a'more general class of kinematic

N M » * . - . » . .
chains called complex kiflematic chains which are defined as chains in which there exists at

least one ImKhavmg a degree of connectivity greater than or equal to three. The degree of
&

connectlwty of a link is defined here as the number of rigid bodles that are directly attached

“to thls link by kinematic pairs.

The /first portion of the thesisu is' devoted to the stody of 'simple kinematic
chains which are the basic elements from which complex kinematic chains. and hence
parallel manlpulators are constructed. The analysis of complex kinematic chains is'ithen
pursued through thelr graph representation and through the derivation of the assocnated
Jacobian matrix. The three types of singularities pertaining to this class of kinematic
chains a;e identified using the latter concept. They are illustrated with some examples.
This also leads to an unambiguous definition of parallel manipulators based on their graph

.

1
AN

Parallel ‘manipulators are then “analyzed in detail. The analysis includes the
solution of the direct and inverse kinenaat)ic problems. the velocity and acceleration inver- )
sions a__r}d\an investigation of the singg;larities. These probfams are discussed in a general

allel manipulators is then undertaken using some performance criteria such as symmetry.

workspace, local dexterity and globaf dexterity. A new performance index called global
conditioning index (GCl) is also defined ye

i — . .
. > 3 . . \ . .
Finally, the kinematic inversion of redundant parallel mampulators is approached

as a local dexterity maximization problem. The concept of trajectory map is mtroduced ‘

and an algorithm for.the generation of smooth trajectories is given.
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- 6.degrés de liberté. | -

Résumé

Cette these presente une étude détaillée de la cmemanque des mampulateurs a

§
architecture paralléle. Ces manlpulateurs constituent en fait un sous&g{\semblevd une classe

.

plus générale de chaines cinématiques que I'on appelle chaines cinématiques complexes, ces .

de;nnéres étant definies comme les chaines cinématiques possédant au moins un membre
dont-le degré de connectivité est supérieur ou égal ‘3 trois Le' degré de connectivité d'un
membre est défini ici conlime le nombre de membres lur étant directement attachés par des
liaisons cinématiques. '
5 . ;
™ -+ La premiere partie de la thése traite des cha?nes‘cinématiques simples, celles-ci

etant les éléments de base a partir desquels les chaines cinématiques complexes et, par

conséquent, les manipulateurs paralléles sont construits. Cette section permet d'introduire

"des concepts importants tels que la mobilité des mécanismes. I'optin:nsation de la qualité-’

de transmission et l'identification des différentes configurations ou ramifications,

L'analyse dés chaines cinématiques complexes est alors entreprise grice au
concept de graphe associé et de matrice Jacobienne associée. Cette derniere méthode
permet d'identifier les trois types de singularités pouv:;;nt étre rencontrees dans les chames
cinématiques complexes Des exemples sont fournis afin diillustrer ces trois catégories. De
plus. I'approche basee sur la théorie des graphes conduit a une deflnmon non équivoque des

manipulateurs paralléles en tant que sous-ensemble des chaines cinématiques complexes.

©

Les manipulateurs paralleles sont ensuite analysés de facon approfondie. Cette
analyse inclut la solution de§ problemes cinématiques direct et inverse de méme que la
dérivation des relations inverges de vitesse et d'accélération. Une étude des singularités g::»t
également présentée. Ces problemes sont d’abord disc‘utés dans un contexte général, puts

_dgs cas particuliers sont introduits. Les manipulatéurs considérés sont de type: plan a 3

degrés de liberté, sphérique a 3 degrés de?!i\tgerté. spatial 3'3 degrés de lihe%té et §patipl a

P

+ N
h o e o L T T

EY

¥




' . . ., . . ! .
L'optimisation cinématique des manipulateurs paralléles ei%t alor's entreprise en

I Vel * . . ! . I
utilisant des critéres de performance tels que la symétrie.. le volume de travail. la dextérité

locale et la dextérité globale. Un nouvel indice de pérformance appelé indice de condition

global est également défini. Des solutions optimales sont obtenues.po

ir les. cas particuliers

de-manipulateurs mentionnés au paragraphe précédent.

. . )
Finalement. I'inversion cinématique des manipulateurs paraleéles'redondants est -

{
e concept de carte

considérée comme un probléme de maximisation de l&"dextérité locale.

de trajectoire est introduit et un algorithme permettant de générer des tr%‘jectoires continues

est donné.
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The author claims the originality of the ideas expressed in this thests The/

following contributions are of particular interest
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the g?aphical representation of the robility regions of pla;lar and spherical four-
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the optimization of planar and spherical four-bar linkages as mimmum-defect

linkages using the orthogonal-decomposition method

the solution of the bkanch identification problem-for wrist-partitioned manipu-

lators using the eigenvalues of the Jacobian matrix ~

a general method to determine the degree-of-freedom of complex kinematic

chains based on their topology and geometry

a classification of all possible singulanties encountered in complex kinematic

chains in three different groups

a complete kinematic analysis and singularity analysis of fou\xggs of parallel

manipulators

the definition of a new performance index (Global conditioning index) for the

optimization of the global dexterity of serial or parallel manipulators

~

a workspace and dexterity optimization of four types of parallel manipulators

¢
an algorithm for the kinematic inversion of redundant parallel manipulators using

Some of the results reported in this thesis have been partly presented in the

following publications and communications: Angeles et al. (1987). Gosselin and Angeles
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Chapter 1 | INTRODUCTION

The constant evolution of the variety of products and goods to be manufactured
- ‘and the evergrowing need for better efficiency lead to the development of new methods of
production This also applies to the manufacturing processes that make use of robotic

manipulators to perform certain tasks

Indeed. there is a great deal of effort directed towards the development of robots -
@ Mexhib(iting better characteristics, e.g, th; speed of operation, load carrying "capacity, dy-
Hamic properties, reliability and repeatability. Apart from the work being done in control
systems, algorithms and sensors. which will not be discussed here, researchers have been :

involved at two different levels, to aim at the foregoing objectives

<

The first trend consists of the improvement of the performance of the different
elements of a manipulator such as its actuators. The introduction and the development
of direct-drive robots is an example of the research conducted at this level. {Asada et al

1982; Asada and Kanade 1982: Asada and Youcef- Toumi $987)
\ o ] .

On the other hand. some researchers have been considering the possibility of

designing robots with new kinematic architectures. As a matter of fact, most of the
manipulators that are currently in use are of the serial type, i.e., their kinematic structure
is simple and open. In such an architecture, each of the links is.binary. i.e., it is attached to

. two other links, except for the end-effector and the base that are attached to only one other
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link. However, although it readily leads to anthropomorphic arms and to simpler kinematic

equations, this structure has some drawbacks, namely: g

<

(i) only one of the motors is fixed: the remaining ones. accounting for a substantial

part of the inertial load. are moving-

v

. (ii) .due to the cantilever type of the links, the elastic- flexibility is generally high

which introduces positioning inaccuracies ‘and undesired dynamic‘al side effects

»

Since some applications require very stiff arms with important load-carrying
capacities, the possibility of including'closed kinematic chains into a robotic manipulator
jAsada and Youcgef-Toﬁmi 1984; Bajpai and Roth 1986. Stoughton and Kokkinis 1987;
M‘ohamed 1987). or even to build manipulators with a fully parallel architecture (Hunt
1983; Yang and Lee 1984; Mohamed and Duffy 1985; Fichter-1986: Inoue et al. 1985;
Sugimoto 1987, Shirkhodaie and Soni 1987: Lee and Shah 1987), has been considered.
Parallel robotic manipulators‘ are characterized by the ‘fact that the gripper is attached to
the ground via several kinematic chains leading to a structure with multiple closed;loops.

Parallel manipulatofs are expected .to yield the following results:

H
’

(i) by allowing all of their n‘lotors. or at least the heavier ones. to be fixed, larger
amounts of power will be available, thus increasing the™load-carrying capacity

and the speeds of operation -
¥

{ (i) by full elimmnation or, at least. reduction of gear drives. accuracy will be in-

creased, while production costs will be lowered
\ | .

A »~

(iii) by elimination of cable transmissions, accuracy and reliability will be increased.

<
Moreover, parallel mapipufators find applications in other fields such as flight

&

simulators, walking machines and robot hands. In fact, the two latter mechanical systemé

can be considéred as parallel manipulators with time varying kinematic parameters.

) 3
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In this thesis, the kinematics of parallel manipulators is studied in detail. The

objectwe is to obtain the kinematic equations constrammg the motion of these manipulators

-and to use them to optimize the kinematic propertles of the said mampulators with regard

to two issues, design and programming. The approach adopted here is to consider this
class of manipulators as a special case of a more general class of linkages called complex
kinematic chains. Therefore, the next two chapters Ml be| devoted to a review of some
properties of simple and complex kinematic chains. ‘ ‘

13 //’
Some aspects of simple kinematic chains, such {s mobility, transmission quality

and branch identification, are critically reviewed because of their relevance to the study of

parallel manipulators. This issue is covered in Chapter 2.

1

= .

In Chapter 3. complex kinematic chains are regarded as a very general class
of linkages. The graph representation of their topology is introduced and completed with
a geometnc representation, based on the Jacobian matrix, which leads to a method of
determlmng the degree of freedom of any general complex chain for any of its configurations.
The' method is also applied to the investigation of singularities, which are shown to be of

three different possible tyges
: , .

Having discussed complex kinematic chains in general, paraliel manipulators
are intro‘d‘uced as a ’part'icular subset of these, their study being of greater interest in the
context of robotics. Ch\apters 4 and 5 address the problems of analysis and optimization
of these manipulators. The major issues in analysis are the solution’ of the direct and

inverse kinematic problems. velocity and acceleration inversions, and singularity identifi-

cation Planar, spherical and spatial three-degree-of-freedom manipulators are considered

together with a spétiél six-degree-of-freedom manipulator. These particulax manipulators
have been chosen for thej have emerged as the most promising cases according to a survey

of the different possible parallel architectures for robotic applications (Hunt 1983). The

‘ optimization, dicussed in Chapter 5. focuses on the optimum design of manipulators based
pte g

on performance indices related to workspace and dexterity. The concept of dexterlty is

defined here as a function of the condition number of the Jacobian matnx A clear distinc-

8 . - 4

.
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tion is made between Jocal and global dexterity, the latter, also ﬂtermg{i/ Global Conditioning

.-Index {GCl), being a kontribution of this thesis. This approach follows previous work on

the subject (Salisbury| and Craig 1982; Yoshikawa 1985: Angeles and Rpjas 1987: Klein and

Blaho 1987). The main objective of Chapter 5 is to obtain design guidelfnes for the parallel

_manipulators mentighed above. based oh the foregoing crniteria

Since the tasks to be performed by a certain manipulator are. In geheral. un- -
known a priori, the design has to be based on criteria such as the ones presented above

However. a different problem arises when a given robot is required to produce a certain

trajectory in the task space_ If the number of controlled axes of the robot is equal to the

number of variables associated with the given task. then the inverse kinematic algorithm
is directly used for the programming of the robot. On the other hand. if‘the number of
controlled axes, of the robot is greater than She number of variables associated with the
task. then the mamipulator is said to be redundant with respect to this particuldf task and
its motion can thergf;:re be optimized because of the extra axes. The programming of these
robots deserves special attention. Examples of such parallel robots ar@zen in Chapter 6

where this problem is addressed The trajectory is optimized using the local dexterity as

an optimizatior%cnterion and using the concept of trajectory map developed here




Chapter 2~ SIMPLE KINEMATIC CHAINS

?

At the preliminary stage of this work, it is of interest to revisit some of tlve
properties of simple kinematic chains. Simple chains are defined here as kinematic chains
containing links having a degree of connectivity smaller than or equal to 2. It is recalled
that the degree of connectivity of a link 1s understood here as the number of rngid bodies
that are directly attached to the s;id hnk by kinematic pairs. Therefore, simple kinematic
chains encompass both serial manipulators and closed single-loop linkages. The former have
binary links and two links of connectivity one (the base and the end~efféctor). whereas the

latter have only b;.nary hinks

A

The properties of kinematic chains studied in this chapter have been chosen for -

their particular relevance in the analysis or optimization of parallel manipulators They allow
the introduction of some concepzts that will be extended or used as such in the forthcoming
\
chapters.-namely- ‘ . '
y ; (i) the mobility analysis of planar and spherical four-bar linkages presented here 1s

based on thes concept of linkage discriminant which will be used later for the

b . ‘ .,
workspace analysis of planar and spherical parallel -manipulators,

o . (ii) there 1s a connection ‘between the concept of transmission quality used here to
- optimize planar and spherical four-bar linkages and the local and global dexterity
. ’ . of parallel manipulators which will be defined in Chapter 4.

T
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.

(iii) the branch identification problem is discussed here for serial manipulators to
stress its importance in the kinematics of manipulators in general. As a mat-

*
ter of fact. parallel manipulators usually have many more branches than the

corresponding sertal manipulators

2.1  Mobility Analysis of Planar and Spherical Four-Bar Linkages \

L4

The identification of .the mobility regions of linkages constitutes an important
aspec; of linkage design \}}1 the context of CAD, the graphical representation of these
regions s therefore an item of the utmost importance The mobility region of a linkage 1s
‘defined as the reéuon. in the space of its parameters (or ml a space defined with functions
of these parameters). in which the inRut hink has full rotatability. 1.e.. it can undergo a full
rotation of 27 However, 1t 1s often desirable to find the region in which the output link
is fully rotatable. When these two regions are known, we can infer the region in which
both the input and the output are fully rotatable, 1.e. the crank-crank region by finding
the intersection of the aforementioned regions In a similar fashion, we can subtract the

intersection from each of the original regions of mobility to obtain the crank-rocker and

rocker-crank regions

The moﬁillty of planar and spherical linkages has been studied extensively in the
‘ past. Grashof (1883) first proposed inequalities describing the mobility of planar linkages.
Further work on the subject produced other geometric (Gupta ansi Radcliffe 1971: Midha
et al. 1985) and algebraic-geometric (Gupta 1980) criteria These were meant to incor-
porate mobility conditions in design procedures. Similar mobility criteria were developed
for spherical linkages“(Freuden—stein. 1965: Savage and Hall, 1970: Soni and Harrisbqrger.

1967: Duditza and Dittrich. 1969: Gupta 1986b). .
' . \

More recently, the need for graphical *r“epresentations of the mobility regions
arose. the objective being to include them in CAD packages for linkage design. Risbburg

(1983) gave a full description of the different regions for planar linkages based on Grashof's

7
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'

.inequalities. Barker and Lo (1986) presented a similar descriptign and representation for
spherical mechanisms. ‘

1
! e

The mobility analysis'used here is an extension of the one given in (Gosselin and
Angeles. 1987a). This i1s based on the concept of linkage discriminant which was first used
in (Angeles and Callejas, 1984) for planar linkages and extended in (Angeles and Bernier.
1987a) Ofther studies using the con'cept of linkage discriminant for linkage mobility are

(Wilhams and Reinholtz, 1986 & 1987). /

The inequalities obtained by the mobility analysis of planar and spherical link-
ages lead to polyhedra in the 3-D space of linkage parameters. Moreover. these polyhedra,
as shown here. have surprisingly symmetrical shapes and are formally identical for planar

and spherieal linkages.
2.1.1 Planar Linkages '
\ . ,

The linkage parameters &,, (i = 1,2, 3) used here are essentially those proposed

first by Freudenstein (1954,1955). Moreover. they are identical to the ones used in (Angeles
)qnd Callejas, 1984; Angeles and Bernier, 1987a: Gosselin and Angeles, 1987a). They are
rec_alled. here for quick reference. A planar mechanism s shown in Fig. 2.1, where the link

lengths are given by a,,(: = 1.. ..4). The linkage parameters k,,(1 = 1,2, 3) are then

defined as: 2 9 g '
_ 9 ta a3yt ko = 3 Y
kl} - 20,2(14 ’ 2" (1%] ’ k3 - ag (21)
The inverse transformation is given as follows:
. 1 VK3 + k3 + k2k3 — 2k koks L L2
aq =1, ay = —, a3 = s ag = — .
! 27k } o |kaks] 4T ks
The input-output equation of the planar mechanism can then be expressed as:
. AW)T? +2B(¥)T + C(¥) =0 (2.3)
‘ : - 8

A
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]
|
|

~

Figure 2.1 Planar four-bar linkage

where
A(W) = ky — ky+ (1 = k3)cos & © (2.4a)
B(w) = —-siny : - (2.40)
® : ) =ky+ky— (14 k3)cosw (2.4¢)
T =tan(d/2) (2.4d)
A

in which v and o are the input and output angles respectively. The discriminant of the
quadratic equation (2.3), known as the linkage discriminant (Angeles and Bernier 1987a),

can be written as:

z(v) = BY(¥) — A(¥)C(¥) ‘5 (2.50)
= sin?w ~[ky — ky + (1 — k3) cos ¥]lky +ky — (1 +k3)cosw]  (2.56)

which can be simplified to: !

z(v) =(1- kf + kg) + 2(ky k3. — ky)cos ¥ — kg.coszw ! (2.5¢)

\
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The input link has full mobility if the discriminant is positive for every value of
w. i.e., for =1 < cosy < 1. Since eq.(2,5¢) represents a parabola witT\ negative curvature,
this is the case if 2(0) > 0 and 2(m) > 0. If we denote by =y and 2, the values of z(v) for
cos v' = +1 and cos ¥* = —1 respectively. we have:

R min  z{cos v') = min(zy.23) (2.6)
~1~cose~ 1

' %
and the full rotatability is attained if and only if min(zy.2;) > 0 where.

1

212 2(n) = (14 k)% = (kg + ky)? {2.74)

=2

Hi
[ V]

(0) = (1 - kg)? — (ky — k3)? (2.7h)
It s thenrstralgh‘tforward to show that these expressions lead to the following inequalities:
(ky + k3)2 < (14 ky)? (2.84)

and
(ky — k3)? < (1 - kp)? - . (2.8h)

Each of these inequalities represents two regions of the (kq.ky. k3) space which
are bounded by two orthogonal planes The line of intersection of these planes is parallel

to plane kyk3 and is located at ky = —1 for inequality (2.8a) and at k5 = +1 for inequality

(2.8b) Moreover. the projections of these two lines on plane kyk3 give two lipes orthog-
onal to each’oth:} and passing through the origin with an angle of +45 and -45 degrees,

respectively. as spown in Fig. 2.2
<

Hence. the intersection of the regions defined by inequalities (2.8a) and (2.84)

is given by a regular tetraheGron havfng}::;entroid at the ornigin and having edges of

-

length 21'2-and two open convexes (wh e unbounded on one side) each sharing a

common edge with the tetrahedron. This is represented in Fig. 2.3. The set of points of
the (k1.kp,k3) space located within these limits corresponds to the set of planar four-bar

linkages having a fully rotatable input. It is pointed out that the origin of the (ky.kj.k3)

space. which is located inside this region. corresponds to the set of degenerate cases of

10

&
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°

- Figure 2.2 Projection. on the kq k3 plane. of the lines constututmg the intersection

|
of the planes defined by eqs.(2.8a&b) ;

mechanisms for which az — oo, a3 — oo and a4 — oo, i.e., the planar PRRP mechanisms

The mobility region is also represented in Fig. 2.4 where the tetrahedron is

shown in yellow and the two open convexes in blue.

The foregoing ‘analysis can now be applied to the output link by exchanging the

o 11

4
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?

{ '_}

\

Figure 2.3 Mobility region for the input link of planar four-bar linkages .

role of the input and output links- of the mechanism. To this’end. eq.(2.3)} is rewritten as’

\/ A'(6)T1+ 2B (0)T + C'(0) =0 ‘ (2.9)

‘where ,
; ‘_;1'(¢) =ky + k3 + (ky +1)coso (2.16a)
bf(a&) = —sino {2.10h)
C' (@) = kg — k3 + (ky - .1.) cos @ ) ‘ ’ {2.10¢)
T = tan{y/2) : (2102)
Tuh; new discriminant ;i:tained can then be expressed as:
$(6) = [B'(8))* - 4'(4)C" (o)

(2.11)
= (1 = kZ + k2) + 2(k3 — 2ky ky) cos & — k3 cos? & ‘

12
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— ~ . o .. - oo

-

Figure 2.4 Mobility regions of planar four-bar linkages crank-ctank regions are .
shown in yellow and crank-rocker regions in blue ) /

v - ) . .
The reasoning used above can be repeated here since we are again in the presence of a
quadratic equation having a negative curvature. Therefore. the conditions for full mobility

of the output hink are ¢(0) - 0 and ¢(m) 2 0. They. lead to the following inequalities *

-

(ky +k2)? < (1 4+ k) (2.12a)

‘.,
and Cor .
(kg - kg)? < (1 ky)? (2.128)

§
+

This result could have been expected since the exchange of the input and output links in

eq.(2.1) is equivalent to exchanging the roles of k, and kj Lo /

The region -described by inequalities (2 12a) and (2.12b) is showns-in an"2.§.

Moreover. the central tetrahedron (in yellow) of this figure is regular and is related to that

of Fig. 2.4 by a rotation about the origin that is a member of the symmetry group (Angeles -

1982) of the tetrahedron of Fig. 2.4. Hence. the central tetrahedra of Figs. 2.4 and 25

,

13
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are one and the same. -Furthermore. the two open convexes (in red) are similar to the
ones shown in blue in Fig é4 Thus, the region defined by the tetrahedron is the one
where both t}ve input and output links have full mobility, ie. where the linkages are of the
crank-crank type. The-open convexes then represent the regions where the linkages are of

the crank-rocker type (in blue) and of the rocker-crank type (in red). respectively

3

Figure 2.5 Mobility regions of planar four-bar hinkages crank-crank regions are
shown in vellow and rocker-crank regions in red

1
§

It can be observed that the open convexes are attached to the tetrahedron by
L 4

. its edges. To complete the symmetry of the whole spat|al representation. we can define

another set of open convexes (Fig. 2.6) attached to the tetrahedron by the two edges that

are still free. Although this has ‘not been shown, it s /conjectured that this region (m

green) contains hnfegsible linkages The rest of the space would then contain linkages of -

the rocker-rocker type, The'proof of this hypothesis would require f_‘urther work.

-

Notice that, in order to help the reader to gras;; a global idea of the mobility

' ) ) 14
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Bl TR ——

]

-Figure 2.6 Mobility regions of planar four-bar linkages. crank-crank regions are
shown in yellow and the regions containing unfeasible linkages in green

§

regions in space. the edges of the tetrahedron in Figs. 2.4-2 6 have been drawn with the

color of the open convex attached to it.

2.1.2 Spherical Linkages -

Again, the linkage parameters k,,(i = 1,...,4) are identical to the ones used
in (Angeles and Bernier, 1987a; Gosselin and Angeles, 1987a). The spherical mechanism
is shown in Fig. 2.7, where the link angles are given by a,,(r = 1,....4) The linkage

parameters are then defined as:

k =cgsa1cosazcosa4—cosa3 k 35_3222 - )
/ 1 sin aq cos ap sin ay ) 2~ tan ay (2.13)
ks = ta.n az, iy = tan ay '
sin ay tan.ay

15
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b
A possible inversion of this transformation is given by:

Cos g = ky sinay =
1k ! lk3 -
k% - k2
cos ap = senlky) ) sinap = —"T‘"'i
1+ kf - k2 \1+K -k
L
ke — k(13 = K2)
cosay = 2 1 20vel L n? 12 (2.14a)
k3 ly/ (1 + K3 = ) (] + K2 — i})
inos o L (k3 — k2)[kZ + k2(1 + k2) + 2kykoky + (k2 — k) (k2 - kD)) |
37 ks (1+k§-k})(k2+k2—k§)
ky . J k -k
Cos g = ) sinay = - 4 sgn(k3)
. 7 12 1.2 k3 + k2 - k2
V kg +ky— kg , +
In this inversion, it is assumed that:
k2 <k : " (2.140)

The input-output equation of the spherical mechanism can then also be written

as the following quadratic equation:

E(w)TZ +2B()T + C(v) =0 (2.15)
where
A(Y) = kg + 1+ (ky — kg)cos g (2.16a)
B(y) = kysiny | - (2.16b)
C(g) = ky -1+ (ky + k) cos & - v (2160
r T = tan(¢/2) (2.16d)

e ke

in whlch ¥ and ¢ are “the input and output angles, respectively. The discriminant of the

- quadratic equation (2.15) is then the linkage discriminant for the spherical mechanism. It

is given by:

2¥) = B (v) - A(WIC(v) . 217
(k4 kz - kg)cos ¥+ 2(—ky — kyky)cos ¥ + (1 - ka + k3)

[ S 16
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Figure 2.7 Sphencal four-bar linkage .

where the coefficient of cos? Y can also be written as:

: ‘
2.2 2. e )
k3 k3 - k2 = o {2.18)

which clearly shows that it is negative definite. and hence the discriminant of equation
(2.15) is a parabola in cos ¥ with hegative curvature, such as the._discriminant appearin

in eq.(2.5£. ’ i . :

The argum%pts used in Section 2.1.1 for planar linkagé‘é” can be repeaied here.

The full mobility of the input link is guaranteed by the positive definiteness of the discrimi-

17
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nant over the whole range of values that ¢ can attain, e.. 0 << 2ror=1<cosy < +1.
If we denote by z; and z, the values of z(1) for cosyp = ~1 and cos ¥ = +1—t.e. 2(0)

and z(m)—respectively, the mobility conditions become:

min  z(cos v:) = min(zy.27) =2 0 (2.19)
~1<cos w1
where
5 = A=1) = (kg +1)2 = (ky — k)2 (2.20q)
2y = 2(+1) = (kg - 1)2 = (ky + ky)? (2.200)
which lead to..
(ky + k1)? < (kg 1) (2.21a)
' - 3
and .
(ky — ky)? < (kg +1)° (2.21b)

Inequalities (2.21a&bi are very similar to inequalities (2.8a&b) and the associated region.
(

which 1s shown in Fig. 2.8, 1s geometrically identical to the one obtained for planar linkages

It is pointed out that, in this case, only three of the four parameters that we
had defined (k,.: = 1.....4) play a role in the mobility. which allows us to obtain a

tridimensional representation in the (ky.ky.k4) space. The set of points located inside the

-~ limits of the tetrahedron and the open convexes correspond to the set of spherical four-bar

linkages having a fully rotatable input link. The origin of the space used here represents the
set of spherical mechanisms for which a3 = a3 = a4 = 90°, 1.e.. the spherical equivalent

to planar PRRP linkages (Lichtencheldt and lrck 1979). The mobility region is also shown
in Fig. 2.9.

Thé analysis is repeated by exchanging the role of the input and output links

Equation (2.15) is rewritten as:"

A'(e)T? + 2B’hl(¢)T +C'(¢) =0 (2.22)

18
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3 | -

Figure 2.8 Mobility region for the input link of spherical four-bar linkages

where -
A'0) = ky — ky - (1 + ky) cos © . (2.234)
B'(0) = kysin o (2.23h)
C'(0) =ky +ky - (1 - ky)coso (2.23¢)
T = tan{¢ 2) ‘ (2.23d) .

v

The new.discriminant obtained can then be expressed as’

¢(0) = |B'(0)] - A'(¢)C'(9) : -

(2.24)
= (k3 — k3 — 1) cos® ¢ + 2(ky + kpky)cos & + (k¥ — kI + k2)
where the coefficient of cos? ¢ can be rewritten as:
@ (k2 — k2 — 1) = ~sec? ay (2.25)-
19
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Figure 2.9 Mobility regions of spherical four-bar inkages crank-crank regions are
shown in yellow and crank-rocker regions in blue

which clearly shows that it 1s negative definite, thus leading to the same conclysion as n

dealing with the discriminant of eq (2 17)

The conditions for full mobility of the output link are ¢(0) > 0 and ¢(#) > 0

1 . -

They lead to the following inequalities’
(kg + kg)? > (1 ky)? (2.26a)

and

C(ky ~ kg)2 > (1 + Ky)? " (2.26b)

»

The région described by inequalitiei (2 26a&b) constitutes a set of four open
\ : -

convexes which are shown irTT:ig. 2.9 (in yellow) and Fig 2.10 (in .red)

It is now apparent that the open convexes shown in Fig. 2.9 (in yellow) are

the common intersection of the regions described i)y inequalities (2.21a&b) and (2.26a&b).

20



2 SIMPLL KINEMATIC CHAINS

Figure 2.10 Mobihty regions of spherical four-bar hinkages crank-rocker regions arc
shown in blue and rocker-crank regions n red

Thus this region 1s the one where both the input and output hinks have full mobihity 1 ¢
where the linkages are of the crank-cranktype The tetrahedron then represtnts the region
where the linkages are of the crank-rocker type (in blue) and the open convexes shown

Fig 210 (in red) represent the region containing mechamisms of the rocker crank type

’ Again. to complete the symmetry of the whole spatial representation, we can
define another set of open convexes (Fig 2 11) attached to the tetrahedron by the two
edges that are still free. In this case also, although 1t 1s not shown here, 1t 15 conjectured
that this region (in green) contains unfeasible inkages The rest of the space would then
1 contain I;nkages of the rocker'~rocker type. The proof of this hypothesis would also require

a deeper investigation that -may require tools other than the discriminant technique

2.1.3 Example

An example problem making use of the mobility regions derived above 15 now

: 2t
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B}

Figure 2.11  Mobility regions of spherical four-bar linkages crank-rocker regions are

shown in

blue and the regions containing unfeasible linkages in green

discussed This example, whicl&\was presented in (Gupta 1986b). deals with a spherical

- £
robot wrist The problem consists of deteimining the set of orientations of the end-effector

that will allow 1t to undergo a full rotation about a given axis which is concurrent with

Rhe other three axes of the wrist. The angle defining the orientation of the end-effector,

which becomes the

unknown of the problem, is then associated with the value of o4, i.e..

~
the fixed link It is assumed here that 0° \< ag <1807 . The other angles of the wrist are

given as a; = 30° .

where

which represents a

a3 = 80° . and a4 = 75°. Therefore. we have
_cjcosag — ¢

ky = ————= k) =c3
o (2:27q)
ky = 4 k4 = i
37 sin oy tan oy -
¢g =026794 ¢y = 0.20759
: " (2.27)

c3 = 015470 ¢4 = 057735
curve in the (kq,kp, k) space. The values of angle e _corresponding

to the portit;ps of this curve that are inside the mobility region of the input link (éig. 238)

» -
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!

are the values of ay for which the end-effector can_undergo. a full rotation. Notice that
the end-effector is considered here as the input link of the spherical mechanism having a

“dimension of ay. Inequalities (2.21a&b) lead to:

[ (2 _ 2 2 P °
((c4 c1) 9 + 2cqcy + 2cy +c103)  2cp¢3 +1- cg) >0 (2.28a)

tanay * sin? oy sin oy tan ay tan oy sin ay
and
2_ .2 2
(<3 : cq) ' sz L2 e tecs) 206 2] >0 (228) .
tan‘ ay sin“a; SN tan oy tan ay sin ay
The following substitution is then introduced: . *
-, _ T2 .
cos ay = %:_;i sinay = ] f—TTz (2.29a)
" - * 3
where ) , -
T =tan(ay/2) ~ (2.29b)
and inequalities (2.28a&b) can therefore be rearranged, which leads to: i
. i
\
AT* - BT?*4+CT?2+ DT + E>0 \ (2.30a)
AT*+ BT+ CT?- DT+ E>0 C (2.300)
where: X v
_ 2 2 ¥
A= 71 (¢1 + ¢3) ‘ (2.310.)
B =4(cq + cqe3 + C§C3) (2.31b) °
C=2c~c} -2 -c}+2 (2.31¢)
_ D = 4(cg + ce3 — cpe3) - . (2.314)
E = cg — (¢1 — ¢9)? : (2.31¢)
- Since we have: 0° < aq < 180° then the range of interest of £he variable T

in inequalities (2.30a&:b) is restricted to T > 0. The corresponding ‘functions are p'lofted
in Figs. 2.12-2.14. which clearly shows the diffe(ent regions in which the inequalities are

verified.




* CD of the curve are clearly outside of the mobility region.
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Figure 2.12 Function defined by the left-hand side of eq (2.30a).
Notice that Fig. 2.13 is a?zoom of Fig. 2.12 in the neighbourhood of the otigin.

The ranges of va,lues of Tfor w'hich tbe inequalities are not verified are:™
0222<T< 0:515 and 192 < T <229 | (2.32)
ie. )
25° < og <35° and 125° < o < 175° (2.33)
which is in full agreement with ‘the resultsvreported in {Gupta 1986b). .
Fin‘ally. since the value of k, is constant, the curve described by equations

(2.27a) cap be represented in the plane given by k, = 0.15470, i.e.. using a cross-sectional
view of the solid of Fig. 2.8. This view is shown in Figs. 2.15 and 2.16. P‘ort\ions AB and

N
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-

AN

Figure 2.13" Zoom of Fig 212 in the neighbourhood of the origin

2.2 Optimization of Transmission-Quality -

kY

The linkgge optimization problem aimed at maximizing the quality of transmis-

sion has been givgn/due attention by many a researcher. Some of the authors that reported

on the subject hav -used design charts (Hain 1967; Hall 1966; Soni 1974) while others used

algebraic method (Freudens'tein and Primerose 1973:'Gupta 1977) or numerical methods

4 -
(Cleghorn a7d Fenton 1984) to tackle this problem. A crucial development in this context is

L : 2%
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wH

_ Figure 2.14  Function defined by the Jeft-hand side of eq.(2 305)

the concept of transmission index. introduced first by Sutherland and Roth (1973), which
allows us to extend the concept of transmussion angle to any spatial linkage. Moreover,
it is shown in the foregoing reference that the maximization of the transm?ssiorr quality
is equivalent to a minimization of the positioning error, a result Wthh‘iS not to be ne-
glected. especially when considering the extension of the concepts studifyere to multiple
degree-of-freedom systems. On the other hand. Gupta {1980) introduced a method of

planar-linkage synthesis with an input crank, whose transmission angle 1s constrained to

lie between 45° and 135°. This method was then extended to the exact synthesis of RSSR

2%
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Figure 2,15 Curve defined by eq.(2.27a) in the plane ky = c3. and the mobility
© regions in that plane,

linkages (Gupta and Kazerounian 1983). Furthermore, Tinubu and Gupta (1984) showed
3

that a linkage optimization based on minimizing the structural error, rath:r than the de-
sign error, leads to branching-defect elimination. Moreover, the optimizatiOn of planar,
spherical. and spatial linkages having a q‘ﬁfdratlc input-output equation, with a minimum
design error and a maximum transmission quality. was presented in (Angeles 1986a).

this reference. the method used by the author is based on the Newton-Gauss algorithm
for nonlinear least squares—see. for instance, (Wilde 1982 & 1983). On the other hand,

the concept of linkage discriminant, which was used for the determination of the linkage

1
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“

)

—

Figure 2.16 Zoom of Fig 2 15 in the neighbourhood of the origin.

o L . - . oL . N
mobility region in Section 2.1, was applied to the optimization of linkages with maximum

transmission quality and prescribed mobility characteristics (Angeles and Bernie/r 1987b)

In this section. resuits concerning the transmission quality of planar and spher-
ical linkages are derived. A particular class of linkages. called here zero-mean linkages. is

defined and analyzed in detail. Their mobility regions are introduced as a particular case

. —of the ones presented in Section 2.1 for general planar and spherical 4-bar linkages. Some

important theorems governing their mobility characteristics are also stated and guidelines

for their design are given,
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) A more general class of linkages, called minimum-defect linkages. is also defined
and this concept is applied to the design of quick-return mechanisms using the orthogonal-

decomposition méthod. presented in (Angeles‘et al. 1987). .

2.2.1 Definition of the Transmission Quality
The transmission quality of a four-bar linkage. which is to be maximized., was
defined in (Angeles and Bernier 1987b) as the square root of the following positive definite
quantity- - _ “
{ 2n v
z= sin® pdy (2.34a):
0

- o
where u represents the transmission angle of the function-generating linkage under study
For brevity, the transmission quality is defined in what follows as =z itself, rather than its
square root. The complement of the transmission quality, which isQ\to be ml;\imized. is thus

N

defined as-
1 [ , ’
o= o cos? pudy (2.34h)
O N —-

and is termed the transmission defect. Hence,
z+ J=1 (2.34¢)

and /
0-2-1 ) C{2:344)

Of course. in these definitions, the input link is assumed to be of the crank type. for the
associated integrals are not definea for input links of the rocker type. In the particular
cases of planar and spherical linkages. the cosine of the transmission angle can be written
as follows: ) ‘

- COS j4 = €] + €3 COS U’ . (2.35) -

where ¢q and ¢ are constantsf depending only upon the-linkage parameters, expressions

for which will be given prgsé’ptly. Thus, for planar and spherical linkages, z' becomes

2 1
f+53 , (2.36)

d=c

29
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where c% and c% are positive semidefinite and positive definite quantities, respectively, as

shown next, i,f.. )
' >0, >0 ©(237)

From the foregoing discussion. it is apparent that the transmission quality 1s maximized if
the transmission defect is minimized. The practical-application of this fact is that linkages
with maximum transmission quality can be found using least-square based optimization -

algonthms, which aim intrinsically at mimmizing a positive semidefinite performance index,

rather than at its maximzation -

For a general planar linkage as the one shown in Fig. 2.1, the cosine of the

transmission angle is given as (Gupta 1977).

ag + ag - a% -~ ag + 2a9¢ycos v

2a3a5 .

Cos u =

(2.38a)

or, in terms of the parameters (k,, 1 = 1,2, 3) defined in the previous section, as

\ koks)(ky — kyks + k2 '
cos 1 = sgn(kaks)(ky — k1k3 + k3 cos v) A (2.386)

4

kS + K3 + k2k2 — 2kykoks

Constants ¢y and c; appearing in eqs.(2 35) and {2 36) are. then,

~

=(ky ~ k& : - —k?
( 2 1 3) - 3 (2.39)

. ) =
\ K3 + K} + k2k2 = 2k kyks © \ K2+ K+ k3K - 2kykyks

¢ =

from which it is apparent that ¢ is positive semidefinite. whereas 2 is positive definite.
1 2 .

For a general -spherical linkage as the one shown in Fig. 2.7. where o, for

_t =1,...,4, denote the linkage dimensions, the cosine of the transmission angle. given

in (Gupgé 19\8{)/:5 muitiplied by factor \/(1 — cos a3),/2. in order to render it compatible

with the general definition of transmission index given in (Sylemez and Freudenstein 1982).

2

This produces the following: ~

11 — cos a3 cos ag €Os ay ~ €OS a3 €OS @y + Sin ag sin ay cos v

cosp =y 2 . (2.40)

« Sinazsinay

30
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Constants ¢y and ¢; of eqs.(2.35) and (2.36) are now defined by:

' /1 — cos a3cos ag cOS g — COS (3 COS 0y (241a)
cq= - : - “la
1 2 "~ sinag sinay

/1 — COS (3 sin (o 7] sin Q) (2 41b) \

c) = . .
2=\ 2 sin a3 sin oy

or. in terms of the parameters (k,, 1 =1,...,4):

as=Ffn 0 g=Fy - (241c)
where
: —_— 2 : :
| ksl (1 + 3 — RE)(KG + k3 — ki) — kaka + ky (K — k) (2.41d)
L 2k (kR k) (k2 + K2~ k2) Y ‘
‘ 31 37 Rg)lky + Ry~ kg . .
and _ ,
k .
nE=e “LAR (2.41e)
\ﬂcz + k2 (1 + k2) + 2ky kyky + (K3 - kf)(/% - k3)
k2 + k2 - k2
"2 = it (241/)
\/k§ + k3(1 + k3) + 2kykoky + (K2 - k2)(k? - K2)
&
If none of the angles o,. for : = 1,...,4. is allowed to vanish, an issue that

is given due attention in Section 2.2.3, it is clear that cf 1s positive semidefinite, and

c% iIs-positive definite—the positive definiteness of cg can also be readily realized from
condition (2.14b). From expression (2.41d), neither ¢y nor ¢, and not even their squares,
aqre smooth functions of the linkage-parameters (k,,: = 1,...,4). This would prevent us
from minimizing 2’ using nonlinear least-square techniques. which rely on such smoothness.
This is readily overcome by formulatinig the problem in the space of linkage dimensions,
al;az,a3.a4, in which, from eqs. {2.41a&b), ¢; and c; are smooth functions. *
2.2.2 Zero~Me;:n Linkages agq their-Properties

Minimum-defect linkages are defined as linkages having an input crank, for which

the transmission defect, 'as' given by equation (2.36). is a minimum. It has been shown

3
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_in Section 2.2.1 that the second term of the right-hand side of eq.(2.36) cannot vanish,
( whereas the first one can. This leads to the definition of a specific class of linkages, called
" zero-mean linkages, for which the value of cq is equal to zero. From eq (2.35) it is apparent

that ¢y and %c% are. in fact. the expected value and the variance of the cosine of the

transmission angle, i e .

¢1 =FE(ces u) (2.424)
1
Ecg =E[(cos u — ¢1)%] = Var(cos ) (2.420)
and hence the zero-mean adjective for linkages having a vanishing ¢y \

2.2.2.1 Planar Zero-Mean Linkages

For planar linkages. the zero-mean condition leads to

ky = kyks (2.43)

Thus, the transmission defect can be expressed as.

kg
L2 L .22
(1 - k2= k242

!

~

1,
.-—202—2

(2.44)

and the mobility conditions for an input crank derived~in Section 2.1, ie.. mei;ualitu)ti

(2.8a&b) . reduce to the following’
(ky + k3)? < (1+ kyks)? (2.45a)
;oo | : . (k= k3 < (1= k)2 ' (2.456),

The two foregoing inequalities can be readily reduced to a single one. namely.

-

C(k-n-k)<o . (2.45¢)

v

o

wl{ich_ represents the dashed region of the ky-k3 plane shown in Fig. 2.17. This region
: " represents the'dom‘ain of definition of zero-mean Iinké“ges. i.e., linkages having an input

&’ “ crank and for which ¢y =0. ﬂ ' .

. , 32
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Figure 2.17 Domain of definition

of. planar zero-mean linkages

Moreover, one can readily prove the following:

s

Theorem 2.1: Zero-mean planar linkages are of the drag-link type when they correspond

/

to points located in the inner square of the region of definition and of the crink-rocker type

when they correspond to points located elsewhere within the said region.

J

Proof: The conditions under which a planar four-bar linkage has a fully-rotatable output

link are given in inequalities (2.12a&b). Substitution of the zero-mean condition in these

33
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expresssions leads to:

(= 1)(1%+ k3)” < 0 (2.460)

and .
(- 1)(1-k3)* <0 " (2.46b)

L

which can be reduced to
k21 (2.47)

Thereforg, only the zero-mean lin%kages corresponding to points located in the inner square
have a fully-rotatable output link. i’e., they are of the drag-link type. The other subregions
represent zero-mean linkages of the crank-rocker type since their-input link is a crank but

their output link 1s not. This completes the proof

A function-generation proble;n that arises rather frequently in applications calls
for quick-return mechanisms In thjs case. one is-ratﬁier interested in linkages of the crank-
rocker type. The motion of such lwmllages 1s defined by the time ratio of its two phases. If
the first phase takes place as the input link sweeps an anglé 7 + Avw, whereas th}: second
phase—the return—as the input link sweeps an angle 7 - Aw, the time ratio Ty 1s defined

as:
T+ Av

— (2.48)

Tr =

It was mentioned in theorem 2.1 that planar zero-mean linkages can be of the

crank-rocker type. The following theorem is now proven:

Theorem 2.2: Planar zero-mean linkages which are of the crank-rocker type have a time

ratio of one.

Proof: Consider the two geometric constructions of Fig. 2.18 where a planar crank—rock4 '
linkage is shown in its two extreme positions. Moreover. the angle Aw as defined in
eq.(2.:48) is given by:

Ay =y) — ¥y ‘ ~ (2.49q)

34
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where 11 and ¥ are assumed to bé bounded as follows:

| 0< gy < T (2.495)

Using the law of cosines. we can write:

i 2_ 2 2
_af — aj + (a3 + ap) .
cos Yy = AN (2.50a)
and ) ) | ) .
; af.— a5 + (a3 - ap)
b cos Yy = 2 2.50b
2 2ay(a3 - a3) (250)
|
| \
|
|
(a)
{
\303 — a3 a4
¥2 b2
ay

Figure 2.18 Limit positions of a planar four-bar linkage of the crank-rocker type.

. )
if we now impose the zero-mean- condition, i.e.. if we substitute af + a% y

35
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a% + ag, we obtain:
cosyh = cosyy = 23 (2.51)
, aq ‘
which, by virtue of relations (2.49a&b). leads to, Ay: = 0 and. from eq.(2.48). we have

Tp = 1. which completes the proof
. N 4

Therefore, planar zero-mean linkages of the crank-rocker type cannot be candi-

dates for quick-return mechanisms -

Planar zero-mean linkages which are of the drag-link type can be optimized by
finding the minimum transmission defect for a given mmmum value of the mechanism’s

f

dimensional balance. This is defined as the following real number

a a
b= (ﬁ)2 + (i)2 ~1 (252a)

which turns out to be positive definite, for
b= kK3 (2.526)
It can be readily shovyn that O < 6'< 1 for zero-mean linkages of the drag-link
type since for these we have lky < 1 and lk3! < 1 Lines of constant balance and of
constant transmussion defect are plotted in Fig 2.19 The optimum drag-link mechanism.,
for a given minimum balance by,. is found at the point of tangency of the contour b = b,
with a contour of constant transmission defect. This peint can be readily determined in

closed form. Indeed. linkages with a dimensional balance by, verify the following equation:
bm ~ k3k2 =0 _(2.53a)
whereas zero-mean linkages with a constant transmission defect :6 verify

(5 -

7

kK2:h)k3 — (1 - k2) =0 (2.53b)

The solution of the nonlinear system of equations obtained when minimizing e

in €q.(2.536) subjected to the constraint (2.53a) is the following:

2by,

k24=
37 146,

" (2.544)
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Figure 2.19 Lines of constant dimensi alance and of constant transmission
defect for planar drag-link ze an linkages. .y
and
!
2 2 bm
kl —_ o - (2'54’)) .
k2 : :
3
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2.2.2.2 Spherical Zero-Mean Linkages

For spherical linkages, the zero-mean condition'leads to:
IC4 = -klkZ - . (255)

and the transmission defect can be written as:

Z % l= iAB (2.56a)
where '
|k3l\/(1 + k2 — K2K3)KR + k2 — k2k2) + kykd + kl(k — k2k2) 256
k3| \/1 + k% - k2k2 o
and - ’
. B= (5 + 48 - K 13)°" (2.56c)‘
- k2 + k2(1 + k3) — 2k2k2 + (k2 — k2) (k3 — k2k2)

The mobility conditions. leading to an input crank, i.e.. inequalities (2.21a&b).

take on the form that follows, under condition (2.55):

(kg — k)% < (1 = kqky)? (2.57a)
~ \"\\
and [ N
/ (ky + k1)2 < (1 + kyky)? (2.57b)

which are equivalent to the following single inequality.

. (K- 1)(1<k2) <0 (257¢)

The region of the kyk, plane defined by the foregoing inequality is.represented in Fig. 2.20.

This is the domain of definition of spherical zero-mean linkages. One now can prove the '

following:

Theorem 2.3: Zero-mean spherical linkages re of the crank-rocker type when they corre-

spond to points inside the inner square of the region of definition and of the drag-link type

e

A
when they correspond to points located elsewhere within the said region.

38
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Proof: The c ndmons under \rfﬂbh the spherlcal Imkage has a fully rotatable output link

the zero—meaH comdltlon we obtain:
. . | (K -1)1 -k)? >0 (2.58u)
. | §
o and ‘
Iy
| i KA1 +k)? 20 *(2.58h)
| ‘é ('2 /Ij( ' =~ .
‘ which can be reduced to ’ ’
\ S K> 1 : (2.59)
v Therefore, the linkages associated with points located in the peripheral secgidns

of the mobility region are of the drag-link type and the ones corresponding to points inside

\ ) the inner square are of the crank-rocker type. The proof is then completed. g

@ Moreover, one has the following’

ek =

\ " ‘ .
.

Theorem 2.4: Zero-mean spherical linkages that are of the crank-rocker type have a time 4

e,

ratio of one.

Proof: Consider now the two extreme configurations of the spherical linkage shown in

Fig. 2.21. In this case, the angle Aw, defined in eq.(2.48), can be expressed as:

[

— ) Av =yq - Yy ‘ (2.60a)
where wy and 1, are constrained as follows:

0<ty,gp<m “ (2.60b)

1

Using the law of cosines for spherical triangles, one can also write:

. . COS a4 — COS (x] COS(x3 + &
o ; cos gy = 524 —Cosccos(a +ay) (261a)
' sin &y sin(a3 -+ az) ‘
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Figure 2.20 Domain of definition of spherical zero-meai linkages

1

and )

S = COs S -
cos 1, = SO524 = COS a3 CO (a3 — a9) (2.615)
sin ay sin{ag ~ ay) ,

If we now introduce the zero-mean condition. i.e., if we substitute cos a4 by r. where s

defined as .
R
thé following is derived: : S
| COS Wy = COS Y = cot oy utan a3 | | (2.62b)

f ; 40
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which, similarly to the planar case, leads to Ay = 6‘~qnd therefore Tp = 1, thereby

completing the proof.

(YN

!

Figure 2.21 Limit positions of a spherical four-bar linkage of the crank-rocker type

.

The fact that zero-mean crank-rocker linkages have a time ratio of ‘unity disables

them from being candidates for quick-return mechanisms. Hence, the optimization of quick-

return mechanisms should be -tackled with an alternate}pproach, which is done in the

following Section.

41
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~

2.2.3 Optimization of Quick-Return Mechanisms as Minimum-D_efect Linkages

- ! o

Quick-return mechanisms, as defined in Section 2.2.2, will now be designed

“using the concept of minimum-defect linkages. The problem then coq\sists of minimiz_ing

ti’te quadratic form of eq.(2.36) subjected to constraints on the time ratié and output swing
angle of the linkage.
2.2.3.1 Planar Linkages
) } g
This is based on the approach introduced by Cleghorn and Fenton (1984). In or-
der to set up the constraint.equation; of the problem at hand. the following transformations

of the link lengths are introduced:

N

a a3 - a4
== == = — ) .63
2 2’ T3 2y’ 4. a1 (2.63)
and o
- g =r3—m ) (2.64a)
@ =r3+mrn © (2.64b)

—

The two extreme "po.sitions of the outpyt lini(wéive rise to the geometric constructions of
Fig. 2.18. Application of the cosines law to these triangles gives the following constraints

(Cleghorn and Fenton 1984): = —

-

91 =74 ~1-¢b+2gcos9py = 0 . (2.65a)

@ =rf-1-¢l+2cos4p=0 * (2.65b)

g3 = qg -1- rf + 274 cosgy =0 ° © (2.65¢)

g =af—1—r}+2rcos 4y =0 (2.654)

95 =42 - ¥ ~BY,=0 . (2.65¢)

G6=¢1—dy-Bs=0 - (2651)

or. in vector form. o % _ )

g=0 B . (265g)

42
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" where g, denotes the i-th component of the 6-dimensional vector g, the time ratio being

defined as in equation (2.48).

-

. In the foregoing discussion. Ad is the prescribed output swing angle, and Ay

1s as defined in eq.(2 49a) Moreover, 1. '3, ©y and o, are defined in Fig. 2,18,

The vector of design variables x will theref%re be defined as:
x=[rg. 1. g2, v1. %9, 01, 0717 o (2.66)

The objec\sive function to be mimmized 15 defined as the linkage defect, i.e., as ', which

can*be readily expressed as the following quadratic form:

1
5fTWf = (2.67a)

<

where f =[c; ¢)]T. with ¢ and ¢, defined as follows:

- 2 _ 1
i cy = “atry - ! (2.67h)
ralg1 + 92)
- q) — q4
) = ——— 2.67¢
2T raley + a) (267¢]

and

0 1
The Jacobians of f and g with respect to x, F and G respectwely are then read‘ derived

W= [2 0] : (2.67d)

as the following 2 - 7 and 6 » T matrices:

7 e [fu f2 fn 0 00 0 :
' F=lim 2 im0 00 0 (268a)

iy =[=Nirg +2] (g1 + ?) ' (2.68h)

f12 =[N (g1 + 92) + 2] 'ralg1 + 92) ,  (2.68¢)

[ 13 =[-N/la1'+ 02) + 6i}ralon + 02) (2684)

 far =l - 02)/73 (g1 + a2) (2.68¢)

=l = 90)/(91 +a) — iralar+ ) - (2681)

S23 =l(a1 — 92}/ (91 + a2) + 1]/ralq1 + 02) (2.689)

N =g1gp+7{— 1 , S - (268h)
w

=
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- and .
| 4 G=[G G;] (2.69a)
. where ° . .
) A 2ry 0 ~2g7 + 2cos vy ]
2rq  —2qy + 2cos uy 0
~2r;+ 2 cos oy 0o 2gy. *°
= : ] 696
G1 ~2ry + 2cos oy 291 ’ 0 (2 l
0 0- 0 B
' ! 0 0 0 )
and .
[ ~2¢7 sin vy 0 0 0 i )
- 0 ) —-2q1 sin ‘d)z 0 0
_ 0 - 0 —2r4 sin @1 0 :
; . Gz\-— 0 0 | 0 2rgsinoy | (2.69¢)
~1 1 . 0 0 0
* A 0 0 1 -1

- which completes the formulation of the problem. This problem was solved numerically
using the orthogonal—decomposition method (Angeles et al. 1987). This method is meant
‘ . to minimize an objective function which is an m-dimensional quadratic form of n variableé '

subjected to p nonlinear equality constraints. In this case, we have m = 2 with n ='7

variables"subjected to p = 6 constraints.

Two examp~les of application of this method are presented hete. They are

taken from (Gupta 1977) for purposes of comparison. The results obtained using the

, aforementioned procedure are given in Table 2.1 and they are in full agreement with the h

results reported in that reference.

Several tests performed with this formulation of the problem for the design of

planar linkages show that the procedure usually converges within 15 iterations .

.

2.2.3.2 Spherical Linkages S

The formulation of this problem is similar to the one used in the planar case.

_ The constraints are established using the extreme positions. which are shown in Fig. 2.21.

%
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2. SIMPLE-KINEMATIC CHAINS

Optimum Casel ‘ Case2
parameters A¢=40° Ay =-20° ' Ao =64 Oy =28°
a 1.342 1.041
a | 0.323 0494
o 0 096
a 1000 1000
¢4 ‘ ~0.2564 0.2929
o . 05946 ‘05404
S 0.2425 02367

’

Table 2.1 Optimum planar four-bar linkages

The cosines law for spherical triangles 1s applied on these two configurations. Moreover,
since the link dimensions are now angles, the design variables will be chosen as the sines
and the cosines of these, rather than s the angles themselves. . This will simplify the for-
mulation and will enhance the numerical stability of the problem. but will require additional

constraints. The global set of constraints will then be’

g1 =ug - u1(1\t\z\u3 - vav3) — vy (ugv3 + vyuz)cos iy =0 (2.70u)
g2 = ug — ug{ugug + vov3) — vy(uguy — vauz)cosiy =0 (2.700)
$ g3 = uju3z.— VU3 rk\lu,; - vyvgcos o =0 (2.70¢)
gy =ujuz + 1'2v3——\\T‘1 ug —vqugcos oy =0 . (2.704)
G =wy— 1y — Av =0 . a (2.70¢)
9 =01 ~ 07 - Ao/— : . @70
- “ gp=ud+el ~12£0 T (2.70g)
° gg =ud + v3 — 1/ : : \/(2.70/,)
g =ul 4ol +1=0 ) . (2.701)
g1o_u§+u,/ 1=0 - (2.70;)
w_here, 7{ ) _ ‘
. ) - uil,f’/i:: cos a . w=sing , r=1....4 (2.70k)
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2. SIMPLE KINEMATIC CHAINS

or, in vector form, ;
g=0 (2.701)
where g; is the ith component of the 10-dimensional vector g. The output swing angle is
given by A¢ and Ay is related -to the time ratio by eq.(2.48). Angles 1. ¢y, ¢1 and &)
are defined in Fig. 2.21.

!
The objective function to be minimized will be the transmission defect. However.

tests run with the program implementing the orthogonal-decomposition algorithm showed
that the procedure is very strongly attracted by the degenerate case for ‘which 0 =) =
a3 = a4 = 0. One can easily verify that, in this case, all the constraints are satisfied—
providing ¥y — ¢ = Ay and @1 ~ #» ; Ag¢—and that the objective function goes to
zero. To overcome this proble?n. we augment the objective function with the squares of the

cosines of the link angles. This will force the angles of the mechanism to be as close as

possible to 90°, which will lead to dimensionally well-balanced mechanisms The objective

function then becomes:
. Z = %fT wf (2.71)

where

f=] \/fcl, €7, COS Q. COS 9. COS (3, COS O ]T (2.72a)

=
Matrix W allows one to introduce some weights in the quadratic form. For example. if one
assigns less importance to the dimensional balance of the mechanism—and gets closer to

the original problem—, then W can be defined as .-
W = diag|1, 1, w, w, w, w] (2726)

where w is a positive quantity smaller than 1.

Notice that. in X(lis case, the vector of design variables will be defined as:

X = luls vﬁéza V2, U3, v3, U4, v4’h¢17 ¢2y ¢ly ¢2]T , (2.73)

4

Therefore, the Jacobians of f and g with respect to x, denoted by F and G, respectively,

&

are written as’ the following 6 x 12- and 10 x 12 matrices:

¥

) F=[F _F; F;3] (2.740)
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in which 0g,4 denotes the 6 » 4 zero matrix, and @ s defined as

with

where

[ (vav3 — upu;3)

~(ugu3z + vyv3)
g
_ug
0
0
2u1
0
0
0

_ 1o
Q=4

—{upv3 + vous)cos uy
(vous — ugv3) cos wy
— U4 COS @1
" —v4 COS @

0
0

201

(=l =N e

-(U1U3 ~+ L'1.1'3 cos wL)-
(uquy + vyracos wy)

u3
u3
0
0
0

B 2‘U,2

zl]'
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(2.74h)

T

(2.74¢)

(2.744)

(2.74¢)

(2.750)

(5.75!)) -

-
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2 SIMPLE KINEMATIC CHAINS

[ (u1v3- vqu3 COS!/JI) —(u1u2 +Iv1v2cos d)l) (fu1v2—v1u2cosrb1) i
( (—-u11)3+ vy u3 Cos d’z) (—u1u2+;)1v2cos ‘([)2) —(u1v2 + vqu9 COs w2)
~-v3 Uy )
v3 Uy U2
0 ) 0 0
G = 0 0 0
0 0 0
21‘2 0 0
0 2113 21‘3
i 0 0 0 ]
(2.75¢)
F A 0 vy (ugv3 + vyuz)siny; |
1 0 0
—Uuq —Uy COS Oy 0
« | ~up ~—tgcosoy 0
0 0 1
‘ G; = 0 0 0 (2.75d)
0 0 0
0 0 0
0 0 0
| 2uy 2u4 0 ]
4 . 0 0 0 ]
‘ vy(ugvy — vauz) sin vy 0 0
~O U4 Vg SIN @1 0 :
0 0 rqv4 SIN 09
Gy = 01 (1) _?1 ‘ " +(2.75€)
0 0 0
N 0 0 0
a 0 0 0
| 0 0 0 i
. "/ which completes the formulation of this problem. Notice that. in this case. we have n =
1Y

12 variables subjectedto p = 10 constraints and that we are aiming at minimizing a

perﬂ;rmance index for which m = 6.

Three examples are presented for this case, the results appearing«n Table 2.2.
Notice that in the first two examples given for this problem. we spesified the same time
\
.  ratio and output swing angle. However, in the second one, we have used “some weights to

( give less impartance to the terms cos? a, in the objective function. The"optimum linkage

N - : “ . - 48
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v 2 SIMPLE KINEMATIC CHAINS

’Optimum \ i B
parameters Casel : Case2 | Case3
A 0° . 70° 1 90°
Av 20° 20° ¢ 30°
Weghts . 1. 01 01
or(deg) 1041 976 802
ay(deg) . 33 34.3 152.4
az(deg) | 834 56.0 46.9
oy (deg) 88.7 89.8 88.7
1 -0.13749 -0.06312 . -0.09061
(i) 0.36078 ! 0.31653 | 0.24891
- 2 t 0.08399 : 0.05408 0.03919

Table 2.2 Optimum spherical four-bar linkages

obtained, then, has a better transmission quality. but is dimensionally less balanced.

’ ,
In the case of spherical linkages, convergence usually occurs within about 25

iterations.
2.3 Branch Identification for Regional Structures of Open-Loop

Manipulators .

This section concerns open-loop simple kinematic chains. 1.e.. serial manipu-
lators. Thé~ problem addressed here is known as branch /'dentif/catién This arises from
the solution of the inverse kinematic problem for serial manipulators which may lead to
many branches. However, when the robot is ,requireéi to produce a certain trajectory in the
\Cartesian space, it is necessary, when obtaining the corresponding joint coordinates, that
each of tﬂf points of the trajectory—in the joint space—belong to the same branch. it will
be ‘realized, in &hapter 4, that the branch identification problem for parallel manipulators
can be solved as a series of such problems for se;ial r\’tanipulators This is the rationale

behind the discussion presented in this parag aph.
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It has been shown in (Primrose 1986; Lee and Liang 1988) that the solution of
( the inverse kinematic problem for an arbitrary 6-axis serial manipulator can produce up to
16 different solutions. i.e.. 16 branches. Sandor et al.(19863) have developed inequalities

that allow to identify the different branches.

-

An alternate method is derived here. based uniquely on the Jacobian matrix.
The idea is to obtain a method to identify the branches by performing certain tests or
computations vn the Jacobian matrix. There should exist frame invariant properties of this
matrix that woold diffex from one branch to another and which we could éxploit. Some
properties of a matrix that naturally arise are its determinant and its eigenvalues. These
quantities are obviously frame independent since the determinant represents the local ratio
of volume of the mapping defined by the matrix and the eigenvalues remain unchanged

under similarity transformations. The problem is now reduced to regional structures of

manipulators ., i.e., three-degree-of-freedom kinematic structures used to position a point
in space. This type of structure has a particular relevance for it is possible to treat wrist-
( partitioned manipulators as a regional structure plus a wrist that is used to orient the
end-effector. The branching problem associated with the wrist is straightforward since the
sine of the second anéle of the wrist bears a different sign in each branch. This angle is.

\

in fact, the transmission angle of the equivalent spherical four-bar linkage. N

7

The branching problem of the regional structure, which in general may have
up to four branches, is now solved using the properties of the Jacobian matrix mentioned

above. Four cases may arise.

(i) the eigenvalues are all real and the determinant is positive

}

(i) the eigenvalues are all real and the determinant is negative

\

(iii) only one of the eigenvalues is real and the determinant is positive .
> 4 ;l

<
LN 7~

&

f ' _{iv) only one of the eigenvalues is real and the determinant is negative

el



¥ . 2. SIMPLE KINEMATIC CHAINS

An example of application of this method to a 3R régional structure taken from
(Rastegar and Deravi 1987) is shown in Table 2.3. Unfortunately. the extension of this

concept to a general 6-axis manipulator is not trivial.

Solution # 1 § 2 3 . 4
.| Eigenvalues 02047293, 003 +074, -231 = °-0.68
‘ 020 ~293) 003-074) 372 081
\ 0.87 087 087 . -087
Determinant 745 -0.48 ~-745 048

Table 2.3 Branch identification for a 3R regional stricture with ay = 3, ag = 2,
ag =1 by =by=b3 =0 ay = 0 and 2y = n/2 for the configurations obtained -
whenr=4 y=1and z=12 o

. \

»©

& e o

af
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Chapter 3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

‘ A
The subject of this thesis being the study of parallel manipulators, it is necessary

to derive some results concerning the general class of linkages to which these manipulators
belong, i.e.. complex kinematic chains. It is recalled that these chains are defined as those
contair}mg at least one link having a degree of connectivity greater than or,e;qual to three,
However. if the only link of the chain having a degree of cnonnectivity greater than or equal to
three is the fixed link, then the chain can be treated as a set of uncoﬁpled simple kinematic

. ) . .
c chains, i.e.. it can be broken down into a number of cases similar to the ones that were

studied in Chapter 2.

The possibility of apphcations of complex kinematic chains are numerous. Ex-
amples can be found even in the early work on machinery. Watt's and Stephenson’s hink-
ages, for instance, clearly constitute ‘planar 6-link complex kinematic chains (Hunt 1978).

More‘recently, with the advances in computer-aided synthesis of linkages, researchers havé

v Q

started to consider the use of complex kinematic chains.as hard automation modules which

L]

are designed to perform a precise repetitive task. The inherent rigidity of complex kine-
matic chains is one of the important motivations behind these, because it leads to higher

p accuracy and load-carrying capacity. Some of the designs even include a certain flexibility.
o rd

i.e., provision to perform alternate tasks by a simple change—which can be done within

minutes or even secorrds—in their linkage parameters: for instance, changin;‘ the distance
‘ or angle between two joints of the fixed link. Examples of the results obtained with this
(w . ’ approach are found in (Sﬁndor et al. 1984, 1985 1986a. 1986b. Wanyg et al. 1987)
. \ , .
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AN

In this chapter, three aspects of the analysis of complex kinematic chains will
be treated: the graph répresentation of their topology. the determination of their degree
of freedom based on topology and geometry and their singularity analysis. A distinction
has to be made ‘here between the topology and the geometry of a kinématic chain. the
former being the Kdescription of the ¢hain through the type of kinematic pairs and the rigid
bodies constituting the chain together with their relative connectivities, whereas the latter
defines more precisely the I,‘inkage by giving its physical relative dimensions, in the form
of its Hartenberg-Denavit parameters (Hartenberg and Denavit 1964) for instance. The

final section of the chapter will be devoted to the introductién of parallel manipulators as

a special case of compléx kinematic chains.
L 4

3.1 Graph’Representation of Complex Kinematic Chains

]

. %,
A kinematic chain can be described as a set of rigid bodies attached to each

other by kinematic pairs. resulting in a mechanical network containing joints and links.
Moreover, when at least one of the links but the fixed one has a degree of connectivity
greater than or equal to three, the chain is said to be complex. The network defined by
thé chain is topologically analog to electrical networks made up of nodes and impedances
(Davies 19%1). Hence, graph theory offers a systématic way of representing the topology

. of complex kinematic chains. This is now shown and the results obtained here concerning

the topology will be used in the next section for the derivation of a method allowing one .

to find the degree of freedom ofﬂaﬁny complex-kinematic-chain.

b 2

" For the s‘ake of consistenéy, and to render the presentation more systematic, we
will-define a joint as a kinematic pair coupling two rigid bodies and allowing no more than
three degrees of freedom. Cylindrical (C). planar (E). screw {H). spherical (S), revolute (R)
and prismatic (P) pairs are examples of joints. Once this is c1ear\, we can write the graph
— associated with the k’inematic chain, in which a point of the graph corresponds to a rigid

body at;d an edge to a joint. A few definitions pertaining to graph theory (Harary 1969)

¥

N s

are now recalled.
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

L . .
Definition 3.1 A graph G consists of a finite nonempty set'V = V(G) of p points together
( with a prescribed ‘set X of g unordered pairs of distinct points of V. Each pair
- z = {u,v} of points in X is a line or edge of G, and X is said to join u and v.

We say that u and v are adjacent poir;ts of the graph.
Definition 3.2 A subgraph of. G 1s a graph having all its points and lines in G’

Definition 3.3 A spanning subgraph of G is a subgraph containing all the points of G.
Definition 3.4 A walk on a graph is an alternating sequence of points and edgeés beginning
and ending with points. in which each edge is incident with the two points’

immediately preceding and following it.

. Definition 3.5 A pathis a walk with all its points (and thus necessarily all its lines) distinct.

" Definition 3.6 A graph is said to be connected if every pair of points are joined by a path. .

Definition 3.7 A cycle or loop is defined as a path beginning and ending at the same point and

including &t 1'§'ast three points.

5

Definition 3.8 A treeis a connected graph which -has no cycles. . . \

As shown 'in (Davies 1981).-only connected graphs in which every edge belongs
to at least one cycle are needed, since the other cases represent trivial additions to the
problem addressed here. They correspond to complex kinematic chains to which an uncou-
pled independent simple kinematic chain is added. An important issue to be covered now 1s '
the determination of the number of independent loops in a kinematic chain. This quan‘tity

c , is of great importance since it allows us to find a basis having a minimum cardinality for
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the kinematic constraints of the chain. the cardinality of a set being defined as the number

@ of t‘elgmenis that it contains. We can .determine. the number of independent loops in the

kinematic chain by"counting the number of independent cycles in the associated graph. The
nurrlwber'lof independent cycles in a connected graph is given by Euler's formula for graphs
(Harary 1969). namely: / .

k=e-— 1+1 ' (3.1)

where e is the number of edges and v is the number of points {verticés). Notice that this
| equation has already been used in the context of kinematic chains, namely in (Davaes 1981,

: Sheth and Uicker 1972; ‘Kleinfinger and Khalil 1986).

The next step is now to identify a set of independent loops, ie., a cycle basis
of the graph. This can be done systematically by finding a spanning, tree of the graph
and then L]sing the chords to complete the fundamental indepéndent cycles. Themfollowing

definition is needed:

“  Definition 3.9 A sp“az;;iiﬁg tree of a connected graph is a connected subgraph in which all the
points. are present but in which there are no cycles. The omitted edges are
.\S: -
called ehords and each of the chords/ added to the tree completes a fundamental
independent cycle of the oniginal graph
o -

- o The topological analysis of complex kinematic chains is therefore completed

since we have obtainéd, from its associated graph, the number of independent loops and a

basis for these loops. It is to be noted that this basis need not be unique and that the use
‘ of any of the bases in setting up the kinematic constraint equations will lead to equivalent

systems of equations

2y

As an example, Watt's linkage is-shown in Fig. 3.1 together with its associated
graph. A sSanning tree and ‘the corresponding chords, which allow us to identify a set

‘ ~ of independent loops, are also included. It is recalled that the graph associated with a

| , , . .55
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c
E
‘ . l
F |
. . B {

Figure 3.1 (a)Watt's linkage (t)associated graph (c)a spanning tree (d)the corre-
sponding chords and.(e)the associated set of independent loops

~

. kinematic chain. although very useful in~the topological ahalysis. does not contain any

]

information on its geometry. . ' ‘ : .

One more impogtant c“dncept. in the context of graph representation of kiriematic

. chains. is now defined.

Definition 3.10 The non-péwered subchain of a kinematic chain is the subchain obtained when
all the actuated joints are locked. i.e.. when all the adjacent bodies connected’

1
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by actuated joints -are rigidly coupled. When the linkage is in a non-singular

configuration, the non-powered subchain has a degree of freedom of zero.

This concept can be illustrated by the following example: A two-degree-of-
freedont planar complex kinematic chain.is shown in Fig. 3.2a. The non-powered subchain
shown in Fig. 3.2b is the one obtained when the actuated joints are the ones whose rotation
z;ngles are given by 6 and v: The corresponding-graph is shown in Fig. 3.2c. It is pointed

out that, in this case, no closed-form solution for the output angle ¢ can be written in

terms of the input angles. However, when the actuators are located on the joints whose _

rotation angle is denoted by § and ¢. the non-powered subchain becomes the one shown
in Fig. 3.2d, with the associated graph of Fig. 3.2e. In this case, we can obtain a closed-
form solution for the output angle v in terms of the input angles & and ¢. This is due
to the fact that the fixed link of the non-powered subchain and the tern;ry floating rigid
body are directly connecied to each other by a kinematic pair, which generates the short
path between the end nodes of the associated graph. Indeed. it)can be readily seen, from-
Fig. 3.2a. that, given angles ¢ and @, the position of point F c'an dbe computed using the
input-output equation of the planar four-bar linkage. The position of points F and H being

known, it is then straightforward to compute the position of point G and-to determine

“angle ¥ by making use of the four-bar linkage equation again.

3.2 Degree of Freedom of Complex Kinematic Chains

-

_The determination of the degree of freedom (dof) of kinematic chaiqs has at-
tracted the attention qf researchers for many years. The well known generalized Chebychev-
Griibler'Kut‘zbach formulae, which rely only_on the topology of the chains. can be used to
find the dof of many simple and complex kinehatic chaigs. An expression for this criterion,

referred to as ‘they.general mobility criterion (Hunt 1978), can be written as:

< ' g
I=6n-g-1)+)_J (32)

1=1
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¥
Figure 3.2 (a)Example of a 2 dof planar complex kinematic chain (b)non-powered
subchain obtained when the actuatéd joint angles are 4 and ¢ (c)corresponding-
graph {d)non-powered subchain obtained when the actuated joint angles are ¢ and
¢ and (c)correspondmg graph. .

i

where [ is the total number of degrees of freedom of the kinematic ch_z:Z n is the number

of rigid bodies in thé chain, g is the number of joints. and f, is the n ‘ber of degrees of

freedom allowed by the ith_joint.

— i

S - *\ e i
However, this type of formulae are known to fail in cases such' as the paradoxical

kinematic chains (Hervé 1978). These exceptions arise when some special geometries are

- e
3
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_3.2.1 Degree of Freedom of Simple Kinematic Chains

~ - 3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

present, as in the case of Bennett's (Bennett 1903) and Goldberg's mechanisms {Goldberg

,

1943). which are probably the best known examples. This suggests that general methods
for_the determination of the dgf of kinemgtnc chains should take into account their geometry
asrwe-ll as_their topology (Eddie Baker. 1980b. 1981: Davies 19E1; Angeles 1987). The
problem of finding the dof of compléx kinematic chains. a.e...chans with multiple closed-

loops. has also been ‘addressed in this context (Eddie Baker 1980b, 1981, Davies 1981)

~

-Using the results obtained on the _topolgglcal description of complex kinematic
chains, we will now derive a general method allowing us to determine the degree of freedom
of any complex kinematic chain. It i1s assumed here that the graph associated with the
comple; kinematic chain has been obtained and that the independent"ioons have been

identified. according to the procedure presented in Section 3.1.

The method developed here 1s an extension to complex kinematic chains, of th.e
method described in (Angeles 1987). for simple closed kinematic chains. This method is
based on the Jacobian matrix of the kinematic chain, a concept that is well known in the
contéxt of robot manipulators (Renaud-1980), and that was applied to closed kinematic
chains in (Angeles 1987). It is interesting to notice that the idea of using the Jacobian
matrix to find the degree-of—fre;dpm of kinematic chains was first suggested in (Freuden-
stein 1962) The method developed in (Angeles 1987) v.vil‘l be recalled briefly here, for quick
reference. It will then be formally extended to multiple closed-loop kinematic chains. An
example of a linkage and two examples of parallel manipulators will be studied. These ex-
amples will bring about another mteresti;xg feature of the method, i e:. its ability to describe

the singularities of multiple closed-loop manipulators

!

The method presented in {(Angeles 1987) for the determination of the deﬁj;ree of

freedom of simple kinematic chains can be summarized as follows: (

T

Let a simple open kinematic chain be built with rotational (R) or ;)rismaltic (P)
) /
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-

N
pairs. As a matter of fact. screw (H), cylindrical (C). planar (E). and spherical (5) pairs can
be synthesized as combinations of R and P pairs. Moreover, let this chain be constituted
of (n-+1) rigid bodies. The axis of the 1th joint is defined by a point O, on this axis and a
unit vector e, along this axis (Hartenberg and Denavit 1’964). The motion of the (7 + 1)st
rigid body with respect to the ith one is then defined by the rotation angle ¢: about this

axis 1f the :th joint 1s rotational. or by the displacement s, along this axis if the ith joint

Is prismatic. ‘

In particular, the motion of the (n + 1)st rigid bedy. called the end-effector.
is described by the position vector r of one of its points P and by the orthogonal tensor
Q giving its orientation. Velocities are then given by f and w. the angular velocity of the
end-effector. If we de;wote\by 6 the n-dimensional vector of joint rates and t = [U’,T‘;T}T

as the 6-dimensional twist vector, then we can write
W=t - (3.3)

where J = J(8). the Jacobian matrix, i1s a function of the configuration of the chain Matrix

i

J is then defined as: )
C e e ) e
N J —_ [ 1 2 n (3'4)
e ¥r- e xXry ... epxiy

where r, is the position vector of point P with respect to O,. If the ith joint 1s prismatic.

T - . -
then the ith column™of J is changed to: ¢, = [OT.e;f]T. where 0 1s the 3-dimensional zero

<«
¥

vector.
N

For simple closed kinematic chains, the end effector 1s coupled to the first link
with a rotational or prismatic pair or a combination of these. The twist of the last link can

then be written as: -

v= dtcnss - (35

o

where ¢y, is defined similarly to ¢, The vector of joint rates § can then be redefinedl as

an (n +.1)-dimensional vector having 8, as its last component. The Jacobian matrix is

§ Vi
correspondingly redefined as an augmented 6 > (n.+ 1) matrix whose last column is ¢, .

Equation (3.3) becomes: » ‘
- 1 “
=0 (3.6)
/S
’ - - : " 60
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o -

The degree of freedom (!) of the chain is then equal to the dimension of the nullspace of
J. ie: . . /
L= dim[N(J)]’ ‘ - (3f7)
where N 1s the nullspace of J. The problem of finding the degree of freedom of a simple
closed kinemaﬁic chain is then reduced to the determination of the dimension of the nullspace
ofabx (n+ i) matrix. which is a common problem of num,erical analysis. There are many
ways of solving this problem. For instance. one can apply a Householder reflection techn}ﬁque

to reduce the }acobian matrix to a simpler form (Golub and Van Loan 1983). ie.,

-

Hr... HyJ T [” . (3.8)
where T 1s an r x 6 matrix and 0 an (n—r +1) x 6 zero matrix. Moreover T is of th%n
= [S,U] where S 1s an upper- tnangular r X r matrix and U)s an arbitrary r ¥ (6 - r)

matrix, r being the rank of J.

The method described above has been successfully used in (Angeles 1987) for
the determination of the degree of freedom of the Bennett mechanism which is a paradigm

of mechanisms e]usive to Chebychev-Griibler-Kutzbach formulae.

3.2.2 Extension to Complex Kinematic Chains
F 3
The extension. of the method to complex kinematic chains i1s based essentially
on the topologucal analysis of Sectlon 3.1. .dndeed. when all.the mdependent Ioops of a
complex kinematic chain have been fouﬂ{i the procedure described above is applied to each

of these loops. which leads to: =
) . L6=0, i=1,.. ..k T (39).

where k is recalled to be the number of independent loops and ved¥or 0 includes all the
joint rates of the whale chain. Joints which are not included in the ith loop'will lead to a

(corresponding 0 column in the subjacobian matrix J,. It is also important, for consistency,

to make sure that the positive direction of rotation around the axis (Hartenberg and Denavit

Y -, .4
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1

- Figure 3.3 Special case of Watt's linkage all link lengths are equal
1964) of theith joint be the same for each of the loops. 1 e.. that the defintien of the joint
rates.is the same on each of the loops. The Jacobian matrix of the whole chain J can now

b4
—

be assembled as:

’) Jl - y
< 1= | (3.10)
Jo 1. ) v
i and hence. the kinematic joint-rate constraints of the overall chain can be written as
< ) . L]
16 =0 ‘ (3.11)
and hence
., [ =dim({AN(J)) (3.12)
o 1.e.. the dof / of the complex kinematic chain 1s equal to the nullity of J. This method will
. now be applied to the analysis of three different corhplex kinematic chains.
. ¥ |
AN 3.23 Examples
3231 Application to Wactt’s'i.inkage
AN This linkage was described in Section- 3.1 -and a set of indlependent loops ‘wa~s
‘ identifie'd in Fig. 3.1. The dimensions of the linkage considered here are shown in Fig. 3.3.
- a , . p ; .Q: 4 ‘ 62 | ..
. .
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3. ANALYSIS Ol-f COMPLEX KINEMATTCICHAINS-

Since the topological énalysi.s is already completed, we can directly apply the
Jacobian method. The subjacobians will be 3 x 7 matrices for we have seven joints and the
kinematic chain 1s planar. This is so because the angular velocity constraint leads to only
one equatlon\ in a planar system. and the linear velocities are two-dimensional vectors As

a matter of fact. if we use complex numbers to denote the vectors in the plane. we have

%

‘e r, =e" 2 (3.13)

where e = [0.0.1]7 1s a unit vector orthogonal to the plane and e is the basis of the natural

logarithms Therefore, if we denote the joints as in Fig 3.3. we derive:

! 1 1 1 0 0 0]
Jl - [02 (’j’." 2[‘2 e./h' 2r3 Q’J’T 2'4 02 02 02 J (3.14(1)
for the first loop and ‘
Jy = [02 0, 0, F]W/Zrz 0, (3177/2'.(3 ejn,'Zr[, (3:14h)

for the second loop, where 05 denotes the two-dimensional zero vector, The first row of
the foregoing matrices arises from the angular velocity constraint—this is how the unity
entries are obtained—and r, and r: are the vectors connecting.the :th joint tc: the 1st and

5th one respectively These expressions can be rewritten in terms of angle 6 (Fig, 3.3) as:

1o 1 1 000
Ji=10 sin¢ (snf++32) v32 0 0 0 (3.154)
Oscosf (cosf=12 -12 0 0 0
“and P
000 1 1 1 ' 1 _
Jhp=10 0 0 +3/2 0 sin(2x/3 -0) [sin(2m'3 -0) + 3,2 (3.154)
0 0 0 12 0 -—cos(2r/3—-0) [1'2~cos(27/3 —0)] M
. /" !
The matrices can now be a_ssem(t‘aled as; - , : -
T4 \
J= { 1 ] ) 3:16
. LJZ v ] J = ( )

where the global Jacobian matrix J is of 6.« 7. Therefore, if J isr) of full rank. its nullity is of

dimension 1 and the mecQanism{ has a degree of freedom of 1, which is true in general. We

'
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will now consider the link connecting joints 1 and 2 as the input ink—the fixed link being
the one connecting joints 1,4 and 5—and try to find configurations in which the mechanism
would acquire an extra freedom To this' end, we will equz;rte the joint rate corPespondmg
to the input. i.e., (3’1. to zero. This can be accomplished by“dropping the first column of J.

which leads to: - - R

F 1 1 10 0o . 0 '
sinf (smf#++32) +32 0 0 0
= cosf (cosf -1 2) 12 0 0 0
1o 0 11 1 1
0 , 0 732 0 sin(2r/3-0)  [sin(27.3 —6) +v'3.2]
. 0 . 0 12 0 —cos(2r/3-6) [1.2- cos(27' 3-1)} |
‘ : (3.17)
The expansion of the determinant A of J' can then be reduced to: )
A = -\sin 0(% sinf + -\/-2—3 cos §) ~ (3.18)
and'the zeroing of this quantlt\y leads to four solutions for §, namely.
™
6= -7,/3.0,2n/3, n (3.19)

‘ N )
Each of these values of the input anglé correspond. to a configuration in which the linkage

-

instantaneously acquires an extra degree.of freedom, i.e.. in which we can have a nonzero
: i .~ [ -

vector of joint rates even if the joint rate of the input Is zerp. J
\\ /"\.

-

' A three-degree-of-freedom planar parallel ‘mampulator is shown in Fig. 3.4.
The three motors 1\!1 Mz and Mj are fhx d and pIaced ‘on the vertices of an equilateral
triangle. Moreover, the correspondmg link lengths on each ‘of. the legs are the same. i.e.
the manipulator is symmt;ctric. This manipu Stor will be studied in detail in Chapters 4
and 5. and the reader is referred to these chapters for a more detailed desv::riptlon~ of its

characteristics.

In order to' apply the method derived hefe to this manipulator. the’ assocxated

graph has ﬁéen drawn. This is shown in Fig. 3.5a. A spannmg tree is shown in: Fig 3 5b

|

and the associated independent Ioops are identified on Fig. 3.5¢c. |
|
\
!
k
\
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3 4 7
2 5 8
) . 1 0
S (a) | ® - ' > u(c):

Flgure 3.5 (a)Graph associated with the manipulator shown in Fag 3.4 (b)a span-
ning tree and (c)the corresponding independent loops.
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]

Since we have nine joints gnd the kinematic ‘chain is. again. a planar chain. the

subjacobians will be 3 x 9 matrices. If we use a notation identical to the one prese‘nted

-~

»~

above, and if we denote the joints as indicated in Fig. 3.4. we derive:

1 1 1 1 1 1 0 0 O
= . s s - 3 3.20
Jl {P]” Zfl el 2!2 el zr3 el 2!4 e/ 2I’S 02 02 . 02 02.1 (3.2 (1)
and
0 0 O 1 1 1 1 1 11
dy = , . - . i 3.206
2 {02 0, 0, o7 2rz ey/.,ZrIS 637:,2',(_) e]: 2,./7 e{r,ng 02," ( N )

where, again, the first row of the subjacobian matrices arises from the angular velocity

constraint and where r, and ¢/ are the two-dimensional vectors connecting the ith jont to

the 6th and 9th one, respectively.

[

=N °

Figure 3.6 Definition of angles vy. vp and w3

Moreover, angles wy. 15 and w3 are defined as shown in Fig. 3.6. which leads

to:
\ 1 f . K . )
. S [0} B . _ . (3.21(1)
- * ! . — % )
. o Jz-1 cos@y | ““ |cos{og + ¢
’ e r2 = - { y } +I3Tsin ¢’1} - 12 [ 1) j"(3211))

5")‘(01 +v1)

| ’ L 66
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z-1] [ cos o4 |

BET [ vy o +h | sindy | (3.21¢)
_ _f=z-1]  ,-feosep], . , - N
T [ y | T sinsy |\ ~ (3.214)
= - [,.r -1] I (cc')s o] | [cos(d; + ) | 3210
i L Y _! ._Slno-_;_ Sm(OZ'?"‘»'Q)J
and
: .
. b | r-127 cos @y )
! r4 - [u -1 3 2‘l T,’a {Sin 02 ] v ' (3-22")
; / r-12"1 €os @ ['cos(oz + U ,
T 32075 sing, | T2 (s 22
/ rs [y—\'B 2} + 13 s|né2} | sin(@y + vp) (3 220)
=53]  em
o [\ 32 ) o (3.22¢)
Do 1—1!’2 cos @3 |! ] ‘
"= [y - \/’3“,'2} +h lsin d)3} ST 322
p_ | 21,2 cos @3 | cos(d3 + 13)
.\ra i [y - \/3"12] *h [Si" 93 } h [Si"(fpa +u3) | (3.22¢]
where - ST ' _ .
=0+ W/G' ) _ S
. ‘ / ' .
\ 0543 =@ — 7r‘/2 )

angle ¢ bemng the angle defining the orientation of the grippe(r and § and y being the

1111 1 0 0 0
, ‘ y2 -y3 -ue -5 0 0 0 0
_ oy} I3 Ty Ig 0 0 0 . 0

/ =loo 0 11 11 1 (3.24)
0 0 0 -y -y -v3R2 ~y; -y O
4 LO 0 0 zy =y, -1/2 r’g 0

Lo L
where z,. y, and z/. y/ are the r and y components of vectors r, and ¢/ respectively.
\ . I
Since J is a 6 « 9 matrix, its nullity will be 3 if J is of full rank. ie.. the

. e .
manipulator has. in general, three degrees of freedom. To analyze the singularities, we will

* set the rates of the powered joints to zero and see under which conditions the nullity of the
‘reduced matrix can be greater than zero. It will become cIea;. in Section 3.3, that this type

. \‘\ 67
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7
of singularity correspdnds to a singularity of the second type discussed in that section. ie..

a singularity for which the Cartesian rates of the gripper can be nonzero while the motor

"

rates are zero. The zeroing of the motor rates can be -accomplished here. by dropping the

st 6th and 9th columns of J. which leads to: R -
1 1 1 1.0 0 7
, -y -y3 -w -y5 0 O
A I) I3 Ty :’Es 0 0 o
’ =10 o 1 1 1 1 (”?
0~ 0 -y -v5 -U; —Ug ~
- ,»0“ 0 =z, 'z .1:'7\ Ty |

The foregoing Jacobian can be properly reduced by performing elementary “opera\t\ions on

J'—without affecting its rank—, which leads to: -

’ It 1 -1 0 0
10 (v2—v3) (va—ws) (v2—us) 0 0 |
- 0 (z9-z3) (29 —z4) (22— Z5) 0 0
. 0 0 1 1 1 L1 \9%)
0 0 0 (vh—vk) (wa-vh) (fy—uh)
0 0 0 (zy — z5) “(z) — ) (z_z - zg) |

Substituting egs.(3.21) and (3.22) in eq.(3.26) and expanding the determinant A will lead.

af'te( many simplifications. to the following: . .
A =sin(27:3 + w3 — v2) [sinwy - sin(wy - 27 3 ’
[si \ ) .
+ sin(wy — wy — 2% '3) [sin(w3 + 27 3) — sin v3]
which is next further reduced and set equal to zero as follows:
{3.28)

A = sin(w) +wy + ¥3) + 4sinwy sindysinwy =0
|

There are two sonditions under which this ‘equation can be satisfied:

~

1. fyvyy =y = 1,/@’ =nn.n=01,2,... then eq.(3.28) 1s obvnousls} satisfied.
rd ¢ / ’
This solution corresponds to configurations in which the secondary links of the

!

three legs aré¢ concurrent These links are defined as the ones joning the driving

links to the gripper.

v J‘ ' . !‘

68

r"f"'“ﬁg



2. f wyy—vy = —7/3 and ¥y —w3 = 2w /3 then, substitution of these two equalities

in eq.(3.28). leads to:

g,

N

sin(3uy) + 4sind ¢ — 3sinyy =0

3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

(3.29)

which is a trigonometric identity. This solution corresponds to the configura-

These two cohditions -are exactly the same as the ones derived in {Hunt 1983)

using screw theory: that is, the planar three-dof parallel manipulator is singular whenever its
i .
three secondary links are either concurrent or parallel. These resuits will also be confirmed

\
in Chapter 4. where the singularities of the planar manipulator are analyzed following a

different approach.

3.2.3.3 | Spherical Three-DOF Parallel Manipulator

Ay ~

' tions for which the secondary links of the three legs are paralllel‘

A spherical three-dof parallel manipulator is shown in Fig. 3.7. This ma

will be studied in detail in Ch pterE 4 and 5. The three motors My, M, and M3 are fixed
equilateral triangle. Moreover. the manipulator is symmetric

and placed on the vertices of a

and alfl joint axes are concurrent. Furthermore, we denotg by u,. y, and w, the unit vectors

along the axis of the ,ifh mot !} the ith joint attached to the gripper and the ith intermediate

joint, respectively

e . The graph associa
Fig. 3.5a. and therefore, there are two independent loops. However, the linear velocity

"equations-are irrelevant here s

constraints need to be congidé

122[0 0 0 u wy

.

ted with this manipulator is identical to the one shown in

-

I

3

nipulator

—

-

k]

S,

oy

nce. all the joint axes intersect and only the angular velocity

red. Tf;is leads to "
A bl
i Wi Vi Uy Wy vy .00 0] K ' (3.300)‘

vy u3 w3 v\Vsl (3.300)
\ 69
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Figure 3.7 Spherical three-degree-of-freedom parallel manipulator

-.These are next assembled as:
‘ ‘ J= [Jl} L (3.31)
J

Again.%ix J is of 6 = 9, which means that. whén it is of full rank,,its nullity

. is 3 and the kinematic chain has three dof, as it should To analyze the singularities. we

s - ¢ - .
set the motor rates to zero, as in the previous example, which leads to-

r_lwyg v owy vy O 01' IS
+= !: 0 0 Wy Vy W3 V3_t (3322

and the condition under which det(J') is equal to-zero can be shown to be

‘ [(wy > "1)\‘ (wy < vp)]- (w3 xv3) =0 (3-33)

This result will be reproduced and interpreted in Chapter 4, where the singu-
larities of the spherical parallel manipulator will be analyzed in detail following a different

approach.
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3.3 Singularities of“Clvoéed-Loop Kinematic Chains

"The study of the kinematics of mechanical systems leads inevitably to the
problem of singular configurations These special configurations are defined as the ones
in which the Jacgobian matrix, i e., the matrix relating the input rates to the output rates,
becomes rank deficient. They correspond to configurations of the system that are usually
undesirable since the degree of»freu\edom IS instantaneously changed. As.a matter of fact, this
1s how the method presented in Section 3.2 allowed us to identify singular c‘onfiguratmns.
For serial manipulators. the singularity problem has been addressed by several authors. for
instance: Sugimoto and Duffy (1982): Lai and Yang (1986): Lita;lin and Parenti Castelli
(1985); ‘Waldron et al. (1985): Litvin et al. (1985 & 1986): Hunt (1986 & 1987); Wang
and Waldron (1987})' Some researchers have also worked on the singularities of simple

closed-loop kinematic chains (Eddie Baker 1980a: Sugimoto et al. 1982; Litvin at al. 1986

& 1987; Litvin and Tan 1987, Litvin and Fanghella 1987; Litvin and Wu 1987),
$
A singulanty anélysns for closed-loop kinematic chains is presented in this-sec-

tion. As demonstrated by the examples included here. this analysis is applicable to simple
and complex closed-loop kinematic chains in general. The technique will be used in Chapter

4 for the singularity analysis of parallel manipulators.

3.3.1 Singularity Analysis

A complex kinematic chain consists, of a set of rigid bodies connected to each
other with joints and where the conditions specified in the first paragraph -of this cha;;ler
ard satisfied. The chain is also characterized by a set of inputs. denoted here by an
n-dimensional vector 6, which correspond to the powered joints and by a set of output

coordinates, denoted here by an m-dimensional vector x These input and output vectors
] :

“depend on the nature and purpose of the kinematic chain. For instance, in a parallel

manipulator, the input vector 8 represents the set of actuated joints and the output vector

x represents the Cartestan coordinates of the gripper. However, in general, the output does

‘\\

: g, 7
| A

o
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-~

not need to be a set of Cartesian coordinates and can also correspo:’%%i to joint angles or

‘displacements. Furthermore, although the number of inputs and outputs does not have

"= to be equal, the number of independent inputs and outputs will always be the same and.

%

}

- ¢ .
therefore, vectors 6 an;j x can be reduced or augmented to vectors of the same dimension
which will be equal to the degree of freedom of the linkage The input and output rates are
then related through the Jacobian matrix of the chain as

6 = Jx (3.34)

N

- , . N » . .
_As opposed to the convention used for serial manipulators, the Jacobian matrix is defined

here as the one mapping the output rates inté the input rates. The reason for that will.

become clear in Chapter 4. Moreover, eq.(3.34) can' also be written as:

x = Ko (3.35)
) " T -
‘where K = J~1\J and K being co}\figuration depende}t.

4
1 3

As stated above, singula{{ties occur in configurations where J is rank deficient.
However, for general complex kinematic chains, a distincti&n can be made between three
types of singularities which have different physical interpretations.

6

S

~ (i) The first type of singularity occurs when the following conditions are verified:

det(K) 20 - ‘ (3.360)
i.e ‘ !/
det(d) — oo~ (3.366)

L

_The corresponding configuration is ohe in which the chain reaches either a
boundary of its workspace. or an internal boundary limiting different subregions
of the workspace where the number of solutions is not the same In other
words. this type of smgulanties. consists of the set of points where different
branches of the inverse kinematic problem meet, the inverse kinematic problem

\ being understood here as the computation of the values of the nput variables

=
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3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

from given values of the output variables. Since the nullity of K is nonzero. we
can find a set of vectors 8 for which x would be equal to zero and therefore
some of the velocity vectors x cannot be prod_u5ed at the output. Typically,
these would be velocities orthogonal to the boundary and directed towards VEhe

outside of the workspace

. (i} The second type of singularity occurs when we have the following: o /

N
det()) =0 = , (3.374)
_ ' -
1.e. -
- ) ,
det(K) — x ' L (3.37h)

This correspdnds to configurations in which the chain remains uncontrollable
even when all the actuated joints are locked. As opposed to the first one, this
type of singularity lies wiathin the workspace of the chain and correspor{ds to a
point or set of points where different branches of the direct kinematic problem
meet. The direct kinematic problem is the one in’which it is desifed to obtain
the values of the output variables from given values of the inpuf variables. Since
the nullspace of J is not empty, there exists a set of output rate vectors x which
will ge mapped into the origin by J, i.e.. which will correspond to a velocity of

zero of the input-joints. The input rates are therefore not independent.

Both the first and second types of singularities correspond to configurations

that can happen in a general complex kinematic chain
]

(iii) The third type of singularity 1s of a slightly different nature than the first two,
since it requires conditions on the linkage parameters. Indeed, if some specific

' conditi&;ns on the linkage parameters are satisfied, the chain can reach co'n’figu-
rations where the first two types of singularities meet and the Jacobian matrix
then becomes indeterminate. This corresponds to configurations in which the

B

chain can undergo finite motions when its actuators are locked or in which a

i
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' finite motion of the inputs goduce,s no motion of the outputs such as. for in-
i

stance. a linkage having a cdhstant branch (Russell 1988). For linkages having |
a quadratic input-output equation. the third type of singularity also cogresqponds‘

s to a case for which all three coefficients of the quadratic are equal to zero

The three types of singularities will now be illustrated with some examples of

closed-loop simple and complex kinematic chains

“

3.3.2 Example 1: Planar RRRP Mechanism
a 3
A planar RRRP mechanism is shown in Fig. 3.8 This one-degree-of-freedom
mechanism is often referred to as a crank-slider four-bar linkage. The crank angle 4 is the )

input variable and the displacement of the slider. denoted as =z, Gs the output

| ' L

>

B Figure 3.8 Planar RRRP mechamism

A\
?

Therefore, in this case. the Jacobian is a 1 > 1 matrix. 1.e.. a scalar, and will be

denoted as J or K. From the geomlet‘ry of the linkage. we can write:

-

. T~ _
"z = Rcosf/+lcosy ‘ ~ . (3.38a)

i

am

- : | Rsinf=lsine . (3.380)

iy

s

\

\
1




" substitution of eq.(3.38b) into eq.(3.38a) leads to:

/ 3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

3

’ . x=Rcos = l\, 1 - r2sing " (3.394)

where .,
.o r= []? 4 ~(3.39)

and where the double sign arises from the fact that the direct kinemdtic problem has two

<

branches. Upon differentiation with respect-to time of eq (3.39a) one obtamns

A
r=Ko (3.40q) -
where ) . - ’ S,
' - - 6 cos b
K= =R |sinf = ——0 22287 . (3.400)
R \1-r2sinlg ‘

Therefore, the first typ;a of singulanty anises when K = 0. i.e . when § = 0 or

7. In this configuration, eq.(3.39<1') becomes
- - |

! r==R+l ‘ . (3410)

. ‘h) . . .
and the links of length R and-! are"aligned, which corresponds to the limit of the workspace.

Since K is equal to zero, the value of z will be equal to zero. whatever the value of 0 is.
N )
The second-type. of s*ngulanty occurs' when J = 0. i.e . when the demominator

of K goes to zero This condition leads to:

- - sinf = - ) .(3.41h)

) R . .
The corresponding configuration 1s shown in Fig. 3.9. This Eonfiguration is clearly within
the range of motion of the output, i.e.. within the workspace. !Moreover. since ghé second
term &f eq.(3.39a) vanishes. the two btanches of the direct’ kisematic problem ,f:neet The

output can undergo inf,mit'es‘lmal motion even If the input is locked.

’ As stated above. the third type of smgu!anty reqmres that cerzn conditions . _
on the Imkage parameters be satlsfued For the example treated here ‘the /;ondltlon 1$ that

the input and coup]er Imks have the same length, i.e., ) /

-

e | " R=! L ey b

. /s - 75
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[
Figure 3.9 Second type of singularity for the planar RRRP mechanism

Under this assumption, eq.(3 39a) can be rewritten as

z=Rcosl+ Rcosb 1.(3.43u)
&
or
0
i { 2Rcos§ ( )

which clearly shows that the mechanism has a constant branch. Therefore, when z 1s equal

)

to zero, the input can undergo arbitrary rotations while the output remains at rest.

3.3.3 Example 2: Watt's Linkage

-

A linkage of this type is shown in F}g. 3.10. The link lengths used here are
slightly more general than the ones used in Section 3.2. The mechanism has one degree
of freedom, and the input and output variables are angles ¢ and ¢. respectively. Again, the

Jacobian is a scalar quantity.

From the geometry of the linkage, we can write'

zq = —cos(y + 7/3) (3.44)
and .
3
— v = %—-—- + sin(y + 7/3) (3.45)
e ¢ 76
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Figure 3.10 Wiatt s linkage

Y
and also \ o,
. - a=tan"! (y%) (3.46q)
/\ . 71
where
- Zy=zy-12 ' (3.46b) -
and _t
1 flysmf-~32
d=tan" 11 3.47
an ( {4 cosv(f-kl 2 ) R (347)
Moreover. using the /aw of cosines. we obtain
2 42, 3 .
lz = l% +zy° + y12 - 203, 1 +\yf cos(a — o) (3.48)
. )
and _
: 13 =1+ (ljcos b +1 ’2)2 +(lysing -3 2)°
(3.49)

-2y (llhcos() +12)2 + (111 snf—v322cos(y —3) -
Given a certain value of the input angle 6. angle w can be computed from eqs.(3.47) and)
(3.49) and then angle o is obtained grom'eqs.(3.46) and (3.48). Upo.n differentiation.of
these equations with respect to time,\ﬁthe following 1s obtained
L 31y sind — 1y cos § — 12)( 12y sin 8§ — \/3/2l; cos §) | .
V=204 (2\/sinl(u'r - 3)[(11,'2 1 czl(o)i’ + :1, sin g ~V\/§/21)2]3’2) ? (3.500)

mn
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4! i

where . -
12 +1/2cos 0 ~v3/2sin0 (3.500)
= - B )
(ljcos8+1/2)2 + (44 sinf ~ v'3,/2)2 ’ ,
and )
! 2 2 AN
Iy -1 Ty +
o an (23" + v + {3 3)(21*,%_1~ v1y1) (3514]
2y sin(a — o)(r} +y12)3 2 )
4 where
’ —_—
LI b . - (3.51h)

2 2
Iy +y1

" Therefore. the relation between the input and outp(it velocities can be written as:

o= N0 (3.52)
h
wnere
7 /
K= 12 (3.53a)
Dy D,

and

Ny =(ljcos b - \/511 sind + lf + l%)(l/le sin0 + /32l cos 0)

+ 25;n v - B)(12 + 1/2l1 cos 6 — \/5/2!1 sin 0)
1. 1

\/ ~ V/3lysn 6 + 1y cos 0 + l% (3.530)
Ny =~ sin w(x'12 + ylz + lf ~ l%) - 213 sm(r{ - o)1 + cos vy :r'l2 +.yf (3.53¢)
Dy =2sin(v - 8)(1 = v3lysin 6+ [y cos 0 +13)% . : (3.53d)
D, =2 sin(a — o) (£} +42)3? . © o (353)

The first type of singularity occurs when A =0 1e., when
Ny=0 _or N,;=0 (3.54)

~ The first condition corresponds to the set of configurations in which links {y and [, are
aligned, which cl_eérly defines a boundary of.the v(lorkspace .The second condition corre-
sponds to_/co:onfigurations where link {4 is alighed with the line ¢onnecting joints 4 and 5.
which again defines a limit position of the output link In these configurations, the velocity

of the output is always zero, whatever the input velocity is.
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L 4

The second type of singularity, i.e..-the one in which the velocity of the output

link can be nonzero even if the input velocity vamishes, occurs here when the denominator

of K is equal to zero, i.e.: J
D1 =0 or D2 =0 (3.55)

The first condition can be rewritten as

sin(v - 3) = 0 (3.56)

which corgesponds to configurations in which link () 1s aligned with the line connecting

joints 3 and 4. This type of configuration 1s shown in Fig 3.11. where it is clear that the

- output link can undergo an infinitesimal motion even if the input 1s locked. The second

F 4

condition can. in turn, be rewrnitten as
sinfa — @) =0 (3.57)

which corresponds to conflguratlons~ in which links l3 and {4 are aligned

-

——— e

- i

Figure 3.11 Second type of singularity for Watt's linkage -

i

The conditions on the link lengths required, for the third type of singulanty are »

given by the following: .
u h=lp=1 o l3=ly=1 (3.58)
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When the first equality above is verified, the mechanism can reach configuratior;s where
joints 2 and 4 are superimposed, and the output can then undergo finite motions while the
input is at rest. As a matter of fact, since links ly and [, are aligned with the lines connecting
joints 1 and 4 andjjomts 3 and 4 respectively, they become kinematically irrelevant and the

1 -

whole Iinkage s reduced to a four-bar planar linkage.

On the other hand. if the second equality of eq.(3.58) is verified. the mechanism
can reach configurations where joints 4 and 6 are superimposed. In this case, links /3 and
l4 become irrelevant and the linkage has ‘a constant branch. i.e., a branch on which the

output link remains at rest.

-

3.4 Characteristics of Parallel Manipulators .

3

The purpose of this section is to introduce parallel manipulators as a subset of

complex kinematic chains and to derive their characteristics.

‘First of all, the graph representation of parallel manipulator§ is always of the
type shown in Fig. 3.5a The graph is composed of a set of parallel paths connecting two
poles. the poles being the base link and the gripper. Therefore, these two links are the only
ones having a degree of connectlv{ty greater than.or-equal to three. The number of joints

in each of the parallel paths and the number of paths can vary.

[

Moreover, for the general case of a spatial manipulator, the number of loops
can be related to the degree of freedom using the general mobility criterion (eq. 3.9) as:

[ =6(1 + pn) - 5p(n + 1) (3.59)

\

where [ is the number of degrees of freedom of the manipulator, n is the number of rigid
bodies per leg of the manipulator disregarding the base and the end-gffector and assuming

that each joint has only one dof, and p is the number of legs. which corresponds to the

{ . < . " \
number. of paths connecting the two poles of the graph. Moreover, if we want to have a

i}
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fully pa@lel manapulato( i.e.. one in which all the motors can be fixed to the ground. we

b
need to have only one motor per leg which leads to the fo!lowmg condition:

o . l=p A (3.60)
. \
By substitution of eq.(3.60) in eq.(3 59). an equality describing all spatial fuily parallel
S g .

manipulators is obtained. This is expressed as.
. p(n - 6) = -6 , (3.61)

The solutions of this equation that are physically meamngful, i.e.. the ones that correspond
to feasible manipulators. are shown in Fig. 3.12. Pomnt .4 is associated with the well
known six:degree-of—freedom parallel device referred to as the Stewart platform (Stewart
19623). Point B. in turn, corresponds-tb a three-degree-of-freedom manipulator such as.
for instance, the parallel part of the ARTISAN manipulator studied in Chapter 4. Point C

is associated with a two-degree-of-freedom simple closed kinematic chain

P 1
. A !
. ) J , i
t 6 - ° A -
-
4 + -
3
+
da ° ] !
B - e
- 2 T ° - -
C
4 i -
1 L l 1 i L [
LA T ¥ T L ¥ ) o

Y T
Figure 3.12 Spatial fully-parallel manipulators. -

Yy

Although this thesis is devoted to the-study of fully parallel manipulators. it .

. .
is. worth mentioning here that some researchers have proposed partially parallel structures’

fog; manipulators. Earl and Rooney (1983) have presented a topological invéstigaiion that
\ . \ ' ¢

/
/
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considers all - these possibilities. In order to characterize the kinematic structure of such

manipulators. the following index is now defined:

A.
W d= 7 m (3.62a)
with

0. d- 1 o (3.62b)

where d is called the degree of parallelism of the m'anipulator. k is recalled to be the
number of independent loops in the manlpuT;tor's graph, and [/ 1s the degree of freedom
of the manipulator. The application of this criterion to a fully/parallel manipulator gives
a degree of parallehsm of 1, whereas a degree of parallelism of zero is obtained for a
serial manipulator. Intermediate architectures will give other results. For instance, the
manipulator discussed in (Bajpai and Roth 1986) gives a degree of parallelism of 50%
when the foregoing criterion 1s used The index has a singulanty when the degree of

freedom of the chain 1s equal to one, in which case the value of d i1s one if there is at least

one loop and zero otherwise
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Chapter 4 . ANALYSIS OF PARALLEL MAENIPULATORS

[

Some plarfar.‘spherical and spatial manipulators are introduced in this chapter
They all satisfy the definition given in Ch;pter 3. Le, they" all have a degree of parallelism
of one. As pointed ot in Chapter 1, the advantages of paraliel manipulatc;rs make them
suitable for many potential applications However, since their structure is fundamentally
different from the u%ual se"rlal architecture, it 1s required that a detailed k;nematlc analysis
be pursued. Tyls an?Iysus will allow us to obtain the equations constraining their motion,
which include solutions to the direct and inverse kinematic problems as well as velocity
and acceleration inversions. ’Thése results a;e of a primary importance for the control and
trajectory planning of the manipulators. Moreové;. the derivation of the Jacobian and the
investigation of singularities preseqted here will be used in Chapter*5 for the optimization

of the kinematic parameters of the manipulators -

4

N

As in the case of serial mampulatorus\; the direct klcnemagic problem is. defined here
as”aghe»one. in which the Cartesian coordinates of the gripper are obtained from the powered-
joint gngles The inverse kinematic problem is theréfore the one in which the powergd-joint
angles\%are computed from t};e Cartesian coordfnate§ of\iﬁqe gripper. It is pointed out that
the degree of dlfflcu!ty mvolved in finding a solution to the direct kinematic problem of
parallel mampulators dlfTers from the one involved in the solution of the same problem for
correspon&mg serial manlpulators. The term corresponding serial manipulator used here

refers to a serial manipulator having a kinematic structure identical to one of the legs of a

given parallel manipulator. Therefore. the degree of difficulty involved in finding a solution
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.

to the inverse kinematic problem of corresponding parallel and serial manipulators is the'"
same. with the difference that. in the case of the parallel manipulator, only one joint angle
per leg is needed and that the solution has to be repeated for each of the legs. However, the
degree of difficulty involved in finding a “solutlon’ to the direct kinematit problem of a parallel
manipulator 1s much higher than for a corresponding serial manipulator. As a matter of
fact, the solution of the direct kinematic problem for serial manipulators is straightforward
since 1t amounts to a series of matrix multiplications and vector additions, whereas the
solution of the same problem for the corresponding parallel manipulators usually requires the
utilization of a numerical method, closed-form solutions being impossible to obtain. This
is so because the graph representation of their non-powered subchain is usually symmetric
and the gripper cannot be related directly to the fixed link of this subchain by any éof the

legs. Therefore, for parallel manipulators, the solution of the direct problem is, in general.-

not unique and both the inverse and the direct problems lead to multiple branches.

'The velocity inversion gives the relationship between powered-joint rates and
Cartesian rates of the maniphlator's gripper and the acceleration inversion relates the cor-
responding accelerations. The Jacobian matrix derived for the velocity inversion is usedlin
the singularity analysis and the results obtained are shown to be in agreement with those

presented in Section 3.2.

S
>l

‘4.1 Planar Three-Degree-of-Freedom Manipulator with Revolute

Actuators >
N .

A pi;anar parallel manipulator is represented in Fig. 4.1, all of whose joints are
of the revolute type, and the three motors My,2M>,, M3 are fixed. The manipulator consists ’
of a kinematic chamn with three closed oops. namely M{DABEMy. M,EBCF M3, and
M3FCADM;. the gnpper being rigidly attached to triangle ABC It is pointed out ;gain
here that only two of the aforementioned loops are kinematically independent according to
the definition given in Chapter 3. This is clearly seen from the associated graph which was

’

shown in Fig. 3.5a.
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@ fixed joint

Figure 4.1 Planar three-degree-of-freedom parallel manipulator with revolute actu-
ators

Unlike the case of a mechanism, which. most of the time, is designed for a

specific task, the tasks to be performed by a manipulator are -unknown and unpredictable a
‘priori. As a matter of fact. the manipulator studied here\wdl be asked to ;rbltrarily position
and orient the gripper in the plane of motion, following a certain trajectory that will be task
dependent. Hence. there should not be any preferred general orientation %or which the
manipulator would have better properties. This suggests that the maplpulator should be

symmetric. Therefore, the mators will be located on the vertices of .an equilateral triangle

and the link lengths will be the same for each leg, i.e.. \

L=U=U 1=123 (4.1)

—_— .

This assumption will be used throughout. Moreover, in what follows, the dis-

tance between any two of the motors will be set equal to ﬁflity. for normalization purposes.
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Triangle ABC will be referred to as the gripper. for it 1s kinematically equivalent to this. It
. ’ 4
could bereferred to as the end-effector. as well. but due to the kinematic structure involved,

the gripper i1s not an end link

#

The potential applications of this mampulator include pick-and-place operations

over a plane surface, machining of plane surfaces. mobile base for a spatial manipulator
] N . Y .;‘ v .
and moving platform for a terrestnal vehicle simulator

v

.~y
’

4.1.1 Inverse Kinematic Problem

As stated above, the manipulator aims at guiding the gripper through a certain

- trajectory in the Cartesian space, the Cartesian coordinates of the gripper being given by_

the positlo% of its centroid C(z,y). and the angle o defining its onentation (Fig 41) The

inverse kinematic problem, therefore. consists of determining 8y, §, and 03 for given values

of . y and ® It can be readily shown that the salution to this problem contains eight
different branches. In fact. the solutions for the input angles 64, f, and 04 are uncoupled
and, moreover, the solution to each of these angles can be obtained from the input-output

-

equation of a planar four-bar linkage for each leg, thus giving nise to a quadratic input-

- output equation, which thus contains two solutions, as shown. e.g., in {Angeles and Bernier

!

1987a) For instance. the solution for the first leg 1s shown in Fig 42 In this figure, @;en
the Cartesian coordinates (z.y,¢) are specified, we can consider the chain CADM{ as a
four-bar linkage for which the position of the input link. /3. 1s given. Angle 0y can therefore

be computed usihg the input-output equation mentioned above

*
A

The same reasoning can be applied to each of the legs and a general solution

15 given here, for leg ¢, by: -

b, =0, =,. 1=1,273 , ’ (4.2)
where . y .
) \ _ ! . . -
a, = atapz(zhvyh) . _' (4'3)
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s @ fixed joint

e e e ]

Figure 4.2 Analysis of the first leg

fr1

and » P
f 2 2. .27 9
1 [ -+ 15+

Y; = cos ; >
- ~f . 2[1‘/$21+y21

(4.4)

angle v, being chosen on the main branch of the inverse cosine function, i.e., 0 < ¢, <=

Moreover, coordinates zj; and y,, are defined as:

€
zy, =z —lzcos¢, — z,, L/

Yan =Y — 13 S'n ¢'L ~ Yo Y,

whereas angles {qS,-}g are given by

1 =¢+7]6
™~ ¢y = ¢ +51/6 !
p . ‘ T P3=¢-7)2 '

(4.5q)
(4.5b)

(4.6a)
(4.66)
(4.6¢)
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and . by ‘ ;»i\’ . X
. 3 "‘(’. “
{za)y = {031/} . (4Tq)
A {yoz}:li = {0,0. \/5/2}.,_” (471))

»

are the positions of the centres of the motors This completes the solution of the inverse
kinematic problem “ ) -

4.1.2 Direct Kinematic Problem )

r

s pointed out in the introduction of this chapter, the direct kinematic problem
for parallel {na.nlpulators Is more involved than the inverse problem. Indeed. even for the
simple three-degree-of-freedom planar manipulator discussed here. no closed-form solution
can be found However. the following theprem was shown in (Hunt 1983)

Theorem 4.1: The solution of. the direct kinematic problem for the planar three-degree-

of-freedom parallel manipulator leads to a maximum of 6 different branches

Proof* This result is obtained with the following reasoning: referring to Fig. 4.1, if the three
input angles—i.e , the powered-joint angles—are specified, then the positi‘ons of points D,
E and F are readily computed. Moreover, we can think of the ctl.am DABE as a four-bar
linkage )of which C 1s a point of the coupler link, generating a couplér curve A solution for
the closure of the whale kinematic chain (rr;anipuiator) Is obtained whenever the coupler

curve described by the motion of point C intersects the circle defined by the rotation of link

FC around point F Since the equation of the general coupler curve of a plapar four-bar

_linkage—also called the tricircular sextic—is of the sixth degree (Hartenberg and Denavit

1964). the intersection of this curve with a circle has a maximum of six solutions, and
hence. the direct kinematic problem of the planai three-degree-of-freedom manipulator has

a maximum of six solutions, and the proof is completed. ' |

1 Y
The foregoing principle is now used to derive the equations that will lead to

a simple formulation of ‘the direct kinematic problem which is suitable for a numerical

r 88
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solution The ndtation used here is similar to the one used in (Ma’and Angeles 1987) The

C four-bar finkage considered s shown in Fig 4 3. B
“ k )
Figure 4.3 Planar four-bar linkage
( ‘ The position of point ' of the coupler can be wntten as g
1w =1p +lycos{ag +v) + v3l;cos(ag + ay + ) (4 8a)
Yoo = yp ~lsin{oag )~ §l3 sin{aq + oy +0) (4.8b)
where - ‘ '
- .
B ay =7 3 (4.9)
- oy = atan2 !KE—’—QQ] / (4.10)
25 - p b
and ( e
4| B=\B%-4C]| -
0y, = 2tan"! > ; } (4.11)
with
A=my -~ my+ (1 +m3)cosw (4.124)
) . B=snuv (4.120) |
(’ C =my+my+ (m3-1)cosv, {4.12¢)
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and
—d? - 312
my = =3 (4.13q)
2\' 312[3
d .
my = (4.13h)
r4 /2 h
! (4.13¢)
m-y = —— - . ¢
HNET
d=\(rg tp)2+ (w1 yp)? (4.134)
Therefore the nonlinear equation to be solved 1s given by |
i
(ze —zr)2 + (e - wr)2 =13 (4.14)

Equation (4 14) can be solved for angle ' using a numerical procec'iure. The secant method

(Forsythe et al 1977) has been implemented here Moreover, the range of vahidity over
2.

which eq (4.14) has real solutions is determined by the positive-semidefiniteness of the

quantity under the square root in eq.(4 11). 1e.

B - 4c 0 (4.15)

A

which in the light of eqs (4 12a.b.c). leads to

4

1 - m?~m?) - 2{mymg = )\ - AV 0 (4.16u
1 2 173 2/ 3

X =cos (4.16h)

where

Since the left-hand side of eq (4.16a) represents a parabola with negative curvature. the
roots of this paraboia will give the limits of the r%ange of vahdity of X from which the range

of validity of - can be found Due to the cosine function involved In eq.(4.16h). it may .

. happen that we obtain two distinct ranges of vahidity for angle ., both of which should be ¢

considered. The roots of the parabola can be written as.

) mim3 4+ my = \/ m% + mg +-m§m§ + Zrnlrngm;:,
X197 = — (4.17)
™3

%
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A I
} H
D

B
; (a) C
—
| |
( C B r
. D D E |
| r A
5 |
4 (d) T (f) ‘

Figure 4.4 The six solutions of the direct kinematic probiém for a given planar
three-degree-of-freedom parallel manipulator in a given configuration

Ornice the range of validity of v is known, we can use the secant method to obtain the
solutions for angle /. By varying the value of the initial guess,.we can obtain different
solutions and. providing that a sufficient number of initial values is used. get all possible
solutions. An example is shown in Fig. 4.4, where the configurations corresponding to each

of the six solutions are displayed.

4.1.3 Velocity Inversion

_The Jacobian matrix of a manipulator is generally defined as the matrix repre-
senting the transformation mapping the joint rates into the Cartesian velocities. However,

°

since in the case of the closed-loop manipulator the inverse kinematic problem is easier
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to solve than the direct one. the Jacobian matrix will be defined in terms of the inverse

transformation, i.e.. . "

=29 (4.18)

where ¢ 1s the vector of Cartesian velocities. given here by ¢ = [.r.y.mlT and 0 is. the vector

of jont rates. given here by 6= [0y.6,.03]7

For the planar manipulator under study, the Jacobian matrix can be obtained by

differentiation of eqs.(4 2-4 5) with respect to time This leads to the following:

L a1/d1 blldl (‘l’dl )
J=|ay/dy by'dy c;:d (4.19)
aj 'dy b3 d3 (3 dj
w‘ner; ’ \ .
a, =2lyy», V/xi + ygz siny, + v, E,ry, _ (4.20a)
b, = — 2lyxy, \7/_’1%1 + y%z sin, + v, L, yy, (4.20())

- 2 2 ;
¢, =2yl3\/ 15, + yj, sin W, (9, cos @, + yy, sing,)

+ v El3(za, sin ¢, — Yy, cos &,) * (4.20c)
) d, = — 2!1(z%1 + .1/%1)3/2 sin i, ) (4.20d) _
and : ¢ )
E =2-2+41 + 2 ‘ (4.21a)
Moreover, -
~ = =1 (4.21b)

~

is a factor that depends on the branch we chose for the 1th leg in the solution of the inverse

kinematic problem

However, the constraint on the kinematic closure of the ith leg <in also be

written ‘as:

i

(23, — za)? + (43— 94)* =13 (4.22a)
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where
\ I3, = I + ly cos b, ' (4.226)
. Y3 = Y + [1 ih 01 (4226‘)
-,.147 =z ~I3co0s 0, (4.22d)
Yy, = y-l3sinao, " (4.22¢)

Differentla'ting both sides of eq.{4.22a) with respect to time, the Jacobian matrix .can be

rewritten as in eq.(4 19) with

a, =71 — 1, —lycosb, — l3cos 0, f. (4.23a)

. b=y = Y., —lysinb, - l3sino, o . (4.23b)
¢ = "13[(-’/ - yoz) coso, — (I - Im) sin GD1] +lll3 sin(f, - Qz) (,4'230)
d, =l{{(y — yon) cOs b, — (z — z,,) sInG,] + {3135 (8, — &,) (4.23d

i .

2

which is equivalentto eqs.(4.20a~d). except that now_both the joint angles and the Carte-
sian coordinates are included in the expression. Thé&xcgmpdtation of the Jacobian matrix

using this ngbethod. therefore, requires that the inverse kinematic problem be solved first.

- g}/ ) —

s > P

4.1.4 Acceleration Inversion "

The relationship between the joint and Cartesian accelerations can be den

by differentiation of eq.(4.18). The following is obtained:
- 5

Jexle=0 ' (4.24)

where & = [Z,§.0]7 ‘and 6§ = [6;.6,.05]7. The other quantitieKare assumed to be known
from the velocity inversion. Therefore. the only matrix that has not been defined yet is the
time derivative of the Jacobian matrix, denoted asd. The differentiation of egs.(4.19) and

(4.23a-d) leads to: -

Ay By €
i=|4, B O . 3 (4.25)
A3 B3 C3 N A
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where
dé —ad  _  db -bd i = e ’
A =22 B = 33+—_tt C o= 4.26
o a2 : 2 TR (4.26u)
. o
Wlth( \ )
a, =t + 110, sinb, + hosino (4.26h)
"y -
b, =y — 110, cos9; — lyocos @ (4.26¢)

L =l30[(r — £,)c0s @, + (¥ — Yo )sin @] + 3|7 sn0, - jcos o]
+ lyl3(0, — o) cos (8, - @,) ' o (4.264)
d, = - 18,](cr —z,,)cos 8, + (y - y,,) sin8,] — {1|ksinb, — jcos ]

+1y13(0, — ¢)cos (0, — ,) - (4.26¢)

thereby completing the acceleration inversion.
19

4.1.5 Singularity Analysis
The three types of singularities discussed in Chapter 3 are now derived for the \
manipulator studied here The physical significance of each of these type;of singularities \

-~

is also presented

First type of singularities

¥
workspace and that it occurs when the determinant of the Jacobian matrix tends to infinity

It is recalled that the first type of singulanties corresponds to the limit of the

This condition is encountered here when one of the denominators involved in the expression

of the Jacobian tends to zero. From eq.(4.19) it is clear that this corresponds to:

d, =0. t=1or2or3 +(4.27)
which. from eq.(4.20d). leads to: - ] .
~ “ sing, =0orm. i=1or2or3 - (4‘.25)"
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This type of configuration is reached whenever the links of lengths [ and 5 of one of the legs
are aligned. as one can readily infer by inspection of Fig. 4.2.. Moreoyer. since the solution
of the inverse kinematic problem leads to two branches per leg, the corresponding quafiratic
equation leads to two solutions when the input Cartesian coordinates are located inside
the workspace of the manipulator and to no real solution when the prescribed Cartesian
coordinates are not within the workspace. Therefore, the limit of the workspace is defined
by the set of points for which the quadratic equation will lead to only one solution. 1.e .

w

when we have the following condition in eq.(4.2):
Y, = *+nm, n=0,1,2,... i=1or2or3. (4.29)

which is equivalent to eq.(4.28). Since in this type of configuration the ith leg i1s fully
extended or folded, the set of Cartesian velocities of the gripper that correspond to a
velocity of the point of attachment of the 1th leg to the gripper along the folded or extended
leg cannot be produced. This set of Cartesian velocities is given by the set of rotations of
the gripper about an arbitrary point of a line pa;ssing through the ith point of attachment

of the gripper and orthogonal to the ith leg.
¥

Second type of singularities

The second type of singularities, which is located inside the workspace of the
manipulator, occurs when the determinant of the Jacobian matrix tends to zero. For this
type of configuration, the different motor rates are-not independent any more and there
exists a set of Cartesian velocities ¢ which are mapped into the 2ero vector by J. These
Cartesian‘velocities are then possible even when the rates of all motors are zero. These
configurations can be inferred from eq.(4.19) by imposing the linear dependence of the

columns of J, i.e..
kya, + kyb, + k3c, =0, 1=1,2,3 (4.30a)

for some real values of ky. k. and k3 for which

|Ikl} #0  (4.300)
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where

1 k = [ky, kg, k3)T " (4.30¢)
\

By inspection of egs.(4.30a) and (4.23a-d). two different cases for which the
condjtlon\mgiven by eqs.(4.30a&b) is satisfied can be identified. The first one is obtained
when the lines along each of the three links of length 12' intersect at the centroid of the

gripper. In this case, we have
o,

cg=c¢p=¢3=0 (4.31)

e
-

and hence. eq.(4.30a) can be satisfied with ky = ky = 0 and arbitrary k3. The last column

of the Jacobian matrix is equal to zero and hence, the nullspace of J is given by r[0, 0, 1]7’

for any real r The nullspace corresponds here to the set of pure rotations of the gripper

about its centroid This set of velocity vectors will produce motor rates of:zero, due to the

transitory additional degree of freedom. A configuration of this type is" shown in Fig. 4.5.

Figure 4.5 An example of the second type of singularity for the planar three-degree-
of-freedom parallel manipulator )
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%

The second case for which eq.(4.30a) can be verified is the set of configurations
for which the three links of length I, are parallel. Indeed. by inspection of eq.(4.23a&b).

we can define a set of vectors v,, : = 1,2,3 as two-dimensional vectors:
v, =[aq,. 6,7 (4.32)

:‘Vt?f\‘ére it 1s clear that v, is the vector connecting the joint common to links [y and {; of
the 1th leg to the point of attachment of link /, of the same leg to the gripper. 1e., v, 1s a

vector along the two joint centres of the link of length /[, Therefore, when the three links

of length [, are parallel. we have

vy = V) = Vg (4.33)

’

and the second column of J is a multiple of the first one. In this case, the nulispace of J
represents the set of pure translations of the gripper along a direction orthogonal to v,. 1 e .

orthogonal to the three links of length /5. A velocity of the gripper of that nature would
T

s

produce motor rates of zero.

It is to be noticed thatlthe results presented above for the second type of

Ll

%ﬂngularities of the revolute-based planar three-degree-of-freedom maqw:t:: are in full

‘agreement with the ones obtained in Chapter 3 with a different approach. Thig is so because

the configurations derived here are the ones for which the manipulator instantaneously

acquires an additional degree of freedom.

Third type of singularities

This type of singularities i1s characterized by the indeterminacy of the Jacobian -
matrix. In other words. some of the quantities involved n the expression of matrix J take

on the form 0 0.

:

r
As mentioned in Chapter 3. this singularity is not only configuration- but also .

architecture-dependent. For the planar manipulator studied here. two situations may render -
the Jacobian matrix indeterminate. One of these two cases happens when we have:
v3

11 ~ *3— and 12 = 13 . (434)
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With these constraints on the link lengths, we can reach a configuration where" the tip
of each of the three links of lénggﬁ_s l; meet at the centroid of the base ‘triangle which
coincides with the centroid of the gripper. 'since lo =13 The gripper can then undergo
arbitrary rotations about its centroid while the motors remamn at rest. This indeterminacy
1s due to the zeroing of both the ¢ s and the ¢ ‘s when the gripper is oriented such that

o = 0. At this particular point. both the first and second type of singulanties meet.

-/ s
The second case of degeneracy of ‘the mampﬁlator requires the following condi-
tions. - .
v'3

11::[2 and l3= 3 (4.35)

In that case, the gripper is of the same size as the base triangle. Therefore, when the
three vertices of the gripper are located at the centroid of the motors, and when angle

is equal to zero, the motors can undergo arbitrary rotations while the gripper remains at

rest. Again. the first two types of singularities meet here, 1.e., when angles 0y, 0,. and 0,

take on the values —150°, —30°, and 90 respectively, then both the ¢,’s and the d,'s are

equal to zero

4.2 Planar Three-Degree-of-Freedom Manipulator with Prismatic
!

K
L

Actuators

. -

The planar threé—degree-of-freedom parallel manipulator studied in Sectioh 4.1
can also be built using prismatic actuators The 3R architecture of the legs 1s changed to
an RPR architectlre where the prismatic joint is the one ;hat 1s actuated. This 1s shown
Fig. 4 6, where, again, the distance between each of the M 's—which do not refer to motors
here but to free pin joints—is set equal to unity The assumption of symmetry s also made
here for the same reasons that were mentioned in Section 4.1 The potential advantages of
this manipulator over the one based on revolute actuatoré are simpler kinematic equations

and reduced mechanical interference. The applications for which this manipulator could be

used are essentially the same as the ones mentioned for the revolute-based manipulator.

e
a
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‘ ] &

kY Qﬁxed joint i

Figure 4.6 Planar three-degree-of-freedom parallel manipulator with prismatic ac-
tuators { -

— 4.2.1 Inverse Kinematic Problem

tw

( Referring to Fig. 4.6. we denate by I3 the dimension of the gripper, by p, the
;;'dength of the ith leg or actuator. and by (z,,y,) the coordinates of the point of attachment
l( 6% the ith leg to the gripper Moreover, the position of the point of attachment of the :th

leg to the base is E‘iven by (Z,,, ¥ ). quantities that are given in eqgs.(4.7a&d). As in the

case of the manipulator with r;volute actuators, the Cartesian coordinates are given by the
position of the centroid of the gripper C(z,y) and by its orientation, defined here by angle

¢. We can then write

T, =z—-l3cosd, —z,, 1=1,2,3 (4.36a)
Yy =y-lysing, —y,. 1=1,2,3 ~ (4.36b)
where angles ¢, and the pairs (z,,,y,,) are given by eqs.(4.6a—c) and (4.7a&b) respectively.
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The inverse kinematic problem. which has only one solution here. can then be solved using:

p=y22+yl = 1?,6"\\ , (4.37)

Therefore. given a certain position and orientation of the gripper, the required

lengths of the actuators can be computed directly from eq.(4.37)

4.2.2 Direct Kinematic Problem ,‘L

. \

The solution of the direct kinematic problem for the manipulator with prisrﬁatlc
actuators is'basically identical to the one erncounter'ed for the manipulator with revolute
actuators. As a matter of fact. when the actuator lengths py. pp. and p3 are specified,
pomtrC can be considered as a point on the coupler of the four-bar linkage MiADBM, The
solutions of the direct kinematic problem are obtamed when the curve described by this
point of the coupler intersects a circle of radius p3 centred at M3 The problem leads to a
maximum of 6 branches’ as shown in Section 41 2. The formulation given in that section

{can also be used here providedsthat some of the equations are rewritten. Indeed, for the
' v .

four-bar linkage considered here, egs.(4 8a&b) become

I = T,y + ppcost + v 313 cos(ay + 0) (4.38q)
» YC = Yoy + PLSint +1\ 3l3sin(ay + 0) (4.38h)
Y
where .
oy =1/3 - (4.38¢)

and 0 can be obtained from eqs.(4.11) and (4.12a—-c). in which the m,’s are redefined as

pg—1-pi-3

my = 4.394) -
1 2\/§l3p1 ( )
1
My = — 4,39/,
2= o (4.39)
1
= e 4.39¢

q
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Bt 4 .
Therefore, the nonlinear equation to be solved becomes © -

(.’E(" - Iu3)2 + (y(' - yn3)2 = p§ (440)

v
]

Equation (4.40) is similar to eq.(4 14) and can be solved for angle 1 using a numerical
procedure. The ranges of vahdity of angle v, 1 e, the ranges over which we can expect to

find real solutions are found using egs (4 15) to (4 17).

4.2.3 \Velocity Inversion

The Jacobian matrix of the planar manipulator with prismatic actuators i1s de-

fined similarly to the one of the manmpulator with revolute actuators given in eq.(4 19) We

define:
o

e =p T (a41)

where ¢ = [z. y. 9]7 1s the vector of Cartesian velocities and p = [py, py, p3]7 is the

vector of linear actuator rates The, differentiation of eq.(4.37) leads to the following

_Jacobian matnix:

a1/pt by/pr c1'py
J=|ay/py by/p2 c2'py (4.42)
a3’'p3 b3/p3 c3:p3

where
4, = I — I, =13c080, (4.43a)
® : .
b=y -y, —Il3sino, : (4.43b)
¢, = (xr-z,)l3sne, — (y - y,)3cos o, (4.43c).

and the angles o,. for 1 = 1.2.3. are defined as eq.(4 6a—c) The derivation of the

relationship gegween Cartestan velocities and joint rates i1s thereby completed

1

4.2.4 Acceleration Inversion

Q

The differentiation of eq.(4.41) leads to the equation relating Cartesian acceler-

ations with joint accelerations. Again. we.obtain:

Je+Je=p . ) “ (4.44)
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where ¢ = [%. §j, ¢]T is the vector of Cartesian accelerations and p = [py. p). )T is the
“vector of joint accelerations. The time derivative of the Jacobian matiix: J. 1s obtained by

differentiation of egs (4 42) and (4 43a-c). Separating the different terms, we can write
( .

=3 1 (4.45q)
where _ -
St ‘] h)l ( | . ‘
Jl = |4 BQ ) L (4.45(:)
A3 By (3]
and - -
) Dy Ey F
J2 = -D2 EZ Fz : (445()
Dy E3 T3] '
with
1
A, =—(z+ l30smd,) . (4.46a)
1 .
B, =—(y — l30cos ¢,) (4.466) —
P,

1
C2 :—(1713 sing, + (I - 2:“2)[34)(:05 ?,

2

~ ylycos o, + (y = y,, )30 5N o) (4.46;-) -
D, =—13(a,m) ‘ (4.464/)

1 .
£, Z_E(blpl) . . - (446.*)

1
F7 21—;’2-(61’)1 ), ' (446f)

which completes the accéleration inversion

&

4.2.5 Singularity Analysis

. ?
The singularities of the planar manipulator with prismatic actuators are now

derived. Since the expression of the Jacobian matrix of this manipulator has similarities
with the one of the manipulator with revolute actuators. 1t 1s expected that the singularities

will occur in configurations of the same type.
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First type of singularities

*

If we assume that the prismatic actuators of the manipulator have an infinite
range of motion, the result 1s an infinitely large workspace and the first type of singularities

occurs only when one of the actuators has a length of zero, 1e.. -

§

p=0, 1=1o0r2or3 ‘ (4.47)

L ~

From eq (4 42). it is readily seen that this situation produces a Jacobian matrix whose

determinant tends to mfimty This is so because the direction of the prismatic joint %

undefined t§these configurations

However, 1n a real manipulator, the actuators have a finite range of motion, i.e,

~
Prun %pt < Pmaz (4'48)

and where p,,.,, 1s. in general. different from zero. In this case, the first type of singularities

happens when one of the actuators reaches one of its limits, e .

o
R 4

P, = Prun O P, =Pmaz, t=1o0r2or3 (4.49)

which corresponds to the limit of the workspace Since one of the actuators cannot move
further ir-one direction. a certain set of gripper vgloq}!les—pure rotations about an arbitrary
point of a line orthogonal to the ith leg and passing through the point of attachment of

that leg to the gripper—cannot be produced.

Second type of singularities

A3

For purposes of analysis of the secorid type of singularities, we define a set
of three two-dimensional umit vectors which are, respectively, orthogonal to the three lines
connecting the centroid of the gripper to the points of attachment of the legs to the gripper.

These vectors are given by -
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inxed joint

4

Figure 4.7 An exampie of the second type of singularity for the planar three-degree
of-freedom parallel mantpulator with prismatic actuators

Similarly, we define a set of three vectors connecting the centroid of the gripper with the

fixed pinned joints as

v,:,[’"z“l]. 1 =1.2.3 (4.51)
Yy-Y, y
Using these definitions, we can express the elements of the third column of the Jacobian
matrix as
. | .
Jg = ;}(u, v).  1=1,2.3 (4.52)

Therefore, when vectors u, and v, (¢ = 1,2,3) are orthogonal. i.e.. when the three lines
along thé&legs intersect at the centroid of the gripper. the last column of the Jacobian matrix
vanishes and the determinant vanishes. The nullspace of the Jacobian matrix is spanned
by vector [00 l]T. which means that Cartesian velocities associated with pure rotations of
the gripper about its centroid will produce zero velocities at the actuators. The resulting

configuration is shown ‘infig. 4.7.
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?

As in thé case of the manipulator with revolute actuators. there exists. a second

type of configuration which will cause the second type of singularities. Indeed. when all the

w

legs are parallel. the second column of the Jacobian matrix is propartional to, the first one,

whlcﬁh results in a singularity The proof of this fact was already given in Section 415
Thesset of Cartesian velocities that produce vanishing joint rates i1s given by the set of pure

translations alang a direction orthogonal to the legs

Third type of singularities . .

S The condition on theca kinematic parameters of the manipulator that are reguired

for the third type of singularities to occur 1s now given as™

Iy = — ‘ (4.53)

In other words, the gripper triangle has the same dimension as thﬁ base triangle. Therefore:

if the three legs are extended to the same length and are all parallel to each other, 1e:

5
o

pp=pp=p3 and ¢=0 A (4.54)

e

then the four-bar linkace M{ABM,1s a parallelogram and pant C of its coupler will trace
a circle of radius p, and centred at point M3 The resulting linkage. which is shown In

Fig 4.8 can then undergo fimte motions while the actuators are locked

¥

4.3 Spherical Three-Degree-of-Freedom Manipulator

AN

Q Previous research on parallel manipulators has been confined. almost exclu-
sively, to the consideration of planar and spatial kinematic chains® While spherical parallel
manipulators have received little attention As a matter of fact. the only reference that
the author could find on a spherical parallel manipulator is (As;da and Cro Granito 1985).
where a mechanism similar the the one studned here is briefly mtroched A spherical par-
allel man ipulator could be applied as an otientation wrist in rObOtICS Apphcatlons outside

of robotlcs that could be mentloned are mechanisms for the orlentatlon of machine-tool

‘ l
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C

|
|

M M, SR ;

- o

Figure 4.8 Third type of singulanity for the planar three-degree-of-freedom paraliet
manipulator with prismafic actuators :

beds and workpieces. solar panels, antennas, etc. Hence the motivation to study this type’

of kinematic chains

A spherical parallel manipulator 1s represented in Fig 4.9, all of whose joints are
of the revolute type. and the three motors M. M. M3 are fixed. The mantpulator consists
of 4 kinematic chain with three closed loops. namély M DABEAM,. XyloBCF Al and

M3FCADM],. and the gripper is ngidly attached to triangle .4/3¢’ Agamn, only two of

the lfoops are?dependent For reasons that were explained in Section 4 1, a symmetric

layout has beén chosen here. By symmetry, then. the axes of the motors wili be located

in a common plane, intersecting a. point defining the centre of the sphencal manipulator

Moreover, the joints attach@d to the gripper have the same relative orientation, and the link

angles will be the same for each leg, i.e..

o, = =o', 1=1.2 (4.55)

These assumptions will be used throughout.

4.3.1 Inverse Kinematic Problem ‘ /

° <

Since the spherical manipulator is aimed at orienting a rigid body "in space,

”
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Figure 4.9 ’ Spherical three-degree-of-freedom parallel manipulator

the Cartesian coordinates of the gripper are given by its orientation only (with respect to a
reference configuration Cp). which can be described by a rotation tensor Q or, alternatively,

by the linear vector and scalar invariants of this tensor (Angeles 1985). which are’ defined

~

as follows:
q = vect(Q) = esino ST (4.56a)
4 = 5'—(—92)—1-1 = cos & (4.56b)

where e is a unit vector along the axis of rotation and ¢ is the angle of rotation. A

“discussion on the linear invariants is presented in Appendix B. These invariants are related

g .

through ’ - F
lall? + 4§ =1 . (asT)

P L 3

3

( )
The inverse kinematic problem for this manipulator consists, then, of finding

107
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-the motor angles corresponding to a given orientation&g! the gripper. The solution of this
problem contains eight branches. 1.e.. two branches per leg. since the solutions for the input

-

motor angles. 81.60,.03. are decoupled. The situation is similar to the one encountered in
the case of the planar manipulator with revolute actuators except that, in this case, each

of the legs can be thought of as a spherical four-bar mechanism

-

Let us define u, as a unit vector along the axis of the ith inpm/rﬁ(fér. and v, as

L}

a unit vector along the axis of the revolute joints connecting the gripper and the adjacent

“Tink (Fig. 4.10). for : =1,2,3.

> R e ot

N

)

I_.. ,,-._
k]

3

Figure 4.10 Definition of the unit vectors u,. v, and W, for2 =1,2,3

f t
Moreover. let us denote by ay and aj the linkz\angiei and choﬁ the reference °

configuration as the one in which u, = v, for: = 1.2,3 (Fig. 4.11).

) ' "} . : 108
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uy’

uz -

Figure 4.11' Reference configuration for the spherical three-degree-of-freedom par- .
allel manipulator -

" We can define another set of unit vectors w,, for 1 = 1,2,3. along the axes of

the intermediate revolute pairs of each leg These are given by

cos 1, cos §, sin ay + sinn, cos ay

w, = |sinn, cosf,sina; — cosnp, cosag | . =12 3 (4.58)
sin @, sin ay .
where '
’v’n =n/2,ny =576, 3 = -m/6 - (4.59)
and 6, is the angle of rotation of the ith motor where we have chosen
. u, = [sinn,.— cos n,,O]T. 1 =1,2,3 - (4.60a)
or, explicitly, )
" 1 - [ -12 -1/2 .
up = |0, uwy=|v32]|. u3=|~-\372 (4.600)
0 0 0 :
The solution to the inverse kinematic problem is then obtained by writing the closure
equations as follows: b . :
w, Vv, =cosay, 1=1,2.3 (4.61} -
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which, for each leg, leads to a quadratic equation of the form:

( ATE42B,T,+C, =0, 1=1,2.3 (4.62)

b
‘ T, = tan(, /2) : (4.63u)

~

A, = (sinn, v,y — cos n,v,3) cos ag — (cos n,v,1 + sin 7, v,)) sin ey - cos «;y (4.630)
B, = sinayv,3 - ' (4.63¢)

C, = (sin n,v,q — cos n,v,7) cos &y + (€08 m,v,q + Sin 7, v,3) sIN @y - cos ay (4.63d)

o

v,, being the jth component of vector v,. The solution of the inverse kinematic problem
is therefore completed by solving the quadratic equation above for each of the legs. which

leads to:

—B, ++/B? - AC,
J/ T, = — S =123 (4.64)
1

The spherical parallel manipulator mentioned in (Asada and Cro Granito 1985)

exhibits a kinematic structure slightly different from the one shown in Fig. 4.9. Indeed, in
the former arrangement. the three powered revolute joints are mounted on a common axis,
i.e., using concentric st;afts. while the rest of the structure remains essentially unchanged.
The equations for the solution of. the inverse kinematic problem have to be consequently

modified. We now have:

_ cos @, sin af
’ ,W, = | sinf, sinaq | 1=1.2.3 1 (4.65) .
¥ ~ cos ay
since the shafts of the three motors are now aligned with the unit vector:

s=[0,0, 1]T) (4.66)

Using eq.(4.61). a quadratic equation similar to the one given in eq.(4.62). is obtained with
coefficients A4,. B, and C, defined as follows-

A, = —sin aqv,] — COS aqV,3 — COS ) (4.67a)

- - B, = sinajv, (4.67b)

C, =sinajv,; — Cos aqv,3 — COS Qp ' (4.67¢)

-
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the solution’ of which is obtained using eq.(4.64).

4.3.2 -Direct Kinematic Problem

/

The solution of the direct kinematic probiem for the spherical manipulator can
be derived using an approach similar to the one used for the planar manipulator The
réasonmg allowing us to iestablish the number of expected solutions can be repeated }f{ere
by replacmg planar four- bar linkages with spherical four-bar linkages However, since "the
equat:ons describing the motlon of a point of the coupler of a spherical four-bar mechamsm
‘take on rather complicated forms. the formulation derived here for the numerical solution

of the direct kinematic problem 1s slightly different

.

First of all, when the input angles are known, the vectors along the intermediate
joints of each of the legs w,, 1 = 1.2.3, are readily computed from eq.(4.58). ohalternatively

from eq.(4.65). if the manipulator has the kinematic structure presented in (Asada and Cro

Granito 1985). Therefore, the equations’'to be satisfied are

W, 'V, = COS a3, 1 =1,2,3 - (4.68a)
v, v, =-12. 1=, 4,7 =123 (4.680b)
v, =1, 1 =1.2.3 (4 68¢)

whlch thus leadﬁ nine equatlons in nine unknowns, 1 e, the three components of each of,
the three vectors v,. 1 ==+.2.3 where three of the equations arglmear The solution of
this problem can be computed using. for instance. the Newton-Raphson method Once the
three vectors v..: = 1.2.3 are obtained. the rotation matrix Q describing the orientation

The gripper can be computed using, for instance, the procedure described in (Angeles

1986b). An example 1s shown in Tablé 4.1 where the six solutions of the direct kinematic

oblem for a particular configuration are given.

4.3.3 Velocity Inversion

The definition of the Jacobian matrnix of the spherical paralle] manipulator is

. 111
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Solution # 1 2 3 4 | s I 6

vie 407 | 149 | 963 | -.560 | -244 | 1_ 980

vy, 588 [-.202'-.0301 829 . 060 | 197

vi.  -699! 968 -260' 000 ' 968 | .000

vp- 01 455 - 713 438 714 319

. vy, 230 849 050 899 (035 948
vp. 968 260 699 000  .699 000

vs. 508 307 250 998 - 950 661

Vi -818 646 -.028 070 094 750

V3. -269 -.699 968 000 269 .000

Table 4.1 The six solutions of the inverse kinematic problem tor a spherical three-
degree-of-freedom parallel manipulator with vy == 3 and iy = Ir 18 when ¢ =
ny = '3 = 30"

¢
-

similar to the one used for the planar manipulator. 1e.. 1t 1s deflned as the matrix repre-
senting the transformation mapping the Cartesian velocities into the joint rates. This is

written as

Ju=10 “ (4.69)

where w is the angular velocity of the end effector and 0 s the vector of actuated joint

\ N . -
rates. The Jacobian matrix can be fo;md by differentiation of both sides of eq.(4.61). which

4

leads to”

&

Wov, +w, v, =0 " (4.70)

Now, the following relations are introduced:
v, = Qu, — (4.71a)

and

— Q=0Q (4.716)

-

with 2 defined as the following skew-symmetric matrix

_ 9« - a)
= 22 | (4.71¢)

for any a. Thus. T
vect(f) = . (4.71d)
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We now write the time derivative of vectors w, as

5 1 — cos 1, sin 6, sin ayq )
—wW, = | —sinn,sinf,smoy | =4, ¥ W, (4.72)
9, ‘ cos 0, sin ay

Moreover. the differentiation of both sides of eq.(4 71a) leads to the following, when

eq.(4.71b) is used.
v, = Qu, = QQu, = v, - (4.73)

Therefore. eq.(4.70) can be rewntten as.

1 “

6,(u, x w,) v, + w,-fv, =0 (4.744)
or .
8,(u, x w,) v, —w-(w, > v)=0 (4.74b)
- which leads to ‘ ,
) g = W W) (4.75)

z"‘(uz xwz)-v,

¢ The ith row of the Jacobian. ,|1T can then be written as

\7"7 i v1 ' -
( - w“l\}' (4.76)
? .

"

which completes the velocity inversion-

it is pointed out that the essence of the derivation given above is also valid for
4
the kinematic structure of the spherical manipulator studied in (Asada and Cro Granito

1985). However. a few changes in the expressions arise Indeed. eq (4.72) has to be

rewritten as :
: 1 —-sin g, sin oy
—~W, = | cosf,sinay | =s xw, - (4.77)

0’ ¢ 0

and the ith row of the Jacobian matrix then becomes

TN e

* s (W1 » Vz) -
-‘2 - (s x w‘l) . vz (4.78)
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4.3.4 Acceleration Inversion ’\

The acceleration equation is obtained by taking the tifne derivative of both sides
of eq.(4.69). which leads to '
6 = Jw+ Ju - (4.79)

where all the entities are known except for the time derivative of the Jacobian matrix.
which can be obtained by differentiation of both sides of eq.(4.76). The ith row of matrix

J. denoted by le. is then written as

- [("z X Wt) ' Vt]b - a(wz' x Vt)

k, (4.80a
[0, % w) -, 2 ’
Jwhere
b=w, xv, + W, x v, (4.80b)
and
a=(u xw) v, +(u xw) v, (4.80¢)

The time derivatives of vectors v, and w, can be obtained from eqs.(4.72). (4.73) and

(4.77).

The equivalent expression for the kinematic structure presented in (Asada and
Cro Granito 1985) is obtained by replacing vectors u, by vector s in the above equations.

I

4.3.5 Singularity Analysis .

L]

First type of singularities

@ -

The first kind of singularities is known to lie on the boundary of the workspace

~ and appears whenever det(J) — oo. The conditions under which this type of singularities <5

arises can be obtained from the expression of the Jacobian, i.e., eq.(4.76) which produces:

(u, xw;)-v, =0, i=1or2or3 - (4.81)
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Equation (4.81) states that vectors u,. v,. and w, are coplanar, i e, that the corresponding

leg is totally unfolded or folded. In the case of the second kinematic arrangement (Asada
and Cro Granito 1985). vector u, 1s replaced by vector s in the above expression When such
a configuration is attained. a certain set of velocitites of the gripper cannot be produced
This set of velocities corresponds to the motions of the gripper that involve a velocity of

the point of attachment of the fully extended or folded leg to the gripper along the direction

of the leg.

Second type of singularities
3

. The second type of singulanties—which occurs when det(d) = 0—appears in
configurations in which the different motor rates are not independent This type of config-
uration should be avoided for the manipulator is not controlfable in such a configuration

An additional proof of that 1s now given

If we regard the manipulator as a control system where the orientation of the
griPper is the state variable vector and f the input variable vector, then eq.(4.69) can be
rewritten a8

‘ » =Kb (4.82)

where K = 11, Moreover. using the following relation between ‘. and X (Angeles 1985)

A=A (4.83a)
where x . ‘
L Ao 7(“1‘3; Q) - °(4.83b)
eq.(4.82) can be rewritten in standard state-variable fc;rm as -
. A=AKs (4.84).

where ) is the four-dimensional state variable and 8 is the three-dimensional input variable.

Therefore. for this system, the 4 x 12 controllability matrix (Wonharﬁ. 1979) is given by

R = [AK,0.0.0] h - (4.85)
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where 015 a 4 « 3 zero matrix. If A s of full rank. which is the case if the angle of rotation.
0. is different from 7. then rank(AK) =rank(K). The rank of the controllability matrnx
R'is then equal to the rank of K and hence the system becomes uncontrollable when K

becomes singular

For the spherical manipulator. the condition under which det(J)=0 can be de
rived from expression {4 76) obtained for the Jacobian Since, by defimition. vectors w,and
v, cannot be identical. then this condition is that the three vectors (w - v,.;1 = 1.2.3)
are‘E;f)"pIanar Since vy.vy and vy are coplanar. this condition states that the three planes
defined. respectively, by the pairs of vectors (v,.w,). for : = 1.2.3. either h?vg a common
mtersectlonp}ong an axis or are identical. This corresponds to configurations in which the
links of dimension o, either lie on the plane of the gripper or are orthogonal to this plane

It 1s pointed out that this result 1s in perfect agreementwwqth the one obtained in Section

32 3.3 with an alternate approach

Third type of singularities: -

Two sets of spherical manipulators for which the third type of singularities can

occur are identified here, the second one being a subset of the first. one

First, for the set of spherical manipulators having ay = a9 the configuration
that we defined as the reference canfiguration s attainable and it constitutes a special case
because condition (4 81) 1s verified for all three legs. Therefore, in this case. any motion of

the input links will not affect the gripper since the former are just rotating, together with

\
- the intermediate link. around the axis defined by vectors u, = v,. leaving the grnpper at

rest The rank of K 1s then equal to zero in this configuration, which means that system
(4 84) 1s completely uncontrollable. 1 e.. none of the three Cartesian components of . can be
produced in the said configuration. Moreover, if 6y = 0y = 0; =Oorif Oy =0, =03 = 7 2,

from the discussion above. the first and the second type of singularities meet

-

Furthermore. if we have, more specifically. «; = oy = 7,2, all the configuration’s

for which vq,vy,v3 are coplanar to Uy.up.u3. are singular. This set of configurations is
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characterized by the fact that the gripper can be rotated around the axis described by the

unit vector [0,0,1]T without moving the input links. ;

In order to illustrate the foregoing comments, a plot of the reciprocal of th

cgndition number for a full rotation of the gripper of a spherical manipulator having o4

ay = m/3 is given in Fig. 4.12. The reciprocal of the condition number can be thought ™~
of as a measure of the ‘distance’ of the Jacobian to a singularity. This concept will be

clarified in Chapter 5

Figure 4.12 Reciprocai of the condition number for a full otation of the gripper
of a spherical manipulator with ay = ap = n/3. The axis of rotation is along
e=[001)7

- . B

&

4.4 Spatial Three-mmedém Manipulator

A spatial three-degree-of-freedom parallel manipulator.is shown in Fig. 4.13.
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The moving platform is attached to the base link by three legs which constitute kinematic
chains of the RPS type. Only the prismatic joints are actuated. Therefore, by varying the
length of each of the three legs, the position and orientation of the platform is modified.
However, since the platform has only three degrees of freedom. the six coordinates defining

its position and orientation are coupled and cannot be specified arbitrarily.

Figure 4.13 spatial threegdegree-of-frchom parallel manipulator

4

This type of magipglator has been proposed by Hunt (1983) and revisited by
Lee and Shah ('1987) and Waldron et al. (1988a & b). In the last two referencé;, a ten-
degree-of-freedom ménipulation system called AR TISAN. which 1s a hybrid serial-parallel
manipu[ator. is discussed. The parallel part of AR TISAN is of the type discussed here. It

“ 1s termed, a micro-manipulator because of its relatively small physical dimensions arld it is
i

inténded for fine accurate motion.
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The potential applications of the spatial- manipulator deécribed here arise when
the demand on workspace and maneuverability is low but tl;e dynamic loading 1s severe and
‘high speed and precision motion are of primary concern f:or instance, it could be used as
a regional structure for a mampulator which would be compl.eted by mounting a spherical
parallel manipulator of the type described in Section 4 3 on the pi8tform. thereby leading
to a hybnid structure However, for this type of apphcation. and whenever it 1s intended to
_use the spatial three-degree-of-freedom manipulator as a positioning device. it 1s necessary
to solve the inverse kinemat \ problem where the“posmon of a point of the platform—for
Instance its centroid—is pr sc\ribed and it 1s desired to compute the corresponding actuator
motions. This p;oblem rémains unsolved in the references given above since. in all of them.,

the Cartesian coordinates specrfiedforthe platform contain at least one variable describing

therorientation The solution of this problem is given here and it will be shown in Chapter

5 that it leads to a simple description of the workspace of the mampulator
4.4.1 Inverse Kinematic Problemn

The notation used to describe the kinematics of the manipulator 1s now intro-
duced, Referring to Fig. 4.13. we consider a coordinate system fixed to the base of ‘the
manipulator with its 7 and y axes lying in the plane of the base and its = axis normal to -
that ;;Iane. Moreover, the r axis is placed along the line joining the centroid of the base
triangle—which i1s the origin of the coordinate system—to the revolute joint at the base of
the first leg. Therefore. if we denote the position vectors of the points of attachment of

each of the three legs to the base by s, = [z,. y,. 5,]7. we will have.
: s, = L, (4.86)

where L 1s the distance from the centroid of the base to each of the legs and the unit
vectors u,. 1 = 1,2.3 are defined in eqgs.(4.59) and (4.60a). Moreover, we define three
coplanar umt vectors v, as the vectors attached to the moving platform and directed along
the three lines connecting the centroid of the platform. P{z.y. z). Wwith the spherical joints.

As in the case of the planar and spherical manipulators, s.ymmet'ry 1S als@%sumed here so

- : 119
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the base triangle and the plat[orm are equilateral triangles. The extension of each of the
) three aCtuato'rs is given by p,. 1 = 1.2.3. and.the position of the three spherical joirits 1s
denoted by s' = [z, y/. ::]T. Similar to the case of the spherical manipulator. the reference
orientation for the platfornf‘} 1s chosen as the one for which v =u,, : = 1.2.5. Theretore,
if Q denotes the rotation tensor representing the attitude of the platform wifh respect to

the reference frame. we have

. v, =Qu. =123 (4,87)

In what follows. we will denote the (i.7) component of tensor Q, in the given reference

frame. by g, .. .

As specified in the introduction of this section. 1t 1s now desired to solve th%
inverse kinematic problem for the positioning of the platform. The input variabjes are then
the coordinates giving the position of the centroid of the platform, ie., r. y. and =, and

\

the corresponding values of the actuator extensions pq. py and p3 are the output variables

to be computed. If we assume that the orientation of the platform i1s known, we can write.

+lv,. =123 (4.88)

U
i
[

where / 1s the distance between the centroid of the platform and each of the spherical joints
and v, is given by eq.(4.87). The extensions of the actuators are then computed as the

distances between the points of attachment on the platform and the base, 1e . as

coo=alE — - )+ () =123 (4.89)

which leads to a unique solution for each of the legs. ’

- <

However. before this solution can be used. we have to compute the rotation
tensor Q corresponding to a given position of the platform Because of this intermediate
step. the inverse kinematic problem, as defined here, might have multiple solutions, as will

be shown later.
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The structure of the manipulator allows us to write some constraint equations

that will’ lead to the derivation of the rotation tensor. Indeecij}m the revolute joint at
the base of each’leg, the tip of the leg, i.e., the spherical joint, js constrained to move on a

plane orthogonal to the axis of rotation of the.revolute. This leads to a constraint for each

of the legs. namely,

s :; \; /?
T =0 _ {4.90a)
o V3zh +yp =0 , (4.900)
V3zZi -4y =0 ¢ © (490c)

" Moreover, using egs.(4.87) and (4.88). we obtain: -

y1 =y +lay | o . (491a)

zh =z +1(~1/2q11 + V3 /2417) (4.91b)

vy =y +1(~1/2gp1 +V3/2gy) (4.91c)

zy =z +1(-1/2g11 - V3/2413) (4.91d)
)

vy =y +1(-1/2g21 — V3/2g3, (4.91¢)

Substitution of the foregoing expressions. (4.91a-e). into egs.(4.90a-c), leads to:

. 21, = —y/l (4.92a)
el Al-qu + Vi tag) = -3y -23k (4.926)
P i V3(—q11 - V3a13 + a23) = 3y - 2V3z ) (4.92¢)
which gﬁan&be rearranged to give: v )
a1 = —y/l i ’ N " (4.93a)
q2=qn =-y/l | (4.93b)
o — 2 = 22/l T (4.93¢)

Furthermore, since the rotation tensor Q is orthogonal. its components are constrained by

. the following: -
1

- o ah=1 =123 (4.94a)
' f
/
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and . .

3 ' .
Y oawq k=0 =i 47 =123 (4.944)
k=1 '

If we now consider the first two rows of Q. substjtution of egs.(4.93a&b) into eqs.(4.94a&b)

allows us to wrnite:

911y /, =y [+ 41393 =0 (4.95¢)
) fzfl + qu + =1 (4.95h)
03+ ek + (W) =1 © (4950

which, together with eq.(4 93¢), constitutes a system of four nonlinear_equations in four
unknowns, ¢q1. 922. 913. g23. In order to solve this system, we first substitute eq.(4.93¢)
into eqs.(4.95a&b) to gehmmate q11 Then, expressions for qf3 and q§3 as functions of ¢y
only, are derived from eqs (4 95b&c¢) and substituted into eq.(4.95a). This results into a

quartic equation In gy, that can be written as

[}

43 FAay + Bajy + Cap+ D =0 (4.964)
where

S 4=4x (4.960)
B=4x2-2y2-2 (4.96¢)
o C = -4X(1+Y? - (4.964)
- © D=Yi_ooy?_ax?id (4.96¢)

with ~ ’ ’
- X=z1 and Y=g/l (4.967)

. The four roots of this equation, which are all always real, can be found using the procedure

described in Appendix A and can be wntten in closed form as

o
(g22)12=VX2+Y2 - X =1

/ (4.97a)
. (22)34 =-VX2+Y2-Xt1 " (4.975)
122
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However, because of the nature of the unknown g,7. we must have

& | A cgpet (498

\

Therefore. only 2 out of the 4 solutions are acceptable—the other 2 solutions do not fall
N i

» into that range—and they are given'by.

A=)

()12 ==Y = [\ Y2=Y2 1) (4.99)

The value of ¢11 corresponding to each of these two sblutions 1s obtained from eq {4.93¢)
and hence 4 of the entries of Q are known, 1e.. ¢11. g12. ¢p1 and g¢y9. The absolute
value of all the remaining components—i e, the last row and the last column oRQ—can be
combuted using the fact that the columns and rows of Q should have a unit Euclidean norm
- There will remain a sign ambiguity on each of these quantities but, as shown in Appendix
C. only two solutions foru matrix Q can anse due to the constraints on the orthogonality of

\ 0
the rows and columns of Q As a matter of fact, it 1s also shown, in the aforementioned

appendix that, when a solution for Q 1s found, the second one can be obtained by changing

( the signs of ¢13. 923. ¢31 and g3;

It 1s pointed out that the two sets of two solutions each.- obtained by choosing”
the plus or minus sign in eq.(4.99). correspond to two different geometric interpretations

To explain that result, we will define a un{t vector z’ attached to the platform as:

vy - vy
= L 72 (4.100)
Vi V2
This unit vector is orthogonal to the plane of the platform and points alobg the positive

direction of the = axis when the platform 15 in its reference configuration

T It can be shown that the two solutions of the inverse kinematic problem obtained
when the positive sign is chosen in eq (4.99) correspond to configurations for which the
following holds:

zZ-e3: 0 ) (4.101)
where e3 = [0, 0. l]T. i.e.. e3 Is a unit vector along the positive direction of the = axis

t Hence. in these configurations, the upper face of the platform 1s facing down. - Moreover,
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_ / -
for these two solutions, we have

o

93 = 931 and g3 = q33 - (4.102)

i

which leads to o

vect{Q) =0 " (4.103)

and the angle of rotation associated with Q is equal to 0 or 180

On the other hand. the two solutions obtamed when the negative sign 1s chosen

o

in eq.(4.99) correspond to cor{figuratlons for which

Z-e3 >0 . (4.104)

_ie.. configurations for which the upper face of the platform 1s facing up. in a practical-

situation. these would be the solutions of interest For these two solutions. we have.

\

_q13 = —q3 and g3 = —¢3 (4.105)
which may lead to any value for the angle of rotation ,However, we have
] | )
vect(Q) = | b - (4.1006) .
0

where a and b are arbitrary real numbers Hence, the axis of rotation i1s always contained
in the plane-of the base This is so because ¢y3.1s always equal to ¢y, and hence, the third

component of vect(Q). 1e.. esin o, vamshes. which means that e lies in the r.y plane

. l . +
In summary. the inverse kinematic problem, as defined here for point positioning,
leads to up to four solutions Two of these solutions correspond to configurations in which
the platform 1s facing down and the two remaining ones correspond to configurations in

which the platform s facing up. J -

4.4.2 Direct Kinematic Problem

The solution of the direct kinematic problem, as in the case of the,other manip-

ulators, necessitates the utilization of a numerical procedure. The formulation developed
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¢

here consi$ts of considering the coordinates of the three spherical joints as the unknowns
‘ of the probl_em. This leads to a system of nine equations in nine unknowns, i.e., the coor-
dinates z;, y/ and 2/, for i = i, 2,3. The first three equations constraining these unknowns
are egs.(4 90a—c). which state that the legs a‘re forced to rotate on a fixed plane. The other
equations are obtained by imposing the length of each of the legs, p,. for 1 = 1,2,3, and
by forcing the three spherical joints to remain at a cons;cant' distance v/3! from each other

This leads to:

) s, =l || =g, i=1,2,3 ' (4.107a)
|

. \ .

s, —s' 11 =V3L %5, di3=123 (4.107b)

and

Furthermore. this system can be reduced. since the first three equations. i.e., egs.(4.90a-c)
are simple hinear relationships and can be easily substituted into the other equations. which
then leads to a system of six equations in six unknowns. z|. zb. z}. 2. 24 and 2. The

resulting system of equations can be written as

( . f(:c'l,x'z,zg,lz;,zé,zg) =0 (4.108a)
where
2
fr=(zy = 1)+ 2" - o} (4.108b)
-~ . -
f2=4(zh +1/2)2 + 2% — 3 (4.108¢)
" fa=a(gh +1/2)2 + 22— b . (41084)
; fa = () — )% + 32y + (2] - 25)? - 312 (4.108¢)
fs = (zh — 24)2 + 3247 + (2 - 24)2 - 312 : (4.1081)
fo = (23— 23)" + 3z + 23) + (2 - ) - 3 (4.108)

which can be solved using, for instance, the Newton-Raphson method. Due to the nonlin-
earity of the equations involved. 1t is hard to predict how many solutions could be obtained.
A reasoning similar to the one used for the planar three-degree-of-freedom manipulator could

( be used by virtually disassembling one of the spherical joints. The resulting linkage would
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be an RSSR linkage and the solutions of the direct kinematic problem would correspond
to the intersection of its coupler surface—obtained by rotating the input link of the RSSR
ii‘nkage\through its range of mobility and by rotating its coupler link about the axis con-
necting its .spherical pairs, ie.,'exploitmg the two real degrees of freedom of the RSSR
inkage—with a circle, in a three dimensional space An example of solution is given n
Tab}e 4.2. where the Newton-Raphson method has been used‘and four difterent solutions

were found by varying the initial guess

Solution # 1 2 3 4
z) 0482 | -0.080 | 0.607 | 0.560
z,  -02541-0.275! 0.410 | -0.218.
,  -0243| 02231 -0.187| 0.171
#1082 | 0523 | 0113 | 0.112 q
1203 | 1.220 | 0.450 @ 1.171
4| 1302 | 1.285 | 1.253°] 0.401

Table 4.2 Four solutions found to the inverse kinematic problens of a spatial three-
degree-of-freedom parallel manipulator with [ =05 and when ;4 =12, yp =-1.3,
/_;3 —_— 1 4

4.4.3 Velocity Inversion

The relationship between the Cartesian and _a€tuator velocities of the manipu-
lator under study I1s given by the Jacobian matrix, whi defined as

p=1Jp (4.109)

o

where p = [z, v, iz]T and p = [p1, P ;')3]T. This equation i1s obtained by differentiation of
the solution to the inverse kinematic problem given in Section 4.4.1. We first take the time

derivative of both sides of eq.(4.89) to obtain:

.1 . . . ,
b= o - m)E - w)il + (e - 2)E] =123 (4.110)

!
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The expressions for the time derivatives of the coordinates of the spherical joints are then

obtained by differentiation of both sides of eq.(4.88) as:

—

§ =p-+(Qu,. =123 (4.111q)
or. In component form.
B ! r 911 912
vl =9 +lcosy, | g | +Isin~, | g (4.111b)
z ] < 931 : 432 '
where ‘ ’,
=20 - )73 1=1.2.3 (4.111c)

Moreover, the time derivatives of the components of the rotation ténsor Q involved in the

foregoing equation can be obtained by differentiation of eqs.(4.93a-b). (4.99), and (4 95b-

A

~

¢). which leads to

i z I + yy .
g =S | IV . 4.112a
=] (zﬁ‘?@?) 12
3 g1 = —y/l ' (4-.1121))
g = -yl . (4.112¢)
. -z Trtyy
- IT_ [ zrtuy 4.112d
922 [ ( I\ rl + y2 ) . ( )
-1 ) X
_ 913 = ;};[411011 + q12412] (4.112¢)
. -1
g3 = E[QZI‘IZI + 422922} ‘ (4.112f)

Then. substitution of eqs.(4.112a~f) into eq.(4.111b) allows us to rewrite eq.(4.111b) as

= A+ Dy : , (4.113a)

Y = Bz + Ey ‘ (4.113b)

‘ 2=Ciz+ Fy+: (4.113¢)
where

A =1+cosq,(1=7r;) - - (4.114q)
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- -C) -
/ B, =sinv,(-1 = r;) (4.114h)
;g C, = cos,(1 % r) ( ) siny, (-1 = ry) ( :;qg_g> (4.114¢)
. ’& 913 UPX]
‘ D, = £rycos v, — sin 'y, (4.1144)
E, =1-2¢0s~, =r,sinn, . ' (4.114¢)
cos 7,
' F1=‘( )( =912 = q117y)
N3 -
sin Y, ) \
- —-q91 = G727 4114
( - (=921 = q2274) ( /)
and ‘
ry = - fL__7 (4.1154)
ly = T ' . a
’ vl +y *
Tu5:“'“=£i:: : (4.1150)
2 +y?

and hence the 1th row of the Jacobian matrix, j1T. can be wrnitten as

-—uﬂ,Aﬂ.(g-;”T (4.1160)
. 2
with
@ g A = Az(I: -5)+ Bz(yz’ ~y)+ C‘l(z?, - z) (4.116h)
[}
Ao = Dl(:r: -z,) + E,(yz y,) + F (" -z ) (4.116¢)

and the velocity inversion is completed.

4.4.4 Acceleration Inversion

& 0

-—

-t The time derivative of eq.(4.109) leads to the expression relating the Cartesian

£

“and joint accelerations, which i1s written as

p=Jp+dp - (4.117)

where the acceleration ]vectors are defined as p = [py, p, ﬁg]T and p = [Z. 4. 2]7 To
complete the acceleration inversion, the time derivative of the Jacobian matrix, J. has to
be derived. This leads to the following expression for“k,LT . the ith row of this matrix

g k, = ;3 [pz/\zl = A1 Py PA2 — APy, pzz: - pz(~,l - 31.)]T (4.118)

3
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where the time derivative of the A,’s have not been derived yet. They are obtained from

c eq.(4.116b&c) and can be written as:
‘ M= (2~ z)A + A+ (¥ - v)B,
+B,il + (g, — 2,)C, + C,2! (4.119aq)
. M2 = (2, = 2)D, + D&, + (4, - v)E,
- + Ej + (2 - 2,)F, + F,2! (4.1190)
" where
A, = twy cos 7, (4.120aq)
B, = +wj sin+, (4.1200)
C, = +wy cos Y, (—911/931) + t1 cos v, (1 £ rz)
. + wysiny, (—g22/q32) + tasiny (~1 £ rg) . (4.120c¢)
D, = +wscos v, (4.120d)
E, = wjsin~, (4.120e¢)
C F, = cos vy [+wy(~q11/931) £ ryty + 3]
+siny[twy(-922/932) T ryty +14] - (4.1201)
with ‘
5.
wy = ( é’—;”:;-;—)‘;—yi) (4.121q)
2. .
wy = (%ﬁ?) | (4.1210)
- and \ )
4 = (411431 - ‘131‘111) - (4.121¢)
. q31 N
= (qzzqsz - tm«zzz) (4.1214)
o ‘132
ty = ( 231921 — qzum) ' (4‘121 )
‘131
= (qszqu - 012432) ' (4.121f)
‘132
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445 Singularity Analysis

*

First type of singularities: g <:>

Under the assumption that the linear actuators have an infinite range of motion.
the first type of singularities would occur only when one of the legs has a length of zero,

e,

p, = 0. r=1or2or3 (4.122)

‘ &
This result 1s obtained from eq.(4.1162). which clearly shows that such a situation produces

a Jacobian matrix whose determinant tends to infinity

However, 1n a real manipulator, the actuators have a fimite range of motion. 1.e .

-\»

Pran = Py < Pmar. t=1.2.3 (4.123)

-4
where p,,,,, is. In general, positive In this case, the first type of singularities occurs when

one of the actuators reaches one of its limits. 1.e
P = Pyun or p, = Pmar- t=1or 2or3 \ (4.124)

which. again, corresponds to the limit of the workspace Since one of the actuators cannot
move further in one direction. a certain set of velocities. corresponding to that motion of

-

the actuator. cannot be produced
Second type of singularities:

The second type of singularities occurs in configurations where we can find a set
of velocities of the platform that produce vanishing joint Vélocity vectors. In other words,
this type of singularities happens when there exists a set of velocities of the paltform that
will correspond to velocities of the spherical joints which are orthogonal to the leg to which

they are attached.
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4 ANALYSIS OF PARALLEL MANIPULATORS

Figure 4.14 Example of the second type of singfarity for the spatial three-degree- -
of-freedom parallel manipulator

An example of this 1s shown in Fig. 4.14, where the first leg 1s contained in the
plane of the platform. Therefore, a rotation of the platform around the axis connecting

the spherical joints attached to legs 2 and 3 will produce a vanishing joint velocity vector.

Another example 1s represented in Fig 4.15. where the whole manipulator is contained
" in the base plane In that configuration, a translational velocity of the platform along a

- direction perpendicular to the base plane will produce a zero joint velocity vector
Third type of singularities: . ) . ﬂ

For this type of manipulator. the third type of singularities occurs when the base/‘ -
triangle and the platform have the same dimensions, i.e.. when { = L. The first two kinds

of singularities can then meet when all the legs have a length of zero but since this would

( not be possible in a real manipulator. this type of singularities will generally not happen.
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' \

S e e e

Figure 4.15 Example of the second type of singularity forfthe spatial three-degree-
of-freedom parallel manipulator

4.5 Spatial Six-Degree-of-Freedom Manipulator

A general six-degree-of-freedom parallel manipu{ator is shown in Fig 4 16. Each
of the six legs connect‘ing the platform to the base are kinematic chains having six degrees
of freedon;'l. i.e., they are equivalent to a six-axis manmipulator. This type of device has
been the subject of more intensive research than the parallel mampula}ors studied n the
preceeding sections of this chapter because of its use as a flight simulator. This application
was suggested by Stewart (1965). although it would seem that the first machine of this
type was built by Gough in 1949 (Stewart 1965) and was used to test tires

x

However, only rather recently. namely. in the seventies. researchers started con-
sidering to use this kinematic structure as a robotic device The idea seems to have been

suggested by Hunt (1978)—although Tindale (Stewart 1965) had already suggested to
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|
)

platform

Figure 4.16 General six-degree-of-freedom parallel manipulator

use the platform as a machine tool—and it was further developed in (Hunt 1978. 1983;
MacCallion and Pham 1979; Yang and Lee 1984. Mohamed and Duffy 1985: Inoue et al
1985. Fichter 1986. Merlet 1987, 1988: Reboulet 1988) and éed to robotic systems based on
this architecture such as. for instance. the SPACE-1 system (Systeme Poignet a Controdle
d'Effort) developed ii-France by CERT (Centre d'Etudes et de Recherches de Toulouse). -

However. in all the aforementioned references. only special“ cases of spatial six-
degrge-of-freedom parallel manipulators are_considered In fact. the complexity of a spatial
parallel manipulator can be described by the number of branches that can possibly be
obtained in the solution of the inverse kinematic problem. This number is given by 5%, where
b denotes the number of branches fo} each of the chains convstitutmg the legs, since there are

six legs. The total number of branches for different cases of chains is showr in Table 4.3.

1

In the most general case. a six-degree-of-freedom serial manipulator leads to 16 solutions-

- :

133

{




&)

| J—

4 ANALYSIS OF PARALLEL MANIPULATORS

(Primrose 1986: Lee ’and Liang 1988) and therefore. the fully-general parallel manipulator
may I(;ad to roughly 16 8 million solutions. In zzll the references mentioned above but one.
the simplest case of parallel manipulator, having only one branch, 1s considered It is only
in (Inoue et al 1985) that a manipulator of the second type (two solutions per leg) 1s

considered and no reference was found where cases of greater complexity are handled,

£

3 b "

1 L .
2 . 6
4 4096
8 | 262144

a ————— e -

16 16777216

’

Table 4.3 Number of branches {n) in six-degree-of-freedom six-leg paraliel manip-
ulators as a function of the number of branches of each of the legs (4]
»

4.5.1 Inverse Kinematic Problem

The solution of the inverse kinematic problem of a spatial six-degree-of-freedom

e . .
‘parallel manipulator is very similar to the solution of the same problem for a serial six-axis
manipulator Indeed. when the pose—position and orientation—of the platform s given.-
the solution of the inverse kinematic problem consists of computing the joint coordmates
for each of the legs Therefore. the solution of the inverse kinematic problem for each of

the legs is analogous to the solution of the inverse Kinematic problem of a serial six-axis

—
—

manipulator. except that only 6ne of the joint coordinates. on each leg, 1s really required~
for control In general, however. the computation of one of the joint coordinates entails the
computation of all of them The solution of the inverse kinematic problem for the parallel
six-degree-of-freedom manipulator i1s thefefore, in the most general case a repetition (six
_times) of “the solution of the inverse kinematics of a six-axis sehal manipulator. The

general numerical methods of solution of the inverse kinematic problem developed for serial

' manipulators (Tsai and Morgan 1985; Takano 1985. Angeles 1985: Gupta and Kazerounian

@

1985) are then also applicable to parallel manipulators.
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In some particular cases, like the Stewart platform. i.e., case 1 in Table 4 3. the
solution of the mnverse kinematic problem of a paralle) six-degree-of-freedom manipulator
becomes very simple. it 1s emphasized here that this 1s the case because each of the legs
of the manipulator have a very simple kinematic structure, which leads to simple closed-
form solutions for the inverse kmemat}c problem of the corresponding serial manmipulator
The kinematic equations of such an arrangement _c;;n be found in many ref;rences on the
subject They are included here for quick reference

/

/

‘ The term Stewart platforms generally used to designate a six-degree-of-freedom
parallel manipulator of the first type in Table 4.3, 1.e.. a manipulator for which each of the
legs 15 equivalent to a kinematic structure of the SPS type It is pointed out that both
{pherical joints are not necessary and one of them can be replaced by a Hooke joint. 1 e,
two revolutes with intersecting axes A manipulator of this type is shown in Fig 4 17a,
where the notation used is now described. Agaltn, symmetry is assumed and the points
of attachment of the legs. i.e, the centres of the spherical joints. are located on the base
and on the platform as shown in Figs. 417b& ¢, 1.e. on the circumference of circles of
radii Kp (base) and Rp (platform), respectivelyl The points of attachment are grouped
by pairs which are uniformly spaced along the circle The angles between the pomts and
the average position of each of the pairs along the circle are given by o (base) and op
(platform) Moreover, the points of attachment of the legs on the base and the platform
are denoted by B, and P,. for: =1... 6 respectively Furthermore-the position vectors
of points B, and P, are gwen( by vectors b, and p,. for : = 1. ..6. respectively, in a

coordinate frame fixed to the basé of the manipulator, while the position vectors of points

P, in 4 coordinate frame fixed to the platform are given by vectors p;. fora=1. ..6

/ We can then write

‘ S |
\\ Rpcosé,
b, = | Rgsind, |, r=1,....6 (4.125aq)
0 ,
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ot iy

Figure 4.17 (a)Stewart platform (b)position of the joints on the base (c)position
of the joints on the platform.

where

itt

0,7

?B
2n(3 - ¢
21/3 + ¢p
4r/3 - ¢
Ar /3 + ¢p

_.¢B

" (4.1250)
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and - -
| Rpcosn,
p,= | Rpsinm, |, 1=1,...,6 = (4.1264)
-0
Moreover, o A
m T op
7 27 3 — op ‘
p= | |27 3Tor (4.126b)
74 4r 3 — op
ng 473 + op
L 76 L -op

We denote the position vector of the centroid of the platform by x. while the rotation tensor
defining the orientation of the platform by Q. The position of each of the spherical joints

attached to the platform is therefore written as,
p=x+Qp. 1=1...6 (4.127)
Subtracting vector b, from both sides of eq.(4.127) leads to '
p—b =x+Qp; -b, i=1...6 (4.12'8)
Now, takir;g the Euclidean norm of both sides of eq.(4.128), we finally derive )

1=1, ..,6 - (4.129)

o lpo=bi= x+Qp ~bi=oc,
where ¢, is the length of the :th leg. 1e.. the value of the :th joint coordinate The solution
of the invetse kinematic problem of the Stewart platform is therefore completed and can

be rewritten as

o=\ (2+V2+WL =1 .6 (4.130a)
where ]\,a i
l'; =1 +qRpcosn, + g Rpsinn, ~ Rpcos b, (4.1300)
U, =y+gyRpcosn, +gyRpsinng, — Rgsinb, (4.130c¢)
W, = =+ g3 Rpcosn; + g Rpsinm, (4.130d)

Nn which variables z.y.z and g, for 1) = 1.2.3. are the combonents of the Cartesian

coordinates, i.e., vector x and matrix Q. Thus, in the¥coordinate frame fixed to the base,

T 911 912 913
x=ly| and Q=g g2 ¢3| (4.131)
2] 931 932 93],
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4.5.2 Direct Kinematic Problem

The problem of findmg the Cartesian position and orientation of the platform.
associated with given actuator lengths s now discussed This problem consists. in fact,
of the solution of the nonlinear system of equations given in eq.(4 130u) for the Cartesian
coordinates The problem can be formulated using any kind of convention for the repre
sentation of the ornentation of the platform. For instance. a formulation based on Euler
angles 1s presented n (Duéudonne et al 1972), where numerical results obtamned with the
Newton-Raphson method are shown In the aforementioned fermulation, a system of six
equations in six unknowns 1s sollved. the unknowns being the position coordi_na’tes Iy
of the centroid of the platform and three Euler angles uy. 1.ty giving the attitude of the

platform. This implies. of course, that we havie expressed the rotation tensor as
Q = Q(vy,wp.13) (4.132)

using a Euler angle convention.

Alternatively, the orientation of the platform could be represente& by all the
components of the rotation matrix or by some of its invariants. This formulation would
lead to a larger system of equations since the constraints on the orthogonal matrix, or on
the said ifvariants, would have to be introduced as additional equations This formulation
would have the ment of eliminating the singularities introduced by the Euler angles, but.
depending on the invariants used. other singularities may be introduced (cf. Appendix B} It

1s to be noted that the use of Euler parameters does not introduce any spurious singulanty

D

4.5.3 \Velocity Inversion

. Again, we can write the relationship between the Cartesian and joint velocities

as follows:

) . &= Jx o (4.133)

i
i
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- where ¢ and x are defined as ¢ = [éq,...,¢6)7 and x = [£,§, 5, w1, wy.w3]7. i which the

angular velocity of the platform s defined as w :([wl,wz,w:.;]T. This equation, and hence.
an expression for the Jacobian matrix J. is obtained by differentiation of €gs (4 130a—d).

Moreover. we can again make use of the following property of the rotation tensor

Q=0Q (4.1344)

when; , )
Q=1- . (4.1346)

to obtain the time derivative of this tensor Also. we define a set of vectors w,. for
1 =1,...,6 as

w, =ce, = |V, (4.135)
‘-:. K ! ’
where e, is a unit vector along the_:th leg, pointing from the base to the platform The 1th
row of the Jacobian matnx, j7T. can then be written as .
. 1 r - '
o= — [wf. (-w,qp’)7|", 1=1,....6 (4.136a)

G
where
W, =1xw, : (4.1360)

‘and the velocity inversion is completed.

4.5.4 Acceleration Inversion

’

Differentiation with respect to time of both sides of the velocity equation, i.e..
g
eq.(4.133). leads to the expression relating Cartesian and joint accelerations for this ma-

nipulator, namely. ]
€= Jx + Jx (4.137)

where the time derivative of the Jacobian matrix needs to be defined. The :th row of this

’

matrix, denoted as kLT. can be obtained as

1 T |
k=7 [T.sT] . =16 (4138a)

12
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where -
' = ct-v'v,' - é,w,' I (4138b)
$; = —6 [WtQD: + W,Qp:] + 6 W, Qpi . (4.138¢)
and
W, =1 w, . " (4.1384)
\ . - :
with : ¢

o[£+ (w2931 — w3ga1) Rp cosn, + (wag3y — w3gyy) Rpsiny,
w, = | ¥+ (w3g11 — wig31)Rp cosn, + (w3gyy — wigsz) Rpsinny, (4.138e)
z + (w1921 — w2q11)Rp cos n, + (wyg2y — waqqa)Rp siny,

which completes the acceleration inversion.

4.5.5 Singularity Analysig

First type of singularities: - P

Sirice the actuators of the Stewart platform are prismatic, the first type of
singularities occurs when one of these actuators reaches its limit, just as in the case of 'th'

three-degree-of-freedom spatial parallel manipulator - >

Second type of singularities:

The singularities of the second type for the Stewart platform have been dis-
cus;ed in some references, namely (Fichter 1986. Reboulet 1988; Merlet 1988). In the
latter reference. several types of configurations in which the platform’s Jacobian is singular
are described in detail. For each of these configurations. there exists a set of velocities of

the platform that will produce vanishing velocities at all the actuators.

r
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Third type of singularities:

~ The situation is similar to the one encountered in the case of the three-degree-
i of-freedom spatial parallel ‘manipulator, i.e.. the third type of singularities occurs when the

platform and the base have the same dimensions. ie..
Ity = Kp and op =aepg . (4.139)

If this i1s the case. the manipulator becomes uncontrollable when all the actuator lengths
are the same. Indeed. the platform can undergo pure translations when all the actuators

are locked and the manipulator is in the said configuration.

[
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Chapter 5 ‘OPTIMIZATION OF PARALLEL MANIPULATORS

AY

. . TR ¢ . :
The kinematic optimization of parallel manjpulators 1s addressed in this chapter
The detailed analysis of the kinematics of the parallel manipulators conducted in Chapter

1

. . . b
4 will now be used to define dnd optimize théir properties f

—~——

An important question that arises in the process of designing robotic manipula
tors is the choice of the optimization criteria In the context of kinematics, several concepts
have been used as design guidelines In fact. most of the serial robots currently in use have
been designed considering invertibihty as a constraint, re . requirning that the solution to
the inverse kinematic problem be avalable in closed-form Many authors (Cwiakala and
Lee 1985. Kohli and Spanos 1985: Lin and Freudenstein 1986. Gupta 1986a. Kumar and
Patel 1986) have also analyzed the workspace of manipulators and have sometimes used it
as a desngl;l cnterion Other authors (Vijaykumar et al 1986, Yang and Lai 1985, Yoshikawa
192;5) have investigated the possibility of defining dexterity or manipulability indices which

2

c;)uld be used for optimization A review of these 1s given in (Klein and Blaho 1987)

The recent development of numerical algorithms { Tsai and Morgan 1985; Takano
1985; Angeles 1985. Gupta and Kazerounian 1985). capable of inverting serial manipulators
of arbitrary architecture. allows designers to relax the constraint of nvertibility and thus
opens the avenue for new design criteria Moreover. since this thesis i1s devoted to parallel
manipulators which exhibit, most of the time. a siﬁwple closed-form solution to their inverse

kinematic problem. the invertibility constraint disappears.

!



5 OPTIMIZATION OF PARALLEL MANIPULATORS

In this chapter, we will be mainly considering two optimization criteria, ie . the
workspace or reachable volume and the dexterity of robotic manipulators. The dextenty

index used here is based on the condition number of the Jacobian matrix of the manipulator,

‘3 quantity that has attracted the attention of some researchers {Salisbury and Craig 1982,

Angeles and Rojas 1987, Angeles and Ldpez-Cajin 1987) A discussion on the condition
number can be found in Appendix D. It 1s pointed out that this concept was already used

for the kinematic optimization of a closed-loop manipulator by Stoughton and Kokkinis

(1987).

The aforementioned condition number. which can also be termed local dexterity.
is of great interest for the planning of optimum trajectories of given robots. as will be
shown.in Chapter 6. However. for the task at hand. 1 e . the optimum kinematic design of
a manipulator, one may be interested in an index that represents a global property of the
manlpqlator This motivates the introduction of a néw performance index which i1s defined

-"h

here and termed the global conditioning index (GCI) This index is based on the distribution

of the condition number of the Jacobian matrix, 1.e., 1t 1s a measure of the conditioning of

the manipula&tor over the whole .workspace.

The first section of this chapter will be devoted to a discussion on the dexterity
of manipulators and to the definition of the GCI Then, the two design cnteria mentioned
above, i.e., workspace and dexterity. will be applied to the kinematic optimization of some

of the parallel manipulators presented in Chapter 4

5.1 Dexterity of Robotic Manipulators ° )

~

-~

{ r
As stated in the introduction of this chabter. the dexterity index defined here is
based on the condition number of the Jacobian matrix. This quantity, which is a measure
of the local dexterity, can be used for both serial and parallel manipulators as will now be

shown.
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The Jacobian matrix of a serial-type manipulator is defined as the matrix rep-
resenting the transformation mapping the joint rates into the Cartesian velocities. This
transformation is written as: -

1o = X {5.1)

where # is the vector of joint rates and x is the vector of Cartesian velocities. However. as
we have seen in Chapter 4, it is more convenient to define the Jacobian matrix of closed-loop .

manipulators in terms of the inverse transformation, i.e..

Kx =6 (5.2)

The accuracy of the control of the manipulator is dependent on the condition
number of the Jacobian matrix (Salisbury and Craig 1982: Angeles and Rojas 1987: Angeles
and Lopez-Cajun 1987). This 1s so because the condition number represents the amplifi-
cation factor by which the error on the input vector of a linear system are multiplied when
the solution vector 1s computed (Strang 1930). In the case of a manipulatoi, the condition
number is therefore an indication of the amplification of the error on the position or the
force at the. gripper for a given accuracy of the actuators. This number 1s to be kept as
small as possible, the smallest value that can be attained being 1. which is obtained by

rendering the matrix isotropic. The condition number of the manipulator is defined as:
k= DI » (5.3a)

where |! - | denotes any norm of its matrix argument. In this thesis, the following frame-~

invariant Euclidean norm is adopted throughout:
1l = y/er(dwdT) (5.3b)

W being ‘defined as w1l where w = 1/n. and n i1s the dimension of the square matrix J
Of course, the same definition applies to K. A more detailed discussion on the condition

number can be found in Appendix D. The local dexterity index can now be formally defined

. as the reciprocal of the condition number of the Jacobian matrix of the manipulator, i.e.,

: ~ v=(%> ‘ - (54)

<
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It is important to notice that, since the Jacobian is configuration dependent. its condition

G number i1s a local property of the manipulator-—(zvhuch is the reason behind the term Jocal
dexterity index—and therefore bears information on the accuracy of the control in this

particular configuration only This criterion can be used for design by mimmizing the

condition number over the space of manipulator parameters toget“her with the space of

- configurations Isotropic configurations can then be i1solated and the corresponding ;ie5|gns
are termed ssotropic. Hewever. since 1sotropy 1s a property of a inited subset of the

workspace, either a curve or a surface within the manipulator's workspace (Salisbury and

' Craig 1982, Angeles and Rojas 1987). it does not guarantee in general that the overall

conditioning of the manipulator i1s optimum

L3

To obtain a measure of the global behaviour of the condition number of the

manipulatot. the following global conditioning index n 1s now proposed

- n= —g— (5.5a)
where K
C ~ 1 , N
‘ A Z/ - }dW = vdw (5.56) =
n K U I8
and
B :/ dn . (5.5¢)
JU

%

in which s 1s the condition number at a particular point of W', the mantpulator’'s workspace
and the denominator B s the volume of the workspace The reciprocal of the condition

number. i.e.. the local dexterity index v has been used for it 1s better behaved than « itself

-~

over the whole workspace. In fact. 1t 1s bounded as follows ,

7.ﬁ

0y <t (5.6)

!
\ - -~

AN

which thus produces a bounded performance index, 1.e..

. O<n<1 | (5.7)

An alternative definition of 4 can also be given as:

. , 2 : o
C - A=/ (1> dW:/ V2w (5.8)
w» K' w’-
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The squarning of the local dexterity index is not necessary here. since the condition number
Is a positive defimte quantity. However, the definition given in eq.(5.8) can sometimes
simplify the algebra since the condition number. a- defined in eq.(5.3a). is given by the

square root of a product Both definmtions are acceptable

tn the context of the optimum design of robotic manmipulators. the GCl 1s to be

maximized over the space of manipulator parameters Thus. the closer to unity the index

1s, the better the overall behaviour of the condition number and hence. of the mampulator
The normality condition necessary for a stationary value of 7 1s given by -
on )
_— = O . 5.90

where h 1s the vector containing the parameters defining the architecture of the mampulator

For example. f6r an n-axis serial manipulator. these parameters can be those of Hartenberg

and Denavit (Hartenber% and Denavit 1964). e,

h=[ay. by. oy, .. an. by nAT ° (5.9%)
Since the Hartenberg-Denavit parameters are not appropriate for the description of parallel, *
manipulators (Kleinfinger and Khalil 1986). for this class of mamipulators, vector h may

reporesent an alternative set of kinemmatic parameters that fully describe the manipulator

Apphcainon of condition (5.9¢) to eqgs (5 5u.b&c) leadseto the normahty condi-
{

¢

'» 0 (1 JaB ‘
— |- }dHW - - = .
/W oh (h‘.) i "ah 0 (5:10)

tion given below

The integration over the workspace can be performed in the Cartesian sp;)cc
providing that 1ts boundary 1s known This will be dong in the examples presented here.
which involve closed-loop manlpulatsrs However, for current open-loop manipulators. the
workspacfyg,, is not always known in the Cartesian space and it is. in general, much easier

> to describe it in the joint space |f we want the GCl to still be a measure based on the

Cartesian space metric. the transformation from one coordinate system to the other can be
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introduced in the integral where we have to include the absolute value of the determinant

of the Jacobian matrix, A. The normality condition, eq.(5.10). then becomes.

b

3 /1 ’ OB S
/}? 3h (;) |A:dl, ... do,do - n—a’h‘ =0 (5.11)

where R denotes the workspace (in joint coordinates). and each of A and B are computed

jaaccordingly. i.e., as

I

R

and
‘ B:/ |Ald8, . dfydé, (5.12b)
R .

It is pointed out that an alternative definition of the GC| based on the joint space metric
would take away the determinant of the Jacobian from the above integrals This GCl would
have a slightly different, but also meaningful interpretation and in many instances it may

be easier to handle mathematically. when serial manipulators are considered

As a demonstration of its applicability, the concept of global conditioning index

will now be used on two different serial manipulators for which optimum designs will be

. obtained. We will also use the GCl in the forthcoming sections of this chapter, where the

kinematic optimizatian of parallel manipulators i1s addressed N ?

5.1.1 Examples
5.1.1.1 Planar, Open-Loop, Two-Link Manipulator

The open-loop. two-link manipulator under study is shown in Fig. 51. This

manipulator is capable of positioning a point on its plane.

The Jacobian matrix, as defined in eq.(5.1). can be written in a coordinate frame

attached to link 1 as: . :
/ Jo | —exsin 02 —azsindy ]
ay +aycosf, ajycos b, _J (5.13)
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- Figure 5.1 Open-loop planar two-link manipulator
Therefore, we have.

1o 1 ay cos 0y ay sin 4 :l

Z —((11 + aj cos 02) -ay sin 02

where

A = aqaysinb,

(5.14), '

-~ (5.15)

<

The condition number of J, can then be computed from eqs.(5.3a&b) (Angeles

and Rojas 1987). and is given l;y

& = (a2 + 243 + 2ayay cos 0)) /2aya; sin 0,

<

or

k = (1/a + 20 + 2cos 8,) /2 sin b

where:

a:az/a1>0, a3 >0

(5.164)

(5.16b)

(g,lﬁc)

148



5 OPTIMIZATION OF PARALLEL MANIPULATCRS

Some plots of.the condition number against §, are shown in Fig 5.2 for a few values of
N . , 5

a. It can be seen that the only value that leads to an isotropic manipulator is a = v2,2.

- a fact that was pointed out in (Salisbury and Craig 1982)..However. it Is interesting to

notice that, from a figure presented in the latter reference, it 1s not obvious that this value

of o gives the best GCI The curves shown m Fig 52 are piotted against ¢, and this way

v of présénting the curves allows us to see that the-isotropic mamipulator should lead to an

optimum GCl since the value of the condition number for this value of; o 1s always the

lowest, .

. Now. in order to compute the manipulator’'s GCl, we have to.integrate the

reciprocal of x over the workspace. .Since we have expressed the condition number as a
function of joint angle 0, and the linkage parameter « only. it 1s convenient to evaluate the’
integrals described in eqgs.(5 5a—c) in the joint space. i.e.. to use the formulation developed
in eqs.(5.12a&b). We cover the workspace of the manipulator by integrating on one of the ‘

~

two branches of the manipulator For example. letting angle 6, vary between 0 and 7. we

have: - |
" "
- / / 210y sin 0,d07d0y = 4rayap (5.17)
[12...0 R K
whlch leads to (
2- = 2sin '02 o
47‘u]a2 / / 1, o +2a + 2cos 0y ) ajay sin 02d02d01ﬂ (5.18)

and can be further simplified to

.

, . ) ‘ .
s . SIn“ 6y . .
= dé ‘ .
. - g /O ( 1 a+2a + 2cos 8 ) 2 (5:19)

Then, takmg the derivative with respect to the only parameter involved. i.e.. a. and setting

it equal to zero, one obtains
/2

r 2 dé -
2-1, 2/ sin” 46, =0 , 5.20
( o) 0 (1/a+2a+2cos 6p)? “ (5:20)

The integralhi;u eq.(5.20) is a positive definite quantity. Therefore, this equation
\

is satisfied if. and only if,

v
o= —i— ) (521(1)
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- —

.l cn i s o maspe —————

Figure 5.2 " Reciprocal of the condition number of the planar two-link manipulator
as a function of 4, for three different values of u . —

The investigation of the denominator of the integrand in eq.(5.20) shows that the integrand
does not suffer from any singularity. In fact, the condition under which the denominator

vanishes can be wntten as

cosfy = —-.(‘u + %;) (5.21h)
which leads to: ~
T 1+ 40 < 0 _ (5.21¢)
and cannot be satisfied for real o. e
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#

In this case, the optimum design in the sense of the global conditioning index is
found to lead to the isotropic manipulator already discussed in (Salisbury and Craig 1982.

- Angeles and Rojas 1987)._The global conditioning -index of the two-link manipulator as a

function of « is shc;wn in Fig. 5.3. Its maximum valug.\ is TIn.1ax = 0.6500, for a = \f2/2.

,éi: ,
/|

GCI

e

Figure 5.3 Global conditioning index of the planar two-link manipulator for different
values of o

)
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5.1.1.2 Spherical, Open-Loop, Three-Degree-of-Freedom Wrist

-

A spherical wrist is shown in Fig. 5 4. Since the axes of the three joints intersect
at a common point. the parameters defining the architecture of the wrist are reduced to

the angles ay and aj. We then have:

¢ *

h=[ay, o ]T ) (5.22)

U

o !

Figure 5.4 Open-loop three-degree-of-freedom wrist. o o

If we denote by e;. e; and e3 the three unit vectors along the kinematic pairs
' . . . . d
of the wrist, we can write the Jacobian matrix as:

) o d=le e e (5.23)
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- v .
This matrix is now represented.in a coordinate frame attached to the second link. i.e.

( 0 0 sindysiney
' J=|smag 0¢ —cosbysina ~ (5.24F
cosay 1 €os ay
% ‘ from which we can write:
A = sinaqsinapsin b, ] (5.25)

Using eqs (5.3a&b) one can then derive an expression for the condition number (Angeles

. and Rojas 1987). which gives. -
, ) )
1 3\ .
- = — 5.26
o () =% (5.26a)
where
N = sin? oy sin oy sin? g 5.26b
= g sin© ap sin“ 6, . (5.26b)
and . ‘ - "
v \ ) l . -
D =sin? ay (1 + cos? ay) + sin ay(1 + sin? 85) + cos? oy sin? ay cos? 6, (5.26¢)
L0C
+ 2¢0s aq Sin oy €Os @) Sin ay cos 8 N {
oy
( . As in the case of the first example. the spherical wrist has two branches M\@g integration
~

can be performed on one of them For instance, we can Shoose the branch for which the

determinant of the Jacobian matrix 1s positive. 1e . integrate over 6, from 0 to = Now
term of each of these equations can be written as:
2
o 1
—_— {( _> A
doy K

where

' Teq.(S.lO)«wﬂl lead to two equations since h 1s of dimension 2 The integrand of the. first
. P

= 53 [3 sin? Qg COS oy sin® oy sin3 6,D 2sin’ aq sin’ %) sin> 02D’}

—

: ) (5.27a)

'

D' = sin ary cos g cos By cos 2oy + sin aq cos ag{1 + cos? ay — sin? aycos?y) (5.27b)

e

2 [3 sin® ay sin? ay cos 0 sin’ 6,D - 2sin? o sin® oy sin® 020"]

[ § o (5.28a)
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where
D" = sin ay cos ay cos B, cos 2a; + sin oy cos ay cos? o
- (5.286)

+ sin o cos ay(sin? 0, + cos? %) cos? 0,)

_ Moreover, the second term of each of the normal equations. eq.(5.10). contains a factor~

0B Oh whose integrand. for the first equation. I1s given by.

A _ : . !
—— = COS (t} SIN 1y sin - (5.29¢)
d(ll -
and, for the second equation, by,
ah . -
. - 5;; =sinaycosaysind, - (5.29h)
r
By inspection of egs.(5 27a-5 29b). it becomes obvious that the normality con-
dition is verified If &y = ay = 7 2. Therefore, these angles constitute an optimum design
in the sense of the global conditioning index. Again, this design is found to be an isotropic
manipulator which has been discussed in (Angeles and Rojas 1987).
The results obtained for these first two examples can be reproduced using a GCl
based on the joint space metric, which actually leads to simpler integrals The procedure
. o

is identical to the one described above

\ .
5.2 Planar Three-Degree-of-Freedom Manipulator with Revolute

13

Actuators
\v The workspace and dexterity of the planar three-degree-of-freedom paraﬁel ma-
ipulator studied in Section 4.1 will now be optimized The symmetry assumptions used

in Chapter 4 are maintained here.
5.2.1 Workspace Optimization

The mobility region can be found for each leg of this manipulator. this region

©

being bounded Ey the singularity curve which is the closed curve separating the region

154




5 OPTIMIZATION OF PARALLEL MANIPULATORS

where the leg. has n'{obility from that in which it does not. For the.points of the workspace
located on this curve, the solution of the inverse kinematic problem is unique since the two
branches meet. Indeed. for a given leg to have mobility for prescribed Cartesian coordinate\f.
the expression in brackets in eq.(4.4) has to have a magnitude smaller than or equal to

one. Thus, the singularity curve, i.e., the limit of the workspace, for the ith leg is obtained

by writing; 7~
\ .

2 2 2 2
Ahtm vy, : Qs.ao)
2 2
2_11 \/:EZz + Y2
. The workspace of the manipulator. dashed in Fig. 5.5, is then obtained by the intersection

of the three foregoing mobility regions. Those regions are. in fact, annular regions in the

z-y plane described by the following equations:

(z-2)2 +(y-w)?= ()% i=1,2,3 (5.31a)
where ol
= I3 cos(¢ + 7/6) (5.31b)
- y1 = l3sin(¢ + 7/6) (5.31¢)
33 =1-l3cos(d ~ 7/6) ' (5.31d)
S gy =—lysin(g—n/6) " (5.31¢)
z3=1/2 4 l3sin o (5.317)
“ y3 = v3/2 - l3cos ¢ (5.310)

a result that is derived directly from eq.(5.3(/)f)\.\

T o
° .

+  Each 61 the three annular regions is bounded by two concentric circles whose

centres, C,. have coordinates (z,,y,) for i = 1,2,3: This is shown in Fig. 5.5.

= The concentric circles are obtained by choosing alternatively the plus and minus
sign in eq (5.30). which glvgs rise to circles of radii (I;+15) and |ly —Iy|. From the particular
form of the expressions of the coordmates of the centres, C,. given in eqs.(5.31b—g). it can

be realized that these are located on the circumference of three other circles of radii l3.
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Figure 5.5 Workspace of the planar manipulator for [y = 0355. [y = 0.15 and
l3 = 0.125 when ¢ = 0% For this value of ¢, the annular regions whose intersection
form the workspace are centred at points ('q. (') and ('3 respectively

" centred at the driven joints Their location on this circumference depends on the gripper

orientation, which 1s given by angle @. For example, if ® 1s equal to zero. the centres (',
are located as shown in Fig. 5.5, 1.e., bringing the annular regions as closé as possible to
each other. As o 1s incremented, centres C, will move around the circles of radii /3 and. for

@ = 7, they reach the configuration shown in Fig. 5.6, i.e., the one for which the annular

regions are as far as possible from each other. The geometric construction of Fig. 5.5 can

.. . ) 3,
then be redrawn for any angle ¢. It can be realized. from the foregoing discussion, that the

area of the workspace will be a minimum when angle ¢ is equal to 7, since in this case\the

- o . _ : P —

@ ' e
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distance between the regions, whose intersection defines the workspace of the manipulator,

is 3 maximum.

Figure 5.6 Same construction as in Fig 55 but with ¢ = n. The workspace
vanishes .

_\\ | One important criterion for the usefulness of the'm@tor is that we have
a non-vanishing workspace for every angle ¢ This can be achieved by imp,oswhg a non-
vanishing workspace foré = 7. ie . by sett:i‘ng @ = 7 in equations iS éla) and the condition
that the intersection of two of the circles definlmg the outer boundary of the annular regions
be inside the third one and that the three circles defl@’ﬁé'\mé’fnner boundary of the annular

\ : . b
regions do not have a common intersection. This leads to:

3y + zz)f > (v'Ez,'{»;)? ‘ , (5.32a)
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and

3l - 12)’2 < (v 313 - 1)2 .(5.320)

The manipulators verifying these conditions will have a non:vanishing workspace

for every angle o

The global workspace of the manipulator can now be represented as a volume
In the (r.y.o) space. as shown in Fig 5.7, where the origin of the coordinates. has been
placed on the centroid of the base triangle formed by the motors Afy. M4, M3 This figure
has been obtained by incrementing ¢ and calculating the coresponding workspace in the
(z.y) plane. for every angle o The volume of the workspace, 11 , can then be approximated
numerically using dlscrete- integration over ¢ from 0 to 27 The introduction of Simpson’s

rule, for example, leads to

-

2%
A
W = / A((D)d@ ~ -3—0le + 4.41 + 2.42 + + 4.'\2,,,,1 + .12”] (53311)
0 .

where C,

A, = A(1bo). Ao =m,n, 1 =0,1, .,2n . (5.33h)

L

and A4, = area of the workspace for 0 = o, = (Ao, 1e.. A, 15 the area of the region n(w )
and n can be chosen large enough to provide an acceptable accuracy.

Equation (5.33a) requires the fv‘aluatlon of A, for many different v'a_lues of ::'.‘
This can be done more efficiently by resortlngid) integration on thé boundary using the
Gauss Dive;gence Theorem (Brand 1955). The application of this theorem to the planlar v
region a{@) gives.

A(d) = % » s - nddfl (5.34a)

where ' .

-

»

9 the boundary of the region c(o)

s : the position vector of an arbitrary point of 912

158

~t
.

*
]
{ w




T

T e e e v B Ry

5 OPTIMIZATION OF PARALLEL MANIPULATORS

o

a

Figure 5.7 Workspace of the planar manipulator as a volume in the (z,y,¢) space
obtained for iy = I = v2/4 and i3 = 0.1

n : the outward unit normal vector to the curve 912

3 \
This integral is more easily evaluated- by first computing the area of region

M NP and then subtracting three times the area of region PQR, where M, N, P,Q@, and
R are as indicated in Fig. 5.8. This gives: ‘

[e]

A(8) = A1(9) = 34, (9) L B3

1

The first line integral A4 (6) can be broken down into three parts, one for each -
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of the three arcs forming the border of this region. This leads to:
‘ . R i Yy v
A1(#) =5 {a[sm o]:-;ll — blcos o]";; +R(0yq - 0py)}
R [ "
; P3 P3
+ g{e[sm 0]”” - f|cos ()]"”33 + R(0py - Oy3)} (5.350)

»
?

R " "y
L M2 M2 g ,
T 5 {c[sm ()]"N ) - ([[CO§ 0]"‘\' 5 r K (0 V2 0‘\ 2)}

where (a.b). (¢.d). and (e. f) are the coordinates of the centres of circles corresponding to

the first. second and third circle, respectively and 6 v, 1s the angle associated with point \

when considering the ith circle, 8p, and 0y, are defined similarly to 0y ,. all angles being

. measured from the positive direction of the \ axis. and R = I/ + /. The area of region

PQR 1s computed in a similar fashion, as

. 1? ¢ ]
Aj(0) 1*2“{0[5'" 91,,?1 — b[cos 9],,;?,11 + R(0py  Opy)}

R eisimolP3 s 0l P3
+ E{e[sm 0]”(.,)3 - f[cos 0]"623 + R(0p3  003)} (5.35b)

r . 0Q2 r/QQ‘ \’
+ ={¢|sin @ ~ d[cos @ +r(lpy - 0
51 ]6”2 [cos 8], ., + (0 1?21}

. where 0p, and g, are defined similarly to 6,. 6y, and 8p,. while r% Uy Ly,

i
The sine ahd cosine functions involved in egs.(5 35ad&b) can :e readily calculated
L;smg simple differences between abscissae and ordinates. and the difference between the
angles can be evaluated using the inverse :sme function These considerations allow us to
write these equations in a form tf]at s more efficient for computational purposes. Equations

(5 35a&b) can then be rewritten as \

41(6) =3lalux -~ vp) = ey = zp) + elur - uur)
= f(zp - zp) welyyr - uw) - dlry - o)l . (5.360)
}F?‘stm“l(‘z%) | W

and ! g Ny 5 -~

A2(8) F3lalyr —yp) — blzg -.zp) + elyp - yg) |
= f(zp -~ 2Q) + clyg ~ yr) ~ d(zg - zg)) (5.36b)

PR 4 2R? sin"l(—z—l%)-i-]'2 sm"l(%) o
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~

Figure 5.8  Workspace («) obtained for Iy = 111232, Iy =5v2'32 13 =0125
and « = 0- The centres of th® intersecting annular regions are denoted by {a ().
(c.d) and (-. f) The curve 902 is the boundary of the workspace |

where (zyr.yar), (v YN ), (rp.yp). (rg.yQ). (rR-yR) are the cdordinates of points 1
N, P, @.and B The quantities D and d are the distances between any.two of the points

M, N, P{}n’d arly two of the points P, . R. respectively

We can thus evaluate the volume MW" of the workspace of the manipulator in the
(z,y,d) space. It can be seen from Fig 5.8 that, for a given value of R, there is a maximum
value of r for which the workspace is given simply by the intersection of the three larger

( ' circles defining the outer boundary of the annular regions. If r is larger than this value,
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©

the workspace is reduced due to regions similar to region P\QR in Fig 58. Moréover. it
becomes obvious, from eq.(5 31a) that the volume of the workspare will be monotonically
increasing with R since this 1s the radius of the larger intersecting circles The optnmzatl(;n
problem will then be to find, for a gwven value of -R. the value of /3 that maxumzes the
workspace, and then compute the ga)—timum value of r that 1s acceptable The optimum -
value of /3 is found using a numerical one-dimensional direct search where the step size
is hatved whenever the centrepoint of the current interval gives a larger workspace volume
than the extreme points of the gaid interval. This method converges to a /loc‘xl maximum

The maximum acceptable value of r i1s then computed from this optithum design. The

results of this optimization procedure are shown in Fig. 5.9. Points oif the curve represent
manipulators having maximum global workspace. It i1s interesting/to note that when /¢
is larger than 1 the eptimum design 1s obtained with /3 = 0. Onh the other hand. wh(;n
R — 0, then I3 — v/3/3. which corresponds to the case of/é fixed gripper having the
same dimensions as the base triangle. It also turns out that h/e maximum acceptable value
of r associated with these optimum designs i1s always z/ez. which means that we have

ly =19 = R,/2 for the optimum designs.
\ .

Figure 5.9 Optimum values of I3 which maximize the workspace for a given value
of R :
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5.2.2 Isotropy of the Jacobian Matrif z
) B}
v It is recalled from Chapter 4 that the JSacobian matrix of this manipulator is
defined as .
KA ‘ Je=19 . (5.37)

-

where & = [£,y, |7 is the vector of Cartesian velocities and § = [61,6,,85]7 is the vector

$
of joint rates. Moreover, an expression for this matrix was given as

* a/dy by/dy c1/dy
. J=|ay/dy b/dy c/dy (5:39)
- a3/d3  b3/d3 c3/dy
where ‘ ’
a, = ~gj(z = 20) + 92 c08 6, + g1 cos &, (5.39)
b, = —9192(y = Ys) + 92 5in b, + g1 sin ¢, (5.39b)

- ¢, =g1[(y :yoz) (;OS ¢, — (z- xqz) sin ¢,] — sin(6, — ¢,) 7 (5.39) - |

d, _‘="'92[(y = Yor) €08 0, — (z — z) sin 6;] — sin(6, — ¢,) ’ (5.394)
: . ;oo s '
| with gy and g, defined. in turn, as ) ,
‘ S a= gy, =ty (5.39)

‘ [ L’ kS
(75 19.,) being the coordinates of the centre of the ith motor and angles ¢, being defined

|
|
| as

| . S =o+7/6 (5.40a)
| . ¢y =6 +57/6 (5.406)
’ ‘ by = ¢ —1/2 ~ © (5.40¢)

X It is now desired to find isStropic designs for this manipulator. i.e., kinematic

parameters that will lead to manipulators for which at;%east one point of the vVorkspace

iorresponds to a configuration for which the condition number 1s equal to unity One

o
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simple way of obtaining this minimum value of the condition number is to render the matrix

proportional to an orthogonal matrix. Indeed. it is known (Strang 1980} that orthogonal

matrices and their multiples are the only 1sotropic matrices. i.e.. the only ones having o
condition number of 1  This. however can be done only n specific configurations since
the Jacobian matrix i1s configuration dependent The mobility region shown m Fig 57
being symmetric about the centroid of the triangle defined by the motors. this point of the
z-y plane is the one where the manipulator attains the maximum mobility in terms of the
different values of the angle o that it can reach Therefore. this position 1s one in which
we would like the Jacobian to be i1sotropic  We call this position the home configuration.
This is then defined as that in which the centroid of the gripper 1s located at the centroid
of the base trniangle and, for example. © = 0 If we write the Jacobtan matnx in this
configuration we will derive expressions in gy,¢;.01,0;.03. H;)wever. due to the symmetry

of the manipulator, , and 63 will be related to ¢y by .

02 = 01 + 27/3 03 = 01 +4r/3 (541) .

AN

which leaves us with only 3 variables namely g1.¢,. and 6. If we now want the Jacobian
to be proportional to an orthogonal matrix. then we have tZ)Tspecify that its rows be of
equal norm and orthogonallwnh respect to each other. the same ‘holdinlg for its columns
This brings 12 potential equations, some of which are redundant In fact. in this case. due
to simplifications that arise. we end up with only one independent equation, 1e . (7

V311 1 43 V3001 V3
a1 (502 - 5~ 595) ~ 91920592 ~ ) cos by wgrap (- 5)sinby - - sinfy cos by

3
1 1 3 1
' *(5"593)”5201*(4 - égg)smzol-_—_om

<) (5.42)

We can think of the left-hand side of this nonlfniar equation as being a function of /1.0y,{5,
since 8y will bear the information on [; We can therefore simultaneously specify isotropy
in other configurations. To satisfy our need for symmetry. we will choose two ether config-
urations which have the same position of the gnpper but in which the angle & 1s 27 '3 and
47 /3. Moreover. since each of these also leads to only one independent equation. we will

end up with as many ‘equations as unknowns and exact solutions, within roundoff errors,

Q
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5 OPTIMIZATION OF PARALLEL MANIPULATORS

of course. should be possible. The condition for isotropy in the two last configurations can

be expressed as

B 9% 9% \//5 1 g1, 2 I )| \/F— 2 o /
TG gt p) G e+ V30— eost + 50 — 0 - V3] sin 0y
3 1 1 / 3 1 .9
%gsunﬂ cos 0] + (Z - Egg)coszﬁll + (3 - Egg)smzf)’ =0
- f5.43)
and .
2 A 7 3
91!}_2_*}_% _1 12__ g - MNO ol
> (5 = 5792 = 35) +a1(59) — Vcos by [+ 919 (—=gp + 1) sin by (5.4
- 2 . .
+(1- %—g%)cos2 02’ ~ (gzz—)sin2 g% =0 !

4y

Equations (5 43) and 5.44) seem to mtoduce two new unknowns, namely,
8] and 8. which represent the value éf the first motor angle in configurations 2 and 3
irespectlvely However, they are not |/dependent variables since the value of [, has to be
the same in the 3 configurations For computational purposes. we will keep these variables

as if they were independent, and w/lte the equations constraining them. i.e..

(1) _ (2 _,3) '
j L =00 =1 / (5.45)
where lg') denotes the value of /5 in the ith configuration. Equation (5.45) leads to the

> 4

g2 (cos 8} — cos 8;) + v'3(¢os 8y +cos 81) — v'3gq + (sin 8] —sin 01)(\—/3292 ~-1) =0 (5.46)

and

’ ) i by § * -
go (cos 0] ~cos 8) +v'3 cos B — 3¢ +;§~gz (sin 8 —sin 8;)+(sin 63 +2sin 6{) =0 (5.47)

Ay -
1
Now the sines and the cosines of the angles appearing in eqs (5.42-5 44)-and

A

(5.46-5 47) are considered as independent variables as well. Thus. the following constrants
are adjoined.

sin? 8y +cos? 8, — 1 =0 (5.48)
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sin? ) +cos’ 6y - 1=0 (5.49)

1,

sin2 0] + cos? 8y - 1=0 L~ (5.50)

. Equdtions —(5.42-—5 44) and (5.46-5.50). therefore. constitute a system of 8 nonlinear equa-. -

tions in 8 unknowns The solution. if there 1s any. may then not be umque. This problem
has been solved using the Newton-Raphison method and convergenc® has been obtained
to 8 different solutions. The corresponding link lengths are given i Table 51 and the

manipulators are shown in Fig. 5.10(«a)-(h)

[ g

Solution # ly ' Iy l3
1 i 0.783261 1589931}? - 5.399776

1166456 | 5.054792 -5.393750
1.154665 | 3.722528 © -4.041159

2
3

4 2010278 ' 2518945 : 1240155
5 1265630 728070 | 6.767731
6
7
B

T - _T—.‘ T e e
1344719 | 3.828894 | 3.257850
~7.942812 | 7.854237 | 0.780640

1575610 ' 2.587595 -1.185050 |

|
|

5

Table 5.1 _\Lmk lengths for the isotropic manipulators (8 solutions)

T [

The solutions converging to a positive value of I3 correspond to manipulators

- which are isotropic in the home configuration with @ = 0.27.3.47 '3, while the ones

having a negative value of /3 represent manipulators for which the third link length 1s /,
but which are 1sotropic in the home configuration when @ = 7.3.7.57'3 Both results
are acceptable It should be noticed also that the sign obtained for Iy has a well-defined

-
geometric interpretation, but this Iln}< length should always be taken as positige. of course

5.2.3 Global Conditioning Index

Unlike the serial manipulators studied in Section-5.1. it 1s not possible to obtain

a closed-form expression for the condition number of the Jacobian matrix of the planar
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. (k)

4 fixed joint’

i

Figure 5.10 Representation of the eight different manipulators that were found to
’ be isotropic 1n the home position and for three different onentations. They are
l ’ . shown here in one of their 1sotropié configurations

3

|
' parallel manipulator This forces us to resort to a numerical integratﬁion in order to evaluate
the GCl. The integration has been carried out over the workspace in the Cartesian space.
The algonthm to compute the volume of this workspace. B, developed in Section .5.2.1
\ was used and a triple numerical integration was introduced to compute the numerator of
5 m \ |
l
|
|

o \ : 167
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4"/;/11/1< )drdydd) C- (5.51)

The optimization was then performed using the compiex method (Box 1965). Optimum

\
results are shown in Table 52, where three cases are reported The first one represents

]
1

" the solution obtained when no constraints are imposed on the maximization of the GCl.

However, the manipulator then obtained has a rather hmited workspace. Therefore. a
\

second optimization was conducted with a constraint on the workspace This presents no

* particular problem since the optimization method used 1s well suited for handling inequality

constlbaev s ’ ery
angle o of the gripper. a criterion that was introduced in Section 5.2.1 where the associated
inequality constraintsu were derived lee s_olutlon obtained for this problem is identified as
case 2 in Table 52. The corresponding optimum manipulator now has a much larger
workspace. However, the link lengths are quite long. which may induce major mechanical
interference problems. A new optimization problem can be set up by imposing additional
inequality constraints in order to remedy this situation For instance, case 3 of Table 52
shows the solution obtained when the link lengths are forced to be less than the distance
between the motors, e . (01, <1,7 = 1.2.3) and the constraint on the workspace
used in case 2 1s imposed. Notice that the introduction of the constraints has led to a
reduction of the GC|. The three cases }eported here are obviously not the only possible
desngnsNand they are shown to illustrate how one can use the GCl to optimize a mampula\tor

while meeting other design constraints associated with a particular problem.

i Parameters Casel Case? Case3
Iy 09940 - 1.855 0.9968 |
‘ I, . 13274 45887 07838 |
| l; ' 26203 51739 09719 '
ﬁ n 079156 0.69691 0 42961 |

Table 5.2 Planar three-degree-of-freedom parallel manipulators havm;, an optimum
-GCl

N\“
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5.3 Planar Three-Degree-o/f-Freedom Manipulator with Prismatic

Actuators , ¢

5.3.1 Workspace Optimization

®

The properties of the workspace of this manipulator are very similar to the ones

of the manipulator with revolute actuators Indeed. the imits of the mobility region of each

i
£y

of the legs is obtained by setting the actuator length equal to p,,,, and pmar respectively
" i.e.. the minimum and maximum value that the actuator length can take. This leads to an

equation similar to eq.(5.31a) with the difference that the radii of the two concentric circles

are replaced by p,,,, #nd Pmaz. te. . - g
st N
"z - )+ (-y)= pfmn, 1 =1.2.3 . (5.52aq)
and )
(z-z)2+Ww-u)l=rhe, =123 o (5520)

of the workspace 1s therefore identical to the one shown in Figs. (5 5-5.8) in which {l; +{;)

and lly - [, should be replaced by pmuz and p,,,;,

The condition under which the rﬁimpqlator has a non-vanishing workspace for

‘every angle o can also be derived by lmposmg\xfl\:n-vamshmg worksbéce foro=m This
(5

leads to two conditions analog to inequalities (5.32a&b) and that can be wnitten as:
3p24: > (V33 +1)2 .- (5.53a)
" and ) o, (
3p2,, < (V33 - 1) ; (5.53b)

-

The mani}:ulators verifying: these conditions will have a non-vanishiné workspace for every

‘ , angle o.
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4 , 5 OPTIMIZATION OF PARALLEL MANIPULATORS

As\ tated above, the workspace of this manipulétor is very similar to the one of
the plapar manipulator with revolute actuators which |§ shdwn in Fig. &7 Therefore, the
evaluation of the volume of the workspace presented in eqs.(5.330-5.36b) 1s also applicable
to the manipulator with prismatic actuators provided that the variables r and R are redefined
as follows:

T = Prman and R = piqs (5.54)

The optimization performed on the global workspace-of the manipulator in’ Sec
tion 5.2.1 can be repeated here, leading to the same optimum curuve. i.e.. the one plotted
in Fig..5.9. where the values f l3 that corresbond to a maximum global workspace of
the manipulator. for a given value of R = ppmar. are shown. The fact that the maximum
acceptable value of r associated with these optimum designs is equal to zero is now inter-
preted as that p,,,, should be as small as possible for the volume of the workspace to be

a maximum.

v : - J

5.3.2 Isotropy of the Jacobian Matrix

—
-

It is recalled from Sectiep 4.2.3 that_"the Jacobian matrix of this manipulator 1s

s,

-~

defined as:

. Je=p (5.55)

v

where ¢ = [i,y,és],T and p = [;’Jl,j;z,p3]T are the vectors of Cartesian and joint rates,

res;;ectively, and thg expression for J is given in eqs.(4.42-4 43c¢).

1
k)

Contrary 'to the case of the manipulator with revolute actuators, the configu-
ration in which the centroid of the gripper is located at the centroid of the motors. 1e,
z=1/2and y = "\/‘3'/6, and for which o = 0°—which we termed the home configuration
in Section 5.2.2:-is a singular configuration for tt;e mampulato} with prismatic actuators
for any value of /3 and p’,fnax This 1s so because. in this configuration. the lines along

:

.the three legs intersect at the centroid of the grpper, which leads to the second type of

singularity. as mentioned in Section 4.2 5 It 1s therefore impossible to render the Jacobian
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3

’ b

matrix isotrapic in the home _configurat%n- This is clearly seen in Fig. 5.11. where plots of
the Ioéal ,de;tenty with respect to the or}entaglon angle ¢ are given for z = 1/2.:y = \/5/6 .
and for different values of /3 It s clear that, for any'value of I3, the Jacobian matrix Is

singular when 0 =0 or o =N the homﬁmﬂgurat:cn Moreover, the configuratton for *

which the condition number 1s a minimum s attained when z = 1.2, y =136 0=075

- rad -and /3 = 0.79, which leads tT a’dexterlty, index of 0.98, 1.e.. a Jacobian matrix very

~ 4 "

close to 1sotropy 's obtained. !

b / @

- ' ~//
Figure 5.11 Reciprocal of the condition number of the planar manipulator with
_prismatic actuators as a function of the angle of ‘orientation @ when z = 1/2 and
¥ = 1'3/6. ie. when the centroid of the gnpper is located at the centroid of the

motors, for different values of 13

o
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5.3.3 Global Conditioning Index

’ {

RS

Again, the GCi has been };sed and the integration iarried out numérically over
the workspace’ in the Cartesian-space. using eq.{5 51). A graphical representation of the
GCi "of the manipulator as a function of I3 and Pmar 1S shown.m Fig. 5.12. Thé maximum
value of the GCl 1s attained when /3 = 4.2 ar;d Pmar = 4.6, which ‘Ieads to a GCl of
0.458 when a value of p,,,,,, = 0.1 is assumed. It 1s pointed out that this value of the global
dexterity is lower than the o;les that were found for the manipulatorwith revolute~actuat6rs.

which syggests that the manipulator with revolute actuators is better conditioned.

2
i
8
o
t i s N : » e
\\V ¢ I . ./
. Figure 5.12 GCl of the plapar manipulator with prismatic actuators as a function
‘ - of 13 and Pmaz ’
£ ‘ .0
.. . ' S
I 1 J - N - N i //
5.4 Spherical Three-Degree-of-Freedom Manipulator
L( kel — ) ' . ‘*
The spherical manipulator studied in Section 4:3 will nqw be optimized for
o f -
, N ! i . R 172
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¢

. E’ -
its workspace and dexterity The symmetry assumptions used in Chapter 4 are agan

-

maintained here . § x

5.4.1 Workspace Optimization ' :
5 )
Since the purpose of this mampfﬁator 1s to ortent a rigid body in space. 1 e, we

'
z
are concerned with the orientation of the gripper only. the workspace of the mantpulator will

be/:ambedded in the' space of nigid body rotations which can be represented. for nstance,
using the linear invanants of the rotation matnx Q. introduced n Chapter 4 and described
in Appendix B Again, the workspace is fouﬁ_d by computing the intersection of the mobility
“region of all the legs The mobihty region for each individual leg 1s given by the set of

possible orientations that the gripper can attain, given the hink dimensions of this leg

This region 1s bounded by the singularity surface. which can be tound for xgacAh leg as
the closed surface separating the region where the leg has mobility from that in which
| it does not The global mobility region will then be the intersection of all these three

e regions. As previously stated, we can represent the éet of all possible rotations using
- ¢
”

©

the linear invariants, which can be grouped n a 4-dmensional vector A= |q qQ]T
with q = [g1. g7. q3]T One possibility for this representation consists of using the threc
dimensional subspace (g¢g. 1. 92) 10 which the set of points located inside or on the surface
) of the unit sphere centred at the origin. represent all possible rotat»on;‘.. the distance from

. "l -
a given point to the origin being equal to \ 1- 'q§
- Y

The singulanity surface can be obtained using eq.(4 64). where we set the dis-

d criminant equal to zero
2 r
, zy=B - AC =0 (5.56)

Thls.equation..wrrtten for the first leg. leads to

q% = (1 + gg)(cos aqcos ay — ¢p) = (1 + q(;) sin ayq sIn (5.57)

which represents two circles in the (gp.¢;) plane {Fig. 5.13). or two cylinders in the

‘ﬁi (95-91-92) space (the inner cylinder i1s shown in Fig. 5.14).
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Figure 5.13 Mobility region for the first leg of the spherical manipulator
The equations describing these circles are obtained by choosing alternatively

‘ ) the plus and minus signs in equation (5.57). which gives:

. 1 5 1
- ai +{a0 + 5[1 - cos(ag ~ ey)]}? = 71+ cos(ag — o)}’ (5.580)

Thus, eq.{5:58a) represents a circle of radius %[1 + cos{ay — ay)] centred at a point of

[§

coordinates (C,0), where
1
C = ‘2’[C°5:(a1 - ap) - 1] (5.586)

and

1 1. .
q12 + {gp + 5[1 — cos(aq + az)]}2 = 1[1 + cos(ayq + 0:2)]2 (5.59a)

Similarly, eq.(5.59a) represents a circle of radius %[1 + cos(aq + ay)] centred at a point of
coordinates (C’,0). where:

. 1
g . C' = slcos(ag +ap) — 1] . . (5.59b)

<
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-

M ver, it can,be shown that the region located between these circlesf is the one where

v

the leg has mobiity. 1.e.. where the discriminant 1s positive—this region is hatched on

Fig. 513

— et e e e e v e - —

92

N

: 1 N

ﬁ. (R

> 2 1 b‘/w"

. : F\ﬁ

- ’ &
>\\—"—~;E s :L\ f

—_ » /
by I .
a un | , ;

N

Figure-5.14 Inner cylinder definmg the mobility region of the first leg of the sphencal
manipulator in the (70-91 4p) spacc

A similar analysis 1s repeated for each of the legs This defines two other pairs

of cylinders. which also have their axes in a plane parallel to the {41.¢47) plane These axes

-

intersect the first ones on the ¢ axis with and angle of - 60 and the global mobility region

pu

is therefore completely defined It can be seen from equations (558a) and (5.594) that the

conditions under which the manipulator is capable of producing all possible rotations are

| - ag —ap =0 (5.60a)
and {7
ﬁ o +ay=m (5.60b)
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/

whlch/eans ‘
( . Sy | \ 1 | oy =g =7)/2 + (5.60¢)
if this condition is met, the singularity surface degenerateg into three: singularity curves
which are major circles on the surface of .the umit ;phere in the (g9, 91 ¢7) space at 60°
from each other as shown in Fig. 515 A projection of this flghre onto the ¢q — ¢y plane
ts given in Fig 516 for clarity This result’ Is stmilar to the one obtained for an open-loop
. three-axis spherical wrist (Gupta and Roth 1982). for which condition (560c) has to be
.met if we want the wrist to be able to reach all bosmble. orientations Notice. however,
that in the case of the open-loop wrist having ay = a; = 7/2, there_would be only one

mn

smgizlanty curve on the sphere of Fig. 5.15.

|
| 9
[
l :
‘ > -
o \
< | E 90 |
| Qi : |
+ | ™~ ' !
y
: > -
i
!
!
S . f
' kJ
£ .
Figure 5.15 Singulanty curves for a manipulator with oy = ay = 90° '
{ o Furthermore, notice that. in the case of a manipulator havin =ay) =7m/2
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b
the solution to the inverse kinematic problem simplifies to. -
{
g [cosmu, + s,
s 5 d,-= tan e - e {5.61)
’ <3
N 0 "
where the n,’s and the v,,’s are defined in Section 4 3.
)
"
. i
|
!
|
P |
|
| f
i '
' i
- |
t
' |
I
! |
, |
t /. !
) |
' i
| :
Figure 5.16 Projection of the singulanty curves of Fig 515 m the (yg,q9) plane
|
- \ = , 1)
. W -
‘%\ Q, = . e |

5.4.2 Isotropy of the Jacobian Matrix

The definition of the Jacobian matrix of the spherical parallel manipulator was

12

\ %‘gwen in Chagter 4. It is repeated here for quick ‘re’ference We have defined:

| /

h
i

. o dw=14 (5.62)
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Solution # .| o o ey e e3 l o | K-

1 o[ 9910 | 9000 |-2363| .8818 | 4081 | 135.60 | 1.1103

2 | o117 | 12856 . 8827 | 4700 | 0000 | 130.22 1.2073

3 112336 | 6000 ! 6411 | —.3176 | 6986 | 63.43 15502

— 4 140.02 | 100.00 5443 | 3594 | 7580 | 40.05- @ 1.9431
5 | 90.00 | 90.00 . .0000 | =1.0000 | .0000 | 137.36 1.5728

6 | 9000 | 90.00 ' =+.8660 | =.5000 | 0000 | 137.36 ; 15728

<D | 9000 | 90.00 | 9217 | —.2470 | 2992 | 146.69 | 11550

8 1 9000 | 9000 | 2470 | -.9217 | 2992 '146.69 | 1.1559

5 OPTIMIZATION OF PARALLEL MANIPULATORS

i

where w is the angular velocity of the end-effector and 8 1s the vector of powered joint rates

and J is given as

‘ it
1= i |- ‘ (5.63a)
- i3 '
with , -
= A ) (5.636)
. (U,, > w‘l) "V,

A direct-search method has been used to minimize the condition number of this
Jacobian matrix The mimimization method referred to is that of bisection (Brent 1973)
on one of the vanables, while the other onesjgre kept fixed. The procedure is repeated
~alternatively for each of the variables until cohvérgencel ts reached. This ha§ been done for
the .general case of a manipulator with arbitrary link angles and also in the case where the
link angles are assumed to be both of 90° due to the particularly interesting properties of
this design that were discussed in Section 5.4 1 The results are given in Table 53. It s

pointed out that the manipulator cannot be rendered isotropic with any link angles.

1

Table 5.3 Solutions corresponding to local mintma of the condition number of the
spherical manipulator Solutions 1-4 are unconstrained while solutions 5-8 have
- been obtained when link angles of ay = ay = 90° are assumed

5.4.3 Global Conditioning Index

The workspace of the spherical manipulator was described in Section 5.4.1 as
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2 region in the (go. ¢1. 9) space. A numerical integration can then be carried out on this

——

I B workspace in order to evaluate the GCI. This 1s done as: .
| A
. = B - (364(()
with )
o |
A':/ / / <7>dq°d(’1dq2=/ / / vdgodgrdgy  ° (5.64h)
Yy dapde AP 42741 g
and -
| L B:/ / / daodarday - (5.64¢)
1)2 (11 "O

R
Q ',,
4
Al

7!'/10

£

, - Figure 5.17 GCl of the spherical paraliel manipulator as a function of =y and .1y

Ty f

These integrations were performed for different values of nq and ay and the

@ results are given in Fig 5.17 where the GCl 1s plotted as a function of oy and It s

/
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¢
interesting to note that the maximum GCl {n = 0.52). s obtained for ay = 77.30 and

ap = 137/30. approximately A symmetry about the central point ay = oy = 7 2 s also

observed This pant 1s found to be the one hzw;rlmmum GCJ (n = 0.056). which

]

indicates that. for this mamipulator. the optimization—of-the GCl conflicts seriously with

the maximization of the workspace Indeed. it Was shown n the workspace optimization

performed in this chapter. that the central point of the ay - o, region of interest, shown in
; s

Figs 517 and 518, 1s the one Flavmg the maximum workspace This can be clearly seen

. %n Fig. 518, where the volume of the workspace of the manipulator is plotted as a functign

~

of ny and aj. according to the results of Section 54 1
=>4 '

112

'

Figure 5.18 Normalized workspace of the spherical parallel mantpulator as a func-
ton of +y and wy .

- ./ -

5.5 Spatial Three-Degree-of-Freedom Manipulator

The workspace and dextenty of the spatial three-degree-of-freedom manipulator
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will now be optimized. The ‘approach used here 1s similar to the one used tor planar and
spherical manipulators, ie.. it is based on the analysis performed in Chapter 4

v (

5.5.1 Workspace Optimization

In the first stage of the analysis, we will assume that the actuators have an
infinite range of motion and derive the corresponchngr worRspace of the manipulator, ¢
the region that it can attam when only the constraints due to the aschitecture of the
mantpulator are tonsidered It 1s recalled from Chzizpter 4 thaf the solution of the inverse

>4

kinematic problem 1s obtained through two of the solutions of a quartic equation n ¢yy—a

g component of the rotation matrnix Q defiming the onentation of the platform-—. each of

which leads to two solution for the global problem The roots of the quartic equation are

given in eq (4.99) and repeated here for quick reference

(@2)12= ~X £ (VX24+Y2 - 1) (5.654)

N .
4 5
]

) X=z/l and Y =y/l (5.650)
2

""" The other components of the upper left corner of matrix Q are computed as follows
. “3

LAdEN
4

ﬁw L. N o -
=g ="V G (566a)

-and , ¢
& » g1 S 9 +2Y 7 (5.660)

Y 4 4

while the last row and, the last column of Q are computed using the properties of the

orthogonal matrix (Appendix C).

y 4

The workspace of the mantpulator can be determined by noting that the solu-

tions given above are components of an orthogonal matrix and hence have to be comprised
W
within the following range:

<1 ;=123 - (567)

u( } 181
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The foregoirig constraint is now applied to each of the roots given in eq.(5 65a)

Root 1

o . (/
We obtain ¢
3 S . * . ] .
: | o g =VXI+Y2Zox-1 . (5.68a)
a e ' ‘,: ) )
] g1 = VXI+Y24+X 1 (5.68b)
912 =g = ~Y : (5.68¢)

and the flrstjconstr'aint Zo be applied 1s
[

’ g 2 2 2 2 :

Upon substitution of egs.(5.68b&¢c) into eq.(5.69): this equation becomes

—2Y2 _ X2 2X - 22X - 1)V X24Y2 >0 (5.70)
€ which can be further simg}ified to lead to
N : (1-VX2+Y2)(X+VX2+Y2)>0 (5.71)

Smce the second factor on the left-hand side of eq. (5.71) 1s a positive semidefinite quantlty

we are left w:th only

’ . 1-VX2+Y22>0 (5.72a)
) 1. ’ \
) 2, .2_;2 e
% N z°+y" <l R (5.72b) - -.
The second constraint to bé applied can be written as - -
] 2 . - !r.‘:' ,
Gy =ah=1-gh—gh >0 (5.73)

Upon substitution of egs.(5.68adc) into eq.(5.73). this equation becomes

€ ‘ Y2 _ X2 2N 12X + 1)VX24¥2>0 (5.74)

\\\L — ’ 182
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which can be rewritten as

CVATEY2 )N S N2 2y g (5.75)

Since the second factor on the left-hand side of eq (5.75) 1s a negative semidefimte quantity,

" eq.(5.75) leads to ' . —
' VA2Z4y2 .1 ; (5.76a)
N Y
e . --
~ 224y 2 (5.760)

Root 2 .
Wp obtain "
— q22 = —\/’:{72_—;‘7‘5 - .X. + 1 ’ ~ 7 : (5‘77”)
a1 =~ VX2 4124 N 41 @ (5.770)
N 912 = 41 = =Y 6'77")

s
]

Again, the first consttaint is written as

‘1123 = Q§1 =1- 0121 - ({122 -0 ) (5.78)

Upon substitution of egs.(5.77b&t) into eq.(5 78). this equation becomes

e

A

" V2o 22 N 42N v AZ 4 v2 - (5.79)

7

which 1s identical to eq.(5.74) and hence. the first constramt leads to

‘ * 2yl P . (5.80)
The second constraint applied on the second root Is /‘/
/|
2 _ 2 A
=q3=1-¢31 - ¢, - 0 (5.81) '\
‘12? 32 [ i ), 7N
/ 18}1" ‘
/
s i i
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Upon substitution of eqs (5.77adc) into eq.(5.81). this equation becomes - -

Y% - 2x242X - 2(X - 1)VX2+Y2>0 (5.82)
which is identical to eq.(5.70) and henge, the second constraint leads to =
2 +yt<i? \ (5.83)

Since all the constraints lead to one and the same inequality. i.e., eqgs.(5 72b).
(5.76b), (5.80) and (5}33), which: are 3l identical, this inequaiity defines the boundary of
the wor;kspaée which is, in this case, a circular cylinder of radius [ whose axis of symmetry
is the z axis, 1.e, an axis orthogonal to the base plane and locatedﬁ at the centroid of
the base triangle Hence, if the actuators have an infinite range of motiop. the foregoing

cylinder represents the set of points that the centroid of the platform can attain when all

©

mechanical interferences are neglected. s

- , 1
. 2 . . . O >
In a-real manipulator, however, the actuators have a finite range of motion and

the workspace is consequently reduced. To find the workspace of a manipulator whose actu-
ators have limited motion. the cylinder described above will be discretized and a description

of the accessible region will be obtained in terms of a sum of elements of volume

f

N , ‘
First of all. we have to compute the minimum and maximum height. fror‘:‘the Te
parse plane, that the Iplatfor‘m can reach in z. This is ‘given by -
~ hrmn = \/P2,, — (1= )2 if -y 7
min = \/ P, — (1 =) Pran < 11 =1 . (5.84)
- Ryan =0 otherwise L
and ' .
himaz = \/Ploaz —(1 - 1)2 (5.85)
>
This pote;ntial region can thien i)e divided in a certain number of sections, or *
' ¥

'slices’. parallel to the base plane and located between z = k,,,, and z = Amgz. In each

of these sections. the trace of the workspace on a plane parallel to the base is found using
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s

the following algorithm A certain number of rays originating from the pomt r = y = 0 are
equally spaced around a circle centred at that point. For each of the rays. a direct-search
method is used to locate 1ts intersection with the boundary of the workspac%. The surface

of the.element is then approximated by a sector of a circle. 1.e .

/.! Co

o 20 - -

a D 2

where 6 1s the angle bétween two consecutive rays and r ;s the radius assotiatdd with o

given element This 1s illustrated in Fig. 5.19 It 1s pointed out that, due to the symmétry

of the workspace, only one third -of the rays need be actually computed " The surtace ol

all the elements of a planar region—or ‘shce’—are then summed and®multiphed by the

increment 1n % to give the volume of that ‘slice’ of the workspace..which s, in furn, added

- 3 : ‘ .
to the volume of the other elements > - ‘

-

Figure 5.19 Discretization and approximation of the workspace of the spatial three-

i -

degree-of-freedom manipylator ,

(

®

‘“""y\ An example of the workspace of a mampulator, with actuators having limited

motion, is plotted in Fig 520 The workspace 5" represented by the projection of its

boundary. onto the base plane. for different values of z. or ‘slices’. used in the numerical

h]
evaluation of the volume

€
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1 hand 2z =.,559 A N
C R - :
) 2 -  z=.702 |
3 - 2z =.844 l s
4 =~ z =987 "
5 - 2z=1.129 i _
6 — z=1.272
- , |
l 2
A -
»
4 -
a 6 I
3 I 5
;
s

k)

, Figure 5.20 Example of the workspace of a spatial three- degree-of-freedom parallel
manipulator with / =05 and pmar =15 The workspace i is represented by the
projection of its boundary in the base plane. for different values of z

) .. The problem of the opti;lzatnon of the workspace is now formulated as follows
Fgr a, given value of the range of motion of the actuators. find the value of [, th:e characteristic
dimension of the platform. that will produce the workspace with a maximum volume

. This problem will be solved as a series_ of works;;ace maximization problems obtained by

( ) incrementing the value of the maximum extension of the actuators ppgy The minimum

186
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extension of the actuators 1s assumed to be given by
‘1
Prin = épm(xr (5.87)
RS
For a given value of p,,,r. we can compute the volume of the workspace corre
-
sponding to a certyin value of [ and. therefore.suse a search technique to find the value of /

that leads to the maximum workspace The results for different values of p,,,.,, are shown

in Fig 5.21. where the values of ! corresponding to a maximum workspace are plotted vs

Pmar
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Figure 5.21 Optimum values of I that maximize the volume of the workspace as 2
function of prmas '

¥
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. 5.5.2 Isotropy of the Jacohian Matrix

»

The Jacobian matrix of the spatial three-degree-qf-freedom parallel manipulator

is defined in eq.(4.109) and an explicit expression for this matrix is given in eq (4.116a). .
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5 OPTIMIZATION OF PARALLEL MANIPULATORS

It 1s now desired to find isotropic designs. 1.e, to find kinematic parameters for
which at least one pomnt of the workspace corresponds to a configuration for which the

condition number of the Jacobian matrix is equal to unity.

As a first analysis, the complex method (Box 1965) was used to minimize the
condition number over the variables r,y,2 and [, 1re., over the whole set of kinematic
paraméters and position variables. It was then observed that the mimimization procedure
tends to converge to points for which z =y = 0 Therefore, a more detailed mnvestigation.

of these points was undertaken This is shown in Fig 5.22 where curves of the reciprocal of

the condition number as a function of z are shown for a few values of [ and for z =y = 0.

73
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Figure 5.22 Reciprocal of the condition number of the spatial three-degree-of-
freedom parallel manipulator as a function of z. for z = y = 0 and for a few
values of [ ’ ’

188




AN

5 OPTKIIZ»U ION\%~ PARALLEL MANIPULATORS
\

. ' ’ ’ The following 1s readily observed for (ery value of the charactenstic dimension
E [.-there exists an isotropic point located on the = axis. 1.e . the axis detined by & =y - 0,

‘at a certain height =* Moreover. the value of =™ 15 a linear function ot I, as #t can clearly be

-

seen In Fig 5 23, where the value of =" 1s plotted as a function of /' This plot was obtamed

by mimimizing the condition number over = for every value of I The hnear relationship ¢an
5

o]

be expressed as

= al b (5.88:19
? where
J v _ .
. JRCap a=b=1v2 (5.884)
| !
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? ‘ .
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{
{
) . Figure 5.23 Values of z* 1e values of z for which th¢ spatial three-degree-of-
@ freedom parallel manipulator ts isotropic when z = 1 = 0 as a tunction of {
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5 OPTIMIZATION OF PARALLEL MANIPULATORS

No other point of the workspace was found to be isotropic As an example

of the behaviour of the condition number over the workspace, this quantity is plotted as

a function of = in Fig 524 for r = y = 0.2, and for a few values of the characteristic

dimension {
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Figure 5.24 Recprocal of the condition number of the spatial three-degree-of-
freedom pafhlici map:pulator as a function of = for r = v = 0 2 and for different /
values of |
3 - - Ty - ‘.
5.5.3 Global Conditioning Index

The global conditioning ingex of the spatial three-degree-of-freedom manipulator
s (

can be evaluated by resorting to a numerical integration over the workspace It 1s known,

from Section 55 1. that the workspace 1s included in a circular cylinder of radius / and

c
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length hpar - h,,,, Whose axis of symmetry is along the > axis. Therefore. this volume

can be discretized and a test can be performed on each of the elements then obtained

to check whether or not 1t 1s part of the wc;rkspace When the element 1s part of the

workspace, the condition number of the Jacobian matrix 1s computed. for one pomnt of the

element. as well as the volume ot the element These quantities are then summed over

all the elements to lead to the values of 1 and B as defined in eqs.(5 5b&e) Smce the

integration 1s performed over a cyhnder. 1t 1s natural to choose a cylmdnical coordinate

system After discretizing the potential workspace as shown m Fig. 5 25, the mtegrals to

be performed can be wntten as the following sums where, 1t 1s recalled. each element has

to be tested before 1t 1s included
n~ My
_ T \"*« <4
A=) Y stan
1=1 =1

and h .

n. Ny
B = Z Z SLIjAh

1=17=1
where
nr
A _ =
S = Z Gipk
=1 )
and A
Hyr
o B _
\ ,qu = S: bz/k
k=1
with

1
4y = (‘“‘ ) (ray - rf)‘z

Kigk

if element 17k 1s in the works(pace Otherwise.

aul::O

4
*

Similarly, -
Ad

2 2
biyk = (rir = i) =

if element 77k is-in the workspace Otherwise,

. bUk:O

(5.89¢)

(5.89h)
(5.90a}
(5.900)

(5.91a)

(';:).911))

(5.924)

(5.92h)
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7 5 OPTIMIZATION OF PARALLEL MANIPULATORS

In the above expressions, we have

" ¢ ' Ah = (hmas ~ o) /s 59
. ' r, =1t - 1)/n, (5.94)

and .
A0 = 27 /3n, - . - (595

the variables n,, n, and n. representing the number of elements chosen when discretizing
in r. 0 and =, respectively It is pointed out that the symmetry of the workspace allows us

to integrate on only one third of the actual workspace, a fact that is taken into account by

eq.(5.95).
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Figure 5.25 Discretization of the workspace of the spatial three-degree-of-freedom
parailel manipulator

The algorithm described above was used to compute the global conditioning

f @ index of the manipulator under study for different values of Pmaz and [. Again, the relation
/
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5 OPTIMIZATION OF PARALLEL MANIPULATORS

given in eq.(5.87) was assumed. The results are shown graphically i Fig 5.26. where the
GCl s plotted as a function of the two variables. The best design i1s obltained when we

have pmuz = 1.2 and { = 1.4, which leads to a GCl of 0.5783

.

GCl

Pmuz

Figure 5.26 GCl of the spatial three-degree-of-freedom parallel manipulator as a
" function of [ and ranar
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KINEMATIC INVERSION AND TRAJECTORY
Chapter 6 PLANNING OF REDUNDANT PARALLEL
- ' MANIPULATORS

3
The kinematics of manipulators in the presence of‘redundancies has atgracted

the attention of many researchers over the past decade. Liégeors (1977). Klein and Huang
(1983). Baillieul (1985, 1986) and Stami3i¢ ae\d Pennock (1985). among others> have tackied
the associated inverse kinematic problem considering various types of approaches and opti-
mization cniterta  This problem 1s still a subject o?current research (Anderson and Angeles
1987, Suh and Hollerbach 1987. Wampler 1987. Mayorga and Wong 1987 Chevallereau
and Khalil 1987, Nakamura et al 1987) Klein and Blaho (1987) presented a review of
different optimization criteria that have been used for the design and control of redundant
manipulators However. to the kno(xvledge of the author, the study of redundancies has so

~

far been limited to serial manipulators only

{’\

The kinematic problem addressed in this chapter s associated with parallel ma-

., A ' ,

nipulators  In many instances, it may be desirable to use-a parallel manipulator with a
degree of treedom greater than the number of Cartesian coordinates to be controlled This
allows one to optimize a performance index in the process of solving the inverse kinematic
problem After having formulated this problem as one of condition-number minimization.
it will be shown that the optimum value of the free parameter that minimizés the condition

number 1s not a continuous function of the prescribed Cartesian coordinates In fact. the
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performance index used. te. the condition number of the Jacobian matrix of the manip
ulator. 1s a measure of the local dexterity. as stated »n Chapter 5 [n order to optinee
this index along a partially prescribed Cartesian frajectory. the concept of trajectory map
is introduced The Cartesian trajectory to be followed 1s said to be partially prescribed
because. as stated above, the task to be performed—and hence the Cartesian trajectory to

be followed—requires less degrees of freedom than the mamipulator can provide  Thetefore,

‘the description of the task itselt does not completely define the associated motions of the

manipulator The trajectory map 1s. in fact a representation of the held of possible solu
{
tions over which the optimum trajectory will be chosen in order to fully specity the motion

of the manipulator

An on-line trajectory planning solution is then derived and the results obtained

\
with this method for a planar three-degree-of-freedom parallel manipulator and a spherical
three:degree-of-freedom parallel manipulator, which were studied in Chapters 4 and 5. are

given —

6.1 Problem Formulation s

The problem to be solved here can be described as follows: Given an incom
pletely specified trajectory in the Cartesian space of the mampulator. find the joint histories
that will produce this trajectory while optirmizing a certain p'erformance index. Of course
the choice of this performance index will strongly affect the resulting jomnt histories It s
therefore crucial that the index chosen be a relevant meaningful quantity The condition
number of the Jacobian matrix of the mantpulator will be used here as a performance index
to be minimized It s recalled. from Chapter 5. that the condition number of the Jacobian
matrix of a manipulator 1s @ measure of the accuracy of the kinematic control of this manip
ulator (Salisbury and Craig 1982). which makes it a very significant index Moreover, since
the condition number becomes infinity at singularities, the minimization, of this quantity
will tend to keep the manipulator away from these undesirable configurations 1t is pointed

out here that the approach used in (Anderson and Angeles 1987), consisting of minimiz-
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6 REDUNDANT PARALLEL MANIPULATORS

ing the deviation of the joint angles from a certain value—this measure 1s termeq JRAE
{‘ in (Klein and Blaho 1987)—, produced unsatisfactory results when tested on the planar

parallel manipulator Hence, known results for serial mamipulators cannot be extrapolated

\
to parallel mamipulators

' 6.1.1 Planar Three-Degree-of-Freedom Manipulator .

The planar three-degree-of-freedom parallel marupulator considered here (Fig
4.1) was studied in detail in Chapters 4 and 5 This manipulator can be thought of as a
redundant manipulator if one i1s interested in positioning a point of the gripper on the plane”
disregarding its orientation That. <':z.lse would anse, for mstance. when the manipulator 1s
used to guide a mill, a dnll or any other axially symmetnc o'bject The partially prescribed
Cartesian trajectory Is therefore given by the position C{z.y) of the centroid of the gripper
The inverse kinematic problem for this manipulator can be solved in closed form as shown

in Chapter 4. its solution 8 being represented here as

8
@ 0 =0(z.y.0)" ' (6.1)

where 0 1s the 3-d|mensuog_§31 vector of actuated joint coordinates The problem consists,
then. of generating the joint histories that will guide point . of the gnpper through the
prescibed positions (r.y) and will mimimize the condition number of the’ manipulator over’
the free variable 1e. angle o ‘Once this angle 1s specified. we can explicitly compute
the jomt variables # using the kinematic inversion mentioned above Since this inversion
% leads to two solutions per leg, we will choose these solutions so that the manipulator
remains on the same branch, the procedure being then capable of avoiding undesirable
branching effects In the discussion that follows. a coordinate f'ra e 1s defined fixed to the

manipulator’s base with its ongin O located at the centroid of thangle M.V, 3 of Fig

41 Moreover, the X and Y™ axes of this frame lie in the plane 6f motion and Y 1s directed
from O to M3 The branching of the planar manipulator can be re'adlly verified as follows
r We first define M, (7,,.y,,) 1,(£1,.y1.) and G, (zy,.yp,). for 1 = 1.2,3. as the centres of

Q the driven joints. the intermediate joints and the joints attached to the gripper. respectively

196




¢

i
6 REDUI\}'bANi\PARALL[L MANIPULATORS

-

Then we define s, = [ry, — zy,,y2, - y1,.0]7 and t, = [for ~ Tyober 1,-0]7 . which are |

the vectors connecting I, to G, and [, to Af,. respectively We can then write.

o
11 3

s, ' t, = q,e3 , (6.2)

where e3 = [0.0.1]7 and
4
o, = I, (Y — yn) Fa(r2, oy + Th¥2e Tadn ’ (6.3)

The sign of o, will tell the branch for the 1th leg and therefore. by recording this quantity
for each of the legs. at every configuration, we can ensure that the manipulator remains
on the same branch A c.hange N sign ()f this quantity would mean that we have chosen
the wrong root of the quadratic equation arising in the solution of the inverse kinemati.

problem N

6.1.2 Spherical Three-Degree-of-Freedom Manipulator N

The spherical three-degree-of-freedom parallel manmipulator considered here 15
represented in Fig 4 9. This mampulator was studied in detail in Chapters 4 and 5. where
it was shown that it can be used to orient a gripper in the three-dimensional space. However
we would like to use it here to ortent a line of the gripper. regardless of the orientation of
the gripper itself about the said line  This task requires only two degrees of freedom. which
allows us to optimize a performance'mdex Apphications requiring such a task definition

comprise, e.g . the orientation of solar panels, radar antennas and telescopes

‘In what follows. a coordinate frame 1s defined fixed to the manipulator’'s basc
with its origin O located at the point of the gripper that remains fixed, with its X and Y
axes In the plane of the motors Moreover, the X axis is defmed";long the axis of one of
the motors We can, therefore. define the unit vectors u,. + = 1.2.3 along the motors

axes (Fig 410).1e,

n

u, = [cos ~,. sin Iy - O]T.x 1=1.2.3 (6.4¢)
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with,
~ 13 IO 2_7T ﬁ 6.4b
< ‘ (= 1055 (6.40)
The orientation of the gripper 1s described by three unit vectors v,, for 7 = 1.2.3, fixed to
the gripper and directed from O to the joints attached to the gripper. which are represented

by points 1. 5. in Fig 4.9 ‘ ;

Let us assume that the line to be ogented s parallel to the unit vector g, which rs
df-‘?
orthogonal to the plane defined by vectors vi vy.v3 (Fig 49) In Chapter 4. the reference
configuration of the manipulator was defined as the one in which u, = v,, for + =1.2.3.
and thérefore. in this configuration, the unit vector g would be coincident with the z axis. ¢

since vectors u,, for + = 1.2.3. are located in the zy plane

We can then write tensor Q. describing the rotation /of thé gripper from the

:reference configuration to the current configuration, as a combingtion of\two rotations
’ The first one. represented by the rotation tensor Qq. i1s specified as a rotation mapping
vector ez into g and vector uy Into a unit vector r which 1s orthogonal to g and 1s located In

‘ the ry plane This first rotation s fully specified, for the task to be accomplished here. and
is equivalent to a rotation carrying vector g into its desired orientation with an arbitrary

rotation about gn axis parallel to g The second rotation, represented by tensor/Qz. 1S a

rotation of a certain angle v about vector g We can then write
Q=Q,Q (6.5a)

The rotation tensor Qq 1s. in turn. written as
a . _ 61 ={r h g (6.56)

where

-

¢ h=gxr (6.5¢)

which follows from the definitions of vectors r and g. Indeed. we want the unit vector

r= [rl‘rz.r3]T to be orthogonal to g and located in the zy plane. which leads to.

( r3=0 (6.6a)
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rPerdierd =1 - (6.60)
191 + 7292 +r393 =0 (6 6c)
The solution of these equations can be written as’
2
9 - nu (6.7)

\‘
b

|
—
oy

N
-~

(]

{

a1 + 9 42 R
To ensure contiyty of the angle of rotation zkbout the axis parallel to g in matrix Q9. we

will choose the posgive sign in eq (6 7) when g; 0 and the negative sign when gy - 0

Two special cases may also arise.

1) It gp = 0. then we will have. from eqs.{66) r; = 0 and ry = i We wil

choose the positive sign when g1 - O and the negative sign when gy 0.

n')r If giz + gg = 0. then we necessarily have g3 = =1, in which case we will specify

that r = =uy

We can now write the second rotation. 1e . the rotation through an angle

@

about an axis parallel to vector g. as (Angeles 1982)
, » .

<«
.

Q; = ggT + cos w(l - ggT) sin (1 - gl 46.00)

2

. _where 1 denotes the 3 - 3 idenuty tensor Therefore. eq (6 5a) can be written as

<

o 2 : P
T . Q = Q;(v)Qq (6.80)
from which it becomes obvious that once vector g is specified. matrix Q becomes a function
- of angle_u', over which the optimization will be performed. since its value does not affect

the orientation of vector g. .

Once the optimum angle v has been determined. matrix Q can be computed
and the joint variables can be obtained from the kinematic inversion Again. this inversion
leads to two solutions per leg and we will choose the solutions so that the manipulator

always remams on the same branch The branching of the spherical manmipulator can be
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6  REDUNDANT PARALLEL MANIPULATORS

verified as follows. we define two vectors tft are tangent to the umit sphere associated

with the manipulator at the tip of w,., Therefore, these vectors are orthogonal to w, and

can be written as

- s, =v, — (v, w,)w, : J (6.9a)
t,=u, - (u7 ) WZ)WI | . (ng)

These vectors play the same role as the corresponding ones for the planar manipulator We
b

ct=_aw (6.9¢)

then have,

- ,/l
Again. the sign of a, will tell the branch for the :th leg

6.2 Local-Dexterity Maximization

As pointed out in the introduction. the optimization performed along the tra-
yectory will consist of a minimization of the condition number of the Jacobian matrix of
the manipulator. Since we are dealing with paralle] manipulators. the Jacobian matrix is

v &

defined as the matrix mapping the Cartesian velocities into the joint rates For the planar

-manipulator. we can write
Jpc=10- (6.10)

-~

where © = [z.§.0] 1s the vector of Cartesian velocities and § is the vector of joint rates

For the spherical manipulator, we have: .

v

- Jow=10 - _ (6.11)

where « s the angular—velocxty vector of the gnpper and @ s the vector of joint rates

The expressions of these matrices are given in Chapter 4 as functions of the ‘Cartesnan

" coordinates and the Joint angles They are repeated next for quick reference

—agreg —by g —dj, e
Jp frmerd ~a2/c-2~ ~—b2 (‘2 ~d2 02 (612)
—a3ic3 —by,e3 _~dy/c3 ‘

4
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where

o
i

—g192(z — z,,) + g2 cos O, + gy cos o,

b, = —9192'(9 - ym) + gysind, + g1 s o,

(6.13)
¢ = 92[(3/ _; ym) cos 8, — (r — z,) sin 02] + smﬁ(?, - o,) -
d, = 91l{y — ym)cos o, = {r - r,)sino] - snld, - o) -
with g1 and gy defined. in turn, as ‘
g1 = 1714, gy =113 . s (6.14)

a

(Zo1r Yo, ) being the coordinates of the centre of the 2th motor. angles o, being defined as

¢1 = ¢ -+ 71'//6 ‘
. ¢y =¢+5m6 } (6.15)
¢3 =¢ - /2

For the sphencél manipulator, the ith row of the Jacobian matrix.‘(jf,)T, can be wntten as.

I LA I “ (6.16)

(u’l d W'L) "V, h
where u,.v,, w, are the unit vectors along the axes of the driven joint, the gripper jgint and

the intermediate joint, respectively, for the ith leg

We have chosen, as an optimization criterion, to minimize the value of the
condition number of the Jacobian matrix This quantity was introduced in Section 51
where it was called the lacal dexterity of the manipulator. The’ defimtion of the condition

N

number is recalled to be:

k= 3.3 - (6.17)

d

,where the norm s the same as the one used in Chapter 5, i.e.,

— e

=t (JTWY) ' (6.18)

with W = %1. n being the dimension of the square matrnix J From eqgs.(6 12-6 18). we
can see that, given a set of fully specified Cartesian coordinates (from which we derve

the joint coordinates using the kinematic inversion). it i1s straightforward to compute the
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b J
condition number of the Jacobian matrix However, to compute derivatives of the condition
number with respect to the free variable of a redundant manipulator would be a tremendous
task. Therefore, it was decided to use a direct-search technique to minimize the condition
number over the free parameter. The method used was taken from (Brent 1973) where it is
feferred to'as the localmin procedure. This method combines the golden-search technique

and successive parabolic interpolation It leads to an algorithm retaining the advantages of

both of these methods. e, superlinear convergence 1s garanteed
™

Since the condition number of a matrix becomes infinity when this matrix 1s
singular, 1t 1s preferable to use the reciprocal of the condition number as an optimization
parameter. Indeed. as stated in Chapter 5, this quantity has a very convenient behaviour,

for it is bounded as follows;

0~ <1) 1 (6.19)

Py
However, this quantity, which can be thought of as a measure of the distance to singularity,
should be maximized and. since the direct search technique we are using is devised to

. . ¥ .
minimize an objective function. we will rather use the complement of this quantity. which
*

can be thought of as a measure of the distance to 1sotropy for a certain matrix and which,

4
therefrre, 1s to be mimimized It 1s recalled that 1sotropic matrices are the ones which have

a condition number of 1. 1e. the lowest value that this quantity can attain As stated in
Chapter 5. only orthogonal matrices and ther multiples have this property (Strang 1980)
The objective function t6 minimize s then written as
1
— ::1—(--) ~ (6 20)
" .

.

The procedure consists of mintmizing  this quantity over the free variable for
each point of the partially prescribed Cartesian trajectory For the planar mam;;ulat_or. this
amounts to a m)mimlza”tzon over the angle of orientation @ when z and y are specified for
each of the m points of ghe trajectory. 1 e . : .

mi [1 - %:J ‘ (6.21a)

¢
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st. r=ur,y=y. =1, .m (6.214)

where

q, ' -
- K, =k{o). 0 o 2n (6.21¢)

i

Once the m values of o. {o }’1”. along the trajectory are obtained, we can compute the

joint histortes §.(t). for j = 1.2.3 \

The procedure used for the spherical mantpulator 1s very sinilar  Again, we do

~
r -

. mn i1 - (6.224)
. _ v L Ky . ’ . -
¢ 3
‘ st. g=g,. (=1 .m (6.220)
where ) ) .
Kk, = k(). 0 w,  2n ' ' (6.22¢)

s
Once the m values of y. {y,}]". are obtained. the joint histories ¢, (!} can be computed,
for ) =1.2.3. ’

6.2.1 Undesirable SidtiEffects

The geperal idea presented above has to b&tjdled in more detail before we can

/ o
implement a stable algonithm that would minimize the condition number along a partially

prescribed Cartesian trajectory

The reciprocal of t‘,e condition number of the planar manipulator 1s plotted

Fig. 61 as a function of angle o for three consecutive points of a crcular trajectory  Two
important problems can arise, as shown by this graph N
/ .

First of all. one can realize that, in the case shown here. there are two feasible

regions. 1.e , two ranges of values of o that are attainable for a given point of the trajectory.

and that these regions are separated by unfeasible regions which ;lave been assigned a value

of (1/k) = 0 on the plot. Therefore. when computing optimum values of  for consecutive

) 203



6 REDUNDANT PARALLEI: MANIPULATORS

(l) ——— first point

——— second point

= third point

Figure 6.1 Reciprocal of the condition number of the planar manipulator as a func-
tion ot the anzle of orientation .. far three consecutive points of a given trajectory

points of a trajectory, one must avord unfeasible regions and jumping from one feasible

region to another disconnected. one

Moreover. even though in the case presented here the solutions for the optimum
values of o remain within the same feasible region. discontinuities can arise in these solu-
tions  This 1s clearly-shown in Fig 6 1. where points M. M’ and M" denote the optimum
values of o for each of the three trajectory points It can be realized from tjhls plot that,
although the curve undergoes shight variations from point to point. there 1s a large ‘jump’
of the optimum value of o (from point A’ to M") between the second and third points
Hence. >as a result, the optimum value of ¢ that maximizes the reciprocal of the condition

number is not a continuous function of the prescribed Cartesian coordinates

. 204
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6 REDUNDANT PARALLEL MANIPULATORS

The foregoing considerations will have to be taken into account in the trajectory-

planning procedure.

As pointed out above. there may be values of angle o that aregiot attanable for

a given poaint of the partially prescribed Cartesian trajectory We can identify these regions

for each of the points and draw the resulting diagram which s here termed trajectory map

Examples of these maps are shown in Fig 6.2 and Fig. 63 The regions dentified with a

described later

b

minus sign are the unfeasible ones. The trajectoriés corresponding to these maps will be

The map shown in Fig. 6.2 was obtained for the planar manipulator [nthis casc,

it is possible to obtamn a closed-form expression for the limits of the workspace for a given

point of the trajectory. It was shown in Chapter 5 that the boundary of the workspace can

be obtained by setting the discriminant equal to zero in the quadratic equation that anses

in the solution of the inverse kinematic problem for each of the fegs of the mampulator

In the aforementioned cﬁ;pter. the equations obtained when equating the discriminant to

Zero are.
(X, —z)2+ (Y, - u)2 = (1 + )% -~ 1=1.2.3
(X, ~z) 2+ (Y, —u)= (- )% - =123
where
z, = [3cos(d + ¢,), 1=1,2,3
) v =hsn{o+o), 1=1,23
X,=z-z,, 1=1.2,3
Yi=v-yu, 1 =1,2,3 )
and

(6.23)

(6.23h)

(6.24(1)
(6 24/})
(6.24¢)

(6.244) |

(6.25)
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points along the trajectory

5

o

Figure 6.2 A trajectory map for the planar manipulator of example 1

It 1s recalled that (r,y.o) are the Cartesian coordinates of the gripper Expansion of

eqs.(6 23a&b) leads to

2X [z cos(0 + @) + 2Y,l3sin(o + ¢,) — ¢, =0, 1 =1.2.3 (6.26a)

- 4

o 2N, lzc08(e + ¢,) + 2Y l3sin(0 + o,) - n, = 0. 1=1.2.3 (6 26b)
“with

=N+ v2+d - +0)k =123 (6.274a)
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20/

- ne=N2VEHE (p h)E =123 2w
- ) It is tf;en desired to find. for gven values of & and y. the values of  tor which any one
of these six equations (6.26a&b) can be satisfied Therefore. we introduce the tollowmg
substitutions
. | 17?2
cos{o +o0,) = - TIQ. 1= 1.2.3 (6.28u)
and ‘ v ) \
sin(o + o,) 21, 1.2.3 ‘ (6.280)
)= t = 1.4, £0D
: 1+ 72
a . - ‘ .
where ‘ '
1 .
o T, = tan[-z(o +o,)]- =123 ) (6.29)
which leads to six quadratic equations. namely. 3
Q /\ '
T12(2.\',l3 +¢) - 2(T7(2Y113) + (¢, - 2X,3) =0, =123 {6.30u)
- T22X,13 +n,) - 2T,(2Y,13) + (n, ~2X,13) =0. 1 =1.2,3 (6.300)
‘ The solutions of these equations can be written as.
. V03 = 4V (24N o ias 6310,
e - 1= 1.2, 3lu
' (¢, +2X,03)
( ) ~
and S
- R WERERN O I A VA ALY
- T = — ST . ) =1.2.3 (6.31h)
. {n, +2N,03)
We therefore have a maximum of twelve solutions 1e a maximum of four solutions per |
leg Equations {6 31a) and (6 31h) have been used to generate the trajectory map shown |
i Fig 62 P
. The equations describing the motion of the spherical manipulator being more
complicated, 1t 1s not pdssnble to obtain closed-form expressions for the hmits of the
J workspace and hence, the trajectory map shown in Fig 6 3 has been gcreratcd by mere
3 scanning of the values of angle u for each of the points of the trajectory
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100

points along the trajectory

wm
o
1

Figure 6.3 A tiajectory map for the spherical mampulator of example 2

6.2.3 On-Line Programming of Smooth Trajectories

Once a trajectory 1s decided upon and the corresponding trajectory map s

obtained. it i1s desired to compute a smooth path that would go from the bottom to the top

of the map while minimizing the condition number of the manipulator This Is accomplished

using the algorithm shown in Fig 6 4. where superscripts denote the step numbers

This algorithm seeks optimum values of the condition number which are within

“
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- ALGOR1THM
< |
l . |
) current trajectory pount ; ¢-+l
- ‘b' '
Y max. 2nd derivative

define target range smoothing filter
(¢ - A8) S ¢™! < (¢ + AP)
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‘target range /Jl°___;_ use localmin over N
“"\nclude roots” .~ complete target range
- -
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)
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. ‘ a m°b'm)’ range" > ’ reduced target range

- A e
= I \//

e
no *{ /

find closest

I mobility range ]

| use localmin over

| reduced target range

L

L 4

V

Figure 6.4 Aigonthm for the on-line planning of smooth trajectories for redundant
paralltel manipulators |

a certain neighbourhood of the current value of.the free variable This neighbourhood, or

target range, 1s defined as:

(6" — Bg) < ¢ 2 (¢ + Do) (6.32)

where A@ is specified for a given trajectory or manipulator The occurrence of roots. i1 ¢,
of boundaries of the accessible region, within the target range is also verified Should roots
be present, the procedure would. still garantee that the solution remains in a continuous -\

‘z’ feasibility region. This is accomplished by reducing the target range. 1e.. by keeping only

.
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the portion of this re;nge lying 1n the feasible region which is contiguous to the current
trajectdry point The direct-search procedure (localmin) described in the first part of this
§ection s then used Finally, one last stage 1s added to the procedure in order to smooth
Fthe jumps that could occur within the feasible region. as described in Section 621 This
procedure consists of imposing a maxlrunum value of the second dertvative of the free vanable
with respect to a normalized time, 1e., with respect to the progression along the trajectory
The second derivative 1s approximated using central fimte differences We have

d? X

= x o oxt 4 ! (6.33)

At step 1 + 1 of the trajectory, this quantity 1s computed If its magnitude is greater than
the prescribed tolerance, we then use

1

2x
) Xr o +2x - xd (6.34)

d
X’L+1:S n
gn( "

where X[, denotes the prescribed maximum value of the second derivative. This com-

pletes this algorithm

6.3 Examples:.

Two examples of the application of the method propo‘sed above are discussed

here

planar mamipulator I =201 1, =252 I3 =124

spherical manipulator ' a3 = 60° ay = 60°

Table 6.1 Link lengths and angles used in the examples

The first example deals with the planar parallel manipulator The problem here

consists of guiding the gripper along the contour of a cam that is to be cut with a mill

The orientation of the gripper is therefore irrelevant to the task since the tool 1s axiallly

g - 210,
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Figure 6.5 Cam contour used as a trajectory for the planar parallel manipulator
(example 1) :

symmetric  The cam contour is shown i Fig 6 5. where the location of the fixed joints of

the manipulator 1s also represented

* The hink lengths of the manipulator are given in Table 6 1. The trajectory map
and the optimum path were computed and are represented in Fig 6 2 The neighbourhood
of a curren£ point was taken as Ao = 05 rad and, for the trajectory shown here, no jump
discontinuity was observed. 1 e, the filtering based on a maximum value of the second
detivative was not used The reciprocal of the condition number obtained along the optimum

trajectory s shown in Fig 66

The second example presents an application of the method to the spherical

manipulator. The trafectory along which the manipulator is to be guided is prescribed a$

cos 3 cos A,
g = | cosidsin}, (6.354)
sin 4
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Figure 6.6 Reciprocal of the condition number along the optimum trajectory for the
planar manipulator (example 1)
where : .

3=m/6. A=(-1)r'50, =1.101 ' (6.350)

s

The link angles of the manipulator are given in Table 6.1 The trajectory map and the

optimum path were coniputed and are represented in Fig 63. The value of A¢' used to

" define the target range was taken as 05 rad The reciprocal of the condition number along

this trajectory is plotted in Fig 6.7.

i
1
f
I
Wb
= f
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Figure 6.7 ~ Reciptocal of the condition number along the optimum trajectory for the
spheﬁcal parallel manipulator (example 2)
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- ~ CONCLUSIONS AND RECOMMENDATIONS

Chapter 7
‘ : FOR FUTURE RESEARCH

This thesis has presented several results concerning the kinematic analysis.

optimization and programming of parallel manipulators.

[

P As a prelude to the study of these manipulators, some properties of simple

i .’\kmematic chains were revisited, which led to'a graphical representation of the mobilit}

( regions of planar and spherical four-bar hnkages and which allowed the formulation of
the transmission quality problem for these linkages as a,mlnlmlzaFion .of the transmission
defect Further investigations could be carried on to apbly these concepts to spatial linkages

- . However, the simple graphical representation obtained here for the mobility regions of

planar and .sphercal linkages would not be possible due to the larger number of kinematic '
parameters involved Moreover. the concept of linkage discriminant used here takes on

- more complicated: forms when the input-output equation of a mechanism’is of a degree

LN

higher than two

~ h . i’
o : ** A solution of the branch identification problem for wupst-partitioned manipula-

- tors which makes use of the eigenvalues of the Jacobian matrix was given The Jacobian

1,
matrix being the representation of the transformation mapping the joint rates of a serial
manipulator into the Cartesian velocities of its end-effector. it 1s conjectured that the eigen-
values and the determinant of this matrix contains the information necessary to identify the

L3

(“ branches. a fact that was verified for a 3 « 3 positioning Jacobian, leading to the solution
Q —
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d
mentioned above. However, in the case of a general six-axis manipulator for which the Ja-
cobian matrix has to be written as a matrix of order six which contains information on the
position and orientation, the eigenvalues and the determinant were found to be insufficient
for branch identification since different branches led to eigenvalues and determinants of the
same nature. A more detalled study could be pursued to find a function of the eigenvalues

or of other invariants of the Jacobian matrix that would distinguish between the branches

™ Complex kinematic chains were then analyzed and a method to determine their
degree of freedom was derived. The fact that this method is based on both the topology
and the geometry of the chain makes it very general and applicable to any kinematic chamn
A detailed analysis of the singularities encountered in a complex kinematic chain(was then
performed and led to the classification of all possible singularnities into three types. The
physical interpretation of each of these singularities was also given The classification
of singularities developed here provides a systematic way of describing the singularities
of complex kinematic chains and. hence, of parallel manipulators, which 1s of primary

importance in both analysis and design of robots

The kinematic analysis of five types of paralléLmampulators was conducted
The direct and inverse kinemati¢ problems were discussed together with the velocity and
acceleration inversions and a singularity analysis based on the classification mentioned
‘above. , For most of the manipulators discussed, a simple closed-form solution of the inverse
kinematic problerﬁ can be found. However, it was pbmted out that a six-degree-of-freedom

paralle] manipulator with fully general architecture would not exhibit such a solution It
<&

was also shown that the direct kinematic problem does not lead to closed-form solutions-

even for the simplest cases of parallel manipulators Numerical methods have to be used

and methods of reducing the order of the systems of equations to be solved were discussed

The optimization of the design of parallel manipulators presented was based on .

two main performance criteria. i.e.. the workspace and the dexterity. Workspace represen-
tations were obtained for four types of parallel manipulators and optimum designs were

denived. The dextenty criterion led to the definition of a new performance index for the
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optimization of manipulators which was shown to be applicable to both serial and parallel
manipulators This index 1s base(j on the condition number of the matrix representing
“the mapping between the Cartesian velocities and the joint rates—which is also an indi-
cation of the force transmission quality—over the whole workspace of the manipulator.
as opposed to existing indices which are based on the propértles of the manipulator at
some particular points of the workspace. The new index seems to be more appropriate
to the design of manipulators since the tasks to be performed by a robot are unknown. a
priori. The opttmization of the workspace of a fully general six-degree-of-freedom parallel
manipulator—which has to be described in a six-dimensional space—and the study of its
singularities and dexterity presents a formudable challenge. This 1s a subject for future
research However, it was pointed out in Chapter 4 that this problem can be approached

as a set of serial manipulator analyses
-

The programming of redundant parallel manipulators was discussed and an
algorithm for the trajectory planning of these robots was given The cases on which
the algorithm was tested involved manipulators with a degree of redundancy of<u‘nity
The scheme developed here could.be extended to manipulators for which the degree of
redundancy with respect to a certain task is greater than one, in which case the local
dexterity maximization would have to be performed over a set of variables This 1s an

avenue to be explored in the future

Finally. it is pointed out that the analyses and optimizations presented in this
thesis involved only the kinematics of parallel manipulators and that the dynamics of these

manipulators still remains a subject which brings about several unsolved problems

216




0

Reterences

References

Anderson. K. and Angeles J. 1987. 'Kinematic inversion of manipulators in the presence
of redundancies’ Technical Report. Dept of Mech Engng and McGill Research Centre
for intelligent Machines NcGill University. Montréal

Angeles 1, 1982 Spatial kinematic chains Springer—Verlag Berlin

Angeles, 1, 1985, 'On the numencal solution to the inverse kinematic problemy’. The Inter
national Journal of Kobotics Research, Vol 4, No 2, pp 21-37 ,

Angeles, J ., 1986a. 'Optimierung ebener, spharischer und raumlicher ‘Getriebe 7ur APProx
imierten Lagenzuordnung . Mechanism and Machine Theory. Vol 21, pp 187-197

Angeles, J . 1986b ‘Automatic computation of the screw parameters of rigid-body motions.
Part-I. Finitely-Separated positions’, ASME Journal of Dynamic Systems, Measurement,
and Control. ol 108, No 1, pp 32-38 “

Angeles, J, 1987, 'Détermination du degré de liberté des chaines cmémallqlies', Proceed
ings of the 7th World Congress on Theory of Machines and Mechanisms, Seville, September,
pp 199-202

Angeles, J . Anderson, K. and Gosselin, C, 1987, 'An orthogonal-decomposition algo-
rnthm for constrained least-square optimization’. proceedings of the 13th ASME Design

Automation Conference. Boston Ma . Sept . pp 215-220

- Angeles, J. and Bernier, <A . 1987a. A general method of four-bar linkage mobility analysis’
ASME Journal of Mechahisms, Transmissions, and Automation tn Design, Vol 109 No
2. pp 197-203

Angeles. J, and Bernier, A., 1987b. ‘The global least-square optimization of function
generating linkages', ASME Journal of Mechamsms. Transrussions and Automation i |
Design, Vol 109, No 2. pp 204-209 8 J
' 1
I

Angeles. J . and Callejas, M, 1984, "An algebraw formulation of Grashof s mobility cnteria
with application to linkage optimization using gradient -dependent methods , ASME Journal
of Mecharusms, Transmissions. and Automation in Design. Vol 106, No 3. pp 327-332

* Angeles, J . and Lépez-Cajun, CS . 1987, "The dextenity index of serial-type robotic ma
mipulators’, Techmical Report, Dept of Mech Eng. RMSL. McGill Research Centre for
Intelhigent Machines. McGill University, Montréal '

¢9

217




\ References

P E4
Angeles, J. and Rojas, A.A, 1987 'Manipulator inverse kinematics via condition number
mimimization and continuation’, The International Journal of Robotics and Automation,

Vol. 2. No. 2. pp 61-69

Asada, H ., and Cro Gramto, JA ., 1985, 'Kinematic and static charecterization of wrist
joint$ and their optimal design’, Proc /E“EE Conf on Robotics and Automation. St-Louis
T pp 244-250 ’

Asado, HG’ and Kanade. T 1982, "Design of direct-drive mechanical arms . ASME Journal
of Mechanical Design, Vol 104, No 3

!
Asada. H . Kanade, T . and Takeyama. |. 1982, 'Control of a direct-drive arm’. Proceedings

of -the Winter Annual Meeting of the ASME, Phoenix, Arizona, pp 63-72

Asada, H . and Youcef-Toumt, K, 1984, 'Analysis and design of a direct-drive arm with a
five-bar-link parallel drive mechanism’. ASME Journal of Dynamic Systems, Measurements,

and control, Vol 106, No 3, pp 225-230

Asada. H . and Youcef-Toumi. K, 1987, Direct-drive robots theory and practice. MIT
Press. Cambridge. Mass

Baulleul, J, 1985, "Kinematic programming alternatives for redundant manipulators’, Proc
IEEE Conf on Robotics and Automation, St-Lows, March, pp 722-728

Baillieul, J. 1986. 'Avoiding obstacles and resolving kinematic redundancy’, Proc IEEE
Conf on Robotics and Automation, San Francisco, Aprl. pp 1698-1704

Baj\paa. A . and Roth B 1986, "Workspace and mobility of a closed-loop manipulator’. The
International Journal of Robotics Research. Vol 5. No 2 pp 131-142

Barker. CR . and Lo J.. 1986 ‘Classification of spherical four-bar mechamsms’, ASME
paper 86-DET-144

Bennett, G T, 1903, A new mechamsm’, Engineering. Vol 76, pp 777-778

Box. M.J. 1965. ‘A new method of constrained optimization and a comparision with other

methods'. Computer Journal, Vol 8, pp 42-52
Brand. L., 1955, 'Advanced Calculus’. John Wiley & sdns Inc . New-York. pp 355-361

Brent. R.P . 1973, Algorithms for minimization without derivatives, Engl;ewood Chffs N J .

Prentice-Hall.

Chevallereau, C. and Khalil, W, 1987. 'Efficient method for the calculation of the pseudo
inverse kinematic problem’. Proc. IEEE Conf on Robotics and Automation. Raleigh
March. pp. 1842-1848

218




. Reterences

Cleghorn, W.L . and Fenton. R G.. 1984, 'Optimum synthesis of an angular function gener-
ating mechanism with prescribed time ratio and rocker angular swing amplitude’. Mecha-
nism and Machine Theory. Vol 19, pp 319-324

Cwiakala, M, and Lee, T W, 1985, "Generation and evaluation of a manipulator workspace
based on optimum path search’. ASME Journal of Mechamsms. Transnussions. and Au-
tomation in Design, Vol 107, No. 2. pp. 245-255 ‘

b '
Davies T.H. 1981, "Kirchoff's circulation law appled to muiti-loop kinematic chains’ |

Mechamsm and Machine Theory. Vol 16, No 3. pp 171-183

Dieudonne. J E., Parnsh, R.V.. and Bardusch, R.E.. 1972, "An actuator extension transfor-
mation for a motion simulator and an inverse transformation applying”Newton-Raphson's
method’, NASA Technical Report TN D-7067.

Duditza. F . and Dittrich. G.. 1969, 'Die Bedingungen fur die Umlauffahigkeit spharischer
vierghednger Kurbelgetnebe’'. Industrie-Anzeiger: Vol 91, pp 1687-1690 ‘

Earl, CF and Rooney. J. 1983, ‘Some ‘kinematic structures for robot manipulator designs’,
ASME Journal of Mechamsms, Transmissions and Automation in Design, Vol. 105, No. 1.
pp. 15-22 : '

Eddie Baker. J. 1980a. ‘Screw system algebra applied to special inkage configurations’,
Mechanism and Machine Theory, Vol. 15, No. 4, pp 255-265. -

Eddie Baker. J., 1980b. ‘On the relative freedom between links in kinematic chains with
cross-jointing’. Mechamsm and Machine Theory. Vol. 15, No 5. pp 397-413

Eddie Baker. J. 1981, 'On mobility and relative freedoms in multiloop hinkages and structu-
res’, Mechanism and Machine Theorr Vol 16, No. 6, pp 583-597

k]

Fichter, E.F . 1:986, ‘A Stewart platform-based manipulator: general theory and practical
construction’, The International Journal of Robotics Research. Vol 5. No. 2. pp 157-182

Forsythe. G.E.. Malcom. M A . and Moler, CB.. 1977. Computer Methods for Mathemnatical
Computations, Prentice-Hall, Englewood Chiffs, N J

Freudenstein, F.. 1954, ‘Design of four-link mechanisms’, Ph.D. dissertation at Columbia
University, publication No 8252 of Univerity Microfilms Inc., Ann Arbor, Michigan.

Freudenstein, F., 1955, 'Approximate synthesis of four-bar linkages', Trans ASME. Vol.
77. pp. 853-861. ' :

Freudenstein, F , 1962, 'On the variety of motions generated by mechamisms’, Trans. ASME
Journal of Engineering for Industry. Vol. 84, pp 156-160

(<\ o 219



References

Freudenstein,F . 1965, 'On the determination of the type of spherical four link mechanisms’,
Contemporary Problems in the Theory of Machines and Mechanisms, pp 193-196. USSR

Academy of Sciences.

Freudenstein, F., and Primrose. E.J.F ., 1973, "The classical transmission angle problem’,
Proceedings of the Conference on Mechanisms, Institution of Mechanical Engineers, Lon-
don, pp 105-110.

Goldberg, M., 1943, 'New five-bar and six-bar linkages in three dimensions’, Trans. ASME.
Vol 65, pp. 649-661. >

Golub. G H . and Van Loan, C., 1983, Matrix Computations, The Johns Hopkins University

Press. Baltimore .

Gosselin, C.. and Angeles. J. 1987a. 'Représentation graphique de la région de mobilité
des mécanismes plans et sphériques a batres articulées’, Mechanism and Machine Theory,

Vol 22. No 6, pp 557-562

Gosselin, C., and Angeles, J., 1987b, 'The optimum kinematic design of a spherical three-
degree-of-freedom parallel manipulator’, proceedings of the 13th ASME Design Automation

Conference, Boston Ma . Sept.. pp. 111-115.

Gosselin, C.. and Angeles, J. 1987c. ‘Application des techniques de moindres carrés con-
traints a des problémes de robotique’. Journées de I'optimisation, Montréal 13-15 mai

1987:

£

L

Gosselin. C.. and Angeles, J, 1987d, ‘Optimization of planar and spherical function gener-
ators as minimum-defect linkages’. submitted for publication to Mechanism and Machine

Theory

Gosselin. C.. and Angeles. J. 1988a. 'The optimum kinematic design of a planar three-
degree-of-freedom parallel manipulator’, ASME Journal of Mechanisms, Transnussions., and

Automation in Design. Vol. 110, No 1. pp 35-41

Gosselin, C.. and Angeles, J., 1988b. ‘Mobility analysis of planar and spherical linkages at
a glance’. to appear m ASME C omputers 1n Mechanical Engineering

Gosselin. C.. and Angeles. J. 1988c, 'A new performance index for the kinematic opti-
mization of robotic manmipulators’, accepted for presentation at the ASME 20th bienmal
mechanisms conference. sept 25-28 1988, Kissimmee Florida

Gosselin. C., and Angeles. J.. 1988d. 'Kinematic inversion of parallel redundant manipula-
tors’. accepted for presentation at the ASME 20th biennial mechanisms conference, sept
25-28 1988. Kissimmee Florida. ‘ )

220




Reterences

Gras’hof; F . 1883. Theorethische Maschinenlehre. Berlin

Gupta, K C, 1977. ‘A note on the optimum design of four bar crank-rocker mechamsms’,
Mechanism and Machine Theory. Vol 12, pp 247-254 —

“a

Gupta. K C 1980 ’Synthesis of position. path and function generating 4-bar mechamsms
with completely rotatable driving links', Mechamsm and Machine Theory Vol 15, pp
93-101

Gupta. K C 1986a. “'On the nature of robot workspace”  The International Journal of |

Robotics Research. Vol 5. No 2, pp 112-121

Gupta. K C . 1986b, 'Rotatability considerations for spherical four bar limkages with apphca
tions to robot wrist design’. ASME Journal of Mechamisms, Transmussions, and Automation
1n Design. Vol 108, No 3. pp 387-391

Gupta, K C. and Kazerounian, S M K. 1983 'Synthesis of tully rotatable R S S R lnk
ages'. Mechamsm and Machine Theory. Vol 18, pp 199-205

Gupta, K C . and Kazerounman, K . 1985, 'Improved numerical solutions of inverse kinemat

ics of robots’, Proc IEEE Conf on Robotics and Automation, St-Lows

Gupta. V K, and Radchffe, C W, 1971, "Mobility analysis of plane and spatial mechamsms’,
Trangy ASME Journal of Engineering for Industry, Vol 93, pp 125-130

; \
Gupta, K C . and Roth, B . 1982, "'Design considerations for mantpulator workspace’, ASME

Journal of Mechanical Design. Vol 104, No 3, pp 704-711
Hain, K, 1967, Applied Kimematics. McGraw-Hill
Hall. AS . 1966. Kinematics and Linkage Design, Balt Publishers, West Lafayette, Indiana

Harary, F 1969, Graph Theory, Addison-Wesley Publishing Company Inc

. Hartenberg, RS and Denavit, J 1964, Kinematic Synthesis of Linkages, McGraw Hill

Book Co . New-york

Hervé. JM 1978, 'Analyse structurelle des mécamsmes par groupe des déplacements’
Mechanism and Machine Theory, Vol 13, No 4, pp 437-450

Hunt, KH . 1978, Kinematic Geometry of Mechanisms. Clarendon Press, Oxford

Hunt, K H , 1983, ‘Structural kinematics of in-parallel-actuated robot arms'. ASME Journal
of Mechanmisms, Transmissions, and Automation in Design. Vol 105, No 4. pp 705-712

Hunt, K.H . 1986, ‘Special configurations of robot-arms wia screw theory- Part | The
Jacobian and its matrix cofactors’. Robotica. Vol 4. pp 171-179

-




Py

Reterences

Hunt. K H., 1987 'Special configurations of robot-arms via screw theory- Part Il Available

end-effector displacements’, Robotica. Vol 5. pp 17-22

inoue, H, Tsusaka, Y, and Fukunzurﬁt T . 1985, 'Parallel manipulator’, 3rd Int Sympo-

stium on Robotics Research. Gouvieux. France

Klein, C.A. and Blaho. B E. 1987 'Dexterity measures for the design and control of
kinematically redundant manipulators . The International Journal of Kobotics Resgarch

Vol 6 No. 2 pp 72-83

Klein, CA . and Huang CH . 1983 ’'Review of pseudoinverse control for use with kire-
matically redundant mamipulators’. /EEE Trans Sys. Man, Cyber SMC-13, pp 245-250

Klemnfinger. J.F , and Khalil. W . 1986. ‘Dynamic modeling of robots with closed kinematic
chains’. Technical Report. Laboratoire d’Automatique (LAN). Ecole Nationale Supérieure

de Mécanique, Nantes, France

Kohli, D, and Spanos, J. 1985, "Workspace analysis of mechanical manipulators using
polynomial disciminants’. ASME Journal of Mechamisms, Transmissions, and Automation
in Design, Vol 107, No 2. pp 209-215

Kumar. A, and Patel,. MS, 1986. 'Mapping the manipulator workspace using interactive
computer graphics'. The International Journal of Robotics Research. Vol 5. No 2. pp
122-130

Lar, ZC. and Yang, DCH . 1986, A new method for the singularity analysis of simple
six_ink manipulators  The International Journal of Robotics Research Vol 5, No 2. pp
66-74

Lee, H.-Y . and Liang, C-G . 1988, 'Displacement analysis of:lthe general spatial 7-hnk 7R
mechanism . Mechanism and Machine Theory, Vol 23 No 3. pp 219-226

Lee. K.-M . and Shah. DK 1987, 'Kinematic analysis of a three degree of freedom in-
parallel actuated manipulator’. Proc [EEE Conf on Robotics and Automation. Raleigh,
pp 345-350

Liégeois. J. 1977. "Automatic supervisory control of the configuration and behavior of
multi-body mechanisms , /EEE Trans Sys.. Man . Cyber SMC-7. pp 868-871

Lin. C.C.-D . and Freudensten. F.. 1986. ‘Optimization of the workspace of a three-link
turning-pair connected robot arm’. The International Journal of Robotics Research, Vol 5,
No 2. pp. 104-111

Litvin. F L. and Parent: Castelli. V. 1985, 'Configurations of robot manipulators and therr .
identification. and the execution of prescribed trajectories Part-l. Basic concepts’. ASME

222




¢ 3

Reterences

Journal of Mechanisms. Transmussions, and Automation in Design. Vol. 107. No. 2. pp
170-178

Litvin. F L.. Costopoulos, T . Parenti Castelh, V. Shaheen, M, and Yukishige. Y . 1985,
‘Configurations of robot manipulators and their identification. and the execution of pre’
scribed trajectories Part-Il Investigation of manipulators having five. seven and eight de-
grees of freedom’. ASME Journal of Mechamsms. Transnussions. and Automation in [e
sign, Vol 107, No 2. pp 179-188

Litvin. FL . Yi. Z. Parenti Castelh, V. and Innocentr, C., 1986, ‘Singularities. configura
tions, and displacement functions for mampulators'. The International Journal of Robotic «
Research, Vol 5, No. 2, pp 52-65

Litvin, FL.. Tan, J. Fanghella, P, and Wu, S.. 1987, 'Smgula;i‘tles in motion and dis
placement functions for the RCRCR, RCRRC and RSRC hinkages part-1 Basic concepts’,
Proceedings of the 13th ASME Design Automation Conference, Boston., pp. 267-278.

Litvin, F.L . and Tan, J. 1987, 'Singulanties in motion and displacement functions for the
RCRCR. RCRRC and RSRC hnkages part-ll The RCRCR linkage'. Proceedings of the 13th
ASME Design Automation Conference. Boston, pp 279-284.

Litvin, F.L, and Fanghella, P, 1987, 'Singulanties in motibn and displacement functions
for the RCRCR., RCRRC and RSRC linkages part-1ll. The RCRRC linkage', Proceedings of
the 13th ASME Design Automation Conference, Boston, pp 285-290

RCRCR. RCRRC and RSRC linkages part-IV The RSRC hnkage', Proceedings of the 13th

Litvin, F L, and Wu, S, 1987, ‘Singulanties 1n motion and dlsplac?ub functions for the
ASME Design Autornation Conference, Boston, pp 291-298 -

Ma, O, and Angeles. J., 1987, 'Poszt:onmg-errof analysis of planag/“spherical, and spatial
four-bar Iinkages’. Technical Report. McRCIM. McGill University”’Montréal, Qué., Canada

MacCallion, H. and Pham, D T. 1979, ‘The analysis of a/SIX degree of freedom work
station for mechanised assembly’. Proceedings of the 5th World Congress on Theory of
Machines and Mecharmsms, Montréal .

Mayorga, RV . and Wong, A.K C, 1987. 'A singulanties avoidance method for the trajec-
tory planning of redundant and nonredundant robot manipulators’, Proc. IEEE Conf on
Robotics and Automation, Raleigh, March, pp 1707-1712

Merlet. J P. 1987, 'Parallel manipulators. Part I. Theory. design. kinematics, dynamics and
control’, Technical Report # 646 INRIA, France

223



References

Merlet, J.P., 1988. 'Parallel manipulators, Part ll: Theory. singular configurations and Grass-
man geometry’, Technical Report # 791 INRIA. France.

Midha. A., Zhao. Z.-L.. and Her, I., 1985, ‘Mobility conditions for planar linkages using
triangle inequality and graphical interpretation’. ASME Journal of Mechanisms, Transmis-

sions, and Automation in Design. Vol 107, No. 3. pp 394-400

Mohamed, M G, 1987, 'Structural kinematics of partially-parallel robotic mechanisms’,
proceédings of the 13th ASME Design Automation Conference. Boston Ma ., Sept. pp

31-35

Mohamed, M.G., and Duffy, J., 1985. ‘A direct determiation of the instantaneous kine-
matics of fully parallel robot manipulators’, ASME Journal of Mechanisms, Transmussions,

and Automation in Design, Vol. 107, No. 2, pp. 226-229.

Nakamura, Y ., Hanafusa. H., and Yoshikawa, T, 1987, 'Task-Prionty based redundancy
control of robot manipulators’, The International Journal of Robotics Research. Vol. 6. No

2, pp. 3-15

Primrose. E J F, 1986, 'On the input-output equation of the general 7R mechanism’, Me-
chanism and Machine Theory, Vol 21, No. 6, pp 509-510.

Rastegar, J . and Deravi, P., 1987, '"Methods to determine the workspace, 1ts subspaces with
different numbers of configurations and all the possible configurations of a manipulator’,
Mecharism and Machine Theory. Vol 22, No. 4, pp. 343-350

Reboulet. C.. 1988, ‘Modélisation des robots paralléles’. Chapter 8 of the book ‘Techniques

de la robotique’, Hermes, Pans

Renaud. M, 1980, ‘Calcul de la matrice jacobienne nécessaire a la commande coordonnée

d'un manipulateur’. "Mechanism and Machine Theory. Vol. 15, pp. 81-91

Risbourg, A, 1983. 'Représentation spatiale tétraédrique de I'ensemble des mécanismes 3
quatre barres., Mechamsm and Machine Theory, Vol 18, pp. 501-511.

Russell. R., 1988, 'Kinematic optimization of lower-pair clutch mechamsms’. M Eng. the-
sis, Dept of Mech Eng.. McGill University. Montréal, Qué.. Canada.

Salisbury, J.K.. and Craig, J.J.. 1982, ‘Articulated hands: force control and kinematic
issues’, The International Journal of Robotics Research. Vol. 1. No. 1. pp. 4-17

Sandor. G.S, Kohli, D.. Reinholtz, C.F.. and Ghosal. A.. 1984, ‘Closed-form analytic syn-
thesis of a five-link spatial motion generator’. Mechanism and Machine Theory. Vol 19,
No. 1. pp. 97-105.

224




(N

¢

*:9

Reterences

——a—

Sandor, G.5.. Kohii, D. and Zhuang. X . 1985. "Synthesis of RSSR-SRR spatial motion
generator mechanism with prescribed crank rotations for three and four finite positions’,
Mechanism and Machine Theory. Vol. 20, No 6. pp 503-519

Sandor. GN . Xu. Y. and Weng, T C.. 1986a. 'Synthesis of 7-R spatial motion generators
with prescribed crank rotations and ehimination of branclune”  The International Journal ot
Robotics Research Vol 5 No 2 pp 143-156

Sandor. GN  Xu L J and Yang S P 1986b Computer-aided synthesis of two closed
loop RSSR-SS spatial motion generator with branching and sequence constraints’. Mecha
msm and Machine Theory. Vol 21 No 4, pp 345-350

Savage, M and Hall, AS. 1970. 'Umque déscrlptlons of all spherical four bar hnkages .
Trans ASME Journal of Engineering for Industry. Vol 92, pp 559-563

Selby, S M, 1971, CRC Standard Mathematical Tables. 19th edition, The Chemical Rubber
Co. Ohio :

Sheth. P.N . and Uicker. J J Jr 1972, IMP (Integrated Mechamisms Program), A computer
aided design analysis system for mechanisms and linkages'. ASME Journal of Engineering
for Industry. pp 454-464

Shirkhodate, A H . and Som, A H , 1987. ‘Forward and inverse synthesis for a robot with
three degrees of freedom’. Proceedings of the 1987 Summer Computer Simulation Confer
ence, Montréal, pp 851-856

Somi. AH . 1974, Mechamism Synthesis and Analysis. McGraw-Hill New York

Soni, A.H, and Harnisberger. L, 1967. "The design of the spherical drag link mechantsm’.
Trans. ASME Journal of Engineering for Industry Vol 89, pp 177-181

Soylemez, E. and Freudenstein, F, 1982, Transnussion optimization of spatial 4-hink
mechanisms’. Mechamism and Machine Theory Vol 17, pp 263-283

Stanm3i¢, M, and Pennock, G, 1985, ‘A nondegenerate kinematic solutron of a seven jointed
robot manipulator’ The International Journal of Robotics Research. Vol 4. No 2. pp 10
20 .

Stewart, D, 1965, ‘A platform with Six degrees of freedom’, Proceedings of the Institution
of Mecharical Engineers. Vol 180, No 5 pp 371- 378

Stoughton, R, and Kokkinis, T . 1987. 'Some properties of a new kinematic structure
for robot manipulators’. Proceedings of the 13th ASME Design Automation Conference,
Boston Ma, Sept, pp 73-79

224



References

Strang. G . 1980. Linear Algebra and its Applications. 2nd Editon. Academic press. New-
York.

Sugimoto, K.. 1987, ‘Kinematic and dynamic analysis of parallel manipulators by means of
motor algebra’. ASME Journal of Mécharusms, Transmussions, and Automnation in Design.

Vol 109 No 1., pp 3-7

Sugimoto. K. and Duffy J. 1982, ‘Apphcation of linear algebra to screw systems’. Me-
chamsm and Machine Theory. Vol 17, No 1. pp 73-83

Sugimoto K., Duffy. J. and Hunt. K H. 1982 ‘Special configurations of spatial mecha-
nisms and robot arms’, Mechamsm and Machine Theory, Vol 177 No 2, pp. 118-132

Suh. K C . and Hollerbach. J M., 1987. 'Local versus global torque optimization of redun-

dant mantpulators’. Proc 1EEE Conf on Robotics and Automation, Raleigh. March, pp -

619-624 o

Sutherland, G.. and Roth, B, 1973, ‘A transmission index for spatial mechamisms’, ASME
Journal of Engineering for Industry. Vol. 95, No 2, pp 589-597.

Takano, M., 1985, ‘A new effective solution for inverse kinematics problem (synthesis) of
a robot with any type of configuration’, Journal of the c/;;acu/ty of Engineering, University

of Tokyo (B). Vol 38. No 2. pp 107-135

Tinubu, S.O . and Gupta. K C. 1984, ‘Optimal synthesis of function generators without the
branch defect’, ASME Journal of Mechanisms, Transrmussions, and Automation in Design.
Vol 106, pp 348-354 '

Tsai, LW . and Morgan. A.P. 1985, 'Solving the kinematics of the most general six- and
five-degree-of-freedom manipulators by continuation methods'. ASME Journal of Mecha-

msms, Transmussions, and Automation in Design Vol 107, pp 189-200

Vijaykumar. R. Waldron, K J.. and Tsar, M J. 1986. 'Geometrit optimization of serial
chain manipulator structures for working volume and dextenty’. The International Journal
of Robotics Research. Vol 5. No 2. pp: 91-103 '

Waldron, K J . Raghavan. M., and Roth, B 1988a. 'Kinematics of a hybrid sernes-parallel
manipulation system part- |- Position Kinematics’, Ohio-State University Technical Report

Waldron. K J, Raghavan. M, and Roth, B . 1988b, ‘Kinematics of a hybrid series-parallel
manipulation system part |- Rate and force decomposition’, Ohio-State University Techni-

cal Report.

Waldron, K J.. Wang, SL. and Bolin, S J., 1985, ‘A stu‘dy of the Jacobian matrix of serial
manipulators’. ASME Journal of Mechamsms. Transmussions. and Automation in Design,

220



=)

A ’ Relerences
Y

Vol. 107. No 2. pp. 230-237

“Wampler, CW |l, 1987, ‘Inverse kinematic functions for redundant manipulators’. Proc
IEEE Conf. on Robotics and Automation, Raleigh, March, pp. 610-617.

Wang. T B.. Dahan. M., and Gong. Z.Y.. 1987. 'Nouvelle architect’ure pour manipulateur
spatial’. Proceedings of the 11th Canadian Congress of Applied Mechamcs, Umiv  of Al-

berta. Edmonton !

Wang. S-L . and Waldron. K.J.. 1987, 'A study of the singular conhguratiéms of serial
manipulators’. 'ASME Journal of Mechamsms. Transrmissions, and Automation in Design,
Vol 109. No 1. pp. 14-20.

Wilde. D J., 1982, "Error linearization in the least-squares design of function generating
mechanisms’., Trans. ASME Jo'urna/ofMechanlca/ Design, Vol 104, pp 881-884.

Wilde. D J.. 1983, 'Degeneracy, singulanty, and multiphcity m least-squares design of o
function-generating mechanism'. ASME Journal of Mechanisms. Transmussions, and Au-

|
tomation in Design, Vol 105, p{) 104-107 |

Williams, R L.Il, and Remholtz, CF, 1986, 'Proof of Grashof's law using polynonual dis
cniminants’. ASME Journal of Mechamsms, Transmissions, and Automation 1n Design. Vidl
108, No 4, pp 562-564

Wilhams. R L ll, and Remnholtz, C.F., 1987, ‘Mechanism link rotatability and limit position
analysis using polynomial discriminants’, ASME Journal of Mechamsms, Transmyssions,
and Automation in Design, Vol 109, No 2. pp 178-182

“Wonham. V M, 1979 Linear multivariable control. a geometric approach. Springer-Verlag,
New-York-Heidelberg—Berlin

Yang. D CH . and Lai. Z.C, 1985. 'On the dexterity of robotic manipulptors—service angle’,
ASME Journal of Mechamisms. Transmussions, and Automation 1n Design, Vol 107, No.
2, pp 262-270

Yang, D CH . and Lee, T W, 1984, 'Feasibility study of a platform type of robotic manip-
ulators from a kinematic viewpoint', ASME Journal of Mechamisms, Transmissions, and
Automation in Design. Vol 106. No 2. pp 191-198

Yoshikawa, T, 1985, ‘Manipulability of robotic mechanisms’. The International Journal of
Robotics Research. Vol 4. No 2. pp. 3-9 *

- 227




"Appendix A. Solution of a Quartic Equation

Appendix A

Solution of a Quartic Equation

The solution of the inverse kinematic problem of the spatial three—degree-of—

'+ freedom parallel mampulator given in Chapter 4 1s derived through the solution of a quartic

equation A method of solution of such an equation sn.€lesed-form is given here which was

taken from (Selby 1971)

-

Let a general quartic equation be given by

¢

This equation has a resolvent cubic equation. which can be written as

y® - by? + (ac - 4d)y — a’d + 4bd - 2

Now, let y be any root of this equation, and let

/

Then. if R =0, let

=‘—143b+y
Va

:r4+a:z:3+b2:2+cz+d='0

- 2b+

4ab — 8¢ — a3

Then, the four roots of the original equation are given by

o~

+ELD

2

2

(4.3)

(A.da)

(A.4b)

(4.6a)
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and .

tH

2
N
N

(1.6h)

This 3olution entails the computation of the roots of the resolvent cubic equa-

Q

tion This can be dohf’ as follows. Let a general cubic equation be written as

Wy gu =0 (.17}
1
This equation can be reduced to the form

v

B ruz+r=0 (.1.8)
where
1 |
u = §(3q - pz) (1.90a)
1 . N
v = —(2p> - 9pq + 27r) (.1.9h)
27
by using the following substitution:
. P ‘
y= :7 3 (A4.10)
Now. let e
| = 3o 2 ou (111
.-—-\ 2+"\4T27‘ b «)
and 0 &y _ —
3 A
B=1\ -2 - — 4+ =: Al
’\ 57 3 -+ 7 (A.110)
then the values of the roots of eq.{A.8) will be given by -
=4+ 8B s (A.124)
A 4 - —
2= - ;f?& A . N (A.120)
A+B A- DL -
. &3 = - 2 - 2 \ ”3 ° (,412()

LI .

and the values of the roots of the original cubic equation are readily computed using

% eq.(A.10).
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Appendix B. The Linear Invariants of a Rotation Tensor

Given any 3 - 3 tensor A;:whose representation mn a given coordinate frame
comprises the array of real numbers a,, far 2.) = 1.2.3. its linear invaniants are defined as
its vector, represented as vect(A) and its trace. represented as tr(A) Let a denote vect(A)

its representation in the given coordinate frame comprising the array of real numbers «, .

for 1 = 1.2.3 -Resorting to index notation, the aforementioned invariants are defined as
— 1 -_—
a, = EC,Ukak]. tr(A) = a, (Bl)

In displayed form, we have

1 {932 793
vect(A) =a = 5 a3 — a3y | . tr(A) = aqq +axp + a3 (B.2)
a1 — a4y

Moreover, from the foregoing definitions. 1t 1s apparent that the vector of a symmetric
tensor vanishes, whereas the trace of a skew symmetric tensor vanishes.

i

L

Now. if the 3 . 3 tensor is a rotation tensor. denoted by Q. ie.. a proper

orthogonal tensor, it can be expressed as
— a7 T
Q =ee’ +cosofl —ee’ ) +sino(l - e) (B.3)

where e i1s the unit vector parallel to the axis of the rotation associated with Q and o is
the angle ,of that rotation Since the first two terms of the representation of Q given In

eq.(B 3) are symmetric, we can write the vector of Q as
vect(Q) = vect(sinol - e) = sinoe (B 4)

Furthermore. the last term of the representation of Q given in eq.(B.3) being skew sym-

metric. we can write the trace as .
tr(Q) = tr[eeT + coso(1 - eeT)] = e-e+cos o(3-e-e) =1+ 2cos o (B.5)

The vector of Q can be denoted by q = [g;. g7. ¢3]7. and rather than using tr(Q) as the

other linear invariant. gy = cos ¢ 1s Introduced to refer to the /méar invariants of the rotation
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&

tensor. Hence. the rotation tensor is fully defined by four Scalar parameters. namely {q, }8.

which can be conveniently stored in the four-dimensional array \. defined as

3

. A= lgo n1- 0. (13]7‘ (13.6)

where ‘

~ i
| 4 = tT(Qz’ : (1.7)

It is pointed out. however. that the four components of A\ are not independent, for they

must obey the following

X2 = qg + qlz + q% + q% = q?+ qg =sin? o+ cos? o = 1 (1:.8)

The rotation of a rigid body about a fixed point can therefore be described m a four
dimensional space by the motton of a point of position’ vector A that moves on the surface
of the unit sphere centred at the onigin of the said space

f
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Appendix C. Computation of a Rotation Matrix Given its Four

~.

Upper-Left Entries

This problem arose from the solution of the inverse kinematic problem for the
positioning of the spatial three-degree-of-freedom manipulator presented in Section 4 4 1
In the aforementioned solution. the four upper-left entries. 1€, g11. g12. g1 and gy of the
rotation matrix Q representing the orientation of the platform are found from the solution
of a quartic equation It 1s then desired to find the rotation matrix or the set of rotation
matrices that are compatible with these four entriest The absolute value of each of the
entries of the last row and the last column of Q can be computed using the fact that each

of the rows and columns of Q should have a unit Euclidean norm We can write, then,

ql3 = :\/ 1 - q221 e q222. 1 l :‘1.2 (C'.la)
and
g3, = *,\/1 - qfl - qgl. 1 =1,2,3 (C.1b)

Therefore. because of the sign ambiguities on five of the components of Q. a set of up
to 32 matrices can be found that will satisfy the column and row unit norm constraints
However, since Q must be an orthogonal matrix, its rows and columns must be orthogonal
to each other This additional constraint can be used to find which of the 32 matrices are
ortnogonal and moreover. the determinant can be used to find which of th;ase are proper

I
orthogonal matrices The following 1s next shown
/

Theorem C.1 Only up to two of the 32 matrices mentioned above are proper orthogonal

matrices

Proof:

£

Let Q be a proper orthogonal matrix which satisfies all the constraints described
‘ 4
i a1z 93| |/
Q= |1 92 | ' (C.2)
931 432 433 v

above and let
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It ig now desired to find other matrices obtained from Q by changing the stgns of some or all
of the entries of the last row and the last column and that would still be proper orthoponal
matrices It is clear that‘ if the sign of only one or two of the entries of Q 1s chanped,
the orthogonality between the rows and the columns cannot be preserved Furthermore
if the sign of three of the entries of Q s changed. the orthogonality of the rows and
columns 1s again lost unless the three entries are chosen on o same row or column, 1o f
we change the sign of the entries of the third row or the third column  However. it these
signs are changed. the sign of the determinant will be changed and the resulting matrix
will be improper orthogonal, 1e, 1t will represent a reflexion rather than a rotation and nt
is therefore not an acceptable solution. It is also readily seen that the orthogonality of the
rows and columns cannot be preserved when the sign of all the entries of the last row and
the last column of Q are changed Finally, there 1s only one possibiity that will preserve

both the orthogonality and the determinant and that i1s. when the signs of ¢y3. 4p3. ¢33 and

g3 are changed, 1e. ‘
, 911 912 913
Q = (]21 (]22 - (/23 (( .3)
z “q31 7932 933
Indeed. the orthogonality conditions. on the columns of this new matrix Q' can then be

a
written as

911912 + 421922 + 931932 = 0 (¢ 4u)
' ~911913 — 91923 ~ 31433 =0 {¢.40)
~012913 ~ 922923 ~ 932933 = 0 , (¢ ".4c)

(
- == - < vy .

~e

which are equivalent to the orthogonality conditions of Q and the determinant can be

written as -
1
A(Q') =g11(922933 - 923932) — w1la12933  913432)

- q31(= 912023 + 913922 - (C'.5)

* :A(Q)

and hence. only up to two solutions to the original problem. Q and Q', can arise.

4
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Appendix D. Condition Number of a Matrix

A

Let us consider the following linear system .

Ax = b . (D)
I

where A is an 1 matrix and x and b are n—dimensional vectors The condition number
of the matrix A 1s a3 measure of 1ts natural resistance to roundoff error when the solution
of the linear system s computed This resistance 1s expressed by the amplification factor
by which a relative error }6b'. b in the data 15 multiplied, to lead to a relative error

bx Jiix i the solution and it 1s called the condition number &f the matrix We can write

the following \\\

A(x + éx) = b +éb (D.2)
or, by subtraction of eq,(D.lj. \
A(ox) = éb (D.3)
or ; L
bx=A"1éb - | (D.4)
We now define the normﬂ of a matrix as its amp//fy/ng;)ower. e, \\\
\

Ax < A x . forallvectors x ‘ (D 5)

and equality holds for at least one nonzero vector We can then write. from eqs (D 1 &

D 4).

K "\ -
b - A x : - - (D)
a _
and ‘
éx « AT b (D7)
T
which leads to \‘,\
X B ob: \\
xS A(A)T (D.8)
where \
\
k(A) = A A1 . (DY)
3 \ .
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1s the condition number of A. which defines an upper bound tor the amplification of the
relative error  This defimtion of the condition number can be used with different matrix

norms. In this thesis, the Euclidean —or Frobemus=— norm was used, which is detined as'
‘A =\ tr(AWA) (12 10u)

where

w="1 (1).100)

H
and A 1s assumed tg be n - n Other definitions for the norm could be adopted For
instance, the square jroot of the largest eigenvalue of ATA s often used This definution
has the advantage of being apphcable to non-square matrices  When this definition 15
;
adopted the condltlé)n number of a matrix A becomes the square root of the ratio of the

largest to the smallest eigenvalue of the matrix ATA The Euclidean norm was used here

because it 1s frame-invanant: and 1t 1s also very easy to compute




